Advanced Textbooks in Control and Signal Processing

Victor Manuel Hernandez-Guzman
Ramon Silva-Ortigoza

Automatic
Control with
Experiments

@ Springer



Advanced Textbooks in Control and Signal
Processing

Series editors

Michael J. Grimble, Glasgow, UK
Michael A. Johnson, Oxford, UK
Linda Bushnell, Seattle, WA, USA



More information about this series at http://www.springer.com/series/4045


http://www.springer.com/series/4045

Victor Manuel Hernandez-Guzman
Ramon Silva-Ortigoza

Automatic Control
with Experiments

@ Springer



Victor Manuel Herndndez-Guzman Ramoén Silva-Ortigoza

Universidad Autonoma de Queretaro, Instituto Politécnico Nacional, CIDETEC
Facultad de Ingenieria Mexico City, Mexico

Querétaro, Querétaro, Mexico

ISSN 1439-2232 ISSN 2510-3814 (electronic)
Advanced Textbooks in Control and Signal Processing
ISBN 978-3-319-75803-9 ISBN 978-3-319-75804-6  (eBook)

https://doi.org/10.1007/978-3-319-75804-6
Library of Congress Control Number: 2018945428

© Springer International Publishing AG, part of Springer Nature 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-319-75804-6

To Judith, my parents, and my brothers.
To the memory of my grand-parents.
Victor.

To my wonderful children — Ale, Rhomy,
Robert, and Rhena — and to my mother.
Ramoén.



Foreword

Control systems are described by differential equations; hence, mathematics is an
important tool for the analysis and design of control systems. This is the reason
why most books on control systems traditionally have a strong mathematics content.
However, control systems are also part of engineering and it is practical engineering
problems that have motivated the development of control systems as a science.
As the influence of advanced mathematics on the subject has grown over time,
the modern control design techniques become less comprehensible each time to
practitioners. Moreover, this problem is so important that it is also present on basic
control courses, i.e., courses on classical control. Because of this situation, several
control system scientists have pointed out the necessity of reducing the gap between
theory and practice.

Automatic control with experiments is a book intended to reduce the gap between
theory and practice in control systems education. The book focuses on classical
control techniques and modern linear control techniques. The first chapters of the
book are devoted to theoretical aspects of these control techniques, whereas the
last chapters are devoted to practical applications of this theory. Moreover, several
theoretical examples in the first chapters of the book are intended to be employed in
the experiments reported in the latter chapters of the book.

Practical applications presented in the book include feedback electronic circuits
(amplifiers with dead-zone, sinusoidal oscillators, and regenerative radio-frequency
receivers), brushed DC motors, a magnetic levitation system, the ball and beam sys-
tem, a mechanism including flexibility, and some systems including pendulums. All
theoretical and practical aspects that are necessary to design and to experimentally
test the complete control system are described for each prototype: modeling, plant
construction and instrumentation, experimental identification, controller design,
practical controller implementation, and experimental tests of the complete control
system.

Another important feature of the book is that the reader is instructed how to build
her/his own experimental prototypes using cheap components. The main objective
of this is that the reader has his or her own experimental platforms. In this respect it

vii



viii Foreword

is the authors’ experience that the use of scholars’ facilities is restricted in both time
and space. Thus, this proposal of the book is attractive.

The electronic components employed are basic and the authors know that today’s
technology offers more powerful alternatives. However, the subject of the book
is automatic control, not electronics or programming languages. Hence, it is the
intention of the authors not to divert the reader’s attention from automatic control to
electronics or computer programming. Thus, the electronics and programming are
kept as simple as possible. It is the authors’ belief that once the reader understands
automatic control she/he will be capable of translating the simple designs in
the book to sophisticated platforms based on modern advanced electronics and
programming technologies.

Instituto Tecnologico de la Laguna Victor Santibanez
Division de Estudios de Posgrado e Investigacion
Torreon, Coah., Mexico



Preface

Automatic control is one of the disciplines that support the technologically advanced
lifestyle that we know today. Its applications are present in almost all the activities
performed by humans in the twenty-first century. From the Hubble spatial telescope
and spacecrafts, to the fridge at home used for food preservation. From residential
water tanks to large industries producing all the products demanded by people:
automobiles, aircrafts, food, drinks, and medicines, to name but some.

Although it is known that applications of automatic control have existed for
more than 2000 years, the Industrial Revolution motivated its development as
scientific and technological knowledge oriented toward the solution of technological
problems. Since then, automatic control has been instrumental in rendering human
activities more efficient, increasing the quality and repeatability of products.

It is for this reason that courses on automatic control have become common
in academic programs on electrical engineering, electronics, mechanics, chemistry
and, more recently, mechatronics and robotics. However, the fact that conventional
automatic control techniques are based on mathematics has traditionally posed
difficulties for education in this subject: to learn to design automatic control systems
the student is required to understand how to solve ordinary, linear, differential
equations with constant coefficients using Laplace transforms. This is an important
obstacle because this subject is commonly difficult for most undergraduate students.
The problem becomes worse because in automatic control the most important part
of solving a differential equation is the physical interpretation of a solution, which
is difficult for undergraduate students because most do not even understand how to
find the solution.

Another difficulty in automatic control education is how to teach students to
relate abstract mathematical results to the practical issues in a control system. How
do they implement a controller given in terms of the Laplace transform, i.e., as
a transfer function in practice? How do they implement a controller using digital
or analog electronics? How do they take into account sensors and power amplifier
gains? How do they determine the gain of a pulse width modulation-based power
amplifier? What are the effects of these gains in a control system?

ix



X Preface

The problems related to the practice described in the previous paragraph have
been traditionally solved using commercial teaching prototypes. However, this has
two drawbacks: (1) this equipment is excessively expensive and (2) many practical
issues in control systems remain “invisible” for students. This is because this
equipment is designed under the premise that it is not necessary for an automatic
control student to know how to solve practical issues related to electronics and
programming, for instance, that are present in several components of a control
system. This is a case of how do we build a power amplifier? How do we design
and implement a controller using operational amplifiers or a microcontroller? How
do we build our own sensors?

The present textbook offers undergraduate students and professors teaching
material that is intended to solve some of the above-mentioned difficulties. To
render the learning of theoretical aspects easier, a chapter devoted to solving
ordinary, linear, with differential equations with constant coefficients using Laplace
transforms is included. Although this chapter may be seen as a course on differential
equations, the main difference with respect to a mathematics course is that our
book is intended to help students to interpret the solution of differential equations.
Furthermore, effects that the differential equation parameters have on the solution
waveform are highlighted. According to the experience of the authors, automatic
control textbooks in the literature merely present a compendium of solutions of
differential equation and they do not succeed in making students reason what
they are doing. To overcome this problem, in the present textbook, we resort
to explaining differential equations through examples that every undergraduate
student has observed in real life, i.e., we resort to students’ everyday experience
to understand the meaning of mathematical results.

Difficulties related to practical aspects in control systems are overcome through
applications in several experimental control systems. Each one of these examples is
studied using the same procedure. First, tasks performed using the control systems
under study is described. Then, a complete explanation is given to the reader on
how to build each one of components of that control system. After that, it is shown
how to obtain the corresponding mathematical model and it is explained how to
experimentally estimate the numerical values of the system mathematical model
parameters. Automatic control techniques studied in the first chapters of the book
are then used to mathematically design the corresponding controller. It is also
explained in detail how to practically implement the designed controller using either
digital or analog electronics, and, finally, results obtained when testing the designed
control system experimentally are presented.

The present textbook is organized as follows. Chapter 1 presents a general view
of automatic control systems. The aim is to explain to the reader the main ideas
behind designing automatic control systems. This is achieved using several practical
examples whose main tasks are well understood by most people: a position control
system, a steering control system, a video camera recording control system, etc.
A brief history of automatic control is also presented and related to the content of
this book. The idea is to render the reader capable of identifying reasons why each
automatic control tool and concept has been developed. Chapter 2 is devoted to



Preface xi

physical system modeling. This chapter is oriented toward physical systems that are
common in electrical, electronics, mechanics, and mechatronics engineering. One
important reason for including this subject is that the reader realizes that control
systems are described by ordinary, linear, differential equations with constant
coefficients. This motivates the solution of differential equations in Chap. 3, as this is
instrumental to understanding how a control system responds and what the designer
has to modify in a control system to achieve the desired response.

Mathematical tools employed to design classical and modern control systems are
presented in Chaps. 4 to 7: stability criteria and the steady-state error (Chap. 4), the
root locus method (Chap. 5), the frequency response approach (Chap. 6), and the
state variables approach (Chap. 7). Exposition of these subjects is oriented toward
their application to practical examples presented in subsequent chapters of the book.
Hence, several examples in the first chapters of the book deal with the design of
controllers that are practically implemented and experimentally tested in the later
chapters.

Chapter 8 is included to study the theory required to understand some interesting
phenomena appearing during experiments when controlling some of the mecha-
nisms in the last chapters of the book. This is the case of: (a) large overshoots
observed even when all closed-loop poles are real, and (b) limit cycles in the Furuta
pendulum. Furthermore, a methodology useful for selecting controller gains such
that limit cycles are avoided is proposed using ideas in this chapter.

The structure of Chaps. 9 to 16 is the same, as they have the same objective: the
application of control techniques in Chaps. 4 to 8 to analyze and design practical
control systems. The designed controllers and the complete control systems are
practically built, employing low-cost components. Finally, experimental results
obtained when testing the complete control systems are presented.

In Chap. 9, several feedback electronic circuits are studied and designed. Among
them are some sine-wave oscillator circuits based on operational amplifiers (audio-
frequency) and bipolar transistors (radio-frequency), in addition to some power
amplifiers and a regenerative radio-frequency receiver. In Chaps. 10 and 11 velocity
and position are controlled respectively in a permanent magnet brushed DC motor.
Position of a mechanical system with flexibility is controlled in Chap. 12. A
magnetic levitation system is controlled in Chap. 13 whereas a ball and beam
system, a well-known mechanical system in the automatic control literature, is
controlled in Chap. 14. Finally, in Chaps. 15 and 16, two mechanisms including
a pendulum are controlled: the Furuta pendulum and the inertia wheel pendulum.

The authors hope the readers this material find useful.

Querétaro, Mexico Victor Manuel Hernandez-Guzman
Meéxico City, Mexico Ramén Silva-Ortigoza
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Chapter 1 ®
Introduction Check for

1.1 The Human Being as a Controller

Everybody has been a part of a control system at some time. Some examples of
this are when driving a car, balancing a broomstick on a hand, walking or standing
up without falling, taking a glass to drink water, and so on. These control systems,
however, are not automatic control systems, as a person is required to perform a role
in it. To explain this idea, in this section some more technical examples of control
systems are described in which a person performs a role.

1.1.1 Steering a Boat

A boat sailing is depicted in Fig. 1.1. There, the boat is heading in a direction that
is different from the desired course indicated by a compass. A sailor, or a human
pilot, compares these directions to obtain a deviation. Based on this information,
she/he decides what order must be sent to her/his arms to apply a suitable torque
on the rudder wheel. Then, through a mechanical transmission, the rudder angle
is modified, rendering it possible, by action of the water flow hitting the rudder,
to apply a forque to the boat. Finally, by the action of this torque, the boat rotates
toward the desired course. This secession of actions continuously repeats until the
boat is heading on the desired course. A block diagram of this process is shown in
Fig. 1.2.

In this block diagram, the fundamental concept of feedback in control systems
is observed. Feedback means to feed again and refers to the fact that the resulting
action of the control system, i.e., the boat actual course, is measured to be compared
with the desired course and, on the basis of such a comparison, a corrective action
(torque on the rudder wheel) is commanded again, i.e., fed again, trying to render

© Springer International Publishing AG, part of Springer Nature 2019 1
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Fig. 1.1 Steering a boat
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Fig. 1.2 Actions performed when steering a ship

zero deviation between the desired and actual courses. It is said that the human
being performs as a controller: she/he evaluates the actual deviation and, based on
this information, commands a corrective order until the actual course reaches the
desired course. Although arms act as actuators, notice that the rudder wheel and the
mechanical transmission suitably amplify torque generated by the arms to actuate
the rudder.

This control system is not an automatic control system because a human being
is required to perform the task. Suppose that a large ship is engaged in a long trip,
i.e., traveling between two harbors on two different continents. In such a case, it
is preferable to replace the human brain by a computer. Moreover, as the ship is
very heavy, a powerful motor must be used to actuate the rudder. Thus, a machine
(the computer) must be used to control the ship by controlling another machine (the
rudder motor). In such a case, this control system becomes an automatic control
system.

1.1.2 Video Recording While Running

In some instances, video recording must be performed while a video camera is mov-
ing, for example, when it is placed on a car driving on an irregular terrain, on a boat
on the sea surface, or attached to a cameraman who is running to record a scene that
is moving. The latter situation is depicted in Fig. 1.3. The cameraman must direct
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Fig. 1.4 Actions performed when video recording while running

the video camera toward the scene. However, because of the irregular terrain and the
natural movement of the cameraman who is running, the arms transmit an undesired
vibration to the video camera. A consequence of this vibration is deterioration of
the image recording. Although the cameraman may try to minimize this effect by
applying a corrective torque to the video camera, as shown in Fig. 1.4, the natural
limitations of the human being render it difficult to record well-defined images.

Thus, it is necessary to replace the human being in this control system by more
precise mechanisms, i.e., design of an automatic control system is required This
requires the use of a computer to perform the comparison and decision tasks, and
the combined use of tracks and a motor to actuate the camera. Because of the high
capability of these machines to perform fast and precise actions, high-quality images
can be recorded because vibration induced on the video camera can be suitably
compensated for [1, 2].

1.2 Feedback Is Omnipresent

The main feature of control systems introduced in the previous section and the
automatic control systems with which this book is concerned is feedback. This is
the capability of a control system to command corrective actions until the desired
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response is accomplished. On the other hand, feedback is not an invention of human
beings: it is rather a concept that human being has learned from nature, where
feedback is omnipresent. Examples in this section are intended to explain this.

1.2.1 A Predator-Prey System

This is a fundamental feedback system in all ecosystems. Predators need to eat prey
to survive. Then, if there are many predators, the number of prey diminishes because
many predators require lots of food. Then, a reduced number of prey ensures that
the number of predators also diminishes because of the lack of food. As the number
of predators diminishes, the number of prey increases, because there are fewer
predators to eat prey. Hence, there will be a point in time where the number of
prey is so large and the number of predators is so small that the number of predators
begins to increase, because of the food abundance. Thus, at some point in the future,
the number of predators will be large and the number of prey will be small, and the
process repeats over and over again.

Feedback exists in this process because the number of predators depends on the
number of prey and vice versa. Notice that, because of this process, the number of
predators and prey are kept within a range that renders possible sustainability of
the ecosystem. Too many predators may result in prey extinction which, eventually,
will also result in predator extinction. On the other hand, too many prey may result
in extinction of other species the prey eat and, hence, prey and predator extinction
results again.

The reader may wonder whether it is possible for the number of predators and
prey to reach constant values instead of oscillating. Although this is not common in
nature, the question is Why? This class of question can be answered using Control
Theory, i.e., the study of (feedback) automatic control systems.

1.2.2 Homeostasis

Homeostasis is the ability of an organism to maintain its internal equilibrium. This
means that variables such as arterial blood pressure, oxygen, CO> and glucose
concentration in blood, in addition to the relations among carbohydrates, proteins,
and fats, for instance, are kept constant at levels that are good for health.

1.2.2.1 Glucose Homeostasis [3, 4]

Glucose concentration in the blood must be constrained to a narrow band of values.
Glucose in the blood is controlled by the pancreas by modifying the concentrations
of insulin and glucagon (see Fig. 1.5). When the glucose concentration increases, the
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Fig. 1.5 Glucose homeostasis: regulation of glucose in the blood

pancreas delivers more insulin and less glucagon, which has the following effects:
(i) it favors transportation of glucose from blood to cells, (i7) it increases demand
for glucose in cells, (ii7) it stimulates the liver for glucose consumption to produce
glycogen, fats, and proteins. The effect of this set of actions is a reduction of glucose
concentration in the blood to safe, healthy levels.

On the other hand, if the glucose concentration in the blood diminishes, the
pancreas delivers more glucagon and less insulin, which has the following effects:
(i) it stimulates the liver cells to produce glucose, which is delivered into the
blood, (ii) it stimulates the degradation of fats into fatty acids and glycerol, which
are delivered into the blood, iii) it stimulates the liver to produce glucose from
glycogen, which is delivered into the blood. The effect of this set of actions is the
incrementation of the glucose concentration in the blood to safe, healthy levels.

The glucose regulation mechanisms described above are important because the
blood glucose level changes several times within a day: it increases after meals and
it decreases between meals because cells use or store glucose during these periods
of time. Thus, it is not difficult to imagine that glucose homeostasis performs as a
perturbed control system equipped with an efficient regulator: the pancreas.

1.2.2.2 Psychological Homeostasis [3]

According to this concept, homeostasis regulates internal changes for both physi-
ological and psychological reasons, which are called necessities. Thus, the life of
an organism can be defined as the constant search for and equilibrium between
necessities and their satisfaction. Every action searching for such an equilibrium
is a behavior.
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Fig. 1.6 Regulation of body sweat on
temperature skin
skin cools
blood
high temperature temperature
level 1 falls
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low temperature
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1.2.2.3 Body Temperature [3, 5]

Human beings measure their body temperatures, using temperature sensors in their
brains and bodies.

A body temperature decrement causes a reduction of blood supply to the skin
to avoid heat radiation from the body to the environment, and the metabolic rate is
increased by the body shivering to avoid hypothermia.

‘When the body temperature increases, the sweat glands in the skin are stimulated
to secrete sweat onto the skin which, when it evaporates, cools the skin and blood
(Fig. 1.6).

On the other hand, fever in a human being is considered when the body’s
temperature is above 38°C. Fever, however, is a body’s natural defense mechanism
against infectious diseases, as high temperatures help the human body to overcome
microorganisms that produce diseases. This, however, results in body weakness,
because of the energy employed in this process. Thus, when this is not enough,
medical assistance is required.

1.3 Real-Life Applications of Automatic Control

In this section, some examples of real-life applications are presented to intuitively
understand the class of technological problems with which automatic control is
concerned, how they are approached, and to stress the need for automatic control.
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1.3.1 A Position Control System

The task to be performed by a position control system is to force the position or
orientation of a body, known as the load, to track a desired position or orientation.
This is the case, for instance, of large parabolic antennae, which have to track
satellites while communicating with them. A simplified description of this problem
is presented in the following where the effect of gravity is assumed not to exist
because movement is performed in a horizontal plane (Fig. 1.7).

A permanent magnet brushed DC motor is used as the actuator. The motor shaft is
coupled to the load shaft by means of a gear box. The assembly works as follows. If
a positive voltage is applied at the motor terminals, then a counter-clockwise torque
is applied to the load. Hence, the load starts moving counter-clockwise. If a negative
voltage is applied at the motor terminals, then a clockwise torque is applied to the
load and the load starts moving clockwise. If a zero voltage is applied at the motor
terminals, then a zero torque is applied to the load and the load has a tendency to
stop.

Let 0 represent the actual angular position of the load. The desired load position
is assumed to be known and it is designated as 6;. The control system objective
is that 6 approaches 6, as fast as possible. According to the working principle
described above, one manner to accomplish this is by applying at the motor
terminals an electric voltage v that is computed according to the following law:

v==kpye, (1.1)

where e = 6; — 0 is the system error and k;, is some positive constant. The
mathematical expression in (1.1) is to be computed using some low-power electronic
equipment (a computer or a microcontroller, for instance) and a power amplifier
must also be included to satisfy the power requirements of the electric motor. It
is assumed in this case that the power amplifier has a unit voltage gain, but that the
electric current gain is much larger (see Chap. 10, Sect. 10.2). According to Fig. 1.8,
one of the following situations may appear:

knob actual
reference output
6, input measured
0(]

power
amplifier

controller

Fig. 1.7 A position control system
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Fig. 1.8 Load must always

move such that & — 6, . (a) 9,
64 > 0, v > 0, load moves

counter-clockwise. (b)

64 < 0,v < 0, load moves

clockwise

(b)

e If 0 < 64, then v > 0 and the load moves counter-clockwise such that
approaches 6.

e If6 > 04, then v < 0 and the load moves clockwise such that 6 approaches 6,
again.

e If6 = 6,4, then v = 0 and the load does not move and 6 = 6,; stands forever.

According to this reasoning it is concluded that the law presented in (1.1) to
compute the voltage to be applied at the motor terminals has the potential to work
well in practice.

The expression in (1.1) is known as a control law or, simply, as a controller.
A block diagram showing the component interconnections in the position control
system is presented in Fig. 1.9. Notice that the construction of the controller in (1.1)
requires knowledge of the actual load position 6 (also known as the system output
or plant output), which has to be used to compute the voltage v to be applied at
the motor terminals (also known as the plant input). This fact defines the basic
control concepts of feedback and a closed-loop system. This means that the control
system compares the actual load position (6, the system output) with the desired load
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Fig. 1.10 Three possible transient responses in a one-degree-of-freedom position control system

position (6,4, system desired output or system reference) and applies, at the motor
terminals, a voltage v, which depends on the difference between these variables
(see (1.1)).

The system error is defined as e = 6; — 6. Hence, the steady state error" is zero
because, as explained above, 6; —6 = 0 can stand forever. However, the term steady
state means that this will be achieved once the time is long enough such that the load
stops moving (i.e., when the system steady-state response is reached). Hence, a zero
steady-state error does not describe how the load position 6 evolves as it approaches
64. This evolution is known as the system transient response.” Some examples of
the possible shapes of the transient response are shown in Fig. 1.10. If k, in (1.1) is
larger, then voltage v applied at the motor terminals is larger and, thus, the torque
applied to the load is also larger, forcing the load to move faster. This means that
less time is required for 6 to reach 6;. However, because of a faster load movement
combined with load inertia, & may reach 6 with a nonzero load velocity 6 # 0. As

1

1See Chap. 4.
2See Chaps. 3, 5 and 6.
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Fig. 1.11 Simple pendulum

a consequence, the load position continues growing and the sign of 8; — 6 changes.
Thus, the load position 8 may perform several oscillations around 6, before the
load stops moving. It is concluded that &k, has an important effect on the transient
response and it must be computed such that the transient response behaves as desired
(a fast response without oscillations). Moreover, sometimes this requirement cannot
be satisfied just by adjusting k, and the control law in (1.1) must be modified, i.e.,
another controller must be used (see Chaps. 5, 6, 7 and 11). Furthermore, the steady-
state error may be different to zero (6 # 6; when the motor stops) because torque
disturbances (static friction at either the motor or the load shafts may make the load
deviate from its desired position). This means that even the search for a zero or, at
least, a small enough steady-state error may be a reason to select a new controller.

Stability is a very important property that all control systems must possess.
Consider the case of a simple pendulum (see Fig. 1.11). If the pendulum desired
position is 6; = 0, it suffices to let the pendulum move (under a zero external torque,
T (t) = 0) just to find that the pendulum oscillates until the friction effect forces it to
stop at 6 = 0. It is said that the pendulum is stable at 6; = 0 because it reaches this
desired position in a steady state when starting from any initial position that is close
enough. On the other hand, if the desired position is 8; = 7, it is clear that, because
of the effect of gravity, the pendulum always moves far away from that position, no
matter how close to 6; = 7 the initial position selected. It is said that the pendulum
is unstable at §; = 7. Notice that, according to this intuitive description, the position
control system described above is unstable if control law in (1.1) employs a constant
negative value for k,: in such a case, the load position & would move far away from
64. Thus, k, also determines the stability of the closed-loop control system and it
must be selected such that closed-loop stability is ensured.® It must be remarked
that in the case of an unstable closed-loop system (when using a negative k) a
zero steady-state error will never be accomplished, despite the control law in (1.1),
indicating that the motor stops when 6 = 6. The reason for this is that, even if
6 = 6, since the beginning, position measurements 6 always have a significant
noise content, which would render 6 # 6; in (1.1) and this would be enough to
move 6 far away from 6,.

3See Chaps. 3,4, 5, 6, 7.
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Another important factor to be taken into account in a position control system is
the desired load trajectory. It is clear that tracking a constant value for 6, is easier
than the case where 6; changes very fast, i.e., when the time derivative of 6, is large
or in the case when the second time derivative of 6, is large. Hence, the control
law in (1.1) must be designed such that the closed-loop control system behaves
satisfactorily under any of the situations described above. When 6, is different to
any of these situations, it is assumed that the control system will behave correctly if
it behaves well in any of the situations described above. This is the main idea behind
the design of the system steady-state error studied in Chap. 4.

Thus, the three basic specifications for a closed-loop control system are the
transient response, the steady-state response, or steady=state error, and the stability.
One controller must be designed such that, by satisfying these three fundamental
specifications, a fast and well-damped system response is obtained, the load position
reaches the desired position in the steady state and the closed-loop system is
stable. To achieve these goals, the automatic control techniques studied in this
book require knowledge and study of the mathematical model of the whole closed-
loop control system. According to Chap. 2, this mathematical model is given as
ordinary differential equations, which are assumed to be linear and with constant
coefficients. This is the reason why Chap. 3 is concerned with the study of this
class of differential equations. The main idea is to identify properties of differential
equations that determine their stability in addition to their transient and steady-state
responses. This will allow the design of a controller as a component that suitably
modifies properties of a differential equation such that the closed-loop differential
equation behaves as desired. This is the rationale behind the automatic control
system design tools presented in this book.

The control techniques studied in this book can be grouped as classical or
modern. Classical control techniques are presented in Chaps. 3, 4, 5, 6 and there
are two different approaches: time response techniques (Chap. 5) and frequency
response techniques (Chap. 6). Classical control techniques rely on the use of
the Laplace transform to solve and analyze ordinary linear differential equations.
Classical time response techniques study the solution of differential equations on
the basis of transfer function poles and zero locations (Chap. 3) and the main control
design tool is Root Locus (Chap. 5). Classical frequency response techniques exploit
the fundamental idea behind the Fourier transform: (linear) control systems behave
as filters; a system response is basically obtained by filtering the command signal,
which is applied at the control system input. This is why the fundamental analysis
and design tools in this approach are Bode and polar plots (Chap. 6), which are
widely employed to analyze and design linear filters (low-pass, high-pass, band-
pass, etc.). Some experimental applications of the classical control techniques are
presented in Chaps. 9, 10, 11, 12, 13, and 14.

On the other hand, the modern control techniques studied in this book are known
as the state variables approach (Chap. 7) which, contrary to classical control tools,
allow the study of the internal behavior of a control system. This means that the state
variables approach provides more information about the system to be controlled,
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which can be exploited to improve performance. Some examples of the experimental
application of this approach are presented in Chaps. 15 and 16.

1.3.2 Robotic Arm

A robotic arm is shown in Fig. 1.12. A robotic arm can perform several tasks, for
instance:

» Take a piece of some material from one place to another to assemble it together
with other components to complete complex devices such as car components.

e Track a pre-established trajectory in space to solder two pieces of metal
or to paint surfaces. Assume that the pre-established trajectory is given
as six dimensional coordinates parameterized by time, i.e., three for the
robot tip position [x4(t), y4(t), z4(¢)] and three for the robot tip orientation
[14(t), a2q(t), a34(t)]. Thus, the control objective is that the actual robot tip
position [x(¢), y(¢), z(t)] and orientation [ (¢), a2(?), a3(¢)] reach their desired
values as time grows, i.e., that:

Tim [x(0), y(1), 2] = [xa(0), a(0), 2a (D],
tE)IgO[Ot](I),Otz(t), a3z ()] = [a1q (), a2q (1), a34()].
Fig. 1.12 A commercial

robotic arm (with permission
of Crustcrawler Robotics)
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Fig. 1.13 A
two-degrees-of-freedom
robotic arm

To be capable of efficiently accomplishing these tasks in three-dimensional
space, a robotic arm has to be composed of at least seven bodies joined by at least
six joints, three for position and three for orientation. Then, it is said that the robotic
arm has at least six degrees of freedom. However, to simplify the exposition of
ideas, the two-degrees-of-freedom robotic arm depicted in Fig. 1.13 is considered in
the following.

Two bodies, called the arm and the forearm, move in a coordinated fashion to
force the robotic arm tip to track a desired trajectory in space to perform the tasks
described above. To achieve this goal, two permanent magnet brushed DC motors
are employed.* The first motor is placed at the shoulder, i.e., at the point in Fig. 1.13
where the x and y axes intersect. The stator of this motor is fixed at some point
that never moves (the robot base), whereas the motor shaft is fixed to the arm. The
second motor is placed at the elbow, i.e., at the point joining the arm and forearm.
The stator of this motor is fixed to the arm, whereas the shaft is fixed to the forearm.
This allows the arm to move freely with respect to the robot base® and the forearm
to move freely with respect to the arm. Hence, any point can be reached by the robot
tip, as long as it belongs to a plane where the robot moves and is placed within the
robot’s reach.

4Permanent magnet brushed DC motors have been replaced by more efficient permanent magnet
synchronous motors in recent industrial robot models. However, control of permanent magnet
synchronous motors is complex and, hence, they are not suitable for an introductory example of
automatic control systems.

S5The robot base is selected to be the origin of the coordinate frame defining the robot tip position.
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One way to define the trajectory to be tracked by the robot tip is as follows.
The robot tip is manually taken through all points defining the desired trajectory.
While this is performed, the corresponding angular positions at the shoulder and
elbow joints are measured and recorded. These data are used as the desired positions
for motors at each joint, i.e., 614, 624. Then, the robot is made to track the desired
trajectory by using a control scheme similar to that described in Sect. 1.3.1 for each
motor. Two main differences exist between the control law in (1.1) and the control
law used for the motor at the shoulder, with angular position 6;:

t
01 = kp1 (O1a — 01) — karf1 + kin fo ©1a(r) — 01 ()dr, (12)

and for the motor at the elbow, with angular position 65:
. t
V2 = kp2(62a — 62) — ka2b2 + kizf (024(r) — 62(r))dr. (1.3)
0

These differences are the velocity feedback term, with the general form —ky6, and
the integral term, with the general form k; fot (64(r) — 0(r))dr. Notice that the term
—kdé has the same form as viscous friction, i.e., —b6 with b the viscous friction
coefficient.® Hence, adding velocity feedback to control laws in (1.2) and (1.3)
is useful to increase the system damping, i.e., in order to reduce the oscillations
pointed out in section (1.3.1), allowing fast robot movements without oscillations.
On the other hand, the integral term ensures that position 6 reaches the desired
position 6,4, despite the presence of gravity effects. This can be seen as follows.
Suppose that:

v1 = kp1(Bra — 601) — ka161, (1.4)
vy = kp2(02q — 02) — ka2 (1.5)

are used instead of (1.2) and (1.3). If 814, = 6; and él = 0, then v; = 0. Hence, if
gravity exerts a torque at the shoulder joint this motor cannot compensate for such a
torque (because v; = 0) and, thus, 614 # 0; results. On the other hand, if 615 # 61,
the term k;; fot (614(r) — 01(r))dr adjusts voltage vy until 015 = 6 again and this
can remain forever because the integral is not zero, despite its integrand being zero.
A similar analysis yields the same results for the joint at the elbow, i.e., the use
of (1.2) and (1.3) is well justified.

6See Sect. 2.1.2.
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The main problem for the use of (1.2) and (1.3) is the selection of the
controller gains k1, kp2, ka1, ka2, ki1, ki> and the automatic control theory has been
developed to solve this kind of problem. Several ways of selecting these controller
gains are presented in this book and are known as proportional integral derivative
(PID) control tuning methods.

1.3.3 Automatic Steering of a Ship

Recall Sect. 1.1.1 where the course of a boat was controlled by a human being.
This situation was depicted in Figs. 1.1 and 1.2. Consider now the automatic control
problem formulated at the end of Sect. 1.1.1: where the course of a large ship is
to be controlled using a computer and a permanent magnet brushed DC motor to
actuate a rudder. The block diagram of this control system is depicted in Fig. 1.14.

Mimicking Sect. 1.3.1, controller 1 is designed to perform the following compu-
tation:

84 = kp1(desired course — actual ship course). (1.6)

The desired course angle shown in Fig. 1.1 is defined as positive. Thus, if kp; is
positive 6, is also positive. Suppose that the rudder angle 0, defined as positive
when described as in Fig. 1.1, reaches 6; > 0. Then, water hitting the rudder will
produce a torque 7> on the ship, which is defined as positive when applied as in
Fig. 1.1. This torque is given as a function §(6, s)’ depending on the rudder angle
6 and the water speed s. Torque 7> produces a ship rotation such that the actual
course approaches the desired course.

The reader can verify, following the above sequence of ideas, that in the case
where the desired course is negative, it is reached again by the actual course if
kp1 > 0. This means that a positive k,1 is required to ensure that the control
system is stable. Moreover, for similar reasons to the position control system, as
kp1 > 01s larger, the ship rotates faster and several oscillations may appear before

desired
course

actual
course
v

s, controller %44~ [controller U,| power
A 1 "?’ 2 amplifier
%

Fig. 1.14 Block diagram for the automatic steering of a ship

TThis function is determined by ship construction, cannot be modified by a controller design and
it is not computed during controller evaluation.
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settling at the desired course. On the contrary, as k,,; > 0 is smaller the ship rotates
more slowly and the desired course is reached after a long period of time. Thus,
the transient behavior of the actual course is similar to that shown in Fig. 1.10 as
kp1 > 0 is changed. Finally, it is not difficult to verify that the control system is
unstable if k1 is negative.

In this system controller 2 is designed to perform the following computation:

u=kpps—0), kp>0, (1.7)

whereas the power amplifier just amplifies u by a positive factor to obtain voltage v
to be applied at the motor actuating on the rudder. Following ideas in Sect. 1.3.1, it
is not difficult to realize that 6 reaches 6, as time grows because k> > 0 whereas
instability is produced if k2 < 0. As explained before, the ship may oscillate if
kp1 > Ois large. Moreover, for similar reasons, the rudder may also oscillate several
times before 6 reaches 6, if k;,, > 0 is large. A combination of these oscillatory
behaviors may result in closed-loop system instability despite k1 > 0 and kp» > 0.
Thus, additional terms must be included in expressions (1.6) and (1.7) for controller
1 and controller 2. The question is, what terms? Finding an answer to this class of
questions is the reason why control theory has been developed and why this book
has been written. See Chap. 14 for a practical control problem which is analogous
to the control problem in this section.

1.3.4 A Gyro-Stabilized Video Camera

Recall the problem described at the end of Sect. 1.1.2, i.e., when proposing to use
a computer to perform the comparison and decision tasks, and a combination of
some tracks and a motor to actuate on the camera, to compensate for video camera
vibration when recording a scene that is moving away. To fully solve this problem,
the rotative camera movement must be controlled on its three main orientation axes.
However, as the control for each axis is similar to the other axes and for the sake
of simplicity, the control on only one axis is described next. The block diagram of
such an automatic control system is presented in Fig. 1.15.

A gimbal is used to provide pivoted support to the camera allowing it to rotate in
three orthogonal axes. See Fig. 1.16. A measurement device known as gyroscope, or

T actual
l 7 video camera
controller |4~ [controller |u| power |v T2 camera direction
desired 1 2 amplifier gyroscope
scene w w]
direction

Fig. 1.15 A gyro-stabilized video camera control system
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Fig. 1.16 A gimbal

camera is
placed

here

gyro for short, measures the inertial angular velocity w of the camera. This velocity
is not a velocity measured with respect to the cameraman’s arms (or the vehicle to
which the video camera is attached), but it is camera velocity measured with respect
to a coordinate frame that is fixed in space. Thus, this velocity is independent of the
movement of the cameraman (or the movement of the vehicle to which the video
camera is attached). As a simple example, consider the camera orientation control
problem in a single axis. Controller 2 may be designed to perform the following
mathematical operation:

u=kp(wgs — w), (1.8)

where k; is a positive number. Suppose that wg = 0, then u = —k . This means
that in the case where, because of the vibration induced by a negative torque 77 < 0,
i.e. —Tr > 0, the camera is instantaneously moving with a large positive velocity
w > 0, then a negative voltage u = —kprw < 0 will be commanded to the motor,
which will result in a negative generated torque 7> < 0 intended to compensate
for —Tr > 0, i.e., resulting in a zero camera angular velocity again. The reader
can verify that a similar result is obtained if a negative camera velocity w < 0 is
produced by a Tr > 0. Notice that, according to (1.8), # adjusts until the camera
velocity w = wg = 0. Hence, the vibration produced by the disturbance torque 77
is eliminated. Although solving this problem is the main goal of this control system,
the camera must also be able to record the scene when located in another direction
if required. Recall that the scene is moving. This is the main reason for Controller 1
which, for simplicity, is assumed to perform the following mathematical operation:

wg = kp1(desired scene direction — actual camera direction),

where k1 is a positive constant. Hence, Controller 1 determines the angular velocity
that the camera must reach to keep track of the desired scene. Observe that wy
adjusts until the actual camera direction equals the desired scene direction. However,
according to the above definition, w; would be zero when the actual camera
direction equals the desired scene direction. Notice that this is not possible when
these variables are equal but not constant, i.e., when the camera must remain moving
at a nonzero velocity. For this reason, the following expression is preferable for
Controller 1:
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wg = kp1(desired scene direction — actual camera direction)

t
+k;1 / (desired scene direction — actual camera direction)dz.
0

This allows that wg # 0, despite the actual camera direction equals the desired scene
direction because an integral is constant, but not necessarily zero, when its integrand
is zero. Moreover, computing # as in (1.8) forces the camera velocity w to reach wy
even if the latter is not zero in a similar manner to the actual position reaching the
desired position in Sect. 1.3.1. However, computing # as in (1.8) would result in a
zero voltage to be applied at motor terminals when w; = w and, hence, the motor
would tend to stop, i.e., wy = w cannot be satisfied when wy # 0. For this reason,
the following expression is preferable for Controller 2:

t
u=kp(wg —w)+ ki2/ (wg — w)dt.
0

This allows the voltage commanded to motor u to be different from zero despite
wg = w. Thus, this expression for Controller 2 computes a voltage to be commanded
to the motor to force the camera velocity to reach the desired velocity w,, which is
computed by Controller 1 such that the actual camera direction tracks the direction
of the desired scene. Again, a selection of controller gains k1, ki1, kp2, k2, is one
reason why automatic control theory has been developed.

1.4 Nomenclature in Automatic Control

The reader is referred to Fig. 1.17 for a graphical explanation of the concepts defined
below.

e Plant. The mechanism, device or process to be controlled.

e Qutput. Variable or property of the plant that must be controlled.

* Input. Variable or signal that, when adjusted, produces important changes in the
plant output.

external
disturbance
reference power 4.-_+:é input ——— output
. ant
amphfier |—|p

feedback measurement
system

Fig. 1.17 Nomenclature employed in a closed-loop control system
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* Desired output or reference. Signal that represents the behavior that is desired
at the plant output.

* Feedback. Use of plant output measurements to verify whether it behaves as the
desired output or reference.

e Controller. Device that computes the value of the signal to be used as the input
to the plant to force the plant output to behave as the desired output or reference.

* System. Assembly of devices with connections among them. The plant is also
designated as a system.

* Control system. Assembly of devices that includes a plant and a controller.

* Closed-loop system. A system provided with feedback. In a closed-loop system,
the output of every system component is the input of some other system
component. Thus, it is important to specify what input or what output is referred
to.

* Open-loop system. A system that is not provided with feedback. Although the
plant may be naturally provided with some kind of feedback, it is common to
designate it as an open-loop system when not controlled using feedback.

* Measurement system. A system that is devoted to measure the required signals
to implement a closed-loop system. Its main component is a sensor.

* Actuator. A device that applies the input signal to the plant. It is a device that
requires high levels of power to work.

e Power amplifier. A device that receives a weak signal from a controller and
delivers a powerful signal to the actuator.

+ External disturbance. A signal that is external to the control system having
deleterious effects on the performance of the closed-loop system. This signal
may appear at the plant input or output or even at any component of the control
system.

1.5 History of Automatic Control

The previous sections of this chapter described the objectives pursued when
designing a control system along with some useful ideas on how to achieve them.
In this section, a brief history of automatic control is presented. The reader is
expected to realize that the development of fundamental tools and concepts in
automatic control have been motivated by practical engineering problems arising
when introducing new technologies [10]. In this exposition, the reader is referred to
specific chapters in this book where the corresponding tools and ideas are further
studied. The content of the present section is based on information reported in [6].
The reader is referred to that work for more details on the history of automatic
control.

Automatic control has existed and has been applied for more than 2000 years. It
is known that some water clocks were built by Ktesibios by 270 BC, in addition to
some ingenious mechanisms built at Alexandria and described by Heron. However,
from the engineering point of view, the first important advance in automatic control
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was attributed to James Watt in 1789 when introducing a velocity regulator for its
improved steam-engine.® However, despite its importance Watt’s velocity regulator
had several problems. Sometimes, the velocity oscillated instead of remaining
constant at a desired value or, even worse, sometimes the velocity increased without
a limit.? Working toward a solution of these problems, between 1826 and 1851, J.V.
Poncelet and G.B. Airy showed that it was possible to use differential equations to
represent the steam-engine and the velocity regulator working together (see Chap. 2
for physical system modeling).

By those years, mathematicians knew that the stability of a differential equation
was determined by the location of the roots of the corresponding characteristic
polynomial equation, and they also knew that instability appeared if some root had
a positive real part (see Chap. 3, Sect. 3.4). However, it was not simple to compute
the roots of a polynomial equation and sometimes this was even not possible. In
1868, J.C. Maxwell showed how to establish the stability of steam-engines equipped
with Watt’s velocity regulator just by analyzing the system’s differential equation
coefficients. Nevertheless, this result was only useful for second-, third-, and fourth-
order differential equations. Later, between 1877 and 1895, and independently, E.J.
Routh and A. Hurwitz conceived a method of determining the stability of arbitrary
order systems, solving the problem that Maxwell had left open. This method is
known now as the Routh criterion or the Routh—Hurwitz criterion (see Chap. 4,
Sect. 4.3).

Many applications related to automatic control were reported throughout the
nineteenth century. Among the most important were temperature control, pressure
control, level control, and the velocity control of rotative machines. On the other
hand, several applications were reported where steam was used to move large guns
and as actuators in steering systems for large ships [9, 11]. It was during this period
when the terms servo-motor and servo-mechanism were introduced in France to
describe a movement generated by a servo or a slave device. However, despite this
success, most controllers were simple on-off. People such as E. Sperry and M.E.
Leeds realized that performance could be improved by smoothly adjusting the power
supplied to the plant as the controlled variable approached its desired value. In 1922,
N. Minorsky presented a clear analysis of position control systems and introduced
what we know now as the PID controller (see Chap. 5, Sect. 5.2.5). This controller
was conceived after observing how a ship’s human pilot controls heading [12].

On the other hand, distortion by amplifiers had posed many problems to
telephony companies since 1920.'° It was then that H.S. Black found that distortion

8Since flooding in coal and tin mines was a major problem, the first practical steam-engine was
introduced in England by T. Newcomen in 1712 to improve ways of pumping water out of such
mines.

9This behavior is known now as instability, see Chap. 3, Sect. 3.4.5.

10As the wired telephony lines expanded because of the growing number of users, signal
attenuation was stronger because of the wires’ electrical resistance. The solution was to use several
signal amplifiers at selected points in the telephony network. These amplifiers, however, produced
significant signal distortion and the sound quality deteriorated.
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is reduced if a small quantity of signal at the amplifier output is fed back to its
input. During this work, Black was helped by H. Nyquist who, in 1932, published
these experiences in a report entitled “Regeneration Theory” where he established
the basis of what we know now as Nyquist Analysis (see Chap. 6, Sect. 6.4).

During the period 1935-1940, telephony companies wanted to increase the
bandwidth of their communication systems to increase the number of users. To
accomplish this, it was necessary for the telephonic lines to have a good frequency
response characteristic (see Chap. 6). Motivated by this problem, H. Bode studied
the relationship between a given attenuation characteristic and the minimum
associated phase shift. As a result, he introduced the concepts of gain margin and
phase margin (see Chap. 6, Sect. 6.5) and he began to consider the point (—1, 0) in
the complex plane as a critical point instead of point (41, 0) introduced by Nyquist.
A detailed description of Bode’s work appeared in 1945 in his book “Network
Analysis and Feedback Amplifier Design.”

During World War II, work on control systems focused on some important
problems [8]. The search for solutions to these problems motivated the development
of new ideas on mechanism control. G.S. Brown from the Massachusetts Institute of
Technology showed that electrical and mechanical systems can be represented and
manipulated using block diagrams (see Chap. 4, Sect. 4.1) and A.C. Hall showed in
1943 that defining blocks as transfer functions (see Chap. 3), it was possible to find
the equivalent transfer function of the complete system. Then, the Nyquist Stability
criterion could be used to determine gain and phase margins.

Researchers at the Massachusetts Institute of Technology employed phase lead
circuits (see Chap. 11, Sect. 11.2.2) at the direct path to improve the performance of
the closed-loop system, whereas several internal loops were employed in the UK to
modify the response of the closed-loop system.

By the end of World War II, the frequency response techniques, based on
the Nyquist methodology and Bode diagrams, were well established, describing
the control system performance in terms of bandwidth, resonant frequency, phase
margin, and gain margin (see Chap. 6). The alternative approach to these techniques
relied on the solution of the corresponding differential equations using Laplace
transform, describing control system performance in terms of rise time, overshoot,
steady-state error, and damping (see Chap. 3, Sect. 3.3). Many engineers preferred
the latter approach because the results were expressed in “real” terms. But this
approach had the drawback that there was no simple technique for designers to use
to relate changes in parameters to changes in the system response. It was precisely
the Root Locus method [7] (see Chap. 5, Sects. 5.1 and 5.2), introduced between
1948 and 1950 by W. Evans, that allowed designers to avoid these obstacles. Hence,
what we know now as the Classical Control Techniques were well established
by that time, and they were orientated to systems represented by ordinary, linear
differential equations with constant coefficients and single-input single-output.

Then, the era of supersonic and space flights arrived. It was necessary to employ
detailed physical models represented by differential equations that could be linear
or nonlinear. Engineers working in the aerospace industries found, following the
ideas of Poincaré, that it was possible to formulate general differential equations
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in terms of a set of first-order differential equations: the state variable approach
was conceived (see Chap. 7). The main promoter of this approach was R. Kalman
who introduced the concepts of controllability and observability around 1960 (see
Sect. 7.7). Kalman also introduced what is today known as the Kalman filter, which
was successfully employed for guidance of the Apollo space capsule, and the linear
quadratic regulator, or LQR control, which is an optimal controller minimizing the
system time response and the input effort required for it.

After 1960, the state space approach was the dominant subject for about two
decades, leading to I. Horowitz, who continued to work on the frequency response
methods, to write in 1984: “modern PhD.s seem to have a poor understanding of
even such a fundamental concept of bandwidth and not the remotest idea of its
central importance in feedback theory. It is amazing how many are unaware that the
primary reason for feedback in control is uncertainty.”

In fact, control systems in practice are subject to parameter uncertainties, external
disturbances, and measurement noise. An important advantage of classical control
methods was that they were better suited than the state variable approach to
coping with these problems. This is because classical design control methods are
naturally based on concepts such as bandwidth, and gain and phase margins (see
Chap. 6, Sects. 6.5 and 6.6.1) which represent a measure of the robustness!! of the
closed-loop system. Furthermore, there was a rapid realization that the powerful
results stemming from the state variable approach were difficult to apply in general
industrial problems because the exact models of processes are difficult to obtain and
sometimes, it is not possible to obtain them. In this respect, K. Astrom and P. Eykoff
wrote in 1971 that an important feature of the classical frequency response methods
is that they constitute a powerful technique for system identification allowing
transfer functions to be obtained that are accurate enough to be used in the design
tasks. In modern control, the models employed are parametric models in terms of
state equations and this has motivated interest in parameter estimation and related
techniques. Moreover, the state variable approach has been demonstrated to be a
very powerful tool for the analysis and design of nonlinear systems.

Finally, new problems have arisen since then in the study of control systems
theory, which have motivated the introduction of diverse new control techniques,
some of them still under development. For instance, nonlinearities found in servo-
mechanisms have motivated the study of nonlinear control systems. Control of
supersonic aircrafts, which operate under wide variations in temperature, pressure,
velocity, etc., has motivated the development of adaptive control techniques. The
use of computers in modern navigation systems has resulted in the introduction of
discrete time control systems, etc.

Robustness is a property of a control system that indicates that the closed-loop system
performance is not affected or it is just a little affected by external disturbances, parameter
uncertainties, and measurement noise.
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1.6 Experimental Prototypes

It has been stated in the previous sections that automatic control has developed
to solve important engineering problems. However, teaching automatic control
techniques requires students to experimentally apply their new knowledge of this
subject. It is not possible to accomplish this using either industrial facilities or high-
technology laboratories. This is the reason why teaching automatic control relies
on construction of some experimental prototypes. An experimental prototype is
a device that has two main features: (i) it is simple enough to be built and put
into operation using low-cost components, and (ii) its model is complex enough to
allow some interesting properties to appear such that the application of the control
techniques under study can be demonstrated. A list of experimental prototypes used
in this book is presented in the following and the specific control techniques tested
on them are indicated:

» Electronic oscillators based on operational amplifiers and bipolar junction
transistors (Chap. 9). Frequency response, Nyquist stability criterion, and Routh
stability criterion.

e Permanent magnet brushed DC motors (Chaps. 10 and 11). Several basic
controller designs using time response: proportional, proportional—derivative,
proportional—integral, proportional—integral-derivative, phase lead controllers,
two-degrees-of-freedom controllers.

* Mechanism with flexibility (Chap. 12). Frequency response for experimental
identification and root locus for controller design.

e Magnetic levitation system (Chap. 13). PID controller design using linear
approximation of a nonlinear system and the root locus method.

* Ball and beam system (Chap. 14). Design of a multi-loop control system using
frequency response (Nyquist criterion and Bode diagrams) and the root locus
method.

e Furuta pendulum (Chap. 15). Design of a linear state feedback controller using
the state variable approach. A linear approximation of a nonlinear system is
employed.

* Inertia wheel pendulum (Chap. 16). Design of two state feedback controllers.
One of these controllers is designed on the basis of the complete nonlinear model
of the inertial wheel pendulum and it is employed to introduce the reader to the
control of nonlinear systems.

1.7 Summary

In the present chapter, the main ideas behind closed-loop control have been
explained and the objectives of designing a control system were also described. A
brief history of automatic control has been presented to show the reader that all con-
cepts and tools in control systems have been motivated by solving important tech-
nological problems. This historical review has been related to content of this book.
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1.8 Review Questions

(O]

[e BN I e NNV, RN

. What objectives can the reader give for automatic control?
. Can the reader make a list of equipment at home that employs feedback?
. Investigate how a pendulum-based clock works. How do you think that feedback

appears in the working principle of these clocks?

. Why is Watt’s velocity regulator for a steam engine historically important?

. What does instability of a control system mean?

. What do you understand by the term “fast response”?

. Why is it stated that an inverted pendulum is unstable?

. Why did the frequency response approach develop before the time response

approach?
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Chapter 2 ®
Physical System Modeling e

Automatic control is interested in mathematical models describing the evolution
in time of system variables as a response to excitation. Such mathematical models
are also known as dynamical models and systems represented by these models are
called dynamical systems. The dynamical models that are useful for classical control
techniques consist of differential equations, in particular, ordinary differential
equations where the independent variable is time. Partial differential equations
arise when several independent variables exist, for instance, a flexible body where
vibration has to be described with respect to both position in the body and time.
However, this class of problem is outside the scope of classical control; hence,
partial differential equations will not be used to model physical systems in this book.

On the other hand, ordinary differential equations can be linear or nonlinear,
time-invariant or time-variant. Because of the mathematical complexity required to
study nonlinear and time-variant differential equations, classical control constrains
its study to linear invariant (also called constant coefficients) ordinary differential
equations. As real physical systems are intrinsically nonlinear and time-variant,
it is common to consider several simplifications when modeling physical systems
in classical control. For instance, model nonlinearities are approximated by linear
expressions and parameters that change with time (such as resistance in an electric
motor) are assumed to be constant in time, but the design of the controller must be
robust. This means that the controller must ensure good performance of the designed
closed-loop control system, despite the changes in such a parameter.

It is important to remark that model simplifications are only valid if the simplified
model is still accurate enough to represent the true behavior of the physical system.
This idea is captured by stating that a good model must be simple enough to render
possible its mathematical study, but it must also be complex enough to describe the
important properties of the system. This is the approach employed in the present
chapter to model physical systems, following many ideas in [1].
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2.1 Mechanical Systems

In mechanical systems there are three basic phenomena: bodies, flexibility, and
friction. The main idea is to model each one of these phenomena and then
connect them to obtain the mathematical model of the complete mechanical system.
Furthermore, there are two different classes of mechanical systems: translational
and rotative. In the following, we study both of them.

2.1.1 Translational Mechanical Systems

In Fig.2.1 a rigid body is shown (without flexibility) with mass m (a positive
quantity), which moves with velocity v under the effect of a force F'. It is assumed
that no friction exists between the body and the environment. The directions shown
for force and velocity are defined as positive for this system component. Under these
conditions, the constitutive function is given by Newton’s Second Law [2], pp. 89:

F =ma, 2.1
where a = ‘é—f is the body acceleration.

In Fig.2.2, a spring is shown, which deforms (either compresses or stretches)
with velocity v under the effect of a force F. Notice that, although force F is
applied at point 1 of the spring, the same force but in the opposite direction must
also be considered at point 2 to render spring deformation possible. Moreover,
v = v1 — vp where v and v, are velocities of points 1 and 2 of spring respectively.
The directions shown for forces and velocities are defined as positive for this system
component. Notice that velocity v indicates that point 1 approaches point 2. It is
assumed that the spring has no mass, whereas deformation is not permanent and
does not produce heat.

Fig. 2.1 A rigid body with —
mass m in a translational
mechanical system

m — F
Fig. 2.2 A springina v
translational mechanical 1 > o)
system r > O \\\—0 «—F
—
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The net spring deformation is given as:

1
x:/ v dt + x(0), 2.2)
0

where x = x; — xp with x; and x, the positions of points 1 and 2 on the
spring respectively, whereas x(0) = O represents the spring deformation when it
is neither compressed nor stretched. According to the direction of velocity v defined
in Fig.2.2, it is concluded that the net deformation x is positive when the spring
is compressed. In the case of a linear spring, the constitutive function is given by
Hooke’s Law [2], pp. 640:

F=kx, 2.3)

where k is a positive constant known as the spring stiffness constant.

Friction always appears when two bodies are in contact while a relative move-
ment exists between them. In such a case, a force must be applied to maintain
the relative movement. Kinetic energy converts into heat because of friction. The
constitutive function of friction is given as:

F =¢(v),

where v is the relative velocity between the bodies and F is the applied force. A
very important specific case is viscous friction, which is represented by the linear
constitutive function :

F = bv, viscous friction 2.4)

where b is a positive constant known as the viscous friction coefficient. This kind of
friction appears, for instance, when a plate with several holes moves inside a closed
compartment with air, as shown in Fig. 2.3. Because air must flow through the holes
as relative movement exists with velocity v, it is necessary to apply a force F to
maintain the velocity. It is defined v = v; — v, where vy and v, are velocities of
bodies 1 and 2 respectively. The directions of forces and velocities shown in Fig. 2.3
are defined as positive. Although the device shown in Fig. 2.3 may not be physically
placed between the two bodies, the effect of viscous friction is commonly present
and must be taken into account.

There are other kinds of friction that often appear in practice. Two of them are
static friction and Coulomb friction. The respective constitutive functions are given
as:

F = £F;|,—o, static friction, (2.5)

+1,ifv >0

C1ifv <0 , Coulomb friction.  (2.6)

F = F, sign(v), sign(v) = {
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Fig. 2.3 Viscous friction v
appears as a result of D —
opposition to air flow through =
theholes | [
_— Uy F
F —
Em—— - O
] 1
2 ]
-—
Vg
F F F
E F.
b
) v i ) v v .
7Es‘ 7FC

Fig. 2.4 Constitutive functions defined in (2.4), (2.5) and (2.6)

Static friction is represented by a force that prevents movement only just before
this starts. This is the reason why constant F; is evaluated at v = 0 in (2.5).
Coulomb friction, in contrast, only appears when movement has started (v # 0)
and it is constant for velocities having the same sign. The constitutive functions
in (2.4), (2.5), and (2.6) are depicted in Fig. 2.4.

As the static friction force is not zero as velocity tends to zero, it is responsible
for some of the problems in position control systems: the difference between the
desired position and position actually reached by the mechanism is different from
zero, which is known as “a nonzero steady state error.” On the other hand, static and
Coulomb friction have nonlinear and discontinuous constitutive functions; hence,
they can be handled using control techniques developed for neither linear systems
nor “smooth” nonlinear systems. This is the reason why these kinds of friction are
not often considered when modeling control systems. However, it must be remarked
that the effects of these frictions are always appreciable in experimental situations.
The reader is referred to [4] to know how to measure the parameters of some friction
models.

Once the constitutive functions of each system component have been established,
they must be connected to conform the mathematical model of more complex
systems. The key to connecting components of a mechanical system is to assume
that all of them are connected by means of rigid joints. This means that velocities on
both sides of a joint are equal and that, invoking Newton’s Third Law, each action
produces a reaction that is equal in magnitude but opposite in direction. This is
clarified in the following by means of several examples.
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(b) Free-body diagram.

Fig. 2.5 A mass-spring-damper system

Example 2.1 Consider the mass-spring-damper system shown in Fig. 2.5a where
an external force F(¢) is applied on mass m. This system is, perhaps, the simplest
mechanical system from the modeling point of view, but it is very important from
the control point of view because it represents the fundamental behavior of position
control systems.

A free-body diagram is shown in Fig.2.5b. Notice that two forces, equal in
magnitude but with opposite directions, exist at each joint between two components.
This is to satisfy Newton’s Third Law [2], pp. 88, which establishes that for each
action (from A on B) there is one corresponding reaction (from B on A). Wheels
under the mass indicate that no friction exists between the mass and the floor. This
also means that gravity has no effect. From the friction modeling point of view, it is
equivalent to eliminating a damper at the right and replace it by friction between the
mass and the floor. The friction model between the mass and the floor is identical to
the friction model due to a damper as considered in the following.

The nomenclature employed is defined as:

s U, = d;‘;" , where x,, is the mass position.

* Y = ddit”, where xy, is the position of the damper’s mobile side.

e Vg = d;j—f where x is the position of the spring’s mobile side.

The following expressions are found from Fig. 2.5b, and (2.1), (2.3), (2.4):

dvy,
Mass: m? = F(t)+ Fg — Fp. 2.7)
Spring: Kxx = Fk. (2.8)
Damper: bvy, = Fp. 2.9)

Notice that, according to the sign definitions shown in Fig. 2.1, forces actuating
on mass m having the same direction as vy, in Fig. 2.5b appear affected by a positive
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sign in (2.7); therefore, F, appears affected by a negative sign. Signs on both sides
of expressions in (2.8) and (2.9) are given according to the sign definitions shown in
Figs. 2.2 and 2.3 respectively. Also notice that one side of both spring and damper
has no movement and the mobile sides have a velocity and a force applied in the
same direction as in Figs. 2.2 and 2.3. Finally:

de

—_—, 2.10
r (2.10)

Vg =

has been defined. Assuming that all of the system components are connected by
rigid joints and according to Fig. 2.5b, the following can be written:

VK = —Up = —Up. 2.11)

Hence, it is concluded that:
XK = —Xm + €1 = —Xp +C2,

where ¢ and ¢; are two constants. If xx = 0, x,, = 0 and x;, = 0 are defined as the
positions of those points at the spring’s mobile side, the center of mass m and the
damper’s mobile side respectively, when the system is at rest with F'(r) = 0, then
¢1 = ¢ = 0 and hence:

XK = —Xm = —Xp.

Using these facts, (2.7), (2.8), (2.9), can be written as:

d? d
T b L Kk, = F@). (2.12)

mTan + dt

This expression is an ordinary, linear, second-order, constant coefficients differ-
ential equation representing the mass-spring-damper system mathematical model.
Thus, assuming that the parameters m, b, and K are known, the initial conditions
X (0), dst’" (0) are given, and the external force F'(¢) is a known function of time, this
differential equation can be solved to find the mass position x,, () and the velocity
d;;" (t) as functions of time. In other words, the mass position and velocity can be
known at any present or future time, i.e., for all + > 0. Finally, when analyzing
a differential equation, it is usual to express it with an unitary coefficient for the

largest order time derivative, i.e., (2.12) is written as:

. b . K 1
Xm + —Xm + —x = —F(2), (2.13)
m m m

.. 2 .
where ¥, = & dfz’" and x,,, = %
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(b) Free-body diagram.

Fig. 2.6 A mass-spring-damper system

Example 2.2 A mass-spring-damper system is depicted in Fig.2.6a. Both spring
and damper are fixed to the same side of the mass m. The purpose of this example
is to show that the mathematical model in this case is identical to that obtained in
the previous example. The nomenclature is defined as:

* V= ‘2—);, where x is the mass position.
* YV = djj‘—[" = dd%, where xx = x; stands for the spring’s and damper’s mobile
sides.

According to Fig.2.6b and (2.1), (2.3), (2.4), the following can be written:

d
Mass: md—: — F(1) + Fx + Fp. (2.14)
Spring: Kxg = Fk.
Damper: bvy = Fp.

Notice that, according to the sign definition shown in Fig. 2.1, all forces in (2.14)
appear with a positive sign because all of them have the same direction as v in
Fig. 2.6b. On the other hand, as the joint is rigid and according to the sign definition
in Fig.2.6b:

v = —vj. (2.15)

Proceeding as in the previous example, if x = 0, xx = 0 and x;, = 0 are defined
respectively, as the center of mass m and the spring’s and damper’s mobile sides
when the whole system is at rest with F'(¢) = 0, then:

XK = Xp = —X. (2.16)
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(b) Free-body diagram.

Fig. 2.7 Two bodies connected by a spring

Notice that combining expressions in (2.14) and using (2.16), (2.15) yield:
. b. K 1
X+ —x+—x=—F(@),
m m m
d*x

where ¥ = el and x = dd—’t‘. This mathematical model is identical to that shown
in (2.13) if x = x,, is assumed.

Example 2.3 Two bodies connected by a spring, with an external force F (¢) applied
on the body at the left, are shown in Fig. 2.7a. This situation arises in practice when
body 1 transmits movement to body 2 and they are connected through a piece of
some flexible material. It is remarked that flexibility is not intentionally included,
but it is an undesired problem that appears because of the finite stiffness of the
material in which the piece that connects bodies 1 and 2 is made. It is often very
important to study the effect of this flexibility on the achievable performance of the
control system; hence, it must be considered at the modeling stage. The dampers are
included to take into account the effects of friction between each body and the floor.

The free-body diagram is depicted in Fig.2.7b. The nomenclature employed is
defined as:

* Uyl = dfi—’;”, where x;,,1 is the position of body 1.

¢ Upyo = dfi’;’z , where x,,,5 is the position of body 2.

* Vp = dz , Where xp is the position of damper 1’s mobile side.
e Yy = djfz, where xp; is the position of damper 2’s mobile side.
e VY = ddz , where x1 is the position of the spring side connected to body 1.
* U= ddt , where x; is the position of the spring side connected to body 2.
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Using Fig.2.7b, as well as (2.1), (2.3), (2.4), the following is obtained:

Mass 1: mlciz—r:le(t)—i—Fbl—FKl. 2.17)
Mass 2: mzd:l’:z — Fxy— Fp. (2.18)
Spring: Kxg = Fg1 = Fk».

Damper 1: bivp1 = Fpi.

Damper 2: byvpy = Fpo.

Forces having the same direction as v,,; and v, actuating on each one of the
bodies, appear with a positive sign, and a negative sign if this is not the case. Notice
that it is also defined:

_ de

VK = ——— = V] — V2.
dt

Assuming that all of the system components are connected by rigid joints then,
according to Fig. 2.7b:

Uml = —Vp1 = V1, (2.19)

Um?2 Up2 = V2.

Hence, if x;,1 = 0, x50 = 0, xp1 = 0, xp2 = 0, x1 = 0, xo = 0 are defined as those
positions of the center of body 1, the center of body 2, damper 1’s mobile side,
damper 2’s mobile side, the spring side fixed to body 1, and the spring side fixed to
body 2 respectively, when the complete system is at rest with F'(¢) = 0, then:

Xml = —Xp1 = X1, (2.20)

Xm2 = Xp2 = X2.

Hence, the expressions in (2.17) and (2.18) can be written as:

Mass 1: mldvml = F(t) + bjvp; — Kxg.
Mass 2: my d;’;ﬂ = Kxg — bovpy.
Use of (2.19), (2.20), yields:
Mass 1: mldzxm] =F(z‘)—bldxm1 — Kxg.

dt?



34 2 Physical System Modeling

d2xm2 dxm
— =K —b .
dt? KTy

Mass 2: my

On the other hand, xx = x1 — x3 according to paragraph after (2.2) and, thus:

d? d
Mass 1: my d);’z"l = F) = b2 _ K (x) — x2).
dzxmz dxm2
Mass 2: EIm2 _ K(x;—x2) — b .
ass my—3 (x1 —x2) — b i

Finally, using again (2.20), it is found that the mathematical model is given by the
following pair of differential equations, which have to be solved simultaneously:

Mass 1 Pim b1 dom | K ( p—
ass 1: _— — (X — X = — .
dt? mp dt mi m m2 mi

dzxmz by dx,» K
Mass 2: — - — — =0.
a2 + m, dr 5 (Xm1 — Xm2)

These differential equations cannot be combined into a single differential equation
because variables x,,1 and x,,» are linearly independent, i.e., there is no algebraic
equation relating them.

Example 2.4 Two bodies connected to three springs and a damper are shown in
Fig. 2.8a. The damper represents friction existing between the bodies and, because
of that, it cannot be replaced by the possible friction appearing between each body
and the floor (which would be the case if wheels were not placed under each body).
The corresponding free-body diagram is depicted in Fig. 2.8b. The nomenclature

employed is defined as:

e X = %, where x1 is the position of body 1.

e Xy = %, where x» is the position of body 2.

* Vpl = dg%, where x1 is the position of the damper side connected to body 1.
e Uy = %, where x; is the position of the damper side fixed to body 2.

. _dx

vi = %, where x is the position of the spring side connected to body 1.

e Yy = %, where y is the position of the spring side fixed to body 2.

e Vgl = d’;’; L, where x is the position of the mobile side of the spring connected

only to body 1.
* Vg3 = dfl’; 3, where xg3 is the position of the mobile side of the spring fixed only

to body 2.
Using Fig.2.8b, and (2.1), (2.3), (2.4), the following is found:

Mass 1: mix; = F@)+ Fgx1 — Fgp — Fp. 2.21)
Mass 2: myXy = Fgy — Fg3 + Fp. (2.22)
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(b) Free-body diagram.

Fig. 2.8 A mechanical system with two bodies and three springs

Spring between bodies: Koxgor = Fko.

Spring at the left: Kixg1 = Fk1.
Spring at the right: Kixgs = Fgs.
Damper: b(vp1 — vp2) = Fp.

Assuming that all of the system components are connected by rigid joints then,
according to Fig. 2.8b:

X1
X2

Hence,if x; = 0, x = 0, xp; =

—VK1| = V| = Upl, (2.23)
Vp2 = U2 = VK3.

0,xp0=0,x =0,y =0,xg1 =0,xk3 =0

are defined as the positions of the center of body 1, the center of body 2, the side of
the damper fixed to body 1, the side of the damper fixed to body 2, the side of the
central spring that is fixed to body 1, the side of the central spring fixed to body 2,
the mobile side of the spring at the left and the mobile side of the spring at the right
respectively, when the complete system is at rest with F'(f) = 0, then:

X1 = —XKl| =X = Xpl, (2.24)

X2 = Xp2 = Y = XK3.
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Thus, the expressions in (2.21) and (2.22) can be written as:

Mass 1: mixX; = F@t) + Kixg1 — Koxgo — b(vp1 — vpp).

Mass 2: moiXy = Koxgo — Kzxgz + b(vp1 — vp2).
Use of (2.23), (2.24), yields:

Mass 1: m1xX; = F(t) — Kix; — Koxgo — b(x1 — Xx2).

Mass 2: moXy = Koxgy — K3xp + b(x1 — xp).
On the other hand, xg2 = x| — x3 according to paragraph after (2.2), and hence:

Mass 1: mix¥y = F(t) — Kix1 — Ka(x1 — x2) — b(x1 — x2).

Mass 2: maxy = Kp(x1 — x2) — K3x3 + b(x] — X2).

Finally, the mathematical model is given by the following pair of differential
equations, which must be solved simultaneously:

. b . . K, K> 1
Mass 1: X1+ —0—x)+ —x1+ —(1 —x) = —F@).
mi mi mi mi
N b . . K3 K>
Mass 2: Xo— — (1 —x2)+ —x2— —(x1 —x2) =0.
ma ma ma

As in the previous example, these differential equations cannot be combined in
a single differential equation because variables x; and x; are linearly independent,
i.e., there is no algebraic equation relating these variables. Also notice that terms
corresponding to the central spring and damper appear with the opposite sign in
each one of these differential equations. This is because forces exerted by the central
spring or the damper on body 1 are applied in the opposite direction to the force
exerted on body 2.

2.1.2 Rotative Mechanical Systems

A rigid body (without flexibility) that rotates with angular velocity w under the effect
of atorque 7 is depicted in Fig. 2.9. It is assumed that no friction exists between the
body and the environment. The directions shown for torque and angular velocity are
defined as positive for this system component. According to Newton’s Second Law
[2], pp. 122:

T = Ia, (2.25)
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Fig. 2.9 A rotative rigid

body with inertia / w T
N N
() hY o))
U J )
< <
Fig. 2.10 A rotative spring w
T “ W2 T

where o = ‘i—‘;’ represents the body angular acceleration and 7, a positive constant,

stands for the body moment of inertia.

A rotative spring that deforms at an angular velocity w, under the effect of a
torque 7', is shown in Fig.2.10. Although torque T is applied at the spring’s side
1, it must be considered that the same torque, but in the opposite direction, must be
applied at the spring’s side 2, to render possible deformation. The angular velocities
on sides 1 and 2 respectively are defined w = w; — w> with w1 and wy

The directions shown for torque and velocities are defined as positive for this
system component. It is assumed that the spring has no moment of inertia whereas
deformation is not permanent and does not produce heat. The net spring angular
deformation is given as:

t
9:/ o dt +6(0), (2.26)
0

where 8 = 61 —6, with 61, and 6, are the angular positions of the spring’s sides 1 and
2 respectively, whereas 6(0) = 0 represents deformation when the spring is neither
compressed nor stretched. According to the direction defined for w in Fig. 2.10, it is
concluded that the net angular deformation 6 is positive when 6; > 6,. In the case
of a linear rotative spring, the constitutive function is given by Hooke’s Law:

T=ko, (2.27)

where k is a positive constant known as the spring stiffness constant.

Friction in rotative mechanical systems (see Fig.2.11) is modeled as in trans-
lational mechanical systems. The only difference is that, in rotative mechanical
systems, friction is expressed in terms of angular velocity w = w1 —w; and torque T':

T = bw, viscous friction, (2.28)

T = +Ts|,—o, static friction,
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Fig. 2.11 A damper in T w
rotative mechanical systems

fl

0 0 Tx T Oy
Crl /o -y
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(b) Free-body diagram.

Fig. 2.12 A rotative mass-spring-damper system

T =T, sign(w), sign(w) = { i_i’ EZ Z 8 , Coulomb friction.

Example 2.5 A rotative body connected to two walls through a spring and a damper
is shown in Fig. 2.12a. An external torque 7 (¢) is applied to this body. The
damper represents friction between the body and the bearings supporting it, whereas
the spring represents the shaft flexibility. The free-body diagram is depicted in
Fig. 2.12b. The employed nomenclature is defined as:

¢« = ‘%, where 6 is the body’s angular position.
* wp = ”%, where 6, is the angular position of the damper’s mobile side.
e O = ddit’(, where 6 is the angular position of the spring’s mobile side.

Use of Fig. 2.12b, and (2.25), (2.27), (2.28), yields:

Inertia: 10 =T(t)+ T, — Tk. (2.29)
Spring: KO =Tk.
Damper: bwp = Tp.

Notice that torques applied to the body with inertia / that have the same direction
as angular velocity 6, appear with a positive sign in (2.29). If this is not the case,
then a negative sign appears (see Tk, for instance). Assuming that all the system
components are connected by rigid joints, then, according to Fig. 2.12b:
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0 =—w), =0k. (2.30)

Ifo = 0,60, =0, 0 = 0, are defined as the angular positions of the body, the
damper’s mobile side and the spring’s mobile side respectively, when the complete
system is at rest with 7' (¢) = 0, then:

0 = —0p =0g. (2.31)
Hence, the expressions in (2.29) can be written as:

16 = T(t) + by, — K6k,
=T() —bd — K6.

Finally, the mathematical model is given by the following differential equation:
é‘+b9’+Ke—1T(r) (2.32)
11 '

Notice that this model is identical to that presented in (2.13) for a translational mass-
spring-damper system if mass is replaced by inertia, angular position 6 replaces
position x,,, and external torque 7 (¢) replaces the external force F(¢).

Example 2.6 A simple pendulum is depicted in Fig.2.13a, where 6 stands for the
pendulum angular position and § = %. It is assumed that the pendulum mass m
is concentrated in a single point and pendulum rod has a length [ with no mass (or
it is negligible compared with mass m). The corresponding free-body diagram is
depicted in Fig. 2.13b. The pendulum can be assumed to be a rotative body with
inertia:

I = mlz,

T, I, b 61
K/
b
Wy T(t)

(b) Free-body diagram.

Fig. 2.13 Simple pendulum
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which represents inertia of a particle with mass m describing a circular trajectory
with a constant radius / [7], Ch. 9. It is assumed that three torques are applied to the
pendulum: (1) the external torque 7 (¢), (2) the friction torque, T}, which appears at
the pendulum pivot, and (3) the torque due to gravity, Tg. According to Figs.2.13a
and b, torque Ty is applied in the opposite direction to that defined by 6 and its
magnitude is given as:

T, =mgd, d=1sin(0),

= mgl sin(9). (2.33)
Use of Fig.2.13b, and (2.25), (2.28), yields:
Inertia: 16 =T +T,— T,. (2.34)
Damper: bwp = Tp.

Notice that torques applied to / that have the same direction as angular velocity 6
appear affected by a positive sign in (2.34), or a negative sign if this is not the case
(see for instance T,). Assuming that all the system components are connected by
rigid joints, then, according to Fig. 2.13b, it is found that:

6 = —wp. (2.35)
Hence, if 6 = 0, 6, = 0 (where w, = éb) are defined as the angular positions of the

pendulum and the damper’s mobile side respectively, when the whole system is at
rest with 7 (t) = 0, then:

6= —6y. (2.36)
This means that (2.34) and (2.33) can be written as:

16 = T(t) + bw, — mgl sin(6),
= T(t) — b6 — mgl sin(6).

Finally, the mathematical model is given by the following differential equation:
mi*6 + b6 + mgl sin(9) = T (1).

Notice that this is a nonlinear differential equation, because of the function sin(9).
In Sect. 7.3, Chap.7, it is explained how this kind of differential equation can be
studied. Moreover, in Chaps. 13, 15 and 16 it is shown how to design controllers for
systems represented by nonlinear differential equations.

Example 2.7 Two rotative bodies connected by a spring are shown in Fig. 2.14a.
An external torque 7 (¢) is applied to the body on the left. The mechanical system
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by K by
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(b) Free-body diagram.

Fig. 2.14 Two rotative bodies connected by a spring

in Fig. 2.14a can be interpreted as a motor (body on the left), which moves a load
(body on the right) through the motor shaft, exhibiting flexibility. This flexibility
is not intentionally included, but is undesired shaft behavior arising from the finite
stiffness of the material in which the motor shaft is made. In such a situation, it is
very important to take into account this flexibility to study its effect on the closed-
loop system performance. According to sign definitions shown in Figs. 2.9, 2.10,
and 2.11, the corresponding free-body diagram is depicted in Fig. 2.14b. The
employed nomenclature is defined as:

* wr = %, where 0; is the body 1 angular position.
* ws= ”%5, where 65 is the body 2 angular position.
* w = %‘, where 6 is the angular position of the mobile side of the damper

connected to body 1.

* we = ‘%, where 6g is the angular position of the mobile side of the damper
connected to body 2.

* w3 = ‘% and wg = %, where 63 and 6,4 are the angular positions of the spring

sides.

Use of Fig. 2.14b, and (2.25), (2.27), (2.28), yields:

Inertia 1: Laoy=T(@)+ T, —T;. 2.37)
Inertia 2: hws = Ty — Tg. (2.38)
Left damper: biw =Ti.

Right damper: brwe = Tg.

Spring: Kxg =T33 =T4, xg =03 — 04,

where the last expression is obtained according to the paragraph after (2.26). Notice
that in equations (2.37) and (2.38), torques that have the same direction as w, and
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ws appear to be affected by a positive sign and a negative sign if this is not the case.
Assuming that all of the system components are connected by rigid joints then,
according to Fig. 2.14b:

W) = —w] = w3, W5=We= W4. (2.39)

fw =0, 05 =0,w =0, wg =0, w3 =0, and wg = O are defined as the
angular positions of body 1, body 2, the left damper mobile side, the right damper
mobile side, and the spring sides respectively, when the whole system is at rest with
T(t) = 0, then:

0) = —01 =63, 65 =0¢=0,. (2.40)
Hence, (2.37) and (2.38) can be written as:

Inertia 1: Loy =T(t) + biw; — K(63 — 04).
Inertia 2: hws = K(03 — 64) — byws.

Finally, using (2.39) and (2.40), it is found that the mathematical model is given by
the following differential equations, which have to be solved simultaneously:

Inertia 1: 116> + b16y + K (62 — 05) = T(2).
Inertia 2: 05 + byfs — K (6> — 05) = 0.

These differential equations cannot be combined in a single differential equation
because 6, and 05 are linearly independent, i.e., there is no algebraic equation
relating these variables.

2.2 Electrical Systems

There are three basic phenomena in electrical systems: inductance, capacitance, and
resistance. An electric current i flowing through an inductor under the effect of
a voltage v that is applied at its terminals is depicted in Fig. 2.15. It is assumed
that there are no parasitic effects, i.e., the inductor has neither internal electrical
resistance nor capacitance. The directions shown for electric current and voltage are
defined as positive for this system component.

Fig. 2.15 An inductor in i
electrical systems
+ —

_—>
v
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The magnetic flux linkage of the inductor is given as the product of the electric
current i and a positive constant L, known as inductance, depending on the
geometric shape of the conductor:

A =Li. (2.41)

According to Faraday’s Law, [2], pp. 606, [3], pp. 325, flux linkage determines the
voltage at the inductor terminals:

dr di
==L

U—E— E

(2.42)

One capacitor is formed wherever two electrical conductors, with different
electrical potentials and with an insulator material between them, are placed close
enough to generate an electric field between them. These electrical conductors are
called plates. An electric current i flowing through a capacitor under the effect of a
voltage v applied at its terminals is shown in Fig. 2.16. It is assumed that no parasitic
effects exist, i.e., there is no leakage current between the capacitor plates and there
are no inductive effects due to capacitor plates. Because of the difference in potential
between the plates, an electric charge is stored. It is common to use letter g to
designate such an electric charge, which is the same, but has the opposite sign, at
each plate. Capacitance C is a positive constant defined as a means of quantifying
how much electric charge can be stored in a capacitor. The constitutive function of
a capacitor is given as [3], pp. 121:

c=1 (2.43)
v

Capacitance C depends on the geometric form of plates, the distance between them
and the dielectric properties of the insulator placed between them. Recall that the

electric current is defined as:

. dq

= —. 2.44
i=— (2.44)

Fig. 2.16 A capacitor in
electrical systems
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Fig. 2.17 An electric v
resistance in electrical ——
systems

An electric resistance is a device requiring application of a voltage v at its
terminals to maintain an electric current i flowing through it. The constitutive
function of a linear resistance is defined by Ohm’s Law [2], pp. 530:

v=iR, (2.45)

where R is a positive constant known as the electric resistance. An electric current i
flowing through an electric resistance when a voltage v is applied at its terminals is
shown in Fig. 2.17. The directions shown for the variables are defined as positive.

Once the constitutive functions of each electrical system component have been
defined, it is necessary to connect several of them to model more complex electrical
systems. Kirchhoff’s Laws are the key to establishing connections between the
different components of the electrical systems.

Property 2.1 (Kirchhoff’s Voltage Law) The algebraic sum of voltages around a
closed path (or mesh) must be zero.

Property 2.2 (Kirchhoff’s Current Law) The algebraic sum of all currents entering
and exiting a node must equal zero.

Example 2.8 Consider the series resistor—capacitor (RC) circuit shown in
Fig. 2.18a. Using Kirchhoff’s voltage law (KVL):

. q
v; = Ri + v, UOZE,

Asi = q,then Ri = RC%; hence:
v; = RCvg + vg.

Finally, the mathematical model is given as the following differential equation:

. 1 1
YF R0 = RV

Example 2.9 Consider the series RC circuit shown in Fig. 2.18b. Using KVL:

q .
v,-:E—l—vo, vo = Ri.



45

2.2 Electrical Systems

N ¢
AA% Ly
+ +
W Q0 ) exra® w0 Qi) ASu
(a) (b)
R,
R
AVAYA
+ + + — +
w) OO i) Liwnw  ww O C RS u
() (d)
Fig. 2.18 Some first-order circuits
Differentiating once with respect to time:
. L.
Vi = —1 + vy,
— 1 + )
RC Vo T+ Vo,

where i = ¢ and v9 = Ri have been used. Hence, the dynamic model is given as:

. 1 .
vy + R—Cvo = ;.

Example 2.10 Consider the series RL circuit shown in Fig. 2.18c. Using KVL:
di

v =v9+ Ri, vo=L—.
i 0 0 dt

Differentiating once with respect to time:
b — b0+ R di
Vi =V —,
i 0 dt

‘+
= V0,
0 LO
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where vg = L% d’ has been used. Hence, the dynamic model is given as:

o+ R .
Uy —UvVp = V;.
0 I 0 i

Example 2.11 Consider the series-parallel RC circuit shown in Fig. 2.18d. Define
i1, i, and i as the electric currents through R, C, and R; respectively. Hence,
Kirchhoff’s current law (KCL) can be used to obtain:

i =i+,
ve dgq
= — 4+ —,
dt
9 | dq
= 2.46
R C tar dt’ ( )
On the other hand, KVL allows us to write:
q .
E + Ryi = v;.
Replacing (2.46) and arranging terms yield:
dq 1 (Ri+ R 1
—t = = —V;.
dt " C\ RiR Ry
Applying the Laplace transform (see (3.2) in Chap. 3):
1
1 Ri+R
o) = ¢© 1Rtk (247)
s+a’ C RiIR;
where ¢ (0) stands for the initial charge in the capacitor. On the other hand:
vo = Roi,
dq
=Ry
(R]C + dl‘)
where (2.46) has been used. Arranging and using the Laplace transform:
I 4(0)
R
Q(@s) = 2 —Vo(s) + 1 (2.48)
RiC §TRC

Equating (2.47) and (2.48) and after an algebraic procedure:
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Fig. 2.19 A series RLC C L
circuit | | ~
11
v; ~R
(a)
+ Vo—+ VL
a7
+ . +
Ui 1 R‘V 'UR
(b)
s+ b v:(0) 1
V. — Vi(s) — , b= —, 2.49
0(s) T a i ($) Tta R.C (2.49)

where v.(0) = %0) represents the initial voltage at the capacitor. Notice that:

a>b>0.

The expression in (2.49) represents the mathematical model of the circuit in
Fig.2.18d.

Example 2.12 A series RLC circuit is shown in Fig. 2.19a with a voltage v; applied
at its terminals. Connection of the elements of this circuit is established by KVL [8],
pp. 67. Using sign definitions in Figs. 2.15, 2.16, 2.17 the electric diagram shown in
Fig. 2.19b is obtained. According to this and (2.41), (2.42), (2.43), (2.44), (2.45), in
addition to KVL, it is found that:

v;i =vr +vR + vc,

ve=2< 4= f t i(r)dr, if ¢(0) = 0, (2.50)
c 0
o= L 2.51)
dt
op =ik =24 (2.52)
dt

Notice that the electric current flowing through all of the circuit components is the
same. Hence:
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P L g (2.53)
v = — + =9, .
! dr2 dr T c?

or, differentiating once with respect to time:

dv; d%  di 1,
i Ldt2 + Rdt + ol (2.54)
The corresponding mathematical model is represented by either (2.53) or (2.54).

It is observed from (2.52) that there exists a (linear) algebraic relation between
voltage and current in a resistance, i.e., Ohm’s Law vg = i R. Also notice that the
electric resistance R is the constant relating electric current and voltage UTR = R.
Because of this fact, it is natural to wonder whether similar relations might exist for
electric current and voltage in an inductor and in a capacitor. However, from (2.50)
and (2.51) it is clear that some mathematical artifice has to be employed, because
such relations involve differentiation and integration. The mathematical artifice is
the Laplace transform as it possesses the following properties:

i [ sar} = S
L{— ¢t =s5X(), L / x(r)dr; = -X(s), ifx(0)=0, (2.55)
dt 0 N

where X (s) stands for the Laplace transform of x (), i.e., L{x(t)} = X (s). Thus,
using (2.50), (2.51), and the Laplace transform, and assuming that all of the initial
conditions are zero, yield:

1
Ve = —I(s),
cls) = < c (s)
Vi(s) = sLI(s),
where L{vc(t)} = Vc(s), L{vp(#)} = Vi(s) and L{i(t)} = I(s). The above
expressions represent the algebraic relations between electric current and voltage in

an inductor and a capacitor. The factors relating these variables are called impedance
which is represented as:

V(s)
Z(s) = . 2.56
()=~ ®) (2.56)
Hence, the impedance in an inductor is:
ViL(s)
Z = =sL 2.57
Ls) =~ o L (2.57)
and the impedance in a capacitor is:
Ve(s) 1
Z = =, 2.58
c(s) T6) ~ sC (2.58)
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Then, using the Laplace transform and the respective impedances, it is possible to
write the mathematical model in (2.54) as:

WG)=sLI®)+RI@)+—L16%

sC
Vils) = Zp(s)I(s) + RI(s) + Zc(s)I (s),
Vils) = (Zp(s) + R+ Zc(s)1(s),

which motivates the definition of the series circuit equivalent impedance as:

Zi(s) =Zr(s)+ R+ Zc(s),
Vi(s)

16)" (2.59)

1
Zi(s)=sL+R+ —, Zi(s)=
sC

This result proves an important property of series electric circuits:

Property 2.3 The equivalent impedance of a series connected circuit is given as the
addition of impedances of all of the series connected circuit components.

The concept of impedance is very important in electric circuits and it is a tool
commonly used to model and to analyze circuits in electrical engineering. This
means that expressions in (2.59) also represent the mathematical model of the circuit
in Fig.2.19a.

Example 2.13 A parallel connected electric circuit with an electric current i;
flowing through it is depicted in Fig.2.20a. Models of the circuit components are
connected, in this case using KCL [8], pp. 68. Using sign definitions presented in
Figs. 2.15, 2.16, 2.17 the electric diagram shown in Fig. 2.20b is obtained. From
this, using (2.41), (2.42), (2.43), (2.44), (2.45), and KCL it is found that:

® b dte e

(b)

Fig. 2.20 A parallel connected electric circuit
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ij =i +ir+ic,

t
d
g=1C, gq _/ ic(r)dr, if g(0) = 0= ic = Cd—l;, (2.60)
Ldi
i = —/ v()dr, v= ;tL 2.61)
in= 2. (2.62)

R

Notice that the voltage is the same in all the circuit components. Hence, the
mathematical model is given as:

'-—lft rdr + 2 4% (2.63)
t,_LOvrr R 7 .

Using the Laplace transform in (2.60), (2.61), (see (2.55)) and assuming that all of
the initial conditions are zero, yields:

Ic(s) =sCV(s),
1
Ip.(s) = s_LV(S)’

where L{ic(t)} = Ic(s), L{ir(t)} = I (s) and L{v(t)} = V (s). The factor relating
the Laplace transforms of electric current and voltage in a circuit element is called
admittance and is represented as:

1(s)

Y(s) = . 2.64
(s) V) (2.64)
This means that the admittance of an inductor is:
I1.(s) 1
Y = = —, 2.65
L(s) V) sL (2.65)
and the admittance of a capacitor is:
Ic(s)
Y, = = 2.66
c(s) V) (2.66)

Then, using the Laplace transform and the definition of admittance, the mathemati-
cal model in (2.63) can be written as:

1 1
Ii(s) = EV(S) + EV(S) +sCV(s),
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1
li(s) = YLV (s) + V() + Yc($)V(s),
1
li(s) = (YL(s) + i Ye(s)V(s),
which motivates the definition of the parallel circuit equivalent admittance as:

1
Yr(s) =YL(s) + 7 + Ye(s),

1 1 I (s)
Yr(s) = — 4+ —=+sC, Yr(s)=

Ttz o (2.67)

This proves the following important property of parallel connected electric circuits:

Property 2.4 The parallel circuit equivalent admittance is the addition of admit-
tances of all of the parallel connected circuit components.

The admittance concept is very important as a tool to model and to analyze
electric circuits in electrical engineering. This means that expressions in (2.67) also
represent the mathematical model of the circuit in Fig. 2.20a. From definitions of
impedance and admittance in (2.56) and (2.64), it is clear that admittance is the
inverse of impedance, i.e.:

Y(s) = (2.68)

Z(s)

This is also corroborated by comparing the definitions of impedance and admittance
for an inductor and a capacitor shown in (2.57), (2.58), (2.65) and (2.66). Hence,
according to (2.67) it is possible to write:

1 . 1 l 1 Yr(s)
Zr) ~ Zie) R Zewy TC

T Zr(s)’

where Z7(s) stands for the equivalent impedance of the parallel connected circuit
shown in Fig.2.20a. It is stressed that no relation exists between Z7(s) and Z;(s)
defined in (2.59) as the equivalent impedance of the series connected circuit shown
in Fig.2.19a. In the case when n circuit elements are connected in parallel, it is
possible to write:

1 1 1 1

_ L 2.69
Zr0) 210 e T 7o) (209

When only two circuit elements are connected in parallel, it is easy to verify that the
previous expression reduces to:

25y = L1OBE

— _fnyey) (2.70)
Z1(s) + Z2(s)
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Fig. 2.21 Series-parallel RC I(s) R
circuit >
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Example 2.14 Consider the electric circuit shown in Fig.2.21. If V,(s) is the
voltage at the terminals of the parallel connected circuit elements and Z,(s) is the
total impedance of these parallel connected circuit elements, it can be written as
follows:

Vo
Z,(s) = % 2.71)
L R
Zp(s) = >

where (2.70) has been used to compute equivalent impedance of the parallel
connected circuit elements. Notice that /(s) is the total electric current flowing
through the parallel connected circuit elements. On the other hand, if Zj,(s) is
the equivalent impedance of the series-parallel circuit, i.e., impedance measured
at terminals where the voltage V; (s) is applied, then it can be written as follows:

Vi(s)
Z = s 2.72
sp(s) 1(s) ( )
1 R
ZXP(S)=R+E+—RCS+I’

The fact that the equivalent impedance of series connected circuit elements is
computed by adding the impedances of all of the series connected elements whereas
impedance of the two parallel connected elements is given in (2.71) has been taken
into account. Use of (2.71) and (2.72) yields:

R
Vo (s) Zp(s) RCs+1
=Gr(s) = = 1 >
‘/l(s) ZSP(S) R+E+m
and, thus:
Vo(s) Ts
Vi 0T = e (273)

Notice that G (s) is not an impedance as it is given as the ratio of two impedances
or the ratio of two voltages.
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Fig. 2.22 A RC phase-shift C c C
circuit o || | | | |
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Example 2.15 Consider the electric circuit depicted in Fig.2.22. Ratio F(s) =
g? 8 is computed in the following. Define three closed paths (or meshes) as shown
in Fig. 2.22. It is assumed that the electric currents 7 (s), I2(s) and /3 (s) flow around

each mesh. The KVL can be used using the following criterion:

Criterion 2.1 Consider the i —th mesh. The algebraic sum of voltages at the circuit
elements in the i —th mesh equals zero. Voltage at each circuit element is computed
as the product of its impedance and the algebraic sum of the electric currents I1(s),
I (s) or I3(s), flowing through that circuit element. Let I;(s) be the electric current
defining the i —th mesh. If 11(s), I2(s) or I3(s) has the same direction as I;(s) in
that circuit element then I1(s), Ir(s) or I3(s), is affected by a “+” whereas a “—"
affects those electric currents with the opposite direction. A coefficient equal to zero
affects the electric currents not flowing through that circuit element. The value of a
voltage source is affected by a “+” if 1; (s) flows through that voltage source from
terminal “+” to terminal “—”. A “—" is used if this is not the case.

This criterion constitutes the basis of the so-called mesh analysis method
employed for circuit analysis in electrical engineering. The reader is referred to
[9] and [8] for a deeper explanation of this method. The use of this criterion in each
one of the meshes shown in Fig. 2.22 yields:

1
II(S)E + (I1(s) — L(s)R = Vi(s), (2.74)
1
(I(s) — I1(s)R + IZ(S)E + (I2(s) — I3(s))R =0,
1
(I3(s) — L (s))R + Is(S)E +Va(s) =0, Va(s) = RIz3(s).

From the third expression in (2.74) the following is obtained:

1 1
L()R=—= R+ — ) Va(s) + Va(s). (2.75)
R sC
Replacing this and I3(s) = VZT(S) in the second expression in (2.74), a new

expression is obtained which allows 7;(s) to be computed as a function of V(s).
Replacing this value of I;(s) and I>(s) given in (2.75) in the first expression
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in (2.74), V1(s) is obtained as a function of V;(s). Finally, suitably arranging terms,
the following expression is obtained:
Vals) R3Cs? _
Vi(s)  R3C3s34+6R2C2s2+5RCs+1

F(s). (2.76)

2.3 Transformers

In this book, the term transformers is used to designate those components that
manipulate the system variables in such a way that energy is conserved, i.e., they
neither store nor dissipate energy; energy simply flows through them.

2.3.1 Electric Transformer

An electric transformer is composed of two inductors wound on the same ferromag-
netic core (see Fig.2.23). This means that inductors are magnetically coupled but
electrically isolated.

Each inductor defines one port. v; stands for the voltage at the terminals of port 1
and i1 represents the electric current flowing through port 1. v, stands for the voltage
at the terminals of port 2 and i, represents the electric current flowing through port
2. The indicated directions are defined as positive. The dot placed at the upper side
of each inductor is used to indicate that inductors are wound in the same direction.
If this were not the case, dots would be placed on opposite sides of the inductors.
The inductor at port 1 has n; turns and the inductor at port 2 has n, turns. As the
inductors are magnetically coupled, flux linkage in inductor 1, A1, and flux linkage
in inductor 2, A, depend on the electric currents flowing through both inductors:

Fig. 2.23 Electric
transformer
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A1 = Lyiy + Muia, (2.77)
A2 = Myyiy + Laio, (2.78)

where L, L;, are the inductances of inductors 1 and 2, whereas M, and M»; are the
mutual inductances between the two circuits. It is always true that M1, = My = M.
The positive signs in terms with factors M1, and M>; in the previous expressions
are due to the fact that the direction of electric currents defined as positives enter
wounds through its sides labeled with a dot (see Sect. D.2 in Appendix D). Solving
for i> in (2.77) and replacing it in (2.78) yield:

Ay = MAENM ! ] 2.79)
=2 _ 2 i1, .
2 M ! M !

The coupling coefficient is defined as:

M
VLiLy

If both circuits are not coupled at all, then k = 0, but k = 1 if both circuits
are completely coupled such that flux linkage in inductor 1 equals flux linkage in
inductor 2. This case is well approximated in practice if the core of both inductors
is the same and it is made in a ferromagnetic material with a large magnetic
permeability . Assuming that this is the case, i.e., M = /LiL», then (2.79)

becomes:
o= |22 (2.80)
2= I 1- .

On the other hand, from (2.78) and (2.77), using M2 = M1 = M, and (2.80), it is

found that:
%) _ Mi| + Laip _ Lo
A Ly +Mip Ly

Hence, solving for the indicated ratio:
b _ VI - M
W, Ly
YEWLL -M) L
VoiL,-M Ly

The inductance of each circuit is given as [3]:

k:

2.81)
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where A, [, and u are the core area, the core mean length, and the core magnetic

permeability respectively. Hence:
L
[oL_nm (2.82)
Ly na

Using this and (2.42) in (2.80) yields:

and, from (2.81):

. ni.
1P = —1I1.
np

This means that the power at both ports is the same, because:

. np nip, .
Wy = iy = —v1—1i] = Vji] = wj.
ny np

2.3.2 Gear Reducer

Two gear wheels with radii r; and r, are depicted in Fig. 2.24. Wheel 1 has radius
r1, n teeth, and it rotates at an angular velocity w; under the effect of an applied

Fig. 2.24 A gear reducer

7 L
wy we
n 1
Ny
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torque 7. Wheel 2 has radius r,, ny teeth, and it rotates at an angular velocity w;
under the effect of an applied torque 7». The directions defined as positive for these
variables are also shown. It is important to note that teeth allow wheels to rotate
without slipping. Hence, the arch length s generated by an angle 6; at wheel 1 is
equal to the arch length generated by the angle 6, at wheel 2. It is well known from
basic geometry that:

s =0;r, s =61, (2.83)
where 01 and 6, must be given in radians. Thus, it is concluded that:
0111 =0 1. (2.84)

It is also known that the tooth width « is the same in both wheels, which is
necessary for teeth to engage. This implies that:

p1 = any, p2 = ony,

p1 = 2mry, p2 =2mr;.

where p; and p; stand for wheel circumferences or perimeters. Combining these
expressions, it is found that:

a-n (2.85)
r na
From (2.84) and (2.85):
0 = 12 0.
ni
Differentiating with respect to time:
na
w] = — wy, (2.86)
ni

On the other hand, force F applied at the point where the wheels are in contact is
the same for both wheels. This force satisfies:

T, = Fr;, T,=Frp,
Solving each equation for F' and equating the resulting expressions:

TW=—T,=—T1,. (2.87)
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Using (2.87) and (2.86), it is found that the mechanical power, w, is the same on
both ports, i.e.:

ny_ ny
w; =Tw = —T1— wy = Thwy = wsy.
ny ni

2.3.3 Rack and Pinion

Consider the rack and pinion system depicted in Fig. 2.25. Port 1 is defined in terms
of rotative variables, angular velocity w; and torque 77, whereas port 2 is defined in
terms of translational variables, velocity v, and force F». By definition, torque 7T}
and force F, are related as:

T, =rF,, (2.88)

where r is the pinion radius, whereas angular velocity w; and velocity v; are related
as (see (2.83)):

vy =roj. (2.89)
Thus, the power at both ports is the same:
1
w) = Tw1 =rF)-vy = Fhvy = ws.
r

The directions of variables shown in Fig. 2.25 are defined as positive.

Fig. 2.25 A rack and pinion system
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2.4 Converters

We label as converters those system components that constitute a connection
between two systems having a different nature.

2.4.1 Armature of a Permanent Magnet Brushed Direct
Current Motor

A square loop with area A = [?, which is placed within a magnetic field B,
is depicted in Fig.2.26. An electric current i flows through the loop, with the
indicated direction, under the effect of an external voltage source E. Resistance R
and inductance L, shown in Fig. 2.26a, stand for the loop resistance and inductance.
The force F exerted by a magnetic field B on an electric current of length [ is given
as [2], pp. 541:

F =ili x B, (2.90)
Fig. 2.26 A permanent I B
magnet brushed direct current >
(DC) motor. (a) Superior > .
iew. (b) Front vi
view. (b) Front view N R R S
. - v+ >
R
L
i
I
FE
(a)
F A
I A B
- « 0
N > 0 S
| A
> " > >
> l >
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where i is a unitary vector defined in the same direction as the electric current. A
bar is used on the top of variables to indicate that they represent vectors. Symbol
“x” stands for the standard vector product. Hence, under the conditions depicted in
Fig.2.26b, i.e., when 6 = 90°, the force exerted by the magnetic field on the left
and right sides of the loop is given as:

F =ilB.

This means that the following torque is produced on the loop axis:
l o2
T=2§F=lBl =iBA.

Notice that / F'/2 is torque because of the force exerted on each loop side and there
are two applied forces on the loop with the same magnitude: one is applied on the
left side and another on the right side. The reader can verify that, according to (2.90),
forces on the rear and the front sides of the loop do not produce any torque. This
means that the loop rotates at an angular velocity @ = —6, i.e., in the opposite
direction defined for 6 in Fig. 2.26b where 6 is the angle between the direction of
the magnetic field and a line orthogonal to the plane defined by the loop. According
to Faraday’s Law [3], pp. 325, this induces a voltage v at the loop terminals that is
given according to (2.42), i.e.:

_db.
VS

where A is the flux linkage in the loop and is given as:
A = BAcos(9).
Hence, using these expressions, the following is found:
v = —BA0sin(0) = BAwsin(b).

Notice that, according to Lenz’s Law [3], pp. 327, the induced voltage v has a
polarity (see Fig.2.26a) that is opposite to the change in electric current i. Now,
assume that several loops are employed, each one of them having a different
tilt angle, such that a mechanical commutator connects only that loop for which
6 = 90°. Then, the voltage at the commutator terminals is given as:

v = BAw.

This is a description of a permanent magnet brushed direct current (DC) motor. Port
1 is represented by electrical variables, i.e., voltage v and electric current i, whereas
port 2 is represented by mechanical variables, i.e., angular velocity w and torque 7.
The relationship among these port variables is given as:



2.4 Converters 61

v = BAw, 2.91)
) 1
i=—T.

BA

If it is assumed that a torque T is applied at port 2 at an angular velocity w, producing
a voltage v and an electric current i at port 1, then a DC generator is obtained and
both expressions in (2.91) are still valid. Notice that in both cases power at both
ports is the same:

1
w; =vi = —TBAw =Tw = w;.
BA

The expressions in (2.91) can be written in a more general manner as:

v = kew, (2.92)
T = ki, (2.93)

where k., > 0 and k,,, > 0 are known as the counter-electromotive force constant and
the torque constant respectively. These constants are introduced to take into account
the fact that several loops are usually series connected and some other variants in
the construction of practical DC motors and generators. The fact that power at both
ports is the same:

1
wi=vi =keo—T =Tw=wy,
m

can be used to show that k, = k;, in any DC motor or generator. However, attention
must be payed to the units employed for the involved variables: k, = k;, is true if
these constants are expressed in the International System of Units.

2.4.2 Electromagnet

A bar made in iron, placed at a distance x from an electromagnet is shown in
Fig.2.27. The electromagnet is composed of a conductor wire wound, with N turns,
on a core made in iron. An electric current i flows through the conductor under the
effect of a voltage v applied at the conductor terminals. According to Ampere’s Law
[5], the magnetomotive force M is given as:

M = Ni. (2.94)

The reluctance R of the magnetic circuit is defined through the constitutive
relation:

M =R, (2.95)
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Fig. 2.27 Force due to a x

magnetic field |<_’|

~
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A

where A represents the magnetic flux in the magnetic circuit and the reluctance is
given as:

/ 2x
R=— + — o~ =
MiA  pugA HaA

Wi >> Has (2.96)

where w; and p, stand for the magnetic permeability of iron and air respectively,
whereas [ and x represent the magnetic circuit length and the air gap respectively.
The flux linkage is defined as v = NA. According to Faraday’s Law v = d(évt)‘).

Using this and (2.94), the power w supplied by the electric circuit is given as:

. M. ..
w=iv=—NA=MA=F,
N

where E is the energy supplied by the electric circuit, which is stored in the magnetic
circuit as:

_ (0
E =/ M—dt = Md.
o dt 2(0)

Using (2.95), this can be written as:

() 1
E= Radr = —RA2(1), (2.97)
2(0) 2

if A(0) = 0. Notice that this represents the energy stored in the reluctance, i.e.,
reluctance stores energy. This must be stressed, as the common belief is that
reluctance is the magnetic analog of electric resistance, which is not true because
electric resistance dissipates energy and reluctance stores energy.

The stored energy E also represents the mechanical work performed by an
external force F to create a gap of width x. This means that F is applied in the
opposite direction to the magnetic force f,i.e., F = — f and:
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X X aE
E:/ Fds:—/ fds, f=-——.
0 0 0x

Using (2.97):

1 ,0R
F==3" 5
This and (2.96) imply that the magnetic force is produced by the reluctance and it is
applied in the sense where the reluctance, energy, and gap width decrease.

On the other hand, the inductance L(x) depends on the bar position x, as
explained in the following. According to (2.41), the flux linkage in the inductor is
given as the product of inductance and the electric current, i.e., ¥ = L(x)i = NA.
Moreover, according to (2.96) and (2.95), if x decreases, flux A increases if the
electric current is kept constant. According to NA = L(x)i, an increase in flux A
only can be produced by an increase in inductance L(x), i.e., inductance increases
if x decreases.

From (2.97) and (2.95), it follows that:

E=_-Mi=_-Ni— =iy = ~L(x)i’
2 NIy =g =k
: . JoE .
Finally, according to f = — 47
10L(x) .,
=—= . 2.98
F==3 ! (298)

It is stressed that f in (2.98) is applied in the sense where the air gap x decreases.
The above-mentioned ideas are based on [10].

Example 2.16 Two rotative bodies connected by a rack are shown in Fig.2.28a.
An external torque 7 (r) is applied to the body at the left. Hence, it may be
assumed that the body at the left is a motor that transmits movement to the body
at the right. Following the sign definitions shown in Figs. 2.1, 2.9, 2.3, and 2.25,
the free-body diagrams shown in Figs. 2.28b and c are obtained. Figure 2.28b
shows the connection of both rotative bodies by means of two rack and pinion
systems, whereas Fig. 2.28¢c shows the free-body diagram of each rotative body.!

The employed nomenclature is defined as follows:
e vy, = dd%’”, where x,, is the position of the rack with the mass m.

* w = ”%‘, where 0 is the angular position of the rotative body 1.

In a rack and pinion system, Newton’s Third Law stating that to every action (force or torque),
there is a corresponding reaction (force or torque) must be applied at only one port, as force
or torque in the other port is simply a consequence of what happens in the first port. Also, see
Example 2.17.
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(b) Free-body diagram.
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(c) Free-body diagram (cont.).

Fig. 2.28 Two rotative bodies connected by a rack

* wr = ‘%, where 0; is the angular position of the rotative body 2.

* v is the rack translational velocity produced as a consequence that body 1 rotates
with angular velocity w;.

* v is the rack translational velocity produced as a consequence that body 2 rotates
at angular velocity w>.

* wp = %’ where 6, is the angular position of the mobile side of the damper
connected to body 1 (friction between body 1 and its supports).
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e wpy = dg%, where 6 is the angular position of the mobile side of the damper
connected to body 2 (friction between body 2 and its supports).

e Y = ‘%b, where x;, is the position of the mobile side of the damper connected to
rack m. This damper represents the friction between rack and floor.

Using Figs. 2.28b, ¢, and (2.1), (2.25), (2.4), (2.28), (2.88), (2.89), the following is
obtained:

} dwy
Inertia 1: 11? =T@)+T1 —Tp1, (2.99)
. dw;
Inertia 2: 127 =12 — Tpy, (2.100)
dvy,
Mass: mW =F—-F+Fp, (2.101)
Left damper: biwpr = Tp1,
Right damper: brwpy = Tp2,
Central damper: bvy, = Fp,
Rack and pinion at the left: T, =rF, v=rw, (2.102)
Rack and pinion at the right: Th=rF, v,=rw. (2.103)

Notice that forces with the same direction as w1, w, and vy, are affected by a positive
sign in (2.99), (2.100), (2.101), or a negative sign if this is not the case. Assuming
that all of the system components are connected by rigid joints then, according to
Figs. 2.28b and c, it is found that:
Up = —V] = U = —Up, (2.104)
W] = Wp1, W2 = Wp2. (2.105)
According to this, if x,, =0,0; = 0,0, = 0,x, = 0,61 = 0, 6p2 = 0 are defined as
positions of the rack, body 1, body 2, and the mobile sides of the dampers connected
to the rack and bodies 1 and 2 respectively, when the whole system is at rest with
T (t) = 0, then it is concluded that:
Xm = —Xp, (2.106)
01 = 6p1, 62 = Op.

Hence, expressions in (2.99), (2.100) and (2.101) can be rewritten as:

d
Inertia 1: 11% =T@)+rF1 —biwpi, (2.107)
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d

Inertia 2: 12% =rF, — bywp, (2.108)
dvy,

Mass: mF = F| — F, + buvy. (2.109)

Recall that vi = —wv,. Then, (2.102) and (2.103) can be used to find that w; = —w>.
Using this result, (2.105), and subtracting (2.108) to (2.107):

d
(I + m% =T(t) +r(F — ) — (b + bywy. (2.110)

On the other hand, employing —v,, = v; = rw; = vp, (2.109) can be written as:

dw
—er = Fl — F2 —bvm.
Solving for F; — F> in this expression and replacing it in (2.110), the following is
finally found:

dw
(I + b + er)d—t‘ =T(t) — (b1 + by + r*b)ay.

This differential equation represents the mathematical model of the system in
Fig.2.28a. Contrary to several previous examples, in this case it is possible to
combine three differential equations in a single differential equation. This is because
the three variables w;, w> are v, are linearly dependent as they are related through
the algebraic equation —v,, = rw; = —rwy. Also notice how the radii of the pinions
modify (i) the rack mass to express its effect on the equivalent inertia on the axis of
body 1, and (ii) friction between the rack and floor to express the equivalent friction
on the axis of body 1.

Example 2.17 Two rotative bodies connected through a gear reducer are shown in
Fig. 2.29a. The external torque T (¢) is applied t the body at the left. This mechanical
system can be seen as an electric motor (body at the left) transmitting movement
to a mechanical load (body at the right) through a gear reducer. According to the
sign definitions shown in Figs. 2.9, 2.11, and 2.24, the free-body diagram shown in
Fig. 2.29b is obtained.” The employed nomenclature is defined as follows:

s w= %, where 0 is the angular position of body 1.

* wq = ddi;‘, where 0, is the angular position of body 2.
* wp = dg%, where 6y is the angular position of the mobile side of the damper

connected to body 1.

’In a gear reducer, Newton’s Third Law, stating that to every action (torque) there is a correspond-
ing reaction (torque), must be applied only at one port, as the torque at one port is a consequence
of the torque at the other port. Also see Example 2.16.
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Wn2 Wh2
(b) Free-body diagram.
Fig. 2.29 Two rotative bodies connected by a gear reducer
* wp = dg%, where 6, is the angular position of the mobile side of the damper

connected to body 2.

* w,1 and wyy are the angular velocities of the gear wheels that result from the
movement of bodies 1 and 2.

e T,1 and T,; are the torques appearing on gear wheels as consequences of the
movement of bodies 1 and 2.

Using Fig. 2.29b, and (2.25), (2.28), (2.86), (2.87), the following expressions are
obtained:

Body 1: Lo =T(t) — Tpy — Tur, (2.111)
Body 2: haoy = T3 + Ty, (2.112)
Damper at the left: biwp1 = Tpy,

Damper at the right: brwpy = Tpo,

Gear reducer: Tu1 = Z—; w2, Wpl = Z—?a)ﬂ, T = T3, (2.113)

Last expression is due to the fact that, according to Newton’s Third Law, an action
of A on B produces a reaction from B on A. Notice that in (2.111) and (2.112)
torques that have the same direction as @ and w4 appear with a positive sign and a
negative sign if this is not the case. Assuming that all of the system elements are
connected by rigid joints, then from Fig. 2.29b, it is found that:

W= wp] = —Wyl, ©4=—WH = —Wp2. (2.114)
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Hence, if 6 = 0,64 = 0,0, = 0,0, =0, 6,1 = 0, 6, = 0 are defined as the
angular positions of body 1, body 2, the mobile side of the damper at the left, the
mobile side of the damper at the right, gear wheel 1, and gear wheel 2 when the
whole system is at rest with 7 (¢) = 0, then it is concluded that:

0 =6p1 = —Op1, 04 =—0p2 =—0p. (2.115)
Thus, using (2.114), (2.115), (2.111), and (2.112), the following can be written:

Body 1: I]d):T(t)—blw—Z—;E, (2.116)

Body 2: Loy = Tz — bbs. (2.117)

On the other hand, from (2.113) and (2.114) it is found that w = %w4. Using this,
solving for 73 in (2.117), replacing it in (2.116), and rearranging terms:

2 2
(12 + ("—2> 11> by + <b2 + <’2) b1> by =2T@).  (2.118)
ni ni ni

Notice that both differential equations in (2.116) and (2.117) have been combined
in a single differential equation. This is possible because variables @ and w4 are
linearly dependent, i.e., they are related by the algebraic equation w = Z—2w4. The
above-mentioned differential equation represents the mathematical model of the
system: if 7'(¢) is known, then 6y, i.e., the position of body 2, can be computed
solving this differential equation.

Example 2.18 In Fig.2.30a, the mechanism in Fig. 2.28a (in Example 2.16) is
shown again, but now it is assumed that the rack is flexible. This flexibility is not
intentional, but it is an undesired problem that appears because of the finite stiffness
of the steel of which the rack is made. The mathematical model in this case can
be obtained taking advantage of the procedure in Example 2.16, i.e., to continue
from (2.107), (2.108), (2.109), which are rewritten here for ease of reference:

. dwy
Inertia 1: I I =T@)+rF; —biwp,
dw
Inertia 2: 12—2 =rF, — bywp,
dt
dv
Mass: md—;" = F| — F, + buy.

However, it must be considered now that, according to Fig. 2.30b and the sign
definitions shown in Fig. 2.2 and (2.3):

Fi1 = Ki(xgs —xp), F>=Ksx(xc —xp),
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(b) Flexibility in the rack.

Fig. 2.30 A transmission system with a flexible rack

with:

* Yy = ddi;‘ and vg = ’%B, where x4 and xp are the positions of the sides of the

spring on the left.
e Ve = d;—f and vp = d;—tD, where xc and xp are the positions of the sides of the

spring on the right.
Using this and (2.104), (2.105), the following is found:

d
Inertia 1: Il% =T(t)+rKi(xa —xB) — biwy, (2.119)
. dwn
Inertia 2: 127 =rKy(xc — xp) — bhw;. (2.120)
Mass: mX, = Ki(xg —xg) — Ko(xc — xp) — bx,,.  (2.121)

On the other hand, according to (2.102), (2.103), (2.104), (2.106) and assuming
that all the system components are connected by rigid joints:

XB=XC =Xn, XA=-101, xp=rbs, (2.122)

where 61 and 6, are angular positions of gear wheels 1 and 2 defined according to
Fig. 2.28b. Replacing (2.122) in (2.119), (2.120), and (2.121):

Inertia 1: 16 + b16, —rKi(=r01 —xm) =T(2),
Inertia 2: 10y + br6r — rKy(x,, —r6) =0,
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wa Tn 2

(b) Teeth flexibility.

Fig. 2.31 Transmission system with a flexible gear reducer

Mass: mim + bxy — K1(—r601 — xp) + Ko (xy, — r63) = 0.

The mathematical model is given by these three differential equations, which must
be solved simultaneously. In this case, it is not possible to combine these three
differential equations in a single differential equation because variables 61, 8>, and
X are not linearly dependent. This means that there is no algebraic expression
relating these three variables. Notice that, from the modeling point of view, this
is the effect introduced by the springs considered in this example. Compare this
mathematical model with that obtained in Example 2.16.

Example 2.19 Two rotative bodies connected through a gear reducer and a spring
are depicted in Fig.2.31a. The external torque 7 (¢) is applied to the body on the
left. This example can be seen as a motor (body on the left) that transmits movement
to a mechanical load (body on the right) through a gear reducer that exhibits teeth
flexibility. This flexibility is an undesired behavior that, however, appears in practice
because of the finite stiffness of steel, the material in which the gear reducer is
made. This modeling problem can be solved taking advantage of the procedure in
Example 2.17 which has been used to model the mechanical system in Fig. 2.29a.
We can go back to expressions in (2.116) and (2.117), which are rewritten here for
ease of reference:

Body I: ho=T@) —bio— 2T, (2.123)
ny
Body 2: Lrivg = Ty — brby, (2.124)
but now, according to Figs. 2.31b, 2.10 and (2.27):

Ty = K(0a — 0p),
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where ws = 64 and wg = O with 4 and 6p, the angular position of both sides
of the spring. On the other hand, according to (2.113), it is found that 6 = %QA’
because wq4 = —wy2 and w,] = —6, where 6 and 64 are the angular positions
of body 1 and the side of the spring connected to gear wheel 2 (see Fig.2.31b).
Also notice that 6p = 64. Replacing the above-mentioned expressions in (2.123)
and (2.124), it is found that:

Body 1: L6 +b6+ 2k (”—19—94> —T(),
ny na
Body 2: Ly + bafs — K <"—19 - 94> —0.
np

These differential equations must be solved simultaneously and they represent
the corresponding mathematical model. Notice that these differential equations
cannot be combined into a single differential equation because variables 6 and
04 are linearly independent, i.e., there is no algebraic expression relating both of
these variables. This is the main difference with respect to the problem solved in
Example 2.17 and it is due to the introduction of the spring in the present example.

Example 2.20 (Taken from [6], pp. 122) An electro-mechanical system is shown in
Fig.2.32. There is a permanent magnet brushed DC motor that is used to actuate on
a body with the mass M through a gear reducer and a rack and pinion system. The
body M moves on a horizontal plane; hence, it is not necessary to consider the effect
of gravity. According to the sign definitions shown in Figs. 2.9, 2.1, 2.11, 2.3, 2.24,
2.25,2.26, the free-body diagrams in Fig. 2.33 are obtained. The electrical DC motor

Fig. 2.32 Servomechanism n
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Fig. 2.33 Free-body
diagrams corresponding to
the servomechanism in
Fig. 2.32
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components are analyzed in Fig. 2.33a. The mechanical DC motor components and
the gear reducer are analyzed in Fig. 2.33b. The rack and pinion system components
are analyzed in Fig. 2.33c.? Notice that friction at motor bearings, friction at pinion
bearings, and friction between body M and its supports (or the floor) are considered.
The nomenclature employed is defined as follows:

o 6, = dgt , where 6,, is the motor angular position.
* wp = dgt” , where 6p is the pinion angular position.

e X = dt , where x is the body M position.

* wp = dg’t’l , where 6 is the angular position of the mobile side of the damper
connected to the motor.

* wpy = dg’t’z , where 6y, is the angular position of the mobile side of the damper
connected to the pinion.

* Y3 = dz , where x3 is the position of the mobile side of the damper connected
to body M.

* w; and wy are the angular velocities of the gear wheels that result from the
movement of the motor and the pinion.

e u is the voltage applied at the motor terminals and i is the electric current flowing
through the motor.

e F,Tp, and v are the force, torque, and translational velocity produced at the rack
and pinion system as a result of movement of the pinion and mass M.

Using Fig.2.33, and (2.1), (2.25), (2.4), (2.28), (2.86), (2.87), (2.88), (2.89), the
following expressions are obtained:

Motor inertia: I,n@n =T-T,—Tp, (2.125)
Pinion inertia: [Pép =T+ Ty, + Tp, (2.126)
Mass M: Mx = —F — Fp3, (2.127)
Damper at motor: biwp1 = Ty,
Damper at pinion: brwpy = Tpa,
Damper at mass M: byvpz = Fp3,
ny no
Gear reducer: Th=—"1, w =—w, (2.128)
np ni
Rack and pinion: v=rwp, Tp=rF. (2.129)

Notice that, in (2.125), (2.126), and (2.127), forces that have the same direction as
6n, wp and x appear affected by a positive sign and a negative sign if this is not the
case. Assuming that all the system components are connected by rigid joints, then,
according to Fig. 2.33, it is found that:

3See footnotes in Examples 2.17 and 2.16.
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V=X = Up3, (2.130)

On = wp1 = —w1, W)= wp = —wp, (2.131)

Hence, if x =0, x43 =0, 6,, =0, 01 = 0, and 65> = 0 are defined as positions of
the body M (the mobile side of the damper connected to mass M, the motor rotor,
the mobile side of the damper connected to the motor, and the mobile side of the

damper connected to the pinion respectively), when the whole system is at rest with
T = 0, it is concluded that:

X = Xp3, (2.132)
Om = Op1. (2.133)

Hence, (2.125), (2.126), and (2.127), can be written as:

. n
Motor inertia: 1,0, =T — —sz — biwpi,
na
Pinion inertia: Ipép =T+ bywpy +rF,
Mass M: Mx = —F — b3vp;.

Using (2.130) and (2.131):

Motor inertia: Lnbn =T = 227 — b16,, (2.134)
ny

Pinion inertia: Ipép =T, — bwp +rF, (2.135)

Mass M: Mi = —F — by, (2.136)

Op the other hand, according to (2.128), (2.129), (2.130), and (2.131), it is found
that 6,, = :Tzrx Using this, solving for 75 from (2.135) and replacing it in (2.134):

L2540 25 =T = " porp + brop — rF]. (2.137)
nir nir ny

From (2.129) and (2.130), it is obtained that x = rwp. Using this in (2.137) and
replacing F from (2.136):

ny .. ny . ni ni . ni ni .
In,—X+b—x=T — (—Ip + —rM) X — <—b2 + —rb3> X.
nir nir nar no nor ny

Rearranging, the following is obtained:

ny \? 1 . n \? 1 . ny
In|— ) tlp5+M|i+|\bi|—) +boZ5+b3|x=—T.
nir r nir r nir

(2.138)
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On the other hand, applying KVL (see Example 2.12) to the electric circuit shown
in Fig. 2.33a yields:

.
Ld—;—i—Ri—i—eb:u. (2.139)

From (2.92), (2.93) and 6,, = :]—erc, it is found that the induced voltage and the
generated torque are given as:

ep = keb = ke—2%, T = kpi.
nir
Using this result, (2.139) and (2.138), it is finally found that the mathematical

model is given by the following two differential equations, which have to be solved
simultaneously:

di . ny .
L— +Ri+k,—x =u, (2.140)
dt nir

2 2
n 1 .. n 1 . n .
<1m (—2) +Ip + M) i+ <b1 (—2> +by— +b3> &= ki,
nir r nir r nir
(2.141)

Another way of representing this mathematical model using a single differential
equation is by combining (2.140) and (2.141). To this aim, differentiate (2.141)

once with respect to time. This produces % to appear on the right-hand side of the
di

resulting equation. Then, replace 7; from (2.140). Thus, a differential equation is

obtained in terms of %, X, x and i. Solve (2.141) for i and replace it to obtain
a third-order differential equation in the unknown variable x with voltage u as the
excitation function. Thus, the mathematical model can be expressed by a single
differential equation, which can be solved for the mass position x once the voltage
applied to motor u is known. The reader is encouraged to solve this problem,
proceeding as indicated above.

2.5 Case Study: A DC-to-DC High-Frequency Series
Resonant Power Converter

Much electronic equipment at present employs a variety of electronic circuits that
require several different levels of DC voltage. Several values of DC voltage can
be obtained using a large electric transformer with several tabs in the secondary
winding. Then, a rectifier filter circuit can be placed at each one of these tabs
to obtain a different DC voltage level at the output of each circuit. However,
this method is no longer utilized because it requires voluminous inductors and
capacitors, aside from the fact that it produces large energy losses.
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This problem is currently solved by using several power electronic circuits,
which, using electronic commutation devices, are capable of delivering different
DC voltage levels from a unique DC power supply. These circuits are known
as DC-to-DC power electronic converters and they solve the above-described
problem, reducing both equipment volume and energy losses. In fact, the impressive
equipment miniaturization that it is known today is possible thanks to employment
of power electronic converters.

A particular class of power electronic converters is that known as resonant
converters which are divided into series and parallel according to the way in
which their components are connected (see Fig. 2.34). The DC-to-DC series
resonant power electronic converter depicted in Fig. 2.34a works as follows. The
commutation network is composed of an inverter delivering a square alternating
current (AC) power voltage (taking values £F) at the input of the series resonant
circuit. See switches on the left of Fig. 2.35. In the most simple operating mode,
the frequency of the AC voltage delivered by the inverter is equal to the resonance
frequency of the series inductor capacitor (LC) circuit. Hence, the transistors
comprising the commutation network are turned on and off (Q1, Q3 and Q2, Q4)
when the electric current through them is zero. This is very useful because it
avoids transistor stress. On the other hand, because the series LC circuit works
at resonance, the electric current i through the circuit has a sinusoidal waveform,

] c
L LYY
. /¢
L L o T +
E= o~ R < Vg
\o—
I | _
Switch network Series resonant circuit Rectifier Low-pass
filter
(a)
i 1
l L + L, +
L - v | c =
E= ¢~ i R 0o
Switch network Parallel resonant circuit Rectifier Low-pass
filter
(b)

Fig. 2.34 DC-to-DC resonant power electronic converters . (a) Series. (b) Parallel
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IS

Fig. 2.35 A DC-to-DC series resonant power electronic converter showing devices comprising
the inverter

Fig. 2.36 A simplified L C
circuit of a DC-to-DC series | ¢
resonant power electronic +| L
converter ; v
E(9) I (
CO
R
+ -
Yo

which is rectified and filtered by the circuit on the right in Fig. 2.34a. Hence, the
circuit load, represented by the resistance R, receives the DC voltage vg.

In Fig. 2.36, the electric diagram of a DC-to-DC series resonant power electronic
converter is shown, representing the inverter as a square AC voltage source E(¢)
taking the values = E. Notice that, because of the presence of the rectifying diodes,
the circuit operation can be divided in two cases: 1) when i > 0, Fig. 2.37a, and
2) when i < 0, Fig.2.37b. The equations for i > 0 are obtained from Fig.2.37a.
Applying KVL to the closed path on the left, the following is obtained:

di
Et)=L— +v+vy, i>0.
dt
It is important to stress that the direction of i and the polarity of vy have been taken
into account. On the other hand, according to (2.50), the voltage and electric current
at the resonant capacitor are related by:

dv

Ezi, i>0.

Finally, applying KCL to the node that is common to both capacitors, it is found
that:
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Fig. 2.37 Equivalent circuits L C
for(a)i >0and (b)i <0 |/
[N
. + - +
! v
E() ~C, R Y
(a)
L C
| ¢
[N
. + - -
! v
E1) —C R,
+
(b)
dvg vy
i=Co—+—, i>0.
s R

On the other hand, the equations for i < 0 are obtained from Fig. 2.37b. Applying
KVL to the closed path on the left, the following is obtained:

di
E(t)=L— —vy, i<0O.
(t) dt+v vg, 1<

Notice that vy is affected by a “—” because its polarity is opposite to the direction
of electric current i. However, voltage and electric current at the resonant capacitor
satisfy again:

dv . 20
— =1, 1<0.
dt

Finally, applying KCL to the node that is common to both capacitors yields:

Notice that the correct direction of the electric current through the capacitor C and
resistance is from “+” to “—", i.e., it is opposite to the direction indicated for i.

Analyzing these two sets of equations, it is possible to use a unique set of
equations representing both cases i > O andi < O:
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.
EQ) = Ld—; + v+ vosign(i), (2.142)
d
cl —i (2.143)
dt
bs(i) = Co %0 4 %0 (2.144)
abs(i) = Co— , .
“ar TR
where:
signy =1 TH1>0 (2.145)
—1,i <0

whereas abs(i) stands for the absolute value of i, i.e., abs(i) = i if i > 0 and
abs(i) = —i if i < 0. The equations in (2.142)—(2.144) constitute the DC-to-DC
high-frequency series resonant power electronic converter mathematical model. The
study of this class of power electronic converters is continued in Sect. 3.9, Ch. 3.
Analyzing (2.142)—(2.144) will explain how this circuit works and why it receives
the name high-frequency. For more information on modeling this class of power
electronic converter, the reader is referred to [11].

2.6 Summary

The mathematical model of a physical system is a differential equation or a set
of differential equations describing the evolution of the important variables of the
physical system when this is subject to particular conditions. Such a description is
obtained when solving the corresponding differential equations, as in Chap. 3.

In the remainder of this book, the mathematical model of the system to be
controlled is employed to design a controller (another differential equation, in
general). The objective is that, when connecting the controller in feedback with
the system to be controlled, a new differential equation is obtained (the closed-loop
system differential equation) whose mathematical properties (studied in Chap. 3)
ensure that the variable to be controlled evolves over time as desired.

2.7 Review Questions

1. What are the fundamental laws of physics that are useful for connecting
components in mechanical and electrical systems?

2. Why is the mathematical model in Example 2.16 given by a single first-order
differential equation, whereas the mathematical model in Example 2.7 is given
by two second-order differential equations? Notice that there are three bodies
in Example 2.16 and two bodies are involved in Example 2.7.
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. Why is the term corresponding to 64, i.e., the position term, absent in the

mathematical model in (2.118)?

. Why are first-order differential equations the mathematical models of RL and

RC circuits, whereas the mathematical model of a RLC circuit is a second-
order differential equation?

. It is often said that an inductor (and in general any electric circuit that is long

enough) has properties that are analogous to the properties of momentum in
mechanical systems. Can you explain what this statement refers to? Have you
observed that a spark appears when a highly inductive circuit is disconnected?
Do you remember what Newton’s First Law states?

It has been shown that k, = k,, in a permanent magnet brushed DC motor. On
the other hand, it is clear that the electrical subsystem must deliver energy to
the mechanical subsystem to render motion possible. Can you give an example
of a situation in a DC motor where the mechanical subsystem delivers energy
to the electrical subsystem? What is the role of the fact that k, = k, in this
case?

It has been shown that a gear box is the mechanical analog of an electric
transformer. Can you list the relationship between electric currents and voltages
at both windings of an electric transformer? Is it possible to establish some
similar relationship between velocities and torques on both sides of a gear box?
Can you list the advantages, disadvantages, and applications of these features
in gear boxes and electric transformers?

According to the previous question, why does an automobile run slower when
climbing a hill, but it runs faster on flat surfaces?

If an electric transformer can increase voltage just by choosing a suitable rate
ny/ny, why are transistor-based electronic circuits employed to amplify signals
in communication systems instead of electric transformers?

If the power is the same at both ports in electric transformers and gear boxes,
where are the power losses?

2.8 Exercises

1.

Consider the mass-spring-damper system shown in Fig. 2.6a which was studied
in Example 2.2. Suppose that this mechanism is rotated clockwise 90°. This
means that, now, the effect of gravity appears to be on the direction in which
both the spring and the damper move, i.e., it can be assumed that the mass
hangs from the roof through a spring and a damper. Show that the corresponding
mathematical model is given as:

., b. K 1
Yt —=y+ —y=—F(),
m m m

where y = x — xo with xo = mg/K and g the gravity constant. What does this
mean?
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Fig. 2.38 Electric circuit of

R R
Exercise 5
\/ = \/

’Ul v ’U2

=

2. Consider the mechanical system in Example 2.17. Assume that an external
disturbance torque 7, (¢) is applied to the body on the right. Also assume that
the body at the left is the rotor of a permanent magnet brushed DC motor, i.e.,
that the applied torque 7 (¢) is torque generated by this electric motor, as in
Example 2.20. Find the mathematical model from the voltage applied at the
motor terminals to the position of the body on the right. Compare with the
mathematical model in (10.9) and (10.10), chapter 10.

3. Perform on (2.140), (2.141), the algebraic operations suggested in the last
paragraph of Example 2.20.

4. Perform the algebraic operations referred to in the previous exercise on the
mathematical model obtained in Exercise 2 in this section.

5. Consider the electric circuit shown in Fig. 2.38. Show that voltage v is given as:

1
v = E(Ul — ).

6. Consider the electric circuits shown in Fig.2.39. Show that the mathematical
models are given as:
For the circuit in Fig. 2.39a:

. R R
vy + Zvo = Zvi.

For the circuit in Fig. 2.39b:

1
R s+ xcE R
N = % S OR ——c(0),
1T R8s+ ®Fmc 1T RS+ mEmC
(2.146)

where v (0) is the initial voltage at the capacitor.
For the circuit in Fig. 2.39¢:

. R . 1 1
vo + Zvo + Rvo = EU:’-
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Fig. 2.39 Some electric circuits

Fig. 2.40 Electric diagram of
a DC-to-DC buck power
converter . (a) Converter
construction using a transistor
and a diode. (b) Ideal circuit
of the converter

For the circuit in Fig. 2.39d:

vo + %ﬁo t o= Zl')i-

7. An analog DC voltmeter is basically a permanent magnet brushed DC motor
with a spring fixed between the rotor and a point at the stator. This means that
such a DC motor is constrained to rotate no more than 180°. Based on this
description, find the mathematical model of an analog DC voltmeter.

8. Consider the system shown in Fig.2.40, which represents a DC-to-DC buck
power converter. This converter is also known as step-down converter, because
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the DC output voltage v is less than or equal to the supplied voltage E, i.e.,
v < E. Show that the mathematical model is given as:

di
L_
dt
dv
dt

=] - —,

—v+ukE,

(2.147)

where i, v stand for electric current through the inductor L and voltage at the
terminals of capacitor C respectively. Constant E is the voltage of the power
supply and R is the load resistance. Finally, u stands for the switch position,
which is the control variable, taking only two discrete values: O or 1.
9. A buck power converter DC motor system, is shown in Fig.2.41. It represents
a suitable way of supplying power to a permanent magnet brushed DC motor.
Given the following mathematical model for a permanent magnet brushed DC

motor:
di
Lo—= = v — Ryiy — kew,
dt
s Q L LR,
: L} :
o T D ° h w :
E= A v—C R |
Buck Converter DC Motor
(a)
u=1 L ¥ Lq R,
. o s A :
5 ! + i“i 5 |
[ o " w |
B = [ v=="C § Ri: !
: S _ H !
Buck Converter DC Motor
(b)

Fig. 2.41 Electric diagram of the buck power converter-DC Motor system. (a) Construction of the
buck power converter DC motor system using a transistor and a diode. (b) Ideal representation of
the buck power converter DC motor system
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dw .
JE = ki, — Bw,

show that the complete mathematical model of the system Buck power
converter-DC Motor, ideally represented in Fig. 2.41b, is given as:

di
dt
dv
dr
di,
“dr
s
dt

=—v+ Eu,

:i_ia_ s

RS

=v— Rji; — kew,

= kpiqa — Bo,

where:

i is the electric current through the Buck power converter inductor.

v is the converter output voltage, which also is the voltage applied at the
motor terminals.

u stands for the switch position, i.e., the control variable, taking only two
discrete values O or 1.

L represents the converter inductance.

C represents the converter capacitance.

E is the DC power supply voltage.

R is the converter load resistance.

i, stands for the electric current through the DC motor.

o stands for the angular velocity of the DC motor.

L, represents the armature inductance of the DC motor.

R, represents the armature resistance of the DC motor.

J is the inertia of the DC motor.

k. 1s the counter-electromotive force constant.

k,, is the torque constant.

B stands for the viscous friction coefficient.

Consider the series RLC circuit in Example 2.12, whose mathematical model
is given in (2.53). The energy stored in the circuit is given as the magnetic
energy stored in the inductor plus the electric energy stored in the capacitor,
ie., E = %Li2 + %qz. Show that E = iv; — Ri%. What does each term of this
expression mean?

Consider the inertia-spring-damper system in Example 2.5 whose mathematical
model is given in (2.32). The energy stored in the system is given as the kinetic
energy plus the potential energy in the spring, i.e., E = %192 + %K@z. Show

that E = T@ — bH2. What does each one of the terms in this expression mean?
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12. Consider the mathematical model in (2.140), (2.141), for the -electro-
mechanical system in Example 2.20. The energy stored in this system is given
as the magnetic energy stored in the armature inductor plus the kinetic energy
of the mechanism. Is it possible to proceed as in the two previous examples to

find a similar expression for ‘2—?? What does each one of terms appearing in

% mean? Can the reader identify the terms representing the energy exchange

between the electrical and the mechanical subsystems?
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Chapter 3 )
Ordinary Linear Differential Equations ke

The automatic control techniques employed in classical control require knowledge
of the mathematical model of the physical system to be controlled. As has been
shown in Chap. 2, these mathematical models are differential equations. The
controller is designed as another differential equation that must be connected in
closed-loop to the system to be controlled. This results in another differential
equation representing the closed-loop control system. This differential equation
is forced by the controller to possess the mathematical properties that ensure that
its solution evolves as desired. This means that the controlled variable evolves as
desired. Hence, it is important to know the properties of a differential equation
determining how its solution behaves in time. Although several different approaches
exist to solve differential equations, the use of the Laplace transform is the preferred
method in classical control. This is the reason why the Laplace transform method
is employed in this chapter, to study linear ordinary differential equations with
constant coefficients.

Let f () be a function of time, the Laplace transform of f(¢) is represented by
F(s) and is computed as [2], pp. 185, [3], pp. 285:

F@)=£uvn=i4 Fedr. 3.1

The fundamental property of the Laplace transform employed to solve linear
ordinary differential equations with constant coefficients is the following [2],
pp- 192, [3], pp. 293:

d"f()
L ———L 1t =
{ dt"
S"F(s) =" fO) =" 2P O) = =520 - £V, G2)
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where the exponent in parenthesis indicates the order of the derivative with respect
to time. The following property is also useful [2], pp. 193,[3], pp. 293:

t
E{/ f(t)dr} _Fe) (3.3)
0 N

Other important properties of the Laplace transform are the final value theorem [1],
pp- 25, [3], pp. 304:

Jlim (1) = lim sF(s). (3.4)

which is only valid if the indicated limits exist, and the initial value theorem [3],
pp. 304:

FOY) = lim £(t) = lim sF(s). (3.5)
1—0t §— 00

3.1 First-Order Differential Equation

Consider the following linear, ordinary, first-order, differential equation with con-
stant coefficients:

yt+ay=ku, y(@O0)=yo, (3.6)

where k and a are real constants, yg is a real constant known as the initial condition
or initial value of y(¢) and y = %. The solution of this differential equation is
a function of time y(z), which satisfies (3.6) when replaced. With this aim, it is
required that constants a, k, yo, and the function of time u be known. Use of (3.2)

in (3.6) yields:
sY(s)—yo+a¥Y(s)=kU(s). 3.7

Solving for Y (s):

k
Y(s) = mU(S) + Yo- (3.8)

s+a

As stated above, to continue, it is necessary to know u as a function of time. Assume
that:

u==A, U(s) = ?, (3.9)
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where A is a constant. Hence, (3.8) can be written as:

kA
_I_

Y(s) = s(s+a) s+a

Y. (3.10)

According to the partial fraction expansion method [2], Ch. 4, [3], pp. 319, ifa # O,
then it is possible to write:

kA _ B +C (3.11)
s(s+a) s+a s’ ’

where B and C are constants to be computed. The value of B can be computed,
multiplying both sides of (3.11) by the factor (s+a) and then evaluating the resulting
expressions at s = —a:

kA (s +a) B (s+a) + C( +a)
s+a = s+a —(s+a ,
s(s +a) s=——a s+a S——a s s=—a
ie.,
kA kA
p= | __HM (3.12)
s S=—a a

The value of C is computed multiplying both sides of (3.11) by the factor s and then
evaluating the resulting expressions at s = 0:

kA B C
S = S —S 3
S(S + a) s=0 s+a s=0 S |s=0
i.e.,
kA kA
C = = . 3.13)
S+ al;—g a
Replacing (3.11), (3.12), (3.13) in (3.10) yields:
kA 1 kA1
Y(s) = — -2 AL (3.14)
a s+a a s s +a
From tabulated Laplace transform formulas [4], Ch. 32, it is known that:
pi 1
L{e’'} = ——, (3.15)
s—p

where B is any real constant. Using (3.15) it is found that the inverse Laplace
transform of (3.14) is given as:
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kA kA
y(t) = ——e ¥ + — + yoe (3.16)
a a

which is the solution of (3.6).

Example 3.1 To verify that (3.16) is the solution of (3.6) proceed as follows. First,
compute the first time derivative of y(t) = —%Ae"” + % + yoe ™%, ie.,

y(t) = kAe " — aype ™,
and replace y(¢) and y(¢) in (3.6) to obtain:

kA kA
y() +ay(t) = kAe ™ —aype ™ 4+ a <——e_a’ +—+ yoe_“’) =kA = ku,
a a

because u = A has been defined in (3.9). This means that the expression for y(¢)
given in (3.16) satisfies (3.6); thus, it has been verified that (3.16) is the solution
of (3.6). This procedure must be followed to verify the solution of any differential
equation.

The solution given in (3.16) can be decomposed into two parts:

y() = ya(t) + yr (@), (3.17)

n(t) = <—%A + yo> e, (3.18)
kA

yr(t) = — (3.19)

where y,(t) and yr(t) are called the natural response and the forced response
respectively. The forced response y(f) receives this name because it is caused by
the presence of the function of time u«. On the other hand, the natural response y, ()
receives this name because it is produced by the structure (i.e., the nature) of the
differential equation, i.e., by terms y + ay on the left hand of (3.6). Let us explain
this in more detail. Follow the solution procedure presented above, but assume for
a moment that yp = 0. The partial fraction expansion presented in (3.11) and the
subsequent application of the inverse Laplace transform show that y(z) is given as

the sum of several functions of time that result from the fractions % and Y%ﬂ Notice

that the presence of % in (3.11) is due to the fact that U(s) = % appears in (3.10),
which is because © = A where A is a constant. Notice that the forced response

y£(t) is a constant resulting from the term %% in (3.14), i.e., it arises from fraction
%. This corroborates that y ¢(¢) only depends on the function of time u.
On the other hand, fraction ﬁ is due to terms y + ay as L{y + ay} =

(s +a)Y (s). According to (3.15), the consequence of this fraction is function e =%/,
which constitutes the natural response y, (¢). This corroborates that y, () is only
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determined by the differential equation structure (i.e., its nature). One important
consequence of this fact is that y, (¢) is always given by the function e ™% no matter
what the value of u is. The reader can review the procedure presented above to
solve this differential equation, thereby realizing that the initial condition yy always
appears as a part of the natural response y, (¢).

In control systems, y and u are known as the output and the input respectively.
The polynomial resulting from the application of the Laplace transform in the
differential equation, i.e., s + a, which arises from L£{y + ay} = (s + a)Y (s),
is known as the characteristic polynomial. The solution in (3.16), or equivalently
in (3.17), can evolve according to one of the following cases.

1. If a > 0, i.e., if the only root of the characteristic polynomial s = —a is real and
negative, then lim; ., oo ¥, () = 0 and lim, . o y(¢) = Y7 ().
2. Ifa < 0, i.e., if the only root of the characteristic polynomial s = —a is positive,

then y, (¢) and y(¢) grow without limit as time increases.

3. The case when a = 0, i.e., when the only root of the characteristic polynomial
is zero s = 0, cannot be studied from results that have been obtained so far and
it is studied as a special case in the next section. However, to include all the
cases, let us talk about what is to be found in the next section. When the only
root of the characteristic polynomial is at s = —a = 0, the natural response is
constant y, () = yo, V¢ > 0 and the forced response is the integral of the input
yr(t) =k [y u(t)dt.

3.1.1 Graphical Study of the Solution

According to the previous section, if @ > 0, then the natural response goes to zero
over time: lim,_, o ¥, (f) = 0; hence, when time is large enough the solution of the
differential equation is equal to the forced response: lim;. o y(t) = ys(t) = /%.
This means that the faster the natural response yj, (¢) tends toward zero (which occurs
as a > 0 is larger), the faster the complete solution y(#) reaches the forced response
v (t). Hence, the natural response can be seen as a means of transport, allowing the
complete solution y(#) to go from the initial value y(0) = yy to the forced response
v7(t). Existence of such a means of transport is justified recalling that the solution
of the differential equation in (3.6), i.e., y(¢), is a continuous function of time. This
means that the solution cannot go from y(¢) = yo to y(t) = ys(t) # yo in a zero
time interval.

The graphical representation of the solution in (3.17), when yg = 0 and a > O,
ie.,

y(@) = %A (1—e™), (3.20)

is depicted in Fig.3.1. An important parameter in first-order differential equations
is time constant t, which is defined as:
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y(t) T T T T T T
kA
a
0.632 k4
@ J
0 1 1 1 1 1
0 T 2T 3T 4T 5T 6T | 7T
time
Fig. 3.1 Graphical representation of y(¢) in (3.20)
1
T=-. 3.21)
a

This is indicative of how fast the natural response vanishes, i.e., how fast y(z)
approaches the forced response yr(z). Replacing (3.21) into (3.20), it is easy to
verify that:

kA

y(1) = 0.632°— (3.22)
a

Finally, it is important to stress that y(¢) grows without a limitifa < 0. If a = 0,
then y(#) = kAt also grows without a limit (see Sect. 3.2).

3.1.2 Transfer Function
Consider a zero initial condition, i.e., yo = 0, then (3.8) can be written as:
Y(s) i Ufs)
s) = ——U(s),
s+a

or, equivalently:

Y(s) — G(s) = k
U(s) S T s+a

(3.23)
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The function G(s) is known as the transfer function of the differential equation
in (3.6). The polynomial in the denominator of G(s), i.e., s + a, is known as the
characteristic polynomial and its roots are known as the poles of G (s). In this case,
there is only one pole at s = —a. According to the discussion above, the following
can be stated with respect to y(#), i.e., the output of the transfer function G (s):

e If pole located at s = —a is negative, i.e., if @ > 0, then the natural response
vn(¢) vanishes and the complete solution y(#) approaches the forced response
kA

vy (t) as time increases. If u(t) = A is a constant, then y(t) = o

» The faster y(t) approaches yr(z), the farther to the left of the origin s = 0 is
placed the pole at s = —a. This can be quantified using the time constant T = %
A large time constant implies a slow response whereas a small time constant
implies a fast response.

e Ifk =a > 0, then it is said that the transfer function G (s) has a unitary gain in
a steady state because, according to the final value theorem (3.4), if u(t) = A is

a constant then:

A k
lim y(¢) = lim sY(s) = lim s —=—-A=A. (3.24)
t—00 s—0 s—>0 s+as a

In general, the steady-state gain of the transfer function in (3.23) is computed as
k

. Iaf the pole located at s = —a is positive , i.e., if a < 0, then the complete solution
y(¢) grows without limit. Notice that this implies that the pole is located on the
right half of the plane s (see Fig.3.2).

* The case when the pole is located at s = a = 0 cannot be studied from the
above computations and it is analyzed as a special case in the next section.
However, again to summarize all the possible cases, we present here results
that are obtained in the next section. When the pole is located at s = a = 0,
the natural response neither vanishes nor increases without limit and the forced
response is given as the integral of the input y¢(¢) = k f(; u(t)dt.

Im (s) &

—a —a Re(s)
a>0 a<0

Fig. 3.2 Location of the poles of the transfer function in (3.23). It is usual to represent a pole on

[T L)

the s plane using a cross “x
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Fig. 3.3 A water level 4

system 1—JH|

Example 3.2 Consider the tank containing water depicted in Fig. 3.3. Assume that
the tank section C is constant. Water enters the tank at a rate given by the input flow
gi (m3/s). Water leaves the tank at a rate given by the output flow ¢, (m>3/s) through
a valve with hydraulic resistance R. The water level in the tank is represented
by h. The mathematical model describing this system is obtained using the mass
conservation law. As water is not compressible, this law can be stated in terms of
mass or volume.

Let AV; and AV, be the water volumes entering and leaving the tank respectively
during a time interval A¢. During this time interval, the water volume AV increases
inside the tank at a rate given as:

AV AV, AV,

At At At (3.25)
On the other hand:
AV = CAh,
AVi = q;At,
AV, = g, At.

Replacing this in (3.25) and considering small increments of time such that At —
dt and Ah — dh:

dh
Cor =4 — 4o (3.26)

Assuming that the water flow is laminar through the output valve [1], pp. 155, then:

o= —. 3.27
q R (3.27)

To understand the reason for this expression, consider the following situations.
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a) Suppose that the opening of the output valve is kept without change, i.e., R
remains constant, and the water level & increases. Everyday experience and the
expression in (3.27) corroborate that the output flow g, increases under this
situation.

b) Suppose that the water level % is kept constant, because there is water entering
the tank to exactly compensate for water leaving the tank. Then, slowly close
the output valve, i.e., slowly increase R. Everyday experience and the expression
in (3.27) corroborate that the output flow g, decreases in this situation.

Substituting (3.27) in (3.26), it is found that:

dh  h

a TR
Hence, the mathematical model of the water level system depicted in Fig.3.3 is
given as:

Dividing by C, the following linear, ordinary, first-order differential equation with
constant coefficients is finally obtained:

a=—, k=—. (3.28)

The reason why this differential equation is the mathematical model of the water
level system is because, solving it, the evolution over time of the water level A(z)
can be known if the input flow g; (), the tank section C, the hydraulic resistance R,
and the initial water level are known.

Example 3.3 Consider the water level system depicted in Fig. 3.3. It was found in
Example 3.2 that the mathematical model is given as:

dh
Z + ah = kql',
1 1
a=——>0, k=—. (3.29)
RC C

This differential equation can be written as in (3.6) if it is assumed that y = &,
u = g; and yg = ho. Hence, if g; = A, the solution A (¢) is similar to that in (3.16),
ie.,:

kA kA
h(t) = ——e " + — + hoe ™™,  ho = h(0). (3.30)
a a

Let us analyze (3.30).
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1. Assume that the tank is initially empty, i.e., ho = 0, and water enters the tank
with a constant rate ¢; = A > 0. Under these conditions, the water level A (r)
evolves as depicted in Fig. 3.1 by assuming that 4(#) = y(¢). Notice that a =
% > 0. From this figure, the solution in (3.30), and using everyday experience,

several cases can be studied.

e If Aischosen to be larger, then the final water level lim;_, o, £(¢) = kA — RA

is also larger. ’

 If the output valve is slowly closed, i.e., R is slowly increased, then the final
water level lim;_, o 2(¢) = ka—A = RA slowly increases.

¢ The tank cross-section has no effect on the final water level, i.e., the final water
level is the same in a thin tank and a thick tank.

e If the product RC is larger, then a is smaller; hence, the system response is
slower, i.e., more time is required for the level to reach the value h(r) =
0.632]% = 0.632R A and, as consequence, also to reach the final water level
lim; .0 h(2) = kTA = RA. This is because the function e~%' tends toward

zero more slowly when a = % > 0 is smaller. Notice that a larger value of

RC can be obtained by increasing the tank cross-section C, or decreasing the

output valve opening, i.e., increasing R.

2. Suppose that no water is entering the tank, i.e., g;(f) = A = 0, and the initial
water level is not zero, i.e., hg > 0. From the solution in (3.30), and everyday
experience can verify it, the water level decreases (recall that a = % > 0) until
the tank is empty, i.e., lim;_, » 2(#) = O (see Fig. 3.4). This behavior is faster as
RC is smaller, i.e., when a is larger, and slower as RC is larger, i.e., when a is
smaller.

time

Fig. 3.4 Water level evolution when 49 > O and g; (1) = A = 0 (R1C| < R2C»)



3.2 An Integrator 97

3. The case when a < 0 is not possible in an open-loop water level system because
C and R cannot be negative. However, a < 0 may occur in closed-loop systems
as a consequence of the interconnection of diverse components.

4. The case when a = 0 is studied in the next section.

3.2  An Integrator

Consider the following differential equation:
y = ku, (3.31)

where k is a real constant different from zero. Notice that this equation is obtained
as a particular case of (3.6) when a = 0. By direct integration:

y(®) t
/ dy = / ku dt,
y(0) 0

t

y() = k/ u(r) dt + y(0), (3.32)
0

y(O) = ya(t) +yr @),

t
(0 = y(0), yfm:kfo w() dr.

In this case, y,(¢) remains constant in time. Notice that, if u = A is a constant,
the forced response increases without a limit ys(#) = kAt. The solution y(¢) =
v(0) + kAt is depicted in Fig. 3.5 for a) y(0) % O and u = A > 0 a constant, and
b) y(0) # 0 and u = A = 0. Physical systems represented by this class of equation
are called integrators because, if y(0) = 0, the solution y(¢) is the integral of the
excitation u.

Example 3.4 Consider the water level system depicted in Fig.3.3. Suppose that
the output valve is closed, i.e., R — o0o. Then, the mathematical model in (3.28)
becomes:

dh L
dr qi,
because a = Rl_c — 0 when R — o0. Then, the level evolution over time is

described by (3.32), i.e.,:

t
h(t) = h(0) +kf qi(t) dt.
0
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Fig. 3.5 Solution of y(t)
differential equation in (3.31)
.@yy#0andu=A>0is
a constant. (b) yo # 0 and
u=A=0

0 time

y(t)

Yo

0 time

(b)

Hence, the water level system behaves in this case as an integrator. If g; = A > 0,
then:

h(t) = h(0) + kAt. (3.33)

Figure 3.5 can be employed, assuming h(t) = y(¢) and g;(¢) = u, to graphically
depict the solution in (3.33) for the cases i) 2(0) > 0 and g; = A > 0 is a constant,
and ii) h(0) > 0 and g; = A = 0. Notice that the water level remains constant if no
water enters the tank, i.e., when A = 0, and the level increases without a limit when
A > 0 is constant. The reader can resort to everyday experience to verify that these
two situations actually occur in a practical water level system.
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Example 3.5 The differential equation in (3.31) can also be solved using partial
fraction expansion, i.e., using the method employed in Sect. 3.1. From (3.2)
and (3.31) it is found that:

sY(s) —yo =k U(s).

Solving for Y (s) yields:
k 1
Y(s) = ;U(s) + Eyo. (3.34)
Assume that:
A
u==A, U(s) = —,
s

where A is a constant. Hence, (3.34) can now be written as:

kA 1
Y(s) =5 + . (3.35)

According to the partial fraction expansion method [2], Ch. 4, [3], Ch. 7, it must be
written:

B C
— = —+ =, (3.36)

where B and C are two constants. C is computed multiplying both sides of (3.36)
by s and evaluating at s = 0, i.e.,:

C
_2S2
s

s=0

Hence, C = kA is found. B is computed multiplying both sides of (3.36) by s2,
differentiating once with respect to s and evaluating at s = 0:

d [ kA d (B, d[(C,
— s = — | —s + — | 55
ds s2 )li—g ds \'s o ds \s?

Hence, B = 0 is found. Thus, using these values and (3.36), the expression in (3.35)
can be written as:

s=0

kA 1
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From tabulated formulas, [4], Ch. 32, it is well known that:
1
Lt} = - (3.38)
s

Using (3.38), it is found that the inverse Laplace transform of (3.37) is given as:
y(1) = kAt + yo, (3.39)

which is the solution of (3.31). This solution can be decomposed into two parts:

(&) =y () + yr (@), (3.40)
yu(®) = Yo,
¥/ (1) = kAt,

where y,(t) and y((¢) are the natural and the forced responses respectively. As
explained Sect. 3.1, the natural response is given by the Laplace transform of term
y on the left-hand side of (3.31). As a consequence of this, the term % Yo appears
in (3.37),i.e., y,(t) = yo in (3.40). The forced response y s (¢) is produced by u = A.
However, in this case, the forced response also receives the effect of the Laplace
transform of the term y on the left-hand side of (3.31), as the combination of both
of them results in kr? and, hence, yr(t) = kAt.

The characteristic polynomial of the differential equation in (3.31) is s; hence, it
only has one root at s = 0. Thus, the corresponding transfer function G(s), when
yo = 0:

Y(s) _
U@s)

G(s) = ];‘ (3.41)

only has one pole at s = 0. Notice that the input U (s) = % also has one pole at s =
0. The combination of these repeated poles in (3.35) produces the forced response
yr(t) = kAt, i.e., a first-degree polynomial of time, whereas the input u = Aisa
zero-degree polynomial of time. Notice that the forced response corresponding to
the differential equation in (3.6) is y (1) = %, i.e., a zero-degree polynomial of
time, whereas the inputis u = A, i.e., a zero-degree polynomial of time. From these
examples we arrive at the following important conclusion:

“The forced response of a first-order differential equation with a constant input,
is also a constant if its characteristic polynomial has no root at s = 0.”

In Fig. 3.2 the location, on the s plane of the pole of the transfer function in (3.41)
is depicted, i.e., the pole at s = 0. The reader must learn to relate the pole location
on the s plane to the corresponding time response y(f). See the cases listed before
Example 3.2.

Example 3.6 Consider the electric circuit depicted in Fig.3.6. According to the
Example 2.9, the mathematical model of this circuit is given as:
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Fig. 3.6 A series RC circuit C

v () ity | R § vy (t)

. 1 .
vy + R—Cvo = ;.

Suppose that v;(¢) is a step signal with amplitude A, i.e., Vi(s) = %. The
solution vg(¢) can be found to proceed as follows. Using the Laplace transform
in the previous expression:

1
Vo(s) (S + E) = sVi(s) — vi(0) + vo(0),

S Vi) + vo(0) — :)5(0).

1
+ ®e S+ wre

Vo(s) =

Replacing V;(s) = % and using the inverse Laplace transform:

?+ vo(0) —v; (0)

Vo(s) = i >
RC s+ %e
A n v0(0) — v; (0)

s +

Vo(s) =

’

s + % s + R_lc
w0(t) = (A + vp(0) — vi (0))e 7e”.
Applying KVL at t = 0, we have:
v; (0) = v9(0) + v (0),

where v, (0) represents the initial voltage at the capacitor. Then, we have:

vo(t) = (A — vC(O))e_ﬁ’. (3.42)
In Fig.3.7 this time response, when v;(¢) is the square wave represented by the
dashed line and the time constant is RC = 0.1[s], is represented. At t = 0 we have

v.(0) =0and A = 1. Thus:

vo(t) = Ae 19", (3.43)
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151

0.5+

Amplitude [V]
o

time [s]

Fig. 3.7 Time response of the circuit in Fig. 3.6. Continuous: vy (¢). Dashed: v; (¢)

This response is observed between t = 0 and r = 1[s]. Notice that vp(0) = A =
1[V] is correctly predicted by (3.43). Also notice that + = 1[s] represents ten times
the time constant, i.e., RC = 0.1[s]. Hence, vo(¢) is very close to zero at r = 1[s].
Applying the KVL att = 11 = 1[s]:

v; (1) = vo(t1) + ve(t1),
ve(t)) = A =1[V], (3.44)

as v;(t1) = A = 1[V] and vy(#;) = 0.

On the other hand, from ¢t = #; = 1[s] to t = 2[s] we have that A = —1. Note
that (3.42) is still valid in this time interval if ¥ = ¢t — #; is redefined and (3.42) is
rewritten as:

vo(t — 11) = (A — ve(ty))e R =)

vo(t — 1) = —2e~100—1) (3.45)

as ve(t1) = 1[V] (see (3.44)) and A = —1[V] at ¢t = #1[s]. In Fig. 3.7, it is observed
that v = —2[V], att = #1, is correctly predicted by (3.45). Also notice that, again,
the time interval length 1[s] represents ten times the time constant, i.e., RC = 0.1[s].
Hence, vg(r — t1) is very close to zero at ¢t = 2[s]. The above procedure can be
repeated to explain the results in Fig. 3.7 for any 0 < ¢ < 10.

Figure 3.7 has been obtained using the MATLAB/Simulink diagram presented in
Fig.3.8. The signal generator block is programmed to have a square wave form,
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[ ]

Scope
oooo S
co > gl
InputOutput

Signal Gain Transfer Fcn
Generator To Workspace

Fig. 3.8 MATLAB/Simulink diagram for the circuit in Fig. 3.6

unit amplitude, and 0.5[Hz] as the frequency. The negative unitary gain block is
included because the signal delivered by the signal generator block starts with a
negative semicircle. Once the simulation stops, the following MATLAB code is
executed in an m-file to draw Fig. 3.7:

nn=length (InputOutput (:,1)) ;
n=nn-1;

Ts=10/n;

t=0:Ts:10;

plot (t, InputOutput (:,1)

,"k--',t,InputOutput(:,2),'k-")
axis([-0.5 10 -2.5 2.5])

Notice that the transfer function of the circuit in Fig. 3.6 is:

Vo(s) K
=G(s) = , 3.46
Vi(s) (<) s+ w6 ( )

when vp(0) = 0 and v;(0) = 0, or equivalently, when v.(0) = 0. Although this
is a first-order transfer function, the main difference with respect to the transfer
function defined in (3.23) is that a first-order polynomial appears at the numerator
of G(s) = H_S ——. It is concluded from Figs. 3.1 and 3.7 that the polynomial at the

RC
numerator of a transfer function affects time response too, despite the stability not

being affected by the numerator of a transfer function.
In this respect, we can use (3.46), the initial value theorem in (3.5), and V;(s) =
% to find:

w001 = 1im vo(r) = lim sVp(s),
t—0t §—>00

. K A
= lim s ——=A
§—00 S+Ws

The roots of the polynomial at the numerator of a transfer function are called the
transfer function zeros. Thus, it is concluded that the discontinuity in the time
response, when a step input is applied, is due to the fact that the transfer function has
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Fig. 3.9 Phase-lead network R,

() () C g ou)

the same number of poles and zeros. In the next example, it is shown that a different
location of a zero of a transfer function has different effects on the time response.

Example 3.7 Consider the electric circuit shown in Fig.3.9. This circuit is also
known as a phase-lead network. The mathematical model of this circuit was
obtained in (2.49) and it is rewritten here for ease of reference:

b (0 1 1 R +R
R S e e ¥
sTa sTd 1 1R

where v.(0) represents the initial voltage at the capacitor and a > b > 0. The
solution vy (#) is computed in the following. Substituting v; () = A, i.e., Vi(s) = %:

(s+bA  v:(0)

Vi = — . 3.47
o) s(s+a) s+a ( )
As a # 0, the partial fraction expansion results in:
b)A B C
s+hA _ B . (3.48)
s(s + a) s s+a
Constant B is computed as:
(s+Db)A B C
§—— = 5— + s ,
s(s +a) s=0 S ls=0 s+al=o
bA
B=—. (3.49)
a
Constant C is computed as:
s+Db)A B
(S+a)¥ =(+a)— + G +a) ,
S(S + a) S=—a S=—a S + a S=—a
b—a)A
c=Lz04 (3.50)

—da
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1.5

0 05 1 156 2 25 3 35 4 45 5

Fig. 3.10 Time response of the circuit in Fig. 3.9. Continuous: vy(¢). Dashed: v; (¢)

Replacing (3.48), (3.49), (3.50), in (3.47), it is found that:

Al — .
Vols) = bA 1 n b—-—a)A 1 v (0)
as

—a s+a s+a

Hence, using the inverse Laplace transform:

vo(t) = —
a

bA L ((b —a)A
—a

- vc(0)> e, (3.51)

This time response is depicted in Fig.3.10 when v;(¢) is the square wave shown
with a dashed line, » = 5,a = 10 and v.(0) = 0. Att =0, A = 1[V]. Then, (3.51)
becomes:

—_

1 —10¢
==+~ .
vo (1) 2+ e

[\

Thus, vg(0) = 1[V] and vy (t;) ~ %[V], for t; = 1[s], are correctly predicted. Notice
that a time interval of 1[s], between t = 0 and ¢t = ¢, is ten times the time constant
of % = 0.1[s]; hence, %6_10’ ~ 0 when t = t; = 1[s]. On the other hand, applying
the KVL to the circuit in Fig. 3.9 it is found that;

v; (11) = ve(11) + vo(t1),



106 3 Ordinary Linear Differential Equations

W) =A=1, wl)=—2 4,
Ri+ R
1 R
ve(t) = vi(t) —vo(ty) = 3= Rtk

Att =11 = 1[s], v;(t) changes to A = —1. If r =t — 11 is redefined, (3.51) is still
valid if it is rewritten as:

bA (b—a)A

vo(t—t1)=7+ —_—

-1 (= Ry —10(—t
r—t = — _— 1)7
o v 2 +<2 R]+Rz>e

- vc(n)) ema=1),

—da

-1
vt —1) = 5 e 10—,

since R]Ij-le = % Thus, Fig. 3.10 corroborates that vy(t;) = —1.5[V], 1 = 1[s],

and vy ~ —%[V] at t = 2[s], because —e~10U—1) ~ ( at t = 2[s], are correctly
predicted again.

Figure 3.10 has been obtained using the MATLAB/Simulink simulation diagram
presented in Fig. 3.11. The signal generator block is programmed to have a square
wave form, unit amplitude, and 0.5[Hz] as the frequency. The negative, unit gain
block is included because the signal delivered by the signal generator block starts
with a negative semicircle. Once the simulation stops, the following MATLAB code
is executed in an m-file to draw Fig. 3.10:

nn=1length (InputOutput (:,1)) ;

n=nn-1;

Ts=5/n;

t=0:Ts:5;

plot (t, InputOutput (:,1),'k--’,t, InputOutput(:,2),'k-")
axis([-0.25 5 -2 2])

Notice that the transfer function of the circuit in Fig. 3.9, given as:

>
Scope
0000 — | S L
00 s+10
; InputOutput
Signall Gain Transfer Fcn P P
Generator To Workspace

Fig. 3.11 MATLAB/Simulink simulation diagram for circuit in Fig. 3.9
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Vo(s) —G(s) = s +b’
Vi(s) s+a

(3.52)

when v.(0) = 0, has a zero at s = —b < 0, whereas the transfer function of the
circuit in Fig. 3.6 has a zero at s = 0. The main difference produced by this fact is
that the time response of the circuit in Fig. 3.6 reaches a zero value in a steady state
whereas the steady-state response of the circuit in Fig. 3.9 is given as SA # 0.

Finally, we can use (3.52), the initial value theorem in (3.5), and V;(s) = % to
find:

vo(0) = lim wvo(r) = lim sVp(s),
t—0t §—>00

I
=
=
©
I
Il

Thus, it is concluded again that the discontinuity in time response when a step input
is applied is due to the fact that the transfer function has the same number of poles
and zeros.

3.3 Second-Order Differential Equation

Consider the following linear ordinary second-order differential equation with
constant coefficients:

§ 4+ 20wy + 02y = kotu, y(©0) =y, 30)= 7o, (3.53)

where w, > 0 and k are real nonzero constants. Assume that ©u = A is a real
constant. Using (3.2) and U (s) = A/s, the following can be written:

s2Y () — 550 — Yo + 2L wn (sY () — yo) + w2 Y (5) = kw2 U (s),
to obtain:

w; A Yo(s + 2L wn) + Yo
(524 2Cwps + w2)s 52+ 2L wps + @)

Y(s) =k (3.54)

First, suppose that all of the initial conditions are zero yg = 0, yg = 0. Then:

2
A w;

Y(s)=k .
) (s2 4+ 2¢wus + a),%)s
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Also, suppose that 0 < ¢ < 1 is a real constant, then:

5%+ 2L wps + w2 = (s — a)(s — a), (3.55)

a=0+jwg, a=0— jwg, j=\/—_1,
wg =wpy/1 =020, 0=—lw, <O0.
Notice that:
>+ 20 wns + ) = (s — [0 + joa))(s — [0 — jog]) = (s — 0)* + wj.

According to the partial fraction expansion method [2], Ch. 4, [3], Ch. 7, in this case
the following can be written:

Aw? Aw? Bs +C D
O R e S——' O o S8HC 42
(8% 4+ 2L wys + w3)s [((s—0)Y+wils (—0)+w; s

(3.56)

where B, C, and D are constants to be computed. The inverse Laplace transform
of (3.56) is given as:

—CLwpt
NS
NI
—C .

y(t) = kA |:1 — sin (wgt + ¢):| , (3.57)

¢ = arctan

This expression constitutes the solution of (3.53) when all of the initial conditions
are zero, i.e., when yg = 0, yg = 0. The detailed procedure to find (3.57) from (3.56)
is presented in the following. Readers who are not interested in these technical
details may continue from (3.62) onward.

Multiplying both sides of (3.56) by the factor (s — 0')*> + 3 and evaluating at
s = a (see (3.59)) yields:

Aw? Bs+C
k n 22 _ PN SN
[(s —0)? +w§]s[(s oyt el (s — )2 +w§[(s oy el

S=a sS=a

I
sS=a

D
+ =l - 0)? + w3

to obtain:
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Aa),% .
k————— = B(o + jwg) + C.
o+ Jwg

Multiplying the left-hand term by (6 — jwg) /(0 — jwg):

kA2 7 ]wj) = Bo + C + jBowq.
02+ ]
Equating the imaginary parts:
kAw?
B=—-—"7">. (3.58)
o2+ wy
Equating the real parts:
kAa),%o
Bo+C=——-.
o2+ w;
Replacing (3.58):
2kAw?
=" (3.59)
o2+ w;

Using (3.58) and (3.59), the following can be written:

kAw? 2kAwio
Bs+C ol T
2 2 ’
(s —0)? + (s —0)? +
2 2
kAw; (s —o0) kAw;o 1

(@240 [ — 02+ @3] (02 +wd) [(s — o)+ 3]

Using the tabulated Laplace transform pairs [4], Ch. 32:

E_I{L} = e’ cos(wgt),
(s —o0)2 + wﬁ

E_I{L} = ¢! sin(wgt),
(s —0)?2 + o]

the following is obtained:

ot
1o e’’ sin(wgt),

= { Bs+C }_ kAw? kAw?o
R w; a)d((72+a)§)

" _e% cos(wgt) +
(s —0)2+ a)ﬁ
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o/wy

CA B
cO
)
(b)
Fig. 3.12 Some important relations for the procedure in Sect. 3.3
kAw? o
= —”2e‘”[— cos(wgt) + — sin(wgt)],
o+ w; wy
kAw? . . o\’
= ——¢ [sin B cos(wgt) + cos B sin(wat)], [ — ) + 1.
o+ w; w4

Notice that some relations in Fig. 3.12a have been employed in the last step. On the
other hand, it is possible to continue writing:

sin B cos(wgt) + cos B sin(wgt) = %[sin(ﬁ — wgt) + sin(B + wgt)] +

1
+3lsin(@at = B) + sin(wat + )1,

= sin(wqt + B),

because sin(—x) = — sin(x). Hence:
o 2 1
- +
Bs +C <wd>
ﬁ_l{—}: 2Y L % sin(wgt + B).
(s—o)z—i—a)g, " 02+w§ (@at + B)
On the other hand, from Fig. 3.12a:
-1 1 —1

tan B =

ojwg (—twn)/(@ny/1 = 2?) B \/i?

1-2¢2

B = m + arctan ———,
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where signs of the adjacent and the opposite sides have been taken into account to
conclude that 8 is an angle on the third quadrant (see Fig. 3.12b). This allows the

following simplification [4], Ch. 5:

sin(wgt + B) = sin (wgt + 1 + @),
= —sin (wgqt + @),

V1=1¢2
é‘ b

¢ = arctan

and thus:

2
) 41
B o
5—1{%} — kA ZL
(s —0)* + wy

Il
|
=~
S
e
[\

Il
|
=~
S
e
[\

B C 1
r-| {L} = —kA———=¢" sin (wqt + @) ,

(s—o)z—i—a)ﬁ /1—¢2

e’ sin (wgt + @),

e’ sin (wgt + @),

e?" sin (wgt + @),

(3.60)

where 0 = —¢w, and wg; = w,+/1 — ¢ have been employed. On the other hand,
D in (3.56) is easily computed multiplying both sides of that expression by factor s

and evaluating at s = 0:

_ kA w?

-G _pa
524 2¢wys + 02

s=0

Using (3.56), (3.60) and (3.61), the following solution is found:
—Cwpt
NI

If it is assumed now that the initial conditions are not zero, then:

y() =kA |:1 — sin (wgt + ¢):| .

—Cwpt

=kA|l - —
y(@®) [ T

sin (wq? + ¢):| + p(0),

(3.61)

(3.62)
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where:

(3.63)

o) = £ {yo<s+zcwn> +y'o}

52 4 2¢wps + w?

The inverse Laplace transform defining p(f) may be computed using a similar
procedure to that presented above. Moreover, the reader should realize that p(r)
is given by a function as that in (3.60) with coefficients depending on both yy and

Yo-
The solution given in (3.57) can be decomposed into two parts:

y@) = yu () + yr@), (3.64)
—Cwpt

Yu(t) = —kAel—_gz sin (wgt + ) , (3.65)

Vr () = kA, (3.66)

where y, (¢) and y¢(¢) are the natural and the forced responses respectively. Notice
that, according to (3.56) and (3.60), the natural response in (3.65) is due only to
the characteristic polynomial s+ 2Lwps + a),zl =(s—-0)+ a)ﬁ, which results
from applying the Laplace transform to terms y + 2{w, y + a)ﬁ y. Hence, no matter
what the input u is, the natural response y, () is given as in (3.65). On the other
hand, notice that the forced response in (3.66) is due to term D/s in (3.56), which
is introduced by the constant input © = A, as U(s) = A/s. Also notice that,
according to the paragraph after (3.63), when the initial conditions are different from
zero they only affect the natural response in the sense that its coefficient depends
on the initial conditions yg and yg, but the function of time is always given as
e ¢@n! sin (wyt + @) or its time derivative. Furthermore, p(t) belongs to the natural
response when the initial conditions are different from zero.

The reader may review the procedure presented above after (3.57) to corroborate
that, in the case when —1 < ¢ < O with k > 0 and w,, > 0, the solution in (3.64) or
in (3.57) becomes:

y(@) = yu @) + yy (@), (3.67)

e—fwnf ) /1 — 4-2
yu(t) = kAﬁ sin (wdt — arctan (W)) ,

yf(t) = kA,

where abs(-) stands for the absolute value function.

Employing (3.64), when 0 < ¢ < 1, and (3.67), when —1 < ¢ < 0, it is
concluded that the solution of the differential equation in (3.53) has one of the
following behaviors:
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1. If 0 < ¢ < 1, i.e., if both roots of the characteristic polynomial located at s =
—{w, * jowg have negative real parts —¢{w, < 0, then lim;_, y,(#) = 0 and
lim; 00 y(2) = y (7).

2. If -1 < ¢ < 0, i.e, if both roots of the characteristic polynomial located at

s = —{w, * jwy have positive real parts —¢w, > 0, then y,(¢) and y(¢) grow
without a limit, describing oscillations, as time increases.
3. If ¢ =0, i.e., if both roots of the characteristic polynomial located at s = —{w, +

Jwg have zero real parts —¢w, = 0, then from (3.64) the following is obtained:

y(@) = ya(t) + yr (@), (3.68)
yu(t) = —kAcos(wt), yr(t) =kA,

when the initial conditions are zero, i.e., y,(¢) is an oscillatory function whose
amplitude neither increases nor decreases. This means that although y(¢) does
not grow without a limit, it will not reach the forced response yr(¢) in a steady
state.

4. The behavior obtained when ¢ is out of the range —1 < ¢ < 1 is studied in the
subsequent sections as the cases when the roots of the characteristic polynomial
are real and repeated or real and different.

Finally, notice that, according to the above discussion and (3.62), (3.63), the solution
of a second-order differential equation may present sustained oscillations ({ = 0)
even if the input is zero (# = 0) if the initial conditions are different from zero.
This explains the oscillations in the electronic circuits studied in Chap. 9 (see last
paragraph in Sect. 9.3.1).

3.3.1 Graphical Study of the Solution

The graphical form of solution presented in (3.64) for the differential equation
in (3.53) is studied in the following. Recall that it is assumed that 0 < ¢ < 1,
w, > 0, k > 0 and that the initial conditions are zero yg = 0, yo = 0. Notice that
the natural response tends toward zero as time increases if 0 < ¢ < 1:

—Cwyt
NS

because {w, > 0. Also recall that, in the case when the initial conditions are not
zero, the natural response also tends toward zero as time increases. Hence, when
time is large, the solution of the differential equation is equal to the forced response:

lim y,(¢) = lim <—kA sin (wgt +¢)> =0, (3.69)
—00 1—00

lim y(1) = yy (1) = kA. (3.70)
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Fig. 3.13 y(¢) in (3.64)

This means that the faster the natural response vanishes y,(¢), i.e., as {w, > 0
is larger, the faster the complete solution y(¢) reaches the forced response y(t).
As was noted for first-order differential equations, the natural response allows the
complete solution y(#) to go from the initial conditions (zero in this case) to the
forced response y s (t).

Two important parameters of the response in (3.64) are the rise time #, and
overshoot M, which are shown in Fig. 3.13. Overshoot can be measured as:

My(%) = 2221 5 100,
vy

where y; = kA stands for the forced response. Recall that it is assumed that yp =
yo = 0. Carefully analyzing (3.64), it can be shown that [1], pp. 232:

/1 _ 72
ty = L |:7r — arctan (%)} , 3.71)

wd
.
Mp(%) =100 x e vVi-¢* .

Figures 3.14 and 3.15 show how the solution in (3.64) is affected when the
parameters ¢ and w, change. Notice that overshoot M, is affected only by ¢,
whereas rise time #. is mainly affected by w,, although ¢ also has a small effect
on t.
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y(t)
2kA

kA

0 -
0 time

Fig. 3.14 The solution in (3.64) when different values for ¢ are used and w,, is kept constant

Yt ————————————————

Wp3 Wpa Wn1

kA

0 time

Fig. 3.15 The solution in (3.64) when different values of w, are used: w;2 = 2wy, Wy3 = 3wy
Parameter ¢ is kept constant

Finally, it is important to point out that, in the case when u = A = 0 but some
of the initial conditions yg or yg are different from zero, y(t) behaves as the time
function in (3.65) and is graphically represented as the oscillatory part without the
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constant component, i.e., it oscillates around y = 0, in any of the Figs. 3.13, 3.14
or 3.15. This is because of function p(¢) appearing in (3.62).

3.3.2 Transfer Function

If the initial conditions are zero yg = 0, yo = 0, then (3.54) can be written as:

Y (s) ko)
) =————-"" U,
52 + 2L wps + »?
or:
Y kw?
©) Gy = ke (3.72)
U(s) 52+ 2L wps + w2

where G (s) is the transfer function of the differential equation in (3.53). Notice that
G (s), defined in (3.72), has a second-degree characteristic polynomial, i.e., G(s)
has two poles. Hence, G (s) is a second-order transfer function. According to (3.55)
these poles are located at s = a and s = a, where:

a=0+jws, a=0— jo,.

It is important to stress that these poles are complex conjugate only under the
condition —1 < ¢ < 1. The reader can verify that these poles are real if ¢ does
not satisfy this condition. Such a case is studied in the subsequent sections.

According to the study in the previous sections, the following can be stated for
the output of the transfer function y(¢):

e If both poles have a negative real part 0 = —¢w, < 0, ie., { > 0, then
the natural response y,(¢) vanishes and the complete response y(#) reaches the
forced response y ¢ () as time increases. When the input is a constant u(t) = A,
then the forced response is yr(t) = kA.

¢ The natural response y, () vanishes faster as {w, is larger. As is depicted in
Fig.3.16, the system response remains enveloped by two exponential functions
whose vanishing rate is determined by ¢ w,,.

e The rise time ¢, decreases if w, increases. This is corroborated by observing
that, according to (3.55), if w, increases then w, also increases and, according
to (3.71), t, decreases.

* Overshoot M, decreases if ¢ increases.

e According to Fig.3.17: i) the rise time ¢, decreases as the complex conjugate
poles are located farther to the left of s = 0 because w, increases (see (3.71)
and wg = wp+/1 — £2), ii) the parameter ¢ increases and, hence, overshoot M p
decreases, as the angle 6 is larger because ¢ = sin(f), iii) y,(¢) vanishes faster
as the complex conjugate poles are located farther to the left of s = 0 because
L wy, is larger.
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7 —

1+ ek‘mﬂ)
V1-¢2

kA

time

Fig. 3.16 The response of a second-order system is enveloped by two exponential functions when
the input is constant and the initial conditions are zero

Fig. 3.17 One pole of G(s) Im (s) &
in (3.72) when 0 < ¢ < 1

>.< """" 7 Wa

- <wn Re (

VY
~

e If k = 1 then the transfer function G(s) is said to have unitary gain in a steady
state because, when u = A is a constant, the final value theorem (3.4) can be
used to find that:

kaw? A kw?
lim y(r) = lim sY(s) = lim s 2 _ %0, _ 4
=00 s—0 s=0 S+ 2lwps +wks  w?

The constant k represents the steady-state gain of the transfer function in (3.72).

e If —1 < ¢ < 0, then the real part of the poles 0 = —¢wj is positive; hence,
the complete response y(¢) grows without limit as time increases. Notice that
this implies that the complex conjugate poles are located on the right half of the
plane s.
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Fig. 3.18 A T
mass-spring-damper system ’—>
K
— WV .
— m —> f
]
b
Q_0O

* The parameter ¢ is known as the damping coefficient because it determines how
oscillatory the response y(¢) is (see (3.71), for overshoot, and Fig. 3.14).

* The parameter wy is known as the damped natural frequency because, according
to the previous discussion (see (3.64)), wg is the oscillation frequency in y(z)
when the damping ¢ is different from zero. Notice that the frequency wy is the
imaginary part of the poles of the transfer function in (3.72) (see (3.55)).

e The parameter w, is known as the undamped natural frequency because,
according to (3.64) and (3.68), w, is the oscillation frequency when damping
is zero.

Example 3.8 Consider the mass-spring-damper system depicted in Fig.3.18.
According to Example 2.2, Chap. 2, the mass position x is given by the following
second-order differential equation:

mX = —Kx — bx + f, (3.73)

where K is the spring stiffness constant, b is the viscous friction coefficient, m is
the body mass, and f is an applied external force. The expression in (3.73) can be
written as:

1
it —x+—x=—f
m m m

which can be rewritten as the expression in (3.53):

X 4 20w % + 02x = ke f, (3.74)
2 »_ Ko 1
W, = _—, w, = —_—, = —,
"Tm " m K

where x is the output y, whereas f is the input u. Hence, x(¢) is given as y(t)
in (3.64) if 0 < ¢ < 1 when the initial conditions are zero. Notice that all
constants in (3.73) are positive: the mass m, the viscous friction coefficient b, and the
spring stiffness coefficient K only can be positive. According to (3.74), the damping
coefficient is given as:

¢ = . (3.75)
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If a constant force f = A is applied, the results in Figs. 3.13, 3.14, and 3.15 can be
employed to conclude the following.

¢ If there is no friction, i.e., if b = 0, then ¢ = 0 and the mass will oscillate forever
around the position xy = kA = %A. In the case when the external force is zero
f = 0 but some of the initial conditions x¢ or x¢ are different from zero, then the
mass will oscillate again, though now around the position x = 0, as described by
p(t) appearing in (3.62).

e If the friction coefficient » > 0 increases, then ¢ > 0 also increases and the
mass oscillations will disappear because the system will have more damping. It is
shown in the subsequent sections that the poles are real and repeated when ¢ = 1.
In all of these cases, the mass will stop moving at x = x5 = kA = %A. In the
case when the external force is zero f = 0 but some initial conditions, Xy or xg,
are different from zero, the mass will stop at x = 0. This is again described by the
function p(¢) appearing in (3.62). Notice that, according to (3.75), the damping
¢ also increases if the mass m or the spring stiffness constant K decreases. To
understand the reason for this, consider the opposite case: larger values of both
m and K produce larger forces (mx for the mass and Kx for the spring), which,
hence, are less affected by the friction force (bx) and thus, the mass can remain
in movement for a longer period of time.

* As the rise time 7, inversely depends on the undamped natural frequency w, =

K

m’
responses (f, smaller). On the other hand, advantage can be taken of the fact that

then a more rigid spring (with a larger K) or a smaller mass produces faster

the oscillation frequency is given by wy = wy,+/1 — ¢? with w, = \/g to adjust
the rate of a mechanical clock based on a mass-spring-damper system: if the
clock “lags,” it is necessary to increase its oscillation frequency, or rate, which is
achieved by applying tension to the spring to increase K.

The case when —1 < ¢ < 0 is not possible in this example because all of the
constants b, m, and K are positive. However, the situation when —1 < ¢ < 0
commonly occurs in feedback systems as a result of the interconnection of diverse
components.

3.4 Arbitrary-Order Differential Equations

In Exercise 3.6, it was shown that some differential equations can be written in terms
of time derivatives of both the unknown function y(¢#) and the excitation function
u(t). Moreover, the initial conditions of both variables can be combined to obtain
the initial conditions in other circuit components. According to this reasoning, a
linear ordinary differential equation with arbitrary order n and constant coefficients
can always be written as:

Y +au 1y @y +agy = bou + byt + -+ byu™,  (3.76)



120 3 Ordinary Linear Differential Equations

where n > m. If n < m the differential equation has no physical meaning, i.e., there
is no physical system in practice whose mathematical model can be represented
by such a differential equation and, thus, it is not of any interest for engineers.
Notice that all of the derivatives are related to time. Because of this feature, these
differential equations are also called dynamical systems. The variable y is the
unknown variable of the differential equation, whereas u is a function of time that
is also called the excitation. The objective of solving a differential equation is to
find a function y(¢) that satisfies the equality defined by the differential equation.
To find y(z), it is necessary to know u(t), the real constants a;, i = 0,...,n — 1,
bj, j =0,...,m, and the set of n + m constants y(0), y(0) ...y("’l)(O), u(0),
u(O),...,u(’”’l)(O), which are known as the initial conditions of the problem,
representing values that the unknown and the excitation, in addition to their time
derivatives, have at r = 0.
Applying the Laplace transform (3.2) to (3.76), the following is found:

S"Y(s) + an_15"" Y (s) + - + aisY(s) + apY (s) + P(s)
=boU (s) + b1sU(s) + -+ + bys" U (s),
where P(s) is a polynomial in s whose coefficients depend on the initial condi-

tions y(0), y(0),...,y"~D(0), u(0), 1(0),....u"D(0) and the coefficients of the
differential equation. Hence, it is possible to write:

bo+bis+ -+ bys™ I P(s)

Y(s) = — v (- o :
s+ ay—18 +---4ais+ap s+ ay—18 +---4ais+ap

Suppose that u(¢) = A is a constant, i.e., U(s) = A/s. Then:
_ B(s) A P(s)

T N(s)s N(s)’

N(Gs) =s"+ap_15"" '+ +ais + ao,

Y(s)

B(s) =bo+bis+ -+ bys™.

Also suppose for the moment that all of the initial conditions are zero. This means
that P(s) = 0 and it is possible to write:

_BwA

Y(s) = N(G) s

According to the partial fraction expansion method [2], Ch. 4, [3], Ch. 7, the solution
in time y(¢) depends on the roots of the characteristic polynomial N (s), i.e., on poles
of the following transfer function:

Y(s)
U(s)

_ B(s)
T ON(s)

G(s) (3.77)
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and factor < introduced by U (s) = A/s. The variable y(¢) is known as the output
and u(t) is known as the input of the transfer function G(s). The order of G(s)
is defined as the degree of the characteristic polynomial N(s). As a n degree
polynomial has n roots, then a n order transfer function has n poles (see paragraph
after (3.23)). On the other hand, the roots of the polynomial B(s) are known as the
zeros of the transfer function G (s). If B(s) has the degree m then G (s) has m zeros.
Recall the condition n > m imposed at the beginning of this section. It is assumed
that B(s) and N (s) do not have common roots.

The solution for all of the possible cases for the roots of the polynomial N (s) are
studied in the next sections, i.e., all of the possible cases for the poles of G(s). This
provides the necessary information to understand how a system of arbitrary order n
responds.

3.4.1 Real and Different Roots

Suppose that N(s) has k < n real and different roots, which are different from
s =0,1e.,:

N(s) = No(s)(s — p1)(s — p2) - (s — pi),

where p; # 0,i = 1,...,k, with p; # p; if i # j, stand for the roots of N(s),
whereas No(s) is a polynomial containing the remaining n — k roots of N (s), where
none of them is located at s = 0. According to the partial fraction expansion method
[2], Ch. 4, [3], Ch. 7, in this case the following must be written:

B(s) A 1 c Ck f
Y(s) = —=0()+ + + + <, (3.7%)
N(s) s s—p1 S—p S — Pk
where ¢;j, i = 1,...,k, and f are real constants to be computed, whereas Q(s)

represents all fractions corresponding to the roots of Np(s). Constant ¢; can be
computed as follows. Multiply both sides of (3.78) by the factor (s— p;) and evaluate
the resulting expression at s = p; to obtain:

B(s) A
= (S)_( —Pz)

, i=1,...,n.
N(s) s

S=Pi

Ci =

A similar procedure allows us to compute:

B(s)A
N(s)

f=

s=0

Using the tabulated inverse Laplace transform, [4], Ch.32:

_ Ci
L 1) _* =Cieat,
s —a



122 3 Ordinary Linear Differential Equations

the following is finally obtained:
y(t) =qt)+cr e’ ey el + .o 4 cp e 4 f,
where ¢ (t) = E‘l{Q(s)}. Notice that the following can be written:

@) =y () + yr (@),
(1) = q(t) +cy e’ +cp e 4 4o ePH, (3.79)
yr() = f,
where the natural response y,(¢) only depends on the roots of the characteristic

polynomial N (s), whereas the forced response y¢(¢) only depends on the fraction
% introduced by U (s). Consider the following possibilities.

1. If p; < Oforalli =1,...,k, thenlim, o (c1 el +cp P2+ .4 ePk) =0
and limy—, o0 y(1) = q (1) + yz(2).
2. If p; > Oforatleastonei =1, ..., k, then (c; e’ +cp P2 +. .. ¢ ePk) —

00, ast — oo and lim;—, o, y(¢) = 00.
Example 3.9 Consider the following second-order differential equation also given
in (3.53):

§420wnd + wiy = kotu,  y(©0) =y, $(0)= Jo. (3.80)

If ¢ > 1, then the only two roots, p1 and py, of the characteristic polynomial N (s) =
5% 4+ 2¢wys + w? are real and different:

p1 = —Cwy +wn\/§2 -1,
P2 = —Cwy _a)n\/gz -1,

D1 # D2

Also, both roots are negative:
p1 <0, p2<0.

Although this is obvious for p», for py, a little observation is required: notice that
—Lwp + wp/22 = 0, and since —Cwy, + wu/2 > —Cwn + wpy/C2 — 1, then
—Cw, +wu/C% — 1 < 0. Inthis case g (t) = 0, because Q(s) = 0 because Ny(s) =
1, i.e., No(s) has no roots. In Fig. 3.19 the solution y(¢) of the differential equation
in (3.80) is shown, when { > 1, u = A and the initial conditions are zero. Notice
that y(#) does not present oscillations in this case. Recall that, when —1 < ¢ < 1,
the oscillation frequency is equal to the imaginary part of both roots. Hence, when
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A N
kA
(=1
- C> 1 -
0 1 1 1 1 1 1 1 1 1 1
0 time
(a)
Im(s) &
® >
Do —(w, 21 Re(s)
(b)

Fig. 3.19 Solution of the second-order differential equation in (3.80), when ¢ > 1, and in (3.85),
when ¢ = 1, with u = A and zero initial conditions . (a) Time response. (b) Location of poles
when ¢ > 1

¢ > 1, there is no oscillation, because the imaginary part of both roots is zero; thus,
the oscillation frequency is also zero.

Example 3.10 Consider again the mass-spring-damper system in Example 3.8.
Recall that (3.74) describes the mass movement. Assume that:
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Then, according to the previous example, the roots p; and p» of the characteristic
polynomial s% + 2¢ w,s + a)g are real, different, and negative. Notice that this case
stands when the viscous friction coefficient b > 0 is very large or when the spring
stiffness constant K > 0 or mass m is very small. Also notice that one root (p; =
—Cwp+wy+/E? — 1 < 0) approaches the origin as ¢ > 1 becomes larger. According
to the discussion above in the present section, this means that the movement of the
mass is slower as ¢ grows, because it takes more time to function e”!’ to vanish
(despite the function e”?! vanishing faster because p» = —Cw, — w,/¢2—1 < 0
moves farther to the left of the origin). This explains why slower responses are
depicted in Fig. 3.19, as ¢ > 1 is larger.

Example 3.11 Consider the following differential equation:
Vt+ey+dy=eu, y0) =y, y0)=yo,

with ¢, d and e some real constants. The roots p; and p, of the characteristic
polynomial N (s) = s2 + cs + d are given as:

o 2 —4d
Pl—_i‘i‘T,
c 2 —4d
T

The following cases have to be considered:

e Ifd <0, then:

¢ V2 +4abs(d)
+ .

p1

2 2 ’
o V2 +4 abs(d)
P2 = B ) )

and both roots are real and different, with one positive and the other negative,
no matter what the value of c. It is shown, in Example 7.5 of Chap. 7, that this
case corresponds to a mass-spring-damper system with a negative spring stiffness
constant and that this is obtained in practice when a simple pendulum works
around its inverted configuration (also called unstable).

e Ifc > 0andd > 0, the case studied in Sect. 3.3is retrieved when 1 > ¢ > 0,
and the case studied in the present section is retrieved when ¢ > 1.

e Ifc <0andd > 0, with abs(c) small and d large, the case studied in Sect. 3.3 is
retrieved when —1 < ¢ < 0. The situation when ¢ < —1 is also obtained in this
case when abs(c) is large and d is small, but both roots are positive and different:

p1=—Cwy +wn\/§2_1>0,
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P2=_§wn_wn\/§2_1>0,

p1 # p2.

e The cases when ¢ = —1 and ¢ = 1 are studied in the next section.

3.4.2 Real and Repeated Roots

Suppose that N (s) has one root that is repeated k times and it is different from zero,
ie.,:

N(s) = No(s)(s — p)F,

with p # 0 and Ny(s) a polynomial that contains the remaining n — k roots in N (s),
and none of them is located at s = 0. According to the partial fraction expansion
method [2], Ch. 4, [3], Ch. 7, the following must be written:

B(s) A Ck Ck—1 c2 c  f
Y(s)=———=0()+ + +---+ + +=,
N(s) s (s—p)F " (s—p)k-T —p? s=p s
(3.81)
where ¢;j, i = 1,...,k, and f represent real constants to be computed, whereas

Q(s) represents the fractions corresponding to roots of Np(s). One method of
computing ¢ is by multiplying both sides of (3.81) by the factor (s — p)* and
evaluating at s = p to obtain:

B(s)A
k= (s — p) .
N(s)s s=p
On the other hand, the constants ¢;, i = 1,...,k — 1, can be computed by

multiplying both sides of (3.81) by the factor (s — p)¥, differentiating k — i times
with regard to s and evaluating at s = p to obtain:

1 d*' [ B(s)A
T k=i dst— \N(s)s
Finally, the constant f is computed by multiplying both sides of (3.81) by the factor
s and evaluating at s = 0 to find:

, i=1,... k-1
s=p

_ B(»)A
f= N(s)

s=0
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Using the tabulated inverse Laplace transform [4], Ch. 32:

1 /=1
£t 1= e, j=1,2,3,..., 0=1,
(s —a)/ -

the following is found:

k—1 k=2

pt
G—11 ¢ TG T

+ ot €Pt +cp e + f,

el?

y(@) = q(t) +cx

where ¢ (1) = L71{Q(s)}. Notice that the following can be written:

y() = yu(t) + ys (@),

k—1 . k=2 )
1) = t P _ P
Yu (1) q()+6‘k(k_1)!e targ— et
+cot ePt + ¢y e, (3.82)

yr@) = f.

It is remarked again that y,(#) only depends on the roots of the characteristic
polynomial N(s) and y7(¢) only depends on the fraction %, introduced by U (s).
Consider the following possibilities:

1. If p < 0, it is useful to compute the following limit, where j is any positive
integer number:

g .
lim ¢/ e”! = lim ,
1— 00 t—o0 e~ P!

which represents an indetermination, because —pt — +oo. Then, L’'Hopital’s
rule [12], pp. 303, can be employed:

/ dl‘j i1
L . t/ .o ) t/
lim ¢/ e’ = lim = lim -9 — fim -2 .
t—00 t—o00 e~ Pt t—00 di;” t—o00 —p e~ P!
t

As an indetermination appears again, L’Hopital’s rule can be applied several
times to obtain:

P del o j!

lim ¢t/ e’ = lim — = lim —%— = lim ,

f—00 t—o00 e~ P! f—00 ded_P t—o0 —p e~ P!
r
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JjG—-h= . J!

= == 1M — =
t—00 (—p)2 e Pt 1—00 (—p)] e Pt

Applying this result to the solution obtained above, it is concluded that:

k—1 k=2
t t
. pt pt pt pt) —
tl_lfgo<0k(k_l)!e +Ck71(k_2)!e +--4cate +C1e> 0,

and lim;_,  y(¢) = q(t) + yy(¢) for any p < 0, no matter how close to zero p
is.
2. If p > 0, itis clear that:

. k=1 » k=2 . o .
[1_1>rgo<ck(k_1)! e +Ck71(k—2)! e+ +cpte +cre > — 00,

ast — oo and lim;_, o, y(t) = o0.

3. Finally, consider the case when the characteristic polynomial N (s) has k real
and repeated roots at p = 0, i.e., N(s) = Ny (s)sk, where Ny(s) is a polynomial
containing the remaining n — k roots of N(s). Then, according to the partial
fraction expansion method [2], Ch. 4, [3], Ch.7, in this case the following must
be written:

B(s)A Ck+l | Ck  Ck—1 o
—0() F o S
N(s)s Q(s) sgk+1 sk sk—1 52

Y(s) =

where Q(s) contains fractions corresponding to roots of Np(s). Using the
tabulated Laplace transform [4], Ch. 32:

1 /=1
Ei by = =T j:1,2,3,..., O':l, (383)
s/ (G —n
yields:
£k k=1
Y(t)ZCI(t)‘i‘CkJrlE +Ck(k_l)! + - 4ot +oe, (3.84)
where ¢ (1) = L7{Q(s)}. In this case:
k=1
yn(?) =61(t)+6k(k_ D! + -+t +oey,

tk

yr(t) = Chtlgy
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since the natural response only depends on the k real and repeated roots at s =
0 that N (s) has, which, according to (3.83), only introduces terms included in
vu(2). It is clear that y,(f) — oo and y(t) — oo when ¢ — oo for k > 2 and
that y,(¢) is a constant if k& = 1. On the other hand, the forced response y ()
represents the integral of u(¢) iterated k times.

Example 3.12 Consider the following second-order differential equation, also given
in (3.53):

¥4 2wpy + 0ty = kotu, y(©0)=yo, ()= o. (3.85)

If ¢ = 1, then both roots, p; y p2, of the characteristic polynomial N(s) = s +
2¢wps + w,% are real, repeated, and negative:

p1 = p2=—Cwy.

The solution y(¢) of the differential equation in (3.85) is depicted in Fig. 3.19, when
¢ = 1, u = A and the initial conditions are zero. Notice that y(¢) does not exhibit
oscillations in this case because both roots have a zero imaginary part. This case,
¢ =1, is at the edge between an oscillatory response { < 1 and a response without
oscillations ¢ > 1. In fact, the case ¢ = 1 represents the fastest response without
oscillations because, when ¢ > 1, the response is slower as ¢ increases.

Example 3.13 Consider again the mass-spring-damper system in Example 3.8.
Recall that (3.74) describes the movement of mass. Assume that:

Then, in this case, the characteristic polynomial s 4 2 w,s + a),% only has a real
and negative root:

p = —Cwy,

which is repeated twice. The mass position x(¢) evolves exactly as y(¢) in Fig. 3.19.
This class of response may be very useful if a fast mass movement is required, but
without oscillations.

Example 3.14 Suppose that there is neither a spring nor a damper in Fig. 3.18, i.e.,
assuming that » = 0 and K = 0, the differential equation in (3.73) becomes:

mi = f. (3.86)

Notice that in this case the characteristic polynomial is s2, which only has a real
root at p = 0 repeated twice. Now suppose that all of the initial conditions are zero
and that the mass receives a small disturbance force described by:
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(3.87)

po|eo0sr=n
| 0, otherwise ’

where g9 > 0 and #; > 0 are small constant numbers. By direct integration of (3.86),
it is found:

t
i) = %/O f(v)dt + %(0).

Again, integrating yields (assuming that x(0) = 0):

t r
x(t) = %/0 {/0 f(r)dr}dr + x(0),

t r
x(t) = l/ {/ f(t)dt}dr, x(0) =0.
m Jo 0

Replacing (3.87), the following is found:

got?, 0<r<mn
x(1) = { L2 2
ol + o e0ti(t — 1), >0

Notice that x(r) — oo as t — oo (see Fig.3.20) despite f = 0 for t > 11, i.e.,
despite the forced response being zero for all + > ¢#. This means that the natural
response x,(t) — oo when t — 00, which corroborates results obtained in the
present section for real roots at zero, which are repeated at least twice. The reader
may resort to everyday experience to verify that a slight hit (f in (3.87)) on the mass
m is enough for the mass to begin moving to never stop (x(f) — o) if no friction
exists between the mass and the floor.

Example 3.15 Consider the second-order differential equation given in (3.53):

§ 4+ 20wny + wny = kwju,  y(0) =yo, ¥(0) = Jo.

Fig. 3.20 Mass position in (1) A
Fig. 3.18 when it is disturbed
and neither a spring nor a
damper exists

2] t[s]
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If ¢ = —1, then both roots, p; and pj, of the characteristic polynomial N(s) =
s+ 2L wys + a),zl are real, repeated, and positive:

p1=p2=—Cw, > 0.

3.4.3 Complex Conjugate and Nonrepeated Roots

Consider the following second-degree polynomial:
sP+bs+a=(s—p)s—p), pr=ci+jdi, pr=cr+jda,

where pp and p» are the complex, but not conjugate roots, i.e., c1, ¢2, d1, da, are real
numbers such that c; # ¢ if d] = —d> or d; # —d> if ¢ = ¢2. We have that:

(s — p1)(s — p2) = s* — (p1 + p2)s + pipa2,
b=pi+pr=ci+cr+jld +do),
a = pi1p2 = cicy —dida + j(c2dy + c1d2).

Note that, because of conditions ¢; # ¢y ifdy = —dp ord) # —d> if c; = ¢, 0ne
of the coefficients a or b is a complex number, i.e., the polynomial s> + bs + a has
at least one complex coefficient. In the previous sections, we have seen that physical
systems have characteristic polynomials whose coefficients are given only in terms
of properties that can be quantified using real numbers, i.e., mass, inertia, friction
coefficients, stiffness constant, electrical resistance, inductance, capacitance, etc.
Thus, the characteristic polynomials of physical systems cannot have a complex
root without including its corresponding complex conjugate. This means that in
automatic control we are only interested in characteristic polynomials that have pairs
of complex conjugate roots.

Suppose that N (s) has k pairs of complex conjugate and nonrepeated roots, i.e.,
according to Sect. 3.3, the following can be written:

i=k
N(s) = No(s) [ JIGs — 00)? + ;1.

i=1

where 0; # 0 or wg; # wgj if i # j, whereas No(s) is a polynomial containing the
remaining n — 2k roots of N (s), none of them located at s = 0. Then, according to
the partial fraction expansion method [2], Ch. 4, [3], Ch. 7, in this case the following
must be written:
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i=k

B(s) A Fis + C; f
Y == — 4=,
(s) = NG) s Q()+Z[(s—a,)2+a)d]+s

where Q(s) contains fractions corresponding to roots of Ny(s), f is a constant to be
computed as in the previous sections, i.e.,:

B(s)A
f= ,
N(s) |s—o
whereas F; and C;, i = 1, ..., k, are constants to be computed as B and C were

computed in Sect. 3.3. Hence, using (3.60) the following can be written:

Y(O) = ya(0) + y7 (), (3.88)
i=k
W) = q(6) + Y Bie™ 5 sin (wait + ¢i) ,
i=1

yr) =,

where B;, wni, &'y ¢i, 1 = 1,...,k, are real constants (see Sect. 3.3), whereas
qt) = LY O(s)}. The evolution of the solution in (3.88) satisfies one of the
following cases.

I.If0 < & < 1foralli = 1,...,k, ie., if the real parts of all of the
complex conjugate roots are negative, —jw,; < 0 for all i = 1,...,k,
then y(¢) oscillates such that lim;_, Zi Ifﬁ e~ %i%nil sin (wgit + ¢;) = 0 and
limy o0 y(1) = (1) + Y7 (0).

2.If -1 < ¢ < Oforatleastonei = 1,...,k, i.e., if the real part is positive,
—¢iw,; > 0 for at least one of the complex conjugate roots i = 1, ..., k, then
y(¢) oscillates such that y, (¢) and y(¢) grow without a limit as time increases.

3.If §§ = Oforalli = 1,...,k, ie., if the real parts of all the complex
conjugate and nonrepeated roots are zero, —gjw,; = 0 foralli = 1,...,k,
then Zij Bie~5inil sin (wy;t + ¢;) does not disappear as time increases, but
nor does it grow without a limit. Thus, although y(¢#) may not grow without a
limit (depending on the behavior of g(¢)), it does not converge to y ¢ (¢). Notice
that for this situation to stand, it is enough that ¢; = 0 for at least one i and
0 < ¢ < 1 for all of the remaining i.

It is important to point out that, in the cases when ¢ > 1 or ¢ < —1, real roots
are obtained and one of the cases in Sects. 3.4.1 or 3.4.2 is retrieved.

Example 3.16 The mathematical model of the mechanical system composed of two
bodies and three springs depicted in Fig. 3.21 has been obtained in Example 2.4 in
Chap. 2. From this result, the case when the spring at the left is not present can be
studied. This is achieved by assuming that K1 = 0, i.e.,:
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K, |—> rxl " |_>I2 K

my my

1]
T

Fig. 3.21 A system with two bodies and three springs

. b . ; K> 1
X1+ — &1 —x2) + —(x1 —x2) = —F(),
m m m

.. b . . K3 K>
Xo— — (X1 —X2) + —x2— —(x1 —x2) =0.
my myp my

Applying the Laplace transform (3.2) to each one of these differential equations and
assuming that all of the initial conditions are zero, the following is found:

HFE) + (s + £) X0

Xi(s) = R :
mi mi
( s+ )XI(S)
Xa(s) =
s2+mizs+ Kzn-:sz

Replacing the second of these equations in the first one, and rearranging, it is found
that:

(s + o s+ K2+K3)F(s)

(s2+ mils—i- Z—f) (s2+ 25+ K2+K3> (Ls—i- ﬁ) (is—i- ﬁ)

nmj mj ma mj

X1(s) =

To simplify the required algebra, assume that b = 0, then:

1 (S2 + K2+K3)

X (s) = = = —F(s),
() ()
or:
mll ( 24 K2+2K3)
X1(s) = F(s). (3.89)

s4—|—(K2 + K2+K3> s2 4+ K> K3

mima
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Performing the indicated operation, it is found that:

K K K K> K
s4+< 2 2+ 3>S2+ 2K3

mi my mimj

= (2 + )% +e),

for some numbers ¢ and e such that:

K K+ K K>K
C+e=_2+$, ce = 2 3,
mi my mipmy

ie.,:

my m3 my ma mima

2 2
&+M+\/<&_M) 4 4K

CcC = > 0,
2
£ otk \/(& - M)Z 4K;
m my my my mymy
e = > 0
2
Then, the following can be written:
1 2, K»+K
a (4 555)
Xi(s) = F(s). (3.90)

(s2+o)(s*+e)

As e and c are positive and different, it is ensured that the characteristic polynomial
in (3.90) has two pairs of complex conjugate and different roots (in fact, the roots are
imaginary conjugate and different). Hence, mass m1, whose position is represented
by x1(t), moves by oscillating and it never stops. However, the amplitude of
this oscillatory movement does not grow without a limit. These oscillations are
performed at two angular frequencies defined by w1 = w,; = +/c and wgz =
wp2 = +/e. Recall that the damping of these oscillations is zero.

3.4.4 Complex Conjugated and Repeated Roots

Assume that the characteristic polynomial N (s) has a pair of complex conjugate
roots that are repeated k > 1 times, i.e.,:

N(s) = No(s)(s” + 2¢wns + o) = No(9)[(s — 0)* + w1",
where No(s) is a polynomial that includes the remaining n — 2k roots of N(s),

without any of them located at s = 0. Then, the partial fraction expansion method
establishes that in this case [2], Ch. 4:



134 3 Ordinary Linear Differential Equations

B(s) A Fis+C s+ C
Y(s) = —=0(@)+ : ) lzk 22 22k—1
N(s) s [(s —0)* + wyl [(s —0)* + wj]
Fr_1s +Cr_1 Frs + Cy. f

[(s —0)2 + a)g]2 (s —o)2 + wfl s

)

where Q(s) contains fractions corresponding to the roots of Ny(s). In the case of
real roots, it was found that when roots are not repeated, they introduce functions
such as e”’, where p is the corresponding root. When such a root is repeated j
times, it was found that the functions introduced become #/~! eP!. In the case of
complex conjugate and repeated roots, a similar situation occurs. In this case, any
formal proof is not presented because of cumbersome notation, and only intuitive
ideas are given to understand the reason for the resulting functions.

Using the inverse Laplace transform in (3.60), it was found that a complex
conjugate nonrepeated root introduces the time function:

L'_l{ Bs +C
(s —o)z—i—wfl

} = e’ sin(wat + ),

for some constants 8 and ¢. Then, in the case of complex conjugated and repeated
roots, y(t) is given as:

y(@) = yn(t) + yr (1), (3.91)
Yn(®) = q(t) + Biet* e sin(wgt + di) + P11 sin(wat + pr—1)
+ -+ Bate?! sin(wyt + ¢2) + P17 sin(wat + ¢1),
yr) =,

where g(t) = E_I{Q(s)}. The solution in (3.91) has one of the following
behaviors.

1. If the complex conjugate root has a positive real part 0 = —¢{w, > 0, i.e., if
—1 < ¢ < 0, itis easy to see that y,(r) — oo and y(t) — oo ast — 00.
2. If the complex conjugate root has a negative real part 0 = —¢w, < 0, i.e., if

0 < ¢ < 1, it is possible to proceed as in Sect. 3.4.2 to compute the following
limit:

lim +/ e°’ sin(wg t + ¢) = 0,
11— 00

for any positive integer j and any real negative o. Then, for complex conjugate
and repeated roots with a negative real part:

lim (ﬂktk_lem sin(wgt + ¢) + ,kaltk_zem sin(wgt + ¢r—1)
11— o0
+ -+ Bate”’ sin(wat + ¢2) + B1e”" sin(wyt + ¢1)) =0, (3.92)

and lim;— 00 y(1) = q (1) + ys(1).
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3. If the root has a zero real part, i.e., o = 0, then:

y(&) = yu () + yr (@),
(1) = q(6) + Bit* ™ sin(wat + i) + Bro1t* 7 sin(wat + 1) + -
“+Bat sin(wqt + ¢2) + B sin(wgt + ¢1).
yr(t) = f.

Notice that, in this case:
Bit* L sin(wat + ) + Be—11¥72 sin(wgt + r_1) + - - -
+Bot sin(wgt + ¢2) + B1 sin(wgt + ¢1) — o0, (3.93)

as time increases in the case when the root is repeated at least twice, i.e., if k > 1.
But if this root is not repeated, i.e., if k = 1, then:

Bt sin(wat + dr) + 11" sin(wat + pr1) + -+
+Bat sin(wat + ¢2) + Bi sin(wat + ¢1) = Pisin(wat + ¢1),  (3.94)

is an oscillatory function whose amplitude neither grows nor vanishes, i.e.,
although y(#) does not grow without a limit (depending on ¢(¢)) it will never
reach y¢(¢) in a steady state.

3.4.5 Conclusions

In the previous sections it has been assumed that all of the initial conditions are zero,
i.e., that:

_ P(s) .
N(s)

If some of the initial conditions are not zero, then the previous expression is not
valid and the solutions y(#) found in the previous sections have to be completed
adding the function:

w(t) = .c—‘{ P@s) }

~ NG
As the denominator of:

P(s)

W(s) = L{w@)} = NG
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is still the characteristic polynomial N (s), then, according to the partial fraction
expansion method, w(¢) contains the same functions of time contained in the natural
response y,(t) found in every case studied in the previous sections. This means
that the complete natural response in every one of the cases studied in the previous
sections must also include w(t).

It is said that the differential equation in (3.76) or, equivalently, that transfer

function G(s) = f,g)), is:

e Stable if the natural response tends toward zero as time increases.

e Unstable if the natural response grows without a limit as time increases.

* Marginally stable if the natural response neither grows without limit nor tends
toward zero as time increases.

Assume that all of the cases studied in the previous sections, i.e., regarding the roots
of N (s), appear simultaneously. Recall that the roots of N (s) represent the poles of
G (s). The following can be concluded:

Conditions for the Stability of a Transfer Function

1. If all poles of G(s) have negative real parts then G (s) is stable.

2. If all poles of G(s) have negative real parts, except for some nonrepeated poles
having zero real parts then the transfer function G (s) is marginally stable.

3. If at least one pole of G (s) has a positive real part, then the transfer function G (s)
is unstable.

4. If there is at least one pole of G (s) with a zero real part which is repeated at least
twice, then G (s) is unstable.

On the other hand, it has also been seen that yy(¢) depends on the input u(z)
and that, in fact, both of them are represented by “similar” time functions if the
characteristic polynomial has no root at s = 0, i.e., if G(s) has no pole at s = 0.
This means that in a control system, the input variable u(¢) can be used as the value
it is desired that the output y(¢) reaches, i.e., u(¢) can be used to specify the desired
value for y(¢). This is accomplished as follows. If the transfer function is stable, i.e.,
if y,(t) — 0, then y(t) — yr(¢); hence, the only thing that remains is to ensure that
yf(t) = u. The conditions to achieve this when u = A is a constant are established
in the following.

Conditions to Ensure lim;_, o, y(f) = A

The complete response y(¢) reaches the desired output u = A as time increases,
ie, yr(®) = A and y,(t) — 0, if G(s) is stable and the coefficients of the
independent terms of the polynomials B(s) and N (s) are equal, i.e., if B(0) = N (0).
This can be verified using the final value theorem (3.4):

B A _BO) ,_, (3.95)

lim y(r) = lim sY(s) = li 2_
Jm y(0) = lms¥(s) = hm s 2 55 = 3o

Under these conditions, it is said that G (s) is a transfer function with unitary gain
in a steady state. When u is not a constant and it is desired that lim,_, o y () = u(?),
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G(s) is also required to be stable, i.e., that y,(r) — 0, but some additional
conditions must be satisfied. The determination of these conditions and how to
satisfy them is the subject of the study presented in the subsequent chapters of this
book (see Sect. 4.4).

Example 3.17 Consider the situation presented in Example 3.14. From this exam-
ple, an experiment can be designed that allows us to know whether a system, a
differential equation or a transfer function is stable or unstable:

If the system is originally at “rest,” apply a pulse disturbance to it and observe
its evolution:

o [If the system is stable then it “moves” and after a while it comes back to the
configuration where it was originally at “rest.”

o [f the system is unstable, then it “moves” more and more such that it goes far
away from the configuration where it was originally at “rest.”

Example 3.18 Consider the mass-spring-damper system studied in Example 3.8,
but now assume that the spring is not present. Replacing K = 0 in (3.73) yields:

mx +bx = f.
Suppose that a force is applied according to:
f=kpxa —x), (3.96)

where k, is a positive constant, x4 is a constant standing for the desired position,
and x is the mass position. Combining these expressions yields:

mx + bx = kp(xqg — x),

and rearranging:

. .,k
x—i——x—i——px:—pxd.
m m m

Using the Laplace transform and assuming that all of the initial conditions are zero,
the following is found:

X = o=

G(s) = = .
Xd(S) S2+%S+%

As an exercise, the reader is to find the roots of the characteristic polynomial s +

%s + Iin—” to corroborate that both roots have a negative real part if % > 0 and % > 0.
Then, using (3.995), it is found that the position reached in a steady state:
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kp kp
. . . W Xd  w
lim x(z) = lim s X (s) = lim § ——=———— = —Xq4 = xq,
[—>00 s—0 s—0 S2 + %S + HP s WP

equals the desired position x;. The reason for this result can be explained using,
again, everyday experience: when x = x4, the force produced according to (3.96) is
f = 0; hence, the mass can stop and remain at that position. Moreover, if x < x4,
then f > 0 and the mass increases its position x approaching x; (see Fig.3.18 to
recall that x increases in the same direction where f is positive). If x > x4, then
f < 0 and the mass position x decreases, approaching x; again.

As an exercise, the reader is to verify that, in the case where a spring is present,
i.e., when K > 0, then lim,_, o x(¢) # x4 if x4 # 0. Notice, however, that again
this can be explained using everyday experience:

If x = x4 then, according to (3.96), the external force applied to the mass is zero
f = 0 and the friction force is also zero —bx = 0, if it is assumed that the mass
is at rest. However, if x = x; # O then the force of the spring on the mass —Kx
is different from zero; hence, the mass will abandon the position x = x; % 0. The
mass will reach a position x such that the force of spring and the force f in (3.96)
exactly cancel each other out, i.e., where k,(xg — x) = Kx.

3.5 Poles and Zeros in Higher-Order Systems

Systems of orders greater than two are known as higher-order systems. Contrary to
first and second order systems, in higher-order systems it is not possible to perform
a detailed graphical study of the solution y(#). The main reason for this is the
complexity of the expressions arising when the transfer function has three or more
poles. Hence, it is important to approximate a higher-order system using a system
with a smaller order. There are two ways of accomplishing this: i) The approximate
cancellation of some poles with some zeros of the corresponding transfer function,
and ii) Neglecting the effect of “fast” poles. Some examples are presented in the
following.

3.5.1 Approximate Pole-Zero Cancellation and Reduced Order
Models

Consider the following second-order system:

k(s — d)

Y(§)= ———M —
(=) (s —p)s—p2)

U (s). (3.97)
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Suppose that U(s) = A/s, p1 # p2, p1 <0, p2 <0,d <0, and p1px ~ —kd
to render approximately the unitary gain in a steady state of the transfer function
in (3.97). Using partial fraction expansion:

 ks—d) A _ B c
S (s—pD)—p)s s—p1 s—p

Y (s) (3.98)

Multiplying both sides by the factor (s — p;) and evaluating at s = p; yields:

k(s —d)A
(s —po)s

_ k(p1 - d)A
s=pi (1= p2)p1

Multiplying both sides of (3.98) by the factor (s — p») and evaluating at s = p»
yields:

k(s —d)A
(5= p)s

_ kpr—d)A
s=py  (P2— P2

Multiplying both sides of (3.98) by the factor s and evaluating at s = 0 yields:

k(s —dA
T (s —pD(s—p2)

_ kdA
s=0 plpz

If p1 & d < 0 then, according to py p» = —kd, we have k &~ —p, and, hence:

B =~ 0,
_k(pp—d)A kA
T p—dpr
kA

D~ ——,
P2

to finally obtain:

kA kA
V(1) ~ Sl — 22
P2 P2
The reader can verify that:
kA kA
Y = —=eh — ==,
P2 P2
is the solution of:
Y(s)= U(s), (3.99)

S—=p2
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with U(s) = A/s and k = —p;. Thus, the following is concluded. If one pole
and one zero of a transfer function are very close, then they approximately cancel
each other out to obtain a reduced order transfer function. This means that (3.99)
can be used instead of (3.97) to obtain very similar results. The advantages of using
the model in (3.99) are: i) it is a model with a smaller order than (3.97), and ii) it
has no zero. The advantage of using a reduced order model, which approximately
describes a higher-order system is that the response of a reduced order system can
often be handled as that of a first- or a second-order system. On the other hand, a
zero in a transfer function modifies the time response in a manner that is not easy to
quantify; hence, a transfer function that has no zeros is preferable.

It is important to say that the simplification obtained by the cancellation of one
pole and one zero is useful only if the pole and the zero have negative real parts.
This is because one pole with a positive real part, which is not exactly cancelled
because of parameter uncertainty, has a dangerous effect that becomes larger as
time increases.

3.5.2 Dominant Poles and Reduced Order Models

Consider the following transfer function:

4y, (3.100)

Y(s) = s +a

L
RC

where U (s) = A/s. Using partial fraction expansion, the following is found:

k d A B C D
1 — = i + —. (3.101)
s+ﬁs+as 5+ﬁ s+a s

Y(s) =

i

Multiplying both sides by the factor s + Rl_c and evaluating at s = — ¢!

d A

d A
s+as o

B =k —

Multiplying both sides of (3.101) by the factor s 4 a and evaluating at s = —a:

d A

—a+ gz (—a)

s=—a

Multiplying both sides of (3.101) by the factor s and evaluating at s = 0:

d A d A
s+ﬁ(s+a)sz0 zc @
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Ifa > % > 0, then:

d A

B~ —k——,
4 %e
A

C%k—2<<D
a

Hence, using (3.101) and neglecting C, the following is found:

d A d A
y(l) ~ —k—Tei%t + kT—
a z& zc @
The reader can verify that:
d A d A
y() = —k—TeiRlict + kT_’
a s zc @
is the solution of:
Y(s) = U(s), (3.102)

a(s + %)

with U(s) = A/s. Thus, (3.102) can be used instead of (3.100). The condition
a> R_lc is interpreted as “the pole at s = —a is very fast compared with the pole at
s = _R]_C”' The pole at s = —Rl—C is known as the dominant pole because its effect
is more important in the system response. The following is concluded. If one pole is
much faster than the others, then a reduced order transfer function can be obtained
by neglecting the fastest pole to only maintain the dominant (the slowest) poles. An
accepted criterion is that the fastest poles (those to be neglected) have a real part that
is five times the real parts of the dominant poles (those to be kept). Notice, however,
that it is not just a matter of simply eliminating the factor s + a at the denominator
of the transfer function: the constant a still appears at the denominator of (3.102)
because a is necessary to keep without change the steady-state gain of the transfer
function in (3.100).
A simple way of obtaining (3.102) from (3.100) is the following:

U(s). (3.103)

k d
Y(s) = —(—U@) =
+%s+a s+R—1Ca((%s+l)

If a is very large it can be assumed that és < 1; hence:

Y(s) ~ U(s),

a(s + %)

which is the expression in (3.102).
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Finally, it is important to say that order reduction, as presented above, is only
valid if the neglected pole has a negative real part. If the neglected pole has a positive
real part, then the contribution of this pole will grow to infinity as time increases, no
matter how small C is. Thus, the contribution of such a pole cannot be neglected.

Example 3.19 According to Exercise 9 and Example 2.20 in Chap. 2, the mathe-
matical model of a permanent magnet brushed DC motor is given as:

di .
ad_ta =v — Ryis —kew,
dow .
JE :kmla —Ba), (3104)

where w is the motor velocity (also see (10.9) and (10.10) in Chap. 10). Suppose
that this motor actuates on a hydraulic mechanism, which, by centrifugal effect,
produces a water flow, g;, which is proportional to the motor velocity, i.e., g; = Yo,
where y is a positive constant. Finally, this water flow enters the tank in Example 3.2
in the present chapter, whose mathematical model is given in (3.28), rewritten here
for ease of reference:

dh

E-I—ah:kqi
_ 1 _1
~RCT T C

Using the Laplace transform (3.2) and assuming that all the initial conditions are
zero, it is not difficult to verify that the corresponding equations become:

1/Lq

I(s) =~ (V(5) — ke (5)), (3.105)
S+,

w(s) = k’”/‘; 1(s), (3.106)
7
1/C

H(s) = —0i(s). (3.107)
s+ ze

Combining (3.105) and (3.106) yields:

km/J 1/L,
w(s) = /B / = (V(s) = kew(s)).
7S+L_Z

According to (3.103), the following can be written:

k| J 1/Lq

%(%S"‘l)f—z(%Sle)

w(s) = (V(s) — kew(s)).
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In small motors, the inductance L, and the viscous friction coefficient B are small;
hence, ILQ—“ < %. Thus, it can be assumed that %s <« 1 and the following can be
written:

1 m
a)(s)_s+B]R

— kew(s)).

J
Rearranging terms, this expression can be rewritten as:

b
() = — V().
s+( + ,mRa)

Replacing this and Q;(s) = yw(s) in (3.107) yields:

1 ki
H(s) = —S+y IR V(s).
+ & s+<§ ’”‘)

Proceeding again as in (3.103), the following can be written:

Y L

H(s) = ¢ JR V(s).
RC(RCS+1)( +""f)<3 s+1>
J+J Ra

If the tank cross-section is large enough, the motor will reach its nominal velocity
a long time before the water level in tank increases significantly. This can be stated
by saying that “the tank time constant is very large compared With the motor time

constant,” i.e., RC > W Then, it is possible to say that k = § < 1; hence,
TtIR, T+ TRE
the following approximation is valid:

or:

H(s) =

Then, defining:
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and comparing with (3.107), the expression in (3.139) is justified, i.e., that the

water flow is proportional to the voltage applied to the motor through a constant

k1. This is possible if: 1) the motor electrical time constant is smaller than the motor

mechanical time constant, i.e., if % < %, and 2) if the tank time constant is very
1

g +kmke .

JRq
Finally, it is important to say that this procedure is valid because g + l}'"lécj > 0 and

f—z > 0, i.e., the neglected poles are negative.

large compared with the complete motor time constant, i.e., if RC >

3.5.3 Approximating the Transient Response of Higher-Order
Systems

The simplicity of first- and second-order systems allows us to compute their exact
solutions. However, in the case of systems represented by differential equations
of an order greater than 2, also called higher-order systems, the complexity of
the problem prohibits us from obtaining their exact solutions for control purposes.
The traditional treatment of higher-order systems in classical control has been to
approximate their response as a kind of extrapolation of responses obtained in first-
and second-order systems.

According to the studies presented in Sects. 3.1 and 3.3, the poles of first-
and second-order systems can be located on the s complex plane, as depicted in
Fig.3.22. Then, the distance of a pole to the origin, s = 0, is representative of
the response time: the larger this distance, the shorter the response time. The angle
between the imaginary axis and the location vector of the pole is representative of
how damped the response is: the closer this angle is to zero, the more oscillatory the
response; conversely, the closer this angle is to 90°, the less oscillatory the response.

Fig. 3.22 Relative pole Im (s) A
location on the s plane. <1‘>\<,/“"
g1 < & and e \\b _
@n) < W2 < W3 PO
/ 70N
/ ’ N
S aX J
/ / LGN
/ \
//C / // \
Co~¥--!_ \
| [ R d
| 1 € =<2
\ ¢ - >
- L--7 /
Ei--t- % A rews
\ \\ N /
\
\ \ \\\>(//
\ A a2-_| .,
AN \\\ // Tl %t
N \\
\\\ /(\\‘__ Wpo
~ 7 Nz
\)é\b\
/ ~~——_| W3
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Fig. 3.23 Relative response of two systems with real poles (see Fig. 3.22). Dashed: pole at s = d.
Continuous: pole at s = ¢

The responses of two first-order systems are compared in Fig. 3.23. The location
of the respective real poles is depicted in Fig.3.22. It is observed that a faster
response if obtained, as the pole is located farther to the left of the origin.

The responses of three second-order systems are compared in Fig.3.24. The
location of the respective pair of complex conjugate poles is depicted in Fig. 3.22. It
is observed that (i) a shorter response time is achieved as poles are located farther
from the origin, and (ii) a less oscillatory response is achieved as the poles are
located closer to the real axis.

The above results are applied to higher-order systems by considering the worst
case, i.e., by observing the “slowest” pole (the closest pole to the origin) and the
“least damped” pole (the closest pole to the imaginary axis).

3.6 The Case of Sinusoidal Excitations

Consider the n-order arbitrary transfer function:

Y6 _ iy = EG)
U = 9= Ny

(3.108)

N(s) =s" +ap_1s" ' + -+ ays + ao,
E(s) =byg+bis+--+bys™,
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Fig. 3.24 Relative response of three systems with complex conjugate poles (see Fig.3.22)
Continuous: poles at s = b and s = b. Dash—dot: poles at s = a and s = a. Dashed: poles at

s=cands=c
For the sake of simplicity,

where n > m and u(t) = A sin(wt), i.e., U(s)
assume that N (s) has no roots on the imaginary axis. Replacing U (s) in (3.108) and

using partial fraction expansion:

Cs+D
St (3.109)

Y, (s) + 212

Y(s) = G(s)A o =

where Y;,(s) = L{y,(¢)} is the natural response, i.e., those terms arising from the
roots of N (s). Recall that lim;— ~ y,(¢) = 0 if G(s) is stable. As N(s) has been
assumed not to have any roots on the imaginary axis, then G(s) has no poles at
s = = jw. Multiplying both sides of (3.109) by the factor s> + w> and evaluating at

s = jo, itis found:
wAG(jw) = jwC + D.

Equating real and imaginary parts yields:

C = AlIm(G(jw)), D = wARe(G(jw)),

where G(jw) = Re(G(jw)) + jIm(G(jw)). Hence:

Cs+D
s2 4+ w?

= AIm(G(Ja))) +ARe(G(]a)))m.
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Im (G (jw))

Re (G (jw))

Fig. 3.25 Triangle defined by phase ¢

Using the tabulated Laplace transforms:

(0]

L{sin(wt)} = s2—|——a)2’

s
L{cos(wt)} = ISP

the following is found:

El{Cs—l—D

2+CD2

} = A[Im(G(jw)) cos(wt) + Re(G(jw)) sin(wt)].
s

Using Fig.3.25 and the trigonometric identity, sin(«) cos(8) + cos(x) sin(8) =
sin(a + ), the following is obtained:

! {sC;: wlz} = A|G(jo)| [sin(¢) cos(wt) + cos(¢) sin(wt)], (3.110)
= B sin(wt + ¢),
B = A|G(jw)l,
o=n (i)

G(j)] = {R(G(j)) + M (G (jo)).
Then, according to (3.109), the following is found:
y(@) = yn(@) + yr (@), (3.111)
where the forced response is given as:

yr(t) = B sin(wt + ¢), (3.112)
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B =A|G(jw)|, (3.113)
¢ = arctan <M> , 3.114)
Re(G(jw))

whereas y,(t) — 0 ast — oo if G(s) is stable. Hence, if the input u(¢) of an
n—order linear system G (s) is a sine function of time, then the output y(¢) is also, in
a steady state, a sine function of time with the same frequency, but with an amplitude
and a phase that are, in general, different from the amplitude and the phase of the
signal at the input.

The ratio between the output and the input amplitudes at frequency o, i.e., % =
|G (jw)|, is known as the magnitude of the transfer function whereas the difference
between the phase at the input and the phase at the output, ¢, is known as the phase
of the transfer function. Then, the following is concluded, which is an important
result for the purposes of Chap. 6:

The frequency response is defined as the description of:

* How the ratio of the output amplitude and the input amplitude changes as the
frequency of the signal at the input changes.

* How the difference between the phases of the signals at the input and the output
changes as the frequency of the signal at the input changes.

Example 3.20 (Taken from [2], Ch.4) Consider the spring-mass-damper system
depicted in Fig. 3.18. Assume that there is no damper, i.e., b = 0, and the following

external force f = Fysin(wt) is applied, where w = ,/ % It is desired to compute
the mass position x(¢) if x(0) = 0 and x(0) = 0. It is not necessary to compute the
numerical value of constants appearing in x (¢).

Solution. The differential equation describing the situation in Fig.3.18 when b = 0
is:

K
mi + Kx = f, f=Fsin(ot), o=,—. (3.115)
m
Applying the Laplace transform to (3.115) yields:
2 K 1
s“X(s)+ —X(s) = —F(s).
m m
Notice that this expression has the form:

s2X(s) + a)ﬁX(s) = ya)ZF(s),

Wherewnz,/% =a),y=%.As:

Fow

F(s) = 55—,
=37
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then:

yo'F

X = eray

Using partial fraction expansion:

. As + B Cs+ D
T2 tw)? 21t

X(s)

Thus, according to Sect. 3.4.4:
x(t) = Byt sin(wt + ¢1) + Ba sin(wt + ¢2),

where B1, B2, ¢1, ¢ are some real constants. The solution x (¢) is shown in Fig. 3.26
when o = \/g = 10[rad/s], m = 1[Kg] and Fy = 1[N]. This phenomenon is
known as resonance and it means that the output reaches very large values despite
the input being a bounded sine function of time. Notice that this may happen even
if the characteristic polynomial has no roots with positive real parts nor located at
s = 0. Thus, this is a different phenomenon to that described in Example 3.14. Also
notice that resonance appears when a system is poorly damped (¢ = 0) and the
input is an oscillatory signal whose frequency is the same as (or very close to) the
system natural frequency. As the mass position grows without a limit, resonance is
a phenomenon that is considered to be dangerous.

0.8

X [m]

-0.8+ 4

0 2 4 6 8 10 12 14 16 18 20
t[s]

|
-

Fig. 3.26 Position in a mass-spring-damper system under resonance conditions
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>
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] InputOutput
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Fig. 3.27 MATLAB/Simulink simulation diagram for results in Fig. 3.26

Figure 3.26 has been obtained using the MATLAB/Simulink simulation diagram
presented in Fig. 3.27. The signal generator block is programmed to have a sine
wave form, unit amplitude and 10[rad/s] as frequency. Once the simulation stops,
the following MATLAB code is executed in an m-file to draw Fig. 3.26:

nn=length (InputOutput (:,2)) ;
n=nn-1;

Ts=20/n;

t=0:Ts:20;

plot (t, InputOutput (:,2),'k-");
axis ([0 20 -1 11)

xlabel ('t [s]’)

ylabel (‘x [m]’)

Example 3.21 Consider a linear system with transfer function:

Y(s) 10
e W= YO
Suppose that u(r) = Asin(5¢t 4+ 90°), with A = 1. As G(s) only has one pole at
s = —5 and w = 5 in this case, according to (3.109), Y,,(s) = S% where:
10 w 10 x5
s+ )s+5s2+a)2 o5 52452

Hence, according to (3.111), (3.112), (3.113), (3.114):

y(t) = e + B sin(5t + 90° + ¢),

Im(G(jw)))

B =A|G(jw)|, ¢ = arctan (Re(G(jw))

i.e.,:
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) 10 —Jjw+5
G(jw) = - ! ,
jo+S5S\—jo+5

_ 10(—jo+5)
2540
10425 + w? -
—zéarctan < )
V25 + w?

)

10 )
IG(jo)| = ——, = arctan <—>
/ /25 + w? ¢ 5

Evaluating at the applied frequency, v = 5:

Gl = o = 2 =3, § = 45"
V25425 2

Thus:
y(t) = e + /2 sin(5t + 45°).

This response is depicted in Fig. 3.28. Notice that the difference between y(¢) and
yr(t)att = 0.2 = 1/5[s] is equal to 1.38 — 1.015 = 0.3650 ~ e 02 je., the
natural response y, () = e > evaluated at + = 0.2[s]. This fact corroborates the
above results.

Figure 3.28 has been obtained using the MATLAB/Simulink diagram presented
in Fig. 3.29. The sine wave block is programmed to be a time-based block, with
unit amplitude, zero bias, 5[rad/s] as the frequency, and 1.57[rad], i.e., 90°, as the
phase. The sine wave 1 block is programmed to be a time-based block, with 1.4142
as amplitude, zero bias, 5[rad/s] as the frequency, and 1.57/2[rad], i.e., 45°, as the
phase. Once the simulation stops, the following MATLAB code is executed in an
m-file to draw Fig. 3.28:

nn=length (InputOutput (:,1)) ;
n=nn-1;

Ts=2/n;

t=0:Ts:2;

plot (t, InputOutput (:,1),'k-.’,t, InputOutput(:,2),
"k-");

hold on

plot (t, InputOutput (:,3),'k--");
axis ([0 2 -1.5 1.5])

xlabel ('time [s]’)

hold off
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X: 0.2009
15— v:138 T T T T . . .
s om
)/ X: 0,2003
/ Y:1.015
1Fs
05}
ol
-0.5+
At
-1.5
0

time [s]

Fig. 3.28 Time response of a linear differential equation when excited with a sinusoidal function
of time. Dash—dot: u(¢) = Asin(5¢4+90°), A = 1. Dashed: y;(t) = /2 sin(5¢+45°). Continuous:
y(t) = e > + /2 sin(5t + 45°)

4

Qv > 10 > Scope
s+5

Sine Wave Transfer Fcn4 —P InputOutput
&v To Workspace
Sine Wave1

Fig. 3.29 MATLAB/Simulink diagram for the results in Fig. 3.28

3.7 The Superposition Principle

Every linear differential equation satisfies the superposition principle. Moreover,
the fact that a differential equation satisfies the superposition principle is accepted
as proof that the differential equation is linear. To simplify the exposition of ideas,
the superposition principle is presented in the following only when all the initial
conditions are zero.
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Superposition Principle Consider the following n—order linear ordinary dif-
ferential equation with constant coefficients:

Y a1y 4t @y +agy = bou + brii + -+ byu™,  (3.116)

where n > m. Assume that all of the initial conditions are zero. Also assume that
y1(2) is the solution of (3.116) when u1(¢) is applied at the input and y,(¢) is the
solution of (3.116) when u> (¢) is applied at the input. Then, a1 y1 () +a2y2(¢), where
o1 and oy are arbitrary constants, is the solution of (3.116) when oyu1(¢) + opu2(2)
is applied at the input.

One way of verifying this result is presented in the following. As the differential
equation in (3.116) is linear and all the initial conditions are zero, then it can be
expressed in terms of the corresponding transfer function:

Y(s) = G(s)U(s). (3.117)
This means that it can be written as follows:

Yi(s) = G(s)Ui(s),
Y2(s) = G(s)Ua(s).

Adding these expressions yields:

a1Y1(s) +azYa(s) = a1 G(s)U1(s) + a2 G(s)Ua(s),
= G(s) (a1 U1 (s) + azUz(s)).

This is possible because | and «» are constants. This expression corroborates that
a1y1(t) + a2 y2(¢) is the solution of (3.117); hence, the solution of (3.116) when
aru(t) + apus(t) is the input.

Example 3.22 Obtain the indicated voltage at impedance Z4(s) in Fig. 3.30a. This
circuit can be simplified using the so-called source transformation theorem.

Theorem 3.1 (Source Transformation [5, 11], Chap. 9, pp. 61)

* When an impedance, Z(s), and a voltage source, Vy,(s), are series-connected
between two terminals a and b, they can be replaced by a current source, I7.(s),
parallel-connected to the same impedance, Z(s). The magnitude of the current
source is given as Iy.(s) = Vyy(s)/Z(s).

* When an impedance, Z(s), and a current source, I7.(s), are parallel-connected
between two terminals a and b, they can be replaced by a voltage source, Vy,(s),
series-connected to the same impedance, Z(s). The magnitude of the voltage
source is given as Vyy(s) = Z(s) r¢(s).

Applying the first part of this theorem to voltage sources Vi(s) and V»(s), circuit in
Fig. 3.30b is obtained where:



154 3 Ordinary Linear Differential Equations

Zl(s) Zs(s)
| I | I
Zy(s)
v (H) a0 D N (v
Z4(8)
(a)
Zs(s)
Il(s@) Dzl(sﬂzxs) X DZ’(S) CDIZ(S’
Z4(5)
(b)
I.(s) Iy(s)
Z:;(S)
ne+16(1) 7 D .
Z4(s)
©

Fig. 3.30 Electric circuit studied in Example 3.22

Vi(s) _ Va(s)
Zi(s)’ Zs(s)

Li(s) = (3.118)

It is clear that Zi(s), Z»(s) and Zs(s) are parallel-connected and its equivalent
impedance is given as (see (2.69)):

1
Zy(s) =

1 1 1 -
7o T ae T 5o

Using this and combining the current sources, the circuit in Fig. 3.30c is obtained.
Now, another important result in network analysis is employed: the current divider.
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Fact 3.1 (Current Divider [S], pp. 38) When two parallel-connected impedances
are parallel-connected to a current source, the current flowing through any of the
impedances is given by the value of the current source multiplied by the opposite
impedance to impedance where the current is to be computed and divided by the
addition of the two impedances.

Applying this result in addition to Ohm’s Law to the circuit in Fig.3.30c, the
following expressions are found:

I _ Z4(s) I I
3(s) = Za(s)+Z3(s)+Z4(s)( 1(8) + 1a(s)),

Vea(s) = Z4(s)I3(s),

where V_4(s) is voltage at impedance Z4(s). Combining these expressions yields:

Voa(s) = Za(8)24(s) (I1(s) + I2(s))
¢ Za(8) + Z3(s) + Za(s) '

Finally, using (3.118), the following is found:

Vau(s) =

Z4(8)Z4(s) <V1(S) Vz(S))
Za(s) + Z3(s) + Za(s) \ Z1(s)  Zs(s))~

It is concluded that the voltage at Z4(s) can be obtained, as the addition of the
voltages at Z4(s) due to each one of the voltage sources, i.e., V| (s) or V,(s), when
the other source is put in short circuit (i.e., a zero value is assigned) and adding both
results. This is exactly what the superposition principle establishes. It is interesting
to say that the superposition principle has been established above in the present
section, assuming that the different applied inputs are directly added, and, after that,
they are applied to the system. However, this example shows that the superposition
principle is valid in linear systems, even when the voltage sources, V1 (s) and V2(s),
cannot be added directly (see Fig. 3.30a).

Example 3.2 Computing of the voltage at impedance Z3(s) in the circuit shown in
Fig.3.31a is required. First, this circuit is simplified to obtain circuit in Fig. 3.31b.
Then, the source transformation theorem can be employed (see the previous
example) to obtain the circuit in Fig. 3.31c, where:

(3.119)

As impedances Z1(s), Z>(s), and Z4(s) are parallel-connected, the equivalent
impedance is given as (see (2.69)):
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Z4(s)
| E—
+
Zy(s)
(T s B 4(s
v (*) Al >D DZ()
VZ(S)
(a)
Z1(s) Z3(s)

(c)
Z,(s) Zy(s) I(s)
L g S

(d)

Fig. 3.31 Electric circuit studied in Example 3.2
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Zy(s) =

1 1 1 -
7o) T e T e

The equivalent impedance Z,(s) is parallel connected to the current source /i (s);
hence, the second part of the source transformation theorem can be used (see the
previous example) to obtain the circuit in Fig. 3.31d, where:

Vi(s) = Za(s)11(s),

_ V3(s) = Vals)
Za(s) + Z3(s)

Vaa(s) = Z3()1(s),

I1(s)

with V,3(s) voltage at the impedance Z3(s). Combining these expressions and
using (3.119) yields:

_ Z3(s)

Vaa(s) = m(‘@@) — Va(s)),
_ Z3(s)

 Za(s) + Z3(s)

_ Z3(s) (Za(s)

Z4(s) + Z3(s) \ Z1(s)

(Za(s) 11 (s) — V2(5)),

Vils) — Vz(S)) .

It is concluded, again, that the voltage at the impedance Z3(s) can be obtained as
the addition of the voltages in Z3(s) because of each one of the voltage sources, i.e.,
Vi(s) or Va(s), when the other source is put in a short circuit (i.e., its value is set
to zero) and adding the two results. This example also shows that the superposition
principle is valid in linear systems, even when the voltage sources Vi(s) y Va(s)
cannot be added directly (see Fig.3.31a).

3.8 Controlling First- and Second-Order Systems

The simplicity of the first- and second-order systems allows us to design feedback
controllers whose effects can be explained relying on the exact solution of the
closed-loop system. This is shown in the present section by applying this methodol-
ogy to some physical systems.
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3.8.1 Proportional Control of Velocity in a DC Motor

According to Chap. 10, the mathematical model of a permanent magnet brushed DC
motor is given in (10.9), (10.10), which are repeated here for ease of reference:

Ldi— Ri k
dt_u i—nk, o,
Jo=-bo+nk,i—T,. (3.120)

The reader is encouraged to see Chap. 10 for an explanation of variables in this
model. For the purposes of this example, it suffices to say that w, u, i, T), represent
the load angular velocity, the applied voltage, the electric current through the
armature circuit, and an external torque disturbance respectively, and all of the
parameters are positive. If the motor is small, then it is widely accepted that L ~ 0
can be assumed, and the following is obtained:

. . u—nk,w
O=u—Ri—-nk.owo = z:T. (3.121)

Replacing the electric current in (3.120) and rearranging:

2k k k
M) w= "y T,. (3.122)
R R

Joo+ <b ¥
Consider the following proportional velocity controller:

u=kplws — w), (3.123)

where k), is a constant known as the proportional gain, and w, represents the desired
velocity given as a step signal of magnitude A, i.e., wy(s) = %. The closed-
loop system is obtained by replacing u, given by the proportional controller, in the
previous equation, i.e.,:

n? ki ke) n ky,
M) w=

T+ <b + — S kp(@wd — ) = T, (3.124)

Rearranging terms yields:

. (b nPkwmke nknk n kmk, 1
2 = Ty =T,
w+(J+ JR R )w JR 1T

This is a first-order system with two inputs. Then, we can apply superposition, i.e.,
define two signals w; and w; such that:



3.8 Controlling First- and Second-Order Systems

159
(1) = o1 (t) + w2 (1),
) + (% + nzf’;ke + 2 ];”Ilekp) W) = 2 ];n;ekpwd,
@ + (% + nzf’;ke +2 ];"I’ek”) wy = —%Tp.

First, analyze the equation for wy, applying the Laplace transform with zero initial
conditions:

w1(s) = G1(s)wa(s).

n kmkp
Gils) = - . (3.125)
(b She )

Notice that this transfer function is identical to:
b
. (3.126)

s + b1
if we define:
b=t ke ko

n kmkp

0, by = 0.
JR JR 7O = 7
Notice that this expression has the same structure as the transfer function in (3.23).

Hence, if the parameters and variables b1, b>, w| and wy are suitably associated with
those in (3.23), the solution w (¢) is the same as in (3.16), i.e.,:

b A by A
wi(1) = ——me ™ 4 2 4 (),
by by
Stability is ensured if, and only if, the only pole of G(s), located at s = —by, is
negative, i.e., —b; < 0, which implies that:

JR (b n?kyk,
kp>—— | =

— . 3.127
nky \J + JR ) ( )
value theorem as:

If this is the case, then the final value of the velocity can be computed using the final

lim wi(t) = lim sw(s),
1—00 s—0

n kmkp
. A bhA
= lim s IR — = .
s—0 s + < + n? km k

I
~
=

ks
+
=
~
iEs
\k‘
N——"
[ 5
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Recall that A represents the magnitude of the desired velocity. As it is desirable for
the final value of the velocity to be close to A, it also desirable for % to have the
same sign as A, i.e., ba/b; > 0. As by > 0, because of the stability requirement,
then by > 0 must also be true. This is ensured if k, > 0, which is in complete
agreement with (3.127). Hence, we can conclude that:

”kmkp
li =4 A<A 3.128
z—lfgowl()_ bl_g_i_nkke nkmkp <4 (3.128)
J JR

which means that the final velocity remains below the desired velocity. This result
may also be explained using everyday experience as follows. Assume for a moment
that lim;_, oo w1 (f) = A. Then, according to (3.123):

the voltage applied at the motor terminals is zero. Hence, the motor tends to stop
moving, i.e., w1 decreases to zero and cannot stay at the desired value A. This means
that w; < A will be obtained again. Hence, it is not possible to keep w; = A forever,
which justifies the result in (3.128).

The difference between the final velocity and A is known as the steady-state error
ess. We remark that, according to (3.128), the steady-state error can be arbitrarily
reduced by increasing k, > 0, although a zero steady-state error will never be
accomplished. On the other hand, if a specific steady-state error ey is required, the
corresponding value for k), can be computed as:

n kmkp
JR
Coo :A— A
S £+ n? km ke +”kmkp
J
b n? n” ky ke
— J + ~JR__
J+ n? kmke+ kl’ ’

b n*knke) A b n*kpke\] JR
kp — — 4 T hmtey 2 (2 + =2 "m %e .
J JR €ss J JR n kpy
Notice that to ensure k, > 0, the steady-state error is required to be a fraction of the

desired velocity, i.e., ;s = pA with0 < p < 1.
Now, consider the expression for w,. Using the Laplace transform:

w2(s) = Ga(s)Tp(s),
1

Ga(s) = _J
s+<%+ n kmke_+_nkmkp>
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Notice that G,(s) can be written as G, (s) = Si—*}ﬂ, with by = —%, i.e., a transfer

function such as that in (3.126). Thus, we may proceed as before to conclude that:

1

-7 d

lim wy (1) = J d. T,(s)=—.

t—00 2( ) b n? ki ke + nkmkﬁ p( ) S
J JR JR

The important observation in this expression is that the final value of w; can be
reduced by increasing k, > 0. This is good news, as w; is the velocity deviation
due to external disturbance T),; hence, it is desirable to keep w; close or equal to
zero, if possible. In this case, the deviation can be rendered arbitrarily small by
increasing k, > 0, but a zero deviation will never be achieved with a proportional
controller.

As the problem at hand is a first-order system, the transient response is
completely described by the time constant:

1 1

by b nkyke
b+ =7+

1 Kk ©
IR

Recall that a faster response is obtained as t is shorter. This means that a faster
response is obtained as k;, > 0 is chosen to be larger. Moreover, if all the system
parameters are known and a desired time constant 7 is specified, then the required
proportional gain can be exactly computed as:

JR[1 (b n’knk
ky = (2 P
nkyl|t J JR
This means that, to ensure k, > 0, the closed-loop system is required to be faster
than the open-loop system, i.e.:

Lo (b ke

T J JR

The velocity responses of a DC motor, when using two different proportional
gains k;, = 12 and k, = 40, are shown in Fig. 3.32. This was performed using the
MATLAB/Simulink diagram shown in Fig. 3.33 to represent the closed-loop system

in (3.124). It is assumed that J = 1, nk,,/R = 1 and b + ”zk+kf = 7. These
values were selected merely to obtain representative, clearly appreciable results for
the proportional control of velocity. Block wy is a step applied at ¢+ = 0 with a zero
initial value and 2 as a final value. The external disturbance T), is a step applied
at t = 0.5 with a zero initial value and 7 as a final value. Notice that the use of
a larger k), results in a faster response, i.e., T < Ti, a smaller steady-state error,
i.e., a larger steady-state response 8, and a smaller deviation § because of a constant
external torque disturbance.
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0T, time

Fig. 3.32 Velocity response in the proportional control of velocity. Continuous: k,, = 40 is used.
Dashed: k;, = 12 is used. Dash—dot: desired velocity

J ]
Tp —>
Z Scope
I > 12 >+ Mo > i
3 Lol v s+7 L
W Add1 kp1 Add DC motor InputOutput
To Workspace
> < > 1
- M s+7
Add3 kp2 Add2 DC motor 2

Fig. 3.33 MATLAB/Simulink diagram for the results in Fig. 3.32

The following is MATLAB code that is executed in an m-file to draw Fig. 3.32
after simulation in Fig. 3.33 stops:

nn=length (InputOutput (:,1));

n=nn-1;

Ts=1/n;

t=0:Ts:1;

plot (t, InputOutput (:,1),'k-.",t,InputOutput(:,3),
"k-");

hold on
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plot (t, InputOutput(:,2),'k--");
axis([-0.02 1 0 2.5])

xlabel (‘time [s]’)

hold off

3.8.2 Proportional Position Control Plus Velocity Feedback for
a DC Motor

Consider the motor model in (3.122), but, now, expressed in terms of position 0, i.e.,
0 = w:

Jé’+<b+ —nzk”’ke) FLT

. 6= —"u-T, (3.129)

Assume that the voltage applied at the motor terminals is computed according to the
following expression:

u=ky0s—0) — k0,

where k, is a constant known as the velocity gain, and 6, represents the desired
position, which is assumed to be given as a step signal with magnitude A, i.e.,
Oa(s) = %. This represents a controller known as proportional position control
plus velocity feedback. The closed-loop equation is found by replacing « in (3.129)
and rearranging terms, i.e.,:

N 2k ke\ - k .
Jo + <b + "%) 6= ”T’” (kp(6s — 0) — ky8) — T, (3.130)
.. b n’kmke nkmky\ . nknkp n ko k 1
g - 6 0 = 204 — —Tp,
+ <J IR TR ) TR JR 77

Using superposition and Laplace transform yields:

0(s) = 01(s) + 02(s),
01(s) = G1(5)04(s), 02(s) = Ga(s)Ty(s),

nkmkp
JR
Gi(s) =
2 b l’lzkm ke n ky ky n km kp
S+<J+ TR T TR >S+ TR

~|=

Ga(s) =

2 Q n? ki ke n km ky n kp kp.
S+(J+ kTR ) ST IR
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First, analyze the equation for 6;. By equating:

=52+ 2 wys + a),zl,

b nknke nkyk nky k
2 o m Ke m Ky m Kp
S+<J+ IR TR >S+ JR

it is possible to write:

w2

G =" 3.131
1(s) 2 ans T ( )

[n ko kp b+n2kmke+nkmkv 1
W, = = - .
8 R © J JR IR ) o [whnky
JR

Notice that, under these conditions, the inverse Laplace transform of 6(s) =
G1(s5)04(s), is identical to the function presented in (3.57). Hence, stability is
ensured if k, > 0, to ensure that both w,, and ¢ are real numbers, and:

b+ nzkmke+nk,nkv -

0,
J JR JR

to ensure that ¢ > 0. If this is the case, then we can use the final value theorem to
compute the final position as:

lim 6 (z) = lim 56, (s),
t—00 s—0
> A

s>0 5%+ 2L wps +w; S

Thus, the motor position reaches the constant desired position in a steady state. On
the other hand, according to (3.131), we conclude that:

* The closed-loop system is faster as k, > 0 is chosen to be larger. This is because
wy increases as k, > 0 increases. However, as k, > 0 increases the system
becomes more oscillatory. This is because ¢ decreases as k, increases.

» The system response is less oscillatory as &k, > 0 is chosen to be larger. This is
because ¢ increases as k, increases.

This means that the response can be rendered as fast and damped as desired merely
by suitably selecting both k, and k,.

Now, consider the equation for w;. Notice that this variable represents the
position deviation produced by an external torque disturbance. Hence, it is desirable
for w» to be close or equal to zero, if possible. Notice that G, (s) is stable if is G (s)
stable, because both transfer functions have the same characteristic polynomial.
Thus, we can compute the final value of w; using the final value theorem when
the disturbance is a step signal, i.e., T, (s) = ‘S—i:



3.8 Controlling First- and Second-Order Systems 165

lim wy(¢) = lim sw;(s),
1—00 s—0

1
-1 d
T 7 d
_slg%sz b\ nPhkpke | 1kpky nknky g’
SH\T T Tkt IR ) St IR

_1
_ J
_nkmk,,d'

TR

This means that the steady-state deviation is not zero. However, the good news is
that this deviation can be arbitrarily reduced by increasing k,. We conclude that
a faster closed-loop system also results in smaller position deviations because of
constant external torque disturbances. This is corroborated by simulations shown in
Fig. 3.34, which were performed using the MATLAB/Simulink diagram in Fig. 3.35.

There, the closed-loop system in (3.130) is simulated using J = 1, b + "2k+ke =
7, and nk, /R = 70. These values were employed merely because they allow
representative, clearly appreciable, results to be obtained. The block theta_d is a
step applied at + = 0 with a zero initial value and 2 as a final value. The external
disturbance T, is a step applied at + = 0.5[s] with a zero initial value and 7 x 70
as a final value. Once simulation in Fig. 3.35 stops, the following MATLAB code is
executed using an m-file to draw Fig. 3.34:

nn=length (InputOutput (:,1)) ;
n=nn-1;
Ts=1/n;

Position [rad]

0O 01 02 03 04 05 06 07 08 09 1
time [s]

Fig. 3.34 Proportional control of the position with velocity feedback. Use of k;, = 40 and k, =
0.45 (continuous) results in a faster response, but the same damping, than using k, = 12 and
ky = 0.2 (dashed). See (3.132)
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- 1
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Add1 Fcn Trans
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Add4  Gain

Caint Integrator1
Add6 ain

kv2 InputOutput

+ - 1
B L
7
Add7 kp2 Add2 Fcn Trans1

To Workspace

Fig. 3.35 MATLAB/Simulink diagram used to obtain results in Fig. 3.34

t=0:Ts:1;

plot (t, InputOutput (:,1),'k-.’,t, InputOutput(:,3),
"k-");

hold on

plot (t, InputOutput (:,2),'k--");

axis([-0.02 1 0 2.75])

xlabel (' time [s]’)

ylabel (' Position [rad]’)

hold off

Notice that in the case where some ¢, and M, are specified, the use of expressions
in (3.71) allow the required w,, and ¢ to be computed. These data and (3.131) allow
the corresponding controller gains to be computed as:

JR b 2kmke\] JR
ky = w2, ky= [2;0),, - (7 + ”J—’}é)} e CRER)
m

Using this procedure together with t, = 0.039[s], M, = 29.9%, for the continuous
line in Fig. 3.34, results in k, = 40 and k, = 0.45, whereas #, = 0.071[s], M, =
29.9%, for the dashed line, results in k, = 12 and k, = 0.2.

3.8.3 Proportional-Derivative Position Control of a DC Motor

Consider the motor model in (3.129) in a closed loop with the following
proportional—derivative (PD) controller:

d
u=ky,s—0) +kda(9d —0),
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ie.,:

é.+<b+n2kmke+nkmkd> Gk kg ok ka1

b — 0 by——T,,
J JR JR JR JR AT R YT

where k; is known as the derivative gain. Using superposition and the Laplace
transform yields:

0(s) = 01(s) + 62(s),

01(s) = G1(s)ba(s), 62(s) = G2($)T(s),

nkJmdeS i n/;mRkp
Gi(s) = P
s2+(%+"kmke_;’_nkmkd)s_l_”]mRP

2 é n2 km ke I’lk kd n kpy kp.
2+ (45 + + s + huks

~|=

Ga(s) =

Notice that except for the term ~ ]‘I’"de s in the numerator of G1(s) and the use of
kg instead of k, in the denominator, we have exactly retrieved the same closed-
loop equations as in the previous example. Thus, we can proceed exactly as in the

previous example to conclude:

* Expressions in (3.131) stand again with ky instead of k,,.
* Stability is ensured if k, > 0 and:

b nkyke nkpyky
= 0.
AT T

» If any external disturbance is not present, then the position reaches the constant
desired position in a steady state.

* The closed-loop system is faster as k, > 0 is chosen to be larger. This is because
wy increases as k, > 0 increases. However, as k, > 0 increases, the system
becomes more oscillatory. This is because { decreases as k, increases.

* The system response is less oscillatory as k; > 0 becomes larger. This is because
¢ increases as kg increases.

* The response can be rendered as fast and damped as desired merely by suitably
selecting both k,, and kg.

* If a step external torque disturbance 7),(s) = ‘;’ is present, then a position
deviation exists in a steady state and it is given as:

~|—=

d.

lim wy(t) =
—00 2( ) n ky kp
JR



168 3 Ordinary Linear Differential Equations

On the other hand, to study the transient response notice that the transfer function
G1(s) can be rewritten as:

ka)s—i—a)

2420wy 5 + @2’

_ ka @ @

= + :
kpss2+2§wn sHw2 2420wy s + W}

Gi(s) =

where:
nkm kp b n’kmke nkykg 1
_ , N , (3.133
“n JR ¢ (]+ JR TR znmp( )
JR
have been used. Hence:
2 2
d w W
0 = — 1 6 1 04(s). (3.134
1(S) kpss2+2§a)ns+a)% d(S)+52+2§(1)nS+a)l% d(S) ( )
As 04(s) = %, notice that the inverse Laplace transform of the second term in

this expressmn is the function presented in (3.57), whereas the inverse Laplace
transform of the first term is the time derivative of the function in (3.57) multiplied
by the factor & k . This means that, although the shape of 6 (¢) is similar to that of
the function in (3.57), there are some differences. For instance, formulas for the
rise time and overshoot given in (3.71) are only approximate in the present control
problem.

In the case in which some ¢, and M, are specified, use of the expressions in (3.71)
allow only approximate values for the required w, and ¢ to be computed. These data
and (3.133) allow approximate values for the corresponding controller gains to be
computed as:

JR b nky ke, JR
k, = 2 ky= 20w, — =+ —2=¢ .
P ik, [ £eon <J t TR )} 7 ko

Some simulation results are presented in Fig.3.36 when J = 1, b + = k”'k =17,

and nk,,/R = 70. The corresponding MATLAB/Simulink diagram is shown in
Fig.3.37. The block theta_d is a step applied at + = 0 with a zero initial value
and 2 as a final value. The external disturbance T), is a step applied at t = 0.5[s]
with a zero initial value and 7 x 70 as a final value. When the simulation in Fig. 3.37
stops, the following MATLAB code is executed in an m-file to draw Fig. 3.36:

nn=length (InputOutput (:,1)) ;

n=nn-1;

Ts=1/n;

t=0:Ts:1;

plot (t, InputOutput (:,2),'k-.",t, InputOutput(:,3),
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Position [rad]

169

time [s]

02 03 04 05 06 07 08 09 1

Fig. 3.36 Continuous: PD control law u = k), (64 — 0) + kg % (64 — 6), with k, =40, kg = 0.45,

is used. Dashed: control law u = k(64 — 0) — ky0, with kp = 40, ky = 0.45, is used. Dash—dot:
desired position 6

FL- 1
s E

Fig. 3.37 MATLAB/Simulink diagram used to obtain results in Fig. 3.36

"k-");
hold on

plot (t, InputOutput (:,1),'k--");

axis([-0.02 1 0 31)
[s]”)

xlabel (

"time

ylabel (' Position [rad]’)
hold off

—> ®
+
75> aE
theta_d Lol
Add5 kp add Gain1 Add4 Transfer Fen Integrator
kv
0.45 4

" I-: - 1 | Scope1

PID(s) b . F7s —

Add7 Gain2 Add2 Transfer Fcn1  p————p|
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The dashed line represents the desired response, i.e., the inverse Laplace
transform of:

w2

L Ba(s), 3.135
21 2wy s 02 a(s) ( )

n

which is identical to the response obtained with controller u = k,(6s — 6) — k0,
introduced in the previous section, with k, = 40, k, = 0.45. The continuous
line represents the inverse Laplace transform of the complete expression for 6 (s)
in (3.134), i.e., the response when a PD position controller is used with k,, = 40,
kg = 0.45. Notice that the continuous line in Fig. 3.36 has a smaller rise time and
a larger overshoot than the dashed line. The reason for this is that the PD control
law u =k, (64 — 6) + kdj—,(ed — 0) includes the term kg %, which is not present
in control law u = k,(0; — 0) — kvé. Recall that 6; is not a constant, but it is a
step signal whose time derivative is very large at the time when such a step signal
is applied. This contributes with a large voltage spike at this point in time, which
results in a faster response, including a larger overshoot for the step response when
a PD controller is employed.

Notice that a nonzero steady-state deviation results when a step external torque
disturbance appears at ¢ = 0.5[s]. We stress that this deviation is the same in both
responses, the continuous and the dashed line, because the same k), is used.

3.8.4 Proportional-Integral Velocity Control of a DC Motor

Consider again the velocity control problem in a permanent magnet brushed DC
motor. Now assume that the following proportional-integral (PI) controller is
employed:

t
u=ky(wg —w)+k / (wqg — w)dr,
0

where k; is a constant known as the integral gain, whereas w; is a step signal
standing for the desired velocity, i.e., wg(s) = ’:%. The closed-loop system is
obtained by replacing u, given above, in the model (3.122), i.e.,:

n2 ky, ke> n kp,

t
Jcb+<b+ w= (kp(a)d—a))—l—ki/ (wd—w)dr> —Tp.
R R 0

Differentiating once with respect to time and rearranging yields:

J JR JR

w (b nPhnke nknky\ . nkpk nkmky . nkmki l.
= ——T,.
a)+< + ) w 7R w 7R wq+ TR wq 7 1r

(3.136)
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This is a second-order system with two inputs. Then, superposition has to be used,
i.e., to define two signals w1 and w; such that:

o(t) = wi(?) + w2(1),
b + (b n2 ky, k. +nkmkp) o n kpk; nkpkp . +nkmk,-

7T TR TR CI= TR YT TR ¢

. b n kmke nkwkp\ . nknk 1.
2 -7,
w2+<J+ TR Tur )T TR 2T

First, analyze the equation for w;. Applying the Laplace transform with zero initial
conditions:

w1(s) = G1(s)wya(s).
n kmkl’ s+ n ‘];mk

2 b n? km ke ”kmkp n ky ki
s +<,+ + 5 + hals

Gi(s) = (3.137)

Since the characteristic polynomial is second-degree, we proceed to equate:

b n?kypke nknk n kyk;
s2+<_+ — + m”)” =5 T2+,

J JR JR JR
to find:
n kmki b n*kmke nknkp 1
— 0.c=(2 3.138
@n R ¢ (J TR Y Ur o - O-138)

These expressions require k; > 0 to ensure that w, and ¢ are real numbers. On the
other hand, ¢ > 0 is true if &, is chosen to satisfy:

JR (b n%kyk,
ky>-—— -+ —22).
P nkm< * TR )

Hence, G1(s) is a stable transfer function and, thus, the velocity final value can be
computed using the final value theorem:

lim wi(t) = lim sw(s),
t— 00 s—0

— lim s s 4
s—0 S2+(%+ nﬁRkeJrnl;m ) +nkmk s
n kpki

= n‘li,fk,-A:A
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Fig. 3.38 The integral e [m] A
Jo (@4 — @1 (r))dr is
represented by the shadowed
area under function

e = wg — wi. In this figure it
is assumed that

wg =A > w1 (0)

t[s]

It is concluded that the desired velocity is reached in a steady state, an important
property of PI velocity control.

This result can be explained using everyday experience. As w; = A is achieved
in a steady state, the error signal e = A — w(¢) is expected to behave as depicted
in Fig. 3.38. Recall that the integral operation fot (wg — w1 (r))dr represents the area
(positive) under the function shown in Fig. 3.38. This means that the above integral
operation remains constant at a positive value when w; = wy; = A (because the
integrand becomes zero in these conditions). Then, according to u = k,(wg — w) +
ki fot (wqg — w)dr, a positive voltage given by u = k; f(; (wg — w)dr continues to be
applied at the motor terminals. This allows the motor to stay rotating at the desired
velocity, i.e., the condition w1 = wy = A holds forever.

On the other hand, to study the transient response, notice that the transfer function
in (3.137) can be rewritten as:

kp 2 2
% @nS + w;,
Gi(s) = = 5
§s*+ 2wy s + w;
2 2
k[’ Wy wy,

s + )
ki s24+2twp s+ s2+2lw, s+ o}

where (3.138) has been used. Hence, according to (3.137):

kp w? w?
wi(s) = —s wg(s) + wq(s).
1) ki s2 42wy s + w? a(s) s2 420wy 5 + W} a(s)
As wq(s) = %, notice that the inverse Laplace transform of the second term in

this expression is the function presented in (3.57), whereas the inverse Laplace
transform of the first term is the time derivative of the function in (3.57) multiplied
by the factor I,i—:’ This means that, although the shape of w;(#) is similar to that
of the function in (3.57), there are some differences. For instance, the rise time
and overshoot formulas given in (3.71) are only approximate in the present control

problem. This is a similar situation to that found in the study of the transient
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response of PD position control of a DC motor. Despite this, the expressions
in (3.138) are still valid and they can be used to conclude the following:

* A faster response is achieved as k; > 0 is chosen to be larger. This is because w,
increases as k; > 0is increased. However, a more oscillatory response is obtained
as k; > 0is chosen to be larger. This is because ¢ decreases as k; increases.

* The oscillation can be reduced by increasing k,, > 0. This is because ¢ increases
as k, > 0 increases.

These observations can be used as a tuning procedure to select both &, and k; for a
PI velocity controller. Note that this is a trial and error procedure.
Finally, consider the expression for w;:

b n*kmke nknkp n kmki 1.
. (b . _ Ll
w2+<J+ JR R >w2+ JR T

Using the Laplace transform yields:

—Ls
wa(s) = Ty(s).
2 b km ke n kmk kmk
5% + (7 + + ”) + et
Then, the final value of w, can be computed as:
lim wy (1) = lim swy(s),
t—00 s—0
Lg
-7 d
= lims 7° ™y =0,
s—>0s2+<%+nkk ) +n Ky
when the external torque disturbance is a step signal, i.e., T,(s) = ¢. Recall that

it has already been ensured that the characteristic polynomlal in this express1on has
two poles with a negative real part. Hence, the steady-state velocity deviation due to
a constant external torque disturbance is zero, which is very good news.

The closed-loop response of velocity under PI control is shown in Fig.3.39

where J = 1, b + ”ZI‘T'"]‘Q = 7, and nk,,/R = 70 are used. These values are
employed merely because they allow representative, clear, responses to be obtained.
The corresponding MATLAB/Simulink diagram is shown in Fig. 3.40. The block
wq 1s a step applied at + = 0 with a zero initial value and 2 as a final value. The
external disturbance T), is a step applied at 1 = 0.5[s] with a zero initial value and
0.4 x 70 as a final value. Once the simulation stops, the following MATLAB code
is executed in an m-file to draw Fig. 3.39:

nn=1length (InputOutput (:,1)) ;
n=nn-1;
Ts=1/n;



174 3 Ordinary Linear Differential Equations

Velocity [rad/s]

0 1 1 1 1 1 1 1 1 1
0o 01 02 03 04 05 06 07 08 09 1

time [s]

Fig. 3.39 PI velocity control when a constant external disturbance appears at + = 0.5[s]. The PI
controller gains are k;, = 0.7 and k; = 10. Continuous: velocity o (¢). Dashed: desired velocity wy

| =
Tp _ 1
_| L | PID(s) * g I Scope
w_d

Add b Controllert Gain Addt Transfer Fen  p—p»|

y

vy

InputOutput

To Workspace

Fig. 3.40 MATLAB/Simulink diagram to obtain results in Fig. 3.39

t=0:Ts:1;

plot (t, InputOutput (:,1), 'k--’,t, InputOutput(:,2),
"k-");

axis([-0.02 1 0 2.5])

xlabel ('time [s]’)

ylabel ('Velocity [rad/s]l’)

Notice that the velocity reaches its desired value before and after a constant
external torque disturbance appears at ¢ = 0.5[s].
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3.8.5 Proportional, PI, and PID Control of First-Order Systems

Consider the water level system studied in Example 3.2 and depicted in Fig.3.3.
Suppose that a water pump is employed to produce a water flow ¢; that is
proportional to the voltage u applied at motor terminals actuating on the pump,
ie.,:

gi = kiu, (3.139)

where k1 is a positive constant. Combining (3.139) and (3.28) it is obtained:

dh

— +ah = kku.

dt "
Notice that this differential equation can also be represented by a transfer function
with the form:

Y b

CO=Tm T stb

(3.140)

Hence, identical conclusions are obtained as those for the proportional control of
velocity, if a proportional level controller is used, or those for a proportional—integral
velocity controller, if a PI level controller is used. Moreover, identical conclusions
are valid for any first order plant with transfer function having the same structure as
in (3.140).

On the other hand, first order systems represented by (3.140) do not need use of
a controller with a derivative action. This can be explained as follows. Suppose that
the following proportional—integral-derivative (PID) controller:

t

d
uzkpe—i-kd—e—i—kif e(r)dr, e=ys—y
dt 0

is used for plant in (3.140), i.e.,:

de !
y+biy=b <k,,e + kg— + ki / e(r)dr> ,
dt 0
t
(14 baka)y + (b1 + bokp)y = bakpya + bakasu + boki f e(r)dr,
0

and differentiating once with respect to time:

(1 4+ boka)y + (b1 + bakp)y + bokiy = boky¥a + bokpya + bokiya.
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The corresponding closed-loop transfer function is:

Y(s) bokgs® + bakps + bak;
Ya(s) (1 + boka)s? + (by + bakp)s + bok;

H(s) = (3.141)

Notice that the characteristic polynomial is second degree. Thus, only two free
parameters are necessary to assign the corresponding two roots at any location on
the s complex plane, i.e., to achieve any desired transient response. However, three
free parameters appear in this characteristic polynomial, i.e., k,, ks and k;. Hence,
one of them is not necessary, i.e., k.

On the other hand, the transfer function in (3.141) has polynomials at the
numerator and the denominator having the same degree, i.e., it has the same number
of poles and zeros. It has been shown in Examples 3.6 and 3.7 that time response
of a system whose transfer function has the same number of poles and zeros is
discontinuous when a step input is applied. It is important to remark that such
a response is not possible, for instance, in a velocity control system because the
velocity cannot be discontinuous. This is due to the fact that such a response
would require a very large voltage to be applied at the motor terminals during a
very short time interval. Mathematically, this is explained by the time derivative
of the desired value y; (a discontinuous, step signal) which is introduced by the
derivative action of a controller. However, such large voltage spikes are not possible
in practice. Thus, an unpredictable response is expected. Moreover, in the case of a
velocity control system, the derivative action on velocity (equivalent to acceleration
measurements, a very noisy signal) results in a strong amplification of noise, as
velocity measurements are recognized to be noisy signals.

Thus, it is concluded that any performance improvement is not expected when
using a PID controller with respect to performance achieved with a PI controller for
first-order plants.

3.9 Case Study: A DC-to-DC High-Frequency Series
Resonant Power Electronic Converter

In Sect. 2.5, Chap. 2 the mathematical model of a DC-to-DC high-frequency series
resonant power electronic converter was obtained. This model is given in (2.142)—
(2.144) and it is rewritten here for ease of reference:

i
d—; — —v — wosign(i) + E(0), (3.142)
v _, (3.143)
— =1, .

dt

dvg )
COE = Cle(l) — E, (3144)
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where:

+1,i>0

, 3.145
—1,i <0 ( )

sign(i) = {

whereas abs (i) stands for the absolute value of i. The operation of this circuit
is studied in the present section through the solution of the mathematical model
in (3.142)—(3.144). Performing a coordinate change for the variables involved is
very useful. Hence, the following variables are defined (see Sect. 2.5, Chap. 2, for
an explanation of the meaning of the parameters involved):

i |L v Vo t (3.146)
= — —, = —, = —, T = ——. .
<1 EVC 22 E 3 E \/ﬁ

Replacing this in (3.142), (3.143), (3.144) yields:

d <E\@Z1)
L——> = —FEz — Ezzsign(z1) + E(1),
d(r Lc)
d (Ez2) \/?
c 222 o plE
d(t«/LC) VL

d(Ez3) C Ez3
Co——————=abs | E,|—2 - .
4 (+vIC) ( Vi ) E

After some simplifications, the following is found:

21 = —z220 — z3sign(z1) +u, (3.147)
=2z, (3.148)
wiy = abs(z)) — Zé (3.149)

where the dot ““-” represents the differentiation with regard to the normalized time t
whereas o = Cy/C, Q = R/C/L and u is a variable taking only the two possible
values +1 (when E(¢) = +F) and —1 (when E(t) = —E). The output capacitor
Cp is commonly chosen to be very large compared with the value of the resonant
capacitor C, because this ensures that z3, i.e., vp, remains approximately constant
during several cycles of the resonant current zp, i.e., . Hence, under this assumption
(a constant z3), (3.149) can be neglected and (3.147), (3.148), suffice to represent
the evolution of the resonant variables z; and zp, at least for several oscillations.
For operation at resonance, the transistors Q1, Q3 are turned on when z; > 0,
i.e., when i > 0; hence, u = +1 because E(t) = +FE in this case, according to



178 3 Ordinary Linear Differential Equations

Figs. 2.34a, 2.35 and 2.36. On the other hand, the transistors Q;, Q4 are turned on

when z; < 0, i.e., wheni < 0, and hence u = —1 because E(t) = —E in this case.
One way of achieving this is by designing u = sign(z;), where sign(z;) = +1
if z;1 > 0 and sign(z;) = —1 if z; < 0. This means that, according to (3.147)

and (3.148), the evolution of the resonant variables can be described as:

21 = —22 + Ve, (3.150)
2 =21, (3.151)

v — 1 —2z3, Q1,03 turned-on
" | =1 —z3), 02, Q4 turned-on ’

where z3 is assumed to be constant. Using the variable change z4 = z2 — v, in the
previous equations yields z4 = z» = z1, because a constant v, implies that v, = 0,
andZ4 =21 = —20 + Ve = —24, 1.€.,:

f4+24=0. (3.152)

This is a second-order linear ordinary differential equation with constant coefficients
such as that defined in (3.53) with { = 0 and w,, = 1. As the excitation, or input, of
this differential equation is zero, then A = 0 and the complete solution is given by
the natural response alone. Hence, according to Sect. 3.3, i.e., expressions in (3.62)
and (3.63), the solution of (3.152) is given as:

z (.[) — (.[) — E—l Z4O(S + 2{(,()”) + 240 — —1 | %408 + 240
! u 52+2§wns+a),% S2—‘r 1 ’
=L {s§4is1 SZZ:? 1 } = 240 €08(T) + Z40 Sin(7), (3.153)

where the following Laplace transform pairs have been employed [4], Ch. 32:

£ { 2 —T—az } = cos(ar),

E_l{szjl_—az} = sin(ar),

whereas z490 = z4(0) = z2(0) — v, and 249 = z4(0) = z1(0). Differentiating (3.153)
once with respect to 7 yields:

24(T) = —2z40 sin(t) + Z40 cos(T). (3.154)
Then, using (3.153) and (3.154), it is easy to verify that:

23(v) + 23(v) = 22y + 23 (3.155)
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If the solution of (3.152) is plotted on the phase plane z4 — z4, then a circle
is obtained whose center is located at origin (z4, z4) = (0,0), and the radius

is determined by the initial conditions, i.e., */14210 + 24210' Moreover, according to

74 = 70 — Ve and z4 = 71, it is concluded that the solution of (3.150), (3.151), when
plotted on the phase plane z; — z7, is a circle centered at (z2, z1) = (ve, 0), with

a radius /(220 — ve)? + Z%o where 720 = z2(0) and z10 = z1(0). It is important
to say that, according to (3.150) and (3.151), the values of z; and z> cannot be
discontinuous because that would require infinite values for z; and 2, respectively,
which is not possible as the right-hand sides of (3.150) and (3.151) cannot take
infinite values. This means that, when combining the solutions in both regions, i.e.,
when z; > 0 and when z; < 0, the initial conditions on each region must be equal
to the final values reached in the previous region. Hence, Fig. 3.41 is obtained. The
closed trajectory shown in this figure indicates that the resonant variables z2, 71, i.¢.,
v and i, have sustained oscillations. It should be noted that this closed trajectory is
clockwise-oriented because, according to (3.151), zo grows when z; > 0, i.e., if
z2 > 0 then zp grows, and z, decreases when z; < 0. Notice that v, can only take
two different values, 1 —z3 when z; > 0, and —(1 —z3) when z; < 0. Thus, the only
way in which the situation represented in Fig. 3.41 can be obtained is that z3 = 1,
i.e., that v, = 0, in both regions. This means that the output voltage is equal to the
power supply voltage, i.e., vg = E.

AZ

Fig. 3.41 Evolution of the resonant variables z and z; when u = sign(zy)
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Fig. 3.42 Evolution of the resonant variables z y z; when u = sign(s) withs = z; — y 22

An important application of DC-to-DC high-frequency series resonant power
electronic converters is to deliver output voltages that are smaller than the power
supply voltage, i.e., v9g < E or z3 < 1. Define a function s = z; — yz2, with y a
positive constant, and assign u = sign(s). This defines the four regions shown in
Fig. 3.42. Notice that the transistors Q1, Q3 are turned on when u = +1, i.e., above
the straight line z; = yz», but the electric current flows through them only when
z1 > 0 as, even when Q1, Q3 are turned on, the electric current flows through the
diodes Dy, D3 when z; < 0 (the electric current only flows in one direction through
any of the transistors Q1, Q2, O3, Q4). On the other hand, the transistors Q>, Q4
are turned on when u = —1, i.e., below the straight line z; = yz7, but the electric
current flows through them only when z; < 0, as, despite Q», Q4 being turned on,
the electric current flows through diodes D;, D4 when z; > 0.

The resonant variables still evolve according to (3.150) and (3.151), but now v,
takes the following constant values:
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1 —12z3, Q1, Q3 insaturation, (z1 > yz2, z1 > 0)
—(1 —z3), Q», Q4 in saturation, (z1 < yz2, 21 < 0)
1+ z3, Dy, D3 conduct, (z1 > yz2, z1 <0)

—(1+2z3), D>, Dgconduct, (z1 < yz2, 71 > 0)

Ve =

This means that, again, and according to arguments between (3.150) and the
paragraph after (3.155), the resonant variables describe circles on the z» — z; plane.
Radii of these circles are determined by the initial conditions in each region, which
are equal to the final values in the previous region. The center of these circles is
located at the following points, depending on the operation region:

(z2,21) =10 -23,0), z1>yz2, 21 >0,
(z2,21) = (=1+4+23,0), z1 <vyz2, 21 <0,
(z2,21) = (14+23,0), z1>yz2, 21 <0,

(z2,21) = (=1—123,0), z1 <yz2, 71 > 0.

Figure 3.42 depicts the corresponding situation when y = 3. Notice that, again,
the resonant variables z, z1, i.€., v and i, describe sustained oscillations. To obtain
the closed trajectory shown in Fig.3.42, we may proceed as follows. Propose any
z3 < 1 and any point in the zo — z; plane as an initial condition. Using a pair
of compasses, draw circles centered at the above indicated points according to the
respective operation region. According to the previous discussion and (3.151), these
circles are clockwise-oriented. The reader will realize that an helix appears similar
to the dashed line in Fig. 3.42, which finally ends on a closed trajectory. The fact
that this closed trajectory is reached from any initial point on the z» — z; plane is
indicative that it is stable or attractive. It is possible to proceed analogously using
some z3 > 1 to verify that a closed trajectory is also reached in such a case. This
is indicative that in a series resonant converter is not possible to deliver, in a steady
state, an output voltage vg larger than the power supply voltage E, i.e., z3 > 1is not
possible in a steady state. If an output voltage vg > E is desired, then the parallel
resonant converter shown in Fig. 2.34b is a suitable alternative.

On the other hand, arcs with a center at (z2,z1) = (1 — z3,0) and (22, z1) =
(=1 — z3,0), shown in Fig.3.42, are drawn one after the other. Then, if both of
them were centered at origin (z2,z1) = (0, 0), they would together span a 180°
angle. However, using basic geometry in Fig.3.42 it is possible to conclude that
arcs with the center at (22, z1) = (1 — z3,0) and (z2, z1) = (—1 — z3, 0) together
describe an angle smaller that 180° despite completing a semicircle on both resonant
variables z2, z1. Hence, the four arcs composing the whole closed trajectory in
Fig. 3.42 together describe an angle smaller that 360° despite a complete cycle being
described on both resonant variables. Notice that each one of these arcs is covered
at a frequency that is still w, = 1, but, according to the above description, less
time is now required to complete an oscillation as the four arcs together describe a
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smaller angle at the same angular frequency. Thus, the resonant variables oscillate
at a frequency w,, which is larger than w, = 1, i.e., w, > w,. Using (3.146), it is
possible to verify that:

wy 1 Wy
Wpt = —— = ——, Wot = —— > Wy,
nt ,—LC ,—LC ot /—LC nt

where wy,; and w,; stand respectively, for the resonance frequency and the operation
frequency, expressed with respect to real time ¢. Hence, it is concluded that the
circuit must operate at frequencies that are greater than the resonance frequency to
deliver output voltages smaller than the power supply voltage vg < E, i.e., z3 < 1.
This is the reason why, when the transistors are activated according to u = sign(s),
the circuit in Figs. 2.34a and 2.35 is designated as DC-to-DC high-frequency series
resonant power electronic converter. Further information on DC-to-DC resonant
power electronic converters can be found in [8], where converters of this class (series
and parallel) are designed, constructed, controlled, and experimentally tested, and
[7], where the method used here to analyze series resonant converters drawing arcs
of a circle is studied. On the other hand, the use of the phase plane zo» — z; to study
the operation of resonant power converters was introduced for the first time in [9]
and [10].

3.10 Summary

The systems to be controlled in engineering, and every component in a closed-loop
control system, are described by ordinary, linear differential equations with constant
coefficients. Hence, for a control engineer, the study of differential equations must
be oriented toward the understanding of the properties of the differential equations
that shape the solution waveform.

The solution of an ordinary, linear differential equation with constant coefficients
is given as the addition of the natural and the forced responses. The natural response
only depends on the roots of the differential equation characteristic polynomial and
it is always present, even when the excitation function (or input) is zero. On the
other hand, the forced response depends on the excitation function (or input), i.e.,
the forced response is zero if the excitation function is zero. The forced response
can be rendered to be equal to the excitation function or input. Furthermore, if
the differential equation is stable, i.e., if the natural response tends toward zero,
the complete response converges to the forced response. Hence, the input of a
differential equation can be chosen to be equal to the way in which it is desired
that the differential equation solution behaves.

Thus, the rationale behind control system design is the following. Given a system
or plant to be controlled, i.e., a differential equation, choose a controller, i.e.,
another differential equation, such that when feedback connects the two differential
equations, a new equivalent closed-loop differential equation is obtained with the
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following properties: 1) it is stable, 2) the forced response is equal to the input
applied to the closed-loop system, i.e., the desired input of the closed-loop system,
and 3) the natural response vanishes as fast and damped as desired.

The features listed in the previous paragraph are accomplished as follows:

1. Stability is determined exclusively by the roots of the differential equation
characteristic polynomial or, equivalently, by the poles of the corresponding
transfer function (see Sect. 3.4).

2. The steady-state response is achieved by rendering the forced response equal
to the input applied to the closed-loop system. It is explained in Sect. 3.4 that
this depends on the independent terms of polynomials at the numerator and
denominator in the closed-loop transfer function for the case of constant inputs.

3. The transient response refers to the suitable shaping of the natural response
waveform and is achieved by suitably assigning the closed-loop poles.

Controller design for arbitrary plants is studied in Chaps. 5, 6, 7 using the root
locus method in addition to the frequency response and the state space approach.
The main idea is to render the closed-loop system stable, so that the steady-state
response is equal to the closed-loop system input and the transient response suitably
shaped.

3.11 Review Questions

1. Why is a transfer function unstable if it has one pole with a zero real part that is
repeated two or more times?

2. It has been said that the forced response has the same waveform as the input.
Explain why this is not ensured if the transfer function has poles with a zero real
part. Give an example of an input and a transfer function where this happens.

3. When an incandescent lamp is turned on it becomes hot. However, its tempera-
ture does not grow to infinity, but it stops at a certain value. Of the differential
equations that have been studied in this chapter, which is the one that better
describes the evolution in time of the incandescent lamp temperature? Why?

4. What is the relationship between a transfer function and a differential equation?

. What are the conditions that determine the stability of a transfer function?

6. What are the necessary assumptions for a permanent magnet brushed DC motor
to behave as an integrator or a double integrator?

7. How do you think the natural response waveform of a second-order differential
equation whose characteristic polynomial has two real, repeated, and negative
roots?

8. It has been explained that the time functions composing the natural response
are determined by the transfer function poles, i.e., roots of the characteristic
polynomial, but what is the effect of the transfer function zeros? What do you
think determines the coefficients when using partial fraction expansion to apply
the inverse Laplace transform? (see Sects. 3.1 and 3.5).

9]



184 3 Ordinary Linear Differential Equations

9. Indicate the zones of the s complex plane where the poles have to be located to
achieve (i) fast but not oscillatory responses, (i7) fast and oscillatory responses,
(ii7) permanent oscillatory responses, and (iv) unstable responses.

3.12 Exercises

1. Consider the water level system in Example 3.2. The response in Fig.3.43 is
obtained when a constant water flow ¢; is applied and the tank has a constant
cross-section of 0.5[m?]. Find the values of both R and qi-

2. Consider a proportional level control, i.e., when g; = kik,(hg — h), with hy
the constant desired level. Using the results in the previous exercise to find the
gain kj, such that the steady-state error is less than or equal to 20% of the
desired value and that the time constant is less than or equal to one third of
the time constant in the previous exercise, i.e., the open-loop time constant.
Find the maximal value of g; that must be supplied. This is important for
selecting the water pump to be employed. Suppose that the opening of the
output valve is increased such that its hydraulic resistance decreases to 50%.
Find the increment or the decrement, as a percentage, of the level steady-state
error and the new time constant.

h o0.18 . . . . . . . . .
[m)]

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Fig. 3.43 Water level when a constant water flow is applied
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Fig. 3.44 Mass position in a mass-spring-damper system when a constant force is applied at the
input. The dotted line stands for the final value of the mass position

3. Consider a proportional—integral level control. Show that oscillations in the
water level appear if an adequate gain k; > 0 is employed. Use your everyday
experience to explain this phenomenon.

4. Given the following differential equation:

§+ 1275 + 570y = 3990u, y(0) =0, $(0)=0, u=1,

find values of ¢, w, and k in (3.53). With these values, write an expression for
y().

5. Consider the mass-spring-damper system described in Example 3.8. The
response shown in Fig.3.44 is obtained when the constant force f=0.5[N] is
applied. Find the values of b, K, and m.

6. Consider the following transfer functions:

Yi(s) = Gi()U(s), Ya(s) = Ga(s)U(s),
ab

N = T ae Ty

b
Ga(s) = m,

a>0,b>0,

where U(s) = A/s, with A a constant. Perform simulations where a takes
values that increase from small to large (with respect to b) and compare
graphically y;(¢) and y»(¢). Explain what is observed.
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7.

10.

11.

12.

3 Ordinary Linear Differential Equations

According to Sect. 3.1, it is known that from any initial condition the following
differential equation y 4+ 7y = 2 has a solution given as y(r) = Ee™ /' + D
where E and D are some constants that are not going to be computed in this
exercise. Proceeding similarly, find the solution for each one of the following
differential equations.

J+4y+y=2,
=y +y+10y =31,
¥+ 7y = 2sin(z),
43y +2y=2e",
V+2y+ 2y =2cos(2t) — 4sin(2t),
J—4y =8> —4,
y® +11y® 4285 = 10.
For each one of the following differential equations, find the value of
lim;, » y(#). Notice that the same result can be obtained, no matter what
the initial conditions are.
Y 4§ -2y 4y =8,
¥+ =10y = cos(51),
y+ay+by=kA, a=>0,b>0,a,b,A,kare constants.
Which one of the following differential equations has a solution with a smaller
overshoot and which one has a solution with a smaller rise time?
35 +3y + 6y =24,
V+4y +10y =94,
A is a constant.
Compute the poles of a second-order system with a 25% overshoot and 0.2[s]
rise time.
Consider the proportional position control with velocity feedback of the
following DC motor: 6 4 0.46 = 30u, where 6 is the angular position, whereas
u is the applied voltage. Find the controller gains to achieve a 0.01[s] rise time
and a 10% overshoot.
Consider the solution of a second-order differential equation when a step
input is applied and assuming zero initial conditions, which is presented

in (3.57). Find the maxima and minima of this response and solving for the
first maximum, show that overshoot can be computed as:

S
M, (%) =100 x e V1-22
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Find the times when the natural response is zero and solving for the first of
these times, show that:

N _ 2
t, = L |:7T — arctan (#)} .
wq ¢

13. Consider the following expressions:

S, Z6s) =

Y(s) =
) s2+c¢ s2+4¢

U(s).

where U(s) = A/s with A, a, b, c, d, are positive constants. Express y(¢) as a
function of z(7).
14. Consider the following transfer function:

Cc

G()=———7—.
() s24+bs+c

‘What must be done with b or ¢ to achieve a faster system response?, What must
be done with b or ¢ to achieve a less oscillatory response?

15. Consider the solution y(¢) of an arbitrary n—order linear differential equation
with constant coefficients.

If the input is bounded, What are the conditions to ensure that y(z) is also
bounded for all time? i.e., to ensure that y(¢) does not become infinity.
What are the conditions for the forced response to be the only component of
y(t) that remains as time increases?

Assume that the input is zero. What are the different behaviors for y(¢) as
time increases and under what conditions do they appear?

Assume that the input is a polynomial of time. Show that the solution is not
a polynomial with a larger degree than the polynomial at the input if all the
roots of the characteristic polynomial have a negative real part.

Assume that the input is given as the addition of several sine and cosine
functions of time with different frequencies. Using the results in Sect. 3.6
and the superposition principle, Can you explain the following fundamental
result for linear differential equations? [6, pp. 389]: “if the input is any
periodic function with period 7 and all the roots of the characteristic
polynomial have negative real parts, then as ¢ — oo the solution y(#) is
also a periodic function with period 7', although with a waveform that may
be different from that of the input.” Recall the concept of the Fourier series.

16. Verify the following equations:

5 _5/3 5,3
2 s2+s—2_s+2+s—l

)
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.. 2 1/3 2/3 -1
ii) = +—,
ss+2)(s—-1) s+2 s—1 s
1 12 —1/4  1/4
SR s By T py g B
. 1 112 —3/4 —1/4
W e ooy steom it
2 1 —s
R T
3 1 —1/3 —1/9 1/9
vi) 33 3 52 + s +s—3’
i 8 _Cl2 4 4
s(s+4(s—4) s s+4 s—4
8 1 -1
viii) s2—16:s—4+s+4’
. 4 2 —1 s—1
x) s4+s3+2s2:s_2+7+s2+s+2’
4 2 2 1 —s—1
x)

S A3 445145243 GF) G Tsrl T

o 3s2435—-2 -1 2 1
W ey Tt

s+2 2 -3 1 3
26+ 2 s terr i

Xii)
17. An induction oven is basically an inductor L with a heat-resistant material
inside containing some metal to melt down. A capacitor C is series-connected to
the inductor to improve the power factor. A high-frequency alternating voltage
is applied at the circuit terminals that induces eddy currents in metal, producing
heat and, hence, melting it down.
This device constitutes a series RLC circuit where the resistance R is rep-
resented by the equivalent electrical resistance of metal to melt down. The
high-frequency alternating voltage applied to the circuit is given as a square
wave described as u = E sign(i), where i is the electric current through the
circuit, E is a positive constant and sign(i) = +1ifi > Qor sign(i) = —11if
i <O.
* Assume that the initial electric current is zero. Show that, provided that the

damping coefficient is less than unity, i.e., 0 < { < 1, the electric current
through the inductor is zero periodically with period 7 /wg, where wy; =

wnvl_gz’wn:ﬁy;:ﬁ'
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According to u = E sign(i), the applied voltage, u, changes value when
i = 0. Using this and v.(0) as the initial voltage at the capacitor, find an
expression for the voltage at the capacitor that will be useful the next time
thati = 0.

Propose any values for R, L, and C such that 0 < ¢ < 1. Assuming
that the voltage at the capacitor and the current through the inductor are
not discontinuous when the value of u changes (why?), write a computer
program to use iteratively the formula in the previous item to compute
voltage at the capacitor after # has changed several times. Verify that the
voltage at the capacitor, when i = 0, converges to a constant.

Perform a simulation of the series RLC circuit when u = E sign(i), to
verify the result in the previous item.

18. According to Example 3.19, when the armature inductance is negligible, the
mathematical model of a DC motor is given as:

19.

km
o0 = ey’
s+ (7 + JmR;)

where w(s) and V (s) are the Laplace transforms of the motor velocity and
voltage applied at the motor terminals respectively.

Assume that the applied voltage is zero and that the initial velocity is not
zero. Notice that applying a zero voltage at motor terminals is equivalent
to putting a short circuit at the armature motor terminals and that a non-
zero-induced voltage is present if the velocity is not zero. Depict the natural
response under these conditions. What can be done to force the natural
response to vanish faster? What happens with the electric current? Can you
explain why the natural response vanishes faster if the armature resistance is
closer to zero? Do you know the meaning of the term “dynamic braking”?
Why does the time constant depend on motor inertia? What does this mean
from the point of view of Newton’s Laws of Mechanics?

Assume that a voltage different from zero is applied when the initial velocity
is zero. Depict the system response. Why does the final velocity not depend
on the motor inertia J? Give an interpretation from the point of view of
physics.

Consider the electric circuit in Fig.3.45. This circuit is called a phase-lag
network. The corresponding mathematical model is given in (2.146) and is
rewritten here for ease of reference:

1

R s+ we R 1
Vols) = = Vi) + e (0),
1+ 28 + ‘IR 1+ 25+ ®TR)C
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Fig. 3.45 Phase-lag network R,

AVAYA L "
+ C

vi(t) () vy (t)

0.8
0.6
0.4r
02

vo(t) [V]
o

-0.2
—0.4}
_06}
-0.81

0 05 1 15 2 25 3 35 4 45 5
time [s]

Fig. 3.46 Time response of the circuit in Fig. 3.45

where v, (0) is the initial voltage at the capacitor. Show that the solution is given
as:

1

Ry
vwt) =A+ — W00 —Ae ™, g=——-
0®) R R O A (R, + R)C

and use this result to explain the response in Fig. 3.46 when v; (¢) is the square
wave represented by the dash-dot line, v.(0) = 0, Ry = 2[§2], Ry = 1[£2] and
C = 1/33[F].

20. Repeat the previous exercise for all circuits in Fig.2.39. Use MAT-
LAB/Simulink to draw the time response and verify your results.

21. Consider the simple pendulum in Fig. 3.47 when the external torque 7'(t) = 0
and friction is negligible. The mathematical model is given as:

ml%d + mgl = 0,
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Fig. 3.47 Simple pendulum

which is valid only when the pendulum remains close to the downward vertical
configuration, i.e., 6 is “small,” 8 ~ 0 (see Example 7.5, Chap. 7). Find the
required pendulum length [ to produce oscillations with a period of 1 s.
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Chapter 4 )
Stability Criteria and Steady-State Error o

A general control system is made up of several interacting components : the plant to
be controlled, the controller, the measurement systems, the actuators, etc. This is the
reason why a control system may be very complex. Despite this, any closed-loop
control system may be reduced to being represented by a single transfer function
that relates the output to be controlled and the reference or the desired output. This
closed-loop transfer function can be studied as in Chap. 3. In the present chapter,
the concept of block diagrams (see [1] for a historical perspective) is introduced to
represent how a closed-loop control system is constituted and how to manipulate
them to obtain the closed-loop transfer function is also explained.

On the other hand, a control system is always designed such that: a) it is stable, b)
the desired transient response specifications are satisfied, and c) the desired steady-
state response specifications are satisfied. According to Chap. 3, a transfer function
is stable if all its poles have a negative real part. However, checking this property
analytically may be difficult and, because of that, it is necessary to find simple
methods to solve this problem. Two alternatives are presented in this chapter: 1)
the rule of signs to determine the sign of the real part of the roots of a polynomial
and, 2) Routh’s stability criterion (see [1] for a historical perspective).

The transient response of a control system depends on the location of poles
(and zeros) of the closed-loop transfer function. There are two different methods of
designing a controller, assigning poles and zeros of the closed-loop transfer function
at suitable locations: the root locus method (see Chap. 5) and the frequency response
method (see Chap. 6).

Finally, satisfying the desired specifications for the steady-state response is
concerned with forcing the closed-loop system response to reach the reference
or desired output once the natural response vanishes.! This is accomplished by

IWhen time is large enough or in a steady state.
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designing a controller that renders the closed-loop system forced response equal
to, or at least close to, the reference or desired output. This subject is also studied in
the present chapter.

4.1 Block Diagrams

Some examples are presented in the following to show how a block diagram can be
simplified to obtain a single transfer function representing the whole block diagram.
We also present some examples of block diagrams where a single output is affected
by two different inputs.

Example 4.1 Consider two systems such that the input of one of them is the output
of the other, as depicted in Fig.4.1. It is said that these systems are cascade-
connected. Notice that:

Yi(s) = G1()Ui(s), Yals) = Ga(s)Ua(s), Ui(s) = Ya(s),
to obtain:
Yi(s) = G1(8)Ga(s)Ua(s), G(s) = G1(s)Gal(s),
Y1(s) = G(s)Ua(s).

This means that cascade-connected systems, such as those in Fig.4.1, can be
represented by a single transfer function G (s) that can be computed as the product
of the individual transfer functions of systems in the connection. The reader can
verify that this is true no matter how many cascade-connected systems there are.

Example 4.2 Suppose that we have two parallel-connected systems, as depicted in
Fig.4.2. Notice that:

Yi(s) =G1(5)U(s), Ya(s) = Ga(s)U(s),
to write:

Y1(s) + Y2(s) = (G1(s) + G2(s)HU(s), G(s) = G1(s) + Ga(s),
Yi(s) + Ya(s) = G(s)U (s).

Us(s Yi(s 5(s Yi(s
L» Gs(s) > Gi(s) —(>) :> u» G(s) —(>)

Fig. 4.1 Cascade-connected systems
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Y

Gi(s) —ﬁ

=
Vel
=z

Uls
— L» G(s) |— Yi(s) +Y,(s)

Fig. 4.2 Parallel-connected systems

Fig. 4.3 A closed-loop or R(s)
feedback control system

This means that parallel-connected systems, such as those in Fig.4.2, can be
represented by a single transfer function G(s) that is computed as the addition of
the transfer functions of each single system in the parallel connection. The reader
can verify that this is true no matter how many systems are in the parallel connection.

Example 4.3 Consider the closed-loop control system depicted in Fig. 4.3. Blocks
G (s) and H (s) stand for the transfer functions of the several components of a control
system. In fact, G(s) and H(s) can be the result of the combination of several
transfer functions of several components of the control system, such as those in the
previous examples. According to the definition of transfer function, from Fig. 4.3 it
is found that:

C(s) =G()E(s), E(s)=R(s)—=Y(s), Y(s)=H(s)C(s).
Replacing these expressions in each other, the following is obtained:

C(s) = GO[R(s) = Y (s)],
= G()[R(s) — H(s)C(s)],
= G()R(s) = G(s)H(s)C(s),
CIL+G()H(s)] = G)R(s),

G(s)

O =TT emae

R(s),
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where:

_C(s) G(s)
 RGs) 14+G)H()'

M(s) A.1)

is known as the closed-loop transfer function.

Example 4.4 Consider the block diagram shown in Fig. 4.4a. To simplify this block
diagram, it is convenient to shift the subtraction point placed at the right of U (s) to
the point where I*(s) appears. This must be accomplished by keeping the definition
of I(s) in Fig. 4.4a without change. This means that, according to Fig. 4.4a:

1
I(s) = m[KAP(I*(s) — 1(s5)) — nk.s0(s)].

0(s)
—
0(s)
—
nk,
(b)
T, ()
r'(s) + ] 1) N i 0(s)
@ Ls+R+KA, ki . Js24bs '
nk,
%a, $
(c)

Fig. 4.4 Block diagram simplification
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Notice that this expression is also valid in the block diagram of Fig. 4.4b; hence, this
block diagram is equivalent to that in Fig. 4.4a. It is clear that the loop between the
second subtraction point in Fig. 4.4b and I (s) is identical to the closed-loop system
shown in Fig. 4.3 with:

G(s) = K4y H(s) =1
~ Ls+R’ o
It is clear that the main result in Example 4.1 has been employed to compute
the transfer function of two cascaded systems as the product of the individual
transfer functions of the cascaded systems. Hence, using (4.1), the following transfer
function is found, which must be placed before 1 (s):

KA,
Ls+ R+ KA,

This is shown in Fig.4.4c. The block diagram in Fig.4.4c has two inputs. To
represent the output 9(s) as a function of both inputs, the superposition principle
has to be employed (see Sect. 3.7), i.e.,

0(s) = G1(HI*(s) + G2()Tp(s). (4.2)

G (s) is the transfer function computed when I*(s) is the input and 6(s) is the
output, and it is assumed that 7),(s) = 0 in the block diagram in Fig.4.4c, i.e.,
when the block diagram is depicted as in Fig. 4.5a. Thus, using (4.1), the following
is defined:

MGs) = < ) _ 50 _ ¢ ),
+ G(s)H(s) I*(s)
with:
Gs) = K Apnky, Hs) = nkes
VT s+ R+ KANUsZ+bs) T KA,
to find:
Gi(s) = o 4.3)

.
(SR +1) (57 +b) + e s

On the other hand, G2 (s) is the transfer function obtained when 7/, (s) is the input,
6 (s) is the output and it is assumed that 7*(s) = 0 in the block diagram in Fig. 4.4c,
i.e., when block diagram is depicted as in Fig. 4.5b. Hence, using (4.1), the following
is defined:

—G(s) . 6(s)

MO =1T60HE ~ T,

= Ga(s),
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') )

, N N
Ls+R+KA, Js2+bs

nk. P
KAZ,S )
(a)
O — 0(s)
i - Js2+bs -
TL]C,,LKA[) B nke S
Ls+R+KA, ) KA,
(b)
I"(s) —— Gu(s)
+
0(s)
+
T,(s) —— Gs(s)
(c)

Fig. 4.5 Simplifying the block diagram in Fig.4.4c . (a) Block diagram when T, (s) = 0. (b)
Block diagram when I*(s) = 0. (¢) Block diagram equivalent to any of the block diagrams in
Fig. 4.4

with:
G(s) Hs) nzkmkes
S) = —_—, =,
JsZ+bs VT Ls+ R+ KA,
to obtain:
L+R
- ()

S
(B8 +1) 57 + 1) + ke ] s
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Thus, any of block diagrams in Figs. 4.4a, b or ¢ can be represented as block diagram
in Fig. 4.5¢c with G (s) and G>(s) given in (4.3) and (4.4).

Example 4.5 Consider the closed-loop system shown in Fig.4.6a. This block
diagram represents a control scheme known as two degrees of freedom control. This
is a closed-loop system with two inputs and one output. Hence, we can proceed as
in the previous example to write, using the superposition principle:

C(s) = G1(S)R(s) + G2(s) D(s).

G1(s) is the transfer function obtained when using R(s) as the input, C(s) as the
output and D(s) = 0, i.e., when the block diagram in Fig. 4.6b is employed. On
the other hand, G, (s) is the transfer function obtained when using D(s) as the
input, C(s) as the output and R(s) = 0, i.e., when the block diagram in Fig. 4.6¢ is
employed.

D(s)
R(s) + + C(s)
) Ga(s) 5 hF G, (5) >
G (9)
A
(a)
R(s)+ o0 i V(s) e 0(:>
Gea(s)
A
(b)
D(s) + o C(s)
T G(;l(S) <
+
Grz(b) <
(c)

Fig. 4.6 A two-degree-of-freedom control system. (a) Closed-loop system. (b) Case when D(s) =
0. (¢) Case when R(s) =0
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First, proceed to obtain Gi(s). To simplify the block diagram in Fig.4.6b
notice that:

V(s) = Ge1($)(R(s) = C(s)) = Gea(5)C(s),
= Gc1($)(R(s) = C(s)) + Ga(s)(R(s) — C(5)) — Ga(s)R(s),
= (Ge1(s) + Ga(s))(R(s) = C(s)) = Ga(s)R(s).

Then, the block diagrams in Figs.4.7a, b, and ¢ are successively obtained. Notice
that, according to the Example 4.2, the following can be written:

T Go®
Fsy= [1 G + Gcz(S)] R(),

_ Ge1(s) + Gea(s) — Geals)

R(s),
Ge1(s) + Geals)
_ Gcl(s)
= Ga®) + Gaw) 1) *>
> GFQ(S)
R(s T Y V(s C(s)
(s) | + Ca(3) 1 Caals) 2 (s) e )
(a)
cul) > Gals) + Guls)
S A10) C(s)
Ga(s) + Gals) P Gy(s) >
(b)
—> Geo(s)
Ga(s)+ Goos)
s V(s C(s)
R(s) Ga(s) + Guls) U: G, (s) >

()

Fig. 4.7 Simplifying the block diagram in Fig. 4.6b
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On the other hand, (4.1) can be used together with:
G(s) = (Ge1(s) + G2(5)Gp(s), H(s)=1,

to find:

Cs) = (Ge1(8) + Ga(s)Gp(s)

= F(s). (4.6)
14+ (Ge1(s) + Gea(s) G (s)

Replacing (4.5) in (4.6), the following is found:

Cls) = Ge1()Gp(s) RGs).
L+ (Gei(s) + Gea(5))Gp(s)
hence:
Gi(s) = Ge1(5)Gp(s) @7

1+ (Gei(s) + Ga()Gp(s)

On the other hand, from the block diagram in Fig.4.6c and according to Exam-
ple 4.2, the block diagram in Fig. 4.8 is obtained. Using (4.1) and:

G(s) =Gp(s), H(s)=Ger(s) + Gea(s),

yields:
Cs) = Cp(s) D(s),
14+ (Ge1(s) + Gea(s)Gp(s)
ie.,
Go(s) = Gps) (4.8)

1+ (Ge1(s) + Gea()Gp(s)

Hence, the block diagram in Fig.4.6a can be represented as the block diagram in
Fig. 4.9 with G (s) and G,(s) given in (4.7) and (4.8).

Fig. 4.8 Simplifying block D(s) +

diagram in Fig. 4.6¢ __»O—> G, ()

v Q
x
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Fig. 4.9 Equivalent block
diagram to that in Fig. 4.6a R(s) — Gy(s)

4.2 The Rule of Signs

According to Sect. 3.4, the stability of a transfer function is ensured if all its poles
have a negative real part, i.e., if all the roots of its characteristic polynomial have
a negative real part. However, sometimes, it is difficult to compute the exact value
of the poles and this is especially true when the polynomial has a degree that is
greater than or equal to 3. The reason for this is that the procedure to compute the
roots of third- or fourth-degree polynomials is complex. Moreover, for polynomials
with a degree greater than or equal to 5, analytical procedures do not exist. Even
for second-degree polynomials the analytical procedure may be tedious. Thus, it is
desirable to have a simple method for determining whether all roots of a polynomial
have a negative real part or whether there are some roots with a positive real part.
Some simple criteria for solving this problem are introduced in this section. These
criteria are based on the study of signs of the polynomial coefficients.

4.2.1 Second-Degree Polynomials

Criterion 4.1 If all the coefficients of a second-degree polynomial have the same
sign, then all its roots have a negative real part.

Proof Consider the following polynomial:
p(s) = s2+cs +d,

where ¢ > 0, d > 0. If all the coefficients of the polynomial had a negative sign,
then this sign can be factorized to proceed as shown in the following, i.e., when all
the coefficients are positive. A second-degree polynomial p(s) has two roots, which
can be computed using the general formula:

—c++/c2—4d

> (4.9)

1,2 =

e Case (i):c2 —4d < 0.
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In this case, both roots are complex conjugate with a negative real part because
c>0:

—c  4d — 2 .
51,2 = 7 :l: T']

e Case (ii): 2 —4d > 0.
In this case,

A>ct—4d > 0,
because d > 0. Applying the square root on both sides yields:
c>+c?2—4d,
because the square root is a strictly increasing function. Then:

c—+Vc2—4d > 0.

According to (4.9), this means that both roots are real, different, and negative in
this case:

c+~cr—4d
51:——<0,
2
c—+/c2—4d
52:——<0
2

o Case (iii): ¢ —4d = 0.
In this case, both roots are real, repeated, and negative:

—C
51’2 = —.
2

Example 4.6 Notice that the polynomial s2 + s + 1 satisfies the case (i); hence, its
roots are complex conjugate with a negative real part. In fact, it is not difficult to
verify that these roots are —0.5 4 j0.866 and —0.5 — j0.866. On the other hand, the
polynomial s2 4+ 2.55 + 1 satisfies the case (ii); hence, its roots are real, different,
and negative. It is not difficult to verify that these roots are —2 and —0.5. Finally,
the polynomial 52+ 25+ 1 satisfies the case (ii1); hence, its roots are real, repeated,
and negative. It is not difficult to verify that these roots are —1 and —1.

Criterion 4.2 [f some coefficients of a second-degree polynomial have a sign that
is different to signs of the other coefficients, then at least one root has a positive
real part.
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Proof Consider the following polynomial:
p(s) = s>+ cs +d.

There are three possibilities:

1) ¢<0,d>0.
2) ¢>0,d <O.
3) ¢<0,d <0O.

Both roots are computed using the general formula:

—cE+ 2 —4d

51,2 =
2

e Case (i): 2 —4d < 0.
In this case, both roots are complex conjugate with a positive real part if 1) is
satisfied. Cases 2) and 3) are not possible because d < 0 implies ¢> — 4d > 0.
e Case (ii): ¢ —4d > 0.
This case is possible for 2) and 3) and some small values for d > 0 in 1). For
larger values of d > 0, i) is retrieved. Consider cases 2) and 3), then:
?<c?—4d.
Applying the square root on both sides of this inequality yields:
abs(c) <V c? —4d,

because the square root is a strictly increasing function. Then:

abs(c) —vc?—4d <0, or 0 < —abs(c)++v/c?—4d.

This means that both roots are real and different, with one of them positive:

c+~ct—4d
s=———— <0,
2
c—~ct—4d 0
=— >
52 >

Now consider case 1):
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Applying the square root on both sides of this inequality yields:

abs(c) > /2 —4d,

ie.,

abs(c) —vVc2—4d >0, or —abs(c)++vVc2—4d <DO.

As ¢ < 0and d > 0, then there are two positive real roots:

c++/ct—4d
- >

= 0,
S1 2
— V2 —4d
P S )
2

e Case (iii): > —4d = 0.
In this case d = 02/4 > 0, only if 1) is satisfied, i.e., ¢ < 0. This implies that
both roots are real, repeated, and positive:

—c
s12=—>0.
2

Example 4.7 Several second-degree polynomials and their corresponding roots are
presented in what follows. It is left as an exercise for the reader to verify these results
and to relate them to the cases analyzed above.

o s2425— 1, roots: —2.4142 and 0.4142.

e s2—255+1,roots: 2 and 0.5.

s2 — s — 1, roots: 1.618 and —0.618.

o 52— s+ 1,roots: 0.5+ j0.866 and 0.5 — j0.866.
e s2—25+1,ro0ts: 1 and 1.

4.2.2 First-Degree Polynomials

In this case, is very easy to prove that the same conditions stand as for second-degree
polynomials:

Criterion 4.3 [f both coefficients of a first-order polynomial have the same sign,
then its only root is real and negative. If one coefficient has the opposite sign to the
other; then the only root is real and positive.
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4.2.3 Polynomials with a Degree Greater Than or Equal to 3

Criterion 4.4 [f at least one coefficient has the opposite sign to the other coeffi-
cients, then there is at least one root with a positive real part.

Proof Consider the following polynomial where n > 3:

Db dars Hag = (s = p)(s = p2) o (s = pa).

(4.10)

p(s) =s" +ap_15""

According to the study of second-degree polynomials, it is known that the product
(s—pi)s—pj) = s24cs+d has ¢ < 0and/or d < 0if at least one of the roots p;
or p; has a positive real part. On the other hand, the first-degree polynomial (s — px)
has a negative coefficient if its root py is positive. Also notice that the coefficients
aj, j =0,...,n — 1, on the left-hand side of (4.10) are obtained as the algebraic
sum of the product of coefficients of polynomials of the form s>4cs+d and (s — p)
existing on the right-hand side of (4.10). Then, the only way for a coefficienta; < 0
to exist on the left-hand side of (4.10) is that at least one root with a positive real part
exists on the right-hand side of (4.10), i.e., that some of the polynomials s + cs 4 d
or (s — px) have a negative coefficient.

Criterion 4.5 Even when all the coefficients have the same sign, it is not a given
that all roots have a negative real part.

This can be explained using the same arguments as for the proof of the previous
criterion, recalling that the product of two negative coefficients results in a positive
number. Then, even when all the coefficients of the polynomial on the left-hand side
of (4.10) are positive, there is the possibility that two negative coefficients (owing
to roots with positive real parts) on the right-hand side of (4.10) multiply to give a
positive coefficient on the left-hand side of (4.10).

Example 4.8 To illustrate what happens in a polynomial with a degree greater than
2, some polynomials and their roots are presented in the following. The reader can
corroborate these results by checking that s3> + a»s> + ays + ag = (s — p1)(s —
p2)(s — p3), where p1, pa, p3 are the roots of the corresponding polynomial.

o s3+5245+1.5, roots: —1.2041,0.102+ j1.1115 and 0.102— j1.1115. There are
two roots with a positive real part, despite all the polynomial coefficients having
the same sign.

o 53 —s24+541,roots: 0.7718 + j1.1151,0.7718 — j1.1151 and —0.5437. There
are two roots with a positive real part because one coefficient of the polynomial
has the opposite sign to the other coefficients.

o 5345241, roots: —1.4656, 0.2328 + j0.7926, 0.2328 — j0.7926. There are two
roots with a positive real part because one coefficient has a zero value, despite
the other coefficients having the same sign.
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o 53 4+5% 435+ 1, roots: —0.3194 4 j1.6332, —0.3194 — j1.6332 and —0.3611.
All roots have a negative real part and all the polynomial coefficients have the
same sign.

4.3 Routh’s Stability Criterion

As explained in the previous section, although the rule of signs is very easy to apply,
its main drawback appears when analyzing polynomials with a degree greater than
or equal to 3: when all coefficients have the same sign, nothing can be concluded
from the sign of the real part of the roots. The solution to this problem is provided
by Routh’s stability criterion, which, given a polynomial with an arbitrary degree,
establishes necessary and sufficient conditions to ensure that all its roots have a
negative real part.

Given an arbitrary polynomial, order its terms by descending powers of its
variable:

aps" + ap_18" " + - +ais + ap. “4.11)

Routh’s stability criterion is applied in two steps [2-5]:

1. Fill Table 4.1. Notice that the first two rows of the table are filled by direct
substitution of the polynomial coefficients. Also notice that the last entries in
the first two rows are zero, as that is the value of the coefficients of powers not
appearing in the polynomial in (4.11). The entries of the remaining rows are
computed using the following formulae:

dp—1ap—-2 — Apdp-3 ap—1ap—4 — Apdp-—5
bl = . b2 - )
Aan—1 an—1
an—1ap—6 — Andn—7
b3 = )
an—1
. biay_3 —ap_1b2 . biay_5 — ay—1b3 . biap_7 —ap_1by4
1 = —7 2 = —7 3 = —7
by by by
C]b2 —blcz Clb3 —b103 C1b4 —b1C4
d = ——, =— d=—
1 C] €1

Notice that, according to these formulae, the last entry in each row is zero and
the table is triangular.
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Table 4.1 Application of

s" a ap—2 | ap—4 | an— 0
Routh’s stability criterion - . R R R
s ap—1 |ap-3 |dp-5 |dp—7 0
s"72 | by by b3 by 0
s"3 ey ) 3 c4 0
sn4 d; dy d3 dy 0
: 0
52 14 r2 |0
5! q1 0
s° P2
Table 4.2 Application of 211 Te To
Routh’s criterion to the 1
. 0 st |a |0
polynomial s° + as + b
s b

2. Only analyze the first column in Table 4.1. The number of sign changes found
from top to bottom in the first column of the table is equal to to the number of
roots with a positive real part.

Several examples are presented in the following.

Example 4.9 Consider the following second-degree polynomial:
s +as + b,

with a and b two real constants. The rule of signs (Sect. 4.2) can be employed to
conclude that both roots have a negative real part if:

as the coefficient of s2 is +1. Routh’s criterion is now used to corroborate this
result. First, Table 4.2 is filled. Routh’s criterion establishes that the number of sign
changes in the first column of the table is equal to the number of roots with a positive
real part. Hence, if there are no sign changes, both roots have a negative real part.
As the first entry of the first column is +1 then:

a>0, b>0,

must be true to ensure that both roots have a negative real part. Thus, Routh’s
criterion and the rule of signs in Sect. 4.2 have the same conclusion, as expected.

Example 4.10 Consider the following polynomial:

53 4552 +25 — 8.
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Table 4.3 Application of 311 2 |0
Routh’s criterion to the 5
. 3 2 N 5 -8 |0
polynomial s° + 55+ 2s — 8
st | 2228 —36 | 0
sO | -8
Eabl§’4.4 . Applicatign of 3 11 061 |0
outh’s criterion to the 2 18 202 |0
polynomial
53+ 1.852 +0.615 +2.02 st | LBX0GI2Dal — 0512 |0
5O 2.02

Because of coefficient —8, i.e., with a negative sign when all the other coefficients
are positive, it is known from the rule of signs in Sect. 4.2 that there is at least
one root with a positive real part. Routh’s criterion is now used to corroborate this
result. First, Table 4.3 is filled. Routh’s criterion establishes that the number of sign
changes in the first column is equal to the number of roots with a positive real part.
Hence, it is concluded that the polynomial s + 552 4 25 — 8 has one root with a
positive real part. In fact, the use of the MATLAB command:

roots([1 5 2 -8])

allows us to find that:

are the roots of the polynomial.
Example 4.11 Consider the following polynomial:
57+ 1.8s +0.61s + 2.02.

As all the coefficients have the same sign and the polynomial is third-degree,
the rule of signs in Sect. 4.2 is not useful in this problem. In this case, Routh’s
stability criterion is a suitable alternative. First, Table 4.4 is filled. Routh’s criterion
establishes that the number of sign changes in the first column is equal to the
number of roots with a positive real part. Hence, it is concluded that the polynomial
s34 1.85% +0.61s + 2.02 has two roots with a positive real part. In fact, use of the
MATLAB command:

roots ([1 1.8 0.61 2.02])

allows us to find that:
s=-2, s=014j, s=0.1-7},

are the roots of the above polynomial.
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Table 4.5 Application of 31 b o
Routh’s criterion to the >
polynomial s> +as? +bs +¢ -

Example 4.12 Consider the following polynomial:
$3 +as2+bs+c,

where a, b and c are real unknown constants. This type of situation is very common
in control systems where coefficients of the characteristic polynomial depend on the
controller gains, which are not known and must be found such that closed-loop
stability is ensured. This is achieved by forcing all the roots of the closed-loop
characteristic polynomial to have a negative real part. However, the computation
of the roots of a third-degree polynomial using analytical methods is a very tedious
process; hence, that is not a practical solution. In this type of problem, Routh’s
stability criterion is, again, very useful. First, fill Table 4.5. Routh’s criterion
establishes that the number of sign changes in the first column of the table is equal
to the number of roots with a positive real part. Thus, as the first element in the first
column is +1, then if:

ab — ¢

a0, >0 ¢>0, 4.12)

a

it is ensured that all three roots have a negative real part. Notice that conditions
in (4.12) are equivalent to:

a>0, b>£>0 c>0.
a

This means that, although the coefficients a and ¢ are only required to be positive,
in the case of the coefficient b, this is not enough and a little more is demanded:
b>%>0.

Example 4.13 (Special Case: Only the Entry at the First Column of a Row Is Equal
to Zero) Consider the following polynomial:

§5 4 25% + 353 + 652 + 55 + 3.

First fill Table 4.6. However, the procedure stops at the row corresponding to s°
because the entry in the first column in that row is zero. As a consequence, some
divisions by zero would appear when continuing filling the remaining rows. In this
case, it is advised to replace the zero in the first column with a small ¢ > 0 to
continue filling the table as shown in Table 4.7.
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Table 4.6 4 Application of s 3 5
Routh’s criterion to the 2
. st 2 6
polynomial
s5+25% +35% + 652+ 55 +3 3 | 2Ix6 o | 25503 =35 (¢
52
s!
$0
gablfl ’4.7 ' APplicati}(in of s 3 5
outh’s criterion to the R 6 3
polynomial 3
5 +25* +353 4652 +5s+3 57 e 3.5 0
2 6-2x3.5 3-2x0 _
(cont.) §2 | ex6-2:35 | 23-2x0 _ 3 [

1 | 426—49—6¢> 0
12¢—14

s 13

Now, determine the number of sign changes in the first column as ¢ > 0 tends
toward zero. Notice that in this example there are two sign changes. This means that
the polynomial under study has two roots with a positive real part. In fact, use of the
MATLAB command:

roots([1 2 3 6 5 3])

allows us to find that the roots of the polynomial s> + 2s* + 353 + 652 + 55 + 3 are:

s = 0.3429 4 j1.5083, s =0.3429 — j1.5083, s = —1.6681,
s = —0.5088 4 j0.7020, s = —0.5088 — j0.7020.

If after ¢ > 0 is employed to fill the table, there were no sign changes in the first
column, then the system would be marginally stable, i.e., there would be some roots
on the imaginary axis.

Example 4.14 (Special Case: A Row Is Filled Exclusively with Zeros or a Row only
Has One Entry, Which Is Zero) Consider the following polynomial:

s3+3s2+5+3. (4.13)

First fill Table 4.8. The process stops at the row corresponding to s! because that
row is filled exclusively with zeros. This is a special case that is indicative of three
possibilities [3], pp. 336,[6], pp. 136:

1. There are real roots that are placed symmetrically with respect to origin.

2. There are imaginary roots that are placed symmetrically with respect to origin.

3. There are four complex conjugate roots placed at the vertices of a rectangle
centered at the origin.
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Table 4.8 . Application of 3 [ 1 lo
Routh’s criterion to the >
polynomial s> + 352 + 5 + 3

Table 4.9 Application of $31111 1o
Routh’s criterion to the >
polynomial s3 4 352 + 5 + 3 “1 313 10
(cont.) s’ |6

sO 13

To continue, use the entries in the row s> to form a new polynomial, i.e.,

P(s) =35> +3,
compute its derivative:
dP
() _ 65,
ds

and replace these coefficients in the row s! as shown in Table 4.9, to continue filling

the table. As no sign changes exist in the first column, it is concluded that no roots
exist with a positive real part; hence, only the case 2 above is possible: there are
two imaginary roots that are placed symmetrically with respect to origin and the
remaining root has a negative real part. Furthermore, another important feature of
this special case is the following:

“Form a polynomial with entries of the row above the row filled exclusively with
zeros. The roots of such a polynomial are also the roots of the polynomial in (4.13).”

This means that the roots of polynomial P(s) = 3s2 + 3 are also roots of s> +
352 + s 4 3. These roots can be obtained as:

32 43=0, =s=d=j.

Hence, the polynomial s3 4352 +s -+ 3 has one root at s = j and another at s = —j.
In fact, use of the MATLAB command:
roots([1 3 1 3])

allows us to find that the roots of s3 + 3s% + s + 3 are:

Example 4.15 (Special Case: A Row Is Filled Exclusively with Zeros or a Row only
Has One Entry, Which Is Zero) Consider the following polynomial:

st 5241
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Table 4.10 Application of S 111111 To
Routh’s criterion to the 3
polynomial st s 41 Sz 0 0|0
s
gl
$0
Table 4.11 Application of [ 1 1 o
Routh’s criterion to the 3
polynomial s* 4 s2 + 1 s” 14 2 0
(cont.) 52 % =05 w -1
sl 0.5><§‘g4><1 —_15 |o
s0 1

Fill Table 4.10. As there is a row filled exclusively with zeros, proceed as in the
previous example. The polynomial P (s) = s* 4+ s 4 1 is differentiated with respect
to s:

dP(s)
ds

These coefficients are substituted in the row filled exclusively with zeros and
continue filling Table 4.11. As two sign changes exist in the first column of this
table, it is concluded that two roots with a positive real part exist. This means that
only the following case is possible: there are four complex conjugate roots placed on
vertices of a rectangle centered at the origin. In fact, use of the MATLAB command:

= 453 + 2s.

roots([1 0 1 0 11)

allows us to find that the roots of the polynomial s* + s> + 1 are:

s =—0.5+0.8660, s =0.5=% ;j0.8660.

Example 4.16 (Repeated Roots on the Imaginary Axis) When a characteristic poly-
nomial has repeated roots on the imaginary axis, the transfer function is unstable.
However, this class of instability is not detected by Routh’s criterion. For instance,
consider the following polynomial:

Y2 =16+ s — DI

Notice that there are two repeated roots on the imaginary axis. Fill Table 4.12. As
there is a row exclusively filled with zeros, the polynomial P(s) = s* + 252 4 1 is
differentiated with respect to s:

dP(s) .
ds

43 + 4s,

and continue filling Table 4.13.
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Table 4.12 Application of ST 1211 To
Routh’s criterion to the 370 0 o
polynomial s* + 252 + 1 vz
s
gl
$0
Table 4.13 Application of P 2 1 o
Routh’s criterion to the 30 4
polynomial s* 4 252 + 1 5
(cont.) s2 4X2X4Xl =1 4X1X1X0 =1
st o 0
SO
Table 4.14 Application of A 111211 To
Routh’s criterion to the 3
polynomial s* + 252 + 1 s2 414 |0
(cont.) s 11 /0
st 1270
011

As there is another row exclusively filled with zeros, the polynomial P (s) =
s2 4 1 is differentiated with respect to s:

dPi(s) _
ds

2s,

and continue filling Table 4.14. Notice that no sign changes exist in the first column
of Table 4.14; hence, the method correctly indicates that no roots exist with a
positive real part. Also notice that the roots of Pi(s) = s2+lares = +j,ie.,
marginal stability is concluded. However, this is incorrect because the polynomial
s* + 25% 4+ 1 has two imaginary roots, which are repeated twice, which implies
instability. Thus, attention must be paid to these cases.

4.4 Steady-State Error

The solution of a differential equation is given as the addition of the natural response
and the forced response. If the differential equation is stable or, equivalently, if the
transfer function is stable then the natural response disappears as time increases and
the complete solution reaches the forced response. Recall that the forced response
depends on (or is similar to) the applied input. According to these ideas, in a closed-
loop control system, we have the following. 1) The closed-loop system input is a
signal that stands for the desired closed-loop output. This is why such a signal is
known as the reference or desired output. 2) The controller is designed such that the
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closed-loop system is stable and the forced response is equal to or is close to the
reference or desired output.

The properties that a closed-loop control system must possess to ensure that the
forced response is equal to or close enough to the closed-loop system input are
studied in this section. Notice that this is equivalent to requiring the system error,
defined as the difference between the system output and the reference, to be zero
or close to zero in a steady state, i.e., when time is large. Thus, the behavior of the
steady-state error is studied in the following.

Consider the closed-loop system with unit feedback shown in Fig.4.10. An
important concept in the study of the steady-state error is the system type, which
is defined next. It is assumed that any n—order open-loop transfer function can be
written as:

k(s —z1)(s —2z2) - (s — Zm)
sN(s — p)(s—p2)- (s — pn—n)’

G(s) =

where n is the number of open-loop poles and m is the number of open-loop zeros
withn > m, z; #0,j=1,...,mand p; # 0,i =1,...,n — N. Hence, N
is the number of poles that the open-loop transfer function has at the origin, i.e.,
after cancelling with any zeros that the open-loop transfer function might have at
the origin. The system type is defined as N, i.e., it is the number of poles at the
origin or, equivalently, the number of integrators that the open-loop transfer function
possesses.

The error signal is given as the difference between the closed-loop system output
and the reference or desired output:

E(s)=R(s) —C(s) = C(s)=R(s)— E(s),
and, on the other hand:

C(s) =G(s)E(s) = R(s) — E(s),

hence:
E@)[1+ G(s)] = R(s),
E(s) = TG(S)R(S). 4.14)
Fig. 4.10 Closed-loop R(s) E(s) C(s)

system with unitary feedback AR G(s)
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The steady-state error, ey, is obtained using (4.14) and the final value theorem
in (3.4),1i.e.,
(s). 4.15)

ey = lim e(t) = lim sE(s) = lim
t—00 s—0 3

———R
s—0 14+ G(S)
Notice that the steady-state error is the difference between the system output c(¢)
and the reference, or desired output, r(¢), in a steady state. This explains why e
depends on the reference R(s). Hence, to continue this study, it is necessary to know
R(s), which motivates the definition of the so-called fest signals. A test signal is a
function of time with two features: 1) It must make sense in real applications, and
2) It must be mathematically simple. Some important test signals, or test inputs, in
classical control are defined in the following.

Consider the problem of a video camera tracking a target. The control objective
in this problem is to force the video camera to aim at a target that moves very fast.
Some situations arising in this problem are the following.

» Step test signal. Suppose that the target approaches the video camera directly
along a constant direction represented by A. If video camera is at the beginning
aiming in another direction and it is desired that it aims in the direction from
which the target is approaching, then the reference or desired direction has the
shape depicted in Fig. 4.11. This test signal is known as a step and it represents an
abrupt change in the desired output. The system output is the direction in which
the video camera is aiming. It is desired that the difference between these signals
is zero or close to zero in a steady state. If r(¢) is a step:

r(t):{o, t<0,

A, t>0
where A is a constant, then R(s) = L{r(t)} = % is a function that is simple
enough to be mathematically handled.

« Ramp test signal. Suppose that the target passes in front of the video camera with
a constant velocity A, approaching another point, and that the video camera is
aiming at the target at the beginning. Then, the reference or desired direction has
the shape shown in Fig. 4.12. This test signal is known as a ramp and it indicates

Fig. 4.11 Step test signal (%)
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Fig. 4.12 Ramp test signal r(t)
A
0 t

Fig. 4.13 Parabola test r(t)
signal

142

5 At

0 t

that the desired output changes at a constant rate A, i.e., the target velocity. If
r(t) is a ramp:

, t<0
t
r = { At,1>0"
where A = d'(’) is a constant standing for the rate of change of r(¢), then R(s) =
L{r(t)} = % is a function that is simple enough to be mathematically handled.

* Parabola test signal. Suppose that the target passes in front of the video camera
with a constant acceleration A, approaching another point, and that the video
camera is aiming at the target at the beginning. Then, the reference or desired
output has the shape shown in Fig. 4.13. This signal is known as a parabola and
it indicates that the desired output changes with a constant acceleration A, i.e.,
the target acceleration. If () is a parabola:

r(t) = 0, t<0
JA2 t>0"
where A = d r(t) is a constant standing for the acceleration of r(¢), then R(s) =
L{r(t)} = 4 is a function that is simple enough to be mathematically handled.

Any of these three situations may appear under the normal operating conditions
of a recording video camera control system. Thus, the design of a controller must
ensure that the steady-state error is zero or close to zero for any of these desired
outputs. The conditions required to achieve this control objective are studied in the
following.
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4.4.1 Step Desired Output

Suppose that R(s) = A/s is the step desired output. Using (4.15) the following is
found:

. s A
ey = lim —— —
s—=014+G(s) s
A k lim G(s)
= = lim
1+kp’ P s—0 57

where k), is known as the position constant and is related to the system type. Hence,
the following cases are considered:

e System type O (N = 0). In this case, the open-loop transfer function has the form:

_ k(s —zi)(s—2z2) - (s — 2m)
(s—p(s—p2)-(s—pp)’

G(s)

i.e.,

k(=z1)(=z2) - - (=2zm)
(=pD)(=p2) - (=pn)’

kp = lim G(s) =
s—0

kp is finite. This means that the steady-state error is constant and different from
Zero:

A

=" %0
Tk, 7

€ss
e System type greater than or equal to 1 (N > 1). In this case, the open-loop
transfer function has the form:

_ k(s —z1)(s —z2) - (§ — Zm)
sN(s — pi)(s—p2) -+ (s — pn=n)’

G(s)

i.e.,

k(=z1)(=2z2) -+ (=zm)
sN(=p)(=p2) -+ (= pn—n)

k, = lim G(s) =
s—0

This means that the steady-state error is zero:

€ss =
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4.4.2 Ramp Desired Output

Suppose that R(s) = A/s? is the desired output. Using (4.15), the following is
found:

. K} A
ess = lim —— —|
5014 G(s) s2
A
= —, ky,=1msG(s),
ky s—0

where k, is known as the velocity constant and it is related to the system type.
Hence, consider the following cases:

e System type O (N = 0). In this case, the open-loop transfer function has the form:

k(s —z1)(s —z2) -+ (s — zm)

G(s) = ,
(s —p)(s—p2)---(s — pn)

ie.,
k(_Zl)(_ZZ) <o (=2zm) —
(=p)(=p2) - (=pn)

This means that the steady-state error grows without a limit:

0.

ky = lim sG(s) = (0)
s—0

ey = — —> 00.
v

e System type 1 (N = 1). The open-loop transfer function has the form:

k(s —z1)(s —z2) -+ (s — zZm)
s(s—p(s—p2)-(s— pa1)

G(s) =
ie.,

k(—=z1)(=22) -+ (=zm)
(=p)(=p2) - (=pa-1)’

ky = lim sG(s) =
s—0

ky is finite and different from zero. This means that the steady-state error is
constant and different from zero:

A £0
€5y = — .
ss kv
¢ System type greater than or equal to 2 (N > 2). The open-loop transfer function
can be written as:

k(s —z1)(s —2z2) - (S — Zm)

G(s) = ,
) sN(s —p)(s—p2) -+ (s — pa—n)




220 4 Stability Criteria and Steady-State Error

i.e.,

k(—=z1)(=2z2) -+ (=zm)
sN=U(=p)(=p2) -+ (—pa=nN)

ky = lim sG(s) =
s—0
because N — 1 > 1. This means that the steady-state error is zero:

em:k—UZO.

4.4.3 Parabola Desired Output

Suppose that R(s) = A/s> is the desired output. Using (4.15), the following is
obtained:

! K A
egs = lim —— —,
TS0 1+ G(s) 83
A . 2
= —, k;,=1ims*G(s),
kg s—0

where k, is known as the acceleration constant and is related to the system type.
The open-loop transfer function is given as:

G(s) = k(s —z1)( —22)--- (s — zmm)
sN(Gs — p)(s—p2)--- (s — pu_n)’

ie.,

k(=z1)(=z2) - - (=zm)
sN=2(—=p)(=p2) -+ (=pu—n)’

k, = lim s%G(s) =
s—0

This means that:
* The steady-state error grows without limit (to infinity) when the system type is 0

orl:

ey = — —> 00, N <1.
a

¢ The steady-state error is constant and different from zero when the system type
is 2:

A
sy = — #£0, N=2.
ka
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Fig. 4.14 Behavior of the A r(f)

output c(¢) when the :

reference r(¢) is a ramp. esis =0

Notice that eg; = 0 when the Ve

system type is greater than or e =0 ! ()

equal to 2, e5s # 0 when the
system type is 1 and

ess — 00 when the system e
type is 0

A\

Table 4.15 Steady-state
error

Step | Ramp | Parabola

Type O ﬁ 0o oo

Typel |0 k% [ee]

Type2 |0 0 kA;,
0 0

Type3 |0

¢ The steady-state error is zero when the system type is greater than or equal to 3:

A
EMZEZO, NZ?)

Notice that, in the case of the three references, or test signals, that have
been considered, the steady-state error becomes zero if the number of open-loop
integrators are suitably increased. This explains why some controllers include an
integrator, i.e., proportional—integral (PI) or proportional-integral—derivative (PID)
control. On the other hand, it is important to note that all the results presented above
are true only if it is ensured that the closed-loop system is stable. This is because the
final value theorem assumes that the natural response vanishes as time increases.

Finally, in Fig.4.14, the behavior of the output is depicted c(¢) with respect to
the reference r(¢), when the latter is a ramp for different system types. The results
found above are summarized in Table 4.15.

Example 4.17 A velocity control system for a permanent magnet brushed DC motor
is depicted in Fig.4.15 (see Chap. 10). The motor model is given by the transfer
function G,,(s) = Ta with k > 0 and a > 0, whereas k, is a positive constant
standing for the transfer function of a proportional controller. This means that the
electric current used as the control signal is computed as:

i* =kp(wg — ),

where w is the measured velocity, wy is the desired velocity and 7*(s) is Laplace
transform of i*. The open-loop transfer function is:

kpk
G(s)H(s) =
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Fig. 4.15 Proportional wy(s) + I'(s) W
control of velocity k, o A

—
V)
=

Y
\

Notice that, as a > 0, the system type is O because the open-loop transfer function
has no pole at the origin. Hence, according to Sect. 4.4.1, if the desired velocity is
constant, i.e., a step signal, then the steady-state error ey = wg — limy— o0 @(2) is
constant and different from zero, i.e., a proportional velocity controller is not useful
for motor velocity to reach the desired velocity. See Fig.3.32 for a simulation in
which these observations are corroborated. However, it is important to stress that the
steady-state error analysis that is presented in this chapter is useful for describing the
situation in Fig. 3.32 only as long as no external disturbance T), is present. Notice
that, according to Sects. 4.4.2 and 4.4.3, the steady-state error would be greater if
the desired velocity was either a ramp or a parabola.

A PI controller solves this problem. A PI controller performs the following
operation on the velocity error:

t
i*:kpe—i—ki/ e(rdr, e=uwy— w,
0

where k), and k; are positive constants. Use of the Laplace transform yields:

E(s)

s
N

= (kp + %) E(s),

_ (M) Es).

N

I*(s) = kpE(s) + ki

s+llz—"
=kp P P E(s),

where E(s) is the Laplace transform of the velocity error. Hence, the block diagram
in Fig. 4.16 is obtained. Notice that, now, the system type is 1 because the open-loop
transfer function:

S-{-]l:—; k

G)H(s) =k, ra
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wals) 4 — | I'(s)

€
\ S
&

Fig. 4.16 Proportional-integral control of velocity

has one pole at s = 0 and, thus, according to Sect. 4.4.1, the steady-state error
is zero, i.e., the motor velocity reaches the desired velocity when time is large
enough if w, is constant, or a step signal. We conclude that the integral term of a
PI controller is introduced to render the steady-state error zero. It must be stressed,
however, that this result is absolutely true only if it is ensured that the closed-loop
system is stable, i.e., if all the closed-loop poles have a negative real part.

Some simulation results are shown in Fig.3.39 where these ideas are corrob-
orated. Notice that in those simulations the steady-state error is still zero, even
when a constant external disturbance is applied. However, it is important to say
that this property is not described by the steady-state error analysis presented in this
chapter. Recall that this analysis is only valid for a closed-loop system such as that
represented in Fig. 4.10, i.e., when no external disturbance is present.

Finally, according to Sects. 4.4.2 and 4.4.3, a PI velocity controller is only useful
for step desired outputs as the steady-state error is still different from zero if the
desired velocity is either a ramp or a parabola.

Example 4.18 Consider the position control system of a permanent magnet brushed
DC motor depicted in Fig. 4.17. Notice that the motor transfer function has one pole
at s = 0, when the output to be controlled is in the position. Hence, the system
type is 1 and the steady-state error is zero if the desired position is a constant,
i.e., a step (see Sect. 4.4.1). It is important to realize that this result stands if any
of the following controllers are employed (see Chap. 11): a) A PD controller,
i.e., Fig. 4.18, b) A proportional position controller with velocity feedback, i.e.,
Fig.4.19, or ¢) A lead-compensator, i.e., Fig. 4.20. The purpose of these controllers
is to ensure that the closed-loop system is stable, introducing suitable damping and
accomplishing a suitable response time. It is important to stress that closed-loop
stability must be ensured to really achieve a zero steady-state error.

Some simulation results are presented in Figs. 3.34 and 3.36, which corroborate
the above-mentioned ideas. Notice, however, that the steady-state error analysis
presented in this chapter is not intended to explain the different from zero steady-
state error observed in those simulations when a constant external disturbance
appears. Recall that this analysis is only valid for a closed-loop system, such as
that represented in Fig. 4.10, i.e., when no external disturbance is present.
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k 0(s)
s(s+a) ’
Fig. 4.17 Proportional control of the position
Fig. 4.18 . O4ls) 1 I*s) [ 0(s)
Proportional—derivative O ky ( s+ i) k
control of the position _[ ka s(s+a)
A os)
s(s+a) i’
koS |«
Fig. 4.19 Proportional control with velocity feedback
0.(s) + o I*(s) X - 0(s) .
s+c ] s(s+a) g

Fig. 4.20 Lead-compensator for position control

Example 4.19 Consider the control of a permanent magnet brushed DC motor when
constant references are employed. How can it be explained that the proportional
control of velocity cannot achieve a zero steady-state error, but a proportional
control of the position does achieve a zero steady-state error?

The answer to this question is the following. When the error is zero in position
control, then the commanded current i* = k, (6, —0) is zero; hence, the motor stops
and the condition 6; = 6 can stand forever.

On the other hand, when the error is zero in velocity control, then the commanded
current i* = k, (wq — w) is zero; hence, the motor tends to stop. This means that the
condition w; = w cannot stand forever. As a result the steady-state error is such that
the difference between w and w, is large enough to command an electric current
i* = kp(wq — w), which maintains the motor rotating at that velocity. When a PI
velocity controller is employed, then the integral of the error fé (wg — w(r))dr is
constant when w; = w. This constant value, multiplied by k; is enough to command
a suitable electric current to maintain the motor rotating at the desired velocity.
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S ! : I* (s
0(1(5) + .92-&-:—534—:_—(‘] (q)

d— = s(s+a)

Y

Fig. 4.21 Proportional-integral-derivative (PID) control of the position

Example 4.20 Consider the position control problem of a permanent magnet
brushed DC motor where a PID controller is employed, i.e.,

. de !
i =kpe+kg— +k; e(rydr, e=0;—20.
dt 0

Use of the Laplace transform yields:

E(s)

)
N

I*(s) = kpE(s) + kasE(s) + ki

k.
= (k,, +kas + ?’) E(s).

2 kp ki
sT+ s+
=deE(s).
K

Hence, the block diagram in Fig.4.21 is obtained. Notice that the motor has one
pole at s = 0 and the controller has another pole at s = 0, i.e., the system type is 2
because the open-loop transfer function has two poles at the origin. This means that,
according to Sects. 4.4.1 and 4.4.2, the position reaches the desired position 6,4, if
this is either a step or a ramp. A steady-state error different from zero is obtained if
the desired position is a parabola, see Sect. 4.4.3.

To verify the above conclusions, some simulations have been performed using
the MATLAB/Simulink diagrams shown in Fig.4.22. The top simulation diagram
uses a ramp as the reference with a slope of 10 and an initial value of —10. The
PID controller gains are kg = 1, k, = 2, k; = 1. It is observed in Fig.4.23
that the steady-state error is zero, which corroborates the steady-state error analysis
presented above. The bottom simulation diagram in Fig. 4.22 uses a ramp with slope
of 1 and a zero initial value, which passes through an integrator with an initial value
of —10. This results in a parabola reference given as %t2 —10,1i.e., A = 1. The PID
controller gains are the same as in the previous simulation, i.e., kg = 1, k, = 2,
ki = 1. According to Sect. 4.4.3 and Figs. 4.21, 4.22:

2.,k ki
A ST Es+ 0k
=—, k,=1ims’G(s), G(s)=k L ! ,
€ss k. a Sgr(l)s (s) (s) d s s(s +a)
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Fig. 4.22 MATLAB/Simulink diagrams used to obtain results in Figs. 4.23 and 4.24

i.e., k, = @, and eg; = &~ = L — 1, because A = 1. The reader can verify
a kk; 1x1

in Fig.4.24 that the system error is unity at + = 20, i.e., in a steady state. This
corroborates the steady-state error analysis presented above.

Once simulations in Fig. 4.22 stop, the following MATLAB code is executed in
an m-file to draw Figs. 4.23 and 4.24:

nn=length (InputOutput (:,1)) ;
n=nn-1;

Ts=20/n;

t=0:Ts:20;

subplot(2,1,1)

plot (t, InputOutput (:,1),'k-.’,t, InputOutput(:,3),
"k-");

axis([-1 20 -30 200])

subplot (2,1,2)

plot (t, InputOutput (:,2),'k-");
axis([-1 20 -12 8])

xlabel (‘time [s]’)

On the other hand, consider the system depicted in Fig.4.25. It represents the
closed-loop control system of a ball and beam (see Chap. 14). Notice that the open-
loop transfer function has two poles at s = 0. In this case, these two open-loop poles
at the origin are part of the plant model, i.e., the plant naturally possesses those poles
and it is not necessary to use a controller with an integral part to introduce them.
Hence, the steady-state error is zero if the desired position is either a step or a ramp.
However, if it is a parabola, then the steady-state error is different from zero.
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Fig. 4.23 Time response obtained from the top simulation diagram in Fig.4.22, which is
equivalent to the system in Fig. 4.21, when a ramp reference is commanded. Top subfigure: system
response (continuous), ramp (dashed) Bottom subfigure: system error
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Fig. 4.24 Time response obtained from the bottom simulation diagram in Fig.4.22, which is
equivalent to the system in Fig.4.21, when a parabola reference is commanded. Top subfigure:
system response (continuous), parabola (dashed) Bottom subfigure: system error
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—
&

Fig. 4.25 Control of a ball and beam system

Example 4.21 Consider a permanent magnet brushed DC motor with transfer
function G,,(s) = 19*(—23) = S(Slfm). Suppose that it is desired to achieve a zero
steady-state error when the position reference 6, is a parabola. In this case, the
system type is required to be 3. As the plant has one pole at s = 0, it is necessary to
use a controller introducing two poles at s = 0. Hence, the following controller is
proposed:

d 13 13 r
it = kpe + kd—e + k; / e(r)dr + k;; / / e(tv)ydtrdr, e=06;—0,
dt 0 0 Jo

which can be rewritten as:

kas® + kps® + kis + ki;
2
s

I*(s) = E(s), (4.16)
where E(s) stands for the Laplace transform of the position error. This shows that
the controller has two poles at s = 0 and, thus, it is useful for solving the problem.
Notice that not only the double-integral term is included, with gain k;;, but also the
single-integral term with gain k;. This is done for closed-loop stability reasons. If the
single- integral term is not considered, then closed-loop instability is observed. This
can be verified by the reader obtaining the closed-loop characteristic polynomial and
applying Routh’s stability criterion. As a general rule, if a controller has to introduce
an integral term of order k, then the terms of integrals of order 1 to k — 1 must also
be included.

Consider the simulation diagram in Fig. 4.26. This is a system with type 3, which
is equivalent to a plant G, (s) = s(sl_+l) with a controller such as that in (4.16) where
kg = 0.5, k, =3, ki = 2, k; = 1. A ramp with an unit slope and a zero initial
value is passed through an integrator with —10 as initial value. This corresponds to
a parabola reference given as %tz — 10, i.e., A = 1. In Fig.4.27 the steady-state
error is corroborated to be zero, which verifies the above predictions.

Once the simulation in Fig. 4.26 stops, the following MATLAB code is executed
in an m-file to draw Fig. 4.27:

nn=length (InputOutput (:,1)) ;
n=nn-1;
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Ts=20/n;
t=0:Ts:20;
subplot(2,1,1)
plot (t, InputOutput(:,1),'k--',t, InputOutput(:,3),
"k-");
axis([-1 20 -30 200])
subplot(2,1,2)
plot (t, InputOutput (:,2),'k-");
axis([-1 20 -12 8])
xlabel (‘time [s]’)
R 1]
> Scope
Ly 1 > 34362
s > 0.559+3s4+2s+1 N 1 InputOutput
> g 3
Ramp  Integrator vr N s+ To Workspace
Transfer Fcn Transfer Fcn1

Fig. 4.26 MATLAB/Simulink diagram used to obtain results in Fig. 4.27
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Fig. 4.27 Time response obtained from the simulation diagram in Fig. 4.26, i.e., a type 3 system,
when a parabola reference is commanded. Top subfigure: system response (continuous), parabola
(dashed) Bottom subfigure: system error
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4.5 Summary

The basic preliminary tools for the analysis and design of arbitrary order control
systems have been presented in this chapter. It must be understood that the response
of any closed-loop control system, no matter how complex, is determined by the
equivalent closed-loop transfer function.

The control system representation by means of block diagrams, and their
simplification, are instrumental in obtaining the corresponding closed-loop transfer
function. From this transfer function it is possible to determine: i) The closed-loop
stability and the transient response, i.e., the closed-loop poles, and ii) The steady-
state response.

It is explained in Chap. 3 that a necessary and sufficient condition for a transfer
function to be stable is that all its poles have a negative real part. However, checking
this condition through the exact computation of the poles is a complex problem.
This is especially true when the numerical values of the characteristic polynomial
coefficients are not known. This situation is common in control systems design as
the characteristic polynomial coefficients depend on the controller gains, which
are initially unknown. Moreover, it is desirable that the controller gains can be
chosen within a range to render the design flexible. These features require the use
of analytical tools, instead of numerical tools, useful to determine when a closed-
loop control system is stable. This fact represents an important obstacle because the
analytical formulas existing to compute the roots of higher-degree polynomials are
complex. Furthermore, no analytical solution exists for polynomials with a degree
greater than or equal to 5. This problem is successfully solved by Routh’s stability
criterion, which, however, only verifies whether all the polynomial roots have a
negative real part, but does not compute the exact values of the roots. On the other
hand, although the rule of signs presented in Sect. 4.2 has some limitations, it may
be simpler to use than Routh’s stability criterion in some applications. This is the
reason for including such a methodology.

As a result of the study of the steady-state error, some criteria are established
for suitable selection of a controller such that the steady-state response reaches the
desired value; in other words, to render the forced response equal or very close to the
close-loop system input, i.e., the desired response. Finally, the controller selection
must be also performed such that the desired transient response is achieved through
the suitable location of the closed-loop poles. The solution to this latter problem is
presented in the next chapter.

4.6 Review Questions

1. What does system type mean?
2. How can the system type be increased in a control system?
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3. How does Routh’s stability criterion ensure that the real part of all roots of the
characteristic polynomial is negative?

4. What are the advantages and the disadvantages or the rule of signs presented in
Sect. 4.27

5. Suppose that analysis of the steady-state error concludes that the output final
value reaches the desired output value. Why is it still necessary for the closed-
loop system to be stable?

6. Suppose that a controller possessing a five times iterated integral is required to
render the steady-state error zero. Why is it also necessary to include terms with a
four times integrated integral, a three times iterated integral, a two times iterated
integral and a simple integral? Illustrate your answer using a permanent magnet
brushed DC motor as a plant and Routh’s stability criterion.

7. What is the relationship between the study of the steady-state error in this chapter
and the requirement that the forced response reaches the closed-loop system
input, i.e., the desired output?

8. The study of the steady-state error that has been presented in this chapter only
considers test inputs such as step, ramp, and parabola. What would happen in
applications, such as the video camera tracking control system, where the desired
output is not exactly known in advance?

4.7 Exercises

1. Based on the knowledge of the system type required to ensure a zero steady-
state error for references such as the step, the ramp and the parabola, show that
the corresponding closed-loop transfer function (see Fig. 4.10) must possess the
following features:

* The terms independent of s must be equal in the polynomials at the numerator
and the denominator to ensure a zero steady-state error when the reference is
a step.

* The terms independent of s in addition to the first-order terms in s must be
equal in the polynomials at the numerator and the denominator to ensure a
zero steady-state error when the reference is a ramp.

* The terms independent of s in addition to the first-order and the second-
order terms in s must be equal in the polynomials at the numerator and
the denominator to ensure a zero steady-state error when the reference is a
parabola.

This means that the controller also has to suitably assign the closed-loop
transfer function zeros, which supports the arguments presented in Example 4.21
(see (4.16)).

2. In Example 3.18, in Chap. 3, everyday experience-based arguments are presented
to explain the steady-state error achieved by a proportional control of a mass-
spring-damper system when x; is constant. Now, explain this result using the
system type as the argument.
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3. Consider the mass-spring-damper system presented in Example 3.8, Chap. 3. If
after a constant force A is applied, the mass reaches x = 0 and ¥ = 0, then
replacing this in the corresponding differential equation, it is found that x = %
in a steady state. Now, use the final value theorem to compute the final value of
x when f = A. What is the relationship among conditions x = 0, X = 0, and
s — 0 in the final value theorem?

4. Consider the rotative mass-spring-damper system:
JO+ fO+KO=T,

where J is the inertia, f is the viscous friction coefficient, K is the spring
stiffness constant, 6 is the body angular position, and 7 the applied torque, which
is given by the following PID controller:

d t
T:kpe+kd—e+k,-/ e(rydr, =0y —6.
dt 0

Use Routh’s stability criterion to show that the following conditions:

f+ka ki

J>0 k>0, K-+k,>0, 7 >K+kp>

07

ensure closed-loop stability. Notice that a large integral gain k; tends to produce
instability and this effect can be compensated for using large values for either k,
or kg. Also notice that a small inertia J allows the use of larger integral gains
before instability appears and something similar occurs if the stiffness constant
K is large. Can you find an explanation for this from the point of view of physics
(mechanics)?

5. Proceeding as in the Example 4.3 in this chapter, show that the closed-loop
transfer function shown in Fig. 4.3 is:

Cts) G

M(s) = R = ,
(s) 1—=G(s)H(s)

when the system has positive feedback, i.e., when the feedback path adds (instead
of subtracts) in Fig. 4.3.

6. Consider the mechanical system depicted in Fig.4.28. In the Example 2.3,
Chap. 2, it was found that the corresponding mathematical model is given as:

d2xm1 b1 dxm K 1
— — - = —F(),
a2 + m, dr + m (Xm1 Xm2) my ()
dxpy by dxmy K ( )= 0
—_— —_— — x —_ x = N

dt? my dt my ml m2
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Fig. 4.28 Two bodies F(t)
connected through a spring — K

]_ mi AMAAA my | g
LN i e

where x,,1 is the position of m1 and x,,; is the position of m,. Apply the Laplace
transform to each one of these equations to express X;,1(s) and X;;2(s) as the
outputs of two transfer functions. Draw the corresponding block diagram suitably
connecting these two transfer functions according to their inputs and outputs.
Using the result in the previous exercise, simplify this block diagram to verify
that:

G1(s)Ga(s)/m

X2 = 126, 9 GawK fmy T

where F(s) is the Laplace transform of F(¢) and:

Gi(s) = ,
52+ fT']s + m£|

e
Go(s) = S L
s2+ rﬁ—és + %

» Using this result, verify that the transfer function % has one pole at s = 0.

What does this mean? Suppose that a constant force F(¢) is applied. What
happens with position of mass m, under the effect of this force? What happens
with the position of the mass m1? It is suggested that the transfer function
between X,,;1(s) and X,,»(s) should be found.

* Use Routh’s criterion to find the conditions for the transfer function
be stable.

Xm2(s)

F(5) to

Notice that one may proceed similarly in the other examples including springs in
Chap. 2.

Some other exercises are proposed at the end of Chap. 5 whose solution involves
concepts and tools introduced in the present chapter.
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Chapter 5 ®
Time Response-Based Design ke

Consider the closed-loop system in Fig. 5.1. In Example 4.3, Sect. 4.1, it is shown
that the closed-loop transfer function is given as:

C G
M) = SO ) (5.1)
R(s) 14+ G(s)H(s)
In Chap. 3 it is explained that the time response c(f) = E_I{C(s)} =

C_I{M (s)R(s)} is given as the addition of the natural response and the forced
response: ¢(f) = ¢, (t)+c(t). The objectives of the control system in Fig. 5.1 are:

* The closed-loop control system is stable, i.e., lim;—. c,(f) = 0, which is
ensured if all of poles of the closed-loop transfer function M (s) have a negative
real part. This is important because it ensures that c(#) — ¢ (¢) as time increases.

* The convergence ¢, (t) — 0 is fast.

* The forced response is equal to the desired output c¢(¢) = r(t) = L1 {R(s)}.

The last item constitutes the specifications of the response in a steady state and the
way to ensure this is studied in Sect. 4.4. The second item constitutes the transient
response specifications and the way to satisfy them is studied in the current chapter.
It must be stressed that ensuring the desired transient response specifications must
also ensure closed-loop stability.

The design of a controller is performed by suitably assigning the poles (the roots
of 1 + G(s)H(s)) and the zeros (the roots of G(s)) of the closed-loop transfer
function M (s). In classical control, the plant poles and zeros are always assumed to
be known, whereas the structure of the controller is proposed to satisfy the steady-
state response specifications, for instance. However, the exact location of the poles
and zeros of the controller must be selected to ensure that the closed-loop poles,
i.e., the roots of 1 + G (s) H (s), are placed at the desired values and that the closed-
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Fig. 5.1 Closed-loop system R(s)

C(s
N o) (5)

loop zeros, i.e., G(s) = 0, are also suitably located.! In this chapter, one of the
main classical control techniques for control design is studied: the root locus method
(see [1] for a historical perspective). This method assigns poles of the closed-loop
transfer function M (s) through a suitable modification of the open-loop transfer
function G (s) H (s). Moreover, it is also possible to place the zeros of the closed-loop
transfer function M (s) such that their effects on the closed-loop system response are
small.

5.1 Drawing the Root Locus Diagram

Assuming that the poles and zeros of the plant are known, the root locus method is
a graphical tool that is useful to locate the closed-loop poles by suitably selecting
poles and zeros of a controller. Moreover, this can also be performed by cancelling
some undesired (slow) closed-loop poles with some controller zeros. According to
Sect. 3.5.1, this achieves system order reduction and the elimination of some zeros
such that the closed-loop system transient response can be approximated by some
of the simple cases studied in Sects. 3.1.1 and 3.3.1. This simplifies the task of
designing a controller such that the closed-loop transfer function M (s) has poles
and zeros that ensure the desired transient response specifications.

The root locus diagram is represented by several curves whose points constitute
the closed-loop system poles parameterized by the open loop-gain, k, which takes
values from k = 0 to k = 4-00. According to (5.1), every closed-loop pole s, i.e.,
a point in the s plane belonging to the root locus, must satisfy 1 + G(s)H(s) = 0.
The root locus diagram is drawn by proposing points s on the complex plane s,
which are checked to satisfy 1 + G (s) H (s) = 0. To verify this condition in a simple
manner, a set of rules are proposed, which are listed next. Following these rules,
the root locus diagram is drawn using the poles and zeros of the open-loop transfer
function G(s)H (s) as data. This means that the closed-loop poles are determined
by the open-loop poles and zeros.

It is assumed that the open-loop transfer function can be written as:

l'[?:l(s —zj)

G(s)H =k——,
(s)H (s) NS

n>m, 5.2)

! Although the poles determine stability and transient response, zeros also have an effect on the
final shape of the transient response (see Sect. 8.1, Chap. 8). This is the reason why the design
based on the root locus is sometimes performed by trying to cancel one closed-loop pole with a
closed-loop zero.
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Fig. 5.2 Graphical
representation of factors
s—zjands — p;

Re(s)

where z;, j =1, ..., m, are the open-loop zeros and p;,i =1, ..., n, are the open-
loop poles. As z;, p; and s are, in general, complex numbers located on the s plane,
the following can be written:

S — j = ljZQ',
s —pi =1;46;,
as depicted in Fig. 5.2. Then:
[T gic0; T2l [ & -
G(s)H(s) = k—1= =k—==—/ 0;i—Y 6 |. (5.3)
| AR B (Y ; ’ ,; l

On the other hand, the closed-loop poles are those values of s satisfying the
following:

1+ G(s)H(s) =0. (5.4)

This means that closed-loop poles are those values of s satisfying:
G(s)H(s)=—-1=1/+(2g+ 1180°, ¢=0,1,2,... (5.5)
Using (5.3) and (5.5) the so-called magnitude condition (5.6) and angle condi-

tion (5.7) are obtained, which must be satisfied by every closed-loop pole s, i.e.,
those points s belonging to root locus:

m
c L
knf,;l L=, (5.6)
Hi:l li
m n
ZG,—Z@ = +(2qg +1)180°, ¢=0,1,2,... (5.7)
j=1 i=1

From these conditions, the following rules are obtained [6-9].
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5.1.1 Rules for Drawing the Root Locus Diagram

1. The root locus starts (k = 0) at the open-loop poles.
Using (5.2) and (5.4):

[T —z))
14+ G H() =1+ k=2=— " =,
TOWH® * [T=iGs —p)
[TioiGs = pi) + k[T (s — 2))
= n :01
[T=iGs — pi)
=[]es-pr)+k[[6s—2p)=0. (5.8)
i=1 j=1

=[ls-prn=0,
i=1

if k = 0. This means that the closed-loop poles (those that satisfy 1 +
G(s)H(s) = 0) are identical to the open-loop poles (s = p;, i = 1,...,n)
ifk =0.

2. Root locus ends (k — c0) at the open-loop zeros.
From (5.8):

1+GeHE) =[[6c—p)+k][[6s—zp =0,
i=1 j=1

m
~k[]es—zp =0,
j=1
because [ [/, (s—pi) < k ]_[;7’:1 (s—z;) if k — oo. This means that the closed-
loop poles (those satisfying 1 + G (s)H (s) = 0) are identical to the open-loop
zeros (s = zj, j = 1,...,m)when k — oo.

3. When k — oo there are n — m branches of the root locus that tend toward
some point at the infinity of the plane s. This means that the open-loop
transfer function G (s) H (s) has n — m zeros at infinity.

These branches can be identified by the angle of the asymptote where the root
locus diagram approaches as k — oo. The angle that each asymptote forms
with the positive real axis can be computed as:

+180°(2g + 1)

n—m

asymptote angle = q=0,1,2,... 5.9
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.- asymptote

SE <
open-loop Re (s)
poles and zeros

Fig. 5.3 Asymptote angle in rule 3

This formula is obtained as follows. Consider a point s that belongs to an
asymptote and is located far away from the origin. Hence, all poles and zeros of
G(s)H(s), are observed as gathered in a single point of the plane s, as depicted
in Fig.5.3. Thus, the angle contributed by each open-loop pole and zero to
the condition in (5.7) (see Fig.5.3) is identical to the angle contributed by the
others, i.e., representing such an angle by 6, the angle condition (5.7) can be
written as:

m n

Zej —Zei =(m—n)d =+Q2qg+1)180°, ¢=0,1,2,...

Solving this expression for 6 yields:

+(2 1)180°
g T2 DI o
n—m
which becomes (5.9) when 6 =asymptote angle (see Fig. 5.3).
4. Point o, where asymptotes intersect the real axis is computed as [5],
Chap. 6:

_ il =%

n—m

Oa

5. Consider a point on the real axis of the plane s. Suppose that the number of
real open-loop poles plus the number of real open-loop zeros on the right
of such a point is equal to an odd number. Then such a point on the real
axis belongs to the root locus. If this is not the case, then such a point does
not belong to the root locus.
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Observe Fig.5.4 and recall the angle condition (5.7). Notice that two open-
loop complex conjugate poles or zeros produce angles that added to result in
0° or 360° and, hence, have no contribution to the angle condition (5.7). This
means that, in this rule, only real open-loop poles and zeros must be considered
in (5.7). On the other hand, notice that any real pole or zero located at the left
of the test point s contributes with a zero angle. This means that, in this rule,
in the expression (5.7), only real open-loop poles and zeros located on the right
of the test point s must be considered. Notice that each real open-loop zero on
the right of the point s contributes with a +180° angle, whereas each real open-
loop pole at the right of the same point contributes with a —180° angle. Hence,
the total angle contributed by all open-loop poles and zeros appearing on the
right of the test point s is:

m n
Zej - ZG,» = m(+180°) + n(—180°),

j=1 i=1

where m1 and n; stand for the number of real open-loop zeros and poles
respectively, on the right of the test point s. On the other hand, if the subtraction
of two numbers is equal to an odd number, then the addition of the same
numbers is also an odd number. Hence, if:

m n
D0, = 6= (mi —n) x (+180°) = £(2g + 1)180°,
j=1 i=1

forsomeqg =0, 1,2,...,1i.e,m; — ny is odd, then it is also true that:

n

m
D0, = 0 = (mi+n) x (+180°) = £(2g + 1)180°,
j=1

i=1

forsome g =0,1,2,...,1i.e,m| 4+ ny is odd. Notice that this last expression
constitutes the angle condition (5.7) and, thus, the test point s in Fig.5.4 is a
closed-loop pole and belongs to the root locus.

The root locus is symmetrical with respect to the real axis.

This is easily understood by recalling that all complex poles appear simultane-
ously with their complex conjugate pair (see first paragraph in Sect. 3.4.3).
The departure angle from an open-loop complex pole is computed as:
Departure angle from a complex pole=

+(2¢+1)180°+) [angles of vectors from the open-loop zeros to the open-loop
pole under study]

— > [angles of vectors from the other open-loop poles to the open-loop pole
under study]

(5.10)
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Fig. 5.4 Open-loop poles Im(s) 4
and zeros used to study rule 5

! 180°  180°
- AWAY IR
Re(s)
Fig. 5.5 Open-loop poles
and zeros in the study of
rule 7
>
Re(s)

Consider Fig. 5.5. Assume that the point s belongs to the root locus and it is
very close to open-loop pole at p,. The angle 0, is the departure angle from
the open-loop complex pole at p,. According to the angle condition (5.7):

m n

0= b=

j=1 i=1
= (01 402+ 4 Oum) — Op1 +0p2 4+ Opy + -+ Op)
— +Q2q+1I180°, ¢=0,1,2,...

where 0;; and 0); stand for the angles due to the open-loop zeros and poles
respectively. Solving for 6,,:

Opy = £Q2g + 1)180° + (0,1 + 02+ - +0zm) — Op1 +0p2+ - -+ 0pn),

forqg = 0,1,2,..., which is equivalent to (5.10) because s = p, can be
assumed as they are very close.
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Fig. 5.6 Open-loop poles
and zeros in the study of
rule 8

Im (s) A
2 39;’0 (s)

8. The arrival angle to an open-loop complex zero is computed as:
Arrival angle to a complex zero=
+(2qg + 1)180° — Y [angles of vectors from the other open-loop zeros to the
open-loop zero under study]
+ Y _[angles of vectors from the open-loop poles to the open-loop zero under
study]

5.11)

Consider Fig. 5.6. Assume that the point s belongs to the root locus and is
very close to zero at z,,. The angle 6., is the arrival angle to the open-loop zero
at z,. According to the angle condition (5.7):

do-> 6=

j=1 i=1
=Oa+00+ - F600+ - +0m)— Op1 +0p2+ -+ 0pn),
= £(2q + 1)180°,

where ¢ = 0,1,2,..., whereas 6;; and 0; stand for the angles due to the
open-loop zeros and poles respectively. Solving for 6.,:

00 = Q2 + 1)180° — (G;1 + 62+ -+ O0m) + Op1 +0p2 + -+ + Opn),

for g = 0,1,2,..., which is equivalent to (5.11) because s = z, can be
assumed as they are very close.

9. The open-loop gain, k, required for a point s, belonging to root locus, to
actually be selected as a desired closed-loop pole is computed according to
the magnitude condition (5.6):




5.1

10.

11.
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The points where the root locus passes through the imaginary axis can be
determined using Routh’s criterion (see Sect. 4.3).

If an additional open-loop pole located on the left half-plane is considered,
“instability tends to increase” in the closed-loop system. This effect is
stronger as the additional pole is placed closer to the origin.

Consider Fig. 5.7, where s represents a point that belongs to the root locus and
the open-loop transfer function is assumed to have only the shown two poles
without zeros. According to the angle condition (5.7):

—(Op1 +0p2) = —180°.

The poles at p; and p, are retained in Fig.5.8, but an additional pole is
considered at p3. The angle condition (5.7) now becomes:

—(Op1 + Op2 + 6,3) = —180°.

This means that the addition 6,1 + 6,2 must be smaller in Fig. 5.8 with respect
to Fig. 5.7, which is accomplished if point s in Fig. 5.7 moves to the right, as
in Fig. 5.8, i.e., if the root locus bends toward the right in Fig. 5.8. It is easy to
see that this effect is stronger, i.e., the root locus is further pushed to the right
half-plane, as 6,3 is larger, i.e., as p3 approaches the origin. This proves that
and integral controller tends to produce instability in the closed-loop system.
If an additional open-loop zero located on the left half-plane is considered,
“stability tends to increase” in the closed-loop system. This effect is
stronger as the additional zero is placed closer to the origin.

Consider again Fig. 5.7. According to the angle condition (5.7):

—(0p1 + 0p2) = —180°.

The poles at p; and p; are retained in Fig. 5.9, but an additional zero at z; is
considered. The angle condition (5.7) now becomes:

0.1 — (Op1 + 62) = —180°.

This means that the addition 6,1 + 6> must be larger in Fig. 5.9 than in Fig. 5.7,
which is accomplished if point s in Fig. 5.7 moves to the left as in Fig. 5.9, i.e.,
if the root locus bends toward the left in Fig. 5.9. It is easy to see that this effect
is stronger, i.e., the root locus is pulled to the left, as 6, is larger, i.e., as zj is
closer to the origin. This proves that a derivative controller tends to improve the
stability of a closed-loop system.
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Im (s) A

0
0[} 2 pl

P2 P Re (s)

0112
€ >
P2 Re(s)

Fig. 5.8 The root locus is pushed toward the right when an additional open-loop pole is considered

Im (s) A

i AN X >

7<
D2 21 D1 Re (s)

Fig. 5.9 The root locus is pulled toward the left when an additional open-loop zero is considered
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5.2 Root Locus-Based Analysis and Design

5.2.1 Proportional Control of Position

According to Chap. 11, the permanent magnet brushed direct current (DC) motor
model is given as:

6(s)

I*(s), (5.12)

s(s +a)

nky,

a=—>0, k= > 0,

J

where 0(s) and I*(s) stand for the position and the electric current commanded
respectively. Suppose that the following proportional position controller is
employed:

I*(s) = kp(0a(s) — 0(s)),

where 6, (s) is the desired position and k), is a constant known as the proportional
gain. The closed-loop system can be represented as in Fig.5.10, where it is
concluded that the open-loop transfer function is given as:

Kok
s(s+a)

G(s)H(s) = (5.13)

Notice that the system type is 1, i.e., the steady state error is zero when the desired
position is a step. Hence, the only design problem that remains is to choose k),
such that the closed-loop poles are assigned to the desired locations. Use of the root

locus method to solve this problem is shown in the following. The root locus method
forces the gain k), to take values from O to +oo. First, G(s) H (s) is rewritten as:

k,k
G(s)H(s) = ﬁz — (61 + 62),

where the vectors s — 0 = [1/6; and s — (—a) = [p/6, have been defined
(see Fig.5.11). The fundamental conditions for drawing the root locus are the
angle condition (5.7) and the magnitude condition (5.6) which are expressed
respectively as:

—(61+6) =+£2qg+1)180°, ¢=0,1,2,...
kyk
P
L
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Fig. 5.10 Proportional 0.(s I 0(s
position control system als) tc\ kp ) > (]i ) (‘)
S(sra
A Im(s)?t
s
B
G173
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Fig. 5.11 Root locus for G(s)H (5) = 52

Rule 5 indicates that, on the real axis, the root locus only exists between the points
s = 0 and s = —a. Furthermore, according to rule 1, the root locus begins (k, = 0)
ats = 0 and s = —a. On the other hand, according to rules 2 and 3, the branches
starting at s = 0 and s = —a must approach some open-loop zero (no zero exists in
this case) or some point at the infinity of the plane s as k;, tends to +o0. Hence, the
root locus has to move away from points s = 0 and s = —a, on the real axis, as k,
increases such that a breakaway point must exist somewhere between such points
and then two branches appear to be moving away to infinity in plane s.

On the other hand, according to the angle condition, — (67 + 6,) = —180° =
—(a+67) in Fig. 5.11, it is concluded that « = 65, i.e., both triangles #; and #, must
be identical for any closed-loop pole s. Hence, both branches referred above, which
are shown in Fig. 5.11, must be parallel to the imaginary axis. This means that the
breakaway point is located at the middle point between s = 0 and s = —a, i.e., at
(0 —a)/2 = —a/2. This can also be verified using rules 3 and 4. Finally, according
to rule 6, both branches are symmetrical with respect to the real axis.

The magnitude condition is employed when the exact value of k, that renders a
specific point of the root locus an actual closed-loop pole is required. Notice, for
instance, that lengths /; and [ grow as k, tends to +oo to satisfy the magnitude
condition:

kpk

— =1, 5.14
Il (5.14)
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which means that the closed-loop poles corresponding to large values of k,, tend to
some point at infinity on the s plane. Hence, it is concluded: (i) Both closed-loop
poles are real, negative, different, and approach the point s = —a/2 when k, > 0
is small; this means that the closed-loop system becomes faster because the slowest
pole moves away from the origin, (ii) According to the magnitude condition, when:

k, = ale: = a’ ithiy =l =
=—=—, wi =lh=—,
b k 4k’ =273

both closed-loop poles are real, repeated, negative, and located at s = —%, ie.,

the fastest response without oscillations is obtained, (iii) As k, > % increases,
both poles move away from the real axis (one pole moves upward and the other
downward) on the vertical line passing through s = —7; this means that the
closed-loop system becomes faster (because w, increases; see Sect. 3.3) and more
oscillatory (because the angle 90° — « decreases and damping, given as { =
sin(90° — «), decreases; see Sect. 3.3).

The above discussion shows that it is not possible to achieve a closed-loop system
response that is simultaneously fast and well damped. This is a direct consequence
of the fact that closed-loop poles cannot be assigned at any arbitrary location of the
s plane, as they can only be located on the thick straight line shown in Fig.5.11.
In the next example, it is shown that the introduction of an additional zero in the
open-loop transfer function of the present example allows the closed loop poles to
be assigned at any point on the s plane.

Example 5.1 The root locus diagram can also be plotted using MATLAB. Given a
closed-loop system as that in Fig. 5.1, it suffices to use the command:

rlocus (GH)

where GH stands for the open-loop transfer function G(s)H (s). Consider, for
instance, the closed-loop system in Fig.5.10 when £ = 2 and @ = 8. The root
locus diagram in Fig. 5.12 is plotted using the following commands:

k=2;

a=8§;

gh=tf(k, [1 a 0]);
rlocus (gh) ;
rlocfind (gh)

The root locus in Fig.5.12 is represented by the continuous lines. Notice that,
contrary to the previous discussion, in the above commands the proportional gain
kp is not considered. This is because k, is automatically increased from 0 to +o00
by MATLAB when executing the command “rlocus()”. This must be taken into
account when defining the open-loop transfer function to be used as an argument
of this MATLAB command. In Fig.5.12, each open-loop pole is represented by a
symbol “x”, ie.,at s = 0 and s = —a = —8. Compare Figs.5.12 and 5.11 to
verify similarities between them. For instance, the horizontal and vertical lines in
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Fig. 5.12 Root locus for closed-loop system in Fig. 5.10

Fig.5.12 intersect at s = —4, i.e., at s = —a/2, as predicted in Fig. 5.11. The root
locus diagram is plotted by MATLAB when executing the command

rlocus (gh) ;
alone. However, the additional use of the command:
rlocfind (gh)

allows the user to select any desired point on the root locus. When selected, this
point and all points on the root locus corresponding to the same gain k,, are marked
with a symbol “+”. For instance, in Fig. 5.12 the point —4 + 3 was selected and,
automatically, the point —4 — 3 j was also selected and marked with a “+” (only the
horizontal line of this symbol is appreciable in Fig.5.12 because of the particular
geometry of this root locus). Also, MATLAB automatically sends the following text:

selected point =
-3.9882 + 2.99691
ans =

12.4907

This means that k;, = 12.4907 at s = —4 & 3 and this can be verified using the
magnitude condition in (5.14) as:

s—0=1046y, s—(—a)=10.6,,

L =v42+32=5 L=yv@8—4)2+32=35,
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Il 25
k 2
When using the command “rlocus()”, MATLAB automatically determines a max-
imal value of k,, to be considered to draw Fig.5.12. However, the user can decide
herself/himself the maximal value of k, to be considered by using the command:

rlocus (gh,d) ;

where d is a vector containing all of the specific values of the gain k,, which the
user wants to be considered to plot the root locus.

Some closed-loop pole pairs are selected in Fig.5.13. The time response of
the closed-loop system Fig. 5.10 is presented in Fig.5.14 when the corresponding
closed-loop pole pairs are those indicated in Fig.5.13. Recall that k,, increases as
it passes from poles at “o0” to poles at the square in Fig.5.13. It is observed that
the closed-loop system response becomes faster as kj, increases and overshoot is
present once the closed-loop poles have imaginary parts that are different from zero.
Moreover, overshoot is small if the imaginary parts are small. These observations
corroborate the above root locus-based analysis.

The results in Figs.5.13 and 5.14 were obtained by executing several times the
following MATLAB code in an m-file:

k=2;

a=8;

kp=30; % 1 5 10 20 30

gh=tf (kp*k, [1 a 0]);

figure (1)

rlocus (gh) ;

hold on

rlocus (gh, 34) ;

axis([-10 2 -9 9])

hold on

M=feedback(gh,1,-1) ;

v=pole (M) ;

figure (1)
plot(real(v(1l)),imag(v(l)), 'bs’)
plot (real(v(2)),imag(v(2)), 'bs’)
figure (2)

step(M, 'b:’,5)

hold on
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Fig. 5.13 Root locus in Fig. 5.12 when some closed-loop pole pairs are selected
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Fig. 5.14 Step response of the closed-loop system in Fig.5.10, when the closed-loop poles are
located as indicated in Fig.5.13. The +line corresponds to poles at “o.” The continuous line
corresponds to poles at the triangle up. The dashed line corresponds to poles at the triangle down.
The dash—dot line corresponds to poles at “*.” The dotted line corresponds to poles at the square
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5.2.2 Proportional-Derivative Control of Position

Consider again the motor model shown in (5.12), but now together with the
following proportional-derivative (PD) controller:

de

* =k k ,
1 pe€ + ddt

e=04—0,

where k), is the proportional gain and k, is a constant known as the derivative gain.
Use of the Laplace transform yields:

I*(s) = kpE(s) + kasE(s),
= (kp + kas)E(s),

(s ) 0o
=Kqgl|s kd S).

The corresponding closed-loop block diagram is shown in Fig. 5.15. The open-loop
transfer function is given as:

kak(s + ¢) kp

G(s)H(s) = SGra) = E

> 0. (5.15)

Notice that, now, kg is the gain that varies from 0 to 400 to plot the root locus. First,
G (s)H (s) is rewritten as:

kak I3

G()H(s) = i

L3 — (01 + 02), (5.16)

where the vectors s —0 = [1/61, s — (—a) = 1p/6;, and s — (—c¢) = I3/03 have been
defined. The angle and the magnitude conditions are expressed respectively as:

03— (01 +62) = £(2q + 1)180°, ¢=0,1,2,...,
kik I3
hi,

The root locus in this case can be obtained from the root locus obtained for the
transfer function in (5.13) by simply taking into account that an additional zero at
s = —c has been included.

According to rule 12, the branches of the root locus in Fig. 5.11 will bend toward
the left as a consequence of the additional zero. This can be verified using rule 3 to
find that, now, the root locus only has one branch whose asymptote forms a +180°
with the positive real axis. As shown in Fig.5.16, the root locus has two different
possibilities depending on the exact location of the zero at s = —c. If it is placed at
the left of the pole at s = —a (as in Fig. 5.16a) then, according to rule 5, the root
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O4(s) + k I*(s) 0(s)
>O—> k i > k >
d (S * kd) s(s+a)
Fig. 5.15 Proportional-derivative (PD) control of position
Fig. 5.16 Root locus for Im(s)
G()H(s) = M @)
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locus exists on two segments of the negative real axis: between the points s = 0 and

s = —a, and to the left of zero at s = —c. Moreover, according to rules 2 and 3 one
of the two root locus branches beginning (k; = 0) at the open-loop poles located at
s = 0 and s = —a must tend toward the zero at s = —c whereas the other branch

must tend toward infinity in the s plane following the asymptote forming 4180°
with the positive real axis. Hence, a breakaway point must exist between points
s = 0 and s = —a. Furthermore, as the root locus is symmetrical with respect to
the real axis (rule 6), these branches must describe two semi circumferences toward
the left of the breakaway point, which join again in a break-in point located on the
negative real axis to the left of the zero at s = —c. After that, one branch approaches
the zero at s = —c and the other tends toward infinity along the negative real axis.

On the other hand, if the zero at s = —c is placed between the open-loop poles at
s = 0 and s = —a, then, according to rule 5, the root locus exists on two segments
on the negative real axis located between points s = —c and s = 0 and on the left
of the pole at s = —a. Notice that, now, the branch beginning (k; = 0) ats = 0
approaches the zero at s = —c, whereas the branch beginning (k; = 0) ats = —a
tends toward infinity along the negative real axis. Also notice that this is possible
without the necessity for any branch to exist outside the real axis, as is shown in
Fig. 5.16b.
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From the study of the resulting root locus, it is possible to realize that the closed-
loop system is stable for any k,, > 0 and k; > 0 because both possibilities for the
root locus that have been presented in Fig. 5.16 show that the closed-loop poles are
always located on the left half-plane s, i.e., the closed-loop poles have a negative real
part. Finally, according to Sect. 3.8.3, there always exist gains &k, and k,; allowing
any values to be chosen for both w, and ¢. This means that it is always possible to
assign both closed-loop poles at any desired point on the left half-plane s.

Notice that the open-loop zero at s = —c is also a zero of the closed-loop transfer
function; hence, it also affects the closed-loop system transient response. This
means that the transient response will not have the exact specifications computed
using (3.71).

Example 5.2 The following MATLAB code is executed in an m-file to simulate the
closed-loop system in Fig.5.15:

clc

a=7;

k=70;

c=4; %7 4 10
Polo_des=-20;
13=abs (Polo _des) -c;
ll=abs (Polo _des)
12=abs (Polo _des)
kd=11%12/ (k*13) ;
kp=c+kd;

Md=tf (20, [1 20]);

gm=tf (k, [1 a 0]);

PD=tf ([kd kpl,1);

M=feedback (gmxPD,1,-1) ;

v=pole (M)

%{

figure (1)

rlocus (gm%PD) ;

hold on

plot (real (v (1)) ,imag(v (1)), 'k™");
plot (real (v(2)),imag(v(2)),'k™");

aj

%}

figure (2)

step (Mdx2, 'r--',Mx2,’:’,0.25)

hold on

It is assumed that a = 7 and k = 70. The desired response is that of a first-order
system with time constant 0.05[s], i.e., with a real pole at s = —20. The idea is
to propose different locations for the zero at s = —c to observe when the desired

response is accomplished. The derivative gain k; is computed using the magnitude
condition k‘l’lkl 213 = 1 where [1, [», [3 are the magnitude of the vectors defined in
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Fig. 5.17 Step response of the closed-loop system in Fig.5.15, when a closed-loop first-order
response with 0.05[s] time constant is desired. Dashed: desired response and closed-loop response
when ¢ = a. Dotted: closed-loop response when ¢ = 4. Continuous: closed-loop response when
c=10

the paragraph after (5.16). Then k, = cky is computed. After that, it is possible
to generate the closed-loop transfer function M and to simulate it together with
the desired response. These results are shown in Fig.5.17. Notice that the desired
response is matched when ¢ = a. The root locus diagram in this case is shown in
Fig. 5.18 where the closed-loop poles are represented by a triangle up. One closed-
loop pole is located at s = —20, as desired, and the other cancels with the zero at
s = —c. This explains why the desired response is accomplished in this case.

When ¢ = 4, the closed-loop poles are at s = —20, as desired, and s = —3.25.
The latter pole is slow and does not cancel with zero at s = —c = —4; hence, its
effects are important in the closed-loop transient response. This explains why, in
this case, the response in Fig. 5.17 is slow. When ¢ = 10, the closed-loop poles are
located at s = —20 and s = —13, i.e., the pole at s = —13 cannot be cancelled
by the zero at s = —c. This results in an overshoot, i.e., the desired response is not
accomplished again. The reason for this overshoot is explained in Sect. 8.1.2, where
it is stated that overshoot is unavoidable whenever all of the closed-loop poles are
on the left of an open-loop zero despite all the closed-loop poles being real, i.e., as
in the present case.

Example 5.3 The following MATLAB code is executed in an m-file to simulate the
closed-loop system in Fig. 5.15:

clc
a=7;
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Fig. 5.18 Root locus corresponding to Fig. 5.15 when ¢ = a

k=70;

tr=0.05;

Mp=14;%

z=sqgrt ( log(Mp/100)72 /( log(Mp/100)"2 + pi®2 ) );
wn=1/ (tr*sqrt (1-z72)) « (pi-atan(sqrt (1-z"2) /z)) ;
S=-zxwn+wn+sqrt (1-z"2) %3

kd= (2xz+wn-a) /k;

kp=wn"2/k;

denl=conv ([l -g],[1 -real(s)+j*imag(s)]);

Md=tf (denl (3) ,denl) ;

gm=tf (k, [1 a 0]);

PD=tf ([kd kpl,1);

M=feedback (PDxgm, 1,-1) ;

v=pole (M)

%% {

figure (1)

rlocus (gm%PD) ;

hold on

plot (real (v (1)) ,imag(v(1)),'k™");

plot (real (v(2)),imag(v(2)),'k™");

%}
figure (2)

step (Mdx2,'r--',Mx2,'-',0.25)
hold on
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Fig. 5.19 Root locus diagram corresponding to Fig.5.15 when ¢ > a and two closed-loop
complex conjugate poles are specified (triangle up)

The desired specifications are a rise time of 0.05[s] and a 14% overshoot. This
results in a pair of desired complex conjugate closed-loop poles located at s =
—26.66 £ 42.59j. The controller gains k, and k; were computed using:

20w, —a w?
kd - +7 kp = 7’1’

(see Sect. 3.8.3). This allows the corresponding root locus diagram to be plotted in
Fig.5.19. Notice that this diagram is similar to that depicted in Fig.5.16a because
¢ > a in this case. Although the desired closed-loop poles have been assigned,
notice that the closed-loop zero at s = —c cannot be cancelled; hence, it will modify
the actual closed-loop response with respect to the desired one. As a matter of fact,
in Fig.5.20, the desired response, with a dashed line, and the actual closed-loop
response, with a continuous line, are presented. We conclude that the effects of the
zero at s = —c are a shorter rise time and a larger overshoot.

5.2.3 Position Control Using a Lead Compensator

Consider again the DC motor model in (5.12) but, now, together with the following
controller:

d
1*(s):y§+?, c>d>0, y=>0,
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Fig. 5.20 Step response of the closed-loop system in Fig.5.15, when ¢ > a and two closed-
loop complex conjugate poles are specified. Dashed: desired response. Continuous: closed-loop
response
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Fig. 5.21 Position control using a lead compensator

which is known as a lead compensator if ¢ > d. This condition is introduced when
it is desired to increase the damping in the system, i.e., when the closed-loop poles
must be shifted to the left (see rules 11 and 12). The corresponding closed-loop
block diagram is shown in Fig. 5.21. The open-loop transfer function is given as:
k(s +d)

_ 5.17)
s(s+a)is+rc)

GO)H(s) =y

If d is chosen as:
d=a, (5.18)

then the close-loop transfer function is:

o) vk o
0a(s)  s2dcs+yk  sE42Cwns +
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which means that:

w2

c=2w,, y= 7" (5.19)
Hence, if the expressions in (3.71) are used to compute ¢ and w, such that the
desired rise time and overshoot are obtained, then (5.18) and (5.19) represent a
simple tuning rule. Moreover, the formulas in (3.71) for overshoot and rise time
are exact in this case; thus, the drawback that a PD controller has in this respect
is eliminated. The transient response in this case is rather similar to that obtained
with the controller in Sect. 3.8.2, i.e., proportional position control plus velocity
feedback.

5.2.4 Proportional-Integral Control of Velocity

Although proportional—integral (PI) velocity control has been studied in Sect. 3.8.4,
in this part, some ideas are presented that are clearer when employing block
diagrams and the root locus. According to Chap. 10, when the velocity w(s) is the
output, the permanent magnet brushed DC motor model is:

1 1
w(s) = . Jra[kI*(S) - 7Tp(S)],

a=—>0, k=
J

where the commanded electric current 7*(s) is the input and T}, (s) is an external
torque disturbance. A PI velocity controller is given as:

t
i*:kpe—i—ki/ e(rdr, e=wg—w,
0

where wy is the desired velocity, k,, is the proportional gain and the constant k; is
known as the integral gain. Using the Laplace transform:

E(s)

)
N

ki
= <kp + :) E(S),

_ (M) E).

N

I*(s) = kpE(s) + ki

s+]’;—"
=kp 2 E(s).

N
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Hence, the closed-loop block diagram is depicted in Fig.5.22a. As this control
system has two inputs, the superposition principle can be employed (see Sect. 3.7)
to write:

(s) = G1($)wq(s) + G2(s)Tp(s),

where G1(s) is the transfer function obtained when using wq4(s) as the input and
w(s) as the output and assuming 7),(s) = O, i.e., using the block diagram in
Fig.5.22b, whereas G2(s) is the transfer function when 7),(s) is the input and
w(s) is the output, assuming that wy(s) = 0, i.e., when using the block diagram
in Fig. 5.22c. It is important to say that, in the case when T),(s) is the input, w(s)
represents the velocity deviation produced by disturbance 7}, (s).

Now, the problem of choosing the PI controller gains such that the transient
response of the closed-loop system satisfies the desired specifications is studied.
It is observed in Fig. 5.22b, that the open-loop transfer function is:

G(s)H(s) = M, c= ﬁ, (5.20)

s(s +a) kp

Notice that the system type is 1, which ensures that w () = wg in a steady state if
wgq 1s a constant. This is one reason for using a PI controller in this example. Hence,
the only problem that remains is to choose the controller gains k, and k;, such that
the transient response satisfies the desired specifications. To this aim, notice that
the open-loop transfer function shown in (5.20) is identical to the transfer function
shown in (5.15), which corresponds to the PD control of position as only k; has to
be replaced by k. Thus, the root locus diagram corresponding to the PI velocity
control is identical to both cases shown in Fig.5.16 and the same conclusions are
obtained:

i) There always exist some gains k;, and k; allowing both closed-loop poles to be
placed at any point on the left half-plane; hence, it is possible to tune the PI
controller using a trial and error procedure (see Sect. 3.8.4).

ii) The open-loop zero located at s = —c is also a zero of the closed-loop transfer
function G (s), i.e., it also affects the closed-loop transient response. This means
that the transient response does not have the specifications designed using (3.71)
to choose the closed-loop poles. This poses the following two possibilities.

1. The problem pointed out at ii) can be eliminated if it is chosen:
c=a=—, 5.21)

because, in such a case and according to Fig.5.22b and (5.1), the closed-loop
transfer function is:

w(s) _ kpk
wa(s)  s+kpk’
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Fig. 5.22 Proportional-integral control of velocity . (a) The complete control system. (b) 7, (s) =
0.(¢) wa(s) =0

This means that the closed-loop response is as that of a first-order system with a

unit steady state gain and a time constant given as ﬁ Then, if a time constant
P
T is specified:

1
kpk = —. (5.22)

T
The conditions in (5.22) and (5.21) represent a simple tuning rule. Finally, the
root locus diagram corresponding to this case (¢ = a, G(s)H(s) = k‘s’—k) is shown
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Fig. 5.23 Root locus for Im(s)
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e
“a Re(s)

in Fig. 5.23. This can be easily verified using rules 3 and 5. As there is only one
open-loop pole, there is only one closed-loop pole, which must be real and tends
toward one zero at infinity (on an asymptote forming —180° with the positive real
axis) because there is no open-loop zero. Furthermore, the magnitude condition:

where [; is the distance from the desired closed-loop pole to the origin,
establishes that the desired closed-loop pole located at s = —% is reached when:

1 1
kyk=1, 11 =- kyk = —,
P 1 1 t:>p T

which corroborates (5.22). However, this tuning rule has a problem when con-
sidering the closed-loop response when an external disturbance 7),(s) appears.
Consider the block diagram in Fig.5.22c. If ¢ = a is chosen, then the closed-
loop transfer function is:

w(s) —4s

Tp(s) (s +kpk)(s+a)

(5.23)

Using the final value theorem, the following is found:
lim w(t) = lim sw(s),
t— 00 s—0

k
—75 td

lims— — =
s=>0 (s +kpk)(s +a) s

i.e., that the velocity deviation produced by the external torque disturbance with
a constant value #; vanishes in a steady state. This is the reason why a PI velocity
controller is chosen. However, there is a problem. The poles of the transfer
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function in (5.23) determine how fast this velocity deviation vanishes. These
poles are located at s = —k,k and s = —a. Although one of these poles can
be rendered as fast as desired just by choosing a suitable k,, the other pole, at
s = —a, cannot be modified and depends on the parameters of the DC motor.
This has as a consequence that the velocity deviation due to the disturbance may
approach zero very slowly, which is a serious drawback.

2. Trying to solve the above problem, we might abandon the tuning rule in (5.22)
and (5.21). As we now have ¢ # a, the closed-loop transfer function correspond-
ing to the block diagram in Fig. 5.22c is:

w(s) — s

Ty(s) s+ (a+kpk)s +kpkc’

(5.24)

Using the final value theorem, it can be easily verified that, in the case of
a constant disturbance T,(s) = tA—f’, the steady-state deviation is zero again:
lim;_, oo w(t) = 0, because the transfer function in (5.24) has a zero at s = 0. On
the other hand, poles of the transfer function in (5.24), which determine how
fast the velocity deviation vanishes, are identical to the poles of the transfer
function a’j;((?) = G1(s); hence, they can be assigned using the root locus method
from (5.20). As has been explained, the corresponding root locus is identical to
both cases shown in Fig.5.16 replacing ks by k. It is important to stress that
the transfer function in (5.24) has no zero at s = —c shown in the root locus
diagram in Fig.5.16. This means that none of the closed-loop poles obtained
using the root locus method can cancelled with the zero at s = —c and the
slowest pole will have the most significant effect on the time required for the
velocity deviation due to the disturbance to vanish. With these ideas in mind, the
following is concluded.

* To render small the effect of the zero at s = —c on the transient response to
a given velocity reference, one closed-loop pole must be placed close to the
zero at s = —c. The other closed-loop pole (the fastest one) moves away to
the left and tends toward infinity as the slow pole approaches to s = —c.

* This means that the fast pole determines the transient response, i.e., the time
constant, to a given velocity reference. Then, if it is desired to fix some finite
value for the time constant (such that the fast pole is placed at a finite point on
the negative real axis), the slow pole is always relatively far from zero at s =
—c. This means that the transient response is always affected by both poles
and the zero at s = —c. Hence, if ¢ # a, a tuning rule cannot be determined
such that transient response to a given velocity reference satisfies the desired
specifications. Notice that this is also true if the response to a reference is
specified by two complex conjugate poles, as the zero at s = —c cannot be
cancelled; hence, it has the effect of modifying the transient response with
respect to that specified by the two complex conjugate poles.
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* It is more convenient to select ¢ > a because the slowest closed-loop pole
(that approaching s = —c) is shifted further to the left (it is faster) compared
with the case when ¢ < a is chosen.

e This also implies that, if it is desired that the velocity deviation due to a
disturbance vanishes faster, we must choose ¢ # a with ¢ > 0 larger.
According to ¢ = k; / kp, this means that a larger integral gain is obtained.

Thus, although it is possible to render shorter the time it takes to the velocity
deviation due to disturbance to vanish, it is concluded that the controller gains
kp y k; cannot be exactly computed to ensure that, simultaneously, the desired
transient response specifications to a given velocity reference are accomplished
and that the disturbance effects vanish as fast as desired. This statement is verified
experimentally in Chap. 10 and, because of this, in that chapter a modified PI
velocity controller is introduced, solving this situation.

Anticipating its experimental use in Chap. 10, a tuning rule is proposed next for the
case when ¢ # a. According to (5.20), the magnitude condition is:

kpkly

Ll

where s — (0) = [2/605,5s — (—a) = [3/03,and s — (—c) = [ /0;. According to this
tuning criterion, propose the slowest pole to be located at some known s = —py,
to fix an upper limit on the time required to render negligible the disturbance effect.
On the other hand, according to the items listed above, ¢ is proposed to be close
to pp such that p; > c. Then, using the magnitude condition above, the following
tuning rule is obtained:

ﬁ—c c< k—%
kp ’ pla P llka

Iy =abs(—=p1+c¢), L =abs(—p1), [3=abs(—p1+a).

(5.25)

According to the discussion above, the response to the reference of velocity is
much faster than predicted by the pole at s = —p;. For comparison purposes
this is very important as some velocity controllers are designed in Chap. 10
accomplishing simultaneously transient responses to a velocity reference and to an
external disturbance that are determined by a pole at s = — p;. On the contrary, with
the PI velocity controller studied in this section, if it is desired that the response to
an external disturbance is faster (with a pole at s = —p1), the response to a desired
reference of velocity must be much faster.

Example 5.4 The MATLAB/Simulink diagram corresponding to Fig.5.22a is
shown in Fig.5.24. It is assumed that kK = 70 and a = 7. The desired velocity
wy is a step command with 2 as the magnitude. The disturbance T, is a step applied
at t = 2[s] with a magnitude 0.4 x 70. The PI controller block has k, and k; as
proportional and integral gains.
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Fig. 5.24 MATLAB/Simulink diagram corresponding to the closed-loop system in Fig. 5.22a

The simulation in Fig.5.24, was performed with the help of the following

MATLAB code in an m-file:

a=7;

k=70;

Polo_des=-20;

c=15; %1 5 7 10 15
ll=abs (Polo _des) -c;

12=abs (Polo _des) ;
13=abs (Polo _des) -a;
kp=12%13/ (kx11) ;

ki=c+kp;

PI=tf (kp*[1 c],[1 0]);

gm=tf (k, [1 al);

M=feedback (PIxgm,1,-1) ;
figure (1)

gd=t£f (20, [1 20]);

step (Mx2, "'b:’,gdx2, 'r--',0.2)
hold on

$%{

nn=length (InputOutput (:,2)) ;
n=nn-1;

Ts=10/n;

t=0:Ts:10;

figure (2)

plot (t, InputOutput (:,2),'k:");
axis([-0.5 10 0 2.5])

xlabel ('t [s]’)

ylabel (‘w [rad/s]’)

hold on

o
6}

In this code, the desired closed-loop response is specified to be as that of a first-

order system with a time constant 7 = %) = 0.05[s] when a desired step velocity

is commanded. This desired response is shown in Fig. 5.25 with a dashed line. The
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Fig. 5.25 Response to a step command in desired velocity wq(s)

design criterion is to find k, and k; such that the desired closed-loop pole is assigned
at s = —20, provided that a ratio ,f—; is given. This allows to the system response

to be analyzed when the integral gain is enlarged and one closed-loop pole is at the
desired location.

First, the location of zero at —,f—" = —c is fixed by defining the constant c. The
¥4
. . . . . o kpkl
proportional gain k, is computed using the magnitude condition lp3 lzl = 1, where

l1, 1», I3, are the magnitudes of vectors defined in the paragraph before (5.25), and
ki = ck, is also computed. Then, the closed-loop transfer function is obtained and
the closed-loop system response as well as the desired response can be simulated
using the command “step()”. These signals are shown in Fig. 5.25. At this point, the
simulation diagram in Fig. 5.24 is run and, with the help of the remaining code lines
above, the corresponding results are shown in Fig. 5.26.

In Figs. 5.25 and 5.26 the following data are presented. (i) The line marked with
“+” corresponds to ¢ = 1, (ii) Continuous line: ¢ = 5, (iii) Dashed line: ¢ = 7,
(iv) Dash—dot line: ¢ = 10, and (v) Dotted line: ¢ = 15. Notice that the disturbance
effect is rejected very slowly when ¢ = 1. In this case, the closed-loop poles are at
s = —20 and s = —0.6842, which can be verified using the MATLAB command
“pole(M)”. Recall that the transfer function in (5.24) has no zero to cancel the pole
at s = —0.6842.2 This explains the slow rejection of the disturbance effects in this
case. Also notice that the response to the velocity reference is also slow. This is
because the effect of the pole at s = —0.6842 is not suitably cancelled by the zero
ats = —c=—1.

2If it is assumed that this pole and zero at s = 0 cancel each other out, then a nonzero steady-state
deviation would exist and the problem would be worse.
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Fig. 5.26 Response to a step disturbance T, (s)

Notice that the disturbance rejection and the response to the reference improve
as ¢ increases. Moreover, the system response exactly matches the desired response
when ¢ = 7 = a. However, the disturbance effects are still important in this case.
When ¢ > 7 = a, the disturbance rejection further improves, but the response to the
reference exhibits overshoot, i.e., it is no longer a first-order response. According to
Sect. 8.1.2, this behavior appears, and it is unavoidable, when the closed-loop poles
are on the left of an open-loop zero. In this respect, notice that the closed-loop poles
areats = —20 and s = —13 when ¢ = 10 and at s = —20 and s = —39 when
c = 15.

The simulation results in this example corroborate the system behavior predicted
in the above discussion, i.e., the classical PI control has limitations when it is
required to satisfy simultaneously a specified response to a reference and a specified
performance for disturbance rejection.

5.2.5 Proportional-Integral-Derivative Control of Position

Consider again the DC motor model but, now, assuming the presence of an external
disturbance:

1 L
0(s) = m[“ (s) — ij(S)],
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together with the following proportional—integral-derivative controller:

de

it =k k,
I pe + ddt

t
+ki/ e(rydr, e=06;—20,
0

where 04 is the desired position and the constants kj,, ks and k; are known as
the proportional, derivative, and integral gains respectively. Use of the Laplace
transform, yields:

E(s)

)
S

I*(s) = kpE(s) + kasE(s) + k;

k;
==GP+Ms+§>E@x

2, kp ki
$C+ =5+ =
=k kg,
s

and the corresponding block diagram is shown in Fig. 5.27a. As this is a system
with two inputs, the superposition principle (see Sect. 3.7) can be used to write:

0(s) = G1(5)0a(s) + G2(s)Tp(s),

where G (s) is the closed-loop transfer function when 6,;(s) is the input and 6 (s) is
the output with T}, (s) = 0, i.e., when the block diagram in Fig. 5.27b is used to find:

2k ki
O6) _ Gis) fak (s + g5 + 1) T,(s) =0. (5.26)
= S) = . §) = U. .

a(s) $3 + (a + kak)s? + kpks +kik” 7

On the other hand, G (s) is the closed-loop transfer function when 7, (s) is the input
and 6(s) is the output with 6,(s) = 0, i.e., when the block diagram in Fig.5.27c¢ is
employed to write:

0(s) —5s

= Ga(s) =

. Bas)=0. (527
T,(s) ST @+ kab)s? +hpks 1K 4 627

It is stressed that when T),(s) is the input, then 6 (s) stands for the position deviation
(with respect to 6,4(s)) produced by the external disturbance. Using the final value
theorem, it is found that:

lim 6(¢) = lim s6(s),
t—00 s—0
k

. -7 14
= lim s — =
s—0 §3 4 (a + kgk)s?® + kpks + kik s

)
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Fig. 5.27 Proportional-integral-derivative (PID) position control . (a) The complete control
system. (b) T),(s) = 0. (¢) 64(s) =0

the deviation of position produced by the constant external torque disturbance
Ty(s) = ’;d is zero in a steady state. Using the final value theorem again, it is
not difficult to verify that, using (5.26), the final value of position 6 is equal to the
desired value 6; when this is a constant. These are the main reasons for using a PID
position controller.

The problem of choosing the controller gains for the PID controller such that
the closed-loop response has the desired transient response specifications when a
position reference 6, is applied is studied in the following. To this aim, the three
poles of the transfer function in (5.26) must be assigned at the desired locations on

the left half-plane. This is accomplished by equating the characteristic polynomial
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of the transfer function in (5.26) to a polynomial with roots at the desired points
§=p1,§ = Pp2,5 = P3:

3+ (a + kak)s* + kpks + kik = (s — p1)(s — pa)(s — p3).

It is clear that any values can be assigned to the coefficients of the characteristic
polynomial by using suitable combinations of the controller gains k, k; and k;. This
means that the three poles of the closed-loop system can be assigned at any desired
location of the left half-plane. Any set of three poles satisfying this requirement can
be written as:

pr=o01+ joi, pr=o0y—jo;, p3<0, 01<0, 0,<0, w >0

Notice that 01 = o7 if @] > 0, i.e., when a pair of complex conjugate poles exists,
but o1 # o3 is possible when w; = 0. Hence:

s34 (a + kdk)s2 + kpks + kik = (s — p1)(s — p2)(s — p3),
53— (p1 + p2 + p3)s*> + (p1p2 + p3p1 + p3p2)s — p1paps.

Equating the coefficients and using the above data, the following tuning rule is
obtained:

—(o1+0o2+p3)—a

kg = . >0, (5.28)
ky = 0102+w% + p3o1 +o02p3 - 0.
k
_ 2
ki = —m(“l;z o) .

It is stressed that the three controller gains are positive. As a rule of thumb, if
—p3 > 6]oq] then the real and imaginary parts of the poles at p; and p» can be
computed using (3.71) such that the desired rise time #. and overshoot M (%) are
obtained. However, the system response presents some important differences with
respect to these values because of the pair of zeros contained in the transfer function
in (5.26). Although this is an important drawback of the tuning rule in (5.28), these
values can be used as rough approximations of the required gains for the controller
to perform fine adjustments afterward, by trial and error, until the desired transient
response specifications are accomplished. To this aim, as the closed-loop system is
third order, it is important to recall the stability rule obtained in Example 4.12 of
Sect. 4.3. The possibility of adjusting the gains of a PID controller by trial and error
(see Sect. 5.3) is one of the main reasons for the success of PID control in industry.
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With the aim of finding a tuning rule allowing to exactly compute the gains of a
PID controller, the root locus method is employed in the following. From the block
diagram in Fig. 5.27b, it is concluded that the open-loop transfer function is given as:

kak(s 4 o) (s + ﬁ)’ (5 +a)(s + B)=s? + Iis + Ilz—’ (5.29)
d d

GEIH(s) = s2(s +a) k

for some constants « and 8 different from zero whose values are proposed as part of
the design process. Then, from these values both k, and k; are computed. Notice that
kg is the gain that the method varies from 0 to 400 to plot the root locus diagram. It
is clear that the system type is 2 (the motor is naturally provided with an integrator
and another integrator is introduced by PID controller) and, hence, the steady-state
error is zero if the reference of the position is constant.

Three possibilities for the corresponding root locus diagram are presented in
Fig. 5.28. They depend on the values proposed for & and . The reader is encouraged
to use the rules introduced in Sect. 5.1.1 to corroborate these results. According to
Fig. 5.28a, it is possible to design the control system such that two closed-loop poles
are close to the zeros located at s = —« and s = —f. This would allow the closed-
loop system to respond as a first-order system with one real and negative pole. One
closed-loop pole may also be chosen to be close to the zero at s = —a« such that
the closed-loop system responds as a second-order system with complex conjugate
poles and one real zero. Although the presence of this zero modifies the transient
response, this is one way of specifying the transient response in terms of rise time
and overshoot. This is the design criterion used in the following.

In cases like this one, the traditional root locus-based design procedures suggest
performing the following three steps:

* Design a PD controller with transfer function:

ka(s + B).

such that some desired rise time and overshoot are accomplished.
* Given the open-loop transfer function designed in the previous step, introduce
the following factor:
s+ o

’

N

with @ some positive value close to zero.
e Compute the PID controller gains using (5.29), i.e.,

kp = (a+ Bka, ki =afky. (5.30)

Now, the PD controller k; (s + B) is designed for the plant —k i.e., when the

s(s+a)’
closed-loop system has the form presented in Fig.5.29 and the open-loop transfer

function is:

kak(s 4+ B)

G()H(s) = ora

(5.31)
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Fig. 5.28 Different
possibilities for root locus
diagrams of the PID control

of position
Re(s)
Im(s)
3 a « Re(s)
(b)
N Re(s)
Fig. 5.29 0 0
Proportional-derivative )+ kq(s+5) k (,S )
control of the position B s(s+a)
The closed-loop transfer function is, in this case:
O(s) kak(s + B)
Bq(s) §2 4 (a + kgk)s + kqkpB’
Equating to a standard second-degree polynomial:
s 4 (@ + kak)s + kgkp = s> + 20 w,s + 02,
yields:
2 _ 2
k= 24 g O (5.32)

k ' kak
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DESIRED POLE

Fig. 5.30 Root locus diagram for the system in Fig. 5.29

The values for ¢ and w, can be computed using (3.71) from the desired values for
rise time and overshoot. The corresponding root locus diagram is shown in Fig. 5.30,
which is identical to the case ¢ > a depicted in Fig. 5.16, because only in this case
can the PD control of the position produce complex conjugate closed-loop poles.
From (5.31), it is found that the angle and the magnitude conditions establish:

kakls

03 — (61 +62) = £180°(2¢ + 1), ¢g=1.2,... 1]
12

=1, (5.33)

where l1, I3, [3, 01, 07 and 03 are defined in Fig. 5.30. When the factor S*”‘ is included
in the open-loop transfer function shown in (5.31), the resulting open loop transfer
function becomes:

kak(s + B)(s + @)

G(s)H(s) = 26+t a)

(5.34)

As o > 0 is small, the corresponding root locus has the shape shown in Fig. 5.31.
The reader is encouraged to follow the rules in Sect. 5.1.1 to verify this result. The
angle and the magnitude conditions are established in this case from (5.34) as:

kaklsls

12,

03 + 05 — (201 + 0,)=+180°(2¢ + 1), ¢=1,2,...

=1, (5.35)

where [y, I», I3, 61, 62 and 63 are defined as in Fig.5.30, whereas [s and 605 are
defined in Fig. 5.31. The reason for choosing o > 0 to be close to zero is to render
/1 and I5 almost the same such that /5/1; & 1. This also ensures that 61 and 65 are
almost equal; hence, 65 — 61 = 0. Then, the angle and the magnitude conditions
in (5.33) and (5.35) are almost identical. This ensures that the closed-loop poles
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Fig. 5.31 Root locus for the open-loop transfer function shown in (5.34)

obtained when the open-loop transfer function is that presented in (5.31) are almost
identical to the closed-loop poles obtained when the open-loop transfer function
employed is that presented in (5.34). This ensures that the desired transient response
specifications (rise time and overshoot) designed with the PD controller in (5.32) are
also accomplished with the PID controller:

k )
(s +a)(s + B) ST+ E
kq = kq
) S

’

i.e., when the controller gains are chosen according to (5.30).

However, it is important to point out a drawback of this design approach:
according to (5.30) a small « results in a small integral gain k;. As a consequence,
the deviation of the position produced by the external disturbance vanishes very
slowly, which may be unacceptable in practice. This can also be explained from
the root locus diagram in Fig. 5.31. Notice that a closed-loop pole (located, say, at
s = —e, ¢ > 0) approaches the zero at s = —a«, which means that both cancel
each other out in the transfer function shown in (5.26), i.e., the effect of none of
them is observed in the transient response to a reference of the position. However,
the zero at s = —a does not appear in the transfer function shown in (5.27). But the
pole at s = —e¢ is still present in this transfer function; hence, it significantly affects
the transient response: this slow pole (close to the origin) is responsible for a slow
transient response when an external disturbance appears.

Despite this drawback, the traditional criteria for root locus-based design suggest
proceeding as above when designing PID controllers. Moreover, it is interesting to
say that these problems in traditional design methods remain without a solution
despite the fact that they have been previously pointed out in some research works.
See [10] for instance.

On the other hand, according to (5.30), a larger integral gain can be obtained (to
achieve a faster disturbance rejection) by choosing a larger value for «. However,
according to the previous discussion, this will result in a transient response to a
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Fig. 5.32 MATLAB/Simulink diagram for the closed-loop system in Fig. 5.27a

reference of position that does not satisfy the desired specifications. Hence, it is
concluded that there is no tuning rule allowing the gains of a PID controller for
position to be computed exactly, simultaneously satisfying the desired transient
response specifications to a given reference of the position and producing a satis-
factory rejection of the effects of an external torque disturbance. These observations
are experimentally verified in Chap. 11 where, given the described drawback, some
new controllers solving these problems are designed and experimentally tested.

Finally, despite the above drawback, it is important to recall what was indicated
just after (5.28): PID control is one of the most frequently employed controllers in
industry because it can be tuned by trial and error (see Sect. 5.3). This has to be
performed by taking into account the stability rule obtained in the Example 4.12,
Sect. 4.3.

Example 5.5 The MATLAB/Simulink diagram corresponding to the block diagram
in Fig.5.27a is presented in Fig.5.32. It is assumed that a = 7 and k = 70. The
desired position 6, is a step command applied at t+ = 0 with 2 as the magnitude,
whereas the disturbance T), is another step applied at t+ = 0.5[s] and 700 as the
magnitude. The PID controller gains are kj,, kg, and k;, computed in the following
MATLAB code executed in an m-file:

clc

a=7;

k=70;

tr=0.05;

Mp=14;%

z=sqgrt ( log(Mp/100)”2 /( log(Mp/100)”*2 + pi®2 ) );
wn=1/ (tr*sqgrt (1-z72)) * (pi-atan(sqrt (1-z"2) /z)) ;
s=-zxwn+wn+sqrt (1-z"2) %7

kd= (2xzxwn-a) /k;

beta=wn"2/ (k+kd)

denl=conv ([l -s],[1 -real(s)+j*ximag(s)]);

Md=tf (denl (3),denl) ;

gm=tf (k, [1 a 0]);

PD=tf (kdx [1 betal,1);

alpha=20;%0.1 1 10 20
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PI=tf ([1 alphal, [1 0]);

M pid=feedback (PI*PDxgm,1,-1) ;
pole (M pid)

figure (2)

step (Md*2,'r--',M pid*2,'k--',0.25)
hold on

kp=(alpha+beta) xkd;
ki=alphaxbetaxkd;

$%{

nn=length (InputOutput (:,2)) ;
n=nn-1;

Ts=2/n;

t=0:Ts:2;

figure (3)

plot (t, InputOutput (:,2),'k--");
hold on

plot (t, InputOutput (:,1),'k:");
axis ([0 1 0 3])

xlabel ('t [s]’)

ylabel (' theta [rad]’)

%)

The main idea is to propose different values for the design parameter « to see how
the transient response is affected. Hence, the values for ¢ and w,, are first computed
from the desired rise time #, = 0.05[s] and overshoot M, = 14%. This allows
kg and B to be computed using (5.32). Then, the desired time response, i.e., that
dictated by the desired complex conjugate poles at s = —z * wn + wn * sqrt(1 —
z2)j (the slowest dashed response in Fig.5.33), and the actual closed-loop system
response to the step reference are plotted on the same axes using the command
“step(Md 2,/ r — —', M_pid 2,/ k — —',0.25)”. The proportional and integral
gains are computed using (5.30); hence, the simulation in Fig. 5.32 can be run. Once
this is performed, the remaining commands in the code listed above can be used to
draw Fig.5.34.

Running the above code and the simulation in Fig.5.32 several times, the
responses are obtained when using different values for «. In Figs.5.33 and 5.34:
(i) Continuous lines stand for « = 0.1, (ii) Dash—dot: @ = 1, (iii) Dotted: o = 10,
and the fastest dashed line: o = 20.

It is observed that, when o = 0.1, the response is different from the desired one,
i.e., the slowest dashed line in Fig.5.33. This is because of the closed-loop zero
at —f, located at s = —54.5225 in this case, which deviates the system response
from the desired one (See also Fig. 5.20. It is remarked that the desired closed-loop
poles are located at s = —Cw, & jw,+/1 — £2, as desired, in this case. Also notice
that the disturbance rejection is so slow that it seems that a steady-state deviation
might exist.
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Fig. 5.34 Response to a step disturbance T, (s)

As « is chosen to be larger, the performance observed in Fig. 5.34 improves with
respect to the disturbance rejection, but the price to be paid is that the response to
the position reference is increasingly different from the desired one, as observed in
Fig.5.33.
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Thus, the simulation results in this example corroborate the predictions stated in
the above discussion in the present section.

5.2.6 Assigning the Desired Closed-Loop Poles

An example is presented in this section to show how the root locus method can
be used to assign the desired closed-loop poles. Consider the following transfer
function:

k
(s — 35.7377)(s + 36.5040)°

G(s)H(s) = (5.36)

The gain k is varied by the method to take values from 0 to +oo. First, G(s) H (s) is
rewritten as:

k
G()H(s) = EZ — (61 +62),

where the vectors s — 35.7377 = [1/6; and s — (—36.5040) = [,/6, have been
defined. The fundamental conditions in the root locus method are the angle condi-
tion (5.7) and the magnitude condition (5.6), which are expressed respectively as:

—(61 4+ 6,) = £(2g + 1)180°, ¢=0,1,2,...
k

— =1.
hilp

Rule 5 indicates that the root locus on the real axis only exists between the points
s = 35.7377 and s = —36.5040. Moreover, according to rule 1, the root locus
begins (k = 0) at s = 35.7377 and s = —36.5040. On the other hand, according
to rules 2 and 3, when k tends to 400 the branches starting at s = 35.7377 and
s = —36.5040 must end at some open-loop zero (there is no zero in this case) or at
some point at infinity on the s plane. Hence, the root locus must move away from
the points s = 35.7377 and s = —36.5040 on the real axis as k increases and a
breakaway point must exist somewhere between such points. Then, the branches
must move toward infinity on the s plane.

On the other hand, according to the angle condition, to — (67 + 6») = —180° =
—(a + 61), and to Fig. 5.35, it can be observed that @ = 65; hence, the triangles #;
and 7, must be identical for any closed-loop pole s. Then, both branches, which
are also shown in Fig.5.35, must be parallel to the imaginary axis. This means
that the breakaway point on the real axis is located at the middle point between
s = 35.7377 and s = —36.5040, i.e., at (35.7377 — 36.5040)/2 = —0.7663. This
can also be verified using rules 3 and 4. Finally, according to rule 6, both branches
are symmetrical with respect to the real axis.
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Fig. 5.35 Root locus for G(s)H (s) in (5.36)

The magnitude condition is employed when it is required to know the exact value
of k rendering a specific point on the root locus an actual closed-loop pole. Notice,
for instance, that both /; and /> must increase to satisfy the magnitude condition as
k grows to +o0:

which means that the closed-loop poles corresponding to large values of k tend
toward some points at infinity on the s plane.

Now suppose that an additional pole is included in the transfer function in (5.36)
to obtain:

116137 k
s3 +72.5452 — 12505 — 9.363 x 10*’
116137 k

= . (5.37)
(s — 35.7377)(s + 36.5040)(s + 71.7721)

G(s)H(s) =

Again, k is the gain that the method varies from 0 to 400 to plot the root locus
diagram. First, G(s) H (s) is rewritten as:

116137 k
G)H(s) = ————L — (61 + 62 + 63),
L3

where the vectors s — 35.7377 = [1/601, s — (—36.5040) = [,/6,, and s —
(=71.7721) = I[3/65 have been defined. The angle condition (5.7) and the
magnitude condition (5.6) are expressed respectively as:



5.2 Root Locus-Based Analysis and Design 279

Root Locus

15

10+

Imaginary Axis
o

-5+

—10}

-15

Real Axis

Fig. 5.36 Root locus diagram for G (s)H (s) in (5.37)
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116137k
Lilbly

The root locus diagram corresponding to this case can be obtained from the root
locus diagram obtained for the transfer function in (5.36) by simply taking into
account the additional pole at s = —71.7721.

According to the rule 11, the new pole is responsible for both branches of the root
locus shown in Fig. 5.35 bending to the right, as can be observed in Fig. 5.36. This
can be corroborated using rule 3 to find that, now, three branches exist, which tend
toward the asymptotes at £180° and +60° with respect to the positive real axis.

On the other hand, the breakaway point between the points s = 35.7377 and s =
—36.5040, which was located at (35.7377 — 36.5040)/2 = —0.7663 in Fig.5.35,
is now shown in Fig. 5.36 shifted to the right of —0.7663. The reason for this is
explained in Fig. 5.37 where s’ and s stand for the points on the root locus which are
very close to the breakaway point for the case of Figs. 5.35 and 5.36 respectively. As
—(014+62+463) = —180° must be satisfied in Fig. 5.36, whereas —(9{ +9£) = —180°
must be satisfied in Fig. 5.35, then both 61 and 6, must be smaller than 9{ and 95.
This means that the point s must be shifted to the right of the point s’. Notice that
this displacement of the breakaway point to the right of the point —0.7663 is greater
as the angle 63 introduced by the pole at s = —71.7721 is greater, i.e., as this pole
is placed farther to the right. In fact, it is observed in Fig. 5.36 that the breakaway
point is located on the right half-plane.
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-0.7663

Fig. 5.37 An additional pole moves the breakaway point to the right

This description of the root locus diagram in Fig.5.36 allows us to conclude
that there is always at least one closed-loop pole with a positive real part, i.e., the
closed-loop system is unstable for any positive value of k. As k can be interpreted
as the gain of a proportional controller, it is concluded that it is not possible to
render the closed-loop system stable using any proportional controller and, thus,
another controller must be proposed. According to rule 12 it is required to use a
controller introducing an open-loop zero because this bends the root locus to the
left accomplishing closed-loop stability.

Consider the following open-loop transfer function:

116137(s + b)
53 + 72.5452 — 12505 — 9.363 x 10%’
e 116137(s + b)
(s — 35.7377)(s + 36.5040) (s + 71.7721)"

G H(s) = k (5.38)

with b a positive constant. Again, & is the gain that the method varies from 0 to 400
to draw the root locus diagram. First, G (s) H (s) is rewritten as:

116137 k Iy
me®=—7EE—ﬂ%—wHwﬂﬂm, (5.39)

where the vectors s —35.7377 = 11/61, s — (—36.5040) = [, /6>, s — (—71.7721) =
13/03, and s — (—b) = 14/04 have been defined. The angle condition (5.7) and the
magnitude condition (5.6) are expressed respectively as:

04 — (01 +62+63) =+£(Q2q +1)180°, ¢=0,1,2,... (5.40)
116137 k 14
e (5.41)
hbl;

Notice that, now, n = 3, m = 1, p; = 35.7377, p» = —36.5040, p3 = —71.7721,
and z; = —b. According to the rules 1, 2, and 3, one of the three branches starting
(k = 0) at the points s = 35.7377, s = —36.5040, and s = —71.7721 (the open-
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loop poles) must end (k = 4-00) at the open-loop zero s = —b. Hence, there are two

root locus branches tending toward some points at infinity of the s plane. According

to rule 3, the angles of the asymptotes toward which these branches tend are:
+180°(2x0+1)  *£180°(2x0+1)

n—m 3—-1

= +90°.

Moreover, according to rule 4, the point where these asymptotes cross the real axis
can be shifted by using the zero at s = —b:

_ pi+pr+p3— (—=b) . 35.7377 — 36.5040 — 71.7721 + b
a — _— .
n—m 2

(5.42)

Notice that » must be positive, as, if this is not the case, the root locus would be
pushed to the right half-plane producing unstable closed-loop poles. Also notice that
the asymptotes move to the left (increasing stability) as the zero is located closer to
the origin, i.e., as b tends toward zero. This means that the closed-loop poles cannot
be placed arbitrarily to the left.

According to rule 5, the root locus now exists on two segments of the real axis.
The locations of these segments depend on the value of b as shown in Figs. 5.38a
and b. Furthermore, it is shown in Fig. 5.38c that in the case when b = 36.5040
is selected, the open-loop zero at s = —b cancels with the open-loop pole at s =
—36.5040. This means that, in such a case, the root locus only exists in one segment
on the real axis.

It is observed, in Fig. 5.38c, that only two closed-loop poles exist. It is observed,
in Figs. 5.38a and b, that three closed-loop poles exist and one of them is on the right
half-plane (closed-loop instability) if the gain k is too small. On the other hand,
if k is too large, two complex conjugate poles exist with too large an imaginary
part, i.e., producing a fast oscillation. Although in theory this can work because
the three poles have negative real parts, a large k produces a number of practical
problems such as noise amplification and power amplifier saturation, i.e., the control
system may not work correctly in practice. Hence, a good design is that enabling the
designer to locate as desired the closed-loop poles avoiding the use of values that
are too large and values that are too small for the gain k.

Suppose that s = —25 £ j40 are the desired closed-loop complex conjugate
poles. A procedure that is useful for computing the exact values required for both b
and k is presented in the following. According to Fig. 5.39 the following angles are
computed:

40
03 = arctan | —— |,
71.7721 — 25

t 40
T n{ —————
arctai| 365040 — 25 )

40
01 = 180° — arctan [ ———— ).
35.7377 4+ 25

)



282

Fig. 5.38 Root loci for

G (s)H (s) defined in (5.38)
obtained by changing b . (a)
b =31.24 < 36.50. (b)

b > 36.50. (¢) b = 36.50
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25 + j40

Fig. 5.39 Open-loop poles and zeros when trying to locate the desired closed-loop poles at s =
—25+ j40

Using the angle condition (5.40), 64 is computed and, also, b:

0y = —180° + (61 + 62 + 63),

40
b= + 25 = 31.2463.
tan(04)

On the other hand, according to Fig. 5.39, the following lengths are computed:
Iy = 402 + (b — 252,
I3 = /402 + (71.7721 — 25)2,
I, = V402 + (36.5040 — 25)2,
I} = /402 + (35.7377 4 25)2,

and, finally, the magnitude condition (5.41) is employed to compute k:

Lz

= ————— =0.03%6.
116137 14

The location of the third closed-loop pole can be found from the condition 1 +
G(s)H(s) = 0 using G(s)H (s) given in (5.38) and b = 31.2463 and k = 0.0396,
ie.,

116137(s + 31.2463) B
§3 +72.5452 — 12505 — 9.363 x 10%

1 +0.0396 0, (5.43)

hence:

s3 +72.54s% + (0.0396 x 116137 — 1250)s
+(0.0396 x 116137 x 31.2463 — 9.363 x 10*) = 0.
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0.05 0.1 0.15 0.2 0.25

Fig. 5.40 Closed-loop response of the system (5.38) from an initial output that is different from
zero. Continuous line: designed response. Dashed line: desired response. Vertical axis: y[m].
Horizontal axis: time in seconds

The roots of this polynomial are the closed-loop poles when b = 31.2463 and
k = 0.0396. Using MATLAB, it is found that these roots are —25.0037 4 j39.9630,
—25.0037 — j39.9630 and —22.5326. These poles are also shown in Fig.5.38a
using symbols “+.” Notice that the desired complex conjugate poles have been
successfully assigned and the third pole, which is real, is also located on the left
half-plane, i.e., closed-loop stability has been accomplished. Recall that the factor
k(s + b) represents a PD controller.

It is important to say that this control system is employed to regulate the output
at a zero value. This implies that no matter what the system type, the desired output
(i.e., zero) is reached. Hence, consideration with respect to the steady-state response
is not necessary.

The closed-loop response (continuous line) is shown in Fig.5.40 when the
desired output is zero, r = 0 (see Fig.5.1). In this simulation (5.38), b = 31.2463
and k = 0.0396 are employed. The dashed line represents the response of a system

. . w;; — _ i
with the transfer function T e tal whose poles are located at s = —25 £+ j40.

Thus, this system represents what is known as a reference model, because its
response possesses the desired transient response specifications. Both responses
start from an initial output equal to 2.85. Notice that some differences exist between

these responses, which are due to the zero at s = —31.2463 and the closed-loop
pole at s = —22.5326, because they are not close enough to completely cancel out
their effects.

Finally, Figs. 5.36, 5.38 and 5.40 have been drawn using the following MATLAB
code in an m-file:

clc
clear
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gh=tf (116137, [1 72.54 -1250 -9.363e4]);
figure (1)

rlocus (gh)

axis([-90 50 -15 15])

b=31.24;

gh=tf (116137%[1 b], [1 72.54 -1250 -9.363e4]);
figure(2)

rlocus (gh)

axis([-90 50 -50 501])

b=45;

gh=tf (116137%[1 b], [1 72.54 -1250 -9.363e4]);
figure (3)

rlocus (gh)

axis([-80 40 -150 150])

b=36.5;

gh=tf (116137%[1 b], [1 72.54 -1250 -9.363e4]);
figure (4)

rlocus (gh)

axis([-80 40 -2 2])

b=31.2463;

k=0.0396;

gh=tf (116137+k«*[1 b], [1 72.54 -1250 -9.363e4]);
M=feedback(gh,1,-1)

A=[0 1 0;

00 1;

-5.007e4 -3349 -72.54];

B=[0;

0;

11;

C=[1.437e5 4599 0];

Me=ss (A,B,C,0) ;

dend=conv ([1 25+40%j], [1 25-40%3]) ;
Ad=[0 1;

-dend (3) -dend(2)];

Bd=[0;

dend (3) 1] ;

Ccd=[1 01];

Md=ss (Ad,Bd, Cd, 0) ;

figure (5)

initial (Me,'b-’,[2.8/1.437e5 0 0])

hold on

initial (Md, 'r--',[2.8 0])
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5.2.7 Proportional-Integral-Derivative Control of an Unstable
Plant

In this section, the use of the root locus method to select the gains of a PID controller
for an open-loop unstable plant is presented. The open-loop transfer function is:

k .
11613700 k4 s+ s+ If_d

G(s)H(s) =
(S) (S) S3 + 2739S2 — 1250s — 3.536 x 106

(5.44)

where k; is the parameter that the method varies from 0 to 400 to draw the root
locus, whereas ]z—s and 1% must be proposed. Notice that a PID controller is selected
because it renders the system type 1, i.e., to ensure a zero steady-state error when the
desired output is a constant. Notice that the PID controller introduces two open-loop
zeros. There are four open-loop poles placed at:

s1 = 35.9, s2 = —2739.4, 53 =-359, s4=0.

Using rule 3 it is found that there are n — m = 4 — 2 = 2 branches of the root locus
that tend toward infinity on the plane s following the asymptotes whose angles are
given as:

+180°

= +90°.
2

Moreover, according to rule 4, the point on the real axis where these asymptotes
intersect is:

359 -2739.4 — 359 + 0,1 + 0y
- > ,

Oa

where —o;; < 0 and —o;> < 0 are the real parts of both open-loop zeros introduced
by the PID controller (these values have to be proposed). It is clear that o, moves to
the left (which implies that the closed-loop system becomes more stable) if —o,; <
0 and —o;> < 0 are chosen to be close to zero. Notice that this is in agreement with
rule 12. Thus, it is concluded that 0, < —1100 is placed far to the left of the origin.
Using these observations, in addition to rules 1, 2, 5, and 6, it is found that the root
locus has the three possibilities depicted in Fig. 5.41.

Instead of assigning some desired closed-loop poles, the control objective is
simply to render the closed-loop system stable. As previously stated, it is preferable
to place both open-loop zeros close to the origin. This means that the possibility
shown in Fig.5.41a is to be used. On the other hand, two complex conjugate zeros
would force two complex conjugate closed-loop poles to appear, which would result
in a less damped closed-loop system. It is for this reason that the possibility in
Fig.5.41c is also avoided. Hence, searching for a root locus diagram such as that in
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Fig. 5.41 Different Im(s)
possibilities for the root locus
diagram when using (5.44) as
the open-loop transfer

function L /L’-\
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Fig. 5.41a, the following values are proposed:
k ki 31.24
£ —3124, L =", (5.45)
kq ka 0.8

as this assigns two open-loop zeros at:
s5 = —29.9355, 56 = —1.3045,
i.e., they are located between the open-loop poles at:

53 =—35.9, s4=0.
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The facts that o, < —1100 is located far to the left of the origin and that the
asymptotes form +90° angles, ensure that a minimal &, exists for all closed-loop
poles to be placed on the left half-plane. Using (5.45) and Routh’s criterion, it is
found that:

kg > 0.01, (5.46)

ensures that all of the closed-loop poles are located on the left half-plane and, hence,
the closed-loop system is stable. This is performed as follows. From the condition
1+ G(s)H(s) = O, i.e., using (5.44) and (5.45), the following characteristic
polynomial is obtained:
st ag;s3 + a2s2 +ais +ag=0, 5.47)
az = 2739, ax =11613700 k; — 1250,

a; = 11613700 x 31.24 kg — 3.536 x 10°,

ap = 11613700 x

ky.
To apply Routh’s criterion, the Table 5.1 is filled. Closed-loop stability is ensured if
no sign changes exist in the first column of Table 5.1, i.e., if:

azay — di ea) —azap
- >0, —— >0, a3>0, ap=>0. (5.48)
as e

Notice that the third condition in (5.48) is naturally satisfied and from the first
and the last conditions it is found that:

kg > —3.5695 x 107%,  k; > 0. (5.49)

From the second condition in (5.48) the following is found:

by b3 2 bs b1b3
R4 (——=-2739"—1 ) ky— —= > 0, 5.50
at (bz by babs) " bobs g 430
by = 112250, by =3.1447 x 10'°, b3 =3.536 x 10°,

31.28
by = 11613700 x 31.24, bs = 11613700T.

Table 5.1 Applying Routh’s

. . . S4 1 a) ap
criterion to the polynomial 3
. 57 a3 a; |0
in (5.47) T amal
K o =e¢ |a 0
Sl ea)—asag O

e

s” lag
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It is not difficult to find that the roots of the second-degree polynomial in (5.50) are
kg = 0.01 and ky = —3.5 x 107°. Moreover, it is possible to evaluate numerically
to find that:

(kg — 0.01) (kg +3.5x 107 > 0, ifky; <—3.5x 107°,
(kg —0.01)(kg +3.5x107% <0, if —3.5x107% <k; <0.01,
(kg — 0.01) (kg +3.5x 107 > 0, ifky > 0.01.

Thus, to simultaneously satisfy (5.49) and (5.50), i.e., to ensure closed-loop
stability, (5.46) must be chosen.

Example 5.6 The root locus diagram for G(s)H(s) given in (5.44) under the
conditions in (5.45) is shown in Fig.5.42. This has been obtained using the
following MATLAB code in an m-file.

clc

clear

gh=tf (11613700%[1 31.24 31.24/0.8],[1 2739 -1250
-3.536e6 0]) ;

k=0:0.00001:0.1;

figure (1)

rlocus (gh, k)

axis([-70 50 -10 10])

rlocfind (gh)

$%{

M=feedback (0.0226%gh,1,-1)

A=[0 1 0 O;

0 01 0;

0 0 0 1;

1.025e007 -4.664e006 -2.612e005 -2739];

=[0;

2

o o

=

1;

C=[1.025e007 8.2e006 2.625e005 0] ;
Me=ss(A,B,C,0);

figure (2)

initial (Me,'b-',[1/1.025e007 0 0 0])
axis([-0.1 3 -0.8 1.2])

o
6}

Using the command “rlocfind(gh)”, the closed-loop poles on the imaginary axis
have been selected to find that k; = 0.01, which corroborates the above findings,
i.e., see (5.46). Using the command “pole(M),” all the closed-loop poles were found
to be real, located at s = —2640, s = —75.6, s = —20.1, and s = —2.6 when
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Fig. 5.42 Root locus diagram for G (s) H (s) given in (5.44) under the conditions in (5.45)
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Fig. 5.43 Closed-loop time response when G(s)H (s) is given in (5.44) under the conditions
in (5.45) and k; = 0.0226

kg = 0.0226, i.e., the closed-loop system is stable. Notice that the open-loop zeros
are located at s = —29.93 and s = —1.3, which was found using the command
“zero(gh).” This means that all the closed-loop poles are located on the left of
the open-loop zero at s = —1.3. Hence, according to Sect. 8.1.2, this means that
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overshoot is unavoidable despite the fact that all the closed-loop poles are real.
This explains the large overshoot observed in Fig.5.43, when a zero reference is
commanded and the initial output is 1. Thus, in this example, it is not important to
try to assign the closed-loop poles at some specific locations.

5.2.8 Control of a Ball and Beam System

In this section, a controller is designed for the ball and beam system that is built and
experimentally tested in Chap. 14, Sect. 14.9. Assume that a proportional controller
is proposed with gain y. First, one proceeds to study the possibility that the closed-
loop system might be rendered stable for some positive gain y. The other system
parameters are positive too, but they cannot be changed. The corresponding block
diagram is shown in Fig. 5.44. The open-loop transfer function is:

X(s) _ v Axkp
Xa(s)  st4asd+yAkp’
A, =5.3750, k=16.6035, a=3.3132, p=>5.

The stability of the closed-loop system is studied using Routh’s criterion. Thus,
Table 5.2 is filled using the closed-loop characteristic polynomial s*+as>+y A kp.
Notice that one entry at the first column is zero; hence, the method suggests
replacing it by a small ¢ > 0. Also notice that under this condition, there are two sign
changes in the first column of Table 5.2 and this cannot be modified by adjusting
y > 0. Then, it is concluded that no proportional controller exists to render the
closed-loop system stable. Thus, another controller must be proposed.

Xa(s) k D X(s)
—> A Ll #
+ v s(s+a) s

v

2

A
[\

Fig. 5.44 Closed-loop system. Proportional control with gain y

Table 5.2 Applying Routh’s

N ! st 0 yAxkp
criterion to the polynomial 3 0 0
st asd +yAckp s2 a
57 | 0~e yAxkp
sl fay:&xkp 0

sU | yAxkp
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X,(s) X(s)

‘ . s+5 k ﬁ »
+'( ) > A, d ’75_,'_6 s(s+a) s d

v

v

)

Fig. 5.45 Closed-loop system. Use of a lead compensator

According to rule 12 in Sect. 5.1.1, a PD controller can render closed-loop stable
system an open-loop unstable system because a PD controller introduces an open-
loop zero. However, a PD controller amplifies noise because of the derivative action.
This is clearly shown in Chap. 6 where a PD controller is proved to be a high-pass
filter and noise is a high-frequency signal. One way of maintaining the stabilizing
properties of a PD controller, but reducing the effects of noise is to use a lead
compensator, i.e., a controller with the transfer function y % withc > § > 0. Itis
for this reason that we study the possibility of stabilizing the ball and beam system
using the block diagram in Fig.5.45 in the following. The closed-loop transfer
function is:

X(s) v Axkp(s +98)
Xa(s) S+ (a+c)st+acsd+yAckps +yAckps’

The closed-loop stability is studied using Routh’s criterion. Hence, the Table 5.3
is constructed using the closed-loop characteristic polynomial s> + (a + ¢)s* +
acs® + yAckps + y AkpS. As all the parameters are positive, there are at least
two sign changes in the first column of Table 5.3. Then, it is concluded that there is
no lead compensator rendering the closed-loop system stable; thus, another control
strategy must be proposed. Carefully analyzing Table 5.3, it is concluded that the
problem is originated by the first entry corresponding to row s, i.e., W which
is negative. Notice that this is a consequence of the fact that the second entry in the
row corresponding to s* is equal to zero. This is because s has a zero coefficient in
the polynomial 53 + (a+c)s* +acs> +y A kps+y Ackps. Thus, it is concluded that
the closed-loop system may be rendered stable if the characteristic polynomial of the
open-loop transfer function has a positive coefficient for s2. Next, it is shown that
this is possible if two internal loops are employed, as shown in Fig. 5.46. Notice that
a lead compensator is still considered. In this case, the open-loop transfer function
is given as:

xPY S+b akAy 1

—, (5.51)
Ag  s+c s24 (a+kykAp)s +akAg s
c>b>0, y=>0, Ayp=09167.

A
G(s)H(s) =




5.2 Root Locus-Based Analysis and Design 293

Tz?ble? 53 Applying Routh’s PR ac y Ackp
criterion to polynomial 7 p 0 A kod
54 (a +o)s* +acs® + 5 jarc Y Axkp
yAyckps +yAckpd 3 |ac —(a+c)yAzlij_yA*kp8 =e

s | Zletde — 1y AL kps
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sO | yAckps
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Fig. 5.46 Closed-loop system. Use of two internal loops and a lead compensator

Notice that the system type is 2, i.e., the steady state error is zero if the reference
is a step or a ramp. The reader may obtain the closed-loop transfer function ))((d(é?)
to verify that the corresponding characteristic polynomial has degree 5 and all of
its coefficients are positive (including the coefficient of s2), as expected. According
to the previous discussion, this means that there exists the possibility of finding
positive values for y, ¢, b (with ¢ > b), k,, and « such that the closed-loop system
is stable. These values are found in the following using the root locus method.

Suppose that the roots of the polynomial s+ (a +k,kAg)s +ak Ag are complex
conjugate, i.e., they can be written:

s2 + (a + kokAg)s + akAg = (s + 0 + jo)(s +0 — jw), >0, o> 0.

According to rule 3, there are n —m = 4 root locus branches tending toward infinity
on the plane s along four asymptotes whose angles are given as:

+180°
8° _ s,

+180°(3
E80°G) _ 350y = +135°,

Hence, using these results in addition to rules 1,2 and 5, it is concluded that the
possibilities depicted in Fig. 5.50 exist. According to rule 4, the point where these
asymptotes intersect with the real axis is given as:

26+ (b—0)
- y ,

Oa
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Fig. 5.47 Root locus Im(s)

possibilities for a ball and \(
beam system

This means that the four branches are pulled to the left; hence, the closed-loop
system becomes more stable, if:

e A greater o > 0 is chosen, i.e., if the system:

OlkAg

, (5.52)
s2 4+ (a + kykAp)s + akAg

is damped enough, which is accomplished using a large enough value for k,, > 0.
* b > 0 Approaches to zero and ¢ > 0 are large, i.e., if ¢ > b. Note that this is in
agreement with rules 11 and 12.

Following the second item above, the root locus shown in Fig.5.47b is obtained.
Notice that both branches starting at the poles located at s = 0 always remain on
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the right half-plane, i.e., the closed-loop system is unstable. The main reason for
this behavior is that branches starting at the poles of the transfer function in (5.52)
are pulled to the segment on the real axis between s = —c and s = —b. This
is because both open-loop complex conjugate poles are too close to the segment
between s = —c and s = —b. If these complex poles are placed far from such a
segment, then the possibility exists for branches starting at s = 0 to be pulled to
the segment between s = —c and s = —b to obtain the root locus diagram shown
in Fig. 5.47c. This implies closed-loop stability for some of the small values of the
loop gain. To achieve this, it is necessary to use large values for the coefficient ok Ay
(because this increases the distance to the origin of the above-mentioned open-loop
complex conjugate poles), i.e., using a large value for «.

According to the previous discussion, large values must be used for &, and «.
However, these values are limited in practice by the system noise content; hence, &,
and o must be obtained using experimental tests. In fact, noise is also an important
reason not to select real poles for the transfer function in (5.52): real poles produce a
very damped system that requires a large value for k,. According to the experimental
tests reported in Chap. 14 the following values were selected:

a=12, k,=02.

Hence, the only values that remain to be determined are y, ¢ and b. Although these
parameters can be determined such that the closed-loop poles are assigned at the
desired locations (using the methodology presented in Sect. 5.2.6), in this case, it
is preferred just to select them such that closed-loop stability is accomplished. To
achieve this, we proceed as follows.

* b and c are proposed such that ¢ > b > 0.

* MATLAB is employed to draw the root locus diagram.

* y > 0is chosen as that value placing all the closed-loop system poles on the left
half-plane. This means that y is the parameter used by the method to plot the root
locus diagram.

* Ifsuchay > 0 does not exist, then we go back to the first step.

The root locus diagram shown in Fig. 5.48 is obtained following this procedure. It
is observed that all the closed-loop poles, i.e., those indicated with a symbol “+,”
have a negative real part if:

The simulation response of the closed-loop system when the reference is an unitary
step is shown in Fig. 5.49. The graphical results in Figs. 5.48 and 5.49 were obtained
by executing the following MATLAB code in an m-file:

Ax=5.375;
At=0.9167;
k=16.6035;
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Fig. 5.49 The ball and beam closed-loop response
a=3.3132;
rho=5;
alpha=12;
kv=0.2;
c=20;
b=2.5;

gm=tf (k, [1 a 0]);

velFd=tf (kvxAt*[1 0],1);
gl=feedback (gm,velFd, -1) ;
g2=feedback (alphaxgl,At,-1) ;
glead=tf ([1 bl, [1 cl);
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gball=tf (rho, [1 0 0]);
gh=glead*g2*Ax*xgball;
figure (1)

rlocus (gh) ;

axis([-23 2 -17 171)
gamma=rlocfind (gh)
M=feedback (gamma*gh,1,-1) ;
figure (2)
subplot(2,1,1)
step (M, 8)

axis([0 8 0 1.7])

Finally, it is important to state that an additional step must be included:

* Once the values for y, ¢ and b are chosen, some experimental tests must be
performed to verify that a good performance is obtained. If this is not the case,
then we go back again to the first step in the procedure detailed above.

5.2.9 Assigning the Desired Closed-Loop Poles for a Ball and
Beam System

Consider again the control problem in the previous section, but now using the
following system parameters:

p =428, a=0098, k=10.729, k, =0.35, « =30, Ag = A, =1. (5.53)

Suppose? that the transient response specifications are stated by requiring a rise time
t, = 1[s] and an overshoot M, = 25%. The use of this information and:

Mp(%)
100
Mp(%) 2
In ( 00 )+7r

/1 — #2
wg = tl |:n — arctan (%)} s

w
Il

_@d
J1-¢2

allows us to find that a complex closed-loop pole must be located at:

wp =

s = —Cw, £ jog = —0.8765 4 j1.9864. (5.54)

3 At this point, the reader is advised to see Example 8.2 in Chap. 8.
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According to the closed-loop block diagram shown in Fig.5.46, the open-loop
transfer function in (5.51) becomes:

s+b 1545
s+ cs*+4.73553 +321.952°

Using these numerical values, it is found that the open-loop poles are located at:

G()H(s) =y (5.55)

s1 =0, 520 =0, 56 = —2.3676 4 j17.7838, s5 = —2.3676 — j17.7838.

Consider Fig.5.50a. Proceed as in Sect. 5.2.6. The angle and the magnitude
conditions establish that:
03 — (61 + 62+ 64+ 65 + 06) = —180°,
1545yl
hialslsle

From these expressions, the following is found:

03 — 04 = —180° + (01 + 02 + 05 + 6¢), (5.56)
l1lp14l51

_ 12456. (5‘57)
154513

Also notice that:

1.9864
= 180° — t. T —— .
63 80 arctan <0.8765 — b) , (5.58)
1.9864
64 = arctan | ——— |,
c—0.8765
1.9864
01 = 6, = 180° — arctan , (5.59)
0.8765
1.9864 + 17.7838
= arct .
s = arctan ( 2.3676 — 0.8765 ) ’ (00
17.7838 — 1.9864
6 = — arctan ( , 5.61)
2.3676 — 0.8765

Iy = I, = v/1.98642 + 0.87652,
I3 = v/1.98642 + (0.8765 — b)2,

Is = v/1.98642 + (¢ — 0.8765)2,

Is = v/(17.7838 + 1.9864)2 + (2.3676 — 0.8765)2,

lo = v/(17.7838 — 1.9864)2 + (2.3676 — 0.8765)2.



5.2 Root Locus-Based Analysis and Design 299

Fig. 5.50 Open-loop pole—zero contributions to the root locus diagram for a ball and beam system

From the second expression, the following is found:

1.9864
CcC =
tan(04)

+ 0.8765. (5.62)



300 5 Time Response-Based Design

The following design procedure is proposed:

1. Compute 61, 62, 65, 66, using (5.59), (5.60), (5.61), and the difference 63 — 64
using (5.56).

2. Propose some b and compute 63 using (5.58). Using this and the value of the
difference 63 — 04, compute 0.

3. Compute ¢ and y using (5.62) and (5.57) respectively.

Proposing b = 0.7, the above procedure yields ¢ = 2.8658 and y = 1.3531. The
corresponding root locus diagram is depicted in Fig.5.51 where the closed-loop
poles are marked using the symbol “+”. Notice that the desired closed-loop pole
at —0.8765 + j1.9864 has been successfully assigned. In Fig. 5.52, we present the
time response of the closed-loop system (continuous) when a unit step reference is
applied. We also present, with a dashed line, the time response of the system:

w2

M@G$)= —82 — 5.63
O T (5.63)

where the values for w, and ¢ ensure that the poles are identical to those defined
in (5.54), i.e., the dashed line represents the desired response. An important
difference between these time responses is observed. In particular, overshoot is
almost twice its desired value. This difference may be explained by the fact that
the closed-loop transfer function of the system in Fig. 5.46 has a zero* at s = —b.
This feature deviates the time response from its desired behavior represented by the
dashed line, i.e., the second-order system without any zero defined in (5.63).

Thus, to solve this problem it is proposed to use the block diagram in Fig. 5.53.
Notice that the only differencehwith respect to the block diagram in Fig.5.46 is

s+

that the lead-compensator y {77 is now placed in the feedback path. The reason

for this is that the resulting closed-loop transfer function now has no zero.> Notice
that the root locus diagram in this case is identical to that in Fig.5.51 as the open-
loop transfer function in this case G(s)H (s) is identical to that in (5.55) because
b =0.7,c =2.8658, y = 1.3531 again. Recall that the zero at s = —b is no longer
closed-loop zero. The closed-loop time response for the block diagram in Fig. 5.53
is presented in Fig.5.54 with a continuous line, whereas the desired response is
represented by the dashed line. Notice that, again, an significant difference exists
between the achieved response and the desired response. Analyzing the root locus
diagram in Fig. 5.51, it is observed that a closed-loop real pole at ~ —0.95 is very
close to the poles at —0.8765 £ j1.9864, which determine the transient response.
Hence, the effects of this real pole are not negligible, and they are important in the
transient response: the closed-loop system behaves as a third-order system instead of
a second-order system. This fact explains the lag observed in the response achieved
in Fig. 5.54.

“It is left as an exercise for the reader to verify this fact.
5 Again, it is left as an exercise for the reader to verify this fact.
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Fig. 5.51 Root locus diagram for the ball and beam system when using the block diagram in
Fig. 5.46 and the controller gains b = 0.7, ¢ = 2.8658, y = 1.3531
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Fig. 5.52 Closed-loop time response of the ball and beam system when using the block diagram
in Fig.5.46 and the controller gains b = 0.7, ¢ = 2.8658, y = 1.3531 (continuous). Dashed:

desired response

Hence, a remedy for this problem is to place this real pole further to the left. This
may be accomplished by placing the zero at s = —b further to the left as depicted
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Fig. 5.53 Use of the lead compensator in the feedback path. The factor y% on the left is included
to ensure that lim;_, oo x(¢) = x4
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Fig. 5.54 Closed-loop time response of the ball and beam system when using the block diagram
in Fig.5.53 and the controller gains b = 0.7, ¢ = 2.8658, y = 1.3531 (continuous). Dashed:
desired response

in Fig. 5.50b. Notice that in this case:

(5.64)

f3 = arctan 1.9864
3= b—08765)

Thus, the design procedure proposed above is still valid, only requiring use of (5.64)
instead of (5.58). Hence, proposing b = 1.4, the following is found: ¢ = 5.1138 and
y = 2.1868. The root locus diagram for this case is shown in Fig. 5.55 where the
closed-loop poles are marked with the symbol “+.” It can be seen that the real pole
is now placed at about —3.5, far enough from the poles in (5.54). Moreover, the time
response achieved in this case (continuous) is shown in Fig. 5.56 and compared with
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Fig. 5.55 Root locus for the ball and beam system according to the block diagram in Fig. 5.53 and
controller gains b = 1.4, ¢ = 5.1138, y = 2.1868

the desired response (dashed). We realize that both responses are very similar in
this case, which corroborates the correctness of the design. This controller is tested
experimentally in Chap. 14.

Finally, to further improve the transient response, in Figs.5.57 and 5.58, the
root locus diagram and the time response respectively are shown when using the
controller gains b = 2, ¢ = 11.7121 and y = 4.6336. Note that the real pole is now
placed at about —10.5, i.e., it is far from the poles in (5.54). This results in a very
small effect of this pole on the transient response, which, as shown in Fig. 5.58, is
now very close to the desired response.

Except for Figs.5.50 and 5.53, all the figures in this section have been drawn
using the following MATLAB code in an m-file:

clc

clear

rho=4.8;

a=0.98;

k=10.729;

kv=0.35;

alpha=30;

Ao=1;

Ax=1;

Gdcm=tf (k, [1 a 0]);
Gfvel=tf (kv«RAox[1 0],1);
Gfdbkl=feedback (Gdcm, Gfvel, -1) ;
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Fig. 5.56 Closed-loop time response of the ball and beam system according to the block diagram
in Fig. 5.53 and controller gains b = 1.4, ¢ = 5.1138, y = 2.1868 (continuous). Dashed: desired
response
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Fig. 5.57 Root locus diagram for the ball and beam system when using the block diagram in
Fig. 5.53 and the controller gains b =2, ¢ = 11.7121 and y = 4.6336

G2=alphaxGfdbkl;
Gfdbk2=feedback (G2,RA0, -1) ;
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Fig. 5.58 Closed-loop time response of the ball and beam system when using the block diagram
in Fig. 5.53 and the controller gains b = 2, ¢ = 11.7121 and y = 4.6336 (continuous). Dashed:

desired response

Gball=tf (rho, [1 0 0]);
GH=Ax+Gfdbk2*Gball
pole (GH)

figure (1)

rlocus (GH)

axis([-5 2 -30 301])

tr=1; %s
Mp=25;%

z=sqrt (log (Mp/100) *2/ (pi®2+1log (Mp/100) *2)) ;
wn=1/ (trxsqrt (1-z"2)) % (pi-atan(sqrt (1-z"2) /z)) ;
wd=wn*sqrt (1-z"2) ;

Res=-zxwn % -0.8765

Ims=wd % j 1.9864

thl=pi-atan(Ims/(-Res));

thS=atan ( (Ims+17.7838)/(2.3676+Res)) ;
thé6=-atan((17.7838-Ims)/(2.7636+Res)) ;
th3menosth4=-pi+ (2+thl+th5+thé) ;

$th3=pi-atan(Ims/ (-Res-b));
th3=atan (Ims/ (b+Res)) ;
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th4=-th3menosth4+th3;

c=Ims/tan(th4) -Res

ll=sgrt (Ims”2+Res™2) ;
13=sgrt (Ims”2+ (-Res-b) *2) ;

l4a=sgrt (Ims”2+ (c+Res) *2) ;

15=sgrt ((17.7838-Ims) "2+ (2.3676+Res) *2) ;
16=sgrt ((17.7838+Ims) "2+ (2.3676+Res) *2) ;
gamma=11"2%14%15%16/ (13xrhoxalphaxk+Ax)
ctrl=tf (gammax[1 b], [1 c]);
GHcomp=GH=*ctrl;

gg=0:0.01:1;

figure (2)

rlocus (GHcomp) %,99)
axis([-12.5 0.5 -20 201)
rlocfind (GHcomp)
M=feedback (GH, ctrl, -1) ;
Ml=tf (wn*2, [1 2+z+wn wn"2])
figure (3)

step (Mx0.7913,'b-" ,M1, 'r--")
%step (Mx0.5987,'b-’ ,M1,'r--")
$step (Mx0.3305,'b-" ,M1, "'r--")
grid on

5.3 Case Study: Additional Notes on the PID Control of
Position for a Permanent Magnet Brushed DC Motor

The PID control for position regulation in a DC motor is studied in Sect. 5.2.5.
There, it was found that the motor position relates to the desired position and an
external torque disturbance through two transfer functions, which, however, have
the same characteristic polynomial:

53 + (a + kak)s® + kpks + kik. (5.65)
It was also found that the following closed-loop poles p1, p2, p3 can be assigned:
pr=o01+joi, pp=o0y—joi, p3<0, 01<0, 02<0, =0

Notice that o1 = o7 if w1 > 0, i.e., when a pair of complex conjugate poles exists,
but o1 # o7 is possible when w; = 0. Then, controller gains must be selected
according to:

kg =~ +”2k+ P —a g (5.66)
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+ o} + p3o; +
ky = 22T kp3“1 2P, (5.67)

B 2
ki = M = 0. (5.68)

On the other hand, in Example 4.12, Chap. 4, it was found that all of the roots of
the following polynomial:

s3+as2+bs+c,

have a negative real part if and only if:

a >0, b>£>0 c >0,
a

Applying these conditions to the characteristic polynomial in (5.65), yields:

kik

—, kik>0. 5.69
4+ kok ik > ( )

a+kgk >0, kpk>

Using the expressions in (5.66), (5.67), (5.68), (5.69), Fig.5.59, the results in
Sect. 3.3, and Example 3.9, the effects of the PID controller gains on the closed-
loop system response can be studied.

* kp > 0and kg > O are small, whereas k; > 0 is large.
2

n
Fig.5.59. According to (5.68), the product — p3a)5 is large, which implies a
faster response because a real pole produces faster responses as p3 moves to
the left and a second-order system is faster as w, is larger. Note that k; can
be kept constant and, according to (5.67), k, > 0 can be rendered small if
both o1 and o approach zero, i.e., if & > 0 in Fig. 5.59 approaches zero and,
hence, damping approaches zero (without affecting w, nor — p3). According
to (5.66), this also renders k; > 0 small. Also notice that this is in agreement
with the second inequality in (5.69), i.e., kpk > % If k; > 0 is large and
kp > 0, kg > 0 are small, then this condition tends not to be valid, i.e., the
closed-loop system approaches instability and becomes more oscillatory.

— Suppose that p; and p, are real and different, i.e., w; = 0. Thus, a more
damped and, hence, slower response is obtained. According to (5.68), this
results in a smaller k; > 0. However, according to (5.66), (5.67), k, > 0,
and k; > O can be rendered larger because |0 | may become larger despite o2
approaching zero. Thus, from the second inequality in (5.69), it is concluded
too that a more damped response is obtained.

Notice that an increment in k; > 0 has a greater effect on the increment of
|o1| than the effect that an increment in k;, > 0 has on the increment of |o |
because this real part is affected by p3 in (5.67), which is assumed to be large.

— Suppose that p; and p; are complex conjugate. Then, w; = o102 + w]2 in
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Thus, it is concluded that k; has a greater effect on the damping than k), i.e.,
the slower response predicted above is more affected by k.

ki > O1is small and k,, > 0 is large.
This may be possible if p3 is close to zero and p; and p;, are complex conjugate.
Thus, according to (5.67) and (5.66), k, > 0 can be large and k; > O small if

@ = oj0m + w% is large and o1 and o7, are close to zero. This means that

n
the damping is small because & > 0 in Fig.5.59 is close to zero. Thus, a more
oscillatory but faster closed-loop system response is obtained.
However, |o1] and |o2| may be rendered larger, i.e., to increase ky > 0, without
affecting w, if 8 > 0 in Fig.5.59 is increased. Thus, a more damped but slower
system response is obtained. Notice that k, > 0 is less affected by the changes
in |o1] and |07 | because they are affected by p3 in (5.67), which is assumed to be

close to zero.

According to the discussion above the following is concluded regarding the

effects that the PID control gains have when used for position regulation in a DC
motor:

Larger positive values for the integral gain, k;, result in a faster response that
becomes more oscillatory.

Large positive values of the proportional gain, k), result in either a) a slightly
more damped response if k; > 0 is large, or ) a more oscillatory response if
k; > 0 1is small. In both cases, a fast response is expected.

Larger positive values of the derivative gain, kg, produce a more damped and
slower response.

It is convenient to say that the transfer function between the position and its

desired value (G (s) in (5.26)) has two zeros whose effect on the transient response
is not completely clear. Hence, it is possible that sometimes, some variations appear



5.3 Case Study 309

Fig. 5.60 Simple pendulum
used as a load for a DC motor

regarding the effects that have just been described for the gains of the PID controller.
Furthermore, the fact that the external disturbance is present because the desired
position is commanded in some mechanisms may favor these variations.

To illustrate the ideas above, some experimental results that were obtained
when controlling the position of a DC motor are presented in the following. The
experimental prototype is the same as that described in Chap. 11 with a simple
modification (that is not present in that chapter): the pendulum shown in Fig. 5.60
is fixed to the motor shaft. Hence, by means of the gravity effect g, a torque
disturbance is introduced that tries to deviate the motor position from its desired
value. In Fig. 5.60, T (¢) represents the torque generated by the motor and 6 is the
controlled variable. The pendulum parameters / and m are not measured to show
that a PID controller can be tuned without any necessity of knowing the plant, if the
effects of the controller gains (listed above) are well understood.

The corresponding experimental results are presented in Figs. 5.61 and 5.62. The
desired position is set to ; = 7 /2[rad] as this is where the torque disturbance due
to gravity has its greatest effect. A vertical line at + = 0.13[s] and a horizontal line
at & = 1.8[rad] are also shown to indicate the desired rise time and overshoot. Only
one parameter is adjusted each time to clearly appreciate its effect. Curves drawn in
Fig.5.61 correspond to the following PID controller gains:

1. Upper figure:
* Continuous: k, =0.5,k; =0,k; =0
e Dash—dot: k), =1,k; =0,kg =0
* Dotted: k, =1, k; =0, kg = 0.05
2. Bottom figure:
* Continuous: k, =1, k; = 2, kg = 0.05
* Dash—dot: k, =1,k =5, ks =0.05
* Dotted: k, =2, ki =5, kg = 0.05
* Dashed: k), =2,k =5,kg =0.1

As the closed-loop system is third-order when a PID controller is used and the motor
parameters are not known, it is difficult to know the controller gains that ensure
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Fig. 5.61 The PID control of position for a DC motor with a pendulum as a load. Experimental
results

stability. Thus, the best that can be done is to begin with a PD controller (assigning
ki = 0), which produces a second-order closed-loop system that is stable for any
positive k, with k; = 0 (because any real mechanism possesses friction). Later,
according to the transient response obtained and to the tuning rules listed above,
the gains k; and ky are introduced such that stable responses are accomplished. It
is for this reason that, in the upper part of Fig.5.61 a PD controller is employed.
Note that a steady-state error that is different from zero is obtained because of the
torque disturbance introduced by gravity (recall that k; = 0). The aim in this part
of the experiment is to allow the system response time to approach its desired value
ensuring stable behavior. Thus, the proportional gain is first increased to k, = 1
and then the derivative gain is increased to k; = 0.05. Then, an integral term can
be introduced, which, although producing a zero steady-state error, increases the
oscillations in the system response. This is shown at the bottom part of Fig.5.61.
Again, the idea is to allow the response time to approach its desired value. This is
accomplished first by increasing the integral gain to k; = 5. As this also increases
the oscillation, k, = 2 is employed to render the system response faster without
appreciably increasing the oscillation. Finally, k; = 0.1 is used to produce a well
damped response. Notice that the increment on k4 increases the rise time a little.
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Fig. 5.62 The PID control of position for a DC motor with a pendulum as a load. Experimental
results

Curves drawn in Fig. 5.62 correspond to the following PID controller gains:
1. Upper figure:

* Continuous: k, =2,k; =5,kg =0.1
e Dash—dot: k, =2,ki =5,k4 =0.2
* Dotted: k), =2,k =8,kg =02

2. Bottom figure:

» Continuous: k, =2, k; = 8,kg =0.2
* Dash-dot: k, =2.5,k; = 8,kg = 0.2
* Dotted: k, =3,k; =8,kg =0.2

* Dashed: k, =3.5,ki =8,k =0.2

In the upper part of Fig. 5.62, it is observed that the response is even more damped
and slower when the derivative gain is increased from k; = 0.1 to k; = 0.2.
Because, at this moment, the response is slow and overshoot is small, k; = 8 is
employed to render the response faster and with a larger overshoot that is equal to
the desired overshoot. To render the system faster, without appreciably affecting
overshoot, the proportional gain is increased to k, = 3.5 in the lower part of
Fig.5.62. This allows the desired rise time and overshoot to be accomplished.
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It is important to stress the following. When connecting the pendulum to the
motor shaft, the control system becomes nonlinear. This means that the control
system behavior is not correctly predicted by the analysis presented above at certain
operation regions. For instance, if the desired position is close to 6; = i, a simple
PD controller may be unstable if the proportional gain (positive) is not greater than
a certain lower threshold. This result is obtained using a PD controller for the case
when x} = £, x5 = 0 in Example 7.5 studied in Chap. 7 by finding the poles for
such a linear approximation. The reader may also see the works reported in [2, 4],
ch. 8, [3], ch.7. This situation is worse for the case of a PID controller, but the
problem does not appear if the desired position value is kept far from 6; = +m, as
in the results presented in this section.

Finally, notice that the selection of the PID controller gains has been performed
without requiring knowledge of the numerical value of any motor or pendulum
parameter. However, the minimal knowledge that must be available is to verify that
the motor can produce the required torque to perform the task. This must include
the required torque to compensate for the gravity effect plus some additional torque
to achieve the desired rise time.

5.4 Summary

The most general method of controller design using the time response approach
is the root locus method. This means that the plants that can be controlled are of
arbitrary order with any number of zeros as long as they are less than the number
of poles. This method provides the necessary tools to determine, in a graphical way,
the location of the closed-loop poles from the location of the open-loop poles and
zeros. Some of the open-loop poles and zeros are due to the controller and the idea
of the method is to select the location of the controller poles and zeros such that the
desired closed-loop poles are assigned. The desired closed-loop poles are chosen
from the knowledge of how they affect the corresponding transient response. The
study presented in Chap. 3 is important for this. On the other hand, the controller
structure is chosen from the knowledge of how the open-loop poles and zeros affect
the closed-loop system steady- state response. The study presented in Chap. 4 is
very important for this.

Although the root locus has been presented as a controller design method, it is
also a powerful tool for control systems analysis. This means that it can be used to
determine: (i) The relative stability of a control system, (i) How the control system
response changes as one of its parameters changes, (iii) What has to be done to
modify the control system properties, etc. The use of the root locus method in these
applications depends, to a large extent, on a good understanding of the method and
the material presented in Chaps. 3 and 4.
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5.5 Review Questions

. When would you use each one of the following controllers?

* Proportional.

* Proportional—derivative.

* Proportional-integral.

* Proportional-integral—derivative.

Why do you think it is not advised to use the following controllers: (i)
Derivative (alone), (ii) Integral (alone), and (iii) Derivative—integral (alone),
i.e., without including a proportional part? Explain.

How do the requirements of the steady-state error determine the poles and/or
zeros of a controller, i.e., the controller structure?

What is the main component that a controller must possess to improve the
closed-loop system stability? What is the effect of this on the shape of the root
locus diagram?

What is the main component that a controller must possess to improve the
steady-state error? What is the effect of this on the shape of the root locus
diagram?

Why does the root locus begin at the open-loop poles and end at the open-loop
zeros? What do the words “begin” and “end” mean?

If the open-loop transfer function has no zeros, where does the root locus end?
It is often said that closed-loop system instability appears as the loop gain
increases. However, this is not always true, because this depends on the
properties of the plant to be controlled. Review the examples presented in this
chapter and give an example of a plant requiring the loop gain to be large
enough to render the closed-loop system stable.

What is a lead compensator and what is its main advantage?

Read Appendix F and Sect. 9.2 in Chap. 9. Use this information to explain how
to practically implement a PID controller and a lead compensator using both
software and analog electronics.

5.6 Exercises

1.

Consider the control system in Fig. 5.63 where:
k =35.2671, a=3.5201, c¢=10.3672, y =2.0465, d = 3.8935.

Verify that two closed-loop complex conjugate poles exist at s = —4.8935 £
j6.6766 when k; = 0 and k;, = 1. Use MATLAB to draw the root locus for the
following values of k;:

k; = 0.001, 0.01, 0.1, 1, 10,
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9[1 (S)
+ k; R k 9(8)
ky+5 > 7% s(s+a) ’

Fig. 5.63 A cascade connection of the PI control and lead compensator

Use k), as the parameter the method varies from 0 to +-oo to draw the root locus
diagram. Select k, = 1 and observe what happens with the closed-loop poles
corresponding to s = —4.8935 + j6.6766. Perform simulations for each case
when the reference is a unit step. Compare the obtained response as k; grows
with the response obtained when k, = 1 and k; = 0. Draw the corresponding
root loci using the method presented in this chapter and explain what happens.

. Consider the following plant:

Y(s) = Hi(s)U(s), Hi(s) = k =35.2671, a =3.5201.

k
s(s+a)’

a) Employ (3.71) in Chap. 3 to find the values for k, and k, such that the
following transient response specifications are satisfied:

tr = 0.33[s], M,(%) = 10,

when y, is a unit step and the following controller is used: u(t) = kp(yq —

y) —kyy.
b) Assume that the input is given as:

d(ya —y)

, PD control.
dt

u(t) = kp(ya —y) +ka
Obtain the closed-loop transfer function and use (3.71) in Chap. 3 to deter-
mine k, and k; such that the closed-loop poles are located at some points
determining the following closed-loop transient response specifications:

tr =033[s], M,(%) = 10.

Perform simulations corresponding to each one of the above items and compare
the obtained responses. What is the reason for the differences between these
responses? May zeros of a transfer function affect the transient response? Can
these differences be explained using the root locus?

. Consider a closed-loop system such as that shown in Fig. 5.1 with H(s) = 1

1
and G(s) = o
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» Using the rules presented in Sect. 5.1.1, draw the root locus diagram when
using a proportional controller. Use Routh’s criterion to determine the values
of the proportional gain ensuring closed-loop stability.

» To stabilize the closed-loop system and to achieve a zero steady-state error
when the reference is a step, design a PID controller proceeding as follows.
(i) Propose kqs* + kps + ki = ka(s — 21)(s — z2), with z; = —0.5 + 1.3,
722 = —0.5 — 1.3;. Using the rules presented in Sect. 5.1.1, draw the root
locus diagram to verify that no positive value exists for the derivative gain
rendering the closed-loop system stable. (ii) Propose kgs” + kps + ki =
kq(s — z1)(s — z2), with 71 = —0.25 + 1.3/, zo0 = —0.25 — 1.3;. Using
the rules presented in Sect. 5.1.1, draw the root locus diagram to verify that
a range of positive values exists for the derivative gain kg, rendering the
closed-loop system stable. Use Routh’s criterion to find the range of values
for k4, rendering the closed-loop system stable.

* How should the zeros of a PID controller be selected to improve the stability
of the closed-loop system?

4. Verify that the transfer function of the circuit shown in Fig. 5.64 is:

Vo(s) s+a 1 1 1
— = , a=——, b= —+—.
Vi(s) s+b R C R C R,C

As b > a, this electric network can be used as a lead compensator.
5. Consider the following plant:

4(s +0.2)

G(s) = (s +05)(s2—025s+03)

Use the root locus method to design a controller, ensuring closed-loop stability
and a zero steady-state error when the reference is a step. It is suggested that the
location of the poles and the zeros of the controller are proposed and then the
open-loop gain is selected such that all the closed-loop poles have a negative
real part.

compensator |

Wﬁ

Fig. 5.64 A lead C

1

O

&
|
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Fig. 5.65 A K F1) b

mass-spring-damper system — j—E
m —

10.

Consider the PD control of the position in Fig. 5.2.2. Prove that the value of the
derivative gain k; does not have any effect on the steady-state error when the
reference is a step.

Consider the PID control of the position studied in Sect. 5.2.5. Prove that the
values of the proportional k,, and the derivative k4 gains do not have any effect
on the steady-state error, despite a constant disturbance being present if the
reference is also constant.

Assume that the integral part of the controller is not present, i.e., that k; = 0.
Prove that the value of the derivative gain k4 does not have any effect on the
steady-state error.

Consider the mass-spring-damper system shown in Fig. 5.65, which has been
modeled in Example 2.1, Chap. 2. In Example 3.18, Chap. 3, it is explained
why a steady-state error that is different from zero exists when a proportional
controller is employed and the desired position x4 is a constant that is different
from zero. Recall that the force F(¢) applied to the mass is the control signal.
Now suppose that a PID controller is used to regulate the position. Find the
steady-state error when the desired position x; is a constant that is different
from zero. Use your everyday experience to explain your response, i.e., try to
explain what happens with the force applied to the mass and the effect of the
spring.

Consider the simple pendulum studied in Example 2.6, Chap. 2, which is shown
in Fig. 5.66. Notice that the gravity exerts a torque that is different from zero
on the pendulum if the angular position 6 is different from zero. Suppose that
it is desired to take the pendulum position 6 to the constant value 6; = 90°.
Note that torque 7'(¢) is the input for the pendulum. Using the experience in
the previous exercise, state which controller you would employ to compute
T (t) such that 6 reaches 6. Explain why. This problem is contrived to be
solved without using a mathematical model; you merely need to understand
the problem. In fact, the mathematical model is in this case nonlinear; hence, it
cannot be analyzed using the control techniques studied in this book so far.
Consider an arbitrary plant G (s) in cascade with the following controllers:

s+a

GC(S) = s +b’

0<a<b,

Gd(s)z::_{_L;, c>d>0.

G.(s) is known as a lead compensator, whereas G4(s) is known as a lag
compensartor.



5.6 Exercises 317

Fig. 5.66 A simple
pendulum

11.

NS

What is the effect of each one of these compensators on the steady-state error
when the reference is a step?

What is the effect of each one of these compensators on the closed-loop
stability?

Which compensator is related to PI control and which to PD control? Explain
why.

How would you employ these compensators to construct a controller with
similar properties to those of PID control? Explain.

In a ship, it is common to have a unique compass to indicate the course.
However, it is important to know this information at several places in the ship.
Hence, it is common to transmit this information to exhibit it using a needle
instrument. The angular position of the needle is actuated using a DC motor by
using the information provided by the compass as the desired position. Design
a closed-loop control system such that the needle position tracks the orientation
provided by the compass according to the following specifications:

When a step change of 8° appears in the orientation provided by the
compass, the system error decreases and remains at less than 1° in 0.3 s
or less and overshoot is less than or equal to 25%.

When the orientation provided by the compass changes as a ramp of 5° per
second, the steady-state error must be 0.3° or less.

There are no external disturbances.

Under which ship operating conditions may these situations appear? The
transfer function between the voltage applied to the motor and the needle
position in degrees is:

45.84 x 1073

G(s) = .
s) s(4.4 x 10952 + 308.5 x 10~9s + 3.3 x 10-0)

Hint.
(7) On the basis of the specifications indicated, choose a controller to design.
(i7) Using the first specification, determine the zone in the time domain where
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the closed-loop system response must lay. (iii) Recall that, according to
Fig. 3.16, Chap. 3, the response of a second-order system remains between two
exponential functions depending on ¢ and w,,. With this information and using
the desired damping, determine the zone on the complex plane s where the
dominant (complex conjugate) poles of the closed-loop system must be located.
(iv) Use the root locus rules presented in this chapter to find the controller
gains, ensuring that all the closed-loop poles are inside the desired zone in the
plane s. (v) Verify that the second specification is satisfied and, if this is not the
case, redesign the controller. (vi) Perform some simulations to corroborate that
all the requirements are satisfied.
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Chapter 6 ®
Frequency Response-Based Design ke

In Chap. 5 a method for control systems design is presented, which is known as
the time response method. The main feature of such an approach is to suitably
locate the closed-loop poles to ensure that the transient response satisfies the desired
specifications. Fundamental for that method is to know how the transient response
is affected by the closed-loop poles if these are real, complex conjugate, repeated or
different, etc.

In the present chapter, a new control system design method is introduced, which
is known as the frequency response approach. Fundamental to this method is to
know that when a sinusoidal function of time is applied at the input of a linear
differential equation, then the output in a steady state is also a sinusoidal function
of time, having the same frequency as the input, but, in general, having different
amplitude and phase from the input (see Sect. 3.6). As a basis for this method, one
must study how the amplitude and the phase at the output change as the frequency
of the signal applied at the input changes. This is what term frequency response
means. As shown in this chapter, the way in which the amplitude and the phase of
the signal at the output change with the frequency depends on the location of the
transfer function poles and zeros. The strategy of this method is to suitably modify
the frequency response properties of the open-loop system to achieve the desired
time response specifications for the output of the closed-loop system.

Finally, it is important to stress that control systems designed in this way are
intended to respond to references that are not necessarily sinusoidal functions of
time. Moreover, as shown in the subsequent sections, some methods that are useful
to determine the closed-loop stability are also established. In this respect, it is
important to say that these ideas can also be extended to unstable systems: although
the natural response does not disappear in such a case, the forced response is still a
sinusoidal function of time if the system input is too.

Every control design problem in classical control can be solved using one of
two methods: the time response method or the frequency response method. This
means that both methods provide the necessary tools for any control problem in

© Springer International Publishing AG, part of Springer Nature 2019 319
V. M. Hernandez-Guzman, R. Silva-Ortigoza, Automatic Control with Experiments,

Advanced Textbooks in Control and Signal Processing,
https://doi.org/10.1007/978-3-319-75804-6_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75804-6_6&domain=pdf
https://doi.org/10.1007/978-3-319-75804-6_6
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classical control. However, as each of these methods analyzes the same problem
from different points of view; each one of them provides information that can be
complementary to information provided by the other method. Thus, it is important
to understand both methods.

6.1 Frequency Response of Some Electric Circuits

In this section, we present some experimental results obtained when using some
simple alternating current (AC) circuits. All of these circuits can be represented by
the general circuit in Fig. 6.1a. We are interested in observing the output voltage
vo(t) at the circuit element designated as z» when the voltage source delivers a
signal given as:

vi(t) = Asin(wt). 6.1)

When using a scope to measure v; () and v (¢), we observe a situation such as that
depicted in Fig. 6.1b, i.e., the output voltage is given as:

vo(t) = B sin(wt + ¢),

360 14 21
[, T=—.
T w

¢ =

Fig. 6.1 Input and output
voltages in a general series of
alternating current (AC)
electric circuit

S+ v




6.1 Frequency Response of Some Electric Circuits 321

This means that both v;(¢) and vo(#) are sinusoidal functions of time, having
the same frequency. It is important to stress that, under the conditions shown in
Fig. 6.1b, ¢ is defined as negative, i.e., the output voltage, vo(#), lags with respect to
the input voltage, v; (). Experiments to be performed consist of measuring the input
and the output amplitudes, A and B, in addition to the time fy, to compute ¢, for
several frequencies w. Then, the quantities B/ A and ¢ are plotted as functions of the
frequency w. These plots are intended to explain the meaning of the term frequency
response.

6.1.1 A Series Resistor—Capacitor Circuit: Qutput at the
Capacitance

We first consider the AC circuit shown in Fig.6.2a when R = 1000[Ohm] and
C = 0.1 x 107%[F]. Employing different values of frequency, w, we obtain the
measurements shown in Table 6.1, which are plotted in Fig. 6.3 (continuous line).
The first of these plots represents B/A as a function of the frequency, whereas the
second plot represents ¢ as a function of the frequency w. The quantity B/A is
called magnitude and ¢ is called phase.

From Fig. 6.3, we conclude that this circuit behaves as a low-pass filter and phase
lag is produced. This means that the low-frequency signals (when w is close to zero)
are not attenuated or they are attenuated only a little, i.e., B/A =~ 1, whereas the
high-frequency signals (when o is large) are strongly attenuated, i.e., B/A ~ 0.

6.1.1.1 Model-Based Analysis

Using the tension divider in the circuit shown in Fig. 6.2a, the following is found:

L
Vo(s) = —5-Vi(s),
sC
and rearranging:
Vi 1
08 _ Gy = -4 a=-L (6.2)
Vi(s) s+a RC
Assume that s = jw, then:
. a a a—jo ala— jw)
G(jo) = —— = - e el
Jo+a Jow+aa— jw w”+a
ava? +o? a

IG(jw)| = (6.3)

w? 4 a? Jo? +a?
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Fig. 6.2 Simple series of AC
circuits used in experiments
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Table 6.1 Experimental data f [Hz]
for the resistor—capacitor 50
(RC) circuit in Fig. 6.2a

60

70

80

90
100
200
300
400
500
600
700
800
900
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
30000
40000
50000

/G (jw) = arctan <

where:

o =2 f[x10%rad/s] | A [V]

0.0031 4
0.0038 4
0.0044 4
0.0050 4
0.0057 4
0.0063 4
0.0126 4
0.0188 4
0.0251 4
0.0314 4
0.0377 4
0.0440 4
0.0503 4
0.0565 39
0.0628 3.9
0.1257 3.9
0.1885 3.9
0.2513 3.8
0.3142 3.8
0.3770 3.8
0.4398 3.8
0.5027 3.8
0.5655 3.8
0.6283 3.8
1.2566 3.8
1.8850 3.8
2.5133 3.9
3.1416 3.9

M) _ arctan <—_w
Re(G(jw)) /) a

¢ = arctan (—_w) .
a

At this point, it is convenient to recall that a transfer function is defined as

the ratio of the system output and the system input, i.e., G(s) =

).

Thus, according to Sect. 3.6, if v;(t) = Asin(wt), then vo(t) =

323

B[V] [¢[°]

4 0

4 -23
4 -2.5
4 -2.8
4 -3.8
4 —4.3
4 —8.5
4 —-12.9
3.8 —15.8
3.8 —19.8
3.7 —23.7
3.6 -27.7
3.5 —31.6
33 —35.6
32 —39.6
23 —57.6
1.7 —64.8
1.4 —74.8
1.1 —79.2
0.9 —73.4
0.8 —80.7
0.7 —74.7
0.6 —81
0.6 —79.8
0.3 —83.5
0.2 —82
0.1 —86
0.1 —87

(6.4)

B sin(wt + ¢)

(6.5)

(6.6)

_a_ _ V)
sta T Vi(s)®
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|
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RO w [rad/s]

Fig. 6.3 Experimental (continuous line) and theoretical (dashed line) data for the circuit in
Fig. 6.2a (see Table 6.1)

Hence, it is not a surprise that |G(jw)| is given as the ratio of the output and the
input amplitudes. On the other hand, if it assumed that G (jw), Vo(jw), Vi(jw) are
complex numbers, then the angle of Vjy(jw) must be given as the addition of the
angles of G (jw) and V; (jw) because Vy(jw) = G(jw)V;(jw). This means that the
angle difference between V; (jw) and Vy(jw) is equal to the angle of G (jw).

In Fig. 6.3, the plot obtained (dashed line) using |G (jw)| and ¢ defined in (6.3)
and (6.4) is shown. The closeness observed in this figure between the continuous line
and the dashed line is evidence that the analytical relationships obtained correctly
represent the experimental situation. Finally, from (6.5), (6.6), we realize that:

B_1 =0.7071
A 2 ’
¢ = —45°,

when w = a = R_IC’ which is known as the corner frequency. Note that the phase of
LG (jw) takes values in the range [—90°, 0°]. This means that the corner frequency
occurs when the phase is in the middle of its variation range and the output
amplitude is equal to the root—-mean—square (RMS) value of the input amplitude.
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6.1.2 A Series RC Circuit: Output at the Resistance

325

Consider the AC circuit shown in Fig. 6.2b when R = 1000[Ohm] and C = 0.1 x
10~°[F]. Employing different frequency values, w, we obtain the measurements
shown in Table 6.2, which are plotted in Fig. 6.4 (continuous line). From Fig. 6.4, we
conclude that this circuit behaves as a high-pass filter and a phase lead is produced.
This means that the low-frequency signals (when w is close to zero) are strongly
attenuated, i.e., B/A = 0, whereas the high-frequency signals (when w is large) are
not attenuated or they are attenuated just a little, i.e., B/A ~ 1.

Table 6.2 Experimental data f [Hz]

for the RC circuit in Fig. 6.2b 50

60
70

80

90
100
200
300
400
500
600
700
800
900
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
30000
40000
50000

w =2rf[x 10°rad/s]

0.0031
0.0038
0.0044
0.0050
0.0057
0.0063
0.0126
0.0188
0.0251
0.0314
0.0377
0.0440
0.0503
0.0565
0.0628
0.1257
0.1885
0.2513
0.3142
0.3770
0.4398
0.5027
0.5655
0.6283
1.2566
1.8850
2.5133
3.1416

A[V]

5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.05
5.1
5.05

4.96
4.96
4.6

4.88
4.92
4.92
4.92
4.84
4.92
4.92
4.92
4.92
5.2

B[V]

0.2

0.24
0.28
0.32
0.36
0.4

0.68
1.0

1.28
1.56
1.8

2.4

2.28
2.7

2.77
3.88
4.32
3.92
4.44
4.72
4.76
4.76
4.56
4.72
4.84
4.92
4.92
5.2

¢ [°]

102.6
97.2
95.76
97.92

100.44
90
90.72
84.24
80.64
79.2
69.12
70.56
63.36
58.32
60.48
41.76
30.24
24.76
18.72
16.41
13.1
12.67
11.01

9.36
0

0
0
0
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Fig. 6.4 Experimental (continuous) and theoretical (dashed) data for the circuit in Fig. 6.2b (see
Table 6.2)

6.1.2.1 Model-Based Analysis

Using the tension divider in the circuit shown in Fig. 6.2b the following is found:

Vos) = ——Vi(s)
R+ 5c
and rearranging:
Vi 1
0(s) =G(s) = al , a=—.
Vi(s) s+a RC
Assume that s = jw, then:
. jo jo a—jo  jola—jo)
G(jo) = - = - —
Jo+a Jo+aa— jw w-+a
) oV w? + a? 13
IG(jw)| = =

w2—|—a2 /(,()2+(12

—w
/G (jw) = 90° + arctan <—) .
a
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Thus, according to Sect. 3.6, if v;(#) = Asin(wt), then vo(t) = B sin(wt + ¢)
where:

1)
B=A—n,
Vw? + a?
¢ = 90° + arctan <—_w> .
a

In Fig. 6.4, the plot obtained (dashed line) using the expressions for |G (jw)| =
% and ¢ that have just been defined is shown. The closeness observed between
the continuous line and the dashed line is evidence that the analytical relationships
obtained correctly represent the experimental situation. Finally, note that:

B_1 =0.7071
A 2 7
¢ = +45°,

when w = a = RI_C’ which is known, again, as the corner frequency. Also note
that the phase of /G (jw) takes values in the range [0°, +90°]. This means that the
corner frequency occurs when the phase is at the middle of its variation range and
the output amplitude is equal to the RMS value of the input amplitude.

6.1.3 A Series RLC Circuit: Output at the Capacitance

Consider the AC circuit shown in Fig.6.2c when R = 100[Ohm], C = 0.1 x
107°[F] and L = 14.262[mH]. Employing different values of frequency, w,
we obtain the measurements shown in Table 6.3, which are plotted in Fig.6.5
(continuous line). From Fig. 6.5, we conclude that this circuit behaves as a low-pass
filter and phase lag is produced. This means that the low-frequency signals (when w
is close to zero) are not attenuated or they are attenuated just a little, i.e., B/A =~ 1,
whereas the high-frequency signals (when o is large) are strongly attenuated, i.e.,
B/A = 0. Note that B/A > 1 for a range of frequencies such that B/A reaches a
maximum. This maximum is known as the resonance peak.

6.1.3.1 Model-Based Analysis

Using the tension divider in the circuit shown in Fig. 6.2¢ yields:

1
Vo(s) = € Vi(s),
R+sL+ "

and rearranging:
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’fl(‘flrbtlhee6.3 Experimental data fHz] | w=2r1f[x10%rad/s] |A[V] | B[V] &[]
resistor—inductor—capacitor 100 0.0063 0.4 0.4 0
(RLC) circuit in Fig. 6.2¢ 500 0.0314 038 039 0
800 0.0503 0.36 | 0.38 0
900 0.0565 035 10.38 0
1000 | 0.0628 0.34 | 0.38 0
2000 | 0.1257 0.3 0.38 —5.4
3000 | 0.1885 029 |05 —18.9
4000 1 0.2513 0.28 |0.85 —54
4293 1 0.2697 0.28 0925 | —-77.27
5000 |0.3142 0.28 |0.625 | —126
6000 | 0.3770 0.28 |031 |—151.2
7000 | 0.4398 028 022 |—-1575
8000 | 0.5027 0.28 |0.16 |—165.6
10000 | 0.6283 0.28 |0.08 |—-171
20000 | 1.2566 027 |0.02 |—-171
40000 |2.5133 0.27 |0.004 | —187.2
* x 10°
14 16 1.8 2
-100 F - 90 .
-150 1 1
——— |
-200 : ' : : ; : : : x 10°
0 02 04 06 08 1 14 16 18 2
" w [rad/s]

Fig. 6.5 Experimental (continuous) and theoretical (dashed) data for the circuit in Fig. 6.2c (see

Table 6.3)

Vo(s) _

G(s)

Vi(s) T 2+ 2ws + w2

2

@y
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Assume that s = jw, then:

2
n

(jw)? + j2lwgw + w2’
w? <w3 —w? - j2§a)na))

,
Gljw) =

T @2 — 0? + j o

w2 — w? — j2wpw

_ a)%(a)% — w? — j2rww)
(@) — ) + 4 wuw)?

02 /(@0 — ?)? + 4 wu0)? w?

(@ =0 +4¢on0)  J(0f — ) +4Gw0)”
—2§a),,a))

IG(jo)| =

2 2
W, —w

/G (jw) = arctan (

Thus, according to Sect. 3.6, if v;(t) = Asin(wt), then vo(t) = B sin(wt + ¢)
where:

B=A o
V(@} = 0?)? + 4 w,0)?
—2¢ wyw
= t — .
¢ = arc an(%% —a)z)

In Fig. 6.5, the plot obtained (dashed line) using the expressions for |G (jw)| = %
and ¢ that have just been defined is shown. The closeness observed between the
continuous and the dashed lines is evidence that the analytical relationships obtained
correctly represent the experimental situation. Note that:

B _ a)ﬁ _ 1 _on 1 /L
A [4Cw2)? 2 % RV C’
¢ =—90°,
when w = w,, = %, which is known as the corner frequency. We note, however,

that the amplitude maximum occurs when @ = w,, which is known as the resonance
frequency satisfying o, < w, and w, = w, only when { = 0. Note that, according
to Table 6.3, B/A reaches its maximum when f = 4293[Hz], i.e., when v =
0.2697 x 10°[rad/s]= @, ~ w,. Thus, we can compute an approximate value for
inductance from these experimental data as:

1

L = ~
w2C  (0.2697 x 10°)2(0.1 x 10~%)

=13.7 x 1073[H], 6.7)
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value, which is very close to L = 14.262[mH] obtained using an inductance—
capacitance—resistance (LCR) meter. On the other hand, note that the phase of
G (jw) takes values in the range [—180°, 0°]. This means that the corner frequency
occurs when the phase is at the middle of its variation range and the output amplitude
tends toward oo as the circuit resistance tends toward zero, i.e., as the system
damping tends toward zero.

6.1.4 A Series RLC Circuit: Output at the Resistance

Consider the AC circuit shown in Fig.6.2d when R = 100[Ohm], C = 0.1 x
107°[F] and L = 14.262[mH]. Employing different values of frequency, w,
we obtain the measurements shown in Table 6.4, which are plotted in Fig. 6.6
(continuous line). From Fig. 6.6, we conclude that this circuit behaves as a band-
pass filter and phase lag in addition to phase lead are produced for different values of
frequencies. This means that both low-frequency and high-frequency signals (when
w is close to zero and w is large) are strongly attenuated, i.e., B/A ~ 0, whereas
the frequencies around w, are not attenuated or they are attenuated just a little, i.e.,
B/A =~ 1.

Table 6.4 Experim?ntal data fHz] | @ =27f[x10%tad/s] | A[V] | B[V] |¢[°]

for the RLC circuit in

Fig.6.2d 100 0.0063 04 0.004 72
500 0.0314 0.38 |0.012 99
800 0.0503 0.35 |0.018 | 100.8
900 0.0565 0.34 10.018 97.2
1000 | 0.0628 0.34  10.024 90
2000 | 0.1257 0.3 0.04 79.2
3000 | 0.1885 0.29 10.09 64.8
4000 0.2513 0.29 10.22 28.8
4497 | 0.2826 0.29 10.26 0
5000 | 0.3142 026 0.2 —36
6000 | 0.3770 026 011 |-594
7000 | 0.4398 026 |0.08 |-75.6
8000 | 0.5027 026 007 |-79.2
10000 | 0.6283 026 0.045 | 81
20000 | 1.2566 026 [0.02 |-79.2

40000 |2.5133 026 |0.01 =72
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s

08|
0.6
041

— x 10°

-100 1 1 1 1 1 1 1 L 1
0 062 04 06 08 1 12 14 16 1.8 2

" w [rad/s]

x 10°

Fig. 6.6 Experimental (continuous) and theoretical (dashed) data for the circuit in Fig. 6.2d (see
Table 6.4)

6.1.4.1 Model-Based Analysis

Using the tension divider in the circuit shown in Fig. 6.2d yields:

Vo (s) = ———Vi(s),
R+sL+--"
and rearranging:
Vo(s) 2L wps 5 1
= G = -7, = —, 2 =
Vi (s) ) 52 4 2¢wys + 0?2 “n=TcC §eon

Assume that s = jw, then:
j2Lwpw
(jo)? + jtogo + 0}’

Jj2rwpw (a)% —wz—j2§wna)>

w2 — 0 + j2lopw \ w2 — 0 — j2lop

G(jo) =

J2t w002 — 0 — j2 o)
(0} — 0?)? + 4(Lwyw)?
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. 2 w0/ (02 — @?)? + 4({w,0)? 2 w0
G(jw)| = o = :
(0 — w*)* + 4§ wyw) V(@2 — 02)? + 4 wyw)?
. ° —2Lwpw
ZG(]C{)) = 90° + arctan <m) .

Thus, according to Sect. 3.6, if v;(#) = Asin(wt), then vo(t) = B sin(wt + ¢)
where:

2L wpw
B=A )
V(@F = 0)? + 4 opw)?
-2
¢ = 90° + arctan (%) .
w2 —w

In Fig. 6.6, the plot obtained (dashed line) using the expressions for |G (jw)| = %
and ¢ that have just been defined is shown. The closeness observed between the
continuous and the dashed lines is evidence that the analytical relationships obtained
correctly represent the experimental situation. Note that:

when w = w, = ‘/%, which is known as the band center. We note that the

magnitude at this maximum does not depend on any circuit parameter and @, = wj,
in this case. According to Table 6.4, the maximum value of B/A is obtained
experimentally when f = 4497[Hz], i.e., when v = 0.2826 x 10%[rad/s]= w,.
Hence, we can compute the value of the inductance from the experimental data as:

1
T w2C  (0.2826 x 10%)2(0.1 x 1076)

L =12.5 x 1073[H], (6.8)

value, which is very close to L = 14.262[mH] obtained using an LCR meter. On
the other hand, the phase of G(jw) takes values in the range [—90°, 90°], whereas
the band center occurs when the phase is zero, i.e., it is at the middle of the phase
variation range.
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6.2 The Relationship Between Frequency Response and
Time Response

According to Fourier series, a periodic function of time can be represented as the
addition of many different frequency sine or cosine functions of time. For instance,
consider the function f(¢) presented in Fig. 6.7. Its Fourier series expansion is given
as [1], pp. 457:

f@ = ﬁ (sin(t) + l sin(3t) + l sin(5¢) + - - ) . (6.9)
b4 3 5

The frequencies w = 1,3,5,..., are known as the frequency components
of f(¢). For any periodic function f(¢), these frequency components are integer
multiples of a fundamental frequency wq, in this case wp = 1, which can be
computed as wg = 27x/T, where T is known as the period of f(¢). In this case,
T = 2m. The amplitudes i—k, fr—k %, ‘% %,. .., represent the contribution of each one of
the frequency components to f(¢). Roughly speaking, these amplitudes determine
how large, or significant, the influence of each frequency component is, to determine
the waveform of f(¢) in the time domain.

Consider Fig. 6.8 where two different frequency sine functions are shown. Note
that a higher-frequency signal presents faster variations in time. This means that, if
f(¢) has components of higher frequencies then f (¢) contains faster variations. For
instance, consider the function f(¢) shown in Fig. 6.7. Its Fourier series expansion
is given in (6.9). In Fig. 6.9, several approximations are shown for this function,
which include different frequency components [1], pp. 458. Note that the greater the
content in high frequencies the faster the variations that this function has in the time

domain. Furthermore, as higher-frequency components are included when trying

f(t) &

+ Vv

- 27 - T 2w

Fig. 6.7 A periodic function of time



334 6 Frequency Response-Based Design

e sin (wyt)

t
w1 > W
Fig. 6.8 Comparison of two different frequency sine functions of time
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Fig. 6.9 Different approximations of f(¢#) shown in Fig.6.7. Continuous fi(t) = ‘:T—k sin(t).
Dashed fo(r) = % <sin(t) +1 sin(sz)). Dash-dot f3(r) = % (sin(z) + Lsin(30) +§sin(5z))
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to complete the corresponding Fourier series, the resulting function approaches the
abrupt discontinuities that f(¢) has at specific points. According to these ideas, the
following is concluded.

High-Frequency Components The larger the amplitude of the high-frequency
components, the faster the variations of the function in time. Very high-frequency
components imply discontinuity in time.

Noise is an undesirable fast-changing signal. This means that the noise has high-
frequency components.

Zero-Frequency Component A zero-frequency signal is a constant signal. This
can be concluded from:

A, cos(wt) = A, = constant, if w=0.

Hence, using the terminology of electrical and electronic engineering, a signal
f(¢t) containing a zero frequency component is a signal containing a direct current
(DC) component. This means that, if f(¢) varies in time these variations are
performed around a constant value that is different from zero.

Finally, let us say that when the input is not periodic, which is when a step signal
is applied (see Fig.6.10), the Fourier transform [4] allows us to represent such
a signal as the addition of an infinite number of sinusoidal signals with different
frequencies. In this case, the frequency components are not integer multiples of a
fundamental frequency, but they take continuous values from w = —oo to w = +o0.

6.2.1 Relationship Between Time Response and Frequency
Response

A fundamental property of the arbitrary order linear system given in (3.108) is
superposition (see Sect. 3.7, Chap. 3). This means that when the input signal can
be represented as the addition of several signals with different frequencies, then

v; (t) A

+ v

Fig. 6.10 Step input
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the system response can be obtained by computing the response to each signal
composing the input and, finally, adding all these responses. According to this and
the above discussion, we arrive at the following conclusions, which are valid if G (s)
is stable.

e Ifu(r) is a step with magnitude A, i.e., the zero frequency component has ampli-
tude A, then the corresponding output y(¢), in a steady state, is lim;_, oo y(f) =
AG(jO) (see (3.108)), i.e., y(oco) is equal to the system response to the zero
frequency component of the input. For instance, in the circuits studied in
Sects. 6.1.1, 6.1.2,6.1.3, 6.1.4, we have |G (jO)| = |G(jw)|w=0 = 1, |G(jO)| =
IG(jo)lw=0 = 0, |G (jO)| = |G(jw)lw=0 = 1 and [G(jO)| = |G (j®)lw=0 = 0
respectively; hence, lim,_, o y(t) = A, lim;, o y(t) = 0, limy 00 y(t) = A,
lim;_, oo y(#) = 0, respectively. See Figs.6.11, 6.12, 6.13 and 6.14, where a step
signal is applied experimentally at the input of each one of these circuits.

It is interesting to realize that, as shown in Sect. 3.4, if u(¢) is a step with
amplitude A, then the final value of the output, in a steady state, is computed
using the final value theorem, i.e.,:

A
lim y(#) = lim sY(s) = lim sG(s)— = G(0)A,
t—00 s—0 s—0 S

where it is important to see that w — Oif s = o + jo — 0.

Fig. 6.11 Time response of the circuit in Fig. 6.2a when v; (¢) is a step signal
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Fig. 6.12 Time response of the circuit in Fig. 6.2b when v; (¢) is a step signal

Fig. 6.13 Time response of the circuit in Fig. 6.2c when v; (¢) is a step signal



338 6 Frequency Response-Based Design

Fig. 6.14 Time response of the circuit in Fig. 6.2d when v; (¢) is a step signal

Suppose that u(¢) is a step with amplitude A. In this case, u(#) possesses a
discontinuity at + = 0. As discussed in the previous section, the high-frequency
components produce such a discontinuity; hence, it is concluded that u(z)
possesses a large content of high-frequency components.

In the case of the circuits studied in Sects. 6.1.1, 6.1.3, and 6.1.4, the input
high-frequency components, u(t) = v;(t), are strongly attenuated, i.e., they have
only a very small effect on the output y(t) = vo(¢), because |G(jw)| — 0 as
w — oo (see Figs. 6.3, 6.5 and 6.6). Then, the output y(t) = vo(¢) does not
present any discontinuity at ¢ = 0 (see Figs. 6.11, 6.13, and 6.14). Note that this
also means that the effect of noise on the output is also strongly attenuated in
these cases.

On the other hand, in the case of the circuit studied in Sect. 6.1.2, the
high-frequency components at the input, u(t) = v;(¢), are not attenuated and
they appear identical at the output y(t) = vg(¢), because |G(jw)| — 1 and
LG(jw) — 0as w — oo (see Fig. 6.4). Then, the output y(f) = vg(t) presents
the same discontinuity that the input u(¢) possesses at ¢t = 0 (see Fig. 6.12).

Finally, we note that the above ideas on the relationship between the disconti-
nuity of the function in time and the high-frequency components is also supported
by the initial value theorem (see (3.5)). Let us apply this theorem to circuits
studied experimentally in Sect. 6.1. We recall that v; (¢) is a step function with
the magnitude A. In the case of the electric circuit studied in Sect. 6.1.1, we have:

vo(07) = lim s ~Z =0
s—>o00 s+as
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For the circuit in Sect. 6.1.3, we have:

T (1),% A_
O = fim s—— 2
s=>00 §2 4+ 20wys + @2 s

Analogously, for the circuit in Sect. 6.1.4:

2 A
o(0F) = lim 58 A _
s—>o00 g2 + 2 wys + a)% Ky

Finally, for the electric circuit in Sect. 6.1.2:

A
v(0F) = lim s—— 2 = A
s—>00 s 4a s

We stress that all signals are assumed to be zero for all # < 0 when using the
Laplace transform and that all initial conditions are assumed to be zero because
a transfer function representation of systems is considered. Hence, vy(0") = 0
implies that vg () is continuous at t = 0 and vp(0") = A implies that v (¢) has a
discontinuity of magnitude A, i.e., as large as the step applied at v; (¢), at t = 0.
These results are corroborated experimentally in Figs. 6.11, 6.12, 6.13, and 6.14.

* A system becomes faster if it does not attenuate the high-frequency components.
However, if too high-frequency components are not attenuated, some problems
appear because of noise amplification. Hence, the frequency components that are
not to be attenuated are called the intermediate frequencies.

For instance, in the circuit studied in Sect. 6.1.1, this is achieved if the
parameter a = RLC > 0 is increased (see (6.2)). This can be understood by
observing Fig. 6.15 where it is shown that the value of |G (jw)| can be increased
for larger frequencies if a larger value of a is employed. This is corroborated by

|G (jw)| &

v

0 ai az

Fig. 6.15 A larger value of a in ;1 allows a greater effect of the intermediate frequencies and,
hence, a faster time response is accomplished
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what was exposed in Sect. 3.1.1, Chap. 3, where it is explained that a system with
the transfer function G(s) = a/(s + a) is faster as a is increased.

Using similar arguments, we conclude that in the case of the electric circuit
studied in Sect. 6.1.3, a faster response is obtained if w, = ﬁ is increased.
Moreover, the presence of a resonance peak in Fig. 6.5 implies that a frequency
component at ® = w, ~ o, is significantly amplified. This is observed as
a clear oscillation in Fig. 6.13 whose frequency is equal to w, =~ w,. Hence,
if the frequency of this oscillation increases, then the rise time decreases (a
faster response is obtained). This corroborates the notion that a faster response is
obtained if @, &~ wj, is increased. According to these ideas, it is obvious that a
faster response is also produced in the electric circuit studied in Sect. 6.1.4 if w,
is increased.

In arbitrary n—order systems G(s), the bandwidth, wpw, is defined as the
frequency where |G (jwpw)| = \/LEIG(jO)| = 0.7071|G(j0)|, i.e., the frequency
where the system magnitude is 0.7071 times the magnitude at w = 0. For systems
with a transfer function:

a
s+a’

wpw = a and for systems with a transfer function:

(27}
$2 4 2Cwps + w2’
wpw ~ wy, although the exact value depends on system damping ¢. Thus, in

arbitrary n—order systems G(s), a faster response is obtained as the bandwidth
is rendered larger.

6.3 Common Graphical Representations

6.3.1 Bode Diagrams

Let k be a positive number. The corresponding value in decibels (dB) is computed
using the following operation (see Appendix C):

kap = 20log(k),

where log(k) stands for the decimal logarithm of k. The decimal logarithm of & is
defined as follows. If:

10* =k,
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then z = log(k). Some properties of the decimal logarithm are as follows:

log(xy) = log(x) +log(y), log(x/y) =log(x) — log(y), (6.10)
log(x™) = mlog(x), log(l) =0,

Ifx - 0 then log(x) > —oo.

Bode diagrams are drawn on semilogarithmic axes: the horizontal axis (w, in
[rad/s]) has a logarithmic scale whereas the vertical axis has a linear scale, in
decibels (dB) for the magnitude Bode diagram or in degrees for the phase Bode
diagram. An important concept in Bode diagrams is decade or dec. In Bode
diagrams, it is very important to analyze the frequency w by decades. One decade
represents an increment of ten times in frequency. For instance, if w; = 2.5 and
wy = 25, then it is said that one decade exists between w; and w».

The arbitrary n—order transfer function defined in (3.108) can be written as:

G(s) = bu 1276 , 6.11)

1_[2:1(5 - i)

where z;, j =1, ..., m, are the zeros of G(s) and p;,i =1, ..., n, are the poles of
G (s). Because of the first logarithm property in (6.10), taking into account the fact
that poles and zeros can be real or complex conjugate, and assuming that G(s) is a
minimum phase transfer function (see Sect. 6.5), then Bode diagrams of G(s) can
always be constructed as the addition of Bode diagrams of the following first- and
second-order basic factors':

1

s, BEE) S+a7 a 5 (6.12)
s a s+a

§2+2Cwps + a),% wﬁ
w? ' 52 4+ 2 wps + w2’

For this reason, in Figs. 6.16 and 6.17, Bode diagrams of these factors are presented.
Recall that the magnitude Bode diagram represents the quantity:

20log (IG(jo)D) ,

as a function of the frequency w. The phase Bode diagram represents the quantity:

B (Im(G(jw)))
¢ =atan| —— |,
Re(G(jw)

IThis is further explained later
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Fig. 6.16 Bode diagrams of first- and second-order factors in (6.12) . (a) G(s) = % (b) G(s) =s.
© Gls) = 7%
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Fig. 6.17 Bode diagrams of first- and second-order factors in (6.12) (continued). (a) G(s) = %
w? s2 420 w5+l

(b) G(s) = m (©)G(s) = pre
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as a function of the frequency w. The reader is encouraged to see Appendix B to find
out about the detailed procedure followed to obtain the plots shown in Figs.6.16
and 6.17.

The thick lines in the Bode diagrams presented in Figs. 6.16 and 6.17 are known
as the asymptotes, whereas the thin lines represent the exact value of the functions
represented. The asymptotes are merely approximations, which, however, are very
useful for recognizing the fundamental shape of the corresponding Bode diagrams.
Note that in some of the magnitude Bode diagrams, the asymptotes form a corner.
The frequency where this corner appears is known as the corner frequency and it is
directly related to the zero or the pole of the first- or the second-order factor that the
diagram represents. Recall that, according to Sect. 3.3.1, wj, is the distance from the
corresponding root (pole or zero) to the origin and the roots of a second-order factor
are given as s = —{w, & jwp/1 — &2,

According to the asymptotes, the magnitude of all the factors in (6.12), except for
s and 1/s, are equal to O[dB] for frequencies that are less than or equal to the corner
frequency but, for frequencies that are greater than the corner frequency, the magni-
tude increases (zeros) or decreases (poles) with a slope of 20[dB/dec] for the first-
order factors and £40(dB/dec) for the second-order factors. Note that in the second-
order factors, the behavior of the exact curve around the corner frequency strongly
depends on the damping coefficient £. Moreover, if ¢ < 0.7071, there is a maximum
in the magnitude whose value increases to infinity as ¢ tends toward zero. This
maximum of magnitude is known as the resonance peak and is represented by M,..

In the case of the phase Bode diagram we note the following. Each first-order
factor has a phase that varies from 0° to +90° (zeros) or to —90° (poles). Each
second-order factor has a phase that varies from 0° to +180° (zeros) or to —180°
(poles). In all the cases, when the frequency equals the corner frequency the phase
is at the middle of the corresponding range. Again, in the case of the second-
order factors, around the corner frequency, the phase curve strongly depends on the
damping coefficient ¢: the phase changes faster between 0° and £180° as ¢ tends
toward zero.

It is important to observe that in the case when the factor in (6.12) contains
zeros, then the corresponding Bode diagrams show that such a factor behaves as
a high-pass filter and that a phase lead is produced, i.e., the factor contributes
with a positive phase. This observation is important because it means that in a
transfer function the zeros tend to increase the effects of noise in a control system.
This implies that the use of an excessively large derivative gain in a proportional—
derivative (PD) or proportional-integral-derivative (PID) controller may result in
performance deterioration. To understand this, note that a PD controller introduces
one open-loop zero, whereas a PID controller introduces two open-loop zeros. On
the other hand, as discussed in Sect. 5.1.1, an open-loop zero tends to improve
the closed-loop stability. Hence, a trade-off must be established between stability
and performance deterioration due to noise, when designing a control system. In
Sect. 6.5 it is explained that the stabilizing effect of an open-loop zero is due to the
phase lead contributing to the frequency response of the open-loop transfer function.
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On the other hand, if the factor in (6.12) contains poles, then the corresponding
Bode diagrams show that such a factor behaves as a low-pass filter and that a
phase lag is produced, i.e., the factor contributes with a negative phase. This means
that poles in a transfer function reduce the effects of noise. On the other hand,
as discussed in Sect. 5.1.1, an open-loop pole tends to deteriorate the closed-loop
stability. In Sect. 6.5, it is explained that this effect is due to the phase lag contributed
by a pole in the frequency response of the open-loop transfer function.

The frequency response plots of the arbitrary n—order minimum phase transfer
function defined in (6.11) are obtained as the combination of the factors in (6.12).
In the case of Bode diagrams, this combination process of first- and second-order
factors is very simple, as explained in the following. Note that the arbitrary n—order
transfer function, G(s), given in (6.11) can be written as:

k=r
Gs) =BG,

k=1

for some real constant 8 and some integer positive number r, where Gy (s), for

k =1, ..., r,has the form of one of the factors in (6.12). Then:
k=r k=r
G(jo) =|B] ] Grlio)| = IBI]]IGk(iw)l.
k=1 k=1

According to this, the decibels definition |G(jw)|gg = 201og(|G(jw)|) and the
property log(xy) = log(x) 4 log(y), shown in (6.10), it is possible to write:

k=r

G (jw)las =201log(IB]) + ) 201og(IGr(jw)]).
k=1

This means that the magnitude Bode diagram (the phase Bode diagram) of an
arbitrary n—order transfer function, G (s), can always be obtained as the addition of
the magnitude Bode diagrams (the phase Bode diagrams) of every first- and second-
order factor of G (s).2

6.3.2 Polar Plots

In Fig. 6.18 a complex number G is defined as follows:

2Recall that given three complex numbers z, x, y such that z = xy, the angle of z is given as the
addition of the angles of x and y.
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Fig. 6.18 A complex number A

Im (G)|----------+ .

G = gch = Re(G) + jIm(G),
G|l = B Re(G) = B Im(G) = B
G| = T e(G) = Zcos(qb), m(G) = Zsm(fb)-

Given a transfer function G (s), the quantity G (jw) is a complex number that can
be represented as in Fig. 6.18. The polar plot of G(jw) is the curve obtained in the
plane shown in Fig. 6.18 as @ goes from —oo to +00. In polar plots, the magnitude
is no longer represented using decibels.

Note that the polar plot of the arbitrary n—order transfer function shown in (6.11)
cannot be obtained as the simple combination of the polar plots of the first- and
second-order factors shown in (6.12). To simplify this process, it is suggested to
first obtain the corresponding Bode diagrams and, from them, obtain the required
information to draw the corresponding polar plots for positive frequencies, i.e.,
when o goes from 0 to +o00. The polar plots for negative frequencies, i.e., when
w goes from —oo to 0, are obtained from polar plots for positive frequencies just by
projecting, as in a mirror, the part of the curve on the upper half-plane to the bottom
half-plane and vice versa. This is the procedure that has been followed to obtain
the polar plots shown in Figs. 6.19 and 6.20, from the Bode diagrams in Figs. 6.16
and 6.17. The arrows in the polar plots indicate the sense where frequency increases
from w = —o0, passing through @ = 0, to @ = +00. Some examples of where
these ideas are applied are presented in the next section.

Example 6.1 (Resonance) Consider the mass-spring-damper system depicted in
Fig. 6.21. The transfer function in this case is the same as in Example 3.8 Chap. 3,
i.e.,:

ka)ﬁ
X =CWOF®), GO =G T

| K ¢ b r 1
W, = -, = N = —,
" m 2v/mK K
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Fig. 6.19 Polar plots of the Im (G(jw))
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Fig. 6.20 Polar plots of the Im (G(jw))
first- and second-order factors 100 T T T T oot oo
in (6.12) (continued) . (a) sl
G(s) = # (b)
w? 60 -
Gls) = 52420 wp s+ )
40}
20 + %
w=0 =
of O
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w—>— X
-100 : : : : :
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Re (G(jw))

where x = 01is defined as the position when the system is at rest with f () = O under
the effect of the spring and weight of the mass. The situation shown in Fig. 6.21 is
equivalent to that of a car at rest on the floor: m stands for the car mass, K is the
suspension system stiffness, and b represents the effect of the dampers. Everyday
experience teaches us that, although heavy, a small car can be flipped over by a small
group of people if they apply a force as follows. The car is pushed up and then it is
allowed to move down. After bouncing on the floor it is pushed up again when the
car is moving upward. Although the applied force is always too small to flip over
the car, after applying the same force several times the car is finally flipped over.
This is a clear example of the resonance effects and this situation is analyzed in the
following.
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Fig. 6.21 A car suspension f
system T

0 time

Fig. 6.22 The applied force and the resulting position of the body in Fig.6.21 under resonance
conditions

The force applied by the people has a periodic form with a cosine fundamental
component. When this force is positive, the car is pushed upward. When it is
negative the car is allowed to fall down. The fact that this force is applied only
when the car moves upward implies that this cosine component has a frequency @
that is equal to the car’s natural oscillation frequency w,,. If it is assumed that there is
no damper, b = 0, then ¢ = 0. According to Fig. 6.17b, under these conditions, the
output x (¢) (the car position) lags 90° with respect to the applied force. This means
that x () = B sin(wt) if f(¢t) = A cos(wt), for some positive constant B, if w = w,,.
Then, according to Fig. 6.22, a maximal force is applied ( f has a crest) exactly when
the car is moving upward (x is passing from a trough to a crest), which is in complete
agreement with the intuitive application of the force by people. Moreover, if ® = w,
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and ¢ = 0 the oscillation amplitude B of the motion described by the car will grow
without limit, even when the amplitude of the force applied at the input A is small
(B =|G(wy)|A and |G(w,)| — 00). This explains why the car can be flipped over.

An explanation from the point of view of physics is presented next to help to
understand why this happens. The system energy is given as the addition of the
kinetic energy and the potential energy (only due to the spring):

E=E.+Ep,,
1, |
Eczzmx, Epzsz.

The gravity effect is not taken into account because it has been assumed that x = 0
is the position when the body is at rest when f = 0 under the effects of the gravity
and the spring. As time increases, the variation of this energy is given as:

E=E.+ Ep =mxX + Kxx.
Using X from the system model, i.e.,:

.. . K 1
X=—X——x+—f
m m m
yields:
E=—bi’+if.

Consider two cases:

1. ¢ =0, f = Acos(wyt). In this case b = 0 and, according to Fig. 6.17b, the
output x () lags 90° with respect to the applied force, i.e., x(t) = B sin(w,t) and
X = wy, B cos(w,t) for some positive B; hence:

E = xf = w, AB cos’(wnt).

The mean energy delivered to the mechanical system with each oscillation period
T =27 /wy,, is given as:

wp,AB
E =
T

T
/ cosz(wnt)dt > 0.
0

Note that cosz(a)nt) > 0 for all 7. On the other hand, when considering that
b = 0, it is assumed that there is no energy dissipation; hence, that all the energy
supplied to the system is stored as the total energy of the mass E = E. + E),.
Thus, this energy increases without limit as time increases. As x(¢) and x () are
sine functions of time, then the amplitude of these oscillations also grows without
limit, as described by Fig. 6.17b.
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2.¢ > 0, f = Acos(w,t). In this case b > 0 and, according to Fig.6.17b,
the output x(¢) converges (after the natural response becomes negligible) to
a function that lags at an angle 90° with respect to the applied force, i.e.,
x(t) = Bsin(wpt) y X = w, B cos(wyt) for some positive B and, then:

E=—bi*+ xf = —ba),%B2 cos>(wyt) + wy AB cos>(wyt).
Thus, the mean stored energy in the mechanical system during each oscillation

period is given as the subtraction of the mean supplied energy and the mean
dissipated energy, i.e.,:

1 T
E = T/o [—ba),%B2 cosz(a),,t) + w,AB cosz(a)nt)]dt,

2 p2 T
= —bw,B” + @, AB f cosz(a)nt)dt.
T 0

As long as the amplitude position B is small, —ba),%B2 + w,AB > 0 is true;
hence, the energy E and the amplitude B increase. Then, B increases until
—ba)ﬁB2 + w, AB < 0 because A is constant. At that moment, the energy stops
increasing and a steady state is reached when ba)ﬁB2 = w, AB, i.e., the position
amplitude B remains constant at a finite value given as:

A _ A _ A _kA
bw, 2{\/7%\/% 20K 2¢

Note that the position amplitude B grows without limit as ¢ — 0, which is in
agreement with Fig. 6.17b and, at the same time, explains why the resonance peak
decreases as ¢ increases. In this respect, note that the term —bx? <0ifb > 0,
ie., if £ > 0. This represents the dissipated energy caused by friction. Thus,
friction avoids the energy and the oscillation amplitude grows without limit. It
can be stated that the greater the friction that exists, the greater the percentage of
the supplied energy to the mass through the force f converts into heat and the
smaller the amount of energy is stored in the mass, i.e., the smaller the oscillation
amplitude results.

Finally, note that |G (jw)|p=w, = %, which is in agreement with (6.13). It
is also important to recall that the resonance peak occurs at a frequency that is
slightly different from @, when ¢ > 0. However, the magnitude of the transfer
function at w = w, also grows as ¢ — 0.

B— (6.13)

Example 6.2 Consider the following transfer function:

1

Nt

Gals) = T,
s+ 7=

ET

0<&<1, T>0. (6.14)
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Fig. 6.23 Bode diagrams for A
Example 6.2 (see (6.15)): (i) dB i)
1 1
0< I <1, Gi) 2L, i w
s (i) = (i) 0 /1 ) w
1 = _—
ET : T T . i
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0 T T —_ W
T T
147)
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According to the properties in (6.10), the magnitude Bode diagram (in dB) of G4(s)
in (6.14) is obtained as the addition of the magnitude Bode diagrams of two first-
order factors:

1 1 1
TS+ 7+ T
Ga(s) = LT T, (6.15)

1
e T StEr

The pole has a corner frequency at w = SLT that is greater than the corner frequency

at w = % of the zero, because 0 < & < 1. This fact determines that G4(s)

contributes a phase lead and possesses properties of a high-pass filter: the low
frequencies are attenuated, but not the high frequencies. The maximal phase lead
produced and the attenuation at low frequencies only depend on the constant &, i.e.,
on the distance between the pole and the zero corner frequencies. These observations
can be verified in Fig.6.23, where the Bode diagrams of G;(s) and the factors
composing it are sketched.

The software MATLAB can also be used to plot Bode diagrams using the
command “bode().” For instance, the Bode diagrams of G;(s) in (6.14) that are

presented in Fig. 6.24 were drawn by executing the following MATLAB code in an
m-file several times:

xi=0.7;%0.14 0.2 0.4 0.7 0.9
T=4;

gd=tf([1 1/T],[1 1/(T*xi)]);
figure (2)

bode (gd)

grid on

hold on
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Bode Diagram
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Fig. 6.24 Bode diagrams for Gg4(s) in (6.14), when T = 4 and & takes the values
0.14,0.2,0.4,0.7, and0.9. In the magnitude plot, £ increases from bottom to top. In the phase
plot, & increases from top to bottom

Note that 7 = 4 and several values of 0 < £ < 1 were used. The reader can verify

that the first corner frequency appears at w = % = 0.25[rad/s] and the second corner

frequency appears at v = gLT > 0.25[rad/s]. Also note that the high-frequency

1
gain is unitary, whereas the low-frequency gain 4 = & decreases with &. This
T
corroborates Fig. 6.23.
On the other hand, the transfer function in (6.14) is very useful for designing a
special class of controllers known as lead compensators. This application, however,

is rendered easier if the following procedure is employed:

Ts+1

Gu(Ts) = .
Ts+ ¢

The use of the variable change z = T's yields:

1
z+1 %

Ga(Ts) =Ga(z) =§ il
g

(6.16)
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Bode Diagram
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Fig. 6.25 Bode diagrams for G4(z) in (6.16), i.e., the normalized version of G4(s) in (6.14)

This allows us to draw a family of normalized Bode diagrams without needing to
know T, which is important during the design stage. In such Bode diagrams, the
horizontal axis, i.e., the frequency axis, represents the imaginary part of the variable
z = Ts = T(o 4+ jw), where o stands for the real part of the Laplace variable
s. This means that the frequency axis stands for the variable Tw. Hence, the first
corner frequency appears at 7w = 1 and the second corner frequency appears at
Tw = % These facts can be observed in Fig. 6.25, where the Bode diagrams of
G4(2) in (6.16) are presented. Note that G4(z) is the normalized version of G4(s)
in (6.14). The Bode diagrams in Fig. 6.25 were drawn by executing the following
MATLAB code in an m-file several times:

xi=0.7;%0.14 0.2 0.4 0.7 0.9
gdn=tf ([1 11, [1 1/xil);
figure (1)

bode (gdn)

grid on

hold on

The polar plot of G ;(s) can be drawn easily, employing the information provided
by the Bode diagrams in Figs. 6.23 or 6.24. Recall that the magnitude Bode diagram
is in dB, but not the polar plot. The magnitude and the phase for zero and infinity
frequencies must be observed to draw some sketches of the corresponding behaviors
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Fig. 6.26 Polar plot of G,4(s) in (6.14)
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Fig. 6.27 Polar plot of G,4(s) in (6.14) when using the numerical values in Fig. 6.24

in the polar plots. Then, sketches representing the behavior at the intermediate
frequencies are drawn that satisfy the previously drawn sketches for zero and infinity
frequencies. Finally, the polar plots for negative frequencies, i.e., from w = —o0o to
w = 0, are symmetrical images with respect to the real axis of the plots for positive
frequencies. Compare the polar plot shown in Fig. 6.26 and the Bode diagrams in
Fig.6.23.

Polar plots are drawn in MATLAB using the command “nyquist().” The polar
plot corresponding to the Bode diagrams in Fig. 6.24 is shown in Fig. 6.27. This
was achieved by executing the following MATLAB code in an m-file several times:

x1i=0.9;%0.14 0.2 0.4 0.7 0.9
T=4;
gd=tf ([1 1/T],[1 1/(T+xi)]);
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figure (3)

nyquist (gd)

axis([-0.2 1.2 -0.5 0.5])
hold on

It is observed in Fig. 6.27 that, for each different value of &, the polar plot is
a circle crossing the positive real axis at two points: +1, i.e., the high-frequency
gain, and &, i.e., the low-frequency gain. This means that the external-most circle
corresponds to & = 0.14 and the internal-most circle corresponds to & = 0.9.
This corroborates the plot in Fig. 6.26. Note the arrow senses indicating that the
frequency w increases from —oo to +00.

Example 6.3 Consider the transfer function:

Axyk p

G)HE) = 20 5

6.17)

where the constants Ay, y, k, a, p are all positive. Writing this transfer function in
terms of its fundamental factors, yields:

pAxyk a 1
s+a s

G(s)H(s) =

According to the properties in (6.10), the magnitude Bode diagram of the factor - 3
is a straight line with a slope of —60[dB/dec]. The Bode diagrams of G (s) H (s) and
its components are shown in Fig. 6.28. As explained in the previous example, the
polar plot in Fig. 6.29 can be easily obtained from the Bode diagrams in Fig. 6.28.

Fig. 6.28 Bode diagrams of 4
G(s)H(s) deﬁned in (6. 17): dB | .. \
(i) pA"V NOE = (W) s+a’ 7’7’) Z)
iv) G(s)H (5) 0 \ ¢ > W
1 i)
z'v)\
e
)
- 90
— 180
— 270 ~ i)
— 360 i)
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Fig. 6.29 Polar plot of
G(s)H(s) in (6.17)
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Fig. 6.30 Polar plot of G(s)H (s) in (6.17) using MATLAB

To verify these results, the polar plot of G(s) H (s) defined in (6.17) is presented

in Fig. 6.30 when using:

k =10.7219,

a=098 A, =1 p=47 y=1.64

and executing the following MATLAB code in an m-file:

k=10.7219;
a=0.98;
Ax=1;
rho=4.7;
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gamma=1.6406;

gh=tf (Ax*gammaxk+rho, [1 a 0 0 0])
figure (1)

nyquist (gh, {0.1,10})

It is important to learn to correctly interpret the polar plot in Fig. 6.30. Note that
neither infinite nor zero frequencies can be handled numerically by MATLAB in
this example because of the singularities appearing at these frequencies. Hence, the
polar plot in Fig. 6.30 is just a small part of the polar plot in Fig. 6.29, i.e., a small
part around the positive real axis close to the origin. Observe the sense of the arrows
in both figures.

Example 6.4 Following similar procedures to those described in the previous
examples, the Bode diagrams and the polar plots of the following transfer functions
can be obtained:

s+b k P
G)HG) = A, yo 12 & P 6.18
(s)H (s) x ys+c Sota) 52 (6.18)
A b kA
GG H(s) = 22V 57 b L (619

Ag s+c s+ (a+kykAp)s +akAy s’

where Ay, Ay, v, k, a, p, b, ¢, o, k, are positive constants. The corresponding plots
are shown in Figs. 6.31, 6.32, 6.33 and 6.34.

Fig. 6.31 Bode diagram of at
G(s)H (s) in (6.18): (1) ii)
X2 (i) X, (i) $4, ,
(iv) =%, () 2, i) N - D
G(s)H (s) ) P iii)
vi)
[O] A
+ 90 K
0 L1 c 1 > w
00 iv) i)
— 180
— 270 ¥\ 17)
—~ 360 SN~ i)
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Fig. 6.32 Polar plot of
G(s)H(s) in (6.18)

Fig. 6.33 Bode diagrams of
G(s)H(s) in (6 19): (i)
AXAVCP, (ii) 4 = (iii)

akAg
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6.4 Nyquist Stability Criterion

Re (G (jw) H (jw) )

1)

VakAy

w)

iii)

i)

vi)

Routh’s stability criterion is a tool useful for determining whether a system has some
of its poles on the right half plane. If this is not the case, then all poles are located in
the left half-plane, which ensures system stability. Routh’s criterion must be applied
to the characteristic polynomial of the system under study and it is introduced as the
stability criterion for control systems when analyzed from the point of view of time
response. The reader is referred to Chap. 4 in the present book, or [5, 6], for further
information on Routh’s criterion.

Now, a new stability criterion is introduced for closed-loop control systems,
which is established in terms of its open-loop frequency response. This feature
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Fig. 6.34 Polar plot of G(s)H (s) in (6.19)

must be correctly understood because students often become confused asking the
following question: how is it possible to determine closed-loop stability from the
study of the open-loop frequency response? The answer to this question is given
in the present section and the tool solving this problem is known as the Nyquist
stability criterion.

6.4.1 Contours Around Poles and Zeros

Consider the following transfer function:
G(s)=s—a,

where a is any constant number, real or complex. Note that this system only
possesses one zero at s = a. Consider a clockwise contour I” on the plane s, around
the zero at s = a (see Fig. 6.35). When G (s) is evaluated on I, it means that s in
G (s) successively takes all values of s on I". Evaluate G(s) on I":

G(s)=1/0, l=|s—al, 6=/7L(s—a).

Note that s — a can be represented as a vector from a to s. It is easy to observe that
the angle 0 has a negative increment (clockwise) of —27 [rad] each time the contour
I' is completed. On the other hand, as I" does not pass through s = a, then/ > 0 on
the whole contour. This means that each time the clockwise contour I is completed,
the vector [ /6 describes one clockwise contour around the origin. As G(s) = [/0,
it is said that one clockwise contour has been completed around the origin of the
plane G(s), i.e., around G (s) = 0 (see Fig. 6.36).

Suppose that G (s) is composed only of m zeros. It is not difficult to see from the
above discussion, that m clockwise contours around the origin of the plane G (s) are
completed each time the clockwise contour I is completed if this contour encircles
the m zeros of G(s).



6.4 Nyquist Stability Criterion 361

Im(s) 4

Fig. 6.35 A contour encircling a zero

Im (G (s)) &

v

N

|/ Re (G (s))

Fig. 6.36 A clockwise contour around the origin of the plane G (s)

Now consider the following transfer function:

1
G(s) = )

s —a
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Fig. 6.37 A contour Im (s)$
encircling a pole

where a is any constant number, real or complex. Note that this system only
possesses one pole at s = a. Consider a clockwise contour I" on the plane s,
encircling the pole at s = a (see Fig. 6.37). Evaluate G(s) on I":

1 1
G(S)_ZZG = lZ 0, l=|s—al, 6=/L(s—a).

Note, again, that s —a can be represented by a vector from a to s. It is easy to realize
that each time the contour I is completed, the angle —8 has a positive increment
(counterclockwise) of 42 [rad]. On the other hand, as I" does not pass through
s = a then 1/1 > 0 (it is finite) on the whole contour. This means that each time the
clockwise contour I” is completed, the vector %Z — 0 describes a counterclockwise
contour around the origin. As G(s) = %Z — 0, it is said that a counterclockwise
contour has been completed around the origin of the plane G (s), i.e., around G(s) =
0 (see Fig. 6.38).

Suppose that G(s) is only composed of n poles. From the above discussion,
it is not difficult to realize that when I" encircles all these poles, then each time
the clockwise contour I” is completed, n counterclockwise contours are completed
around the origin of the plane G (s).

6.4.2 Nyquist Path

Consider the transfer function of the closed-loop system in Fig. 6.39:

Cs)  G(s)
R(s) 1+ G(s)H(s)
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Fig. 6.38 A Im (G (s)) A
counterclockwise contour
around the origin of the plane
G(s)
+ 27 \
N » Re (G (s))
1/1
G (s)
Fig. 6.39 Closed-loop R(s) + C(s)
system r/—\ > G(s) >
H(s) |«

Closed-loop stability is ensured if this transfer function is proven not to have any
poles on the right half-plane. The main idea is to investigate the existence of such
poles using a contour (path), as in the previous section. Suppose that a clockwise
closed path is employed such as that shown in Fig. 6.40. Note that this path encloses
any pole or zero that the transfer function % might have on the right half-
plane. This closed path is known as the Nyquist path. Suppose that the transfer
function % has p poles and z zeros on the right half-plane. According to
the previous section, if the Nyquist path is completed once, the number of clockwise
rotations of the contour around the origin of the plane % is z — p, whereas
a negative result indicates counterclockwise rotations. Suppose that such a number
of rotations is z, i.e., z — p = z. This would imply that p = 0, i.e., that any
closed-loop pole is not placed on the right half-plane; hence, closed-loop stability
would be ensured. This is the fundamental idea behind the Nyquist stability criterion
presented next. However, some details have to be considered first.

Given a closed-loop system, the open-loop transfer function G (s) H (s) is known
(the plant and the controller), but the closed-loop transfer function % is
unknown. This means that, despite the poles and zeros of G(s)H (s) being known,
the pole§ .of % are unknown. If the poles of % were known, then
the stability problem would be solved. Hence, one problem to be solved by the
Nyquist criterion is to determine closed-loop stability only from the knowledge of
the open-loop transfer function. This means that the function % cannot be
evaluated on the Nyquist path as described in the previous paragraphs. This implies
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Fig. 6.40 Nyquist path Im (s)

0 Re (s)

that the number of contours completed around the origin of the plane %

cannot be known; hence, such a method has to be modified. This is performed in the
next sections.

6.4.3 Poles and Zeros

Consider the transfer function of the closed-loop system in Fig. 6.39:

C(s) G(s)
R(s) 1+ G(s)H(s)

* The closed-loop poles are the zeros of 1 4+ G (s) H (s). Recall that the closed-loop
poles are those values of s satisfying 1 + G(s)H (s) = 0.

* The poles of G(s)H (s) (the open-loop poles) are also poles of 1 + G(s)H (s).
Note that G(s) H(s) — oo implies that 1 + G(s)H (s) — oo.
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6.4.4 Nyquist Criterion: A Special Case

Suppose that G(s)H (s) has P poles on the right half-plane (open-loop unstable
poles), i.e., according to the previous section, 1 + G(s)H (s) has P poles on the
right half-plane. Also suppose that the function 1 + G(s)H (s) has Z zeros on
the right half-plane (closed-loop unstable poles). Suppose that, once the Nyquist
path is completed, N contours around the origin of the plane 1 4+ G(s)H (s) are
completed, i.e., N =Z — P.If N = —P < 0, i.e., if P counterclockwise contours
are completed around the origin of the plane 1 + G(s)H (s), then the number of
closed-loop unstable poles is zero, Z = 0, and closed-loop stability is ensured.

The origin of the plane 1 + G (s) H (s) satisfies the condition 1 + G(s)H (s) = 0,
which is equivalent to G(s) H (s) = —1. Hence, the origin of the plane 14+ G (s) H (s)
corresponds to the point (—1, jO) on the plane G(s)H (s). This means that the
number N of contours around the origin of the plane 1+ G (s) H (s) is identical to the
number of contours around the point (—1, jO) on the plane G (s) H (s). This is very
convenient because it only requires us to know G (s) H (s), instead of 1 +G (s) H(s),.

Finally, if the number of poles of G(s)H(s) is greater than or equal to its
number of zeros, then lims_, oo G(s) H (s) =constant. This means that the function
G (s)H (s) remains at a single point along the complete semicircular part of the
Nyquist path, which has an infinite radius. Then, the very interesting part of
G (s)H (s) is that obtained when the Nyquist path is on the imaginary axis, from
jw = —jooto jw = 4+ joo. Note that along this part of the Nyquist path, G(s) H (s)
becomes G (jw)H (jw), which represents the polar plot of the open-loop transfer
function. The above discussion allows us to establish the following result.

Nyquist Stability Criterion Special case when G(s)H (s) has neither poles nor
zeros on the imaginary axis.

Consider the closed-loop system shown in Fig. 6.39. If the open-loop transfer
function G(s)H (s) has P poles on the right half-plane s and limg_, oo G(s)H (s)
= constant, then closed-loop stability is ensured if the polar plot of G(jw)H (jw)
(when w passes from —oo to +00) describes P counter clockwise contours around
the point (—1, jO0).

The key to remembering the Nyquist criterion is the following formula:

N=Z-P

where P represents the number of open-loop poles with a positive real part, Z
stands for the number of unstable closed-loop poles and N represents the number of
contours that the polar plot of G(jw)H (jw) describes around the point (—1, j0),
when @ passes from —oo to 400. A positive N stands for clockwise contours,
whereas a negative N represents counterclockwise contours. Closed-loop stability
is ensured when Z = 0, i.e., when N = —P.
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6.4.5 Nyquist Criterion: The General Case

The trick of the closed path I" introduced in Sect. 6.4.1 is valid only if such a closed
path completely encircles the corresponding poles and zeros. Hence, it cannot be
applied when one pole or zero is located on the path. Note that in the case when the
open-loop transfer function G (s) H (s) has poles or zeros on the imaginary axis the
Nyquist path passes through such poles or zeros; hence, the criterion established in
Sect. 6.4.4 cannot be applied. This problem is solved by defining a new path known
as the modified Nyquist path, which is shown in Fig. 6.41. This path is identical to
the Nyquist path introduced in Fig. 6.40 and the former only differs from the latter
at points containing poles or zeros of G(s)H (s) on the imaginary axis. The main
idea is to contour such points using a semicircular path with a very small radius
& — 0, which describes an angle from —90° to +-90°. The reason to include a very
small radius is to ensure that the modified Nyquist path completely encloses any
possible pole or zero (unknown) that could be located on the right half-plane close
to the imaginary axis. Thus, the general form of the Nyquist stability criterion can
be stated as follows.

Nyquist Stability Criterion General case when G(s)H(s) may have poles or
zeros on the imaginary axis.

Consider the closed-loop system shown in Fig. 6.39. If the open-loop transfer
function G (s)H (s) has P poles on the right half-plane s, then closed-loop stability

Im (s)
N
T — 00
poles and p
zeros of >
G (s) H (s) ﬂ Re (s)
6]
N

Fig. 6.41 Modified Nyquist path
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is ensured if the polar plot of G(s)H (s) describes P counterclockwise contours
around the point (—1, jO) each time the modified Nyquist path is completed
clockwise.

It is important to stress that in this case, G(s)H (s) — 0 is also required to be
constant when s — 00, i.e., that G(s) H (s) has a number of poles that is greater than
or equal to its number of zeros. Moreover, the relation N = Z — P, with Z the num-
ber of unstable closed-loop poles, P the number of open-loop poles with a positive
real part and N the number of contours around the point (—1, j0), is still valid.

6.5 Stability Margins

6.5.1 Minimum Phase Systems

A system is said to be minimum phase if all its poles and zeros have a negative or
zero real part and its gain is positive. If this is not the case, the system is said to be
nonminimum phase. The Nyquist criterion is valid for closed-loop systems whose
open-loop transfer function is either minimum phase or nonminimum phase, i.e., it
is a result that can be applied to any case. However, the Nyquist stability criterion
is simplified if the system has a minimum phase open-loop transfer function, as
explained in the following.

If the open-loop system is minimum phase then P = 0; hence, closed-loop
stability is ensured if N = 0, then the Nyquist stability criterion is simplified as
follows:

Nyquist Stability Criterion for Open-Loop Minimum Phase Systems [10, 11]
Consider that the frequency w only takes values from 0 to 4+o00. Draw the part of the
polar plot of G(s)H (s) corresponding to these frequencies. Suppose that this plot
represents a path where you walk from v = 0 to @ — +o0. If the point (—1, j0)
lies to the left of this path, then the closed-loop system in Fig. 6.39 is stable. If such
a point lies to the right, then the closed-loop system is unstable.

If the polar plot passes through the point (—1, j0), it is said that the closed-loop
system is marginally stable, which means that there are some closed-loop poles with
a zero real part. It can be said that the closed-loop system is more stable, as the point
(=1, jO) is farther from the polar plot of G(s)H (s)|s=j«, but always to the left. The
stability margin is a concept introduced to measure the distance existing between
this point and the polar plot, i.e., the distance of a system to instability. There are
two ways of measuring this distance: the phase margin and the gain margin.

* Phase margin is the amount of phase lag required to be added at the crossover
frequency to take the closed-loop system to the edge of instability. The crossover
frequency, w1, is such that |G(jw1)H(jw1)| = 1. Let K¢ and ¢ represent the
phase margin and the phase of G(jw)H (jw) respectively, then:

Ky =180° + .
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As shown in Fig. 6.42, a negative phase margin implies closed-loop instability,
whereas a positive phase margin implies closed-loop stability. According to
these ideas, one additional open-loop zero tends to improve closed-loop stability,
because it contributes a positive phase, i.e., it increases K ¢ or renders it positive.
Note that, according to the plots in Figs. 6.16 and 6.17, the phase lead contributed
by a zero is larger for all frequencies as the corner frequency is smaller (which
is numerically equal to the absolute value of the zero location). Hence, the
stabilizing effect of an open-loop zero increases as the zero is located closer to
the origin (but on the left half-plane).

On the other hand, an additional open-loop pole tends to render the closed-
loop system less stable because it contributes a negative phase, i.e., it decreases
K ¢ or renders it negative. Note that, according to the plots in Figs. 6.16 and 6.17,
the phase lag due to a pole is larger for all frequencies, as the corner frequency
is smaller (which is numerically equal to the absolute value of the pole location).
Hence, the destabilizing effect of an open-loop pole increases, as this pole is
located closer to the origin (but on the left half-plane).

* Gain margin. Let K, represent the gain margin, then:

K. — 1
$ T G(w)H(jwn)|

where w; represents the frequency, where the phase of G (jwy) H (jwz) is —180°.
Itis observed in Fig. 6.42 that K, > 1(20log(K,) > 0[dB]) implies closed-loop
stability, whereas K, < 1 (20log(K,) < O[dB]) implies closed-loop instability.

It is important to stress that the phase and gain margins are defined on the frequency
response plots of the open-loop transfer function and they give information on the
stability and the transient response of the closed-loop system.

6.5.2 Time Delay Systems

Consider the water level system shown in Fig.6.43. Note that a considerable
distance x exists between the tank and the position of the input valve whose opening
determines the input water flow g;. This means that if pipes have a cross-section area
A, then:

_xA

T ,
qi

is the time it takes for water to travel from the input valve to the tank. Hence, if
the input valve opening changes a little, then it takes time 7 for the corresponding
change in ¢; to arrive to the tank. The time T is known as time delay. From a
mathematical point of view, this fact is expressed by writing g; = ¢;(t — T). The
Laplace transform of a delayed function g; (t — T') is given by the second translation
theorem:
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Fig. 6.42 Frequency response of G (jw)H (jw). The phase and gain margins are determined from
the frequency response of the open-loop transfer function . (a) Closed-loop stability. (b) Closed-
loop instability. (¢) Closed-loop stability. (d) Closed-loop instability
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Fig. 6.43 A water level q;
system with time delay at the j —
input } 7 |||‘

Il

Theorem 6.1 ([2]) If F(s) = L{f(t)}, then:
L{f(t =T} =e T5F(s).

According to Sect. 3.1.2 and (3.28), the mathematical model of the undelayed
water level system is:

k
H(s) = in(S),

thus, according to the theorem above, the model of the water level system when the
input is delayed becomes:

—Ts

H()—ke
s) =
s+a

Qi(s).

Note that, from the mathematical point of view, this model stands if either the input
or the output is the delayed variable. It is concluded that the time delay is considered
in a system just by including the factor e~7* in the corresponding transfer function
[9].

On the other hand, a time delay may also appear when using a digital computer to
implement a continuous time controller. In such a case, the time delay T represents
the time required to perform the computations involved in the control law. Thus, in
such a case, it suffices again to include the factor e~ T in the plant transfer function
[3], as the delay appears at the plant input.

Consider the open-loop transfer function of a system that includes a time delay
T as a result of the digital implementation of a continuous time controller, i.e.,:

e ISG(s)H (s).

To analyze the closed-loop stability, consider the magnitude and the phase of this
open-loop transfer function. Note that:

‘e—Ts

= ‘e_jT‘”‘ = |cos(wT) — jsin(wT)| = 1.
s=jw
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and:
. —sin(wT
Le TS = Le7/T® = /[cos(wT) — j sin(wT)] = arctan &
s=jw cos(wT)
= —oT,
because tan(f) = sgé(((;)) Suppose that an open-loop transfer function has been

designed to ensure closed-loop stability, i.e., to satisfy suitable stability margins.
Also, suppose that the controller is to be implemented using a digital computer.
To analyze the stability effects that the time delay, because of the real-time
computations required, has on the closed-loop system, consider the following. The
time delay has no effect on the magnitude of the open-loop transfer function, but
an additional phase lag of —w7 [rad] is included. Note that this phase lag has the
effect of reducing the phase margin; thus, attention must be paid to designing a
considerable phase margin rendering the closed-loop system robust with respect to
the digital computer-induced time delay.

6.6 The Relationship Between Frequency Response and
Time Response Revisited

As stated in Chap. 5, the time response of a control system is composed of two parts:
the transient response and the steady-state response. It is important to know how the
characteristics of these time responses relate to the characteristics of the frequency
response, to know what is to be modified in the latter to suitably design the former.
The most important points of this relationship are described in the following.

A closed-loop system with the transfer function:

Ce) _ M(s) = G(s) ’
R(s) 1+ G(s)H(s)

is shown in Fig. 6.44. In the following section, it is described how the frequency
response of the closed-loop transfer function, M (s), determines the properties of
the time response c(). In the subsequent section, the way in which the frequency
response of the open-loop transfer function, G (s) H (s), determines the properties of
the time response c(¢) is described.

Fig. 6.44 A control system M(s)

with the closed-loop transfer

function M (s) and the R(s) | + C(s)
open-loop transfer function O G(s)

G(s)H(s) —
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Fig. 6.45 Effects of the M(jw)
closed-loop frequency
response characteristics on |Mp
the close-loop time response /\ w
R(jw) \ C(jw)
M w
3
e(t)
r(t)
—— — M(s)|— [
0 t 0 t

6.6.1 Closed-Loop Frequency Response and Closed-Loop Time
Response

The following discussion is based on Sect. 6.2.1 and it refers to the situation
illustrated in Fig. 6.45.

1. The resonant peak height M, is inversely related to the damping coefficient, ¢:
the larger M,, the smaller ¢ (see Fig.6.17b). Recall that a smaller damping ¢
produces a larger overshoot, M, (%), in the time response when a step input is
applied. Hence, the overshoot is larger (and the system is more oscillatory), as
M, is larger. Roughly speaking, when 1.0 < M, < 1.4 (0[dB]< M, < 3[dB]),
then damping is in the range 0.7 > ¢ > 0.4 [5] pp. 571, [6] pp. 637.

2. The corner frequency indicates how fast the time response is [5] pp. 573, [6]
pp. 638. Recall that in a second-order system, the corner frequency is w,, which,
when increased, reduces the rise time (see Sect. 3.3.1). In the case of a first-order
system the corner frequency is given as the absolute value of the system pole.
According to Sect. 3.1.1, the response time (the time constant) reduces if the
pole absolute value increases. In the case of an arbitrary n—order system, the
bandwidth is defined to describe how fast the time response is in terms of the
frequency response. The bandwidth is the frequency where the transfer function
magnitude reduces —3[dB] with respect to its magnitude at zero frequency. The
time response is faster as the bandwidth is larger.

3. The output in a steady state, c(co), when a step with magnitude A is applied at
the input, is determined by the system response at zero frequency M (jw)|y=0:

A
lim c(t) = lim sM(s)— = M(0)A.
t—00 s—0 N
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Fig. 6.46 Bode diagrams of the transfer function M(s) =
a = 3. Dashed: a =5

Example 6.5 To illustrate the above-mentioned ideas, in Figs.6.46 and 6.47 the
Bode diagrams and the time response to a step input of the first-order transfer
function M(s) = ﬁ are presented. It is observed that, as predicted above, the
time response becomes faster as the bandwidth becomes larger.

In Figs. 6.48 and 6.49 the Bode diagrams and the time response to a step input
2

. a)n _ .
of the transfer function M (s) = T atwsta? A€ presented, when w, = 5 is kept
constant and different values for ¢ are employed. Note that overshoot in the time
response becomes larger as the resonance peak also becomes larger, as predicted
above.

In Figs. 6.50 and 6.51 the Bode diagrams and the time response to a step input of
2

the transfer function M(s) = Y2+2;;++w2 are presented, when ¢ = 0.4 is kept

constant and different values for w, are employed. Note that the time response
becomes faster as the bandwidth becomes larger, as predicted above.

These results were obtained by executing the following MATLAB code in an
m-file:

z=0.7;% 0.1 0.4 0.7
wn=>5;

M=tf (wn"2, [1 2%z+wn wn’2]) ;
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Step Response
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Fig. 6.47 Response to an unit step input of the transfer function M (s) = ﬁ Continuous: a = 1.

Dash—dot: @ = 3. Dashed: a = 5
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Fig. 6.48 Bode diagrams of the transfer function M (s) =
¢ = 0.1. Dashed: ¢ = 0.4. Dash—dot: ¢ = 0.7
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Fig. 6.49 Response to a unit step input of the transfer function M (s) = Mz;ﬁ)ﬁ when w, =
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Step Response
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Fig. 6.51 Response to an unit step input of the transfer function M(s) =
¢ = 0.4. Continuous: w, = 5. Dashed: w, = 10. Dash—dot: w, = 30

figure (1)
bode (M, 'k-.")
grid on

hold on

figure (2)
step (M, 'k-.",4)
grid on

hold on

%}
%{

figure (3)

z=0.4;

wn=30; % 5 10 30

M=tf (wn"2, [1 2xzxwn wn’2]);
bode (M, 'k-.")

grid on

hold on

figure (4)

step (M, 'k-.",2.5)

grid on

hold on

o° o
o ——~
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figure (6)
step (M, 'k-.",5)
grid on

hold on

o
6}

Note that this code can be commented on in blocks. Enabling the corresponding
blocks and executing several times, the results above are obtained.

6.6.2 Open-Loop Frequency Response and Closed-Loop Time
Response

There is also a relationship between the frequency response of the open-loop transfer
function G (s)H (s) and the time response of the closed-loop system gg ; = M(s)
(see Fig. 6.52). This relationship is very important for designing feedback control

systems.

1. The phase margin K s (measured on the system open-loop frequency response
characteristics) is related to the damping coefficient of the closed-loop system
according to the following table [5] pp. 570,[6] pp. 648:

Note that { =~ 1KT'6 in the range 0 < ¢ < 0.6. It must be stressed that
this relationship is computed for a second-order system without zeros. Although
differences are expected for higher order systems with zeros with respect to these
values, it is suggested to use these data as directives for design.

2. The larger the crossover frequency (measured on the open-loop frequency
response), the faster the closed-loop system time response [5], pp. 571. This can
be explained as follows. The crossover frequency is that where |G (jw) H (jw)| =
O[dB]. Generally, this magnitude increases to +oo[dB] as frequency decreases
to 0, and this magnitude decreases to —oo[dB] as frequency increases to +oo.
Hence, the closed-loop bandwidth is close to the crossover frequency. Thus, a
larger open-loop crossover frequency implies a larger closed-loop bandwidth,
i.e., as a faster closed-loop time response.

3. The steady-state error (closed-loop time response) is obtained from the open-
loop frequency response at zero frequency. For instance, if the reference input is
R(s) = A/s, then (see Sect. 4.4.1, Chap. 4):
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Fig. 6.52 Effects of the
open-loop frequency response
characteristics on the
close-loop time response
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Example 6.6 To illustrate the above-mentioned ideas, in Figs.6.53 and 6.54 the
Bode diagrams of the open-loop transfer function G(s)H(s) = m are
presented in Fig. 6.52 and the closed-loop time response of M (s) in Fig. 6.52 when
a unit step reference is applied. Note that the phase plot remains the same for all
values of k in Fig. 6.53. Hence, it is easy to realize that the phase margin decreases
as k increases. Moreover, the phase margin becomes slightly negative for k = 145.
This explains why the time response in Fig.6.54 becomes more oscillatory and,
eventually, unstable as k increases.

On the other hand, it is clear from Fig. 6.53 that the crossover frequency increases
as k increases. As a consequence, the closed-loop time response in Fig.6.54
becomes faster as k increases. The graphical results above were obtained using the
following MATLAB code executed several times in an m-file:

k=145; % 15 55 95 145
denom=conv ([1 0], [1 31);
denom=conv ([1 5], denom) ;
g=tf (k,denom) ;
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Fig. 6.53 Bode diagrams of the open-loop transfer function G(s)H(s) = m in the
closed-loop system shown in Fig. 6.52. Continuous: k = 15. Dashed: k = 55. Dash—dot: k = 95.
Dotted: k = 145
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Fig. 6.54 Time response to a unit step reference of the closed-loop system M (s) in Fig.6.52.
Continuous: £ = 15. Dashed: £ = 55. Dash—dot: k = 95. Dotted: k = 145
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M=feedback(g,1,-1);
figure (1)
bode (g, 'k:")

grid on

hold on

figure (2)
step (M, 'k:’,5)

grid on

hold on

6.7 Analysis and Design Examples

6.7.1 PD Position Control of a DC Motor

Consider the DC motor model presented in (5.12), Chap. 5, which is rewritten here
for ease of reference:

0(s) I*(s), (6.20)

s(s +a)

k
a=— >0, k:n—m>0,
J J

where 6(s) and 1*(s) represent the position (output) and the commanded electric
current (input) respectively. The Bode diagrams of the following transfer function:

k

G(s) = m,

(6.21)

are sketched in Fig. 6.55. Based on this result, the polar plot in Fig. 6.56 is obtained
when mapping the modified Nyquist path shown in Fig.6.57. Note that G(s) has
a single pole at s = 0 and this is the reason for the semicircle with infinite radius
appearing in Fig. 6.56. This is explained as follows. The variable change s = ¢/¢
is first performed to rewrite (6.21) as:

k k k

GO = TsGiota) ~ sip@ — ea

L —¢.

Recalling that ¢ — 0 and ¢ passes from —90° to +90° as the contour around
s = 0 is performed (shown in Fig.6.57), then the clockwise-oriented semicircle
with infinite radius in Fig. 6.56 is obtained. As the phase of G (jw) asymptotically
tends toward —180° as @ — 400, it is clear that the polar plot in Fig. 6.56 will
never encircle the point (—1, jO) for any positive value of k£ and a. This means that
N = 0. Note that P = 0 because G (s) has no poles with a positive real part.
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Fig. 6.55 Bode diagrams of A
G(s)in (6.21). )% i), dB

e a - k
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Fig. 6.56 Polar plot of G .
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Suppose that a loop is closed around G (s) including a positive gain k,, to obtain
a proportional position control system. The gain k, > 0 has the following effects
on the open-loop frequency response:

* The phase for a given frequency does not change with k.
* The magnitude increases proportionally to k.

Thus, every point belonging to the polar plot of the open-loop transfer function
becomes farther from the origin, but keeps the same phase, as k,, > 0 increases. This
means that the closed-loop system is stable for any positive k, because Z = N +
P = 0, but the polar plot in Fig. 6.56 becomes closer to the point (—1, j0)ask, > 0
is chosen to be larger, i.e., the phase margin decreases. As a consequence, although
the time response becomes faster, it also becomes more oscillatory (as concluded in
Sect. 5.2.1). To achieve a time response that is as fast as desired and, simultaneously,
as damped as desired, a PD position controller is designed in the following. Note
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Fig. 6.57 Modified Nyquist
path for the transfer function Im (s)

in (6.21) i

w=0"
6=+90

w=0"

b=—90

—jw
04(s)  + k, I*(s) i 0(s)
—Q ka (S T k_d> > s(s+a) g

Fig. 6.58 Proportional—derivative position control system

that, according to (6.21), the plant system type is 1; hence, an additional integrator
is not required to achieve a zero steady-state error when the desired position is a
constant. This justifies the use of a PD controller instead of a PID controller.

Consider the DC motor model presented in (6.20) together with the following PD
controller:

de

i* = k,e +kyj—,
l pe ddt

e=04—0.
Use of the Laplace transform yields:
I"(s) = (kp + ka$)E(s),  E(s) = 0a(s) — 0(s).

The closed-loop block diagram is shown in Fig. 6.58. The open-loop transfer
function is:

k

m. (6.22)

(-+%)
GG)H(s) =kg s + —
ka
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The PD controller transfer function can be rewritten as:

I*(s) kp
=k b b=— 6.23
EG) d(s +b), ke (6.23)
s+b 1
= kgb by = kab <ES + 1) .

Introducing the variable change 7 = %s yields:

I*(s)
E(s)

=kgb(z+1).

The Bode diagrams of the factor z4-1 are shown in Fig. 6.59. Note that the horizontal
axes of these Bode diagrams represent the variable %w (see Example 6.2). Hence,
the open-loop transfer function, given in (6.22), can be rewritten as:

G(s)H(s) = kab(z + 1) (6.24)

s(s+a)

Bode Diagram
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90 i i ; R

- System: gc
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1071 10° 10'
Frequency (rad/sec)

Fig. 6.59 Bode diagrams of the factor z + 1, where z = %s. The horizontal axis stands for %a)
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Fig. 6.60 Bode diagrams of factor where k = 675.4471 and a = 2.8681

k
s(s+a)’

Consider the DC motor experimentally studied in Chap. 11. The numerical values
of this motor are:

k =675.4471, a =2.8681.

Using these data, the Bode diagrams of the factor S(Sk—+a) are obtained and they are
shown in Fig. 6.60. It is observed that the crossover frequency is w; = 25.9[rad/s]
and the phase at this frequency is —174°, which corresponds to a phase margin of
+6°. As this phase margin is small, the time response is very oscillatory when using
a proportional controller with k;, = 1, as shown in Fig. 6.61. Note that the rise time
is t, = 0.0628[s] and overshoot is M, = 83%. A PD controller is designed in
the following such that the close-loop time response has the same rise time 7 =
0.0628(s], but overshoot is reduced to M, = 20%. To maintain the same response

time, it is proposed to maintain the same crossover frequency, i.e.,:
w1 = 25.9[rad/s]. (6.25)

On the other hand, using the desired overshoot M, = 20% and:
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Fig. 6.61 Time response of the closed-loop system shown in Fig.6.58, when k, = 1, kg = 0,
k = 675.4471 and a = 2.8681

Table 6.5 Relationship between the phase margin (open-loop) and the damping coefficient of a
closed-loop second-order system without zeros

K¢l |0 11 23 33 43 52 59 65 70 74 76
¢ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 ( Mp(%)
In ( 100 )

In? (—M{’O((()%)) + 72

¢ =

¢ = 0.4559 is obtained. Using linear interpolation in Table 6.5, it is found that this
damping corresponds to the phase margin:

Ky =+475°. (6.26)

As the phase margin of the uncompensated motor model is +6°, then the controller
is required to contribute the phase lead +47.5° — 6° = 41.5°. In Fig.6.59, it is
observed that this happens when ll)a) = 0.882. Hence, the parameter b is found by
forcing this to occur when w = w1 = 25.9[rad/s], i.e.,:
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0]

= —— = 29.3984.
0.882 1w=25.9

On the other hand, as it is desired to maintain the crossover frequency of the
uncompensated plant, i.e., w = w; = 25.9[rad/s], it is necessary for the complete
controller to contribute a O[dB] magnitude when w = wj. This is accomplished by
imposing the following condition on the magnitude of the complete controller:

lkab(z + 1)|ap = 201og(kgb) + |z + l{ap = O[dB],

where, according to Fig.6.59, |z 4+ 1|gg = 2.5[dB]. Hence, solving for k; and
performing the corresponding computations the following is found:

=2

kg = —107 = 0.0255.

S =

Finally, using (6.23):
k, = bkg = 0.7499.

The Bode diagrams of the compensated open-loop transfer function (see (6.22)) are
shown in Fig. 6.62. It can be verified that the crossover frequency is w = 25.9[rad/s]
and the phase at this frequency is —132°, which corresponds to a phase margin of
+48°. This means that the frequency response specifications, established in (6.25)
and (6.26), have been accomplished. On the other hand, in Fig.6.63, the time
response of the corresponding closed-loop system is shown, when the desired
position is a unit step. It is observed that the rise time is 0.0612[s] and overshoot
is 30%. Although these values are not identical to 7 = 0.0628[s] and M, = 20%,
which were specified at the beginning, they are relatively close. This difference is
attributed to the zero present in the closed-loop transfer function (contributed by
the PD controller) as it has an important effect on the transient response, which has
not been precisely quantified. Recall that Table 6.5, which has been employed to
determine the required phase margin, is precise only for second-order closed-loop
systems with no zeros.

If it is desired to exactly satisfy the proposed time response specifications, the
reader may proceed to redesign: propose a little larger phase margin to reduce
overshoot and repeat the procedure. However, instead of this, in the following
section, it is explained how to proceed to achieve a different desired rise time.

Figures 6.59 to 6.63 were drawn using the following MATLAB code in an m-file:

ge=tf([1 1],1);
figure (1)

bode (gc, {0.1,10})
grid on
k=675.4471;
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Fig. 6.62 Bode diagrams of the transfer function in (6.22), when ky = 0.0255, k, = 0.7499,
k = 675.4471 and a = 2.8681

a=2.8681;
g=tf(k, [1 a 0]);
figure (2)

bode (g, {10,100})

grid on
M=feedback(g,1,-1);
figure (3)

step (M, 1)

grid on

kp=0.7499;

kd=0.0255;

PD=tf ( [kd kpl,1);
figure (4)

bode (PD*g, {1,100})
grid on
M=feedback (PD*xg, 1,-1) ;
figure (5)

step (M)

grid on
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Fig. 6.63 Time response of the closed-loop system shown in Fig. 6.58, when ks = 0.0255, k, =
0.7499, k = 675.4471 and a = 2.8681

6.7.2 Redesign of the PD Position Control for a DC Motor

Consider again the PD position control of a DC motor. The corresponding closed-
loop block diagram is shown in Fig.6.58 and the open-loop transfer function is
shown in (6.22). This expression is rewritten here for ease of reference:

G(s)H(s) = kg(s + b)s kp (6.27)

—_— b=
(s +a) ka

In Sect. 6.7.1, it was shown that using:

k =675.4471, a =2.8681,
and only the factor S(SLM), the crossover frequency is w; = 25.9[rad/s]. Moreover,
the closed-loop rise time is 7, = 0.0628[s] and overshoot is M, = 83% when a
proportional controller with unitary gain k, = 1 is employed. In the following, a
PD controller is designed to accomplish half of the above rise time and an overshoot
of 20%, i.e.,

0.0628
= == =0.0314[s]. M), =20%. (6.28)
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It has been already stated that reducing the rise time, i.e., rendering the time response
faster, requires the crossover frequency w; to be increased. However, a mathematical
expression has not yet been defined relating the rise time to the crossover frequency.
Next, it is explained how to select w1 to obtain a particular ¢,.

First, consider the closed-loop system in Fig.6.64. The open-loop transfer
function is:

G(s) = 6.29
(s) 561 ) (6.29)
whereas the closed-loop transfer function is:
0 G 2
©) _ G _ On w2 =kpk, 20w, =a. (630)

04(s)  1+G(s)  s2+20wps + w2’

The Bode diagrams of (6.29) are depicted in Fig. 6.65, whereas the Bode diagrams
of (6.30) are depicted in Fig.6.17b. According to the latter figure, the transfer
function in (6.30) has a unit magnitude when w — 0. This can be explained from

the expression lfg()s) and Fig. 6.65, noting that |G(jw)| — 400 when w — 0.
G(jw)

This means that the closed-loop transfer function ‘ TG (o) ‘ — 1 when w — 0.

On the other hand, according to Fig. 6.17b, the magnitude of the transfer function
in (6.30) tends toward zero when w — +00. Again, this can be explained using the
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_G@)

expression SEYeIn] and Fig. 6.65, noting that |G (jw)| — 0 when w — +o0. This
means that the closed-loop transfer function ‘ lf((;’(‘;c)o) ) — 0 when w — +-o00.

According to these ideas, the corner frequency that the transfer function in (6.30)
has at w = w, (see Fig. 6.17b) must occur approximately at the crossover frequency

in Fig.6.65 (when |G(jw)| = 1; hence, 1fg'(‘;g)) = 0.5 ~ 0.7071, which
corresponds to —3[dB]). This observation allows us to conclude that w,, in Fig. 6.17b
increases if w1, measured in Fig. 6.65, also increases.

On the other hand, according to:

_ 2
ty = ﬁ |:rr — arctan <%>:| wg = wpy/1 — 32,

if it is desired to reduce the rise time by half (neglecting the effect of the damping
variation) then w,, must be increased twice. This means that, according to the above
discussion, the crossover frequency w; must also be increased twice.

Hence, if 7, = 0.0628[s] when w; = 25.9[rad/s], the following:

w) = 51.8[rad/s], (6.31)

must be used to accomplish #, = 0.0314[s]. On the other hand, it was found in
Sect. 6.7.1 that to obtain an overshoot of 20%, the follow phase margin must be set:

Kf = +47.5°. (6.32)

The Bode diagrams of G + GID when k = 675.4471 and a = 2.8681 are shown in
Fig. 6.66. It is observed that the magnitude and the phase are —12[dB] and —177°
when w = 51.8[rad/s]. This corresponds to a phase margin of +3°. As the desired
phase margin is +47.5°, then the controller is required to contribute the positive
phase 47.5° — 3° = 44.5° when w = 51.8[rad/s]. Recall that, according to (6.24),
the open-loop transfer function of the compensated system is given as:

G(s)H (s) = kab(z + l)m,

where kgb(z+1) = kgs+kp, withb = ” andz = bs represents the PD controller.
The Bode diagrams of the factor z + 1 are shown in Fig.6.67. Recall that the
horizontal axis in these diagrams corresponds to lw (see Example 6.2). The required
phase lead 444.5° appears when 1 5@ = 0.982. As this phase lead must occur when
the frequency is equal to the desued crossover frequency w = 51.8[rad/s], then:

=2 = 52.8033.
0.982 lp=51.8
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Fig. 6.66 Bode diagrams of ﬁ when k = 675.4471 and a = 2.8681

On the other hand, the crossover frequency is desired to be w = 51.8[rad/s]. This
requires the controller to contribute, at this frequency, the same magnitude, but with
the opposite sign that the factor ¢ (s]—(}-a) contributes at this frequency (—12[dB]). This
is to render O[dB] the magnitude of the compensated system at the new crossover

frequency. This implies that:

lkab(z 4+ 1)|ag = 201log(ksb) + |z + 1]gg = 12[dB],

where, according to Fig. 6.67, |z + 1|gg = 2.95[dB] must be used. Thus, solving for
kg and performing the corresponding computations, it is found that:

12-2.95

1
kqg = 510 20 = 0.0537.

Finally, the use of b = IZ—‘; yields:

kp = bkg = 2.8347.
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Fig. 6.67 Bode diagrams of the factor z + 1. The horizontal axis represents %w

The Bode diagrams of the open-loop transfer function of the compensated system
shown in (6.27) are presented in Fig. 6.68. There, it can be verified that the crossover
frequency is w = 51.8[rad/s] and the phase at this frequency is —132°, which
corresponds to a phase margin of +48°. This means that the desired frequency
response characteristics established in (6.31), (6.32), have been accomplished. On
the other hand, the time response of the corresponding closed-loop system is shown
in Fig. 6.69 when the reference of the position is a unit step. It can be observed that
the rise time is 0.03[s] and overshoot is 31%. Although these values are not exactly
equal to #, = 0.0314[s] and M, = 20%, they are considered to be close enough. The
reason for the difference in overshoot and the way of reducing it has been already
explained in Sect. 6.7.1.

Figures 6.66 to 6.69 were drawn using the following MATLAB code executed in
an m-file:

k=675.4471;
a=2.8681;
g=tf(k, [1 a 0]);
figure (1)
bode (g, {1,100})
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Fig. 6.68 Bode diagrams of the transfer function in (6.27), when ky = 0.0537, k, = 2.8347,
k = 675.4471 and a = 2.8681

grid on

ge=tf([1 1],1);
figure (2)

bode (gc, {0.1,10})
grid on

kp=2.8347;
kd=0.0537;

PD=tf ([kd kpl,1);
figure (3)

bode (PD*g, {10,100})
grid on
M=feedback (PD*xg, 1, -1) ;
figure (4)

step (M)

grid on
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Fig. 6.69 Time response of the closed-loop system in Fig. 6.58, when k; = 0.0537, k,, = 2.8347,
k = 675.4471 and a = 2.8681

6.7.3 PID Position Control of a DC Motor

Consider the DC motor model presented in (5.12), Chap. 5, which is rewritten here
for ease of reference:

k
6(s) = * 6.33
(s) G 1) (), (6.33)
a=£>0, k=@>0,
J

where 6(s) and I*(s) stand for the position (output) and the commanded electric
current (input) respectively. In this section, the following PID position controller is
designed:

t

d
i*:kpe+kd—e+ki/ e(rydr, e=04—0,
dt 0

where 6, is the desired position and the constants k,, ks, and k; are known as
the proportional, derivative, and integral gains, respectively. Use of the Laplace
transform yields:
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Fig. 6.70 Closed-loop system for PID position control of a DC motor

E(s)

’
N

I"(s) = kpE(s) + kas E(s) + k;

k.
= (k,, + kgs + ?’) E(s),

2 kp ki
$C+ =5+ =
- ME(S).
s

Then, the closed-loop system is represented by the block diagram in Fig. 6.70. The
open-loop transfer function is:

2 ko4 ke
s—i—kds—l—kd k

s(s+a)

G()H(s) = kg (6.34)

Note that the system type is 2; hence, a zero steady-state error is ensured if the
desired position is either a step or a ramp. Moreover, as explained in Sects. 5.2.5
and 5.3, if the desired position is a step and a constant external torque disturbance
appears, a zero steady-state error is still ensured. These are the reasons for designing
a PID position controller for a DC motor.

Defining:

2

k
2+ L4

— = (s+21)6 +22) = 5% + (21 + 22)5 + 2122,
kg kg

it is concluded that:

kp ki
- = , — = . 6.35
T 21+ 22 I 2122 (6.35)

In Fig. 6.71, the polar plot of (6.34) is sketched, when mapping the modified Nyquist
path shown in Fig. 6.57. Note that there are two poles at s = 0; hence, a contour
must be described around the origin of the plane s, as explained in Sect. 6.7.1. This
is the reason for the circumference with the infinite radius in Fig. 6.71. Furthermore,
it is not difficult to realize that, for 0 < w < 400, the polar plot of the factor ﬁ

is similar to that shown in Fig. 6.56, but rotated 90° clockwise (counterclockwise
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Fig. 6.71 Polar plot of (6.34) when mapping the modified Nyquist path shown in Fig. 6.57

for —oo < @ < 0). Hence, the phase lead contributed by the second-order factor
s2 + ’;—Zs + ,]{‘—’1 must modify the polar plot as in Fig. 6.71. This achieves closed-loop
stability because P = O,N=0,andZ =N+ P =0.

Recall that the design based on frequency response relies on satisfying two
conditions: the desired crossover frequency and the desired phase margin. As has
been seen in the previous sections, these conditions are satisfied by suitably selecting
two controller parameters. In the present problem, a PID controller must be designed
that possesses three parameters or gains. Hence, the problem can be solved by
proposing an arbitrary value for one of these gains, whereas the other two must
be found by satisfying the crossover frequency condition and the phase margin
condition. Thus, the following design criterion is proposed:

z21=a, (6.36)

because this simplifies the open-loop transfer function shown in Fig. 6.34 as follows:
k
G()H(s) = kq(s + ZZ)S_Z' (6.37)

It must be stressed that the cancellation of factors s + z; and s + a is valid because
both of them represent poles and zeros with a negative real part because a > 0 and
z1 > 0. Performing some additional algebra in (6.37) the following is found:

s+ k 1 k k
G($)H(s) = kqzo 2 —=kaz> (—s + 1) —=kaza(z+ 1), (6.38)
2 s 2 s s
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Fig. 6.72 Bode diagrams of the factor S% when k = 675.4471

where 7 = és has been defined. The factor s% now represents the uncompensated
plant whose Bode diagrams are shown in Fig. 6.72 when employing the numerical
values of the DC motor experimentally controlled in Chap. 11, i.e.,:

k = 675.4471.

It is observed that the magnitude and the phase are —12[dB] and —180°
respectively when the frequency is 51.8[rad/s]. According to Sect. 6.7.2, use of the
following crossover frequency is proposed:

w1 = 51.8[rad/s], (6.39)

and the following phase margin:
Ky = +475°, (6.40)
to achieve a rise time #, = 0.0314[s] and an overshoot 20%. Hence, the controller

defined by kgz2(z + 1) must contribute a +47.5° phase lead and +12[dB] as
magnitude when the frequency is 51.8[rad/s]. It is observed in Fig.6.73 that the
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Fig. 6.73 Bode diagrams of the factor z + 1. The horizontal axis represents %w

factor z + 1 contributes a +47.4° phase when %a) = 1.09 (see Example 6.2). As
this must occur when w = 51.8[rad/s], then:

w

= —— = 47.5229.
1.09 lp=51.8

22

On the other hand, it is desired that the crossover frequency is @ = 51.8[rad/s].
This requires the controller to contribute, at this frequency, the same magnitude but
with opposite sign to the magnitude contributed by the factor s% at this frequency,
i.e., —12[dB], to render O[dB] the magnitude of the compensated system at the new

crossover frequency. Thus:
lkaz2(z + 1lag = 201og(kgz2) + |z + llag = 12[dB],

where, according to Fig. 6.73, |z + 1|gg = 3.4[dB] must be used. Hence, solving for
kg and performing the corresponding computations the following is found:

1 12-34
ki=—10"20 = 0.0566.
22

Finally, use of (6.35), (6.36) and a = 2.8681 (see Chap. 11) yields:
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Bode Diagram
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Fig. 6.74 Bode diagrams of the transfer function in (6.34), when k; = 0.0566, k, = 2.8540,
ki =7.7196 k = 675.4471 and a = 2.8681

kp = ka(z1 4 22) = 2.8540, k; = kgz122 = 7.7196.

The Bode diagrams of the compensated system open-loop transfer function shown
in (6.34) are presented in Fig.6.74. Here, it can be verified that the crossover
frequency is w = 51.8[rad/s] and the phase at this frequency is —133°, which
corresponds to a phase margin of +47°. This means that the frequency response
specifications established in (6.39) and (6.40) are satisfied. On the other hand, in
Fig. 6.75 the corresponding closed-loop time response is shown when the reference
of the position is a unit step. There, a rise time of 0.0291[s] and an overshoot of
33% are measured. Although these values are not identical to #, = 0.0314[s] and
M, = 20%, they are close enough. The reason for the difference between the
desired overshoot and the achieved overshoot in addition to the way in which to
improve it have been explained in Sect. 6.7.1.

Figures 6.72 to 6.75 were drawn executing the following MATLAB code in an
m-file:

k=675.4471;
a=2.8681;
zl=a;
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Fig. 6.75 Time response of the closed-loop system shown in Fig. 6.70, when k; = 0.0566, k, =
2.8540, k; =7.7196 k = 675.4471 and a = 2.8681

g=tf(k,[1 0 0]);

figure (1)

bode (g, {1,100})

grid on

ge=tf([1 1],1);
figure(2)

bode (gc, {0.1,10})

grid on

kp=2.854;

ki=7.7196;

kd=0.0566;

PID=tf ([kd kp kil, [1 0]);
g=tf(k,[1 a 0]);
figure (3)

bode (PID*g, {10,100})
grid on

M=feedback (PIDxg,1,-1) ;
figure (4)

step (M)

grid on
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6.7.4 PI Velocity Control of a DC Motor

Consider the PI velocity control closed-loop system shown in (3.136), Sect. 3.8.4:

b n?kyke nknk, n knk; nkmky . nkpki 1.
. (b : _ : i
w+(1+ JR T JR >w+ JR ©T TR Pt yR gl
(6.41)

Define:

b n%ky ke n ky,

o= — , B= .
J JR JR

Hence, (6.41) can be written as:

1.
@+ (a + Bkp) o + Bkiw = Bk, wg + Bkiwg — 7Tp~

Suppose that wg and T, are no longer step signals, but they are more elaborate
functions of time. Adding and subtracting some terms in the previous expression,
the following is found:

d’ d ) N
o2 (@ —wa) + @+ Bky) (@ —wg) + Bhi(w — wg) = —Ga — o &a — 7T

Defining the tracking error as e = w — wy yields:

e+(ot—|—,3kp)e+,3kie=—wd—aa)d—7Tp.

Using the Laplace transform, assuming all the initial conditions to be zero, and using
superposition, the following is found:

E(s) = Ei(s) + Ex(s),

Ei(s) =G Gi(s) = 5 + ) 6.42

1(5) = G1(®)wa(s), Gi(s) = 2+ @+ Bly)s + B (6.42)
_1

Ex(s) = Ga(s)Tp(s), Ga(s) = i (6.43)

s2+ (o + Bkp)s + Bki

Note that G1(s) and G,(s) are stable transfer functions if a + Bk, > 0 and
Bki > 0. The magnitude Bode diagram of G(s) is depicted in Fig.6.76. Note
that lims_, oo G1(s) = 1; hence, the high-frequency magnitude of this Bode plot is
O[dB]. On the other hand, G(s) has a zero at s = 0, thus, a +20[dB/dec] slope is
observed as w — 0. This slope increases to +40[dB/dec] when the zero at s = —«
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Fig. 6.76 Magnitude Bode [EACDIFIN

diagram of G (s) defined
in (6.42) 1 o VB
0 ; » w
{ /4 40dB/dec
()
201og | 3k +20dB/dec

appears. As a complex conjugate pole pair appears at w = +/fk;, contributing with
an additional slope of —40[dB/dec], any increment of the magnitude Bode plot is
canceled out, remaining constant for @ > ./fk;. Finally, by writing:

—s(s + @) o s+a Bki
= ——9 ,
52+ (a + Bkp)s + Bk; Bki o s*+ (a+ Bky)s + Bki

Gi(s) =

the constant magnitude component ik, is found.

From this Bode diagram, we conclude that the tracking error e is small if the
integral gain is chosen to be large. We also see that, although this is valid for
slow changing velocity profiles wy (¢), i.e., for desired velocities with low-frequency
components, choosing larger integral gains allows us to track velocity profiles with
faster changes, i.e., desired velocities with higher-frequency components. This is
because the corner frequency +/Bk; is shifted to the right. Moreover, to avoid a
large resonant peak, the proportional gain must be chosen to be larger as the integral
gain is increased.

Thus, we conclude that w () & wq(t) is accomplished as time grows, for an
arbitrarily fast changing velocity profile wq(?), if k;, and k; are chosen to be large
enough. Note that a O[dB] magnitude for high frequencies in Fig. 6.76 means that
lw — wg| = |wgl, i.e., that w(t) = 0. This means that the motor remains stopped
because it cannot respond when very fast changing velocity profiles are commanded.
Note that velocity might be small, but it changes very fast.

The magnitude Bode diagram of G (s) is depicted in Fig. 6.77. We observe that
Ga(s) behaves as a band-pass filter, attenuating small and large frequencies. This
feature is due to zero at s = 0 and the second-order low-pass component that we
find by decomposing G2 (s) as:

— %S 1 Bk;
2 (ot Bhp)s + B JPki s2F (o + Bhp)s + Bk

Ga(s) =
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Fig. 6.77 Magnitude Bode |G, (jw) |dBl\
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in (6.43) 1 \/[))_]C
0 — >
—20dB/dec
1
20 1
o8 <J Bk > + 20dB/dec N
Xd(S) A » » k » ﬁ X(S)L
I v "7 "l s(s+a) Tl s? ”

Fig. 6.78 Closed-loop system. First proposal

Note that, because of the factor 7 k , attenuation for all frequencies is achieved as
ki is chosen to be large. However, k;, must also be large as k; is large to avoid a large
resonant peak. Thus, the effect of fast changing external torque disturbances can be
attenuated by using large values for both k), and k;.

6.7.5 A Ball and Beam System

This example constitutes an application to a popular prototype known as ball and
beam. This prototype is built and experimentally controlled in Chap. 14.

6.7.5.1 Stability Analysis

Consider the block diagram in Fig.6.78, where Ay, a, p, ¥, and k are positive
constants. The open-loop transfer function is given as:

pAxyk a 1

G(s)H(s) = —

(6.44)
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Fig. 6.79 Modified Nyquist
path used in Sect. 6.7.5.1
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Fig. 6.80 Polar plot of G(s)H (s) in (6.44) along the modified Nyquist path shown in Fig. 6.79

This open-loop transfer function has three poles at the origin, i.e., on the
imaginary axis of the complex plane s. Hence, the modified Nyquist path shown
in Fig. 6.79 must be used. The polar plot of G(s)H (s), given in (6.44), obtained
along the modified Nyquist trajectory is shown in Fig. 6.80. This is explained as

follows.
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The polar plot of (6.44) is depicted in Fig. 6.29. To take into account the contour
around s = 0, included in the modified Nyquist path, proceed as follows. First,
perform the variable change s = £/¢ in the transfer function in (6.44) to obtain:

Acvk 1
(HQH@%=£E£%;EZ—3¢

As ¢ — 0 is a very small constant value, it can be assumed that a >> ¢ to write:

Axvk
GWH() =225 1 =3¢ = p1 L =39,
ag?
where g1 = % — 400 is a very large constant because ¢ — 0. On the other

hand, ¢ varies from —90° (when w = 07) to +90° (when @ = 07). Then:

B1 L+ 270° whenw =0~

GG)H(s) =p1 L =3¢ = {/31 / —270°, when w = 0T °

(6.45)

This explains the two circles with infinite radius appearing in Fig. 6.80, which,
according to (6.45), are clockwise-oriented as w passes from v = 0~ to w = 07,

Note that P = 0 because G(s) H (s), given in (6.44), has no zeros with a positive
real part, and N = 2 because the polar plot in Fig. 6.80 encircles the point (—1, j0)
twice clockwise each time that the modified Nyquist path is completed once in the
indicated orientation. Hence, the application of the Nyquist stability criterion yields
Z = N + P = 2, which indicates that there are two closed-loop poles on the right
half-plane and, thus, the closed-loop system in Fig. 6.78 is unstable. Moreover, as
the circumferences in Fig. 6.80 have infinite radius, this result does not change if the
following gain is chosen to be small:

pAxyk
a

, (6.46)

selecting, for instance, y to be small. This is because B; tends toward infinity for
any finite value in (6.46) as ¢ — 0; hence, P = 0, N = 2, and Z = 2 still stand.
Now consider the block diagram in Fig.6.81, where § and c¢ are positive
constants. This block diagram is motivated by the intention to achieve closed-loop
stability using a PD controller with the transfer function (ys+y§). However, instead

5+0 k p X(S)

stc s(sta) s

Fig. 6.81 Closed-loop system. Second proposal
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Im (G (jw) H (jw) ) &

270°
w=0"

v

73
rog w00 Re (G () H ()

\H

+270°
w=0

Fig. 6.82 Polar plot of G(s)H (s) in (6.47) obtained along the modified Nyquist path shown in
Fig.6.79

of a PD controller a phase lead compensator with a transfer function y {7 ”‘S , where

8 < ¢, is proposed, as this class of controller attenuates the noise amphﬁed by aPD
controller. The open-loop transfer function is given in this case as:

PAxySk s+6§ ¢ a

G(s)H(s) = 1
() H (s) ac 5§ s+cs+a s3

(6.47)

This open-loop transfer function also has three poles at the origin, i.e., on the
imaginary axis of the complex plane s; hence, the modified Nyquist path shown in
Fig. 6.79 must be considered. The polar plot of G(s) H (s), given in (6.47), obtained
along the modified Nyquist path is shown in Fig. 6.82. This is explained as follows.
The polar plot of (6.47) is depicted in Fig. 6.32. To take into account the contour
around s = 0 included in the modified Nyquist path, proceed as follows. First,
perform the variable change s = £/¢ in the transfer function (6.47) to obtain:

elp+6 i
(elp +c)(elp +a) &

G(s)H(s) = pAxyk — 3¢.

As ¢ — 0 is a very small constant value, it can be assumed that a > ¢, ¢ > ¢ and
8 > ¢ to write:

+vké
G(s)H(s) = acy L—3¢=pr L -3,
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where 8, = %;k‘; — 400 is a very large constant because ¢ — 0. On the other

hand, ¢ varies from —90° (when w = 07) to +90° (when @ = 07). Then:

By L +270°, when w = 0~

. 6.48
Br / —270°, whenw = 07 (6.48)

GWH(s)=p L -3¢ = {

This explains the presence of the circles with infinite radius in Fig. 6.82, which,
according to (6.48), are clockwise-oriented as w passes from w = 0~ to w = 0.

Note that, again, P = 0, N = 2 and Z = N + P = 2. Hence, there are two
closed-loop poles with a positive real part and the closed-loop system is unstable.
Furthermore, recalling the reasoning in the previous example, it is concluded that
the instability cannot be eliminated by using small values for the constant:

pAxYkS
ac

(6.49)

Hence, the use of a phase lead compensator is not enough to achieve closed-
loop stability. Careful reasoning must be performed. Recall that, in Sect. 6.5, it was
shown that the introduction of an open-loop pole (with a negative real part) results
in a closed-loop system that approaches =instability. Moreover, this effect increases
as that pole is placed closer to the origin. Now, observe that the transfer functions
in (6.44) and (6.47) have three poles at the origin. Thus, it is reasonable to wonder
whether the instability problems that we have found are due to the fact that the
open-loop transfer function has too many poles at the origin.

Consider the block diagram in Fig. 6.83, where «, Ay, ky, b and c are positive
constants. The internal loops around the transfer function S(Sk—+a) are intended to
move one of poles at the origin to the left. Also note that the lead compensator is
given as:

b
Ges) =2 0<b<c (6.50)
s +c

The transfer function between points 1 and 2 in Fig. 6.83 is given as:

Fig. 6.83 Closed-loop system. Third proposal
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Fig. 6.84 Polar plot of G(s)H(s) in (6.51) obtained on the modified Nyquist path shown in
Fig.6.79

ak
s2 4+ (a + kykAp)s + akAg

Gn(s) =

Hence, the open-loop transfer function is:

Ay pyb s+b ¢ akAy 1

G(s)H(s) = '
()H(s) cAg b s+c 52+ (a+kkAg)s + akAg s?

6.51)

Note that this open-loop transfer function has two poles at the origin, i.e., on the
imaginary axis of the complex plane s; hence, the modified Nyquist path shown
in Fig. 6.79 must be considered. In Fig. 6.84 the polar plot of G(s)H (s) is shown,
given in (6.51), obtained on the modified Nyquist path. This is explained as follows.
The polar plot of (6.51) is shown in Fig. 6.34. To take into account the contour
around s = 0 included in the modified Nyquist path, proceed as follows. First,
perform the variable change s = £/¢ in the transfer function (6.51) to obtain:

elp+b ak 1

G()H(s)=A 2t
(s)H (s) X'Oysld)-i-c 82[2¢+(a+kva9)€Z¢+OlkA0 g2

2.

As ¢ — 0 is a very small constant, it can be written:

A b
G H(s) = 2PV 2 /0y,
cAge?
where 3 = A;’ A‘; ;’zb — 400 is a very large constant because ¢ — 0. On the other

hand, ¢ varies from —90° (when w = 07) to +90° (when @ = 07). Then:
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B3 L+ 180°, when w = 0~

. 6.52
B3 L —180°, when w = 0% (6.52)

G()H(s) = B3 L —2¢ = {

This explains the presence of the circumference with an infinite radius in Fig. 6.84,
which, according to (6.52), is clockwise-oriented as w passes from w = 0~ to w =
0t. Note that, now, P = 0, N = Oand Z = N + P = 0. Thus, there is no
closed-loop pole with a positive real part and the closed-loop system is stable.

Finally, note that the system type is 2, which ensures a zero steady-state error if
either a step or a ramp reference is employed and any external disturbance is not
assumed to appear. This explains why a controller with integral action, i.e., neither
a PI nor a PID controller, is not considered at this point. See Sect. 14.5, Chap. 14,
for a case where a PI controller is included in a ball and beam control system.

6.7.5.2 Design Using Bode Diagrams
Consider the following numerical values:

k=10.7219, a =098, Ag=1, (6.53)
Ay =1, p=47, a=30, k,=0.35.

The constants « and k, are gains of the controller to be designed; hence, a criterion is
required to select them. However, this criterion depends on some constraints present
in practice, i.e., it is defined on the basis of the actual experimental prototype to be
controlled. In Chap. 14, this criterion is defined and it is explained how the above
values for o and k, have been selected. The Bode diagrams of the following transfer
function are shown in Fig. 6.85:

Ay p akAy 1
Ag  $2 4 (a+kykAp)s +akAg 52’

(6.54)

which have been obtained using the values in (6.53). The phase is about —182°
when the magnitude is O[dB] (when w =~ 2.1[rad/s]). This means that the phase
margin is negative; hence, the closed-loop system obtained with (6.54) as the open-
loop transfer function would be unstable. To stabilize the closed-loop system, the
compensator shown in (6.50) is included, i.e., the open-loop transfer function of the
compensated system is that presented in (6.51).

The compensator in (6.50) is designed by requiring M ,(%) = 20%. Then, using:

2 (Mp(%)
In ( 100 )

¢ = ,
In? (M{’O(?)> + 2
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Bode Diagram
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Fig. 6.85 Bode diagrams of the transfer function in (6.54)

10!

¢ = 0.4559 is found. Using Table 6.5 and linear interpolation, it is found that the

following phase margin is required:

Kf = +47.5°.

After several essays, it is found that a suitable crossover frequency’ is w

1.71[rad/s]. Note that:

* The uncompensated system has a phase of —181° and a magnitude of 4.2[dB] at

w = 1.71[rad/s]. This can be seen in Fig. 6.85.

* The compensator in (6.50) must contribute a 181° — 132.5° = 48.5° phase lead
when w = 1.71[rad/s], to achieve a +47.5° phase margin, and —4.2[dB] to
render O[dB] the magnitude of the compensated system when w = 1.71[rad/s].

The Bode diagrams of the following transfer function are shown in Fig. 6.86 where

the horizontal axis stands for 7w (see Sect. 6.2):

3The frequency where the compensated open-loop system must have a magnitude of O[dB].
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Bode Diagram
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Fig. 6.86 Bode diagrams of G4(Ts) in (6.55). Horizontal axis stands for 7w

Ts +1
l?
&

Gy(Ts) = & =0.14. (6.55)

& = 0.14 is chosen because it is observed in Fig. 6.86 that this value forces the
compensator in (6.55) to produce a maximal phase lead of 49° & 48.5°. This occurs
when wT = 2.67, which also contributes a magnitude of —8.55[dB]. The value for
T is computed as:

2. 2.
7= 27 2y se1a,
o] 1.71

because w = w; = 1.71[rad/s] is the frequency where a 48.5° phase lead must be
produced. Hence, (6.55) becomes:

s +0.6404

Gys) = 22077
) = 15716

Note that the compensator in (6.50) can be written as:
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Ge(s) =yGa(s), (6.56)

if b = 0.6404 and ¢ = 4.5746 are selected. The compensator G (s) must contribute
a magnitude of —4.2[dB] when w = 1.71[rad/s]. According to (6.56), this number
is given as the sum, in decibels, of the magnitude of the transfer function G;(s) at
w = 1.71[rad/s], i.e., —8.55[dB], and the gain y in decibels:

—8.55[dB] + 201log(y) = —4.2[dB].
Solving for y:

8.55-4.2

y =10 "2 = 1.6406.

Finally, the following can be written:

s +0.6404

Go(s) = 1.6406° 2%
() s+ 4.5746

(6.57)

The Bode plots of the compensated system (6.51) using the controller (6.57) are
presented in Fig. 6.87. Note that the crossover frequency is about w = 1.71[rad/s]
and the phase margin is about 47.5°, which corroborates that the design specifica-

Bode Diagram
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o o
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Fig. 6.87 Bode diagrams of the compensated ball and beam system
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Step Response
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Fig. 6.88 Time response x(¢) of system in Fig. 6.83 when x; = 1[m]

tions are satisfied. In Fig. 6.88 the time response of the closed-loop system shown
in Fig. 6.83 is presented when a step reference is applied and (6.57), (6.53), are
employed. Note that the overshoot is M, (%) = 30% instead of the desired value of
20%.

Recall that Table 6.5 has been employed to find the required phase margin to
achieve a 20% overshoot and that this table is exact only for second-order closed-
loop systems without zeros. Note that the closed-loop system that has been designed,
see Fig. 6.83, is fifth order with a zero. This explains the difference between the
desired 20% overshoot and the achieved 30% overshoot. On the other hand, the rise
time is ¢, = 0.927[s]. Also note that the system reaches a steady state in about 5[s],
which is a good time for the ball and beam system that we present in Chap. 14.

Figures 6.85 to 6.88 are drawn using the following MATLAB code in an m-file:

k=10.7219;
a=0.98;
Ao=1;
Ax=1;
rho=4.7;
alpha=30;
kv=0.35;

g=tf (Ax*alpha*rhox*k, [1 a+kvsk+Ao alphaxkxRAo 0 0]);
figure (1)

bode (g, {0.5,10})

grid on

xi=0.14;
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gd=tf ([1 1], [1 1/xil);
figure(2)

bode (gd)

grid on
gc=tf(1.6406%[1 0.6404],[1 4.5746]);
figure (3)

bode (gc*g)

grid on

M=feedback (gc*g,1,-1) ;
figure (4)

step (M)

grid on

6.7.6 Analysis of a Non-minimum Phase System

Consider the following transfer function:

G(s)H(s) = 116137 k (6.58)
53 +72.5452 — 12505 — 9.363 x 107’
116137 k
= (s — 35.7377)(s + 36.5040)(s + 71.7721)"
116137 k 35.7377 36.5040 71.7721

= (35.7377)(36.5040) (71.7721) (s — 35.7377) (s + 36.5040) (s + 71.7721)°

For this example, it is important to find the frequency response characteristics of the
following transfer function:

Gi(s) = L, a>0.

Use of the variable change s = jo, yields:

. a
Gi(jow) =

jo—a’

a —jw—a
jo—a—jw—a’
a(—jw —a)
v

ax/w? + a? —w
= ———/arctan <—> R

w? + a? —a



6.7 Analysis and Design Examples 415

¢ Jarct <_w>
= ——/arctan| — |,
Vo? + a? —a
/G (jw) = arctan <1)) .

—a

a
1G1(jo)| = ——,
Vo? + a?

Thus:
fo=0:|Gi(jo) =1, [G(jw)=—180°,
ifo—o00: |Gi(jw)| =0, /[Gi(jw)—> —90°,

1
ifo=a: |Gi(jw)| = E /G (jw) = —135°.

The Bode diagrams in Fig. 6.89 are obtained using this information and the results
in Sect. 6.3. The polar plot in Fig. 6.90 is obtained using these Bode diagrams. It is
stressed that it is also correct to say that:

ifo=0:|G(jo) =1, [(Gi(jw)=+180°,
ifo— co: |Gi(jw)| = 0, LGi(jw) — +270°,

1
fo=a: |Gi(jo)|=—, LGi(jw)=+225°.

V2
Fig. 6.89 Bode diagrams of ast
G(s)H(s) in (6.58): )
. 116137 k i
1) 57377 (36.5040) TLT72D)
( 35.73)7(7 ¢ ) 0 35-73\ 7177 -

i) G=357377)°
iii) 363040
(5-+36.5040) *

iv) GIH2LS v) G(s)H (s)

35.73 36.5 L7
o o
-90

i)
— 180 A
\
— 270 \ 2
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A

Im (G (jw) H (jw) )

w=0 w—>+ oo

Re (G (jw) H (jw))

Fig. 6.90 Polar plot of G(s)H (s) in (6.58)

As a consequence, in this case, the phase Bode diagram shifts upward 360° with
respect to the phase Bode diagram shown in Fig. 6.89. However, the reader can
verify that the polar plot in both cases is identical to that shown in Fig. 6.90. Thus,
the analysis presented in the following to study the effect of a compensator is valid
for both cases. The Bode diagrams in Fig. 6.89 and the polar plot in Fig. 6.90 can
also be drawn using MATLAB, as shown in Figs. 6.91 and 6.92. Note that the phase
lead due to the pole at s = 35.73, which is shown in Fig. 6.89, cannot be appreciated
in Fig. 6.91 owing to the presence of the pole at s = —36.50.

From Figs. 6.90 and 6.92, note that the distance from any point on the polar
plot to the origin is larger as k is larger. Hence, for small k, N = 0, and for large
k, N = 1. The number of open-loop poles with a positive real part is P = 1.
Then, according to the Nyquist criterion the number of unstable closed-loop poles
is Z = P+N > 0. This means that the closed-loop system is unstable for any k > 0.
In the following, it is shown that this problem can be solved if a suitable phase lead
is included, i.e., if one zero is included in the open-loop transfer function.

Consider the following open-loop transfer function:

116137(s + b)
53 +72.5452 — 12505 — 9.363 x 104’
. 116137(s + b)
(s — 35.7377)(s + 36.5040) (s + 71.7721)"
116137 k b 35.7377 36.5040 717721  s+b
= (35.7377)(36.5040) (71.7721) (s — 35.7377) (s + 36.5040) (s + 71.7721) b

G H(s) =k (6.59)

s

where b is some positive constant. If b < 35.7377 is chosen, then the Bode diagrams
in Fig. 6.93 are obtained in addition to the polar plot in Fig. 6.94. This means that,
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Bode Diagram
50 T ; T iy T T T

[ NG
System: untitled1 :
Frequency (rad/sec): 38.4 -
Magnitude (dB): -5.85

Magnitude (dB)
Jou
o
T

-100

g:) System: untitled1

—~ 2051 : . Frequency (rad/sec): 38.4 :
@ - : Phase (deg): -208
o o k : :
o

_270_0 HI |1 H |2
10 10

10
Frequency (rad/sec)

. . 116137
Fig. 6.91 Bode diagrams of o< —53a g

if k is large enough, then N = —1 and, as P = 1, then the closed-loop system is
stable because Z = P + N = 0.
The Bode diagrams of the following transfer function are shown in Fig. 6.91:

116137
§3 +72.5452 — 12505 — 9.363 x 10%°

Note that the phase margin* being negative; hence, the closed-loop system is
unstable. As explained above, closed-loop stability can be achieved if sufficient
phase lead is produced by including the factor:

k(s +b). (6.60)

4According to Sect. 6.5, the phase margin and the gain margin are defined for minimum phase
systems and, although the system studied here is non-minimum phase, (because of the unstable
pole at s = 35.7377), the term phase margin is used to indicate the comparison of the system
phase with respect to the fundamental phase —180°.
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Nyquist Diagram
0.4 T T T T T T

Imaginary Axis

_0'4 1 1 1 1 1 1
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Real Axis
Fig. 6.92 Polar plot drawn with MATLAB for G (s) H (s) in (6.58)

Fig. 6.93 Bode diagrams of B 4
G(s)H(s) in (6.59): ¢ N )

i) (35. 7377)(36 5040)(71 7721)° vi)m6.5\(1.77 R

357377 0 > w
i) G=357577) b .
36.5040 ~ ) iv)
1i1) 33650800 it)
iv) (AHA v) G(s)H(s), )

F71.7721)
vi) £t b < 35.7377

3573 365 TLTT
0 — W
b i
i) N\ )
\

\

—90 /

— 180 /

N/

=
<
Nas2

Also, the closed-loop time response can be rendered faster if a large enough
crossover frequency is accomplished. These features can be achieved if k and b
are suitably selected. Using b =31.2463 and k =0.0396 computed in Sect. 5.2.6,
the following is obtained. For w =38.5[rad/s], the magnitude and the phase are
—5.85[dB] and —208° respectively in Fig. 6.91. It is shown in Fig. 6.95 that, at the
same frequency, the magnitude and the phase are 5.87[dB] and 50.9° for the factor
in (6.60). It is shown in Fig. 6.96 that this allows the transfer function G(s) H (s)
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Im (G (jw) H (jw))

w—>—00

(
1 Q w——+ 00

Re (G (jw) H (jw) )

Fig. 6.94 Polar plot of G(s)H (s) in (6.59)

Bode Diagram
40 T T T — T

Magnitude (dB)
N
o
T

15
System: untitled1
1ok Frequency (rad/sec): 38.5 i
Magnitude (dB): 5.87
sl L : _a 4
0 1 1
WNF T

System: untitied1
Frequency (rad/sec): 38.5
Phase (deg): 50.9

Phase (deg)

Frequency (rad/sec)

Fig. 6.95 Bode diagrams of k(s + b), b =31.2463, k =0.0396

in (6.59) to have a O[dB] magnitude and a —157° phase when w = 38.5[rad/s].
The polar plot of G(s)H (s) in (6.59) when b =31.2463, k£ =0.0396, is shown
in Fig.6.97. Note that the slight difference with respect to Fig. 6.94 is due to the
fact that the phase in Fig.6.96 is always less than —90°. It is noted that a 23°
phase margin is achieved. According to Sect. 6.6.2, if the system were second-order
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Bode Diagram

or u 0
. System: GH

Frequency (rad/sec): 38.5

Magnitude (dB): -0.00562

Magnitude (dB)
& ) EN
o o o

T T T
1 1

5
T
1

" R R SR R

-155 T T T
e
System: GH

- Frequency (rad/sec): 38.7 -
Phase (deg): -157

-160

Phase (deg)

Frequency (rad/sec)

Fig. 6.96 G(s)H (s) in (6.59), b =31.2463, k =0.0396

without zeros this would correspond to a closed-loop damping factor of 0.2, i.e., a
large overshoot should appear. However, in Fig. 6.98 the closed-loop time response
is shown when G (s)H (s) in (6.59) with b =31.2463, k =0.0396, is placed in the
direct path, unit-negative feedback is used and the reference is a unit step. Note
that only a small overshoot is observed. This can be explained by recalling that
G (s)H (s) has no pole at s = 0 in this case. Hence, attention must be paid to these
cases. Moreover, in Fig. 6.99, the Bode diagrams of the corresponding closed-loop
transfer function are shown. It is observed that no resonant peak is observed; hence,
it is concluded that only a small overshoot might appear, as verified in Fig. 6.98.
Finally, the steady-state error is computed as e;; = ﬁ, where A = 1 and
kp = G(jo)H(jw)lw=0 ~ —1.5171, because |G(jw)H (jw)|w=o ~ 3.62[dB],
and /G(jw)H (jw)|,=0 = —180°, as observed in Fig. 6.96. Thus, e;; = —1.934,
which explains the final response of ~ 2.87 in Fig. 6.98. A steady-state error that is
different from zero is the reason why a zero reference was used in Sect. 5.2.6.

All of the figures in this example that have been drawn using MATLAB were
executed using the following code in an m-file:
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Nyquist Diagram
0.5 T T T T : : :

04+
0.3

0.1

-01+F

Imaginary Axis
o

—02F}
-0.3 1
—0.4F}

~0.5 L L L L L L L
-16 -14 -12 -1 -08 -06 -04 -02 0

Real Axis

Fig. 6.97 Polar plot of G(s)H (s) in (6.59) when b =31.2463, k =0.0396

Step Response
3 . T T

1.5t 4

Amplitude

05+t : ]

0 0.05 0.1 0.15 0.2 0.25
Time (sec)

Fig. 6.98 Closed-loop time response when the reference is an unit step

gh=tf (116137, [1 72.54 -1250 -9.363e4]);
figure (1)

nyquist (gh)

figure (2)
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Bode Diagram

e
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L
o
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Magnitude (dB)
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Fig. 6.99 Bode diagram of the closed-loop transfer function

bode (gh)

grid on

gc=tf (0.0396%[1 31.2463],1);
figure (3)

bode (gc)

grid on

figure (4)

bode (ghxgc)

grid on

figure (5)

nyquist (ghxgc)
M=feedback (gcxgh,1,-1)
figure (6)

step (M)

grid on

figure (7)

bode (M)

grid on
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6.8 Case Study: PID Control of an Unstable Plant

Consider the following plant:

11613700
§3 4273952 — 12505 — 3.536 x 106

G(s) =

The characteristic polynomial of this transfer function can be written as s> +
2739s% — 1250s — 3.536 x 10° = (s + 35.9)(s — 35.9)(s + 2739). This plant
is unstable because it has a pole with a positive real part located at s = 35.9. Thus,
a controller with a derivative action must be proposed. On the other hand, this plant
has no pole at s = 0. This means that, to achieve a zero steady-state error when
the reference is a constant, a controller with an integral action must be proposed
to render the system type 1. Thus, the following PID controller is proposed (see
Sect. 6.7.3):

24 ko K
s +kds+kd

1 1
ka S =kd(S+Z1)(S+ZZ)E = ka(s> + (21 +Zz)s+Z1zz);,
k, ki
- = ., — =2Z122. 6.61
T 21+ 22 i 2122 (6.61)

The open-loop transfer function becomes:

(s +2z1)(s +22) k
G(s)H(s) = k ,
(H(s) = ka 3 1 273952 — 12505 — 3.536 x 100
k
:kd(s+21)(S+z2) , (6.62)
P (s + 35.9)(s — 35.9)(s + 2739)
k = 11613700.

A PID controller must be designed such that the closed-loop system is stable. As
explained in Sect. 6.7.3, we can propose the following:

z1 =35.9, (6.63)

and proceed to compute the two remaining PID controller gains such that the
crossover frequency and the phase margin conditions are satisfied. Thus, the open-
loop transfer function simplifies to:

k
(s —35.9)(s +2739)°

G(s)H(s) = ka(s + zz)s

or:

k

G H () = kaz2 (@ + 1) a5 —aey

(6.64)
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where z = %s has been defined. It is important to stress that the cancellation of the
terms s 4z and s 4 35.9 is valid because these terms represent poles and zeros with
a negative real part as 35.9 > 0 and z; > 0. In Fig. 6.100, the Bode diagrams of the
transfer function:

k

Gol) = ST 3596 1 2739)°

(6.65)

are depicted. There, the results in Sect. 6.7.6 are employed to obtain the Bode
diagrams of a nonminimum phase factor of the form £ with @ > 0. Using
Fig. 6.100, the polar plot in Fig. 6.101 is obtained. It is important to stress that the
transfer function in (6.65) has one pole at the origin; hence, the modified Nyquist
path shown in Fig.6.57 must be employed. According to this, a contour around
s = 0 must be performed as follows. The variable change s = ¢/¢ must be used

in (6.65):

k k
Gol(elg) =

elp(elp —359)(eld +2739)  e/p(—35.9)(2739)
k B k
T £(35.9)(2739)

-9 L(—¢ — 180°),

= £(=35.9)(2739)

Fig. 6.100 Bode diagrams
. k N
0f(665) l)m, ll);,

359 .S 2739 i
ii1) 52359, 1Y) 5730 )
v k )
5(—35.9)(s12739) )
w
A
]
0 35.9 2739 > W

\m
- 90 1
e )

— 180 9 4 \
— 270 / . )
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Im (G (jw)) &
w=0"]-270°
*‘1 w—+ 00 -
e Re (G (jw)
r—00
-90°
w=0

Fig. 6.101 Polar plot of (6.65) when mapping the modified Nyquist path shown in Fig. 6.57

recalling that ¢ — 0. This explains the infinite radius circumference passing from
—90°, when w = 07, to —270°, when w = 0% (see Fig. 6.57).Itis clear in Fig. 6.101
that N = 1 and, as P = 1 (see (6.65)), then Z = N + P = 2, and the closed-loop
system would be unstable. Because of this, to achieve closed-loop stability using
the open-loop transfer function (6.64) (with a PID controller), the factor kzz2(z +
1) must contribute enough phase lead to obtain a polar plot such as that shown
in Fig.6.102. In suchacase N = —l and P = 1l,ie, Z = N+ P = 0 and
the closed-loop system would be stable. The Bode diagrams of (6.65) are shown
in Fig. 6.103. The magnitude and the phase are observed to be O[dB] and —212°
respectively, when the frequency is 60[rad/s]. It is proposed to maintain the same
crossover frequency:

wi = 60[rad/s], (6.66)
and to obtain the following phase margin’:
Ky = +20°. (6.67)

As the plant to control is naturally unstable, the main objective is to ensure closed-
loop stability without defining any other specification, such as rise time or overshoot.

5 Although the phase margin was introduced in Sect. 6.5 for minimum phase systems, this concept
is also applicable in this example
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Fig. 6.102 Polar plot

of (6.64) when mapping the
modified Nyquist path shown
in Fig. 6.57

6 Frequency Response-Based Design

Im(G(jw)H(jw)) &
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-1 w——00
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Fig. 6.103 Bode diagrams of (6.65)
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Bode Diagram
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Fig. 6.104 Bode diagrams of the factor z 4 1. The horizontal axis represents éw

Hence, the controller defined by kzz2(z + 1) must contribute +52° phase lead and
0[dB] magnitude when the frequency is 60[rad/s]. It is observed in Fig. 6.104 that
the factor z + 1 contributes +52° phase when %a) = 1.28 (see Example 6.2). As
this must occur when w = 60[rad/s], then:

=2 = 46.875
27 128lpeo OO

On the other hand, the desired crossover frequency is w = 60[rad/s]. This requires
the controller to contribute, at this frequency, a magnitude of O[dB] to achieve
a magnitude O[dB] for the compensated system at the crossover frequency. This
implies that:

lkaz2(z + 1)]ap = 20log(ksz2) + |z + 1|¢g = O[dB],

where, according to Fig. 6.104, |z + 1|gg = 4.24[dB] must be used. Hence, solving
for k; and performing the corresponding computations:
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1 404
kg =—10"20 =0.0131.
22

Finally, using (6.61) and (6.63) the following is found:
kp =ka(z1 +22) = 1.0838, k; = kqz122 = 22.0341.

The Bode diagrams of the open-loop transfer function of the compensated system,

given in (6.62), i.e., G(s)H(s) = (k,, +kas + ’“—) e
are shown in Fig.6.105. There, it can be verified that the crossover frequency is
@ = 60[rad/s] and the phase at this frequency is —160°, which corresponds to a
phase margin +20°. Thus, the desired frequency response specifications established
in (6.66) and (6.67) have been accomplished. Finally, in Fig.6.106, the time

response is shown when the reference is a unit step and a loop is closed around
G(s)H(s) = (k,, + kgs + ]%) k It is observed that the rise

§34273952—12505—3.536x10°
time is 0.0166[s] and overshoot is 89%. As stated before, no effort has been made

to achieve particular values for either the rise time or the overshoot, i.e., the only

Bode Diagram
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Fig. 6.105 Bode diagrams of the transfer function in (6.62), ie., G(s)H(s) =

(k,,+kds+ "T) ST T s With ke = 00131, k, = 1.0838, ki = 22.0341
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Step Response
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Fig. 6.106 Time response when the reference is a unit step and a loop is closed around

ki k ; _ —
G(s)H(s) = (k,,+kds+7) T T e With ke = 00131, k, = 1.0838,
ki = 22.0341

objective has been to ensure closed-loop stability. However, a way of improving the
performance is presented in the following. At this point, the reader is advised to see
Example 8.4, in Chap. 8.

The Bode diagrams shown in Fig.6.103 are depicted again in Fig.6.107.
However, this time w; = 344[rad/s] is selected as the new desired crossover
frequency because the phase at this frequency, i.e., —193°, is maximal. Hence, it
is expected that using the same phase lead as before, i.e., 52°, a larger phase margin
is accomplished. Thus, using the same data shown in Fig.6.104 the following is
found that:

w

— = 268.75
1.28 lw=344

2 =

On the other hand, to render w = 344[rad/s] to be the new crossover frequency, the
magnitude of the controller is required to be +29[dB] when w = 344[rad/s]. This
means that

lkaza(z + Dlag = 20log(kaz2) + [z + 1lag = 29[dB] (6.68)

where, according to Fig. 6.104, |z 4+ 1|qp = 4.24[dB] must be used. Thus:

1 29-424
kg =—10"20 =0.0644.
22
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Bode Diagram
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Fig. 6.107 Bode diagrams of (6.65)

Finally, using (6.61) and (6.63), the following is found:

kp =kq(z1 +z22) =19.6089, ki = kgz1z2 = 621.0041.

The Bode diagrams of G(s)H(s) = (kp + kgs + ]%) x3+2739s2—12§0x—3.536><106’
when k; = 0.0644, k, = 19.6089, k; = 621.0041, are depicted in Fig. 6.108 where
it is verified that a crossover frequency of 344[rad/s] and a phase margin of 4-39°
are accomplished. Finally, the loop is closed around this open-loop transfer function
and a step reference is applied. The corresponding time response is depicted in
Fig. 6.109, where a 44% overshoot and a 0.004[s] rise time are observed. Thus,
the performance of the closed-loop system has been improved, as expected, by
rendering it faster and more damped.

Figures 6.103 to 6.109 were drawn by executing the following MATLAB code in
an m-file:

k=11613700;

z1=35.9;

denl=conv ([l 2739],[1 -39.5 0]);
go=tf (k,denl) ;

figure (1)
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Bode Diagram
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Fig. 6.108 Bode diagrams of G(s)H(s) = @p+ms+%)
ky = 0.0644, k,, = 19.6089, k; = 621.0041

k
$3+4273952—12505—3.536x 10°

bode (g0, {1,1e5})

grid on

ge=tf([1 11,1);

figure (2)

bode (gc, {0.01,100})

grid on

kp=1.0838;

ki=22.0341;

kd=0.0131;

PID=tf ([kd kp kil, [1 0]);
g=tf(k, [1 2739 -1250 -3.536e6]);
figure (3)

bode (PID*g, {1, 1e5})

grid on

M=feedback (PID*g,1,-1) ;
figure (4)

step (M)

grid on
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Step Response
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Fig. 6.109 Time response when the reference is an unit step and a loop is closed around

— ki k ; _ _
G(s)H(s) = @p+@s+7>ﬁﬂnwfmm4ﬁmmm“mh@ = 0.0644, k, = 19.6089,
ki = 621.0041

kp=19.6089;
ki=621.0041;

kd=0.0644;

PID=tf ([kd kp kil, [1 0]);
figure (5)

bode (PID*g, {1,1e5})

grid on

M=feedback (PID*g,1,-1) ;
figure (6)

step (M)

grid on

6.9 Summary

A fundamental result in the solution of linear differential equations is as follows.
Given an arbitrary linear differential equation, if a sinusoidal function of time is
applied at the input, then the forced response is also a sinusoidal function of time.
Although the amplitudes and the phases of these sinusoidal functions of time may
be different, they both have the same frequency. The relationship between these
amplitudes and phases is given as functions of the frequency. These functions of the
frequency are known as the system frequency response.



6.10 Review Questions 433

The fundamental property of the frequency response that is exploited by control
theory is the fact that the above-cited functions of the frequency are determined by
the poles and zeros of the corresponding transfer function. In open-loop systems,
this allows us to interpret linear differential equations, and linear control systems,
as filters. This means that both the response time and oscillations in a control system
depend on the frequency content of the signal applied at the system input and how
the control system amplifies or attenuates those frequency components: (i) The
high-frequency components favor a fast response; (ii) If a band of frequencies is
amplified, i.e., if there is a resonance peak, then the time response is oscillatory;
(iii) The steady-state response depends on how the zero-frequency components are
amplified or attenuated; (iv) The effects of the noise are small if the high-frequency
components are attenuated.

An important feature of the frequency response approach to control system
design is that it relates the open-loop frequency response characteristics, i.e.,
crossover frequency and stability margins, to the closed-loop time response char-
acteristics such as rise time, time constant, and overshoot. Thus, a controller can be
designed to suitably modify the open-loop system frequency response to accomplish
the desired closed-loop time response specifications.

6.10 Review Questions

1. What do you understand by frequency response? What do the magnitude and
the phase of a transfer function represent?

2. Transfer functions are composed of poles and zeros, Which of these compo-
nents act as high-pass filters and which as low-pass filters? Which of them
contribute with a positive phase and which contribute with a negative phase?

3. Why do open-loop zeros improve closed-loop stability? How do open-loop
poles contribute to closed-loop stability? What is the advantage of adding poles
in the open-loop transfer function?

4. What is the relationship between the Nyquist stability criterion and the stability
margins?

5. Given an open-loop system, why does a larger corner frequency contribute to a
faster time response?

6. How does the crossover frequency have to be modified to render the closed-loop
system time response faster?

7. How does the phase margin affect the closed-loop system time response?

8. How does the Nyquist stability criterion have to be modified to be applied when
some open-loop poles and/or zeros are located on the imaginary axis? What is
the reason for this?

9. What is a non-minimum phase system?

10. What are the Nyquist path and the modified Nyquist path?
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6.11 Exercises

1. Investigate how to compute the steady-state error for step, ramp, and parabola
references from the open-loop system Bode diagrams.
Consider the integrator system:

2.

t
y(t) =k/ u dt,
0

and the differentiator system:

a)

b)

c)

y(t) = ku(t).

In both cases, assume that u = A cos(wt), with A a constant, and compute
y(t). Draw a plot showing how the amplitude of y(#) changes with respect
to frequency and compare with the Bode diagrams in Figs. 6.16a and b.
What is the effect of a differentiator when u contains noise (i.e., high-
frequency sinusoidal functions of time)? According to this, state what you
think would happen in the following cases: What is the effect of a controller
possessing a derivative action in a position control system containing high
levels of noise? What is the effect of noise in a control system possessing
only an integral action?

Consider the case of a pneumatic piston. The air input flow is # and the
position of the piston is y. Suppose that air neither compresses nor expands
inside the piston chamber. If the air flow leaves the piston chamber, then
u < 0; if the air flow enters the piston chamber, then u > 0. Under these
conditions, the system behaves as an integrator. Assume that an input of
the form u = Acos(wt) is applied, with a value for w that successively
approaches zero. Using your everyday experience, explain what happens
with the piston position and compare it with the Bode diagrams of an
integrator and the plots obtained in the first item of this exercise. What does
the term infinite gain at zero frequency mean? Although a permanent magnet
brushed DC motor is not exactly an integrator, use your daily experience to
investigate whether a similar behavior is obtained when y is the rotor angular
position and u = A cos(wt) is the applied voltage. From the point of view
of the motor model, how can this behavior be explained?

3. Consider the following system:

Y(s) = ﬁU(s), a>0.

Suppose that u(t) is a square wave, with a period equal to 2, which is equal
to unity during the first half-period and zero during the second half-period.
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Perform some simulations employing different values for a from almost zero
to very large values. Observe the resulting waveform of y(¢) in each case. Why
do you think y(#) is very different from u(#) when a is very close to zero? Why
do you think y(#) looks very similar to u#(¢) as a becomes too large? Can you
explain this behavior from the point of view of the frequency response of the
transfer function {7

There is a fundamental result in linear systems theory stating that given a
periodic function of time u(#) and a linear system Y (s) = G(s)U (s) with all
poles of G(s) having a strictly negative real part, then y(¢), in a steady state,
is a periodic function of time with the same period as u(¢), but, possibly, with
a different waveform [7], pp. 389 (see also Exercise 15, Chap.3). Does the
example in Exercise 3, in this chapter, suggest to you some explanation of why
u(t) and y(#) may not have the same waveform? What is the main property that
determines that the waveforms of u(¢) and y(¢) are similar or different?

. Consider the following differential equation:

y+ a)gy = a)zu

The computation of y(¢#) when t — oo and u(t) = Asin(wt) is simplified
using the Bode diagrams in Fig. 6.17b. With this information, draw some plots
to represent the steady-state value of y(#) for several values of @ from some
w=w] < w, tosome w = wy > wy.

From this result, explain what happens when the same experiment is
performed, but, now, employing the following differential equation:

§ 420wy + 0ly = lu,

with w, > 0 and ¢ > 0. What happens as ¢{ grows? Why is resonance
considered to be dangerous in many applications?

Consider a closed-loop system such as that in Fig.4.10. The corresponding
expression for the error is given as E(s) = H;G(s)R (s) where E(s) = R(s) —
C(s). If the desired reference is a sinusoidal function of time r () = A sin(wt),
what can be done to render lim,_, » e(#) increasingly smaller? Is it possible
to accomplish lim;_, » e(t) = 07? If the answer is affirmative, under what
conditions? Verify your answer by performing simulations.

Consider the parallel resistor—inductor—capacitor (RLC) circuit shown in
Fig. 6.110. Show that the transfer function is given as:

V(s) _ kw,zls
I(s) 2+ 2Cwys + w2’

(6.69)

where w, = \%C, ¢ = # é, k = L. Plot the corresponding Bode diagrams
when ¢ is close to zero (how can this be possible in practice?) and verify that
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Fig. 6.110 Parallel ](5)
resistor—inductor—capacitor »- 4
(RLC) circuit

L § R C—— Ws)

Fig. 6.111 Basic amplitude Antenna e
modulation (AM) Y7
radio-receiver

1N34A

L § —cC Headphones 8>

Ground_i_

this is a band-pass filter around some frequency w ~ w, (in fact & — wj, as
¢ — 0). How can w, be changed in practice?

An interesting and important application of this exercise is that of the
amplitude modulation (AM) radio-receiver shown in Fig. 6.111 [8], pp. 94-99.
Note that the antenna collects electric signals carried by the electromagnetic
waves radiated by commercial AM broadcast stations. The antenna is merely a
long wire. The longer the antenna, the stronger the electric signals at the radio-
receiver input. Ground connection is performed using a copper water pipe.

The germanium diode 1N34A is the AM detector, i.e., it extracts the
information carried by the electromagnetic waves. It is important that this diode
is made of germanium because it is a semiconductor material with a smaller
potential barrier than silicon. This renders it easier for the weak received signals
to pass through the diode. Different broadcast AM stations can be tuned merely
by changing the value of inductance L.

Can the reader explain how the tuning circuit works using frequency
response arguments? Why do only the inductance L and the capacitance C
appear, but not resistance R in Fig. 6.111? What signals in the radio-receiver
have to be considered as V (s) and I (s) in (6.69)?

8. Consider the RC circuit in Fig. 6.112. If v; (¢) is a step, find v, (¢) and plot both
of these variables. Is signal v, (¢) continuous or discontinuous at t = 0? Obtain

the transfer function “2”((;)) , plot the corresponding Bode diagrams, and state
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whether this is a high-pass or a low-pass filter. According to these results, how
can the reader explain the continuity (or discontinuity) of v,(¢) at ¢ = 0 when
v; (1) is a step?

It has been explained in this chapter how to plot Bode diagrams of a known
transfer function. However, the inverse process is also possible: given some
Bode diagrams, it is possible to obtain the corresponding transfer function. In
this class of problems, the Bode diagrams are obtained experimentally and
the process of finding the corresponding transfer function is called system
identification. Some Bode diagrams that have been plotted from experimental
data are shown in Fig. 6.113. Find the corresponding transfer function. Verify
your answer by plotting the Bode diagrams of the identified transfer function
and comparing them with those in Fig. 6.113.

In Exercise 7, Chap. 2, it is explained how to obtain the mathematical model
of an analog DC voltmeter. If it is assumed that the inductance of the voltmeter
is negligible (L ~ 0), the model reduces to that of a second-order rotative
mass-spring-damper system. With this information, perform the following
experiment.

* Connect the analog voltmeter in DC mode.

* Use a signal generator to apply a sinusoidal wave form. This signal must
contain a constant DC component. The value of this DC component must
be the same as half the scale of the DC voltmeter that has been selected.
Furthermore, the maximal and the minimal values of the signal delivered
must not exceed the range of the scale of the DC voltmeter that has been
selected.

* Connect the terminals of the DC voltmeter at the signal generator output.
Apply a sinusoidal signal of frequency w and measure vy, and v,qx as
the minimal and maximal values reached by the voltmeter needle. Employ a
scope to measure the peak-to-peak voltage delivered by the signal generator
and designate it as A. Use different values for the frequency w and complete
the following table (Table 6.6):

* From these data, draw the Bode diagram of the corresponding magnitude and

obtain the numerical values of the transfer function G(s) = ‘\%Ef; , Where




438

Magnitude (dB)

Phase (deg)

|
N
[&)]

25

o

-90

6 Frequency Response-Based Design

Bode Diagram

pial il PR |

104 1073 1072 107" 100 10! 102 108

Frequency (rad/sec)

Fig. 6.113 Bode diagrams of a plant to identify

Table 6.6 Frequency o, [rad/s] | B = Umax — Umin, [Volts] | A, [Volts]
response data of a DC

voltmeter

NS

Vi(s) and V,(s) are the Laplace transforms of voltages delivered by the
generator and measured by the DC voltmeter respectively. Note that this
transfer function must have a unit gain at zero frequency because this is
the frequency of a DC signal, i.e., when a DC voltmeter correctly measures
voltage. Also note that the value of w, gives information on what is the
maximal frequency where the DC voltmeter delivers a correct measurement.
This part of the result is highly dependent on the ability of the scope and the
DC voltmeter to deliver the same voltage measurements at low frequencies.
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6.114 Bode diagrams

Draw the Bode diagrams and the polar plots of the following systems:

Gy — 0.5(s + 0.8)

Gisy = 056 =08
T G400 +20 ¢

T (s +0.D(s +20)

The Bode diagrams of a plant are depicted in Fig. 6.114. Find the corresponding
transfer function. Assume that a sine function with 5 as amplitude and 10[rad/s]
as frequency is applied at the input of this system. State the amplitude and phase
of the output signal. Now assume that the above plots are the Bode diagrams of
an open-loop transfer function G (s); hence, the same input signal that was used
before is now used as the reference of the closed-loop system lfggs). State the
amplitude and the phase at the output.

Sketch the Bode diagrams for small frequencies, corresponding to systems type
0, type 1, and type 2. Perform the same with polar plots.
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Fig. 6.115 (a) Bode diagrams and (b) time responses of two different systems
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6.116 Bode diagrams

The Bode diagrams and the time responses, when a unitary step input is applied,
are depicted in Fig. 6.115 for two different open-loop systems. State which one
of the step responses corresponds to each one of the Bode plots.

Of the Bode diagrams in Fig. 6.116, state which is the corresponding transfer
function and sketch the corresponding time response when the input is a step.
The Bode diagrams of two different open-loop systems are depicted in
Fig.6.117a. The time responses in Fig.6.117b are obtained when the loop
is closed, with unit feedback around each one of the systems in Fig.6.117a,
and a step is applied as a reference. State which time response corresponds to
each Bode diagram.
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Bode Diagram
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Fig. 6.117 (a) Open-loop Bode diagrams and (b) closed-loop time response to a step input of two
different systems
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Chapter 7 ®
The State Variables Approach oo

The design methods presented in Chaps. 5 and 6 constitute what is now known as
classical control. One of the features of classical control is that it relies on the so-
called input—output approach, i.e., the use of a transfer function. This means that
a transfer function is like a black box receiving an input and producing an output,
i.e., nothing is known about what happens inside the black box. On the contrary, the
state variable approach allows us to study what happens inside the system.

The study of the state variable approach is a complex subject involving the
use of advanced mathematical tools. However, the aim in this chapter is not to
present a detailed formal exposition of this approach, but merely to present the basic
concepts allowing its application to control simple plants. Thus, only controllable
and observable, single-input single-output plants are considered.

7.1 Definition of State Variables

Consider the following linear, constant coefficients differential equations:

Ldi Ri k. 6 (7.1)
— =u—R1—n s .
dt ¢

JO=—bO+nkyi. (7.2)

Note that each one of these differential equations has an effect on the other. It is said
that these differential equations must be solved simultaneously. One useful way of
studying this class of differential equations is the state variables approach. The state
variables are defined as follows.
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Definition 7.1 ([1], pp. 83) If the input u(¢) is known for all + > ¢y, the state
variables are the set of variables the knowledge of which at + = 7o allows us to
compute the solution of the differential equations for all ¢ > #,.

Note that this definition of the state variables is ambiguous. Although this may
seem to be a drawback, it becomes an advantage because this allows us to select the
state variables that are most convenient. According to this, although several criteria
are proposed in the literature to select the state variables, it must be understood that
no matter how they are selected they must be useful in solving the corresponding
differential equations at any future time. In this chapter, the state variables are
selected using the following criterion.

Criterion 7.1 Identify the unknown variable in each one of the differential equa-
tions involved. Identify the order of each differential equation and designate it as r.
Select the state variables as the unknown variable and its first r — 1 time derivatives
in each one of the differential equations involved. It is also possible to select some
of these variables multiplied by some nonzero constant.

It is common to use n to designate the number of state variables. On the other
hand, the state is a vector whose components are given by each one of the state
variables. Hence, the state is a vector with n components. According to this criterion,
the state variables selected for equations (7.1), (7.2) are i, 9, 6, ie.,n = 3 and the
state is given as:

)
)C:)Q:Q
6

Using this nomenclature, the differential equations in (7.1), (7.2), can be written as:

Lxi=u—Rxi—nk,x3,

Jx3 = —bx3+nky xi,
ie.,:
PR (u—Rx1 —nkex3)/L
ar X2 | = X3 ;
X3 (=bx3+nknx)/J

, which can be rewritten in a compact form as:

x = Ax + Bu,
R ke 1
-7 0% T
A= 00 1 |. B=|0
km b
0 =7 0
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On the other hand, it is common to use y to represent the output to be controlled.
It must be stressed that the state x consists variables that are internal to the system;
hence, in general, they cannot be measured. On the contrary, the output y is a
variable that can always be measured. If the output is defined as the position, i.e., if
y =60 = xo, then:

y=Cx, C=[010].
The set of equations:

X = Ax + Bu, (7.3)
y = Cx, (7.4)

is known as a linear, time invariant, dynamical equation (A, B, and C are constant
matrices and vectors). The expression in (7.3) is known as the state equation and
the expression in (7.4) is known as the output equation.

Although the state equation in (7.3) has been obtained from a single input
differential equation, i.e., u is an scalar, it is very easy to extend (7.3) to the case
where there are p inputs: it suffices to define u as a vector with p components, each
one of them representing a different input, and B must be defined as a matrix with
n rows and p columns. On the other hand, it is also very easy to extend the output
equation in (7.4) to the case where there are ¢ outputs: merely define y as a vector
with ¢ components, each one representing a different output, and C must be defined
as a matrix with ¢ rows and n columns.

Note that a state equation is composed of n first-order differential equations. A
property of (7.3), (7.4), i.e., of a linear, time invariant dynamical equation, is that the
right-hand side of each one of the differential equations involved in (7.3) is given as
a linear combination of the state variables and the input using constant coefficients.
Also note that the right-side of (7.4) is formed as the linear combination of the state
variables using constant coefficients.

A fundamental property of linear, time invariant dynamical equations is that
they satisfy the superposition principle, which is reasonable as this class of
state equations is obtained, as explained above, from linear, constant coefficients
differential equations, which, according to Sect. 3.7, also satisfy the superposition
principle.

Example 7.1 Consider the mechanical system shown in Fig. 7.1. The corresponding
mathematical model was obtained in Example 2.4, Chap. 2, and it is rewritten here
for ease of reference:

. b . . K K> 1
X1+ —0 —x)+ —x1+ —(x1 —x) = —F(), (7.5)
mi mi mi mi

.. b . . K3 K>
Xo— — (@1 —X2) + —x2— —(x1 —x2) =0. (7.6)
ma ma ma
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Fig. 7.1 Mechanical system F(t)

K1 L, |—>~’U1 T I—’fL“? K3

W

m1 m
n 2

1]
/7(57775% b /797775%
Note that there are two second-order differential equations. This means that only
four state variables exist: the unknown variable in each one of these differential

equations, i.e., x1 and x7, and the first time derivative of each one of these unknown
variables, i.e., x; and x3:

X1 X1
X X
x= 2=, u=F@.
X3 X1
X4 X2

Using this nomenclature, the differential equations in (7.5), (7.6), can be rewritten
as:
K K>

. . b 1
X1 =X3=——(3—x4) — —x1 — —(x1 —x2) + —u,
mj mi mj mi

.. b K3 K>
Xpg=X4=—(x3—x4) — —x2+ —(x1 — x2),
my my my

i.e.,:
X1 X3
d b%) X4
Fm = K K 7.7
dt | x —b s — ) — By = K2y — ) + L @D
K K
X4 m%(m —X4) — pax2+ 2 (1 — x2)
Hence, the following state equation is obtained:
X = Ax + Bu,
0 0 1 0 0
0 0 0 1 0
A=| K _ K K _b b |- B=|] (7.8)
nmj mi mj mip  mi my
K _K _ K3 b _ b 0
m2 my my mp myp

On the other hand, the output equation depends on the variable to be controlled. For
instance, if it is desired to control the position of mass 1, then:

y=Cx=x;, C=[1000],
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but, if it is desired to control position of mass 2, then:
y=Cx=x3, C=[0100].

Example 7.2 A mechanism known as ball and beam is studied in Chap. 14. In that
chapter, the corresponding mathematical model is obtained and presented in (14.8).
This model is rewritten here for ease of reference:

X(S): o

5) 2 o(s) I*(s).

- s(s + a)

Using the inverse Laplace transform, the corresponding differential equations can
be obtained, i.e.,:

¥=p0, 0+ab=ki* (7.9)

As there are two second-order differential equations, then there are four state
variables: the unknown variable in each differential equation, i.e., x and 6, and the
first time derivative of each unknown variable, i.e., x and 0:

<1 X
7= 22 — X

23 6|’

24 6

Using this nomenclature, the differential equations in (7.9) can be rewritten as:

¥=12=pz3, 0=24=—azs+ku,
i.e.,:
21 22
d | 22 pz3
— = . 7.10
dt | z3 24 ( )
74 —az4 + ku
Hence, the following state equation is obtained:
z=Az+ Bu
010 0 0
00p O 0
000 1 0 (7.11)
000 —a k
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As explained in Chap. 14, the variable to be controlled is x; thus, the output equation
is given as:

7.2 The Error Equation

Consider a linear state equation of the form:
X = Ax + Bu.

The control objective for this plant can be stated by defining a constant desired state
vector x* and ensuring that lim;_, o, x () = x™*. This means that x (#) must converge
to the constant x*, which implies that lim;—,  X(#) = x* = 0, i.e., the control
problem has a solution if, and only if, there is a pair (x*, u*) such that:

* = Ax* + Bu* =0, (7.12)

where u* = lim;_, o, u(t) is also a constant. The pair (x*, u*) is known as the
operation point. The error state vector is defined as e = x — x™ and it is clear that
the control objective can be restated as lim,_,», e(¢#) = 0. To analyze the evolution
of e(t), i.e., to find the conditions ensuring that the above limit is satisfied, it is
important to have a state equation in terms of the state error. In the following
examples, it is shown how to proceed to obtain this equation, which is known as
the error equation.

Example 7.3 Consider the ball and beam system studied in Example 7.2. The
system state equation is given in (7.11). However, to obtain the error equation, the
expression in (7.10) is more convenient, i.e.,:

21 2
dlz|_ rz3
dt | z3 | 24

4 —az4 + ku

Mimicking (7.12), to obtain the possible operation points, find all possible solutions
of:

S O O O
*
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It is clear that:

7] c
*
z 0

=72 = NE u* =0,
23
4 0

where ¢ is any real constant because no constraint is imposed on z}. Once the
operation points (z*, u*) are defined, the error state is given as:

el 71 —¢C
e Z
e = 2 :Z—Z*: 2 . (713)
€3 23
€4 24

The error equation is obtained differentiating the error state once, i.e.,:

e 21— 2% 21 2
o — e | _|2-5 | _|2|_ 023
é3 3—123 23 24
és4 24— 2} 24 —az4 + ku

From the last expression, u™ = 0, and (7.13), we have:

€2

pes
es
—aeq +k(u — u*)

Thus, defining v = u — u*, the error equation can be written as:
é = Ae + Bv,

with matrix A and vector B defined in (7.11).

Example 7.4 Consider the mechanical system in Example 7.1. The corresponding
state equation is given in (7.8). However, to obtain the error equation, it is preferable
to consider (7.7), i.e.,:

X1 X3
d X2 X4
— =| _o» K K 1
dt | x3 —or (03 —xg) — puxy — 2201 —x2) + u

b K K
x4 s (3 —x4) — J2x0 4 2 (x1 —x2)
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Mimicking (7.12), to obtain the possible operation points find all the possible
solutions of:

*
0 X3
0 xy
= _b vk ok Kiox_ Koox % 1o |
0 ml()lC)3 x4) mlx[} ml(;l x2)+ mlu
* * 3k 2 (4% *
0 m—z(x3 _x4)_m_2x2+m_2(xl - x3)

i.e., x3 =0, x; = 0, and the solutions of:

Ky 2
——x =] —x)+—u" =0,
mi 1
K3 2
——x;+ — (] —x3)=0.
ma 2

Solving these expressions, it is found that the operation points are given as:

* Kr+K3 %
X K, 2

2
* K K>)(K K

= || = ¢ , u*=<( 1+ K2)(Kz + 3)—K2>x;‘,
X3 0 K>
xy 0
(7.14)

where ¢ is any real constant. Once the operation points (x*, u*) are defined, the
error state is given as:

el x| —xj
3
e X2 — X
e=| | =x—xr=|"2"12|. (7.15)
e3 X3
eq X4

The error equation is obtained differentiating the error state once, i.e.,:

Cé) i — i i
s_le|_|e-#|_|®
€3 X3 x3
L é4 X4 X4
X3
x4
= b K K 1
— oy (¥3 = X4) — m—ixl - m—f(xl —x2) + ou
b (yn — _K K0 —
my (X3 = X4) — X0 + D2 (X1 — x2)
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. . Ki + Ko x Ky x x Ky x Kp
Adding and subtracting terms w X1 m X2 X] an nd mzxz, X2 le in the

third row and fourth row respectlvely of the last expression and usmg (7.14), (7.15),
yields:

e3
: e
e = K> 1 *
—m(ea—ezt)—mel o (e ;ez)+—(u—u )
23 —es) — pler+ n2(er —e2)

Thus, defining v = u — u*, the error equation can be written as:
é = Ae + Bv,

with A and B defined in (7.8).

7.3 Approximate Linearization of Nonlinear State Equations

Nonlinear state equations are frequently found. These are state equations given as:

x = f(x,u), (7.16)
Si(x, u) X uj
o fa(x,u) Ceo bY) . up ’
fn().C, u) Xn Up
where at least one the of functions f;(x,u), i = 1,...,n, is a scalar nonlinear

function of x or u, i.e., this function cannot be written as a linear combination of the
components of x or u. For instance, in a state equation with three state variables and
two inputs:

Ji(x,u) = 3sin(x3) + x1uz,
X1

ﬁ(-xvu) - 5_
filx,u) = u%.

It is important to stress that the notation f;(x, u) means that the i —th component
of vector f is in general a function of the components of the state vector x and the
input vector u. However, as shown in the previous examples, it is not necessary for
fi(x, u) to be a function of all the state variables and all the inputs. Moreover, it is
also possible that f;(x, u) is not a function of any state variable, but it is a function
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of some of the inputs and vice versa. A state equation of the form (7.16) possessing
the above features is known as a nonlinear time invariant state equation, i.e., it has
no explicit dependence on time.

The study of nonlinear state equations is much more complex than the study
of linear state equations. However, most physical systems are inherently nonlinear,
i.e., their models have the form given in (7.16). Hence, suitable analysis and design
methodologies must be developed for this class of state equations. One of the
simplest methods is to find a linear state equation, such as that in (7.3), which is
approximately equivalent to (7.16). The advantage of this method is that the linear
state equations such as that in (7.3) can be studied much more easily. Hence, the
analysis and design of controllers for (7.16) are performed on the basis of the much
simpler model in (7.3). Although this method is very useful, it must be stressed that
its main drawback is that the results obtained are only valid in a small region around
the point where the linear approximation is performed. These ideas are clarified in
the following sections.

7.3.1 Procedure for First-order State Equations Without Input

Consider a nonlinear first-order differential equation without input:
X = f(x), (7.17)

where x is a scalar and f(x) is a scalar nonlinear function of x. It is desired to obtain
a linear differential equation representing (7.17), at least approximately. Define an
equilibrium point x* of (7.17) as that value of x satisfying f(x*) = 0. According
to (7.17), this means that at an equilibrium point x* = f(x*) = 0, i.e., the system
can remain at rest at that point forever.

Suppose that f(x) is represented by the curve shown in Fig.7.2. The dashed
straight line /2 (x) is tangent to f (x) at the point x*. Because of this feature, /(x) and
f(x) are approximately equal for values of x that are close to x*, i.e., if x —x™ =~ 0.
However, the difference between A (x) and f(x) increases as x and x* become far
apart, i.e., for large values of x — x™. Hence, /(x) can be employed instead of f(x)
if x is constrained to only take values that are close to x*. In Fig. 7.2, it is observed
that:

R - fG&Ydf
m=———— m= —" ,
x —x* dx |

where the constant m represents the slope of &(x), i.e., the derivative of f(x)
evaluated at the equilibrium point x*. Then, from the first expression:

h(x) = m(x — x*) + £(x%), (7.18)
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Fig. 7.2 Approximation of a A
nonlinear function f(x) using
a straight line A (x)

and, as h(x) & f(x), itis possible to write:
fO)~mx —x")+ f(x5).
As x* is an equilibrium point, then f(x*) = 0 and:
fx) ~m(x —x*).
Hence, (7.17) can be approximated by:
X =m(x —x").

Defining the new variable z = x — x*, then 7 = X, because x* = 0. Hence, the
linear approximation of (7.17) is given by:

P=mz, (7.19)

, which is valid only if x — x* ~ 0. Once (7.19) is employed to compute z, the
definition z = x — x™ can be used to obtain x as the equilibrium point x* is known.
df(x)

Finally, note that the only requirement for all the above to stand is that =7 exists

and is continuous, i.e., that f(x) is, at least once, continuously differentiable.

7.3.2 General Procedure for Arbitrary Order State Equations
with an Arbitrary Number of Inputs

Now consider the state equation:

x = f(x,u), (7.20)
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where x € R" is a vector with n components and ¥ € RP is a vector with
p components standing for the state equation input. Note that f(x,u) must be
a vectorial function with n components. This means that (7.20) has the form
defined in (7.16). In this case, it is preferable to employ the concept of operation
point instead of equilibrium point because the latter concept is only defined for
state equations without inputs. An operation point is defined as the pair (x*, u™)
satisfying f(x*, u*) = 0. This means that the solution of the state equation can
remain at rest at x*, because x* = f(x*,u*) = 0, if the suitable inputs u™ (p
inputs) are applied, which are also constant.
Note that f(x, ) depends on n 4 p variables. Define the following vector:

y= ,
u
with n + p components. Then (7.20) can be written as:

X =f). (7.21)

Following the ideas in the previous section, it is desired to approximate the nonlinear
function f(y) by a function i (y) that is tangent to f(y) at the operation point y*

defined as:
x*
=)

Extending the expression in (7.18) to the case of n 4+ p variables, it is possible to
write:

h(y) =M@y —y") + f(),

where M = %(y‘) . is a constant matrix defined as:
y=y

i) itw) i) i) i) 3w

dx| dxp axy, duy duy duy
Afpr(x,u) dfa(x,u) ofa(x,u) dfa(x,u) dfa(x,u) af2(x,u)
dx1 0xp e 0x, ouy ouy T dup

Ofple) Ufplra)  UfuCrar) p(oa) AfpCra)  BfuCra)

x| dxp e axy, oup dun T duy

x=x* u=u*

Taking advantage of f(y) & h(y), (7.21) can be approximated as:

X=My—y)+fO5.
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As f(y*) = f(x*,u*) = 0 and x — x* = X, because x* = 0, the following is
found:

z = Az + Bv, (7.22)
 ofi(x,u) 9fi(x,u) af1 (x,u)
ax| dxp o Xy,
00w hthw  apGw
A= 3).61 8).62 . Bi‘n , (7.23)
dfuCea) OfuCea)  faCoa)
L dxg dxy "0 O0xn dyx=x* u=u*
[ afitx, ) 9f1(x,u) af1(x,u) 7]
duy dun e dup
afr(x,u) dfr(x,u) afr(x,u)
oup duy Tt duy

B=| " e : (7.24)

Bfulra) Afulea)  BfuCra)
oup duy Tt duy

A x=x* u=u*

where z = x — x* and v = u — u* have been defined. The expressions
in (7.22), (7.23), (7.24) constitute the linear approximate model employed in the
analysis and design of controllers for the nonlinear system in (7.20). Note that this
linear approximate model is valid only if the state x and the input u remain close to
the operation point (x*, u*), i.e., onlyif z = x —x* ~ 0and v = u — u* ~ 0. From
a practical point of view, it is commonly difficult to determine the values of x and
u satisfying these conditions; hence, they are employed heuristically. Finally, note
that the only requirement for all the above to stand is that all the partial derivatives
defining the matrices A and B exist and are continuous, i.e., that f(x, u) is, at least
once, continuously differentiable.

Example 7.5 In Fig.7.3, a simple pendulum is shown. In Example 2.6, Chap. 2,
it was found that the corresponding mathematical model is given by the following
nonlinear differential equation:

ml%6 + bO + mgl sin(0) = T (1). (7.25)

Fig. 7.3 Simple pendulum
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The feature that renders this differential equation nonlinear is the function sin(8)
representing the effect of gravity. As it is a second-order differential equation, then
only two state variables exist: the unknown 6 and its first-time derivative 6:

x| _ |0 _
<[] e

Using this nomenclature, the differential equation in (7.25) can be written as:

b
51n(x1) + —

é’:‘:——
RETLRTTT mi2"

ie.,

drn
dt | xo

Hence, the following state equation is found:

X2
bzxz -7 g sin(xy) + 12”

T ml

X = f(x,u)

_ | ilew | _ x2
few = [fz(x,u)] - [ by — Esin(y) + ﬁu} '

Note that in this case, it is not possible to obtain the linear form x = Ax + Bu
because of the function sin(f). To obtain a linear approximation for this nonlinear
state equation, the operation points are first obtained, i.e., those pairs (x*, u™)
satisfying f(x*, u*) = [00]7:

fatuh) = [—#x%‘ % sin(x}) + 12u ] - |:O]

From this, the following is found:
x5 =0, u"=—mglsin(x}).

This means that the input at the operation point depends on the pendulum position at
the operation point. This is because, to maintain the pendulum at rest, it is necessary
to have an input that exactly compensates for the effect of gravity. To continue, a
particular value for x| must be selected. Two cases are considered here:

* When x{ = 0, x5 = 0, u* = 0. Using (7.22), (7.23), (7.24), the following is
found:

7= Az + Bv,
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" 3fitx,w) dfi(x,u) 0 1
A= sntln sntn =| _z b
S (x,u H(x,u _8 __b_ ’
L x=x*,u=u* ICOS(XI) mi? x1=x2=u=0

dx1 dx2

[ 8fiew) 0
B=| apln = |
L ou x:x*’u:u* m12

where z = x — x* = x and v = u — u®™ = u have been defined. Note that,
according to this state equation:

. . g b N 1
21=22, L2=—72— >3+ 7V
l mil? mil?
Combining these first-order differential equations the following linear, second-
order differential equation with constant coefficients is obtained:

. b . 1
21+ —=21 +§Z] =

— 7.26
m2 T mi2’ (7.26)

This differential equation can be analyzed using the concepts studied in Sects. 3.3
(complex conjugate roots with a negative or zero real part), 3.4.2 (real and
repeated negative roots) and 3.4.1 (real, different and negative roots), Chap. 3,
as it corresponds to a differential equation with the form:

¥+ 2wpy + wly = ko?v,
where:

y =1, zngZW’ "
with ¢ > 0, w, > 0and k > O becausem > 0,g > 0,/ > 0and b > 0.

* When x{ = 7, x5 = 0, u* = 0. Using (7.22), (7.23), (7.24), the following is
found:

7z = Az + Bv,
ofi(x,u) 9fi(x,u) 0 1
A= dx] dx7 _
— | afalx,u) 3fo(x,u) -1 cos(xq) __b_ ’
0x] dx7 X=x*,u=u* ] mi? x| =47, xp=u=0

|

~e O

1
_b 1
mi?
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3fi (x,u) 0
B=| a0 = |
du x=x*,u=u* m12

where 7 = x — x* = [x; — x{, x2]7 and v = u — u* = u have been defined.
Note that this state equation implies:

. . g b n 1
21=22, 2=721— 52+ —50.
1 2 2=y st s
Combining these first-order differential equations the following linear, second-
order differential equation with constant coefficients is obtained:

£+ oty — & : (7.27)
—Z1 — =21 = —5. .
<1 mi2 <1 I 21 mi2
This differential equation can be analyzed using the concepts studied in
Sect. 3.4.1, Chap. 3 (real, different roots, one positive and the other negative, see
Example 3.11) as it corresponds to a differential equation of the form:

Vy4+cy+dy =ev,
where:

>0, d=-5 <0 !
= s c=——F =20, = —— <V, e = —=.
y=z21 i ]

Note that, according to (7.26) and Sect. 3.3, Chap. 3, the pendulum oscillates with a
natural frequency given as w, = \/% when operating around xj = 0, x; = 0, u™ =
0. This means that a longer pendulum oscillates slower whereas a shorter pendulum
oscillates faster. These observations are useful, for instance, when it is desired to

adjust the rate of a clock that leads or lags in time. Moreover, rearranging (7.26) the
following is found:

mi*%) + bz +mglz) = v. (7.28)
According to Example 2.5, Chap. 2, which analyzes the rotative spring-mass-

damper system shown in Fig.7.4, (7.28) means that factor K = mgl > 0 is
equivalent to the stiffness constant of a spring because of the effect of gravity.

Fig. 7.4 A rotative
spring-mass-damper system
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On the other hand, using similar arguments, it is observed that, rearrang-
ing (7.27):

mi*%) + bzy —mglz) = v.

When the pendulum operates around xj = £, xJ = 0, u* = 0, it behaves as a
mass-spring-damper system possessing a negative stiffness constant K = —mgl <
0. This can be seen as follows. A positive stiffness constant K > 0 indicates that the
force exerted by the spring is always in the opposite sense to its deformation and,
because of that, the spring forces the body to move back to the point where the spring
is not deformed. This is the reason why the pendulum oscillates around xj = 0,
x3 = 0, u* = 0. On the other hand, because of the sign change, in a spring with a
negative stiffness constant K < 0, the opposite must occur, i.e., the force exerted by
the spring must now be directed in the same sense as the deformation. This means
that the deformation of a spring with K < 0 forces the deformation to increase
further, i.e., the body moves away from the point where the spring deformation
is zero (i.e., where z; = 0). This is exactly what happens to a pendulum around
x{ = 4w, x5 =0, u* = 0:if z; # 0 then the gravity forces the pendulum to fall;
hence, to move away from z; = 0, i.e., where x| = xf = 4. This behavior is the
experimental corroboration of what is analytically demonstrated by a characteristic
polynomial with a positive root: the operation points x} = &, x =0, u* = 0 are
unstable.

Note that using the above methodology, a linear approximate model of a nonlin-
ear system is already given in terms of the equation error introduced in Sect. 7.2.
The reader is referred to Sect. 13.2, Chaps. 13, Sect. 15.3, Chap. 15, and Sect. 16.4,
Chap. 16, to see some other examples of how to employ (7.22), (7.23), (7.24), to
find linear approximate state equations for nonlinear state equations.

7.4 Some Results from Linear Algebra

Some results that are useful for studying the state variables approach are presented
in this section.

Fact 7.1 ([1], chapter 2) Let wi, wa,...,w,, be n vectors with n compo-
nents. These vectors are linearly dependent if, and only if, there exist n scalars
o1, q2, ..., 0y, not all zero such that:

ajwy + ow + - +aw, =0, (7.29)
where zero at the right represents a vector with n zero components. If the only way

of satisfying the latter expression is that o) = g = --- = oy = 0, then it is said
that wy, wa, ..., wy,, are linearly independent vectors.
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In the simplest version of the linear dependence of vectors, two vectors with two
components are linearly dependent if they are parallel. This can be shown as follows.
Let wy and wy be two vectors, each one having n = 2 components. These vectors
are linearly dependent if there are two constants o1 # 0 and «p # 0 such that:

ajw; + arwy =0,

which means that:

Note that «; cannot be zero for obvious reasons. On the other hand, if oy is zero,
then w; = 0 is the only solution in this case that is not of interest. Hence, it is
assumed that both «; # 0 and ap # 0. Thus, as the factor —g—? is a scalar (positive
or negative), the above means that w; and w; are vectors with the same direction,
i.e., they are parallel.!

In the case of three or more vectors, linear dependence means that one of vectors
can be computed as the addition of the other vectors when suitably affected by
factors «; (this is what is known as a linear combination of vectors), i.e.,:

(2% a3

Wy = ——wy — —ws,
23] o]

is directly obtained from (7.29) when n = 3 and o # 0. As n = 3, the above means
that wy, wy and w3 are in the same plane, which is embedded in a volume (in R3),
i.e., that the linear combination of w1, wy and w3 does not allow another vector to
be obtained that is not contained in the same plane. According to this, three vectors
with three components are linearly independent if their linear combination spans
three dimensions. Thus, the linear combination of n linearly independent vectors
(with n components) spans an n—dimensional space. The linear combination of n
linearly dependent vectors (with n components) spans a space with fewer than n
dimensions.

Fact 7.2 ([1], chapter 2, [2], chapter 10) Consider the following n x n matrix:
Ez[wl wo ...wn],

where wi, wa, ..., wy,, are n column with n components. The vectors wi, wa, ...,
wy, are linearly independent if, and only if, matrix E is nonsingular, i.e., if, and only
if, the determinant of E is different from zero (det(E) # 0).

To explain this result, the following is employed.

'Some authors use the term antiparallel to indicate that two vectors have the same direction but
the opposite sense. In this book, the term parallel is employed to designate two vectors with the
same direction no matter what their senses are.
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Fact 7.3 ([1], chapter 2) Consider an n x n matrix E. The only solution of Ew =
0, where w represents an n—dimensional vector, is w = 0 if, and only if, matrix E
is nonsingular.

Note that (7.29) can be written as:

o 0

o 0
a1w1+a2w2+-~-+anwn=[w1 wg...w,,] . =

oy 0

According to Fact 7.3, the vector [a; oy ... o] = [00 ... O] is the only solution
of this homogeneous system if, and only if, the matrix £ = [w] wy ... w,] is
nonsingular. This implies that the vectors wy, wa, ..., w, are linearly independent
if, and only if, det(E) # 0.

Fact 7.4 ([1], chapter 2) The rank of an n x n matrix E is the order of the largest
nonzero determinant obtained as submatrices of E. The rank of E is n if, and only
if, E is nonsingular. The inverse matrix E~" exists if. and only if, the matrix E is
nonsingular [2], chapter 10.

Fact 7.5 ([1], chapter 2) The ecigenvalues of an n X n matrix E are those scalars A
satisfying:

det(Al — E) =0,

where I stands for the n x n identity matrix. The expression det(Al — E) is
a n—degree polynomial in the variable ) and it is known as the characteristic
polynomial of the matrix E. The eigenvalues of a matrix E can be either real or
complex numbers. Matrix E has exactly n eigenvalues, which can be repeated.

Fact 7.6 ([3], chapter 7) Suppose that two n x n matrices, E and E, are related
as:

E = PEP™!, (7.30)

where P is an n X n constant and nonsingular matrix, then both matrices, E and E,
possess identical eigenvalues. This means that:

det(A] — E) = det(A] — E) (7.31)

The following is useful for explaining the above.

Fact 7.7 ([4], pp. 303) Let D and G be two n x n matrices. Then:

det(DG) = det(D) det(G). (7.32)
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As PP~1 = ] and det(/) = 1, then (7.32) can be used to find that
det(P)det(P~1) = 1, ie., det(P~!) = #(P). On the other hand, according

to (7.30), (7.32), the characteristic polynomial of E is:

det(A] — E) = det(A\] — PEP™") = det(P[AI — E]P™Y),
= det(P) det(M ] — E)det(P™') = det(A] — E).

Note that (7.31) has been retrieved in the last expression, which verifies that result.

Fact 7.8 ([4], pp. 334)) Let E and F be two n x n matrices with F = ET. The
eigenvalues of F are identical to eigenvalues of E.

The following is useful for explaining the above.

Fact 7.9 ([2], pp. 504) The determinant of a matrix E is equal to the addition of
the products of the elements of any row or column of E and their corresponding
cofactors.

Fact 7.10 ([2], pp. 507) Ifdet(D) is any determinant and det(G) is the determinant
whose rows are the columns of det(D), then det(D) = det(G).

According to the above, det(Al — E) can be computed using, for instance, the first
column of matrix Al — E, whereas det(1L/ — F') can be computed using, for instance,
the first row of matrix A/ — F. Note that the first column of A/ — E is equal to the
first row of Al — F as (\] — E)T = AI — F because F = ET. Similarly, the
rows of the cofactor of entry at row i and column 1 in matrix A/ — E are equal to
the columns of the cofactor of entry at row 1 and column i in matrix A/ — F. This
shows that £ and F' have the same characteristic polynomial, i.e.,:

det(A] — E) = det(AI — F)

; thus, the eigenvalues of F are identical to those of E.

7.5 Solution of a Linear Time Invariant Dynamical Equation

Finding the solution of the dynamical equation:

xX=Ax+Bu, xeR", ueR, (7.33)
y=Cx, y€eR, (7.34)
is a complex problem requiring the knowledge of advanced linear algebra and
calculus concepts that are outside the scope of this book. However, the fundamental

ideas that are involved in the corresponding procedure can be understood if resorting
to the solution procedure of the following first-order differential equation:

xX=ax+bu, x,u€R.
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Use of the Laplace transform yields:
sX(s) —x(0) =aX(s)+ bU(s),

where X (s), U(s), stand for Laplace transforms of x and u respectively. This can
be written as follows:

b 0
X = v+ 2O (7.35)
s—a s—a
Using the transformed pairs [5]:
at 1
L {e } = —— =G(), (7.36)
s—a

t
L {/ gt — r)bu(r)dr} = LU(S), (convolution),
0 s—a

g(t) = LG ()},

it is found that, applying the inverse Laplace transform to (7.35), yields:
t
x() = / g(t — T)bu(r)dt + e“ x(0).
0
Finally, using (7.36) again:
t
x(1) = e*x(0) +f e Dpu(tydr, x,u,a,beR.
0

The solution of the state equation in (7.33) is similar to this last equation and we
just need to use matrix notation, i.e., the solution of (7.33) is [1], pp. 142:

t
x(1) = e'x(0) +/ eI Bu(t)dt, x € R", u€R, (7.37)
0

A

where e is an n x n matrix> and it is explained in the following how it is given.

» If A is a (positive, negative or zero) real nonrepeated eigenvalue of matrix A, then
at least one of the entries of matrix e includes the following function of time:

ceM,

where c is a real constant.

2Note that eA(~7) = eA|,_,_,.
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o If A is a (positive, negative or zero) real and r times repeated eigenvalue of matrix
A, then each one of the following functions of time:

At

coe™, clteM, Cztze)‘t, e, Cr,1tr_le)‘t

’

where ¢, k = 1,2, ...,r — 1, are real constants, are included in at least one of
the entries of matrix e4’.

e If A = a4 jbis anonrepeated complex eigenvalue of matrix A, where j = +/—1,
a is a (positive, negative or zero) real number and b is a strictly positive real

number, then each one of the following functions of time:
ce’ sin(bt), de* cos(bt),

where ¢ and d are real constants, are included in at least one of the entries of

matrix e,
e If A = a % jbis a complex eigenvalue of matrix A that repeats r times, where
J = ~/—1, a is a (positive, negative or zero) real number and b is a strictly

positive real number, then each one of the following functions of time:

coe™ sin(bt), ,cite? sin(bt), cot?e™sin(bt), ..., cr_1t" e sin(bt),
doe® cos(bt), ,dite™ cos(bt), dat’e cos(bt), ...,dr_1t" ‘e cos(br),
(7.38)
where ¢ and di, k = 1,2, ...,r — 1, are real constants, and included in at

least one of the entries of matrix e,

Finally, the output of the dynamical equation in (7.33), (7.34), is computed
using (7.37), i.e.,:

t
y(1) = CeMx(0) + C / e"=Y Bu(r)dr. (7.39)
0

7.6 Stability of a Dynamical Equation

It is important to study the stability of the following dynamical equation without
input:

% = Ex, (7.40)

y = Cux,
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where x € R",y € R, E is an n X n constant matrix and C is a constant row
vector with n components. Although a dynamical equation without input may seem
unrealistic, it is shown in Sect. 7.11 that a closed-loop dynamical equation can be
written as in (7.40), because in a feedback system the input is chosen as a function
of the state, i.e., u = —Kx where K is a row vector with n components. Then,
replacing this input in (7.33) and defining E = A — BK, (7.40) is retrieved. This is
the main motivation for studying this dynamical equation without input.

Although a formal definition of stability of (7.40) is elaborated, it can be
simplified, stating that the dynamical equation (7.40) is stable if lim;_, o, x(¢) = 0
(hence, lim;_, , y(¢) = 0) for any initial state x(0) € R". This means that, if:

x1(7)
x2(1)
x(t) = .
X (1)
then lim; . x;(#) = 0 foralli = 1,2, ..., n, for any initial state. According to the

solution in (7.37), the solution of (7.40) is obtained by definingu = O0and A = E
in (7.37), i.e.,:

x(1) = eF'x(0).

As x(0) is a constant vector, the latter expression implies that, to satisfy
limy— 00 x(¢) = 0, then lim,;_, o e’ = 0 where “0” stands for an n x n matrix
all of whose entries are equal to zero. Recalling how the entries of matrix e’,

A = E, are given (see the the previous section) the following is proven:

Theorem 7.1 ([1], pp. 409) The solution of (7.40) satisfies lim;—. o, x(¢) = 0, no
matter what the initial state x(0) is, if, and only if, all eigenvalues of matrix E have
a strictly negative real part. Under these conditions, it is said that the origin x = 0
of (7.40) is globally asymptotically stable.

Recall that in Sect. 3.4.2, Chap. 3, it has been proven that:

lim ¢/ P' =0,
—00
for any integer j > 0 and any real number p < 0.

The reader may wonder why it is of interest to ensure that lim; .o x(#) = 0
in a practical control problem. To answer this question is important to stress that
the above result is very important if the dynamical equation without input given
in (7.40) represents the error equation (see Sect. 7.2) of the closed-loop system.
In such a case, the state x represents the error state and, as explained in Sect. 7.2,
ensuring that the state error converges to zero implies that the plant state converges
to its desired value.
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7.7 Controllability and Observability

Two important properties of the dynamical equation:

X=Ax+Bu, xeR".uecR, (7.41)
y=Cx, yEe€R, (7.42)

that are employed throughout this chapter are controllability and observability.

7.7.1 Controllability

Definition 7.2 ([1], pp. 176) A state equation is controllable at tg if there exists a
finite time #; > #¢ such that given any states xo and x; exists and input u that is
applied from ¢t = 1y to t = #1 transfers the state from xp at t = #p to xj at t = #;.
Otherwise, the state equation is not controllable.

Note that this definition does not specify the trajectory to be tracked to transfer
the state from xg to x;. Furthermore, it is not necessary for the state to stay at x
for all t > t1. Also note that controllability is a property that is only concerned with
the input, i.e., with the state equation, and the output equation is not considered.
Finally, this definition is very general as it also considers the possibility that the
state equation is time variant, i.e., that the entries of A and B are functions of time.

In the case of a time-invariant state equation, such as that shown in (7.41), i.e.,
when all entries of A and B are constant, if the state equation is controllable then
it is controllable for any #y > 0 and #; is any value such that #; > fy. This means
that the transference from xg to x; can be performed in any nonzero time interval.
This allows us to formulate a simple way of checking whether a state equation is
controllable:

Theorem 7.2 ([6], pp. 145) The state equation in (7.41) is controllable if, and only
if, any of the following equivalent conditions are satisfied (see Exercises 10 and 11
at the end of this Chapter):

1. The following n x n matrix:

t T t -
W.(t) = / AT BT (eAr> dt = / At-T ppT (eA(l—‘L’)) dr,
0 0

(7.43)
is nonsingular for any t > 0.
2. The n x n controllability matrix:
[BAB A’B --- A" 'B], (7.44)

has rank n, i.e., its determinant is different from zero.
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The reason for this result can be explained as follows. The following input:
T (An-0)" 1 At
u(t) = —B (e (1—>) Wl () e xg — x1] (7.45)

transfers the system state from xo = x(0) at fp = 0 to xy at #; > 0. This can be
verified by replacing in the solution shown in (7.37) but evaluated at t = 11, i.e.,:

13|
x(t) = e x(0) + / A=Y Bu(r)dr,
0
the input in (7.45) but evaluated at t = 7, i.e.,:
T A r 1 A

u(t) = —B (e Ul—f)) W) [e xg — xq1,

to obtain:
x(t) = e*x(0)
1 T
+/ A= p {—BT (eAUl*f)) W (1) [e xg —xl]}dr,
0

= eAlx(0)

1 T
_ {/ eA—D T (e/“'l*f)) dr} W) e xg — x11.
0

Wc(l])

= Xx].

Note that this result needs the n x n matrix W,.(¢), defined in (7.43), to be
nonsingular, which is true for any #{ = ¢ > 0 if the state equation is controllable.
The fact that #1 is any positive time means that the state may go from x¢ to x1 in any
nonzero time interval.

On the other hand, the equation in (7.43) can be corroborated as follows. Defining
vV="t-—T:

t T =t T
/ A=) ppT (eA(t—r)> dt = / oAt-1) ppT (eA(t—r)> d,
0 =0

T=

v=0 T
=/v A B BT (eA”) (—dv),

=t

v=t T
= / e BT (eAU> dv,
v=0
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which corroborates equation in (7.43) if t is used instead of v in last integral, which
is valid because the use of v or 7 as the integration variable in the last integral does
not affect the result.

Finally, the fact that the rank of matrix in (7.44) is n and the nonsingularity of
W.(t) are equivalent conditions is very useful because it is easier to verify that (7.44)
has rank » than the nonsingularity of W.(z).

7.7.2  Observability

Definition 7.3 ([1], pp. 193) A dynamical equation is observable at t if there is a
finite #; > fo such that for any unknown state xo at + = g, the knowledge of the
input u and the output y on the time interval [#g, #1] suffices to uniquely determine
the state xo. Otherwise the dynamical equation is not observable.

Note that observability is a property that is concerned with the possibility of
knowing the system state (a variable that is internal to the system) only from
measurements of the variables that are external to the system, i.e., the input and
the output. Also note that this definition is very general as it also considers the
possibility that the dynamical system is time variant, i.e., that the entries of A, B,
and C are functions of time. In the case of a time invariant dynamical equation, such
as that shown in (7.41), (7.42), with constant entries of A, B and C, if the dynamical
equation is observable, then it is observable for all #p > 0 and #; is any time such
that #; > fo. This means that the determination of the initial state can be performed
in any nonzero time interval. This allows us to obtain a very simple way of checking
whether a dynamical equation is observable:

Theorem 7.3 ([6], pp. 155, 156) The dynamical equation in (7.41), (7.42), is
observable if, and only if, any of the following equivalent conditions are satisfied:

1. The following n x n matrix:
! T
W, (1) = [ (eAf) cTcerdr, (7.46)
0

is nonsingular for any t > 0.
2. The n x n observability matrix:

C
CA

cA? |, (7.47)

CA.nfl

has a rank n, i.e., its determinant is different from zero.
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The reason for this result is explained as follows. Consider the solution given
in (7.39) and define:

¥(t) = Ce*'x(0), (7.48)

t
= y(r) — c/ A" By (t)dr. (7.49)
0

Note that, according to (7.49), the function y(¢#) can be computed from the
exclusive knowledge of the input and the output. Multiplying both sides of (7.48)

by (eA’ )T CT and integrating on [0, #1] it is found that:

[ el [ et

Wo (1)

If the matrix W, (1) is nonsingular, which is true if the system is observable, then
the initial state x(0) = x( can be uniquely computed as:

1
Xo = W;‘(tl)/ (eA’)T cTy()dr.
0

Note that this result needs the n x n matrix W, (¢) defined in (7.46) to be nonsingular,
which is true for any #; = ¢t > 0 if the dynamical equation is observable. The fact
that 71 is any positive time means that the state xo can be computed with information
obtained from the input and the output in any nonzero time interval.

Finally, the fact that the rank of matrix in (7.47) is n and the nonsingularity of
W, (t) are equivalent conditions is very useful, as it is easier to check (7.47) to have
rank n than the nonsingularity of W, (¢).

Example 7.6 One way of estimating the actual state x(#) (not the initial state x(0))
is using input and output measurements in addition to some of their time derivatives.
It is shown in the following that a necessary condition for this is, again, that the
matrix in (7.47) has the rank n. Consider the dynamical equation in (7.41), (7.42).
The first n — 1 time derivatives of the output are computed as:

y =Cx,

y = Cx = CAx + CBu,

j = CAx + CBii = CA’x + CABu + CBu,

y® = CA%% + CABi + CBii = CA’x + CA®Bu + CABii + CBii,

vy = CA'x + CA7'Bu+CA?Bii+---+ CBu'™V,
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y D = cA" 'x + CA"?Bu+ CA" 3Bii+ -+ CBu"?,

where the exponent between brackets stands for the order of a time derivative. Using
matrix notation:

Y = Dx(t)+ U,
where:
T PR
¥y CA
. ¥ CA?
Y = y(s) , D= CA3 ,
_y(n'—l)_ _CA'nfl_
- 0 _
CBu
) CABu + CBi
U= CA%Bu + CABii + CBii
| CA""2Bu+ CA"3Bii+ -+ CBu"? |

Thus, if the matrix in (7.47) has the rank 7, then the n x n matrix D is invertible and
the actual state can be computed as:

x(t) = DNy - U), (7.50)

i.e., by only employing input and output measurements in addition to some of their
time derivatives. A drawback of (7.50) is that measurements of any variable have
significant noise content in practice and this problem becomes worse as higher
order time derivatives are computed from these measurements. This is the reason
why (7.50) is not actually employed in practice to compute x(¢) and asymptotic
methods such as that presented in Sect. 7.12 are preferred.

7.8 Transfer Function of a Dynamical Equation

Consider the following single-input single-output dynamical equation:

X = Ax + Bu, (7.51)
y = Cx,
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where x € R",u € R,y € R, are functions of time, A is an n X n constant matrix, B
is a constant column vector with n components and C is a constant row vector with
n components. Applying the Laplace transform to (7.51), the following is obtained:

sX(s) —x(0) = AX(s) + BU(s), (7.52)
Y(s) = CX(s), (7.53)

where X (s), Y (s), U (s) represent the Laplace transform of the state vector x, the
scalar output y, and the scalar input u respectively, whereas x (0) is the initial value
of the state x. Recall that, given a vectorial function of time x = [x, x2, ..., 17,
its Laplace transform is obtained by applying this operation to each entry of the
vector, i.e., [3], chapter 4:

L{x1}

L {x2}
X(s) = .

E{;Cn}

A transfer function is always defined assuming zero initial conditions. Replacing
x(0) = 01n (7.52) and solving for X (s):

X(s) = (sI — A)"'BU(s), (7.54)

where I represents the n x n identity matrix. Replacing (7.54) in (7.53) it is found
that:
Y(s)

sy _ _ _ -l
Ue) G(s)=C(sI —A) B. (7.55)

Note that the transfer function G(s) given in (7.55) is a scalar. Now, proceed to
analyze this transfer function. In the following, it is assumed that n = 3 for ease of
exposition of ideas, i.e., that A is an 3 x 3 matrix, / is the 3 x 3 identity matrix, and
B and C are column and row vectors respectively, with 3 components:

al ap a3 by
A=|ayanas|. B=|bh |, C=[ccca].
asy azz asj b3

The reader can verify that the same procedure is valid from any arbitrary n. First,
compute the matrix:

§—ayil —ap —daj3
sl — A= —az; S—axy —a3 |,
—aszi —daz2 §—asz
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whose inverse matrix is given as (s — A)~! = % where [2], chapter 10:

Cofi1 Cof12 Cofi
Adj(sI — A) = COfT(SI —A) = | Cofa1 Cofrr Cofrs , (7.56)
Cofs1 Cofsz Cof3s

with Cof (sI—A) the cofactors matrix of s/ —A, and Cof;; = (—1)'™/ M;; with M;;
the (n — 1) x (n — 1) determinant (2 x 2 in this case) resulting when eliminating the
i—th row and the j—th column from the determinant of matrix s/ — A [2], chapter
10. Explicitly computing these entries, it is realized that Cof;; is a polynomial in s
whose degree is strictly less than n = 3. On the other hand, solving through the first
row it is found that:

s—ax» —a —ax —a
det(s] — A) = (s —ay1) 22 23 ’ 21 23
—aszz §—dass —daz] § —das3
—da21 § —an
—ais ‘
—daz] —asz2
ie., det(s/ — A) is a polynomial in s whose degree equals n = 3. From these

observations, it is concluded that all entries of the matrix:

Adj(sT — A) Inviy Invyp Invis
(sI — A = Tl =) = Invy) Invy Invys |, (7.57)
Invsy Invyy Invss

are given as the division of two polynomials in s such that the degree of the
polynomial at the numerator is strictly less than n = 3 and the polynomial at the
denominator is det(s/ — A), which has the degree n = 3.

On the other hand, the product (sI — A)’IB is a column vector withn = 3
components. Each one of these components is obtained as:

dp Invyy by + Invyp by + Invyz by
(s — A)_lB =\|dy | = | Invy by + Invy by + Invys by
d3 Invsy by + Inv3p by 4+ Invsz by

According to the previous discussion on the way in which the entries Inv;; of
matrix (s/ — A)~! are given, and resorting to the addition of fractions with the
same denominator, it is concluded that each one of the entries d; of the column
vector (sI — A)~!B is also given as a division of two polynomials in s such that
the polynomial at the numerator has a degree strictly less than n = 3 whereas the
polynomial at the denominator is det(s/ — A), whose degree equals n = 3. Finally,
the following is found:

C(sI — A)7'B = cidy + cadr + c3ds.
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Reasoning as before, the following is concluded, which is valid for any arbitrary n:

Fact 7.11 ([1], chapters 6, 7) The transfer function in (7.55) is a scalar, which is
given as the division of two polynomials in s such that the degree of the polynomial
at the numerator is strictly less than n and the polynomial at the denominator, given
as det(sI — A), has the degree n, i.e.,

Y byus™ + by 18"V 4 bs+ b
(s) =G(S)=C(SI—A)_1B= mS" + Dm—18 + + D15 + bo
U(s) st 4 ap_1s" L+ +ars +ap
(7.58)
det(sI — A) = 5" +ay_1s" "+ +ais + ao,
for some real constants by, aj, k =0,1,...,m, [ =0,1,...,n— 1, withn > m.

However, this statement is completely true if the following is satisfied [1], chapter
7

Condition 7.1 The dynamical equation in (7.51) must be controllable, i.e., the
determinant of the matrix in (7.44) must be different from zero.

Moreover, if the following is also true, then the polynomials b,,s™ + by,_1s™ !
4.4+ bis+bpand s" + ay_1s" ' + -+ + a1s + ao have no common roots [1],
chapter 6:

Condition 7.2 The dynamical equation in (7.51) is observable, i.e., the determinant
of the matrix in (7.47) is different from zero.

Finally, the reader can revise the discussion presented above to verify that:

10}

UG =G(s)+ D,

is the transfer function of the dynamical equation:

X = Ax + Bu,
y = Cx + Du,

where x € R",u € R, y € R, are functions of time, A is an n X n constant matrix,
B is a constant column vector with n components, C is a constant row vector with
n components, and D is a constant scalar. This means that the polynomials at the

numerator and the denominator of 5((;)) have the same degree in this case.

Example 7.7 According to Chap. 10, the mathematical model of a permanent
magnet brushed DC motor is given as (see (10.8)):

JO + b0 =n ky i*,
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when no external disturbance is present. Furthermore, the electric current i* can
be considered to be the input signal if an internal high-gain electric current loop
is employed. Defining the state variables as the position and the velocity, it is not
difficult to realize that the following dynamical equation is obtained:

X = Ax 4+ Bu, y=Cx, (7.59)

X1 0 01 0 .
A FA RN AP

where C is a row vector to be defined later depending on the output to be considered.
Note that the following matrix:

0
[BAB]:|:”km nmb}’

J J J

2
has the rank n = 2 because its determinant is equal to — (@) # 0. From the

definitions in (7.59) the following results are obtained:

s —1 b
SI_A=|:05+§:|’ det(sl—A):s(s—i—j),

b b
Cof(sI — A) = [S+ 7 0] Adj(sT — A) = CofT(sT — A) = [” 7 1},
1 s 0 s
det(sI — A) s(s+§) 0 =

To obtain the corresponding transfer function, the following cases are considered:

e The output is the position, i.e., y = 8 = x; = Cx, where C = [1 0]. Then:

b
G(s):C(sI—A)1B=[10]ﬁ[s—g7ﬂ[&]
T J

nky,
GGs)= —L .
(s) S(S+§)

In this case, the matrix:

[eal=Lov]

has the rank n = 2 because its determinant is unity, i.e., it is different from zero.
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e The output is velocity, i.e., y = 6 = xp = Cx, where C = [0 1]. Then:

b
=cor-arn=ton o[ 4]
T J

nkp,

Gis)= —L°
B s(s + %)'

The following matrix:

)=o)

has a rank less than n = 2 because its determinant is zero.

Note that in both cases the transfer function obtained satisfies what was established
in (7.58): the polynomial at the denominator is equal to det(s/ — A). Also note that
this is true because matrix [B A B] has the rank n = 2 in both cases. Finally, the
effect due to the fact that the system is not observable is also present: in the second
case the system is not observable; hence, the corresponding transfer function has one
pole and one zero, which cancel each other out and this does not occur in the first
case because the system is observable. Such pole-zero cancellation in the second
case results in a first-order transfer function, which means that only one of the states
(velocity) is described by this transfer function. This implies that the motor position
has no effect when velocity is the variable to control.

The above results are useful for giving an interpretation of observability in the
following. When the output is the position, the system is observable because, once
the position is known, the velocity can be computed (the other state variable) by
position differentiation, for instance. But, if the output is velocity, the knowledge
of this variable does not suffice to compute the position (the other state variable):
although it may be argued that the position 8(¢) can be computed by simple velocity
integration, note that:

t
9(1‘)—9(0):/ 0(r)dr,
0

means that besides the knowledge of velocity, it is necessary to know the initial
position 8(0), which is also unknown. Thus, the system is not observable when the
output is velocity. However, as previously stated, if controlling the velocity is the
only thing that matters, then this can be performed without any knowledge of the
position. Observability is important in other classes of problems that are studied
later in Sects. 7.12 and 7.13.

Finally, the reader can verify the correctness of the above results by comparing
the transfer functions obtained with those in Chaps. 10 and 11.
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7.9 A Realization of a Transfer Function

The realization of a transfer function consists in finding a dynamical equation that
describes the transfer function in an identical way. The importance of this problem
arises, for instance, when a controller is given that is expressed as a transfer function.
Then, expressing a transfer function in terms of a dynamical equation is important
for practical implementation purposes because the latter can be solved numerically,
for instance.

An important property of the state variables representation is that it is not unique.
This means that several dynamical equations exist correctly describing the same
physical system. This also means that given a transfer function, several dynamical
equations exist correctly describing this transfer function. In the following, a way
of obtaining one of these dynamical equations is presented. Consider the following
transfer function:

Y bs™ + by_1s" 4+ byis + b
(s) — G(s) = mS + Om—18 + + 015 + 0. (7.60)
U(s) st 4 ap_1s" L+t ars +ap
Solving for the output:
bins™ + by—1S" L 4+ bis + b
Y(s) = mS + Om—15 + + 015 + OU(S).
s"+ap_ "+t as +ag
Define the following variable:
Vis) 1 Ues) (7.61)
s) = S), .
"+ ap—1s" N+ 4 ars + ag
to write:
Y($) = (bys™ + by—15™ ' + - + bys + bo)V (s). (7.62)

Applying the inverse Laplace transform to (7.61) and solving for the highest order
time derivative:

v = —q, 0™V — . —av —agv +u, (7.63)

where V(s) = L {v}. According to Sect. 7.1, define the state variables as the
unknown variable in (7.63), v, and its first » — 1 time derivatives:

X=v, =0, =0 ..., x,=0v""D. (7.64)
Then, (7.63) can be written as:

Xp = —Au_1Xy — -+ — apxXo — apgx] + u. (7.65)
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On the other hand, using the inverse Laplace transform in (7.62), the following is
obtained:

Y =buv™ 4 by 0™V 4o b0+ bov.

If it is assumed that m takes its maximal value, i.e., m = n — 1 (recall that n > m)
then (7.64) can be used to write:

Y = by_1%n + bpoXn_i + - + b1 X2 + bo¥1. (7.66)

Using (7.64), (7.65) and (7.66), the following can be written:

X = A% + Bu, (7.67)
y:C_‘)E,
0 1 0 0 0 0 | [0]
0 0 1 0 0 0 0
0 0 0 1 0 0 0
A= 0 0 0 0 0 0 o B=]0],
0 0 0 0 -~ 0 1 0
| —ao —ay —ap —az -+ —ap—2 —ap—1 | L 1]

C=[bobibybs---by2by],

[)21 X2 X3 X4+ Xp—1 )En]T

=1
Il

The dynamical equation in (7.67) represents identically the transfer function
in (7.60) and it is said that it is written in the controllability canonical form. As is
shown later, the controllability canonical form is very useful for finding a procedure
for designing a state feedback controller.

7.10 Equivalent Dynamical Equations

It has been shown in Sect. 7.8 that any controllable single-input single-output
dynamical equation (7.51) can be written as the transfer function in (7.58). Note that
requiring observability is merely to ensure that no pole-zero cancellation is present
in (7.58). On the other hand, it has been shown in Sect. 7.9 that the transfer function
in (7.58) can be written as the dynamical equation in (7.67). This means that any
of the dynamical equations in (7.51) or (7.67) can be obtained from the other, i.e.,
these dynamical equations are equivalent.
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In the following, it is shown how to obtain (7.51) from (7.67) and vice versa,
without the necessity of the intermediate step of a transfer function. Consider the
single-input single-output dynamical equation in (7.51) and define the following
linear transformation:

¥ = Px, (7.68)

where P is an n X n constant matrix defined from its inverse matrix as [1], chapter
7

P'=[q1 " gn-2 qu—1dn ] (7.69)
gn = B,

qn—1 = AB+a,_1B,

qn—2 = A’B +a,_1AB +a, 1B,

g1 =A""'B+a,_1A"?B+---+aB,
det(s] — A) = s" +ap_15" "' + - +ais + ao.

It is important to stress that the matrix P! is invertible, i.e., its inverse matrix
P always exists if the matrix defined in (7.44) has the rank n [1], chapter 7,
or equivalently if (7.51) is controllable. This can be explained as follows. If
the matrix defined in (7.44) has the rank n, i.e., all its columns are linearly
independent, then when adding its columns as in the previous expressions defining
Vectors qi, ..., qn—2,qn—1,qn, the columns qi, ..., qgn—2,qn—1,qn are linearly
independent (see fact 7.1). This means that the determinant of P~ is different from
zero; hence, its inverse matrix P exists.
Using (7.68) in (7.51), i.e., X = Px, itis found that:

X = AX + Bu,
y = C_')E,
A=PAP™', B=pPB, C=cpP . (7.70)

The matrix A and the vectors B, C in (7.70) are given as in the controllability
canonical form (7.67) no matter what the particular form of A, B and C is, as
long as the matrix defined in (7.44) has the rank n. A formal proof for this latter
statement requires mathematical tools that are outside of the scope of this book;
hence, it is not presented. The reader is advised to see [1] for a complete solution to
this problem. The reader can also verify these ideas by proposing numerical values
for the matrices A, B, and C, and performing the corresponding computations. The
above means that each one of the dynamical equations (7.51) and (7.67) can be
obtained from the other and the relationship among the matrices involved is given
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in (7.70), i.e., these dynamical equations are equivalent. Note that the fundamental
condition for the existence of this equivalence is that the matrix defined in (7.44)
has the rank »n [1], chapter 5. This is summarized as follows:

Theorem 7.4 ([1], chapter 7) If (7.51) is controllable, then this dynamical equa-
tion is equivalent to (7.67) through the linear transformation (7.68), (7.69), i.e.,
through (7.70).

Example 7.8 The linear approximate model of a mechanism known as the Furuta
pendulum is obtained in Chap. 15. This model is presented in (15.17), (15.18), and
it is rewritten here for ease of reference:

7z = Az + B, (7.71)
01 0 0 0
—gmiliLo Jitmil2
A= To(Jy+m 3)+Jym L3 B = | loGitm)+hmL} k_m
00 0 1]’ 0 ra
(Io+m1L3)mly g —miliLo
To(J1+m D)+Jym L] Lo(Ji+my 1) +Jymi LG

To render the algebraic manipulation easier, the following constants are defined:

. —gm? 2L o +miLpmilig
I()(Jl—i—m]l%)—FJ]mlL%’ I()(J1—|-m1l%)+J1mlL%’

e Ji+myl} k. B —ml Lo K
Io(J1 +m1}) + Jym L} ra ’ Io(J1 +m1}) + Jym L} ra ’

The following matrix has the form:

Oc 0 ad
c0ad 0O
0d 0 bd
d0bd 0

C,=[BABA’B A’B] =

After a straightforward but long algebraic procedure, it is found that:

m‘l‘l;‘L%g2 K

det(C,) = Imo4 ),
T oW +mald) + Jim L3 rd

Thus, the dynamical equation in (7.71) is controllable for any set of the Furuta
pendulum parameters. This result does not change if the mechanism is large or
small, heavy or light. This also means that the matrix P introduced in (7.68)
is nonsingular and it is computed in the following using (7.69). To simplify the
computations, the following numerical values are employed:
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Ip = 1.137 x 103 [kgm?], J; = 0.38672 x 103 [kgm?], g = 9.81[m/s?]

k,
Iy =0.1875[m], m; =0.033[kg], Lo =0.235[m], — =0.0215[Nm/V].

7
Hence:
01 0O O 0
A= 00-35.810 . B= 13.4684
00 O 1 0
00 7290 0 —12.6603

With these data, the roots of the characteristic polynomial det(LI — A) are found to
be:

Ar=0, 2=0, Xx3=8.5381, iq=—8.5381.
Then the following product is computed:
A=A = A — A3)(A — Ag) = A* + @323 + aor? + a1h + ap,
to find, by equating coefficients on both sides:
a3=0, a=-729, a1 =0, ay=0. (7.72)
Using these values in (7.69) the following is found:

—528.481 0 13.4684 0

Pl — 0 —528.481 0 13.4684
N 0 0 —12.6603 0 ’
0 0 0 —12.6603

hence:

—-0.0019 0 —-0.0020 O
0 —-0.0019 0 —0.0020
P= 0 0 —-0.0790 0 ' (7.73)

0 0 0 —0.0790
Finally, to verify (7.70), the following products are performed:

01.0000 O 0
0 0 1.0000 O
0 0 0 1.0000 |’
0 0 72.9 0

PAP ' =

- o O O
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Note that these matrices have exactly the same form as that presented in (7.67) for
A = PAP ! and B = PB. The above computations have been performed by
executing the following MATLAB code in an m-file:

clc

A=[0 1 0 O;

0 0 -35.81 0;
000 1;

0 0 72.90 0];
B=[0;
13.4684;
0;

-12.6603];

U=[B AxB A"2xB A"3xB];

det (U)

v=eig (A)

f=conv ([l -v(1)],[1 -v(2)]);

g=conv (£, [1 -v(3)]);

h= conv(g,[l -v(4)]1);

a3=h(2);
)
)
)

a2=h(3);
al=h(4) ;
a0=h(5) ;
q4=B;

g3=A*B+a3xB;
g2=A"2xB+a3«AxB+a2«B;
gl=A"3xB+a3xA"2xB+a2xAxB+al*B;
invP=[gl g2 g3 g4l

P=inv (invP)

Ab=P*AxinvP

Bb=P*B

7.11 State Feedback Control

In this section, it is assumed that the plant to be controlled is given in terms of the
error equation (see Sect. 7.2), i.e., given a plant as in (7.51), it is assumed that the
state x stands for the state error. Hence, the control objective is defined as ensuring
that the state error tends toward zero as time increases, i.e., lim;_, oo x(z) = 0.

Consider the single-input state equation in (7.51), in closed-loop with the
following controller:

u=—Kx=—kixi +kyxo+--+knx), (7.74)
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K=[k1 kz...kn],

where k;, i = 1,...,n, are n constant scalars. Substituting (7.74) in (7.51), it is
found that:

% = (A— BK)x. (7.75)

This state equation has no input like that in (7.40). Hence, the stability criterion
for (7.40) can be applied to (7.75). This means that the vector x(¢), the solution
of (7.75), satisfies lim;—,~, x(¢#) = 0 if, and only if, all eigenvalues of the matrix
A — BK have a strictly negative real part. However, from the point of view of a
practical application, this is not enough as a good closed-loop performance is also
required. It is important to stress that the waveform of the solution x(¢) of (7.75)
depends on the exact location of the eigenvalues of the matrix A — BK. Hence, it
must be possible to arbitrarily assign the eigenvalues of the matrix A — BK. As the
row vector K can be chosen as desired, it is of interest to know how to choose K
such that the eigenvalues of A — BK are assigned as desired. The solution to this
problem is presented in the following.

Consider the linear transformation (7.68), (7.69), and substitute it in (7.75) to
obtain:

X = Ax — BKX, (7.76)

, which, according to (7.67), only affects the last row of (7.76); hence, the following
can be written:

x = (A — BK)x,
A — BK =
o 1 0 0 0 0 ]
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
| —ki —ao —ky —ay1 —kz —ax —ks —az -+ —kn—1 —an—2 —kn — an—1 |
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If the following is chosen:

K =[ay—apar—ay...an—1—an_1]. (7.77)

the following is obtained:

0 1 0 O 0 0
0 O 1 0 0 0
0O 0 O 1 0 0
A_Bk=| 0 0 0 0 0 0
o o o o0 --- 0 1
| —ap —ay —az —az -+- —ay—2 —ap—1 |

Note that, according to (7.70) and (7.76), the following can be written:
A—BK =PAP '—PBKP '=PA—-BK)P!,

i.e., the matrices A — BK and A — BK satisfy (7.30); hence, they Possgss_identical
eigenvalues. According to previous sections, the eigenvalues A of A — BK satisfy:

det] — [A — BK]) = A" + @y (A"~ + -+ ajh + o,
n
=[] -2,
i=I

where A;, i = 1,...,n stand for the desired eigenvalues and these are proposed
by the designer. It is stressed that when a complex conjugate desired eigenvalue is
proposed, then its corresponding complex conjugate pair must also be proposed.
This is to ensure that all the coefficients a;, i = 0,1,...,n — 1 are real, which
also ensures that all the gains K and K are real. The following is the procedure [1],
chapter 7, suggested to compute the vector of the controller gains K, which assigns
the desired eigenvalues for the closed-loop matrix A — BK.

* Check that the state equation in (7.51) is controllable. If this is the case, proceed
as indicated in the remaining steps. Otherwise, it is not possible to proceed.
* Find the polynomial:

det(h — A) = A" +a,_ A" 4+ aih + ap.
* Propose the desired closed-loop eigenvalues Ao A, )_L,,. If some of them are

complex, then also propose its corresponding complex conjugate pair as one of
the desired eigenvalues.
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e Compute:
n
1_[()» — M) = A 4 @ A+ aa + ao.
i=1
e Compute:
K = [Elo—ao a—aj ... ap—1 —a,,_l].
e Compute the vectors qi,...,qn—2,qn—1,qn according to (7.69), obtain the

matrix P! defined in that expression and obtain its inverse matrix P.
* Compute the vector of controller gains in (7.74) as K = K P.

Example 7.9 Let us continue with the Example 7.8, in which the Furuta pendulum
is studied. It is desired, now, to find the vector of controller gains K, which, when
used in the controller (7.74) (with x = z), assigns the eigenvalues of matrix A — BK
at:

M=-94, A=-18, Ai3=-05 I=-1L
To this aim, the coefficients of the following polynomial:
(b= 2D =22 = X3) (k= &a) = 2% + @32> + @2d® + a1k + do,
are found to be:
a3 =113.5, a» =1860.5, a; =2594, ag= 846.

Using these values and those obtained in (7.72), K is computed according to (7.77),
i.e.,:

K =[846 2594 1933.3 113.5].

Finally, using this and matrix P shown in (7.73) the vector of the controller gains K
is computed using K = K P:

K =[-1.5997 —4.9138 —154.4179 —14.1895].

The above computations are performed by executing the following MATLAB
code after executing the MATLAB code at the end of Example 7.8:

lambdald=-94;
lambda2d=-18;
lambda3d=-0.5;
lambda4d=-1;
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fd=conv ([l -lambdald], [1 -lambda2d]) ;
gd=conv (fd, [1 -lambda3d]) ;

hd=conv (gd, [1 -lambda4d]) ;

a3b=hd (2) ;

a2b=hd (3) ;

alb=hd (4) ;

alOb=hd (5) ;

Kb=[a0b-a0 alb-al a2b-a2 a3b-a3];
K=Kb*P

eig (A-BxK)

The command “eig(A-B*K)” is employed to verify that matrix A-B*K has the
desired eigenvalues. Some simulation results are presented in Figs. 7.5 and 7.6 when
controlling the Furuta pendulum using the vector gain K = [—1.5997 —4.9138 —

0.8 : : : : : : . . .
0.6 1
T 04} .
0.2 1

O 1
0 1 2 3 4 5 6 7 8 9 10

6 T T T T T T T T T

rad/s

0 0.1 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 09 1

-6 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

t[s]

Fig. 7.6 Simulation results for the Furuta pendulum. Top: z». Middle: z3. Bottom: z4
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Fig. 7.7 MATLAB/Simulink

' = Ax+B
diagram for the Furuta Xy — C); +Duu | I:l
pendulum
Furuta Scope
Fen Gain P> States

u(1)y+u(2)+u(3)+u(d) 44]4— To Workspace

154.4179 — 14.1895] and z1(0) = z2(0) = z4(0) = 0, z3(0) = 0.3 as initial
conditions. Note that all the state variables converge to zero, as expected. These
simulations were performed using the MATLAB/Simulink diagram in Fig.7.7.
Block Furuta has the following parameters:

A=A, B=B, [1000;0100;0010;0 001]=¢C, [0;0;0;0] = D,

and [0 0 0.3 0] as initial conditions. To obtain these results, one has to proceed
as follows: (1) Execute the above MATLAB code to compute all the required
parameters. (2) Run the simulation in Fig. 7.7. (3) Execute the following MATLAB
code in an m-file:

nn=length (States(:,1)) ;
n=nn-1;

Ts=1/n;

t=0:Ts:1;

figure (1)

subplot(3,1,1)

plot (t,States(:,1),'b-");
ylabel (‘rad’)

figure(2)

subplot(3,1,1)

plot (t,States(:,2),'b-");
ylabel (‘rad/s"’)
subplot(3,1,2)

plot (t,States(:,3),'b-");
ylabel (‘rad’)
subplot(3,1,3)

plot (t,States(:,4),'b-");
ylabel (‘rad/s"’)

xlabel ('t [s]’)

At this point, Figs. 7.5 and 7.6 are drawn.
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7.12 State Observers

In this section, it is assumed again that the plant to be controlled is given in terms of
the error equation (see Sect. 7.2), i.e., given a plant as in (7.51), it is assumed that the
state x stands for the error state. Hence, the control objective is defined as ensuring
that the state error tends toward zero as time increases, i.e., lim;_ o x () = 0.

As pointed out in Sect. 7.1, the state x is composed of variables that are internal
to the system; hence, they are not known in general. On the other hand, the
output y represents a variable that is always known. This means that the practical
implementation of the controller (7.74) is only possible if the complete state is
measured. Because of this, it is important to know an estimate of the state x(¢),
which is represented by x(¢), allowing a controller to be constructed of the form:

u=—Kx=—(kix| +koxo + -+ - + knX), (7.78)

K=[k1k2...kn], fZ[flfz...fn]T.

The estimate X is computed using a state observer or, simply, an observer. An
observer must compute X exclusively employing information provided by the
system input and output. On the other hand, if the controller (7.78) has to replace
the controller in (7.74), then a fundamental property that an observer must satisfy is
that the estimate X converges to x as fast as possible or, at least, asymptotically, i.e.,
such that:

lim x(¢) = x(¢).
11— 00
An observer satisfying this property is the following:
X=(A—LC)X+ Ly + Bu, (7.79)
where L = [Li, Lo, ..., L,]" is a constant column vector. This can be explained
as follows. Define the estimation error as X = x — X. Then, subtracting (7.79)

from (7.51) the following is obtained:

¥=Ax—(A—LC)X — Ly.

Using y = Cx:
X = A% — LC¥,
= (A - LC)x.
Using the results in Sect. 7.6, it is concluded that lim,_, oo X(f) = 0; hence,

lim; 00 X(t) = x(¢) if, and only if, all the eigenvalues of matrix A — LC have
strictly negative real parts. Hence, the only problem that remains is how to select
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the gain column vector L such that all the eigenvalues of matrix A — LC have
strictly negative real parts and that they can be arbitrarily assigned. This problem is
solved as follows:

Theorem 7.5 ([1], pp. 358) The state of the dynamical equation in (7.51) can be
estimated using the observer in (7.79) and all the eigenvalues of matrix A— LC can
be arbitrarily assigned, if, and only if, (7.51) is observable.

Again, the complex eigenvalues must appear as complex conjugate pairs. To
explain the above result, the following theorem is useful.

Theorem 7.6 ([1], pp. 195) Consider the following dynamical equations:

% = Ax + Bu, (7.80)
y = Cx,
;=—-ATz+CTu, (7.81)
y = BTz,

where u,y,y € R, whereas x,z € R". The dynamical equation in (7.80)
is controllable (observable) if, and only if, the dynamical equation in (7.81) is
observable (controllable).

Hence, going back to the observer problem, as the pair (A, C) is observable,
then the pair (—AT, CT) and the pair (AT, CT) are controllable (because sign “—”
of matrix A7 does not affect the linear independence of the columns of the matrix
in (7.44), see Sect. 7.4). From this, it is concluded that, following the procedure
introduced in Sect. 7.11, it is always possible to find a constant row vector K such
that the matrix A” —C7T K has any desired set of eigenvalues (arbitrary eigenvalues).
As the eigenvalues of any matrix are identical to those of its transposed matrix (see
Sect. 7.4), then the matrix A — K T C has the same eigenvalues as matrix AT —cTk
(the desired eigenvalues). Defining L = K7, the gain column vector required to
design the observer in (7.79) is computed.

It is stressed that assigning the eigenvalues to the matrix A — LC arbitrarily
means that they can be located where desired by the designer. It is obvious that all
eigenvalues must have strictly negative real parts; however, they must be located
on regions of the complex plane ensuring a fast convergence of x(¢) to x(¢). To
determine where the eigenvalues of matrix A — LC must be located, the concepts of
the transient response studied in Chap. 3, where a relationship has been established
with a location of poles of the transfer function in (7.58), are very important.

Finally, note that given the plant X = Ax -+ Bu we can try to construct an observer
as X = AX + Bu, which results in the following estimation error dynamics:

X=AX, X=x-7x.
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If all the eigenvalues of the matrix A have negative real parts, then lim;_, o X () = 0
is ensured and the observer works. However, this result is very limited because it is
constrained to be used only with plants that are open-loop asymptotically stable.
Moreover, even in such a case, the convergence speed of x — 0 depends on the
eigenvalue locations of the open-loop plant, i.e., it is not possible to render such a
convergence arbitrarily fast. Note that, according to the previous arguments in this
section, these drawbacks are eliminated when using the observer in (7.79). Also see
Example 7.6.

7.13 The Separation Principle

When a dynamical equation (plant):

X = Ax + Bu, (7.82)
y = Cx,
and an observer:
X=(A—-LC)X+ Ly + Bu, (7.83)

are connected using the following controller (see Fig. 7.8):
u=—Kx=—(kix1 +kxo+- -+ kixpn), (7.84)

the question arises regarding how the stability of the closed-loop sys-
tem (7.82), (7.83), (7.84), is affected, i.e., it is important to verify whether ensuring

that lim, 0o X(#) = x(r) and lim;—, x(#) = 0 are enough to ensure stability
Fig. 7.8 A feedback system U y
employing an observer to » plant >
estimate the state
> observer <
x
— K |«
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of the complete closed-loop system. The answer to this question is known as the
separation principle, which claims the following:

Fact 7.12 ([1], pp. 367) The eigenvalues of the closed-loop system (7.82), (7.83),
(7.84), are the union of the eigenvalues of matrices A — BK and A — LC.

This means that the eigenvalues of the observer are not affected by the feedback
in (7.84) and, at least in what concerns the eigenvalues, there is no difference
between feeding back the estimate x(r) and feeding back the actual state x (7).
However, the reader must be aware that the system’s transient response is often
different if x (¢) is employed or x(¢) is employed to compute the input. The important
fact is that both lim;_, oo X(#) = x(¢) and lim;_, o, x(#) = O are still true and the
complete closed-loop system is stable. Thus, the design of the vector of controller
gains K and the vector of gains L for the observer can be performed independently
of each other.

Example 7.10 Consider the DC motor in Example 7.7, i.e., consider the dynamical
equation:

X = Ax + Bu, y=Cx, (7.85)

X1 0 01 0 .
L[] (4] ee[4) cmom een

where it is assumed that the output is the position whereas velocity cannot be
measured; hence, it shall be estimated using an observer. Suppose that it is desired to
control the motor to reach a constant position, i.e., the desired values of the position
and velocity are:

X1ga =04, X204 =0,

where 6, is a constant representing the desired position and the desired velocity is
zero because the desired position is constant. Defining the state variables as:

X1 =X — X4, X2=x2,

and computing )él =X] — X|1d = X2 = X2, )ch =X = 6, the following dynamical
equation is obtained:

+ Bu, (7.86)

=
I

b
=

Cx,

V
Il

where y is the new output and the matrix A and vectors B, C, are defined as
in (7.85). Note that the measured output is now the position error y = x1. From this
point on, the numerical values of the motor controlled in Chap. 11 are considered,
ie.,:
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k b
k= ”T’" = 6754471, a = =28681. (7.87)

The corresponding observer is designed in the following. In the Example 7.7, it was
shown that the dynamical equation in (7.85) is observable; hence, the dynamical
equation in (7.86) is also observable. According to theorem 7.6, this implies that
pairs (—AT, CT) and (AT, CT) are controllable, i.e., that the following matrices
have the rank n = 2:

[cT —ATcT], [cT ATcT],

[T

because the sign of the matrix A does not affect the linear independence of
these columns (see Sect. 7.4). Using the numerical values in (7.87), the roots of the
polynomial det(1/ — AT) are computed:
A1 =0, Ay =-—-2.8681.
Then, the following product is performed:
A=A —A2) = A2+ a1k +ao,

and equating coefficients:

a; =2.8681, ap=0. (7.88)

Using B = CT and AT, instead of A, (7.69) becomes:

Pl =g q].
@ =C,
g1 =ATCcT +aCT.

Using the numerical values in (7.87), (7.88), in addition to the matrix A and vector
C defined in (7.85) the following is obtained:

p-1 _ [2:86811.0000]
1.0000 0 |

hence:

(7.89)

p_[ 0 10000 ]
~ | 1.0000 —2.8681 |-
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Suppose that it is desired to assign the following eigenvalues to matrix A — LC:
A =—150, X, = —100. (7.90)
Then, the following polynomial is computed:
(= A1) 0 = R2) = A% + a1 + do,
to find, equating coefficients, that:
ap =250, ap = 15000.

Using these data and values in (7.88), the vector of gains K is computed according
to (7.77):

K = [ 15000 247].

Using this and the matrix P shown in (7.89), the vector of the controller gains K is
computed as K = K P and it is assigned L = K”:

247
L= [14291] (7.91)

On the other hand, using a similar procedure to those in examples 7.14.1 and 7.14.2,
it is found that the vector of the controller gains:

K =[1.6889 0.0414], (7.92)
assigns at:
— 154 +30.06j, —15.4—30.06;, (7.93)

the eigenvalues of the matrix A — BK. Note that the gains in (7.92) are identical
to the proportional and velocity feedback gains for the controller designed and
experimentally tested in Sect. 11.2.1 Chap. 11, where the closed-loop poles are
assigned at the values in (7.93). The above computations have been performed by
executing the following MATLAB code in an m-file:

clc
k=675.4471;
a=2.8681;
A=[0 1;

0 -al;
B=[0;
kl;
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C=[1 0];

v=eilg(A’) ;

h=conv ([l -v(1)],[1 -v(2)]);
al0=h(3) ;
al=h(2) ;
g2=C’;
gl=A’'*C’'+alx*C’;

invP=[gl g2]

P=inv (invP)

lambdald=-150;

lambda2d=-100;

hd=conv ([l -lambdald], [1 -lambda2d]) ;

alOb=hd (3) ;

alb=hd (2) ;

Kb=[a0b-a0 alb-al];

K=Kb*P;

L=K"’

v=eilg(A) ;

h=conv ([l -v(1)],I[1 -v(2)]);
al0=h(3) ;

al=h(2) ;

g2=B;

gl=A*xB+al=xB;

invP=[gl g2]

P=inv (invP)
lambdald=-15.4+30.06%];
lambda2d=-15.4-30.06%];
hd=conv ([l -lambdald], [1 -lambda2d]) ;
alOb=hd (3) ;

alb=hd (2) ;

Kb=[a0b-a0 alb-al];
K=Kb*P

F=[L Bl;

Finally, it is stressed that the observer to construct is given as:
¢=(A—-LCO)z+ Ly + Bu, (7.94)

WMmz:[mzﬂTBﬂwemmMeMvmwni=LﬁxﬂTyu=i5TMCmmdkr
is given as:

u:—qu, (7.95)

22
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0 0.05 0.1 0.15 0.2 0.25 0.3

rad/s

0 0.05 0.1 0.15 0.2 0.25 0.3
t[s]

Fig. 7.9 Simulation results. Use of the observer in (7.94) to control a DC motor Top figure:
continuous X, dashed z; Bottom figure: continuous Xy = xj, dashed z»

where L and K take the values indicated in (7.91) and (7.92). Note that the controller
must employ z1, i.e., the estimate of X, despite x| being a known measured variable.
This is because the theory above assumes that the whole state is to be estimated and
fed back. In this respect, it is worth saying that the so-called reduced-order observers
also exist that estimate only the unknown part of the estate if the other states are
known. The reader is referred to [1] for further details.

In Fig. 7.9, some simulation results are shown when using the observer in (7.94)
and the feedback in (7.95) together with the gains in (7.91) and (7.92) to control a
DC motor whose parameters are shown in (7.87). The desired position is 6; = 2, the
observer initial conditions are z(0) = [0 0], whereas 6(0) = 0 (i.e., ¥ (0) = —2)
and 6(0) = 2. It is observed that the estimates z; and z; asymptotically converge to
the real values X1 and x, and that both x| and x; converge to zero, i.e., 8 converges
to 64. It is interesting to realize that this convergence is achieved before the motor
finishes responding. This has been accomplished by selecting the eigenvalues of the
matrix A — LC (shown in (7.90)) to be much faster than the eigenvalues assigned to
the matrix A — BK (shown in (7.93)). This is a criterion commonly used to assign
the eigenvalues for an observer.

In Fig. 7.10 the MATLAB/Simulink diagram used to perform the above simula-
tions is presented. Block step represents 8; = 2. Block DC motor has the following
parameters:
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|
"
Ste
P Add
| X' =Ax+Bu
w y = Cx+Du —>
DC motor —> L]
—»
Scope
X' = Ax+Bu Estados
— » y = Cx+Du a
To Workspace
Observer
Fen Gain

u(1)+u(2) 4—4]4—

Fig. 7.10 MATLAB/Simulink diagram for use of the observer in (7.94) to control a DC motor

A=A, B=B, [10;01]=C, [0;0]= D,
and [0 2] as initial conditions. The observer block has the following parameters:
A—-Lx[10]=A, F=B, [10;01]=C, [00;00]= D,

and [0 O] as initial conditions, where the matrix F is computed at the end of
the last MATLAB code above in an m-file. The simulation must be performed
following these steps: (1) Execute last MATLAB code above in an m-file. (2) Run
the simulation in Fig. 7.10. (3) Execute the following MATLAB code in an m-file:

nn=length (Estados(:,1)) ;
n=nn-1;

Ts=0.5/n;
t=0:Ts:0.5;

figure (1)
subplot(2,1,1)

plot (t,Estados(:,1),
axis ([0 0.3 -2.5 1])
ylabel (‘rad’)
subplot(2,1,2)

plot (t,Estados(:,2),'b-',t,Estados(:,4),'r--");
axis ([0 0.3 -100 100])

xlabel ('t [s]’)

ylabel (‘rad/s"’)

'b-’,t,Estados(:,3),'r--");

At this point, Fig. 7.9 is drawn.
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7.14 Case Study: The Inertia Wheel Pendulum

7.14.1 Obtaining Forms in (7.67)

In Chap. 16 the linear approximate model of a mechanism known as the inertia
wheel pendulum is obtained. This model is shown in (16.25), (16.28), and it is
rewritten here for ease of reference:

z=Az+ Buw, (7.96)
0 10 0 k
A= EnmgOO , B= 312 ?m
dmg 00 d»

To simplify the algebraic manipulation, the following constants are defined:

dymg, b=dymg,

a=dm
. —
=dp—, d=dn—.
c 12 R 22 R
The following matrix has the form:
0cO
Coz[BABAzB] =|c0ac
d 0 bc

After a straightforward procedure, the following is found:

_ k\> . - - _ _
det(C,) = (d12)? (;’”) mg(dy1dy — diadar) # 0,

because di1dy — diada; # 0 is a property of the mechanism, as explained in
Chap. 16. Hence, the dynamical equation in (7.96) is controllable for any set of the
inertia wheel parameters. This means that the result does not change whether the
mechanism is large or small, heavy or light. The matrix P introduced in (7.68)
is nonsingular and it is obtained in the following using (7.69). To simplify the
computations, the following numerical values are considered:

di; = 0.0014636, dj, = 0.0000076,
dy1 = 0.0000076, dpy = 0.0000076,
mg = 0.12597,
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where:
D! — |:§11 212] _ 1 [ d —d12]
dr dxp didy —dipdy | —dor di |’

, which correspond to parameters of the inertia wheel pendulum that is built and
experimentally controlled in Chap. 16. Thus:

0 1.0000 0 0
A=| 86.5179 0 0|, B=| —12758
—86.5179 0 O 245.6998

Using these data, the roots of the polynomial det(A! — A) are found to be:
A1 =0, A2 =93015 i3 =-9.3015.
Then, the following product is performed:
(= 2D = 2)( = 43) = 27 + axd® + ar + ao,
and, equating coefficients, the following is found:
a =0, a; =-86.5179, ap=0. (7.97)
Use of this in (7.69) yields:

0 ~1275 0
P l=|5467x10"5 0 —1275 |,
—21147.049 0  245.6998

ie.,
0 —910.6662 —4.7287
P =107 x | —78379.7677 0 0 . (7.98)
0 —78379.8067 —0.0002

Finally, to verify the expressions in (7.70), the following products are performed:

0 1.0000 0 0
PAP'=1|-0.0000 0 1.0000 |, PB=1|0
0 86.5179 0 1

Note that these matrices have exactly the forms shown in (7.67) for A = PAP!
and B = PB.
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7.14.2 State Feedback Control

Now, the vector of controller gains K is computed. It is desired that using the
controller (7.74) (with x = z and u = w), the eigenvalues of matrix A — BK
are assigned at:

A = —5.8535 +17.7192j, A, = —5.8535 — 17.7192j, A3 = —0.5268.
Hence, these values are used to compute the polynomial:
(= A1) = A2 (0 = A3) = 1 + @2A” + @ik + do,
and, equating coefficients:
ay = 12.2338, a; =354.4008, ap = 183.4494.

These data and the values obtained in (7.97) are employed to compute the vector of
the gains K according to (7.77):

K =[183.44 440.91 12.23].

Finally, using this and the matrix P shown in (7.98) the vector of the controller gains
K is computed using K = K P as:

K =[-345.5910 —11.2594 —0.0086 ] ,

which, except for some rounding errors, is the vector of the controller gains used
to experimentally control the inertia wheel pendulum in Chap. 16. Some simulation
results are presented in Fig. 7.11 where z;(0) = 0.3 and z2(0) = z3(0) = 0 were
set as initial conditions. It is observed that the state variables converge to zero, as
desired. These simulations were performed using the MATLAB/Simulink diagram
shown in Fig. 7.12. The inertia wheel pendulum block has the following parameters:

A=A, B=B, [100;010;001]=¢C, 1[0;0;0]= D,

and [0.3 0 O] as initial conditions. The results in Fig. 7.11 were obtained following
these steps: 1) Execute the following MATLAB code in an m-file to obtain all the
above computations:

clc

A=[0 1 0;
86.5179 0 0;
-86.5179 0 0];
B=[0;

-1.2758;
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Fig. 7.11 Simulation results when using the gain vector K = [—345.5910 — 11.2594 — 0.0086]

to control the inertia wheel pendulum. Top: z;. Middle: z,. Bottom: z3

Fig. 7.12 —
MATLAB/Simulink diagram x= ACX"BU o[ |
used to simulate the control of y = Cx+Du
the inertia wheel pendulum WP Scope
Fen Gain P States
u(1)+u(2)+u(3) 4‘4]4— To Workspace

245.6998] ;

U=[B AxB A"2xB];

det (U)

v=eig(A) ;

f=conv ([l -v(1)],I[1
h=conv (£, [1 -v(3)]);
a2=h(2) ;

al=h(3);

a0=h(4) ;

g3=B;

-v(2)1);
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g2=A*B+a2xB;
gl=A"2xB+a2xA«B+al*B;
invP=[gl g2 g3]

P=inv (invP)
Ab=PxA%xinvP

Bb=PxB

lambdald=-5.8535+17.7192%7;
lambda2d=-5.8535-17.7192%7;
lambda3d=-0.5268;

fd=conv ([l -lambdald], [1 -lambda2d]) ;
hd=conv (fd, [1 -lambda3d]) ;
a2b=hd (2) ;

alb=hd (3) ;

alOb=hd (4) ;

Kb=[a0b-a0 alb-al a2b-a2];
K=Kb*P

eig (A-BxK)

2) Run the simulation in Fig.7.12. 3) Execute the following MATLAB code in an
m-file:

nn=length(States(:,1));
n=nn-1;

Ts=1/n;

t=0:Ts:1;

figure (1)

subplot(3,1,1)

plot (t,States(:,1),'b-");
ylabel ('rad’)
subplot(3,1,2)

plot (t,States(:,2),'b-");
ylabel (‘rad/s’)
subplot(3,1,3)

plot (t,States(:,3),'b-");
ylabel (‘rad/s’)

xlabel ('t [s]’)

At this point, Fig. 7.11 is drawn.

7.15 Summary

The mathematical models used in the state variable approach are sets of first-
order differential equations that must be solved simultaneously. Hence, the analysis
and design are performed in the time domain and the Laplace transform is no
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longer used. This allows the study of nonlinear control systems, i.e., those systems
represented by nonlinear differential equations (see Chap. 16 for an example of
such applications). Recall that the Laplace transform cannot be employed when the
differential equations are nonlinear.

Although an equivalence exists between the state space representation and the
transfer function, the former is more general. This can be seen in the fact that
the transfer function only represents the controllable and observable part of a state
space representation. This means that there are some parts of a system that cannot
be described by the transfer function. However, if a system is controllable and
observable, the analysis and the design of the control system are simplified. In fact,
there are powerful results for this case, which are presented in Sects. 7.11 and 7.12.

An advantage of the state space approach is that it gives simple solutions to
problems that have a more complicated result when using the transfer function
approach. Two examples of this situation are the experimental prototypes that
are controlled in Chaps. 15 and 16, where two variables have to be controlled
simultaneously: the arm and the pendulum positions (in Chap. 15) and the pendulum
position and the wheel velocity (in Chap. 16). Another advantage of the state space
approach is that it allows us to develop a general methodology to obtain a linear
approximate model of nonlinear systems (see Sect. 7.3 and Chaps. 13, 15 and 16).

7.16 Review Questions

What is a controllable state equation?

What is an observable dynamical equation?

How can you check controllability and observability?

How useful is a controllable dynamical equation?

How useful is an observable dynamical equation?

What is the difference between the system state and the system output?

Suppose that a dynamical equation is controllable and observable. What is the

relationship between the poles of the corresponding transfer function and the

eigenvalues of matrix A?

What does global asymptotic stability of the origin mean?

9. What are the conditions required for the origin to be globally asymptotically

stable?

10. Why is it important for the origin of a dynamical equation without input to be
globally asymptotically stable?

11. What does state feedback control mean?

12. What is a state observer and what is it employed for?

AR

@
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Exercises

1. Say what you understand by state and propose a physical system to indicate its
state.
2. Verity that the following dynamical equations are controllable:

213 0
A=|597|, B=|0|, C=[472],
028 2
01 0 0
A=10-20 50 |, B=| 0 |, C=[100],
0 —5 —250 100
01 0 0 0
00-050 1
A: B: =
00 o 11 o |- ¢=I[roro],
00 50 0 -5

Compute the matrix P defined in (7.69).

Compute the matrices and vectors A = PAP~!, B = PB,C = CP™!
defined in (7.70).

Corroborate that these matrices and vectors have the forms defined in (7.67).
Using these results, find the transfer function corresponding to each dynam-
ical equation.

Employ the MATLAB “tf()” command to compute the transfer function
corresponding to each dynamical equation. Verify that this result and that
in the previous item are identical.

Use MATLAB/Simulink to simulate the response of the dynamical equation
and the corresponding transfer function when the input is a unit step. Plot
both outputs and compare them. What can be concluded?

3. Elaborate a MATLAB program to execute the procedure at the end of Sect. 7.11
to compute the vector of controller gains K assigning the desired eigenvalues
to the closed-loop matrix A — B K. Employ this program to compute the gains
of the state feedback controllers in Chaps. 15 and 16. Note that this program is
intended to perform the same task as MATLAB’s “acker(-)” command.

4. Modify the MATLAB program in the previous item to compute the observer
vector gain L, assigning the desired eigenvalues to the observer matrix A — LC.
Employ this program to design an observer for the system in Chap. 15. Define
the system output as the addition of the pendulum and the arm positions.
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5. The following expression constitutes a filter where y(¢) is intended to replace
the time derivative of u(z).

b
Y(s) = ——U(s), b>0, a>0.
s+a

In fact, y(¢) is known as the dirty derivative of u(¢) and it is often employed
to replace velocity measurements in mechanical systems. To implement this
filter in practice, the corresponding dynamical equation is obtained. Find such
a dynamical equation. Recall that u(¢) must be the input. Can you use frequency
response arguments to select a value for a?

6. Find a dynamical equation useful for implementing the lead controller:

U(s) s+b
E(s) s+c

,0<b<e,

where U (s) is the plant input and E(s) is the system error. Compare with the
result in Sect. F.3.
7. Consider the following system without input:
X = Ax, x € R",
Applying the Laplace transform to both sides, it is possible to find that:

x(t) =L {(sl — A)_l]x(O), ie, el = {(sl . A)—l} .

Recall (7.57) and (7.56) to explain that, in general, the following stands for the
solution of the closed-loop state equation:

¥=(A—BK)x, x e R", K =1[ki, ..., knl,

* x;(t),foranyi = 1,...,n, depends on all the initial conditions x;(0), i =
1,...,n,ie., the system is coupled.

* x;(t),forany i = 1,...,n, depends on all the eigenvalues of the matrix
A — BK.

* A particular k; does not affect only a particular x;(¢),i =1, ..., n.

* A particular k; does not affect only a particular eigenvalue of the matrix
A — BK.

8. Given an n x n matrix A, an eigenvector w is an n—dimensional vector such
that Aw = Aw where the scalar X is known as the eigenvalue associated with w.
From this definition (A —A)w = 0 follows, where I is the n x n identity matrix.
Hence, a nonzero w is ensured to exist if, and only if, det(Al — A) = 0. As
det(AI — A) is an n degree polynomial in A, the matrix A has n eigenvalues that
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can be real, complex, different or repeated. In the case of n real and different
eigenvalues, A;, i = 1,...,n, n linearly independent eigenvectors w;, i =
1, ..., n exist. Thus, an invertible n X n matrix:

07! = [wy wy...wal,
and a linear coordinate transformation:
z=Qx,
can be defined such that:
X =Ax, z=Ez,

where x, z € R", are related by E = QAQ~'. Show that the matrix E is given
as:

A0 -0
0Xir--- 0
E = . . . ’
00 -2,
i.e., that:
e*z1(0)
e*2'2,(0)
z(1) = ) ,
"' 2,(0)
and:
eMt 0 ... 0
0 e ... 0
xo=07" . . . | 0x0).
0 0 ...eM

Consider the matrix A and the vector B, defined in (7.67), whenn = 5.

* Suppose thata; = 0fori =0, 1, ..., 4. Show that:
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0 0 0 0 1

0 0 0 1 0
B=|0|, AB=|0]|, A’B=|1|, A*B=|0|., A*B=]0],

0 1 0 0 0

1 0 0 0 0

i._e.,_these vectors are linearly independent, the matrix [1_3, AB, A’B, A3B,

A4B] has a determinant that is different from zero, and, thus, the system

in (7.67) is controllable.

* Suppose thata; # 0 fori =0, 1, ..., 4. Show that:

0 0 0 0 1

0 0 0 1 *
B=|0|, AB=|0]|, A’B=|1|, AB=|=x|, A*B=|=x|,

0 1 * * *

1 * * * *

where the symbol “x” stands for some numerical values depending on a;

fori =0,1,...,4. S_hovz Ehat_the:se vectors are still linearly independent,

i.e., that the matrix [B, AB, A2B, A3B, A4B] has a determinant that is

different from zero; thus, the system in (7.67) is controllable.

10. (Taken from [1]) A set of n functions of time f;(¢),i = 1, ..., n, is said to be
linearly dependent on the interval [t1, #] if there are numbers «y, oo, ..., oy,
not all zero such that:

Ollfl(t) + Ol2f2(t) +---+ anfn(l) =0,
for all ¢+ € [t1,]. Otherwise, the set of functions is said to be linearly
independent of [#1, ©;]. Use these arguments to explain why the following
functions:
t, tel0,1]
ty=t, tel[-1,1], d fo(t) = ,
Ji(@®) [—1. 1], and f2(z) {—t,te[—l,O]
are linearly dependent on [0, 1] and on [—1, 0]. However, they are linearly
independent of [—1, 1].
11. Consider the results in Example 7.7.

* Recalling that edt = £71 {(sl — A)_l} show that:

At _ |:1 %(1_e_§l):|
e’ = , .
0 e 7!
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Show that det (eAT) # 0 for all 1 € R, i.e., that A’ is nonsingular for all
t € R.
Define:

fi@®) At
F(@) = =e*'B. 7.99
() |:f2(t)i| e (7.99)

Use the definition in the previous exercise to prove that f1(¢) and f>(¢) are
linearly independent for all t € R.

The following theorem is taken from [1]. Let f;(¢t),i = 1,2,...,n,bel x p
continuous functions defined on [z, #;]. Let F(t) be the n x p matrix with
fi(¢) as its i —th row. Define:

15
W(t1, 1) =/2F(t)FT(t)dt.
|

Then, f1(t), fa(t), ..., fa((¢), are linearly independent of [f1, #2] if, and
only if, the n x n constant matrix W (#1, t2) is nonsingular.

Use this theorem to prove that the two scalar functions defining the two

rows of matrix e’ B defined in the previous item are linearly independent of
teR.
The following theorem is taken from [1]. Assume that for each i, f; is
analytic on [f1, ]. Let F(¢) be the n x p matrix with f; as its i —th row,
and let F®) (t) be the k—th derivative of F(¢). Let #p be any fixed point in
[t1, ©2]. Then, the f;s are linearly independent of [t1, #;] if, and only if, the
rank of the following matrix, with an infinite number of columns, is n:

|:F(10)EF(1)(10)2 con D FOD gy ]

Using the definition in (7.99), show that [F(to) : F(l)(to)i|, n=2,1=0,

has rank 2.

Using the facts that all the entries of ¢4’ B are analytic functions, %e“"
eA! A, A™, for m > n, can be written as a linear combination of
LA,.. . A1 (Cayley—Hamilton theorem), and eAt|,=0 = 1 (see [1]
for an explanation of all these properties), show that the theorems in the
two previous items establish the equivalence between the two conditions in

theorem 7.2 to conclude controllability.

12. Consider the ball and beam system studied in Example 7.2, in this chapter,

together with the following numerical values:

k =16.6035, a =3.3132, p=>-5.
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* Obtain the corresponding dynamical equation when the state is defined as
Z=[x—xq4,x,0, é]T and the output is y = x — x4, where x4 is a constant
standing for the desired value for x.

* Design a state feedback controller to stabilize the system at x = x4, ¥ =
6 = 6 = 0. Choose the desired eigenvalues as follows. Propose two pairs
of desired rise time and overshoot. Using the expression in (3.71), Chap. 3,
determine two pairs of complex conjugate eigenvalues such that the two pairs
of desired rise time and overshoot are achieved.

* Design an observer to estimate the complete system state. Recall that the
eigenvalues of the matrix A — LC must be several times faster than those for
the matrix A — BK.

* Fix all initial conditions to zero, except for x(0) — x; # 0. Test the closed-
loop system employing the above observer and the above state feedback
controller to stabilize the system at x = x4, * = 0 = = 0. Verify through
simulations whether the desired transient response characteristics have been
accomplished.
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Chapter 8 ®
Advanced Topics in Control ke

8.1 Structural Limitations in Classical Control

Consider the closed-loop control system shown in Fig. 8.1. The open-loop transfer
function G(s) is assumed to be given as the cascade connection of the controller
G(s) and the plant G, (s), i.e., G(s) = G¢(s)Gp(s). The system error is defined
as e(t) = r(t) — c(t), where e(t) = LY E(s)), r(t) = L7YR(s)} and c(r) =
L7YC ).

Some results are presented in the following explaining some intrinsic limitations
of the transient response of closed-loop classical control systems. These limitations
are due to the structure of both the plant and the controller when connected, as in
Fig. 8.1. This means that such limitations may be avoided if a different structure for
the closed-loop system is chosen.

8.1.1 Open-Loop Poles at the Origin

The following result is taken from [7].

Lemma 8.1 Consider the closed-loop system in Fig. 8.1. Suppose that G(s) has i
poles at the origin, i.e., plant and controller have together i integrators. If r(t) is a
step reference, then:

lim e(t) =0, Vi>1, (8.1)
t—0o0
oo
/ e(hdt =0, Vi=>2. (8.2)
0
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Fig. 8.1 Closed-loop system R(s) E(s) C(s)
with unit feedback () G(s)

The proof for (8.1) is immediate from Table 4.15, in Sect. 4.4, concerning the
steady-state error when the reference is a step signal. On the other hand, it was
also shown in Sect. 4.4 that the system error is given as:

E(s) = (s). (8.3)

1
——R
1+ G(s)
Dividing by s yields:

E(s) 1
= R
s s(1+G(s))

(s).

Using the inverse Laplace transform (3.3), it is found that:

e ]
/Oe(v)dv—ﬁ s(l—l—G(s))R(S) .

Hence, applying the final value theorem (3.4):

o0 t
S
dt = i dv=1lm — R
/0 etydr = lim | e@)dv = lim o=y RE):
li ! R(s), R(s) 4
= lim —— R(s), s) = —,
s—0 1+ G(s) N
A
= (8.4)
lim; 0 5G(s)

with A a constant. As the number of open-loop integrators is identical to the system
type, then we can write:

. k(s —z1)(s —z2) -+ (s — Zm)

- _ , (8.5)
st(s — p)(s — p2) -+ (S — pn—i)

as in Sect. 4.4. Replacing (8.5) in (8.4), the expression in (8.2) is retrieved.
Note that (8.2) implies that the system response presents overshoot. Overshoot is
necessary to render e(t) negative for some ¢ > 0. This, together with the fact that
e(t) is initially positive, makes it possible for the integral in (8.2) to be zero.
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Example 8.1 Consider the following transfer functions used in two different closed-
loop systems whose structure is that in Fig. 8.1:

C(s)  8(kas+kp)
R(s) s2+4(0.5+8kq)s+8k,

C(s)  8(kas +kp)
R(s) s+ 8kgs + 8k,

D Gpi(s) = Ge1(s)=kgs+kp,

s(s+0.5)°

8
2) Gpls) =7, Gals)=kis+kp,

Note that i = 1 for system (1) and i = 2 for system (2). Hence, according to
Lemma 8.1, the response of system (2) always presents overshoot when a step
reference is applied, but this is not ensured for system (1). As both closed-loop
transfer functions are very similar, it is natural to wonder about these different
conclusions. To answer this question, in Figs. 8.2 and 8.3 the root loci and the
closed-loop time responses corresponding to systems (1) and (2) are presented.
There, ]]Z—Z = 1 and three different values for k; are employed to determine the
corresponding closed-loop poles, which are also indicated in Figs. 8.2 and 8.3. The
closed-loop time responses are shown for these values of k.

It is observed that for small values of k4, system (1) has two real closed-loop
poles; hence, the closed-loop time response does not exhibit overshoot. In the case
of system (2), it has two complex conjugate closed-loop poles for small values of
kg; hence, the closed-loop time response exhibits overshoot. As observed in Fig. 8.2,
the explanation for these different behaviors relies on the fact that the root locus for
system (1) belongs to the real axis for small values of k;, which results from the
real open-loop poles at s = 0 and s = —0.5, whereas the root locus for system (2)
does not belong to the real axis for small values of k4, because of the two open-loop
poles at s = 0.

For medium values of k4, both systems have complex conjugate closed-loop
poles; hence, the time response of both systems exhibits overshoot. Finally, for
large values of k4 both systems have two real closed-loop poles, but, despite this,
both of them present a time response with overshoot.! Thus, it is corroborated that
response of system (2) always presents overshoot for a step reference, as predicted
in Lemma 8.1.

Figures 8.2 and 8.3 were drawn by executing the following MATLAB code in an
m-file several times:

cle

gpl=tf(8,[1 0.5 0]);
gecl=tf ([1 11,1);

figure (1)

rlocus (gclxgpl) ;

hold on

kd=0.01;% 0.01, 0.1,0.4

I'The reason for this overshoot is explained in Sect. 8.1.2.
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Fig. 8.2 Root locus and closed-loop time response for system (1), when :—5 = 1 and k, takes

different values. (a) Closed-loop poles +: k; = 0.01; triangle down: ky = 0.1; triangle up: k; =
0.4. (b) Continuous: k; = 0.01; Dash—dot: k; = 0.1; Dashed: k; = 0.4

plot( -0.3540,0,'b+’,-0.2260,0, "b+") ;

$plot (-0.6500,0.6144,'bv’,-0.6500,-0.6144,"'bv") ;
$plot (-2.3217,0,'b™’,-1.3783,0,'b"");

gcl=tf (kd*[1 1],1);

Ml=feedback (gcl*gpl,1,-1);

pole (M1)

figure (2)
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Fig. 8.3 Root locus and closed-loop time response for system 2), when T =1 and k, takes
different values. (a) Closed-loop poles. +: k; = 0.01; triangle down: k; = 0.1; triangle up:
kq = 0.55. (b) Continuous: k; = 0.01; Dash-dot: k; = 0.1; Dashed: k; = 0.55

step (M1,30)
grid on
hold on

gp2=tf(8,[1 0 01);
gc2=tf ([1 1]1,1);
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figure (3)

rlocus (gc2*gp2) ;

hold on

kd=0.01;% 0.01, 0.1, 0.55
plot(-0.0400,0.2800,'b+’,-0.0400,-0.2800, "'b+")
$plot (-0.4000, 0.8,'bv’,-0.4000,-0.8,"bv")
$plot( -2.8633,0,'b"’,-1.5367,0,'b™");
gc2=tf (kd+[1 1],1);

M2=feedback (gc2*gp2,1,-1) ;

pole (M2)

figure (4)

step (M2,30)

grid on

hold on

Example 8.2 Consider the ball and beam system studied and experimentally con-
trolled in Chap. 14. In particular, see the block diagrams in Fig. 14.8. Note that
the open-loop transfer function has two poles at the origin. Thus, overshoot is
unavoidable when a step reference x; is commanded. This is the reason why the
design performed in Sect. 5.2.9, Chap. 5, and experimentally tested in Chap. 14,
propose a desired response with overshoot, i.e., M, = 25%.

8.1.2 Open-Loop Poles and Zeros Located Out of the Origin

The following result is also taken from [7].

Lemma 8.2 Consider the closed-loop system in Fig.8.1. Suppose that all the
closed-loop poles are located at the left of —a for some real number o > 0. Also
assume that the open-loop transfer function G (s) has at least one pole at the origin.
Then, for an uncancelled plant zero zo or an uncancelled plant pole pg located at
the right of the closed-loop poles, i.e., such that Re(zg) > —«a or Re(pg) > —«
respectively:

1. For a positive step reference R(s) = A/s, A > 0, the following holds:

/00 e(t)e ' dt = é (8.6)

0 20

/OO e(t)e P'dt = 0. (8.7)
0

2. For zq in the right half-plane and a positive step reference R(s) = A/s, A > 0,
the following holds:

/OO c(t)e 'dt = 0. (8.8)
0
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Note that, according to the definition of the Laplace transform in (3.1):

/Oo e(t)eizotdt = E(S)|s:z() = ‘C{e(t)}lszz()s (8.9)
0

which is ensured to exist according to the arguments in Appendix A, i.e., see (A.18),
because Re(zp) >Re(—a) = —a«. Thus, using (8.3) and (8.9):

/ " ene ' di = E(s)| L 4

e = gy = ——— — ,

A =0T 11 GGs) s s
1 A A

1+ G(z0) 20 - 20

because G(zg) = 0, i.e., zg is a zero of G(s). Thus, (8.6) is retrieved. A similar
procedure shows that:

1 A
1560 s ey

1 A
1+G(po) po

0
f e(t)e P dt = E(5)|s=py =
0

)

because G (pg) = 00, i.e., pg is a pole of G (s). Thus, (8.7) is retrieved. Finally, the
use of:

G(s)

€O = T 6w F
yields:
o _ G A
/o e di = COli=so = 796 m 5 | Ly
_ G A _
T 1+ G@o)zo

because G(z9) = 0, i.e., zo is a zero of G(s). Thus, (8.8) is retrieved. Note that
the assumption on the open-loop transfer function G (s) with at least one pole at the
origin ensures a zero steady-state error.

Carefully analyzing (8.6), (8.7), (8.8), the authors in [7] arrive at the following
conclusions:

1. If zp is a negative real number, i.e., it represents a stable zero, then the error must
change sign in order to render the integral in (8.6) negative. Recall that the error
is initially positive. This implies that the transient response must overshoot. In
[7], it is demonstrated that this overshoot is larger as |zg| is smaller.
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2. If zo is a positive real number, i.e., it is an unstable zero, the integral in (8.6) is
positive; hence, the error does not need to change sign. A small zg > 0 results in
a large integral in (8.6). Furthermore, it is clear from the integral in (8.8) that for
Zo on the right half-plane the closed-loop response must undershoot, i.e., it must
exhibit an initial response in the opposite direction of the reference, to render the
integral in (8.8) zero. It is also demonstrated in [7] that the peak undershoot is
larger as |zo| is smaller.

3. It is observed from (8.7) that any open-loop pole at the right of the closed-loop
poles produces a change of sign in the error; hence, overshoot. Moreover, for
a large positive pyg compared with the location of the closed-loop poles, the
function e P9’ vanishes much faster than the error e(¢). Hence, to compensate for
a large positive initial value of e(), either a large overshoot or a slowly varying
overshoot is expected.

Example 8.3 Consider the closed-loop systems studied in Example 8.1 for the case
of large values of kg. It is observed in Figs. 8.2 and 8.3 that the closed-loop time
response overshoots for systems (1) and (2) despite both of them having only two
real closed-loop poles. This behavior is explained by item 1 above in the present
section: for a large k; the open-loop zero at s = z9 = —],i—” = —1 is located at the
right of both closed-loop poles for systems (1) and (2).

Example 8.4 Consider the system studied in Sect. 6.8. This system has an unstable
open-loop pole at s = 35.9 = py > 0. Thus, according to item 3 above in the
present section, a large overshoot is expected. This is corroborated in the time
response shown in Fig.6.106 where M, = 89% is observed. To improve this
performance, it is recommended in [7] to increase the system bandwidth to be larger
than pg = 35.9. This is also performed in Sect. 6.8, in a second design, and the
obtained time response is presented in Fig. 6.109 where overshoot has been reduced
to M, = 44%.

Example 8.5 Another plant with an unstable open-loop pole is studied in Chap. 13.
In Fig. 13.11, it is observed that a considerable overshoot exists in the closed-
loop system response for the designed controller gains. However, according
to (13.33), (13.35), (13.37), all the closed loop poles are real; hence, they
should not produce any overshoot. Similar results are found experimentally in
Figs. 13.14, 13.16 and 13.17. The explanation for these phenomena is given, again,
by item 3 above in the present section.

8.2 Differential Flatness

Differential flatness is a property that is useful for control design purposes. A
practical example of such applications is presented in Chap. 15. In the present
section, the main ideas of this approach are described. Differential flatness is defined
for the general case of nonlinear systems as follows. A nonlinear system:
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x=f(x,u), x€R", ueR™,

is differentially flat if all its states x and the input u can be written as functions of a
variable y ;s and a finite number of its derivatives [1], i.e.,:

X =g(pdpe V) w=hGp g3, (8.10)

for some functions g(-) and A(-). Symbols « and § represent some finite positive
integers and yy is known as the flat output. However, there is no well-defined
procedure to find the flat output in the case of nonlinear systems. As usual, the
differential flatness approach is simplified in the case of linear time invariant
systems. A linear time invariant system:

x=Ax+Bu, xeR', uecR, (8.11)

is differentially flat if it is controllable [2] and the flat output can be found as follows.

Proposition 8.1 ([2]) The flat output of the linear controllable system (8.11) is
proportional to the linear combination of the states obtained from the last row of
the inverse of the controllability matrix C, = [B, AB, AZB, ..., A" 1B ie.,:

v =2[00...01][B AB A%B ... A"~'B] 'x, (8.12)

where A is any nonzero constant.

This statement can be understood as follows. Recall, from Chap. 7, that
system (8.11) can be written in the form:

X = Ax + Bu, (8.13)
0 1 0 0 0 0 | 0]
0 0 1 0 0 0 0
0 0 0 1 0 0 0
A= 0 0 0 o 0 0  B=]|0],
0O 0 0 0 --- 0 1 0
| —ap —ay —az —az -+ —ay—2 —ap—1 | | 1]

_ _ _qT
I=[0 XX Tt Ea]
if, and only if; it is controllable by using the coordinate change:

x = Px, (8.14)
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where P is the n x n constant nonsingular matrix defined as:

P'=1q1 gn2 Gu-1 qn ] (8.15)
gn = B,

qn—1 = AB+a,_1B,

qn—2 = A’B +a, 1AB + a,_»B,

q1 = A" 1lp ~|—an,1An_zB +---+aB
det(s] — A) = s" +ap_15" ' + - +ais + ao.

According to (8.13), if we define the flat output as y y = Ax, for a nonzero constant
scalar A, we can write:

Yf
y
_ 1 S
X=- Yt
A :
-
v
This and (8.14) imply that we can write
Yf
| vy
o B .. ] o,
x=P 5= P LN % :g(yf,yf,...,y}” ), (8.16)
1
D

where g(-) is an n-dimensional linear function in this case. Moreover, from the last
row in (8.13) we have:

1 : . (n-2) n=1) , )
uzx< 0yf T a1y tays+--tan—2y, Tt an-1yy Tt yy )
=h(ys. Sr. ). (8.17)

The following remarks are in order. The latter expressions and (8.10) imply that the
controllable system in (8.11) is differentially flat. It is clear from (8.16) that the flat
output, y s, and its first n — 1 time derivatives can be written in terms of the state x in
this case. Furthermore, according to (8.17), the controllable linear system in (8.11)
can be represented by the following transfer function without zeros:
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Yi(s) _ A
UGs) s"+ap_ 15"V +ay, os" 24 +ay?+ays+ap

As shown in Chap. 15, this is a useful representation for designing a state feedback
controller u = —Kx for (8.11) using classical control design tools to select the gain
vector K. On the other hand, the following can be written:

-1 _ L
P:[Q1"'9n72qn71Qn] = (C,F) '=F lCO],

ay ay---ap— az—1 1
a az---ap—1 1 0
ay ag--- 1 0 0

ap—1 1 --- 0 0 O
1 0--- 0 0 O

where:

0% - % xx

0% - **xx

_1_C0fT(F) B _ 0% - %*x*
_—det(F)’ det(F) =pu, Cof(F)= L |

0% - **xx

Lok ok ok ok

with Cof (F) the cofactors matrix of F, T represents matrix transposition, u and
[ are equal to either —1 or +1 (depending on n), “x” indicates the entries of the
matrix that we do not care for and C, is defined in the Proposition 8.1. Hence:

[00---00/ |
* Kk -k ok Kk
1 * Kook ok ok

p= B AB A2B ... An-1B] ",
det(F) [ ]

* ke ok ok Kk

* ke ok ok Kk

Using the above expressions, yy = Axy and (8.14), it is concluded that:
yf=A[10...00]Px,

:A%[OO...OI][B AB A2B --- A" 'B] ' x.

==

Thus, (8.12) is retrieved by defining A = A
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8.3 Describing Function Analysis

One important application of the describing function method is the study of limit
cycles in “almost” linear systems. Roughly speaking, a limit cycle can be understood
as a system sustained oscillation with respect to time. For our purposes an “almost”
linear system is a closed loop system with two components (see Fig.8.4): one
of the components, G(s), is a linear, time-invariant system, whereas the second
component, ¢ = f(e), is a “static” hard nonlinearity. A “static” hard nonlinearity
is a nonlinear, time-invariant function that is not continuously differentiable, whose
description does not involve any differential equation.

8.3.1 The Dead Zone Nonlinearity [3, 4]

An important example of a “static” hard nonlinearity is that represented in Fig. 8.5,
which is known as the dead zone. This means that there is no output of the
nonlinearity, ¢ = 0, when the nonlinearity input e is “small enough,” i.e., when
le| < &. For larger values of e, the nonlinearity output represents a shifted, amplified
version of the nonlinearity input |c| = k|(e — )|, k > 0. This behavior is common
in servomechanisms where no movement is produced when the applied voltage (or
the generated torque) is below a certain threshold determined by static friction.

The describing function method is based on the frequency response approach
of control systems. Although an exact frequency response description of nonlinear
functions is not known, an approximate frequency response description can be
obtained for “static” hard nonlinearities. In the following, it is explained how this is
possible. First, let us assume that a sustained oscillation exists. This means that the
input of the nonlinearity is given as:

Fig. 8.4 Standard closed R(s) =0 + e c Y(s
loop system for a limit cycle (s) _>O_> Q
study using the describing
function method 7T
Fig. 8.5 The dead zone Ca
“static” hard nonlinearity

k
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Fig. 8.6 Output of the dead
zone nonlinearity when the
input is a sinusoidal function
of time

e(t) = Asin(wt). (8.18)

According to Fig.8.5, the input and the output of the nonlinearity have the
waveforms shown in Fig. 8.6. It is clear that the output of the nonlinearity is periodic;
hence, it admits the Fourier series expansion:

o0
a .
e(t) = 70 +> l(an cos(nat) + by sin(nwr)) (8.19)
n=
2 (172 27
apg = —/ c(hdt, w=—.

Note that, according to Fig. 8.6, c(¢) is an odd function, which implies that
ap = 0.2 On the other hand, if it is assumed that the magnitude of the linear system
G (jw) has low-pass filter properties, then the high order harmonics in (8.19) can be
neglected to approximate c(¢) only by the fundamental frequency component, i.e.,:

c(t) ~ aj cos(wt) + by sin(wt),

2 T/2
a) = —/ c(t) cos(wt)dt,
T J 12

2This is because the dead zone characteristic presented in Fig. 8.5 is odd. Furthermore, ag = 0 for
any odd “static” hard nonlinearity.
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2 T/2
b = —/ c(t) sin(wt)dt.
T J_1p

From these expressions, it is clear that a; = 0 because c(¢) is an odd function. Thus,
the following can be written:

c(t) =~ by sin(wt).
According to (8.18) and Figs. 8.5 and 8.6:

0, 0<t=n
k(Asin(ot) —8), ty <t <%~

c(t) = {

Taking advantage of the odd symmetry of c(#) and by direct integration:

2 [T2 4x2 (/4
b = —/ c(t) sin(wt)dt = —/ c(t) sin(wt)dt,
T J_1p T Jo

2%A | 7 e 8 §\?
— | = —arcsin| — | — —, /1 — | — ,
T 2 A A A

where wt; = arcsin (%) and cos® = /1 — sin? 6 have been used. According to
the frequency response approach, any system component can be represented as the
ratio between the output amplitude, i.e., b1, and the input amplitude, i.e., A. This
means that the dead zone nonlinearity can be represented by the frequency response
“transfer function”:

by 2 |nw (8 s §\?
NA) =—=—|—=—arcsin| — ) ——,/1—(—
A m |2 A A A

N (A) is called the describing function of the dead zone nonlinearity. We stress that
this “transfer function” is real, positive, and frequency independent, but dependent
on the input amplitude A. Moreover, the maximal value is N(A) = k > 0, which is
reached as A — oo. The minimal value tends toward zero and it is approached as
A — 6.

On the other hand, given a linear time invariant, negative feedback, closed-
loop system with open-loop transfer function G(s)H (s), the closed loop poles
satisfy 1 + G(s)H(s) = 0, which can be rearranged to write G(s)H(s) = —1.
According to the Nyquist stability criterion, if we replace s = jw such that
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G(jw)H (jw) = —1 has a solution’ for a nonzero w, this means that that there are
imaginary closed-loop poles. Thus, a sustained oscillation exists and the oscillation
frequency w is represented by the imaginary part of these closed-loop poles. Based
on these arguments, going back to Fig. 8.4 and replacing the nonlinearity with
its frequency response transfer function, N (A), it is concluded that the condition
N(A)G(jw) = —1 or, equivalently:

G(jw)=———, (8.20)

indicates that a sustained oscillation may exist.* The condition (8.20) is commonly
tested graphically by verifying that the polar plot of G (jw) and the plotof —1/N(A)
intersect at some point. Recall that in the case of a dead zone nonlinearity N(A) is
real and positive. Hence, —1/N(A) is real and negative. Thus, according to the
above discussion, a limit cycle may exist if the polar plot of G(jw) intersects the
negative real axis in the open interval (—oo, —1/k). The oscillation frequency and
the amplitude of the oscillation are found as the values of w, in G(jw), and A, in
—1/N(A), at the point where these plots intersect.

8.3.2 An Application Example

As an application example consider the closed loop system in Fig. 8.7 where:

d(a 4+ bh) = —1.2186 x 10>, b =93.9951.

/ d(a+0bh) R %
s2-b 5

A

Fig. 8.7 A closed-loop system including a dead zone nonlinearity

3This implies that point (—1, jO) belongs to the polar plot of G (jw)H (jw), i.e., the closed loop
system is marginally stable.

“4Note that because of the approximate nature of the method the predicted results are valid only to
a certain extent.
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Fig. 8.8 An equivalent R(s) =0 + e c —e
representation for the block —bQ—b 7+Z » G (5) »
diagram in Fig. 8.7 B T
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Fig. 8.9 Bode diagrams of G(s) in (8.21) when using the numerical values in Table 8.1. (a)
Continuous. (b) Dashed. (¢) Dash—dot. (d) Dotted

Note that a dead zone “static” nonlinearity exists where it is assumed that:
8§ =0.0115, k=1.

Using some block algebra, the block diagram in Fig. 8.8 is obtained where e =
7(s) and:

—d(a + bh) (kys*+Bs* + Bkas + Bk,)

G(s) = 22— b)

, —d(a+bh) > 0. (8.21)

Hence, the closed loop system at hand has been written in the form shown in
Fig. 8.4, an important step in applying the describing function method. Also note
that G(s) has four poles and only three zeros. Thus, its magnitude behaves as a
low-pass filter. Recall that this is an important condition for the application of the
describing function method. In Fig. 8.9, the Bode diagrams of the transfer function
in (8.21) are presented when using the numerical values in Table 8.1. Note that,
according to the above discussion, a limit cycle exists in all the cases in Table 8.1
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Table 8.1 Numerical values used for G (s) defined in (8.21)

Controller gains Controller gains
a) ky = 2.3755 x 1074, b) ky = 1.2 x 2.3755 x 1074,
B = 0.0041, B = 1.4 x0.0041,
kg = 2.88, kg = 4.59,
k, =2.88 kp =4.59
c) ky = 1.4 x 2.3755 x 1074, d) ky =2 x 2.3755 x 1074,
B = 1.8 x 0.0041, B =2.8 x0.0041,
kg =5.62, kg =1,
kp =5.62 ky =17

Nyquist Diagram
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Fig. 8.10 Polar plot of G(s) in (8.21) when using the numerical values in Table 8.1. (a)
Continuous. (b) Dashed. (¢) Dash—dot. (d) Dotted

because all the phase plots in Fig. 8.9 intersect the —180° phase line. Furthermore,
this happens when the magnitude is larger than O[dB]. Recall that the open interval
(—00, —1/k) corresponds to the open interval (0, co)[dB] (because k = 1) when the
phase is —180°. Note that the —180° phase line is intersected at a larger frequency
as we go from a) to d) in Table 8.1. Also note that, according to Fig. 8.10 the negative
real axis is intersected by the polar plot of G(jw) at some point that moves to the
left as we go from a) to d) in Table 8.1. Recall that —1/N (A) moves to the left as A
approaches §. Thus, it is concluded that the amplitude of the oscillations decreases
and the frequency of the oscillations increases as we go from a) to d) in Table 8.1.
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Fig. 8.11 Simulation response of the output y in Fig.8.7 when using the numerical values in
Table 8.1

In Fig. 8.11, the evolution obtained in the simulation of the output y(¢) in Fig. 8.7
is presented when using the numerical values in Table 8.1. All the initial conditions
are set to zero except for y(0) = 1. These results verify all the above predictions: a
sustained oscillation exists in all cases, the amplitude decreases and the frequency
increases as we go from a) to d) in Table 8.1. It is important to note that the above
theoretical discussion on limit cycles was intended to explain the amplitude and
the frequency of the oscillation at the input of the “static” nonlinearity e = t(s).
However, in Fig. 8.11, we present the oscillation of the different variable y, which
relates to ¢ = t(s) through e = —(kys3 + Bs% + Bkas + Bkp)Y (s). Hence, it is clear
that, because of the linear relation between e and y(z), these results are also valid
for y(t). Some of the results in this section were reported for the first time in [5].

Figures 8.9 and 8.10 were drawn by executing the following MATLAB code in
an m-file several times:

clc

g=9.81;
km=0.0368;
11= 0.129;
ml= 0.02218;
LL0=0.1550;
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J1=0.0001845;
I0=0.00023849;

den=I0x (J1+ml*11"2) +J1+mlxL0"2;
h=(J1+m1%11%2) / (m1x11xL0) ;
a=-m1*2x11"2xL0xg/den;

b= (I0+m1+L0"2)*xmlx11lxg/den;
c=(J1+ml+11"2) /den;
d=-ml%11+L0/den;

%{

kv=2.3755e-4;

beta=0.0041;

kd=2.88;

kp=kd;

%)

%{

kv=2.3755e-4%x1.2;
beta=0.0041%1.4;

kd=4.59;

kp=kd;

%)

%{

kv=2.3755e-4%x1.4;
beta=0.0041%1.8;

kv=2.3755e-4%2;

beta=0.0041%2.8;

kd=7;

kp=kd;

%}

g=tf (- (a+b+h) *d* [kv beta betaxrkd betaxkpl, [1 0 -b

0 01);

figure (1)

bode (g, 'b:’,{1,100});

grid on

hold on

figure (2)

nyquist (g, 'b:");

axis([-7 -2 -5 51])

hold on
Simulations in Fig.8.11 were obtained using the MATLAB/Simulink diagram in
Fig. 8.12. The dead zone block has as a parameter § = 0.0115, whereas the To work
space block is programmed to store data in an array and 0.001 as sampling time.
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Fig. 8.12 MATLAB/Simulink diagram used for the simulations in Fig. 8.11

(I

Scope

FlatOutput

To Workspace

To perform these simulations, proceed as follows: (1) Execute the above
MATLAB code for the first set of parameters ky, 8, kp, kg. (2) Run the simulation
in Fig. 8.12. (3) Assign Y2_88_data=FlatOutput. (4) Repeat the steps (1), (2), (3),
for the remaining sets of parameters ky, B, kp, kg, and assign Y4_59_data =
FlatOutput, Y5_62_data = FlatOutput and Y7_data = Flat Output respec-
tively. (5) Execute the following MATLAB code in an m-file:

nn=length (Y2 88 data) ;
n=nn-1;

t=0:1:n;

t=tx0.001;

figure (3)

subplot(2,2,1)

plot (t,Y2 88 data)
axis([-0.5 15 -0.4 1.11)
ylabel(’a)’)

xlabel ("t[s]’)

subplot (2,2,2)

plot (t,Y4 59 data)
axis([-0.5 15 -0.4 1.11)
ylabel ('b) ")

xlabel (‘t[s]’)
subplot(2,2,3)

plot (t,¥5 62 data)
axis([-0.5 15 -0.4 1.11)
ylabel(’c)’)

xlabel (‘t[s]’)
subplot(2,2,4)

plot (t,Y7 data)
axis([-0.5 15 -0.4 1.11)
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Fig. 8.13 The saturation C .,
“static” hard nonlinearity

+ M+

A
\4

ylabel(’d) ")
xlabel (‘t[s]’)

At this point, Fig. 8.11 is drawn.

8.3.3 The Saturation Nonlinearity [3, 4]

Another important example of a “static” hard nonlinearity is that represented in
Fig. 8.13, which is known as saturation. This means that the output is equal to the
input amplified k times when the absolute value of the output is less than a positive
constant M and the output equals =M if the absolute value of k times the input is
larger than M. The sign of the output equals the sign of the input. This behavior
is common in control practice because actuators are always capable of delivering
power only within a restricted range of values.

As before, first assume that a sustained oscillation exists. This means that the
input of the nonlinearity is given as in (8.18). According to Fig. 8.13, the input and
the output of the nonlinearity have the waveforms shown in Fig. 8.14. It is clear that
the output of the nonlinearity is periodic; hence, it admits a Fourier series expansion
such as that in (8.19).

Note that, according to Fig.8.14, c(¢) is an odd function, which implies that
ap = 0.°> On the other hand, if it is assumed that the magnitude of the linear system
G (jw)® has low-pass filter properties, then the high order harmonics in (8.19) can
be neglected to approximate c(#) only by the fundamental frequency component,
ie.,

c(t) =~ aj cos(wt) + by sin(wt),

5This is because the saturation characteristic presented in Fig. 8.13 is odd. Furthermore, ag = 0 for
any odd “static”” hard nonlinearity.

6See Fig. 8.4.
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Fig. 8.14 Output of the BON T T N
saturation nonlinearity when L ' ' Le(t)
the input is a sinusoidal - : M
function of time

0 t, time

=1

2 T/2
a, = —/ c(t) cos(wt)dt,
T J 1

by

2 (T2
— f c(t) sin(wt)dt.
T ) _7p

From these expressions, it is clear that a; = 0 because c(¢) is an odd function. Thus,
the following can be written:

c(t) = by sin(wt).
According to (8.18) and Figs. 8.13 and 8.14:

t

() = {kA sin(wt), 0 < ¢ 1Z .
)

=
M, nh=t=

Taking advantage of the odd symmetry of c(#) and by direct integration:

2 T/2 4 %2 T/4
b = —/ c(t) sin(wt)dt = —/ c(t) sin(wt)dt,
T ) _1p T Jo

8 131 8 T/4
— f kA sin®(wt)dt + — M sin(wt)dt,
T Jo T

n

2kA (M M M\?
—— |arcsin| — |+ —, /1 — | — ,
T kA kA kA
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where wt; = arcsin (%) and cos® = /1 — sin” @ have been used. According to
the frequency response approach, any system component can be represented as the
ratio between the output amplitude, i.e., by, and the input amplitude, i.e., A. This
means that the saturation nonlinearity can be represented by the frequency response
“transfer function”:

NOA) by 2k (M N M [ M\? oM
=— = —|arcsin| — —. /1= ,ifA > —,
A 7 kA) " kA k

or:

by .
N =L =k ifA <
A

M

-

N(A) is the describing function of the saturation nonlinearity. This “transfer
function” is real, positive, and frequency independent, but dependent on the input
amplitude A. Moreover, the maximal value is N(A) = k > 0, which is reached for
A< % The minimal value tends toward zero and it is approached as A — o0. As
explained in Sect. 8.3.1, a sustained oscillation may exist if (8.20) is satisfied, which
is a condition to be tested graphically.

Recall that in the case of a saturation nonlinearity, N(A) is real and positive.
Hence, —1/N(A) is real and negative. Thus, according to the above discussion, a
limit cycle may exist if the polar plot of G(jw) intersects the negative real axis in
the open interval (—oo, —1/k]. The oscillation frequency and the amplitude of the
oscillation are found as the values of , in G(jw), and A, in —1/N (A), at the point
where these plots intersect.

8.3.4 An Application Example

As an application example consider the closed-loop system studied in Sect. 8.3.2.
But now consider that the torque signal, 7(s) in Fig. 8.7, is produced by the electric
dynamics of a DC motor, which is provided with an electric current loop driven by
a proportional—integral controller, i.e.,

.
Ld—; + Ri +kpza = 1, (8.22)
t
u = kyi i* — i)+ ki; / (* —i)dt, (8.23)
0

where L, R, kp, are positive constants standing for the armature inductance and
resistance, in addition to the motor counter-electromotive force constant. i and u
represent the armature electric current and voltage applied at the motor terminals,
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whereas z; = y — - l‘bh y®, where y is the inverse Laplace transform of Y (s) in
Fig.8.7. Finally I*(s) = %’S) is the Laplace transform of the commanded electric

current i* and t*(s) = (kys> + Bs% + Bkas + Bkp)Y (s) is the commanded torque.
Replacing (8.23) in (8.22), using:

s2Y(s) = %m),

from Fig. 8.7, t(s) = k;, I (s), and after an algebraic procedure, it is possible to find:

(s> = b)(kpis + kii)
N(s)
kphd(a + bh)k,, 5
a+ bh s
—(R + kpi)bs — kiib + kpd(a + bh)k,,.

I1(s) = Gr()I*(s), Gi(s) =

)

N(s) = Ls* + (R + kpi)s® + [k,-,- —bL -

Using t(s) = kp, I (s) and t*(s) = k,,, I*(s) again, the following is finally found:

7(s) = Gr(s)T*(s).

Thus, the block diagram in Fig. 8.7 now becomes the block diagram in Fig. 8.15. The
dead zone nonlinearity is no longer considered because it is observed that in some
experiments in Chap. 15, the dead zone does not have the dominant effect. Using
some block algebra, the block diagram in Fig. 8.16 is obtained where e = 7(s) and:

(s) 7(s) Y(s)

[~

*
.
+ +
O 8 PO Gils) | Sf= o deti L] & |
+ +T
[ sl
ks

kp + de <

Fig. 8.15 A closed-loop system including a saturation nonlinearity and the electric dynamics of a
direct current motor used to generate torque

Fig. 8.16 An equivalent R(s) =0 +

e
representation for the block _>Q_> jF > G(s)

diagram in Fig. 8.15 7T

v
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—d(a + bh)(kys® + Bs? + Bkas + Bkp)

Ge(s) = Gy(s) 267 D) , —d(a-+bh) >0,
—d(a 