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Logic is to improve human thinking in order to improve human existence.
[Andrzej Grzegorczyk]

However, this same [mathematical] form of thinking, this same kind of concept anal-
ysis, is also applicable to many other areas that are directly related to the immediate
reality of our daily lives. And such a broader application of the mathematical form
of thought seems to me to be of the highest importance. After all, the unparalleled
development of the technique in a narrow sense, of the technical technique, one
could say, is followed by a hardly less important development of the psychological
technique, of the advertising technique. propaganda technique, in short, of means
to influence people. However, we have failed to strengthen our defense equipment
against belief and suggestion attempts by others by improving our thinking technol-
0gy. [...] In this tangle of questions and sham questions we can find a guide in the
conceptual analysis, demonstrated in the mathematical way of thinking. Against all
these known and unknown psychic influences we can forge a weapon by improv-
ing our thinking technique. And that such a reinforcement of our spirit is required,
urgently needed, is my deepest conviction. [David van Dantzig, 1938, inaugural
lecture, Delft, the Netherlands; translated from Dutch]
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It is the main task of a philosopher to show people that things do not have to be
the way they are, that they might be different and that in some cases they should be
different. [Johan de Iongh]

Johan de Tongh (1915 - 1999) was a student of L.E.J. Brouwer (1881 - 1966), the
founding father of intuitionism. He was convinced of the soundness of the intuition-
istic view of mathematics. He also had a great affinity with the signific position,
represented by Gerrit Mannoury (1867 - 1956).

He became professor in Nijmegen in 1961, where he was teaching the course
on analysis for first-year students. Later de Iongh devoted most of his teaching to
courses on logic, the foundations and the philosophy of mathematics, and in particu-
lar intuitionistic mathematics. He was very careful in giving an accurate presentation
of Brouwer’s views. He took a great interest in the well-being of his students and
found it important to know them personally.

Johan de Tongh was as much a philosopher as a mathematician. He shared Plato’s
view that the study of mathematics is the correct introduction to philosophy. He has
published very little. His Platonic distrust towards the written word was great; his
tendency to share his thoughts and ideas with friends, rather than to write them
down, much greater. Yet some texts from him have been preserved, and many of his
ideas have been worked out in Ph.D. theses and papers by his students.

His broad scholarship was impressive. He read Greek and Latin authors in the
original. His interest in science reached far beyond mathematics and he was widely
read in world literature.

He was a convinced Catholic and his thinking on mathematics and philosophy
has developed in continuing discussion with St Augustine, St. Thomas Aquinas,
St. Thomas More and Nicholas of Cusa. He always started his lectures with a short
prayer in Latin: Spiritus sancti gratia illuminet sensus et corda nostra [May the grace
of the Holy Spirit illuminate our senses and our hearts]. And he always finished
his lectures with the following prayer: Gratias tibi agimus, Domine, pro omnibus
beneficiis tuis [We thank you, my Lord, for all your blessings].

It was a privilege to be his student, his PhD student, his assistant and his friend.



Foreword

The following quotation is from Lewis Carroll, Symbolic Logic and The Game of
Logic; Introduction.

The learner, who wishes to try the question fairly, whether this little book does, or does
not, supply the materials for a most interesting recreation, is earnestly advised to adopt the
following Rules:

(1) Begin at the beginning, and do not allow yourself to gratify a mere idle curiosity by
dipping into the book, here and there. This would very likely lead to your throwing it aside,
with the remark “This is much too hard for me!’, and thus losing the chance of adding a
very large item to your stock of mental delights. ... You will find the latter part hopelessly
unintelligible, if you read it before reaching it in regular course.

(2) Don’t begin any fresh Chapter, or Section, until you are certain that you thoroughly
understand the whole book up fo that point, and that you have worked, correctly, most if
not all of the examples which have been set. So long as you are conscious that all the land
you have passed through is absolutely conquered, and that you are leaving no unsolved
difficulties behind you, which will be sure to turn up again later on, your triumphal progress
will be easy and delightful. Otherwise, you will find your state of puzzlement get worse and
worse as you proceed, till you give up the whole thing in utter disgust.

(3) When you come to any passage you don’t understand, read it again: if you still don’t
understand it, read it again: if you fail, even after three readings, very likely your brain is
getting a little tired. In that case, put the book away, and take to other occupations, and next
day, when you come to it fresh, you will very likely find that it is quite easy.

(4) If possible, find some genial friend, who will read the book along with you, and will talk
over the difficulties with you. Talking is a wonderful smoother-over of difficulties. When /
come upon anything - in Logic or in any other hard subject - that entirely puzzles me, I find
it a capital plan to talk it over, aloud, even when I am all alone. One can explain things so
clearly to one’s self! And then, you know, one is so patient with one’s self: one never gets
irritated at one’s own stupidity!

If, dear Reader, you will faithfully observe these Rules, and so give my little book a really
fair trial, I promise you, most confidently, that you will find Symbolic Logic to be one of
the most, if not the most, fascinating of mental recreations!

Mental recreation is a thing that we all of us need for our mental health; and you may get
much healthy enjoyment, no doubt, from Games, such as Back-gammon, Chess, and the
new Game ‘Halma’. But after all, when you have made yourself a first-rate player at any

ix



X Foreword

one of these Games, you have nothing real to show for it, as a result! You enjoyed the Game,
and the victory, no doubt, at the time; but you have no result that you can treasure up and
get real good out of. And, all the while, you have been leaving unexplored a perfect mine of
wealth. Once master the machinery of Symbolic Logic, and you have a mental occupation
always at hand, of absorbing interest, and one that will be of real use to you in any subject
you may take up. It will give you clearness of thought - the ability to see your way through
a puzzle - the habit of arranging your ideas in an orderly and get-at-able form - and, more
valuable than all, the power to detect fallacies, and to tear to pieces the flimsy illogical
arguments, which you will so continually encounter in books, in newspapers, in speeches,
and even in sermons, and which so easily delude those who have never taken the trouble to
master this fascinating Art. Try it. That is all I ask of you!

[From Lewis Carroll, Symbolic Logic and The Game of Logic. Introduction; Dover
Publications, Mineola, NY, 1958.]



Preface

Having studied mathematics, in particular foundations and philosophy of mathe-
matics, it happened that I was asked to teach logic to the students in the Faculty
of Philosophy of the Radboud University Nijmegen. It was there that I discovered
that logic is much more than just a mathematical discipline consisting of definitions,
theorems and proofs, and that logic can and should be embedded in a philosophi-
cal context. After ten years of teaching logic at the Faculty of Philosophy at the
Radboud University Nijmegen, thirty years at the Faculty of Philosophy of Tilburg
University and nine years at the Faculty of Philosophy of the Erasmus University
Rotterdam, I got many ideas how to improve my LOGIC book which was published
twenty five years ago in 1993 by Verlag Peter Lang. Although the amount of work
was enormous, I felt I should do it. It is like working on a large painting where you
put some extra color in one corner, add a little detail at another place, shed some
more light on a particular face, etc.

This book was written to serve as an introduction to logic, with special emphasis
on the interplay between logic and mathematics, philosophy, language and com-
puter science. The reader will not only be provided with an introduction to classical
propositional and predicate logic, but to philosophical (modal, deontic, epistemic)
and intuitionistic logic as well. Arithmetic and Godel’s incompleteness theorems
are presented, there is a chapter on the philosophy of language and a chapter with
applications: logic programming, relational databases and SQL, and social choice
theory. The last chapter is on fallacies and unfair discussion methods.

Chapter 1 is intended to give the reader a first impression and a kind of overview of
the field, hopefully giving him or her the motivation to go on.

Chapter 2 is on (classical) propositional logic and Chapter 4 on predicate logic.
The notion of valid consequence is defined, as well as three notions of (formal) de-
ducibility (in terms of logical axioms and rules, in terms of tableaux and in terms
of rules of natural deduction). A procedure of searching for a formal deduction of a
formula B from given premisses Ay, ...,A, is given in order to show the equivalence
of the notions of valid consequence and (formal) deducibility: soundness and com-
pleteness. This procedure will either yield a (formal) deduction of B from Ay, ..., A,
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xii Preface

— in which case B is deducible from Ay, ...,A, and hence also a valid consequence
of these premisses — or (in the weak, not necessarily decidable sense) if not, one can
immediately read off a counterexample — in which case B is not a valid consequence
of Ay,...,A, and hence not deducible from these premisses.

Chapter 3 contains the traditional material on sets treated informally in such a
way that everything can easily be adapted to an axiomatic treatment. A sketch of the
axioms of Zermelo-Fraenkel is given. The notions of relation and function are pre-
sented, since these notions are useful instruments in many fields. From a philosoph-
ical point of view infinite sets are interesting, because they have many properties
not shared by finite sets. The notion of enumerable set is needed in the Lowenheim-
Skolem theorem in predicate logic, reason why the chapter on sets is presented
before the chapter on predicate logic.

At appropriate places paradoxes are discussed because they are important for
the progress in philosophy and science. Chapter 5 presents a discussion of formal
number theory (arithmetic). Peano’s axioms for formal number theory are presented
together with an outline of Godel’s incompleteness theorems, which say roughly
that arithmetic truth cannot be fully captured by a formal system.

Chapter 6 deals with modal, deontic, epistemic and temporal logic, frequently
called philosophical logic. It has several applications in the philosophy of language
whose major topics are discussed in Chapter 7.

It is interesting to note that traditional or classical logic silently is presupposing
certain philosophical views, frequently called Platonism. L.E.J. Brouwer (1881 -
1966) challenged these points of view, resulting in a completely different and much
more subtle intuitionistic logic which we present in Chapter 8.

Interestingly, both logic and set theory have applications in computer science. In
Chapter 9 we discuss logic programming and the programming language PROLOG
(PROgramming in LOGic), which is a version of the first-order language of pred-
icate logic. To illustrate the role of set theory in the field of computer science, we
discuss the logical structure of relational databases and the query language SQL.
In this chapter we also discuss social choice theory which deals with elections and
voting rules. Finally, in Chapter 10 we discuss a number of fallacies and unfair
discussion methods.

I have tried to give the reader some impressions of the historical development of
logic: Stoic and Aristotelian logic, logic in the Middle Ages, and Frege’s Begriffs-
schrift, together with the works of George Boole (1815 - 1864) and August De
Morgan (1806 - 1871), the origin of modern logic.

Since ‘if ..., then ...’ can be considered to be the heart of logic, throughout
this book much attention is paid to conditionals: material, strict and relevant im-
plication, entailment, counterfactuals and conversational implicature are treated and
many references for further reading are given.

At the end of most sections are exercises; the solutions can be found at the end of
the chapter in question. Starred items are more difficult and can be omitted without
loss of continuity. The expression := is used as an abbreviation for ‘is by definition’.

Tilburg, Rotterdam, summer 2018 H.C.M. (Harrie) de Swart
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Chapter 1
Logic; a First Impression

H.C.M. (Harrie) de Swart

Abstract In this introductory chapter the topic of the book is explained: distinguish-
ing valid patterns of reasoning from invalid ones. The validity may depend on the
meaning of connectives like ‘if ..., then ...’, ‘and’, ‘or’ and ‘not’, in which case
one speaks of propositional logic. But the validity may also depend on the mean-
ing of the quantifiers ‘for all’ and ‘for some’, in which case one speaks of predicate
logic. If we extend the logical language with symbols for addition and multiplication
of natural numbers, Godel’s famous incompleteness theorems show up. In order to
have meaning, logical formulae presuppose a universe of discourse, or a set, which
may be finite or infinite. In particular infinite sets have peculiar properties. If the
validity of a reasoning pattern also depends on the meaning of modalities, like ‘nec-
essary’ and ‘possible’, one speaks of modal logic. Modal logic helps to clarify or
solve certain issues in the philosophy of language. It turns out that validity of an
argument is also dependent on philosophical presuppositions. Changing the philo-
sophical point of view may result in intuitionistic logic. The language of logic may
be used as a programming language: Prolog (Programming in Logic); and the the-
ory of sets is the basis for relational databases and the query language SQL; another
application of logic is social choice theory. Fallacies and unfair discussion methods
are abundantly present in daily discourse and hence deserve attention too.

1.1 General

The study of logic is the study of reasoning. The basic question in this book is what
conclusions can be drawn with absolute certainty from a particular set of premisses.
To illustrate what we mean by this, let us consider Euclid’s geometry.

Euclid (c. 330 B.C.) began his geometry books, called the ‘Elements’, with a
precise formulation of the geometrical axioms (postulates, premisses) on which he
wanted to found his geometry. For instance, one of the axioms says that it is possible
to draw a straight line through any two points. Next, Euclid used (informal) reason-
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ing to deduce theorems from the geometrical axioms, for instance, the theorem that
any triangle which is equiangular also is isosceles.

premisses (postulates, axioms)

reasoning (studied in logic)

conclusion (theorem)

In this book deductive logic is studied and not probabilistic logic which studies
the question what conclusions can be drawn from a set of premisses with a certain
probability. An example of the latter is, for instance, the question how likely it is
that a person gets a certain disease when he has been in touch with other people
having the disease.

Logic has a long history: it was studied by the Stoics (see [1, 5, 10, 12]), by
Aristotle (see [1, 10, 11]) and by many medieval philosophers (see [1, 2, 10, 13]);
the study of logic was greatly advanced by the works of Boole (1847, 1854) [3, 4],
Frege (1879) [6, 7] and Russell (1910) [14], becoming a full-fledged discipline with
the work of Godel (1930-1931) [9, 15].

In addition to the term ‘logic’, one also encounters in the literature the expres-
sions ‘mathematical logic’, ‘philosophical logic’ and ‘formal (or symbolic) logic’,
which are used to stress one of the many aspects of logic.

1.2 Propositional Logic

Below we give some concrete simple arguments from different fields.

Example 1.1.

al) If 1 =2, thenI am the Pope of Rome.
I am not the Pope of Rome.
Therefore: not 1 = 2.

a2) If 1 =2, then I am the Pope of Rome.
Not 1 =2.
Therefore: I am not the Pope of Rome.

bl) If triangle ABC is equiangular, then it is isosceles.
Triangle ABC is not isosceles.
Therefore: Triangle ABC is not equiangular.
b2) If triangle ABC is equiangular, then it is isosceles.
Triangle ABC is not equiangular.
Therefore: Triangle ABC is not isosceles.
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cl) If it snows, then it is cold.
It is not cold.
Therefore: It does not snow.

c2) If it snows, then it is cold.
It does not snow.
Therefore: It is not cold.

Note that all the arguments above consist of two premisses and one (putative) con-
clusion. Further note that all arguments al, bl and c1 in Example 1.1 have the same
structure, namely, the following pattern of reasoning:

1. if Py, then P, P—P
not P, -P
therefore: not P, -P

s

Using — for ‘if ..., then ...’ and — for ‘not’, this pattern of reasoning can be
represented by the schema to the above right. This pattern of reasoning is called
Modus Tollens.

The arguments a2, b2 and c2 in Example 1.1 also have the same pattern, namely,

if Py, then P, P =P
not P, -P
therefore: not P, -P,

The first pattern of reasoning is valid, i.e., it is impossible to replace P;, P> by such
propositions that the premisses P; — P> and —P, result in true propositions and that
at the same time the conclusion —P; results in a false proposition. For suppose P;, P>
are interpreted as propositions P} (e.g., it snows) and P; (e.g., it is cold) respectively
and suppose that

‘if P, then P;” (if it snows, then it is cold) and ‘not P;” (it is not cold) are both true.

Then ‘not P (it does not snow) must be true too. For suppose that P (it snows)
would be true; then — by the first premiss — P; (it is cold) would be true too. This is
a contradiction with the second premiss ‘not P;” (it is not cold).

Note that this insight does not depend on the particular choice of P and P;. P
and P; may be any propositions from number theory, geometry, economics, philos-
ophy, from daily life, and so on.

Concrete arguments which have an underlying pattern of reasoning which is valid
are called correct arguments. Thus the arguments al, bl and c1 in Example 1.1 are
correct, since they are particular instances of the valid pattern 1:

P]—)Pz

We say that —P; is a logical (or valid) consequence of P — P, and —P». Notation:
P — PP ': -P.
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We know that it is impossible for the premisses of a correct argument to be true
and at the same time its conclusion to be false. Whether the premisses and the con-
clusion of a concrete argument are true or false is not the business of the logician,
but of the mathematician, the economist, the philosopher, the physicist, and so on,
depending on what these propositions are about. The logician is not concerned with
the truth or falsity of the axioms of geometry. Given a concrete argument, he is only
concerned with the validity or invalidity of the underlying pattern of reasoning and
if this is valid, he can only say that if the premisses of the concrete argument in
question are true, then the conclusion must likewise be true.

Warning: If a pattern of reasoning is valid, a concrete argument with that pattern
does not imply that the premisses are true, nor that the conclusion is true.
pP—P
Counterexample Pattern 1 —P, is a valid pattern of reasoning.
P,
Now take P;': Bill Gates is wealthy.
P3: Bill Gates owns all the gold in Fort Knox.
Then we get the following concrete argument:
If Bill Gates is wealthy, then he owns all the gold in Fort Knox.
Bill Gates does not own all the gold in Fort Knox.
Therefore: Bill Gates is not wealthy.
So, we have a correct argument, since the underlying pattern is valid, with a false
conclusion. This is only possible if at least one of the premisses is false. And indeed,
the first premiss is actually false. Correctness of a concrete argument means that it is
impossible that all the premisses are true and at the same time the conclusion false,
in other words: if all premisses are true (which actually may not be the case), then
the conclusion must be true too.

From the definition of validity it follows that a pattern of reasoning is invalid if
it is possible to interpret Py, P»,... in such a way that all premisses result in true
propositions while at the same time a false one results from the conclusion. An
example of an invalid pattern is the following one:

P—P
P

underlying the concrete arguments a2, b2 and c2 in Example 1.1. Taking
Py Bill Gates owns all the gold in Fort Knox,
P5: Bill Gates is wealthy,
results in the following concrete argument :
If Bill Gates owns all the gold in Fort Knox, then he is wealthy.
Bill Gates does not own all the gold in Fort Knox.
Therefore: Bill Gates is not wealthy.
So, all the premisses are true, while the conclusion is false.
We say that —P, is not a logical (or valid) consequence of P — P> and —P.
Notation: P, — P, =P} [~ —Ps.
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Concrete arguments with an underlying pattern of reasoning which is invalid are
called incorrect. So, the arguments a2, b2 and c2 in Example 1.1 are incorrect.

Warning: A concrete argument with an underlying pattern of reasoning which is
invalid does not necessarily imply that the conclusion is false; the conclusion may
be true, but in that case the truth of the conclusion does not depend on the truth of
the premisses.
P—P
Counterexample: The pattern —P; is an invalid pattern of reasoning.
P,
Taking P;: 1 own all the gold in Fort Knox,
P5: 1 am wealthy,
we obtain the following concrete incorrect argument with true premisses and a true
conclusion:
If I own all the gold in Fort Knox, then I am wealthy.
I do not own all the gold in Fort Knox.
Therefore: I am not wealthy.

Below is a non exhaustive list of valid patterns of reasoning frequently used in prac-
tice:

Example 1.2 (some valid patters of reasoning).

if Py, then P, P—P
1. not P, -P, Modus Tollens
therefore: not P, -P;
if Py, then P, pP—P
2. P, P, Modus Ponens (MP)
therefore: P, 1)
Py if and only if (iff) P, P=pP
3. not Py -P;
therefore: not P, -P,
not (P; and P,) =(PyAP)
4. P P
therefore: not P, -P
Pior P, PVvPh
5. not P, P
therefore: P P

We have introduced above < for ‘if and only if (iff)’, A for ‘and’, V for the inclusive
‘or’, i.e., P; V P, stands for ‘P; or P, or both P; and P5’. The reader should verify
that all patterns in Example 1.2 are valid.

The following two patterns of reasoning are frequently used in practice, although
they are invalid:
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if Py, then P, P—P
not P —P
therefore: not P -P,
if Py, then P, P—P

P P
therefore: P P,

So, the following concrete arguments are not correct:

If it rains, then the street becomes wet.
It does not rain.
Therefore: The street does not become wet.

If it is raining, then the street becomes wet.
The street becomes wet.
Therefore: It is raining.

It should now be clear that the expressions in patterns of reasoning are built from
Py, P>, P;, ... using the connectives =, —, A,V and —. In fact, we have introduced a
new language for representing patterns of reasoning, the alphabet of which consists
of the symbols:

P, P, Ps,... called atomic formulas
=, =, A\,V, called connectives
(,) called parentheses.

Of course, AP} P~ is not a well-formed expression of this language. Let us define
how the well-formed expressions or formulas of this language are built up.

Formulas:

1. P;,P,, Ps,... are formulas. In other words, if P is an atomic formula, then P is a
formula.

2.1f A and B are formulas, then (A = B), (A — B), (AAB) and (A V B) are formulas.
3. If A is a formula, then (—A) is a formula too.

Example 1.3. Py, P; and Ps are formulas.
(—=P;) and (P3 — Ps) are formulas.
((=Py) V (P3 — Ps)) is a formula.

We can minimize the need for parentheses by agreeing that we leave out the most
outer parentheses in a formula and that in

:a —> Ay V7

any connective has a higher rank than any connective to the right of it and a lower
rank than any connective to the left of it. According to this convention =P — P,V P3
means (—P;) — (P, V Ps), because — has a higher rank than — and V, and it does not
mean ((—P;) — P,)V P3 nor —((P; — P,) V P3). According to the convention just
mentioned the expression =P V P3 — Ps stands for the formula ((—Py) V P3) — Ps,
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because — has the highest rank and V has a higher rank than —. Notice that the
formula (—Py) V (P; — Ps) is a different formula with a quite different meaning.

It is important to notice that the validity or invalidity of the reasoning patterns above
does not depend on the content of the P;, P», but solely on the meaning of the con-
nectives =, —, A, V and —. In propositional logic one studies the (in)validity of
reasoning patterns of which the (in)validity is completely determined by the mean-
ing of the connectives between the propositions in question.

In Chapter 2 a characterization of validity is given both in semantic and in syntac-
tic terms, and it is shown that these two characterizations are equivalent, which gives
us confidence that we have given an adequate definition of the notion in question.

In logic we study the validity or invalidity of patterns of reasoning. The expres-
sions in these patterns are formulas of the language specified above. This language
is called the object-language, because it is the object of study. The language used
in studying the object-language is called the meta-language or the observer’s lan-
guage. In our case the meta-language will be part of English. The situation is simi-
lar to the one where an English speaking person is studying Russian, in which case
Russian is the object language and English is the meta-language. It is important to
keep in mind this distinction between the object-language and the meta-language;
otherwise, one may get involved in paradoxes like the antinomy of the liar.

That intuition is not always a reliable guide in judging correctness of a given argu-
ment will become clear from a few examples. At the end of this section are a few
exercises in which the reader is challenged to judge on intuitive grounds whether the
argument given is correct. Although the arguments are simple, they are sufficiently
complex to puzzle an untrained intuition. When the reader has finished Chapter 2 he
or she will be able to judge the correctness of these arguments with certainty!

Exercise 1.1. Check whether the following argument is correct by translating the
propositions in the argument into the language of propositional logic and by deter-
mining whether the corresponding pattern of reasoning is valid.

If Socrates did not die of old age [~O], then the Athenians sentenced him to death
[D].

The Athenians did not sentence Socrates to death.

If Socrates died from poison [P], then he did not die of old age.

Therefore: Socrates did not die from poison.

Exercise 1.2. Check whether the following argument is correct.
If the weather is nice [/V], then John will come. [J].

The weather is not nice.

Therefore: John will not come,

Exercise 1.3. Check whether the following argument is correct.
John comes [J] if the weather is nice [V].

John comes.

Therefore: the weather is nice.
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Exercise 1.4. Check whether the following argument is correct.
John comes [J] only if the weather is nice [N].

John comes.

Therefore: the weather is nice.

Exercise 1.5. Check whether the following argument is correct.

It is not the case that John gets promotion [P] and at the same time not a higher
salary [—S].

John does not get promotion or he is not diligent [—D].

John is diligent.

Therefore, John will not get a higher salary.

1.3 Sets; Finite and Infinite

The quantifiers V (for all x) and 3 (for some x) in (the language of) predicate logic are
ranging over a certain domain: the set of all persons, the set of all natural numbers,
the set of all real numbers, etc. In fact, there are many possible domains, where a
domain is just a set of objects. These sets may be finite, like the set consisting of
Ann, Bob and Coby, or the set {1, 2, 3} consisting of the numbers 1, 2 and 3, but they
may be also infinite, like the set N of all natural numbers. We will study these sets
more closely in Chapter 3 with particular attention for the properties of infinite sets.
As we shall see, infinite sets have properties quite different from the properties of
finite sets. For instance, a proper part of a finite set will be smaller than the original
set. But as we shall see in Chapter 3, this property does not hold for infinite sets:
a proper part of an infinite set may be equally large as the original set. A simple
example is the set Ngye, = {0,2,4,6,...} of the even natural numbers which is a
proper subset of the set N = {0,1,2,3,4,5,6,...} of all natural numbers. That these
sets are equally large may be seen as follows: there is a one-one correspondence
between the elements of both sets.

2 3 4
|
4 6 8

1.4 Predicate Logic

An example of a simple argument which we cannot adequately analyse with the
means developed in propositional logic, is the following:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.



1.4 Predicate Logic 9

If we translate this argument in the formal language of propositional logic, we find
Py
as the underlying pattern of reasoning: P
Ps
and we know this pattern is invalid since we can substitute true propositions for P
and P, and at the same time a false one for P;. On the other hand, it seems to us that
the argument above, about Socrates, is correct.

The point is that in the translation of the premisses into P; and P> and of the
conclusion into P3, the internal structure of the sentences is lost: P, P, and P are
unrelated atomic formulas. But the premisses and the conclusion of the argument
are not unrelated; in fact, it is this relationship which causes the argument to be
correct. We have to exhibit the internal subject-predicate structure of the premisses
and the conclusion in order to make visible that these three sentences are related and
in order to see that the underlying pattern of reasoning is valid.

The structure of the argument above is the following pattern:

For all objects x, if x is a person, then x is mortal. Vx[P(x) — M(x)]
Socrates is a person. P(c)
Therefore: Socrates is mortal. M(c)

Using Vx for “for all x’, P(x) for ‘x has the property P (to be a Person)’, M(x) for
‘x has the property M (to be Mortal)’ and ¢ for ‘Socrates’, this pattern of reasoning
can be represented by the schema to the above right .

Notice that the following arguments have the same underlying pattern of reasoning:

All philosophers are smart All natural numbers are positive
John is a philosopher 5 is a natural number
Therefore, John is smart Therefore, 5 is positive

The pattern just mentioned is valid, i.e., it is impossible to choose a domain of indi-
viduals and to give to P, M and c appropriate meanings such that from the premisses
Vx[P(x) — M(x)] and P(c) true propositions result and at the same time from the
conclusion M(c) a false proposition.

But, for instance, the pattern Vx[P(x) — M(x)]
M(c)
P(c)

is invalid, since it is possible to choose a domain, to interpret the symbols P, M
as predicates P*, M* over the domain chosen and to interpret the symbol ¢ as an
element ¢* in the domain, such that true propositions result from the premisses and
a false proposition from the conclusion. For instance, take as domain the set of all
persons, let P* be the predicate ‘is a man’, M* the predicate ‘is mortal’ and let ¢* be
the element ‘Queen Maxima’. Then Vx[P(x) — M(x)| yields the true proposition:
For every person x, if x is a man, then x is mortal. M(c) yields the true proposition:
Queen Maxima is mortal. But P(c) yields the false proposition: Queen Maxima is a
man.



10 1 Logic; a First Impression

Next consider the following elementary argument:

John is ill
Therefore: someone is ill.

In order to exhibit the structure of this argument, we need one more symbol: Jx, for
‘there is at least one x such that ... . Then the underlying pattern of reasoning of
this argument is the following:

I(c)

Al ()]

This pattern of reasoning is again valid: it is impossible to take a domain D and to
interpret the symbol / as a predicate I* over D and the symbol c¢ as an individual ¢*
in D such that a true proposition (c* has the property I*) results from the premiss
I(c) and at the same time a false proposition (there is at least one individual which
has the property I*) from the conclusion 3x[/(x)].

Note that the following arguments also have the same (valid) underlying pattern
of reasoning and hence are correct.

5 is odd Peter is rich
Therefore: some natural number is odd Therefore: someone is rich

In order to be able to exhibit the internal subject-predicate structure of atomic sen-
tences and the mutual relationships between them, we need the following symbols:

SYMBOLS NAME MEANING

Xy individual variables  individuals in a given domain
PMI,... predicate symbols predicates over the given domain

C,... individual constants  concrete individuals in the given domain
=;—;/A;V,—  connectives iff; if ..., then ...; and; or; not

v, 3 quantifiers for all; there exists

L1,(,) parentheses

In fact, we have introduced a new (subject-) predicate language, richer than the for-
mer propositional language, in which we can translate the subject-predicate struc-
ture of concrete arguments, exhibiting the underlying pattern of reasoning.

Of course, PAV— is not a well-formed expression of this language and we have
to define precisely what the well-formed expressions or formulas of this language
are. We shall do so in Chapter 4; for the moment it is sufficient to work with a not
precisely defined notion of formula.

It turns out that one can select a few elementary steps of reasoning, among which

AAB A Vx[A(x)]
called Modus Ponens, 5 AVE’ A0

A A—B
B

such that every valid pattern of reasoning, no matter how complex, can be built up
from these elementary steps. This is Godel’s Completeness Theorem, 1930.
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For instance, the following correct argument can be built up from the elementary
steps just specified.

John loves Jane and John is getting married.
If John is getting married, then he is looking for another job.
Hence: John is looking for another job or he does not love Jane.

PANP
The underlying pattern of reasoning is: P —P

PV P
And indeed, this pattern can be built up from the elementary steps specified above
as follows:

premiss
ANR premiss
P P, — P
Ps
PV P

And the four elementary steps of reasoning specified above can be supplemented
by a few more elementary steps to form what is called Gentzen’s [8] system of
Natural Deduction — to be discussed in Subsection 2.7.2 — such that every correct
argument can be simulated by an appropriate combination of the elementary steps
in Gentzen’s system (1934-5). We shall prove Gédel’s completeness theorem in
Chapter 2 for propositional logic and in Chapter 4 for predicate logic.

Another example: the argument above about Socrates which has as its underlying
pattern of reasoning

Vx[P(x) = M(x)]
P(c)
M(c)
can be built up from the elementary steps in the system of Natural Deduction as
follows:

premiss
premmiss Vx[P(x) = M(x)]
P(c) P(c) = M(c)
M(c)

The schema above is called a logical deduction (in the system of Natural Deduction)
of M(c) from the premisses Vx[P(x) — M (x)] and P(c). We say that M(c) is logically
deducible from Vx[P(x) — M(x)] and P(c), since such a logical deduction exists.

In Chapter 4 a characterization of validity is given both in semantic and in syntac-
tic terms, and it is shown that these two characterizations are equivalent, which gives
us confidence that we have given an adequate definition of the notion in question.

Exercise 1.6. Check whether the following argument is correct by translating the
propositions in the argument into the language of predicate logic and by determining
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whether the corresponding pattern of reasoning is valid.
All gnomes have a beard or a conical cap.
Therefore: all gnomes have a beard or all gnomes have a conical cap.

Exercise 1.7. Check whether the following argument is correct.
All gnomes with a beard have a conical cap.

All gnomes have a beard.

Therefore: all gnomes have a conical cap.

Exercise 1.8. Check whether the following argument is correct.
There is a gnome with a beard.

There is a gnome with a conical cap.

Therefore: there is a gnome with a beard and a conical cap.

Exercise 1.9. Check whether the following argument is correct.

There is at least one gnome such that he has no beard or he has a conical cap.
There is at least one gnome who has a beard.

Therefore: there is at least one gnome who has a conical cap.

1.5 Arithmetic; Godel’s Incompleteness Theorem

In Chapter 2 we shall see that it is possible to fully capture the meaning of the logical
connectives in terms of certain logical axioms. For instance, the meaning of the
connective A can be fully captured by the following logical axioms: AAB —+ A, A A
B — B and A — (B — A AB). In other words, the propositional connectives can be
characterized by appropriate logical axioms. This is expressed by the completeness
theorem for propositional logic.

This result can be extended to predicate logic. In Chapter 4 we shall see that
the meaning of the quantifiers V and 3 may also be fully captured by certain logi-
cal axioms. For instance, the meaning of V is fully captured by the logical axioms
Vx[A(x)] — A(r), where ¢ is either an individual variable or an individual constant,
and A(y) — Vx[A(x)], assuming there are no restrictions on the individual variable y.
Godel’s completeness theorem for predicate logic (1930) expresses that the propo-
sitional connectives and the quantifiers can be characterized by appropriate logical
axioms and rules.

Now, if we add to the logical language symbols + and X to render addition and
multiplication of natural numbers, naturally the question arises whether we may
fully capture the meaning of these symbols in terms of certain arithmetical axioms,
like x4+ 0 =x and x + sy = s(x+y), where sy denotes the successor of y. Amazingly,
Kurt Godel [9] proved in 1931 that it is impossible to fully capture the meaning of
+ and x by arithmetical axioms. This is his famous Incompleteness theorem. This
result has far reaching philosophical consequences.

We shall present Godel’s result and its philosophical implications in Chapter 5.
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1.6 Modal Logic

The language of propositional and predicate logic may be further extended with a
symbol [J for modalities, like necessary, obligatory, knowing that, etc. Depending
on the precise meaning of the modality one may add several logical axioms for
these modalities. For instance, [JA — A, in case [J stands for ‘necessary’ or for
‘knowing that’. But for the modality ‘obligatory’ the axiom [JA — A seems to be
inappropriate: it is obligatory to stop for a red traffic light, but that does not imply
that one actually does so. Since these modalities are used in several philosophical
arguments, it is worthwhile to give a logical analysis of them.

By defining QA by —[J—A we get modalities like ‘possibly’: —A is not necessary,
in other words, A is possible.

In Chapter 6 we will adapt the notions of validity and deducibility to modal logic
and show that these two notions are again equivalent, just as in propositional and
predicate logic. However, the notion of validity is now more complicated, since it
is given in terms of possible worlds. [JA (A is necessary, or knowing A) is true in
a given world means that A is true in all worlds imaginable from that given world.
And QA (A is possible) is true in a given world means that A is true in at least one
world imaginable from that given world.

1.7 Philosophy of Language

In Chapter 7 we shall see that several problems in the philosophy of language are
better understood or may be clarified by using the notion of possible world.

For instance, the de re - de dicto distinction in a sentence like ‘it is possible that a
republican will win’ may be made clear by giving two different logical translations
of this sentence:
de re: Ix[R(x) A OW (x)]: there is an individual x in the actual world w such that x
is a Republican in world w and such that there is a world w' (imaginable from the
actual world w) in which x wins.
de dicto: O3x[R(x) AW (x)]: there is a world w' (imaginable from the actual world
w) in which an individual x exists who is a Republican in that world w' and who
wins in that world w'.

In the de re version the modality ¢ is within the scope of the existential quantifier
3, while in the de dicto version the existential quantifier 3 is within the scope of the
modality .

Another example is the difference between a name like ‘Aristotle’ and the cor-
responding description, like ‘the most well known student of Plato’. Traditionally
these two expressions were identified. But that causes the problem that a sentence
like ‘Aristotle is the most well known student of Plato’ would be nothing more than a
logical truth, or, using Kant’s terminology, an analytic statement. Kripke proposed to
solve this problem by conceiving proper names like ‘Aristotle’ as a rigid designator,
i.e., as referring in all possible worlds to the same object. While the name ‘Aristotle’
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refers in all possible worlds to the same object, also in the world in which he actu-
ally was a carpenter instead of a philosopher, the description ‘the most well known
student of Plato’ may refer to different objects in different worlds. The description
‘the most well known student of Plato’ may help us to pick the proper reference of
the name ‘Aristotle’, but it should not be identified with the name ‘Aristotle’.

1.8 Intuitionism and Intuitionistic Logic

A classical mathematician studies the properties of mathematical objects like an
astronomer, who studies the properties of celestial bodies. From a classical point
of view, mathematical objects are like celestial bodies in the sense that they exist
independently of us; they are created by God.

An intuitionist creates the mathematical objects himself. According to Brouwer’s
intuitionism, mathematical objects, like 5, 7, 12 and +, are mental constructions. A
proposition about mathematical objects (like 5+ 7 = 12) is true if one has a proof-
construction that establishes it. Such a proof is again a mental construction.

Mathematics is created by a free action, independent of experience [L.E.J. Brouwer, Col-
lected Works, Vol. 1, p. 97].

Since, intuitionistically, the truth of a mathematical proposition is established by
a proof — which is a particular kind of mental construction —, the meaning of the
logical connectives has to be explained in terms of proof-constructions.

A proof of A A B is anything that is a proof of A and of B.

A proof of AV B is, in fact, a proof either of A or of B, or yields an effective means,
at least in principle, for obtaining a proof of one or other disjunct.

A proof of A — B is a construction of which we can recognize that, applied to any
proof of A, it yields a proof of B. Such a proof is therefore an operation carrying
proofs into proofs.

Intuitionists consider —A as an abbreviation for A — _L, postulating that nothing is
a proof of L (falsity).

It follows that from an intuitionistic point of view it is reckless to assume A V —A.
The validity of AV —~A means, intuitionistically, that we have a method adequate
in principle to solve any mathematical problem A. However, consider Goldbach’s
conjecture, G, which states that each even number is the sum of two odd primes:
2=14+1,4=3+1,6=5+1,8=7+1,10=7+3,12=T7+5,14=T+7,
16 =13+3,18 =13+5,.... One can check only finitely many individual instances,
while Goldbach’s Conjecture is a statement about infinitely many (even) natural
numbers. So far neither Goldbach’s Conjecture, G, nor its negation, =G, has been
proved. An intuitionist is therefore not in a position to affirm GV —G. A person who
claims that he or she can provide a proof either of G or of —G is called reckless.

Notice that from a classical point of view A V —A is valid, since A is a statement
about mathematical objects created independently of us, for which either A or —A
holds, although we may not know which one.
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In Chapter 8 we will elaborate on Brouwer’s intuitionism and see that his differ-
ent philosophical point of view about the nature of mathematical objects results in a
logic which is much more fine-grained, but also more difficult, than classical logic.

1.9 Applications

1.9.1 Programming in Logic: Prolog

Since Godel’s completeness theorem expresses that every valid pattern of reasoning
can be built up from a certain small collection of logical rules in a logical proof-
system (such as the system of Natural Deduction), the idea to equip a computer
with these logical rules is quite natural. If we do so, the computer will be able
to simulate reasoning and hence disposes of Artificial Intelligence. By adding to
such a computer-program a number of dataAy,...,A,, concerning a small and well-
described subject, the so-called knowledge base, the computer is able to draw con-
clusions from those data. If Ay,...,A, represent someone’s expertise, one speaks
of an expert system. And if the knowledge base consists of Euclid’s axioms for ge-
ometry or Peano’s axioms for number theory or of axioms for some other part of
mathematics, one speaks of automated theorem proving.

It was only in the early 1970’s that the idea emerged to use the formal language
of logic as a programming language. An example is PROLOG, which stands for
PROgramming in LOGic. A logic program is simply a set of formulas (of a par-
ticular form) in the language of predicate logic. The formulas below constitute a
logic program for kinship relations. The objects are people and there are two binary
predicates ‘parent of” (p), and ‘grandparent of” (g).

Ajp: p(art, bob).
Ajy: p(art, bud).
Ajz: p(bob, cap).
Ay p(bud, coe).
As: g(x,2) - p(x,y), p(3,2).

“art’, 'bob’, ’bud’, ’cap’ and ’coe’ are individual constants and As stands for
p(x,y) A p(y,2) — g(x,2). Now if we ask the question

?- g(art, cap)

the answer will be ‘yes’, corresponding with the fact that g(art, cap) can be logically
deduced from the premisses or data Ay, ...,As.
But if we ask the question

?7- g(art, amy)

the answer will be ‘no’, corresponding with the fact that g(art, amy) cannot be logi-
cally deduced from Ay, ...,As. Note that this does not mean that —~g(art, amy) logi-
cally follows from Ay,...,As.
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And if we ask the question
?- g(art, X)

the answer will be X = cap, X = coe.

Once we have observed that data can be translated into formulas in the formal
language of logic and that queries concerning the objects in the data — again trans-
lated into formulas — can be answered with ’yes’ or 'no’, depending on whether
the putative conclusion can or cannot be logically deduced from the given data, it
becomes clear that there is an interesting connection between logic and databases.

In Chapter 9 we shall study more closely how the language of logic may be used
as a programming language in the context of artificial intelligence.

1.9.2 Relational Databases

The theory of finite sets is the basis for relational databases, which we shall present
in Chapter 9. In fact, the query language SQL formulates questions to the database in
terms of sets. To illustrate, suppose we have a table P with patients containing their
number (nmb), name (nm), address (addr), residence (res) and gender (gen).

nmb | nm | addr | res | gen

t  t(nmb) [ £(nm) | t(addr) | £(res) | t(gen)

Each row in the table, called a tuple ¢, represents one patient. Mathematically, a
tuple ¢ assigns to every attibute nmb, nm, addr, res, gen a value t(nmb), f(nm),
t(addr), t(res), t(gen) in a predefined domain. Then

{ t(nm) | t € P | #(res) = ‘Princeton’ A t(gen) = ‘male’ }

is the set of all names of patients in table P who live in Princeton and are male.
This set is generated by the Structured Query Language SQL as follows:

SELECT ¢t.nm

FROM P ¢

WHERE ¢.res = ‘Princeton’

AND ¢.gen = ‘male’

1.9.3 Social Choice Theory

In social choice theory one studies how individual preferences or evaluations should
be aggregated to a common (group or social) preference or evaluation respectively.
That this is problematic may be demonstrated by the following simple example.
Suppose there are nine voters (or judges) who have the following preferences over
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4:abc

three candidates or alternatives a, b and c: 3:bca That is, the first
2:cba

four voters prefer a to b, b to ¢ and also a to c; similarly for the other voters.

If we apply Plurality Rule (PR) or ‘most votes count’, only the most preferred
candidate is taken into account. So, a has four first votes, b three and ¢ only two.
Consequently, the common or social ranking under PR will be: a b c.

If we apply Majority Rule (MR) or pairwise comparison, we see that 3 + 2 =5
voters, hence a majority, prefer b and ¢ to a; and that 4 + 3 = 7 voters prefer b to c.
So, under Majority Rule the common or social ranking will be: b ¢ a.

Many other voting rules exist, which will all lead to different outcomes. But
already at this stage we see that the outcome depends on the aggregation rule, rather
than on the preferences of the voters.

Another problem is that all familiar voting rules may yield an outcome which
is counter-intuitive. For instance, Plurality Rule makes a the winner, while a for a
majority of the voters is the least preferred candidate. And Majority Rule in some
cases does not even yield a winner, for instance, when there are three voters with the
following preferences 1: a b c; 1: b ¢ a and 1: ¢ a b. So the question arises whether
there exists a voting rule that has only nice properties. This question was answered
negatively by K. Arrow in 1951: there cannot exist a voting rule, which takes indi-
vidual preferences as input, that satisfies certain desirable properties among which
being non-dictatorial. This impossibility theorem has puzzled the social choice com-
munity, consisting of political scientists, economists, mathematicians and philoso-
phers, ever since.

However, in 2010 Balinski and Laraki pointed out that the framework of Arrow,
in which voters are supposed to give a preference ordering, is ill conceived. Voters
should be asked to give evaluations of the candidates, for instance in terms of ‘ex-
cellent’, ‘good’, ‘acceptable’, ‘poor’ and ‘reject’. Notice that evaluations are much
more informative than preference orderings. Next, Balinksi and Laraki present a
voting rule, called Majority Judgment (MJ), which takes evaluations of the candi-
dates by the voters as input and yields a social ranking of the candidates as output.
This Majority Judgment does satisfy the desired properties.

In Section 9.3 we shall discuss Plurality Rule, Majority Rule and the Borda Rule
and show that they all violate one or more of the desired properties. Also a version
of Arrow’s theorem will be proved. Next we present Balinski and Laraki’s Majority
Judgment and show that it does satisfy the desired properties.

1.10 Fallacies and Unfair Discussion Methods

For many discussions and meetings it holds that they are led perfectly from a formal,
procedural and technical point of view, but that the quality of the in-depth discussion
is poor. The cause of poor thinking should be sought in the weakness of human
nature, rather than in the restrictions of our intelligence. Among the weaknesses of
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human nature are ambitions, emotions, prejudices and laziness of thinking. The goal
of a discussion is not to be right or to overplay or mislead the other, but to discover
the truth or to come to an agreement by common and orderly thinking.

Ideally, an argument consists of carefully specified premisses or assumptions and
a conclusion which logically follows from the premisses. Logical correctness of an
argument means that if the premisses are true, then the conclusion must also be true.
In Section 1.2 we have already seen that logical correctness of an argument does
not mean that the premisses are true, neither that the conclusion is true. We may
have a logically correct argument with a false conclusion when at least one of the
premisses is false. And a logically incorrect argument may have a conclusion that is
true, when its truth is not based on the given premisses but on other grounds. One
should also realize that from contradicting premisses one may conclude anything
one wants: ex falso sequitur quod libet; a principle popular among many politicians.

In real life premisses and even the conclusion may be tacit, in which case one
speaks of enthymemes. Premisses may not be explicitly stated for practical reasons
or because the speaker is not aware of them himself, but also to mislead the audience.

One may distinguish formal and informal fallacies. A formal fallacy is an incor-
rect argument which may be represented in a formal logical system such as proposi-
tional logic. A simple example is: A implies B (A — B) and B; hence A. For instance:
if the weather is nice, then John will come. John comes; hence the weather is nice.
That this argument is incorrect may become clear from the following example which
has exactly the same structure: if Bill Gates owns all the gold in Fort Knox, then he
is rich. Bill Gates is rich; hence Bill Gates owns all the gold in Fort Knox. However,
a doctor frequently has to reason this way: a patient comes with a certain complaint
B that may have several causes A; A — B and B, so the doctor will start with treating
the most likely cause A.

An argument is an informal fallacy when the putative conclusion is not supported
by the content of the premisses, but is based on the ambitions, emotions, prejudices
and/or laziness of thinking of the people involved. In real life, ambitions, emotions,
prejudices and laziness of thinking play a major role in argumentation, debating
and discussions. A speaker may be too proud to admit that he is wrong, he may
be irritated by his opponent and consequently say more than he can justify, he may
have prejudices which he does not want to give up and/or he may be too lazy to
study an issue carefully and for that reason oversimplify it.

So, in real life discussions and debating it is important that one is aware of all
kinds of tricks which are used, consciously or unconsciously, by one’s opponent to
suggest that you are wrong, while in fact your opponent is wrong. In Chapter 10 we
discuss a dozen different fallacies and a dozen unfair discussion methods.
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1.11 Solutions

() -0—D

Solution 1.1. The pattern of reasoning is the following one: 2) -D
B & gONE 3y P -0

-P

This pattern is valid; hence the argument is correct. Suppose (1), (2) and (3) and P.
Then by (3) —0. Then by (1) D, contradicting (2). Therefore, if (1), (2) and (3), then
—P. Note that both the conclusion and the second premiss in this argument are false.

(1) N—J

Solution 1.2. The pattern of reasoning is the following one: 2) -oN
-J

This pattern is invalid and hence the argument is not correct. It may well be that
John comes, while the weather is not nice. In that case J is true and hence also the
premisses (1) and (2) are true, while the conclusion —J is false.
Another counterexample: take for N the proposition ‘Bill Gates owns all the gold
in Fort Knox’ and for J the proposition ‘Bill Gates is rich’. Then all premisses are
true, while the conclusion is false.

(1 N—J
Solution 1.3. The pattern of reasoning is the following one: 2) J
N
This pattern is equivalent to the former one, since N — —J is equivalent to J — N,
and hence invalid.

(1) J—N
Solution 1.4. The pattern of reasoning is the following one: 2 J
N
This pattern is valid and hence the argument is correct. The first premiss may be
expressed by N — —J or equivalently by J — N. If both premisses (1) and (2) are
true, then the conclusion must be true too.

(1) ~(PA-S)

Solution 1.5. The pattern of reasoning is the following one: g; ~Pv ﬁg
-8

This pattern is not valid and hence the argument is incorrect. If P is false and S and
D are true, then the premisses are all true, while the conclusion is false.

Vx[B(x) vV C(x)]
Vx[B(x)] V ¥x[C(x)]
using B(x) for ‘x has a beard’ and C(x) for ‘x has a conical cap’. This pattern is not
valid; hence the argument is not correct: taking natural numbers as domain, inter-
preting B(x) as ‘x is even’ and C(x) as ‘x is odd’ yields a true premiss and a false
conclusion.

Solution 1.6. The pattern of reasoning is the following one:
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Vx[B(x) — C(x)]
Solution 1.7. The pattern of reasoning is the following one: Vx[B(x)]
Vx[C(x)]
This pattern is valid; hence the argument is correct: if all objects with the property
B also have the property C, and all objects have the property B, then all objects must
have the property C, no matter what the objects or what the properties B and C are.
Ix[B(x)]
Solution 1.8. The pattern of reasoning is the following one: W[C(x)]
Ix[B(x) AC(x)]
This pattern is not valid and hence the argument is not correct: taking natural num-
bers as domain, interpreting B(x) as ‘x is even’ and C(x) as ‘x is odd’, yields true
premisses and a false conclusion.
x[-B(x) VC(x)]
Solution 1.9. The pattern of reasoning is the following one: I[B(x)
W(C(x)]
This pattern is not valid and hence the argument is not correct: taking natural num-
bers as domain, interpreting B(x) as ‘x is even’ and C(x) as ‘x is negative’, yields
true premisses and a false conclusion.
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Chapter 2
Propositional Logic

H.C.M. (Harrie) de Swart

Abstract In this chapter we analyse reasoning patterns of which the validity only
depends on the meaning of the propositional connectives ‘if ..., then ...”, ‘and’,
‘or’ and ‘not’. By giving a precise description of the meaning of these propositional
connectives one is able to give a precise definition of the notion of logical or valid
consequence. Two such definitions are given: a semantic one, in terms of truth val-
ues and hence in terms of the meaning of the formulas involved, and a syntactic
one in terms of logical axioms and rules of which only the form is important. The
semantic and the syntactic definition of logical consequence turn out be equivalent,
giving us confidence that we gave a proper characterization of the intuitive notion of
logical consequence. We prove or disprove all kinds of statements about the notion
of logical or valid consequence, which is useful in order to get a good grasp of this
notion. The last section treats a number of paradoxes which have been important for
the progress in science and philosophy; it also contains a number of historical and
philosophical remarks.

2.1 Linguistic Considerations

Logic is such a rich, broad and varied discipline that it is necessary to approach it
by picking a small and manageable portion to treat first, after which the treatment
can be extended to include more. In this Chapter we restrict our study of reasoning
to what is called propositional logic or the propositional calculus.

A proposition is the meaning of a declarative sentence, like ‘John is ill’, ‘Coby goes
to school’, etc., where a sentence has been obtained from letters or words from a
given alphabet according to certain grammatical rules. So, a sentence is just a com-
bination of letters or words, while the corresponding proposition is the meaning
of the sentence in question. One says that a sentence expresses a proposition. This
explains the term ‘sentential calculus’ instead of ‘propositional calculus’. A propo-
sition is either true or false, although we do not have to know which of the two.
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Besides declarative sentences one can distinguish interrogatory sentences which
ask questions and imperative sentences which express commands. These latter sen-
tences do not express propositions: it does not make sense to ask whether they ex-
press something true or something false. Note that different declarative sentences
may express the same proposition. Thus the same proposition is expressed by ‘John
reads the book” and ‘the book is read by John’. 3> +4? = 5% and 5> = 3% +4? also
express the same proposition (which happens to be true); but 5+ 7 = 12 expresses
a different proposition (also true).

By means of connectives one may construct more complex propositions from
more elementary ones. For instance, ‘John is ill and Coby goes to school’ has been
composed from the two more elementary propositions by means of the connective
‘and’. The most important connectives or propositional operations are: ‘if and only
if (iff)’, ‘if ..., then ...", ‘and’, ‘or’ and ‘not’. In propositional logic one uses the
symbols =, —, A, V and — for these connectives, respectively.

We distinguish atomic propositions, like ‘John is ilI’ and ‘Coby goes to school’
on the one hand and composite propositions on the other hand. Atomic propositions
are those propositions which cannot be composed of yet more simple propositions
by means of propositional operations. If a proposition has been composed from
more elementary propositions by means of one or more propositional operations
we call it a composite proposition. Thus, ‘John is ill and Coby goes to school’ is a
composite proposition.

In propositional logic one uses letters Py, P, P3, ... to denote atomic propositions.
For instance, ‘John is ill” may be translated by P;, while ‘Coby goes to school’ may
be translated by P». The composite proposition ‘John is ill and Coby goes to school’
is then translated by Py A Ps.

In propositional logic one studies the (in)validity of reasoning patterns of which
the (in)validity is completely determined by the meaning of the connectives ‘if and
only if* (&), ‘if ..., then ...” (=), ‘and’ (A), ‘or’ (V) and ‘not’ (—) between the
propositions in question. A simple example is the following reasoning pattern, called
Modus Ponens (MP):

It snows (1) P
If it snows, then it is cold. (2) P—P
Therefore: it is cold. (3) P

The pattern to the above right is valid, i.e., no matter what propositions the formulas

Py, P; stand for, if the resulting two premisses are both true, then also the conclusion

must be true; in particular, if (1) and (2) are true, then (3) must be true too. Notice

that the validity of this pattern only depends on the meaning of the connective —

and not on the meaning of the formulas Py, P,. We call the concrete argument about

snow and being cold correct, because the underlying reasoning pattern is valid.
But, for instance, the validity of the reasoning pattern

For all x, if x is a person, then x is mortal Vx[P(x) — M(x)]
Socrates is a person P(c)
Therefore: Socrates is mortal M(c)
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not only depends on the meaning of the connective —, but also on the meaning of the
universal quantifier V (for all). Notice that P, P, above stand for propositions, while
P(x),M(x) stand for the predicates ‘x is a person’ and ‘x is mortal’ respectively. In
predicate logic, to be treated in Chapter 4, we study reasoning patterns of which the
validity also depends on the meaning of the quantifiers V (for all) and 3 (for at least
one).

The study of propositional logic was initiated by the Stoics (see Subsection
2.10.2), some 300 years before Aristotle developed his theory of the syllogisms
(see Subsection 4.7.4).

Let us start by considering some examples of propositions about numbers, some
of which are true and some of which are false. We give their translation into the
language of propositional logic, and their translation into the language of predicate
logic.

Proposition prop. formula  pred. formula
1. All numbers are positive (> 0) P Vx[P(x)]

2. All numbers are negative (< 0) P, Vx[N(x)]

3. All numbers are positive or negative ~ P3 Vx[P(x) V N(x)]

Here V is the universal quantifier expressing ‘for all’, P(x) stands for the predicate
‘x is positive’, N(x) for the predicate ‘x is negative’ and V stands for the connective
‘or’. It is important to notice that the propositional translation of sentence 3 cannot
be rendered by P; V P, because this formula expresses the proposition ‘all numbers
are positive or all numbers are negative’ which happens to be false, while sentence 3
is true. Also notice that in P, V P, the connective V stands between two propositions,
while in Vx[P(x) V N(x)] the connective V stands between two predicates.

Proposition prop. formula  pred. formula
4. There is at least one even number Py Ax[E (x)]

5. There is at least one odd number Ps [0 (x)]

6. There is a number that is both even and odd ~ Ps Ix[E(x) A O(x)]

Here 3 is the existential quantifier expressing ‘there is at least one’, E(x) stands for
the predicate ‘x is even’, O(x) for the predicate ‘x is odd’ and A stands for the con-
nective ‘and’. It is important to notice that the propositional translation of sentence 6
cannot be rendered by P4 A Ps, because this formula expresses the proposition ‘there
is at least one even number and there is at least one odd number’ which happens
to be true, while sentence 6 is false. Also notice that in P, A Ps the connective A
stands between two propositions, while in 3x[E (x) A O(x)] the connective A stands
between two predicates.

Proposition prop. formula  pred. formula
7. There is a number x such that x > 0 P dx[x > 0]
8. There is a number x such thatnot x >0 P [~ (x > 0)]

x > 0 is not a proposition, but a predicate, while 5 > 0, for instance, is a proposition.
Similarly, ‘not x > 0’ is not a proposition, but the negation of a predicate, while ‘not
5 > 0’ is a proposition. It is important to notice that proposition 8 is not the negation
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of proposition 7; the negation of 7 is ‘there is no number x such that x > 0, —=3x[x >
0], which is equivalent to ‘for all numbers x, not x > 0. This latter proposition is
false, while proposition 8 is true. In the negation of sentence 7, the negation stands
in front of the existential quantifier, while in sentence 8 the negation stands in front
of the predicate x > 0.

Proposition prop. formula  pred. formula
9. All persons have a mother Py Vx3y[M(x,y)]
10. There is one mother of all persons Pio IVx[M (x,y)]

Vx3y[M(x,y)] says: for every person x there is a person y such that x stands in the
child-mother relation M(x,y) with y. But by changing the order of the quantifiers
one obtains FyVx[M (x,y)] which says: there is at least one person y such that for all
persons x, x stands in the child-mother relation M (x,y) with y. Notice that sentence
9 is true, while sentence 10 is false.

Proposition prop. formula  pred. formula
11. For every number there is a larger one Py VxJy[x <]
12. There is a largest number P IVxlx < y]

VxJy[x < y] says: for every number x there is a number y such that x is smaller than y.
But changing the order of the quantifiers one obtains FyVx[x < y] which says: there
is a number y such that for all numbers x, x is smaller than y. Notice that sentence
11 is true, while sentence 12 is false. So, the order of the quantifiers V and 3 does
matter!

Let us have a closer look at proposition 9: ‘all persons have a mother’, or equiva-
lently:

For every person x there is some person y such that y is the mother of x.

II

III

I, ‘y is the mother of x°, does not express a proposition, but a binary predicate or
relation; neither does ‘Mary is the mother of x’, which expresses a unary predicate.
However, ‘Mary is the mother of John’ does express a proposition.

II, ‘there is some person y such that y is the mother of x’, does not express a proposi-
tion, but a unary predicate, which may become more clear if we formulate II as fol-
lows: someone is the mother of x or, equivalently, x has a mother. However, ‘some-
one is the mother of John’ does express a proposition.

IIT does express the proposition ‘every person has a mother’. Note that all variables
x,y occurring in IIT also occur in the context ‘for every’ or ‘there is’.

In propositional logic one ignores the internal subject-predicate structure of the
atomic propositions. The atomic propositions can have the form ‘for all x, x has
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a certain property P’, like the propositions 1 up to 3 inclusive, or the form ‘there is
at least one x such that x has the property P’, like the propositions 4 up to 8 inclu-
sive, or the form ‘for every x there is a y such that x is in relation R(x,y) to y’, like
proposition 9 and 11, and so on. In the propositional calculus we restrict ourselves
to arguments like Modus Ponens and the arguments a), b) and c) in Chapter 1, the
correctness of which only depends on how the different propositions are composed
of more elementary ones by means of operations like ‘iff’, ‘if ..., then ...”, ‘and’,
‘or’ and ‘not’. In the propositional calculus the internal subject-predicate structure
of the elementary propositions is not taken into consideration. However, the argu-
ment above about Socrates makes it clear that the correctness of an argument may
also depend on this subject-predicate structure. Therefore, the propositional calculus
has to be extended to the predicate calculus, which is treated in Chapter 4.

Below we list the symbols we are using for the propositional operations, mentioning
their name and alternative symbols which may be used in the literature.

name symbol alternatives meaning

equivalence = o, = (is) equivalent (to); if and only if; iff
(material) implication — D if ..., then ...; implies

conjunction A & and

disjunction vV or; and/or

negation - - not

Instead of the atomic propositions considered above, being about numbers, and the
propositions that can be built from them by the propositional connectives, we can
of course consider different atomic propositions, for instance of geometry, physics
or of some other sharply circumscribed part of natural language, together with the
composite propositions that can be built from them. So, in order to retain flexibility
for the applications, we shall simply assume, throughout this chapter, that we are
dealing with an object language in which there is a class of (declarative) sentences
consisting of certain building blocks

P17P27 P37"'

called atomic formulas, from which composite formulas can be built by means of
the propositional connectives. By a formula we mean either an atomic or a compos-
ite formula. So, throughout this chapter our object language will be the following
symbolic language:

symbols names

Alphabet: P, P, P,... atomic formulas or propositional variables
=2, =, AV, connectives
(,) parentheses

Definition 2.1 (Formulas).

1. Each atomic formula is a formula. In other words, if P is an atomic formula, then
P is a formula.
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2. If each of A and B is a given formula (i.e., either an atomic formula or a composite
formula already constructed), then (A = B), (A — B), (AAB) and (A V B) are
(composite) formulas.

3. If A is a given formula, then (—A) is a (composite) formula.

This language is the formal language of propositional logic. It consists of the for-
mulas built from the given alphabet according to Definition 2.1.

Py, P,, P3, ... are symbols to be interpreted as atomic propositions from arith-
metic, geometry, physics, any other science or daily life. The first four connectives
are binary connectives, the last one is unary. The connectives are symbols whose
meanings are the respective propositional operations; in Section 2.2 we will fix and
stylize these meanings by truth tables. The parentheses are punctuation marks. In
A — B we call A the antecedent and B the succedent.

Example 2.1. Here are some examples of formulas:

P, P, P, Py
(=P2), (—P3)
(PLV (=P2)), ((=P3) = P4)
(PLV (=P2)) A((—P3) = Py)).

Notice that the number of left parentheses must be equal to the number of right
parentheses.

if, only if and iff:

‘Bif A’ is translated by A — B, which may also be read as ‘if A, then B’.

‘B only if A’ is translated by B — A, and ‘B if and only if (iff) A’ is translated by
(A— B)A(B—A), or, equivalently, by A = B.

Convention: When we want to state something about arbitrary natural number, the
letters n, m are used to stand for any of the natural numbers O, 1, 2, 3, .... For
instance, when we state that for all natural numbers n, m: n +m = m + n. Similarly,
the letters P, Q and R are used to stand for any atomic formulas P, P5, P3, ... and the
letters A, B, C, Ay, A2, ..., B1, By, ...,C1, Cy, ... are used to stand for any formulas,
not necessarily atomic. For instance, the letters A and B may stand for any of the
formulas in Example 2.1. Distinct such letters need not represent distinct formulas,
in contrast to P;, P>, P, ... which are distinct atomic formulas.

Parentheses in formulas are essential: they indicate which parts belong together.
Leaving them out may cause ambiguity. For instance, A A B — C might mean:

e (AAB)— C, which is an implicational formula with A A B as antecedent, and
e AA(B— C), which is a conjunction of the formulas A and B — C.

‘If John wins the lottery and is healthy, then he will go to the Bahamas’ is a proposi-
tion of the first form, while ‘John wins the lottery and if he is healthy, then he will go
to the Bahamas’ is a proposition of the second form. Only in the second proposition
it is stated that John wins the lottery.
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Convention We can minimize the need for parentheses by agreeing that we leave
out the most outer parentheses in a formula and that in

<:)7 %7 /\7 \/7_‘

any connective has a higher rank than any connective to the right of it and a lower
rank than any connective to the left of it.

According to this convention, A A B — C should be read as (A AB) — C, because
— has a higher rank than A, and not as A A (B — C), which has a different meaning.
The formula —A V B should be read as (—A) V B, because by convention V has a
higher rank than —, and not as =(A V B), which means quite something else. And
C=2AAB— Cshouldbereadas C = ((AAB) — C).

It is interesting to notice that the build-up of formulas is very similar to the build-up
of natural numbers. Formulas are generated by starting with atomic formulas P, P,
P;, ... and successively passing from one or two formulas already generated before
to another formula by means of the connectives. Natural numbers are generated by
starting with one initial object 0 and successively passing from a natural number n
already generated before to another natural number n + 1 or n’ (the successor of n).

Since natural numbers are built up from O by repeated application of the succes-
sor operation, the theorem of mathematical induction follows immediately from the
definition of natural numbers:

Theorem 2.1 (Mathematical induction). Let @ be a property of natural numbers
such that

1. (induction basis:) 0 has property @, and

2. property @ is preserved when going from a natural number n to its successor 1,
i.e., for all natural numbers n, if n has property @ (induction hypothesis), then
also n' has property @.

Then all natural numbers have property .

Using mathematical induction, one can prove, for instance, that for all natural num-
bersn, 1 +2+...+n=Jn(n+1).See Exercise 2.5.

The induction principle for formulas is similar to mathematical induction for
natural numbers. Since (propositional) formulas are built up from atomic formulas
P, P, P3,... by successive applications of connectives to formulas already gener-
ated before, the following theorem, called the induction principle (for propositional
formulas), follows immediately from the definition of formulas.

Theorem 2.2 (Induction principle). Let @ be a property of formulas, satisfying

1. (induction basis:) every atomic formula has property ®@ and

2. property @ is preserved in building more complex formulas by means of the
connectives, i.e., if A and B have property @ (induction hypothesis), then (A =
B), (A— B), (AAB). (AVB) and (—A) also have property ®.

Then every formula (of the propositional calculus) has property @.
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Using Theorem 2.2 one can prove, for instance, that every formula contains as many
left parentheses as right parentheses (see Exercise 2.6.) Another application is The-
orem 2.18 which says that every formula can be written in normal form.

Notice that we have introduced a logical (propositional) language such that English
sentences may be translated into this logical language and conversely one may trans-
late the logical formulas into the corresponding English sentences. What holds for
English sentences of course also holds for German, French, Spanish and all other
sentences. With this in mind one might build for each natural language a machine
that translates the sentences of the language in question into logical formulas and
back. By combining these machines with logic as the intermediate language, one
obtains an automatic translation of, for instance, English to, for instance, German:
automatically translate the English sentences into logical formulas and next auto-
matically translate the resulting logical formulas into German sentences. This was
roughly the Rosetta translation project of the European Union.

Exercise 2.1. Let P; stand for ‘John works hard’,

P for ‘John is going to school’, and

P for ‘John is wise’.
Translate the following sentences into the language of propositional logic, using the
least possible number of parentheses.

i) If John works hard and is going to school, then John is not wise.
ii) John works hard and if John is going to school, then he is not wise.
iii) John works hard, or if John is going to school, then he is wise.
iv) If John is going to school or works hard, then John is wise.
v) If John works hard, then John is not wise, at least if he is going to school.

Exercise 2.2. Translate the following formulas into English sentences, reading P,
P> and Pj as indicated in exercise 2.1.

i) (P — Py) = P iv) “P, AP

i) "P VP v) (P, A P3)
iii) =(P; V P3)

Exercise 2.3. Translate the following propositions into propositional formulas and
into predicate formulas:

1. Every gnome has a beard.

2. All gnomes have no beard.

3. Not every gnome has a beard.

Exercise 2.4. Which of the following expressions are formulas (of the language of
propositional calculus)? P, P, —-F, —-Q, PPA-F, PA—-Q, A, B, AN—-B,
(PLAPy) — =P, (PLAP) —Q, (PPAP) — B, AANB—C.

Exercise 2.5. Use mathematical induction (Theorem 2.1) to prove that for all natural
numbersn, | +2+...+n= %n(n+ 1).

Exercise 2.6. Use the induction principle (Theorem 2.2) to show that every formula
of propositional logic contains as many left parentheses ‘(’ as right parentheses ‘).
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2.2 Semantics; Truth Tables

In the first section of this chapter a logical (propositional) language was introduced
in which we can translate the premisses and the conclusion of an argument, result-
ing in a reasoning pattern. We have indicated the meaning of the atomic formulas:
atomic propositions which are either true or false. And we have indicated the mean-
ing of the propositional connectives =, —, A, V, and —: ‘if and only if’, ‘if ..., then
...”, ‘and’, ‘or’, and ‘not’, respectively.

In this section the meaning of the atomic formulas and the propositional connec-
tives is made more precise, where we restrict ourselves (in this chapter) to classical
logic. Owing in part to different analyses of implication, the heart of logic, there
are different systems of logic: classical logic, intuitionistic logic, relevance logic
and so on. Although we will treat the latter logic systems in other chapters, in this
chapter we shall concern ourselves primarily with classical logic, because it is the
simplest and most commonly used system of logic. In classical logic we assume that
each proposition is either frue, indicated by 1, or false indicated by 0. We do not,
however, suppose that one always knows whether a particular proposition is true or
false.

To start with, the atomic formulas P;, P>, Ps, ... stand for (or are interpreted as)
atomic propositions, such as ‘John is ill’, the ‘weather is nice’, etc. These atomic
propositions may be true, indicated by 1, or false, indicated by 0. We standardize
this in the so-called truth table of the atomic formulas Py, P,, Ps, . ... So, by definition
the truth table of an atomic formula P, where P stands for any of the atomic formulas
Py, P, P, ..., is the following one:

P
1
0

For two atomic formulas P and Q there are four different assignments of the values
1 (true) and O (false), schematically rendered as follows:

P Q
11
10
0 1
00

In the first line the atomic formulas P and Q are both interpreted as true atomic
propositions, in the fourth line both as false atomic propositions.

For three atomic formulas P, Q and R there are eight different assignments of the
values 1 and 0. Notice that the number of different assignments of the values 1 and
0to P, Q and R is two times as many as for the two atomic formulas P and Q, since
for each of the four different assignments of the values 1 and 0 to P and Q, one may
assign a 1 or a 0 to R: More generally:

Lemma 2.1. For n atomic formulas Py,...,P,, n =1,2,..., there are 2" different
assignments of the values 1 and 0.
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If a formula A, for instance A = Py — (P, — P3), has been built from three atomic
formulas, there are 23 = 8 different assignments of the values 1 and O to the atomic
formulas P;, P, and P;. But the formula A itself can have at most two different
values: 1 and 0.

Next a precise meaning has to be given to the propositional connectives. This is done
in the so-called truth tables for the propositional connectives, where it is specified
how the truth value of the composite formulasA = B, A — B,AAB, AV B and A
is completely determined by the truth values of the components A and B.

Two different formulas A and B can have at most four different values of truth
(1) and falsity (0), represented by the four rows in the table below. Each column in
the table below indicates how the truth or falsity of the composite formula heading
that column depends on the truth values of its immediate components A and B.

A B|A=B|A—B|AANB|AVB |A |4
1] 1 1 1 1 1[0
10| 0 0 0 1 01
01| 0 1 0 1
00| 1 1 0|0

Thus A & B is true exactly when A and B have the same truth value; hence, the
reading ‘equivalent’, i.e., ‘equal valued’, for <.

A — B s false exactly when A is true and B is false.

A A B is true exactly when A and B are both true.

AV B is false exactly when both A and B are false.

And —A is true exactly when A is false.

The truth tables for the propositional connectives may also be presented in the fol-
lowing way:

| = | = [ A | vV L] -
T I[1=l=1|[15I=1|IAI=1]IVI=1 T[-1=0
1 0/1=20=0[1-0=0{1A0=0|1v0=1 0| 0=
0 1{0=1=0[0>1=1][0A1=0]0VI=1
0 0/0=0=1[050=1][0A0=0]0v0=0

The truth tables for =, A, V and — are self evident and give little or no reason
for discussion. However, the table for — was already disputed by the Stoics, see
Subsection 2.10.2. Nevertheless, it is the only one of the 16 possible columns of
length 4 consisting of 1’s and 0’s which is tenable; any other proposal can easily be
rejected as unreasonable.

First, let us notice that the propositional connectives <, —, A, \V and — as defined
in the truth tables are truthfunctional, i.e., the truth values of A= B,A — B, A\B,
AV B and —A are completely determined by the truth values of its components A
and B. This is not always the case for the connective ‘if ..., then ...” from daily
language, as may be illustrated by the following two sentences:
1. If I would have jumped out of the window on the 10th floor, then I would have
been injured.



2.2 Semantics; Truth Tables 31

2. If I would have jumped out of the window on the 10th floor, then I would have
changed into a bird.
Although in both sentences the components have the same truth value 0 (I have not
jumped out of the window, I have not been injured and I have not changed into a
bird) the first sentence is held to be true, while the second sentence is held to be
false. In other words, in sentence 1, the combination ‘if 0, then 0’ gives a 1, while
in sentence 2 the same combination ‘if 0, then 0 gives a 0. So, the ‘if ..., then ...
from daily language is not truthfunctional. Consequently, the — may be different
from the ‘if ..., then ...” from daily language.

Neverthelesse, in daily life the ‘if ..., then ...’ is frequently, although not always,
used precisely as described in the truth table of —. We may illustrate this with the
following example:

For all integers n and m, if n = m, then n? =m?.

Why is this proposition true? Simply because it is impossible that for some integers
n and m the proposition n = m has truth value 1, while the proposition n> = m? has
truth value 0. In other words, the combination 1 for n = m and 0 for n? = m? does
not occur. Only the combinations 1 - 1, 0 - 1 and O - 0 may occur and these give the
value 1, just as in the truth table of — :

n=m n*=m? ifn=m, then n* = m?
n=2m=2 1 1 1
n=2 m= 2 0 1 1
n=2,m=3 0 0 1

From the table for — one sees that A — B is true (has value 1; is 1) if and only if A
is false (—A is true) or B is true (has value 1); in other words, it is easy to check that
A — B and —A V B have the same truth table. The truth table of A — B is also the
same as the one of =(A A —B), which corresponds with our intuitions:

AB| -A | ~AVB | -B | AA-B || -~(AA-B)
T 1|-1=0[0VI=1]-1=0[1A0=0] —0=1
1 0|-1=0[0v0=0[-0=1[1A1=1]| =1=0
0 1|=0=1[1vi=1[-1=0[0A0=0] —-0=1
0 0|-0=1[1vo=1{-0=1|0A1=0| —0=1

Warning One frequently is inclined to read A — B as: A and hence B. But this is
wrong! If I assert A — B, I do not assert A, neither B. Consider, for instance, the
sentence: if I win the lottery, then I will give you a Cadillac. This does not mean
that I win the lottery and hence will give you a Cadillac.

Why is A — B true (1) in case A is false (0)? Consider the following example.
Suppose I am determined never to play in a lottery; in this case I can truthfully
state: If I win the lottery, then I will give you a Cadillac. Assuming I never play in a
lottery, this is an empty statement, without content, and hence this statement cannot
be false.
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And why is A — B true (1) if B is true (1)? Suppose B stands for ‘I give you a
Cadillac’ and suppose this is true (1). Then the sentence ‘if I win the lottery, then I
will give you a Cadillac’ is certainly true (1) too.

The reader should also verify that the truth table for A = B is the same as the one of
(A — B) A (B — A), which also corresponds with our intuition:

ABwrﬂWA%BM%AHA%B B%AH
11 1

10 0 1 0

01 1 0 0

00 1 1 1

If one constructs the truth tables for A A B and for BAA, one will find that these two
truth tables are the same:

B| AAB || BAA
I{iAT=1]1A1=1
0|1A0=0(0A1=0
1|0A1=0][1A0=0
0{0A0=0|0A0=0

SO = =

However, a sentence like ‘Ann had a baby and got married” will leave another im-
pression than the sentence ‘Ann got married and had a baby’. In this example the
order of the two atomic propositions suggests a temporal or causal succession. Also
in the sentence ‘John fell into the water and drowned’ one cannot easily change the
order of the atomic components. These examples show that the connectives from
daily language may have shades of meaning which are lost in their translation to the
corresponding propositional connectives. Notice that the expression ‘A but B’ has
nuances of meaning not possessed by ‘A and B’ and lost in the translation A A B: ‘1
love you and I love your sister almost as well’ will leave another impression than ‘I
love you but I love your sister almost as well’.

In daily life, the connective ‘or’ is sometimes used in an exclusive way. For in-
stance, when the dinner menu says ‘tea or coffee included’, we do not expect to get
both. But in ‘books can be delivered at school or at church’ the connective ‘or’ is
used in an inclusive way: we may deliver books at school and/or at church. Notice
that the symbol V, coming from the Latin ‘vel’, corresponds with the inclusive ‘or’
and that A V B has the same truth table as BV A.

Analysing the use of the propositional operations ‘iff’, ‘if ..., then ...”, ‘and’,
‘or’, and ‘not’ in arithmetic, calculus and more generally in mathematics, it turns out
that these operations are used precisely as described in the truth tables of =, —, A, V
and — respectively. This should make it clear that our propositional connectives and
material implication A — B in particular are useful and natural forms of expression.
In natural language the propositional operations are frequently, but not always, used
as described in the truth tables above.

No disagreement exists that ‘if A, then B’ is false if A is true and B is false.
Problems arise with the claim that ‘if A, then B’ is false only if A is true and B is
false, and is true in all other cases. ‘If these three chairs cost 6 dollars (A), then



2.2 Semantics; Truth Tables 33

one chair costs 2 dollars (B)’ is true, because it is impossible that A is true and B
is false, due to the causal relation between A and B; in this example both A and B
are supposed to be false. Problems arise if there is no connection of ideas between A
and B, like in ‘if I would have jumped out of the window, then I would have changed
into a bird’, which is true under our table. A — B is called a conditional or a material
implication; the latter name because the truth of ‘if A, then B’ in general depends on
matters of empirical fact.

Example 2.2. Let us illustrate the repeated use of the truth tables by computing the
one for P — (P, — P3) and the one for (P AP,) — P5:

PP P bL—P ([P P—P)|| PAANP, (PLAPy) — P3
1 1 1|1—=>1=1|1—-1=1 INT=1 1—-1=1
1 1 0|1—=-0=0[1—-0=0 INT=1 1—-0=0
1 0 1|10—>1=1|1—>1=1 1AN0=0 0—-1=1
1 0 0]0—=0=1|1—=1=1 1AN0=0 0—-0=1
0 1 1|1—=>1=1[0—>1=1 0AN1=0 0—-1=1
0 1 0|1—-0=0|0—>0=1 0OAN1=0 0—-0=1
0 0 1|0—-1=1||0—->1=1 0OAN0=0 0—-1=1
0 0 0]0—=0=1||0—=>1=1 0AN0=0 0—-0=1

Notice that P; — (P, — P3) has the same truth table as (P; A P,) — P3, which cor-
responds with our intuition: P, — (P, — P3) is read as ‘if P;, then (if - in addition -
P, then P3), which is equivalent to ‘if P; and P, then P;’.

2.2.1 Validity

Atomic formulas have (by definition) two truth values, 1 and 0. However, it is easy
to see that some composite formulas have only one truth value. For instance, the
formula P; — P; can only have the truth value 1, no matter what the truth value of
Py is. And the formula P; A —P; can only have the truth value 0, no matter what the
truth value of P; is:

P] | P — P || =P | Py APy
1—-1=1]-1=0||1A0=0
0—-0=1|-0=1|0A1=0

Other formulas with only the truth value 1 are PV =P, P AP, — P, P — (P, —
Py) and Py — Py V P>. These formulas are called always true or valid. Wittgenstein
(1921) called these formulas tautologies.

Definition 2.2 (Valid; Consistent; Contingent). Let A be a formula.

A is always true or valid := the truth table of A — entered from the atomic formulas
from which A has been built — contains only 1’s. Notation: = A.

A is consistent or satisfiable := the truth table of A contains at least one 1; that is,
the formula A may be true.
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A is contingent := the truth table of A contains at least one 1 and at least one 0; that
is, A may be true and it may be false.

A is inconsistent or always false or contradictory := the truth table of A contains
only 0’s; that is, A cannot be true, in other words, is always false.

Notice that a valid formula is consistent, but not contingent; that a contingent for-
mulais by definition also consistent; and that an inconsistent formula is by definition
not contingent.

So, for instance, the formula P, — P; is valid and hence also consistent, the
formula P, — P, is contingent and consistent, but not valid, and the formula Py A =P
is inconsistent or always false.

On the one hand, valid formulas are uninteresting because they give no information.
On the other hand, since valid formulas are always true regardless of the truth or fal-
sity of their atomic components, they may be used in reasoning as may be illustrated
by the following example.

Example 2.3. Consider the following argument:
John is lazy [L]. L
If John is ill [/] or lazy, he stays at home [H]. IVL—+H
Therefore: John stays at home. H
In this valid reasoning pattern we use silently that = L — 'V L. The argument might
be simulated as follows: L L—=IVL
IVL IVL—H
H

Note that there are infinitely many valid formulas. Although it is not exhaustive (for
instance, PV —P does not occur in it), the following list enumerates infinitely many

valid formulas.
P—P

P— (P—P)
P—(P—(P—P)

Warning: While the symbol A stands for any formula, like P, — P>, P, A P, etc.,
the expression |= A is not a formula, but a statement about the formula A, namely,
that the truth table of A contains only 1’s. The symbol = does not occur in the
logical alphabet, and ‘|= A’ is shorthand for ‘A is valid’ or ‘A is always true’, which
clearly is not a logical formula. In other words, the symbol A indicates a formula
from the logical language, our object language, while the expression = A belongs
to the meta-language, in which we make statements about formulas of the object
language.

Notation: If a particular formula A is not valid, this is frequently written by ~ A
instead of ‘not = A’. For instance: = P; — P; V Py, but = P — P A Ps.

Definition 2.3 (Interpretation; Model). Let A be a formula built from the atomic
formulas Pi,...,P,. An interpretation i of A assigns a value 1 or 0 to all the atomic
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components of A; so, an interpretation i of A corresponds with a line in the truth table
for A and interprets each atomic formula in A as either a true or a false proposition.
Interpretation i of A is a model of A := i assigns to A the value 1, in other words,
i(A) = 1. In this terminology the definition of ‘A is valid’ can be reformulated as
follows: every interpretation i of A is a model of A.

Example 2.4. Thus, if A has been built from only two atomic formulas P and Q, then
there are four different interpretations of A: iy, i, i3, is.

P Q|lP—0
i] 1 1 1 il(P):l,il(Q)Zl,il(P—)Q):1
ip 1 0 0 iz(P) =1, iz(Q) =0, iz(P—) Q) =0
iz 0 1 1 i3(P)=0,i3(Q0)=1,3(P—>0)=1
itu 0 0 1 i1(P)=0,i4(Q)=0,i4(P—0)=1

For instance, i}, i3 and i4 are a model of P — Q, but i; is not a model of P — Q.

Definition 2.4. Let I be a (possibly infinite) set of formulas and i an interpretation,
assigning the values O or 1 to all the atomic components of the formulas in I".

i a model of I' := i is a model of all formulas in I', i.e., i makes all formulas in I"
true.

I is satisfiable := there is at least one assignment i which is a model of I".

Example 2.5. If I" consists of P — P> and P, V P,, then i; and i3 are models of I".
P P || Pr—P PVP

i 11 1 1
h 1 0 0 1
i 0 1 1 1
s 0 0 1 0

Theorem 2.3 (Compactness theorem). * Let I be a (possibly infinite) set of for-
mulas such that every finite subset of I’ has a model. Then I has a model.

Proof. LetI be a (possibly infinite) set of formulas such that every finite subset of I"
has a model. We will define an interpretation i of the atomic propositional formulas
Py, Py, P;,... such that for every natural number n, @(n), where @ (n) := every finite
subset of I" has a model in which Py, Py, ..., P, take the values i(P;),i(P),...,i(B,).

Once having shown this, it follows that i(A) = 1 for every formula A in I". For
given a formula A in I, take n so large that all atomic formulas occurring in A are
among Py, ..., P,. Since {A} is a finite subset of I" and because of @(n), A has a
model in which Py, ..., P, take the values i(P}),...,i(B,). So, i(A) = L.

Let i(P;) = 0 and suppose @(1) does not hold. That is, there is a finite subset
I’ of " which has no model in which P; takes the value i(P;) = 0. Then we define
i(P;) = 1 and show that @(1), i.e., every finite subset of I has a model in which P
takes the value i(P;) = 1. For let A be a finite subset of I". Then AUT" is a finite
subset of I" and hence has a model i. Since i is a model of T/, i(Py) = 1.

Suppose we have defined i(P;),...,i(P,) such that @(n). Then we can extend
the definition of i to P,y such that @(n + 1). For suppose that @(n + 1) does
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not hold if i(P,y1) = 0. That is, there is a finite subset I’ of I' which has no
model in which P,...,P,, P, take the values i(P}),...,i(P,),0. Then we define
i(Py+1) = 1 and show that @(n+ 1), i.e., every finite subset of I" has a model in
which Py, ..., P,, P, take the values i(P}),...,i(P,), 1. For let A be a finite subset
of I'. Then A UT" is a finite subset of I" and hence, by the induction hypothesis,
A UT' has a model in which P,..., P, take the values i(P,),...,i(P,). Since i is a
model of T, i(P,11) = 1. 0

For applications of the compactness theorem in mathematics see Exercises 2.16,
2.17 and 2.18.

Exercise 2.7. Show that the formulas in the pairs below have the same truth table:

a) "(AAB)and AV —B. d) -(A — B) and AA—B.
b) 7(AV B) and ~A A —B. e)A — Band ~B — —A.
¢)-AVBandA — B. f) A — B and ~(A A —B).

Exercise 2.8. Compute and compare the truth tables for:

a) P AP, — —P; and P; A (P, — —P3) (see Exercise 2.1).

b) P,V (P, — P3) and P; V P, — P; (see Exercise 2.1).

¢c) P — (P, — —P3) and (P, — P,) — —P; (see Exercise 2.1 and 2.2).
d) =P}V P; and (P, V P3) (see Exercise 2.2).

e) =P, APy and —(P, A\ P3) (see Exercise 2.2).

Exercise 2.9. Prove that a) (AV —A) — B has the same truth table as B,
b) (A V —A) A B has the same truth table as B, and
¢) (AA—-A)V B has the same truth table as B.

Exercise 2.10. Prove that AV B, (A — B) — B and (B — A) — A all have the same
truth table.

Exercise 2.11. Verify that the following formulas are valid by showing that it is
impossible that at some line in the truth table they have the value 0.
a) A — A b) (A — B)V (B—A) c)(P—0Q)— (-0 — —P).

Exercise 2.12. Show that the following formulas are not valid by computing just
one suitable line of the table: a) PV Q — PAQ b) (P— Q) — (Q — P).

Exercise 2.13. Which of the following alternatives applies to the following formu-
las? 1. P — —P 6. (P] — Pz) = (—|P1 \/Pz)
2. P =P 7. —\(Pl — Pz) = (Pl /\—\Pz)
3.PF P NP, 8. —\(Pl/\Pg) <:)(—\P1\/—‘P2)
4. Pp > P VP 9. —\(Pl \/Pz) = (—\Pl /\—‘Pz)
5.P—> P 10. (=PVPR) = (P — P)
Alternative A: not satisfiable (inconsistent).
B: satisfiable (consistent), but not valid.
C: valid, and hence satisfiable.

Exercise 2.14. Show that each formula built by means of connectives from only one
atomic formula P has the same truth table as either P A —P, P, =P or P — P.
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Exercise 2.15. Consider the following truth table for the exclusive ‘or’, V.

A B|AVB
I 1 0
1 0 1
01 1
0 0| O

a) Verify that A V B has the same truth table as (A VB) A—~(AAB) and as ~(A = B).
b) Verify that (A V B) V.C and A V (B V C) have the same truth table and in particular
that these formulas have the value 1 in the first line of the truth table (where A, B
and C are 1). Note that this does not correspond with the intended meaning of ‘A or
B or C’, if the ‘or’ is used exclusively.

Exercise 2.16. * (Kreisel-Krivine [18]) A group G is said to be ordered if there is a
total ordering < of G (see Chapter 3) such that a < b implies ac < bc and ca < cb
for all ¢ in G. Show that a group G can be ordered if and only if every subgroup of
G generated by a finite number of elements of G can be ordered.

Exercise 2.17. * (Kreisel-Krivine [18]) A graph (a non-reflexive symmetric rela-
tion) defined on a set V is said to be k-chromatic, where k is a positive integer, if
there is a partition of V into k disjoint sets Vi, ..., V,, such that two elements of V
connected by the graph do not belong to the same V;. Show that for a graph to be
k-chromatic it is necessary and sufficient that every finite sub-graph be k-chromatic.

Exercise 2.18. * Suppose that each of a (possibly infinite) set of boys is acquainted
with a finite set of girls. Under what conditions is it possible for each boy to marry
one of his acquaintances? It is clearly necessary that every finite set of k£ boys be,
collectively, acquainted with at least k girls. The marriage theorem says that this
condition is also sufficient. More precisely, let B and G be sets (of Boys and Girls
respectively) and let R C B X G be such that (i) for all x € B, Ry, is finite, and
(ii) for every finite subset B’ C B, Ry has at least as many elements as B’, where
Ry :={y € G| forsome xin B', R(x,y)}. Then there is an injection f : B— G such
that for all x € B and y € G, if f(x) =y, then R(x, y). In The Marriage Problem
(American Journal of Mathematics, Vol. 72, 1950, pp. 214-215) P. Halmos and H.
Vaughan prove first the case in which the number of boys is finite. Using this result
prove the marriage theorem for the case that B is infinite.

2.3 Semantics; Logical (Valid) Consequence

Consider the following concrete argument:
John is intelligent [I] or John is diligent [D].
If John is intelligent, then he will succeed [S].
If John is diligent, then he will succeed (too).
Therefore: John will succeed.
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IV D
I—S
D—S

S
To help our memory, for convenience we have used the symbols /, D and S instead
of P;, P, P5. Intuitively, this pattern of reasoning is valid: no matter what proposi-
tions 1, D, S stand for, if all premisses are true, the conclusion must be true too; in
other words, it is impossible that the premisses are all true and at the same time the
conclusion false. Now we have given in Section 2.2 a precise meaning to the atomic
formulas and to the connectives in terms of truth tables, we can make the notion of
valid or logical consequence precise: in the truth table starting with 7, D and S, at
each line in which all of IV D, I — S and D — S have the value 1, also § must have
the value 1; in other words: there is no line in the truth table starting with 7, D, and
S in which the premisses IV D, I — S, D — § are all 1 and the conclusion S is 0.

We may translate the propositions in this argument into formulas:

I D S|IVD|I—=S|D—=S|S
I 1 1| 1 1 1 1
I 1 0 1 0 0 0
1 0 1] 1 1 1 1
I 0 Of 1 0 1 0
01 1| 1 1 1 1
01 0 1 1 0 0
00 If O 1 1 1
0 0 O O 1 1 0

In this example there are three lines, line 1, 3 and 5, in which all premisses are true
and, as we can see, in each of these lines also the conclusion is true. So, in each
case that all premisses are true, the conclusion is true too. We say that S is a valid or
logical consequence of the premisses IV D, [ — Sand D — S.

Definition 2.5 (Logical or valid consequence).

a) B is a logical or valid consequence of premisses Aq,...,A, :=in each line of the
truth table for Ay,...,A, and B in which all premisses Ay,...,A, are 1, also B is 1;
in other words, there is no line in the truth table in which all premisses Ay,...,A,
are 1 and at the same time B is 0. Notation: A,...,A, = B.

b) Let I be a (possibly infinite) set of formulas. B is a logical or valid consequence
of I' := for each interpretation i, if i(A) = 1 for all formulas A in I', then also
i(B) = 1. In other words, each interpretation which is a model of all formulas in I"
is also a model of B. Notation: I" = B.

The notion of logical (or valid) consequence is a semantical notion: it concerns the
truth or falsity, and hence the meaning, of the formulas in question. Notice that in
case n = 0, i.e., there are no premisses, the definition of Ay,...,A, = B reduces to
the definition of |= B: there is no line in the truth table for B in which B is 0.

Next consider the following argument.
If the weather is nice [N], then John will come [C].
The weather is not nice.
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Therefore: John will not come.
N—=C

We may translate these propositions into the following formulas: =N

-C
Again, for convenience, we have used the symbols N and C instead of the atomic
formulas Pj, P> in order to help our memory.

Intuitively, this argument is not correct: John may also come when the weather
is not nice; for instance, because someone offers John to bring him by car. So, the
premisses may be true, while the conclusion is false. We see this clearly in the truth
table for the formulas in question:

N C|[N=C|-N|-C

11 1 0 0
1 0 0 0 1
0 1 1 1 0

0 0 1 1 1

There are two lines in the truth table in which both premisses are 1 (true): line 3 and
line 4. In line 4 the conclusion —C is 1 too, but in line 3 the conclusion is 0! Line
3 is the case that N is 0 and C is 1, i.e., the weather is not nice, while John does
come; in this case both premisses N — C and —N are true, while the conclusion —-C
is false. So, there is a line in the truth table, in which all premisses are true, while
the conclusion is false; in other words, —C is not a logical consequence of N — C
and —N. Therefore, not N — C,—~N = —-C or N — C,—N - —C.
Notation: Instead of ‘notAj,...,A, = B’ one usually writes: A1,...,A, F~ B.
Another intuitive counterexample is the following one; Suppose Berta is a cow
and interpret N as ‘Berta is a dog’ and C as ‘Berta has four legs’. Then we have the
situation of line 3 in the table: Nis 0,Cis I, N —- Cis 1, =N is 1, but =C is O.

Theorem 2.4.

a)AEB if and only if (ifff =A — B.
More generally,

b)A1,A2 =B ifand only if (iff) A=A, — B

ifand only if (iff) EA; — (A, — B)
ifand only if (iff) EA1NA; — B.

Even more generally,

c)Ai,...,An =B ifandonly if (iff) Ai,...,Ap_1 EA,— B
ifand only if (iff) E (AiN...AA,) — B.

Proof. a) A |= B iff there is no line in the truth table in which A is 1 and B is 0.
This is equivalent to: there is no line in the truth table in which A — B is 0. In other
words, equivalent to: =A — B.

b) A1,A; = B iff there is no line in the truth table in which A and A; are both 1 and
B is 0. This is equivalent to: there is no line in the truth table in which A; is 1 and
A; — Bis0,i.e.,A; EA; — B. This is - in its turn - equivalent to: there is no line in
the truth table in whichA; — (A, — B) is 0, i.e., = A — (A2 — B). Or equivalently,
there is no line in the truth table in which (4| AA;) — Bis 0, i.e., = (A; AA2) — B.
c¢) Similarly. a
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It is important to notice that A — B is a formula of the logical language, while
= A — B, or equivalently A |= B, is a statement in the meta-language about the
formulas A and B, namely, that there is no line in the truth table in which A is 1
and B is 0. The symbol = does not occur in the logical language, but is just an
abbreviation from the metalanguage.

Definition 2.6. In the statement A,,...,A, =B wecall Aj,...,A, the premisses and
B the (putative) conclusion. In particular, in A = B we call A the premiss and B the
conclusion. However, in the formula A — B we call A the antecedent and B the
succedent.

Theorem 2.5. * Let I be a (possibly infinite) set of formulas. B is a valid conse-
quence of I (I" |= B) if and only if there are finitely many formulas Ay, ..., A, in T’
such that B is a valid consequence of Ay, ..., A, (A1,...,A, = B).

Proof. The ‘if” part is evident. To show the ‘only if” part, suppose that I" = B, that
is, T U{—B}, i.e., the set consisting of =B and of all formulas in I'", does not have
a model. Then, according to the Compactness Theorem 2.3, there is a finite subset
I'"={Ay,...,A,} of formulas in I" such that {Ay,...,A,} U{—B} does not have a
model, which means that Aj,...,A, = B. ad

2.3.1 Decidability

The notion of validity (for the classical propositional calculus) is clearly decidable,
i.e., there is an algorithm (an effective computational procedure), also called a deci-
sion procedure, to determine for any formula A in a finite number of steps (depend-
ing on the complexity of A) whether it is valid or not. Namely, in order to determine
whether A is valid or not, we simply have to compute the truth table of A, entered
from its atomic components, and see whether it has 1 in all its lines or not. Comput-
ing a truth table of a given formula A and checking whether it has 1 in all its lines can
be carried out by a machine and yields an answer ‘yes’ or ‘no’ in finitely many steps,
the number of steps depending on the complexity of A. Because A1,...,A, = B is
equivalentto = A A... AA, — B, also the notion of valid consequence (of a finite
number of premisses) is clearly decidable.

One of Leibniz’ ideals was to develop a lingua philosophica or characteristica uni-
versalis, an artificial language that in its structure would mirror the structure of
thought and that would not be affected with ambiguity and vagueness like ordinary
language. His idea was that in such a language the linguistic expressions would
be pictures, as it were, of the thoughts they represent, such that signs of complex
thoughts are always built up in a unique way out of the signs for their composing
parts. Leibniz (1646 - 1716) believed that such a language would greatly facilitate
thinking and communication and that it would permit the development of mechan-
ical rules for deciding all questions of consistency or consequence. The language,
when it is perfected, should be such that ‘men of good will desiring to settle a
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controversy on any subject whatsoever will take their pens in their hands and say
Calculemus (let us calculate)’. If we restrict ourselves to the propositional calculus,
Leibniz’ ideal has been realized: the classical propositional calculus is decidable,
more precisely, given premisses Ay, ...,A, and a putative conclusion B, one may
decide whether B is a logical consequence of Ay,...,A, by simply calculating the
truth tables of Ay, ...,A,, B. However, A. Church and A. Turing proved in 1936 that
the predicate calculus is undecidable, i.e., there is no mechanical method to test
logical consequence (in the predicate calculus), let alone philosophical truth.

For more information the reader is referred to W. & M. Kneale [16], The Devel-
opment of Logic and to B. Mates [20], Elementary Logic, Chapter 12.

Now, if A has been built from n atomic formulas, the truth table of A has 2" lines.
So, a formula built from 10 atomic formulas has a truth table with 2'9 = 1024 lines.
And if n =20, the truth table of A has 220 =219 x 210 = 1024 x 1024, so more than a
million lines. Hence, the number of steps needed to decide whether a given formula
A is valid or not grows fast if A becomes more complex. In fact, if A has been built
from 64 atomic formulas, it will take many lifetimes in order to compute whether
A is valid or not, even with very futuristic computers, the number of lines being
264 =24 % (2196 ~ 16 x (103)® = 16 x 10'®. In Subsection 2.5.3 we will construct
such a formula, built from 64 atomic formulas, to describe a particular travelling
salesman problem. Supposing a computer computes 16000 = 16 x 103 lines per
second, in one human lifetime it can compute about 100 (years) x 365 (days) x
24 (hours) x 60 (minutes) x 60 (seconds) x 16000 (lines) ~ 16 x 10'3 lines. So,
in order to compute a truth table of a formula built from 64 atomic formulas, our
computer needs about (16 x 10'®) / (16 x 10'®) = 10° human lifetimes, supposing
it can compute 16000 lines per second. This means that our decision procedure to
determine whether a given formula A (of the propositional calculus) is valid or not,
is a rather theoretical one if the complexity of A is great, more precisely, if A has
been built from say 64 atomic components.

One may wonder whether there are more effective or more realistic decision
procedures to determine validity, other than making the truth table and checking
whether it has 1 in all its lines. No such procedure is known, although for many
concrete formulas ad hoc solutions can give a quick answer to the question whether
they are valid or not. But no (general) procedure is known, other than making truth
tables, to determine the validity of an arbitrary formula.

2.3.2 Sound versus Plausible Arguments; Enthymemes

A concrete argument consists of a number of premisses and a (putative) conclu-
sion. The atomic propositions of the argument are translated into atomic formulas
P, P,,... and the composite propositions of the argument are translated into com-
posite formulas which are composed by the logical connectives from the atomic
formulas. The result is a logical reasoning pattern:
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premisses
logical | reasoning

conclusion

A reasoning pattern is valid if it is impossible that the premisses are true and at the
same time the conclusion false. A concrete argument is correct if the underlying
reasoning pattern is valid, otherwise it is incorrect.

The correctness of a concrete argument is not determined by the content or mean-
ing of the atomic propositions in question, but by the meaning of the propositional
connectives (and in predicate logic also by the meaning of the quantifiers) which
occur in the argument. That is why one abstracts from the content of the atomic
propositions in question by translating them into P;, P, ..., as pointed out by Frege
[8] in his Begriffsschrift (1879).

The atomic formulas may be interpreted as true or false propositions, denoted
by 1 and O respectively, and the meaning of the logical connectives is specified
precisely in the truth tables. Validity of a reasoning pattern means that for every
interpretation of the atomic formulas it is impossible that the premisses become true
propositions while the conclusion becomes a false proposition.

In his Begriffsschrift [8] of 1879 Gottlob Frege compares the use of the logical
language with the use of a microscope. Although the eye is superior to the micro-
scope, for certain distinctions the microscope is more appropriate than the naked
eye. Similarly, although natural language is superior to the logical language, for
judging the correctness of a certain argument the logical language is more appropri-
ate than natural language. Since the content or meaning of the atomic propositions
does not matter for the correctness of the argument, it is more convenient to abstract
from this content by replacing the atomic propositions by atomic formulas Py, Ps, ... ..

It is possible that the study of logic does not augment our native capacity to discover
correct arguments; but it certainly is of value in checking the correctness of given
arguments. However, the reader should realize that at this stage we are not yet able
to give an adequate logical analysis of, for instance, the following argument.

All men are mortal.
Socrates is a man.
Therefore: Socrates is mortal.

In order to see the correctness of this argument one has to take into account the
internal subject-predicate structure of the atomic propositions involved, and this is
precisely what is ignored in the propositional calculus and what we shall study in
the predicate calculus; see Chapter 4. Using only the means of the propositional
calculus, all we can say is that the foregoing argument is of the form P, O = R,
which does not hold, because we may interpret P and Q as true propositions and R
as a false one; in other words, P and Q may have the value 1, while R may have the
value 0. In order to see the correctness of the argument above, one has to analyse
the internal subject-predicate structure of the atomic formulas P, Q and R; but this is
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beyond the scope of the propositional calculus. In the propositional calculus we can
adequately analyse only those arguments the correctness of which depends on the
way the composite propositions are composed of the atomic propositions by means
of the propositional operations.

Arguments are frequently used to persuade the hearer of the truth of the conclusion
on the grounds that (i) the conclusion logically follows from the premisses and in

addition (ii) the premisses are true. Let us use Ay, ...,A, :: B to denote
(i) Ay,...,Ay =B, and
(ii)) Ay,...,A, are true; and therefore B is true.

When both (i) and (ii) hold, we call the argument not simply ‘valid’, but sound.
And we call an argument plausible, when it is valid, but we can only say that
Ay,...,A, are plausible.

It frequently happens that speakers in giving an argument do not explicitly men-
tion all their premisses; in some cases they even leave the conclusion tacit. For
instance, if someone offers me coffee, I might respond as follows:

If I drink coffee [C], I can’t get to sleep early [S]. So please don’t pour me any.

The argument given is of the form C — =S :: =C, which is clearly an abbreviation
forC — =S, §:: =C.
I might even leave out the conclusion; if I have just been offered a cup of coffee,
simply C — —S might be sufficient not to let the hostess pour me any coffee.
Arguments in which one or more premisses or the conclusion is tacit are called
enthymemes. Premises may not be explicitly stated for practical reasons, but also to
mislead the audience.

Exercise 2.19. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the (putative) conclusion
is a logical (or valid) consequence of the premisses:

If the government raises taxes for its citizens, the unemployment grows.

The unemployment does not grow or the income of the state decreases.

Therefore: if the government raises taxes, then the income of the state decreases.

Exercise 2.20. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the putative conclusion is
a logical (or valid) consequence of the premisses:

Europe may form a monetary union only if it is a political union.

Europe is not a political union or all European countries are member of the union.
Therefore: If all European countries are a member of the union, then Europe may
form a monetary union.

Exercise 2.21. Verify by making truth tables:

a)A,A—-BEB bA—=B -BE-A ¢)A-AEB

d)A—-BF¥EB—A e)A—B,~AE-B A= (BVCO)E(A—=B)V(A—C)
g AVB, ~AE=B h)—-(AAB),AE=-B

Exercise 2.22. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the putative conclusion is
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a logical (or valid) consequence of the premisses:

John does not win the lottery or he makes a journey [J].

If John does not make a journey, then he does not succeed for logic.
John wins the lottery [W] or he succeeds for logic [S].

Therefore: John makes a journey.

Exercise 2.23. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the putative conclusion is
a logical (or valid) consequence of the premisses:

If Turkey joins the EU [T], then the EU becomes larger [L].

It is not the case that the EU becomes stronger [S] and at the same time not larger.
Therefore: Turkey does not join the EU or the EU becomes stronger.

2.4 Semantics: Meta-logical Considerations

In this section we will prove results about the notions of validity and valid conse-
quence of the type: if certain formulas are valid, then also some other formulas are
valid.

Suppose we want to determine whether the formula (P3 A —Py) A (=P V Ps V
Ps) — (P3 A —Py) is valid. Making the truth table of this formula, starting with the
atomic formulas P3, Py, Ps, Py occurring in it, will yield a positive answer. But this
table contains 2* = 16 rows and the chance of making a computational mistake is
considerable. However, notice that the formula has the form P; A P, — P; with P;
replaced by A; = (P3 A—Py) and P, replaced by Ay = (—Ps V Ps V Pg). Although the
table for A AA>, — A may consist of many lines, 16 in our example, there cannot
be more than 4 different combinations of 1 and O for A| and A,. In our example the
second row, in which A; = P3 A —P4 has value 1 and A, = =PV P5 VV Py has value 0,
will even not occur, because if =Py is 1, then also Ay = =P,V Ps V Py is 1.

A A2| Al NAy — Ay

T 1A —=1=1
1 0[(1n0)—>1=1
0 1|(0A1)=0=1

0 0[(0A0)—=0=1

All four possible combinations of 1 and O for A; and A, will yield for A; AAy; — A4
the value 1. So, from the fact that the formula P; A P, — P, is valid, we may conclude
that also the formula A; AAy — A is valid for any formulas A and A;; in particular,
that the formula (Ps A —P4) A (—P4V Ps V Ps) — (P3 A—Py) is valid. What we have
won is that the table for P; A P, — Pj requires only the computation of 4 instead of
16 rows.

The substitution theorem below reduces the amount of work needed to establish
the validity of certain formulas.
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Theorem 2.6 (Substitution theorem). Let E(Py,P>) be a formula containing only
the atomic formulas Py, P,, and let E(A},A;) result from E(Py,P,) by substituting
formulas Ay,A, simultaneously for Py, Py, respectively.

IfEE(P,P,), then |= E(A1,A).

More generally: if = E(Py,...,P,), then |= E(Ay,...,A,), where the latter formula
results from the former one by replacing the atomic formulas Py, ..., P, by the (com-
posite) formulas Ay, . .. ,Ap.

So, since = P; — Py, the substitution theorem tells us that

):Pz/\—‘P3—>P2/\—‘P3 (Al :Pz/\—‘P3)

’: (P3 — Ps A —|P7) — (P3 — Ps A —|P7) (A] =P = PA —|P7)
and so on. So, the purpose of the substitution theorem is to reduce the amount of
work needed to establish the validity of certain formulas.

Proof. Suppose E = E(Py,...,P,) contains only the atomic formulas P, ...,P, and
E E, i.e., the truth table of E entered from the atomic formulas Py,...,P, is 1 in

each line.
Pl...|B]|.. |E

If...f1]...]1

Of...[]0...]1

Now E* = E(Ay,...,A,) results from E by substituting the formulas Ay, ...,A, for
the atomic formulas Py, ..., P, in E. Let us suppose that the formulas Ay, ...,A, and
hence also E* are built from the atomic formulas Qy, ..., Q). Then the computation
of the truth table of E* is as follows.

| E

| | Qk || |

1 .
Since the construction of E* from Ay,...,A, is the same as the construction of E
from P,...,P,, the truth table of E* is computed from those of Ay,...,A, in pre-
cisely the same manner as the truth table of E is computed from those of Py, ..., P,.
Hence, because by assumption the computation of the values of E from the values
for Py, ..., P, only yield 1’s, also the computation of the values of E* from the values

for Ay,...,A, will only yield 1’s. Le., = E*.

Note that it may happen that some combinations of 0’s and 1’s for Aq,...,A, do
not occur. For instance, if A = Q; V —Qj, then A; will have the value 1 in all lines
and the value O for A; will not occur. O

Ap

0(...]0

Remark 2.1. : The converse of the substitution theorem, if = E*, then |= E, does not
hold. For instance, let E(P;) = Py andlet Ay =P, — P,. Then E*=E(A;) =P, — P,
is valid, but E(P;) = P, is not valid.
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In the next theorem the validity of many formulas is shown by means of the
substitution theorem. For example, 5b) says that for any choice of formulas A
and B, B — AV B is valid. Taking A = Py A—P, and B = P, — P3, we find that
(P, — P3) = ((Py A=P) V (P, — P3)) is valid. This method of proving the validity
of the latter formula is much more economical than proving the validity directly
from its definition by making the truth table of the latter formula entered from the
atomic components Pj, P, and P;3; this table would consist of eight lines!

Theorem 2.7. For any choice of formulas A, B, C:

I EA—-(B—A) or AEB—AorA, BEA

2 EA—=B—>(A—-B—=C)—=>(A—=C)orA—-BA—(B—C),AEC
3 EA—-(B—AAB) or A, BEANAB

4a EANB—A or ANBI=A

4 =ANB—B or ANBE=B

Sa =EA—AVB or A=EAVB

5h EB—AVB or BEAVB

6 EA—=-C)—>(B—-C)—»(AVB—C(C)) orA—C,B—-CEAVB—C
7 EA—-B)—=((A—-B)—-A) or A—B,A—-BE-A

8§ E-—A—A or-—AEA

9 EA—B)—((B—A)—(A=B)) orA—B, B—AEFA=B
10a =(A=B)— (A—B) or A=BE=A—B

10b =(A=B)— (B—A) or A2=BEB—A

Proof. The statements in the right column, after the ‘or’, are according to Theorem
2.4 equivalent to the corresponding statements in the left column, before the ‘or’.
The statements in the left column follow from the substitution theorem. For instance,
to show 1, = A — (B — A), it is easy to verify that = Py — (P, — P} ), from which
it follows by the substitution theorem that for any formulas A,B, = A — (B — A).

O

The student is not expected to learn the list in Theorem 2.7 outright now. In the
course of time he or she will become familiar with the most frequently used results.

Later in Section 2.9 it will be shown that all valid formulas may be obtained (or
deduced) by applications of Modus Ponens to formulas of the ten forms in Theo-
rem 2.7; this is the so-called completeness theorem for propositional logic. For that
reason formulas of the form 1, ..., 10 in Theorem 2.7 are called logical axioms for
(classical) propositional logic. Notice that the formulas in 1 and 2 concern —, the
formulas in 3 and 4 concern A, the formulas in 5 and 6 concern V, the formulas
in 7 and 8 concern — and the formulas in 9 and 10 concern =. For instance, the
formulas in 1 and 2 would not be valid if the — were replaced by any other con-
nective. The completeness theorem says essentially that formulas of these ten forms
together characterize the meanings of =, —, A, V and —: every valid formula may
be obtained by applications of Modus Ponens to formulas of these ten forms.

Paradoxes of Material Implication = A — (B — A), or, equivalently, A = B — A,
and = —A — (A — B), or, equivalently, 7A = A — B, have been called paradoxes of
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material implication. This has been illustrated by examples like the following ones:
A |= B — A: 1like coffee; therefore: if there is oil in my coffee, I like coffee. -A =
A — B:1do not break my legs; therefore: if I break my legs, I will go for skying.
This sounds very strange indeed. However, Paul Grice [10] has pointed out that
in conversation one is supposed to take social rules into account, such as being
relevant and maximally informative. And although B — A is true when A is true, it
is simply misleading to say B — A, or equivalently BV A, when one knows that A
is true, because A is clearly more informative than B — A or, equivalently, ~B V A.
Similarly, although A — B is true when —A is true, it is misleading to say A — B, or,
equivalently, ~A V B, when one has the information —A, because —A is clearly more
informative than A — B or, equivalently =A V B.

Also the proof of the next theorem is by showing that one obtains valid formulas if
one replaces A, B, C by the atomic formulas P;, P>, P3; next application of the substi-
tution theorem yields the desired result.

Theorem 2.8. For any formulas A, B,C:

11 E—-—A=A law of double negation

12 =EAV-A law of excluded middle

13 E-(AN-A) law of non-contradiction
14 E-A—-(A—B) or -AAEB ex falso sequitur quod libet
15 EA—=-B) = (B—C)—=(A—=C)) orA—B,B—-»CEA—-C

From the table for = follows immediately the next theorem.

Theorem 2.9. Let A, B be any formulas. |= A = B if and only if A and B have the
same truth table.

Proof. Suppose = A = B. Then from the table for = it follows that it is impossible
that in some line of the truth table one of A, B is 1 while the other is 0. Conversely,
suppose A and B have the same truth table. Then in every line of the truth table both
formulas are 1 or both formulas are 0. In either case A =2 B is 1. Since this holds for
every line in the truth table, = A = B. O

Theorem 2.10. For any formulas A,B,C:

16 E(A—B) & (-B— —-A) contraposition

17a =—-(AVB) 2 -AAN—-B De Morgan’s laws 1847
17b = ~(AAB) 2 —AV B

18 =—(A—B) = AA-B

19 E(A=B) & (A—-B)A(B—A)

20 =A—B = ~(AN-B)

21 EA—B = -AVB

22 EAANBVC) 2 (AAB)V(ANC) distributive law

23 EAV(BAC) 2 (AVB)A(AVC) distributive law

24 EA—>(B—>C) = B—(A—C)

25 EA—(B—C) 2 ANB—C
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Proof. One easily verifies that A — B and =B — —A have the same truth truth table.
Hence, by theorem 2.9 it follows that = (A — B) & (=B — —A). Another way of
showing this is to verify that = (P, — P,) &= (=P, — —P}), simply by computing
the truth table. Next the substitution theorem 2.6 yields the desired result.

The other items are shown similarly. a

A reasoning rule like Modus Ponens or Modus Tollens should, of course, be sound,
i.e., if its premisses are true (1), then its conclusion must be true (1) too. In other
words, these rules should preserve truth. One easily verifies that Modus Ponens and
Modus Tollens are sound.

Theorem 2.11. (a) For every line in the truth table: if A is 1 and A — B is 1 in that
line, then B is also 1 in that line. In other words: A, A — B |= B.

We say that the rule of Modus Ponens (MP) is sound. Consequently:

(b) For all formulas A and B, if = A and = A — B, then |= B. In other words:

for all formulas A and B, if = A — B, then if (in addition) |= A, then = B.

(¢) However, not for all formulas A and B, if (if = A, then |= B), then |= A — B.

Proof. (a) follows immediately from the truth table for —.

From (a) follows: if A is 1 in all lines and A — B is 1 in all lines of the truth table,
then B is 1 in all lines of the truth table. In other words, if = A and = A — B, then
= B. This proves (b).

(c) ‘if = A, then = B’ means: if A is 1 in all lines of the truth table, then B is 1 in
all lines of the truth table (*). = A — B means: in every line in which A is 1, B must
be 1 too. Notice that this does not follow from (*). For suppose that A is 1 in some
line of the truth table, we do not know whether A is 1 in all lines of its truth table. In
fact, there are formulas A and B such that ‘if = A, then |= B’ holds, while =A — B
does not hold. For example, take A = Pj (it is cold) and B = P, (it is snowing). Since
= Py (not always it is cold) and [~ P, (not always it is snowing), ‘if = Py, then = Py’
holds, while = P; — P, (always if it is cold, then it is snowing) does nothold. O

Theorem 2.12. (a) For all formulas A, if = —A, then not |= A.
However, the converse does not hold:
(b) Not for all formulas A, if not |= A, then = —A.

Proof. (a) Suppose |= —A4, i.e., A is | in all lines of its truth table. Equivalently: A
is 0 in all lines of its truth table. So, for sure, it is not the case that A is 1 in all lines
of its truth table, i.e., not = A.

(b) ‘Not = A’ means that not in all lines of its truth table A is 1, in other words, A is
0 in some line of its truth table. This does not mean that = —A, or equivalently, that
A is 0 in all lines of its truth table. In fact, there are formulas A such that not = A,
while = —A does not hold. For instance, take A = P (it is raining). Then not = P,
(not always it is raining), while = =P (always it is not raining; it never rains) does
not hold. O

Warning One might be inclined to write: for all formulas A, if not = A, then not
= —A. However, this is false. For instance, taking A = P; A —P; we have
not = Py A—Py, but also = =(P; A—Py). The expression
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if not = A, then = -4 *)

does hold for some formulas, for instance, for A = P; A —P;, but it does not hold for
other formulas, for instance, not for A = Pj.

A formula that refutes (*) is called a counterexample to the statement (*). So, P,
is a counterexample to (*).

Theorem 2.13. (a) For all formulas A and B, if = A or =B, then = AV B.
However, the converse does not hold:
(b) Not for all formulas A and B, if = AV B, then = A or = B.

Proof. (a) Suppose = A or = B. Consider the case that = 4, i.e., A is 1 in all lines of
its truth table. Then clearly, also AV B is 1 in all lines of its truth table, i.e., =AV B.
The case that = B is treated similarly.

(b) EAV B means: AV B is 1 in all lines of its truth table, i.e., in each line of the
truth table A is 1 or B is 1. So, there might be lines in which A is 1 and B is O,
while there might be other lines in which A is 0 and B is 1. So, this does not mean
that A is 1 in all lines, i.e., = A, nor that B is 1 in all lines, i.e., = B. In fact, there
are formulas A and B, such that = A V B, while neither |= A nor |= B. For instance,
take A = P (it is raining) and B = —Py. Then |= P; V —P; (always it is raining or
not raining), while neither |= P; (always it is raining), nor = —P; (always it is not
raining; it never rains). O

Warning One might be inclined to write: for all formulas A and B, if = A V B, then
not = A and not = B. However, this is false. For instance, take A = P; — P and B
arbitrary, then |= (P} — P;) V B, but also = P; — P holds. The expression

if EFAVB,then|=Aor =B (*)

does hold for some formulas, for instance, for A = P, — P; and B arbitrary, but
it does not hold for other formulas, for instance, not for A = P; and B = —P;. So,
A = Py and B = —P; is a counterexample to the statement (*).

Notice that, for instance, A = P and B = Q with P, Q atomic, is not a counterex-
ample against (*), because such a counterexample should consist of formulas A and
B such that ‘= AV B’ does hold, while ‘= A or = B’ does not hold; and = PV Q is
not the case.

Theorem 2.14. For all formulas A and B, |= A A B if and only if = A and |= B.

Proof. |=A A B means: in all lines of its truth table, AAB is 1, i.e., in all lines, A is
1 and B is 1. This is equivalent to: in all lines A is 1 and in all lines Bis 1, i.e., = A
and = B. O

In order to be able to formulate the replacement theorem, we first have to define the
notion of subformula.

Definition 2.7 (Subformula). 1. If A is a formula, then A is a subformula of A.

2. If A and B are formulas, the subformulas of A and the subformulas of B are
subformulas of A= B,A — B,AAB,and AV B.

3. If A is a formula, then the subformulas of A are subformulas of —A.
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Example 2.6. The subformulas of =PV Q — (P — =PV Q) are: ~PV Q — (P —
-PVvQ),-PVQ,P— —-PVQ,—P, Qand P. Notice that PV Q is not a subformula
of ~PV Q — (P — =PV Q).

Theorem 2.15 (Replacement theorem). Let C4 be a formula containing A as a
subformula, and let Cg come from Cy by replacing the subformula A by formula B.
If A and B have the same truth table, then C4 and Cg have the same truth table too.

Proof. Assume A and B have the same table. If, in the computation of a given line of
the table for Cy4, we replace the computation of the specified part A by a computation
of B instead, the outcome will be unchanged. Thus, Cp has the same table as C4. O

Corollary 2.1 (Replacement rule). If = C4 and A and B have the same table, then
= Cp.

Warning: do not confuse object- and meta-language The reader should realize
that the symbol ‘=" does not occur in the alphabet of the propositional calculus and
that consequently any expression containing = is not a formula. ‘= A’ is a statement
about formula A, saying that A is valid, i.e., A is 1 in all lines of its truth table
(always true). ‘A’ stands for a formula in the object-language, i.e., the language of
propositional logic, but ‘= A’ is an expression in the meta-language about formula
A, saying that A is always true.

= A = B means |= (A & B); it cannot mean (= A) & B, because ‘= A’ belongs
to the meta-language, while ‘=" and ‘B’ belong to the object language. So, ‘=’
stands outside every formula.

Because ‘= —A’ is an expression of the meta-language and ‘—’ is a symbol of
the object language, we are not allowed to write ‘if = —A, then not = A’ in Theorem
2.12as ‘=-A — - EA’; ‘=’ should connect formulas and ‘= —A’ and ‘not = A’
are not formulas.

We can compare ‘= A’ with for instance *’Jean est malade’ is a short sentence”.
This is not a sentence in French (the object language), but a statement in English (the
meta-language) about a sentence ("Jean est malade’, ’A’) of the object language.

Below we have listed a number of expressions on the left hand side and the
language they belong to on the right hand side.

PA-P: Formula of the object-language.
E PA-P: Statement in the meta-language about the formula P A —P.
‘= PA—P’ is false: Statement in the meta-meta-language about = P A —P.

Because our meta-language is a natural language (English), the meta-meta-

language coincides with the meta-language itself.

Exercise 2.24. Show that for all formulas A and B,
1)if A= (A — B), then A and |~ B;

2)if A = —A, then = —A.

3)if A — B EA, then = A.

Exercise 2.25. Prove or refute: for all formulas A and B,
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a)if not =A — B, then =A and = —-B. b)if =—(A — B), then = A and = —B.
c)ifnot =FAAB,then =—-Aor =-B. d)if =—(AAB),then |=-A or |= —B.
e)if not =AVB, then =—-A4 and =-B. f)if = —-(AVB), then = —A and = —B.

Exercise 2.26. Establish the following.

(al)A1,A2,A3 E AL, A1,A2,A3 = As, A, A2, A5 | As.

(a2) More generally: Ay, ... ,A;,..., A, EA; fori=1,...,n.

(bl) IfA],AQ,A3 ): B] al’ldAl,Az,A3 ':Bz and B],Bz ): C, thenAl,A27A3 ): C.
(b2) More generally, for any n,k > 0:ifAy,...,A, =Bjand...and Ay,...,A, = B
and By,...,By =C, then Ay,...,A, = C.

Exercise 2.27. Show directly from the definition of valid consequence:
1)if A = B and A |= —B, then = —A. (Reductio ad absurdum)
2)if A= Cand B |=C, then AV B |= C. (Proof by cases)

Exercise 2.28. Which of the following statements are right and which are wrong,
and why is that the case? For all formulas A, B, C,
(a)A—-BVCE(A—B)V(A—=C).

b)if=(A—-B)V(A—C),then =A — Bor=A — C.

(c)if AEB,thenB—CEA— C.

Exercise 2.29. Prove: if T AAAB |= P, then -P |= =T V-AV —B.

Interpreting T as a Theory, A as Auxiliary hypotheses, B as Background hypotheses
and P as Prediction, this is actually the Duhem-Quine thesis. In 1906 Pierre Duhem
argued that the falsification of a theory is necessarily ambiguous and therefore that
there are no crucial experiments; one can never be sure that it is a given theory rather
than auxiliary or background hypotheses which experiment has falsified. [See S.C.
Harding, [11], Can theories be refuted? p. IX.]

Exercise 2.30. Prove or refute: for all formulas A, B and C,
a) if A = B, then —B = —A.

b)ifAlE=BandA, BE=C,thenA = C.

¢)if AV B = A AB, then A and B have the same truth table.

2.5 About Truthfunctional Connectives

One may wonder if the object-language of propositional logic may be enriched by
adding some new truthfunctional connectives, for instance, the connective T, called
the Sheffer stroke, to be read as ‘neither ..., nor ...” and defined by the following
truth table.
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In this case we see immediately that T may be defined in terms of — and A:
A 71 B has the same truth table as —A A —B. But maybe there are other binary (i.e.,
with two arguments A and B) truthfunctional connectives which cannot be defined
in terms of the ones we already have: =, —, A, V and —.

Now it is easy to see that there are 2* = 16 possible binary truthfunctional con-
nectives, each of them corresponding with a table of length 4:

ABll | | .. | |
T[T 00
pof 1 00
01|11 00
0010 10

It is not difficult to see that each of these 16 truthfunctional connectives may be
expressed in terms of A, VV and —. Consider, for instance, the three truthfunctional
connectives corresponding with the following truth tables:

A Bl | A B| | |4 B|
T 1[0 T 1]0 T 1|0
10]1 10| 0 10[1
0 1] 0 0 1|1 0 1|1
00| 0 0 0|0 0 0|0

The left truth table is precisely the table of A A =B, the truth table in the middle is
precisely the table of —A A B, and the right truth table is precisely the truth table of
(AA—=B)V (A AB). So, the following Theorem is evident:

Theorem 2.16. Each binary (i.e., having two arguments A and B) truthfunctional
connective may be expressed in terms of \, V and —.

We say that the set {A, V, =} is a complete set of truthfunctional connectives: each
binary truthfunctional connective may be expressed in terms of these three connec-
tives. We have already seen earlier that — and = can be expressed in terms of A, V
and —: A — B has the same truth table as ~A V B, and also as -(AA—B); and A = B
has the same truth table as (A — B) A (B — A).

Theorem 2.16 can easily be generalized to truth tables entered from more than
two formulas. Consider, for instance, the truth table below entered from three atomic
formulas P, Q and R:

SO = OO M —=IQ
O~ OmO~@~X
OOOHOOHO‘

COoOO0 S = — =T
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The formula corresponding with this table is clearly: (PAQA—R)V (=P AQAR).
More generally, we see that for every formula A there is a formula A’ which is a
disjunction of conjunctions of literals, i.e., atomic formulas or negations of atomic
formulas, such that A and A’ have the same truth table. We shall say that A’ is in
disjunctive normal form. By applying the de Morgan’s laws (Theorem 2.10), we
may conclude that for every formula A there is also a formula A” in conjunctive
normal form, i.e., which is a conjunction of disjunctions of literals, and which has
the same truth table as A. See Theorem 2.18.

Next we shall show that each truthfunctional connective may be expressed in terms
of only one connective: the Sheffer stroke 1.

Theorem 2.17. Every binary truthfunctional connective may be expressed in terms
of the Sheffer stroke 1.

Proof. In order to prove this, by Theorem 2.16 it suffices to prove that A, V and —
may be expressed in terms of the Sheffer stroke 1.

a) —A has the same truth table as =A A —A, and hence as A T A (neither A, nor A).

b) A AB has the same truth table as —(—A) A —(—B), hence as —A 1 —B (neither —A,
nor —B) and therefore as (A 1 A) 1 (B 1 B).

¢) AV B has the same truth table as —(—A A —B), hence as =(A 1 B) and therefore
as (ATB) 1 (A1B). O

2.5.1 Applications in Electrical Engineering and in Jurisdiction

There are many situations in which there are two opposites analogous to the case of
truth and falsity of propositions. For example, in electrical engineering: on (lit, 1)
and off (unlit, 0); and in jurisdiction: innocent and guilty. In all such situations one
can work with truth tables in a similar way as in propositional logic.

Suppose we have two switches A and B, both with a 0- and a 1- position, a bulb
and a battery and that we want the bulb to burn (1, lit) precisely if both switches are
in the 1-position. So, the corresponding table is the one for A A B:

switch A switch B | bulb

1 1 1
1 0 0
0 1 0
0 0 0
The following electric circuit will satisfy our wishes.
0. .0
A f t B
} }
1 1

I A—circuit
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If we want the bulb to burn if at least one of the two switches A and B is in the
1-position, then we find a table corresponding with the one for A VV B and the corre-
sponding electric circuit is as follows.

N V —circuit

And if we want the bulb to burn if switch A is in the O-position, then we find a
table corresponding with the one for —A and the corresponding electric circuit is the

following one.
0‘ - &
A. t

| | ——circuit

Theorem 2.16 formulated in terms of electric circuits now tells us that each elec-
tric circuit can be built from the electric circuits for A, V and —, and the proof of
Theorem 2.16 provides us with a uniform method to build any circuit we want from
the circuits for A, VV and —. We shall consider some examples below. However, the
circuits resulting from our uniform method in the proof of Theorem 2.16 will not al-
ways be the simplest ones and for economic reasons one may in practice use circuits
other than the ones found by this uniform method.

Example 2.7. Suppose we want our bulb to burn in all cases except one: if switch
A is in position 1 and switch B is in position 0. So the corresponding table is the
following one.

switch A switch B | bulb

1 1 1
1 0 0
0 1 1
0 0 1

We see that this table corresponds with the one for A — B. The proof of Theorem
2.16 tells us that the circuit corresponding with (A AB)V (-A AB)V (-A A —B)
will satisfy our wishes. However, a much simpler, and hence less expensive circuit,
doing the same job, can be found if we realize that A — B has the same truth table
as (—A) V B. So in order to achieve our purpose, we can take the \/-circuit described
above with instead of switch A the circuit for —A.
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A —

§ — —circuit

Example 2.8. Suppose we want to build a two-way switch: a switch A at the foot of
the stairs and a switch B at the top of the stairs such that we can turn the light on and
off both at the foot and at the top of the stairs by changing the nearest switch over

into another position.
U E\_L\_HH

We can achieve our purpose by making the electric circuit such that the light is on
when both switches are in the same position and off when both are in a different
position. The corresponding table is the following one.

switch A switch B | light

1 1 1
1 0 0
0 1 0
0 0 1

This table corresponds with the one for A = B. Applying the proof of Theorem 2.16,
we shall find that the circuit corresponding with (A AB) V (-A A—B) will satisfy our
requirements. So we can take the C'V D-circuit described above with the circuit for
A A B instead of switch C and the circuit for ~A A —B instead of switch D. And this
latter circuit is obtained by replacing in the E A F'-circuit described above switch E
by the circuit for —A and switch F' by the circuit for —B.

O.M.O

At *3.&

| = —circuit

For an application of truth tables in jurisdiction we refer the reader to Exercise 2.31.

2.5.2 Normal Form*; Logic Programming*

Definition 2.8 (Normal form). A literal is by definition an atomic formula or the
negation of an atomic formula.
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A formula B is in disjunctive normal form if it is a disjunction By V...V By of
formulas, where each B; (1 <i < k) is a conjunction Lj A ... A L, of literals.

A formula B is in conjunctive normal form if it is a conjunction By A ... A By of
formulas, where each B; (1 <i < k) is adisjunction L; V...V L, of literals.

Example 2.9. So, P, and —P; are examples of literals. (—P; A P,)V —P;3 is a formula
in disjunctive normal form, and (—P; V —P;) A (P, V —P3) is a formula in conjunctive
normal form.

Theorem 2.18 (Normal form theorem). For each formula A (of classical proposi-
tional logic) there are formulas A’ and A" in disjunctive or conjunctive normal form
respectively, which have the same truth table as A. In other words, each formula A of
classical propositional logic may be written in disjunctive, respectively, conjunctive,
normal form.

Proof. We will use the induction principle (Theorem 2.2) to show that every formula
A has the property @: there are formulas A’ and A” in disjunctive or conjunctive
normal form respectively, which have the same truth table as A. Since all truth-
functional connectives can be expressed in terms of —, A and V, we may assume that
all formulas are built from atomic formulas by means of these three connectives.

1. If A is an atomic formula P, then A = P itself is both in disjunctive and in con-
junctive normal form.

2. Suppose A = —B and (induction hypothesis) that there are formulas B’ and B”
which are in disjunctive or conjunctive normal form respectively, and which are
equivalent to B. Then A = —B has the same truth table as —B’, which by the De
Morgan’s laws, Theorem 2.10, 17, can be rewritten as a conjunction of disjunc-
tions of literals. And A = —B has the same truth table as =B, which by the De
Morgan’s laws, Theorem 2.10, 17, can be rewritten as a disjunction of conjunc-
tions of literals.

3. Suppose A = B A C and (induction hypothesis) that there are formulas B’, C' and
formulas B”, C"” which are in disjunctive or conjunctive normal form respectively
and which are equivalent to B, respectively C. Then A = B A C has the same truth
table as B” A C”, which is again a conjunction of disjunctions of literals. And
A = BAC has the same truth table as B’ AC’, which by the distributive laws,
Theorem 2.10, 22 and 23, can be rewritten in disjunctive normal form.

4. Suppose A = BV C and (induction hypothesis) that there are formulas B’, C’ and
formulas B”, C"" which are in disjunctive or conjunctive normal form respectively
and which are equivalent to B, respectively C. Then A = BV C has the same truth
table as B’V C’, which is again a disjunction of conjunctions of literals. And
A = BV C has the same truth table as B” \V C”, which by the distributive laws,
Theorem 2.10, 22 and 23, can be rewritten as a conjunction of disjunctions of
literals.

Example 2.10. A = P — —(—QV P) has the same truth table as, subsequently, =PV
=(=QVP), =PV (=—=QA=P), =PV (Q A—P), which is in disjunctive normal form,
and (=P V Q) A (=P V —P), which is in conjunctive normal form.
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Knowledge Representation and Logic Programming The language of logic may
be used to represent knowledge. For instance, suppose a person has the following
knowledge at his disposal:
(1) John buys the book if it is about logic and interesting.
(2) The book is about logic.
(3) The book is interesting if it is about logic.
Using P to represent *John buys the book’,
Q to represent “the book is about logic’, and
R to represent ’the book is interesting’,
the person’s knowledge can be represented by the following logical formulas:
(layQAR— P,
(2a) O,
(3a) 0 —R.

In the programming language Prolog (Programming in Logic), which will be
treated in Chapter 9, these formulas are rendered as follows:
(Ib) P :- Q, R. (to be read as: P if Q and R)

(2b) 0.
(Bb) R :- Q. (to be read as: R if Q)

(1b) and (3b) are called rules and (2b) is called a fact. Using logical reasoning
‘new’ knowledge can be deduced from the knowledge already available. For in-
stance, from (2a) and (3a) follows R (4a), and from (2a), (4a) and (1a) follows P,
i.e., ‘John buys the book’.

(1b), (2b) and (3b) together can be considered to form a knowledge base from
which new knowledge can be obtained by logical reasoning or deduction.

The programming language Prolog, to be treated in Chapter 9, has a built in
logical inference mechanism. When provided with the database consisting of (1b),
(2b) and (3b), Prolog will answer the question ‘?- P.” with ’yes’, corresponding to
the fact that P is a logical consequence of (1b), (2b) and (3b).

The following definition introduces some terminology which is used in logic
programming and which is needed in Chapter 9.

Definition 2.9 (Literal). a) A positive literal is an atomic formula. A negative literal
is the negation of an atomic formula.
b) A clause is a formula of the form L V...V L,,, where each L; is a literal.

Because clauses are so common in logic programming, it will be convenient to adopt
a special clausal notation. In logic programming the clause P} V...V =PV Q1 V
...V Qy, where Py,...,P.,Q1,...,0, are atomic, is denoted by

O1,.-,On-Pr,... P (k= 0).

which stands for Py A ... AP, — Q1 V...V Q,, which has the same truth table as
“PIV..VaBVO1V...VO,.

Theorem 2.18 says that each formula of (classical) propositional logic may be
written as a finite conjunction of clauses.

For reasons of efficiency, to be explained in Chapter 9, in Prolog only Horn
clauses are used, i.e., clauses which contain at most one positive literal, in other
words, which are of the form Q :- Py, ..., P or of the form :- P,..., P.
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(1b), (2b) and (3b) above are examples of Horn-clauses. O, Q5 :- P;, P>, P5. or
equivalently Py AP, AP; — Q1 V (07, is not a Horn clause.

Definition 2.10 (Horn clause).
a) A definite program clause is a clause of the form
Q:-P,....P. k>0, P,...,P,Q atomic)

which contains precisely one atomic formula (viz. Q) in its consequent. Q is
called the head and Py, ..., P, is called the body of the program clause.
b) A unit clause, also called a fact, is a clause of the form

0

that is, a definite program clause with an empty body.
c) A definite program is a finite set of definite program clauses.
d) A definite goal is a clause of the form

=P, P

that is, a clause which has an empty consequent. Each P; (i = 1,...,k) is called a
subgoal of the goal.

e) A Horn clause is a clause which is either a definite program clause or a definite
goal. So, a Horn clause is a clause with at most one positive literal.

Example 2.11. The following is an example of a definite program:

P:-Q,R.
0 :-.
R :- 0.

This program corresponds with the formula (PV =QV —=R) AQ A (RV —Q), which is
in conjunctive normal form, and where each conjunct contains precisely one positive
literal (and hence is a Horn clause). Note that this formula has the same truth table
as (QOAR—P)AQA(Q —R).

Given this program, in logic programming the goal ‘:- P.” will be answered with
‘yes’, corresponding with the fact that P logically follows from (PV —QV —R) A
QA (RV-0Q).

The goal “:- §” will be answered with ‘no’, corresponding with the fact that S
does not logically follow from the given program.

Logic programming in general and Prolog in particular will be treated in Chapter 9.
However, this treatment also presupposes familiarity with classical predicate logic,
which will be treated in Chapter 4.

2.5.3 Travelling Salesman Problem (TSP)*; NP-completeness*

The Traveling Salesman Problem is the problem of computing the shortest itinerary,
when a number, n, of cities with given distances has to be visited, each city to be
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visited only once. From a theoretical point of view there is no problem at all: if there
are n cities to be visited, there are (n — 1)! itineraries; compute the total distance of
each of them and take the shortest. However, from a practical point of view there
are problems: if 10 cities are to be visited, there are 9! = 362,880 itineraries; and if
a sales-representative has to visit 30 cities, there are 29! itineraries and 29! is larger
than 10%°. Supposing that a computer could calculate the distances of 1000 = 103
itineraries per second, in one human lifetime it could compute about 100 (years) X
365 (days) x 24 (hours) x 60 (minutes) x 60 (seconds) x 103 (itineraries) ~ 10'3
itineraries. So, in order to compute the distances of 29! itineraries, our computer
would need more than 10%° / 10'3 = 10'® human lifetimes! Thus, like the validity
problem for formulas of propositional logic, also the Travelling Salesman Problem
is solvable in theory, but no realistic solution is known.

We will see below how the following Traveling Salesman Problem can be reduced
to a satisfiability problem in the propositional calculus. In the map, the vertices are
towns and the lines are roads, each 10 miles long. This example is from A. Keith
Austin [1].

4 57 8

PROBLEM: Can the salesman start at 1 and visit all the towns in a journey of only
70 miles?

Theorem 2.19. There is a formula E of the propositional calculus such that there is
a journey of only 70 miles starting at 1 if and only if E is satisfiable.

CONSTRUCTION of E: To express the problem in propositional logic, we intro-
duce the atomic formulas P, form=0,1,...,7, t =1,2,...,8, the intended mean-
ing of P" being: after 10 x m miles the salesman is at town ¢. Given any journey
of 70 miles, each P" is either true or false. We now express the conditions of the
problem as logical formulas.

i) If the salesman is at 5 after 30 miles, then he is at 3 or 4 after 40 miles, i.e., if P5-°’
is true, then either Pf or Pf is true. Let J53 = P53 — Pg‘ \/Pf be the formula in our
propositional language expressing this. Similarly we have P — P{"t1v Pyt
and Py — (Pt v pytty Pty prtty Pl for m = 0, 1,6, and so on
for each town. Denote each of these by the corresponding Jy. All these have to
be true and so we write

J=JONION NIINTI AN NTEN NS
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ii) Another condition is that each town has to be visited. That town 1 has to be
visited can be expressed as Pl0 \% PI1 \% P12 V...V P17 and similarly for the other
towns. Let

Vi=(PPV..VPOYANPIV ... VPN APIV...VP]).

iii) Also the salesman is only at one town at any one time, so we have, e.g., P35 —
—P).LetNj := P] — =P} A=P5 A=P) A...A=P]. And let

N:=N'ANIA...AN].

iv) Finally, he has to start at 1, so we require PlO to be true.

Now let E:=JAVANA Plo . Then E has the required property: there is a journey of
only 70 miles starting at 1 if and only if E is satisfiable.

Theorem 2.19 reduces the Traveling Salesman Problem for eight cities to a satisfia-
bility problem in the propositional calculus. However, the formula E constructed in
the proof of Theorem 2.19 is built from 8> = 64 atomic formulas P". So, in order
to check whether E is satisfiable, we have to compute a truth table entered from
264 lines. We have already seen in Subsection 2.3.1 that making truth tables with
so many entries does not yield a practical or realistic decision method to decide
whether arbitrary formulas are satisfiable or not. Since the original problem can be
solved by computing the distances of (8 - 1)! itineraries, the reduction of the Trav-
eling Salesman Problem to the satisfiability problem for propositional logic has not
helped us to find a practical or realistic solution for the former. We have to wait for
a realistic solution of the satisfiability problem or for a proof that no such solution
exists.

Of course, in order to see whether a given formula E is satisfiable, i.e., has at
least one 1 in its truth table, one might non-deterministically choose a line in the
truth table and compute whether E is 1 in that line. The computation of one line
in the truth table can be done in a realistic way: the time required to do so is a
polynomial of the complexity of the formula in question. If it turns out that E is 1
in the chosen line, one knows that E is satisfiable, but when it turns out that E is 0
in the chosen line, one does not know whether E is satisfiable or not. And we have
seen in Subsection 2.3.1 that it is not realistic to compute all lines in the truth table
of E if E has been built from many, say 64, atomic formulas. For that reason, the
satisfiability problem for propositional calculus is said to belong to the class NP of
all problems which may be decided Non-deterministically in Polynomial time.

In 1971, S. Cook showed that not only the Traveling Salesman Problem, but also
all other problems in the class NP, can be reduced to a satisfiability problem in the
propositional calculus. For that reason the satisfiability problem for propositional
logic is called NP-complete.

Exercise 2.31. [Keisler; appearance in S.C. Kleene [14], p. 67] Brown, Jones and
Smith are suspected of income tax evasion. They testify under oath as follows.
BROWN: Jones is guilty and Smith is innocent.
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JONES: If Brown is guilty, then so is Smith.

SMITH: I’m innocent, but at least one of the others is guilty.

Let B, J, S be the statements ‘Brown is innocent’, ‘Jones is innocent’, ‘Smith is
innocent’, respectively. Express the testimony of each suspect by a formula in our
logical symbolism, and write out the truth tables for these three formulas (in parallel
columns). Now answer the following questions.

a) Are the testimonies of the three suspects consistent, i.e., is the conjunction of
these testimonies consistent?

b) The testimony of one of the suspects follows from that of another. Which from
which?

¢) Assuming everybody is innocent, who committed perjury?

d) Assuming everyone’s testimony is true, who is innocent and who is guilty?

e) Assuming that the innocent told the truth and the guilty told lies, who is innocent
and who is guilty?

Exercise 2.32. [W. Ophelders] The football clubs Pro, Quick and Runners play a
football tournament. The trainers of these clubs make the following statements.
Trainer of Pro: If the Runners win the tournament, then Quick does not.

Trainer of Quick: We or the Runners win the tournament.

Trainer of the Runners: We win the tournament.

Express the three statements by formulas in our logical symbolism and write out the
truth tables for these three formulas. Next answer the following questions, supposing
there can be at most one winner.

a) Assuming everyone’s statement is true, which club wins the tournament?

b) Assuming only the trainer of the winning club makes a true statement, which club
wins the tournament?

Exercise 2.33. Find formulas composed from P, Q, R, A, V and — only, whose truth
tables have the following value columns:

P QO R|(a)](®)]|()](d)
1 1. 1]0f1]0]0
1 1. 0J]0f0]0]1
1 01]0[0]0]1
1 00J]0f[0]0]1
01 1] 1f{1]0]1
01 0JjofoOo]O0]O
00 1]0f1]0]1
00 0jJ]0fO0O]0]1

Exercise 2.34. Let A | B be defined by the following truth table:
A B|AlB
1 1] 0
1 0] 1
0 1] 1
00 1
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A | B may be read as ‘not A or not B’. Prove that -, V and A, and hence each of the
16 binary truthfunctional connectives, can be expressed in terms of |.

Exercise 2.35. A set of binary truthfunctional connectives is independent iff none
of the members of the set can be expressed in terms of the other members of the set.
i) Show that {A, V, =} is not independent.

ii) Show that {A, =}, {V, =} and {—, —} are independent and complete sets of
truthfunctional binary connectives.

Exercise 2.36. Show that there are only two binary connectives, namely, 1 (the
Sheffer stroke) and | (see Exercise 2.34) such that every binary truthfunctional con-
nective can be expressed in it.

Exercise 2.37. Construct formulas in conjunctive normal form which have the same
truth table as the following formulas:

DP—(Q—P)ANP—QVP)

ii)(P——-(Q—P))AN(P— QAP)

iii) (P——~(Q— P))V(P— QAP)

2.6 Syntax: Provability and Deducibility

By now it will be clear that there are a great many, in fact even infinitely many, valid
formulas. And given premisses Ay, ...,A,, there are infinitely many valid conse-
quences of those premisses. The question now arises whether it is possible to select
a few valid formulas, to be called logical axioms, together with certain rules — which
applied to valid formulas produce (or generate) new valid formulas — such that any
valid formula can be obtained (or generated) by a finite number of applications of
the given rules to the selected logical axioms. This question can be answered pos-
itively, which means that in a certain sense we have reduced the big collection of
valid formulas to a surveyable subset: any formula in the big collection of valid
formulas can be generated by the given rules from formulas in the subset.

There are several possibilities for choosing the logical axioms and rules such that
the desired goal is accomplished. In this section one of them is presented, namely,
a system for propositional logic developed by Frege, and adapted by Russell and
Hilbert. Henceforth, we shall speak of a Hilbert-type system. In Section 2.8 two
other, more recent, systems will be treated which achieve the same goal.

One may design production methods satisfying the following two conditions:

(D) the production method produces in the course of time only formulas which
are valid, and, more generally,

(IT) the production method if applied to certain formulas given as premisses, only
produces formulas which are a valid consequence of those premisses.

There are in fact many such production methods, each of them consisting of (i) a set
of valid formulas, and (ii) a set of rules of inference. One such production method
satisfying (I) and (II) can be obtained by taking:
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(i) All formulas of any of the forms A — (B — A) and
A—=-B) = (A= B—=0C)—=(A—=0));
We have seen in Theorem 2.7, 1 and 2, that such formulas are valid. We call these
formulas (logical) axioms for the connective —.
(ii) As the sole rule of inference, called the —-rule or Modus Ponens (MP),
we take the operation of passing from two formulas of the respective forms D and
D — E to the formula E, for any choice of formulas D and E.

D D—E

Modus Ponens (MP):
E

In an inference by this rule, the formulas D and D — E are the premisses, and E is
the conclusion. The following statements can easily be checked:

() Any interpretation that makes the premisses of the rule true, also makes the
conclusion of the rule true. For our particular rule MP: for any interpretation i, if
i(D)=1and i(D — E) = 1, then i(E) = 1, and consequently

(B) If all premisses of the rule are valid, then also the conclusion of the rule is
valid. For our particular rule MP: if = D and |= D — E, then |= E (Theorem 2.11).
Our rule of inference may be applied zero, one, two or more times to formulas of
the form mentioned in (i) or to formulas which we have already generated earlier.

Example 2.12. This production method yields, among other things, the following
formulas for any choice of the formula A:

1.A — (A — A) This is a formula of the form A — (B — A), taking B = A.
2A—->A—-A)—>((A—=>((A—A)—>A)) > (A—A)) This is a formula of the
form (A— B) = ((A— (B—C)) = (A—C()), takingB=A — A and C = A.

3. (A— ((A—A) - A)) = (A — A) This formula is obtained by an application of
Modus Ponens to 1 and 2.

4.A— ((A— A) — A) This formulais of the formA — (B — A), taking B=A — A.

5. A — A This formula is obtained by an application of Modus Ponens to 3 and 4.

Schematically:
A5 (A=A A->A—=A) (A= (A—A)—A) > (A—=A)

A= ((A—A)—A) > A—A)
A= (A—A)—A)

MP
A—A

This schema is called a (logical, Hilbert-type) proof of the formulaA —A and A — A
is called (logically) provable, because there exists such a schema using only logical
axioms and Modus Ponens. Note that each of the formulas in this schema, andA — A
in particular, is produced by our production method and that each of these formulas
is valid, since we started with valid formulas and since Modus Ponens applied to
valid formulas only yields formulas which are valid (Theorem 2.11 or () above).

Example 2.13. The production method described above applied to the formulas A —
B and B — C, for instance, yields the following formulas:
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1. A — B This formula is a given premiss.

22.(A—=B) = ((A—= (B—C)) = (A — C)) This formula is of the appropriate
form.

3. (A— (B—(C)) = (A— C) Obtained by applying Modus Ponens to 1 and 2.

4. B — C This formula is a given premiss.

5.(B—C) — (A — (B— (C)) This is a formula of the form A — (B — A), taking
A=B—Cand B=A.

6. A — (B — C) This formula is obtained by applying Modus Ponens to 4 and 5.

7. A — C This formula is obtained by an application of Modus Ponens to 6 and 3.

Schematically: premiss axiom 2
A—B A—-B) = (A—-(B—C)—(A—=0))
A= (B—-C)—>(A—=C)
premiss axiom 1
B—-C B—-C)—(A—(B—=C(C)
A— (B—C)
A—=C

This schema is called a (logical, Hilbert-type) deduction of A — C from the pre-
misses A — B and B — C and A — C is said to be deducible from the premisses
A — B and B — C, using only these premisses, logical axioms and Modus Ponens.
Note that each of the formulas in this schema, and A — C in particular, is produced
by our production method applied to the premisses A — B and B — C, and that each
of these formulas is a valid consequence of the premisses A — B and B — C, since
we started with valid formulas, the premisses A — B and B — C only, and because
of (&) above.

It will be clear now that any production method, consisting of (i) a set of valid
formulas and (ii) a set of rules of inference satisfying () and (), will satisfy the
conditions (I) and (IT), mentioned in the beginning of this section.

One can prove (see Exercise 2.44) that Peirce’s law, ((A — B) — A) — A, although
it contains only the connective —, is not generated by the production method con-
sisting of the two logical axioms for — and Modus Ponens. This raises the question
whether there is a complete production method satisfying I and I, i.e., a production
method which in the course of time generates all valid formulas and, more gener-
ally, which generates, if applied to certain formulas, given as premisses, all valid
consequences of those premisses. The answer to this question is affirmative. In Sec-
tion 2.9 we shall prove that the production method consisting of all formulas of any
of the forms shown after the symbol |= in Theorem 2.7, and of the sole rule of infer-
ence, Modus Ponens, is complete. For convenience these formulas are again listed
below and will be called (logical) axioms for (classical) propositional logic.

A— (B—A)
(A—=B)=> (A= (B—=C)—=(A—=(C)
A— (B—ANAB)

4a AANB—A

L=
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4 AANB—B
52 A—AVB
5b B—AVB

6. A—=C)—(B—C)—(AVB—(0))
7. (A—B)— ((A— —-B)— —A)

8. ——A—=A

9. A—=B)—=(B—A) —(A=B))
10a (A=B)— (A—B)

10b (A= B)— (B—A)

Numbers 1 and 2 concern axioms for the connective —, numbers 3 and 4 concern
axioms for A, numbers 5 and 6 concern axioms for V, numbers 7 and 8 concern
axioms for — and numbers 9 and 10 concern axioms for <. Notice that in a sense
they describe the typical properties of the connective in question; for instance, the
axioms for A will not hold if we replace A by V.

These forms themselves will be called axiom schemata. Each schema includes
infinitely many axioms, one for each choice of the formulas denoted by A, B, C.
For example, corresponding to 1 in Theorem 2.7, we have as Axiom Schema 1:
A — (B — A). Particular axioms in this schema are P — (P — P), P — (Q — P),
0—(P—Q), "P—>(QAR—-P), (P—>(-Q—P))—> (R—(P— (-Q—P))),
etc.

The choice of the logical axioms is a subtle matter. For instance, if one would
replace axiom schema 8, =——A — A, by its converse, A — ——A, then the result-
ing system would not be complete, in particular, the resulting system would not be
able to generate Peirce’s law, ((A — B) — A) — A. Also, if one replaces axiom 8,
—-—A — A, by A — (A — B) one obtains intuitionistic propositional logic, which
is completely different from classical logic; see Chapter 8. Small changes may have
far reaching consequences!

Example 2.14. For illustration, let us show that from the premisses
P — W: I will pay them for fixing our TV [P] only if it works [W].
=W: Our TV still does not work.
the logical consequence —P (I will not pay) can be generated by using the logical
axioms 1 and 7 and by three applications of Modus Ponens.

prem  axiom 1 prem axiom 7
-W -W—-P—->-W) P->W (P->W)—(P—-W)—-P)
P—-W (P——-W)——P

-P

The schema above is called a (logical, Hilbert-type) deduction of —P from the pre-
misses P — W and —W and we say that =P is (logically) deducible from P — W
and —W, meaning that there exists a (logical, Hilbert-type) deduction of —P from
P — W and -W.

Definition 2.11 (Deduction; Deducible). Let B,Aq,...,A, be formulas.
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1. A (logical, Hilbert-type) deduction of B from Ay,...,A, (in classical proposi-
tional logic) is a finite list By,. .., By of formulas, such that
(a) B = By is the last formula in the list, and
(b) each formula in the list is either one of Ay,...,A,, or one of the axioms of
propositional logic (see Theorem 2.7), or is obtained by an application of Modus
Ponens to a pair of formulas preceding it in the list.

2. B is deducible from Ay, . ..,A, = there exists a (logical, Hilbert-type) deduction
of BfromAy,...,A,.
Notation: Ay, ... ,A, F B, where the symbol - may be read ‘yields’. If there does
not exist a deduction of B from Ay,... A, this is written as Ay,...,A, I/ B as
shorthand for: not Ay,...,A, F B.

3. Incase n =0, i.e., in case there are no premisses, these definitions reduce to:
A (logical, Hilbert-type) proof of B is a finite list of formulas with B as last
formula in the list, such that every formula in the list is either an axiom of propo-
sitional logic or obtained by Modus Ponens to formulas earlier in the list.
B is (logically) provable := there exists a (logical, Hilbert-type) proof of B.
Notation: - B

4. For I' a (possibly infinite) set of formulas, B is deducible from I, if there is a
finite list Ay,...,A, of formulas in I" such thatA;,...,A, - B.
Notation: I" - B.

Example 2.15. We have seen in Example 2.13 that A - B, B—CFA — C and in
Example 2.14 that P — W,—W F =P. And also in Example 2.12 that - A — A.

So, Ay,...,A, F B, in words: B is deducible from Ay,...,A,, if and only if there
exists a finite schema of the form

Ay - Ay axiom axiom
D D—E
E
B

And in case there are no premisses Ay, ...,A,, i.e., n =0, we say that - B, in words:
B is (logically) provable or deducible.

Example 2.16. Consider the following sequence of formulas:

premiss 4a
AAB AANB— A
premiss 4b MP premiss
AAB AAB—B A A= (B—C)
MP MP
B B—C

MP
C
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For each choice of formulas A, B, C, this sequence of formulas is a deduction of C
from A — (B — C) and A A B. Hence, C is deducible fromA — (B — C) and AAB;
ie,A— (B—C), ANBFC.

The notion of logical consequence, Ay, ...,A, = B, is in terms of the truth or falsity
and hence in terms of the meaning of the formulas involved. Therefore, this notion
of logical consequence is a semantic notion. But the notion of (logical) deducibility,
Ay,..., A, F B, is in terms of the forms of the formulas involved. One does not have
to know the meaning of the connectives, one only has to distinguish the form of the
formulas involved. Therefore, this notion is a syntactic notion.

In Ay,...,A, - B one may think of the premisses Ay,...,A, as being the (non-
logical) axioms of Euclid (& 300 B.C.) for geometry, the axioms of Peano for arith-
metic (see Chapter 5), the axioms of Zermelo - Fraenkel for set theory (see Chapter
3) or the laws of Newton for classical mechanics.

The premisses Ay,...,A,, formulated in an appropriate formal language, consti-
tute what one calls a (formal) theory: Euclid’s geometry, Peano’s arithmetic, the
set theory of Zermelo - Fraenkel, Newton’s mechanics, and so on. Each science is
continually trying to re-adjust its foundations, as formulated in its premisses. For
instance, Cantor’s naive set theory had to be replaced by the set theory of Zermelo
- Fraenkel (see Chapter 3) and Newton’s (classical) mechanics by Einstein’s theory
of relativity.

Of course, we want that our production method, consisting of the (logical) axioms
for propositional logic and Modus Ponens, is sound, that is, when applied to given
premisses Ay,...,A,, it should generate only formulas which are a logical (or valid)
consequence of Aq,...,A,. This is indeed the case, as stated in the following sound-
ness theorem.

Theorem 2.20 (Soundness theorem).

(a): IfAy,...,Ap - B, then Ay,...,A, |= B, or, equivalently,
(a’)ifAy,...,Ay =B, then Ay,...,Ay 1/ B.

(b): In case n =0, i.e., there are no premisses: if - B, then = B.
(c): IfT' - B, thenT" = B.

Proof. Suppose Ay,...,A, - B, i.e., there is a finite schema of the form

A4 e Ap axiom axiom
D D—E
E
B

Note the following:
1) Each axiom of propositional logic has the value 1 in each line of the truth table.
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ii) For all lines of the truth table, given that in an application of Modus Ponens the
premisses D and D — E have the value 1, the conclusion E has the value 1 as well.

We have to show that Ay,...,A, = B. So, suppose that the premisses A1,...,A,
are 1 in a given line of the truth table. Then it follows from 1) and ii) that, going from
top to bottom in the deduction of B from Ay,...,A,, every formula in the deduction
has value 1 in the given line. Hence, in particular, B has value 1 in that same line of
the truth table. a

One may illustrate this proof by a concrete example, for instance, for the case
that A — (B—C), AANBFC.

Corollary 2.2 (Simple consistency).
There is no formula B such that both - B and - —B.

Proof. Suppose - B and - —B for some B. Then according to the soundness theorem
2.20, = B and = —B. Contradiction. O

We hope that the production method, consisting of the (logical) axioms for propo-
sitional logic and Modus Ponens, is complete, that is, that every valid consequence
of given premisses Ay, ...,A, may be logically) deduced from these premisses. This
is indeed the case, as is stated in the following theorem, which will be proved in
Section 2.9 and in Exercise 2.59.

Theorem 2.21 (Completeness theorem).

(a): IfAy,...,Ap =B, then Ay, ..., A, & B, or, equivalently,
(a’)ifAy,...,A,t/B, then Ay,... A, = B.

(b): In case n =0, i.e., there are no premisses: if = B, then - B.
(c): IfT" =B, thenI' - B.

By the soundness of the axiomatic-deductive system for (classical) propositional
logic we mean that at most certain formulas are provable, namely only those which
are valid; by the completeness we mean that at least certain formulas are provable,
namely, all which are valid. By the end of Section 2.9 we shall have proved the
completeness theorem and hence (combining completeness and soundness) have
shown the following equivalences:

Ai,...,A EBiffAy,... A, B
T = Biff r-s
= B iff -B

There are a number of arguments underscoring the philosophical meaning of the
completeness theorem, which justify taking the trouble to prove this theorem.

1. The completeness theorem tells us that any correct argument (in the object lan-
guage) has a rational reconstruction which has the standard form described in the
definition of Ay, ...,A, - B. Arguments in science and in daily life usually do not
proceed in the way described in the definition of Ay,...,A, F B, but according
to the completeness theorem for any such correct argument there is a rational
reconstruction which does.
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2. Note that whether B is deducible from Aj,...,A, or not only depends on the
form of the formulas Ay,...,A, and B. Hence, the question whether B is a valid
consequence of Ay,...,A, or not has been reduced to a question about the form
of the formulas Aq,...,A, and B.

3. We have defined the intuitive notion of ‘B is a logical consequence of Ay, ...,A,’
in two completely different ways; we have given a semantic definition in terms
of truth values (Ay,...,A, = B) and a syntactic one in terms of logical axioms
and the rule Modus Ponens (Ay,...,A, - B). That these two notions turn out
to be equivalent suggests that our definitions indeed capture the corresponding
intuitive notion.

4. We have given a mathematically precise definition of the intuitive notion of logi-
cal consequence in order to make this notion mathematically manageable, which
is necessary if one wants to prove in a precise way certain statements about this
notion. Now it is safe to assume that

a) if B is intuitively a logical consequence of Aj,...,A,, then Ay,...,A, = B.
According to the completeness theorem,
b) ifAy,...,A, E B, thenA;,...,A, - B.
An analysis of the axioms and rules of propositional logic indicates that
c) ifAy,...,A, B, then B is intuitively a logical consequence of Ay, ..., A,.

(a), (b) and (c) show that the intuitive notion of logical consequence and the math-
ematical notions of Aj,...,A, = Band of Aj,...,A, I B coincide extensionally.

5. In Chapter 4 we shall extend the notion of valid or logical consequence and of
(logical) deducibility to (classical) predicate logic. Then we shall prove that these
notions are again equivalent (soundness and completeness). On that occasion we
shall further elaborate on the meaning of the completeness theorem in the case
of predicate logic.

In Example 2.14 we have constructed a logical deduction of =P from the premisses
P — W and =W, hence, P — W,-W =P, where P and W were atomic formulas.
More generally, in the same way one can show that for arbitrary formulas A and B,
A — B,—Bt —A. That is, the rule Modus Tollens

A—B -B
-A

is a derived rule, that from now on may be used in the construction of (logical)
deductions. There are many more derived rules, for instance, see Exercise 2.39.

Exercise 2.38. Translate the following arguments in logical terminology and check
whether the (putative) conclusion is deducible from the premisses. If so, give a de-
duction, using the logical axioms K — (R — K) and (R — K) — ((R — —K) — —R).
If not, then why not?

a) If it rains [R], then John will not come [—C]. John will come. Therefore: it does
not rain.

b) Only if it rains [R], John will not come [~C]. John will come. Therefore: it does
not rain.
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Exercise 2.39. By constructing appropriate deductions, show that
(a) AJA—BFB (f) BFAVB
(b) A, BFAAB (g —AFA

() AABFA (hy A>B,B—>AFAZB
(d) AANBFB (i) A2BFA—B
(e) AFAVB ) A2BFB—A

Hence, from now on, the following derived rules may be used in the construction of
(logical) deductions:

A B ANAB AAB A B —-—A
ANB A B AVB AVB A
Exercise 2.40. Prove that A, —~A - B by using the following axioms:
axiom 1 (a): A — (B — A) axiom 1 (b): “A — (—~B — —A)

axiom 7: (-B — A) — ((-B — =A) — —=—B) axiom 8: =—B — B

Exercise 2.41. By using the soundness theorem show that

(@) notPVQFPAQ, (c) notPFQ,

(b)notP—-Q+FQ— P, (d) notP—QFPAQ.
Note that in order to show that A |- B, it suffices to exhibit at least one logical de-
duction of B from A; but in order to show that not A - B, one has to prove that no
logical deduction of B from A can exist, in other words, that any deduction is not
a deduction of B from A. In order to prove the latter, it suffices — according to the
soundness theorem — to show that A [~ B.

Exercise 2.42. Prove or refute: P — Q, P F RV Q either by giving a deduction of
RV Q from P — Q en P, using the logical axiom B — AV B, or by showing that such
a deduction cannot exist.

Exercise 2.43. Translate the following argument in logical terminology and check
whether the (putative) conclusion is deducible from the premisses. If so, give a de-
duction, using the logical axioms A — (B — A), (A — B) — ((A — —~B) — —A) and
——A — A. If not, why not?

If John succeeds [S], then John works hard [H].

If John is not intelligent [—/], then John does not succeed.

Therefore: if John is intelligent, then John works hard.

Exercise 2.44. Consider a system of three truth values, 0, 1 and 2, of which 0 is the
only designated truth value, and let the truth table of — be as follows.

A B|A—B
00 0
0 1 1
0 2 2
1 0 0
1 1 0
1 2 2
20 0
2 1 0
2 2 0
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Show that for any choice of formulas A, B, C

a) for every interpretation i, i(A — (B — A)) =0,

b) for every interpretation i, i((A - B) = (A —- (B—C)) = (A —())) =0,
c) for every interpretation i, if i(A) = 0 and i(A — B) =0, then i(B) =0,

d) for some interpretation i, i(((A — B) — A) — A) # 0.

Conclude that Peirce’s law, ((A — B) — A) — A, is independent of A — (B — A)
and (A - B) — ((A — (B— C)) — (A — ()), in other words, that Peirce’s law is
not generated by the production method consisting of only the two axioms for —
and Modus Ponens.

2.7 Syntax: Meta-logical Results

In this section (logical) proofs and deductions in the object-language will be stud-
ied, using (of necessity) informal proofs and deductions in the meta-language. The
main results are the Deduction theorem, and the Introduction and Elimination rules.
Given premisses A1, ...,A, and given a formula B, these theorems are crucial in fa-
cilitating the search for a logical deduction of B from Ay, ...,A,, if there is one. Next
Gentzen’s system of Natural Deduction is presented. It is shown that any formula
which is logically provable in this system is also provable in the proof-system of
Section 2.6, and conversely.

In Section 2.6 we defined a (logical) deduction of B from premisses Ay,...,A,
as being a finite sequence of formulas which satisfies certain conditions. It is im-
portant to realize that whether a given sequence of formulas is a (logical) deduction
or not only depends on the form of the formulas in the sequence. In other words,
whether a given sequence of formulas is a (logical) deduction can be checked me-
chanically; one can write a computer program to check the correctness of a given
putative (logical) deduction. An example is Automath, developed by N.G. de Bruijn
[3] and others at Eindhoven University.

It is also important to distinguish between logical deductions (of formulas) in the
object language and informal proofs of certain statements about logical deductions.
For instance, in Theorem 2.22 (bl) we will prove informally that if Aj,A;,A3
B and A1,A,A3 F B and By,B; - C, then Aj,A>,A3 F C. This theorem is about
logical proofs and deductions in the object-language; however, the formulation and
the (informal) proof of this theorem are given in the meta-language. Notice that this
Theorem is the syntactic counterpart of Exercise 2.26.

Theorem 2.22.

(al)Ay1,Ay,As A, A1,Ay, A3 Ay, A1 A2, Az As.

(a2) More generally: Ay, ..., A;,..., Ay A;fori=1,... n

(bl) IfA1,A2,A3 FByand A1,Ay,As - By and B1,By - C, then A1,A>,A3 - C.

(b2) More generally, for any n,k > 0: ifAy,...,AyFBiand ... and Ay,..., A, F By
andBy,...,By - C, then Ay,...,A, FC.
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Proof. (al) For each i,1 < i < 3, A; itself is a (logical) deduction of A; from
A1,A3,A3. In the definition of a logical deduction it is not required that all the pre-
misses are actually used; they may be used, but not necessarily so.
(a2) is shown similarly.
(b1)

A,Ay Az axiom A, Ay A axiom

(B (B2)

B B>

)

o

Assume A,A»,A3 By, A1,A>,As F By and B, B, F C. That is, there are deductions
(B1) and (B,) of By and B, respectively, from Aj,A>,A3 and there is a deduction (y)
of C from By, B,. By replacing the premisses B and B, in () by the deductions (f31)
and (J3,), we obtain a (logical) deduction of C from A|,A»,A3. Hence, A|,A3,A3 - C.
(b2) is shown similarly. ad

If we take in Theorem 2.22 (bl) By = B, = A3 = A, we obtain the following result.

Corollary 2.3. If A C, then A1,A;, A C.
More generally: If A& C, then Ay,...,A,—1, AFC.

Proof. In the definition of Ay,...,A,—1, A I C it is not required that each of the
assumption formulas Ay, ...,A,— actually occur in the deduction. O

Theorem 2.22 can be reformulated in set-theoretic terms: let L(A1,...,A,), called
the logic of Ay, ...,A,, be the set of all formulas that are deducible from Ay,...,A,.
Then Theorem 2.22 says that i) for each i, 1 <i<n, A;isin L(Ay,...,A,), and ii) if
eachof By,...,Byisin L(Ay,...,A,) and By,...,B; F C, then Cisin L(A1,...,A,).

Since in Corollary 2.3 the premisses Ay, ...,A,_ are not relevant to C, Corollary
2.3, which just has been shown for classical logic, does not hold for the so-called
relevance logic; see Section 6.10.

Let us consider the following four expressions:
(i) EA—Bie.,A— Bisvalid,
(il) AEB i.e., Bisavalid consequence of A,
(iii)) FA — B i.e., A — B is (logically) provable,
(iv)AFB i.e., B is (logically) deducible from A.
(i) and (ii) are semantic notions, i.e., they are concerned with the meaning of the
formulas in question; (iii) and (iv) are syntactic notions, i.e., they are concerned
with the form of the formulas in question.

In Theorem 2.4 we have already shown that (i) and (ii) are equivalent. In Theo-
rems 2.23 and 2.24 we will prove that (iii) and (iv) are equivalent.
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In the soundness theorem (Theorem 2.20) we have shown that (iii) implies (i) and
that (iv) implies (ii). The converses of these results, (i) implies (iii) and (ii) implies
(iv), will be shown in Section 2.9.

So, by the end of Section 2.9 we shall have proved that (i), (ii), (iii) and (iv) are
equivalent. But remember that ‘if = A, then |= B’ is a weaker statement than (ii),
A = B (see Theorem 2.11). Consequently, ‘if - A, then F B’ is a weaker statement
than (iv), A+ B.

Theorem 2.23. (a) If - A — B, then A+ B. (b) More generally, for any n > 1,
l.fAl,...,An_l FA — B, thenAy,...,A,_1, AFB.

Proof. (b) Suppose Ay,...,A,—1 - A — B, i.e., there is a deduction (@) of A — B
fromAy,...,A,_1.
Aq Ay axiom

(o)

A A—B

By adding one more premiss, A, to this deduction and one more application of
Modus Ponens, one obtains a deduction of B fromAy,...,A,_1, A. O

2.7.1 Deduction Theorem; Introduction and Elimination Rules

In order to establish an implication ‘if A, then B’, one often assumes A and then con-
tinues to conclude B. The following theorem, called the deduction theorem, which
is the converse of Theorem 2.23, captures this idea in a precise form: in order to
establish that Ay,...,A,_| - A — B, it suffices to show that A;,... A, _1,AF B.

That the deduction theorem is a very useful tool may be seen from the following.
In order to show that - A — ((A — B) — B), it suffices by the deduction theorem
to show that A - (A — B) — B. Likewise, in order to show the latter statement it
suffices to prove A, A — B B; and this is very easy (one application of Modus
Ponens suffices), while to show that - A — ((A — B) — B) directly is much more
complicated.

Theorem 2.24 (Deduction theorem, Herbrand 1930).
(a) IfAF B, then = A — B. More generally,
(b)IfA],..wAnfl7 AF B, thenAl,...7A”,1 FA — B.

Proof. (b) Suppose Ay,...,A,—1, AF B, i.e., there is a (logical) deduction () of
B from the premisses Ay,...,A,—1, A. Below we shall change () step by step
into a (logical) deduction (y) of A — B from Aj,...,A,_, hence showing that
A17---aAn—1 FA — B.
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Ay A, A axiom
C C—D ()
__D
B

The first step consists in prefixing the symbols A — to each formula occurring in
(o). This results in the schema (f3).

A— A A=A, A—A A — axiom

A—-C A—(C—D) B)
A—D

A—B

Although the last formula in (8) is A — B, (B) itself is not a deduction of A — B
fromAy,...,A,— for the following reasons:
(i) (B) does not start with logical axioms or premisses Ay,...,A,_1, and (ii)

A—-C A= (C—D)

A—D

is not an application of Modus Ponens.
However, by inserting appropriate formulas into (), one can transform (f3) into
a (logical) deduction (y) of A — B from Ay, ...,A,_ as follows.

1. For1 < j <n—1replace A — A; at the top in (f3) by the following:

axiom 1
Aj AJ%&—M/)

A—)Aj

2. Replace A — A at the top in () by the (logical) proof of A — A, given in Section
2.6.
3. Replace A — axiom at the top in (3) by the following:

axiom 1
axiom axiom — (A — axiom)

MP
A — axiom

4. Replace
A—-C A—(C—D)

A—D
by the following:
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axiom 2
A—C A—-C)—» (A= (C—D))—(A—D))
(A= (C—D))—(A—D) M A— (C—D)
A—D
Each formula of the resulting sequence (7) either is one of Ay, ...,A,_; oris alogical

axiom or comes from two preceding formulas in the sequence by Modus Ponens,
and the last formula of the sequence is A — B. So (y) is a deduction of A — B from
Ap,... Ap_1. O

In Exercise 2.58 the proof of the deduction theorem is applied to a deduction of
QO VR from P — Q and P in order to obtain a deduction of P — Q VR from P — Q.

Example 2.17. In Example 2.16 we have seen that A — (B — C), AABF C. By
the deduction theorem it follows that A — (B — C) F A AB — C. And, again by
the deduction theorem, it also follows that - (A — (B — C)) — (AAB — C). The
reader would find it a difficult exercise to construct in a direct way (i.e., without
applying the deduction theorem or using its method of proof) a logical proof of
(A= (B—=C)—= (AANB—=C).

In general, it is much easier to show that A;,...,A,—1, A I B than to show that
Ay,...,A,—1 FA — B. The deduction theorem is a simple way to show the existence
of certain (logical) deductions without having to exhibit those logical deductions
explicitly. It is easy to write down a logical deduction of C from A — (B — C) and
AAB; s0,A— (B— C), AANBF C. Then, by two applications of the deduction
theorem, one knows that - (A — (B — C)) — (AAB — C), without having to write
down a logical proof of the latter formula, which would be a rather complicated job.
Following the proof of the deduction theorem one is able in principle to exhibit such
a logical proof, but in most cases we are not interested in writing down this (logical)
proof explicitly.

It is possible to derive additional results which make it easy to show that certain
deductions exist without having to write down those deductions explicitly. One re-
sult is called Reductio ad absurdum; it says that in order to deduce —A (from I,
where I' is a finite list of zero or more formulas) it suffices to deduce a contradic-
tion (B and —B) from the assumption A (together with I'"). Another result is called
V-elimination: in order to deduce C from AV B (and I'), it suffices to deduce C from
A (and I') and to deduce C from B (and I').

The proof system of Section 2.6 contains only one rule, Modus Ponens. How-
ever, many other rules can be derived, for example, the rule called A-introduction:
from the two formulas A and B one can deduce the one formula A A B. This result is
obtained by using the axiom A — (B — A A B) and two applications of Modus Po-
nens. The next theorem contains the results just mentioned and a number of related
similar results.
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Theorem 2.25 (Introduction and Elimination Rules). For any finite list I’ of
(zero or more) formulas, and for any formulas A, B, C:

INTRODUCTION ELIMINATION
— IfI',A-B, thenI'FA—B A, A—B+FB
AN A BHAAB AANBFA
AANBFB
VvV AFAVB IfI',A-CandI', B-C,
BFAVB thenI', AVBFC
- IfI'A-BandI', A —B, -—AFA
thenT' - —-A (double negation elimination)
(reductio ad absurdum) A,—A+B

(weak negation elimination)

=2 A—-B B—-AFAZB A=ZBFA—B
A=ZBFB—A

Proof. —-introduction is the deduction theorem.

—-elimination, N\-introduction, N\-elimination, V-introduction, double negation
elimination and the three Z=2-rules are done in Exercise 2.39.

V-elimination: Suppose I', AF C and I', B+ C. Then by the deduction theorem I"
A — Cand I' - B — C. The following schema shows thatA — C, B— C, AVBF C:

AsC A= B L0 S avBoO)

MP
B—C (B—-C)—= (AVB—C)
MP
AVB—C AVB
MP
C

Hence, ', AVBFC.

Weak negation elimination: Evidently, (1) A, —-A, -BF A, and (2) A, -A, =B+ —A.
From (1) and (2) it follows by —-introduction that (3) A, —A - -—B. And, by double
negation elimination, also (4) =—B I~ B. From (3) and (4) it follows that A, -A - B.
By this rule, from a contradiction A, —A, any formula B can be deduced.

—-introduction (reductio ad absurdum): Suppose I’y A+ B and I', A - —B. Then by
the deduction theorem I' A — Band I' - A — —B. Let (&) be a deduction of A — B
from I' and let () be a deduction of A — —B from I'. Then the schema below is a
deduction of —A from I".
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r r

(o)

axiom 7
A—B (A—B)— ((A——-B) = —-A)

MP

A——-B (A—-B) = -A

MP
-A

Exercise 2.45. Show that AAB— C+HA — (B—C).

Exercise 2.46. Show that+ (A — B) — (A — ((B— C) — C)).
Exercise 2.47. Show: if A, Ay - B, then+A{ AA, — B.

Exercise 2.48. Show that: If - (A; AA;) AAs — B, then A,A;,A3 + B.

Exercise 2.49. Prove or refute without making use of the completeness theorem:
IfFA—CandF B — C, then AV BF C. You may make use of the logical axiom
A—=C)—=((B—-C)—=(AVB—C()).

Exercise 2.50. Using V-elimination, show that AVB, B—CFAVC.
Exercise 2.51. Use —-introduction to show: if A - B, then =B+ —A.
Exercise 2.52. Using —-introduction and exercise 2.51, show that - A vV —A.

Exercise 2.53. Using V-elimination, —-introduction and weak negation elimination,
show that -A, =B+ —(AV B).

Exercise 2.54. Use —-introduction to show: if A - —A, then - —A.

Exercise 2.55. Prove or refute (by means of a counterexample): for all formulas
A,B,if - AV B, then - A or - B. Carefully specify your arguments.

Exercise 2.56. Prove or refute (by means of a counterexample): for all formulas A,
if not - A, then - —A. Carefully specify your arguments and do not use the com-
pleteness theorem.

Exercise 2.57. Prove or refute, carefully specifying your arguments and not making
use of the completeness theorem:
a)IfHFA — B,thenAF B. b)If+ —A, then not A.

Exercise 2.58. Show that AV B+ A — B. Next show: a) A — B, 7(-AVB) F ——A
and b) A — B, =(-AV B) F —A. Conclude from a) and b) by —-introduction that
A — BF ——(-AVB) and hence A — BF —-AVB.
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Exercise 2.59 (Completeness). In this exercise we shall prove the completeness
theorem for classical propositional logic along the lines of L. Kalmar, 1934-5.

Consider the truth table for a formula E (A, B) built from the formulas A and B.
To each entry (or line) of this truth table a corresponding deducibility relationship
holds, as indicated below:

A B E(A,B)
up 11 ul(E) A, B+ ET
uy 1 0 up(E) A, B F Eﬁ‘
us 0 1 u3z(E) —-A, BF E3
ug 0 0 wy(E) —-A,-BF E}

where E = Eif u;(E)=1and Ef = -F if u;(E) =0(i=1,2,3,4).

a) Establish the first two deducibility relationships for E = A A B and the last two
for E=AVB.

b) Using the result mentioned above prove the completeness theorem for classical
propositional logic: if = E, then - E.

2.7.2 Natural Deduction*

Hilbert’s proof system, presented in Section 2.6, has several axiom schemas and
only one rule, Modus Ponens. In his Untersuchungen iiber das logische Schliessen
G. Gentzen [9] introduced a different, but equivalent, proof system which has sev-
eral rules, but no axioms. This proof system is called Gentzen’s system of Natural
Deduction. Logical proofs in this system are very similar to the informal proofs in
daily reasoning, which makes the search for a logical proof in this system much
easier than in a Hilbert-type proof system. Before the rules are presented some of
them will be discussed and the notation explained.

—-Introduction: Suppose B is derived from the assumption A (and perhaps other
A

assumptions as well); notation: :

B
Then one can derive A — B, cancelling the assumption A; notation:

A

B

i
A — B where i is a natural number.

Note that this rule corresponds to the deduction theorem (Theorem 2.24).

—-Introduction: Suppose a contradiction (B and —B) is derived from one or more
assumption formulas among which is A. Notation:
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A
B —B
Then one can obtain a deduction of —A from the assumptions without A. Notation:
A
B -B
i
-A

V-Elimination : Suppose one has a deduction of C from the assumption A and an-
other deduction of the same formula C from the assumption B, where in both cases
other assumptions may be present. Then one can obtain a deduction of C from the
assumption A V B, cancelling the assumptions A and B. Notation:

Having explained how to read the more complicated rules of natural deduction,
below all Gentzen rules for natural deduction are presented.

GENTZEN’S INTRODUCTION RULES GENTZEN’S ELIMINATION RULES

A B ANB ANB
&I &E
AANB A B
A B
AVB AVB [A] - [B]
AV B C C
[A] VE
C
B A A—B
-1 —E -
A—B B
[A]
A -A ——A
w-E —— d —FE
. B A
5 B -B (w = weak) (d = double)
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The reader should note the analogy with the Introduction and Elimination rules in
Theorem 2.25, but he should also see the difference. For instance, A = AV B says that
AV B can be obtained from A and the logical axioms by applying the rule Modus

Ponens a finite number of times, while itself is a rule of inference in the
natural deduction system, as Modus Ponens is a rule of inference in the axiomatic

is a derived rule of

A
system of Section 2.6. In other words, A - A V B says that AVE

inference in the axiomatic system of Section 2.6.

Example 2.18. Below are some examples of deductions in Gentzen’s system of Nat-
ural Deduction.

HA—-B)—=(B—-C)—(A—0))

a) a—8?
—F
B B — C)?
—F
C
(1) ——— =1
A—=C
2) —1
(B—>C)—=(A—=C)
3) — 1

(A=-B)—=(B—C)—(A—=0))

The reader should note the analogy with the way in which we intuitively verify that
(A—=B)— ((B—C)— (A—C)) is true.

To show: (A - B) —» ((B—C) = (A —=Q)).

So suppose A — B; then to show (B — C) — (A — C).

So suppose B — C; then to show A — C.

So suppose A; then to show C.

Now from A and A — B it follows that B. And from B and B — C it follows that
C. So C follows from A, B— C and A — B. Hence A — C follows from B — C
and A — B. Therefore (B — C) — (A — C) follows from A — B. Consequently,
(A=B)—=>((B—=C)—(A—=0C)).

(i) ——A — A
L
d—F
A
(1) -1
-—A —- A
(i) A — -4
2] [al
(1) -]
_\_\A
(2) -1
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(iv) In the deduction of A V —A below, the reader should again note the analogy with
the way in which we intuitively show that A V —A is true. Suppose that ~(AV —A).
Then, since A V —A follows from A, —A. But also, since A V —A follows from —A,
—(=A). So from —(A V —A) it follows that both —=A and —(—A). Therefore, by —-
introduction, =—(A V —A) and hence, by double —-elimination, A V —A.

YHAav-4)] (A YAV -A)] AP
vI VI
AV-A AV-A
ey 7 -1 (2 " =/
3) =1
—— 4-E
AV-A

Definition 2.12 (Deducibility in natural deduction). a) Let I" be a (possibly in-
finite) set of formulas. B is deducible from I" in Gentzen’s system of Natural De-
duction := B can be obtained by one or more (but finitely many) applications of
Gentzen’s rules of natural deduction from uncancelled assumptions that belong to
the set I". Notation: I Fyp B.

b) In case I' is empty, we say that B is provable in Gentzen’s system of natural
deduction. Notation: -yp B.

Example 2.19. In Example 2.18 we have seen:

A—=BFyp(B—C)— (A—C) Fnp (A—B)—= (B—C)— (A—C))
——A }_ND A l_ND -—A — A
A }_ND ——A I—NDA — A

Fnp AV -A

Once having shown Theorem 2.25 (introduction and elimination rules), one eas-
ily sees that Gentzen’s system of natural deduction is equivalent to the axiomatic
(Hilbert-type) system of Section 2.6.

Theorem 2.26. I’ - B iff I Fnp B.

Proof. 1) Suppose I - B. One easily checks that all the axioms of (classical) propo-
sitional logic are provable in Gentzen’s system of natural deduction. Modus Ponens
MP is precisely Gentzen’s rule — E. It follows that I -xp B.

ii) Suppose I' Fyp B. a) If B is an element of I', then I - B.

b) Theorem 2.25 shows that all steps made in Gentzen’s rules of natural deduction
are also available for the notion of (Hilbert-type) deducibility of Section 2.6. More
precisely, Gentzen’s rule VE, for instance, says thatif A, AFyp Cand A, Btyp C,
then A, AV B Fyp C for any set A of formulas. Now suppose (by induction hy-
pothesis) that A, A+ C and A, B+ C; then by V-elimination in Theorem 2.25,
A, AV B C. By a) and b) it follows (by induction on the length of a given ND-
deduction of B from I" in Gentzen’s system of natural deduction) that I" - B. a
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Exercise 2.60. Show that: i) ~(AAB)Fyp AV —B, ii) AV —-BtFyp 7(AAB).
Keep in mind the way in which we would intuitively verify that the conclusion
follows from the premisses.

Exercise 2.61. i) Show that A+ B — A and follow the proof of Theorem 2.26, part i),
to convert the given deduction of B — A from A in Hilbert’s system into a deduction
of B — A from A in Gentzen’s system of natural deduction.

ii) Show that A — B Fyp =B — —A and follow the proof of Theorem 2.26, part ii)
to show that A — B+ —B — —A.

2.8 Tableaux

In this section we will introduce another notion of provability and of deducibil-
ity, which is based on the work of E. Beth [2] and of G. Gentzen [9], and equiva-
lent to the corresponding notions defined in Section 2.6. The advantage of Beth’s
and Gentzen’s notions is that the search for a deduction of B from Ay,...,A, be-
comes a mechanical matter and is not achieved by the method of trial and error,
as is (sometimes) the case for the historically older notions of Section 2.6, which
are essentially based on the work of G. Frege [7] (1848-1925) and B. Russell [25]
(1872-1970). This advantage is obtained by reducing the number of axiom-schemes
to one, essentially A — A, and by replacing the axioms by 7 and F rules, two for
each connective. The presentation chosen here is close to the one of R. Smullyan
[23] and was introduced by M. Fitting [6].

Definition 2.13 (Signed formula). A signed formula is any expression of the form
T(A) or F(A), where A is a formula.

In the case of classical logic, the intended meanings of 7' (A) and F(A), in Beth’s se-
mantic tableaux rules, are as follows: 7 (A): A is true, F(A): A is false. (The intended
meanings of 7 (A) and F(A) for modal and intuitionistic logic are different.)

If it is clear from the context what is meant, we will simply write TA instead of
T(A) and FA instead of F(A). For instance, instead of T (B A C) we will mostly write
T BAC.

Definition 2.14 (Sequent). A sequent S is any finite set of signed formulas.

For example, {T P| — P>, F =Py AP,, F =P,V (P, — P;)} is a sequent. In Gentzen’s
approach the intended meaning of a sequent {TBy,...,TBy,, FCi,...,FC,} is as
follows: if By and ...and B,,, then C; or ...or C,.

Below we present the T'- and F'- tableaux rules for classical propositional logic; next
we will explain how to read them, either as semantic tableaux rules in the sense of
Beth or as Gentzen-type rules. In what follows, S will always denote a sequent.
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TA S, T BAC FA S, FBAC
S, TB, TC S, FB | S, FC
TV S, TBVC Fv S, FBVC
S, TB | S, TC S, FB, FC

T— S, TB—~C

F— S, FB—~C

S,FB | S, TC S, TB, FC
T—- S, T -B F- S,F-B
S, FB S, TB

Notation: S, TA stands for SU{TA}, i.e., the set containing all signed formu-
las in S and in addition TA; and S, FA similarly stands for SU{FA}. Instead of
{TBy,...,TBy, FC,,...,FC,} we often simply write TBy,...,TBy, FC,...,FC,.
For example, by {TD, FE}, TA we mean {TD, FE, TA}, but we will usually write
TD, FE, TA.

Since S, T BAC stands for SU{T BAC}, and since this latter set is equal to
SU{T BAC, T BAC}, the following rule

S, TBAC
S, T BAC, TB, TC

is a derived rule. So, in any application of any rule the T-signed or the F-signed
formula to which the rule is applied may be repeated in the lower half of the rule.

Beth’s semantic tableaux rules The rules given above can be read in two ways.

First, read downwards, as semantic tableaux rules in the sense of E. Beth, inter-
preting the signed formulas rather than the sequents. For example, in the case of rule
T —:if B— Cistrue (T B — C), then there are two possibilities, B is false (F'B) or
C is true (TC). And in the case of rule F —: if B — C'is false (F' B — C), then B is
true (TB) and C is false (FC).

This way of reading the rules is derived from E. Beth’s [2] method of semantic
tableaux. A formula B is called tableau-deducible from given formulas A1, ... A, if
it turns out to be impossible that Ay,...,A, are all 1 and B is 0; more precisely, if all
sequents which result from application of the rules to the supposition TAy,...,TA,,
FB (Ay,...,A, are all 1 and B is 0) and to which no further rules can be applied,
turn out to be contradictory, i.e., for all such sequents there is an atomic formula P
such that both TP (P is true) and F P (P is false) occur in it (see Def. 2.16 and 2.18).

Note that we essentially have used this idea in exercise 2.11 to verify that, for
instance, |= (P — Q) — (-Q — —P) or, equivalently, (P — Q) = (—-Q — —P), by
showing that it is impossible that in some line of the truth table (P — Q) is 1 and
(—Q — —P) is 0. In the left column of Example 2.20 we apply the tableaux rules to
T (P— Q), F (-Q — —P) and in the right column of Example 2.20 we give the
interpretation of the left column in the sense of E. Beth.
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Example 2.20.
Suppose in some line of its truth table
T (P—Q), F(-Q—~-P) (P—Q)is1and~Q— —Pis0.

TP—Q, T-Q, F-P Then P — Qis 1, ~Qis 1 and =P is 0.
TP—Q, FQ, F-P So, P — Qis 1, Qis 0 and —P is 0 in that line.
TP—Q, FQ, TP So,P— Qis1,Qis0and P is 1 in that line.

FP, FQ, TP|TQ, FQ, TP So,Pis0,Qis0andPis 1, or,
Qis 1,Qis 0 and P is 1 in that same line.
And both are impossible.

Informally, we say that the left column in Example 2.20 is a tableau .7 with initial
branch %y = {T (P — Q), F(=Q — —P)}. This tableau .7 consists of two tableau
branches %3, and Bs;, with B3, = {T (P — Q), F(-Q — —P), T-Q, F-P, FQ,
TP, FP}, containing all signed formulas in the left half of the tableau and %3, =
{T (P—Q), F(-Q — —P), T-Q, F-P, FQ, TP, TQ}, containing all signed for-
mulas in the right half of the tableau. The branch %3 is closed because it contains
TP and FP, and the branch %3, is closed because it contains TQ and FQ. Both
branches are completed, i.e., for each signed formula in the branch the correspond-
ing T- or F'-rule has been applied.

Definition 2.15 ((Tableau) Branch). (a) A tableau branch is a set of signed formu-
las. A branch is closed if it contains signed formulas TA and FA for some formula
A. A branch that is not closed is called open.

(b) Let £ be a branch and TA, resp. FA, a signed formula occurring in 4. TA, resp.
FA, is fulfilled in A if (i) A is atomic, or (ii) £ contains the bottom formulas in the
application of the corresponding rule to A, and in case of the rules TV, FA and T —,
A contains one of the bottom formulas in the application of these rules.

(c) A branch Z is completed if 2 is closed or every signed formula in 4 is fulfilled
in A.

More formally, in Example 2.20 we call %y = {T (P — Q), F(—=Q — —P)} the
initial branch and 9 = { %} a tableau (with initial branch %).

Let %, = {T (P — Q), F(~Q — —P), T—Q, F-P}. Then 7} = { %, } is called
a one-step expansion of %, because there is a signed formula in %, to wit F(—-Q —
—P), such that | = By U{T—-Q, F-P}.

Let #, = {T (P — Q), F(~Q — —P), T~Q, F-P, FQ}. Then % = {%,} is
again a one-step expansion of 7.

Let %5 = {T (P — Q), F(~Q — —P), T—Q, F-P, FQ, TP}. Then % = { %3}
is a one-step expansion of 5.

Finally, let %3, = {T (P — Q), F(~Q — —P), T~Q, F-P, FQ, TP, FP}
and %3, = {T (P — Q), F(~Q — —P), T=Q, F-P, FQ, TP, TQ}. Then .7 =
{B51, B3, } is called a one-step expansion of .73, because there is a signed formula
in %3, to wit T (P — Q), such that %31 = B3 U{FP} and $B3, = B3 U{TQ}.

R, A, S, T3 and J; are all tableaux with initial branch 4.

The branches %y, #1, $, and HBs are not closed and not completed. But the
branches %3 and %3, are completed and both are also closed.
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We shall call, for instance, 93 = { %5} a tableau with initial branch or sequent %,
because there is a sequence %, 1, ..., 5 such that ) = {%y} and each F;, is
a one-step expansion of .7; (0 < i < 3). This tableau .73 (with initial branch %) is
not yet completed, because its only branch %5 is not completed: the 7 — rule has
not yet been applied to T(P — Q). And .75 = {%s} is open, because it contains an
open branch, to wit #j itself. The tableau 7, = { %5, %3, }, however, is completed,
because each of its branches is completed and also closed, because all its branches
are closed.

Definition 2.16 (Tableau). (a) A set of branches .7 is a fableau with initial branch
P if there is a sequence %, 7, ..., J, such that T = {Hp}, each F;1 is a one-
step expansion of 7, (0<i<n)and I = 7,.

(b) We say that a finite 2 has tableau .7 if .7 is a tableau with initial branch 2.
(c) A tableau .7 is open if some branch 4 in it is open, otherwise .7 is closed.

(d) A tableau is completed if each of its branches is completed, i.e., no application
of a tableau rule can change the tableau.

Example 2.21.
We make a tableau starting with T(P — Q), F(PAQ):

T(P—Q), F(PAQ)
FP,F(PNQ)|TQ, F(PAQ)
FP, FP|FP, FQ|TQ, FP|TQ, FQ

Let ) be the leftmost branch, consisting of the formulas T(P — Q), F(PAQ), FP
and FP,ie., #, ={T(P— Q), F(PAQ), FP, FP}. Let %, be the second branch
from the left, so %, = {T (P — Q), F(PAQ), FP, FQ}. Let %5 be the third branch
from the left, so %3 = {T(P — Q), F(PAQ), TQ, FP}. Finally, let %4 be the
rightmost branch, i.e., Z4 = {T(P — Q), F(PAQ), TQ, FQ}.

Then T = {B1, B>, $3,PBa} is a tableau with By = {T(P — Q),F(PNQ)}
as initial branch. Branch %, is completed and closed, because it contains 7Q and
FQ. The branches A, %,, %5 are completed and open. Hence, the tableau .7 =
{B\,B,,PB5,PBs} is completed, because all of its branches are completed and the
tableau .7 is open, since at least one of its branches is open.

From the formulation of the tableaux rules, we see immediately that our tableaux
have the so-called subformula property: each formula in any sequent of a tableau is
a subformula of some formula occurring in the preceding sequents. For that reason,
any tableau (in classical propositional logic) is necessarily a finite sequence of se-
quents. For instance, all formulas in the tableau in Example 2.20 are subformulas of
P — Q and/or -Q — —P.

From the examples in Section 2.6 it is clear that a Hilbert-type proof system does
not have the subformula property. For instance, we have given a deduction of A — C
from A — B and B — C; in this deduction we have used the formula A — (B — C)
and even more complex ones, which are subformulas of neither the premisses nor
the conclusion. Modus Ponens is responsible for this: £ may be deduced from D
and D — E; but D — E is not a subformula of E and D is not necessarily one.
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Definition 2.17 (Tableau-deduction). (a) A (logical) tableau-deduction of B from
Aj,...,A, (in propositional logic) is a tableau .7 with %y = {TA,,...,TA,,FB} as
initial branch, such that all branches of .7 are closed.

In case n =0, i.e., there are no premisses Ay, ...,A,, this definition reduces to:
(b) A (logical) tableau-proof of B (in classical propositional logic) is a tableau .7
with %y = {FB} as initial sequent, such that all branches of .7 are closed.

Example 2.22. (a) The following is a tableau-deduction of =PV —Q from =(P A Q).

T ~(PAQ), F =PV —-Q
FPAQ, F =PV —Q
FPAQ, F —P, F —Q
FPAQ, TP, F ~Q
FPAQ, TP, TQ
FP, TP, TQ | FQ, TP, TQ

(b) The following is a tableau-proof of ((P — Q) — P) — P, i.e., Peirce’s law.

F(P—>Q)—P)—P
T(P—Q)—P FP
FP—Q,FP | TP, FP

TP, FQ, FP|

Definition 2.18 (Tableau-deducible). (a) B is tableau-deducible from A, ... ,A, (in
classical propositional logic) if there exists a tableau-deduction of B from Ay,...,A,.
Notation: Aj,...,A, ' B.ByAy,..., A,/ B we mean: notAy,...,A, - B.

(b) B is tableau-provable (in classical propositional logic) if there exists a tableau-
proof of B. Notation: -’ B.

(c¢) For I' a (possibly infinite) set of formulas, B is tableau-deducible from I if there
exists a finite list Ay, ...,A, of formulas in I" such that Ay,..., A, - B.

Notation: I" - B.

Example 2.23. (a) =(PA Q) F =PV —Q, because in Example 2.22 (a) we have
given a tableau-deduction of =PV =Q from —(P A Q). One also easily checks that,
equivalently, =" —=(PA Q) — =PV Q.

(b) ' ((P— Q) — P) — P, because in Example 2.22 (b) we have given a tableau-
proof of ((P — Q) — P) — P. One also easily checks that, equivalently, (P — Q) —
PP

Note that by our definitions A -’ B is trivially equivalent to ' A — B (because a
tableau starting with /' A — B continues with TA, F'B), while the corresponding
result for - (Theorem 2.23 and 2.24) was not trivial at all.

It is important to note that the 7- and F-rules and hence the notions of ‘tableau-
provable’ and ‘tableau-deducible from’ are purely syntactic, i.e., they only refer to
the forms of the formulas: for instance, rule TA tells us that any time we see an
expression of the form 7 B A C we must write down the expressions 7B and 7C
immediately below it; and a formula B is tableau-provable if starting with F'B we
end up with sequents which all contain both 7P and F P for some atomic formula P.
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Whether a formula B is tableau-provable or not only depends on the form of B,
and precisely this justifies our use of the expression ‘B is tableau-provable’.

So, we had good semantic reasons to choose the rules and the notions of ‘tableau-
provable’ and ‘tableau-deducible from’ as they are, but once having these rules and
these notions, we can forget the intuitive (semantic) motivation behind them and like
a computer or machine/robot play with them in a purely syntactic way, i.e., apply
the rules of the game, forgetting about their underlying ideas.

Gentzen-type rules A second way to read the 7- and F- tableaux rules is to
read them upwards, as Gentzen-type rules, interpreting the sequents rather than the
signed formulas. Remember that a sequent {TAy,...,TA,,FBy,...,FB;} isread as:
ifA; and ... and A, then By or ... or B;.

For example, taking S = {TD, FE}, rule T — becomes

TD,FE, TB—C
TD, FE, FB | TD, FE, TC

and is read upwards as follows:

if (*) D implies E or B (TD, FE, FB),
and (**) D and C imply E (TD, FE, TCO),
then D and B — C imply E (TD, FE, T B— ().

That rule T —, read in this way, is intuitively correct is easily seen as follows: sup-
pose (¥), (**), D and B — C; then by (*), E or B; if B, then by B — C also C; and
hence by (**) E.

And again taking S = {T D, FE}, rule F — becomes

TD, FE,FB—C
TD, FE, TB, FC

and is read upwards as follows:

if (*) D and B imply E or C (TD, FE, TB, FC),
then D implies E or B — C (TD, FE, F B— ().

That rule F' —, read in this way, is intuitively correct is seen as follows: suppose (*)
and D; if =B, then B — C and hence E or B — C; and if B, then D and B, and hence
by (*), E or C; so, also E or B— C.

This way of reading the rules is derived from G. Gentzen’s system in [9]. Gentzen
thought his rules reflected (the elementary steps in) the actual reasoning of human
beings. With this reading the notion of tableau-provability is explained (see Def.
2.18) in terms of reducing a formula according to the rules to axioms essentially
of the type P — P. More precisely, a formula B is tableau-provable if {FB} (to be
read as — B or B) can be obtained by applying the rules to sequents of the form
{...,TP, FP,...} (toberead as: if ... and P, then P or ...), which can be conceived
of as axioms.

Decidability Evidently, it is easy to decide whether a given sequence of symbols is
a formula (of propositional logic). It is also easy to decide whether a given sequence
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of formulas is a (Hilbert-type) deduction (see Section 2.6) of a given formula B
from given premisses Ay, ...,A,. And similarly, it is easy to decide whether a given
tableau is a tableau-deduction of a given formula B from given premisses Ay, ... ,A,.

But the question whether, given any formulas Aj,...A, and B, there exists a
Hilbert-type deduction of B from Ay, ...A,, is not so easy to decide: one may search
for such a deduction without finding one and this may be due to the fact that one
is not smart enough — in which case one may continue trying to find one —, but
also due to the fact that there is no such deduction — in which case one better stops
searching. The deeper reason behind this is that Hilbert-type deductions do not have
the subformula property: if one searches for a deduction of B from given premisses,
one may try any formula D, not necessarily a subformula of the given formulas, in
order to apply Modus Ponens to D and D — B.

Interestingly, for any propositional formulas Ay,...,A,, B, the question whether
B is a valid (or logical) consequence of Ay,...,A, is decidable, i.e., there is a deci-
sion procedure (algorithm, mechanical test) which yields in finitely many steps an
answer ‘yes’ or ‘no’: make the truth table of the formulas in question and check

whether B is 1 in all lines where the premisses Ay,...,A, are all 1.
Similarly, for any propositional formulas Ay,...,A,, B, the question whether
there exists a tableau-deduction of B from given premisses Ay, ...,A, is decidable,

since there is a decision procedure which yields in finitely many steps an answer
‘yes’ or ‘no’: given Ay,...,A, and B, start a tableau with {TAy,...,TA,, FB} as ini-
tial sequent and apply all possible tableau rules as frequently as possible; because of
the subformula property, after finitely many steps the tableau will be finished; if all
tableau branches are closed, then one has a tableau-deduction of B from Ay, ... ,A,,
and if some completed tableau branch is open, one can from any open completed
tableau branch read off a line in the truth table in which Aq,...,A, are all 1 and B is
0, hence showing that Ay, ..., A, [~ B. We shall prove this (completeness) result in
Section 2.9, but will illustrate this result now with an example.

Example 2.24. We wonder whether from P — Q and —P one may deduce —Q. So,
we start a tableau with {TP — Q, T—P, F-Q}:

TP — Q, T-P, F-Q
TP — Q, FP, F-Q
TP— Q, FP, TQ
FPFP,TQ|TQ,FP,TQ

For instance, the left tableau branch is completed but open, i.e. not closed. From
it one may immediately read off a counterexample, i.e., a line in the truth table in
which the premisses P — Q and —P are 1 and —Q is 0: corresponding with the
occurrence of F P in the left completed tableau branch give P the value 0 and corre-
sponding with the occurrence of 7'Q in the left completed tableau branch give Q the
value 1.

This shows that P — Q,—P = —Q.
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Once we have shown in Sect. 2.9 that the three notions Ay, ...,A, =B, Ay,..., A, F
B, and Ay,...,A, ' B, although intensionally quite different, are equivalent, we
have also a decision procedure for the question whether, given formulas Ay,...,A,,
B, there exists a (Hilbert-type) deduction of B from Ay, ...,A,. The significance of
this latter result is that the Hilbert-type system of Section 2.6, which does not have
the subformula property, is equivalent to the tableaux system of this section, which
does have the subformula property. (This result is essentially based on the work of
G. Gentzen, 1934-5.)

In order to show that our notions of tableau-deducibility (Def. 2.18) and (Hilbert-
type) deducibility (Def. 2.11) are equivalent, we first prove the following.

Theorem 2.27. (i) If B is tableau-deducible from Ay, ... A,, ie., Ay,...,A, - B,
then B is deducible from Ay, ... ,A,, ie., Ay,...,A, = B. In particular, for n = 0:
(ii) If ' B, then - B.

Proof. Suppose Ay,...,A, ' B, i.e., B is tableau-deducible from Ay, ..., A,. It suf-
fices to show:

for every sequent S = {TD;,...,TDy, FE,,...,FE,} in a tableau-deduction of B
fromAy,...,A,itholds that Dy,... Dy FE; V...V E,. @)

Consequently, because {TAy,...,TA,, FB} is the first (upper) sequent in any given
tableau-deduction of B from Ay,...,A,, we have thatA;,... A, F B.

The proof of (¥) is tedious, but has a simple plan: the statement is true for the
closed sequents in a tableau-deduction, and the statement remains true if we go up
in the tableau-deduction via the 7" and F rules.

Basic step: Any closed sequent in a tableau-deduction of B from Aj,...,A, is
of the form {TDy,...,TDy, TP, FP, FE,...,FEy}. So, we have to show that
Dy,....Dy, P - PVE|V...VE,. And this is straightforward: Dy,...,D;, P+ P
and PFPVE|V...VE,.

Induction step: We have to show that for all rules the following is the case: if (*)
holds for all lower sequent(s) in the rule (induction hypothesis), then (*) holds for
the upper sequent in the rule. For convenience, we will suppose that S = {TD, FE}
in all rules.

Rule TA: TD, FE, T BAC

TD, FE, TB, TC
Suppose D, B, C I E (induction hypothesis). To show: D, BAC I E. This follows
immediately, because BACH Band BACH C.

Rule FA: TD, FE, F BAC

TD, FE, FB | TD, FE, FC
Suppose DF EV B and D - E V C (induction hypothesis). To show: D+ EV (BAC).
It suffices to show that EV B, EVCF EV (BAC). Now it is clear that B, E -
E V (BAC)and B, CF EV(BAC). Hence, by V-elimination, B, EVCFEV (BAC).
But also E, EVCF EV (BAC). Hence, again by V-elimination, EV B, EVC
EV (BAC).
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Rule TV: TD, FE, TBVC

TD,FE,TB | TD, FE, TC
Suppose D, B+ E and D, C F E (induction hypothesis). To show: D, BVCF E.
This follows from the induction hypothesis by V-elimination.

Rule FV: TD, FE, F BVC

TD, FE, FB, FC
Suppose D+ (E VB)VC (induction hypothesis). To show: D EV (BVC). It suffices
to show that (EVB)VCHEV (BVC).
It is clear that E - EV (BVC) and also B+ EV (BV C). Hence, by V-elimination,
EVBFEV(BVC). Since also C - EV (BVC), again by V-elimination, (EVB)VC
FEV(BVC).

Rule T —: TD,FE, TB—C
TD, FE,FB | TD, FE, TC

Suppose D+ EV B and D, C + E (induction hypothesis). To show: D, B— C+ E.
By Exercise 2.50 EV B, B— CF EVC; hence, by the first induction hypothesis,
D,B—CFEVC. (1
From the second induction hypothesis, by the deduction theorem, DF-C — E. (2)
By Exercise 2.50 EVC, C— EF EVE; hence, from (1) and (2): D, B—+CFEVE.
But by V-elimination EVE - E. Hence D, B— CF E.

Rule F —: TD, FE, FB—C

TD, FE, TB, FC
Suppose D, B+ E V C (induction hypothesis). To show: D+ EV (B — C).
From weak negation elimination, applying the deduction theorem, it follows that
-BF B — C; hence D, -B+ B — C.Hence D, -B+EV (B— C). (1
By Exercise 2.50 EVC, C— (B— C)FEV (B — C). So, since C — (B — C)
is an axiom, it follows that EV C + E V (B — C). So, by the induction hypothesis,
D,BFEV(B—C). )
From (1) and (2), by V-elimination D, BV -B+ EV (B — C). But, by Exercise
2.52,F BV -B.Hence, DFEV (B — C).

Rule T—: TD, FE, T —B

TD, FE, FB
Suppose D = E'V B (induction hypothesis). To show: D, =B E. In order to do this,
it suffices to prove that EV B, =B+ E.
By Exercise 2.53 =B, =E+ —=(EVB) and hence also E VV B, =B, ~E +—(E V B).
Butalso EV B, =B, ~E - EV B. Hence, by —-introduction EV B, -B+ ——E. So,
by double negation elimination EV B, -BF E.

Rule F—: TD, FE, F -B
TD, FE, TB
Suppose D, B+ E (induction hypothesis). To show: D+ E'V —B.
From the induction hypothesis, D, B+ EV —B. @))]
From —B + E V =B it follows that D, =B+ EV —B. ?)

From (1) and (2) it follows by V-elimination that D, BV =B E V —B. By Exercise
2.52 FBV-Band hence DF EV —B. a
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With the help of tableaux we may give a constructive proof of the interpolation
theorem.

Theorem 2.28 (Interpolation theorem for propositional logic). Suppose A ' B,
V' —A and /' B. Then there is a formula C such that every atomic formula that occurs
in C also occurs in both A and B (so, C is in the joint vocabulary of A and B) and
AF Cand CH B.

Example 2.25. (PV —=Q) AR+ (Q — P)VS. Then for C = PV —Q, we have (PV
-Q)ARF Cand C+H (Q — P)VS.

Proof. Let A and B as mentioned in the interpolation theorem. Because A H' B, any
completed tableau starting with the initial sequent {TA, FB} is closed, i.e., all its
branches are closed. *)
Since I/ —A we know that any completed tableau starting with F—A (or, equiva-
lently, TA) has at least one open (completed) branch #. And since I/ B, we know
there any completed tableau starting with the initial sequent {FB} has at least
one open branch. Let .74 be a completed tableau starting with TA and Jp a com-
pleted tableau sarting with F'B. We may assume that a tableau is closed if and only
if it is atomically closed, i.e., every branch contains for some atomic formula P
both TP and FP. For any open branch % in .7, we define the sets %' and 2°:
' = {P | TP occurs in Z and FP occurs in some open branch of .73} and %° =
{=P | FP occurs in % and T P occurs in some open branch of J3}.

By (*) the union of #° and %' is non empty and so the following sentence
is well-defined: C(%) := the conjunction of all formulas in %' U 2. Finally, the
sentence C is defined as the disjunction of all formulas C(Z), where £ is an open
branch in the given tableau .7 starting with TA. Clearly, C is in the joint vocabulary
of A and B. After some thinking it becomes clear that A+ C and C+H B. O

Let us illustrate the proof for Example 2.25, where A = =(Q A—P)AR and B= (Q —
P)V S. Let 9 be the following completed tableau starting with F —(—=(Q A—P) AR):

F ~(~(QA~P) AR)
T -(QA—P)AR
T -(QAN—-P), TR
F QA—P, TR
F-P,TR|FQ, TR
TP, TR|FQ, TR
Both the left branch %;, and the right branch %y, of this tableau are open. Now, by
definition, %] = {P}, since there is an open branch starting with F(Q — P) V/ S that
contains FP:
F(Q—P)VS
F(Q—P),FS
TQ, FP, FS

Note that %’2 is empty. So, by definition, C(%,) = P.
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By definition, %}, is empty and 932 ={—Q}, since there is an open branch starting
with F(Q — P) VS that contains TQ. So, by definition, C(%g) = —Q. Finally, C =
C(@L) VC(%R) =PV Q.

Exercise 2.62. (a) Show, by using —-introduction, that A — B+ —(A A —B).

(b) Show that A — B ' ~(A A —B).

(c) Show that A — B = —(A A —B) by verifying that it is impossible that A — B is 1
and —(A A —B) is 0 in some line of the truth table. Note the analogy in (b) and (c).

Exercise 2.63. (a) Show, by using the deduction theorem three times, that - (A —
B)—= (B—C)— (A—=0()).

(b) Show that+' (A — B) — ((B— C) — (A — C)).

(c) Show that = (A — B) — ((B— C) — (A — C)) by verifying that it is impossible
that this formula is 0 in some line of its truth table. Note the analogy in (b) and (c).

Exercise 2.64. Prove the following statements:

(@) A—»B,-A— BB (d -(AA-B)F A—B
(b) -B—-A+HA—B () A— BF -AVB
(¢) "(AAB)F -AV-B ) A—-BVCH (A—-B)V(A—C)

Exercise 2.65. a) Translate the following argument in the language of propositional
logic. If it rains [R], then John goes for a walk [W].

If it does not rain, then John makes a bicycle tour [B].

John does not make a bicycle tour.

Therefore: John goes for a walk.
b) Construct a tableau-deduction of the putative conclusion from the premisses or
a counterexample (i.e., a line in the truth table in which all premisses are 1 and the
putative conclusion is 0) from a failed attempt to do so.

Exercise 2.66. a) Translate the following argument in the language of propositional
logic. If it rains [R], then John does not go for a walk.

If John goes for a walk [W], then he is happy [H].

It does not rain.

Therefore: John is happy.
b) Construct a tableau-deduction of the putative conclusion from the premisses or
a counterexample (i.e., a line in the truth table in which all premisses are 1 and the
putative conclusion is 0) from a failed attempt to do so.

Exercise 2.67. (a) Verify that the (logical) axioms for (classical) propositional cal-
culus of Section 2.6 are tableau-provable.

(b) Check that it is not a simple matter to prove: if H' A and - A — B, then ' B.
Hence, the converse of Theorem 2.27, if - A, then ' A, to be shown in Section 2.9,
is not a trivial result. However, one easily shows that A, A — B ' B does hold.

Exercise 2.68. Show right from the definitions that
(a)if ' Aor - B, then - AV B;
(b)if H AAB, then ' A and ' B.
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Exercise 2.69. (a) Show that =P, (P — Q) — P I P by using weak negation elimi-
nation and the deduction theorem.

(b) Show that PV =P, (P — Q) — P I P by using (a) and V-elimination.

(c) Show that - ((P — Q) — P) — P (Peirce’s law) by using (b), Exercise 2.52. and
the deduction theorem.

Compare the complexity of the proof of - ((P — Q) — P) — P with the simplicity
of the proof of - ((P — Q) — P) — P. Note also that, although in Peirce’s law
implication is the only connective, we needed weak negation- and V-elimination in
order to show that Peirce’s law is (logically) provable (see Exercise 2.44).

2.9 Completeness of classical propositional logic

So far we have established the following results; for convenience, we use the Greek
letter I'" to indicate a (possibly infinite) collection of formulas.

Theorem 2.27: if ' ' B, then I" - B.

Theorem 2.20: if I' F B, then I" |= B (soundness). In this section we shall prove
completeness, i.e., every valid consequence of given premisses I can be (logically)
deduced from I': if I' =B, then I" -’ B.

This shows that the three notions I' -’ B (B is tableau-deducible from I'), I' - B
(B is deducible from I') and I |= B (B is a valid consequence of I') are equivalent.

The intuitive ‘B is a logical consequence of the premisses in I"” (without ref-
erence to the structure of the atomic formulas in B and I") has been made math-
ematically precise in three different ways: ' =’ B, ' = B and I |= B. Since these
three mathematical notions, although intensionally quite different, turn out to be
equivalent, we may say (after the results we are about to prove) that we indeed have
captured in a mathematically definite sense the intuitive notion of ‘B is a logical
conclusion from I"’. (See also the discussion following Theorem 2.21.)

In proving the completeness of classical propositional logic, a procedure of
searching for a tableau-deduction of B from given premisses Ay,...,A, is presented,
which will end after finitely many steps and then either gives such a deduction or
shows that such a deduction cannot exist. This algorithm thus yields a decision pro-
cedure for the (classical) propositional logic. This shall provide us an opportunity
to dwell upon automated theorem proving.

Given formulas Band Ay, ... ,A,, the tableaux rules suggest a procedure of searching
for a tableau-deduction of B from Ay,...,Ay:

start with TAy,...,TA,, FB and apply all the appropriate rules in some definite
fixed order, the choice of ordering being unimportant (at least, if we do not care
about efficiency); in an application of rule T — to, for example, S, T P — Q we
make two branches, one with S, FP and the other with S, TQ and similarly for
applications of the rules FA and TV.

Example 2.26. 1) The tableau starting with F (P — Q) — (Q — —P) is composed
of the following two branches:
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FP—-Q)—(Q——-P) and F(P— Q)— (Q— —P)

TP—Q,FQ——P TP—Q,FQ——P
FP,FQ— —P TQ, FQ——P

FP, TQ, F —P TQ, TQ, F —P

FP, TQ, TP TQ, TQ, TP

The first branch for (P — Q) — (Q — —P) is closed; the second one is completed
and open. Note that if we assign the value 1 to both P and Q, corresponding with
the fact that both TP and TQ occur in the open branch, the formula (P — Q) —
(Q — —P) is assigned the value 0, corresponding with the fact that F (P — Q) —
(Q — —P) occurs in the open branch. We shall see in Lemma 2.2 that this is not
accidental.

2) The tableau starting with T P — Q, F —~Q — —P is composed of the following
two branches:

TP—>Q,F-Q—-Pand TP— Q, F ~Q — —P

FP, F —=Q — —P TQ, F —Q — —P
FP, T —Q, F —P TQ, T -0, F ~P
FP,FQ, F —P TQ, FQ, F —P
FP, FQ, TP TQ, FQ, TP

Both branches starting with T P — Q, F —~Q — —P are closed. Note that the two
branches together yield a tableau-deduction of -Q — —P from P — Q, just as a
tableau-proof of (P — Q) — (=Q — —P). The correctness of this statement is not
accidental either and follows immediately from the definition of a tableau-deduction
and the structure of our procedure of searching for a tableau-deduction; see Lemma
2.3.

Definition 2.19. Let 7 be a completed tableau branch which is open. Then i; is the
interpretation defined by iz (P) = 1 if TP occurs in 7, iz (P) = 0 if T P does not occur
in 7.

Lemma 2.2. Let T be a completed tableau branch which is open. Then for each
formula E: a) if TE occurs in T, then i:(E) = 1, and
b) if FE occurs in 7, then iz (E) = 0.

Proof. The proof is by induction on the construction of E. Let T be a completed
tableau branch which is open.

Basic step. If E = P (atomic formula) and T P occurs in 7, then by definition i (P) =
1. If E = P and F P occurs in 7, then - since 7 is open - TP does not occur in T and
hence by definition iz (P) = 0.

Induction step. Suppose that a) and b) have been shown for C and D (induction
hypothesis). We want to prove a) and b) for CAD, CV D, C — D and —C.

If E=CADand T CAD occurs in 7, then - because 7T is completed - both TC
and TD occur in 7. Hence, by the induction hypothesis, i;(C) = 1 and i¢(D) = 1.
So,iz(CAD) = 1.

If E=CAD and F CAD occurs in 7, then - because 7 is completed - F'C occurs
in T or FD occurs in 7. Hence, by the induction hypothesis, iz(C) = 0 or i;(D) = 0.
So, iz(CAD) =0.
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The other cases, E =CV D, E =C — D and E = —C, are treated similarly. 0O

Lemma 2.3. If all branches in a tableau with initial sequent {TAj,...,TA,,FB}
are closed, then Ay, ..., A, - B.

Proof. This follows from the definition of a tableau with {TAy,...,TA,,FB} as
initial sequent and from the observation that there are only finitely many different
branches in such a tableau. a

Lemma 2.2 and 2.3 together yield the completeness theorem.

Theorem 2.29 (completeness of classical propositional logic).
a)IfAy,...,A, =B, then Ay,...,A V' B. In particular, if n = 0:
b) If = B, thent-' B.

Proof. Suppose Aj,...,A, = B. Apply the procedure of searching for a tableau-
deduction of B from Ay,...,A,. If there were a completed tableau branch 7 starting
with TAy,...,TA,,FB which is open, then by Lemma 2.2, because TA1,...,TA,
and FBoccurinsucha 7, iz(Ay) = ... =i;(A,) = 1 and iz(B) = 0. This would con-
tradict that A,,...,A, = B. Hence, all tableau branches starting with TAy,...,TA,,
FB are closed. So, by Lemma 2.3, Ay,...,A, ' B. O

Remark 2.2. Our procedure of searching for a tableau-deduction of B from given
premisses Aq,...,A, will end after finitely many steps and then either give a tableau-
deduction of B from Ay, ...,A,, indicating that Ay, ..., A, ' B, or an interpretation i
such that i(A}) = ... =i(A,;) = l and i(B) = 0, indicating that Ay, ... ,A, ~ B.

Corollary 2.4 (Decidability of classical propositional logic). Classical proposi-
tional logic is decidable, i.e., we have an effective method (algorithm) to decide,
given any finite set of formulas B, Ay,...,A,, whether B is tableau-deducible from
Ay,...,A, or not.

Note that in Section 2.3 we have already given an effective method (algorithm) to
decide whether or not B is a valid consequence of Ay,...,A, for any finite set of
formulas Ay, ... ,A,.

The tableaux system for classical propositional calculus can easily be modified
and/or completed to a tableaux system for intuitionistic logic and for many in-
tensional (modal) logics. In all cases the completeness proof given above can be
adapted to a completeness proof for the logic in question. This type of proof has an
advantage over some other completeness proofs in that it is constructive.

Automated theorem proving In the case of the classical propositional calculus an
effective method has been given above to decide, given any finite set of formulas
B, Ay,...,A,, whether B is tableau-deducible from A1, ..., A, or not. This algorithm
can be formulated in an appropriate programming language such as Prolog (see,
for instance, Kogel-Ophelders [17]) and then a computer, when provided with for-
mulas B,Aq,...,Ay, is able to compute whether B is a theorem on the basis of the
hypotheses A1,...,A, or not.
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So, a computer, provided with the appropriate software, is able to simulate rea-
soning and in that case one may say that it disposes of Artificial Intelligence. By
adding to such a computer-program a number of data, Ay, ...,A,, concerning a small
and well-described subject, the so-called knowledge base, the computer is able to
draw conclusions from those data. If Ay,...,A, represent someone’s expertise, one
speaks of an expert system. And if the knowledge base consists of Euclid’s axioms
for geometry or Peano’s axioms for number theory or of axioms for some other part
of mathematics, one speaks of automated theorem proving.

So the basic ideas underlying expert-systems and automated theorem proving are
very simple. However, in practice there may be a lot of complications. Without be-
ing exhaustive let us mention some of them.

1. The language of propositional logic may be too restrictive. For instance, in Chap-
ter 1 we have already seen that the argument

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

cannot be adequately formulated in the propositional language. For that reason the
propositional language will be extended to the predicate language in Chapter 4.

2. However, if one adapts the construction of a completed tableau with initial branch
{TA;,...,TA,, FB} to the case that B, Aj,...,A, are formulas of the predicate lan-
guage, this construction no longer yields a decision: if no logical deduction exists,
the tableau construction may continue forever, without ever knowing that this con-
struction will come to an end; so, in this case the tableau construction may not stop.
For more details see Subsection 4.4.2.

3. Even in the case of the propositional language, the time and space needed to
search for a logical deduction of B from Ay, ...,A, may grow very fast in the event
nisbigor B, Ay,...,A, are (very) complex; see Subsection 2.3.1.

4. If the knowledge base consists of Peano’s axioms for number theory (see Sec-
tion 5), this knowledge base contains the axiom schema of induction, and hence
infinitely many axioms. Searching for a logical deduction of a given formula B from
infinitely many axioms requires a strategy, without which such a search is hopeless.
5. If the knowledge base consists of someone’s expertise, it may contain uncertain
and/or incomplete information. For instance, it may be likely, but uncertain, that
there is oil in the ground. An expert-system may have to deal with uncertain knowl-
edge and then its conclusions will have a certain degree of probability, which has to
be computed. This is a far from trivial matter. Also the information in the knowledge
base may be incomplete in order to be able to draw a certain conclusion.

6. Building an expert-system is more than just providing an inference mechanism:
the system should also be able to explain sow the conclusion was established or why
the conclusion cannot be drawn.



2.10 Paradoxes; Historical and Philosophical Remarks 97

2.10 Paradoxes; Historical and Philosophical Remarks

2.10.1 Paradoxes

Paradoxes have been important for making progress in science and philosophy. In
what follows a number of statements of the type B = —B are presented. Because
statements of this type cannot possibly be true, in other words are inconsistent, these
results are known as paradoxes. The reader easily checks the following theorem:

Theorem 2.30. a) For each formula B, = —(B &= —B).
b)IfAy,...,An = B= =B, then = (A1 A... NAp).

So, if for some formula B, B = —B is a valid consequence of hypotheses Ay,...,A,,
then at least one of the hypotheses must be false. In practice, the problem frequently
is that we are not aware of the hypotheses we are using in deriving a paradox.

In his paper ‘Paradox’, W.V. Quine [21] distinguishes three types of paradox:
antinomies, veridical and falsidical paradoxes. Below we shall discuss these three
types and consider examples of each of them.

Antinomies There is the old paradox of the liar: A man says that he is lying. If he
speaks the truth, he is lying. And if he is lying, he speaks the truth. Hence, he speaks
the truth if and only if he does not.

A more recent version of this paradox is the one of A. Tarski [24] in his ‘Truth
and Proof’. Consider the following sentence.

s: The underlined sentence is false

Here s is just an abbreviation for: the underlined sentence is false. But what is the
object the name ‘the underlined sentence’ refers to? Up till now there is no under-
lined sentence. By underlining sentence s, we achieve that sentence s says of itself
that it is false, just as the man in the paradox says of himself that he is lying.

s: The underlined sentence is false

When one refers to an object, one usually uses a name for that object. One and
the same object may have different names. For instance, ‘Harrie de Swart’ and ‘the
author of this book’ are two different names for the same person. Usually, when
referring to a sentence or, more generally, a linguistic object, one may form its name
by putting the sentence in question between quotation marks. But another name for
that same sentence may be formed by underlining the sentence in question, after
which ‘the underlined sentence’ is another name for the same sentence. So, having
underlined sentence s, s has (at least) the following two names: ‘s’; the underlined
sentence. Consequently, by replacing one name by another one:

(1) ‘s’ is false if and only if the underlined sentence is false.

On the other hand we have the principle of adequacy: for each sentence p, ‘p’ is true
if and only if p; where ‘p’ is again a name for the sentence p. For example, ‘snow
is white’ is true if and only if snow is white. Now using this principle of adequacy,
we find



98 2 Propositional Logic

‘s’ is true if and only if s, i.e.,
(2) ‘s’ is true if and only if the underlined sentence is false.

(1) and (2) together yield: ‘s’ is false if and only if ‘s’ is true.

The paradox of the liar, in one form or another, is a special kind of paradox, an
antinomy: an absurd statement, that cannot be true, with a correct argument, and
whose premisses are not in themselves absurd. However, if B = —B is a valid con-
sequence of premisses Ay,...,A,, we know we have to revise our premisses. It is
typical of an antinomy that we are very surprised that such a revision is necessary,
because the premisses accepted seem more than plausible and seem completely in
accordance with our intuition. In order to be able to ‘solve’ an antinomy, a ma-
jor revision in our way of thinking is necessary. Because everything we do in the
derivation of an antinomy seems so natural and evident, we are generally not very
conscious of what precisely our premisses are.

Through all ages the antinomies have caused concern to philosophers. According
to a foolish tradition preserved by Diogenes Laertius, Diodorus Cronus (ca. 300
B.C.) committed suicide because he was not immediately able to solve the logical
puzzle posed by the paradox of the liar. (See W & M Kneale [16], p. 113.)

In his paper Truth and Proof, A. Tarski [24] argues that the paradox of the liar
forces us to give up our silent assumption that object language and meta language
do not have to be distinguished. But when we say that a sentence ‘s’ is true, we are
saying something about sentence s. If s belongs to a language Ly, the sentence °
‘s’ is true’ is a statement about a sentence of Ly and hence a statement in the meta-
language L of L. If we take care to distinguish predicates truey, truey, falseg, falsey,
and so on, for the truth/falsity predicates in the different languages, the paradox of
the liar disappears:

Again, let s be an abbreviation for: the underlined sentence is trueg. Next, let us
underline this sentence:

s: The underlined sentence is false

Then, again replacing one name by another one:

(1a) ‘s’ is false; if and only if the underlined sentence is false;.
And by the principle of adequacy

(2a) ‘s’ is truey if and only if the underlined sentence is falsey.

And now (1a) and (2a) are no longer contradictory!

If we wish to avoid contradictions, we must insist that what we ordinarily call
English is in reality an infinite sequence Ly, Ly, Ly, ... of languages, in which L}
is a metalanguage in relation to L,,.

Another way to escape the antinomy of the liar is by introducing a technical restric-
tion on the class of sentences regarded as possessing a truth value. According to
Ryle [22], sentences of the form ‘the such-and-such sentence is false’ should not be
regarded as having a truth value unless it is possible to attach a ‘namely-rider’. For
instance, in ‘the first thing that Plato said to Aristotle is true’ we can insert a clause,
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‘the first thing that Plato said to Aristotle, namely ..., is true’, which may alter its
meaning, but does not alter its truth-value. But in the paradoxical ‘the underlined
sentence is false’, if we try to insert such a clause, ‘the underlined sentence, namely
‘the underlined sentence is false’, is false’ we get a new description (indirect) of a
sentence which must again be supplied with a namely-rider. As this process never
ends, the original sentence has no truth value, whereas in the Plato example, we get
down to something of the form ...’ is true, where the quoted part does not involve
the notions of truth and falsehood.

The paradox of the liar is an antinomy at the level of sentences. At the level of
subjects and singular descriptions there is the antinomy of Berry, to be discussed
in Chapter 4. And at the level of predicates there is the antinomy of Russell, better
known as Russell’s paradox, which will be discussed in Chapter 3.

Besides antinomies, like those of the liar, of Berry and of Russell, W.V. Quine
also distinguishes other, less serious, paradoxes: veridical and falsidical paradoxes.

Veridical paradoxes A veridical or truth-telling paradox is a paradoxical statement
that on reflection turns out to yield a somewhat astonishing, but true, proposition.

Example 2.27. 1. Frederic has reached the age of twenty-one without having more
than five birthdays.

2. The barber paradox: In a certain village there is a barber who shaves precisely
those men in the village who do not shave themselves. Question: does the barber
shave himself? Each man in the village is shaved by the barber if and only if he does
not shave himself. Hence, in particular, the barber shaves himself if and only if he
does not shave himself.

Both paradoxes are alike in the sense that at first sight they seem to prove absur-
dities by decisive arguments. The Frederic-paradox is a truth-telling paradox if we
conceive the statement as the abstract truth that one can be 4n (n =0,1,2,...) years
old at one’s n'" birthday, namely if one has been born on February 29. The barber-
paradox contains a reductio ad absurdum: from the, not explicitly mentioned, pre-
miss that such a barber exists, we derive an absurdity of the form B = —B. Hence
the assumption is false and no village can have a barber who shaves all and only
those men in the village who do not shave themselves.

The difference between an antinomy and a veridical paradox is that in the latter
case we are only slightly astonished that we have to give up one of the premisses
like the existence of a village-barber as described above, while in the case of an
antinomy we are forced to give up very fundamental ideas and a major revision in
our way of thinking is needed.

Falsidical paradoxes A falsidical paradox is a paradoxical statement that really is
false, the argument backing it up containing some impossible hidden assumption or
involving a fallacy. Typical examples of falsidical paradoxes are:

Example 2.28. 1. The comic mis-proof that 2 = 1: Let x = 1. Then x> = x. Hence
P2—1=x—1 Dividing both sides by x — 1, we conclude that x4+ 1 = 1. Hence,
becausex=1,2=1.
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2. Three men agree to share a hotel room overnight, splitting the charge of $ 30
three ways, with each man paying $ 10. After they have gone to their room, the
clerk realizes he should only have charged them $ 25 and sends the bellboy up with
$ 5 to be returned to them. The bellboy, realizing how hard it will be to make change,
pockets $ 2 and returns $ 1 to each man. Thus the men have each paid $ 9, for a total
of $ 27 and the bellboy has $ 2, for a total of $ 29. One dollar of the original thirty

is missing.
3. Zeno’s paradox of Archilles and the Tortoise.
A
| -=-=-=-=-=-=-=-- l]oooooool. . . .|
0 T
| -=-=-=---- looool. . . .|
1 1.1 1.11 1.111

Suppose A(rchilles) and the T (ortoise) start to run at the same time and A runs 10
times as fast as 7' does. Suppose also that in the starting position A is in position
0, one mile behind 7', which hence is in position 1. While A runs from O to the
starting position of T, T covers a distance of 0.1 mile since its velocity has been
supposed to be % of that of A. And while A runs from position 1 to position 1.1, T
covers a distance of 0.01 mile, thus arriving at position 1.11. And while A runs from
position 1.1 to position 1.11, T runs from position 1.11 to position 1.111. And so
on. Consequently, A will never pass T .

In a falsidical paradox there is always a fallacy or some impossible hidden assump-
tion in the argument and in addition the statement must look absurd and be false.

In the "proof” of 2 = 1 we divided by x — 1, which is 0 because x was supposed
to be 1. In the hotel paradox the number 2 is added wrongly to 27: 2 should be
subtracted from 27 in order to determine the price, 25 dollars, of the hotel room.

In the case of Archilles and the Tortoise the impossible hidden assumption is
that the infinite process of Archilles running to the position where the tortoise was
a moment ago, lasts infinitely long. In fact, however, if Archilles needs 0.1 hour for
one mile, the infinite process will last only 0.1 +0.014+0.001+...=0.111... = é
hour, which is less than 0.12 hours. Within this time Archilles and the Tortoise
will arrive at the same position and Archilles will pass the Tortoise. The process of
Archilles passing the Tortoise may be thought of as consisting of infinitely many
steps, but this infinite process is actually completed in % hour (6 minutes and 40
seconds).

Only the antinomies cause a crisis of thought. Only an antinomy produces a self-
contradiction via accepted means of reasoning. Only an antinomy requires that some
tacitly accepted and trusted patterns of reasoning be made explicit and henceforth
be avoided or revised.

The falsidical paradox of Zeno must have been a real antinomy in his day. It
was thought as evident that a process consisting of infinitely many steps would last
infinitely long. It is only because of the mathematical achievements of the 18th
and 19th century that we know that some infinite sums, for example, 0.1 4+ 0.01 +
0.001 +...=0.111...= % and%—}—%—i—%—l—%—}—... = 1, are finite, while others, for
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example, % + % + % + % + ..., are not. What is an antinomy for the one is a falsidical
paradox for the other, given a lapse of a couple of thousands of years.

In the case of the paradox of Archilles and the Tortoise one should realize that
points of space and time do not occur in our perception, but are mathematical ideal-
izations. Points of space and time belong to the language of mathematics, not to the
language of our perception. If we talk about Archilles passing the infinitely many
points (positions) the Tortoise was a moment ago, we are speaking in terms of our
mathematical model and not in terms of what we perceive.

Exercise 2.70. Is the following paradox an antinomy, a veridical or a falsidical one?
A judge tells a condemned prisoner that he will be hanged either on Monday, Tues-
day, Wednesday, Thursday or Friday of the next week, but that the day of the hang-
ing will come as a surprise: he will not know until the last moment that he is going
to be hanged on that day. The prisoner reasons that if the first four days go by with-
out the hanging, he will know on Friday, that he is due to be hanged that day. So it
cannot be on Friday that he will be hanged. But now with Friday eliminated, if the
first three days go by without the hanging, he will know on Thursday that he is due
to be hanged that day, and it would not be a surprise. So it cannot be Thursday. In
the same way he rules out Wednesday, Tuesday and Monday, and convinces himself
that he cannot be hanged at all. But he is very surprised on Wednesday when the
executioner arrives at his cell. (See also Exercise 6.12 and its solution.)

Exercise 2.71. Is the following paradox an antinomy, a veridical or a falsidical one?
A crocodile seizes a baby, and tells the mother that he will return it if the next thing
she says to him is the truth, but will eat it if the next thing she says is false. The
mother says ‘you will eat the baby’. The crocodile will eat the baby if and only if
he will let it go.

Exercise 2.72. (From S.C. Kleene [15], p. 40) The following riddle also turns upon
the paradox of the liar. A traveller has fallen among cannibals. They offer him the
opportunity to make a statement, attaching the conditions that if his statement be
true, he will be boiled, and if it be false, he will be roasted. What statement should
he make? (A form of this riddle occurs in Cervantes’ ”Don Quixote” (1605), 11, 51.)

Exercise 2.73. (From S.C. Kleene [15], p. 37, 38) Every municipality in Holland
must have a mayor, and no two may have the same mayor. Sometimes the mayor is a
non-resident of the municipality. Suppose a law is passed setting aside a special area
S exclusively for such non-resident mayors, and compelling all non-resident mayors
to reside there. Suppose further that there are so many non-resident mayors that S
has to be constituted a municipality. Where shall the mayor of S reside? (Mannoury,
cf. van Dantzig [5])

Exercise 2.74. (From S.C. Kleene [15], p. 38) Suppose the Librarian of Congress
compiles, for inclusion in the Library of Congress, a bibliography of all those bibli-
ographies in the Library of Congress which do not list themselves. (Gonseth 1933)
Should that bibliography list itself?
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Exercise 2.75. From Attic Nights by Aulus Gellius, Book V, x:

Among fallacious arguments the one which the Greeks call dvtiocTp€pov seems to be by
far the most fallacious. Some of our own philosophers have rather appropriately termed such
arguments reciproca, or ‘convertible’. The fallacy arises from the fact that the argument
that is presented may be turned in the opposite direction and used against the one who has
offered it, and is equally strong for both sides of the question. An example is the well-known
argument which Protagoras, the keenest of all sophists, is said to have used against his pupil
Euathlus.

For a dispute arose between them and an altercation as to the fee which had been agreed
upon, as follows: Euathlus, a wealthy young man, was desirous of instruction in oratory
and the pleading of causes. He became a pupil of Protagoras and promised to pay him a
large sum of money, as much as Protagoras had demanded. He paid half of the amount at
once, before beginning his lessons, and agreed to pay the remaining half on the day when
he first pleaded before jurors and won his case. Afterwards, when he had been for some
little time a pupil and follower of Protagoras, and had in fact made considerable progress in
the study of oratory, he nevertheless did not undertake any cases. And when the time was
already getting long, and he seemed to be acting thus in order not to pay the rest of the fee,
Protagoras formed what seemed to him at the time a wily scheme; he determined to demand
his pay according to the contract, and brought suit against Euathlus.

And when they had appeared before the jurors to bring forward and to contest the case,
Protagoras began as follows: ‘Let me tell you, most foolish of youths, that in either event
you will have to pay what [ am demanding, whether judgement be pronounced for or against
you. For if the case goes against you, the money will be due me in accordance with the
verdict, because I have won; but if the decision be in your favour, the money will be due me
according to our contract, since you will have won a case.’

To this Euathlus replied: ‘I might have met this sophism of yours, tricky as it is, by not
pleading my own cause but employing another as my advocate. But I take greater satis-
faction in a victory in which I defeat you, not only in the suit, but also in this argument of
yours. So let me tell you in turn, wisest of masters, that in either event I shall not have to pay
what you demand, whether judgement be pronounced for or against me. For if the jurors
decide in my favour, according to their verdict nothing will be due you, because I have won;
but if they give judgement against me, by the terms of our contract I shall owe you nothing,
because I have not won a case.’

Then the jurors, thinking that the plea on both sides was uncertain and insoluble, for fear
that their decision, for whichever side it was rendered, might annul itself, left the matter
undecided and postponed the case to a distant day. Thus a celebrated master of oratory
was refuted by his youthful pupil with his own argument, and his cleverly devised sophism
failed. [From the English translation by John C. Rolfe of The Attic Nights of Aulus Gellius,
Book V, section X. Reprinted, Cambridge, Mass., 1967. The Loeb Classical Library, 195,
pp. 404-409.]

2.10.2 Historical and Philosophical Remarks

Stoic Logic Aristotle is generally seen as the founding father of logic. Only at the
beginning of the 20th century it became clear, among others by the work of the
Polish logician Lukasiewicz, that in fact the Stoics (4= 300 B.C.) developed a kind
of propositional logic, while the logic of Aristotle is a small part of what we now
call predicate logic, to be studied in Chapter 4. A typical inference-schema of the
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Stoics runs as follows:

If the first, then the second.

The first.

Therefore, the second.
As a concrete example of this type of inference, they were accustomed to give:

If it is day, then it is light.

It is day.

Therefore, it is light.
A typical Aristotelian syllogism is: If all things with the predicate (property) P also
satisfy the predicate Q, and all things with the predicate Q also satisfy the predicate
R, then all things with the predicate P also satisfy the predicate R. A concrete in-
stance of this would be: If all birds are animals and all animals are mortal, then also
all birds are mortal.

As pointed out by Lukasiewicz, the Stoics were discussing the truth conditions
for implication. The truth-functional account, as in our truth table for —, is first
known to have been proposed by Philo of Megara ca. 300 B.C. in opposition to the
view of his teacher Diodorus Cronus. We know of this through the writings of Sextus
Empiricus some 500 years later, the earlier documents having been lost. According
to Sextus,

Philo says that a sound conditional is one that does not begin with a truth and end with a
falsehood. ... But Diodorus says it is one that neither could nor can begin with a truth and
end with a falsehood. [Kneale, [16], p. 128]

There can be no doubt that what Sextus refers to is precisely the truth-functional
connective that we have symbolized by the —, for he says elsewhere,

So according to him there are three ways in which a conditional may be true, and one in
which it may be false. For a conditional is true when it begins with a truth and ends with a
truth, like ‘if it is day, it is light’; and true also when it begins with a falsehood and ends with
a falsehood, like ‘If the earth flies, the earth has wings’; and similarly a conditional which
begins with a falsehood and ends with a truth is itself true, like ‘If the earth flies, the earth
exists’. A conditional is false only when it begins with a truth and ends with a falsehood,
like ‘If it is day, it is night’. [Kneale [16], p. 130]

So Sextus reports Philo as attributing truth values to conditionals just as in our truth
table for —, except for the order in which he lists the cases. Diodorus probably had
in mind what later was called strict implication; see Chapter 6.

One of the Stoic principles noted by Lukasiewicz is as follows: an argument is
valid if and only if the conditional proposition having the conjunction of the pre-
misses as antecedent and the conclusion as consequent is logically true. The simi-
larity of this principle to our Theorem 2.4 is obvious.

According to the Stoics, there were five basic types of undemonstrated, i.e., self
evident, argument:

1. If the first, then the second; but the first. Therefore, the second.

2. If the first, then the second; but not the second. Therefore not the first.
3. Not both the first and the second; but the first. Therefore not the second.
4. Either the first or the second; but the first. Therefore not the second.

5. Either the first or the second; but not the second. Therefore the first.
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These arguments are basic, it was maintained, in the sense that every valid argu-
ment can be reduced to them. Sextus Empiricus gives us two very clear examples of
the analysis of an argument into its component basic arguments:

6. If the first, then if the first then the second; but the first. Therefore the second.
(Composition of two type 1 undemonstrated arguments.)

7. If the first and the second, then the third; but not the third; on the other hand the
first. Therefore not the second. (Composition of a type 2 and a type 3 undemon-
strated argument.)

One of the theorems attributed to Chrysippus is:

8. Either the first or the second or the third; but not the first; and not the second.
Therefore the third. (Composition of two type 5 undemonstrated arguments.)

Chrysippus himself is reported to have said that even dogs make use of this sort
of argument. For when a dog is chasing some animal and comes to the junction of
three roads, if he sniffs first at the two roads down which the animal did not run, he
will rush off down the third road without stopping to smell. [See B. Mates [19], pp.
67-82 and W. & M. Kneale [16], pp. 158-176.]

Consequentiae In the Middle Ages several treatises on consequentiae were written.
One of the more interesting ones is In Universam Logicam Quaestiones, formerly
attributed to John Duns the Scot (1266-1308), but later to a Pseudo-Scot (? John
of Cornwall). As we learn from Kneale [16], pp. 278-280, the Pseudo-Scot distin-

guishes various kinds of consequentiae. )
formalis (o)

Consequentia / bona simpliciter ()

materialis

bona ut nunc (y)

Examples:

(a)Socrates currit et Socrates est albus, igitur album currit.
Socrates walks and Socrates is white, so something white walks.
(B)Homo currit, igitur animal currit.
A man walks, therefore a living being walks.
() Socrates currit, igitur album currit.
Socrates walks, therefore something white walks.

Consequentiae formales are inferences made exclusively on the basis of the forms
of the expressions involved. In consequentiae materiales the meaning of the pre-
misses and the conclusion also has to be taken into account. But consequentiae
materiales can always be reduced to consequentiae formales by making explicit
the silently assumed premises. For instance, ‘Socrates currit, igitur album currit’
(Socrates walks, so something white walks) can be reduced to ‘Socrates currit et
Socrates est albus, igitur album currit’ (Socrates walks and Socrates is white, so
something white walks). The Consequentiae materiales bona simpliciter are those
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inferences in which the silently assumed premisses are necessary, like, for instance,
‘omnis homo est animal’ (every man is a living being). When the silently assumed
premisses are contingent (not necessary), like, for instance, ‘Socrates est albus’
(Socrates is white), the Pseudo-Scot speaks of consequentiae materiales bona ut
nunc.

Because of their amusing character, we present below two theorems and their
proofs, as given by the Pseudo-Scot.

1. Ad quamlibet propositionem implicantem contradictionem de forma sequitur
quaelibet alia propositio in consequentia formali (From a proposition which
implies a formal contradiction, any proposition follows as a ‘consequentia for-
malis’).

2. Ad quamlibet propositionem impossibilem sequitur quaelibet alia propositio
non consequentia formali sed consequentia materiali bona simpliciter (From a
proposition which is impossible, any proposition follows not as a ‘consequentia
formalis’ but as a ‘consequentia materialis bona simpliciter’).

Kneale [16], pp. 281-282, gives the following reconstruction of the proof of 1.
Socrates exists and Socrates does not exist

Socrates exists and
Socrates does not exist Socrates exists

Socrates does not exist Socrates exists or a man is an ass

a man is an ass

And the Pseudo-Scot gives the following two proofs of 2:

1. Using 1., the consequentia ‘A man is an ass and a man is not an ass, therefore
you are in Rome’ is formally valid. Since it is impossible that a man is an ass,
it is necessary that a man is not an ass. And the Pseudo-Scot concludes that the
consequentia materialis ‘A man is an ass, therefore you are at Rome’ is bona
simpliciter, being reducible to a formally valid consequentia by addition of a
necessarily true premise.

2. Supposing that ‘A man is not an ass’ is necessarily true, the Pseudo-Scot also
gives the following derivation.

A man is an ass

A man is an ass or you are at Rome A man is not an ass

you are at Rome

Suggested reading on Medieval Logic: W. & M. Kneale, The Development of Logic;
L.M. de Rijk, Logica Modernorum; P. Boehner, Medieval Logic; E. Moody, Truth
and Consequence in Medieval Logic.

Frege’s Begriffsschrift (1879) Although an algebra of logic was initiated by Boole
in 1847 and De Morgan in that same year, the propositional logic properly appeared
with Frege’s Begriffsschrift in 1879, and in Russell’s work, especially in the Prin-
cipia Mathematica by Whitehead and Russell, 1910-13.
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The imprecision and ambiguity of ordinary language led Frege (1848-1925) to look for a
more appropriate tool; he devised a new mode of expression, a language that deals with the
‘conceptual content’ and that he came to call ‘Begriffsschrift’. This ideography is a ‘formula
language’, that is, a lingua characterica, a language written with special symbols, ‘for pure
thought’, that is, free from rhetorical embellishments, .. .. [Heijenoort [12], p. 1]

In the preface to his Begriffsschrift, Frege makes the following remarks about his
work (the following translations are by J. van Heijenoort [12], p. 6-7).

(p- X) Its first purpose, therefore, is to provide us with the most reliable test of the validity of
a chain of inferences and to point out every presupposition that tries to sneak in unnoticed,
so that its origin can be investigated. That is why I decided to forgo expressing anything
that is without significance for the inferential sequence. In § 3 I called what alone mattered
to me the conceptual content [begrifflichen Inhalt].

(p-XI) I believe that I can best make the relation of my ideography to ordinary language
[Sprache des Lebens] clear if I compare it to that which the microscope has to the eye.
Because of the range of its possible uses and the versatility with which it can adapt to
the most diverse circumstances, the eye is far superior to the microscope. Considered as
an optical instrument, to be sure, it exhibits many imperfections, which ordinarily remain
unnoticed only on account of its intimate connection with our mental life. But, as soon as
scientific goals demand great sharpness of resolution, the eye proves to be insufficient. The
microscope, on the other hand, is perfectly suited to precisely such goals, but that is just
why it is useless for all others.

(p.XII) If it is one of the tasks of philosophy to break the domination of the word over
the human spirit by laying bare the misconceptions that through the use of language often
almost unavoidably arise concerning the relations between concepts and by freeing thought
from that with which only the means of expression of ordinary language, constituted as
they are, saddle it, then my ideography, further developed for these purposes, can become
a useful tool for the philosopher. To be sure, it too will fail to reproduce ideas in a pure
form, and this is probably inevitable when ideas are represented by concrete means; but, on
the one hand, we can restrict the discrepancies to those that are unavoidable and harmless,
and, on the other, the fact that they are of a completely different kind from those peculiar to
ordinary language already affords protection against the specific influence that a particular
means of expression might exercise. [J. van Heijenoort [12], p. 6-7]

The notation that Frege introduces in his Begriffsschrift has not survived. It presents
difficulties in printing and takes up a large amount of space. But, as Frege himself
says, ‘the comfort of the typesetter is certainly not the summum bonum, and the
notation undoubtedly allows one to perceive the structure of a formula at a glance

and to perform substitutions with ease.’ A
In § 5 of his Begriffsschrift Frege introduces the notation

§ g g B

for our B— A. Our C — (B — A) is represented by Frege as: ™| 2

L C

A
while Frege represents our (C — B) — A by:

In section 7 of his Begriffsschrift Frege represents our —A by: A

A ™

Frege presents the propositional calculus in a version that uses the conditional and
negation as primitive connectives. Frege renders our AV Bby =B — A, i.e.,
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A

) —
. A

And Frege renders our A A B by —=(B — —A), i.e.,
B

The distinction between ‘and’ and ‘but’ is of the kind that is not expressed in the
present ideography. [G. Frege, Begriffsschrift, § 7.]

Conversational implicature P. Grice in the 1967 William James Lectures (pub-
lished in 1989 in [10]) works out a theory in pragmatics which he calls the theory
of conversational implicature. Generally speaking, in conversation we usually obey
or try to obey rules something like the following:

QUANTITY: Be informative

QUALITY: Tell the truth

RELATION: Be relevant

MODE: Avoid obscurity, prolixity, etc.
If the fact that A has been said, plus the assumption that the speaker is observing the
above rules, plus other reasonable assumptions about the speaker’s purposes and in-
tentions in the context, logically entails that B, then we can say A conversationally
implicates B.

It is possible for A to conversationally implicate many things which are in no way
part of the meaning of A. For example, if X says ‘I’m out of gas’ and Y says ‘there’s
a gas station around the corner’, Y’s remark conversationally implicates that the
station in question is open, since the information that the station is there would be
irrelevant to X’s predicament otherwise. If X says ‘Your hat is either upstairs in the
back bedroom or down in the hall closet’, this remark conversationally implicates ‘I
don’t know which’, since if X did know which, this remark would not be the most
informative one he could provide.

Grice shows how philosophers have sometimes mistaken conversational impli-
catures for elements of meaning. For instance, Strawson sometimes claims not-
knowing-which must be part of the meaning of ‘or’ (and therefore the traditional
treatment of disjunction in logic is misleading or false). Grice claims this is mistak-
ing the conversational implicature cited above for an aspect of meaning.

Sometimes it is possible to cancel a conversational implicature by adding some-
thing to one’s remark. For example, in the gas station case, ‘I’m not sure whether
it’s open’ and in the hat case, ‘I know, but I’'m not saying which’ (one might say
this if locating the hat was part of some sort of parlor game). The possibility of
cancellation shows that the conversational implicatures definitely are not part of the
meaning of the utterance.

Conditionals In the examples below the conditional in (1) is in the indicative mood,
while the conditional in (2) is a subjunctive one.

(1) If Oswald did not kill Kennedy, someone else did.

(2) If Oswald had not killed Kennedy, someone else would have.

(These examples are from E. Adams, Subjunctive and Indicative Conditionals,
Foundations of Language 6: 89-94, 1970.)



108 2 Propositional Logic

(1) is true: someone killed Kennedy; but (2) is probably false. Therefore, different
analyses are needed for indicative and for subjunctive conditionals.

A counterfactual conditional is an expression of the form ‘if A were the case,
then B would be the case’, where A is supposed to be false. Not all subjunctive
conditionals are counterfactual. Consider the argument, ‘The murderer used an ice
pick. But if the butler had done it, he wouldn’t have used an ice pick. So the murderer
must have been someone else.’. If this subjunctive conditional were a counterfactual,
then the speaker would be presupposing that the conclusion of his argument is true.
(This example is from R.C. Stalnaker, Indicative Conditionals, in W.L. Harper, e.a.,
IFS.)

In Chapter 6 we shall discuss counterfactuals and subjunctive conditionals in
general. In this section we will restrict our attention from now on to indicative con-
ditionals.

In Section 2.4 we have considered the so-called paradoxes of material implica-
tion: the following two inferences for material implication — are valid, whereas the
corresponding English versions seem invalid.

-A There is no oil in my coffee
A — B If there is oil in my coffee, then I like it

B Il ski tomorrow
A — B If I break my leg today, then I'll ski tomorrow

So, the truth-functional reading of ‘if ..., then ...’, in which A — B is equivalent
to ~A V B, seems to conflict with judgments we ordinarily make. The paradoxical
character of these inferences disappears if one realizes that:

1. the material implication A — B has the same truth-table as ~A V B;

2. speaking the truth is only one of the conversation rules one is expected to obey in
daily discourse; one is also expected to be as relevant and informative as possible.
Now, if one has at one’s disposal the information —A (or B, respectively) and at the
same time provides the information A — B, i.e., 7A V B, then one is speaking the
truth, but a truth calculated to mislead, since the premiss —A (or B, respectively) is
so much simpler and more informative than the conclusion A — B. If one knows the
premiss —A (or B, respectively), the conversation rules force us to assert this premiss
instead of A — B. Quoting R. Jeffrey:

Thus defenders of the truth-functional reading of everyday conditionals point out that the
disjunction —A V B shares with the conditional ‘if A, then B’ the feature that normally it is
not to be asserted by someone who is in a position to deny A or to assert B. ...

Normally, then, conditionals will be asserted only by speakers who think the antecedent
false or the consequent true, but do not know which. Such speakers will think they know of
some connection between the components, by virtue of which they are sure (enough for the
purposes at hand) that the first is false or the second is true. [R. Jeffrey [13], pp. 77-78]

Summarizing in a slogan:
indicative conditional = material implication 4 conversation rules.

So H.P. Grice uses principles of conversation to explain facts about the use of con-
ditionals that seem to conflict with the truth-functional analysis of the ordinary in-
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dicative conditional. In his paper ‘Indicative Conditionals’ (in W.L. Harper, e.a.
(eds.), IFS), R.C. Stalnaker follows another strategy, rejecting the material condi-
tional analysis. And in his book ‘Causal Necessity’, Brian Skyrms claims that the
indicative conditional cannot be construed as the material implication ‘—’ plus con-
versational implicature. The dispute between advocates of the truth-functional ac-
count of conditionals and the advocates of other, more complex but seemingly more
adequate accounts is as old as logic itself.

Frege, Russell, Hilbert In his Begriffsschrift (page 2) of 1879 Gottlob Frege dis-
tinguishes the notations —A for ‘the proposition that A” and - A for ‘it is a fact that
A’. Frege calls A in —A and in - A ‘der Inhalt’ (the content) and ‘+ A’ ‘ein Urteil’
(a judgment). In Chapter II of his book Frege gives the first axiomatic formulation
of classical propositional (and predicate) logic, namely, the following system g,
presented below in our own notation.

A— (B—A) (Begriffsschrift, p. 26, form. 1)
(C— (B—A))— ((C—B)— (C—A)) (Begriffsschrift, p. 26, form. 2)
(D— (B—A))— (B—(D—A)) (Begriffsschrift, p. 35, form. 8)
(B—A)— (-A— —B) (Begriffsschrift, p. 43, form. 27)
—A—=A (Begriffsschrift, p. 44, form. 31)
A— A (Begriffsschrift, p. 47, form. 41)

together with Modus Ponens.

It is probably correct to say that Frege’s work only became well-known through
Russell. The following formulation &g of classical propositional logic was used by
Whitehead and Russell in Principia Mathematica in 1910 (see part I, page 13).

AVA—A

B—AVEB

AVB—BVA

AV (BVC)—=BV(AVC)

(B—=C)— (AVB—AVC(C)
together with Modus Ponens.

The following formulation & of propositional logic has implication and negation
as primitive connectives and Modus Ponens as its only rule:

A— (B—A)

A—=-B—-C)—=((A—=B) = (A—=0)

(-A — -B) = (B—A)
Defining AAB := (A — —B) and AV B := (A — B) — B, the axioms for A and V in
Section 2.6 become formulas containing no connectives other than — and — and are
deducible (using M P) from the three axiom schemes given above. So, by expressing
A and V in terms of — and —, formulations such as &2 are obtained, in which the
number of axioms is small.

In their Grundlagen der Mathematik (1934) D. Hilbert (1862-1943) and P.
Bernays (1888-1977) presented the following axiom system g for the classical
propositional calculus. This system contains axioms for each of the connectives
—, A, Vand —.
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A— (B—A)
(A= (B—C)) = ((A— B) = (A—C)) }*
ANB— A

ANB— B A
A— (B—ANAB)

A—AVB
B—AVBEB \Y
A—=C)—=((B—C)—=(AVB—=C())

(A — —-B) = (B—A) =

Formulations of intuitionistic propositional logic can be obtained by replacing the
negation axiom of &y by suitable different axioms, for instance, by (A — —A) —
—A and -A — (A — B); see Chapter 8.

For more historical details the reader is referred to section 29 of A. Church [4].
Introduction to Mathematical Logic.

Scientific Explanation, Inductive Logic Some, but not all, scientific explanations
are deductive arguments the premisses of which consist of general laws and partic-
ular facts. A trivial example is the following explanation.

If someone drops his pencil, it falls to the ground. (L)

I drop my pencil. (Cy)

Therefore, my pencil falls to the ground. (E)
Ly is a general law, i.e., a universal statement expressing that each time some con-
dition P is satisfied, then without exception some condition Q will occur. C; is a
particular fact. And E is the explanandum, the statement which has to be explained.

Explanations of this kind are called deductive-nomological explanations. (The

Greek word ‘nomos’ means ’law’.) Their general form is

Ly, Ly,...,L, (universal laws)
Ci, Cy,...,Cr  (particular facts)
E Explanandum

Explanans

In a deductive-nomological explanation the explanandum follows logically or de-
ductively from the explanans.

Probabilistic explanations are different in that i) the laws are in terms of relative
frequences, and ii) the explanandum does not logically follow from the explanans,
but can only be expected with a certain degree of probability, called inductive or
logical probability. The following is an example of a probabilistic explanation.

Example 2.29. The statistical probability of catching the measles, when exposed to
them, is %. The statistical probability of catching pneumonia, when exposed to it, is

%. Jim was exposed to the measles and to pneumonia. Therefore, the inductive or
3.,1_3

177 =%
The main question in inductive logic is how to determine the inductive probabil-
ity for the explanandum, given the statistical probabilities in the explanans. This

logical probability that Jim catches both the measles and pneumonia is
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problem is in part still unsettled. Note that inductive or logical probability is a re-
lation between statements, while statistical probability is a relation between (kinds
of) events.

References for further reading: 1. Hempel, R., Philosophy of Natural Science; 2.
Carnap, R., Logical foundations of probability; 3. Carnap, R. and Jeffrey, R., Studies
in inductive logic and probability; 4. Jeffrey, R., The logic of decision; 5. Swinburne,
R., An introduction to confirmation theory.

Syntax — Semantics The syntax of a language is concerned only with the form of
the expressions, while the semantics is concerned with their meaning.

So, the rules according to which the well-formed expressions of a language are
formed and the rules belonging to a logical proof system, such as Modus Ponens,
belong to the syntax of the language in question. These rules can be manipulated
mechanically; a machine can be instructed to apply the rule Modus Ponens and to
write down a B once it sees both A and A — B, while the machine does not know
the meanings of A, B and —. The notions of (logical) proof and deduction, as well
as the notions of (logical) provability and deducibility, clearly belong to the syntax:
they are only concerned with the form of the formulas involved.

On the other hand, truth tables belong to the semantics, because they say how
the truth value (meaning) of a composite proposition is related to the truth values
(meanings) of the components from which it is built. The notions of validity and
valid consequence also belong to the semantics: they are concerned with the mean-
ing of the formulas in question.

Leibniz (1646-1716) We will here pay attention to only a few aspects of Leibniz. For
more information the reader is referred to Kneale [16] and to Mates [20], Chapter
12. What follows in this subsection is based on these works.

One of Leibniz’ ideals was to develop a lingua philosophica or characteristica
universalis, an artificial language that in its structure would mirror the structure of
thought and that would not be affected with ambiguity and vagueness like ordinary
language. His idea was that in such a language the linguistic expressions would
be pictures, at it were, of the thoughts they represent, such that signs of complex
thoughts are always built up in a unique way out of the signs for their compos-
ing parts. Leibniz believed that such a language would greatly facilitate thinking
and communication and that it would permit the development of mechanical rules
for deciding all questions of consistency or consequence. The language, when it is
perfected, should be such that ‘men of good will desiring to settle a controversy
on any subject whatsoever will take their pens in their hands and say Calculemus
(let us calculate)’. If we restrict ourselves to propositional logic, Leibniz’ ideal has
been realized: classical propositional logic is decidable; see Section 2.9. However,
A. Church and A. Turing proved in 1936 that extending the propositional language
with the quantifiers ‘for all’ (V) and ‘for some’ (3), the resulting predicate logic
is undecidable, i.e., there is no mechanical method to test logical consequence (in
predicate logic), let alone philosophical truth.

Leibniz also developed a theory of identity, basing it on Leibniz’ Law: eadem
sunt quorum unum potest substitui alteri salva veritate — those things are the same
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if one may be substituted for the other with preservation of truth. Leibniz’ Law is
also called the substitutivity of identity or the principle of extensionality and it is
frequently formulated as follows.

a=b—(..a...=...b...)

where ...a... is a context containing occurrences of the name a, and ...b... is the
same context in which one or more occurrences of a has been replaced by b; if a is
b, then what holds for a holds for b and vice versa. In the propositional calculus we
have a similar principle of the substitutivity of material equivalents:

(A=B)—>(...A...=...B..).

Leibniz made a distinction between truths of reason and truths of fact. The truths
of reason are those which could not possibly be false, i.e., — in modern terminology
— which are necessarily true . Examples of such truths are: no bachelor is married,
2+ 2 = 4, living creatures cannot survive fire, and so on. Truths of fact are called
contingent truths nowadays; for example, unicorns do not exist, Amsterdam is the
capital of the Netherlands, and so on. Leibniz spoke of the truths of reason as true
in all possible worlds. He imagined that there are many possible worlds and that our
actual world is one of them. ’2 42 = 4’ is true not only in this world, but also in
any other world. ’ Amsterdam is the capital of the Netherlands’ is true in this world,
but we can think of another world in which this proposition is false. In 1963, S.
Kripke extended the notion of possible world with an accessibility relation between
possible worlds, which enabled him to give adequate semantics for the different
modal logics, as we will see in Chapter 6. The idea is that some worlds are accessible
from the given world, and some are not. For instance, one could postulate (and one
usually does) that worlds with different mathematical laws are not accessible from
the present world.

2.11 Solutions

Solution 2.1. i) P, AP, — —P5; ii) Pi A (P2 — —\P3); iii) P V (P2 — P3);
iv) (PVP) — P5;v) Pp — (P, — —P3)

Solution 2.2. i) If it is the case that if John works hard then he goes to school, then
John is not wise. ii) John does not work hard or John is wise. iii) It is not the case
that John works hard or that John is wise; in other words, John does not work hard
and John is not wise. iv) John does not go to school and John is wise. v) It is not the
case that both John goes to school and John is wise; in other words, John does not
go to school or John is not wise.

Solution 2.3. 1. P; or Vx[P(x)]; 2. P, or ¥x[—=P(x)]; 3. =P, or —Vx[P(x)].

Solution 2.4. Only the expressions P;, —Ps, Py A—Pg, and (Pj A P,) — —P3 are
formulas of propositional logic. All other expressions contain symbols which do
not occur in the alphabet of propositional logic.
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Solution 2.5. Let @ be the property defined by @ (n) := 1+2+...n= in(n+1).
1. 0 has the property @, since 0 = %0(0 +1).

2. Suppose n has the property @, i.e., 1 +2+...n= %n(n + 1) (induction hypoth-
esis). Then we have to show that n+ 1 also has the property @, i.e., 1 +2+...n+
(n+1)=1(n+1)((n+1)+1).

Proof: According to the induction hypothesis, 1 +2+...n+ (n+1) = In(n+1)+
(n+1)=(Gn+D)(n+1)=3(n+1)(n+2).

Solution 2.6. Atomic formulas have no or zero parentheses, so as many left paren-
theses as right parentheses.

Assume that A and B have as many left parentheses as right parentheses (induction
hypothesis). Then evidently the formulas (A = B), (A — B), (AAB), (AV B) and
(—A) also have as many left parentheses as right parentheses.

Solution 2.7. We restrict ourselves to showing that —=(A A B) has the same truth table
as —A V —B. Although the formulas A and B may have been composed of many
atomic formulas Pj,..., P, and hence their truth tables may consist of many lines,
2" in the end there are at most 4 possible different combinations of 1 (true) and
0 (false) for A and B. Hence, it suffices to restrict ourselves to these maximally 4
possible different combinations:

A B|AAB||=(AAB) || -A|-B || -AV-B|
1] 1 0 0ofo 0
10| 0 1 011 1
01| 0 1 110 1
00| O 1 11 1

Solution 2.8. Below are the truth tables for the formulas from exercise 2.1 and 2.2.

2.1 2.2
PL P P31 idi|iil dv|v ifil dii|iv v
1 1 1]0 01 1|0 0|1 0|0 O
1 1 01 11 01 110 0|0 1
1 0 1|1 11 1]1 1)1 Of1 1
1 0 01 11 O0]1 1]0 0|0 1
0 1 11 0f1 1)1 0|1 0[O0 O
0 1 0j1 0f{0 O]j1 1|1 1|0 1
0 0 11 0f1 1]1 0)J1 Of1 1
0 0 O0j1 Of1 1]1 1)1 1|0 1

Solution 2.9. AV —A has the value 1 and A A —A has the value O in all lines of the
truth table. Hence, in each line of the truth table

a) (AV—-A) - Bis0iff Bis 0,

b) (AV —A) ABis 0iff Bis 0, and

¢) (AN-A)VBis 0iff Bis 0.

Therefore (AV —A) — B, (AV—-A)AB and (A A—A) V B have the same truth table
as B.
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Solution2.10. A B| A—-B |(A—-B)—»B|B—A|(B—A)—-A|AVB
I 1[1—=1=1 1—1=1] 1 I—1=1] 1
1 0[1—=0=0] 0—0=1| 1 l—1=1] 1
0 1{0—1=1 l—1=1| 0 0—-0=1| 1
0 0]0—0=1 1-0=0] 1 1-0=0] 0

Alternatively, one might argue as follows: (A — B) — B is 0 iff (A — Bis | and B
is 0) iff (A is 0 and B is 0) iff AV B is 0. Similarly for (B — A) — A.

Solution 2.11. We restrict ourselves to ¢) (P — Q) — (—Q — —P). Suppose in some
line of its truth table this formula has the value 0. Then in that line P — Q is 1 and
—Q — —Pis 0. Hence, P— Qis 1, ~Qis 1 and —P is 0 in that same line. So, P — Q
is 1, Q is 0 and P is 1 in that same line. Then, either P is 0, Q is 0 and P is 1 in that
line, or Q is 1, Q is 0 and P is 1 in that line. Both are impossible, so the original
formula cannot have the value 0 in some line of its truth table.

Solution 2.12. a) In order that PV Q — P A Q is 0 in some line, PV Q must be 1 and
P A Q 0 in that same line. So, at least one of P, Q must be 0. By taking the value of
the other formula 1, one achieves that P\ Q is 1, while PA Q is O:

P Q PVQ PAQ

1 0 1 0
01 1 0

b) is treated similarly.
Solution 2.13. 1 B,2A,3B,4C,5B,6C,7C,8C,9C, 10C.

Solution 2.14. Each formula A built by means of connectives from only one atomic
formula P must have one of the following four truth tables.

P A
1

1 100
0o|1 010
These four truth tables are the tables of P — P, P, =P and P A —P, respectively.
Solution 2.15. Straightforward

Solution 2.16. * Let G be a group. If G can be ordered, then clearly every subgroup
of G, generated by finitely many elements of G, can be ordered. Conversely, suppose
every such subgroup of G can be ordered. ()
Now, consider the propositional language built from atomic formulas P, ;, where
a,b are elements of G. Let I be the following set of formulas in this language.

P, for every element a in G.

P,pV Py, forall a,bin G.

P, — Py 4 forall a,b in G with a # b.

Pyp NPy — Py forall a,b,cin G.

Py p — Pacpe NPegcp forall a,b,cin G.

Proposition 1: Every finite subset of I" has a model.
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Proof : Let I'' be a finite subset of I'. In I'’ there occur only finitely many elements
of G. Let G’ be the subgroup of G, generated by these finitely many elements. By
the hypothesis (x), G’ can be ordered by some relation <. Now, let u(P, ;) = 1 if
a<b,and u(P,p) =0if a > b. Then u is a model of I"".

By the compactness theorem it follows from Proposition 1 that I" has a model, say
v. Now, leta < b := v(Pa’b) = 1. Since v is a model of I', < is an ordering of G.

Solution 2.17. * If a graph on V is k-chromatic, then clearly every finite subgraph
of it is k-chromatic. Conversely, suppose R is a graph on V such that every finite
sub-graph of R is k-chromatic. ()
Now, consider the propositional language built from atomic formulas P, y, where
i€{l,....,k} andx € V. And let I" be the following set of formulas.

P, — P foralli,j <kwithi# jandallx € V.

P V... VP forallxeV.

P, x — —P;y forall i < kand all x, y € V such that xRy.

Proposition 1: Every finite subset of I has a model.

Proof : Let I'' be a finite subset of I'. In I’ there occur only finitely many elements
of V. Let R’ be the sub-graph of R obtained by restricting R to the set V' of these
finitely many elements. By hypothesis (*), R’ is k-chromatic, i.e., there is a partition
of V/ into k disjoint sets Wy,..., W, such that two elements of V' connected by R’
do not belong to the same W;. Now, let u(P, ;) = 1 if x € W;, and u(P;x) =0 if x ¢ W,.
Then u is a model of I,

By the compactness theorem it follows from proposition 1 that I" has a model,
say v.Now, let V;:={xe V|v(Py)=1}fori=1,...,k. ThenV},...,V; is a partition
of V such that two elements of V, connected by R, do not belong to the same V;. In
other words, R is k-chromatic.

Solution 2.18. * Let B and G be sets. R C B x G, such that (i) for all x € B, R{x} is
finite, and (ii) for every finite subset B’ C B, Ry has at least as many elements as
B'. Consider a propositional language with as atomic formulas all expressions Hy.y
withx € Band y € G. Let I' contain the following formulas:

Hyy, V...V H,y, forany x € B, where Ry = {y1,...,Yn}-

—(Hxy, NHy,y,) forany x € B, y1,y» € G with y; # y,.

—(Hy, y NHy, ) for any x1,x, € B,y € G with x1 # x».

If u is a model of I', then f : B — G, defined by f(x) =y if u(H,,) =1, is an
injection from B to G.

In order to show that I has a model, by the compactness theorem it suffices to
show that each finite subset I’ of I" has a model. So, let I'’ be a finite subset of I".
Let B' := {x € B| Hy, occurs in I’ for some y € G}, and G’ := {y € G| Hy, occurs
in I'” for some x € B}. Since B’ and G’ are finite, there is an injection f’ : B — G,
such that if f’(x) =y, then R(x,y). Define u’ as follows: u’(H,,) = 1 iff f'(x) =y.
Then «’ is a model of T,

Solution 2.19.
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P P P|P—P PV |PL—P|Ps—P
1 1 1 1 1 1 1
1 1 0 1 0 0 1
1 0 1 0 1 1 1
1 0 O 0 1 0 1
0 1 1 1 1 1 0
0 1 O 1 0 1 1
0 0 1 1 1 1 0
0 0 O 1 1 1 1

Let Py stand for: the government raises taxes for its citizens; P> for: the unemploy-
ment grows; and P3 for: the income of the state decreases. Then the argument has
the following structure: P; — P»,—P, V P; |= P| — P3. Notice that =P, VV P; has the
same truth table as P, — P3. One easily checks that in each line of the truth table
starting with Py, P>, P; in which both premisses are 1, also the conclusion is 1.
There are four lines in which all premisses are true: line 1, 5, 7 and 8. In each of
these lines the conclusion P; — Ps is 1 too. Therefore, Py — P>, =P,V P; |= P| — P;.

Solution 2.20. Let P; stand for: Europe may form a monetary union; P, for: Europe
is a political union; and P; for: all European countries are member of the union.
Then the argument has the following structure: P; — P>, P,V P3 = P; — Py, which
is false, because there is at least one line in the truth table in which all premisses
are 1, while the putative conclusion P; — P; is 0; see lines 5 and 7 in the table of
solution 2.19. Therefore, P, — P»,—P,V P3 =~ P3 — P).

Solution 2.21. ¢) There is no line in the truth table in which both A and —A are 1,
so there is no line in the truth table in which both A and —A are 1 and B is 0, i.e.,
A,—A E=B.

Solution 2.22. Let W stand for: John wins the lottery; J for: John makes a journey;
and S for: John succeeds for logic. Then the structure of the argument is the follow-
ing one: =WV J, =J — =S, WV S |= J. Notice that the first premiss has the same
truth table as W — J and that the second premiss has the same truth table as S — J.
Hence, the structure of the argument is equivalent to W — J, S - J, WV S = J,
which clearly is valid. Checking the truth table will confirm this.

Solution 2.23. Let T stand for: Turkey joins the EU; L for: the EU becomes larger;
and S for: the EU becomes stronger. Then the argument has the following structure:
T — L, =(SA-L) = -T VS. Notice that =(S A —L) has the same truth table as
S — L and that the conclusion =7 V S has the same truth table as 7 — S. Hence the
structure of the argument is equivalent to T — L, S — L =T — S, which clearly
does not hold: if 7" and L are 1 and S is O, then the premisses are both 1, while the
conclusion is 0. Making a truth table will confirm this.

Solution 2.24. 1) Assume |=A = (A — B). To show: |= A and |= B. So, suppose A
were 0 in some line of its truth table. Then A = (A — B) wouldbe 0 = (0 — 0/1) =
(0 = 1) = 0 in that line, contradicting the assumption. Therefore, = A. In a similar
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way = B can be shown.

2) Assume A = —A. To show: = —A. So, suppose —A were 0 in some line of its
truth table, i.e. A were 1 in that line. Then, by assumption, also -A would be 1 in
that same line. Contradiction. Therefore, = —A.

3) Assume A — B = A. To show: = A. So, suppose A were 0 in some line of its truth
table. Then A — B would be 1 in that same line and hence, by assumption, A would
be 1 in that same line. Contradiction. Therefore, = A.

Solution 2.25. a) Counterexample: let A = P (atomic) and B = Q (atomic). Then
not = P — Q, but not = P and not |= —Q.

b) Proof: =(A — B) has the same truth table as A A —B. So, if = =(A — B), then
= A A —B. Hence, by Theorem 2.14, = A and |= —B.

¢) Counterexample: let A = P (atomic) and B = Q (atomic). Then not = P A Q, but
not = —P and not = Q.

d) Counterexample: let A = P (atomic) and B = —P. Then = —(P A —P), but not
= =P and not = —=—P. Notice that A = P and B = Q with P,Q atomic, is not a
counterexample, because = —(P A Q) does not hold.

e) Counterexample: A = P (atomic) and B = Q (atomic). Then not |= PV Q, but not
= —P and not = —Q.

f) Proof: (A V B) has the same truth table as —A A —B. So, if = —(A V B), then
= —A A —B. Hence, by Theorem 2.14, = —A and |= —B.

Solution 2.26. (al) and (a2) Fori=1,...,n,Ay,...,A;,...,A, E A, since for every
line in the truth table, if all of Aq,...,A;,...,A, are 1, then also A; is 1.

(b1) Assume A,A,A3 = B; and A1,A,A3 = B, and By,B; = C, i.e., for every line
in the truth table, if all of A{,A,,A3 are 1, then also By is 1 and B is 1; and for every
line in the truth table, if all of B, B; are 1, then also C is 1. Therefore, for every line
in the truth table, if all of A;,A,,A3 are 1, then also Cis 1, i.e., A1,A;,A3 = C.

(b2) Similarly.

Solution 2.27. 1) Assume A |= B and A = —B and suppose that in some line of the
truth table =A is 0, i.e., A is 1. Then, because of A = B, B is 1 in that line and, because
of A = —B, —B is 1 (and hence B is 0) in that line of the truth table. Contradiction.
So, there is no line in which A is 1. Therefore = —A.

2) Assume A = C and B |= C and, in order to show that AV B = C, suppose A V B is
1 in some line of the truth table. Then A is 1 or B is 1 in that line. In the first case it
follows from A |= C and in the second case it follows from B |= C that C is 1 in that
line.

Solution 2.28. (a) Right. There is no line in the truth table in whichA — BV Cis 1
and (A — B)V(A—C)is 0.

(b) Wrong. Counterexample: for P, Q atomic, = (P — Q) V (P — —Q), but not
= P — Q and not = P — —Q. (See also Theorem 2.13 (b))

(c) Assume A = B (1). To show: B— C |=A — C. So, suppose B — C is 1 in some
line of the truth table (2). Then we have to show that also A — C is 1 in that line.
So, suppose A is 1 in that same line (3). Then, because of (1), B is 1 in that line and
hence, because of (2), C is 1 in that line, which had to be proved.
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Solution 2.29. Assume T AAAB |= P. To show: =P = =T V =A V =B. So, suppose
=P is 1 in some line of the truth table. Then P is O in that line and hence, by assump-
tion, T AAABis 0 in that line. Then ~(T AAAB) is 1 and hence =T V -AV —B is
1 in the given line. Therefore, —P ): -TV-AV —B.

Solution 2.30. Proof of a): Assume A = B. To show: B = —A. So, suppose —B
is 1 in an arbitrary line of the truth table. Then B is 0 in that line and hence, by
assumption, A is O in that line. Therefore —A is 1 in that line, which had to be
shown.
Proof of b): Assume A |= B and A,B |= C. To show A = C. So, suppose A is 1 in an
arbitrary line of the truth table. Then, because of A = B, A and B are 1 in that line
and hence, by A,B |=C, C is 1 in that line, which had to be shown.
Proof of ¢): Assume AV B = A A B. And suppose A and B have different values in
some line of the truth table (1 — 0 or 0 — 1 respectively). Then A V B is 1 in that line,
while A AB is 0 in that line, contradicting AV B |= A A B. Therefore A and B have
the same truth table.

An alternative proof: Suppose AV B |= A A B. This means that the formulas A and
B are such that in the standard truth table for AV B and for AABline 2 (Ais 1, B is
0) and line 3 (A is 0 and B is 1) do not occur. So, only line 1 (Ais 1 and B is 1) and
line 4 (A is 0 and B is 0) may occur. Hence, A and B have the same truth table.

Solution 2.31. Brown’s testimony|Jones’ testimony|Smith’s testimony
B J S -JAS -B— S SA(—=BV—J)
1 11 0 1 0
110 0 1 0
1 01 1 1 1
100 0 1 0
011 0 0 1
010 0 1 0
001 1 0 1
000 0 1 0

a) Yes, for the three testimonies are all true in the third line of the truth table.

b) "JAS E=SA(=BV-J),ie., Smith’s testimony follows from that of Brown.

¢) The assumption that everybody is innocent means in terms of the truth tables that
the first line applies. Since in this line Brown’s and Smith’s testimonies are false,
Brown and Smith commit perjury in this case.

d) There is only one line (namely the third one) in which everyone’s testimony is
true. In this line B and S are 1 and J is 0. So, in this case Brown and Smith are
innocent and Jones is guilty.

e) Line 6 in the truth table is the only line in which the innocent tells the truth and
the guilty tells lies. From line 6 we read off that in this case Brown and Smith are
guilty and tell lies and that Jones is innocent and tells the truth.

Solution 2.32. Let P, Q, R be the statement ‘Pro wins’, ‘Quick wins, ‘the Runners
win’, respectively.
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Trainer of Pro|Trainer of Quick|Trainer of Runners
P O R| R—-Q OVR R
111 0 1 1
1 10 1 1 0
1 01 1 1 1
100 1 0 0
01 1 0 1 1
010 1 1 0
00 1 1 1 1
000 1 0 0

a) The assumption that everyone’s statement is true means in terms of the truth
tables that the third or seventh line applies. Assuming there is at most one winner,
the third line does not apply. So, the Runners win.

b) If only the trainer of the winning club makes a true statement, Pro wins the
tournament, as can be seen from the fourth line.

Solution 2.33. (a) =P A Q AR (see the outline of the proof of Theorem 2.16).

() (PAQAR)V (-PAQAR)V (-PA—=QAR).

(c) PAN—P.

(d) ~((PAQAR)V (=PAQA-R)). Note: the table of (PAQAR)V (-PAQA—R)
corresponds with the negation of column (d).

Solution 2.34. —A has the same truth table as A V —A and hence as A | A.

AV B has the same truth table as —(—A) VV =(—B), hence as =A | —B and therefore
as (AL A) | (BlB).

A A B has the same truth table as —(—=A V =B), hence as =(A | B) and therefore as

(ALB)L(ALB).

Solution 2.35. i) A can be expressed in terms of V and —, for A A B has the same
truth table as —(—A V —B); similarly, V can be expressed in terms of A and —, for
AV B has the same truth table as —(—A A —B).

ii) {—,—} is complete, for according to Theorem 2.16 {A,V, —} is complete and
both A and V can be expressed in terms of — and —: A A B has the same truth table
as 7(A — —B) and A V B has the same truth table as (A — B) — B.

{—,—} is independent, for — cannot be expressed in terms of —; more precisely,
A — B does not have the same truth table as A, —A, =—A, B, =B or =—B; and —
cannot be expressed in terms of —; for suppose A is 1, then —A is 0 and one can
show that any formula, built from A and — only, is 1 if A is 1.

iii) In a similar way one shows that {A,—} and {V,—} are both complete and inde-
pendent.

Solution 2.36. Suppose | is a binary connective such that every truthfunctional con-
nective of (1 or) 2 arguments can be expressed in it. (*)
Then, in particular, there must be a formula A built from P and | only, such that =P
has the same truth table as A (o). Now, if 1 | 1 = 1, one can show that any formula,
built from P and | only, will have the value 1 if Pis 1 (). However, =1 =0 (7). From
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(o), (B) and (y) it follows that 1 | 1 = 0. In a similar way one shows that 0| 0 = 1.
Consequently, the connective ”’|” must have one of the following four truth tables.

P Q|

1 10000
1 00011
0 1101 01
0 0{1 1 11

We will show next that the values of 1 |0 and 0 | 1 should be the same, so that only
the first and the fourth column remain and | must be either 1 or .

If 1|00/ 1, then one can show that any formula, built from P, Q and | only,
will get a different truth value if we interchange the P and the Q in it, giving P and
Q the values 1 and O respectively (a). Under the assumption (*) there must be a
formula B built from P, Q and | only, such that P A Q has the same truth table as B
(b). However, | AO =0 A 1 (c). From (a), (b) and (c) it follows that 1 |0 =0 1.

Solution 2.37. 1) (P — (Q — P)) A (P — QV P) has the same truth table as
(ZPV(2QVP))A(=PV (QV P)).
ii) The following formulas have the same truth table:

(P— —(Q = P))A(P— QAP) (=P V =(=QV P)) A (=PV (Q A P))
(=P V (==QA=P)) A (=PV(QAP)) (=PV(QA=P))N(=PV(QAP))
(=PV Q) A (=PV =P) A (=P Q) A (=PVP) (=PV Q) A—=P

iii) (P — —(Q — P)) V (P — Q A P) has the same truth table as:
(5PVQ)A(=PV=P))V ((=PV Q) A (=PV P))
(=PVQ)A=P)V(-PV Q)
(=PVQ)V(=PVQ))A((=PVQ)V—P)

(-PV Q).

Solution 2.38. a) R — =K, K F —R. The following list of formulas is a deduction
of =R from the premisses R — —K and K:

1. K premiss

2. K — (R — K) axiom 1

3.R — K MP applied to 1 and 2.

4. (R—K)— ((R— —K) — —R) axiom 7

5. (R — —K) — =R MP applied to 3 and 4.

6. R — —K premiss

7. -R MP applied to 5 and 6.

b) Suppose =K — R, K I —R. Then by the soundness theorem -K — R, K = —R.
Making the truth table shows that this is false. Therefore, =K — R, K I/ —R.

Solution 2.39. The following schemas are deductions of the last formula in the
schema from the formulas mentioned as premisses.
premiss  premiss premiss " g (B AAB)

(@ —————— mpP (b) premiss Mp
B B B—AAB
MP

ANB
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premiss 4a premiss 4b
ANB AANB — A ANB AANB— B
© Mp (d)
A B
premiss S5a premiss 5b
A A—AVBEB B B—AVB
©) Mmp ®
AVB AVB
premiss
——A —A A
(€9) MP
A
premiss 9
_ A—B (A—-B)— ((B—A)— (A=B)) P
Bremss (B—A)— (A=B
(h) MP
AZB
premiss 10a premiss 10b
_AZB (A=B)—(A—B) _AZ=B  (AZ=B)— (B—A)
(6))] MP
A—B B—A

Solution 2.40. The following list of formulas is a deduction of B from A and —A:

1. A premiss

2. A»(-B—A) axiom 1

3. -B—A from 1 and 2 by MP
4. -A premiss

5. =A— (=B — —A) axiom 1

6. -B— A from 4 and 5 by MP
7. (-B—A)— ((-B— —A) — ——B) axiom 7

8. (-B——-A)— ——B from 3 and 7 by MP
9. =B from 6 and 8 by MP
10. -——-B —+ B axiom 8

11.B from 9 and 10 by MP.

Solution 2.41. (a) PV Q £ P A Q, since there is a line in the truth table in which
PV Qis1and PAQ is 0. According to the soundness theorem: if PV Q= PAQ,
then PV Q = P A Q. Therefore, PV QO / PAQ.

(b), (c) and (d) are shown in a similar way.

Solution 2.42. P — Q, P+ RV Q. The following list of formulas is a deduction of
RV Q from Pand P — Q.

1. P premiss

2. P — Q premiss

3. Q0 MP applied to 1 and 2.

4. Q — RV Q axiom

5. RV Q MP applied to 3 and 4.

Solution 2.43. S — H, ~I — —S+’ I — H. Suppose this were true. Then because
of the soundness theorem S — H, - — —S =1 — H. One easily checks from the
truth table that this is not the case. Therefore, S — H, -1 — St I — H.
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Solution 2.44. We leave the proof of (i) and (ii) to the reader. (iii) If u(A) = 0 and
u(A — B) =0, then only the first line of the table applies; so u(B) = 0.

(iv) In the sixth line of the table u(A) = 1 and u(B) = 2. Hence, u(((A — B) —
A)=A)=(1-2)—=1)=1=(2—=1)—>1=0—1=1.If Peirce’s law were
generated by the production method consisting of the two logical axioms for —
only, then because of (i), (ii) and (iii) ((A — B) — A) — A would have the value 0
in every line of the table.

Solution 2.45. We show that AAB — C, A, B C. Then by two applications of the
deduction theorem it follows that AAB— CHA — (B — C).

remiss, 3
- PRy 2B AAB)
premiss
B B ANB .
premiss
AAB  AABC

C

Solution 2.46. We show that A — B, A, B— C I C. Then by three applications of
the deduction theorem it follows that - (A — B) — (A — ((B — C) — C)).

pren}iss ApLﬁ;lElSS .
Eremlss
B —C

C

Solution 2.47. Suppose A1,A; |- B, i.e., there exists a deduction of B from A{,A;.
We show that A A Ay - B. Then by one application of the deduction theorem it
follows that - A; AA, — B.

premiss 4a premiss 4b

A1 NAy Al NAy) = A A1 NAy Al NAy — Ay
Aj Az

given deduction

of B from Ay,A; B

Solution 2.48. Suppose F (A} AAy) AA3 — B. Let (o) be a (logical) proof of (A; A
A) ANA3 — B. Then the following schema is a deduction of B from A;, A,, As. Note
that we first deduce (A} AAz) AAs from Ay, Ay, Az and nextuse - (A AAz) ANAz —
B in order to deduce B.

preg}lsil 3; (Az — A /\Az)

Prenuss As s Ay AAs
. A A Ar A AAL S (As o Al Ads AAY)
premiss A3 = A1 A AA3)
(o) A1 NAy ANA3

B
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Solution 2.49. Proof: Suppose -A — C and - B — C. The following list of formulas
is a deduction of C from A V B:

1. A — C deducible

2(A=-C)—= ((B—C)— (AVB—()) axiom

3.(B—C)— (AVB— C) MP applied to 1 and 2.

4. B — C deducible

5.AV B — C MP applied to 3 and 4.

6. AV B premiss

7.C MP applied to 5 and 6.

Solution 2.50. A, B—~CFAandA+FAVC;hence,A, B—CFHAVC. @))
B,B—»CFHCandCHAVC;hence,B, B—-CFAVC. 2)
From (1) and (2), by V-elimination, AVB, B—CFAVC.

Solution 2.51. Suppose A - B. Then, by Corollary 2.3, A,—B+F B.
But also A, =B F —=B. Hence, by —-introduction, =B - —A.

Solution 2.52. A+ AV —A. Hence, by Exercise 2.51, 7(AV —A) F —A. (a)
—A F AV —A. Hence, by Exercise 2.51, =(AV —A) F —(—A). (b)
From (a) and (b), by —-introduction, - —=—(A V —A). Hence, by double negation
elimination, - A V —A.

Solution 2.53. By weak negation elimination -A, B, A-C (D)
and -A, =B, B-C. )

From (1) and (2), by V-elimination, —A, =B, AVBFC. 1))

By weak negation elimination -A, °B, A+ —-C (a)

and -A, =B, B —C. (b)

From (a) and (b), by V-elimination, —A, =B, AVBF -C. (1)
From (I) and (II), by —-introduction, ~A, =B+ —(A V B).

Solution 2.54. Suppose A - —A. Because of A - A, by —-introduction, - —A.

Solution 2.55. Counterexample: A = P (it rains) en B = =P (it does not rain).
= PV —P (it is always true that it rains or does not rain). Hence, because of the
completeness theorem, = P\ —P.

But I/ P. For suppose - P; then, because of the soundness theorem, |= P (it is always
true that it rains), which is false. Therefore t P.

Similarly, I7 =P. For suppose - —P; then, because of the soundness theorem, = —~P
(it is always true that it does not rain; it never rains), which is false. Therefore, I/ —P.

Solution 2.56. Counterexample: A = P (it rains). From the truth table we know that
£ P (it is not always true that it rains). So, because of the soundness theorem t/ P.
However, I/ —P. For suppose - —P; then because of the soundness theorem |= —P (it
is always true that it does not rain; it never rains), which is false. Therefore, t/ —P.

Solution 2.57. a) Proof: Suppose - A — B. The following list of formulas is a de-
duction of B from A:
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A premiss

A — B deducible

B MP applied to 1 and 2.

b) Proof: Suppose - —A. Then, because of the soundness theorem, = —A. (*)
We want to show that not - A. So, suppose that - A; then, because of the soundness
theorem, |= A; but this contradicts (*). Therefore, not - A.

Solution 2.58. We have seen in Exercise 2.40 that A,—A F B. Hence, by the deduc-
tion theorem —A - A — B (1). Also, by applying axiom 1, B — (A — B), we know
that B-A — B (2). From (1) and (2) by V elimination: ~AV B+ A — B.

a)A— B, 2(-AVB),-AtF—-AVBandA — B, ~(-AVB),-A+ =(-AVB). Hence,
by —-introduction, A — B, =(-AV B) F =—A.

b) By —-introduction, A — B, =(-A V B) - —A.

Solution 2.59. a) A, B+ A A B, by using the axiom A — (B — AAB).

Proof of A, =B+ —(AAB): A, -B, AANB}+ —B and A, =B, AAB} B Hence, by
reductio ad absurdum (—-introduction), A, =B+ —(A A B).

—-A, BFAV Bbecause B-AVB.

—A, =B+ —(AV B); see Exercise 2.53.

b) Suppose = E. Then E{ = E; = E; =E; =E.

Therefore A, B E and A, =B - E; hence by V-elimination: A, BV —-BF E.

Also —A, B+ E and —=A, =B I E; hence by V-elimination: A, BV -BF E.

By Exercise 2.52, - BV =B and consequently, A - E and —A - E.

Hence, by V-elimination: AV -A | E and therefore, - E.

Solution 2.60. i)

LanB] 2[ANB]
—N\E — AN
34 A 3-8 B
D — Q) ————— I
-AV-B —(AAB) —(AAB)
®) VE
-(AAB)
& Soavop)] ]t S(AvoB)] [
i i
-AV-B -AV-B
(D -1 () -
d-E d-E
A B
N
—~(AAB) AAB
®) -1
——(-AV —B)
d-E

-AV-B
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Solution 2.61. i)

[A]l —1
. ) B—A I
A ASB S 4 TASBoA) _>E
_>
B—A B—A
i) I a-sB
B [-B]?
(D) ———
@) ——— 1
-B— A A A—B
This deduction starts as follows: _—
B -B
To this corresponds: (1)A,A — B,—~B+ B, and
(2)A,A — B,~B} —B.
The deduction continues as follows: 1 [A] A—B
B -B
a1 ——-
—-A

To this corresponds A — B, =B F —A, which follows from (1) and (2) by Theorem
2.25, —-introduction. And from A — B, =B - —A it follows by Theorem 2.25, —-
introduction, that A — B+ =B — —A.

Solution 2.62. (a) A - B, AAN—-B+ B, and A — B, AA—-B I —B. Hence, by —-
introduction, A — B+ —(A A —B).
(b) The following schema is a tableau-deduction of —(A A —B) from A — B:

TA— B, F-(AAN—-B)

TA—B, TAN-B

TA—B,TA, T-B

TA—B,TA, FB

FA,TA, FB | TB, TA, FB

(c) Suppose A — Bis 1 and (A A —B) is 0. Then AA—Bis 1. So, A is 1 and —B is
1.Hence,A - Bis1,Ais 1 and Bis 0. Then (Ais0,Ais 1 and BisO) or (Bis 1, A
is 1 and B is 0). Contradiction. Therefore, A — B |= (A A —B).

Solution 2.63. (a) A — B, B— C, A C. Hence, by using the deduction theorem
three times, - (A - B) — ((B—C) — (A = (C)).
(b) F(A—-B) = ((B—>C)—=(A—=0)

TA—B, F(B—C)—=(A—=C)

TA—-B, TB—C,FA—C

TA—B,TB—C,TA, FC

FA,TB—C,TA, FC | TB, T B—C, TA, FC
TB, FB, TA, FC| TB, TC, TA, FC
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(c) Suppose (A—B) = ((B—C) - (A—C))is0.ThenA - Bis1,B—Cis 1,A
is1and Cis 0. So, (AisOand 1) or (B, B— C and A are 1 and C is 0). In the latter
case, Bis 1 and O or C is 1 and 0. Contradiction.

Solution 2.64. (a) TA—B, T-A—B,FB
FA, T -A—B,FB | TB, T -A — B, FB
FA, F-A, FB | FA, TB, FB | TB, T —A — B, FB
FA, TA, FB Note that all three tableau branches are closed.
) TA—BVC,F(A—-B)V(A—C)
TA—-BVC,FA—-B FA—=C
TA—BVC, TA, FB, TA, FC
FA, TA, FB, TA, FC | T BVC, TA, FB, TA, FC
TB, TA, FB, TA, FC | TC, TA, FB, TA, FC
Note that all three tableau branches are closed.

Solution 2.65. a) R — W,—R — B,—B =" W.
b) TR—W, T—-R—B, T-B, FW
TR—W, T—-R—B, FB, FW
FR, T -R— B, FB, FW |TW, T -R — B, FB, FW
FR, F —-R, FB, FW | FR, TB, FB, FW
FR, TR, FB, FW
Note that all tableau branches are closed and hence: R — W,—-R — B,—~B+H W.

Solution 2.66. a) R — -W,W — H,—~R =’ H.
b) TR—-W,TW —H, T-R, FH
TR—-W,TW —H, FR, FH
TR——-W, FW, FR, FH|T R— -W, TH, FR, FH
FR, FW, FR, FH | T-W, FW, FR, FH
FW, FW, FR, FH
Note that the two most left tableau branches are completed but open, i.e., not closed,
while the third tableau branch is closed. From any open and completed tableau
branch one read off a counterexample: give R, W and H value 0, corresponding
with the occurrence of FR, FW, FH in the completed open tableau branch.
R|W|H|R—-W|W—H|-R|H
ofoTol T 1 1 [1]0

Therefore: R — -W,W — H,—R [~ H.

Solution 2.67. (a) The following schema is a tableau-proof of A — (B — A):

FA— (B—A)

TA, FB— A

TA, TB, FA
The other axioms are treated similarly.
(b) A, A — B B, for the following schema is a tableau-deduction of B from
A, A—B: TA, T A— B, FB

TA, FA, FB | TA, TB, FB.

On the other hand, suppose -’ A and H' A — B. Then there is a tableau-proof starting
with FA and there is a tableau-proof starting with
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FA—B
TA, FB.
In order to show that -’ B one has to construct a tableau-proof starting with FB.

Solution 2.68. A tableau-proof of A V B should start with: F AV B
FA, FB
So, if there is a tableau-proof starting with FA or there is a tableau-proof starting
with FB, then - AV B.
(b) A tableau-proof of A A B starts with: F AAB
FA | FB
The left part is a tableau-proof of A and the right part is a tableau-proof of B.

Solution 2.69. (a) —P, P - Q (weak negation elimination). Hence, by the deduction
theorem, —P + P — Q. Therefore, P, (P — Q) — P+ P.

(b) P,(P— Q) — PF P. So, by (a) and V-elimination, PV —P, (P — Q) — P+ P.
(c) By Exercise 2.52, = PV —P. Therefore, from (b), (P — Q) — P+ P. So, by the
deduction theorem, - (P — Q) — P) — P.

Solution 2.70. The prisoner should reason as follows: If I wake up on Friday morn-
ing, what can I conclude. One of two things. Either they will hang me today, or else
the judge was lying when he said I would hang one day this week. Suppose I some-
how knew that the judge’s statement that I would hang one day this week was true.
Then I would know that I was to die today, and I would then know that his statement
about not knowing the day of my death was false. But since I do not know that his
first statement is true, I have no idea what is going to happen. Shortly before noon,
they come to get him. ‘Now I know’, says the prisoner. ‘Both statements were true’.

Let A stand for ‘the prisoner will be hanged on Monday, Tuesday, Wednesday
or Thursday’ and B for ‘the prisoner will be hanged on Friday’ and let LIB stand
for ‘one knows B’, then it is shown in Exercise 6.12 that AV B, (0-A t OB,
while (A V B), O0-A + OB does hold. See also W.V. Quine, On a supposed
antinomy, in The Ways of Paradox, and F. Norwood, The prisoner’s card game, in
The Mathematical Intelligencer, Vol. 4, Number 3, 1982.

Solution 2.71. This paradox is veridical if we conceive it as making clear that the
promise A of the crocodile is inconsistent, more precisely A = B = —B, where B
stands for ‘the crocodile will eat the baby’.

Solution 2.72. Let A be the statement made by the traveller. Then the condition of
the cannibals may be expressed by (A — BA—R) A (—A — =B AR), where B stands
for ‘the traveller will be boiled’, and R for ‘the traveller will be roasted’. A should
be such that the truth table of the condition has only 0’s and hence A should be of
the form (a), (b), (c) or (d).

B|R|(A—BA-R)A(-A— ~BAR)| A | @ | (b)|(© | ()

11 0 011 0 | O

S O =
oS = O
S O O
—_
—_
)



128 2 Propositional Logic

So, the traveller should make one of the following four statements: (a) "B AR, (b)
=B, (¢) R, (d) B — R, which has the same truth table as =BV R.

Solution 2.73. Similar to the barber paradox. (See Exercise 2.27.)
Solution 2.74. Similar to the barber paradox. (See Exercise 2.27.)

Solution 2.75. Let ‘W’ stand for ‘Euathlus wins the case’ and ‘P’ for ‘Euathlus has
to pay’. Then according to the contract, W — P (1) and =W — —P (2), in other
words, W = P. But according to the verdict, W — —P (3) and -W — P (4), in
other words, W =2 —P. Note that W =2 P and W =2 —P are inconsistent. In his argu-
ment Protagoras uses both (4) and (1), while Euathlus uses both (3) and (2) in his
argument.
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Chapter 3
Sets: finite and infinite

H.C.M. (Harrie) de Swart

Abstract Sets occur abundantly in mathematics and in daily life. But what is a
set? Cantor (1845-1918) defined a set as a collection of all objects which have a
certain property in common. Russell showed in 1902 that this assumption yields a
contradiction, known as Russell’s paradox, and hence is untenable. In 1908 Zermelo
(1871-1953) weakened Cantor’s postulate considerably and consequently had to add
anumber of additional axioms. We present the set theory of Zermelo-Fraenkel. Next
we discuss relations and functions. We use the Hilbert hotel with as many rooms as
there are natural numbers to illustrate a number of astonishing properties of sets
which are equally large as the set N of the natural numbers. We shall discover that
there are many sets which in a very precise sense are much larger than N. We shall
even see that for any set V, finite or infinite, there is a larger set P(V), called the
powerset of V. Amazingly, although all sets we experience in the world are finite,
we are still able to imagine infinite sets like N and to see amazing properties of
them. This reminds us of the statement by cardinal Cusanus (1400-1453) that in our
pursuit of grasping the divine truths we may expect the strongest support of math-
ematics. Finally we point out that Kant was right that mathematical (true) proposi-
tions are not analytic, but synthetic, and that Russell and Frege’s logicism, stating
that all of mathematics may be reduced to logic, is wrong. What may be true is that
mathematics can be reduced to logic plus set theory.

3.1 Russell’s Paradox

We all know lots of sets. Here are a few examples: the set of all citizens of the

Netherlands, the set of all players in a soccer team, the set of all triangles in a plane.
Another example is the set of the natural numbers 1, 2 and 3. This set is denoted

by {1,2,3}. Then 3 € {1,2,3} denotes: 3 is an element of the set {1, 2, 3}; and

7 ¢ {1,2,3} denotes: =(7 € {1,2,3}), i.e., 7 is not an element of the set {1, 2, 3}.
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130 3 Sets: finite and infinite

The numbers 0, 1, 2, 3, ... are called natural numbers. We may consider the
infinite set of all natural numbers. This set is denoted by N, in other words N =
{0,1,2,...}. For example, 3 € Nand 1024 € N, but —3 ¢ N, % ¢ Nand 2 ¢N.

It turns out that many, if not all, notions from mathematics can be represented
by sets. For instance, we shall see that the natural numbers 0,1,2,... may be rep-
resented by sets. That means that set theory may be conceived as a foundation of
mathematics, as a unifying theory in which all mathematics may be represented. So,
from now on we shall assume that sets are our universe of discourse.

Cantor’s naive comprehension principle But what is a set? G. Cantor (1845 -
1918) answered this question as follows: a set is by definition the collection of all
objects which have a certain property A. This principle is now known as the naive
comprehension principle: Let A(x) express that (set) x has the property A. Then
{x | A(x)} is the set of all (sets) x which have the property 4, i.e.,

for all (sets) y, y € {x | A(x) } iff A(y).

For instance, let A(x) stand for: x is a natural number. Then Cantor’s naive com-
prehension principle tells us that {x | x is a natural number} is a set, which we may
denote by N.

However, in 1902 Bertrand Russell showed in a letter to Frege (see Heijenoort
[6], p. 124) that the naive comprehension principle leads to a contradiction. The
argument is extremely simple: apply the naive comprehension principle to the prop-
erty A(x): x € x. According to Cantor’s principle, {x | x & x} is a set V such that for
all (sets) y, y € V iff y € y. In particular, taking for y the set V itself we get

VEVIffV V.

Contradiction.

The argument above is known as Russell’s paradox. Russell’s argument shows
that set theory with the naive comprehension principle is inconsistent. This was
quite a shock to the community at the time, because set theory was (and still is)
considered to be a foundation for all of mathematics.

One way to escape the paradox was indicated by Zermelo on the grounds of the
following observation: the set involved in the derivation of the paradox turns out to
be very large — the set of all sets not being an element of themselves. Zermelo noted
that the full force of the naive comprehension principle was hardly ever used; one
mostly uses it to create subsets of a given set. So, instead of the naive comprehension
principle Zermelo put forward his Aussonderungs Axiom or separation axiom:

Separation Axiom: if V is a set and A(x) a property, then also {x € V | A(x)} is a
set, consisting of all elements in V which have the property A, i.e., such that for all

(sets) y:
ye{xeV]|Ax)}iffy eV and A(y)

The separation axiom says that within a given set V we can collect all elements of V,
which have a certain property A, into a subset {x € V | A(x)} of V. Cantor allowed
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this principle not only for a given set V, but also for the universe of all sets. And
Russell showed that to be contradictory.

If we abandon the naive comprehension principle and adopt the separation axiom
instead, we can no longer accept the proof of Russell’s paradox. However, we may
use the idea of Russell’s proof to obtain, with the help of the separation axiom, a
positive result. From the separation axiom it follows:

Theorem 3.1. For any set V there is a set W, namely W = {x € V | x & x}, such that
W V.

Proof. LetV be a given set. According to the separation axiom, W = {x € V | x & x}
is a set such that for all sets y,y € Wiff y € V and y ¢ y. In particular, since W itself
is a set, we get

WeWiff WeVandW ¢ W.

Now suppose W € V; then W € W ifft W ¢ W. Contradiction. Therefore, W ¢ V.

Making use of truth-tables (see Chapter 2) one may illustrate this proof as fol-
lows. The propositions W € W and W € V can be either true (1) or false (0), giving
four possible combinations:

WeW |WeV|WEW|WeVAWEW |[WeWZWeVAWEW

1 1 0 0 0
1 0 0 0 0
0 1 1 1 0
0 0 1 0 1

From the Separation Axiom it follows that W e W 2 W € VAW € W is a true (1)
proposition. Hence, we are in the 4" line of the truth table. And we can read off
from that line that both W € W and W € V are false (0). In particular, W ¢ V. ad

From the Separation Axiom it follows that no set may contain all sets, in other
words, the universe (or totality) of all sets is not a set.

Corollary 3.1. The universe (or totality) of all sets is not a set.

Proof. Suppose the universe of all sets were a set U. Then by definition of U, for all
sets W, W € U (1). But if U were a set, it follows from Theorem 3.1 that there is a
set W, namely W = {x € U | x € x}, such that W ¢ U (2).

(1) and (2) are contradictory. Hence, the universe of all sets is not a set. a

Russell obtained his paradox from the naive comprehension principle by consider-
ing the ‘set’ {x | x & x}. By considering the set {x € V | x & x}, given any set V,
we did not obtain a paradox, but the positive and interesting results formulated in
Theorem 3.1 and Corollary 3.1 instead.

Another way to escape Russell’s paradox is to blame the contradiction on the
expression x € x : x € x produced a contradiction, so we must suppress x € x. Russell,
in his theory of types, has chosen this approach: assign type to variables (sets) and
allow expressions such as x € y only if the type of x is one less than the type of y.
So, the expression x € x is then grammatically not correct.
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Since the separation axiom yields only new sets, given any set V in advance,
we have to postulate the existence of at least one set, in order to be able to build
other sets. E. Zermelo (1871-1953) laid down his system of axioms for sets in 1908.
The extension of Fraenkel dates from 1922. Below we present the axioms ZF of
Zermelo and Fraenkel. The axioms may be formulated in natural language, but they
may also be formulated in the language of predicate logic, letting the variables range
over sets and using only two binary predicate symbols: € (is element of) and = (is
equal to).

3.2 Axioms of Zermelo-Fraenkel for Sets

Empty set axiom: There exists a set without elements. In other words, there is a set
x such that for all sets y, y & x.
Formulated in the predicate language just mentioned: IxVy[—(y € x)]

There are many examples of empty sets in daily life: the set of living persons older
than 150 years; the set of all persons with blue hair, the set of all natural numbers
which are both even and odd, etc. Notice that the existence of the empty set also
would follow from the naive comprehension principle: {x | x # x}, assuming that
each thing is equal to itself.

Sets are, just like triangles and numbers, legitimate mathematical objects. So it
makes perfectly good sense to ask whether two sets are identical or not. If two sets
x and y are identical (equal), we write x = y, if not, x # y. Identical sets have exactly
the same properties; so, if x =y, then every element of x is also an element of y and
vice versa. One may wonder if, conversely, sets with exactly the same elements are
identical. Consider, for example, the set V of all even numbers greater than zero and
the set W of all sums of pairs of odd numbers. There is some reason to distinguish
V and W: they are given in different ways. On the other hand, we feel (and math-
ematical practice confirms this) that definitions do not matter so much, it is rather
content that counts. So, we make the explicit choice to consider sets as merely be-
ing determined by their elements. Hence, ‘having the same elements’ means ‘being
equal’.

Axiom of extensionality: Two sets are equal if and only if they have the same
elements. As observed above, the ‘only if” holds trivially.
Formulated in our predicate language: x=y = Vz[zex =z €]

The axiom of extensionality has among others the following consequences:

{3, 4,5}: {4, 3,5} {2,3}7é {3,4}
{3.3.7)= 3.7} (0.1} #{1.2}
{2.3}={2.3.3) (2. {3.4}} # {{2.3}.4}
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Notice that the only elements of {2,{3,4}} are: 2 and {3,4}, while the only el-
ements of {{2,3},4} are: {2,3} and 4. For instance, 2 € {2,{3,4}}, but 2 ¢
{{2,3},4};and {2,3} € {{2,3}.,4},but {2,3} & {2,{3,4}}.

Since, by the extensionality axiom, a set is completely determined by its elements,
there may be at most one empty set: if there were two sets without elements, they
would have the same elements (0 = 0 = 1) and hence, by the axiom of extension-
ality, be equal. The empty set axiom says that there is at least one empty set. By the
axiom of extensionality there is at most one empty set. Hence, there is exactly one
empty set. Notation: 0.

By definition: Vy[y ¢ 0).

Given two sets V and W, we want to be able to construct a set whose elements are
exactly V and W themselves. The existence of such a set would also follow from the
naive comprehension principle: {x | x =V orx = W}. So, we postulate:

Pairing Axiom: Given any sets v and w, there exists a set y, whose elements are
exactly v and w.
Formulated in our predicate language: VWWwIyWz[z€y = z=vVz=w].

Again, by the extensionality axiom, given sets v and w, the set whose existence is
required by the pairing axiom is unique and is called the unordered pair {v,w} of v
and w. Because {v,w} and {w,v} have the same elements, they are equal.

So, for all (sets) z, z € {v,w} iff z=v orz=w.

{v} :={v,v} is the singleton of v. If v is a set, then so is {v}, because of the pairing
axiom and the definition of {v}.

Now, with only a few axioms, the existence of infinitely many sets follows:

0,{0}, {{0}}, {{{0}}}, -

0 (we repeat) is a set without elements. {0}, on the other hand, is a set with one
element, namely 0. Hence, 0 # {0}.

{{0}} is the set with {0} as its only element, while {0} has 0 as its only element.
Hence, {{0}} # {0}, because @ ¢ {{0}}.

The Pairing Axiom also entails the existence of {@, {0} }, which is the set with @ and
{0} as its only elements.

Given two sets V and W we want to be able to construct the union VUW of V and W
such that forall z, z e VUW iff z € V Vz € W. Its existence would follow from the
naive comprehension principle: {x | x € V or x € W}. Notice that in general, V UW
is a larger set than each of V and W separately.

Union axiom If v and w are sets, then there exists a set y such that for all (sets) z,
zeyiffzevorzew.
Formulated in our predicate language: VWWwiyVz[z €y = z€vVzE W]
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Again, by the extensionality axiom, given sets V and W, the set required by the
union axiom is unique and is called the union of V and W. Notation: V UW.
So, for all (sets) z,

zeVUWZzeVvzeWw.

w

{1,2}u{5,6} ={1,2,5,6}, {1,2} U {2} ={1,2},
Example 3.1. {1,2}U{2,6} ={1,2,6}, {1,2}u0 ={1,2}.

{1,2}U{1,2} = {1,2}.
The union axiom allows us to construct the union of any two given sets v and w

or, put differently, to form the union of all elements of the set x = {v,w}. A more
general version of the union axiom, put forward by Zermelo, was the following.

Sumset Axiom: For every set x there exists a set y, whose elements are exactly the
objects occurring in at least one element of x.
Formulated in our predicate language: Vx3yVz[z € y = Jv[v € x Az € V]].

Again, the extensionality axiom guarantees the uniqueness of the set y, given x. This
unique set is called the sum-ser of x. Notation: | Jx or U{y | y € x}.
Notice that vUw = J{v,w}.

Now we are able to define the natural numbers in terms of sets as follows.

Definition 3.1 (Successor function). 0 := 0.
The successor function S is defined by S(n) = nU{n}, also denoted by n+ 1.

Example 3.2. 0 :=0

1:=0U{0}. So, 1 = {0} = {0}.

2:=1U{1}.S0,2={0}U{1} = {0,1} = {0,{0}}.
3:=2U{2}.50,3={0,1}U{2} ={0,1,2} = {0,{0},{0,{0}}}.
In general, for any natural number n, n+ 1 :=nU{n}.

One easily checks by induction that for any natural n, defined in this way, n =
{0,...,n— 1} and that the sets 0, 1, 2, 3, ... are distinct pairwise. So, we have iden-
tified each natural number n with a certain standard set consisting of n elements.
This definition of natural numbers in terms of sets justifies the use of natural num-
bers in the examples at the beginning of this section.

With very few axioms we have generated up till now infinitely many sets, but all
of them are finite. But we also want to be able to deal with the infinite set of all
natural numbers, which is so important in mathematics and its many applications.
The existence of this set would follow easily from the naive comprehension princi-
ple: {x | x is a natural number}. Since this naive comprehension principle had to be
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replaced by the much weaker separation axiom we have to postulate the existence
of at least one infinite set.

Axiom of Infinity: There is at least one set y that contains 0, i.e., @, and is such that
for every x € y it also contains Sx, i.e., xU {x}.
Formulated in our predicate language: 3y[0 € y AVx[x € y — Sx € y]]

The set y whose existence is required by the axiom of infinity has clearly infinitely
many members: 0, 1, 2, 3, .... But there might be many of such sets containing in
addition other things. So, we take the smallest such set which contains 0 and with
every number 7 its successor Sn =n+ 1 and denote itby N. So,0 e N, 1 e N,2 € N,
etc. Notice that N has infinitely many members, but {N} has only one element: N.

In order to be able to construct for instance the set of all even natural numbers,
i.e., Noyey = {n € N | nis even}, we need the separation axiom.

Separation Axiom: If x is a set and A(z) a property, then also {z € x | A(z)} is a set,
consisting of all elements in x which have the property A, i.e., such that for all z:

z€{z€x|A(z)}iff z € xand A(z)

Formulated in our logical predicate language: VxJyVz[z € y = z € xAA(z)] for any
formula A in our logical predicate language.

The separation axiom says that within a given set x we can collect all elements of
x, which have a given property A, into a subset {z € x | A(z)} of x. Notice that the
separation axiom is in fact an axiom schema: it yields an axiom for any formula
A. By the axiom of extensionality, given a set x and a property A, the set y, whose
existence is demanded by the separation axiom, is uniquely determined and shall be
denoted by {z € x| A(2)}.

Given the separation axiom and the axiom of infinity, the existence of the empty
set follows immediately: @ = {z € N | z # z}, if we assume that for all z, z = z.
Also, given the separation axiom, we may introduce some important set theoretical
operations: intersection and relative complement.

Corollary 3.2 (Intersection). Given any sets V and W, also the intersection VW
:={zeV|zeW}of VandW is a set, such that for all

zeVNW 2 zeVAzeW.

=

We may generalize the intersection as follows. If x is a non-empty set, say v € x,
then Nx:= {z € v|Vy[y € x — z € y}. Notice that V NW = N{V,W}.

Corollary 3.3 (relative complement). Given any sets V and W, also the relative
complement,V—W := {z €V | z& W} of W with respect to V, is a set, such that
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ZEV-W 2 zeVAzZEW.

Notice that VW and V — W are in general smaller sets than V, while VUW in
general is a larger set than V. The existence of VW and V — W follows from the
separation axiom, while the existence of V UW requires the union axiom.

Example 3.3.

{172}{)U{2,3}:{1,2,3} {1,2}u0={1,2} {1,2}UN=N
{1,2,3}n{2,3,4} = {2,3} {1,2}n0=0 {2,3}NN={2,3}
{1,2,3} — {2,3,4} = {1} {1,2,3} —0={1,2,3} {1,2,3} -N=0

The reader may easily verify the following statements:

1. N and U are idempotent,i.e., VNV =V, respectively VUV =V, for any set V.
2. M and U are commutative, i.e., VNW =W NV, respectively VUW =W UV, for
any sets V and W.

3. Nand U are associative, i.e., UN(VNW) = (UNV)NW, respectively U U(V U
W)= (UUV)UW, for any sets U,V,W.

4.VNO=0and VUO =V forany set V.

Theorem 3.2 (absorption laws). For all sets V and W,
VNVUW)=VandVU(VNW)=V.

Proof. By the axiom of extensionality we have to show that the two sets in question
have the same elements, i.e., forall z,ze VN (VUW)iffzeVandz e VU(VNW)
iff z € V. This is straightforward. a

Theorem 3.3 (distributive laws). For all sets U, V and W,
un(Vvuw)=Unv)u(UnwW)and UUJ(VNW)=(UUV)N({UUW).

Proof. By the axiom of extensionality we have to show thatforall z,ze UN(VUW)
iffz€ (UNV)UUNW), in other words, zc UA(z€eVVzeW)iff zeUAz €
V)V (z € U Az € W). This is straightforward and also follows from the distributive
laws of propositional logic in Theorem 2.10. a

When it is clear from the context that the complement of a set W is taken relative
to a given universe U, U — W is simply called the complement of W and denoted by
we.

U

Theorem 3.4. Let V¢ and W€ be the complement of V, respectively W, relative to a
given universe U. (VUW)¢ =V NWe and (VNW)¢ = VEUWE.
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Proof. We leave the proof to the reader as Exercise 3.3. a

In order to be able to formulate the powerset axiom we first have to introduce the
notion of subset.

Definition 3.2 (Subset). W is a subset of V := every element of W is also an element
of V, i.e., for every x, if x € W, then also x € V. Notation: W C V.

14

Notice that W is not a subset of V iff not all elements of W are elements of V, in
other words, iff there is some x € W such that x ¢ V. Notation: -(W CV)orW £ V.

Example 3.4.
{273}2{1727374} {2,3} C{2,3} 0C{2,3} {2,3} CN
{2,312 {3,455}  {L{2tp {12} {12} ¢Z{1,{2}} NZ{N}

Definition 3.3 (Proper subset). W is a proper subset of V.= W CV andnot W =V.
Notation: W C V.

Example 3.5. {2,3} € {2,3,4} and {2,3} CN.

Warning: It is important not to confuse € and C:
{2} € {{2},3}, but {2} Z {{2},3}, the latter because 2 € {2}, but 2 & {{2},3}.
{2,3} € {1,2,3},but {2,3} ¢ {1,2,3}.

Theorem 3.5. For any set V,0 CV andV CV.

Proof. Suppose that for some V, @ € V, i.e., there would be an element x € () such
that x ¢ V. Because @ has no elements, this is impossible. Therefore, ® C V. And
because every element of V is an element of V/, it follows that V C V. O

Example 3.6. 0 C 0, but @ & 0.

0 C {0}, and by definition of {0} also 0 € {0}.

0C {{0}},but@ & {{0}}, since the only element of {{0}} is {0}.
{0} C {0}, but {0} & {0}, since the only element of {0} is 0.

{0} Z {{0}}, because @ € {0} while @ ¢ {{0}}, but {0} € {{0}}.

Next we will determine for a few small finite sets all their subsets and the set of all
their subsets. Let us start with 0. The only subset of @ is @ itself. So, the set P(0) of
all subsets of @ is {0}.

The only subsets of the set {u} are @ with zero elements and {u} itself with one
element. So, the set P({u}) of all subsets of {u} is {0, {u}}.

The subsets of {u,v} can have 0, 1 or 2 elements and are, respectively, @ with
zero elements, {u} and {v} with one element, and {u,v} itself with two elements.
So, the set P({u,v}) of all subsets of {u,v}is {@,{u},{v},{u,v}}. Notice that there
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are twice as many subsets of {u,v} as there are subsets of {u}: all subsets of {u},
i.e., @ and {u}, are also a subset of {u, v} and the other subsets of {u,v} are obtained
by adding the element v to the subsets of {u}.

The subsets of {u,v,w} can have 0, 1, 2 or 3 elements and are, respectively, @ with
zero elements, {u}, {v} and {w} with one element, {u,v}, {u,w} and {v,w} with
two elements, and finally {u,v,w} itself with three elements. So, the set P({u,v,w})
of all subsets of {u,v,w}is {0,{u},{v},{w},{u,v},{u,w}, {v,w}, {u,v,w}} Notice
that there are twice as many subsets of {u,v,w} as there are subsets of {u,v}: all
subsets of {u,v}, i.e., 0, {u}, {v} and {u,v}, are also a subset of {u,v,w} and the
other subsets of {u,v,w} are obtained by adding the element w to the subsets of
{u,v}.

This brings us to the following observation: each time that one adds one element
w to a given finite set V, one obtains twice as many subsets: all the subsets of V
plus all subsets of V with the new element w added. From this insight results the
following theorem:

Theorem 3.6. For each natural number n, if V is a finite set with n elements, then V
has 2" subsets.

Proof. By mathematical induction. For n = 0: a set V with 0 elements is the empty
set 0, and this set has 2° = 1 subset, namely 0. Suppose the statement is true for
n =k, i.e. any set with k elements has 2* subsets (induction hypothesis). Then a set
with k+ 1 elements has twice as many subsets, i.e., 2 - 2k — 2k+1 gubsets. O

For instance, if V has 10 elements, V has 2! = 1024 subsets. And if V has 20
elements, V has 220 = 210.210 — 1024 . 1024 subsets, that is more than one million!

Since sets of subsets occur abundantly in mathematics and since the existence of
many of these sets does not follow from the set theoretic axioms introduced up till
now, we postulate the following powerset axiom:

Powerset axiom: If V is a set, then also P(V) = {X | X C V} is a set. We call P(V)
the powerset of V.
Formulated in our logical predicate language: VvIyVx[x €y = x Cv].

So, the elements of P(V) are the subsets of V, i.e.,
X eP(V)iff X CV.

The name powerset refers to the fact that if V has n (n € N) elements, then by
Theorem 3.6, P(V') has 2" elements.

This powerset axiom may look innocent, but is it? We have already seen that if
V is a relatively small finite set, then P(V) may become a relatively large set. And
what will happen when we apply the P-operator to an infinite set, like N? According
to the powerset axiom, not only P(N) is another set, but also P(P(N)), P(P(P(N))),
etc. are new sets. As we shall see later on in Section 3.6, these sets become so large
that one may ask the question whether we are still able to construct these sets. In
fact, the powerset axiom is the only set theoretic axiom which is not by everyone
accepted in its full strength, in particular not by the intuitionists; see Chapter 8.
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Up till now we have postulated the following axioms for set theory: empty set ax-
iom, axiom of extensionality, pairing axiom, union axiom, sumset axiom, axiom
of infinity, separation axiom, and powerset axiom. The set theory ZF of Zermelo-
Fraenkel contains two more axioms: the axiom of replacement, which is the only
contribution of Fraenkel, and the axiom of regularity (or foundation). We only men-
tion these axioms here and refer to exercise 3.8 and to van Dalen, Doets, de Swart

[3].

Axiom of Replacement: If for every x in V there is exactly one y such that @(x,y),
then there exists a set W which contains precisely the elements y for which there is
an x € V with the property @(x,y). In other words, the image of a set V under an
operation (functional property @) is again a set.

Axiom of Regularity: Every non-empty set is disjoint from at least one of its ele-
ments.

The latter axiom guarantees that for any set x, x ¢ x and that there is no sequence
Vi,...,V, of sets such that vy € vy, vy €vs, ..., v,_1 € v, and v, € v| (Exercise 3.8).

There are several set theoretical principles which are consistent with, but indepen-
dent of the axioms of Zermelo-Fraenkel. The axioms of choice and the continuum
hypothesis (see Section 3.6) are not treated here because of their more dubious sta-
tus. See van Dalen, Doets, de Swart, [3] for an elaborate discussion.

Exercise 3.1. Which of the following propositions are true and which are false?

NeN {2,3} C{N} 0ed {0} €0

N e {N} {2} C{N} 0Co {0} C0
NCN {2} CN 0e {0} {0} C {0}
Ne{{N}} 2€{1,{2},3} 0C {0} 0C{0,{0}}

NC {N} {2} e {1,{2},3} 0c{{0}} 0 < {0,{0}}

{1.2}eN  {1,{2}}c{1.{2,3}} o0c{{0}} {0} < {0,{0}}
{12} N - {1,{2}} c{1,{2},3} {0} e{{0}} {0} <{0,{0}}
{12} e{N} {-2,2}CN {0y c{{o}r 0c{{0.{0}}}

Exercise 3.2. Prove or refute: a) W CV iff VNW =W;b) W CViff VUW =V.

Exercise 3.3. Prove or refute: for all sets U, V and W,
AQU-—-(VUW)=U-V)NU-W);;b)U—(VNW)=U-V)U(U-W).

Exercise 3.4. Prove or refute: for all sets U, V and W,
a)ifUeVandV e W,thenU e W;b)if U CVandV CW,thenU CW.

Exercise 3.5. Determine P(0), P(P(0)) and P(P(P(0))).
Exercise 3.6. Prove:

() IfW C V, then P(W) C P(V); (b) If P(W) C P(V), then W C V.
() If P(W) =P(V), then W = V; (d) If (W) € P(V), then W € V..
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Exercise 3.7. Prove or refute:
a) for all sets W, V, if P(W) € PP(V), then W € P(V).
b) for all sets W, V, if W € P(V), then P(W) € PP(V).
c) for all sets W, V, if P(W) C PP(V), then W C P(V).
d) for all sets W, V,if W C P(V), then P(W) C PP(V).

Exercise 3.8. Show that from the axiom of regularity it follows that i) for any set x,
x & x, and ii) there is no sequence vy,...,v, such that vi € vy, vy €Ev3, ..., V1 €y
and v, € vy.

3.3 Historical and Philosophical Remarks

3.3.1 Mathematics and Theology

In Corollary 3.1 we have seen that from the separation axiom it follows that the
universe of all sets itself is not a set. This reminds us of Cardinal Cusanus (1400-
1453), who in his De docta ignorantia [2] says that in the pursuit of grasping the
divine truths we may expect the strongest support from mathematics. Although he
illustrated this statement with other examples, it seems fair to say that he might have
used Corollary 3.1 as an illustration: the universe of all earthly things (God?) is itself
not an earthly thing.

Also the insights about infinite sets to be discovered in Sections 3.5 and 3.6
may be considered as illustrations of his statement. Although we never experience
infinite sets in daily life, we are still able to imagine them and even to gain insights
into their amazing properties.

3.3.2 Ontology of mathematics

Since the integers, the rational and the real numbers can be defined in terms of
sets and natural numbers, it follows that these numbers can ultimately be defined
in set-theoretical terms (see van Dalen, Doets, de Swart, [3]). Through practical
experience mathematicians have found that most well-known concepts, such as the
notion of number, function, triangle, and so on, can be defined in set-theoretical
terms. This has led to the slogan ‘Everything is a set’, meaning that all objects from
mathematical practice turn out to be representable in terms of sets. Consequently,
every mathematical proposition can be reduced to a proposition about sets. It turns
out that most, if not all, mathematical theorems — after translation in terms of sets —
can be deduced logically from the axioms of set theory.
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Set-theoretical Axioms

logical reasoning

mathematical theorems

So one might say that the axioms of ZF (Zermelo-Fraenkel) determine the ontology
of mathematics: all mathematical objects are conceived as sets and the axioms of
Zermelo-Fraenkel postulate the existence of certain sets, leaving room for extension
with possibly more axioms, and they specify what the characteristic properties of
these mathematical objects (sets) are. In this sense the axioms of ZF can be consid-
ered to be a foundation for (the greater part of) mathematics.

The axioms of Zermelo-Fraenkel (ZF) may be described informally. But we have
also seen that the set theory of Zermelo-Faenkel may be formalized by:
1. first introducing the predicate language with only two binary predicate symbols =
and € with ‘is equal to’, respectively ‘is element of” as intended interpretation, such
that all statements about sets may be expressed in this language;
2. and next by specifying the axioms of ZF in this language, such that statements
about sets (mathematical objects) may be logically deduced from these axioms.

3.3.3 Analytic-Synthetic

In his Critique of Pure Reason (1781) Immanuel Kant [7] makes a distinction be-
tween analytic and synthetic judgments. Kant calls a judgment analytic if its pred-
icate is contained (though covertly) in the subject, in other words, the predicate
adds nothing to the conception of the subject. Kant gives ‘All bodies are extended’
(Alle Korper sind ausgedehnt) as an example of an analytic judgment; I need not
go beyond the conception of body in order to find extension connected with it. If a
judgment is not analytic, Kant calls it synthetic; a synthetic judgment adds to our
conception of the subject a predicate which was not contained in it, and which no
analysis could ever have discovered therein. Kant mentions ‘All bodies are heavy’
(Alle Korper sind schwer) as an example of a synthetic judgment.

Also in his Critique of Pure Reason Kant makes a distinction between a priori
knowledge and a posteriori knowledge. A priori knowledge is knowledge exist-
ing altogether independent of experience, while a posteriori knowledge is empirical
knowledge, which has its sources in experience.

Sometimes one speaks of logically necessary truths instead of analytic truths and
of logically contingent truths instead of synthetic truths, to be distinguished from
physically necessary truths (truths which physically could not be otherwise, true in
all physically possible worlds). The distinction between necessary and contingent
truth is a metaphysical one, to be distinguished from the epistemological distinction
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between a priori and a posteriori truths.. Although these — the metaphysical and the
epistemological — are certainly different distinctions, it was controversial whether
they coincide in extension, that is, whether all and only necessary truths are a priori
and all and only contingent truths are a posteriori.

In his Critique of Pure Reason Kant stresses that mathematical judgments are
both a priori and synthetic. ‘Proper mathematical propositions are always judgments
a priori, and not empirical, because they carry along with them the conception of
necessity, which cannot be given by experience.” Why are mathematical judgments
synthetic? Kant considers the proposition 7+ 5 = 12 as an example. ‘The conception
of twelve is by no means obtained by merely cogitating the union of seven and five;
and we may analyse our conception of such a possible sum as long as we will,
still we shall never discover in it the notion of twelve.” We must go beyond this
conception of 7+ 5 and have recourse to an intuition which corresponds to counting
using our fingers: first take seven fingers, next five fingers extra, and then by starting
to count right from the beginning we arrive at the number twelve.

71 1 1 1 1 1 1
5: 1 1 1 1 1
7+5 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

‘Arithmetical propositions are therefore always synthetic, of which we may become
more clearly convinced by trying large numbers.” Geometrical propositions are also
synthetic. As an example Kant gives ‘A straight line between two points is the short-
est’, and explains ‘For my conception of straight contains no notion of guantity, but
is merely qualitative. The conception of the shortest is therefore wholly an addition,
and by no analysis can it be extracted from our conception of a straight line.’

In more modern terminology, following roughly a "Fregean’ account of analytic-
ity, one would define a proposition A to be analytic iff either
(i) A is an instance of a logically valid formula; e.g., "No unmarried man is married’
has the logical form —3x[—P(x) A P(x)], which is a valid formula, or
(ii) A is reducible to an instance of a logically valid formula by substitution of syn-
onyms for synonyms; e.g., ’No bachelor is married’.

In his Two dogmas of empiricism W.V. Quine [8] is sceptical of the analytic-
synthetic distinction. Quine argues as follows. In order to define the notion of ana-
Iyticity we used the notion of synonymy in clause (ii) above. However, if one tries
to explain this latter notion, one has to take recourse to other notions which directly
or indirectly will have to be explained in terms of analyticity.

3.3.4 Logicism

Logicism dates from about 1900, its most important representatives being G. Frege
in his Grundgesetze der Arithmetik 1, 11 (1893, 1903) and B. Russell in his Principia
Mathematica (1903), together with A.N. Whitehead. The program of the logicists
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was to reduce mathematics to logic. What do they mean by this? In his Grundgesetze
der Arithmetik Frege defines the natural numbers in terms of sets as follows: 1 :=the
class of all sets having one element, 2 := the class of all sets having two elements,
and so on. Next Frege shows that all kinds of properties of natural numbers can be
logically deduced from a naive comprehension principle: if A(x) is a property of
an object x, then there exists a set {x | A(x)} which contains precisely all objects x
which have property A. (See Section 3.1.)

Logicism tried to introduce mathematical notions by means of explicit defi-
nitions; mathematical truths would then be logical consequences of these defini-
tions. Mathematical propositions would then be reducible to logical propositions
and hence mathematical truths would be analytic, contrary to what Kant said.

The greatest achievement of Logicism is that it succeeded in reducing great parts
of mathematics to one single (formal) system, namely, set theory. The logicists be-
lieved that by doing this they reduced all of mathematics to logic without making
use of any non-logical assumptions, hence showing that mathematical truths are an-
alytic. However, what they actually did was reduce mathematics to logic PLUS set
theory. And the axioms of set theory have a non-logical status! The axioms of set
theory are — in Kant’s terminology — synthetic, and surely not analytic. In his later
years Frege came to realize that the axioms of set theory (see Section 3.2) are not a
part of logic and gave up Logicism, which he had founded himself. The interested
reader is referred to K. Godel [4], Russell’s mathematical logic.

Another way to see that a mathematical truth like 745 = 12 is synthetic is to
realize that 7+ 5 = 12 is not a logically valid formula; it is true under the intended
interpretation, but not true under all possible interpretations. 7+ 5 = 12 can be log-
ically deduced from the axioms of Peano for (formal) number theory (see Chapter
5), but it cannot be proved by the axioms and rules of formal logic alone.

axioms of Peano

logical reasoning

7+5=12

Again, Peano’s axioms are true under the intended interpretation, but are not (logi-
cally) valid and hence they do not belong to logic.



144 3 Sets: finite and infinite

3.4 Relations, Functions and Orderings*

3.4.1 Ordered pairs and Cartesian product

In the plane the pairs (4,2) and (2,4) indicate different points.

_—| (274)
|
—b— - @)
|
L

The order of the numbers 2 and 4 is of importance here, in the same way that the
order of letters is of importance in constructing words: ‘pin’ and ‘nip’ contain the
same letters, but in a different order. A pair of objects, say v and w, in which their
order is relevant, is called the ordered pair of v and w, written (v,w). Sometimes
the notation < v,w > is used. This is different from the ordinary (unordered) pair
{v,w}, which is the same as {w,v}. Ordered pairs have the characteristic property

(v,w) = (x,y) iff v=xandw=y. )

Unordered pairs do not have this property, since {v,w} = {w,v} even for v # w.

We can introduce the notion of ordered pair as a primitive notion (i.e., undefined)
and introduce the above-mentioned property (*) as an axiom. However, it is a wise
rule not to introduce more primitive notions than necessary (‘Ockham’s razor’) and
hence we shall define a set, which behaves as an ordered pair, i.e., which satisfies
the desired property (x).

Definition 3.4 (Ordered pair). (v,w) := {{v},{v,w}}.

This is not the only definition which will work: see Exercise 3.9. We must now show
that this definition satisfies (*).

Theorem 3.7. (v,w) = (x,y) iff v=xandw =y.

Proof. The implication from right to left is trivial. So suppose (v,w) = (x,y), i.e.,
{{v},{v,w}} = {{x},{x,y}}. If two sets are equal, then they have the same ele-
ments. Hence, {v} = {x} and {v,w} = {x,y} or {v} = {x,y} and {v,w} = {x}. In
the first case it follows that v = x and w = y. In the second case we can conclude:
v=x=yand v=w = Xx; s0, also in this case, v=x and w = y. O

The following theorem holds for Definition 3.4 of ordered pairs.
Theorem 3.8. [fv €V andw € W, then (v,w) € PP(VUW).

Proof. Supposev €V andw € W. Then:

@) veVUW,so {v} CVUW,in other words, {v} € P(VUW), and

(i) we VUW, so {v,w} CVUW, in other words, {v,w} € P(VUW).

From (i) and (ii) it follows that {{v},{v,w}} C P(V UW), in other words,
{{v},{v,w}} e PP(VUW). O
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We can generalize the notion of ordered pair to the notion of ordered n-tuple:

Definition 3.5 (Ordered n-tuple). Forn € N, n > 1:

(v) =,
iye ey Vng1) = ((Vise e sVn), Vit1)-
By means of mathematical induction one easily verifies that the object (v, ...,vy),

(n e N, n > 1), defined above, indeed behaves as an ordered n-tuple.
Theorem 3.9. (xi,...,x,) = (V1,...,yn) iff x1 =y1 and ... and x,, = yy.

Proof. Forn=1, (x;) =x; and (y;) = y1, so the proposition holds for n = 1.

Now suppose (induction hypothesis) that the proposition holds for n, i.e., (x1,...,X,)
= (Y1,...,yn) iff x; = y; and ... and x, = y,. Next suppose that (x1,...,%;,X,+1) =
155 Ynynt1)s 1€, (X153 Xn)5 Xnt1) = ((V1,---5Yn)s Yusr1). Then by Theorem
3.7, (x1,-- %) = (¥1,---,yn) and X, 11 = y,+1. Hence, by the induction hypothesis,
xy=yrand...and x, =y, and x,,. 1 = Y1 1. O

The Cartesian product V. x W of two sets V and W is by definition the set of all
ordered pairs (v,w) withv €V andw € W.
w VW

WL L _(ww)
1

Definition 3.6 (Cartesian Product). V x W := {x | there is some v € V and there is
some w € W such that x = (v,w) }, in other words, V x W :={(v,w) |[vEV AW E W }.

Example 3.7.
{273} X {4} = {(254)5(354)}’ {2’3} X {475} = {(2v4)a(354)5(255)5(355)}’
{1} x {4,5} ={(1,4),(1,5)}, RxR={(x,y) |[xeRAy€eR}.

So, R x R corresponds to the set of all points in the Euclidean plane:

3
- (V2D
|

| /7 R

‘There is some v € V and there is some w € W such thatx = (v,w)’ can be formulated
in our logical symbolism as follows: v € V Iw e W [x = (v,w) |.
So,VxW={x|FveVIweW [x=(vw)]|}.

From Definition 3.6 and Theorem 3.8 we immediately conclude:

Corollary3.4. VxW ={x€ PP(VUW) |IveV Iwe W [x= (v,w) ]}, or simply
VxW={(vw) e PPVUW)|veVAwWEW}
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From Corollary 3.4, the Axiom of Union, the Powerset Axiom and the Separation
Axiom it follows that: if V and W are sets, thensois V x W .

{2} x {4} ={(2,4)}, but {4} x {2} = {(4,2)}. So, it is not true that for all sets V
and W, V. x W =W x V; in other words, the operation x is not commutative. The
operation X is not associative either (see Exercise 3.11).

Instead of V x V we usually write V2.

{3,4} x{3,4} ={(3,3),(3,4),(4,3), (4,4)}.

More generally, we define V" (n € N, n > 1) inductively by:

Example 3.8. {3,4}* =

Definition 3.7. V! :=V, and V"t := v x V.

Example: {3,4}> = {3,4}% x {3,4} = {((3,3),3),((3,3),4).((3,4),3),((3,4).4),
((4,3),3),((4,3),4),((4,4),3),((4,4),4)}.

More generally, we define the Cartesian product with finitely many factors:

Definition 3.8. X!_,V; = V; and X'V, = (X1, V) X Vi1
Example 3.9. Let Vi = {1,2},Vo = {3,4} and V53 = {7,8,9}.
Then X3_,V; = (Vi x Va) x V3 = ({1,2} x {3,4}) x {7,8,9}.

3.4.2 Relations

We start with a few examples of binary relations R between the elements of a set V
and the elements of a set W (or: between V and W). Instead of xRy — to be read as:
x is in relation R to y — one also writes R(x,y).

Example 3.10.

1.V =M(en) W = W (omen) xRy := xisasonofy
2.V=N W =N xRy =y=x+1
3.V=N W =R XRy = y=4/x

4.V =N? W =N? (m,n)R(p,q) =m—-n=p—gq
5.V=Nx(Z-{0}) w=V (m,n)R(p,q) = 5 =1
6.V=N W = P(N) XRy = x€y.

Below are some examples of a ternary relation R between the elements of a set V,
the elements of a set W and the elements of a set U:

1.V = M(en), W = W(omen), U = P(eople); R(x,y,z) := x and y are parents of z.
2.V=W=U=N;R(x,y,z) =x+y=z

For reasons of efficiency, we will at this point discuss only binary relations.

The adagium ‘everything is a set’ also applies to relations. A relation R between
sets V and W can be represented by the set {(v,w) € V. x W | vRw}. For instance,
the relations in Example 3.10, 1 and 2 can be represented by the sets:



3.4 Relations, Functions and Orderings* 147

1. {(x,y) € M x W | xis ason of y}

2.{(x,y) eENxN|y=x+1}

So, we may represent the mathematical notion of ‘relation’ by a set: each binary
relation R between the elements of a set V and those of a set W determines a subset of
V x W; and, conversely, each subset of V x W determines a binary relation between
the elements of V and those of W. Hence, the following definition makes sense.

Definition 3.9 (Relation). R is a (binary) relation between V and W :=RCV x W.
Notation: xRy := (x,y) € R. One sometimes uses R(x,y) instead of xRy.

For R CV x W we define the domain and the range of R: The domain of R is the set
of all elements x in V which are related to at least one element y in W; the range of
R is the set of all elements y in W which are related to at least one element x in V.

Definition 3.10 (Domain and Range).
Dom(R) := {x €V |3y € W[ xRy ] } domain of R
Ran(R) := {y € W |3x € V[xRy] } range of R

For the relations in Example 3.10 Dom(R) and Ran(R) are respectively:

Dom(R) Ran(R)
1. the set of all men the set of all mothers with at least one son
2. N N-{0}
3. N {yeR|IxeN[y=x]}
4 N? N?
5 Nx (Z—-{0}) N x (Z—-{0})
6. N P(N) — {0}

If R CV xV, then R is simply a relation on V. Example 3.10, 2 gives a relation on N,
Example 3.10, 4 a relation on N? and Example 3.10, 5 a relation on N x (Z — {0}).

Since a relation R between (the elements of) V and (the elements of) W may be
represented by the set {(x,y) € V x W | xRy }, the set theoretic operations of inter-
section, union, and complement also apply to relations: RNS, RUS and R.
Similarly, the set theoretic predicates of inclusion and equality apply to relations
RandS:RC SandR=S.
Below we define two special operations on relations: the converse R, also called
the transposition RT, of R, and the composition R;S of two relations R and S.

Definition 3.11 (Converse relation). Let R be a relation between V and W.
Then the converse relation R of R is the relation between W and V, defined by wRv
:= vRw. In set-theoretic terms, R := {(w,v) € W x V | (v,w) €R }.

For the relations in Example 3.10, 1 - 4, the converse relations are respectively:
1. {(y,x) € W x M | y is the mother of x},
2.{(y;x) eENxN|x=y—1},
3.{(»x) ERxN|x=y?},
4. {(paQ)v(mvn) eN?x N2 | p—q:m—n}.
Note that in example 4, R = R.
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Let R be a relation between sets U and V and S a relation between sets V and W.
Then the composition R;S of R and S is the relation between U and W defined by
x(R;S)z := there is some y € V such that xRy and ySz. In set theoretic terms:

Definition 3.12 (Composition). Let RC U xVand SCV x W.

Then R;S = {(x,2) e UxW | Ty eV [ (x,y) € RA(y,z) € S ]} is called the com-
position of R and S. Instead of R;S one also writes Ro S and (in case R and S are
functions) also SoR.

V W
R . S
X y Z
______R;_S _______

Example 3.11. 1. Let R be the relation of Example 3.10, 2, R C N x N, defined by
XRy :=y=x+1, and let S be the relation of Example 3.10, 3, S C N x R, defined
by y§z :=z=/y. Then
R;S={(x,z) e NxR|IyeN|[(x,y) ERA(y,z) €S]}

={(x,z) ENxR|FyeN[y=x+1Az= 7]}

={(x,z) eENxR|z=vx+1}.
In other words, x(R;S)z := 7 = v/x+!.
2. Let M be the set of all Men and R C M x M with xRy :=y is the father of x. Then
RiR={(x,2)eMxM|IyeM | (x,y) ERA(»,2) €ER] }

= {(x,z2) € M x M| 3y € M [y is the father of x and z is the father of y | }

= {(x,z) € M x M | z is the grandfather of x }.
In other words: x(R;R)z := z is the grandfather of x.

Finally, we define some special relations: the empty relation O, the universal relation
L and the identity relation I.

Definition 3.13. Let V and W be any sets. Then:

L :={(x,y) | x € VAy € W} is the universal relation between V and W. So, xLy for
anyx €V andforanyy e W.

O := 0 is the empty relation between V and W. So, not xOy, for any x € V and for
anyycW.

| := {(x,x) | x € V} is the identity relation on V (or the diagonal of V x V). So, xlx
foranyxeV.

Notice that in fact we have for any two sets V and W a universal, an empty and an
identity relation.

Also notice that in case V and W are finite sets, a relation R between V and W
may be represented by a Boolean matrix. For instance, let R be the relation between
V ={1,2,3} and W = {1,2,3,4,5,6} defined by xRy := y = 2-x. Then R may be
represented by the following Boolean matrix:

112(3(4|5|6
1| |

2 |

3 |
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A Boolean matrix interpretation of relations is well suited for many purposes and
also used as one of the graphical representations of relations within RelView, a soft-
ware tool for the evaluation of relation-algebraic expressions. The RelView system
is an interactive tool for computer-supported manipulation of relations represented
as Boolean matrices or directed graphs.

3.4.3 Equivalence Relations

25 # 13 and 13 # 1, but 25 o’clock = 13 o’clock = 1 o’clock.
26 # 14 and 14 # 2, but 26 o’clock = 14 o’clock = 2 o’clock.
and so on.

In reading off the clock we call two natural numbers equal if their difference is a
multiple of twelve. Therefore, we consider the following relation R on the set N of
the natural numbers: nRm := n —m is a multiple of twelve.

In symbols: nRm =3k €Z [n—m=12-k].

Definition 3.14 (Equivalence relation). A relation R on a set V is an equivalence
relation on V := R is reflexive, symmetric and transitive, where

R is reflexive := for all x € V, xRx;

R is symmetric :=for all x, y € V, if xRy, then yRx;

R is transitive = for all x, y, z € V, if xRy and yRz, then xRz.

Example 3.12. 1. The relation R on the set N, defined by nRm := n — m is a multiple
of twelve, is an equivalence relation on N.

2. The relation = on N is an equivalence relation.

3. The relation R on the set N2, defined by (m,n)R(p,q) :=m-+q=n+p (orm—n=
p — q), is an equivalence relation on N2,

4. The relation R on the set N x (Z — {0}), defined by (m,n)R(p,q) :=m-q=n-p
(or 2 = 5), is an equivalence relation on N x (Z — {0}).

5. The relation is parallel to or is equal to on the set of all straight lines in the
Euclidean plane is an equivalence relation.

Definition 3.15 (Equivalence class). Let R be an equivalence relation on a set V.
The equivalence class [v], also called v modulo R, of an element v of V with respect
to R is by definition the subset of V, consisting of all those elements w in V for which
vRw. Instead of [v]g one sometimes writes v/R.

Vg :={w eV |vRw}

v is called a representative of the class [v]g. Note that if R is an equivalence relation
on V, then for all v, w € V, vRw iff [v]g = [W]g.

Example 3.13. We now give the equivalence classes [v]g for the equivalence relation
R on N from Example 3.12, 1, where nRm := n —m is a multiple of 12.
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I
=

[0z = {0,12,24,36,...}, [12]x R
Mr={1,13,25,37,..}, [13]g=[1]r [25]r = [1]x.
20k ={2,14,26,38,...}, [14]z = [2]r. [26]r = [2]x.

[11)gr = {11,23,35,47,...}, [23]r = [11]g, [35]r = [11]&.
Thus, it would be more appropriate to indicate the numerals on the clock by
[1]r, [2]r,---,[11]r,[12]r instead of 1,2,...,11,12.

One may show that the integers and the rational numbers can be defined in terms of
the natural numbers, making use of the equivalence relations R from Example 3.12,
3 and 4 respectively. So, roughly speaking, one may say that the natural numbers
form the basis of all mathematics. For instance, —1 := [(1,2)]g with (m,n)R(p,q) :=
m+qg=n+p(orm—n=p—gq)and % :=[(2,3)]g with (m,n)R(p,q) =m-q=n-p
(or % = g). See van Dalen, Doets, de Swart, [3].

Definition 3.16 (Quotient set). Let R be an equivalence relation on V. The guotient
set V /R or V modulo R is the set of all equivalence classes [v]g withv € V.
In other words: V/R := {[v]g | v € V}.

As an example let us consider the quotient set from Example 3.13 above, where R
is the equivalence relation on N defined by nRm := n — m is a multiple of twelve.

N/R = {[1]x, [2]r,.... [11]x, [12]&}.

N/R has twelve elements, corresponding to the twelve numerals on the clock. The
twelve different elements of N/R are pairwise disjoint, i.e., [n]g N [m|g =0 for n # m
and 1 < n,m < 12, and together they form the whole set N, more precisely,

[1gU[2JrU...U[11]gU[12]g = N.
Therefore we call N/R a partition of N:

[1g = {1,13,25,37,...}

N .
[11]g = {11,23,35,47,...}
[12]x = {0,12,24,36,...}

Definition 3.17 (Partition). A collection U consisting of subsets of V is a partition
of V :=1) V = the union of all elements of U, and 2) the different elements of U are
pairwise disjoint.

Clearly, every partition U consisting of subsets of V defines an equivalence relation
R: xRy iff x and y belong to the same element of U. Conversely,

Theorem 3.10. If R is an equivalence relation on'V, then V /R is a partition of V.

Proof. We have to show: 1) V = the union of all elements in V /R, and 2) the different
elements of V /R are pairwise disjoint.
1) Let v € V. Then v € [v]g. Conversely, if w € [v]g, thenw € V.
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2) Suppose [v]r # [w]r. Then not vRw. (1)
Now suppose [v]g N [w]r # 0. Then for some u € V, u € [v|g and u € [w]g. But then
vRu and uRw, and consequently — since R is an equivalence relation — vRw. This is
a contradiction of (1). Therefore, [v]g N [w]gr = 0 if [v]r # [W]r. O

3.4.4 Functions

Let V and W be sets. ‘f is a (total) function or mapping from V to W’ means intu-
itively: f assigns to each v € V a uniquely determined w € W. Notation: f:V —W.
For each v € V, the uniquely determined w € W, which is assigned by f to v, is
called the image (under f) of v. Notation: w = f(v).
An example from daily life is the function f from the set M of all men to the set
W of all women, which assigns to every person x his or her mother f(x).

Example 3.14. Examples of functions f: V — W:

LV={1,2, 3, W={4.56}, f()=4 1 4
=4 2 — s
fG)=6 3 —— 56
2.V={1,2,3}, W=1{4,5, 6}, (1) =4 | ——— 4
f(Z)ZS 2 ——— 5
13)=6 3 ——— 6
3.V ={1,2,3}, W={4,5}, f(1) =4 | ——= 4
f(2)=4 2 5

£3)=5 3 —
4V={1,2.3), W={4506, f1)=5 1 4
Q=4 2 s
f3)=6 3 ——— 6

f(n) =0ifniseven,
f(n) =1ifnis odd.

6.V=N,W =P(N), f(n) = {n}.
7.V=N,W =2, f((n,m)) =n—m.
8.V=RywithRi:={xeR|x>0},W=R, f(x) =log(x).

S.VN,WN,{

‘ log

s
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If f:V — W, then f determines a set of ordered pairs, namely, {(v,w) €V xW |w=

f(v)}. This set, known as the graph of f, has the property that for each vin V there is

aunique element w in W such that (v,w) is in the set (namely w = f(v)). Conversely,

each subset of V x W with this special property will determine a function f: V — W.
The graphs of the functions from Example 3.14 are respectively:

(1,4),(2.:4),(3,6)}, 2.{(1,4),(2,5),(3,6)}.

(1,4),(2,4),(3,5)} 4.{(1,5),(2,4),(3,6)}.

(n,m) €N2 |(niseven Am=0)V (nisodd Am=1)},

(n,y) eNxP(N)|y={n}},

((mm),y) €N X Z |y =n—m},

(x,y) € Ry x R |y = log(x)}.

Any function can thus be represented by its graph. In fact, it is common in set theory

to identify a function with its graph and thus reduce the notion of function to the

notion of set. This is what we will do.

It Yt Vet Yata Wt Vel

1
3
5
6.
7
8

Definition 3.18 (Function). f is a (total) function from V to W := f is a relation
between V and W, such that for each v € V there is a unique w € W such that
(v,w) € f. Notation: f: V — W.

Because a function f : V — W is by definition a relation, Definition 3.10 defines the
domain Dom(f) and the range Ran(f) of f. It is evident that for f : V — W, Dom(f)
=V and Ran(f)={we W |Iv eV [w= f(v) ]}. For instance, for the function f in
Example 3.14, 1, Ran(f) = {4,6}; and in Example 3.14, 2, Ran(f) = {4,5,6}.

We shall maintain the notation introduced earlier, that we write f(v) for the
unique w € W such that (v,w) € f. Thus we have, forallve V,w e W: w= f(v) if
and only if (v,w) € f. From time to time we will write v — f(v) for (v, f(v)) € f.

Sometimes it is convenient to have at one’s disposal also the notion of partial
function. Intuitively, a partial function f from V to W assigns to some (not neces-
sarily all) v € V a uniquely determined w € W.

Definition 3.19 (Partial function). f is a partial function fromV to W := fis a
relation between V and W, such that for all v € V and w, w' € W, if (v,w) € f and
(vw') € f,thenw=w.

If f is a partial function from V to W, then Dom(f) := {v € V | thereisa w € W
such that (v,w) € f}. If f is a (total) function from V to W, then Dom(f) = V.
Definition 3.20. If f: V — W and V' CV, then f(V') := {f(v) |ve V'}.
Iff:V—WandW CW,then f- (W) :={veV|f(v)eW}.

The notation f(V') may be ambiguous, because a subset of V may at the same time
be an element of V.

Remark: Let W be any set. Then @ C @ x W. Further, because 0 has no elements, it
follows that for each v € @ there is a unique w € W such that (v,w) € 0. Hence, by
Definition 3.18, 0 is a function from @ to W, in other words @ : @ — W. Since 0 is
the only relation with Dom(@) = @, @ is also the only function from @ to W.

If f:V — W, then f CV x W and hence, f € P(V x W).
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Definition 3.21 (Set of all functions f:V — W).
WV := the set of all functions f: V — W, ie, WY :={f e P(VxW) | f:V =W}
So, if V and W are sets, then by the separation axiom WYV is a set too.

Example 3.15. The set {1,2,3}{5’6} has 32 = 9 elements fi,..., fo, the functions
fi,-.., fo being defined by the following scheme:

/Lo s fa fs fo 1 fs fo
222333
23123

11
2 3
e {f1(5)=1,f2(5)=1’---,f9(5)=3,
TULA6) =1, A(6)=2, ..., fo(6) =3.

The reader should check for him or her self that {5, 6}{1’2’ 3} has 23 = 8 elements.
Theorem 3.11. If W is a set with m elements and V is a set with n elements (m,n €
N), then WY has m" elements.

—

So, if W is a set with 10 elements and V has 6 elements, then there are, by this
theorem, 109, i.e., one million, functions f:V-w.

Proof. Throughout the following argument, let m € N be fixed, and let W be a fixed
set with m elements. Let ®(n) := if V is any set with n elements, then W" has m"
elements. Then Theorem 3.11 says: for every n € N, @(n).

By induction it suffices to show: @(0) and for all k € N, @ (k) — P(k+1).
Induction basis @(0): if V has 0 elements, i.e., V = 0, then 0 is the only function
from V to W; hence, W" = {0}; so W9 has m® = 1 element.

Induction step ®@(k) — @(k+ 1): Suppose ®(k), i.e., if V is any set with k ele-
ments, then W" has m* elements. We must now show that @ (k + 1) holds. So let

{Vi, --+y V&, Vis1} be a set with k+ 1 elements. By the induction hypothesis @ (k)
there are m* different functions from {v{, ..., v} to W.
Ji fo oo S
Vi ok % *
vy ok ok *
Ve ok ok *
Vi1

Foreachi, 1 <i< mF, there are now m different possible choices for f;(vi41). Thus,
there are m - mF = m**! different functions from {Viye ey Vi, Vir1} tOW. a

In mathematics (especially analysis) one frequently uses sequences of objects. We
can now give an exact formulation of the notion of sequence.

Definition 3.22 (Sequence). An (infinite) sequence of elements of V is a function f
from N to V. Notation: f(0), f(1), f(2),....

A (finite) sequence of elements of V is a function f from {0,...,n} to V, for some
n € N. Notation: f(0),...,f(n).
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The functions f : V — W in Example 3.14, 2, 4, 6 and 8 have the property that they
assign distinct elements of W to distinct elements of V; in other words: for all v,v' €
V,ifv#V, then f(v) # f(V'), or (equivalently): for all v,' € V, if f(v) = f(V'), then
v =1'. We call such functions injective (one-to-one). Notice that the other functions
in Example 3.14 do not have this property.

Definition 3.23 (Injection). f : V — W is injective or an injection :=forallv,y' € V,
if v£V/, then f(v) # f(V'). In logical notation: Vx € VVX' €V [x £ X — f(x) #
f(xX') ]. Notation: Intuitively, the existence of an injection f : V — W means that
the set V cannot be larger than W; therefore we write f : V <; W to indicate that
f:V — W is injective.

The functions f : V — W in Example 3.14, 2, 3, 4, 7 and 8 have the property that
each element w € W is the image (under f) of an element v € V. We call such
functions surjective (onto). Note that the other functions in Example 3.14 do not
have this property.

Definition 3.24 (Surjection). f : V — W is surjective or a surjection := for every
w € W there is a v € V such that w = f(v). In logical notation: Vy e W 3x eV [y =
f(x) ]. In other words, f : V — W is surjective if and only if Ran(f) = W.

The functions in Example 3.14, 1 and 5 are neither injective nor surjective. Those in
Example 3.14, 2, 4 and 8 have both properties. We call such functions bijective.

Definition 3.25 (Bijection). f : V — W is bijective or a bijection := f is both in-
jective and surjective. Notation: Intuitively, the existence of a bijection f : V — W
means that the sets V and W are equally large; therefore one writes f: V =; W to
indicate that f : V — W is bijective.

A bijection f : V — W gives a one-one correspondence between the elements of V
and the elements of W: for each v € V there is exactly one (f is a function) w € W
such that w = f(v) and for each w € W there is at least one (f is surjective) and
precisely one (f is injective) v € V such that w = f(v).

Definition 3.26 (Canonical function). Let R be an equivalence relation on V. The
canonical function f : V — V /R is defined by f(x) := [x]g. It is of course surjective,
but in general not injective.

Definition 3.27 (Characteristic function). Let U C V. The characteristic function

. lifveU,
Ky :V —{0,1} of U is defined by Ky (v) = {0 ity U,
In the special case that U C N, the characteristic function Ky : N — {0,1} of
U may be represented by the infinite sequence Ky (0),Ky(1),Ky(2),Kuy(3),...
of 0’s and 1’s (see Definition 3.22). For instance, let U = {0,2,4,6,...}, then
Ky=1010101....

Since we have defined a function f : V — W as aset {(v,w) €V X W |w= f(v)}
of ordered pairs, the equality relation between functions is thereby determined. Let
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f:V —=Wandg:V — W. Then, by the axiom of extensionality: f = g iff f and g
have the same elements, i.e., forall v € V and for allw € W, (v,w) € fiff (v,w) € g.
In other words, f =g :=forallve V and forallw € W, w = f(v) iff w = g(v). So,
for f,g:V =W, f=giffforallv eV, f(v) =g(v).

In logical notation: f = g :=Vx € V[f(x) = g(x)].

Theorem 3.12. The function K : P(V) — {0,1}, defined by K(U) := Ky (i.e., K
assigns to each subset U of V the characteristic function Ky of U) is a bijection.

Proof. We first show that K is injective. So, suppose U; # U,, i.e., there is some
v €V such that (v € Uy and v ¢ U,) or (v € Up and v € U). Then (Ky, (v) =1
and Ky, (v) = 0) or (Ky,(v) =1 and Ky, (v) = 0). So, there is a v € V such that
Ky, (v) # Ky, (v), and hence Ky, # Ky, .

Next we show that K is surjective. Suppose f € {0,1}V. Let Uy :={v € V| f(v) =
1}. Then for all v € V, Ky, (v) = 1 iff v € Uy, i.e, for all v € V, Ky, (v) = 1 iff
f(v) = 1. Hence, forallv € V, Ky, (v) = f(v). Therefore, f = Ky, . O

Let f:U —Vandg:V — W. Since f and g are (special) relations, the composition
f;g of f and g has been defined according to Definition 3.12.

S g

v |l—— V |—| W

fig

Applying f;g to an element x € U, we first apply f to x and next g to f(x), resulting
in g(f(x)). So, in the case of the composition of functions f: U -V andg:V — W
it is attractive to write g o f instead of f;g, where (go f)(x) := g(f(x)).

Definition 3.28 (Composition of functions). Let f: U —V and g : V — W. Then
the composition go f: U — W of f and g is defined by (go f)(x) = g(f(x)).

Example 3.16. Let f : N — Z be defined by f(n) := —n. Let g : Z — Q be defined
by g(m) := 3m. Then go f : N — Q is defined by (go f)(n) = —3n.

If f:V — W is a bijection, then there is — because f is surjective — for each w € W
at least one v € V such that w = f(v), and — because f is injective — there is for each
w € W at most one w € V such that w = f(v). Hence, if f: V — W is a bijection,
then for each w € W there is precisely one v € V such that w = f(v).

Definition 3.29 (Inverse function). Let f : V — W be a bijection. Then the inverse
function f~' : W — V is defined by f~!(w) := the unique element v in V such that

w=f(v).

Note that the inverse function f~! of a bijection f equals the converse f of f (see
Definition 3.11). If £ : V — W is a bijection, then f~'o f: V — V is the identity
functionon V and fo f~!: W — W is the identity function on W.
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Example 3.17. Let Ny, be the set of all even natural numbers and define f : N —
Neyen by f(n) :=2n. Then f: N — Ny, is a bijection and f~! : Ny, — N is defined
by £~ (m) := Im.

Let R, be the set of all real numbers greater than 0 and define f : R, — R by
f(x) :==1log(x) (see Example 3.14, 8). Then f : R, — R is a bijectionand f~' : R —
R, is defined by f~!(x) := ¢".

Definition 3.30. Let f : V — W and V; C V. Then the restriction f[Vy: Vo — W is

defined by (f[Vp)(x) := f(x).
T
[

e

Vo 1%

Example 3.18. Let f : R — R be defined by f(x) := sinzx. Then f[Z :Z — R is
defined by (f[Z)(m) = sinwm = 0 (for m € Z).

3.4.5 Orderings

We start with giving six examples of an ordering relation R on a given set V.

Example 3.19.
1.V =P({v,w}) ={0,{v},{w},{v,w}} with xRy :==x C y.
b
St
0
2.V ={1,2,3,4,6,8,12,24} with xRy := x is a divisor of y.
3.V is the set M of all men with xRy := x is at least as old (in years) as y.
4.V =7 with xRy :=x < y.

2-1 01 2

5.V =NwithxRy :=x<y.
6.V =NxNand (n,m)R(x,y) :=n<xor(n=xand m<y).
(0,0),(0,1),(0,2),...,(1,0),(1,1),(1,2),...,(2,0),...

The ordering in example 6 is similar to the well-known ordering of words in a dic-
tionary. Therefore we call this ordering the lexicographic ordering on N x N.

Definition 3.31 (Partial ordering).

A relation R on a set V is a partial ordering on'V :=

1. R is reflexive, i.e., for all x € V, xRx, and

2. R is anti-symmetric, i.e., for all x,y € V, if xRy and yRx, then x =y, and
3. R is transitive, i.e., for all x,y,z € V, if xRy and yRz, then xRz.
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The reader should check that all relations in Example 3.19 are a partial ordering on
the given set V. Instead of ‘R is a partial ordering on V’ one sometimes says: V is a
set, partially ordered by R, or: R partially orders V, or: (V, R) is a partially ordered
set. If it is clear from the context what partial ordering relation is involved, we may
write: V is a partially ordered set.

The relations 1 and 2 in Example 3.19 do not have the property that any two
elements are comparable via R: for instance, for v # w, {v} € {w} and {w} Z {v}.
The other relations in Example 3.19 do have the property that for all x,y € V, xRy or
yRx (or both). In the case that R expresses the (weak) preference of an agent (voter)
or a society over the elements of a set V of alternatives or candidates, reading xRy
as ‘the agent judges x is at least as good as y’, ‘xRy and yRx’ expresses that the
agent is indifferent between x and y. Anti-symmetry then expresses that indifference
between two distinct elements of V does not occur and transitivity expresses that the
preference of the agent is rational.

Definition 3.32 (Complete relation). A relation R on a set V is complete := for all
x,y € V, xRy or yRx. In other words, any two elements in V are related via R.

Notice that a complete relation on V is by definition reflexive: taking x =y, (xRy or
yRx) implies xRx.

Definition 3.33 (Weak ordering). A relation R on a set V is a weak ordering on V
:= R is complete and transitive.

The relations in Example 3.19, 3, 4, 5 and 6 are a weak ordering on the given set V.
Notice that the third relation is not anti-symmetric: two different men may have the
same age; however, the fourth, fifth and sixth are anti-symmetric.

Definition 3.34 (Linear ordering). R is a linear or total ordering or simply an or-
dering on 'V := R is weak ordering on V that in addition is anti-symmetric, i.e.,

1. R is complete: for all x,y € V, xRy or yRx; and hence, in particular, xRx;

2. R is anti-symmetric: for all x,y € V, if xRy and yRx, then x = y.

3. R is transitive: for all x,y,z € V, if xRy and yRz, then xRz.

Relation 3 in Example 3.19 is not a linear ordering; the relations 4, 5 and 6 in
Example 3.19 are linear orderings on the given sets. Whenever we refer to a subset
W of a partially or totally ordered set (V, R), we will usually think of this subset W
as being partially, resp. totally ordered by the restriction of R to W,i.e., RN(W x W).

Let R be a weak (preference) ordering on a set V' of alternatives, reading xRy as: the
agent (voter, judge) weakly prefers x to y, in other words: the agent judges that x is
at least as good as y. Then we can express ‘the agent strictly prefers x to y’ by: xRy
and not yRx, which we abbreviate by xPy.

Definition 3.35 (Strict associated ordering). Let R be an ordering on V. The strict
associated ordering P of R on V is defined by xPy := xRy and not yRx.

Theorem 3.13. Let R be a (total or linear) ordering on V. Let xPy := xRy and not
YRx. Then P satisfies the following properties: 1. for all x € V, not xPx;
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2. P is asymmetric, i.e, for all x,y € V, if xPy, then not yPx;
3. P is transitive; and
4. P is connected, i.e., for all x,y € V, xPy or x =y or yPx.

Proof. Let R be a (total or linear) ordering on V and let xPy := xRy and not yRx.

1. From this definition follows immediately that not xPx.

2. Suppose xPy, i.e., xRy and not yRx. Then certainly not yPx.

3. Suppose xPy and yPz, i.e,, xRy and yRz and hence, by transitivity of R, xRz. Also,
not yRx and not zRy. In order to show xPz, we still have to show that not zRx. So,
suppose zRx. Then by xRy and the transitivity of R, zRy. Contradiction.

4. Tt suffices to show: if x # y, then xPy or yPx. So suppose x # y. Then, because R is
anti-symmetric: not xRy or not yRx (1). Because R is complete: xRy or yRx (2). From
(1) and (2) follows: (not xRy and yRx) or (not yRx and xRy), i.e., yPx or xPy. a

The ordered set (N, <) has the property that each non-empty subset of N has a least
(with respect to <) element. The ordered sets (Z, <) and (Q, <) do not have this
property.

Definition 3.36 (Well-ordering). A relation R on a set V is a well-ordering on V :=
1. R is an (total) ordering on V, and

2. each non-empty subset of V has a least element (with respect to R), i.e., an element
x € V such that for all y € V, xRy.

So, the set (N, <) is well-ordered, but the sets (Z, <) and (Q, <) are not.

3.4.6 Structures and Isomorphisms

Frequently one is not interested in how the elements of a given set have been con-
structed, only in how they behave under certain given relations (and operations) on
the set. For instance, given a certain set V of people, one may be interested only
in how the people in the set behave under the relation ‘is father of’, or under the
relation ‘is older than’, or under the relation ‘is stronger than’; and sometimes one
is interested in more than one relation on the same set. This brings us to the notion
of structure.

Definition 3.37 (Structure). (V, Ry,...,Ry) is a (relational) structure :=V is a set
and Ry, ..., Ry are relations on V.

Remark: A more general notion of structure is obtained by considering sets together
with certain relations and operations on them; see, for instance, [3].

Example 3.20. Examples of (relational) structures:
1. { {Charles, John, Peter}, is older than );
. ( {Charles, John, Peter}, is older than, is stronger than );
(N, <), where m < n :=m is less than n;
<N <, | ), where m | n := m is a divisor of n;
. (Neyen, <), where N, is the set of all even natural numbers;
<Neven, | >

NNk W
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Now, let us suppose that John is older than Charles and that Charles is older than
Peter. Then there is no difference, as far as order properties are concerned, between
the set {Charles, John, Peter} together with the ordering relation ‘is older than’ and
the set {1, 2, 3} together with the ordering relation < . In both cases we get the same
picture or structure:

John 1
i Charles 2 |
Peter 3

where the vertical line denotes in the left picture the relation ‘is older than’ and in
the right picture the relation ‘is less than’. For that reason we call the two structures
( {Charles, John, Peter}, is older than ) and ( {1, 2, 3}, < ) isomorphic.

Definition 3.38 (Isomorphism). Let (V, Ry, ...,R;) and (W, S,...,S;) be two (re-
lational) structures such that for each i = 0,...,k, R; and S; have the same number,
say n;, of arguments; for convenience, suppose n; =2 for all i. Let f: V — W.

£ is an isomorphism from (V, Ry,...,R) to (W, So,...,Sk) :=

1. f is a bijection from V to W, and

2. foralli=0,...,kand for all v,w € V, R;(v,w) iff S;(f(v), f(w)).

Example 3.21 (Isomorphisms).

1) f : {John, Charles, Peter} — {1, 2, 3}, defined by f(John) = 1, f(Charles) =
2, f(Peter) = 3, is an isomorphism from ({John, Charles, Peter}, is older than )
to ({1,2,3},< ), under the supposition that John is older than Charles and that
Charles is older than Peter.

2) f:N— Ngyen, defined by f(n) = 2n, is an isomorphism from (N, <) to (Neyen, <)
and likewise an isomorphism from (N, <, | ) to (Neyen, <, | ), where | is the
divisibility-relation.

N :01234 ...
Vs
Neyen :02468 ...

3) Let us suppose that John is the father of Charles and that Charles is the fa-
ther of Peter. Then the function f, defined in 1), is NOT an isomorphism from
({John, Charles, Peter}, is father of ) to ({1,2,3},< ), since 1 < 3, i.e., f(John)
< f(Peter), but not (John is the father of Peter).

4) f: N — Z, defined by f(2n) = n and f(2n — 1) = —n, is a bijection from N
to Z, but it is not an isomorphism from (N, <) to (Z, <), since 0 < 1, but not
£(0) < £(1).

N:0 1 2 3 4...

fi
Z:0 -1 1-22..

Definition 3.39 (Isomorphic). (V, Ry,...,Ry) is isomorphic to (W, So,...,Sk) =
there is at least one isomorphism f from (V, Ry,...,R;) to (W, So,...,Sk).

Example 3.22 (Isomorphic).
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1) Supposing that John and Peter are equally strong and that Charles is stronger
than John and Peter, ({Charles, John, Peter}, is stronger than ) is isomorphic to

({2.4.651). Charles 2

/\

John Peter 4 6

In the left picture the line denotes the relation ‘is stronger than’ and in the right
picture it denotes the relation ‘is divisor of’. However, ( {Charles, John, Peter},
is stronger than ) is (under the same supposition as above) NOT isomorphic to

({1,2,3},<).

2) f : N — Ny, defined by f(0) =2 f( )=
isomorphism from (N, <) to (Ngye,, <), alt
Neyen, because 0 < 1, but not 2 = f(0) < f(1)

3

N :012

fi
Neyen : 20468 ...

0,f(n) = 2n for n > 2, is not an
though f is a bijection from N to
=0.

4 .

Nevertheless, (N, < ) is isomorphic to (Ngye,, < ), since there is an isomorphism
from (N, <) to (Neyen, < ), namely f : N — N, defined by f(n) = 2n for all

neN.
N :01234 ...

fi
Neven : 02468 ...

Exercise 3.9. We provide alternative notions of ordered pair:

a) (v,w) := {{n 0}, {w,{0}}}, and b) (v,w) := {{v,0}, {w}}.

Prove that for these definitions it holds that (v,w) = (x,y) iff v=xand w =y.

Exercise 3.10. Prove that the operation x (Cartesian Product) is distributive with
respect to union and intersection, i.e., U x (VUW) = (U x V)U (U x W), and
Ux(VNW)=(UxV)N(UxW).

Exercise 3.11. Give an example to show that the operation x (Cartesian Product) is
not associative, i.e., that not for all sets U, V and W, U x (Vx W) = (U x V) x W.
1),(1,2
:2),(5
Exercise 3.13. a) Let U be a partition of V and define for v,w € V, vSw :=there is a
set W in U such that both v,w € W. Show that § is an equivalence relation on V.

b) Let R be an equivalence relation on V. Then V/R = {[v]g | v € V } is the partition

of V belonging to R (see Theorem 3.10). Let S be the equivalence relation belonging
to V /R according to a). Prove that R and S are identical.

Exercise 3.12. Let R = {(0,1),(0,3),(0,4),(2

, ), (4,7)}. Compute Dom(R),
Ran(R) and R. Is R a function? Let S = {(1 4),(3 ,

0)}. Compute R; S and S;R.
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Exercise 3.14. Check whether each of the following relations on Z is an equivalence
relation or not.

A)R={(x,y) €Z*|x+y<3} b)R={(x,y) €Z?|xisadivisor of y}

) R={(x,y)€Z*|x+yiseven } d)R={(x,y) € Z* |x=yorx = —y}

Exercise 3.15. Prove that in each of the following cases {V; | r € R} is a partition of
R x R. Describe geometrically the members of this partition. Find the equivalence
relations corresponding to the partitions (see Exercise 3.13).

AV, ={(x,y) eR? |y=x+r}, bV, ={(x,y) €R? | x> +)> =r}.

Hint: y = x + r is the equation of a line and x> + y*> = r is the equation of a circle.

Exercise 3.16. Foreachn € Z letV, = {m € Z | 3q € Z [ m = n+5q | }. Prove that
{Vy | n € Z} is a partition of Z.

Exercise 3.17. Give an example of a relation, which is transitive and symmetric, but
not reflexive.

Exercise 3.18. Spot the flaw in the following argument: Let R be transitive and sym-
metric. Then xRy and yRz implies xRz for all x, y and z. Also xRy — yRx holds for
all x and y. Now take any x and y such that xRy; then, by the preceding lines, xRx.
Hence R is reflexive.

Exercise 3.19. Draw diagrams for the following partially ordered sets:
a) The set of all subsets of a set with 3 elements, partially ordered by C.
b) The set of natural numbers 1,...,25, partially ordered by divisibility.

Exercise 3.20. Determine which of the following sets are relations, functions, in-
jections, surjections or bijections from {1,2,3,4} to {1,2,3,4}:

Q)R = {(Sa 1)a (4a2)a (4a3)a (2a3)}’ b) Ry = {(273)7 (}72)7 (372)7 (473)}’

)Ry = {(2, 1)a (1a2)a (4a3)a (3a4)}’ d) R1;R> and e) Rs.

Exercise 3.21. Let f : U — V and g: V — W. Prove: a) if go f is injective, then f
is injective; and b) if g o f is surjective, then g is surjective.

Let f*: N — N be defined by f*(n) =n-+1 and let g* : N — N be defined by
g"(0) =0and g*(n+ 1) = n. Prove, using f* and g*, that not for all f and g:

c) if go f is injective, then g is injective; d) if g o f is surjective, then f is surjective;
e) if go f is bijective, then f or g is bijective. 0123

AN
V//e

0i23
Exercise 3.22. Let f : V — W. Prove: f is a function from W to V iff f is bijective.

Exercise 3.23. f : U — V and g : V — W. Prove: a) If f and g are injective, then
go f is injective; b) If f and g are surjective, then g o f is surjective; c) If f and g
are bijective, then g o f is bijective.
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Exercise 3.24. Prove that f : N x N — N, defined by f(n,m):=2"(2n+1)—1,is
injective.

Exercise 3.25. Prove: a) (N, < ) is not isomorphic to (Z, < ), i.e., there is no
isomorphism from (N, < ) to (Z, < ); and b) (Z, < ) is not isomorphic to (Q, < ).

Exercise 3.26. Prove: ({2,4,6,12}, /) is isomorphic to (P({1,2}), C ).

3.5 The Hilbert Hotel; Denumerable Sets

All sets we experience in daily life are finite. That is why we think that a proper
part is smaller than its whole. For instance, {2, 3} is a smaller set than {1, 2, 3}. We
shall see that this law for finite sets does not hold anymore for infinite sets.

The numbers 0,1,2,3,... are called natural numbers. N = {0,1,2,...} is the set
of all natural numbers. So, for example, 3 € N, 5 € Nand 1024 € N, while -3 ¢ N,
% ¢ N and v/2 ¢ N. The numbers ...,—3,—2,—1,0,1,2,3,... are called integers.
Z =NU{-1,-2,-3,...} is the set of all integers. Note that each natural number
is an integer, but not conversely. Examples: 2 € Z, -2 € Z,0<€ Z,3 € Z, % ¢ 7 and
V2¢Z.

Numbers of the form g, where p € Z, q € N, ¢ # 0 (and p and g relatively prime)
are called rational numbers. Q" =NU{}.1,%,.. JU{3,5,%,...}U{3,3,3,...}U
... is the set of all positive rational numbers. Examples: % €Q*r,2€Q",0eQt,
% €Qt,vV2¢Q"%, n ¢ Q*. By Q we mean the set of all positive and negative ratio-
nal numbers. Note that all integers and hence also all natural numbers are rational.

There are many, many, numbers which are not rational. Already the Greeks knew
that /2 cannot be written as a quotient of the form 5. The same holds for many

other numbers, such as v/3, log2, m and Euler’s constant e. By R we mean the set of
all real numbers. This set contains all natural numbers, all integers and all rational
numbers, but also all limits of convergent sequences of rational numbers, such as
v/2,10g2, i and e. For a precise definition of real numbers in terms of sets, see van
Dalen, Doets, de Swart [3], section 12.

In this section we shall see that the set N of all natural numbers is as large as the
set Z of all integers and also as large as the set Q of all rational numbers. In Section
3.6 we shall see that the set R of all real numbers is larger than each of the sets N,
7 and Q, which are equally large.

From a classical or platonistic point of view the sets N, Z, Q and R are actually in-
finite, i.e., the Creator has created these sets, just like the planets, as a completed to-
tality, prior to and independently of any human process of generation and as though
they can be spread out completely for our inspection. Mathematicians are like as-
tronomers who try to discover properties of the objects which have been created in
its full totality by the Creator.

Since for an intuitionist like L.E.J. Brouwer (1891-1966) mathematical objects
are my own mental constructions, from an intuitionistic point of view the infinite is
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treated only as potential or becoming or constructive, i.e., the set N of the natural
numbers is identified with the construction process for its elements: start with 0 and
add 1 to each natural number which has already been constructed before. And it
was one of the main achievements of Brouwer to solve the problem how we can talk
constructively about the non-denumerable set R of the real numbers; see Chapter 8.

What does it mean that ‘set V has just as many elements as set W’? The proper
formulation of this question makes use of the notion of one-one correspondence or
matching. For example, the set {Plato, Augustine, Wittgenstein} has just as many
elements as the set {chair 1, chair 2, chair 3}, simply because we can match these
sets in a suitable way:

Plato — chair 1
Augustine —— chair 2
Wittgenstein —— chair 3

From an intuitive point of view a one-one correspondence between two sets V and
W is a prescription or function f that associates with every element v in V exactly
one element f(v) in W in such a way that conversely for every element w in W there
is exactly one v in V with w = f(v). More technically, a one-one correspondence
between V and W is a bijective function from V to W; see Section 3.4.

Early scientists were rather puzzled by the effects of the matching-concept. In
1638 Galileo noticed that we can match the set of squares of the positive integers

n

and the set of positive integers itself:
1 2 4
1 4

16 ... n?

This was considered paradoxical, in view of Euclid’s proposition that ‘the whole is
greater than its part’ (circa 300 B.C.). However, if one thinks of billiard-balls, being
labeled 1, 2, 3, 4, ... on one occasion and the same balls being labeled 1, 4, 9, 16,
... on another occasion, it becomes quite obvious that the sets in question can be
matched and hence have as many elements.

This is essentially Godel’s defense that the following definition is the natural one
for comparing sets in magnitude, also in the case of infinite sets; see Godel [5], What
is Cantor’s continuum problem?.

3

Definition 3.40 (Equipollent). V is equally great as or equipollent to W (V and W
are of the same cardinality) iff there exists a one-one correspondence between (the
elements of) V and (the elements of) W. Notation: V = W.

One easily may verify the following:
Theorem 3.14. For all sets U, V and W,
DV =V, i) if V=W, then W = V;iii) if U=,V andV = W, thenU = W.

Proof. 1) The identity function which associates with every element x € V this same
X, is a one-one correspondence (bijection) between V and V. ii) Let f : V — W be
a one-one correspondence (bijection) between V and W, then the inverse function
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f~1:W — V (see Definition 3.29) is a one-one correspondence between W and V.
iii) Let f : U — V be a one-one correspondence between U and V and g: V — W
a one-one correspondence between V and W. Then the composition go f : U — W
(see Definition 3.28) is a one-one correspondence between U and W. O

Definition 3.41 (Finite). a) V is finite iff there is some natural number n € N such
that V = {x € N|x < n}.b) V is infinite iff V is not finite.

Example 3.23. {Plato,Augustine, Wittgenstein} =; {1,2,3};not {1,2,3} = {1,2}.

Example 3.24. N =| P, where P is the set of prime numbers. In book IX of Euclid’s
‘Elements’ (300 B.C.) it is shown that there are infinitely many prime numbers.
Euclid proceeds by constructing for each finite set of primes a prime which does
not belong to it. Using the fact that there are infinitely many primes, we can find a
bijection from N to P by running through N and checking whether each number is
a prime. This is basically the method known as the sieve of Erathostenes.

Theorem 3.15. N = N,,,,,, where Ny := {x € N | x is even}.

Proof. The correspondence or function f that associates with each natural number n
in N the even natural number f(n) = 2n in N,y is one-one: f associates with each
natural number 7 in N exactly one even natural number in N,,.,, namely f(n) = 2n,
in such a way that conversely for every even natural number m = 2n in Ny, there
is exactly one natural number 7 in N, namely n = %, such that f(n) = m.

N: o 1 2 3 4 . a
A +
Neew 0 2 4 6 8 ... 2n .. O

Hence, the proposition ‘the whole is greater than its part’ (Euclid) turns out to be
false for infinite sets: N, is a proper subset of N, but N, is still equipollent to
N. However, it is easy to see that ‘a proper part is smaller than the whole’ is true for
finite sets.

N = V means that there is a one-one correspondence v between the sets N and V:

N: 0 1 2 3 4 5
Vi v(0) v(l) v(2) v(3) v(4) v(5)
If V is equipollent to N, we say that V is denumerable: V = {v(0),v(1),v(2),...}.
Definition 3.42 (Denumerable; Enumerable; Countable).
V is denumerable . =N = V.
V is enumerable or countable =V is finite or denumerable.

A one-one correspondence v between {0, 1,...,n} or N respectively and V is called
an enumeration of V.

Remark 3.1. The usage of the terminology is not firmly established. Instead of ‘de-
numerable’ some authors use countably infinite.
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Suppose somewhere in heaven is a hotel, called the Hilbert hotel, after the German
mathematician and philosopher David Hilbert (1862 — 1943), with as many rooms
as there are natural numbers. We also suppose that in every room there is exactly
one guest: go, g1, 2, &3, - - --

room: 0 1 2 3 4 5

80 | 81 | 82 | 83 | 84 | 85

So, the Hilbert hotel is full in the sense that there is a one-one correspondence g
between the set of room numbers {0,1,2,...} and the set {go,g1,82,. ..} of guests.

At a certain day two new guests, g_| and g_,, arrive at the reception and both
ask for a private room; neither the two new guests nor the existing guests want to
share a room with somebody else. The receptionist, who studied mathematics and
philosophy, had to think a little while, but found an easy solution: let all the existing
guests move two rooms; then the first two rooms are becoming free and can be given
to the two new guests. The result is the following room assignment:

room: 0 1 2 3 4 5

T T
g2 &1 8 &1 8 &3

We see that the two sets {go,£1,82,.--} and {g-2,8-1,80,81,82,---} are equally
large: the number of rooms did not change. We also see that N = {0,1,2,...} is as
large as {—2,—1} UN, in other words: there is a one-one correspondence f between
these two sets: f(0) = —2, f(1) =—1and f(n+2) =nforn>0.

Theorem 3.16. a) N =; {2, —1}UN, in other words, {—2,—1} UN is denumer-
able. b) More generally: if W is a finite set {wy, ... ,wi_1}, k> 1, and V is a denu-
merable set, then W UV is denumerable.

Proof. a) The function f from N to {—2,—1} UN, defined by f(0) = -2, f(1) =
—1,and f(n+2)=nforn >0, is a one-one correspondence between these two sets:
f assigns to every n € N exactly one element in {—2, —1} UN, such that conversely
for every element m in {—2,—1} UN there is exactly one n € N, namely n = m+2,
with m = f(n).

b) Suppose W = {wy,...,wr_1}, k> 1,and V is denumerable, i.e., there is a one-one
correspondence v between N and V. Hence, V = {vo,v;,v,...}. Then the function
f from N to WUV, defined by f(0) =wy, ..., f(k—1) =wy_1, and foreachn € N,
f(n+k) =v,, is a one-one correspondence between N and W UV. O

So far, so good! But at a certain day all denumerably many guests, except g, of the
Hilbert hotel want to invite a personal friend and to give him or her a private room;
again nobody is willing to share his room with somebody else. Say guest g; wants
to invite g_; for each i > 1. This situation is pictured in the following schema:
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room: 0 1 2 3 4 5

80 | 81 | 82 | 83 | 84 | &5

8-1 82 8-3 84 8-5

The receptionist looks concerned; she could host finitely many new guests, but now
she is asked to host countably many new guests, each wanting a separate room. But
... after some thinking she found a solution: let all old guests move to the room with
number twice the old room number; by doing that all rooms with an odd number
become empty and the new guests can be hosted in these odd numbered rooms. So,
the new room assignment looks as follows:

room: 0 1 2 3 4 5

T T
g 8-1 81 82 & &-3

The receptionist is proud, the guests are happy and the Hilbert hotel is doing good
business. Guest gg can stay in room number 0, guest g; moves to room number 2,
guest go moves to room number 4, guest g3 moves to room number 6, etc. By doing
this the rooms 1, 3, 5, ... with an odd number become available and the new guests
g-1,8-2,8-3,-.. can occupy these rooms.

We see that the set N is as large as the set {—1,—2,—3,...} UN, this is Z, while
at the same time N is a proper subset of Z.

Theorem 3.17. a) N=; NU{—1,-2,-3,...} =7Z; i.e., Z is denumerable.
b) More generally: if V and W are denumerable, then also VUW is denumerable.

Proof. a) With the even natural numbers 0, 2, 4, ... in N we can associate respec-
tively the numbers 0, 1, 2, ... in Z and with the odd natural numbers 1, 3, 5, ... in
N we can associate respectively the numbers —1,—2,—3,... in Z. More precisely,
the function f from N to Z, defined by f(2n) =n and f(2n— 1) = —n is a one-one
correspondence between N and Z.

b) Suppose V and W are denumerable, i.e., there are one-one correspondences v
and w between N and V, respectively W. Hence, V = {v(0),v(1),v(2),...} and
W = {w(0),w(1),w(2),...}. Then v(0),w(0),v(1),w(1),v(2),w(2),... is an enu-
meration of V UW. More precisely, the function f from N to V UW, defined by
f(2n) =v(n) and forn > 1, f(2n— 1) = w(n — 1) is a one-one correspondence be-
tween Nand VUW. ad

So far the Hilbert hotel had overcome all difficulties. The real problem started only
the next day, when each of the denumerably many guests announced that he or she
wants to accommodate denumerably many friends. Each guest g;, i € N, wants to in-
vite denumerably many friends g;1, g2, &3, - - .. How should the receptionist provide
everybody with a private room?
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room: 0 1 2 3 4 5

8o | 81 | 82 | 83 | 84 | &5

go1 811 821 831 841 851
802 L12 822 832 842 852

803 813 823 833 843 853

Although the first thought of the receptionist was that this may be impossible, after
thinking approximately fifteen minutes she found a solution. For convenience, she
identifies go with goo, g1 with g9, go with gy, etc. Let Vy = {g()o,g()l,g()g,...},
Vi ={210,811,812,---}» V2 = {€20, 821,822, - . -}, etc. Then the diagram below at the
left hand side shows all the guests who have to be accommodated in a private room,
ie., VoUViUWV,U. ... Making a systematic ‘walk’ through the schema of guests, as
indicated in the diagram below at the right hand side, gives an enumeration of all
the guests in Vo UV, UV, U ... The receptionist assigns to guest g;;, the jth friend
of g;, room number %(H— N+ j+1)+j. So, guest go = goo gets room 0, guest
g1 = g10 gets room 1, guest go; gets room 2, guest g = goo gets room 3, guest g1
gets room 4, guest ggp gets room 5, guest g3 = g3 gets room 6, guest g gets room
7, guest g1, gets room 8, guest go3 gets room 9, guest g4 = g49 gets room 10, etc.

More precisely, the function f from VoUV; UV, U... to N, defined by f(g;;) =
% (i+j)(i+j+ 1)+ j,is a one-one correspondence between the two sets in question:
f assigns to every g;; exactly one natural (room) number f(g;;), such that conversely
for every natural number z in N there is exactly one guest g;; with n = f(g;;).

Vo Vi Vs V3 V4

800 810 820 830 840 .- 0 1 3 6 10
gor 811 821 831 841 .- 2 4 7 11

802 812 82 832 842 .- 5 8 12

803 813 823 833 843 --- 9 13

Theorem 3.18. a) The union of denumerably many denumerable sets Vo, Vi, V3, ...
is denumerable.
b) The set Q" of all rational numbers greater or equal than 0 is denumerable.

Proof. a) LetVo = {voo,vo1,vo02,---}, Vi = {vio,v11,V12,-- .}, Va = {v20,V21,V22,. .. },
etc. be denumerably many denumerable sets. Then the function f from VyUV; UV, U
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...to N, defined by f(v;;) = 3(i+j)(i+ j+ 1)+ j. is a one-one correspondence be-
tween the two sets in question: f assigns to every v;; exactly one natural number
f(vij) € N, in such a way that conversely for every natural number n € N there is
exactly one vij €VoUViuWU... with f(V,'j) =n.

b) Identifying g;; with the rational number 5, leaving out gj for all i € N and taking

away all double occurrences of the same rational number, such as % = % = % =...,

we obtain an enumeration of all rational numbers f >0withi,jeNand j>0. O
Corollary 3.5. Q is denumerable.

Proof. Q =QTUQ™, where Q- = {x € Q | x < 0}. According to Theorem 3.18
QT is denumerable. In the same way one may prove that Q~ is denumerable. And
by Theorem 3.17 the union of two denumerable sets is again denumerable. a

Exercise 3.27. a) Prove that a) Z = Neyen; b) Neyen =1 Noga, where Ny, = {x €
N |xiseven} and N,yy = {x € N | x is odd}.

Exercise 3.28. a) Prove that the set {0, 1}* of all finite sequences of 0’s and 1’s is
denumerable.

b) Let X be an alphabet, i.e., a finite set of symbols. And let X* be the set of all
words over X, i.e., X* is the set of all finite sequences of elements of X. Prove that
X* is denumerable. Hint: Note that a) is a special case of b) by taking X = {0,1}.
c¢) Conclude that the set of all expressions in English is denumerable.

Exercise 3.29. Let V be a enumerable set. Prove that the set V* of all finite se-
quences of elements of V is denumerable.

3.6 Non-enumerable Sets

In Section 3.5 we have seen that the infinite sets N, Z and QQ have the same cardi-
nality, i.e., are equally large, although clearly N is a proper subset of Z and Z is a
proper subset of Q. One might be inclined to think that all infinite sets are equally
large. Nothing is less true! We shall see in this section that there are many sets which
are larger than the sets N, Z and Q. But first we have to explain what we mean by
‘being larger than’. The natural definition of V <; W, V is smaller than W, is:

1. V may be embedded into W, i.e., there is a function f from V to W such that for
all x,y € V, if x # y, then f(x) # f(y) (f is injective), but

2. there is no one-one correspondence between the (elements of) V and W. More
precisely, for every function f from V to W there will be at least one elementw € W
such that there is no v € V with f(v) = w. In other words, there is no surjection
f:V — W and hence there cannot be a bijection f : V — W.

A first example of a non-enumerable set is the set {0, 1}N, i.e., the set of all
functions f : N — {0,1}. Since a function f : N — {0, 1} may be identified with
the infinite sequence £(0), f(1),f(2),... of zero’s and one’s, the set {0, 1} is also
called the set of all infinite sequences of zero’s and one’s.
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It is easy to see that N can be embedded into {0, 1}": let F : N — {0, 1}" be defined
by F(n) = the infinite sequence of zero’s and one’s with F(n)(i) = 0 for i # n and
F(n)(n) =1, i.e., F(n) is the sequence of zero’s and one’s with a 1 only at the n'"
place. Evidently, an infinite sequence with two or more one’s does not belong to
the range of F. In Theorem 3.19 we shall prove that any function F : N — {0, 1}
will ‘forget’ some elements of {0, I}N , more precisely, that for any such function F
there is an infinite sequence s of zero’s and one’s such that s £ F (i) for all i € N.

Definition 3.43 (Smaller than). V is smaller than W :=

a) There exists an embedding from V into W, i.e., there exists a function f: V — W
such that for all x,y € V, if x £ y, then f(x) # f(y) (f is injective),

b) but there is no surjection, and hence no bijection or one-one correspondence,
f:V — W.Notation: V <; W,

Theorem 3.19. N <; {0,1}.

Proof. a) There is an injection F : N — {0, I}N ; for instance, the function F with
F(n)(i) =0foralli # nand F(n)(n) = 1.

b) We show that each F : N — {0, I}N is not surjective, in other words, that for
each such function F there is an infinite sequence s in {0, 1} such that s # F (i) for
all i € N. So, let F : N — {0,1}. Then for all i € N, F(i) is an infinite sequence
of zero’s and one’s. The sequences F (i) may be represented in, for instance, the
following diagram:

0 1 2 3
FO)= 0 1 0 0
Fi)=1 0 1 0
F(2)= 0 0 1 1
F3)=1 1 0 0

s = 1 1 0 1

Construct the infinite sequence s by interchanging the zero’s and one’s at the diag-
onal F(0)(0), F(1)(1), F(2)(2), F(3)(3),..., i.e., define s(i) := 1 — F(i)(i). Then
forall i € N, s differs from F (i) at place i, in other words s(i) # F (i) (i). So, s # F (i)
for all i € N and therefore F : N — {0, 1}" is not surjective. O

Remark 3.2. The method used in the proof of Theorem 3.19 is called diagonalisa-
tion or the diagonal method of Cantor.
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Next we will show that P(N) =; {0,1}", from which it follows by Theorem 3.19
that N <; P(N).

Theorem 3.20. For any set V, P(V) = {0,1}".

Proof. The function K : P(V) — {0,1}", defined by K(U) = Ky, where Ky is the
characteristic function of U, is a bijection from P(V) to {0,1}V. First we show
that K is injective. So, suppose U; # Uy, say v € U; and v & U,. Then Ky, (v) = 1
and Ky, (v) = 0 and therefore K (U} ) # K(U,). To show that K is surjective, suppose
f€{0,1}V. Taking U := {v € V| f(v) = 1}, it follows that f = K(U), since f(v) = 1
iffveU,ie., iff Ky(v) = 1. O

Now that we have established that P({1,...,n}) = {0,1}11+"} we can use The-
orem 3.11 to determine the number of elements of P({1,...,n}), namely 2", the
number of elements of {0, 1}{1"} So, we know that for finite sets V the power set
of V is much larger than the set V itself. A similar proposition, Theorem 3.21, holds
for infinite sets, only we cannot expect to prove it by just counting. Cantor provided
us with a revolutionary technique for this purpose: diagonalisation.

From Theorem 3.19 and Theorem 3.20 follows Cantor’s theorem:

Corollary 3.6 (Cantor’s Theorem). N <; P(N). So, there are more subsets of N
than there are natural numbers.

Proof. By Theorem 3.19 there is an injection f : N — {0,1}"Y. By Theorem 3.20
there is a bijection g : P(N) — {0,1}N. Then ¢! o f : N — P(N) is an injection.
Suppose there were a surjection f : N — P(N). Then go f : N — {0,1}" would be
a surjection (see Exercise 3.23), which contradicts Theorem 3.19. a

More generally, we shall prove that any set V is smaller than its powerset P(V).
It is easy to see that any set V can be embedded into its powerset P(V): with every
element v € V corresponds the set {v} € P(V), more precisely, the function f from V
to P(V), defined by f(v) = {v}, assigns to different elements in V different elements
of P(V). Clearly, this function is not a one-one correspondence between V and P(V):
for instance, if W is a subset of V with two or more elements, then there isnov € V
such that f(v) = W. Even stronger, below we shall show that there cannot exist
a one-one correspondence between V and P(V). Consequently, for any set V, the
powerset P(V) of V is larger than V itself. Note that we already verified this for
finite sets, see Theorem 3.6.

Theorem 3.21. For any set V, V < P(V).

Proof. Clearly, the function f from V to P(V), defined by f(v) = {v}, assigns to
different elements of V different elements of P(V). So, f embeds V into P(V).
Next we have to show that there cannot exist a one-one correspondence between V
and P(V). So, suppose g is any function from V to P(V). Then we have to show
that there is a set W € P(V), i.e., W C V, such that for nov € V, W = g(v). Take
W ={veV|v¢&g(v)}. Thenindeed, there is nov € V such that W = g(v).
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For suppose for some vo € V, W ={v eV | v & g(v)} = g(vo). Then for all x,
xeWiff x € g(vg), i.e., forall x € V, x & g(x) iff x € g(vp). In particular, taking
x =y, vo & g(vo) iff vo € g(vp). Contradiction. O

The preceding theorem is an eye-opener: it says in particular that
N<; P(N) <; P(P(N)) <; P(P(P(N))) <j ....

So, there are many degrees of infinity: the degree of infinity of N is smaller than the
one of P(N), which in its turn is smaller than the one of P(P(N)), etc.

Definition 3.44 (Interval). For a,b € R let [a,b] := {x € R | a < x < b}; (a,b) :=
{xeR|a<x<b};la,b)={xeR|a<x<b};and (a,b] ={xeR|a<x<b}.
[a,b] is called the closed (at both sides) interval between a and b, while (a,b) is
called the open (at both sides) interval between a and b.

Next we will prove that N is not only smaller than P(N), but also smaller than [0, 1],
the set of all real numbers between 0 and 1. We will present a direct proof here for
historical reasons. The proof below is Poincaré’s proof. The first direct proof was
presented by Cantor.

Theorem 3.22. N < [0, 1]. So, there are more real numbers between 0 and 1 than
there are natural numbers.

Proof. Ttis easy to construct an embedding from N into [0, 1]. For instance, f : N —
[0, 1], defined by f(0) =0 and f(n) = % for n > 1, is an injection. Next we have
to show that there cannot exist a surjection g : N — [0, 1]. To do so, we shall prove
that for any function g : N — [0, 1] we can construct a real number b between 0
and 1 such that b # g(n) for any n € N. So, let g : N — [0, 1]. Given this g, we can
construct a chain Sy, S;, S»,... of segments (in Q), where each segment is contained
in the preceding one and the length of the segments is decreasing to 0, such that for
every n € N, g(n) is not an element of S,,.

Note that [0, 1] = [0, %] U [%, %] U [%, 1]. At least one of those three subsets does
not contain g(0), say So.

Suppose So, . .., S, have already been defined, such that
1. forall i, 0 <i <n, g(i) is not an element of S,
2.foralli,0 <i<n, S CS;, and
3.for all i, 0 < i < n, the length of S; equals 31

Let S, = [pn, gu]. Now S, is the union of

2pn+ 2pn+ +2 +2
[pm I’n3 ’1n], [ I’n3 ‘In’Pn 5 ’1n] and [Pn . qn;CInl

At least one of those three subsets of S, does not contain g(n+ 1), say S,+. This
chain of segments Sy, S1, 52, ... determines a real number b (which in general will
not be a rational number), such that for every n € N, b occurs in S, and hence, b €
[0, 1]. Now for every n € N, g(n) does not occur in S,, while b does occur in S,,.
Hence, for every n € N, b # g(n). a
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g(0)  &(2) g(l)
Nt i
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0
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Theorem 3.22 tells us that [0, 1] is not enumerable, more precisely, for each enu-
meration g : N — [0, 1] of elements of [0, 1], a real number b (between 0 and 1)
can be constructed such that » does not occur in that enumeration, i.e., foralln € N,
b # g(n). On the other hand, we can define only countably many individual real
numbers (between 0 and 1). This restriction is inherent to our language. Next we are
going to show that [0, 1] is equipollent to R and consequently, by Theorem 3.22,
that N <; R. In order to do so, we first show:

Theorem 3.23. [0, 1] =; (0, 1).

Proof. Consider the following denumerable subset of [0, 1]: {1,0, %, %7 %, ...}.Now
let £ : [0, 1T — (O, 1) be defined as follows:

0 111 1 1

[0, 1] [ 7 ]

(0’ 1) ( I | | | )
ST |

f) =3, f3)=mzifn>2,

f(()):%, f(x)_x 1fx¢{l 07273343 }

Clearly, f is a bijection from [0, 1] to (0, 1). Therefore [0, 1] =; (0, 1). O

In the proof of Theorem 3.23 we have used the fact that the uncountable sets [0, 1]
and (0, 1) have an denumerable subset, {1,0, é, %, 7} and {27 3 4, ..} respec-
tively. More generally, one can show:

Theorem 3.24. IfV contains a denumerable subset, then there is a proper subset of
V, which is equipollent to V. Hence, Euclid’s axiom 'the whole is greater than its
proper part’ does not hold for such sets V.

Proof. Let {xq, x1, X2,...} be adenumerable subset of V. Then V — {x(} is a proper
subset of V, which is equipollent to V. For the function g: V — V — {x}, defined
by g(x) =xif x & {xo0, x1, x2,...}, and g(x;) = x;1; for all i € N, is a bijection from
VoV —{x}. O
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By using an argument similar to the proof of Theorem 3.23 (see Exercise 3.30) one
can show:

Theorem 3.25. For a,b € R, [a,b] =| (a,b] = [a,b) = (a,b).

Amazingly, the length of an interval of real numbers does not change the cardinality
(number of elements) of the interval. Compare an interval of real numbers with an
elastic. By stretching the elastic out, its length becomes larger, but the number of
points in the elastic does not change.

Theorem 3.26. For a,b,c,d € R witha < b and ¢ < d, (a,b) =1 (¢,d).

Proof. First we translate a and ¢ to 0.

f1:(a,b) — (0,b—a), defined by f) (x) = x—a, is a bijection from (a, b) to (0, — a).
f2:(c,d)— (0,d—c), defined by f>(x) = x—c, is a bijection from (¢, d) to (0,d —¢).
Next we stretch (or shrink) (0,6 —a): f3: (0,b—a) — (0,d — ¢), defined by f3(x) =
%x, is a bijection from (0,5 — a) to (0,d — ¢). Then fz’l ofzofi:(a,b)— (c,d)is
a bijection from (a, b) to (c,d). O

A
AN
NN

0 d—c
f3(x)

Next we show that any interval (of finite length) of real numbers is equipollent to
the set R of all real numbers.

Theorem 3.27. (—1,1) = R.
Proof. f:(—1,1) — R, defined by f(x) = tg(%x), is a bijection from (—1,1) to
R. O
tg(5x)

|

=
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(=1,1) is again a proper subset of R, which is equipollent to R. So, there are as
many real numbers between —1 and 1 as there are real numbers on a straight line.

By Theorem 3.23, [0, 1] =; (0, 1), by Theorem 3.26, (0, 1) =; (-1, 1) and by
Theorem 3.27, (-1, 1) =; R. Hence, [0, 1] =1 R. Since, according to Theorem 3.22,
N < [0, 1], it follows that:

Theorem 3.28. N <; R

By Theorem 3.19 and Theorem 3.22 we know that {0, I}N ,1.e., the set of all infinite
sequences of zero’s and one’s, and [0, 1], i.e., the set of all real numbers between 0
and 1, each are larger than N. But how do the cardinalities of these two sets compare;
in other words, is one larger than the other or are they equipollent?

It is known that each real number in (0, 1] has a unique non-terminating decimal
extension. For instance, 1 =0.999. . ., % =0.333...and 0.5 =0.4999.. .. Hence, (0, 1]
=1 {0,1,...,9}. One can also show that {0,1,...,9} =, {0, 1} (see [3], section
18). Hence, it follows that:

Theorem 3.29. R =; (0,1] = {0,1,...,9}" =, {0, 1} =, P(N).

Traditionally R is called the continuum. The term is, however, also metaphorically
used for {0, 1}V, which is usually written as 2.
Summarizing: The sets in each column below are equipollent and are strictly smaller

than any set in a column to the right of it.

N {o,1}Y PP(N) PPP(N)

Z P(N) P(R) PP(R)
Q (a,b)
R

One may say that there are infinitely many degrees of infinity. As far as our limited
experience goes, it turns out that (leaving aside larger sets, such as PP(N), PPP(N))
most familiar infinite sets are either denumerable or equipollent to the continuum. A
natural question to ask is whether there are sets which are larger than N and smaller
than R.

Cantor conjectured in 1878 that each infinite subset of R is either denumerable or
equipollent to the continuum. This conjecture is known as the Continuum Hypothe-
sis (CH). A precise formulation reads:

Cantor’s Continuum Hypothesis: there isno set V C R such that N <; V < R.

So far the continuum hypothesis has withstood all attempts to settle it. From the
work of Godel (1938) and Cohen (1963) we know that the Continuum Hypothesis
is consistent with, but at the same time independent of, the basic axioms of set
theory (such as given by Zermelo and Fraenkel). The matter of its truth or falsity in
the intended universe of set theory however remains unsettled. Godel, in his paper
What is Cantor’s Continuum Problem? in [5] has analysed the evidence, which turns
out to be rather in favour of a rejection.

Exercise 3.30. Prove that (0, 1] = [0, 1], (0, 1] =/ (0, 1) and (0, 1] =; [0, 1).
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Exercise 3.31. Let X be an alphabet, i.e., a finite set of symbols. L is a language
over X := L C X*, where X* is the set of all finite sequences of elements of X. Prove
that the set of languages over X is uncountable.

Exercise 3.32. Prove that [0, 1] =; [0, 2] and that (0, 1) =; (0, 3).

Exercise 3.33. V is Dedekind infinite := there is an injective function with domain
V and whose range is a proper subset of V. Prove: V is infinite iff V is Dedekind
infinite. Hint: If V is infinite, then by the axiom of choice V has an denumerable
subset. Next use Theorem 3.24. For the axiom of choice see van Dalen, e.a. [3].

3.7 Solutions

Solution 3.1.

N¢N {2,3} Z {N} 0Z0 {0} ¢0

N e {N} {2} Z {N} 0C0 {0}z 0
NCN {2} CN 0e {0} {0} C {0}
N¢ {{N}} 2¢{1,{2},3} 0 C {0} 0C{0.{0}}

NZ{N} {2} e{1,{2},3} 0¢{{0}} 0<{0,{0}}

{1.2}¢N - {1,{2}} 2{1,{2,3}} 0 C{{0}} {0} C {0.{0}}
{2y N - {1L{2}}c{1,{2},3} {0} {{o}} {0} <{0.{0}}
{12} Z{N} {-2,2}¢ZN {0y 2 {{0}} 0 {{0,{0}}}

Solution 3.2. a) W C V iff VNW = W. Proof: We have to show that

1) it W CV, then VNW =W, and conversely, (ii)) if VAW =W, then W C V.
Proof of (i): Suppose W C V. In order to show that VW =W it suffices — by the ax-
iom of extensionality — to show that V "W and W have the same elements. Clearly,
each element of V NW is also an element of W. Conversely, that each element of W
also is an element of V "W follows from the assumption that W C V.

Proof of (ii): Suppose VNW = W. To show: W C V. So, let x € W. Then it follows
fromVNW =W thatx € VNW. Hence,x € V.

b) W CViff VUW =V is shown in a similar way.

Solution 3.3. a) To show: U — (VUW) = (U -V )N (U —W).
Proof: xeU— (VUW) 2 xceUA-(xeVUW)
xeUAN-(xeVVXeEW)
XEUNXEVAXEW)
(xeUANXEVI)ANxeUNxEW)
xe(U—-V)Axe(U-W)
xe(U-=V)n (U-W).
b)U—(VNW)=(U—-V)U(U—W) is shown in a similar way.

(IR

Solution 3.4. a) Let U =0,V = {0} and W = {{0}}. Then U € V and V € W, but
U ¢ W. b) Proof: Suppose that U CV and V C W, ie., Vx[x € U — x € V] and
Vx[x € V — x € W]. Then it follows that Vx[x e U — x € W], i.e., U CW.
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Solution 3.5. 0 has only one subset: 0. So, P(0) = {0}.

P(0) = {0} has 2' = 2 subsets: @ and {0}. So, P(P(0)) = {0,{0}}.
P(P(0)) = {0,{0}} has 2> = 4 subsets: 0, {0}, {{0}} and {0,{0}}.
So, P(P(P(0))) = {0, {0}, {{0}},{0,{0}}}.

Solution 3.6. (a) Suppose that W C V. Then Vx[x C W — x C V], in other words,
Vx[x € P(W) — x € P(V)] and this means precisely that P(W) C P(V).

(b) Suppose P(W) C P(V), i.e., Vx[x € P(W) — x € P(V)], in other words,

Vx[x CW — x C V]. Now we know W C W. Hence also W C V.

(c) Suppose P(W) = P(V). Then P(W) C P(V) and P(V) C P(W). Hence, applying
(b) twice, W CVandV CW.Hence W =V.

(d) Suppose P(W) € P(V),i.e., P(W) CV.Now W € P(W),andso W € V.
Warning: The converse of (d), if W € V, then P(W) € P(V), does not hold. Coun-
terexample: Let W := {0} and V := {{0}}. Then P(W) = {0,{0}} and P(V) =
{0,{{0}}}.So P(W) & P(V), while W € V.

Solution 3.7. a) Proof: Suppose P(W) € PP(V). This is equivalent to P(W) C P(V).
Since W € P(W), it follows that W € P(V).

b) Proof: Suppose W € P(V), i.e., W C V. Then Vx[x CW — x C V], i.e., Vx[x €
P(W)—=xeP(V)],ie., P(W) Q P(V), or equivalently, P(W) € P(P(V)).
¢) Proof: Suppose P(W) C PP(V), i.e., Vx[x € P(W) — x € PP(V)]. W C W, so

W € P(W); therefore, W € PP(V); in other words, W C P(V).
d) Proof: Suppose W C P(V). Then Vx[x CW — x C P(V)], i.e., Vx[x € P(W) —
x € P(P(V))], or, equivalently, P(W) C P(P(V)).

Solution 3.8. i) {v} # 0. So, by the regularity axiom, there is some z € {v} such
that zN{v} = 0, i.e., v {v} = 0. Now suppose v € v. Then v € v and v € {v}; so,
vN{v} # 0. Contradiction. Therefore, by the regularity axiom it follows that v & v.
ii) {v1,...,vn} # 0. So, by the regularity axiom, there is some z € {vi,...,v,} such
that zN{vy,...,v,} = 0. Now suppose vi € vy Avy E V3 A...Vy_] €V AV, € V.
Then there is no z € {vy,...,v,} such that zN {vy,...,v,} = 0. Contradiction.

Solution 3.9. a) From right to left is trivial. From left to right: Suppose (v,w) =
(x,y), ie., {{v,0},{w,{0}}} = {{x,0},{»,{0}}}. So, these two sets have the same
elements; hence, (i) {v,0} = {x,0} and {w, {0} } = {y,{0} }, or (ii) {v,0} = {y,{0}}
and {w,{0}} = {x,0}.In case (i) v=x and w = y. In case (ii) it follows from 0 # {0}
thatv= {0} andy=0; w=0and x = {0}. Hence,v=xand w = y.

b) From right to left is trivial. So, suppose (v,w) = (x,y), i.e., {{»,0},{w}} =
{{x,0},{y}}- So, these two sets have the same elements. Hence, (i) {v,0} = {x,0}
and {w} = {y}, or (ii) {v,0} = {y} and {w} = {x,0}. In case (i), v=xand w = y.
In case (ii)),v=y=0and w =x = 0; so, againv=xand w = y.

Solution 3.10.
(u,v) eUx (VUW) iffuc U andve VUW

ucUand(veVorveW)
weUandveV)or(uceUandv e W)
(u,v) eU xVor (u,v) eUxW

(u,v) € (UxVYU(U xW).
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Solution 3.11. Counterexample: Let U = {1}, V = {2}, W = {3}. Then U x
(Vxw)={1}x{(2,3)} = {(1,(2,3))}, which is different from (U x V) x W =
{(1,2)} x {3} ={((1,2),3)}, since (1,(2,3)) # ((1,2),3).

Solution 3.12. Dom(R) = {0,1,2,4}, Ran(R) = {1,2,3,4,7}. R is not a function,
because 0 € Dom(R) and there is more than one z € Ran(R) such that (0,z) € R.
R = {(1,0),(3,0),(4,0),(1,2),(2,1),(7,4)}. R;S = {(0,4),(0,2),(2,4)}. S;R =
{(1,7),(3,1),(5,1),(5,3),(5,4)}.

Solution 3.13. a) Let U be a partition of V. To prove: S is reflexive, symmetric and
transitive. (1) S is reflexive. Suppose v € V. Then there is precisely one set W € U
such that v € W; hence, vSv. (2) S is symmetric. Suppose v,w € V and vSw, i.e., there
is a set W in U such that both v and w are elements of W. Then also w and v are
elements of W; hence, wSv. (3) S is transitive. Suppose u,v,w € V and uSv and vSw.
Then for some W in U both u € W and v € W;. Also for some W, in U both v € W,
and w € W,. Since U is a partition of V and v € W) NW,, it follows that W| = W,.
So, u € Wi and w € Wy; therefore uSw.

b) vSw is defined as follows: there is a set [u|g in V /R such that v,w € [u]g, i.e., vVRu
and wRu. To prove: vSw iff vRw. From left to right: suppose vSw, i.e., vRu and wRu
for some u € V. Then vRu and uRw. Hence, vRw. From right to left: Suppose vRw.
Then vRv and wRv. Hence, there is a set [u]g in V /R, namely [v]g, such that v € [u]g
and w € [u]g, i.e., vSw.

Solution 3.14. a) R is neither reflexive nor transitive. b) R is not symmetric. ¢) R is
an equivalence relation. d) R is an equivalence relation.

Solution 3.15. To prove: (1) U{V, | r e R} =R x R. (2) The elements of {V,| r e R}
are pairwise disjoint. a) Proof for V, = {(x,y) € R? | y = x+r}: (1) Forany x,y € R
take r := y —x. Then (x,y) € V,. (2) Suppose r # r. Then, clearly, V., NV, = 0.
Geometrically, V- as defined above is a straight line cutting the y-axis in r and the
x-axis in —r. The equivalence relation R is defined by (x1,y1)R(x2,y>) := for some
reR, (x1,y1) € Vrand (x2,y2) € V. Hence, (x1,y1)R(x2,y2) iff y1 —x1 = y2 —x2.

b) The proof that {V, | r € R} with V, := {(x,y) € R? | r = x> +-y?} is a partition
of R x R is analogous to the proof given in a). In this case V; is a circle with centre
(0,0) and radius r. The equivalence relation R is defined by (x1,y1)R(x2,y2) :=
x2 —&—y% :x% +y%.

Solution 3.16. To prove: (1) U{V,, | n € Z} = Z. (2) The different elements of {V,, |
n € Z} are pairwise disjoint. Proof: (1) Take any m € Z. Then there is an n € Z such
thatm =n+5-qforsome g € Z. So,m € V,,.

@) Vy={...,—10,-5,0, 5,10, ...} , Vs = Vp,

Vi={..., =9, -4,1,6, 11, ...} , Vg =V,
Vo={..., =8,=3,2,7,12, ...} ,V; =V,
Va={..., =7, -2,3,8,13, ...} , Vg =V3,
Va={..., =6, —1,4,9 14, ...} , Vo =V, etc.

Solution 3.17. For any set V consider the empty relation Ry on V, i.e., for all x,y €
V, notxRpy. Clearly, Ry is not reflexive, but Vx,y € V [xRpy — yRpx] is logically true,
since xRgpy is false; in a similar way one sees that Ry is transitive.
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Solution 3.18. The argument presupposes there is at least one pair (x,y) such that
XRy. This argument is not valid if R = 0.

Solution 3.19.

{1y {23 {3}

0

Solution 3.20. a) R; is a relation between {1,2,3,4} and {1,2,3,4}. b) Ry is a
function from {1,2,3,4} to {1,2,3,4}. ¢) R3 is a bijection from {1,2,3,4} to
{1,2,3,4}. d) Ri;Ry = {2,2),(3,2),(4,2),(4,3)} is a relation between {1,2,3,4}
and {1,2,3,4}. e) R3 is a bijection from {1,2,3,4} to {1,2,3,4}.

Solution 3.21. a) Proof: Suppose go f : U — W is injective, x # x" and f(x) = f ().
Then, because g : V — W is a function, g(f(x)) = g(f(¥')). But go f is injective.
So, we have a contradiction.

b) Proof: Suppose go f: U — W is a surjection. Then for every w € W thereisu € U
such that w = g(f(u)). Hence, for every w € W there is v € V, namely v = f(u), such
that w = g(v). In other words: g : V — W is surjective.

¢) Counterexample: g* o f* : N — N is an injection; but g*(0) = 0 and g*(1) = 0;
hence, ¢g* : N — N is not an injection.

d) Counterexample: g* o f* : N — N is a surjection, but there is no n € N such that
0= f*(n).

e) Counterexample: g* o f* : N — N is a bijection, but f* : N — N is not a surjection
and g* : N — N is not an injection.

Solution 3.22. Let f: V — W. f: W — V := for all w € W there is precisely one
v € V such that f(w) = v, or equivalently, f(v) =w. Hence, f: W = Viff f: V - W
is a bijection.

Solution 3.23. a) Proof: Suppose f: U — V and g : V — W are injective. Then for
any x, € U, if x £ X, then f(x) # f(') and g(£(x)) # g(f(')).

b) Proof: Suppose f: U — V and g : V — W are surjective. Then for every w € W
there is v € V such that w = g(v). Also for every v € V there is u € U such that
v = f(u). Hence, for every w € W there is u € U such that w = g(f(u)).

¢) This follows immediately from a) and b).

Solution 3.24. f : N x N — N, defined by f(n,m) =2"(2n+1) — 1, is injective.
Proof: suppose that 2"(2n+1) — 1 = yid (2n' +1) — 1. Then, supposing that m >

/ / /.
fopmen 22’; 111 But 2" is even, except when m = m/; and an odd number

m
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divided by an odd number is again an odd number. So, 2m=m' — 1 and m = m'.
Consequently, also n = n’.

Solution 3.25. a) Suppose f were an isomorphism from (N, <) to (Z, < ). Let
f(0) = z with z € Z. Since f is an isomorphism, for all k € N, z < f(k). So, f is not
surjective, since the elements of Z smaller than z are not in the range of f.

b) Suppose f were an isomorphism from (Z, < ) to (Q, < ). Let f(0) = g; and
f(1) = go with g1, g2 € Q. Then between ¢; and g, there is a rational number g
with g1 < g < ¢». But there is no integer i in Z between 0 and 1 such that f(i) = g.
Hence, f is not surjective.

Solution 3.26. Let f : {2,4,6,12} — P({1,2}) be defined as follows: f(2) = 0,
f4)={1}, f(6) ={2} and f(12) = {1,2}. Then f is a bijection and for all n,m €
{2,4,6,12}, n/miff f(n) C f(m).

12 {1,2}
AN
4\/6 {1}2 g{2}

2 0

Solution 3.27. a) The function f from Z to N,,, defined by f(n) = 4n and
f(—n) =4n—2for any n € N, is a one-one correspondence between Z and N,y

Z: 0 -1 1 -22 -33
[ Y A A
N: 0 1 2 3 4 5 6
N O ) R
Neewi 0 2 4 6 8 10 12

b) The function f from Ny, to Nyyy, defined by f(2n) =2n+1foralln € N, isa
one-one correspondence between the two sets in question:

Neven: 0O 2 4 6 8 10 12

I e
N(,ddi 1 3 5 7 9 11 13

Solution 3.28. a) Let {0, 1}" be the set of all finite sequences of 0’s and 1’s of length
n (n € N). For each n € N, {0,1}" has 2" elements. Now {0, 1}* is the union of all
sets {0,1}" with n € N. Hence, {0, 1}* is the union of denumerably many finite sets
and hence denumerable. b) Let X, (n € N) be the set of all words over X of length
n. Let k be the number of symbols (characters) in X. Then X, has k" elements. Now
X* is the union of all X, with n € N. Hence, X* is the union of denumerably many
finite sets and hence denumerable.

Solution 3.29. Suppose V is enumerable. Let V,, (n € N) be the set of all finite se-
quences of elements of V of length n. For each n € N, V,, is enumerable. Now V*, the
set of all finite sequences of elements of V, is the union of all V,, with n € N. Hence,
V* is the union of denumerably many enumerable sets and hence, by Theorem 3.18,
V* is denumerable.
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Solution 3.30. (i) f : (0, 11 — [0, 1], defined by f(1) =0, f(1) = -1 forn €
N, n>2, f(x) =xifx & {1,3,%,...}, is a bijection.

(i) £ : (0, 11 = (0, 1), defined by f(3) = 745 forn €N, n > 1, f(x) =xif x &
{1,1,%,...}, is a bijection.

(iii) f : (0, 11 — [0, 1), defined by f(1) =0, f(x) = x if x # 1, is a bijection.

Solution 3.31. By Exercise 3.28, X* is denumerable. Hence, by Theorem 3.21,
P(X*) is uncountable. And P(X*) is precisely the set of all languages over X, since
L is a language over X iff L € P(X*).

Solution 3.32. a) f : [0, 1] — [0, 2], defined by f(x) = 2x, is a bijection.
b) f: (0, 1) — (0, 3), defined by f(x) = 3x, is a bijection.

Solution 3.33. Suppose V is infinite. Then by the axiom of choice V has a de-
numerable subset {xo,xj,x2,...}. By Theorem 3.24, g:V — V — {x¢}, defined by
g(x;) = x;41 and g(x) = x if x & {x0,x1,%2,...}, i a bijection with domain V and
range V — {x¢}. Conversely, suppose V is Dedekind infinite, i.e., there is an injec-
tive function with domain V and whose range is a proper subset of V. Then V cannot
be finite. Therefore, V is infinite.
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Chapter 4
Predicate Logic

H.C.M. (Harrie) de Swart

Abstract In this chapter we extend the language of propositional logic to the one
of predicate logic, in which we also can analyse arguments containing subjects and
predicates, such as in, for example: All men are mortal; therefore: Socrates is mortal;
and in: Socrates is a philosopher; therefore: someone is a philosopher. These sim-
ple arguments cannot be adequately dealt with in propositional logic. The semantic
notions of logical consequence and logical validity and the syntactic notions of (log-
ical) deducibility and provability are adapted to the language of predicate logic, and
again it turns out that these two notions are extensionally equivalent (soundness and
completeness).

4.1 Predicate Language

There are many arguments which cannot be analyzed adequately in propositional
logic. An example is the following argument:

John is ill
Therefore: someone is ill.

If we translate the premiss and the conclusion into a propositional language, two
atomic propositional formulas P; and P, respectively result. However, P, is not a
valid consequence of P;, while the argument above certainly is correct. The point is
that Py and P, are two different atomic formulas not expressing the internal ‘subject-
predicate structure’ of the premiss and the conclusion in the argument above. And
it is the similarity in the internal structure of the premiss and the conclusion which
is responsible for the correctness of the argument above.

So, we have to enrich the propositional language with symbols to indicate sub-
jects, such as ‘John’ and ‘someone’ and symbols to indicate predicates, such as ‘is
ill’. In propositional logic, treated in Chapter 2, one can only analyze those argu-
ments the correctness of which depends on the meaning of the propositional opera-
tions ‘if ..., then ...’, ‘and’, ‘or’ and ‘not’. In predicate logic, also called predicate
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182 4 Predicate Logic

calculus, one can also analyze arguments the correctness of which depends on the
‘subject-predicate structure’ of the sentences involved.

With the help of a number of examples we introduce quantifiers, individual vari-
ables, constants and terms. Then we pay attention to the translation of English sen-
tences into formulas of predicate logic and consider both intended and non-intended
interpretations of these formulas. The scope of a quantifier and free and bound oc-
currences of a variable in a formula A are defined. A precise definition of the lan-
guage of predicate logic is given, starting with an alphabet from which formulas can
be built by means of connectives and quantifiers.

4.1.1 Quantifiers, Individual Variables and Constants

Below we give a number of examples of atomic propositions, grouping together
those which have a similar internal (subject-predicate) structure.

1. Each of the numbers 2, 4, and 6 is even.
All natural numbers are positive.
All natural numbers are negative.
All men are mortal.

The atomic propositions of group 1 all are of the following form:

all objects (of a certain kind) have the property P;
in other words: for each object x, x has the property P.

Notation: Vx[P(x)].

Here P(a) stands for: a has the property P. In P(a), ‘a’ is called an individual vari-
able (or object variable) to emphasize that a ranges over the domain of individuals
(or objects). The variable a indicates an open place, which may be filled by the name
of a concrete individual, for instance, ‘Socrates’. P(Socrates) then means: Socrates
has the property P. P(x) results from P(a) by replacing a by x.

Vx is read as: for each object x. The symbol V is called a universal quantifier.
(The latin ‘quantum’ means ‘how much’.) One might also use Ax (for All x) or A x
instead of Vx; the first one because it does not need any special symbol, the second
one because of its analogy with A (and). For instance, ‘each of the numbers 2, 4
and 6 is even’ is equivalent to ‘2 is even and 4 is even and 6 is even’. However, in
the case of an infinite domain as in ‘all natural numbers are positive’, for instance,
the universal quantifier can be represented only by infinitely many conjunctions
(0 is positive and 1 is positive and 2 is positive and ...). Such an expression with
infinitely many conjunctions is not a formula, since formulas are by definition finite
expressions. Therefore, we need quantifiers.

Instead of the variable x one may also use another variable y: Vx[P(x)] and
Vy[P(y)] have the same meaning! They both mean: all objects (of a certain kind)
have the property P.
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2. At least one of the numbers 2, 3 and 4 is even.
There is some natural number x such that x > 0.
Some men are immortal.

The atomic propositions of group 2 are all of the following form:

some objects (of a certain kind) have the property P;
in other words: there is at least one object x such that x has the property P.

Notation: 3x[P(x)].

dx is read as: there is at least one object x such that .... The symbol 3 is called
an existential quantifier. One might also use Ex (there Exists an x such that) or \/x
instead of Jx; the first one again because it does not need any special symbol, the
second one because of its analogy with V (or). For instance, ‘There is some natural
number x such that x is even’ is analogous to ‘O is even or 1 is even or 2 is even or
...”. Again, 3y[P(y)] and 3x[P(x)] have exactly the same meaning.

The predicate in an atomic proposition may be built from simpler predicates by
means of ‘if and only if (iff)’, ‘if ..., then ...”, ‘and’, ‘or’ and ‘not’. For instance,
using < for ‘iff’, — for ‘if ..., then ...”, A for ‘and’, V for ‘or’ and — for ‘not’:
‘For each number x, x is even iff x? is even’ is of the form Vx[P(x) = Q(x)].

‘All animals having four legs are cows’ is of the form Vx[P(x) — Q(x)].

‘Some natural numbers are positive and even” is of the form Ix[P(x) A Q(x)].

‘All natural numbers are positive or negative” is of the form Vx[P(x) V Q(x)].
‘There is some natural number x such that not x > 0’ is of the form 3x[—P(x)].

A
V

In an atomic proposition more than one quantifier may occur, as is the case in the
following examples:

‘All natural numbers are equal’, or equivalently, ‘for every natural number x and for
every natural number y, x =y’ is of the form VxVy[R(x,y)].

‘There are different natural numbers’, or equivalently, ‘there is a natural number x
and there is a natural number y such that x # y” is of the form Ix3y[R(x,y)].

Here ‘R(a,b)’ stands for: a is in the relation R to b. In R(a,b), ‘a’ and ‘b’ are
individual variables indicating open places which may be filled by the names of
concrete individuals, for instance, by ‘Janet’ and ‘Peter’ respectively. ‘R(Janet, Pe-
ter)’ then means: Janet is in the relation R to Peter. ‘R(x,y)’ results from ‘R(a,b)’
by replacing a and b by x and y respectively.

In ‘John loves Jane” we call ‘John’ the subject and ° - loves Jane’ or ‘a loves
Jane’ the predicate of the sentence. In logic we use the expression predicate in a
more general way than in grammar. In grammar ‘a loves Jane’ is a predicate, but
not ‘John loves b’ or ‘a loves b’. In grammar, we call ‘John’ the subject and ‘Jane’
the object of the proposition ‘John loves Jane’. In mathematics and in logic, but not
in grammar, ‘John loves b’ and ‘a loves b’ are also called predicates, with one and
two arguments respectively; and both ‘John’ and ‘Jane’ are called subjects of the
proposition ‘John loves Jane’. Notice that ‘a loves Jane’ assigns a proposition to
each value of a; ‘John loves b’ assigns a proposition to each value of b and ‘a loves
b’ assigns a proposition to each pair of values of a and b.



184 4 Predicate Logic

‘a loves Jane’ is a predicate with one argument, also called a property; and so
is ‘John loves b’. But ‘a loves b’ is a predicate with two arguments, also called a
(binary) relation. ‘a and a, are the parents of b’ is an example of a 3-ary predicate,
also called a ternary relation.

3. Every person has a mother; or equivalently: for every person x there is some
person y such that x has y as mother.
For every natural number there is a greater one; or equivalently: for every natural
number x there is some natural number y such that x < y.

The atomic propositions of group 3 are all of the form:

for every object x there is an object y (possibly depending on x) such that x is in the
relation R to y.

Notation: Vx3y[R(x,y)].

4. Someone is the mother of all persons; or equivalently: there is some person y
such that for all persons x, x has y as mother.
There is a greatest natural number; or equivalently: there is some natural number
y such that for all natural numbers x, x < y.
There is a least natural number; or equivalently: there is some natural number y
such that for all natural numbers x, y < x.

The atomic propositions of group 4 all are of the form:

there is some object y (independent of any x) such that for all objects x (including y
itself), x is in the relation R to y.

Notation: 3yVx[R(x,y)].

From the examples in group 3 and 4 it should become obvious that the reading of
Vx3y[R(x,y)] is quite different from the reading of FyVx[R(x,y)]. So, the order of the
quantifiers is very important. The following example may clarify the difference: It
is true that for every natural number x there is a natural number y such that x> =y,
which is of the form Vx3y[R(x,y)], but it is not true that there is a natural number y
such that for every natural number x, x> = y, which is of the form JyVx[R(x,y)].

In an atomic proposition the names of concrete individuals may occur, as is the case
in the following examples.

5. Socrates is a man.
Socrates is mortal.
3 is odd.
4 is even.

The atomic propositions of group 5 are all of the form:
¢ has the property P.
Notation: P(c).
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The letter ‘c’ is used as the name for some concrete object. Different objects within
the same context should be indicated by different names, for instance, cy,c3,.... We
call ‘cy’, ‘ca’, ... individual constants: throughout some context every occurrence
of each of them is the name for the same object.

‘All natural numbers are greater than or equal to zero’ and ‘everyone loves Janet’
both are of the form Vx[R(x,c)], where R(a,c) is to be read as: a is in the relation
R to c. The symbol ‘a’ is an individual variable and the symbol ‘¢’ is an individual
constant .

From the atomic propositions considered above one can build composite proposi-
tions by means of the propositional operations studied in Chapter 2 on propositional
logic. For instance, ‘if all natural numbers are even, then all natural numbers are
odd’ is a composite proposition of the form Vx[P(x)] — Vx[Q(x)], not to be con-
fused with the atomic proposition ‘for each natural number x, if x is even, then x is
odd’, which is of the form Vx[P(x) — Q(x)].

Note the difference between:

a) Vx[P(x)] — Vx[Q(x)]: if every object x has the property P, then also every object
x has the property Q.

b) Vx[P(x) — Q(x)]: for each (individual) object x, if x has the property P, then x
also has the property Q.

In a) the implication — is between the two sentences Vx[P(x)] and Vx[Q(x)] to form
a new sentence Vx[P(x)] — Vx[Q(x)]. In b) the implication — is between the two
predicates P(x) and Q(x) to form a new predicate P(x) — Q(x) and the formula in
b) says that every object x has this property P(x) — Q(x). The formulas in a) and b)
have quite different meanings! For instance, ‘if all natural numbers are even (which
is false), then all natural numbers are odd (which is also false)’ is an instance of the
formula in a) and is true (0 — 0 = 1), while ‘for each natural number x, if x is even,
then x is odd’ is an instance of the formula in b) and is false.

Similarly, ‘if there is an even natural number, then there is a natural number not
equal to itself” is a composite proposition of the form 3x[P(x)] — Ix[Q(x)] and false
(1 — 0 =0), not to be confused with the atomic proposition ‘there is some natural
number x such that if x is even, then x # x’, which is of the form Ix[P(x) — Q(x)]
and true, because ‘if 3 is even, then 3 £ 3’ is true (0 — 0 = 1).

4.1.2 Translating English into Predicate Logic,
Intended and Non-intended Interpretation

The English sentences ‘John is ill” and ‘Someone is ill’ have the same noun phrase
(NP) - verb phrase (V P) syntactic structure, while their translations into the predi-
cate language do not have the same (logical) structure:

John is ill I()),
Someone isill  Ix[I(x)].
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This makes automated translation of English into symbolic logic a non-trivial mat-
ter. The following six English sentences also have the same NP-V P structure, while
their translations into predicate logic have quite different (logical) structures.

English sentences Usual translation into logic
(1) John walks W (j)
(2) Every student walks  Vx[S(x) — W (x)]
(3) Some student walks  3x[S(x) AW (x)]
(4) No student walks —3x[S(x) AW (x)]
(5) Somebody walks [W (x)]
(6) Nobody walks —3x[W (x)] or Vx[-W (x)]

We have translated the sentences (1) - (6) into a formal predicate language the al-
phabet of which consists of the following symbols with the corresponding intended
interpretation:

Symbols Intended interpretation

7 persons

j John

w; S is walking; being a student
e NV

v, 3

LG

The translations of the sentences (1) - (6) are called formulas of this formal lan-
guage. The interpretation of the connectives and the quantifiers has been fixed once
and for all in Section 2.2 of Chapter 2 on propositional logic and in Subsection 4.1.1
at the beginning of this section; for this reason these symbols are called logical sym-
bols. But the interpretation of the other symbols can be varied and therefore the
symbols ‘j’, ‘W’ and ‘S’ are called non-logical symbols. Consider, for instance, the
following non-intended interpretation:

Symbols Example of a non-intended interpretation
X, Yy natural numbers

j 0

w; S is even; is odd

Under this (non-intended) interpretation the meanings of the formulas above are as
follows:

formula Non-intended interpretation, as specified above
W(j) 0 is even;

Vx[S(x) — W (x)] Every odd natural number is even;

Ax[S(x) AW (x)] Some natural number is both odd and even;
—3x[S(x) AW (x)] No natural number is both odd and even;

[W (x)] Some natural number is even;

—3x[W (x)] No natural number is even.

The translation of the correct argument

If every student walks and John is a student, then John walks
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into propositional logic would be an invalid formula of the form P A Q — R, and
hence such a translation is inadequate. However, the translation of this sentence into
the predicate language specified above is

Vx[S(x) = W) AS(j) = W()) ()

Now the reader can easily convince himself that this formula yields a true proposi-
tion for each possible interpretation (intended or non-intended): for every domain
D, for every unary predicate S* and W* over D and for every element j* in D, if all
elements of D with the property S* have the property W* and j* has the property
S*, then j* also has the property W*. For instance: if every Soccer player Wins the
lottery and John is a Soccer player, then John Wins the lottery; and: if every Son of
my father is Wealthy and John is a Son of my father, then John is Wealthy. For this
reason the formula (x) is called valid . The validity of (x) is guaranteed by the fixed
meaning of the logical symbols ¥, — and A in this formula.

Other examples of valid formulas of the formal language under consideration
are: Vx[S(x) — S(x)], Vx[-(W (x) A=W (x))], and
Vx[S(x) = W(x)] AVx[S(x)] — Vx[W (x)].
We will study valid formulas more closely in Section 4.2.

Suppose we want to translate sentences about addition and multiplication of natural
numbers into a logical language. Examples of such sentences are:
(1) for any natural number n, n+ 0 = n,
(2) for any natural number n, n x 0 = 0,
(3) there is no natural number » such that n x n = 2.
Of course, we might translate these sentences into atomic propositional formulas Py,
P, and P; of propositional logic, respectively. This suffices, if we want to conclude,
for instance, that the sentence ((1) or (2)) logically follows from sentence (1), be-
cause P; V P, is a valid consequence of P;. However, if we want to conclude from
sentence (1) that 2+ 0 = 2, our translation into propositional formulas is not ade-
quate. The proposition 2 40 = 2 should be rendered by a different atomic formula
Q and we know from Chapter 2 that Q is not a valid consequence of P;; on the other
hand, the proposition 2 + 0 = 2 does follow from proposition (1). Therefore, a trans-
lation into the language of predicate logic, exhibiting the subject-predicate structure
of the sentences involved, is needed.

We may take a predicate language with the following non-logical symbols, hav-
ing the corresponding intended interpretation:

Non-logical symbols Intended-interpretation
0,1,2,... Zero, one, two, . ..
= is equal to (=)

A Ala,b,c): a plus b equals ¢ (Addition)
M M(a,b,c): atimes b equals ¢ (Multiplication)
The symbols 0, 1, 2, ... are individual constants. the symbol = is a binary predi-

cate symbol, i.e., with two arguments, and the symbols A (Addition) and M (Mul-
tiplication) are ternary predicate symbols, i.e., with three arguments. The transla-
tions of sentences (1), (2) and (3) are now respectively: Vx[A(x,0,x)], Vx[M(x,0,0)],
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—3x[M(x,x,2)] and the translation of 2 + 0 = 2 now becomes A(2,0,2), which is a
valid consequence of Vx[A(x,0,x)].

Of course, once having built these formulas one can forget about their origin and
consider non-intended interpretations, like the following one.

X,y : persons
0,1,2,... : John, Mary, Janet, ..., respectively
a=b :aloves b

A(a,b,c) : a and b are the parents of ¢
M(a,b,c) : a and b are the grandparents of c.

Needless to say that under this non intended interpretation the formula A(2,0,2)
yields a false proposition: Janet and John are the parents of Janet.

4.1.3 Scope, Bound and Free Variables

In Vx[A(x)] and in 3x[A(x)] we call A(x) the scope of the quantifier Vx.
For example, in the expression

Ax[R(a,x) — S(x,a,b)] — R(a,b)

the scope of the 3x is the part R(a,x) — S(x,a,b).
In the expression

VB IR(x,y) = IS (,2)]] = ValR(x,a)]

the scope of the first occurrence of the Vx is the part Iy[R(x,y) — 3z[S(y,z)]], the
scope of Jy is the part R(x,y) — 3z[S(y,z)], the scope of Iz is the part S(y,z) and the
scope of the second occurrence of the Vx is ~R(x,a).

Similarly, in ~A, A= B, A— B, AAB and AV B we call the expression A or
pair of expressions A, B the scope of the propositional connective in question.

Definition 4.1 (Bound/Free occurrence of a variable in a formula). An occur-
rence of a variable x in an expression A is said to be bound (or as a bound variable),
if the occurrence is in a quantifier Vx or 3x or in the scope of a quantifier Vx or dx
(with the same x); otherwise, free (or as a free variable).

It has turned out that it is convenient to use different letters for free and bound
variables:

ai, az, as, ... for free occurrences only and
X1, X2, X3, ... for bound occurrences only.

Example 4.1. In ‘ay is the mother of a;” and in ‘a; > a;’ both occurrences of a; and
a, are free.
In 3x,[x, is the mother of a;] (a; has a mother) and in Vx;[x, is the mother of a;]
(everyone is a mother of a;), the occurrence of a; is free and both occurrences of x;
are bound.
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In Vx;3x,[x; is the mother of x;] (everyone has a mother) and in 3x;Vx;[x; is the
mother of x;] (someone has everyone as mother) both occurrences of x; and both
occurrences of x, are bound.

The occurrences of the variables a| and a, are free in 3x;Vxy[R(x1,a1) AR(x2,a2)],
while both occurrences of the variables x; and x, are bound in this formula.

A variable a which occurs as a free variable (briefly, occurs free) in A is called a free
variable of A, and A is then said to contain a as a free variable (briefly, to contain a
free); and likewise for bound variables.

4.1.4 Alphabet and Formulas

In Subsection 4.1.2 we introduced two different formal predicate languages: one for
expressing that certain students walk (John was one of them) and one for expressing
certain properties of natural numbers. In the exercises at the end of this section
several other predicate languages are introduced. All predicate languages have the
individual variables, the connectives and quantifiers in common, they differ only in
the choice of the individual constants and predicate symbols, which depends on the
context. We do not want to study any particular one of these languages, but we want
to study these languages in general, so that any of our results is applicable to each
particular language we want to consider.

So, in order to retain flexibility for the applications, we shall assume throughout
this chapter that we are dealing with one or another object language in which there
is a class of individual constants

Cl, C2, C3, ...
and a class of predicate symbols
P, P B, ...

where each P; is supposed to be a different n;-place predicate symbol, i.e., taking
n; arguments (n; = 0,1,2,...). By including the possibility that n; = 0, we allow
Py, P, ... to express atomic propositions. Consequently, the predicate calculus ex-
tends the propositional calculus. That is, any propositional language can be con-
ceived of as a predicate language: instead of the atomic formula P;, one can take a
0-ary predicate symbol P; (with n; = 0).

In Chapter 3 we introduced a formal predicate language for set theory and in
Chapter 5 we shall introduce another predicate language for arithmetic, in which
we can express properties of natural numbers. In The Proper Treatment of Quantifi-
cation in Ordinary English, R. Montague presented a formal language in which a
suitably restricted and regulated part of English or some other natural language can
be expressed.

Thus, throughout this chapter our logical predicate language shall consist of the
following symbols:
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Definition 4.2 (Alphabet of predicate logic).

Symbols Name

ay, ap, az, ... free individual variables

X1, X2, X3, ... bound individual variables

C1, C2, C3y ... individual constants

P,P, P, ... predicate symbols (each P is n;-ary)
=2, =, AV, connectives

v, 3 quantifiers

CONIN parentheses

Since the logical predicate language is the object of our study in this chapter, we
shall call it the object-language. We shall study this language using English as met-
alanguage, i.e., as the language we use to talk about (formulas of) the object lan-
guage.

In order to prevent writing subscripts and because Vx; [P(x;)] has the same mean-
ing as Vx3[P(x3)], we agree to use x, y, z as (meta)variables over xy,x3,x3, ... and
simply write Vx[P(x)] instead of Vx; [P(x])],Vx2[P(x2)],.... The use of the letter x
in the expression ‘if A(a) is a formula and x is a bound variable, then Vx[A(x)] is a
formula’ is similar to the use of the letter n in the expression ‘if # is a natural num-
ber, then also n + 1 is natural number’. The letter # itself is not a natural number, but
may be replaced by any natural number 0, 1, 2, ... in the expression just mentioned.
Similarly, the letter x itself is not a variable, but may be replaced by any variable
X1,X%2,X3,.... SO, strictly speaking, the expression Vx[P(x)] itself is not a formula,
but replacing x by x; (or x,x3,...) and P by P; yields a formula Vx; [P; (x)], which
does belong to the object language.

In a similar way we agree to use the symbols a and b as names for free individual
variables aj,as, ... in the object language; the symbols ¢ and d as names for indi-
vidual constants ¢y, ¢, ... in the object language; and the symbols P, O, R and S as
names for predicate symbols Pj, P, ... in the object language. Strictly speaking, the
symbols a, b, x, y, z, ¢, d, P, Q, R and S themselves do not belong to the logical
predicate language!

Definition 4.3 (Basic Term). A basic term is a free individual variable or an in-
dividual constant. Later in Definition 4.17 the notion of term will be generalized,
allowing it to contain also function symbols.

Definition 4.4 (Atomic formulas). If P is an n-ary predicate symbol and ¢, ... ,t,
are ferms, then P(t1,...,t,) is an atomic formula.

Example 4.2. Supposing that S (being a Student) and W (Walking) are unary predi-
cate symbols, that M (having as Mother) is a binary predicate symbol, that a and b
stand for any free individual variable a,a», ..., and that ¢ and d stand for any indi-
vidual constant ¢y, ¢, .. ., the following expressions are atomic formulas of predicate
logic: S(a), W(a), S(c), W(c); M(a,b), M(a,c) (cobi is the Mother of a), M(c,a) (a
is the Mother of cobi), M(c,b), M(c,d) (cobi has dora as Mother).

The expression P(fq,...,t,) itself is not an atomic formula, but a meta-expression
representing any atomic formulas. In particular, the expression P(a) itself is not
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an atomic formula, but P(a;),P(az),P(a3),... are atomic formulas, if P is a unary
predicate symbol in the alphabet of our predicate language, which is the object of
our study.

Definition 4.5 (Formulas).

a) Each atomic formula is a formula.

b) If A and B are any formulas (either atomic formulas, or composite formulas al-
ready constructed), then (A = B), (A — B), (AAB), (AV B) and (—A) are (com-
posite) formulas.

c) If A(a) is any formula in which the free variable @ occurs, and x is any bound
variable not occurring in A(a), then Vx[A(x)] and Jx[A(x)] are (composite) for-
mulas, where A(x) results from A(a) by replacing every occurrence of a in A(a)
by x.

d) The only formulas are those given by a), b) and c).

Example 4.3. Supposing that S (being a Student) and W (Walking) are unary predi-
cate symbols in our predicate language, by clause b), S(a) — W (a) is a formula of
our logical predicate language, and by clause ¢) Vx[S(x) — W (x)] is a formula of
our predicate language. Supposing that M(a, b) (a has b as Mother) is a binary pred-
icate symbol in our predicate language, by clause ¢) Jy[M(a,y)] (a has a Mother)
is a formula of our predicate language, and again by clause c), also VxJy[M(x,y)]
(everyone has a Mother) is a formula of our predicate language. And by applying
clause b) again, Vx[S(x) — W (x)] AVx3y[M(x,y)] is also a formula of our predicate
language.

Strictly speaking, assuming that M is a binary predicate symbol of our predicate
language, 3y[M(a,y)] itself is not a formula of our predicate language, but, for in-
stance, Jxp[M(ay,x72)] is, expressing that ‘a; has a mother’. And strictly speaking,
Vx3y[M (x,y] itself is not a formula of our predicate language, but Vx; 3x, [M (x1,x5)]
is, expressing that ‘everyone has a mother’.

We are using the symbols A, B, C, ..., A1, Ay, Aj, ..., from the beginning of the
Roman alphabet to stand for any formulas, not necessarily atomic. Such distinct
letters as A, B, C, ... need not represent distinct formulas in contrast to the symbols
P, O, R, S, ... which represent distinct predicate symbols.

Assuming that A(a) is a formula, the expression Vx[A(x)] itself is, strictly speak-
ing, not a formula, since the letter x is a meta-variable representing any bound vari-
able; but Vx[A(x)] becomes a formula when the letter x is replaced by any bound
variable x| or x, or x3 or ....

For instance, supposing again that S (is a Student) is a unary predicate symbol and
that M (has as Mother) is a binary predicate symbol of our predicate language, S(a;)
and M(ay,ay), are atomic formulas of our predicate language and Vx; [S(x;)] (every-
one is a Student) and Ixy[M(ay,x;)] (a; has a mother) are composite formulas of
our predicate language. Using, e.g., x3 instead, we get different formulas Vx3[S(x3)]
and 3x3[M(ay,x3)] which have the same meaning as Vx; [S(x1)] and Ixp[M(ay,x2)],
respectively. This is why the meta-variable x is necessary in clause c) in Defini-
tion 4.5; had we written x; instead, we would be allowing only Vx;[S(x;)] (but not
Vxa[S(x2)], Va3[S(x3)], etc.) as a formula.
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The quantifiers act as unary operators in building formulas, and with our other
unary operator — are ranked last under the convention for omitting parentheses.
Thus, VxA(x) — B means Vx[A(x)] — B, not Vx[A(x) — B].

Definition 4.6 (Closed Formula). A formula A is called closed if it contains no
free occurrences of variables; otherwise, open. A closed formula is also called a
sentence.

Example 4.4. Supposing that M is a binary predicate symbol of our predicate lan-
guage, M(aj,az) (a; has ay as Mother) and 3x;[M(ay,x2)] (a; has a Mother) are
open formulas, while M(cj,cz) (c; has ¢, as Mother), Ixz[M(cy,x2)] (c; has a
Mother) and Vx; 3x,[M (x1,x2)] (everyone has a Mother) are closed formulas.

Since formulas are built up from atomic formulas by successive applications of con-
nectives and quantifiers to formulas already generated before, the following Theo-
rem, called the induction principle (for predicate formulas), follows immediately
from the definition of formulas. (See also Theorem 2.2.)

Theorem 4.1 (Induction principle for formulas). Let @ be a property of formulas,
such that a) all atomic formulas have the property @,

b) if A and B have the property @, then also (A = B), (A — B), (AAB), (AV B) and
(—A) have the property @, and

c) if A(a) has the property @, x does not occur in A(a) and A(x) results from A(a)
by replacing all occurrences of a in A(a) by x, then also Vx[A(x)] and 3x[A(x)] have
the property ®.

Then all formulas have the property ®.

For an application of this induction principle see the proof of Theorem 4.18.
Exercise 4.1. Let G(a) stand for "a is a girl” and P(a) for ’a is pretty’.

a) Translate each of the following sentences into logical symbolism in an adequate
way: (1) Every girl is pretty. (2) Some girl is pretty.

b) Explain why Vx[G(x) A P(x)] is not a correct representation of the meaning of
sentence (1) and why Jx[G(x) — P(x)] is not a correct representation of the
meaning of sentence (2).

Exercise 4.2. Let M be a binary predicate (relation) symbol with intended interpre-
tation ‘is married to’, and ¢ and d individual constants with Cod, respectively Diana,
as intended interpretation. Translate the following sentences into formulas of predi-
cate logic: 1. Cod is not married to Diana; 2. For all persons x and y, if x is married
to y, then y is married to x; 3. Diana is married; 4. There is at least one person who
is not married.

Exercise 4.3. Let A(a,b) stand for ‘a admires b’. Translate the following two sen-
tences into logical symbolism.

(1) Everyone has someone whom he admires.

(2) There is someone whom everyone admires.

Note that ‘everyone admires someone’ is ambiguous and can have each of the two
readings above.
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Exercise 4.4. Let L(x,y) stand for ‘x loves y’. Translate the following sentences into
logical symbolism.

(1) All persons love each other. (2) Some persons love each other.

(3) Every person loves someone. (4) Someone is loved by everyone.

(5) Everyone is loved by someone. (6) There is a person who loves everyone.

Exercise 4.5. Let D(a) stand for ‘a is a Dutchman’, C(a) for ‘a is a kind of cheese’,
W (a) for ‘a is a kind of wine’, L(a,b) for ‘a likes b, ¢ for Chip, and d for Donald.
Translate the following sentences into logical symbolism in an adequate way.

. Donald likes all kinds of cheese.

. Some Dutchmen like all kinds of cheese.

. Donald likes some kinds of cheese.

. All Dutchmen like at least one kind of cheese.

. There is a kind of cheese which is liked by any Dutchman.

. Chip doesn’t like any kind of cheese.

. All Dutchmen don’t like any kind of cheese.

. All Dutchmen like some kind of cheese and some kind of wine.

. All Dutchmen who like some kind of cheese, also like some kind of wine.

. If all Dutchmen like some kind of cheese, then all Dutchmen like some kind of
wine.
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Exercise 4.6. Consider the predicate language with the following non-logical sym-
bols: the binary predicate symbol = and the individual constants ¢y, c;.

1 Translate the sentences below into this language in an adequate way.
1) The Morning Star is the same as the Evening Star.
ii) Every star identical to the Morning Star, is the same as the Evening Star.
2 For the formulas found in 1, consider the non-intended interpretation:
Vx: for all numbers x, ...; 3x: there is some number x such that .. ..
=:isequal to (=); c1: 3, c2: 4.
Are the readings of the formulas found in 1 i) and ii) under this interpretation
true or false propositions?
3 Similar question as in 2, but now for the non-intended interpretation:
Vx: for all persons x ...; 3x: there is some person x such that ....
=: was older than; c;: Reagan, c;: Nixon.

Exercise 4.7. Let P(a) stand for ’a has the property P’, and a = b for ’a equals b’.
Translate each of the following sentences into logical symbolism, using the binary
predicate symbol = for equality.

1. There is at least one x which has the property P.

2. There is at most one x which has the property P.

3. There is exactly one x which has the property P.

4. There are at least two objects which have the property P.

5. There are at most two objects which have the property P.

6. There are exactly two objects which have the property P.
31x[A(x)] is adopted as an abbreviation for the formula expressing ‘there is exactly
one x such that P(x)’ or ‘there exists a unique x such that P(x)’.
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Exercise 4.8. Translate the following sentences containing the indefinite article ‘a’
into the language of predicate logic, using the unary predicate symbols C, A, M and
W for ‘being a Child’, ‘needs Affection’, ‘being a Man’ and ‘to Whistle’, respec-
tively: a) A child needs affection. b) A man was whistling. Notice that the indefinite
article ‘a’ or ‘an’ sometimes has the force of ‘all’, sometimes of ‘some’.

Exercise 4.9. Translate the following sentences containing the word ‘any’ into the
language of predicate logic, using the unary predicate symbols M, O, B and S for
‘being Mortal’, ‘being Older than 150 years’, ‘celebrating one’s Birthday’ and ‘be-
ing Stupid’ respectively, and using the propositional formula P for ‘there is a party’.
a) For any x, x is mortal.

b) Not for any x, x is older than 150 years.

¢) If anyone celebrates his or her birthday, then there is a party.

d) If John was stupid, then anyone is stupid.

Notice that the meaning of ‘any’ depends on the context. When an any-expression
stands by itself, as in sentence a), ‘any’ has the same logical force as ‘all’. But when
an any-expression D is put into either of the context =D, as in sentence b), or D — E,
as in sentence c), the meaning of ‘any’ normally alters from ‘all’ to ‘some’.

Exercise 4.10. Give an interpretation such that Vx[P(x) — Q(x)] yields a true propo-
sition, while 3x[P(x) A Q(x)] yields a false proposition under this interpretation.
This shows that from Vx[P(x) — Q(x)] one may not conclude that Ix[P(x) A Q(x)],
although one may conclude from it that 3x[P(x) — Q(x)].

Exercise 4.11. a) Give an interpretation such that Vx[P(x)] — Vx[Q(x)] yields a true
proposition, while Vx[P(x) — Q(x)] yields a false proposition under this interpreta-
tion. So, from Vx[P(x)] — Vx[Q(x)] one may not conclude that Vx[P(x) — O(x)].

b) Show in a similar way that from 3x[P(x) — Q(x)] one may not conclude that
W[P(x)] = I[Q(x)].

4.2 Semantics: Tarski’s Truth Definition; Logical (Valid)
Consequence

Let A be an atomic formula containing (free occurrences of) variables, a one-place
predicate symbol P or a 2-place predicate (or relation) symbol R and individual
constants ¢ and d. For instance, A = P(c), A = P(a), A = R(c,d) or A = R(a,c).
In order to give a meaning to A, we have to give an interpretation of the symbols
occurring in A. Such an interpretation M has to specify:

1. a domain or universe of discourse D; for instance, the set of all men or the set N
of all natural numbers.

2. a unary predicate P* or a binary predicate R*, respectively, over the given do-
main, determining the meaning of the predicate symbols P and R; for instance,
assuming the domain is N, P*(a): a is even, R*(a,b): a > b.
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3. elements ¢* and d* in the given domain, determining the meaning of the individ-
ual constants ¢ and d.

So, let M = (N; P*, R*; c¢*, d*) be the interpretation with domain N, P*(a): a is
even, R*(a,b): a > b; ¢* =2 and d* = 3. Then under interpretation M the formula
P(c) yields the proposition P*(c*), i.e., 2 is even, which happens to have the truth
value 1. Therefore, we say that M is a model for the formula P(c), i.e., P(c) yields
under interpretation M a true proposition. Notation: M |= P(c).

And under interpretation M the formula R(c,d) yields the proposition R*(¢*,d*),
i.e., 2 > 3, which happens to have the truth value 0. Therefore, we say that M is not
a model for the formula R(c,d), i.e., R(c,d) yields under interpretation M a false
proposition. Notation: M (= R(c,d).

An interpretation M for a formula A does specify the domain and the meanings
of the predicate symbols and individual constants in A, but it does not specify the
meaning of the variables that occur free in A. Given an interpretation M for formula
A with domain D, a valuation v shall give a value in the given domain to the variables
occurring free in A. So, let M = (N; P*, R*; ¢*, d*) be the interpretation given above
for the formula P(a) or R(a,c) respectively, and let v be the valuation which assigns
to the free variable a the value 4, v(a) = 4, then under interpretation M and valuation
v the formula P(a) yields the proposition P*(4), i.e., 4 is even, which happens to
have the truth value 1. Therefore, we say that interpretation M and valuation v make
the formula P(a) true. Notation: M |= P(a)[v] or M |= P(a)[4].

Under the interpretation M just given and valuation v with v(a) = 4, the formula
R(a,c) yields the proposition R*(4,c*), i.e., 4 > 2, which happens to have the truth
value 1. So, interpretation M and valuation v make also the formula R(a,c) true.
Notation: M |= R(a,c)[v] or M = R(a,c)[4].

So, an interpretation M for a formula A together with a valuation v assigns to A a
truth value 1 or 0. In the first case we write M |= A[v] and in the second case we
write M [~ A[v].

If A is composed from atomic formulas by means of connectives, the truth tables
tell us the truth value of A under a given interpretation and valuation. For instance,
if M = (N; is even, > ; 2), then M |= P(a) AR(a,c)[4], since ‘4 is even and 4 > 2’
has truth value 1 A 1= 1. But M [~ P(a) AR(a,c)[3], since ‘3 is even and 3 > 2’ has
truth value 0A 1 = 0. And M |= P(a) — R(a,c)[1], since ‘if 1 is even, then 1 > 2’
has truth value 0 -+ 0= 1.

Next, consider the formula Vx[P(x)].

If we let the individual variable x range over the set of all men and if we inter-
pret the predicate symbol P as ‘is mortal’, then the atomic proposition ‘all men are
mortal’ results and this proposition has truth value 1. So, for M = (Men;is mortal),
M is a model for Vx[P(x)]; notation: M |= Vx[P(x)]. However, if we let the variable
x range over the set of all natural numbers and if we interpret the predicate sym-
bol P as ‘is even’, then the proposition ‘all natural numbers are even’ results and
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this proposition has truth value 0; so, for M = (N;is even), M is not a model for
Vx[P(x)]; notation: M £ Vx[P(x)].

So depending on the interpretation of the individual variable x and the predicate
symbol P, a true or false atomic proposition results from the formula Vx[P(x)]:

Vx[P(x)]
M = (Men; P*) with P*(x): x is mortal 1
M = (N; P*) with P*(x): x is even 0

In the following table for the two formulas Vx[P(x)] and 3x[Q(x)] we indicate on the
left-hand side an interpretation and on the right-hand side the truth or falsity of the
corresponding (atomic) proposition.

Vx[P(x)] 3x[O(x)]
N; P*(x): x =x, Q" (x): x is even 1 |
Men; P*(x): x is mortal, Q*(x): x is immortal | 0
N; P*(x): x is even, Q*(x): x is odd 0 1
Pets; P*(x): x is a dog, Q*(x): x is immortal 0 0

Above, we have given two interpretations of the symbols x and P, under which
Vx[P(x)] yields a true proposition (‘every natural number is equal to itself” and ‘all
men are mortal’, respectively); and two interpretations under which Vx[P(x)] yields
a false proposition (‘all natural numbers are even’ and ‘all pets are dogs’, respec-
tively). So, Vx[P(x)], although not under all interpretations true, is true under at least
one interpretation. For that reason we say that Vx[P(x)] is satisfiable.

‘Not all men have black hair’ is equivalent to ‘there is some man who does not have
black hair’. More generally, we see that —Vx[P(x)] (not all objects have the property
P) has the same meaning as 3x[—P(x)] (there is some object which does not have
the property P), no matter how we interpret the symbols x and P. Hence, we say
that —Vx[P(x)] = Jx[-P(x)] is a valid or always true formula. So, we shall call a
formula A valid or always true if A yields a true proposition under each possible
interpretation of the individual and predicate-symbols which occur in A. Notation:
= A. Examples of valid formulas are:

1. E ~Vx[P(x)] & Ix[-P(x)] 3. | Va[P(x)] &= —3x[-P(x)]

2. | —Ix[P(x)] & Vx[-P(x)] 4. = 3x[P(x)] = —Vx[-P(x)]

In order to see the validity of the formula A == A, we do not have to consider
the internal structure of the formula A. However, in order to see the validity of the
formula —Vx[P(x)] = Ix[~P(x)], which is a formula of the form —-A = B, we do
have to consider the internal structure of the subformulas A and B from which this
formula has been built. =A = B is not for all formulas A and B valid, but it is valid
when A is Vx[P(x)] and B is Ix[-P(x)].

And we shall call B a valid or logical consequence of given premisses Ay,...,A, if
every interpretation M and valuation v which make all of the premisses Ay,...,A,
true also make B true. Notation: Ay,...,A, = B.

For instance, P(a) = 3x[P(x)] and Vx[P(x) — O(x)],P(a) = O(a).
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After this introduction we shall give a precise definition of the notion of M = A,
which is Tarski’s truth definition (1933), and of the notions of (logical) validity and
valid (or logical) consequence.

Definition 4.7 (Interpretation). Let A be a formula, containing predicate symbols
Py,..., P and individual constants cy,...c;. An interpretation or structure for A is a
tuple M = (D; P},...,P}; cj,...,c/), where

1. D is a non-empty set, called the domain or universe of discourse. All individual
variables occurring bound in A are interpreted as ranging over this domain D. For
instance, D is the finite set of all men or the infinite set N of all natural numbers.
The requirement that the domain is non-empty is to guarantee that the following
formula will be valid: Vx[P(x)] — 3x[P(x)].

2. For each nj-ary predicate symbol P; in A, P is a n;-ary predicate over D. For
instance, if P is a unary and R is a binary predicate symbol in A, and D = N, then
P*(n) might be ‘n is even’ and R*(n,m) might be ‘n > m’.

3. For each individual constant ¢; in A, c}f is a concrete element of D. For instance,
if ¢ is an individual constant in A and D = N, then ¢* might be 2.

Note that the interpretation of the quantifiers and of the connectives in a formula A
has been fixed once and for all in Section 4.1 and in the truth tables for the connec-
tives (see Section 2.2). We are only free to vary the interpretation of the individual
variables, the predicate symbols and the individual constants in A.

Given a formula A and an interpretation M for A with domain D, in order to give
a meaning to A we still have to interpret the individual variables occurring free in A
as elements of D.

Definition 4.8 (Valuation). Let A be a formula and M an interpretation for A with
domain D. A valuation v for A assigns to each variable occurring free in A an ele-
ment v(a) in D.

Example 4.5. Let A = P(a) AR(a,c). Then M = (N; P*, R*; ¢*) with P*(a) := ‘ais
even’, R*(a,b) := ‘a> b’ and ¢* = 2, is an interpretation for A; and v with v(a) = 4
is a valuation for A.

Next we shall give Tarski’s truth definition (1933), which is not a definition of truth,
but which defines the notion of M |= A[v], i.e., ‘interpretation M and valuation v
make A true’, or ‘under interpretation M and valuation v formula A yields a propo-
sition with truth value 1°.

Definition 4.9 (Tarski’s truth definition, 1933). Let A be a formula containing
predicate symbols Pj, ..., P, and individual constants cy,...,c;.
LetM = (D; P;,...,P; c,...,c/) be an interpretation for A and let v be a valuation
for the variables occurring free in A.

We define M = A[v] by induction on the build-up of A:

e Aisatomic, say A = Pi(ay,...,ax, c1,...,Cp).

M = P(ai,...,ax, c1,...,¢p) V] iff PF(v(air),...,v(ax), cf,...,c]).
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For instance, if R is binary predicate symbol, R*(a,b) := ‘a > b’, ¢* =2 and
v(a) = 4, then M |= R(a,c) [v] iff 4 > 2. If v(a) = 4, then instead of M =
R(a,c) [v] we shall also write M |= R(a,c) [4].

Notice that if A contains only the free variables ay,...,a;, then only the values
v(ay),...,v(a;) matter in the definition of M |= A[v]. In particular, if A contains
no free occurrences of variables, then the valuation v in ‘M = A[v]’ does not
matter. These properties are preserved throughout the definition of M = A[v].
Instead of ‘not M |= A[v]’” we shall write: M }= A[v]. In such a case M is called a
countermodel for A or a counterexample to A.

e A=BZ2C,A=B—-C,A=BANC,A=BVC,A=-B:

1.M = B=C |v]iff (M = B[v] and M |= C[v]) or (M t~ B[v] and M - C[v]).
2.M =B — C [v] iff M |£ B[y] or M |= C[v].

3.ME=BAC|v] iff M |=B[v]and M = C|v).

4. ME=BVC v iff M =By or M |=C[v].

5.ME=-B[v] iff M~ B

This definition just follows the truth tables for the connectives given in Section

2.2. This may be easily seen if one realizes that a pair (M,v) consisting of an

interpretation M and a valuation v assigns to every formula A a truth value 1 or

0. So, a pair (M, v) corresponds with a line in the truth table and one might write

(M,v)(A) =1iff M =A[v] and (M,v)(A) = 0iff not M = A[v]. Then, for instance,

clause 2 reads as follows: (M,v)(B — C) = 1 iff (M,v)(B) =0or (M,v)(C) = 1.
e A=Vx[P(x)] orA=3x[0(x)]

In case A = Vx[P(x)] does not contain any free occurrences of variables,
M = Vx[P(x)] iff for every element d in the domain D of M, M = P(a)[d].

For instance, let M = (N; > 0), then M |= Vx[P(x)] since for every natural number
din N, M = P(a)[d], i.e., for every natural number d, d > 0.

More generally, allowing A = Vx[P(x)] to contain also free occurrences of vari-
ables, M |= Vx[P(x)] [v] iff for every d in the domain D of M, M |= P(a)[d/V],
where a is a (new) variable not occurring in Vx[P(x)] and d/v is the same valua-
tion as v, except that d /v assigns to a the value d.

In case A = 3x[Q(x)] does not contain any free variables, M |= 3x[Q(x)] iff there
is at least one element d in the domain D of M, such that M |= Q(a)[d].

For instance, let M = (N; is even), then M |= 3x[Q(x)] since there is at least one
natural number d in N such that M |= Q(a)[d], i.e., there is a natural number d
such that d is even.

More generally, allowing A = 3x[Q(x)] to contain also free occurrences of vari-
ables, M |= 3x[Q(x)] [v] iff there is an element d in the domain D of M such that
M = Q(a)[d/v], where a is a (new) variable not occurring in 3x[Q(x)] and d /v is
the same valuation as v, except that d /v assigns to a the value d.

This finishes the definition of M = A[v]. Notice that if A contains no free occurrences
of variables, the valuation v does not play a role. Now Tarski’s notion of M = A[v] (A
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yields a true proposition under interpretation M and valuation v) has been defined,
it is straightforward to define satisfiability and validity of a formula A.

Definition 4.10 (Satisfiable). Let A be a formula. A is satisfiable := there is an in-
terpretation M for A and a valuation v such that M = A[v].

Example 4.6. Vx[P(x)] is satisfiable, since M = (N; > 0) makes Vx[P(x)] true. How-
ever, Vx[P(x)] A x[~P(x)] is not satisfiable.

Definition 4.11 (Model). Let A be a formula and let M be an interpretation for A
with domain D. M is a model of A := for all valuations v assigning elements of D to
the variables occurring free in A, M |= A[v]. Notation: M = A.

Instead of ‘M is a model of A’, one also says: M makes A true or A is true in M.

M is called a countermodel or counterexample for A if M is not a model for A, i.e.,
not M |= A. Notation: M [~ A.

Example 4.7. Let M = (N;=). Then M |=a = a, since foralln € N, n =n.

Let M = (N; >; 0). Then M = R(a,c), since for all natural numbers n in N, M |=
R(a,c)[n], i.e., for all natural numbers n, n > 0. However, for M = (N; >; 2) we have
M £ R(a,c), since there is a valuation v with v(a) = 1 such that M [~ R(a,c)[v], i.e.,
it is not the case that 1 > 2.

Definition 4.12 (Closure). Let A = A(ay,...,a;) be a formula having ay,...,a; as
the only free variables and not containing the bound variables zj,...,z;. Then the
universal closure of A is by definition the closed formula Vz; ...Vzi[A(z1,- .-, 2)],
where A(zj,...,z) results from A(ay,...,a;) by replacing every occurrence of
ap,...,ax by z1,...,z, respectively. Notation: CI(A).

Theorem 4.2. M |= A iff M |= CI(A).

Proof. Evident from the definitions. For instance, for M = (N; >; 0), M = R(a,c)
iff M |=Vz[R(z,¢)]. 0

Since every interpretation M (for a formula A) is a model of some formula B, one
often uses the word model instead of ‘interpretation’ or ‘structure’. The notion of
M = A is the main notion of model theory. However, in logic one is not interested
in the truth of formulas in individual interpretations M, but in the truth of formulas
in all interpretations M (of the appropriate kind), in other words, in the validity of
formulas.

Definition 4.13 (Validity). A is valid or always true := for all interpretations M for
A, M = A. Notation: = A.

Example 4.8. = Vx[R(x,c) V —R(x,c)]; E Vx[P(x) = P(x)];
E Vx[P(x) = O(x)]AP(c) — O(c); E —Vx[P(x)] = Ix[-P(x)].

Theorem 4.3. 1) = Vx[P(x)] 2 Vy[P(y)] and 2) |= 3x[P(x)] = Iy[P(y)).
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Proof. 1) Let M = (D;P*) be an interpretation. Then M = Vx[P(x)] iff M =
Vy[P(y)], because under interpretation M both formulas express the same propo-
sition: all elements in D have the property P*. So, every structure (D; P*) is a model
of Vx[P(x)] = Vy[P(y)]. 2) is shown in a similar way. O

VxVy[R(x,y)] and VyVx[R(x,y)] express the same proposition: all objects are in the
relation R with each other. Similarly, 3x3y[R(x,y)] and Jy3x[R(x,y] express the same
proposition: there are objects which are in the relation R to each other. Therefore:

Theorem 4.4.
= VxVy[R(x,y)] = YyVx[R(x,y)] and = Ix3y[R(x,y)] = TyIx[R(x,y)].

Adapting the definition of ‘valid consequence’ for propositional logic to predicate
logic, we say that B is a valid (or logical) consequence of Ay, ... Ay, iff every in-
terpretation which makes Ay, ...,A, simultaneously true also makes B true. For in-
stance, Q(c) is a logical consequence of Vx[P(x) — Q(x)] and P(c):

Vx[P(x) = Q(x)], P(c) = Q(c)

since every interpretation which makes both Vx[P(x) — Q(x)] and P(c) true also
makes Q(c) true; in particular, for M = (Persons; is a man, is mortal; Caspar) we
have: if all men are mortal and Caspar is a man, then Caspar is mortal.

Definition 4.14 (Valid (or logical) consequence). B is a valid (or logical) con-
sequence of Ay,...,A, := for every interpretation M and for all valuations v, if
MEA|[v]) and ... and M = A,[v], then M = B[v]. Notation: Ay, ..., A, E B.

Example 4.9.

1. Vx[P(x) = Q(x)],Ix[R(x) A—=Q(x)] E Ix[R(x) A =P(x)]. This statement corre-
sponds to Aristotle’s syllogism *Baroco’ (see Subsection 4.7.4). For instance, the
following argument is of this form:

All logicians are philosophers.
There are men who are not philosophers.
Hence, there are men who are not logicians.

2. ¥x[P(x) — =Q(x)],3x[R(x) A Q(x)] = Ix[R(x) A =P(x)]. This statement corre-

sponds to Aristotle’s syllogism ’Festino’ (see Subsection 4.7.4).

3. P(a),P(a) = Q(a) = O(a)

From the definition of Ay,...,A, = B it follows immediately that Ay,...,A, = B
(B is not a logical consequence of Ay,...,A,) iff there is an interpretation M and
a valuation v which make all of Ay,...,A, true (M = A; A...AA, [v]), but which
make B false (M [~ B[v]). Notice that if the formulas Ay, ...,A, and B are all closed,
i.e., contain no free occurrences of variables, then the valuation v does not play any
role.

Example 4.10. =Vx[P(x)] ¥ Vx[-P(x)], since M = (N; P*), with P*(x) := x is even,
makes —Vx[P(x)] true (‘not all natural numbers are even’ has truth value 1), while
M makes Vx[-P(x)] false (‘all natural numbers are not even’ has truth value 0).
In Exercise 4.10 we have shown that Vx[P(x) — Q(x)] & 3x[P(x) A Q(x)] and in
Exercise 4.11 we have seen that Vx[P(x)] — Vx[Q(x)] & Vx[P(x) — Q(x)].
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The following theorem generalizes Theorem 2.4 for propositional logic to predicate
logic.

Theorem 4.5.

a)AEB ifand only if (iff) EA —B.
More generally,

b)A1,A2 =B ifand only if (iff) A=A, — B

ifand only if (iff) EA; — (A, — B)
ifand only if (iff) EAINA, — B.

Even more generally,

c)A1,..., Ay EB ifandonly if (iff) Ay,...,Ap_1EA,— B
ifand only if (iff) E (A1N...AA,) — B.

Proof. We shall prove the first statement of b). A|,A, = B := for every interpretation
M and for every valuation v, if M = A, [v] and M |= A,[v], then M = B[v]. (1)
Ay = Ay — B = for every interpretation M and for every valuation v, if M = A4 [v],
then M = A, — B]v] (2)
It is easy to see that (1) and (2) mean exactly the same, because M = Ay — B[v]
means: if M |= Ay[v], then M |= B[v]. O

Notice that P(a) }~= Vx[P(x)], because from ‘Antoine has property P’ we cannot
conclude that ‘everyone has property P’. More precisely, let M = (N;is even) and
let v(a) = 2. Then M |= P(a)[2], but M [~ Vx[P(x)]. However, the following does
hold: if M |= P(a), then M |= Vx[P(x)]. For M = P(a) means: for every valuation v,
M = P(a)[v], which means the same as: M |= Vx[P(x)] (see Theorem 4.2).

Corresponding to two possible treatments of the free individual variables in mathe-
matical practice (see below), there are two different notions of ‘valid consequence’,
the one defined in Def. 4.14 and the other to be defined in Def. 4.15 below.

a*—2a—3 =0 is a conditional equation, since it expresses a condition on a.
From this condition we should not infer that 2% — 2 -2 — 3 = 0; however, from a% —
2a—3 =0 we can infer that (a —3)(a+ 1) =0 and hence thata =3 ora = —1. We
may say that in these inferences the variable a is held constant, since it stands for
the same number throughout the deductions. This inference can be written thus:

a?—2a—-3=0—a=3Va=—1or equivalently, as
Vax? —2x—3=0 — x=3Vx=—1]. (1)
This inference corresponds with our definition of A = B.

However, from a + b = b+ a one may conclude that 2 + 3 = 3 + 2. In the infer-
ences from a+ b = b+ a, the variables a and b are general or allowed to vary. Using
only bound variables, the result of this inference can be written thus:

VxVylx+y=y+x] - 2+3=3+2. 2)
This inference corresponds with our definition of A =% B, as given in Def. 4.15
below.

Note that in (1) parentheses close after the —, in (2) before the —. Whether we
choose to use interpretation (1) or (2) depends on the role the assumptions have in
each case we want to infer consequences from assumptions.
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Definition 4.15. B is a valid consequence of Ay, ...,A, with all free variables gen-
eral := for every structure M, if M = A and ... and M = A, then M |= B.
Notation: A;,...,A, =2 B. So, Ay,...,A, 2 B iff Cl(A),...,CI(A,) = CI(B),
where CI(B) is the universal closure of B.

Theorem 4.6. If A |= B, then A |=2 B, but in general not conversely.

Proof. Suppose A |= B, i.e., for every interpretation M and for every valuation v, if
M = Alv], then M = B[v]. (*)
To show: M |=? B. So, suppose that M |= A, i.e., for every valuation v, M |= A[v].
Then it follows from (*) that for every valuation v, M = B|v], i.e., M = B.

To establish that in general the converse does not hold, note that P(a) =2
Vx[P(x)], i.e., Vx[P(x)] = Vx[P(x)], but P(a) = Vx[P(x)], since for M = (N;is even),
M = P(a)[2] (2 is even), while M }= Vx[P(x)] (not all natural numbers are even). O

Many-sorted and higher-order predicate logic In order to avoid misunderstand-
ing, it should be noted that also for formulas containing two or more quantifiers,
like, for instance, Vx3y[R(x,y)], an interpretation contains only one (non-empty)
domain or set for the bound individual variables of the formula, such that all indi-
vidual variables x, y, etc., are to be interpreted as elements of that one domain. So, in
Vx3y[R(x,y)], for instance, we are not allowed to let x range over the set of all Men
and y range over the set of all Women; the variables x and y have to be interpreted
as elements of the same set, for instance, the set of all persons. The expression ‘for
every man x there is some woman y such that R(x,y)’ should be translated into our
symbolism by a formula of the form Vx[M(x) — Jy[W(y) AR(x,y)]], where M and
W are unary predicate symbols for ‘is a man’ and ‘is a woman’ respectively.

The predicate logic we have presented thus far is one-sorted, i.e., the language
contains only one sort of variables which have to be interpreted as elements of one
and the same domain. One might also develop a two-sorted predicate logic having
two sorts of variables, where the variables of the one sort should be interpreted as
elements of a domain D; and the variables of the other sort as elements of a do-
main D;. This corresponds more closely to mathematical practice, where frequently
different sorts of variables are used; for instance, m, n, p,... ranging over natural
numbers and x, y, z,... ranging over real numbers. The development of two-sorted
predicate logic is similar to that of one-sorted predicate logic. The same holds for
predicate logic with more than two sorts of variables.

The predicate calculus we have presented thus far is also first-order, i.e., one
can only quantify over individuals and not over properties of individuals, nor over
properties of properties of individuals, and so on. (For instance, ‘being a colour’
is a property of the property ‘being red’ of individuals.) In second-order logic, not
only quantification over individual variables, Vx, Jy, ..., but also quantification over
predicate variables is allowed: VP, 3Q,.... This increases the expressive power of
the language considerably. By iteration one can obtain higher-order predicate logic.

Exercise 4.12. Let N be the set of natural numbers and M = (N, P*, O*, R*) with P*:
is even, Q*: is odd, R*: is less than (<). Which of the following statements are right
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and which are wrong?

MEP@[2] M I(PR)] M EH(P()] - ()] M= YadyR(x.y)]
M P@)5] MValP()] M = 3(P(x)] - ValQ(x)] M | 3yvx(R(x.y)]
M Qa)ls] M Q)] M = x[P(x)] » 3(0()] M = I[P(x) — Q)]
ME Q)21 M Evx(QW)] M E vx[P(x)] - ¥x[Q()] M = Vx[P(x) » Q)

Exercise 4.13. Which of the following alternatives applies to the following below:
(i) not satisfiable, (ii) satisfiable, but not valid, (iii) valid, and hence satisfiable?

1. 3x[P(x)] — Vx[P(x)] 5. =Vx[P(x)] — Vx[—P(x)]

2. 3x[P(x)] — Ix[-P(x)] 6. Vx[—P(x)] — —Vx[P(x)]

3. Ix[P(x)] AVx[-P(x)] 7. Vx3y[R(x,y)] A IxVy[=R(x,y)]
4. Vx[P(x)] A—3x[P(x)] 8. VaTy[R(x,y)] — TIyVx[R(x,y)]
9. Z[P(x)] A Ix[Q(x)] — k[P (x) A Q(x)]

10. Vx{P(x) v Q(x)] — Fx[P(x)] V Vx[Q(v)]

Exercise 4.14 (Kleene [9]). Translate each of the following arguments into the lan-
guage of predicate logic and establish whether the conclusion logically follows from
the premisses. If so, give a proof; if not, give a counterexample.

1. Each politician is a showman. Some showmen are insincere. Therefore, some
politicians are insincere.

2. No professors are ignorant. All ignorant people are vain. Therefore, no professors
are vain.

3. Only birds have feathers. No mammal is a bird. Therefore, each mammal is feath-
erless.

4. Some masons are not strong. All carpenters are strong. Therefore, some carpen-
ters are not masons.

5. Some plumbers are smart. There are no smart persons who are not careful. There-
fore, some plumbers are careful.

Exercise 4.15 (Kleene [9]). The same question as in Exercise 4.14.

1. No animals are immortal. All cats are animals. Therefore, some cats are not im-
mortal.

2. If anyone can solve this problem, some philosopher can solve it. Cabot is a
philosopher and cannot solve the problem. Therefore, the problem cannot be
solved.

3. Any mathematician can solve this problem if anyone can. Cabot is a mathemati-
cian and cannot solve the problem. Therefore, the problem cannot be solved.

4. Some healthy people are fat. No unhealthy people are strong. Therefore, some
fat people are not strong.

5. Some students are studious. No student is unqualified. Therefore, some unquali-
fied students are not studious.

Exercise 4.16. Prove or refute: Vx[P(x) — Q(x)] E 3x[P(x) A Q(x)].

Exercise 4.17. Let R(a,b) stand for ‘a is greater than b’. i) Translate the following
sentences into the language of predicate logic using the binary predicate symbol R:
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(a) For every natural number there is a greater one.

(b) There is no natural number which is greater than all natural numbers.

ii) Let A and B be the translations of (a), (b) respectively. Show that not A = B.
iii) Intuitively, (b) seems to follow from (a). Why does not this contradict A = B ?
iv) Show that Vx3y[R(y,x)], VxVy[R(y,x) = —R(x,y)] = ~IxVy[R(x,y)].

Exercise 4.18. Translate the following sentence into the language of predicate logic
and show that the resulting formula is always true (valid). Take as domain the set
of all men in a certain village and interpret S(x,y) as ‘x shaves y’: there is no man
(in the village) such that he shaves precisely those men (in the village) who do not
shave themselves.

Exercise 4.19. Check that the following formulas are valid.
a. Vx3y[P(x) — P(y)]; c. Vy[P(x) = P(Y)];
b. Vy3x[P(x) — P(y)]; d. IyVx[P(x) — P(y)].

Exercise 4.20. Which of the following formulas are valid? Give either a proof or a

counterexample.
a. Vx3y[R(x,y)] — IVy[R(x,y)]; d. IxVy[R(x,y)] = IVx[R(x,y)];
)]; e. VY[R (x,y)] = IVx[R(y,x)];

y
b. IVy[R(x,y)] — VxIy[R(x,y
c. VxJy[R(x,y)] — Vx3y[R(y,x)] £. VxJy[R(x,y)] = VyAx[R(y,x)]

4.3 Basic Results about Validity and Logical Consequence

Definition 4.16. A || B := A |= B and B =4, i.e., for every interpretation M and
valuation v, M = A [v] iff M |= B [v]. This is equivalent to = A = B.

In what follows it is important to realize that for M = (D; P*) and d an element of D,
M = P(a)[d] is equivalent to saying that the proposition P*(d) - d has the property
P* - has truth value 1. For instance, for M = (N; is odd), M |= P(a)[3] because the
proposition ‘3 is odd” has truth value 1, while M [~ P(a)[2], because the proposition
‘21is odd’ has truth value 0.

4.3.1 Quantifiers and Connectives

We start with looking at combinations of the quantifiers V and 3, respectively, with
negation —:

Theorem 4.7 (Quantifiers and Negation).

1) ~a{P(x)] | 3[-P()];

2) =3x(P(x)] H VAP ().

3) =Vx[P(x)] & Vx[=P(x)], although conversely, Vx[—P(x)] = —Vx[P(x)].
4) =3x[P(x)] = Ix[~P(x)], but conversely, x[-P(x)] £ —3x[P(x)].
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Proof. 1) Let M = (D; P*) be an interpretation. Then M | —Vx[P(x)] (i.e., not all
elements in D have the property P*) iff M |= 3x[—P(x)] (i.e., some element in D does
not have the property P*). So each model M is a model of —Vx[P(x)] = Ix[-P(x)].
2) is shown in a way similar: there is no element in D which has the property P* iff
all elements in D do not have the property P*.

3) M = (N;is odd) is a counterexample, since M |= —Vx[P(x)]: the proposition ‘not
all natural numbers are odd” has truth value 1; but M = Vx[—P(x)]: the proposition
‘all natural numbers are not odd’ has truth value 0.

Conversely, suppose M = (D; P*) is an interpretation and suppose M = Vx[—P(x)],
i.e., all elements in D have the property not-P*. Then surely not all elements in D
have the property P*, i.e., M |= =Vx[P(x)].

4) Let M = (D; P*) be an interpretation and suppose M = —3x[P(x)], i.e., there is
no element d in D which has the property P*, in other words, all elements in D have
the property not-P*. So, since D is non-empty, there is an element in D with the
property not-P*, i.e., M = Ix[-P(x)].

Conversely, M = (N;is odd) is a counterexample, for M = Ix[~P(x)]: the proposi-
tion ‘there is a natural number that is not odd’ has truth value 1; but M = —3x[P(x)]:
the proposition ‘there is no odd natural number’ has truth value 0. a

Given a propositional formula A, one might let the variable x range over the lines
of the truth table of A, and interpret P(x) as ‘formula A is 1 at line x’. Under this
interpretation the formula —VxP(x| yields the proposition ‘not in all lines of the
truth table A is 1°, i.e., = A, while the formula Vx[—P(x)] yields the proposition ‘in
all lines of the truth table A is 0, i.e., = —A. Under this interpretation —Vx[P(x)] =
Vx[—P(x)] expresses that from [~ A one may in general not conclude that = —A, as
we have already seen in Theorem 2.12.

Because the meaning of the universal quantitier V is similar to the meaning of the
connective A, the following theorem is evident:

Theorem 4.8 (V and A). Vx[P(x)] AVx[Q(x)] H Vx[P(x) A Q(x)]

However, one has to be careful when combining a universal quantifier V with the
connective V. Consider the following argument:

Every gnome has a conical cap or is a Quaker.
Therefore: all gnomes have a conical cap or all gnomes are Quakers.

Translating this argument into the language of predicate logic we find:

Vx[P(x) V Q(x)] I~ Vx[P(x)] v Vx[Q(x)]
The following interpretation (or model) is a counterexample: M = (N; P*, Q0*) with
P*(x): xis even, and Q*(x): x is odd. Then M = Vx[P(x) vV Q(x)]: the proposition ‘ev-
ery natural number is even or odd’ has truth value 1. But M }= Vx[P(x)] vV Vx[Q(x)]:

the proposition ‘all natural numbers are even or all natural numbers are odd’ has
truth value 0.

Theorem 4.9 (V and V). a) Vx[P(x) V Q(x)] & Vx[P(x)] V Vx[Q(x)].
But conversely, b) Vx[P(x)] VVx[Q(x)] = Vx[P(x) V Q(x)].
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Proof. We start with an informal proof of b): Suppose all things have the property
P or all things have the property Q. If an individual thing has the property P, then it
also has the property PV Q; and similarly, if an individual thing has the property Q,
then it also has the property PV Q. So, in both cases it follows that all things have
the property PV Q, i.e., Vx[P(x) V Q(x)].

More precisely: Suppose M = (D; P*, Q*) is an interpretation and M = Vx[P(x)] V
Vx[Q(x)], i.e., 1) for every thing d in the domain D of M, M = P(a)[d] or 2) for
every thing d in the domain D of M, M |= Q(a)[d]. In case 1) it follows from ‘if
M = P(a)[d], then M |= P(a) V Q(a) |d]’ that for all things d in the domain D of M,
M = P(a)V Q(a) [d], in other words, M |= Vx[P(x) V Q(x)]. In case 2) it follows in
a similar way that M = Vx[P(x) V Q(x)]. O

Given propositional formulas A and B, one may let the variable x range over the lines
in the truth tables of A, B, interpret P(x) as ‘A is 1 in line x” and Q(x) as ‘Bis I in
line x’. Under this interpretation Vx[P(x) V Q(x)] yields the proposition ‘in all lines
of the truth table, A is 1 or Bis 1°, i.e., = AV B. But under this same interpretation
Vx[P(x)] V Vx[Q(x)] yields the proposition ‘in all lines of the truth table A is 1 or
in all lines of the truth table B is 1°, i.e., = A or = B. Under this interpretation
Vx[P(x) V Q(x)] & Vx[P(x)] V Vx[Q(x)] expresses that in general from = A V B one
may not conclude that = A or = B, as we have already seen in Theorem 2.13.

Because the meaning of the existential quantifier 3 is similar to the meaning of the
connective V, the following theorem is evident:

Theorem 4.10 (3 and V). 3x[P(x)] V Ix[Q(x)] H x[P(x) vV O(x)].

However, one has to be careful when combining an existential quantifier with the
connective A. Consider the following argument:

There is gnome who has a conical cap and there is a gnome who is a Quaker.
Therefore: there is a gnome who has a conical cap and is a Quaker.

Translating this argument into the language of predicate logic we find:

W[P(x)] A I[Q(x)] = Ix[P(x) A Q(x)]
The following interpretation (or model) is a counterexample: M = (N; P*, 0*) with
P*(x): x is even, and 0*(x): x is odd. Then M |= 3x[P(x)] AIx[Q(x)]: the proposition
‘there is an even natural number and there is an odd natural number’ has truth value
1. But M [~ 3x[P(x) A Q(x)]: the proposition ‘there is natural number that is both
even and odd’ has truth value 0.

Theorem 4.11 (3 and A). a) Ix[P(x)] A Ix[Q(x)] £~ Ix[P(x) A O(x)].
But conversely, b) 3x[P(x) A Q(x)] E Ix[P(x)] A Ix[O(x)].

Proof. We start with an informal proof of b): Suppose 3x[P(x) A Q(x)], i.e., there is
a thing d such that d has both the property P and the property Q. Then this d has the
property P, so 3x[P(x)]; and this same d has the property Q, so Ix[Q(x)].

More precisely: Suppose M = (D; P*, Q*) is a model and M |= Ix[P(x) A Q(x)],
i.e., there is a thing d in the domain D of M such that M |= P(a) A Q(a) [d]. Then
M = P(a)[d], hence M |= Ix[P(x)]; and M |= Q(a)[d] and hence M = 3x[Q(x)]. O



4.3 Basic Results about Validity and Logical Consequence 207

Consider the following argument:

If all gnomes have a conical cap, then all gnomes are Quakers.
Therefore: every gnome with a conical cap is a Quaker.

Translating this argument into the language of predicate logic we find:
Vx[P(x)] = Vx[Q(x)] = Vx[P(x) — O(x)]

The following interpretation (or model) is a counterexample: M = (N; P*, Q*) with
P*(x): x is even, and Q*(x): x is odd. Then M = Vx[P(x)] — Vx[Q(x)]: the propo-
sition ‘if all natural numbers are even, then all natural numbers are odd’ has truth
value 0 — 0 = 1. But M [~ Vx[P(x) — Q(x)]: the proposition ‘for every natural num-
ber n, if n is even, then n is odd’ has truth value 0.

Theorem 4.12 (V and —). a) Vx[P(x)] — Vx[Q(x)] = Vx[P(x) — O(x)].
But conversely, b) Vx[P(x) — Q(x)] E Vx[P(x)] — Vx[Q(x)].

Proof. We start with an informal proof of b): Suppose Vx[P(x) — Q(x)], i.e., every
thing with the property P also has the property Q. Next suppose Vx[P(x)], i.e., every
thing has the property P. Then clearly it follows that every thing has the property Q.
More precisely: Suppose M = (D; P*, Q%) is a model and M |= Vx[P(x) — Q(x)],
i.e., for every thing d in the domain D of M, M |= P(a) — Q(a) [d]. Suppose next
that M = Vx[P(x)], i.e., for every thing d in the domain D of M, M |= P(a)[d]. Then
it clearly follows that for every thing d in the domain D of M, M |= Q(a)[d], in other
words, M = Vx[Q(x)]. O

Given propositional formulas A and B, one may let the variable x range over the lines
in the truth tables of A, B, interpret P(x) as ‘A is 1 in line x” and Q(x) as ‘Bis 1 in line
x". Under this interpretation Vx[P(x)] — Vx[Q(x)] yields the proposition ‘if A is 1 in
all lines of the truth table, then B is 1 in all lines of the truth table’, i.e., if = A, then
= B. But under this same interpretation Vx[P(x) — Q(x)] yields the proposition ‘in
all lines x of the truth table, if A is 1 at line x, then also B1is 1 at line x’, i.e., A — B.
Under this interpretation Vx[P(x)] — Vx[Q(x)] }~ Vx[P(x) — Q(x)] expresses that in
general from ‘if |= A, then |= B’ one may not conclude that = A — B, as we have
already seen in Theorem 2.11.

Consider the following argument:

There is a gnome such that if he has a conical cap, then he is a Quaker.
There is gnome who has a conical cap.
Therefore: there is a gnome who is a Quaker.

Translating this argument into the language of predicate logic we find:
W[P(x) = O(x)], [P (x)] = IO (x)]

The following interpretation is a counterexample: M = (N; P*, Q*) with P*(x): x is
even, and Q*(x): x # x. Then M |= 3x[P(x) — Q(x)], since M |= P(a) — Q(a) [3]:
the proposition ‘if 3 is even, then 3 = 3’ has truth value 0 — 0 = 1. Also M =
3x[P(x)]: the proposition ‘there is an even natural number’ has truth value 1. But
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M £ 3x[Q(x)]: the proposition ‘there is a natural number which is not equal to
itself” has truth value 0.

Theorem 4.13 (3 and —). a) Ix[P(x) — O(x)], I[P (x)] = Ix[O(x)],
or, equivalently, Ix[P(x) — Q(x)] & Ix[P(x)] — I[O(x)].
But conversely, b) Ix[P(x)] — 3x[Q(x)] = Ix[P(x) — O(x)].

Proof. We start with an informal proof of b): Suppose x[P(x)] — Ix[Q(x)] (*)
and —3x[P(x) — Q(x)]. Then Vx[— (P(x) — Q(x))], i.e., Vx[P(x) A=Q(x)], in other
words, Vx[P(x)] A Vx[-Q(x)]. Hence, surely, 3x[P(x)] and hence by (*) 3x[Q(x)].
Contradiction with Vx[-Q(x)].

More precisely: Suppose M = (D; P*, Q*) is a model and M = Ix[P(x)] —
W[Q(x)]. (*) Case 1) M |= 3x[Q(x)], i.e., there is some element d in the domain
D of M such that M |= Q(a)[d]. Then also M |= P(a) — Q(a) [d] and hence,
M | Ix[P(x) — Q(x)]. Case 2) M [~ 3x[Q(x)]. Then by (*), M }= Ix[P(x)], i.e.,
M = Vx[—-P(x)]. But then M |= Vx[P(x) — Q(x)], since for every d in the domain D
of M, M = P(a) — Q(a) [d] (0 — 0 =1). Hence, surely, M |= 3x[P(x) — Q(x)]. O

4.3.2 Two different quantifiers

Consider the following argument:

Every gnome has a teacher. .
Therefore: some gnome is the teacher of all gnomes.

Translating this argument into the language of predicate logic, reading R(x,y) as ‘x
has y as teacher’, we find:

Vx3y[R(x,y)] = IyVx[R(x,y)]

M = (N; <) is a counterexample. M |= Vx3Jy[R(x,y)]: the proposition ‘for ev-
ery natural number x there is a larger natural number y’ has truth value 1; but
M = 3yVx[R(x,y)]: the proposition ‘there is a natural number y such that all nat-
ural numbers x are smaller than y’ has truth value 0.

Theorem 4.14 (Interchanging Quantifiers). a) Vx3y[R(x,y)] & IyVx[R(x,y)].
But conversely, b) IyVx[R(x,y)] = Vx3y[R(x,y)].

Proof. We start with an informal proof of b): Suppose IyVx[R(x,y)], i.e., there is a
thing d such that each thing x stands in the relation R to d. Then clearly, for every x
there is a thing y, namely d, such that x is in relation R to y. For instance, suppose
there is someone, say Michael Jackson, such that all persons admire this one person.
Then clearly, everyone admires at least one person, namely Michael Jackson.

More precisely: Let M = (D; R*) be a model and suppose M = IyVx[R(x,y)], i.e.,
there is some d in the domain D of M such that M |= Vx[R(x,b)] [d]. Then clearly,
M = Vx3y[R(x,y)] because for every x one may take y = d. O
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The following theorem says that a negation in front of a sequence of quantifiers may
be pushed inside, provided one changes a universal quantifier V into an existential
quantifier 3 and an existential quantifier 3 into a universal quantifier V.

Theorem 4.15 (Negation in front of a sequence of Quantifiers).
1. =Vx3y[R(x,y)] H Ixvy[=R(x,y)].
2. ~IVy[R(x,y)] H VxIy[-R(x,y)].

Proof. 1.Let M = (D;R*) be an interpretation. Then
M | —Vx3y[R(x,y)] iff (by Theorem 4.7, 1)
M = 3x—3y[R(x,y)] iff (by Theorem 4.7, 2)
M = Vy[=R(x,y)].
2. M = —3xVy[R(x,y)] iff M |= Vx—Vy[R(x,y)] iff M = VxTy[—R(x,y)]. O

Warning Note that ‘not = A (A is not valid)’ means that not every interpretation
M for A is a model of A, in other words, there is at least one interpretation M that
makes A false. In such a case one may in general not conclude that = —A, since
there may be other interpretations which make A true.

For instance, we have seen in Theorem 4.9 that there are interpretations M which
make the formula Vx[P(x) V O(x)] — Vx[P(x)] VVx[Q(x)] false, but the interpretation
M = (N; is even, x = x) makes Vx[P(x) V Q(x)] = Vx[P(x)] VVx][Q(x)] true. Summa-
rizing, the formula Vx[P(x) V Q(x)] — Vx[P(x)] V Vx[Q(x)] yields a false proposition
for some interpretations and a true proposition for others. Hence, neither the formula
itself nor its negation is valid.

4.3.3 About the axioms and rules for ¥ and 3

Later in this chapter the formula Vx[A (x)] — A(z), where 7 is a term, will be chosen
as an logical axiom schema for V, and A(z) — Ix[A(x)] as a logical axiom schema
for 3. In the next theorem we verify that these formulas are valid or always true.

Theorem 4.16 (Validity of the logical axioms for the Quantifiers).
Let t be a term, and let A(t) result from A(x) by substituting t for all occurrences of
xinA(x). Then 1. EVx[A(x)] = A(2), and 2. = A(t) — Ix[A(x)].

Proof. The formula Vx[A(x)] — A(¢) expresses that if all objects (of a certain kind)
have the property A* and ¢* is one these objects, then also #* has the property A*.
More formally: Let M be a structure with domain D and let v be a valuation assigning
values in D to the individual variables occurring free in A(x). We have to show
that M = Vx[A(x)] — A(z) [v]. So, suppose M |= Vx[A(x)] [v], i.e., for all d in D,
M |= A(a) [d/v)] where a is a free variable not occurring in A(x) and d/v is the
same valuation as v except that it assigns d to the variable a. (*)
Now let#* be the element in D assigned by the valuation v to the term¢, i.e., v(¢) =¢*.
Then because of (*), M = A(a) [t*/v], which is equivalent to M = A(z) [v].

The proof of 2. is similar to the proof of 1. a
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Note that if y is a bound variable, Vx[A(x)] — A(y) is not a formula; and even
if it were a formula, in general, not |= Vx[A(x)] — A(y). For instance, if A(x) =
WP (x,y)], = VxIy[P(x,y)] — Ty[P(y,y)], for (N; < ) is a counterexample to this
formula. This demonstrates the usefulness of having two kinds of symbols for free
and bound (occurrences of) individual variables. If one uses the same symbols for
both free and bound occurrences of individual variables, then Vx[A(x)] — A(y) is
only valid under the condition that y is free for x in A(x), i.e., if any free occurrence
of x in A(x) is replaced by an occurrence of y, then the resulting occurrence of y in
A(y) should also be free.

In Section 4.4 we shall introduce the following deduction rules for V and for 4,
assuming that C does not contain the free variable a :

C — P(a) P(a) = C
C — Vx|P(x)] [P(x)] = C

Theorem 4.17 says that these rules are sound in the sense that for any interpretation
M, if M makes the premiss true, then M also makes the conclusion true. But the same
theorem says that C — P(a) & C — Vx[P(x)] and that P(a) — C [~ 3x[P(x)] — C.
Note the difference with the rule Modus Ponens, where we do have A,A — B |= B.
In propositional logic we have seen in Theorem 2.11 that ‘A |= B’ is a stronger
statement than ‘if = A, then |= B’. This becomes particularly evident in predicate
logic, as can be seen from Theorem 4.17 below. For instance, from Theorem 4.17,
1 it follows that ‘if = P(a), then = Vx[P(x)]’ is true, while the stronger statement
P(a) = Vx[P(x)] is false. Items 2 and 3 of this theorem state that the logical deduc-
tion rules for V and for 3, to be introduced in Section 4.4, are sound.

Theorem 4.17 (Soundness of the deduction rules for the Quantifiers).

Let A(a) be a formula containing a free variable a and let C be a formula not
containing the free variable a. Let M be an interpretation.

1. If M = A(a), then M |= Vx[A(x)]. But A(a) = Vx[A(x)].

2.IfM |=C — A(a), then M |= C — Vx[A(x)]. But C — A(a) }= C — Vx[A(x)].

3. IfM = A(a) — C, then M |= 3x[A(x)] = C. But A(a) — C [~ Ix[A(x)] — C.

Proof. 1) Suppose M |= A(a), i.e., for every d in the domain D of M, M |= A(a)ld)].
In other words, M |= Vx[A(x)]. On the other hand, let M = (N;is even). Then M |=
P(a)[2] (2 is even), but M B~ Vx[P(x)] (not all natural numbers are even). Hence
P(a) [~ Vx[P(x)].

2) Suppose M = C — A(a) and C does not contain the variable a. Then by 1) M |=
Vx[C — A(x)] and hence, because C does not contain a, M = C — Vx[A(x)]. On
the other hand, for C = QV —Q, C — A(a) is equivalent to A(a) and C — Vx[A(x)]
is equivalent to Vx[A(x)]. Hence, for C = QV -0, C — A(a) = C — Vx[A(x)] iff
A(a) = Vx[A(x)], which according to 1) does not hold. Another way to see that
C — A(a) = C — Vx[A(x)] does not hold is as follows: from ‘if it is September 5,
then a(ntoine) has his birthday’ one may not conclude ‘if it is September 5, then
everyone has his birthday’.

3) Suppose M = A(a) — C and C does not contain a. That is, for every element d in
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the domain of M, M |= A(a) — C [d] (*). We have to show: M |= 3x[A(x)] — C. So,
suppose M |= Jx[A(x)], i.e., for some d in the domain of M, M |= A(a) [d]. Hence,
because of (*) and because C does not contain a, M |= C. On the other hand, from
‘if a(ntoine) has his birthday, then it is September 5° one may not conclude that ‘if
someone has his birthday, then it is September 5°. ]

The condition in Theorem 4.17 that C does not contain the free variable a is
necessary. To see this, let C be A(a). Then M |= A(a) — A(a), but in general
M [~ A(a) — Vx[A(x)]; for instance, the proposition ‘if a(ntoine) has his birthday,
then everyone has his birthday’ is false.

Also M |= A(a) — A(a), but in general M [~ 3x[A(x)] — A(a); for instance, the
proposition ‘if there is an even number, then 3 is even’ is false.

4.3.4 Predicate Logic with Function Symbols*

In mathematics, but also in natural language, one frequently uses functions. For
instance, the binary function + that assigns to any pair of natural numbers n and
m the natural number n 4 m; the unary function the-mother-of that assigns to any
person a his or her mother: the-mother-of (a). So, it is convenient to extend the
predicate language with function symbols:

f17f27f37"'

where each f; is supposed to be k;-ary, i.e., taking k; arguments. Individual constants
are then special function symbols, namely, function symbols f; taking 0 arguments,
i.e., k; = 0. An example of a predicate language containing function symbols for
addition and multiplication of natural numbers is given in Chapter 5.

With no function symbols present, the only terms - denoting elements of the
domain D of a given interpretation M - are free individual variables and individual
constants. But with function symbols present, we have to extend the notion of ferm.

Definition 4.17 (Terms). Terms are defined (inductively) as follows:

1. Each free individual variable is a term.

2. Each individual constant is a term.

3. If f; is a k;-ary function symbol and 11,...,#, are terms, then fi(t1,...,%,) is a
term. Note that clause 2 can be treated as a special case of clause 3, taking k; = 0.

Formulas are defined as before (see Definition 4.5), but now allowing the #1,...,t,
in Definition 4.4 of ‘atomic formula’ to be any terms, instead of simply any free
individual variables or individual constants.

If we extend the predicate language with function symbols, we have to adapt the
definition of an interpretation or structure (Definition 4.7) accordingly.

Definition 4.18 (Interpretation). An interpretation M for the predicate logic with
function symbols is by definition a tuple (D; P;',P5,... ; fi', f5,...), such that:
1. D is a non-empty set, called the domain of M.
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2. For any n;-ary predicate symbol P;, P* is a n;-ary predicate over D.
3. For any k;-ary function symbol f;, f* is a function that assigns to any k; tuple of
elements of D an element of D.

For instance, if @ is a 2-ary function symbol in the predicate language and M is an
interpretation with domain N, then the interpretation &* of @ might be the function
+ that assigns to any pair (or 2-tuple) n,m of natural numbers the natural number
n+m.If f;is an individual constant, i.e., k; = 0, then f;* is an element of D.

The definitions of M = A (M is a model of A), = B (B is valid) and of
Ai,...,A, E B (B is a valid or logical consequence of Ay,...,A,) are as before,
taking into consideration that now all structures M are interpretations for the predi-
cate logic with function symbols.

All results stated for the predicate logic without function symbols also hold for
the predicate logic with function symbols, where terms may also contain function
symbols in addition to individual variables and constants.

Example 4.11. Let f be a binary (i.e., 2-ary) function symbol, = a binary predicate
symbol, and a and b free individual variables. Then f(a,b) and f(b,a) are terms.
Let M = (N; =; +) be the model with domain N, interpreting = as = (equality) and
f as + (addition). Then M |= f(a,b) = f(b,a), because for all natural numbers n, m,
n+m=m+n.AlsoM = f(a,b) =a [2,0], because 2 + 0 =2, but M t~ f(a,b) = a,
because, for instance, M = f(a,b) = a [2,1], since 2+ 1 # 2.

4.3.5 Prenex Form*

Definition 4.19 (Prenex Formula). A formula A is in prenex (normal) form if A
consists of a (possibly empty) string of quantifiers followed by a formula without
quantifiers. We also say that A is a prenex formula.

A simple example is the formula VxVy3z[P(x,y) A Q(y,x) — P(z,z)]. By pulling out
quantifiers, we can reduce every formula to a formula in prenex form.

Theorem 4.18 (Prenex Normal Form Theorem). For every formula A there is a
prenex formula B such that = A = B (or, equivalently, A = B).

Proof. The proof is by induction on the complexity of the formula A (Theorem 4.1).
Induction basis: for an atomic formula P(71,...,t,) the theorem is trivially true.
Induction step for the connectives: suppose A=B — C, BAC, BVC or =B, and B, C
are equivalent to prenex formulas B*, C* respectively (induction hypothesis). Then
B* = (Q1y1)---(Quyn)B' and C* = (Q}z1) ... (Qlyzm)C", where 0i,Q); are quanti-
fiers and B!, C! open. By Theorem 4.3 all bound variables can be chosen distinct.
Now A is semantically equivalent to B* — C*, B* AC*, B* VC* or —=B* respectively.
By means of the prenex operations (a), (b), (c) and (d) below, we can convert the
latter formula into a formula in prenex form.
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(a) (1) Replace a part Qx[B] — C by Q0'x[B — C],
where Q'x is Vx if Ox is 3x and Q'x is Ix if Ox is Vx.

(2) Replace a part B — Qx[C] by Qx[B — C].
(b) (1) Replace a part Qx[B] AC by Qx[BAC].

(2) Replace a part B A Qx[C] by Ox[BAC].
(c) (1) Replace a part Qx[B] vV C by Ox[BV C].

(2) Replace a part BV Qx[C] by Qx[BV C].
(d)  Replace a part =Qx[B] by Q'x[—B] where (' is as in (a).
It remains to be shown that if E’ results from E by a prenex operation, then
EE= E'. But this is straightforward; see Exercise 4.26.
Induction step for the quantifiers: Suppose A = Vx[B(x)] or A = 3x[B(x)] and B(a)
is equivalent to a prenex formula B*(a) (induction hypothesis). By Theorem 4.3
we can choose the bound variables in B*(a) distinct from x. Then Vx[B*(x)] and
Jx[B*(x)] are prenex formulas and = A & Vx[B*(x)] or = A & 3x[B*(x)] respec-
tively. a

The prenex normal form theorem states that for every formula A there is a prenex
formula B which is equivalent to A. Being prenex, B consists of a finite string of
quantifiers followed by a formula C without quantifiers, i.e., B = Q1x; ... Qnx,[C].
According to Theorem 2.18, C is equivalent to a formula C’ in conjunctive normal
form. So, by combining the prenex normal form theorem and the conjunctive normal
form theorem (Theorem 2.18), every formula A is equivalent to a formula of the form

O1x1...00x, [(Lil \Y ...\/L,'k)/\.../\(le \Y ...\/le)],

where each L, is a literal, i.e., an atomic formula or the negation of an atomic for-
mula. Any logic program in the programming language PROLOG, to be treated in
Section 9.1, will be a formula of this form with all the quantifiers universal.

In 1936 A. Church and A. Turing proved independently that there is no decision
procedure for validity of formulas in predicate logic (see Section 4.5). Nevertheless,
there is a decision procedure for formulas in prenex normal form in the prefix of
which no existential quantifier precedes any universal quantifier. In the exercises of
Section 4.5 some other classes of formulas are given for which a decision procedure
is known. Most of these classes consist of formulas having a prenex normal form of
a particular type. For more of these results see A. Church [3].

4.3.6 Skolemization, Clausal Form*

If M is a model with domain D and M = Vx3y[P(x,y)], then there must be some
function f* : D — D such that for all d € D, M |= P(ay,az)[d, *(d)]. This suggests
introducing a function symbol f in our language and replacing Vx3y[P(x,y)] by the
formula Vx[P(x, f(x))].

Let A be a formula in prenex normal form, the Skolem (normal) form of A
is obtained by eliminating all existential quantifiers in (the prefix of) A as fol-
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lows: for any expression of the form Vxi...Vx3y[B(xi,...,x,y,...)] a new k-
ary function symbol f is introduced and the original expression is replaced by
V)C] .. .ka[B(xl goee 7xk,f(x1 goee 7)61(), .. )]

Thus, the Skolem normal forms of Ix[P(x)], VxIy[P(x,y)], VxIyVz[P(x,y,z)] and
Vx3yVzIu[P(x,y,z,u)] are P(c), Vx[P(x, f(x))], VxVz[P(x, f(x),z)] and
VxVz[P(x, f(x),z,8(x,2))] respectively, where ¢ is a new individual constant and f
and g are new function symbols.

Let Sk(A) denote the Skolem normal form of A. Clearly, if M = Sk(A), then
M = A. But not conversely: (N; is even; 3 ) |= 3x[P(x)], but (N; is even; 3) = P(c).
And if i is the identity function on N, then (N; <; i) = Vx3y[P(x,y)], but (N; <
;1) = Vx[P(x, f(x))]. However, it is easy to see the following

Theorem 4.19. 1. Sk(A) |= A; but not conversely.
2. Sk(A) is satisfiable iff A is satisfiable.

It follows that if |= Sk(A), then also = A. But the converse does not hold:
= Va3y[P(x) — P(y)], but = Vx[P(x) = P(f(x))].

Definition 4.20 (Clausal Form). Given any formula A (of first-order predicate
logic), the clausal form C(A) of A is obtained as follows:

1. construct the prenex (normal) form A’ of A; A" = Q1x ... Qpxy[M], where Q; =V
or 3 and M is quantifier-free;

2. construct the Skolem (normal) form A* of A’; A* = Vx; ... Vx [M*], M* quantifier-
free, but containing (n — k) additional function-symbols;

3. construct the conjunctive normal form (L1 V...V Ly )A... A (Lg V...V Ly,) of
M* (see Theorem 2.18).

Example 4.12. Let A = 3x[P(x)] — 3x[Q(x)]. Then A" = VxTIy[P(x) — Q(y)], A* =
Vx[P(x) = Q(f(x))] and C(A) = Vx[=P(x) V Q(f (x))].

Theorem 4.20. For the clausal form C(A) of A the following holds:

1. C(A) = A. Consequently, if C(A) is valid, then A is valid. But not conversely:
= VX (P(x) — P(y)), but = Va-P(x) v P(£(x))].

2. A is satisfiable iff C(A) is satisfiable.

3. The ‘complexity’ of C(A) is lower than that of A, in the sense that C(A) contains
only universal quantifiers and no existential quantifiers that occur in the prenex
(normal) form of A.

Automated theorem provers for logic based on resolution operate as follows. Given
any assumption formulas Ay, ...,A, and given any formula B, they construct =B and
the clausal forms C(A;),...,C(A,) and C(—B) of Ay,...,A, and —B respectively.
Next they check whether a contradiction can be derived from C(A;),...,C(A,)
and C(—B) by resolution (or otherwise, for instance, by the tableaux-method).
If so, then C(A;),...,C(A,), C(—B) are not simultaneously satisfiable; hence,
Ay,...,A,, —B are not simultaneously satisfiable and therefore Ay,...,A, = B. If
not, then C(A,),...,C(A,), C(—B) are simultaneously satisfiable (completeness);
hence, Ay, ...,A,, —B are simultaneously satisfiable and therefore Ay,...,A, ~ B.
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Theorem 4.21. Any definite logic program (see also Chapter 2 and 9) is actually a
formula in clausal form.

Proof. The structure of any definite logic program is by definition the following:

Pl - Qla"'in1~

Pk - Qka"'aan‘
where P; and Q; are atomic formulas.

I stands for: (P < Q1A...AQy) A
. I

N (P QkN...NQy,)
or, equivalently, for:

(P]\/—‘QIV...\/_‘in) A
: 111

/\(Pk\/—\Qk\/...\/—\an) .
Remembering that CI(A) denotes the universal closure of A, III is short for:

Cl(P] V=01 \/...\/—‘in) AN
v
/\Cl(Pk\/—'Qk\/...\/—'an) .

IV, and hence also I is equivalent to a formula Vx ... Vx;[(PL V=01 V...V =0y, ) A
NPV A0k V...V 20y, )], which is in clausal form.

Exercise 4.21. let P be a unary and Q a 0O-ary predicate symbol. Which of the fol-
lowing statements are right? Give either a proof or a counterexample.

1. Vx[P(x)] = Q | Vx[P(x) — Q] and 2. Vx[P(x) — Q] = Vx[P(x)] = Q.

3. I[P(x)] = O = Ix[P(x) — Q] and 4. Ix[P(x) — Q] = IIx[P(x)] — O.

Exercise 4.22. Are the following formulas valid or invalid? Give either a proof or a
1. (Vx[P(x)] — 3x[0(x)]) = Ix[P(x) — O(x)];

counterexample. 2. (Ix[P(x)] — Vx[Q(x)]) = Vx[P(x) = O(x)].

Exercise 4.23. Which of the following statements are right? Give either a proof or
a counterexample.

1. Vx[P(x) = Q(x)] = (Ix[P(x)] — 3x[Q(x)]); and conversely?.

2. I[P(x) = O(x)] = (Vx[P(x)] — Vx[Q(x)]); and conversely?

Exercise 4.24. Prove or refute: Vx3y[P(x) — Q(y)] = IyVx[P(x) — O()].

Exercise 4.25. (H. Wang) Prove: = 3x3yVz[(P(x,y) = P(y,2) AP(z,2)) A
(P(x,y) AQ(x,y) = Q(x,2) A Q(z,2))]-
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Exercise 4.26. Prove that the formulas in the prenex operations (a), (b), (c) and (d)
in the proof of Theorem 4.18 are semantically equivalent.

Exercise 4.27. Following the proof of the prenex normal form theorem (Theorem
4.18) convert each of the following formulas into a formula in prenex form.

1. Vx[P(x)] = Ix[Q(x)]; 2. Ix[P(x)] — Vx[Q(x)];

3. [P(x,a)] — I[Q(x) V-Iy[RD)]]-

Exercise 4.28. Find two prenex normal forms for the formula 3x[P(x)] — 3x[Q(x)].
(See also Exercise 4.24)

4.4 Syntax: Provability and Deducibility

In this section we shall generalize the notions of (logical) provability (- B) and
(logical) deducibility (Ay,...,A, F B), as defined for propositional logic in Section
2.6, to predicate logic.

It turns out that also for (classical) predicate logic one can select a small, finite,
number of valid f