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Preface

This book is based on junior and senior level undergraduate courses that I have

given at both New York University and the University of Michigan. You might ask,

in heavens name, why anyone would want to write yet another introductory text

on quantum mechanics. And you would not be far off base with this assessment.

There are many excellent introductory quantum mechanics texts. Moreover, with the

material available on the internet, you can access almost any topic of your choosing.

Therefore, I must agree that there are probably no compelling reasons to publish this

text. I have undertaken this task mainly at the urging of my students, who felt that it

would be helpful to students studying quantum mechanics.

For the most part, the approach taken is a traditional one. I have tried to

emphasize the relationship of the quantum results with those of classical mechanics

and classical electromagnetism. In this manner, I hope that students will be able

to gain physical insight into the nature of the quantum results. For example, in the

study of angular momentum, you will see that the absolute squares of the spherical

harmonics can be given a relatively simple physical interpretation. Moreover, by

using the effective potential in solving problems with spherical symmetry, I am

able to provide a physical interpretation of the probability distributions associated

with the eigenfunctions of such problems and to interpret the structures seen in

scattering cross sections. I also try to stress the time-dependent aspects of problems

in quantum mechanics, rather than focus simply on the calculation of eigenvalues

and eigenfunctions.

The book is intended to be used in a year-long introductory course. Chapters 1–

13 or 1–14 can serve as the basis for a one-semester course. I do not introduce

Dirac notation until Chap. 11. I do this so students can try to master the wave

function approach and its implications before engaging in the more abstract

Dirac formalism. Dirac notation is developed in the context of a more general

approach in which different representations, such as the position and momentum

representations, appear on an equal footing. Most topics are treated at a level

appropriate to an undergraduate course. Some topics, however, such as the hyperfine

interactions described in the appendix of Chap. 21, are at a more advanced level.

These are included for reference purposes, since they are not typically included in

vii
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undergraduate (or graduate) texts. There is a web site for this book, http://www-

personal.umich.edu/~pberman/qmbook.html, that contains an Errata, Mathematica

subroutines, and some additional material.

The problems form an integral part of the book. Many are standard problems, but

there are a few that might be unique to this text. Quantum mechanics is a difficult

subject for beginning students. I often tell them that falling behind in a course such

as this is a disease from which it is difficult to recover. In writing this book, my

foremost task has been to keep the students in mind. On the other hand, I know

that no textbook is a substitute for a dedicated instructor who guides, excites, and

motivates students to understand the material.

I would like to thank Bill Ford, Aaron Leanhardt, Peter Milonni, Michael Revzen,

Alberto Rojo, and Robin Shakeshaft for their insightful comments. I would also like

to acknowledge the many discussions I had with Duncan Steel on topics contained

in this book. Finally, I am indebted to my students for their encouragement and

positive (as well as negative) feedback over the years. I am especially grateful to

the Fulbright foundation for having provided the support that allowed me to offer a

course in quantum mechanics to students at the College of Science and Technology

at the University of Rwanda. My interactions with these students will always remain

an indelible chapter of my life.

Ann Arbor, MI, USA Paul R. Berman

http://www-personal.umich.edu/~pberman/qmbook.html
http://www-personal.umich.edu/~pberman/qmbook.html
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Chapter 1

Introduction

As a science or engineering major, you are about to embark on what may be the

most important course of your undergraduate career. Quantum mechanics is the

foundation on which our current picture of the structure of matter is built. For stu-

dents, an introductory course in quantum mechanics can be difficult and frustrating.

When you studied Newtonian physics, it was easy to envision experiments involving

the motion of particles moving under the influence of forces. Electromagnetism

and optics were a bit more abstract once the concept of fields was introduced,

but you are familiar with many optical effects such as colors of thin films, the

rainbow, and diffraction from single or double slits. In quantum mechanics, it is

more difficult conceptually to understand what is going on since you have very little

day to day experience with the wave nature of matter. However, you can exploit your

knowledge of both classical mechanics and optics to get a better feel for quantum

mechanics.

I often begin a course in quantum mechanics asking students “Why and when is

quantum mechanics needed to explain the dynamics of a particle moving in a poten-

tial. In other words, when does a classical particle description fail?” To understand

and appreciate many aspects of quantum mechanics, you should always have this

and a few other questions in the back of your mind. Question two might be “How

is the quantum mechanical solution of a given problem related to the corresponding

problem in classical mechanics?” Question three could be “Is there a problem in

optics with which I am familiar that can shed light on a given problem in quantum

mechanics?” You can add other questions to this list, but these are a good start.

Another key point in the study of quantum mechanics is not to lose track of

the physics. There are many special functions, such as Hermite and Laguerre

polynomials, that emerge from solutions of the Schrödinger equation, and the

algebra can get a little complicated. As long as you remind yourself of the physical

nature of the solution rather than the mathematical details, you will be in great
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2 1 Introduction

shape. The reason for this is that most of the solutions share many common features.

The specific form of the solutions may change, but the overall qualitative nature of

the solutions is remarkably similar for many different problems. Moreover, with

the availability of symbolic manipulation programs such as Mathematica, Maple,

or Matlab, it is now easy to plot and evaluate any of these functions using a few

keystrokes.

To help introduce the subject matter, I will present a very broad, qualitative

overview of the way in which quantum mechanics was born, a birth that took about

25–30 years. I will not worry about historical accuracy here, but simply try to give

you a reasonable picture of the manner in which it became appreciated that a wave

description of matter was needed in certain limits.

1.1 Electromagnetic Waves

Quantum mechanics is a wave theory. Since the wave properties of matter have

many similarities to the wave properties of electromagnetic radiation, it won’t hurt

to review some of the fundamental properties of the electromagnetic field. The

possible existence of electromagnetic waves followed from Maxwell’s equations.

By combining the equations of electromagnetism, Maxwell arrived at a wave

equation, in which the wave propagation speed in vacuum was equal to v D
1=
p
�0�0, where �0 is the permittivity and �0 the permeability of free space. Since

these were known quantities in the nineteenth century, it was a simple matter to

calculate v; which turned out to equal the speed of light. This result led Maxwell to

conjecture that light was an electromagnetic phenomenon.

All electromagnetic waves travel in vacuum with speed c D 2:99792458 �
108 m/s, now defined as the speed of light. What distinguishes one type of

electromagnetic wave from another is its wavelength � or frequency f , which are

related by

c D f�: (1.1)

Instead of characterizing a wave by its frequency (which has units of cycles per

second or Hz) and wavelength, we can equally well specify the angular frequency,

! D 2� f , (which has units of radians per second or s�1) and the magnitude of the

propagation vector (or wave vector), defined by k D 2�=�. With these definitions,

Eq. (1.1) can be replaced by

! D ck; (1.2)

which is known as a dispersion relation, relating frequency to wave vector. For

electromagnetic radiation in vacuum the dispersion relation is linear.
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The source of electromagnetic waves is oscillating or accelerating charges, which

give rise to propagating electric and magnetic fields. The wave equation for the

electric field vector E.R; t/ at position R at time t in vacuum is

r2E.R; t/ D 1

c2

@2E.R; t/

@t2
: (1.3)

The simplest solution of this equation is also the most important, since it is a

building block solution from which all other solutions can be constructed. The

building block solution of the wave equation is the infinite, monochromatic, plane

wave solution, having an electric field vector given by

E.R; t/ D �E0 cos .k � R � !t/ ; (1.4)

where E0 is the field amplitude and the polarization of the field is specified by a

unit vector � that is perpendicular to the propagation vector k of the field. There are

two independent field polarizations possible for each propagation vector. The fact

that ��k D 0 follows from the requirement that r � E.R;t/ D 0 in vacuum. The

field (1.4) corresponds to a wave that is infinite in extent and propagates in the k

direction. Of course, no such wave exists in nature since it would uniformly fill all

space.

As a consequence of the linearity of the wave equation, the sum of any two

solutions of the wave equation is also a solution. This is known as a superposition

principle. It is not difficult to visualize how waves add together. If, at the same time

you are putting your finger in and out of water in a lake, someone else is also putting

their finger in and out of the water, the resulting wave results from the actions of

both your fingers. The important thing to remember is that it is the displacements

or amplitudes of the waves that add, not their intensities. The intensity of a wave is

proportional to the square of the wave amplitude.

For the time being, let us consider two waves having the same frequency and the

same amplitude. If the two waves propagate in opposite directions, the total electric

field vector is

E.R; t/ D �E0 Œcos .k � R � !t/C cos .�k � R � !t/�

D 2�E0 cos .!t/ cos .k � R/ ; (1.5)

a standing wave pattern. If you plot the wave amplitude at several different times

as a function of position, you will find that there is an envelope for the wave that

is fixed in space—the wave “stands” there and oscillates within the envelope. The

points of zero amplitude are called nodes of the field and the maxima (or minima)

are called antinodes of the field. For a standing wave field in the x direction that is

confined between two parallel mirrors separated by a distance L; the standing wave

pattern will “fit in” for wavelengths equal to 2L; L, 2L=3; L=2, etc., as shown in
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Fig. 1.1 Resonance involving standing waves with clamped endpoints

Fig. 1.1. In this limit, the tangential component of the electric field vanishes at the

mirrors, as required by the boundary conditions on the field. The condition

�n D 2L=n; n D 1; 2; 3; : : : : (1.6)

is known as a resonance condition.

1.1.1 Radiation Pulses

To get a pulse of radiation, it is necessary to add together monochromatic waves

having a continuous distribution of frequencies. It is easy to create a pulse of

radiation. Simply turn a laser or other light source on and off and you have created

a pulse. Why worry about the frequencies contained in the pulse? It turns out that it

is important, even central, to understand this concept if you are going to have some

idea of what quantum mechanics is about.

Let us assume the pulse is propagating in the x direction and has a duration �t

corresponding to a spatial width�x D c�t. Clearly this cannot be a monochromatic

wave since a monochromatic wave is not localized. Instead, the pulse must be a

superposition of waves having a range of frequencies �f centered around some

average frequency f0. Using the theory of Fourier analysis it is possible to show that

�f and �t are related by

�f�t � 1

2�
: (1.7)

The quantity �f is known as the spectral width of the pulse. If the frequency

of the pulse is known precisely, as in a monochromatic wave, there is no range

of frequencies and �f D 0: In general there is a central frequency f0 in a pulse

and a range of frequencies �f about that central frequency as shown in Fig. 1.2.

If �f � f0, then the frequency is pretty well-defined and the field is said to be

quasi-monochromatic. The field associated with the light of a green laser pointer
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Fig. 1.2 Illustration of the equation �f�t � 1=2�: As the spectral frequency distribution of a

pulse broadens, the temporal pulse width narrows

and most other laser fields are quasi-monochromatic, as are the fields from neon

discharge tubes. Radio waves are also quasi-monochromatic, the central frequency

is the frequency of the station (about 1000 kHz for AM and 100 MHz for FM)

broadcasting the signal. On the other hand, if �f is comparable with f0, as in a light

bulb, the source is said to be incoherent or broadband.

For example, consider a pulse of green laser light that has an ns (10�9 s) duration,

�t D 1 ns. The spatial extent of this pulse is 3 � 108 m/s � 10�9 s = 30 cm. The

frequency range in the pulse is given by

�f D 1=
�
2�10�9 s

�
D 1:6 � 108 Hz. (1.8)

Since the light from the green laser pointer has a central wavelength of 532 nm, it

has a central frequency of about f0 D 5:6 � 1014 Hz. As a consequence, �f � f0
and this pulse is quasi-monochromatic. That is, a one nanosecond pulse of this light

appears to have a single frequency or color if you look at it. On the other hand, if

you try to make a one femtosecond (fs) pulse with this light (1 fs = 10�15 s) which

has a spatial extent of 300 nm, then

�f D 1=
�
2�10�15 s

�
D 1:6 � 1014 Hz, (1.9)

which is comparable to the central frequency. As a result this is a broadband pulse

which no longer appears green, but closer to white. Note that the spatial extent of the



6 1 Introduction

pulse, 300 nm is comparable to the central wavelength. This is an equivalent test for

broadband radiation. If the spatial extent is comparable to the central wavelength,

the radiation is broadband; if it is much larger than the central wavelength, it is

quasi-monochromatic.

1.1.2 Wave Diffraction

The final topic that we will need to know something about is wave diffraction.

Diffraction is a purely wave phenomenon, but sometimes waves don’t appear to

diffract at all. If you shine a laser beam at a tree or a pencil, it will reflect off of

these and not bend around them. Moreover, if you shine a laser beam through an

open door, it will not bend around into the hallway. Diffraction is only important

when waves meet obstacles (including apertures or openings) that are comparable

to or smaller than the central wavelength of the waves. This is actually true for the

laser beam itself!—it will stay a beam of approximately constant diameter only if its

diameter is much greater than its wavelength, otherwise, it will spread significantly.

I can make this somewhat quantitative. Imagine there is a circular opening in

a screen having diameter a through which a laser beam passes, or that it passes

through a slit having width a, or that a laser beam having diameter a propagates in

vacuum with no apertures present. In each of these cases, there is diffraction that

leads to a spreading of the beam by an amount

sin � � �

a
; (1.10)

where � is the angle with which the beam spreads. If �=a � 1, the spreading

angle is very small and diffraction is relatively unimportant. This is the limit where

the wave acts as a particle, moving on straight lines. On the other hand, when a

gets comparable to a wavelength, the spreading of the beam becomes significant. If

�=a > 1, the spreading is over all angles. For example, if a pinhole is illuminated

with light, you can see the diffracted light at any angle on the other side of the

pinhole.

Even if the diffraction angle is small, the effects can get large over long distances.

If a laser beam having diameter 1.0 cm and central wavelength 600 nm is sent to the

moon, the diffraction angle is

� � �

a
D 6 � 10�7 m

10�2 m
D 6 � 10�5: (1.11)

By the time it gets to the moon the spot size diameter d is

d � REM� D 3:8 � 108 m � 6 � 10�5 D 2:3 � 104 m D 23 km, (1.12)

a lot larger than 1 cm! In this equation REM is the Earth-moon distance.
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The bottom line on diffraction. If you try to confine a wave to a distance less than

or comparable to its wavelength, it will diffract significantly.

1.2 BlackBody Spectrum: Origin of the Quantum Theory

Thermodynamics was developed in the nineteenth century and involves the study

of the properties of vapors, liquids, and solids in terms of such parameters

as temperature, pressure, volume, density, conductivity, etc. At the end of the

nineteenth century, the theory of statistical mechanics was formulated in which the

properties of systems of particles are explained in terms of their statistical properties.

It was shown that the two theories of thermodynamics and statistical mechanics

were consistent—one could explain macroscopic properties of vapors, liquids, and

solids by considering them to be made up of a large number of particles following

Newton’s laws. One result of this theory is that for a system of particles (or waves) in

thermodynamic equilibrium at a temperature T, each particle or wave has .1=2/kBT

of energy for each “degree of freedom.” This is known as the equipartition theorem.

The quantity kB D 1:38 � 10�23 J/ıK is Boltzmann’s constant and T is the

absolute temperature in degrees Kelvin. A “degree of freedom” is related to an

independent motion a particle can have (translation, rotation, vibration, etc.). For

a free particle (no forces acting on it), there are three degrees of freedom, one

for each independent direction of motion. For a transverse wave, there are two

degrees of freedom, corresponding to the two possible independent directions for

the polarization of the wave.

At the beginning of the twentieth century there was a problem in trying to

formulate the theory of a blackbody. A blackbody is an object that, in equilibrium,

absorbs and emits radiation at the same rate. At a given temperature, the radiation

emitted by a blackbody is spread over a wide range of frequencies, but the peak

intensity occurs at a wavelength �max governed by Wien’s law,

�maxT D 2:90 � 10�3 m �ı K, (1.13)

where T is the temperature in degrees Kelvin. For example, the surface of the sun is

about 5000 ıK. If the sun is approximated as a blackbody, then �max � 580 nm is in

the yellow part of the spectrum. As an object is heated it emits radiation at higher

frequencies; an object that is “blue” hot is hotter than an object that is “red” hot.

The experimental curve for emission from a blackbody as a function of wave-

length is shown in Fig. 1.3. To try to explain this result, Rayleigh and Jeans

considered a model for a blackbody consisting of a cavity with a small hole in

it. Standing wave patterns of radiation fill the cavity and each standing wave has

kBT of energy associated with it (kBT=2 for each independent polarization of the

field). A standing wave pattern or mode is characterized by the number of (half)

wavelengths in the x, y, and z directions. There is a maximum wavelength � D 2L in

each direction, but there is no limit on the minimum wavelength. Since the number
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Fig. 1.3 Intensity per unit wavelength (in arbitrary units) as a function of wavelength [in units of

(hc=kBT)] for a blackbody. The maximum occurs at �max � hc= .5kBT/

of small wavelength (high frequency) modes that can fit is arbitrarily large and since

each mode has kBT of energy, the amount of energy needed to reach equilibrium

becomes infinite. Another way of saying this is that the energy density (energy per

unit frequency interval) approaches infinity as � � 0 or f � 1. The fact that it does

not take an infinite amount of energy to bring a blackbody into thermal equilibrium

or that the energy density does not approach infinity at high frequencies is known as

the “ultraviolet catastrophe”; theory and experiment were in disagreement for high

or “ultraviolet” frequencies (smaller wavelengths) (see Fig. 1.3).

Planck tried to overcome this difference by making an ad hoc hypothesis.1 In

effect, he said, that to excite a mode of frequency f , a specific minimum amount of

energy hf (h is defined below) is needed that must be provided in an all or nothing

fashion by electrons oscillating in the cavity walls. This went against classical ideas

that energy can be fed continuously to build up oscillation in a given mode. By

adopting this theory, he found that he could explain the experimental data if he

chose

h D 6:63 � 10�34 J � s D 4:14 � 10�15 eV � s, (1.14)

which is now known as Planck’s constant [recall that one eV (electron-volt) is equal

to 1:60�10�19 J (Joules)]. The quantum theory was born. Some details of the Planck

solution are given in the Appendix.

In thermal equilibrium at temperature T , electrons in the walls of the cavity have

a maximum energy of order of a few kBT , so that they are capable of exciting only

1On the law of the distribution of energy in the normal distribution, Annalen der Physik 4, 553–563

(1901).
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those radiation modes having hf . kBT . Quantitatively, it can be shown that the

maximum in the blackbody spectrum as a function of frequency occurs at

fmax D
2:82kBT

h
D 5:88 � 1010T Hz/ıK. (1.15)

As a function of wavelength the maximum in the blackbody spectrum occurs at

�max D
hc

4:965kBT
D 2:90 � 10�3

T
m �ı K. (1.16)

The numerical factors appearing in these equations and the fact that

fmax�max ¤ c (1.17)

follow from the details of the Planck distribution law (see Appendix). Visible

radiation having �max D 500 nm corresponds to a blackbody temperature of T �
6; 000 ıK, about the temperature of the surface of the sun. In the visible part of the

spectrum, hf is of order of a few eV.

In 1907, Einstein also used the Planck hypothesis to explain a feature that had

been observed in the specific heat of solids as a function of temperature.2 Many

solids have a specific heat at constant volume equal to 3R at room temperature;

where R D 8:31 J/mole/ıK is the gas constant; however, some substances such as

diamond have a much lower specific heat. Based on a model of solids composed

of harmonic oscillators, Einstein used Planck’s radiation law to show that the

contributions to the specific heat of diamond from the oscillations are “frozen out”

at room temperature. To fit the data on diamond, Einstein used a value of 2:73�1013
Hz for the frequency of oscillations, which would imply that the vibrational degrees

of freedom begin to diminish for temperatures below T D hf=kB � 1300 ıK and

are effectively frozen out for temperatures below T D hf= .2:82kB/ � 460 ıK.

1.3 Photoelectric Effect

The all or nothing idea surfaced again in Einstein’s explanation of the photoelectric

effect in Section 8 of his 1905 paper, On a heuristic point of view concerning the

production and transformation of light.3 It had been noticed by Hertz and J. J.

Thomson in 1897 and 1899, respectively, that electrons could be ejected from metal

surfaces when light was shined on the surfaces. Einstein gave his explanation of the

effect in 1905 (this explanation and not relativity theory was noted in his Nobel Prize

2Planck theory of radiation and the theory of specific heats, Annalen der Physik 22, 180–190

(1907).
3Annalen der Physik 17, 132–148 (1905).
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citation) and further experiments by Millikan confirmed Einstein’s explanation.

It turns out that Einstein’s explanation is not really evidence for photons, even

though the authors of many textbooks assert this to be the case. To understand

the photoelectric effect, it is necessary to know that different metals have different

work functions. The work function (typically on the order of several eV) is the

minimum energy needed to extract an electron from a metal surface. In some sense

it is a measure of the height of a hill that the electron must climb to get out of the

metal. From a physical perspective, when an electron leaves the surface, it creates

an image charge inside the surface that attracts the charge back to the surface; the

work function is the energy needed to escape from this attractive force.

The experimental observations for the photoelectric effect can be summarized as

follows:

1. When yellow light is shined on a specific metal, no electrons are ejected.

Increasing the intensity of the light still does not lead to electrons being ejected.

2. When ultraviolet light is shined on the same metal, electrons are ejected. When

the intensity of the ultraviolet radiation is increased, the number of electrons

ejected increases, but the maximum kinetic energy of the emitted electrons does

not change.

To explain these phenomena, Einstein stated that radiation consists of particles

(subsequently given the name photons by the chemist Gilbert Lewis in 1926). For

radiation of frequency f , the photons have energy hf . When such particles are

incident on a metal surface, they excite the electrons by giving up their energy in an

all or nothing fashion. Thus, if the work function is denoted by W, the frequency of

the radiation must satisfy hf > W for the radiation to cause electrons to be ejected.

If hf < W, the photons cannot excite the electrons, no matter what the intensity

of the field—this explains why increasing the intensity of the yellow light does not

lead to electrons being ejected. On the other hand, if hf > W, the photon can excite

the electron with any extra energy going into kinetic energy KE of the electrons

(some of which may be lost on collisions). Thus the maximum energy of the emitted

electrons is

KEmax D hf �W: (1.18)

Increasing the intensity of the radiation does not change this maximum kinetic

energy since it results from single photon events, it affects only the intensity of

the emitted electrons.

1.4 Bohr Theory

By 1910, it was known that there existed negatively charged particles having charge

�e equal to �1:6� 10�19 C and mass m equal to 9:1� 10�31 kg. Moreover, the size

of these particles could be estimated using theoretical arguments related to their
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energy content to be about 10�15 m. From atomic densities and measurements in

gases, atoms were known to have a size of about 10�10 m. Since matter is neutral,

there must be positively charged particles in atoms that cancel the negative charge.

But how were the charges arranged? Was the positive charge spread out over a

large sphere and the negative charge embedded in it or was there something like

a planetary model for atoms? This question was put to rest in 1909 by Geiger

and Madsen who collided alpha particles (helium nuclei that are produced in

radioactivity) on thin metal foils. They found “back-scattering” that indicated the

positive charges were small. In 1911 Rutherford analyzed the data and estimated

the positive charges to have a size on the order of 10�15 m. He then proposed a

planetary model of the atom in which the electron orbited the positive nucleus.

However, there were problems in planetary—model—ville. It is easy to cal-

culate that an accelerating electron in orbit around the nucleus should radiate its

energy in about a nanosecond, yet atoms were stable. Moreover, the spectrum of

radiation emitted by the hydrogen atom consisted of a number of discrete (quasi-

monochromatic) lines, but accelerating electrons in different orbits should produce

a broadband source of radiation. How could this be explained?

To explain the experimental data within the context of the planetary model, Bohr

in 1913 came up with the following postulates:

1. The electron orbits the nucleus in circular orbits (back to Ptolemy and Coperni-

cus) having discrete values of angular momentum given by

L D mvr D n„; (1.19)

where n D 1; 2; 3; 4; : : : (actually he formulated the law in terms of energy

rather than angular momentum, but the two methods yield the same results).

The quantity r is the radius of the orbit, v is the electron’s speed, and L is the

magnitude of the angular momentum. The mass in this equation should actually

be the reduced mass of the electron which is smaller than the electron mass by a

factor of 1=1:00054:

2. The electrons radiate energy only when they “jump” from a larger to a smaller

orbit. The frequency of the radiation emitted is given by

fn2;n1 D
En2 � En1

h
; (1.20)

where Eni
is the energy associated with an orbit having angular momentum L D

ni„.
Although these are seemingly benign postulates, they have extraordinary con-

sequences. To begin with, I combine the first postulate with the laws of electrical

attraction and Newton’s second law. The magnitude of the electrostatic force on the

electron produced by the proton is

F D 1

4��0

e2

r2
: (1.21)
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Combing this with Newton’s second law, I find

1

4��0

e2

r2
D ma D mv2

r
; (1.22)

or

mvr D e2

4��0
: (1.23)

Equations (1.19) and (1.23) can be solved for the allowed radii and speeds of the

electron. The possible speeds are

vn D
˛FSc

n
; (1.24)

where

˛FS D
1

4��0

e2

„c �
1

137
(1.25)

is known as the fine-structure constant. The allowed radii are

rn D n2a0; (1.26)

where

a0 D
4��0„2

me2
D
N�c

˛FS

� 0:0529 nm (1.27)

is the Bohr radius, N�c D �c=2� , and

�c D h=mc D 2:43 � 10�12 m (1.28)

is the Compton wavelength of the electron. The allowed energies are given by

En D
mv2n
2
� 1

4��0

e2

rn

D �ER

n2
; (1.29)

where the Rydberg energy ER is defined as

ER D
1

2
mc2˛2FS � 13:6 eV D 2:18 � 10�18 J. (1.30)

Equations (1.19), (1.24), (1.26), and (1.29) are amazing in that they predict

that only orbits having quantized values of angular momentum, speed, radius, and
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energy are permitted, totally in contradiction to any classical dynamic models.

Moreover the smallest allowed radius r1 D a0 gives the correct order of magnitude

for the size of atoms. In addition, the energies could be used to explain the discrete

nature of the spectrum of the hydrogen atom.

Bohr’s second postulate addresses precisely this point. Since the energies are

quantized, the frequencies emitted by an excited hydrogen atom are also quantized,

having possible values

fnq D
En � Eq

h
D ER

h

�
1

q2
� 1

n2

�
D 3:2880 � 1015

�
1

q2
� 1

n2

�
Hz, (1.31)

with n > q. The corresponding wavelengths are

�nq D 91:18
n2q2

n2 � q2
nm. (1.32)

The different frequencies of the radiation emitted on transitions ending on the n D 1
level are referred to as the Lyman series, those ending on n D 2 as the Balmer

series, and those ending on n D 3 as the Paschen series. All Lyman transitions are

in the ultraviolet or soft X-ray part of the spectrum. The three lowest frequency

transitions in the Balmer series are in the visible (red—�32 D 656 nm, blue-green—

�42 D 486 nm, and violet—�52 D 434 nm), with the remaining Balmer transitions

in the ultraviolet. All Paschen transitions and those terminating on levels having

n > 3 are in the infrared or lower frequency spectral range. The second postulate

also “explained” the stability of the hydrogen atom, since an electron in the n D 1

orbital had nowhere to go.

Thus, Bohr’s theory explained in quantitative terms the spectrum of hydrogen.

That is, the Bohr theory gave very good agreement with the experimental values

for the frequencies of the emitted lines. Bohr theory leads to correct predictions for

the emitted frequencies because Bohr got the energies right. The Bohr theory also

predicts the correct characteristic values for the radius and speed of the electron in

the various orbits. As we shall see, however, the radius and speed are not quantized

in a correct theory of the hydrogen atom. Moreover, while angular momentum is

quantized in the quantum theory, the allowed quantized values for the magnitude of

the angular momentum differ somewhat from those given by the Bohr theory.

1.5 De Broglie Waves

It turns out that the photoelectric effect and quantization conditions of the Bohr

theory of the hydrogen atom can be explained if one allows for the possibility that

matter is described by a wave equation. The first suggestion of this type originates

with the work of Louis de Broglie in 1923. The basic idea is to explain the stable
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orbits of the electron in the hydrogen atom as a repeating wave pattern. Just what

type of wave remains to be seen. De Broglie actually arrived at a wavelength for

matter using two different approaches.

First let us consider the circular orbits of the electron in hydrogen, for which

Ln D mvnrn D n„: If we imagine that an orbit fits in n wavelengths of matter, then

n .�dB/n D 2�rn D
nh

mvn

; (1.33)

where �dB is the de Broglie wavelength. Solving for �dB, I find

.�dB/n D
h

mvn

: (1.34)

Thus, if we assign a wavelength to matter equal to Planck’s constant divided by

the momentum of the particle, then the wave will “repeat” in its circular orbit. If

Planck’s constant were equal to zero, there would be no wave-like properties to

matter.

De Broglie reached this result in another manner starting with Einstein’s theory

of relativity, combined with aspects of the photoelectric effect. In special relativity

the equation for the length of the momentum-energy 4-vector is

p2c2 � E2 D m2c4; (1.35)

where p is the momentum, m the mass, and E the energy of the particle. If I apply

this equation to “particles” of light having zero mass, I find p D E=c, which relates

the momentum and energy of light. Considering light of frequency f to be composed

of photons having energy E D hf , we are led to the conclusion that the momentum

of a photon is p D E=c D hf=c D h=�, where � is the wavelength of the light. Thus,

for photons, � D h=p. De Broglie then suggested that this is the correct prescription

for assigning a wavelength to matter as well.

You can calculate the de Broglie wavelength of any macroscopic object and

will find that it is extremely small compared with atomic dimensions. Since the

de Broglie wavelength of macroscopic matter is much smaller than the size of an

atom, macroscopic matter could exhibit its wave-like properties only if it encounters

interaction potentials that vary on such a scale, an unlikely scenario. On the other

hand, if you calculate the de Broglie wavelength of the electron in the ground state

of hydrogen, you will find a value close to the Bohr radius. Since the electron is

confined to a distance on the order of its wavelength, it exhibits wave-like properties.

In 1927, Davisson and Germer observed the diffraction and interference of

electron waves interacting with a single crystal of nickel, providing confirmation

of the de Broglie hypothesis. About the same time Schrödinger was formulating a

wave theory of quantum mechanics. The wave theory of matter was born!
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1.6 The Schrödinger Equation and Probability Waves

With de Broglie’s hypothesis, it is not surprising that scientists tried to develop

theories in which matter was described by a wave equation. In 1927, Schrödinger

developed such a theory at the same time that Heisenberg was developing a theory

based on matrices. Eventually the two theories were shown to be equivalent. I will

focus on the Schrödinger approach in this discussion; the matrix approach is similar

to Dirac’s formalism, which is discussed in Chap. 11.

The Schrödinger equation is a partial differential equation for a function  .r; t/

which is called the wave function. Before thinking about how to interpret the

wave function, it is useful to describe how to solve the Schrödinger equation. The

Schrödinger equation is different than the wave equation for electromagnetic waves,

although there are some similarities. To solve the Schrödinger equation, one must

find the “building block” solutions, that is, those solutions analogous to the infinite

plane monochromatic waves that served as the building block solutions of the wave

equation in electromagnetism. The building block solutions of the Schrödinger

equation are called eigenfunctions. Eigenfunctions or eigenstates are solutions of

the Schrödinger equation for which j .r; t/j2 is constant in time. It is not obvious

that such solutions exist, but it can be shown that they always can be found. The

eigenfunctions are labeled by eigenvalues which correspond to dynamic constants

of the motion such as energy, momentum, angular momentum, etc. Let me give you

some examples.

A free particle is a particle on which no forces act. For such a particle both

momentum p D mv and energy E D mv2=2 are constant. Thus momentum and

energy can be used as eigenvalue labels for a free particle. But which is a more

encompassing label? I can write the energy of the free particle as E D p2=2m. If I

give you the momentum, you can tell me the energy. On the other hand, if I give you

the energy you can tell me the magnitude of the momentum, but not its direction.

Thus momentum uniquely determines the eigenfunction since, to each momentum,

there is associated exactly one eigenstate. On the other hand, for a given energy there

is an infinite number of eigenstates since the momentum can be in any direction. In

this case the eigenfunctions or eigenstates are said to be infinitely degenerate. We

will see that whenever there is a degeneracy of this type, there is an underlying

symmetry of nature. In this case there is translational symmetry, since the particle

can move in any direction without experiencing a change the force acting on it (since

there is no force). The eigenfunctions for the free particle are our old friends, infinite

plane waves, but they differ from electromagnetic waves. The wavelength of the free

particle waves is just the de Broglie wavelength � D h=p—one momentum implies

one wavelength. Thus it is the momentum that determines the wavelength of the free

particle eigenfunctions.

For the bound states of the hydrogen atom, the electron is subjected to a force

so that momentum is not constant and cannot be used as a label for the hydrogen

atom eigenfunctions. On the other hand, angular momentum is conserved for any

central force. For reasons to be discussed in Chap. 9, the three components of the

angular momentum vector cannot be used to label the eigenfunctions; instead, the

magnitude of the angular momentum and one of its components are used.
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Let me return to the free particle. What is the significance of the wave function

j .r; t/j2? The interpretation given is that j .r; t/j2 is the probability density

(probability per unit volume) to find the particle at position r at time t. To give

you some idea of what this means, imagine throwing darts at a wall. You throw one

dart and it hits somewhere on the wall. Now you throw a second and a third dart.

Now you throw a million darts. After a million darts, you will have a pretty good

idea where the next dart will land—in other words, you will know the probability

distribution for where the darts will land. This will not tell you where the next dart

will hit, only the probability. The probability of hitting a specific point is essentially

equal to zero—you must talk about the probability density (in this case, probability

per unit area). In quantum mechanics we have something similar. You prepare a

quantum system in some initial state. At some later time you measure the particle

somewhere. Now you start with an identical initial state, wait the same amount of

time and measure the particle again. You repeat this a very large number of times and

you will have the probability distribution to find the particle at a time t after it was

prepared in this state. This will not tell you where the particle will be the next time

you do the experiment—only the probability. If you send single particles, acting as

waves, through the two-slit apparatus, each particles will set off only one detector

on the screen. If you repeat this many times however, eventually you will build up

the same type of interference pattern that occurs in the double slit experiment for

light.4

Since the eigenfunctions for a free particle are infinite mono-energetic (single

momentum or velocity) waves, the probability density associated with the free

particle eigenfunction is constant over the entire universe! In other words, the

eigenfunctions of the free particle are spread out over all space. Clearly no such

state exists. Any free particles that we observe in nature are in a superposition state

that is referred to as a wave packet, which is the matter analogue of a radiation

pulse. As with radiation, we make up a superposition state by adding several

waves or eigenfunctions together. But radiation pulses and wave packets differ in

a fundamental way. All frequency components of a radiation pulse propagate at

the same speed in vacuum, the speed of light. For a free particle wave packet,

the different eigenfunctions that compose the wave packet correspond to different

wavelengths, which, in turn, implies that they correspond to different momenta,

since wavelength for matter waves is related to momentum. Thus different parts of a

free particle wave packet move at different rates—the wave packet’s shape changes

in time! In the case of matter waves, Eq. (1.7) is replaced by

�x�p � „=2; (1.36)

4A beautiful video of an experiment demonstrating the buildup of a two-slit interference pattern

for electrons can be found at http://www.hitachi.com/rd/portal/highlight/quantum/.

http://www.hitachi.com/rd/portal/highlight/quantum/
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where �x is the spread of positions and �p the spread of momenta in the wave

packet. Equation (1.36) is a mathematical expression of the famous Heisenberg

Uncertainty Principle.

Matter can be considered to be “particle-like” as long as it is not confined it to

a distance less than its de Broglie wavelength. If a particle is confined to a distance

on the order of its de Broglie wavelength or encounters changes in potential energy

that vary significantly in distances of order of its de Broglie wavelength, the particle

exhibits wave-like properties.

1.7 Measurement and Superposition States

Measurement is one of the most difficult and frustrating features of quantum

mechanics. The problem is that the measuring apparatus itself must be classical and

not described by quantum mechanics. You will hear about “wave-function collapse”

and the like, but quantum mechanics does not describe the dynamics in which a

quantum state is measured by a classical apparatus. As long as you ask questions

related to the probability of one or a succession of measurements, you need not run

into any problems.

1.7.1 What Is Truly Strange About Quantum Mechanics:

Superposition States

When I discussed electromagnetic waves, I showed that a superposition of plane

wave states can result in a radiation pulse. There is nothing unusual about a radiation

pulse. However, for quantum-mechanical waves, the superposition of eigenfunctions

can sometimes lead to what at first appears to be rather strange results. The

strangeness is most readily apparent if we look at the electrons in atoms or other

quantum particles that are in a superposition of such bound states. Consider the

electron in the hydrogen atom. It is possible for the electron to be in a superposition

of two or more of its energy states (just as a free particle can be in a superposition of

momentum eigenstates). Imagine that you prepare the electron in a superposition of

its n D 1 and n D 2 energy states. What does this mean? If you measure the energy

of the electron you will get either �13:6 eV or �3:4 eV. If you prepare the electron

in the same manner and again measure the energy, you will get either �13:6 eV

or �3:4 eV. After many measurements on identically prepared electrons, you will

know the relative probability that the electron will be measured in the n D 1 state

or the n D 2 state. You might think that sometimes the electron was prepared in the

n D 1 state and sometimes in the n D 2 state, but this is not the case since it is

assumed that the electron is always prepared in an identical manner which can yield

either measurement—that is, it is in a superposition state of the n D 1 and n D 2

states. When you measure the energy, some people (myself excluded) like to say that
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the wave function collapses into the state corresponding to the energy you measure.

I would say that quantum mechanics just allows you to predict the probabilities for

various measurements and cannot provide answers to questions regarding how the

wave function evolves when a measurement is made.

The idea that the observer forces a quantum system into a given state has led to

some interesting, but what I consider misleading, ideas. Perhaps the most famous is

the question of “Who killed Schrödinger’s cat?” In the “cat” scenario, a cat is put

into a box with a radioactive nucleus. If the nucleus decays, it emits a particle that

activates a mechanism to release a poisonous gas. Since the nucleus is said to be in

a superposition state of having decayed and not having decayed, the cat is also said

to be in a superposition state of being dead and alive! Only by looking into the box

does the observer know if the nucleus has decayed. In other words, the observation

forces the nucleus into either its decayed or undecayed state. Thus it appears that

looking into the box can result in the death of the cat.

My feeling is that this is all a lot of nonsense. The reason that it is nonsense

is somewhat technical, however. When the nucleus decays, it emits a gamma ray,

so the appropriate superposition state must include this radiated field as well. The

transition from initial state to the decayed state plus gamma ray essentially occurs

instantaneously, even though the time at which the decay occurs follows statistical

laws. Thus when you look into the box, the cat is either alive or it is dead, but not in

a superposition state. In other words, the health of the cat is a measure of whether

or not the nucleus has decayed, but the cat itself is not in a superposition state. On

many similarly prepared systems, you will simply find that the cat dies at different

times according to some statistical law. You needn’t worry about being convicted of

“catacide” if you open the box.

Note that if it were true that you could force the nucleus into a given state by

observing it, you could prevent the nucleus from decaying simply by looking at it

continuously! Since it starts in its initial state and you continuously force it to stay in

its initial state by looking at it, it never decays. This is known as the Zeno effect, in

analogue with Zeno’s paradoxes. It should be pointed out that it is possible to keep

certain quantum systems in a given state by continuous observation. As long as you

make measurements on the system on a time scale that is short compared with the

time scale with which the system will evolve into a superposition state, you can keep

the system in its initial state. For the decay of particles, however, the transition from

initial to final states occurs essentially instantaneously and it is impossible to use

continuous “measurements” to keep the particle in its undecayed state. I return to a

discussion of the Zeno effect in Chap. 24.

1.7.2 The EPR Paradox and Bell’s Theorem

Although a single quantum system in a superposition state has no classical analogue

and already represents a strange animal, things get really strange when we consider

two, interacting quantum systems that are prepared in a specific manner.
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1.7.2.1 The EPR Paradox

In 1935, Einstein, Podolsky, and Rosen (EPR) published a paper entitled Can

Quantum-Mechanical Description of Physical Reality Be Considered Complete,

which has played an important role in the development of quantum mechanics.5 For

an excellent account of this paper and others related to it, see Quantum Paradoxes

and Physical Reality by Franco Selleri.6 In their paper, EPR first pose questions as

to what constitutes a satisfactory theory: “Is the theory correct? Is the description

given by the theory complete? They then go on to define what they mean by an

element of physical reality: If, without in any way disturbing a system, we can

predict with certainty (i.e. with probability equal to unity) the value of a physical

quantity, then there exists an element of physical reality corresponding to this

physical quantity.” Based on this definition and giving an example in which the wave

function corresponds to an eigenfunction of one of two non-commuting operators,7

they conclude that “either (1) the quantum-mechanical description of reality given

by the wave function is not complete or (2) when the operators corresponding to two

physical quantities do not commute the two quantities cannot have simultaneous

reality.”

To illustrate the EPR paradox, one can consider the decay of a particle into two

identical particles. The initial particle has no intrinsic spin angular momentum,

whereas each of the emitted particles has a spin angular momentum of 1=2 (spin

angular momentum is discussed in Chap. 12). The spin of the emitted particles

can be either “up” or “down” relative to some quantization axis, but the sum of

the components of spin relative to this axis must equal zero to conserve angular

momentum ( the spin of the original particle is zero so the total spin of the composite

particles must be zero). The particles are emitted in opposite directions to conserve

linear momentum and in a superposition of two states, a state in which one particle

(particle A) has spin up and the other (particle B/ has spin down plus a state in which

one particle (particle A) has spin down and the other (particle B/ has spin up, written

symbolically as

j i D 1p
2
.j"#i � j#"i/ ; (1.37)

where " refers to spin up and # to spin down. The spin states of the two particles

are said to be correlated or entangled.

Consider the situation in which the particles are emitted in this correlated state

and fly off so they are light years apart. According to quantum mechanics, the spin

of each of the particles (by “spin,” I now mean either up or down) is not fixed until

5A. Einstein, B. Podolsky, and N. Rosen, Physical Review 47, 777–780 (1935).
6Franco Selleri, Quantum Paradoxes and Physical Reality (Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1990).
7The commutator of two operators is defined in Chap. 5.
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it is measured. In other words, the spin of each of the particles can be either up or

down. If you don’t measure the spin of particle A, the spin of particle B will be either

up or down when measured relative to the z-axis. However, if you measure the spin

of particle (A) to be up relative to the z-axis, you are guaranteed that particle (B) will

have its spin down relative to the z-axis.

Of course you are free to measure the spin component of particle A along any

axis. If you measure the spin of particle A as up relative to the z-axis, the spin of

particle B will have physical reality along the�z direction. On the other hand, if you

measure the spin of particle A as up relative to the x-axis, the spin of particle B will

have physical reality along the �x direction. This is a situation in which both states

of particle B correspond to the same physical reality and these states correspond to

eigenfunctions of non-commuting spin operators, which is not allowed in quantum

mechanics. Since this outcome violates condition (2) stated above, the conclusion

in EPR is that quantum mechanics is not a complete theory. This is known as the

EPR paradox.

In the conventional description of quantum mechanics, there is no paradox. For

these correlated states, the probability that you measure a spin down for the second

particle after you have measured a spin up for the first particle is unity when both

spins are measured relative to the same axis. Quantum mechanics does not tell you

why this is the case or how it occurs, it just gives the probability for the outcome.

The idea of one measurement influencing the other is not particularly useful or

meaningful.

According to EPR, the state represented by Eq. (1.37) cannot represent the

complete state of the system. Although it is nowhere mentioned in their paper,

one often interprets this to imply that there must be additional labels or hidden

variables needed in Eq. (1.37) In other words, there are some variables encoded

in the quantum system that determine the outcome of the measurements. Quantum

mechanics was inconsistent with EPR’s element of reality, but a hidden variables

theory might be. Which is right?

1.7.2.2 Bell’s Theorem

The EPR paradox was and continues to be disturbing to some physicists. The

idea that a measurement on one physical system can influence the outcome of

a measurement on another system that is not causally connected with it can be

somewhat unnerving. Motivated by the issues raised by the EPR paradox, John

Bell in 1964 published a paper in which he discussed the idea of elements of

reality.8 Without any reference to quantum mechanics, he was able to prove that

certain inequalities must be obeyed on measurements of correlated systems to be

8John Bell, On the Einstein Podolsky Rosen Paradox, Physics 1, 195–200 (1964). See also, Hidden

variables and the two theorems of John Bell by N. David Mermin in the Review of Modern Physics,

65, 803–815 (1993).
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consistent with the EPR idea of physical reality. In other words, if Bell’s inequalities

are violated, then physical observables may not have physical reality of the type

described by EPR, independent of whether or not quantum mechanics is a valid

theory. It turns out that there are now experiments in which Bell’s inequalities

are violated. Moreover, the results of these experiments are correctly predicted by

quantum mechanics. I will give a proof of Bell’s theorem and discuss examples

in Chap. 13. Although Bell’s theorem is generally accepted, there are some who

question its validity.

Measurement in quantum mechanics is a subject that continues to attract a great

deal of attention. At this level, maybe it’s better not to worry about it too much and

instead concentrate on mastering the basic elements of the quantum theory. In the

words of Richard Feynman (or not),9 Shut up and calculate!

1.8 Summary

In this chapter, I gave a qualitative introduction to several aspects of the quantum

theory that we will encounter in the following chapters. As I stated, quantum

mechanics is challenging the first go-around for many students. To help master

the material it is important to try as many of the problems as possible. It can also

help to consult other texts that may treat the material in a different fashion that you

find more accessible. To begin, it may prove useful to review some mathematical

concepts. You can skip Chap. 2 if you are familiar with these concepts.

1.9 Appendix: Blackbody Spectrum

Blackbody radiation is discussed in almost every quantum mechanics textbook, but

the manner in which a blackbody achieves thermal equilibrium is almost never

discussed. I will return to this question after discussing the equilibrium blackbody

spectrum. There are essentially two ways to derive the blackbody spectrum. One

employs the quantum statistics of a Bose gas plus some additional assumptions

(radiation is described by Bose statistics and the energy of a photon having

frequency ! is „!). Since you will see such a treatment in your course on statistical

mechanics, I give an alternative derivation, more along the lines given by Planck.

The first step is to get the distribution of radiation field modes in a box, each of

whose sides has length L: There are two ways of doing this, both giving the same

final density of states of the radiation field.

9N. D. Mermin, Could Feynman have said this?, Physics Today, May, 2004, page 10.
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1.9.1 Box Normalization with Field Nodes on the Walls

In this case I assume that either the electric or magnetic field has a node on the

perfectly conducting walls of a metal cavity which is bounded by 0 � x � L,

0 � y � L, 0 � z � L. For the appropriate field to vanish at the boundaries, the field

mode function must be of the form sin .kxx/, sin
�
kyy
�
, or sin .kzz/, with

kx D
�nx

L
I (1.38a)

ky D
�ny

L
I (1.38b)

kx D
�nz

L
; (1.38c)

where nx; ny; nz, are positive integers [note that sin
�
�x
L

�
and sin

�
��x

L

�
correspond

to the same mode, differing only by a phase factor]. The field propagation vector is

given by

k D kxux C kxuy C kxuz; (1.39)

where uj (j D x; y; z) is a unit vector in the j-direction. The angular frequency ! of

a field mode is equal to kc, where k D
q

k2x C k2y C k2z .

Thus, it follows from ! D kc that

!n D knc D �cn

L
; (1.40)

where

n D
q

n2x C n2y C n2z : (1.41)

Each set of values (nx; ny; nz) corresponds to a given mode of the field. If there are

many modes, I can replace the discrete modes by a continuum, essentially making n

a continuous variable with ! D kc D �cn=L. In other words, the number of modes

in a shell having inner radius n and outer radius nC dn is simply 2 1
8

�
4�n2

�
dn. The

factor of 1/8 is present since only the positive quadrant for (nx; nx; nz) is allowed,

the factor of 2 is added to allow for two polarization components for each spatial

mode,
�
4�n2

�
is the surface area of the shell, and dn is the width of the shell. It then

follows from Eq. (1.40) that the number of modes having frequency between ! and

! C d! is

N .!/d! D 21
8

�
4�n2

�
dn D �n2

dn

d!
d! D L3!2d!

�2c3
; (1.42)
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and the number of modes per unit volume between ! and ! C d!, denoted by

n.!/d!, is

n.!/d! D N .!/d!

L3
D !2d!

�2c3
: (1.43)

1.9.2 Periodic Boundary Conditions

In this case I assume that either the electric or magnetic field is subject to periodic

boundary conditions in which the field values repeat at spatial intervals L in

each direction. Since the field phase of a monochromatic wave varies as eik�r this

implies that

kx D
2�nx

L
I (1.44a)

ky D
2�ny

L
I (1.44b)

kx D
2�nz

L
; (1.44c)

where nx; ny; nz, are integers, positive, negative or zero [now ei 2�x
L and e�i 2�x

L

correspond to different modes]. The calculation proceeds as in box normalization,

except that all quadrants are allowed. Thus,

! D kc D 2�cn

L
; (1.45)

the number of modes in a shell having inner radius n and outer radius n C dn is

2
�
4�n2

�
dn (there is no factor of 1/8 is present since all quadrants for (nx; nx; nz) are

allowed). The number of modes having frequency between ! and ! C d! is

N .!/d! D 2
�
4�n2

�
dn D 8�n2dn D 8�n2

dn

d!
d! D L3!2d!

�2c3
; (1.46)

such that the number of modes per unit volume, n.!/d!, between ! and ! C d! is

n.!/d! D N .!/d!

L3
D !2d!

�2c3
; (1.47)

in agreement with Eq. (1.43).
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1.9.3 Rayleigh-Jeans Law

To get the Rayleigh-Jeans law one simply assigns an energy of kBT to each mode,

resulting in an energy density u.!/ (energy per unit volume per unit frequency !/

given by

u.!/ D kBT
!2

�2c3
: (1.48)

Clearly, the energy density diverges at large frequency; this is known as the

ultraviolet catastrophe.

1.9.4 Planck’s Solution

Implicit in the equipartition theorem is the assumption that each mode or degree

of freedom can have a continuous energy distribution. In other words for the

radiation modes in a cavity the energy distribution at temperature T , assumed to

be a Boltzmann distribution, is

W.E/ D 1

kBT
e�E=kBT ; (1.49)

which has been normalized such that

Z 1

0

W.E/dE D 1: (1.50)

You can verify that

NE D
Z 1

0

EW.E/dE D kBT; (1.51)

is independent of frequency, for these modes.

To explain the blackbody spectrum, Planck conjectured that the energies of the

modes were discrete rather than continuous. A mode having frequency ! could have

only those energies that are an integral multiple of a constant „ times !: In other

words, there is now a separate energy distribution for each mode having frequency

!. The probability of having energy n„! in a mode having frequency ! is given by

W.n; !/ D Ae�n„!=kBT ; (1.52)
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where A is a normalization constant that I do not have to specify. The average energy

for a mode having frequency ! is then

hW.!/i D A
P1

nD0 n„!e�n„!=kBT

A
P1

nD0 e�n„!=kBT
D „!

P1
nD0 nxn

P1
nD0 xn

; (1.53)

where

x D exp

�
� „!

kBT

�
: (1.54)

Using the fact that

1X

nD0
xn D 1

1 � x
I (1.55a)

1X

nD0
nxn D x

d

dx

1X

nD0
xn D x

.1 � x/2
; (1.55b)

you can show that

hW.!/i D x„!
.1 � x/

D „!�
1
x
� 1

� D „!�
e„!=kBT � 1

� : (1.56)

It follows that hW.!/i � kBT for „!=kBT � 1; reproducing the equipartition

result, but hW.!/i � „!e�„!=kBT � 1 for „!=kBT � 1. In essence, Planck ruled

out the possibility of exciting high frequency modes. The energy density per unit

frequency is obtained by combining Eqs. (1.43) and (1.56),

u.!/ D n.!/ hW.!/i D „!
3

�2c3
1�

e„!=kBT � 1
� ; (1.57)

which is the Planck distribution. If „ is taken to be

„ D 1:055 � 10�34 J � s, (1.58)

Planck’s distribution agrees with experiment.

The total energy density is given by

u D
Z 1

0

„!3
�2c3

d!�
e„!=kBT � 1

�

D „
�2c3

�
kBT

„

�4 Z 1

0

x3dx

.ex � 1/ D
4�

c
T4; (1.59)
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which is the Stefan-Boltzmann Law and

� D k4B

4�2„3c2
Z 1

0

x3dx

.ex � 1/ (1.60)

is Stefan’s constant. The integral is tabulated

Z 1

0

x3dx

.ex � 1/ D
�4

15
; (1.61)

such that

� D �2k4B
60„3c2 D 5:67 � 10

�8W/m2=
�ıK

�4
: (1.62)

Equation (1.57) must also give Wien’s displacement law; the wavelength cor-

responding to maximum emission multiplied by the temperature is a constant. The

frequency that gives rise to the maximum in the energy density is obtained by setting

du=d! D 0, yielding

3!2max�
e„!max=kBT � 1

� � „
kBT

e„!max=kBT !3max�
e„!max=kBT � 1

�2 D 0; (1.63)

or

e„!max=kBT!max D 3
kBT

„
�

e„!max=kBT � 1
�
I (1.64a)

!max D 3
kBT

„
�
1 � e�„!max=kBT

�
: (1.64b)

Setting

y D „!max

kBT
; (1.65)

I find that the maximum occurs for

y D 3 .1 � e�y/ ; (1.66)

which can be solved graphically to obtain y D 2:82, leading to

„!max D 2:82kBTI fmax D
2:82kBT

h
D 5:88 � 1010T Hz/ıK. (1.67)
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If I set �max D c= fmax, I find

�maxT D cT

fmax

D 5:10 � 10�3 m �ı K, (1.68)

which is not quite Wien’s law,

�maxT D 2:9 � 10�3 m �ı K. (1.69)

The reason for the difference is that Wien’s law is derived from the energy density

per unit wavelength w.�/ rather than energy density per unit frequency and the two

methods give different maxima. That is, if you measure the energy density per unit

frequency as a function of frequency and the energy density per unit wavelength as

a function of wavelength, fmax�max ¤ c. To see this I set

u.!/d! D �w.�/d�: (1.70)

Since d! D �2�cd�=�2, I find

w.�/ D 2�c

�2
u

�
2�c

�

�

D 2�c

�2
„
�
2�c
�

�3

�2c3
1�

ehc=�kBT � 1
�

D 8�hc

�5
1�

ehc=�kBT � 1
� : (1.71)

Now, instead of Eq. (1.66), I must solve

y D 5 .1 � e�y/ : (1.72)

The solution is y D hc=�maxkBT D 4:965, such that

�maxT D hc

4:965kB

D 2:90 � 10�3 m � K, (1.73)

which is Wien’s law.

1.9.5 Approach to Equilibrium

Let me now return to the question of the approach to equilibrium. Consider first

a box with two point particles, one at rest somewhere in the box and one having

speed v0 and energy E0 D mv20=2 located at some other position in the box. The
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collisions between particles and between the particles and the walls are assumed

to be perfectly elastic. You might think that, on average, each particle will have

energy E0=2 if you wait long enough, but this is not true. There are many initial

conditions that will not result in collisions between the particles. For a given set of

initial conditions, the dynamics is perfectly determined.

As the number of particles in the box increases to a very large number, it becomes

more and more likely that all the atoms undergo collisions at a rapid rate. In this case,

the equilibrium distribution is Maxwellian. Returning to the modes of the radiation

field in the cavity, there is no obvious way they can exchange energy to achieve

equilibrium. They must exchange energy with the charges in the cavity walls. Thus

one is faced with modeling this interaction and then having some model for the

energy distribution of the charges in the cavity. As far as I know, no one has ever

solved this approach to equilibrium in a satisfactory manner.

1.10 Problems

1. What is the ultraviolet catastrophe and how did it lead to Planck’s quantum

hypothesis? Specifically how did theory and experiment differ in describing the

spectrum of a blackbody? What hypothesis did Planck make to minimize the

contribution of the high frequency modes?

2. Describe the photoelectric effect experiments and Einstein’s explanation for both

the number and energy of the emitted electrons as a function of the frequency of the

incident light.

3. What were Bohr’s postulates in his theory of the hydrogen atom? How do these

postulates explain the spectrum and stability of the hydrogen atom?

4. Draw an energy level diagram for the hydrogen atom and indicate on it the

energy of the four lowest energy states. Also indicate the radius, electron velocity,

and angular momentum of these states as given by the Bohr theory.

5. Calculate the wavelength of the n D 7 to n D 2 and of the n D 3 to n D 2

transitions in hydrogen. What frequency of radiation is needed to excite a hydrogen

atom from its n D 1 to n D 3 state? How much energy is required to ionize a

hydrogen atom from its n D 2 state?

6. Radiation from the n D 2 to n D 1 state of hydrogen is incident on a metal

having a work function of 2.4 eV. What is the maximum energy of the electrons

emitted from the metal?

7. What is the significance of the equation �dB D h=p‹ What is meant by the wave

particle duality of matter? What determines when matter acts as a particle and when

it acts as a wave?
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Fig. 1.4 Problem 1.10

8. Calculate the de Broglie wavelength for a particle of mass 1.0 g moving with a

speed of 1:0 cm/yr. Calculate the de Broglie wavelength for the electron in the n D 1
state of the Bohr atom.

9. In general terms, discuss the measurement process in quantum mechanics. Why

is it necessary to make measurements on a large number of identically prepared

systems to obtain j .r; t/j2‹ How does this differ from Newtonian mechanics? Why

is a single particle in a superposition state an intrinsically quantum object?

10. In a two-slit experiment, particles are sent into the apparatus one particle at

a time (see Fig. 1.4). How many detectors does a single particle trigger? If the

experiment is repeated many times, what will a graph of the number of counts in

a detector vs detector position look like? Explain.

11. When light is incident on a glass slab, some of the light is reflected. This is a

wave-like phenomenon (if a classical particle encounters a change in potential, it

simply slows down or speeds up with no reflection), even though this corresponds

to a geometrical optics limit (neglect of diffraction). Why does a wave-like effect

occur in this case? Is there any connection of this result with the rainbow?

12. The blackbody spectrum as a function of frequency uf .f / can be obtained using

uf .f /df D u.!/d! D 2�u.2� f /df . Plot
�
cuf .f /=4�

�
� 1018 as a function of

frequency for T D 2:73 ıK and find the maximum frequency [cuf .f /=4� is the

power per unit area per unit frequency per unit solid angle—this corresponds to

the flux incident on a detector per unit frequency per steradian (sr)]. This Planck

distribution corresponds to the cosmic microwave background. What is the energy

per unit volume of the cosmic microwave background?
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Extra Reading

There are many excellent texts on quantum mechanics. My suggestion is to go to

your library and try to find texts that you find especially helpful. Some possible

recommendations are:

Undergraduate Texts

David Bohm, Quantum Theory (Prentiss Hall, New York., 1951).

Ashok Das and Adrian Melissinos, Quantum Mechanics – A Modern Introduc-

tion, (Gordan and Breach, New York, 1986).

Peter Fong, Elementary Quantum Mechanics, Expanded Edition (World Scien-

tific, Hackensack, N.J., 2005).

Stephen Gasiorowicz, Quantum Physics, Second Edition (John Wiley and Sons,

New York, 1996).

David Griffiths, Introduction to Quantum Mechanics, Second Edition (Pearson

Prentiss Hall, Upper Saddle River, N.J., 2005).

Richard Liboff, Introductory Quantum Mechanics 4th Edition (Addison Wesley,

San Francisco, 2003).

David Park: Introduction to the Quantum Theory, Second Edition (McGraw Hill,

New York, 1974).

John Powell and Bernd Crasemann, Quantum Mechanics (Addison Wesley,

Reading, MA, 1961).

David Saxon, Elementary Quantum Mechanics, (Holden-Day, San Francisco,

1968).

George Trigg, Quantum Mechanics, (Van Nostarnd, Princeton, N.J., 1968).

Graduate Texts

Ernst Abers, Quantum Mechanics (Pearson Education, Upper Saddle River, N.J.,

2004).

Claude Cohen-Tannoudji, Bernard Liu, and Franck Laloë, Quantum Mechanics

(Wiley Interscience, Paris, 1977).

Robert Dicke and James Wittke, Introduction to Quantum Mechanics, (Addison

Wesley, Reading, MA, 1960).

P. A. M. Dirac, The Principles of Quantum Mechanics, Fourth Edition (Oxford

University Press, London, 1958).
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Eugen Merzbacher, Quantum Mechanics, Third Edition (John Wiley and Sons,

New York, 1998).

Albert Messiah, Quantum Mechanics, Vols. 1 and 2, (Dover Publications, New

York, 2014).

Leonard Schiff, Quantum Mechanics, Third Edition (McGraw Hill, New York,

1968).



Chapter 2

Mathematical Preliminaries

Anyone taking a course in quantum mechanics usually has had several semesters of

calculus and some additional advanced courses in mathematics and mathematical

physics. In this chapter I review briefly some of the mathematical concepts we will

need in our study of quantum mechanics.

2.1 Complex Function of a Real Variable

Since the wave function in quantum mechanics is complex, I will often be dealing

with complex functions. If  .x/ is a complex function of a real variable x, then it

can be written as

 .x/ D u.x/C iv.x/ (2.1a)

D j .x/j ei�.x/; (2.1b)

where the real functions,

u.x/ D Re Œ .x/� I (2.2a)

v.x/ D Im Œ .x/� ; (2.2b)

are related to the magnitude j .x/j and argument �.x/ of  .x/ by

j .x/j D
q
Œu.x/�2 C Œv.x/�2; (2.3a)

�.x/ D tan�1 Œv.x/=u.x/� ; (2.3b)
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with ��=2 � �.x/ � �=2.1 The complex conjugate of  .x/, denoted by  �.x/, is

defined as

 �.x/ D u.x/ � iv.x/: (2.4)

Some equations that you will find useful are

j .x/j2 D  .x/ �.x/ D Œu.x/�2 C Œv.x/�2 ; (2.5a)

ei� D cos � C i sin �; (2.5b)
ˇ̌
ei�
ˇ̌
D 1; � real; (2.5c)

e2� in D 1; n integer; (2.5d)

e� in D .�1/n ; n integer. (2.5e)

I assume that you are familiar with complex functions of a real variable, but include

some review problems at the end of the chapter.

2.2 Functions and Taylor Series

In physics, we are always making approximations. Most potentials can be approx-

imated as quadratic in a region near a potential minimum. Often we want to know

the value of a function in the region of a particular point. To be able to get this

information, we must know the value of the function at the point and the values of

the derivatives of the function at the point. The more derivatives we know, the better

we can approximate the function.

2.2.1 Functions of One Variable

This is the simplest case and the one with which you are most familiar. Consider the

function shown in Fig. 2.1.

Suppose we know the value f .x0/ at x0 D b and want to approximate the function

at x0 D x, when x � b. If the function were a straight line between the two points,

then a knowledge of the slope of the line would be sufficient to calculate f .x/. One

can get a better and better approximation to f .x/ by approximating the function

between the points as a polynomial—the higher the order of the polynomial, the

1The restriction of �.x/ to values ��=2 � �.x/ � �=2 corresponds to what is known as the

principal value of tan�1. In some problems, such as those to be encountered in scattering theory,

�.x/ can correspond to a physical quantity that should not be restricted to these limits.
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Fig. 2.1 Approximating a function f .x0/ near x0 D b

better the approximation. In effect, each time we add a power to the polynomial fit,

we need to know one higher derivative of the function in the vicinity of x0 D b. To

proceed formally one writes

f .n�1/.x/ � f .n�1/.b/ D
Z x

b

f .n/.x00/ dx00; (2.6)

where f .n/.x/ is the nth derivative of f .x/ and f .n/.b/ is a shorthand notation for

f .n/.x/ evaluated at x D b. If you change the x to x0 in this equation and integrate

both sides with respect to x0 from b to x, you can obtain

f .n�2/.x/ � f .n�2/.b/ � .x � b/ f .n�1/.b/ D
Z x

b

dx0
Z x0

b

f .n/.x00/ dx00: (2.7)

This procedure can be repeated to arrive at

f .n�3/.x/ � f .n�3/.b/ � .x � b/ f .n�2/.b/ � .x � b/2

2Š
f .n�1/.b/

D
Z x

b

dx3

Z x3

b

dx2

Z x2

b

f .n/.x1/ dx1: (2.8)

Continuing up to n integrations, I find

f .x/ � f .b/ � .x � b/ f .1/.b/

� .x � b/2

2Š
f .2/.b/ � � � � � .x � b/n�1

.n � 1/Š f .n�1/.b/

D
Z x

b

dxn : : :

Z x4

b

dx3

Z x3

b

dx2

Z x2

b

f .n/.x1/ dx1: (2.9)

Solving Eq. (2.9) for f .x/, I obtain

f .x/ D f .b/C .x � b/ f .1/.b/C .x � b/2

2Š
f .2/.b/C � � � C .x � b/n�1

.n � 1/Š f .n�1/.b/;

(2.10)
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with a remainder that is of order
.x�b/n

.n/Š
f .n/.b/. Equation (2.10) is known as Taylor’s

theorem and the sum on the right-hand side of the equation is a Taylor series of the

function f .x/ about x D b. One can set b! y and x! yC a in Eq. (2.10) to write

Taylor’s theorem in the form

f .yC a/ D f .y/C af .1/.y/C a2

2Š
f .2/.y/C � � � an�1

.n � 1/Š f
.n�1/.y/; (2.11)

with a remainder that is of order an

.n/Š
f .n/.y/. In general, Eq. (2.10) converges only

for jx � bj < rc.b/ and Eq. (2.11) only for jaj < rc.y/, where rc is the radius of

convergence.

As an example, I can approximate
p
27 by taking b D 25; x D 27; and f .x/ Dp

x in Eq. (2.10). If I keep only three terms in the series, I find

p
27 �

p
25C 2

2
p
25
C 4

2Š

�
�1
2

�
1

2

1

253=2
D 5:196; (2.12)

with an expected error of order 8
3Š
1
2
1
2
3
2

1

255=2
D 0:00016. The exact value is 5.19615

so the error is 0.00015, in agreement with the estimate of the error. The Taylor series

of
p
25C x converges for jx � 25j < 25.

2.2.2 Scalar Functions of Three Variables

Next I consider scalar functions of the form f .r/. What does this mean? In this

expression, r D xuxCyuyCzuz is the coordinate vector (I use a notation in which uj

is a unit vector in the j direction). If one specifies .x; y; z/, then f .r/ � f .x; y; z/ gives

a prescription for evaluating the value of the function at that point. For example, the

scalar potential associated with a point charge q located at position a D axux C
ayuy C azuz is

V.r/ D V.x; y; z/ D q

4��0

1q
.x � ax/

2 C
�
y � ay

�2 C .z � az/
2
: (2.13)

Taylor’s theorem can be extended to functions of three variables, such as V.r/. To

generalize the one variable result, I use a “trick.” The trick is to express the function

at the new point in terms of a single dependent variable, as one does when writing

a parametric equation for a line in terms of a single variable [e.g., x D at; y D bt2].

Thus I write

f .rC a/ D f .xC ax; yC ay; zC az/ D f .xC ˛t; yC ˇt; zC  t/; (2.14)

where

ax D ˛t; ay D ˇt; az D  t: (2.15)
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Now I can consider f .r C a/ as a function of a single variable t and use the chain

rule to obtain

f .rC a/ D f .r/C df

dt

ˇ̌
ˇ̌
tD0

tC 1

2Š

d2f

dt2

ˇ̌
ˇ̌
tD0

t2 C � � � ; (2.16)

where

df

dt

ˇ̌
ˇ̌
tD0
D
"

@f

@.xC˛t/

d.xC˛t/

dt
C @f

@.yCˇt/

d.yCˇt/

dt

C @f

@.zC t/

d.zC t/

dt

#

tD0

D @f

@x
˛ C @f

@y
ˇ C @f

@z
: (2.17)

Similarly,

d2f

dt2

ˇ̌
ˇ̌
tD0
D
�

@f 0

@.xC ˛t/
˛ C @f 0

@.yC ˇt/
ˇ C @f 0

@.zC  t/


�

tD0

D @2f

@x2
˛2 C @2f

@x@y
ˇ˛ C @2f

@x@z
˛ C @2f

@y@x
˛ˇ C @2f

@y2
ˇ2

C @2f

@y@z
ˇ C @2f

@z@x
˛ C @2f

@z@y
ˇ C @2f

@z2
2: (2.18)

Combining all terms and using Eq. (2.15), I obtain

f .rC a/ D f .r/C @f

@x
ax C

@f

@y
ay C

@f

@z
az

C 1
2Š

"
@2f

@x2
a2x C @2f

@y2
a2y C @2f

@z2
a2z

C2 @2f

@x@y
axay C 2 @

2f

@x@z
axaz C 2 @

2f

@z@y
azay

#
C � � � . (2.19)

It is easy to generate higher order terms. Note that the first derivative terms can

be written as r f � a and can be used to define the gradient in arbitrary coordinate

systems.

2.2.3 Vector Functions of Three Variables

Quantities such as scalars, vectors, tensors are often defined in terms of their

transformation properties under some symmetry operation. For example, a scalar

function under rotation is one that is unchanged as the coordinate axes are rotated.

A vector function such as the electric field E.r/ consists of three scalar functions

ŒEx.r/;Ey.r/;Ez.r/] whose components change in a prescribed manner under a
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rotation of the coordinate axes. If you want to make a Taylor series expansion of

a vector function, you must expand each of the component functions in a Taylor

series. Thus,

E.rC a/ ' E.r/C
�
@Ex

@x
ax C

@Ex

@y
ay C

@Ex

@z
az

�
ux C

C
�
@Ey

@x
ax C

@Ey

@y
ay C

@Ey

@z
az

�
uy

C
�
@Ez

@x
ax C

@Ez

@y
ay C

@Ez

@z
az

�
uz

D E.r/C .a � r/E.r/: (2.20)

The vector form in the last line is useful only in rectangular coordinates. Note that

if you write E.r/ using spherical or cylindrical coordinates and make a Taylor’s

expansion, you must make a Taylor’s expansion of both the components and the

unit vectors, since the unit vectors depend on the coordinates.

2.3 Vector Calculus

Most of you are familiar with the divergence or Gauss theorem and Stokes theorem.

There are generalized versions of these theorems that I will need at some later time.

The generalized Gauss and Stokes theorems can be stated as:

Generalized Gauss theorems:

I

S

da D
Z

V

d�r I (2.21a)

I

S

daf .r/ D
Z

V

d�r f .r/I (2.21b)

I

S

da � F.r/ D
Z

V

d�r � F.r/I (2.21c)

I

S

da � F.r/ D
Z

V

d�r � F.r/; (2.21d)

where

I

S

implies a surface integral containing the volume V and da is an outward

normal to the surface. The differential da is an element of surface area and d� is a

volume element.



2.4 Probability Distributions 39

Generalized Stokes theorems:

I

C

dl D
Z

S

.da � r/ I (2.22a)

I

C

dlf .r/ D
Z

S

.da � r/ f .r/I (2.22b)

I

C

dl � F.r/ D
Z

S

.da � r/ �F.r/ D
Z

S

da� Œr�F.r/� I (2.22c)

I

C

dl � F.r/ D
Z

S

.da � r/�F.r/; (2.22d)

where

I

C

implies a line integral containing the surface area S and dl is a differential

element tangent to the line. Note that da � r takes on a simple form only in

rectangular coordinates.

We will often encounter expressions that involve taking the gradient or Laplacian

of exponential functions, namely

reiax D iaeiaxuxI (2.23a)

reia�r D rei.axxCayyCazz/

D i
�
axux C ayuy C azuz

�
eia�r D iaeia�rI (2.23b)

r2eiax D �a2eiaxI (2.23c)

r2eia�r D �
�
a2x C a2y C a2z

�
eia�r D �a2eia�r; (2.23d)

where

r D ux

@

@x
C uy

@

@y
C uz

@

@z
(2.24)

is the gradient operator,

r2 D @2

@x2
C @2

@y2
C @2

@z2
(2.25)

is the Laplacian operator, and uj is a unit vector in the j direction.

2.4 Probability Distributions

You are all familiar with elementary concepts of probability theory. If you throw

one die, there is a probability of 1=6 that any number comes up. If you increase

the number of sides of the die to 3 million, then the probability for any side to
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come up is 1=
�
3 � 106

�
(welcome to the lottery). As the number of sides increases

without limit, the probability for any specific event to occur goes to zero, even if

we know one event must occur on each trial. In the limit of the number of sides

going to infinity, the probability of individual events is replaced by what is called

the probability density P.x/ for an event to occur.

To illustrate the concept of a probability density, consider the probability that

a point chosen at random on a line having length L is at the midpoint of the line.

Of course, this probability is zero, as it is to obtain any single point in a single

measurement. On the other hand, we can ask for the probability that a point chosen

at random lies between x and xC dx. This probability is no longer equal to zero, but

is given by

P.x/dx D dx=L; (2.26)

since

P.x/ D
�
1=L 0 � x � L

0 otherwise
(2.27)

is the probability density for a uniform distribution of points on the line.

I limit the discussion to one dimension, but extensions to higher dimensions are

obvious. The probability distribution is normalized such that

Z 1

�1
P.x/dx D 1: (2.28)

The nth moment of the distribution is defined as

hxni D
Z 1

�1
P.x/xndx: (2.29)

The average value of x is the first moment,

hxi D Nx D
Z 1

�1
P.x/xdx; (2.30)

while the variance of x is defined as

�x2 D
D
.x � hxi/2

E
D
Z 1

�1
P.x/ .x � hxi/2 dx D

˝
x2
˛
� hxi2 D x2 � Nx2: (2.31)

The standard deviation of x; denoted by�x; is the square root of the variance. Often,

but not always, the standard deviation is a measure of the width of the distribution

about its mean value.
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Fig. 2.2 Gaussian probability distribution

One of the most important probability distributions is the Gaussian or normal

distribution defined by

P.x/ D Ne�.x�a/2=�2 ; (2.32)

where N is a normalization factor (see Fig. 2.2). To determine N, I require that

Z 1

�1
Ne�.x�a/2=�2dx D 1: (2.33)

The only way to evaluate any integral is to already know the answer—that is, you

guess a solution and see if it works.2 Fortunately, there are tables of integrals and

built-in functions in computer programs that allow you to benefit from the collected

guesses of many mathematicians and physicists. In this case, you will find that

Z 1

�1
Ne�.x�a/2=�2dx D N�

p
�; (2.34)

which, when combined with Eqs. (2.32) and (2.33), leads to the normalized

distribution

P.x/ D 1p
��

e�.x�a/2=�2 : (2.35)

The mean or average value of x is

Nx D 1p
��

Z 1

�1
xe�.x�a/2=�2dx D a; (2.36)

2Of course, you have undoubtedly learned many techniques for evaluating integrals, but these are

all based on guesses that work.
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as should be obvious from Fig. 2.2. The variance is

�x2 D 1p
�a

Z 1

�1
e�.x�a/2=�2 .x � a/2 dx D �2

2
; (2.37)

so �x D �=
p
2.

I can calculate the half-width at half maximum (HWHM) or full-width at half

maximum (FWHM) of this distribution by solving the equation

ˇ̌
f .x1=2/

ˇ̌2 D jf .Nx/j2 =2 D jf .a/j2 =2 (2.38)

or

1p
��

e�.x1=2�a/
2
=�2 D 1

2
p
��

: (2.39)

The solution of this equation is

ˇ̌
x1=2 � a

ˇ̌
D �
p

ln 2 � 0:8326�: (2.40)

The HWHM is equal to 0:8326� and the FWHM is equal to 1:665� .

There can be some confusion as to the meaning of the “width” of a probability

distribution. For a smooth distribution such as a Gaussian, one can define the

“width” as either the HWHM or FWHM. For other distributions, the HWHM and

FWHM may have no significance at all. On the other hand, the standard deviation

of a probability distribution is always defined as the square root of the variance of

the distribution. For some distributions, such as a Gaussian, the standard deviation

and HWHM are not all that different, but for other distributions, they can differ

dramatically. Some examples will help to illustrate this point.

For a uniform probability distribution

P.x/ D
�
1 jxj � 1=2
0 otherwise

; (2.41)

(x is now taken as a dimensionless variable), the HWHM is equal to 1=2, while

�x D 1=
p
12 D 0:29. For a Gaussian probability distribution

P.x/ D 1

�1=2
e�x2 ; (2.42)

the HWHM is equal to 0:83, while �x D 1=
p
2 D 0:707. For both the uniform

and Gaussian distributions the HWHM’s and standard deviations are comparable.

However, for the Lorentzian probability distribution
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P.x/ D 1

�

1

x2 C 1 ; (2.43)

the HWHM is equal to 1, while �x D 1: Finally if I take P.x/ as the sum of two

Gaussian distributions,

P.x/ D 1

2�1=2

�
e�.x�10/2 C e�.xC10/2

�
; (2.44)

the HWHM has no real meaning [although you could talk about the HWHM of each

term in Eq. (2.44)], while �x D
p
201=2: Thus, although I will often use the terms

“width” and “standard deviation” interchangeably, they need not be the same at all.

2.5 Fourier Transforms

In quantum mechanics, we often need to use Fourier transforms. The wave functions

in coordinate space and momentum space are Fourier transforms of one another.

This topic is covered in most textbooks on mathematical physics, so I will just

sketch a few of the results. The functions f .x/ and a.k/ are Fourier transforms of

one another if

f .x/ D 1p
2�

Z 1

�1
a.k/eikxdk; (2.45)

a.k/ D 1p
2�

Z 1

�1
f .x/e�ikxdx; (2.46)

assuming that these integrals exist. We can also talk about frequency-time Fourier

transforms defined by

g.t/ D 1p
2�

Z 1

�1
b.!/e�i!td!; (2.47a)

b.!/ D 1p
2�

Z 1

�1
g.t/ei!tdt: (2.47b)

In essence, the Fourier transform of a spatial function is an expansion in functions

having different wavelengths or propagation constants k, while the Fourier transform

of a time-dependent function is an expansion in terms of its frequency components

(including negative frequencies).

There are many properties of Fourier transforms that are derived in standard

textbooks. The most important property that we will encounter relates the variances

�x2 and �k2. Let f .x/ and a.k/ be Fourier transforms of one another and define



44 2 Mathematical Preliminaries

Nx D
Z 1

�1
x jf .x/j2 dx; (2.48a)

�x2 D
Z 1

�1
.x � Nx/2 jf .x/j2 dx; (2.48b)

Nk D
Z 1

�1
k ja.k/j2 dk; (2.48c)

�k2 D
Z 1

�1

�
k � Nk

�2 ja.k/j2 dk: (2.48d)

It then follows that

�x�k D
p
�x2�k2 � 1

2
; (2.49)

provided all these quantities exist and the normalization is such that

Z 1

�1
jf .x/j2 dx D 1: (2.50)

I will prove Eq. (2.49) in Chap. 5. In essence, jf .x/j2 can be considered to be a

probability distribution in coordinate space and ja.k/j2 a probability distribution in

k-space. The quantities Nx and Nk are the average values or mean of the functions

jf .x/j2 and ja.k/j2, respectively, and �x2 and �k2 are the variances in coordinate

and k-space, respectively, while

�x D
p
�x2; �k D

p
�k2 (2.51)

are the standard deviations in coordinate and k-space, respectively. Thus the

narrower the distribution is in k space, the wider it is in coordinate space and visa

versa.

As a simple example, consider

f .x/ D 1

.��2/
1=4

e�x2=2�2eik0x; (2.52)

for which

jf .x/j2 D 1

.��2/
1=2

e�x2=�2 (2.53)

is a Gaussian having full-width at half maximum (FWHM) equal to 1.67� . The

Fourier transform of f .x/ is
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a.k/ D 1p
2�

Z 1

�1
dx f .x/ exp .�ikx/

D 1p
2�

1

.��2/
1=4

Z 1

�1
dx e�x2=2�2e�i.k�k0/x: (2.54)

The integral is tabulated or can be evaluated using contour integration. Explicitly,

one finds

a.k/ D
�
�2

�

�1=4
e�.k�k0/

2�2=2I (2.55)

ja.k/j2 D
�
�2

�

�1=2
e�.k�k0/

2�2 : (2.56)

The k-space distribution, ja.k/j2, is also a Gaussian, centered at k D k0; having

FWHM equal to 1.67/�:

The variance of x is

�x2 D
Z 1

�1
dx x2 j .x; 0/j2 D �2

2
(2.57)

and the variance of k is

�k2 D
D
.k � k0/

2
E
D
Z 1

�1
dk .k � k0/

2 ja.k/j2 D 1

2�2
; (2.58)

such that

�x�k D 1

2
; (2.59)

the minimum possible value.

Similarly, in the time domain for the distributions jg.t/j2 and jb.!/j2, one finds

�!�t � 1

2
; (2.60)

which is known as the frequency-time uncertainty relation. The narrower the

bandwidth (frequency spread) of a pulse, the wider is its time extent. As we shall see,

the coordinate—k-space uncertainty relation follows from the postulates of quantum

mechanics, but this is not the case for the frequency-time uncertainty relation. In

effect, there is no probability distribution that can be associated with the time in

quantum mechanics.
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2.6 Dirac Delta Function

The Dirac delta function appears in many branches of physics. It is not difficult to

understand why this is the case. For example, what is the density of a point charge

having total charge q? Clearly, the charge density �.r/ equals zero everywhere but

at the location of the charge. Since the volume of a point equals zero, the density at

the position of the charge must be infinite. This leads us to define a function in three

dimensions, ı.r/, such that for a point charge,

�.r/ D qı.r/; (2.61)

where

ı.r/ D 0 if r ¤ 0I (2.62a)

ı.r/ D 1 if r D 0I (2.62b)
Z
ı.r/dr D 1 if the origin is inside the integration volume; (2.62c)

Z
ı.r/dr D 0 if the origin is outside the integration volume. (2.62d)

With this definition

Z
�.r/dr D q (2.63)

as required, provided the charge is in the integration volume. Note that ı.r/ has units

of inverse volume.

The Dirac delta function is usually defined by its integral properties. That is, for

any analytic function f .r/; it is defined by

Z
f .r/ı.r/dr D f .0/: (2.64)

In other words, the Dirac delta function picks out the value of the function at the

point where the argument of the delta function is equal to zero. The definitions

given in Eqs. (2.62) and (2.64) are consistent.

I will first consider the one-dimensional Dirac delta function and then briefly

discuss the Dirac delta function in two and three dimensions. The Dirac delta

function in one dimension can be defined by

ı.x/ D 0 if x ¤ 0I (2.65a)

ı.x/ D 1 if x D 0I (2.65b)
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Z
ı.x/dx D 1 if the origin is inside the integration volume; (2.65c)

Z
ı.x/dx D 0 if the origin is outside the integration volume; (2.65d)

or by

Z
f .x/ı.x/dx D f .0/; (2.66)

where f .x/ is an arbitrary analytic function. Note that ı.x/ has units of inverse

length.

The Dirac delta function ı.x/ is an infinitely narrow function of x centered at

x D 0. The area under the function is equal to unity. Perhaps the easiest way to

envision the Dirac delta function is the limit of a Gaussian having unit area whose

height goes to infinity and width goes to zero,

ı.x/ D lim
a!0

1p
�a2

e�x2=a2 : (2.67)

This function has all the required properties. Other representations of the Dirac delta

function are

ı.x/ D 1

�
lim
a!0

a

x2 C a2
; (2.68)

ı.x/ D lim
K!1

sin .Kx/

�x
; (2.69)

and

ı.x/ D 1

2�

Z 1

�1
eikxdk: (2.70)

Equations (2.67) and (2.68) are obvious representations of a narrow function

having area equal to unity, but what about Eqs. (2.69) and (2.70)? These equations

do not define “proper” mathematical functions and are meaningful only when

integrated with functions that vanish as jxj � 1. Equation (2.70) is interesting in

that the Dirac delta function can be defined as the Fourier transform of a constant.

One way of seeing that this works is to write

ı.x/ D lim
K!1

1

2�

Z K

�K

eikxdk D lim
K!1

sin .Kx/

�x
: (2.71)

As K gets larger, the width of the central peak gets narrower and its height grows

as K=� . With increasing K, the function oscillates so rapidly outside the central



48 2 Mathematical Preliminaries

peak that, when integrated with an analytic function f .x/, any contributions to the

integral average to zero, except near the central peak. Equation (2.70) is one that you

will encounter many times in this course and other physics courses. Don’t forget it!

For any variable ¿ (e.g. ¿ D x, ¿ D x � x0, etc.),

ı.¿/ D 1

2�

Z 1

�1
eik¿dk: (2.72)

Some useful properties of the Dirac delta function are:

ı.�x/ D ı.x/I (2.73a)
Z 1

�1
dx0f .x0/ı.x � x0/ D f .x/I (2.73b)

ı.ax/ D ı.x/

jaj I (2.73c)

ı Œg.x/� D
X

i

ı.x � xi/

jg0.xi/j
I (2.73d)

ı
�
x2 � a2

�
D 1

2 jaj Œı.x � a/C ı.xC a/� I (2.73e)

Z 1

�1
dx0f .x0/

dı.x � x0/

dx0 D �f 0.x/: (2.73f)

The sum over i is over all the roots of g.xi/ D 0. The proofs are left to the problems.

The Dirac delta function can be used to derive the inverse Fourier transform.

Given

f .x/ D 1p
2�

Z 1

�1
a.k0/eik0xdk0; (2.74)

I can multiply this equation by e�ikx and integrate over x to arrive at

1p
2�

Z 1

�1
dx f .x/e�ikx D 1

2�

Z 1

�1
dk0 a.k0/

Z 1

�1
dx ei.k0�k/x

D
Z 1

�1
dk0 a.k0/ı

�
k0 � k

�
D a.k/; (2.75)

where I used

1

2�

Z 1

�1
dx ei.k0�k/x D ı

�
k0 � k

�
; (2.76)

which follows from Eq. (2.72).
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In fact, if f .x/ and a.k/ are Fourier transforms of one another, then

f .x/ D 1p
2�

Z 1

�1
a.k/eikxdk D

Z 1

�1
dx0
�
1

2�

Z 1

�1
dkeik.x�x0/

�
f .x0/; (2.77)

from which it follows that

1

2�

Z 1

�1
dkeik.x�x0/ D ı

�
x � x0� : (2.78)

In other words, the existence of Fourier transforms leads us to the representation of

the Dirac delta function given by Eq. (2.70). You can also use Eq. (2.70) to show that

Z 1

�1
dx jf .x/j2 D

Z 1

�1
dk ja.k/j2 ; (2.79)

which is known as Parseval’s theorem.

In two dimensions, the Dirac delta function is

ı.� � �0/ D ı
�
x � x0� ı

�
y � y0� D 1

�
ı
�
� � �0� ı

�
' � '0� (2.80)

[� and � are cylindrical coordinates] and, in three dimensions, it is given by

ı.r � r0/ D ı
�
x � x0� ı

�
y � y0� ı

�
z � z0�

D 1

r2
ı
�
r � r0� ı

�
cos � � cos � 0� ı

�
' � '0� (2.81)

[r, � , and � are spherical coordinates]:

2.7 Problems

Note: Problems with two or more problem numbers are an indication that the

problem might take longer to solve than an average problem.

1. Evaluate ei� , ei�=2, and e2:3i. If

 .x/ D eiaxe�gx2=2

xC ib
D uC iv D rei� ;

find u; v; r; � , assuming that x; a; b; g; r; � are real. Evaluate j .x/j2.
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2. Given the function

f .x/ D N

b2 C x2
;

find N such that f 2.x/ is normalized; that is, find N such that

Z 1

�1
f 2.x/dx D 1;

assuming that b is real. Find the Fourier transform a.k/ of f .x/: Evaluate

�x2 D
Z 1

�1
.x � Nx/2 f 2.x/dx

�k2 D
Z 1

�1

�
k � Nk

�2 ja.k/j2 dk

and the product �x�k. Does �x�k D 1=2 for these functions? To evaluate the

integrals, you can use integral tables or Mathematica, Maple, or Matlab.

3–4. Suppose that the k space amplitude for a free particle in quantum mechanics

is given by

a.k/ D
�
1=
p
2k0 � k0 � k � k0

0 otherwise
:

The wave function  .x; 0/ is the Fourier transform of a.k/. Plot both k0 ja.k/j2 as a

function of k=k0 and j .x; 0/j2 =k0 as a function of k0x. By “eyeballing” the graphs,

estimate �x, �k, and their product. Now calculate �k analytically and show that

�x is infinite.

5. If the functions f .x/ and a.k/ are Fourier transforms of one another, prove

Parseval’s Theorem,

Z 1

�1
jf .x/j2 dx D

Z 1

�1
ja.k/j2 dk:

6. Prove

ı.ax/ D ı.x/

jaj

ı
�
x2 � a2

�
D 1

2 jaj Œı.x � a/C ı.xC a/�

Z 1

�1
dx0f .x0/

dı.x � x0/

dx0 D �f 0.x/:
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7. Given the probability distribution

P.x/ D
�
1 0 � x � 1
0 otherwise

:

Calculate Nx and�x. If the probability distribution is shifted so it is centered at x D 0,

do Nx and �x change?

8. Use Taylor’s theorem to estimate 291=3 correct to order 0:001. Compare your

answer with the exact value.

9. Show that
R1
0

dx
dı.x/

dx
is not well defined. To do this use the definition of the

delta function as the limit of a Gaussian,

ı.x/ D lim
a!0

1p
�a2

e�x2=a2 ;

to show that the integral diverges as a! 0:



Chapter 3

Free-Particle Schrödinger Equation: Wave
Packets

The Schrödinger equation is the fundamental equation of non-relativistic quantum

mechanics. As with any equation in physics, its validity relies on experimental

verification of the predictions of the equation. So far, it appears that there are no

experiments that are inconsistent with quantum mechanics. As you shall see, it is

not always easy to test the predictions of the Schrödinger equation. In other words,

mapping out the probability distribution associated with a quantum system can

represent a formidable task. Moreover, quantum mechanics is far from a complete

theory since it does not address the dynamic evolution of the wave function when

a measurement is made. Nevertheless, the success of the Schrödinger equation

in describing the wave nature of matter and the energy level structure of atoms,

molecules, and solids is beyond question.

In this chapter, I discuss the Schrödinger equation for a free particle, a particle not

subjected to forces. Even though I use the word “particle” throughout this book, it

is a misnomer in many cases since the particle is actually acting as a wave. It is not

possible to derive Schrödinger’s equation; it is essentially a postulate of quantum

mechanics. However, it is possible to use an analogy with the wave equation of

electromagnetism, plus some additional ingredients, to cook up an equation that

turns out to be the time-dependent Schrödinger equation for a free particle. This is

the recipe I shall follow.

I want to remind you of an admonition given in Chap. 1. The following chapters

contain many mathematical expressions. Rather than focus on the mathematical

details, you should always try to have a general idea of where the calculations

are going. In other words, what physical features of a specific problem are being

analyzed? Try not to let the mathematics obscure the underlying physical processes

under investigation.
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3.1 Electromagnetic Wave Equation: Pulses

Maxwell’s equations imply that both the electric and magnetic fields obey wave

equations. The wave equation for the electric field vector E.R; t/ of light in

vacuum is

r2E.R; t/ D 1

c2

@2E.R; t/

@t2
; (3.1)

where

r2 D @2

@x2
C @2

@y2
C @2

@z2
(3.2)

is defined here in terms of its rectangular components and c is the speed of light.

A solution of this equation that also satisfies Maxwell’s equations for the electric

field is

E.r; t/ D O�Eei.k�r�!t/ C c.c:; (3.3)

provided

! D kc (3.4)

and

k � O� D 0; (3.5)

where O� is a unit polarization vector for the field. Equation (3.5) must be satisfied

to insure that r �E.r; t/ D 0. There are two independent polarizations for each

field frequency and the direction of polarization is perpendicular to the propagation

vector k of the field (the field is transverse). The abbreviation c.c. in Eq. (3.3) stands

for complex conjugate.

The field in Eq. (3.3) corresponds to an infinite, monochromatic, plane wave and

is a basic building block solution of Maxwell’s wave equation. It is possible to

construct any field pulse using a superposition of such states. To simplify matters,

I consider only one polarization component of the field and a plane wave field. For

an arbitrary plane wave field propagating in the positive x direction and polarized in

the z direction, the electric field can be written as

E.r; t/ D uzE.x; t/; (3.6)

where uz is a unit vector in the z direction and the amplitude E.x; t/ can be

expanded as

E.x; t/ D 1p
2�

Z 1

0

dk A.k/ei.kx�!t/ C c.c.: (3.7)
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The integral over k has been restricted to positive values to ensure that each

component of the wave propagates in the positive x direction. It is a simple matter

to show that Eq. (3.6) with E.x; t/ given by Eq. (3.7) is also a solution of the wave

equation, provided ! D kc > 0: Moreover, since ! D kc,

E.x; t/ D 1p
2�

Z 1

0

dk A.k/eik.x�ct/ C c.c. D E.x � ct; 0/: (3.8)

The pulse amplitude is simply the original pulse amplitude translated by ct; in other

words, the pulse propagates without distortion at a speed equal to the speed of light.

3.2 Schrödinger’s Equation

I want to use Einstein’s concept of photons and de Broglie’s concept of matter waves

to make a plausible transition from the wave equation of electromagnetism to the

Schrödinger equation of quantum mechanics. I start by using Einstein’s expression

for the energy E (not to be confused with the field amplitude) associated with

“photons” having frequency f D !=2� ,

E D hf D „!; (3.9)

to transform Eq. (3.8) into

E.x; t/ D 1p
2�

Z 1

0

dk A.k/ei.kx�Et=„/ C c.c.: (3.10)

I now look for a wave function for matter waves having a similar form, namely

 .x; t/ D 1p
2�

Z 1

�1
dkˆ.k/ei.kx�Et=„/: (3.11)

Although the electric field amplitude E.x; t/ is real, it is assumed that the wave

function  .x; t/ can be complex. The final step of the “derivation” is to use de

Broglie’s relation

p D „k; (3.12)

to write the energy E for a free particle having mass m in terms of k as

E D p2

2m
D „

2k2

2m
: (3.13)

With this assignment, Eq. (3.11) becomes

 .x; t/ D 1p
2�

Z 1

�1
dkˆ.k/ expŒi

�
kx � „k2t=2m

�
�: (3.14)
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It is not difficult to prove that  .x; t/ satisfies the partial differential equation

i„@ .x; t/
@t

D � „
2

2m

@2 .x; t/

@x2
; (3.15)

which can be generalized to three dimensions as

i„@ .r; t/
@t

D � „
2

2m
r2 .r; t/: (3.16)

Equation (3.16) is recognized as the time-dependent Schrödinger equation for a free

particle. Of course, some physical interpretation must be given to  .r; t/. As an

additional postulate, I assume that j .r; t/j2 is the probability density to find the

particle at position r at time t.

Equation (3.14) differs from Eq. (3.7) in a fundamental way since the dispersion

relation (relation between ! and k) in Eq. (3.14) is not linear,

! D E

„ D
„k2
2m

: (3.17)

As a result, waves having different values of k or p propagate at different velocities.

Since the matter wave pulse, referred to as a wave packet, has components that

propagate with different velocities and since no forces act on the particle, the shape

of the wave packet changes in time, unlike that for a plane wave optical field pulse

in vacuum.

3.2.1 Wave Packets

Now that I have defined the wave function, I can try to construct something that

looks like a “particle.” The term “particle” can be somewhat confusing. First of all,

I am considering a wave theory, so I have to define what I mean by a “particle.”

Moreover, particles in classical physics necessarily have some internal structure and

finite spatial extent. For the most part, the particles to which I refer in quantum

mechanics correspond to idealized point particles in classical physics.

Let me start from the wave function in three dimensions for a matter wave

corresponding to a point particle having mass m, that is, a generalization of

Eq. (3.14) to three dimensions. It is not difficult to show that the wave function

 .r; t/ D 1

.2�/3=2

Z
dkˆ.k/ei.k�r�„k2t=2m/: (3.18)

is a solution of time-dependent Schrödinger equation in three dimensions,

Eq. (3.16). To model a particle, the momentum, or equivalently, the propagation
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vector k (since k D p=„) must be fairly well defined. In other words, I must choose

jˆ.k/j2 to be non-vanishing only for those values of k satisfying jk � k0j . k0,

where k0 D Nk and �k is the standard deviation of k for the distribution jˆ.k/j2.
Moreover, if jˆ.k/j2 is meant to represent a particle, it should be a smooth function

having a maximum at k D k0 that falls monotonically to zero in all directions (in

k space) for jk � k0j > �k. In other words, jˆ.k/j2 is a sharply peaked function

centered at k D k0 having width of order�k. I need to approximate the exponential

function appearing in Eq. (3.18) when k � k0.

It helps to write

k D k0 C .k � k0/ ;

k2 D Œk0 C .k � k0/�
2 D �k20 C 2k0 � kC jk � k0j2 ; (3.19)

allowing me to transform Eq. (3.18) into

 .r; t/ D ei„k20 t=2m

.2�/3=2

Z 1

�1
dkˆ.k/

� exp
n
i
h
k� .r � „k0t=m/ � „ jk � k0j2 t=2m

io
: (3.20)

For the moment, suppose that I can neglect the „ jk � k0j2 t=2m term in the

exponent,

„ jk � k0j2 t=2m� 1: (3.21)

Then, for all values of k that contribute significantly to the integral,

 .r; t/ � ei„k20 t=2m

.2�/3=2

Z 1

�1
dkˆ.k/eik�.r�„k0t=m/

D ei„k20 t=2m .r � v0t; 0/; (3.22)

where

v0 D
„k0
m
D p0

m
(3.23)

is the average velocity of the particle.

Aside from a phase factor,  .r; t/ propagates as an undistorted wave having

momentum p0: If the initial distribution j .r; 0/j2 is non-vanishing only in a small

volume centered at r D 0, then the distribution j .r; t/j2 will be non-vanishing only

in a small volume centered at r D v0t; in other words, the distribution function can

mirror the behavior of “particle” that is moving with velocity v0. How localized

can the particle be? When can condition (3.21) be satisfied? It certainly fails if I let
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t get arbitrarily large. Many of these questions can be answered by considering a

specific wave function and seeing how it propagates. I will calculate j .x; t/j2 for a

one-dimensional Gaussian wave packet that is centered at x D 0 at t D 0:

3.2.1.1 Gaussian Wave Packet

At t D 0, I take the wave function for a particle having mass m to be

 .x; 0/ D 1

.��2/
1=4

e�x2=2�2eik0x; (3.24)

such that

j .x; 0/j2 D 1

.��2/
1=2

e�x2=�2 (3.25)

is a Gaussian centered at the origin with a full-width at half maximum (FWHM)

equal to 1.67� . The normalization has been chosen such that

Z 1

�1
dx j .x; 0/j2 D 1: (3.26)

I want to find  .x; t/: To do so, I must first find ˆ.k/ and then use Eq. (3.14) to get

 .x; t/: The factor of eik0x in Eq. (3.24) leads to an average velocity for the packet

equal to „k0=m; as you shall see.

It follows from Eq. (3.14) that

 .x; 0/ D 1p
2�

Z 1

�1
dkˆ.k/eikx: (3.27)

I take the inverse Fourier transform of this equation to obtain

ˆ.k/ D 1p
2�

Z 1

�1
dx .x; 0/e�ikx

D 1p
2�

1

.��2/
1=4

Z 1

�1
dx e�x2=2�2eik0xe�ikx: (3.28)

The integral is tabulated or can be evaluated using contour integration. In either

case, one finds

ˆ.k/ D
�
�2

�

�1=4
e�.k�k0/

2�2=2I (3.29)

jˆ.k/j2 D
�
�2

�

�1=2
e�.k�k0/

2�2 : (3.30)
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The k-space distribution is also a Gaussian, centered at k D k0; having FWHM

equal to 1.67/�:

The variance of x at t D 0 is

Œ�x.t D 0/�2 D
˝
x2.t D 0/

˛
D
Z 1

�1
dx x2 j .x; 0/j2 D �2

2
(3.31)

and the variances of k and p are

.�k/2 D
D
.k � k0/

2
E
D
Z 1

�1
dk .k � k0/

2 jˆ.k/j2 D 1

2�2
I (3.32a)

.�p/2 D „
2

2�2
; (3.32b)

such that

�x.t D 0/�k D 1

2
I (3.33a)

�x.t D 0/�p D „
2
: (3.33b)

As you shall see, this corresponds to what is called a minimum-uncertainty wave

packet, having the minimum value of �x�p allowed for solutions of Schrödinger’s

equation. The momentum distribution and�p do not change in time since no forces

act on the particle.

Owing to the spread of momenta in the wave packet, however, �x does change

as a function of time. The wave packet is no longer a minimum uncertainty packet

for t > 0. Using Eqs. (3.14) and (3.29), I calculate

 .x; t/ D 1p
2�

�
�2

�

�1=4 Z 1

�1
dk e�.k�k0/

2�2=2ei.kx�„k2t=2m/

D eik0.x� v0 t

2 /
p
2�

�
�2

�

�1=4 Z 1

�1
dk0 e�k02.�2Ci„t=m/=2eik0.x�v0t/;

(3.34)

where k0 D k � k0 and

v0 D „k0=m D p0=m: (3.35)

The integral is tabulated or can be evaluated using contour integration and the

result is

 .x; t/ D
�
�2

�

�1=4
eik0.x� v0 t

2 /

h
�2 C i„t

m

i1=2 exp

0
@� .x � v0t/

2

2
h
�2 C i„t

m

i

1
A : (3.36)
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As a consequence,

j .x; t/j2 D
�

1

��.t/2

�1=2
e�.x�v0t/2=�.t/2 ; (3.37)

with

�.t/2 D �2 C
� „t

m�

�2
: (3.38)

The FWHM at any time is 1.67�.t/ and �x.t/ D �.t/=
p
2; such that

�x.t/�p D „�.t/
2�
D „
2

"
1C

� „t
m�2

�2#1=2
� „
2
: (3.39)

The packet remains Gaussian but spreads owing to the spread of momenta in the

original packet. To see how �x.t/ depends on �p, I use the relationships �x.0/ D
�=
p
2 and �v D �p=m D „=

�p
2m�

�
to rewrite �x.t/2 as

�x.t/2 D �.t/2

2
D �2

2
C 1

2

� „t
m�

�2

D �x.0/2 C .�v/2 t2: (3.40)

Although I have chosen a Gaussian wave packet, Eq. (3.40) turns out to be exact for

any square-integrable initial wave function of the form  .x; 0/ D f .x/eik0x, for real

f .x/ (see Problem 5.14–15 in Chap. 5). The variance of the wave packet is its initial

variance plus a contribution attributable to the variance of the velocity components

contained in the packet. For sufficiently large times, �x.t/ � �vt.

I am now in a position to see when the wave packet can correspond to a classical

particle. Free particles have never heard about wave packets; wave packets are a

construct of physicists. For the wave packet to correspond to a particle, however,the

uncertainties in position and momentum must satisfy

�x.t/� x0; �p� p0 (3.41)

subject to the restriction

�x.0/�p � „
2
: (3.42)

The quantities x0 and p0 are determined by the problem. You can think of

them as the smallest possible resolution in position and momentum that can be

detected in a given experiment. In bound state problems they could correspond
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to some typical bound state radius and magnitude of bound state momentum for

the bound particle. For the free particle, let’s take x0 D 10�8 m and v0 D 10�7

m/s, which locates the particle to better than an optical wavelength and fixes its

velocity to about three meters per year. We might be able to accomplish this by

using spatial filters (e.g., slits) to select both the position and range of velocities.

For a one gram mass, suppose we take �x.0/ D 10�11 m which implies that

�v D �p=m � „=Œm�x.0/� � 10�20 m/s [admittedly, it would be difficult to

create such a small wave packet]. This is a “classical” particle at t D 0 according to

my definition since it obeys conditions (3.41). At what time t would the spreading

be sufficient to render the particle “unclassical” ? Arbitrarily, let’s say the particle is

no longer classical if �x.t/ D x0=100 D 10�10 m, which occurs for t D 1010 s, 300

years! The bottom line is that spreading is unimportant as long as the de Broglie

wavelength is much smaller than any characteristic length in the problem, such

as the width of the initial wave packet. On the other hand, if you confine a free

particle wave packet to a distance equal to its de Broglie wavelength, the spread in

momentum in the wave packet is of order of the average momentum in the packet;

as such spreading is important and the particle can no longer be viewed as a classical

particle.

A simple example that illustrates the necessity of using a quantum description

of matter can be found in an experiment related to atom optics. Suppose a well-

collimated, pulsed atomic beam having velocity v0 in the z direction is incident on a

circular aperture having diameter d that is located in the xy plane. Moreover, assume

that the de Broglie wavelength of the atoms, �dB � d. The atoms are treated as point

particles, so another implicit assumption is that the atomic size is much smaller

than d as well. After traversing the aperture at t D 0, you can think of the initial

wave packet as a short pulse in the z direction having a cross-sectional area equal

to �d2=4. The transverse uncertainty in the momentum of this beam is of order

�p? � „=d. Matter wave effects become important when the transverse spreading

is of order d; that is, for times t greater than some critical time tF defined by

�p?tF=m � „tF=.dm/ � d; (3.43)

where m is the mass of an atom in the beam. Since t � z=v0 where z is the distance

from the screen containing the aperture, the distance zF corresponding to the time

tF is

zF D v0tF �
mv0d

2

„ � d2

�dB

: (3.44)

For z � zF, the scattering of the particles by the slit is in the shadow region and

the atomic motion can be treated classically. However for z & zF, diffraction plays

an important role and a wave theory is needed. The situation is analogous to the

scattering of optical radiation having wavelength � by an aperture having diameter

d. For distances z � zF D d2=� from the diffracting screen, a geometrical picture

of light rays can be used, but once z & zF, diffraction effects become important

and a wave theory of light is needed. In the optical case the region with z � zF

corresponds to Fresnel diffraction.



62 3 Free-Particle Schrödinger Equation: Wave Packets

Perhaps the best way to create a well-defined wave packet is to trap and cool an

atom in the potential well of an optical lattice. An optical lattice is formed by using

pairs of counter-propagating laser beams. These pairs of fields form standing wave

patterns that can be used to trap neutral atoms owing to a spatially varying potential

that is experienced by the atoms in the fields. Moreover the atoms can be cooled to

the point where they are in the ground state of the potential. As such, if you trap one

atom in one well, you have a pretty good idea of its wave function. If you suddenly

remove the potential by turning off the fields, you have an initial condition in which

the atom is in its ground state and has a center-of-mass wave function given by the

ground state of the potential. You could let this wave packet propagate for some

time and then restore the lattice and determine how far the packet has moved by

seeing which well it is in. Although this experiment has yet to be carried out, the

technology is now at the point where it is feasible.

3.2.2 Free-Particle Propagator

Instead of calculatingˆ.k/ from .x; 0/ for each wave packet, it is possible to relate

 .x; t/ directly to an integral of  .x; 0/: To do so I first calculate

ˆ.k/ D 1p
2�

Z 1

�1
dx0  .x0; 0/e�ikx0

(3.45)

and substitute the result into Eq. (3.14) to obtain

 .x; t/ D 1

2�

Z 1

�1
dx0  .x0; 0/

Z 1

�1
dk exp

˚
i
�
k
�
x � x0� � „k2t=2m

�
: (3.46)

The integral over k is tabulated and I can write the final result as

 .x; t/ D
Z 1

�1
dx0 K

�
x � x0; t

�
 .x0; 0/; (3.47)

where the free-particle propagator K .x � x0; t/ is given by

K
�
x � x0; t

�
D 1

2
p
�bi

ei.x�x0/2=4b (3.48)

and

b D „t=2m: (3.49)

As an example of the use of the propagator, I consider an initial state wave

function

 .x; 0/ D
(

1p
a

jxj � a=2

0 otherwise
: (3.50)



3.2 Schrödinger’s Equation 63

Since the probability density j .x; 0/j2 has sharp boundaries, we should expect

these sharp boundaries to give rise to diffraction. From Eqs. (3.47) to (3.50), I

calculate

 .x; t/ D 1

2
p
�abi

Z a=2

�a=2

dx0 ei.x�x0/2=4b; (3.51)

where b is given in Eq. (3.49). The limits on the integral have been set equal to

˙a=2 since  .x0; 0/ D 0 for jx0j > a=2. The integral is tabulated in terms of error

functions, but I present the results rather than give formal expressions for j .x; t/j2.
It is usually best to give plots in terms of dimensionless variables. In this case, it

is clear that x=a is an appropriate dimensionless coordinate. It would make sense to

choose a dimensionless time as

� D �vt

a
D �p

ma
t; (3.52)

where �p D m�v is the momentum uncertainty. Unfortunately, �p D 1 for this

wave packet, since the envelope of the absolute square of the Fourier transform of

the packet,

jˆ.p/j2 D 1

2�„a

ˇ̌
ˇ̌
ˇ

Z a=2

�a=2

dx e�ipx=„
ˇ̌
ˇ̌
ˇ

2

D a

2�„
sin2 .pa=2„/
.pa=2„/2

; (3.53)

falls off as p�2 for large p; resulting in
˝
p2
˛
D 1. However, the central lobe of

jˆ.p/j2 has a HWHM of order ıp � „=�x.0/, where �x.0/ D a=
p
12 is the

standard deviation of the initial wave packet in coordinate space.1

If I set �p D ıp � „=�x.0/ D 2
p
3„=a in Eq. (3.52), then

� D 2
p
3„t

ma2
D 4
p
3b

a2
(3.54)

is an appropriate dimensionless time, and Eq. (3.51) can be written as

 .�; �/ D

s p
3

�a� i

Z 1=2

�1=2
d� 0

e
p
3i.���0/

2
=� ; (3.55)

with � D x=a and � 0 D x0=a. The integral can be evaluated numerically or in terms

of error functions. The dimensionless quantity a j .�; �/j2 is plotted in Fig. 3.1 for

� D 0; 0:25; 1. The probability distribution a j .�; �/j2 evolves into a Fresnel-like

diffraction pattern for 0 . � . 1 and into a Fraunhofer diffraction pattern for � & 1.

1The calculated value of the HWHM of the central lobe is 0:81„=�x.0/.
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Fig. 3.1 Time evolution of the dimensionless probability distribution for a “square” wave packet.

The original square packet (� D 0) undergoes Fresnel-like diffraction (� D 0:25) before assuming

the Fraunhofer diffraction pattern of a single slit (� D 1:0). The dimensionless time � is defined in

Eq. (3.54)

Diffraction effects from the sharp edges of the wave packet are seen clearly in these

diagrams. Although not evident from the figure, it turns out that ��.�/ D 1 for

any � > 0, since for fixed � and � � 1 (see problems),

a j .�; �/j2 � �
sin2

�p
3�=�

�

p
3��2

: (3.56)

This asymptotic form can be obtained by expressing the integral in Eq. (3.55) in

terms of error functions and taking the asymptotic limit of the error functions.

Equation (3.56) is also a good approximation to a j .�; �/j2 for fixed � and � & 1.

It represents the Fraunhofer diffraction pattern of a single slit.

The fact that
˝
Op2
˛
D 1 and �x.�/ D 1 for any � > 0 is linked to sharp

edges of the initial coordinate space wave packet. In fact, it is possible to show

that the same features occur for any initial wave function that possesses a point

jump discontinuity. In practice it is impossible to create a wave packet having

a point jump discontinuity. To do so would require an infinite amount of energy

since the resulting packet has
˝
p2
˛
D 1. Of course, the Schrödinger equation is a

non-relativistic equation so that the momentum distribution is suspect for momenta

jpj & mc.
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3.3 Summary

I have shown that it is possible to obtain Schrödinger’s equation for a free particle,

using an analogy with optical pulse propagation, along with de Broglie’s definition

of the wavelength of matter and Einstein’s definition of the energy of a photon.

The resultant free particle wave packet differs in a fundamental way from that of

an optical pulse, since the dispersion relation relating energy to the momentum

is quadratic for matter and linear for light. As a consequence, optical pulses in

vacuum propagate without changing their shape, while free-particle, matter wave

packets contain several momentum components and necessarily change their shape

as a function of time.

3.4 Problems

1. Suppose that a smooth wave packet has �x.0/ D a and �p D ˛„=a, where

˛ � 1=2 is a constant. Explain why

�x.t/ D

s

a2 C ˛2
� „t

ma

�2
;

is not a bad guess for the width of the wave packet at any time. Using this guess

with ˛ D 1, find the time it takes for a wave packet that is confined to its de Broglie

wavelength to spread to twice its initial width in terms of the particle’s energy and

Planck’s constant.

2. Using the result of Problem 3.1 and assuming that you are a point particle having

mass 50 kg and are localized to 1:0 � 10�11 m, calculate how long it would take for

you to spread by an amount equal to this initial localization distance.

3–4. Start with a one-dimensional wave packet in coordinate space. Take a wave

function such as  .x/ D Ne�x4 or  .x/ D Ne�x6 , for which no simple analytic

solution exists for its Fourier transform. Normalize your wave function using

numerical integration to find the value of N. Plot j .x/j2. Using Mathematica,

Matlab, or Maple (or any other program you have), use numerical integration

[NIntegrate in Mathematica] to obtain and plot the k-space distribution associated

with the wave packet you chose. How does it differ from a Gaussian? Why?

Calculate the value of �x�k using numerical integration. In this problem, both x

and k are dimensionless variables.

5. Sodium atoms moving at 1000 m/s are incident on a slit having a width of

100 nm. At 3 m from the slit, what is the approximate transverse width associated

with the sodium atom’s wave function? Is diffraction important in this case? These

are typical values for experiments in atom optics.
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6. Prove that

 .r; t/ D eip�r=„e�ip2t=2m„

is a solution of

i„@ .r; t/
@t

D � „
2

2m
r2 .r; t/

As a consequence, why is

 .r; t/ D 1

.2�„/3=2
Z

dpeip�r=„e�ip2t=2m„ˆ.p/

also a solution of the equation, where ˆ.p/ is some arbitrary function for which

j .r; t/j2 is square integrable? Note that you can also write this equation as

 .r; t/ D 1

.2�„/3=2
Z

dpeip�r=„ˆ.p;t/ ;

where

ˆ.p;t/ D e�ip2t=2m„ˆ.p/ :

In general it is assumed that  .r; t/ and ˆ.p;t/ are Fourier transforms of one

another, even for cases when a potential is present. When a spatially varying

potential is present, explain why ˆ.p;t/ can no longer be equal to e�ip2t=2m„ˆ.p/ :

7–8. Return to Problem 2.3–4 for an initial (normalized) wave function

 .x; 0/ D 1

23=8
p

a
p
�.5=4/

exp
�
�x4=a4

�
D 0:810p

a
exp

�
�x4=a4

�
;

where a is a real constant and � is the gamma function. Calculate �k2 numerically

and show that it is equal to 1:43=a2. Suppose you want to check the validity of

Eq. (3.40) for this initial wave packet. Show that Eq. (3.40) can be written as

�x2.b/ D �x2.0/C 4�k2b2;

where b D „t=2m and m is the mass of the particle. Evaluate �x2.b/=a2 for

b=a2 D 0; 0:1; 0:5; 0:75; 1; 5; 10. Now use Eq. (3.47) to obtain an integral expression

for  .x; b/; and numerically evaluate �x2.b/=a2 for the same values of b=a2 to see

how well the equation �x2.b/ D �x2.0/C 4�k2b2 agrees with the exact result. As

noted in the text, the agreement should be exact in this case.
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9. Use Mathematica or some other program to evaluate the integral in Eq. (3.55) in

terms of error functions. Take the asymptotic limit of the result for � � 1 to derive

Eq. (3.56) and show that �x.�/ D 1 for any � > 0: Also, starting from Eq. (3.55),

show that Eq. (3.56) is the correct asymptotic limit for � � 1 and any � .

10. Plot a j .�; �/j2 for  .�; �/ given in Eq. (3.55) as a function of � for � D
0:001; 0:05; 0:1; 0:2. This will show you the transition from the shadow region to

that of Fresnel diffraction. Also plot a j .0; �/j2 for 0 � � � 0:5 and find the

maximum value it can have.

11. Assume that a wave function has the form

 .x; 0/ D f .x/‚.a � x/‚.bC x/;

where a and b are positive and f .x/ is a real analytic function that is non-vanishing

at x D a; b. The Heaviside function ‚.x/ is equal to 0 for x < 0 and 1 for x � 1, so

the Heaviside functions truncate the wave function and confine it to �b < x < a. By

evaluating the Fourier transform of  .x; 0/ for large momenta, prove that
˝
p2
˛
D1.

[Hint: an integration by parts might help.]

12. For the initial wave packet of the previous problem, use Eqs. (3.47) and (3.48)

to show that
˝
x2
˛
D1 for any t > 0.



Chapter 4

Schrödinger’s Equation with Potential Energy:
Introduction to Operators

The wave equations of electromagnetism are a natural consequence of Maxwell’s

equations. The time and spatial derivatives of the fields are found to be connected

in a simple manner. But what physical interpretation can be given to the quantity

r2 .r; t/ that appears in Schrödinger’s equation? To understand the physical

significance of this term, I have to introduce the concept of operators. Operators

play a very important role in quantum mechanics but can be a bit confusing;

specifically a distinction must be made between operators and functions. The plan is

to look at the free particle Schrödinger equation and to show that the �
�
„2=2m

�
r2

term can be represented as Op2=2m D Op � Op=2m, where Op is an operator. I will then

be able to generalize Schrödinger’s equation to account for situations in which

an external potential is present. To simplify matters, I work with the Schrödinger

equation in one dimension; in the Appendix, an analogous development is given for

the Schrödinger equation in three dimensions.

4.1 Hamiltonian Operator

So far I have been talking about free-particle solutions of Schrödinger’s equation,

which, in one dimension, is written as

i„@ .x; t/
@t

D � „
2

2m

@2 .x; t/

@x2
: (4.1)

The quantity @2=@x2 appearing in this equation is an operator that acts on functions

in coordinate space. The operation simply involves second order differentiation of

the function. Operators do just that, they operate on a function to produce a new

function. For example, you could define the “Chicago operator” that translates the

wave function to the top of the Sear’s tower in Chicago.
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I’ve already looked at an integral solution of Eq. (4.1), namely

 .x; t/ D 1

.2�/1=2

Z 1

�1
dkˆ.k/ expŒi

�
kx � „k2t=2m

�
�: (4.2)

Actually I could equally well guess this as a solution of the free-particle Schrödinger

equation. Substituting this guess into Eq. (4.1), I find

i„@ .x; t/
@t

D „2

2m .2�/1=2

Z 1

�1
dkˆ.k/k2 expŒi

�
kx � „k2t=2m

�
� (4.3)

and

� „
2

2m

@2 .x; t/

@x2
D „2

2m .2�/1=2

Z 1

�1
dkˆ.k/k2 expŒi

�
kx � „k2t=2m

�
�; (4.4)

implying that the solution works. I shall assume that  .x; t/ is normalized,

Z 1

�1
dx j .x; t/j2 D 1: (4.5)

Instead of working in coordinate space, I could work equally well in momentum

space; that is, I can try to get a differential equation for ˆ.p,t/; where ˆ.p,t/ is the

Fourier transform of  .x; t/ defined by

ˆ.p; t/ D 1

.2�„/1=2
Z 1

�1
dx .x; t/e�ipx=¯ (4.6)

and

p D „k (4.7)

is given by the de Broglie relationship. It is assumed that jˆ.p; t/j2 is the probability

density in momentum space, that is the probability density to find a momentum p

for the particle at time t. Note that I need a factor of „�1=2 when momentum rather

than k is used in defining the Fourier transform. This assures that ˆ.p; t/ has the

correct units of p�1=2 and that
R1

�1 dp jˆ.p; t/j2 D 1 if j .x; t/j2 is normalized.

Differentiating Eq. (4.6) with respect to time and using Eq. (4.1), I find

i„@ˆ.p; t/
@t

D i„
.2�„/1=2

Z 1

�1
dx
@ .x; t/

@t
e�ipx=¯

D � „2

2m .2�„/1=2
Z 1

�1
dx e�ipx=¯ @

2 .x; t/

@x2
: (4.8)
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I now integrate by parts two times and assume that the wave function and its

derivative vanish as x goes to plus or minus infinity (the wave packet is not infinite

in extent). In this manner I obtain

i„@ˆ.p; t/
@t

D p2

2m .2�„/1=2
Z 1

�1
dx e�ipx=¯ .x; t/ D p2

2m
ˆ.p; t/: (4.9)

When this equation is generalized to three dimensions (see Appendix), it becomes

i„@ˆ.p; t/
@t

D p2

2m
ˆ.p; t/ D Op

2

2m
ˆ.p; t/; (4.10)

where the operator Op2 is defined such that

Op2g.p/ D p2g.p/: (4.11)

for any function g.p/. In other words, the operator Op2 acting on a function g.p/ in

momentum space simply multiplies g.p/ by p2.

This is an important result. In coordinate space, the free particle Schrödinger

equation is

i„@ .r; t/
@t

D � „
2

2m
r2 .r; t/: (4.12)

The right-hand side of the free particle Schrödinger equation in coordinate space is

�
�
„2=2m

�
r2, while it is Op2=2m in momentum space. This implies that the operator

Op2 acting on a function f .r/ in coordinate space results simply in�„2r2f .r/; that is,

Op2 D �„2r2 (4.13)

when acting in coordinate space. As a consequence, the Schrödinger equation can

be written as

i„@ .r; t/
@t

D �„
2r2 .r; t/
2m

D Op
2

2m
 .r; t/: (4.14)

Since p2=2m is equal to the energy of the free particle, I can rewrite Eq. (4.14) as

i„@ .r; t/
@t

D OH .r; t/; (4.15)

where OH is the Hamiltonian or energy operator.

I now conjecture that Eq. (4.15) remains valid even when there is a potential V.r/

present, with the Hamiltonian operator generalized as
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OH D Op
2

2m
C OV: (4.16)

In coordinate space, the operator OV is defined such that

OVf .r/ D V .r/ f .r/ (4.17)

for any function f .r/. In other words, operator OV acting on a function f .r/ in

coordinate space simply picks out the value of the potential energy at the position

of the function and multiplies it by f .r/.

Since Op2 is equal to �„2r2 in the coordinate representation, I have a complete

description of the Hamiltonian operator in the coordinate representation, namely

OH .r; t/ D
� Op2
2m
C OV

�
 .r; t/ D

"
�„

2r2
2m
C V.r/

#
 .r; t/ : (4.18)

In the momentum representation, however, things are not so clear, since I do not

know the effect of the potential operator in momentum space. To do so, I must

use my assumption that  .r; t/ and ˆ.p; t/ are Fourier transforms of one another

and make the assumption that the average value of the operators is identical in the

coordinate and momentum representations. A derivation of Schrödinger’s equation

in momentum space is given in Chap. 11.

4.2 Time-Independent Schrödinger Equation

In coordinate space, the time-dependent Schrödinger equation is

i„@ .r; t/
@t

D OH .r; t/ D
�
� „

2

2m
r2 C V.r/

�
 .r; t/: (4.19)

I guess a solution

 .r; t/ D e�iEt=„ E.r/; (4.20)

substitute it into Eq. (4.19) and find that it works, provided

OH E.r/ D E E.r/; (4.21)

an equation which is known as the time-independent Schrödinger equation. There

may be many solutions of Eq. (4.21). Since Eq. (4.19) is linear, its general solution

is found by forming a linear superposition of all the solutions of Eq. (4.21), namely
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 .r; t/ D
X

E

aEe�iEt=„ E.r/; (4.22)

where the expansion coefficients aE are determined by the initial conditions on

 .r; t/:

Equation (4.22) is a critically important result. If we can solve the time-

independent Schrödinger equation, we can build a solution to the time-dependent

problem. This is why so much time is spent in quantum mechanics courses on

the time-independent Schrödinger equation. However you should not forget that

the interesting dynamics of a quantum system is obtained only through a solution

of the time-dependent Schrödinger equation. In order to solve equations of the type

given in Eq. (4.21), I will need the additional ammunition to be provided in Chap. 5.

4.3 Summary

The concept of an operator in quantum mechanics has been introduced. I found

that the square of the momentum operator is proportional to the Laplacian oper-

ator in coordinate space. We have seen that it is possible to obtain a solution

of the time-dependent Schrödinger equation if we are able to solve the time-

independent Schrödinger equation. The formal method for solving the time-

independent Schrödinger is given in the next chapter, where I discuss the properties

of operators in a more systematic fashion.

4.4 Appendix: Schrödinger Equation in Three Dimensions

Schrödinger’s equation in three dimensions is

i„@ .r; t/
@t

D � „
2

2m
r2 .r; t/: (4.23)

As in the one-dimensional case, I guess a solution of the form

 .r; t/ D 1

.2�/3=2

Z
dkˆ.k/ expŒi

�
k � r � „k2t=2m

�
�; (4.24)

which is easily shown to be a solution of Eq. (4.23).

In three dimensions, ˆ.p; t/ is defined by

ˆ.p; t/ D 1

.2�„/3=2
Z

dr .r; t/e�ip�r=¯; (4.25)
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where

p D „k (4.26)

is given by the de Broglie relationship.

Differentiating Eq. (4.25) with respect to time and using Eq. (4.23), I find

i„@ˆ.p; t/
@t

D i„
.2�„/3=2

Z
dr
@ .r; t/

@t
e�ip�r=¯

D � „2

2m .2�„/3=2
Z

dr e�ip�r=¯r2 .r; t/: (4.27)

I now use the vector identity

r2
h
 .r; t/e�ip�r=¯

i
D �p2

„2 .r; t/e
�ip�r=¯ � 2ie�ip�r=¯ p

„ � r .r; t/

Ce�ip�r=¯r2 .r; t/ (4.28)

to rewrite the integral appearing in Eq. (4.27) as

Z
dr e�ip�r=¯r2 .r; t/ D

Z
drr2

h
 .r; t/e�ip�r=¯

i

Cp2

„2
Z

dr .r; t/e�ip�r=¯ C 2i
p

„ �
Z

dr e�ip�r=¯r .r; t/: (4.29)

The first integral on the right-hand side (rhs) of Eq. (4.29) can be evaluated using

the divergence theorem as

Z
drr2

h
 .r; t/e�ip�r=¯

i
D
Z

dr r �r
h
 .r; t/e�ip�r=¯

i

D
I

S

r

h
 .r; t/e�ip�r=¯

i
� da: (4.30)

The surface integral is taken over a surface whose radius approaches infinity; this

integral vanishes if the wave function falls off more rapidly than r�2 as r ! 1,

that is,

I

S

r

h
 .r; t/e�ip�r=¯

i
� da � 0: (4.31)
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The third integral on the rhs Eq. (4.29) can be written as

2i
p

„ �
Z

dr e�ip�r=¯r .r; t/

D 2i
p

„ �
Z

dr

�
r

h
e�ip�r=¯ .r; t/

i
C
�

ip

„

�
e�ip�r=¯ .r; t/

�

D 2i
p

„ �

8
<
:

I

S

 .r; t/e�ip�r=¯daC
�

ip

„

�Z
dr e�ip�r=¯ .r; t/

9
=
;

D �2p2

„2
Z

dr .r; t/e�ip�r=¯; (4.32)

where the generalized Gauss’ theorem given in Eq. (2.21b) was used to convert the

integral containing r
�
e�ip�r=¯ .r; t/

�
into a surface integral that vanishes as the

radius of the surface approaches infinity. Combining Eqs. (4.29)–(4.32) and using

Eq. (4.25), I find

Z
dr e�ip�r=¯r2 .r; t/ D �p2

„2
Z

dr .r; t/e�ip�r=¯ D �p2

„2 .2�„/
3=2ˆ.p; t/:

(4.33)

Substituting this result into Eq. (4.27), I finally arrive at

i„@ˆ.p; t/
@t

D p2

2m
ˆ.p; t/; (4.34)

which is Eq. (4.10).

4.5 Problems

1. Given a Hamiltonian of the form

OH D � „
2

2m

d2

dx2
C V.x/

in coordinate space, show that the most general solution of the time-dependent

Schrödinger equation is

 .x; t/ D
X

E

aE E.x/e
�iEt=„ D

X

E

aE.t/ E.x/
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provided aE.t/ D aEe�iEt=„ and

OH E.x/ D E E.x/:

Prove that the probability to be in a given quantum state, given by jaE.t/j2, is

constant in time, but that, in general, the probability j .x; t/j2 varies in time.

2. Why doesn’t the momentum distribution change in time for a free particle,

even though the coordinate space distribution changes? How would you expect the

wave function in momentum space to change for a particle falling in a uniform

gravitational field? Explain. What is the difference between the operator Op2 in

momentum space and in coordinate space?

3. Suppose you are given a Hamiltonian of the form

OH D � „
2

2m

d2

dx2
C V.x/;

with  .x; 0/ D f .x/. In terms of the eigenfunctions and eigenenergies of OH, derive

an expression for  .x; t/.

4. Prove that

Z
 �.x; t/ OH .x; t/dx

is constant in time. Why must this be the case?

5. Consider a wave function for a free particle having mass m of the form

 .x/ D Ne�x2=a2‚.b � x/‚.bC x/;

where b� a > 0, N is a normalization constant, and ‚.x/ is a Heaviside function

equal to 0 for x < 0 and 1 for x � 1. For b � a, you might think that it would

be an excellent approximation to consider the wave function as a Gaussian packet

having average energy hEi D
˝
Op2
˛
=2m D „2=

�
4ma2

�
. Use the result of Problem 2.9

to show that this is not the case—for any finite b, the average energy is infinite. This

occurs because of the point jump discontinuity in the wave function.



Chapter 5

Postulates and Basic Elements of Quantum
Mechanics: Properties of Operators

In this chapter I present a somewhat more formal introduction to the theory that

underlies quantum mechanics. Although the discussion is limited mainly to single

particles, many of the results apply equally well to many-particle systems. Some

of the postulates of the theory depend on the properties of Hermitian operators,

operators that play a central role in quantum mechanics. First I state the postulates,

then discuss Hermitian operators, and finally explore some results that follow

directly from Schrödinger’s equation.

The postulates are:

1. The absolute square of the wave function j .r; t/j2 that characterizes a particle

corresponds to the probability density of finding the particle at position r at

time t.

2. To each dynamic physical observable in classical mechanics (such as posi-

tion, momentum, energy), there corresponds a Hermitian operator in quantum

mechanics.

3. The time dependence of  .r; t/ is governed by the time-dependent Schrödinger

equation,

i„@ .r; t/
@t

D OH .r; t/ (5.1)

where OH is the energy operator of the system.

4. The only possible outcome of a measurement on a single quantum system of

a physical observable associated with a given Hermitian operator is one of the

eigenvalues of the operator.

5. I must add one additional postulate. This postulate can take different forms.

The one I use at this juncture is that the wave functions in coordinate space,

 .r; t/, and in momentum space, ˆ.p; t/, are Fourier transforms of one another,

namely
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 .r; t/ D 1

.2�„/3=2
Z

dpˆ.p; t/eip�r=¯I (5.2)

ˆ.p; t/ D 1

.2�„/3=2
Z

dr .r; t/ e�ip�r=¯: (5.3)

The function jˆ.p; t/j2 is the probability density in momentum space for the

particle to have momentum p at time t.

You cannot measure j .r; t/j2 or jˆ.p; t/j2 directly. The only way you can

build up information on the wave function is to make a series of measurements on

identically prepared quantum systems, since each measurement generally modifies

the system in some way. Quantum mechanics does not contain a prescription for

carrying out the measurements. In fact, in the model I have adopted, the measuring

apparatus is external to the quantum system. Moreover, it is often not trivial to

construct experiments that directly measure physical observables such as energy,

angular momentum, position, and momentum.

For the moment I associate quantum-mechanical operators with the coordinate,

momentum, kinetic energy and potential energy functions of classical mechanics.

For the coordinate and potential energy operators, Or and OV , corresponding to the

classical variables r and V.r/; I define their operations in coordinate space by

Orf .r/ D rf .r/ (5.4a)

OVf .r/ D V.r/f .r/ (5.4b)

for any function f .r/. Similarly for the momentum and kinetic energy operators,

Op and Op2=2m; corresponding to the classical variables p and p2=2m; I define their

operations in momentum space by

Opg.p/ D pg.p/ (5.5a)

Op2
2m

g.p/ D p2

2m
g.p/ (5.5b)

for any function g.p/. It will turn out that postulate 5 will allow me to determine how

Or and OV act on functions of momentum, as well as how Op and Op2 act on functions

of position. We have already seen in Chap. 4 that Op2f .r/ D �„2r2f .r/, but this

relationship will be rederived using the postulates.

5.1 Hermitian Operators: Eigenvalues and Eigenfunctions

The time-independent Schrödinger equation,

OH E.r/ D E E.r/; (5.6)



5.1 Hermitian Operators: Eigenvalues and Eigenfunctions 79

represents an eigenvalue equation in which E is the eigenvalue and  E.r/ is the

corresponding eigenfunction. It turns out that there are always solutions of equations

of this type, provided the operators are Hermitian. To define what I mean by a

Hermitian operator, I need to introduce the concept of the expectation value of an

operator.

The expectation value of an operator OA for a quantum system described by wave

functions in coordinate and momentum space,  .r; t/ or ˆ.p; t/, respectively, is

defined as

D
OA
E
D
Z

dr �.r; t/ OA .r; t/

D
Z

dpˆ�.p; t/ OAˆ.p; t/: (5.7)

The symbols dr and dp correspond to volume elements in coordinate and momen-

tum space, respectively, and the integrals in Eq. (5.7) are over all coordinate or

momentum space. The expectation value is independent of whether the coordinate

or momentum representation for the wave function is used. The operator OA is

assumed to be time-independent, but
D
OA
E

is a function of t, in general, owing to

the time-dependence of the wave function. In writing Eq. (5.7), I assumed that the

wave functions were normalized probability distributions; that is

Z
dr j .r; t/j2 D

Z
dp jˆ.p; t/j2 D 1: (5.8)

If the distributions are not normalized, then

D
OA
E
D
R

dr �.r; t/ OA .r; t/R
dr j .r; t/j2

D
R

dpˆ�.p; t/ OAˆ.p; t/R
dp jˆ.p; t/j2

: (5.9)

Let us work in coordinate space and use a shorthand notation in which

D
OA
E
D
Z

dr �.r; t/ OA .r; t/ D
�
 ; OA 

�
: (5.10)

Suppose that we demand that
D
OA
E

is real for an arbitrary  .r; t/. Then

D
OA
E�
D
Z

dr .r; t/
h
OA .r; t/

i�
D
�
OA ; 

�
D
D
OA
E
D
�
 ; OA 

�
(5.11)
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or

�
OA ; 

�
D
�
 ; OA 

�
: (5.12)

Equation (5.12) can be used as the definition of a Hermitian operator. I will assume

that all the operators we encounter in quantum mechanics are Hermitian operators.

This is not unreasonable, since the expectation value of any physical dynamic

variable must be real.

It turns out that the properties of Hermitian operators have been well-established

by mathematicians. One of the most important properties is that there exists a

complete set of eigenfunctions  a.r/ associated with a time-independent Hermitian

operator OA for which

OA a.r/ D a a.r/ (5.13)

where a is the eigenvalue associated with the eigenfunction  a.r/. The proof of

existence and completeness is not trivial and is not given here. For the problems we

encounter in quantum mechanics, there are certain boundary conditions that apply.

The Hermitian nature of the operators and the completeness of the eigenfunctions

depend implicitly on the appropriate boundary conditions. Examples are given as

we go along.

At this point you might be getting frustrated and confused. What relationship do

the eigenfunctions and eigenvalues have to physical systems? If we solve for these

quantities, what have we gained? It turns out that the eigenfunctions and eigenvalues

give us a complete picture of what is going on in quantum mechanics. The reason

for this is that we can associate a Hermitian operator with every dynamic physical

observable that can be measured. The outcome of a physical measurement of the

operator associated with a single quantum system must be one and only one of

the eigenvalues associated with that operator. Thus, if we measure the energy of a

particle, we get one possible eigenvalue of the energy operator for that particle. If we

measure the angular momentum of a particle, we get one eigenvalue of the angular

momentum operator. Moreover, if we find the eigenfunctions and eigenvalues of

the energy operator, we completely determine the wave function for the quantum

system, given the initial conditions. The wave function allows you to calculate all

properties of the quantum system. Many of these ideas will become clear with the

examples that are given after I establish some properties of Hermitian operators.

5.1.1 Eigenvalues Real

I start from the eigenvalue equation (5.13),

OA a.r/ D a a.r/; (5.14)
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and take the inner product (or integral) of both sides with  �
a .r/,

�
 a; OA a

�
D . a; a a/ D a . a;  a/ ; (5.15)

where .�;  / is a shorthand notation for

.�;  / D
Z

dr��.r; t/ .r; t/ D . ; �/� : (5.16)

Next, I take the complex conjugate of Eq. (5.13),

h
OA a.r/

i�
D Œa a.r/�

� ; (5.17)

and take the inner product (or integral) of both sides with  a.r/,

�
OA a;  a

�
D .a a;  a/ D a� . a;  a/ : (5.18)

Subtracting Eq. (5.18) from Eq. (5.15), using Eq. (5.12), I find

�
 a; OA a

�
�
�
OA a;  a

�
D 0 D

�
a � a�� . a;  a/ : (5.19)

But since . a;  a/ > 0, it follows that a D a�. The eigenvalues of a Hermitian

operator are real.

5.1.2 Orthogonality

You are familiar with the concept of two vectors being orthogonal. The concept

of orthogonality can be extended to functions by defining two functions �1 .r/ and

�2 .r/ to be orthogonal if

.�1; �2/ D
Z

dr��
1 .r/ �2 .r/ D 0: (5.20)

I will now show that the eigenfunctions of a Hermitian operator are either

automatically orthogonal or can be chosen to be orthogonal. First, I prove a useful

lemma (for some unknown reason, I love the word “lemma”).

Lemma: If �1 and �2 are two arbitrary functions and if OA is a Hermitian operator,

then

�
�1; OA�2

�
D
�
OA�1; �2

�
: (5.21)
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The proof is straightforward. I use the definition given in Eq. (5.12), but replace

 by

 .r/ D b1�1 .r/C b2�2 .r/ (5.22)

where b1 and b2 are arbitrary complex numbers. Then, for any b1 and b2

�
b1�1 C b2�2; OA Œb1�1 C b2�2�

�
D
�
OA Œb1�1 C b2�2� ; b1�1 C b2�2

�
(5.23)

or

jb1j2
�
�1; OA�1

�
C jb2j2

�
�2; OA�2

�
C b�

1b2

�
�1; OA�2

�
C b1b

�
2

�
�2; OA�1

�

D jb1j2
�
OA�1; �1

�
C jb2j2

�
OA�2; �2

�
C b�

1b2

�
OA�1; �2

�
C b1b

�
2

�
OA�2; �1

�
:

(5.24)

Since
�
� j; OA� j

�
D
�
OA� j; � j

�
.j D 1; 2/ as a consequence of Eq. (5.12), Eq. (5.24)

reduces to

b�
1b2

�
�1; OA�2

�
Cb1b

�
2

�
�2; OA�1

�
D b�

1b2

�
OA�1; �2

�
Cb1b

�
2

�
OA�2; �1

�
: (5.25)

The only way this can be satisfied for arbitrary complex b1 and b2 is if

�
�1; OA�2

�
D
�
OA�1; �2

�
I

�
�2; OA�1

�
D
�
OA�2; �1

�
: (5.26)

This is an alternative way to define a Hermitian operator.

5.1.2.1 Nondegenerate Eigenvalues

I first consider two eigenfunctions  a1
;  a2

whose eigenvalues are unequal or

nondegenerate. I start from

OA a1
.r/ D a1 a1

.r/I
h
OA a2

.r/
i�
D
�
a2 a2

.r/
�� D a2

�
 a2

.r/
��
; (5.27)

having used the fact that a2 is real, take the inner product of the first equation with

 a2
and the second equation with  a1

, namely
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�
 a2

; OA a1

�
D a1

�
 a2

;  a1

�
I

�
OA a2

;  a1

�
D a2

�
 a2

;  a1

�
; (5.28)

subtract these equations, and use Eq. (5.21) to obtain

�
 a2

; OA a1

�
�
�
OA a2

;  a1

�
D 0 D .a1 � a2/

�
 a2

;  a1

�
: (5.29)

But since a1 ¤ a2, it follows that

�
 a2

;  a1

�
D
Z

dr �
a2
.r/  a1

.r/ D 0I (5.30)

eigenfunctions of a Hermitian operator corresponding to nondegenerate eigenvalues

are automatically orthogonal. Moreover, I can normalize the eigenfunctions by

setting

�
 an

;  an0

�
D ın;n0 ; (5.31)

where ın;n0 is the Kronecker delta function that is equal to 1 if n D n0 and zero

otherwise.

5.1.2.2 Degenerate Eigenvalues

The above proof fails if a1 D a2, but it still is possible to construct orthogonal

eigenfunctions using a method called Schmidt orthogonalization. You know that

in three-dimensional space, any three non-collinear unit vectors can serve as basis

vectors. It is just convenient to choose orthogonal unit vectors. The same ideas apply

here. Suppose that there are N eigenfunctions having the same eigenvalue an. I label

these eigenfunctions by  .m/
an

with m going from 1 to N. It is clear that any linear

combination of these eigenfunctions also has eigenvalue an, since

OA
NX

mD1
bm 

.m/
an
D

NX

mD1
bm
OA .m/

an
D an

NX

mD1
bm 

.m/
an
: (5.32)

The point is that it is always possible to choose N linear combinations of the

eigenfunctions

Q .q/

an
D

NX

mD1
bqm 

.m/
an

; q D 1; 2; : : : ;N (5.33)
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which have eigenvalue an and are orthogonal to each other. Often the choice is easy

to make by inspection; for example, symmetric and anti-symmetric combinations of

two functions. In fact it is rare to actually have to use the Schmidt orthogonalization

procedure.

If you must use it, you could proceed as follows: Suppose
�
 .1/

an
;  .2/

an

�
D c12 ¤ 0.

If the  .j/
an

are normalized, as is assumed, then jc12j < 1.1 Take Q .1/

an
D  .1/

an
and

Q .2/

an
D b21 

.1/
an
C b22 

.2/
an
: (5.34)

For Q .1/

an
and Q .2/

an
to be orthogonal, I must require that

�
Q .1/

an
; Q .2/

an

�
D b21 C b22c12 D 0 (5.35)

or

b21 D �c12b22: (5.36)

The values of b21 and b22 can be determined if I normalize Q .2/

an
;

�
Q .2/

an
; Q .2/

an

�
D
�
b21 

.1/
an
C b22 

.2/
an
; b21 

.1/
an
C b22 

.2/
an

�

D jb22j2
�
�c12 

.1/
an
C  .2/

an
;�c12 

.1/
an
C  .2/

an

�

D jb22j2
�
jc12j2 � jc12j2 � jc12j2 C 1

�

D jb22j2
�
1 � jc12j2

�
D 1; (5.37)

having used Eq. (5.36) and the fact that

�
 .1/

an
;  .2/

an

�
D
�
 .2/

an
;  .1/

an

�� D c12: (5.38)

Thus, if

b22 D
�
1 � jc12j2

��1=2
; b21 D �c12b22 D �c12

�
1 � jc12j2

��1=2
; (5.39)

then Q .1/

an
and Q .2/

an
are orthonormal wave functions.

Now suppose
�
Q .1/

an
;  .3/

an

�
D c13 ¤ 0 and

�
Q .2/

an
;  .3/

an

�
D c23 ¤ 0. I set

Q .3/

an
D g31 Q 

.1/

an
C g32 Q 

.2/

an
C g33 

.3/
an
; (5.40)

1The fact that jc12j < 1 follows from the Schwarz inequality,

ˇ̌
ˇ
�
 .1/

an
;  .2/

an

�ˇ̌
ˇ
2

�
�
 .1/

an
;  .1/

an

� �
 .2/

an
;  .2/

an

�
D 1:
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(the g’s differ from the b’s in Eq. (5.33) since I expand in terms of the new first two

eigenfunctions) and demand that

�
Q .1/

an
; Q .3/

an

�
D 0; (5.41a)

�
Q .2/

an
; Q .3/

an

�
D 0; (5.41b)

�
Q .3/

an
; Q .3/

an

�
D 1: (5.41c)

These constitute three complex equations that allow you to solve for the com-

plex numbers g31; g32; g33: And so on, for the remaining of the N degenerate

eigenfunctions. In the end you have an orthonormal basis for these degenerate

eigenfunctions. Thus the eigenfunctions corresponding to degenerate eigenvalues

are not automatically orthogonal, but can be chosen to be so.

5.1.3 Completeness

Although the proof of the completeness of the eigenvalues is not trivial, a statement

of the completeness condition is not difficult to obtain. If the eigenfunctions are

complete, any function  .r/ can be expanded as

 .r/ D
X

m

bm am
.r/: (5.42)

If I take the inner product of this equation with  an
, I find

�
 an

;  
�
D
X

m

bm

�
 an

;  am

�
D
X

m

bmım;n D bn: (5.43)

Note that Eq.(5.43) can be used to calculate the expansion coefficients bn. Substi-

tuting Eq. (5.43) into Eq. (5.42), I obtain

 .r/ D
X

m

�
 am

;  
�
 am

.r/ D
Z 1

�1
dr0

"
X

m

 �
am
.r0/ am

.r/

#
 .r0/:(5.44)

For the equality to hold, the term in square brackets must equal ı .r � r0/,
implying that

X

m

 �
am
.r0/ am

.r/ D ı
�
r � r0� : (5.45)
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Equation (5.45) is a condition that must be satisfied if the eigenfunctions are

complete.

Equation (5.42) is analogous to the expansion of a vector in terms of unit

vectors, except that the unit vectors are now replaced by orthonormal functions.

The dot product of vectors is replaced by an integral of the form given in Eq. (5.16).

Moreover, Eq. (5.43) is equivalent to projecting out the component of a vector. The

analogue with vector spaces will become exact when I consider Dirac notation in

Chap. 11.

5.1.4 Continuous Eigenvalues

So far it has been assumed implicitly that the eigenvalues are discrete. As you

shall see, this is always the case if the particles are confined to a finite volume.

However unbound particles have continuous eigenvalues. For example, consider a

free particle having mass m. The time-independent Schrödinger equation for this

particle is

OH E.r/ D
Op2
2m
 E.r/ D �

„2
2m
r2 E.r/: (5.46)

Clearly the momentum of a free particle can take on any value. Moreover, for a given

positive energy, there is an infinite number of momenta corresponding to a given

energy—there is infinite degeneracy. To label each of the degenerate eigenfunctions,

I can use the momentum and take as eigenfunctions

 p.r/ D eip�r=„; (5.47)

which are solutions of Eq. (5.46), provided

E D p2

2m
: (5.48)

The question arises as to how to normalize these eigenfunctions. ClearlyR
dr
ˇ̌
 p.r/

ˇ̌2 D 1, so I cannot normalize as I did in the case of discrete

eigenvalues. However, from the definition of the Dirac delta function, we know that

Z
dr ei.p�p0/�r=„ D .2�„/3 ı

�
p � p0� : (5.49)

By convention, I use this result and take as free-particle eigenfunctions,

 p.r/ D
1

.2�„/3=2
eip�r=„ (5.50)
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or, in k space .p D „k/,

 k.r/ D
1

.2�/3=2
eik�r: (5.51)

With this choice, the normalization conditions for the free particle eigenfunc-

tions are

Z
dr �

p.r/ p0.r/ D ı
�
p � p0� I (5.52a)

Z
dr �

k.r/ k0.r/ D ı
�
k � k0� : (5.52b)

Equations (5.52) can still be used as the normalization condition in the more general

case of unbound motion in the presence of a potential; however, the eigenfunctions

are no longer given by Eqs. (5.50) and (5.51).

In going from discrete to continuous eigenvalues, the units for the wave functions

and the expansion coefficients change. For discrete eigenenergies, the eigenfunc-

tions in coordinate space have units of 1=
p

volume. For continuous eigenvalues,

 p.r/ has units of .„/�3=2 while  k.r/ is dimensionless. Similar differences arise

for the expansion coefficients. In the case of continuous eigenvalues, an arbitrary

function can be expanded as

 .r/ D
Z

dp b.p/ p.r/I (5.53a)

 .r/ D
Z

dk Qb.k/ k.r/: (5.53b)

In contrast to the case of discrete eigenenergies for which the expansion coefficients

of the wave function are dimensionless, the expansion coefficients b.p/ have units of

(momentum)�3=2,while the expansion coefficients Qb.k/ have units of (volume)3=2:

For continuous variables, the completeness conditions are

Z
dp �

p.r/ p.r
0/ D ı

�
r � r0� I (5.54)

Z
dk �

k.r/ k.r
0/ D ı

�
r � r0� : (5.55)

A formal method for going from discrete to continuous variables is given in the

Appendix.
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5.1.5 Relationship Between Operators

I have already derived an expression for the square of the momentum operator in

coordinate space in Chap. 4. I now want to rederive this result from the postulates.

To do so, I calculate the momentum operator in the coordinate representation. The

expectation value of any operator is the same in both the coordinate and momentum

representations. Let’s see how this works for the momentum operator. I start from

Z
dr Œ .r; t/�� Opx .r; t/ D

Z
dp Œˆ.p; t/�� Opxˆ.p; t/

D
Z

dp Œˆ.p; t/�� pxˆ.p; t/; (5.56)

where I made use of Eq. (5.5a). I substitute the expression ˆ.p; t/ given in Eq. (5.3)

into the right-hand side of this equation (being careful to use different dummy

variables for the integrals) and obtain

Z
dp Œˆ.p; t/�� pxˆ.p; t/ D

1

.2�„/3
Z

dr

Z
dr0 Œ .r; t/��  .r0; t/

�
Z

dp pxeip�.r�r0/=¯: (5.57)

Since

„
i

@

@x0 eip�.r�r0/=¯ D �pxeip�.r�r0/=¯; (5.58)

I find that
Z

dp Œˆ.p; t/�� pxˆ.p; t/ D �
1

.2�„/3
Z

dr

Z
dr0 Œ .r; t/��  .r0; t/

�„
i

@

@x0

Z
dp eip�.r�r0/=¯: (5.59)

The integral over p yields .2�„/3 ı .r � r0/, such that, with the help of the chain

rule,

Z
dp Œˆ.p; t/�� pxˆ.p; t/

D �
Z

dr

Z
dr0 Œ .r; t/��  .r0; t/

„
i

@

@x0 ı
�
r � r0�

D �„
i

Z
dr Œ .r; t/��

Z
dr0 @

@x0
�
 .r0; t/ı

�
r � r0��

C„
i

Z
dr Œ .r; t/��

Z
dr0ı

�
r � r0� @

@x0 .r
0; t/: (5.60)
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The second integral in the first term involves an exact differential whose integral

vanishes for a wave function having finite extent. I am left with

Z
dp Œˆ.p; t/�� pxˆ.p; t/ D

Z
dr Œ .r; t/��

„
i

@

@x
 .r; t/; (5.61)

which, according to Eq. (5.56), implies that

OpxD
„
i

@

@x
: (5.62)

In three dimensions the analogous equation is

Op D„
i
r r; (5.63)

which is consistent with Op2 D �„2r2:
The same technique can be used for any operator, except that the functions

corresponding to the operators must be Fourier transformed as well. For example,

suppose that B.p/ is a function of momentum only. I associate a quantum-

mechanical operator OB. Op/ with this function and assume that

OB. Op/ˆ.p/ D B.p/ˆ.p/ (5.64)

for any function ˆ.p/ having a Fourier transform  .r/. Next I consider

1

.2�„/3=2
Z

dp eip�r=¯B.p/ˆ.p/

D 1

.2�„/3=2
1

.2�„/3
Z

dr

Z
dr0

Z
dp eip�.r�r0�r00/=¯ QB.r00/ .r0/

D 1

.2�„/3=2
Z

dr

Z
dr0 ı.r � r0 � r00/ QB.r00/ .r0/

D 1

.2�„/3=2
Z

dr0 QB.r � r0/ .r0/; (5.65)

where QB.r/ is the Fourier transform of B.p/. I interpret this result to imply that an

operator OB. Op/ acting on a function  .r/ produces the integral operation,

OB. Op/ .r/ D 1

.2�„/3=2
Z

dr0 QB.r � r0/ .r0/: (5.66)

Similarly, for an operator OC.Or/ that is associated with a function C.r/ that is a

function of coordinates only and for which it is assumed that
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OC.Or/ .r/ D C.r/ .r/; (5.67)

the action of the operator OC.Or/ acting on a function ˆ.p/ produces the integral

operation,

OC.Or/ˆ.p/ D 1

.2�„/3=2
Z

dp0 QC.p � p0/ˆ.p0/; (5.68)

where QC.p/ is the Fourier transform of C.r/ and ˆ.p/ is the Fourier transform of

 .r/. We now know how operators act on the wave function in both coordinate

and momentum space. In fact, Eq. (5.68) implies that Schrödinger’s equation in

momentum space is

i„@ˆ.p; t/
@t

D p2

2m
ˆ.p; t/C 1

.2�„/3=2
Z 1

�1
dp0 QV.p � p0/ˆ.p0; t/; (5.69)

where QV.p/ is the Fourier transform of V.r/. I will derive the time-independent

Schrödinger equation in momentum space in Chap. 11 using Dirac notation.

5.1.6 Commutator of Operators

I now look at some additional properties of operators. The commutator OC of two

operators OA and OB is defined as

OC D
h
OA; OB

i
D OA OB � OB OA D �

h
OB; OA

i
: (5.70)

For example, the operators Ox and Opx D „
i

d
dx

do not commute since

ŒOx; Opx�  .x/ D
„
i

�
x

d

dx
� d

dx
x

�
 

D „
i

�
x

d 

dx
� d

dx
.x /

�
D �„

i
 .x/; (5.71)

which can be satisfied for arbitrary  .x/ only if

ŒOx; Opx� D i„: (5.72)

Similarly,

�
Oy; Opy

�
D ŒOz; Opz� D i„: (5.73)
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As you can see, the commutator of two operators can be calculated by looking at its

action on functions. Using this method, it is easy to show that any two components

of the position operator commute and any two components of the momentum

operator commute,

ŒOx; Oy� D ŒOx; Oz� D ŒOy; Oz� D ŒOpx; Opz� D
�
Opx; Opy

�
D
�
Opy; Opz

�
D 0: (5.74)

Moreover, different components of the position and momentum operators commute

as well,

�
Ox; Opy

�
D ŒOx; Opz� D ŒOy; Opx� D ŒOy; Opz� D ŒOz; Opx� D

�
Oz; Opy

�
D 0: (5.75)

Equations (5.72)–(5.75) are the fundamental commutator relations. Remember them

at all times!

Commuting operators play a central role in quantum mechanics. I first prove

that two Hermitian operators commute if and only if they possess simultaneous

eigenfunctions. There are two parts to the proof. First suppose that Hermitian

operators OA and OB possess simultaneous eigenfunctions  ab,

OA ab D a ab; OB ab D b ab . (5.76)

Then

h
OA; OB

i
 ab D

�
OA OB � OB OA

�
 ab D .ba � ab/  ab D 0 (5.77)

and the operators commute. Conversely, suppose that  a is an eigenfunction of OA
and that

h
OA; OB

i
 a D 0: Then

h
OA; OB

i
 a D

�
OA OB � OB OA

�
 a D 0I

OA
�
OB a

�
D a

�
OB a

�
: (5.78)

Equation (5.78) is nothing but a statement of the fact that
�
OB a

�
is an eigenfunction

of OA with eigenvalue a, having the most general form

OB a D b a; (5.79)

where b is some constant. Therefore,  a is a simultaneous eigenfunction of OB
with eigenvalue b. Actually the proof is valid only if the eigenfunctions  a are

nondegenerate. If there are N degenerate eigenfunctions  .m/
a associated with

eigenvalue a, Eq. (5.78) implies only that
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OB .n/
a D

NX

mD1
bnm 

.m/
a : (5.80)

However, as in the Schmidt orthogonalization procedure, it is always possible to

find linear combinations of the degenerate eigenfunctions that are simultaneous

eigenfunctions of OB.

Thus if two Hermitian operators commute and one of these operators has

nondegenerate eigenvalues, then its eigenfunctions are automatically eigenfunctions

of the other operator. On the other hand, if two Hermitian operators commute and

one of these operators has degenerate eigenvalues, then a degenerate eigenfunction

of one of the operators is not automatically an eigenfunction of the other operator,

but some linear combinations of the degenerate eigenfunctions can be chosen that is

an eigenfunction of the other operator. Examples are given later in this chapter.

The central problem in quantum mechanics is to solve the time-independent

Schrödinger equation. As long as there is no energy degeneracy, for discrete energy

eigenvalues, you can always label the energy by a quantum number n with the

lowest value of n corresponding to the lowest energy, the second value to the next

highest energy, etc. For example, if V.x/ D ax4 C bx2 C cx with a > 0, it is not

possible to find analytic expressions for the eigenenergies and eigenfunctions, but

you can still label the lowest energy state and eigenfunction by n D 0, the next by

n D 1, etc. When there is energy degeneracy, however, we need additional labels

to distinguish states having the same energy; that is we need additional quantum

numbers. Where can we get these quantum numbers? There may be a number of

ways to specify the quantum numbers, but the most systematic way is to identify

additional operators that commute with the Hamiltonian. You can then label the

states by the eigenvalues of the simultaneous eigenfunctions of the commuting

operators. It turns out, whenever there is energy degeneracy, it is usually possible

to identify an operator that commutes with the Hamiltonian that is in some way

associated with the degeneracy.

We have already seen one example of energy degeneracy and will see many more

throughout this book. For the free particle in one dimension, the eigenfunctions are

two-fold degenerate for each positive energy,  E.x/ D e˙i
p
2mEx=„. That is, given

the energy, you cannot uniquely label the eigenfunction. However the momentum

and energy operators commute. Moreover, the momentum state eigenfunctions,

given by eipxx=„, are nondegenerate (each momentum eigenfunction is associated

with a different momentum). As a consequence the momentum state eigenfunctions

must be simultaneous eigenfunctions of the energy operator. If we label the

eigenfunctions by px alone, we completely specify the energy eigenfunctions as

well. In other words, the eigenfunctions

 px
.x/ D 1p

2�„
eipxx=„ (5.81)
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are simultaneous eigenfunctions of the energy operator if E D p2x=2m. Similarly in

three dimensions, where there is infinite degeneracy for each positive energy,

 p.r/ D
1

.2�„/3=2
eip�r=„ (5.82)

uniquely labels the eigenfunctions, provided E D p2=2m. We shall see later that the

fact that the momentum operator commutes with the Hamiltonian is linked to the

translational symmetry of the Hamiltonian.

5.1.6.1 Commutator Algebra Relationships

It is very easy to prove the following relationships for commutators:

h
OA OB; OC

i
D OA

h
OB; OC

i
C
h
OA; OC

i
OBI (5.83)

h
OA; OB OC

i
D OB

h
OA; OC

i
C
h
OA; OB

i
OC: (5.84)

Also, if OC D
h
OA; OB

i
; and if

h
OA; OC

i
D 0 and

h
OB; OC

i
D 0, then

e
OACOB D e

OAe
OBe� OC=2: (5.85)

Another useful identity is

e
OA OBe�OA D OBC

h
OA; OB

i
C 1

2Š

h
OA;
h
OA; OB

ii
C � � � (5.86)

which is known as the Baker-Campbell-Hausdorff theorem. Moreover, if OA and OB are

Hermitian operators, then OA OBC OB OA and i
h
OA; OB

i
are Hermitian, but OA OB is Hermitian

only if
h
OA; OB

i
D 0 (see problems).

The basic commutation relations for coordinate and momentum space operators,

obtained in a manner similar to the one used to arrive at Eq. (5.72) are

h
Or; OB. Op/

i
D i„r pB.p/I (5.87a)

h
Op; OC.Or/

i
D �i„r rC.r/I (5.87b)

h
Or; OC.Or/

i
D 0I (5.87c)

h
Op; OB. Op/

i
D 0: (5.87d)
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For commutators involving higher powers of r and p, such as r2 and p2, one usually

uses a combination of Eqs. (5.83), (5.84), and (5.87), rather than calculate the effect

of the commutator on functions as I did in deriving Eq. (5.72). For example,

�
Ox; Op2x

�
D ŒOx; Opx Opx� D Opx ŒOx; Opx�C ŒOx; Opx� Opx D 2i„Opx: (5.88)

5.1.7 Uncertainty Principle

Many people have heard about Heisenberg’s Uncertainty Relation, even if they do

not understand it. Actually, it is possible to derive an uncertainty relation for the

product �A2�B2 for any two non-commuting Hermitian operators OA and OB. To do

so I start from the inequality

Z
dr
h�
OAC i� OB

�
 .r/

i� � OAC i� OB
�
 .r/ � 0; (5.89)

where � is a constant taken to be real (a somewhat more general uncertainty relation

can be derived if � is taken to be complex). Without loss of generality, I take
D
OA
E
D 0

and
D
OB
E
D 0. If this were not the case, I would replace OA by OA�

D
OA
E

and OB by OB�
D
OB
E

in Eq. (5.89). Since OA and OB are Hermitian, Eq. (5.89) can be rewritten as

Z
dr Œ .r/��

�
OA � i� OB

� �
OAC i� OB

�
 .r/

D
Z

dr Œ .r/��
�
OA2 C i� OA OB � i� OB OAC �2 OB2

�
 .r/ � 0; (5.90)

or

�2�B2 C i�
D
OC
E
C�A2 � 0; (5.91)

where

OC D
h
OA; OB

i
: (5.92)

The minimum occurs for

� D
�i
D
OC
E

2�B2
(5.93)
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and, when this result is substituted into Eq. (5.91), I find

�A2�B2 � �

D
OC
E2

4
; (5.94)

which implies that the expectation value of the commutator of two Hermitian

operators either vanishes or is purely imaginary (this is not surprising since one

prescription for quantization is to obtain the commutator as i„ times the Poisson

bracket of the classical variables associated with the operators). For OA D Ox and
OB D Opx, OC D i„ and

�x2�p2x �
„2
4
; (5.95)

which is known as the Heisenberg Uncertainty Relation.

From Eq. (5.89), it follows that the equality in Eq. (5.94) holds only if

�
OAC i� OB

�
 .x/ D 0: (5.96)

For OA D Ox and OB D Opx, � D „=
�
2�p2x

�
[see Eq. (5.93)] and the minimum

uncertainty wave function  min .x/ must satisfy the differential equation

.OxC i�Opx/  min .x/ D
�

xC i

� „
2�p2x

� „
i

d

dx

�
 min .x/

D „2
2�p2x

d min .x/

dx
C x min .x/ D 0: (5.97)

The solution of this equation is

 min .x/ D N exp

�
�x2�p2x

„2
�
D N exp

�
� x2

4�x2

�
; (5.98)

where N is a normalization constant. The minimum uncertainty wave packet is a

Gaussian and only a Gaussian! For example, we will see that the lowest energy state

wave function for a particle confined to an infinite potential well is not a Gaussian—

consequently �x2�p2x must be greater than „2=4 for this wave function.

The uncertainty principle is often illustrated by examples in which you show

that by measuring the position of a particle to a given precision, you necessarily

introduce an uncertainty in the momentum that satisfies the uncertainty principle.

You will note that my derivation has nothing to do with measurement, per se. In

effect, the position-momentum uncertainty relation is related directly to the fact that

the corresponding operators do not commute. Equivalently, it is linked to the fact

that matter is described by a wave theory in which the wave functions in coordinate
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and momentum space are Fourier transforms of one another. Any measurements

must be consistent with the theory, but the measurements themselves are not directly

related to the uncertainty principle.

5.1.8 Examples of Operators

In most of the examples below, I consider one-dimensional motion only, with

p standing for the x component of the momentum. Moreover, I work in the

coordinate representation only. The generalization to two and three dimensions is

often obvious. The Hamiltonian is assumed to be of the form

OH D Op
2

2m
C OV: (5.99)

5.1.8.1 Position Operator Ox

The position operator is not often discussed in textbooks. I have assumed that, in

coordinate space,

Ox .x0/ D x0 .x0/: (5.100)

Clearly Ox is Hermitian since

Z
dx �.x/ ŒOx .x/� D

Z
dx �.x/x .x/

D
Z

dx Œx .x/��  .x/ D
Z

dx ŒOx .x/��  .x/ (5.101)

for real x.

The operator Ox does not commute with the momentum operator Op, nor with the

Hamiltonian operator OH. As a consequence, it is impossible to find simultaneous

eigenfunctions of Ox and Op and it is also impossible to find simultaneous eigenfunc-

tions of Ox and OH. But what are the eigenfunctions of Ox? The eigenvalue equation in

coordinate space is

Ox a.x/ D a a.x/; (5.102)

where the eigenvalue is designated by a to avoid confusion. From Eq. (5.100), we

know that

Ox a.x/ D x a.x/ (5.103)
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which, together with Eq. (5.102), implies that

x a.x/ D a a.x/ (5.104)

for all x. The only way this can be true is if

 a.x/ D ı .x � a/ : (5.105)

This has the proper normalization for continuous eigenvalues,

Z 1

�1
dx �

a .x/ a0.x/ D
Z 1

�1
dx ı .x � a/ ı

�
x � a0� D ı

�
a � a0� : (5.106)

Thus the eigenfunctions of the position operator are Dirac delta functions.

5.1.8.2 Momentum Operator Op

The momentum operator in coordinate space is

Op D „
i

d

dx
: (5.107)

This operator is Hermitian since

Z 1

�1
dx �.x/Op .x/ D

Z 1

�1
dx �.x/

„
i

d

dx
 .x/

D „
i

�
j .x/j2

ˇ̌
ˇ
1

�1
�
Z 1

�1
dx

d �.x/

dx
 .x/

�

D �„
i

Z 1

�1
dx

d �.x/

dx
 .x/ D

Z 1

�1
dx ŒOp .x/��  .x/; (5.108)

where it is assumed that the boundary conditions are such that the endpoint term,

j .x/j2
ˇ̌
ˇ
1

�1
, vanishes. This is true for any localized wave function. It would also be

true for periodic boundary conditions in which  .L=2/ D  .�L=2/. This example

shows how the Hermiticity of an operator depends on boundary conditions.

The momentum operator does not commute with the Hamiltonian, except in the

case where V.x/ is a constant C, independent of x; which can be taken equal to zero

without loss of generality (all energies in the problem are simply shifted by C). Thus,

it is only for the free particle that it is possible to find simultaneous eigenfunctions

of Op and OH, which are

 p;E.x/ D
1p
2�„

eipx=„; (5.109)
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with E D p2=2m: In this equation, p can be positive or negative. The two

independent, degenerate energy eigenfunctions are

 E.x/ D
1p
2�„

e˙i
p
2mEx=„ (5.110)

with E > 0.2

5.1.8.3 Parity Operator OP

An important operator in quantum mechanics is the parity operator that simply

inverts the signs of coordinates. In other words

OP .x/ D  .�x/: (5.111)

You can prove easily that OP is a Hermitian operator. Therefore, it has real

eigenvalues. To find these eigenvalues, I note that

OP2 .x/ D OP .�x/ D  .x/; (5.112)

implying that the eigenvalue of OP2 is one, which can be realized only if the (real)

eigenvalues of OP are˙1. That is, there are only two eigenvalues. For the eigenvalue

C1;

OP C.x/ D  C.�x/ D  C.x/; (5.113)

which implies that any even function is an eigenfunction of OP having eigenvalueC1.

Similarly,

OP �.x/ D  �.�x/ D � �.x/I (5.114)

any odd function is an eigenfunction of OP having eigenvalue �1: For example,

cos .ax/ has even parity and is an eigenfunction of OP having eigenvalueC1, sin .ax/

has odd parity and is an eigenfunction of OP having eigenvalue �1, while exp .iax/

does not have well-defined parity and is not an eigenfunction of the parity operator.

The eigenfunctions of the parity operator are infinitely degenerate; any even function

has eigenvalue C1 and any odd function has eigenvalue �1.

Since OP does not commute with Ox and does not commute with Op D „
i

d
dx
; it is

not possible to find simultaneous eigenfunctions of OP and Ox nor of OP and Op: On

2Note that, in the momentum representation, the eigenfunctions of Op are ˆq.p/ D ı.p � q/ and the

eigenfunctions of Ox are ˆx.p/ D e�ipx=„=
p
2�„.
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the other hand,
h
OP; Op2

i
D 0 and, as a consequence

h
OP; OH

i
D 0 if V.x/ is an even

function of x. This is an important result, that will become even more important

when generalized to problems in three dimensions. For any Hamiltonian that is

invariant under an inversion of coordinates, the eigenfunctions can be written as

simultaneous eigenfunctions of the energy and the parity operator. That is, the

eigenfunctions can be written as either even or odd functions of the coordinates. In

an introductory quantum mechanics course, students often forget this very important

result, nor do they appreciate the importance of the parity operator.

You might argue that the eigenfunctions for the free particle given in Eq. (5.109)

are not eigenfunctions of the parity operator and you would be right. Those

eigenfunctions are simultaneous eigenfunctions of the momentum and energy

operators and cannot be simultaneous eigenfunctions of the parity operator since

it is not possible to find simultaneous eigenfunctions of OP and Op. On the other hand,

we could have equally well taken our (unnormalized) energy eigenfunctions as

 p;E.x/ D
�

cos .px=„/
sin .px=„/ , (5.115)

which are simultaneous eigenfunctions of the parity operator, but no longer

eigenfunctions of the momentum operator. This is an example where there is a two-

fold energy degeneracy; for each value of the energy (other than zero), there are

two independent eigenfunctions. These eigenfunctions can be taken as simultaneous

eigenfunctions of the momentum operator or the parity operator, but not both (since

the momentum and parity operators do not commute). With either choice, however,

we have a unique way to label all the eigenfunctions. Recall that, if operators OA
and OB commute, and if the eigenfunctions of operator OA are degenerate, they are not

automatically eigenfunctions of operator OB, but that some linear combination of the

degenerate eigenfunctions of operator OA can be chosen to be an eigenfunction of

operator OB

5.2 Back to the Schrödinger Equation

5.2.1 How to Solve the Time-Dependent Schrödinger Equation

With our knowledge of the properties of Hermitian operators, it is a simple matter

to construct a solution of the time-dependent Schrödinger equation if we know the

eigenfunctions and eigenvalues of the Hamiltonian, as well as the initial condition

for the wave function. The general solution of the time-dependent Schrödinger

equation is

 .r; t/ D
X

E

aEe�iEt=„ E.r/: (5.116)
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It is important to recognize that the summation index E appearing in this equation

is a dummy index; any other letter works equally well. As a good general practice,

when you have a product of two summations such as

 
X

E

aEe�iEt=„ E.r/

! 
X

E

aEe�iEt=„ E.r/

!�

;

you should use different summation indices to avoid getting into trouble. That is,

write

 
X

E

aEe�iEt=„ E.r/

! 
X

E

aEe�iEt=„ E.r/

!�

D
 
X

E

aEe�iEt=„ E.r/

! 
X

E0

aE0 e�iE0t=„ E0.r/

!�

D
X

E;E0

aEa�
E0 e

�i.E�E0/t=„ E.r/ 
�
E0.r/: (5.117)

If you use the same summation index, you cannot obtain the correct form in the

double summation.

I assume that the initial condition is

 .r; 0/ D  0.r/; (5.118)

allowing me to solve for the expansion coefficients aE by taking the inner product

of Eq. (5.116) with  E0 , namely

. E0 ;  0/ D
X

E

aE . E0 ;  E/ D
X

E

aEıE;E0 D aE0 : (5.119)

Therefore, aE D . E;  0/ and

 .r; t/ D
X

E

. E;  0/ e�iEt=„ E.r/: (5.120)

For continuous variables in k-space for a particle having mass m moving in a

potential for which the eigenfunctions are denoted by  k.r/ and the eigenenergies

by Ek, the corresponding equation is

 .r; t/ D
Z

dk . k;  0/ e�iEk t=„ k.r/; (5.121)
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where

. k;  0/ D a.k/ D
Z

dr 0.r/ 
�
k.r/: (5.122)

Although I concentrate on solutions of the time-independent Schrödinger equa-

tion in the next several chapters, you should not forget Eqs. (5.120) and (5.121).

They are central to an understanding of quantum dynamics. In effect, there is a

three-step program for solving any problem in quantum mechanics, given an initial

condition for the wave function. The first step, and the most difficult, is to solve the

time-independent Schrödinger equation for the eigenfunctions and eigenenergies.

The second step is to obtain the expansion coefficients, aE or a.k/ in terms of the

initial wave function and the final step is to use Eq. (5.120) or (5.121) to obtain the

time-dependent wave function. Often one is content just to find the eigenenergies

and eigenfunctions.

Equation (5.116) can be written as

 .r; t/ D
X

E

aE.t/ E.r/; (5.123)

where

aE.t/ D aEe�iEt=„ (5.124)

is the probability amplitude for the particle to be in state E at time t. Although the

probability to be in a specific state

jaE.t/j2 D
ˇ̌
ˇaEe�iEt=„

ˇ̌
ˇ
2

D jaEj2 ; (5.125)

is constant in time, the probability density

j .r; t/j2 D
ˇ̌
ˇ̌
ˇ
X

E

aEe�iEt=„ E.r/

ˇ̌
ˇ̌
ˇ

2

D
X

E;E0

aEa�
E0e

�i.E�E0/t=„ E.r/ 
�
E0.r/ (5.126)

is a function of time if any two state amplitudes corresponding to nondegenerate

eigenenergies are non-vanishing. Equation (5.126) contains all the dynamics.

One final point to engrave in your memory bank. Each potential energy function

gives rise to its own set of eigenfunctions and eigenenergies. Some (or even all) of

the eigenenergies may be the same for different potentials, but the eigenfunctions

will always differ. For example, for the step potential to be considered in the next

chapter, the eigenenergies take on all non-negative values, just as for a free particle,

but the eigenfunctions differ.
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5.2.2 Quantum-Mechanical Probability Current Density

The total probability is conserved for a single-particle quantum system. That is,

if I consider a finite volume, the time rate of change of the probability to find the

particle in the volume must equal the rate at which probability flows into the volume.

In other words,

@

@t

Z

V

j .r; t/j2 dr D �
I

S

J .r; t/ � nda; (5.127)

where S is the surface enclosing the volume V and n is a unit vector pointing

normally outwards from the volume. The quantity J is called the probability current

density. By using the divergence theorem, I find

Z

V

�
@

@t
� .r; t/C r � J .r; t/

�
dr D 0; (5.128)

where

� .r; t/ D j .r; t/j2 (5.129)

is the probability density. Since Eq. (5.128) must hold for an arbitrary volume, it can

be satisfied only if

@

@t
� .r; t/C r � J .r; t/ D 0; (5.130)

an equation known as the equation of continuity.

To get an expression for J, I use Schrödinger’s equation with

OH .r; t/ D „
2

2m
r2 .r; t/C V .r/  .r; t/

to write

@

@t
� .r; t/ D @

@t
j .r; t/j2 D @

@t

�
 � .r; t/  .r; t/

�

D � 1
i„
h
OH .r; t/

i�
 .r; t/C

�
1

i„

�
 � .r; t/

h
OH .r; t/

i

D „
2mi

 .r; t/r2 � .r; t/ � „
2mi„ 

� .r; t/r2 .r; t/

D „
2mi

r �
�
 .r; t/r � .r; t/ �  � .r; t/r .r; t/

�
: (5.131)
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By comparing this equation with Eq. (5.130), I obtain the probability current density

J .r; t/ D i„
2m

�
 .r; t/r � .r; t/ �  � .r; t/r .r; t/

�
: (5.132)

For a plane wave,

 .r; t/ D 1

.2�„/3=2 eip�r=„e�ip2t=.2m/; (5.133)

J .r; t/ D 1

.2�„/3
i„
2m

�
� ip

„ �
ip

„

�

D 1

.2�„/3
p

m
D j .r; t/j2 p

m
D � .r; t/ v; (5.134)

where v D p=m. The probability current has the general form of a spatial density

times a velocity, as expected. For real wave functions, the probability current density

vanishes.

In general, it is easy to show that, for an arbitrary  .r; t/,

h Op.t/i =m D
Z

dr J .r; t/ : (5.135)

Equation (5.135) follows from the fact that Op is Hermitian,

h Op.t/i D „
i

Z
dr � .r; t/r .r; t/

D hOp.t/i� D �„
i

Z
dr .r; t/r � .r; t/ ; (5.136)

since this equation implies that

h Op.t/i
m
D i„
2m

Z
dr
�
 .r; t/r � .r; t/ �  � .r; t/r .r; t/

�
D
Z

dr J .r; t/ .

(5.137)

In one dimension, the equation of continuity is

@

@t
� .x; t/C @Jx .x; t/

@x
D @

@t
j .x; t/j2 C @Jx .x; t/

@x
D 0; (5.138)

where

Jx .x; t/ D
i„
2m

�
 .x; t/

@ � .x; t/

@x
�  � .x; t/

@ .x; t/

@x

�
: (5.139)
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The probability current must be conserved in problems where there is no loss. I will

use the probability current density to get reflection and transmission coefficients in

problems involving wells or barriers.

5.2.3 Operator Dynamics

The operators I consider are time-independent, but the expectation value of an

operator for a quantum system characterized by the wave function  .r; t/ is time-

dependent, in general. To see this I write

i„
d
D
OA
E

dt
D i„ d

dt

Z
dr �.r; t/ OA .r; t/

D i„
Z

dr
@ �.r; t/

@t
OA .r; t/C i„

Z
dr �.r; t/ OA@ .r; t/

@t

D �
Z

dr
h
OH .r; t/

i� OA .r; t/C
Z

dr �.r; t/ OA OH .r; t/

D �
Z

dr �.r; t/ OH OA .r; t/C
Z

dr �.r; t/ OA OH .r; t/I

i„
d
D
OA
E

dt
D
Dh
OA; OH

iE
; (5.140)

where the fact that OH is Hermitian has been used. The expectation value of any

operator that commutes with the Hamiltonian is constant in time. Another way of

saying this is that the dynamic variable associated with any Hermitian operator

that commutes with the Hamiltonian is a constant of the motion. For the free

particle, momentum is conserved, consistent with the fact that the momentum

operator commutes with the Hamiltonian. In problems with spherically symmetric

potentials, the angular momentum is conserved classically, implying that the angular

momentum operator commutes with the Hamiltonian. If you know that a classical

variable is a constant of the motion for a given potential, then the eigenvalues of

the associated quantum operator can sometimes be used to distinguish between

degenerate eigenfunctions of the Hamiltonian.

Although Eq. (5.140) appears to provide a simple prescription for obtaining the

expectation value of an operator, it is deceiving. In calculating the commutatorh
OA; OH

i
; one normally introduces new operators. As such one is often led to a never-

ending set of coupled equations for the expectation values of different operators. It is

only for potentials such as those for the free particle and simple harmonic oscillator

that Eq. (5.140) can be used to obtain a closed set of equations for the expectation

values of the position and momentum operators.
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An alternative method for obtaining
D
OA
E

is to calculate the expectation value of

any operator directly from the wave function. For example, if

 .r; t/ D
X

E

aEe�iEt=„ E.r/; (5.141)

then

D
OA
E
D
Z

dr �.r; t/ OA .r; t/

D
X

E;E0

aEa�
E0e

�i.E�E0/t=„
Z

dr �
E0.r/ OA E.r/: (5.142)

In general there is time dependence in
D
OA
E

resulting from the exponential factors.

For operators that commute with OH the time dependence must disappear since
D
OA
E

is constant in this limit.

Since OH commutes with itself, the average energy is time-independent. Explicitly,

D
OH
E
D
X

E;E0

aEa�
E0e

�i.E�E0/t=„
Z

dr �
E0.r/E E.r/

D
X

E;E0

aEa�
E0e

�i.E�E0/t=„EıE;E0

D
X

E

jaEj2 E; (5.143)

simply a weighted sum of the energy E with the probability to be in the state

corresponding to energy E. In fact, for any operator OG.E/ that correspond to a

classical dynamic variable G.E/, it is not difficult to prove that

D
OG.E/

E
D
X

E

jaEj2 G.E/: (5.144)

5.2.4 Sum of Two Independent Quantum Systems

Finally I consider two independent quantum systems characterized by Hamiltonians
OH1 and OH2; where

OH1 E1
D E1 E1

;

OH2 E2
D E2 E2

; (5.145)
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and the total Hamiltonian is

OH D OH1 C OH2: (5.146)

Since the Hamiltonians correspond to independent quantum systems, they must

satisfy
h
OH1; OH2

i
D 0; consequently, the operators can possess simultaneous

eigenfunctions. I can guess a solution in which the eigenfunctions for the composite

system are simply the product of the eigenfunctions of the individual systems, while

the eigenenergies are the sums of the individual energies. This guess works since

OH E1
 E2
D
�
OH1 C OH2

�
 E1

 E2
D OH1 E1

 E2
C OH2 E1

 E2

D E1 E1
 E2
C  E1

OH2 E2
D E1 E1

 E2
C E2 E1

 E2

D .E1 C E2/  E1
 E2

: (5.147)

Although this result is extremely simple, students often have trouble accepting or

remembering it. For two independent systems, the eigenfunctions are products of the

individual system eigenfunctions and the eigenenergies are the sum of the individual

system eigenenergies.

5.3 Measurements in Quantum Mechanics: “Collapse”

of the Wave Function

It has already been stated that a measurement on a single quantum system of a

dynamic variable yields one and only one eigenvalue of the Hermitian operator

associated with that dynamic variable. The wave function can be expanded in terms

of the eigenfunctions of any Hermitian operator, provided the appropriate boundary

conditions are met. For discrete eigenvalues, this implies that

 .r; t/ D
X

n

ban
.t/ an

.r/ (5.148)

where an is an eigenvalue of some operator OA and  an
.r/ is the corresponding

eigenfunction. If this operator corresponds to a physical observable, then jban
.t/j2

corresponds to the probability that a measurement on a single quantum system

at time t of the classical variable associated with OA will yield the value an. For

continuous eigenvalues a, this equation is replaced by

 .r; t/ D
Z

da b.a; t/ a.r/; (5.149)
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where jb.a; t/j2 da is the probability that a measurement with on a single quantum

system at time t of the classical variable associated with OA will yield a value between

a and aC da.

Often it is stated in quantum mechanics texts that the wave function collapses into

the eigenfunction associated with the eigenvalue that was measured. I have never

been a big fan of this terminology. I have already noted that any direct measurement

of a physical variable associated with a quantum system generally modifies the

system, implying that the state of the system following the measurement is no longer

the eigenfunction associated with that eigenvalue.

For example, in the two-slit experiment involving a single particle, the wave

function before detection on a screen is spread out over an interference pattern

associated with two-slit interference. One detector on the screen fires, localizing

the particle, but the state of the particle is altered by the measurement. You can say

that the measurement has collapsed the wave function, but I do not think this is a

particularly useful image. Collapse tends to imply a physical collapse of the wave

function, but quantum mechanics say nothing about the collapse process itself. As

long as you deal with the probabilistic predictions of quantum mechanics you will

not run into any problems. However if you try to associate a physical mechanism

with the collapse process, you will be led down a path that seems to lead nowhere.

Although direct measurement of a physical variable that leaves a quantum system

in an eigenfunction of the Hermitian operator associated with that variable is

not possible, indirect measurements of the variable can be made that leave the

quantum state of the system unchanged. Such measurements fall into two general

classes: quantum nondemolition measurements on a single quantum system or

measurements on a correlated or entangled state of a two-particle quantum system.

In a quantum nondemolition (QND) experiment,3 one measures one of two non-

commuting operators associated with a quantum system without introducing any

noise (modification) of the dynamics associated with this operator. All the noise

that is introduced goes into the dynamics associated with the other operator, but

that operator is assumed not to appear in the Hamiltonian. In this back-evading

noise scheme, the operator of interest can be measured with absolute accuracy,

at least in principle. Such schemes were proposed as a means for measuring the

small displacements produced on mechanical systems by gravitational waves. Note

that such a scheme does not work if we measure the position of a free particle to

arbitrary accuracy. Such a measurement would introduce an uncertainty in the

momentum that acts back on the particle to modify its subsequent position. On

the other hand, we could, in principle, measure the momentum of a free particle

to arbitrary accuracy. Although the measurement would affect the position of the

particle, the position does not appear in the Hamiltonian. To measure the momentum

we would have to couple the particle of interest to another quantum system and make

a measurement of the second quantum system that determines the momentum of the

3See, for example, M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press,

Cambridge, U.K., 1997), Chapter 19.
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system of interest, using a method similar to that described in the next paragraph. To

make QND work, the probe must provide a measure of the quantum variable being

probed, without affecting its value. For example, when atoms are sent through a

microwave cavity, they can acquire a phase shift that depends on the microwave

intensity in the cavity; measuring this phase shift is an indirect way of measuring

the microwave intensity, without altering its value.4

In an entangled state measurement, one measures properties of one particle or

system and infers the properties of the other particle or system. The most famous

example of this type of measurement is related to the so-called Einstein-Podolsky-

Rosen (EPR) paradox. We shall see that a particle such as an electron has an intrinsic

angular momentum and that a measure of the z-component of this intrinsic angular

momentum can be either „=2 (spin ") or �„=2 (spin #). The electron is said to have

a spin of 1=2. If a spinless particle decays into two identical spin 1/2 particles, then

the quantum state of the combined system is

 1;2 D
1p
2

�
 1" 2# �  2" 1#

�
; (5.150)

since we don’t know which particle is in either of the spin states. This is an

entangled wave function since it cannot be written as the product of individual wave

functions for each particle. However, if we measure the spin of one of the particles

as “up” along some direction we are guaranteed that the other particle is in its spin

“down” state along the same direction. In several quantum computation schemes

one entangles the internal state of an atom with the polarization of the radiation

emitted from the atom. In this way, a measurement of the polarization of the emitted

radiation can be correlated with a given superposition of the internal states of the

atom.

5.4 Summary

In this chapter, the basic postulates of quantum mechanics were stated. A detailed

catalogue was constructed giving various properties of Hermitian operators and

their eigenfunctions and eigenvalues. The central problem in quantum mechanics is

reduced to finding the eigenfunctions and eigenvalues of the Hamiltonian operator,

from which all properties of quantum systems can be derived.

4Experiments of this type were pioneered in the group of Serge Haroche, who was awarded the

Nobel prize in recognition of these and other experiments.
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5.5 Appendix: From Discrete to Continuous Eigenvalues

One way of going over to continuous from discrete eigenvalues is to use periodic

boundary conditions. In one dimension a model to accomplish this goal involves a

mapping of the one-dimensional problem onto a circular path having length L: The

free-particle wave functions in this case are of the form

 E.x/ D
p
1=Leikx; (5.151)

where E D „2k2=2m. The boundary condition that must be imposed is  E.0/ D
 E.L/. As a consequence of this requirement, it is necessary that

p
1=Le0 D

p
1=LeiknLI

eiknL D 1I

kn D
2�n

L
; (5.152)

where n is an integer, positive, negative, or zero. The eigenfunctions are

 n.x/ D
p
1=Le2� inx=L (5.153)

and they form an orthonormal basis since

Z L

0

dx �
n .x/ m.x/ D

1

L

Z L

0

dxe2� i.m�n/x=L D ım;n: (5.154)

An arbitrary wave function can be written as

 .x; t/ D
X

n

akn
.t/ kn

.x/; (5.155)

where the kns take on discrete values. To take the limit that L ! 1 you must do

two things. First, the sum over n must be converted to an integral over a continuous

variable k. Second, akn
.t/ must be replaced by a continuous amplitude a.k; t/ that

has units of 1=
p

k: To go over to a continuum, I set

 .x; t/ D
X

n

akn
.t/ kn

.x/

D
p
1=L

X

kn

akn
.t/eiknx

D
p
1=L

1

�k

X

kn

akn
.t/eiknx�kn: (5.156)
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where �kn D 2� Œ.nC 1 � n/� =L D 2�=L D �k. To achieve the final result I now

make the replacements

X

kn

�kn !
L

2�

Z 1

�1
dk (5.157)

and

akn
.t/!

p
2�=La.k; t/: (5.158)

to arrive at

 .x; t/ D
r

1

2�

Z 1

�1
dk a.k; t/eikx: (5.159)

This method can be generalized to three dimensions by adopting periodic

boundary conditions in all three directions, namely

.kx/n D
2�nx

L
I
�
ky

�
n
D 2�ny

L
.kz/n D

2�nz

L
: (5.160)

The sum over n is converted to an integral over k using the prescription

X

nx;ny;nz

!
�

L

2�

�3 Z
dk (5.161)

and Eq. (5.158) is replaced by

a
h
.kx/nx

;
�
ky

�
ny
; .kz/nz

I t
i
!
�
2�

L

�3=2
a.k; t/: (5.162)

5.6 Problems

Note: You can always assume that the eigenfunctions have been chosen to be

orthonormal unless specifically told otherwise.

1. Why are Hermitian operators important in quantum mechanics? What is the

possible outcome of a single measurement on a single quantum system of the

physical observable associated with a Hermitian operator? Why does the energy

operator play such an important role in quantum mechanics? If the eigenvalues of

the Hamiltonian are nondegenerate, what do you know about the eigenfunctions

of that Hamiltonian? If the eigenvalues of the Hamiltonian are degenerate, are the

eigenfunctions of that Hamiltonian necessarily orthogonal? Explain.
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2. Suppose a Hermitian operator OA has eigenfunctions  an
.r/ and eigenvalues an.

At a given time, the (normalized) state of a single quantum system is equal to

 .r/ D
X

n

bn an
.r/ :

Prove that

D
OAm
E
D
X

n

.an/
m jbnj2 :

If

 .r/ D
X

E

bE E .r/ ;

where the  E .r/ are (normalized) eigenfunctions of the Hamiltonian, derive an

expression the variance of the energy (assume that  .r/ is normalized) in terms of

the bE’s and the energy eigenvalues.

3. Consider a Hermitian operator OA having eigenfunctions  an
.r/ and eigenval-

ues an. At a given time, the state of a single quantum system is equal to

 .r/ D N
�
 a1

.r/C 2 a2
.r/C 3 a3

.r/
�

with a1 D 1, a2 D 3, a3 D 5 in some appropriate units.

(a) Find N such that  .r/ is normalized.

(b) For this state, what are the only possible values of the dynamic variable

associated with the operator OA that could be obtained in a single measurement‹

(c) Find
D
OA
E

in this state.

(d) Find the variance of OA in this state.

[Hint: This is an easy problem and doesn’t require any complicated expressions.

Use the results of Problem 5.2.]

4. Use the fact that

hOxi D
Z
 � .r;t/ Ox .r;t/ dr D

Z
ˆ� .p;t/ Ox� .p;t/ dp

to prove that

Ox D i„ @
@px

when operating on functions of momentum.
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5. (a) Prove

h
OA OB; OC

i
D OA

h
OB; OC

i
C
h
OA; OC

i
OB

and
h
OA; OB OC

i
D OB

h
OA; OC

i
C
h
OA; OB

i
OC:

(b) Prove that if OA and OB are Hermitian, then OA OBC OB OA and i
h
OA; OB

i
are Hermitian,

but OA OB is Hermitian only if
h
OA; OB

i
D 0.

6. Evaluate ŒOpx;V.x/�,
�
Op2x ; x

�
; and

h
Opx;

Op2x
2m
C kx2

2

i
. If Opx does not commute with

the Hamiltonian, how do you know that eipx=„ is not an eigenfunction of the

Hamiltonian?

7. Show that, to second order in the operators,

e
OACOB D e

OAe
OBe� OC=2

where OC D
h
OA; OB

i
. Note that this equation is true to higher order only if both OA and

OB commute with OC. Also prove that to second order in the operator OA;

e
OA OBe�OA D OBC

h
OA; OB

i
C 1

2Š

h
OA;
h
OA; OB

ii
C � � �

8. (a) Prove by a counterexample that
h
OA; OB

i
D 0 and

h
OB; OC

i
D 0 does not imply

h
OA; OC

i
D 0.

(b) The projection operator OPa is defined by

OPa a0 D ıa;a0 a0

where a is an eigenvalue of the Hermitian operator OA: Prove that OPa is

Hermitian, that OP2a D OPa,
P

a
OPa D O1, and that OA OPa D a OPa.

9. Suppose you are given a Hamiltonian

OH D Op
2

2m
C OV;

having eigenfunctions  E.x/: At t D 0 the wave function can be written as

 .x; 0/ D
X

E

aE E.x/:



5.6 Problems 113

(a) Write the solution valid for any t > 0.

(b) Obtain an integral expression for hOpi and show that, in general, hOpi is a function

of time. Why is this so?

10. How do you know that eigenfunctions of the momentum operator must be

eigenfunctions of the free particle Hamiltonian? Why is it that eigenfunctions of

the free particle Hamiltonian are not necessarily eigenfunctions of the momentum

operator even though the two operators commute? For problems in one dimension,

why is the maximum energy degeneracy equal to 2?

11. Prove that Œ OP; Opx� ¤ 0, Œ OP; Op2x � D 0, and that Œ OP; OH� D 0 only if V.x/ D V.�x/,

where OH D Op2x
2m
C OV and OP is the parity operator. Under what condition are you

guaranteed that the energy eigenfunctions are either even or odd functions of x‹

12. Consider that we have two independent quantum Hamiltonians, OH1 and OH2 and

the total Hamiltonian is

OH D OH1 C OH2:

The eigenfunctions and eigenenergies of OH1 and OH2 are

OH1 E1n
.r1/ D E1n E1n

.r1/ I
OH2 E2m

.r2/ D E2m E2m
.r2/ :

Since the Hamiltonians correspond to independent quantum systems,

h
OH1; OH2

i
D 0

and the operators can possess simultaneous eigenfunctions. Prove that the eigen-

functions for the composite system are simply the product of the eigenfunctions

of the individual systems, while the eigenenergies are the sums of the individual

energies.

13. (a) Prove that the current density Jx.x/ vanishes at all points in space only if

 .x/ is purely real or purely imaginary.

(b) As a consequence show that hOpxi D 0 if Jx.x/ D 0.

(c) Prove that the converse is not true. In other words, there are wave functions such

as eigenfunctions of the parity operator for which hOpxi D 0, but for which Jx.x/

is not necessarily equal to zero.

14–15. For a particle of mass m having an initial normalized square integrable wave

function of the form

 .x; 0/ D f .x/eikx;
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where f .x/ is real, prove that

hOxOpC OpOxi D 2„k
Z 1

�1
dxf 2.x/x D 2„k hx.0/i :

Use this result to prove that, for such an initial wave function,

�x.t/2 D �x.0/2 C .�v/2 t2;

where �v D �p=m.

16. For a free particle wave packet, prove that

d
˝
Ox2.t/

˛

dt
D hOxOpC OpOxi =m;

where m is the mass of the particle. Specifically, for the free particle wave packet

whose wave function is given by Eq. (3.36) with k0 D 0, prove explicitly that

d
R1

�1 dx .x; t/� Ox2 .x; t/
dt

D 1

m

Z 1

�1
dx .x; t/� .OxOpC OpOx/  .x; t/

by evaluating both sides of the equation.



Chapter 6

Problems in One-Dimension: General
Considerations, Infinite Well Potential,

Piecewise Constant Potentials, and Delta
Function Potentials

The simplest solutions of the Schrödinger equation are those involving one-

dimensional problems. Of course, nature is three dimensional, but sometimes

problems can be reduced to an effective one-dimensional problem. For example,

if an optical field is incident normally on a dielectric slab, the problem is essentially

a one-dimensional problem. Even more important, however, is that many features

of quantum mechanics are illustrated using one-dimensional problems. In this

chapter, I consider some general features of solutions of the Schrödinger equation

in one dimension, discuss the infinite square well potential, look at other piecewise

constant potentials, and examine the one-dimensional Dirac delta function potential.

In the Appendix, I discuss periodic potentials and their relation to so-called Bloch

state wave functions. The harmonic oscillator potential in one dimension is analyzed

in Chap. 7.

6.1 General Considerations

Without specifying the exact form of the potential, I can characterize the types

of solutions that can exist in one dimension. That is, I can determine if there

is energy degeneracy, if bound states might exist, and if the eigenvalues are

continuous or discrete. For example, we know already that for a free particle in one-

dimension there is a two-fold energy degeneracy and that the energy eigenvalues are

continuous. The degeneracy can be understood as arising from the fact that, for the

same energy, a particle can be moving to the right or left. This can be viewed as a

left-right degeneracy. In the examples given below, I always set the zero of energy

such that the potential as jxj ! 1 is positive or zero. In one-dimensional problems

there can never be more than a two-fold degeneracy since the time-independent

Schrödinger equation is a second order ordinary differential equation.
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Fig. 6.1 Potential barriers

Motion in classical mechanics can be bounded or unbounded. Bounded, one-

dimensional motion in classical mechanics is restricted to a finite region of space,

while unbound motion can extend to either x D 1 and/or x D �1. Bound states

in quantum mechanics correspond to states that are, for the most part, localized to

finite regions of space. In other words, a necessary condition for a bound state in

quantum mechanics is that the eigenfunction associated with a bound state goes to

zero as jxj ! 1 (in three dimensions the eigenfunction must go to zero as r!1).

Unbound states in quantum mechanics correspond to states whose eigenfunctions

do not vanish for either x D 1 and/or x D �1. The eigenfunctions of the free

particle do not correspond to a bound state. I now examine the classical motion

and quantum-mechanical properties associated with several generic classes of one-

dimensional potentials.

6.1.1 Potentials in which V.x/ > 0 and V .˙1/ � 0

Potentials falling into this class are shown in Fig. 6.1. In both cases shown, there

are continuous eigenenergies E > 0 and a two-fold degeneracy for each energy,

since particles (waves) can be incident from the left or right. Were I to solve

the time-independent Schrödinger equation for potentials of this type, I would

find that the eigenenergies correspond to all positive energies. Classically, in case

(a), a particle having energy E1 incident from the left would be reflected by the

potential. Quantum-mechanically there is some probability that the particle tunnels

to the other side and is transmitted through the barrier. Tunneling is a wave-like

phenomenon. A classical particle having energy E2 incident from the left is always
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transmitted with no reflection, although its kinetic energy changes as it moves by the

potential barrier. Quantum-mechanically there is some probability that the particle

is reflected. For a potential that varies slowly over a de Broglie wavelength of

the particle, this reflection is very small, but for a rectangular barrier it can be

significant. As you shall see, the rectangular barrier case is analogous to one in

which light is reflected by a dielectric slab. In case (b), classically, a particle having

energy E1 can be bound if it is located in the potential well. Quantum-mechanically

there are no bound states, a particle prepared inside the well eventually tunnels

out. A classical particle having energy E1 incident from the left would always

be reflected. Quantum-mechanically there is some probability that the particle is

transmitted as a result of tunneling. A classical particle having energy E2 incident

from the left would always be transmitted with no reflection. Quantum-mechanically

there is some probability that the particle is reflected.

6.1.2 Potentials in which V.x/ > 0 and V .�1/ � 0 while

V .1/ � 1

For the potential of (Fig. 6.2) (a), a classical particle is reflected by the potential,

as is a quantum wave packet incident from the left. Since a wave packet cannot

be incident from the left, there is no degeneracy, although the eigenenergies are

continuous. In case (b) there are no bound states quantum-mechanically, although

there could be bound states classically for energy E1, if the particle is located in the

potential well.

Fig. 6.2 Reflecting potentials
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Fig. 6.3 Step potential

6.1.3 Potentials in which V.x/ > 0 and V .�1/ � 0 while

V .1/ D W > 0

In the case of a step potential (Fig. 6.3), a wave packet cannot be incident from

the right if E < W. Therefore, for E < W, the eigenenergies are continuous, but

there is no degeneracy. A wave packet incident from the left is totally reflected.

On the other hand, for E > W; there are continuous eigenenergies and a two-fold

degeneracy since wave packets can be incident from the left or right. Classically, a

particle incident from the left is reflected if E < W and transmitted with reduced

kinetic energy (with no reflection) if E > W. Quantum mechanically there can be

some reflection for a wave packet incident from the left having energy E > W.

6.1.4 Potentials in which V.x/ > 0 and V .˙1/ � 1

For the potentials of (Fig. 6.4), a wave packet can be incident neither from the right

nor the left. The wave function must vanish as jxj ! 1. In order to fit the waves in

the potential and satisfy this boundary condition, the energy must take on discrete

values. There is no degeneracy in this case, but there is an infinite number of discrete

energies possible. Classically, any energy greater than the minimum value of the

potential energy is allowed. A particle could be bound in one of the sub-wells in

case (b) for energy E1. Quantum-mechanically, there are no bound states that are

localized entirely in only one sub-well.

6.1.5 Potentials in which V.x/ < 0 and V .˙1/ � 0

In this case (Fig. 6.5) of a potential well, for E > 0, a wave packet can be incident

from the left or right. Therefore, for E > 0, the eigenenergies are continuous, and

there is a two-fold degeneracy. A wave packet incident from the left will be partially

reflected and partially transmitted. There can also be resonance phenomena, as with
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Fig. 6.4 Bound state potentials

Fig. 6.5 Potential well

reflection of light from thin dielectric films. Classically there is no reflection for

E > 0. For E < 0; quantum-mechanically there is no degeneracy and there is a finite

number of bound states. It can be proven that there is always at least one bound state,

regardless of the depth of the potential.1 This might seem a little surprising, but, for

low potential depths, the wave function extends significantly into the classically

1Somewhat more precise requirements that guarantee the existence of a bound state are V.�1/ D
V.1/ D V0 and

Z 1

�1

ŒV.x/� V0� dx < 0:

You are asked to prove this using the variational method in Problem 15.8.
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forbidden regions (regions where the kinetic energy would be negative) giving rise

to a large�x and a correspondingly small�p that is sufficiently small to prevent the

particle from being freed from the well. Classically a particle having energy E < 0

is bound in the well.

Other types of potentials are also possible, but you should get the idea by now.

In bound state one-dimensional problems, there is never energy degeneracy—the

actual number of bound states (if any) depends on the details of the potential. For

one-dimensional problems giving rise to continuous eigenenergies, there is two-fold

degeneracy if the energy is greater than the potential as jxj ! 1.

Values of x for which E > V.x/ correspond to the classically allowed region for

the particle and to one for which Schrödinger’s equation is

d2 

dx2
D �k2.x/ ; k.x/ D

r
2m ŒE � V.x/�

„2 > 0: (6.1)

If V is constant, the solutions are sines or cosines of kx. In general the solution

is oscillatory in such classically allowed regions. On the other hand, values of x

for which E < V.x/ corresponds to a classically forbidden region for the particle,

since its kinetic energy would have to be negative. When E < V.x/, Schrödinger’s

equation is

d2 

dx2
D �2.x/ ; �.x/ D

r
2m ŒV.x/ � E�

„2 > 0: (6.2)

For constant V , the solutions are real exponentials of ˙�x. In general the solution

is a smooth decaying function the deeper you penetrate into classically forbidden

regions.

6.2 Infinite Well Potential

An important model problem in one dimension is the infinite square well potential,

represented schematically in Fig. 6.6. The potential vanishes between the “walls” of

Fig. 6.6 Infinite square well potential
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the potential and is infinite otherwise. This is a wonderful problem since it illustrates

many of the features of bound state problems in quantum mechanics.

First, consider the classical problem. A particle having mass m is constrained

to move between the walls of the potential having width a. Between the walls, the

particle acts as a free particle having speed v, momentum p D ˙mvux (C if it

moves to the right and � if it moves to the left) and energy E D mv2=2. When

the particle hits the wall, it undergoes an elastic collision in which the sign of its

velocity (and momentum) is changed, but its energy remains unchanged. Since the

velocity changes direction on collisions with the walls, momentum is not conserved.

Also, since the velocity changes on collisions with the walls, the particle accelerates

during each collision. The particle can have any kinetic energy whatsoever (the

potential energy is zero inside the box), which remains constant during the particle’s

motion, and the position of the particle is determined precisely as it moves back and

forth between the two walls.

What are the classical (time-averaged) distribution functions for this particle?

The energy is fixed so the energy distribution is a Dirac delta function. For a given

energy E, however, two possible momenta are possible,

p D ˙
p
2mEux � pux; (6.3)

implying that the time-averaged momentum distribution in one dimension is

Wclass.p/ D
1

2

h
ı
�

p �
p
2mE

�
C ı

�
pC
p
2mE

�i
: (6.4)

On the other hand, on average, the particle is found with equal probability anywhere

in the well, so the time-averaged spatial distribution is

Pclass.x/ D
1

a
: (6.5)

Of course, the particle follows a classical trajectory given some initial condition; in

other words, the probability density for the particle is always a Dirac delta function

centered at the classical particle position. That is, the classical particle mass density

is given by

�.x; t/ D mı.x � x.t//; (6.6)

where x.t/ is the position of the particle at time t.

Now let’s turn to the quantum problem. The Hamiltonian for the particle when it

is between the walls is just the free particle Hamiltonian,

OH D Op
2

2m
D � „

2

2m

d2

dx2
: (6.7)
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As a consequence, the time-independent Schrödinger equation is

� „
2

2m

d2 E.x/

dx2
D E E.x/ (6.8)

in this region. I have some freedom in choosing the origin of the coordinate

system. If I take the well centered at x D 0; the potential is symmetric about the

origin and the Hamiltonian commutes with the parity operator. With this choice

the eigenfunctions must have definite parity, since there is no energy degeneracy

in this problem. On the other hand, if I take the well located between 0 and a,

the Hamiltonian does not commute with the parity operator and the eigenfunctions

do not possess definite parity (this is clear since the wave function must vanish

for x < 0 in this case). Of course the eigenenergies must be the same, since the

particle’s energy must be independent of the choice of origin. Let’s solve for the

eigenfunctions and eigenenergies using both coordinate systems.

6.2.1 Well Located Between �a=2 and a=2

In this case, the potential is given by

V.x/ D
�
0 jxj < a=2

1 jxj > a=2
: (6.9)

The fact that the potential is infinite at the wall leads us to the assumption that the

eigenfunctions must vanish for jxj � a=2; that is, the particle cannot penetrate into

the walls. The boundary condition

 E.˙a=2/ D 0 (6.10)

can be obtained formally by taking a finite height for the potential in the regions

jxj > a=2, and then letting this height approach infinity. To solve Eq. (6.8) in the

region �a=2 < x < a=2, I guess a solution. It is not difficult to show that any of

sin .kx/ , cos .kx/ , exp .ikx/ exp .�ikx/ (6.11)

are solutions provided

k D
p
2mE

„ : (6.12)

Since a second order differential equation has two independent solutions, I

can use any two of the linearly independent solutions given in Eq. (6.11) that

are consistent with the boundary conditions. In this case, however, there is no

degeneracy and the Hamiltonian commutes with the parity operator. Thus the

eigenfunctions must also be eigenfunctions of the parity operator; that is, the
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eigenfunctions must be the trigonometric solutions. The eigenfunctions fall into two

classes, those having even parity and those having odd parity, namely

 C
k .x/ D NC cos

�
kCx=2

�
(6.13)

and

 �
k .x/ D N� sin .k�x=2/ ; (6.14)

where the plus and minus refer to even and odd parity solutions, respectively, and

the N˙ are normalization constants.

The eigenfunctions satisfy the boundary condition given in Eq. (6.10) if

kC ! kC
n D

n�

a
; n D 1; 3; 5; : : : (6.15a)

k� ! k�
n D

n�

a
; n D 2; 4; 6; : : : : (6.15b)

The k˙ values are quantized and, as a consequence, so is the energy

E! En D
„2k2n
2m
D „

2�2n2

2ma2
; n D 1; 2; : : : : (6.16)

The normalized eigenfunctions (now labeled by n rather than k) are

 n.x/ D

8
ˆ̂<
ˆ̂:

8
<
:

q
2
a

cosŒn�x=a� n D 1; 3; 5; : : :q
2
a

sinŒn�x=a� n D 2; 4; 6; : : :
jxj � a=2

0 jxj > a=2

; (6.17)

where the normalization constants were obtained by demanding that

Z 1

�1
j n.x/j2 dx D

Z a=2

�a=2

j n.x/j2 dx D 1: (6.18)

The first few eigenfunctions are shown in Fig. 6.7, plotted as the dimensionless

quantity
p

a n.x/. Many of the results for the infinite well potential are generic. For

example, the lowest energy eigenfunction has no nodes in the classically allowed

region and is symmetric about the origin. There is one additional node in the

classically allowed region for each increase in n and the eigenfunctions alternate

between symmetric and antisymmetric functions. As you shall see, these features

are common to all bound state problems for potentials that are an even function of x.

Even if the potential is not symmetric about the origin, the same nodal structure is to

be expected, although the eigenfunctions no longer correspond to states of definite

parity.
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Fig. 6.7 Eigenfunctions in dimensionless units as a function of x=a for an infinite potential well

centered at the origin: n D 1 (red, solid); n D 2 (blue, dashed); n D 3 (black, dotted); n D 4

(green, solid)

6.2.2 Well Located Between 0 and a

With this choice, the potential is

V.x/ D
�
0 0 < x < a

1 otherwise
(6.19)

and the boundary conditions are

 E.0/ D  E.a/ D 0: (6.20)

The only solution of Eq. (6.8) in the region 0 < x < a that satisfies the boundary

condition at x D 0 is of the form sin .kx/ with E D „2k2=2m. To also satisfy the

boundary condition that the wave function vanish at x D a, it is necessary that

k! kn D
n�

a
; n D 1; 2; 3; 4; : : : ; (6.21)

which leads to the quantized energy levels

E! En D
„2�2n2
2ma2

; n D 1; 2; 3; 4; : : : I (6.22)

as was already mentioned, the energy cannot depend on the choice of origin. The

normalized eigenfunctions are

 n.x/ D
� p

2=a sinŒn�x=a� 0 � x � a

0 otherwise
: (6.23)

Whether it is convenient to use eigenfunctions in the form of Eq. (6.17) or Eq. (6.23)

depends on what properties of the solution you are investigating.
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Fig. 6.8 Dimensionless probability distributions for the n D 1 and n D 10 eigenfunctions. The

solid curve is for n D 1 and the dashed curve for n D 10

6.2.3 Position and Momentum Distributions

The dimensionless probability distribution a j n.x/j2 is shown in Fig. 6.8 for n D 1
and n D 10 for the well located between �a=2 and a=2. You see that, for n D 1;

the function is “bell-shaped,” but for n D 10, there are many oscillations. If I

average these oscillations for large n; I find that
D
j n.x/j2

E
D 1=a, in agreement

with the classical distribution given in Eq. (6.5), suggesting that j n.x/j2 can be

interpreted as a probability distribution. This is a bit of a swindle, however, since,

in a state of given n, the quantum probability distribution is very different from the

classical one. The classical distribution is a delta function centered at the classical

particle position, while there are many places in the quantum distribution where

the particle cannot be found at all. To get a true classical limit, you must take a

superposition of a large number of quantum states to form a wave packet that will

bounce back and forth between the walls with minimal spreading, simulating the

classical particle motion. On the other hand, I have uncovered an important link

between the classical and quantum problem. In the limit of large quantum numbers

(high n), the quantum distribution, averaged over oscillations in the classically

allowed region is approximately equal to the time-averaged classical particle density

for a particle having an energy equal to that associated with the quantum state n.

The situation in momentum space is a bit closer to the classical picture. The

eigenfunctions can be expanded as

 n.x/ D
1

.2�„/1=2
Z 1

�1
dpˆn.p/e

ipx=„; (6.24)

where the expansion coefficients ˆn.p/ are simply the Fourier transform of the

spatial ones
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ˆn.p/ D
1

.2�„/1=2
Z 1

�1
dx n.x/e

�ipx=„: (6.25)

I will assume that jˆn.p/j2 corresponds to the momentum distribution associated

with the eigenfunction  n.x/. Since the momentum distribution is independent of

the choice of coordinates, I can choose the wave functions given by Eq. (6.23) since

it allows me to get an expression for all n: Using Eq. (6.23) for  n.x/, I calculate

the momentum eigenfunctions as

ˆn.p/ D
1

.2�„/1=2

r
2

a

Z a

0

dx sin .n�x=a/ e�ipx=„

D � n

�
p

pc

Œ1 � .�1/n exp .�i�p=pc/�

.p=pc/2 � n2
; (6.26)

where

pc D �„=a: (6.27)

The momentum distribution is then given by

jˆn.p/j2 D
2n2

�2pc

1 � .�1/n cos .�p=pc/h
.p=pc/

2 � n2
i2 ; (6.28)

valid for any integer n � 1.

In Fig. 6.9, the dimensionless momentum distribution pc jˆn.p/j2 is plotted as a

function of p=pc for n D 1; 2; 10. For n D 1; the distribution is a smooth curve

having HWHM �p1=2.n D 1/ approximately equal to 1:19pc. For n � 2; the

distribution consists of two peaks whose centers are separated by

ıpn D 2npc D 2n�„=a: (6.29)

In the problems you are asked to show that, for n � 1, the height of each peak,

pc jˆn.npc/j2, approaches a value equal to 1=4 and the HWHM of each peak

approaches a value equal to �p1=2 � 2:79pc=� D 2:79„=a, independent of n.

You can think of the width of each peak as being determined from the uncertainty

principle. Since �x equals a=
p
12 for large n (see below), the magnitude of the

momentum cannot be determined to better than „= .2�x/ D
p
3„=a D 1:73„=a.

For large n the distribution mirrors that of the classical distribution given in

Eq. (6.4), since it consists of two peaks centered at

pn D ˙.n�„=a/ D ˙
p
2mEn; (6.30)

as in the classical case. The peaks do not approach delta functions as in the classical

case, but �p1=2=ıpn � 0 as n!1.
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Fig. 6.9 Dimensionless eigenfunction momentum probability distributions as a function of p=pc

for n D 1 (solid single-peaked curve); n D 2 (dashed curve), and n D 10 (solid double-peaked

curve)

It is not difficult to calculate the variance in position and momentum associated

with each eigenfunction,

�x2n D
Z a=2

�a=2

x2 j n.x/j2 dx D
�
1

12
� 1

2n2�2

�
a2I (6.31a)

�p2n D
Z 1

�1
p2 jˆn.p/j2 dp D „2n2�2=a2; (6.31b)

implying that

�xn�pn D „
�

n2�2

12
� 1
2

�1=2
� 0:568„: (6.32)

The uncertainty �xn grows with increasing n because the wave function becomes

more spread out over the well. In the limit that n� 1, �xn � a=
p
12; the standard

deviation of the classical probability distribution, Pclass.x/ D 1=a. Although the

momentum distribution consists of two very sharp peaks for large values of n,

�p2n grows with increasing n since the separation of the peaks is proportional to

n for large n. A similar result holds for the classical momentum distribution with

increasing energy.

6.2.4 Quantum Dynamics

To remind you that the solution of the time-independent Schrödinger equation

allows you to calculate the quantum dynamics, I consider an initial state wave

function (for a well centered at x D 0)
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 .x; 0/ D
(

Ne�x2=2b2 jxj � a=2

0 otherwise
; (6.33)

where b� a and N is a normalization factor given by2

N D
 Z a=2

�a=2

dxe�x2=b2

!�1=2

� 1p
b�1=2

: (6.34)

The particle has an average momentum of zero and is localized at the center of the

well with a position uncertainty of order b. The goal is to calculate  .x; t/.

Without going into the details of the exact solution, I can get a qualitative picture

of what is going to happen. In other words, I can ask questions such as “How many

eigenfunctions are needed in the expansion of the initial state wave function?”,

“When does the particle know that it was contained in a potential well?”, “Does

the particle ever return to its initial shape?”

The uncertainty in the momentum of the particle is �p � „=
p
2b and the

energy associated with this uncertainty is �E D „2=4mb2: As a consequence, I

would expect to need to include energies at least equal to �E in the sum over

eigenfunctions if I am to correctly approximate the initial state wave function. In

other words, for some nmax, I can approximate the dimensionless wave function as

p
a app.x; 0/ D

nmaxX

nD1
an n.x/; (6.35)

where

an D
( p

2
R a=2

�a=2
dx Ne�x2=2b2 cos n�x

a
n oddp

2
R a=2

�a=2
dx Ne�x2=2b2 sin n�x

a
D 0 n even

: (6.36)

I would expect the wave function (6.35) to be a good approximation to the exact

initial wave function provided

nmax �
r
2ma2�E

�2„2 D ap
2�b

. (6.37)

With a=b D 10 (a=
p
2�b � 2:25),

p
a app.x; 0/ is shown in Fig. 6.10 for nmax D

1; 5; 9, and compared with
p

a .x; 0/. For nmax D 9; the two curves pretty much

overlap.

As time progresses, the wave function spreads and �x.t/, the standard deviation

at time t, increases. For large times when �pt=m� �x.0/,�x.t/ � �pt=m, so the

“particle” spreads to the wall in a time of order

2In principle, the wave function in Eq. (6.33) should be multiplied by a factor such as cos.�x=a/

to insure that  .x; 0/ satisfies the correct boundary conditions at x D ˙a=2. However, if b � a,

e�x2=2b2 cos.�x=a/ � e�x2=2b2 for �a=2 < x < a=2: For this reason the cos.�x=a/ factor has

been omitted.
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Fig. 6.10 Wave function .x; 0/ in dimensionless units as a function of x=a: The solid, black curve

is the exact wave function given by Eq. (6.33) with b=a D 0:1: The other curves are approximations

to the wave function calculated using Eq. (6.35) for different values of nmax; the red, solid curve

corresponds to nmax D 1, the blue, dashed curve to nmax D 5, and the green, solid curve to

nmax D 9. The nmax D 9 curve is barely distinguishable from the original wave function

tsp D
a

2�v
D mabp

2„
; (6.38)

where �v D �p=m is the speed uncertainty in the initial packet. Note that tsp

depends inversely on „ so the particle reaching the wall is a quantum effect related

to wave-packet spreading (in other words, tsp � 1 as „ � 0). The time tsp is the

characteristic time it takes for the initial wave packet to acquire a width of order a

as a result of spreading. It is the time need for the particle to “know” it was confined

to the infinite potential well.

I can also simulate a classical particle moving back and forth in the well by taking

as an initial state wave function

 .x; 0/ D
(

Ne�x2=2b2eik0x � a=2 � x � a=2

0 otherwise
; (6.39)

where b� a and N is given by Eq. (6.34). The factor eik0x leads to an initial average

momentum of the packet equal to p0 D „k0ux. The momentum spread is still of

order �p � „=
p
2bI however, now the particle, which might have thought it was

free, is in for a rude awakening when it strikes the wall of the well in a time of

order a=2v0, where v0 D p0=m. The range �n of energy eigenfunctions needed to

construct this packet is still of order a=2�b, but the states are now centered about

the integer closest to

n0 D
p0a

�„ D
p0

pc

; (6.40)

obtained by setting En0 D mv20=2. The particle makes of order
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tsp=

�
a

v0

�
D tsp=

�
ma

p0

�
D bp0p

2„
D
p
2�b

�dB

(6.41)

wall collisions before spreading of the packet is significant (�dB D h=p0 is the

average de Broglie wavelength of the initial packet). As long as b=�dB � 1, the

quantum wave packet can be considered to represent a classical particle for times

t� tsp.

There is one additional interesting feature in this problem. If I write the general

form for the wave function at time t as

 .x; t/ D
1X

nD1
ane�in2!1t n.x/; (6.42)

where

!1 D
E1

„ D
„�2
2ma2

; (6.43)

it is clear that the initial wave packet is reproduced at integral multiples of the revival

time

tr D
2�

!1
D 4ma2

„� : (6.44)

Such quantum revivals are a purely quantum effect since the revival time tr goes to

infinity as „ goes to zero. Although a little harder to prove (see problems), quantum

revivals [j .x; t/j2 D j .x; 0/j2] occur for times t that are integral multiples of

tr=8 if the initial wave function is symmetric about the origin, for times t that are

integral multiples of tr=4 if the initial wave function is antisymmetric about the

origin. Moreover, regardless of the functional form of the initial wave function,

j .�x; t/j2 D j .x; 0/j2 for times t that are half-integral multiples of tr.

6.3 Piecewise Constant Potentials

I now examine problems involving piecewise constant potentials. In other words, I

look at problems in which the potential is constant in several regions, but undergoes

point jump discontinuities between regions. An analogous problem in optics is

transmission and reflection of light at a dielectric surface, in which the index of

refraction is constant on either side of the dielectric interface, but undergoes a

point jump discontinuity at the interface. Of course, no physical boundary can

be infinitely sharp. In the optical case, the change in index is assumed to occur

over a distance small compared with a wavelength, which can be satisfied quite

easily using polished surfaces. In quantum mechanics, it is assumed that the change

in the potential occurs over a distance that is small compared to a de Broglie
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Fig. 6.11 Step potential

wavelength, a condition that is much harder to achieve experimentally. Let’s forget

about these complications for the moment and begin a systematic attack on this

problem. I concentrate on solutions of the time-independent Schrödinger equation,

but discuss wave packet dynamics as well. In problems involving reflection and

transmission, I use the probability current density to obtain the reflection and

transmission coefficients. I will not be concerned about normalizing the wave

functions in problems involving reflection and transmission; I simply calculate

the ratio of transmitted and reflected probability current densities to the incident

probability current density.

6.3.1 Potential Step

Consider the potential step shown in Fig. 6.11,

V.x/ D
�
0 x < 0

V0 x > 0
: (6.45)

There is a point jump discontinuity in the potential at x D 0, but, as long as

the potential contains no singularities or infinities, both the wave function and its

derivative are continuous at all points, since they are solutions of a well-behaved,

second order, linear differential equation. To obtain the eigenfunctions, I solve

Schrödinger’s equation for x < 0 and for x > 0 and then equate the wave functions

of the two solutions and their derivatives at x D 0. On physical grounds, the

continuity of the wave function is consistent with the idea that the probability

density must be a single valued function.

The procedure I follow for the step potential can be used in any problem

involving piecewise constant potentials. That is, I solve the Schrödinger equation

in each region of constant potential and use the continuity of the wave function

and its derivative to connect the solutions. Additional boundary conditions are often

needed for the solutions as jxj ! 1. For the potential step, I consider E < V0 and

E > V0 separately.
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6.3.1.1 E < V0

In the classical problem, a particle that approaches the barrier is reflected with the

same speed. In the quantum-mechanical problem, I could simulate the classical

problem by sending a wave packet towards the barrier. When I discuss scattering

theory in Chap. 17, you will see that the wave packet actually penetrates into the

barrier, but is then totally reflected with a time delay that depends on .V0 � E/ =E.

In this chapter, I consider the time-independent problem only and calculate the

reflection coefficient using the probability current density.

I need to solve the Schrödinger equation for x < 0 and for x > 0 and then

match the wave functions of the two regions and their derivatives at x D 0. I know

already that the eigenvalues are continuous and there is no degeneracy. For region I,

in which x < 0 and V.x/ D 0,

d2 IE.x/

dx2
D �k2E IE.x/ (6.46)

where

kE D
p
2mE

„ > 0: (6.47)

The general solution of this equation is exponentials or sines and cosines. It is better

to choose exponentials since it will then be possible to interpret the results in terms

of an incident and reflected probability current. Although there is no degeneracy I

must take the most general possible solution of Eq. (6.46) or I will not be able to

match the two boundary conditions at x D 0 for the continuity of the wave function

and its derivative. Thus I take

 IE.x/ D AeikEx C Be�ikExI x < 0: (6.48)

For region II, in which x > 0 and V.x/ D V0, Schrödinger’s equation is

d2 IIE.x/

dx2
D �2E IIE.x/; (6.49)

where

�E D
p
2m .V0 � E/

„ > 0: (6.50)

The possible solutions are e˙�Ex but I must reject theC exponential since it blows up

for large x: That is, the boundary condition requiring the wave function to be finite

at all points in space requires me to reject a solution of the form e�Ex as x ! 1.

Thus, I take

 IIE.x/ D Ce��ExI x > 0: (6.51)
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Combining Eqs. (6.48) and (6.51), I find that the eigenfunction corresponding to an

energy 0 < E < V0 is

 E.x/ D
�

AeikEx C Be�ikEx x < 0

Ce��Ex x > 0
: (6.52)

It is possible to normalize this solution if some type of convergence factor is intro-

duced (see problems), but the normalization is unimportant for our considerations.

Equating the wave function and its derivative at x D 0, I obtain the two equations

AC B D CI (6.53a)

ikE .A � B/ D ��EC; (6.53b)

from which I find

B

A
D kE � i�E

kE C i�E

I (6.54a)

C

A
D 2kE

kE C i�E

: (6.54b)

What do these ratios mean?

To interpret them, I look at the probability current density associated with each

component of the eigenfunction for x < 0. The probability current density [see

Eq. (5.139)] associated with the AeikEx part of the eigenfunction is Ji D vE jAj2
while that associated with the Be�ikEx part is Jr D �vE jBj2, where vE D „kE=m and

the i and r subscripts stand for “incident” and “reflected,” respectively. I interpret

R D B

A
(6.55)

as an amplitude reflection coefficient and

R D jRj2 D �Jr

Ji

D vE jBj2

vE jAj2
D
ˇ̌
ˇ̌B
A

ˇ̌
ˇ̌
2

D 1 (6.56)

as an intensity reflection coefficient. Since R D 1, the wave is totally reflected. The

probability current density inside the potential step vanishes since the wave function

is real, but the quantity
ˇ̌
ˇ̌C
A

ˇ̌
ˇ̌
2

D 4k2E

�2E C k2E
D 4E

V0
(6.57)

turns out to be a measure of the distance that a wave packet penetrates into the

potential step before it is totally reflected (you have to solve the scattering problem
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to see this, as I do in Chap. 17). The problem is analogous to total reflection of light

by a lossless plasma, when the frequency of the light is below the plasma frequency.

In the limit that V0 !1; C=A � 0, consistent with the assumption that the wave

function vanishes in extended regions where there is an infinite potential. Moreover,

as V0 ! 1, B=A � �1 in Eq. (6.54a), which implies a phase change of � on

reflection. Therefore, as V0 !1, Eq. (6.52) reduces to

 E.x/ �
�
2iA sin .kEx/ x < 0

0 x > 0
: (6.58)

The eigenfunctions are now standing waves, with a node at x D 0. The analogous

situation for electromagnetic radiation is reflection at a perfect metal, where the

tangential component of the electric field must vanish at the surface.

Another interesting limit occurs for E � V0 (E D V0 � �, with 0 < � � V0/, for

which B=A � 1; C=A � 2, and

 E.x/ �
(
2A cos .kEx/ x < 0

2Ae��Ex; �E D
p
2m�

„2 I x > 0
: (6.59)

In this limit the intensity reflection coefficient is still equal to unity, but there is no

phase change on reflection. The wave function penetrates deeply into the potential

step. In the classically allowed region the wave functions is a standing wave with

an antinode at x D 0. If a wave packet having fairly well-defined energy E � V0 is

incident on the potential step, there is a long time delay before the packet is totally

reflected.

6.3.1.2 E > V0

In the classical problem, a particle approaches the potential step and is transmitted

with a lower speed. There is no reflection in the classical problem. In the quantum-

mechanical problem, a wave packet incident on the potential step is partially

transmitted and partially reflected, with the reflection coefficient depending on

.E � V0/ =E. The eigenenergies are continuous and there is a two-fold degeneracy.

For region I, in which x < 0,

d2 IE.x/

dx2
D �k2E IE.x/ (6.60)

as before, but for region II, in which x > 0, Eq. (6.49) is replaced by

d2 IIE.x/

dx2
D �k02

E IIE.x/ (6.61)

where

k0
E D

p
2m .E � V0/

„ > 0: (6.62)
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You might think that I need to try a solution of the form

 E.x/ D
�

AeikEx C Be�ikEx x < 0

Ceik0
Ex C De�ik0

Ex x > 0
I (6.63)

however, I will run into problems with such a solution. There are four unknowns

in this equation. Using the boundary conditions at x D 0 gives two constraints

(continuity of the wave function and its derivative) and normalization a third, but I

am one short since I need four constraints. The reason for this dilemma is that there

is a two-fold degeneracy in this problem. I must take two independent solutions for

each energy. One way of doing this is to arbitrarily set one of the coefficients equal

to zero in each of two separate solutions.

I do this in a manner that allows me simulate waves incident from the left or

right; that is, I take

 L
E.x/ D

�
ALeikEx C BLe�ikEx x < 0

CLeik0
Ex x > 0

; (6.64)

corresponding to a wave incident from the left and

 R
E.x/ D

�
CRe�ikEx x < 0

ARe�ik0
Ex C BReik0

Ex x > 0
; (6.65)

corresponding to a wave incident from the right. These are two independent

solutions for each energy E > V0. Of course, any two, linearly independent

combinations of Eqs. (6.64) and (6.65) could be used as well. I consider only

the solution for the wave incident from the left [Eq. (6.64)] and drop the L

superscript. The solutions (6.64) and (6.65) contain plane wave components, but

these eigenfunctions are not plane waves, even if they extend over all space. As I

have stressed, each potential has its own set of eigenfunctions; the only potential

allowing for plane wave eigenfunctions is V D 0 (or a constant) in all space.

Matching the wave functions in the two regions and their derivatives at x D 0;

I find

AC B D CI (6.66a)

kE .A � B/ D k0
EC; (6.66b)

from which I can obtain

R D B

A
D kE � k0

E

kE C k0
E

I (6.67a)

T D C

A
D 2kE

kE C k0
E

; (6.67b)
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as the amplitude reflection and transmission coefficients, respectively. The proba-

bility current density associated with AeikEx is Ji D vE jAj2, that associated with

Be�ikEx is Jr D �vE jBj2, while that associated with Ceik0
Ex is Jt D v0

E jCj
2
, where

vE D „kE=m, v0
E D „k0

E=m, and the t subscript stand for “transmitted.” Thus

R D jRj2 D �Jr

Ji

D vE

vE

ˇ̌
ˇ̌B
A

ˇ̌
ˇ̌
2

D
�

kE � k0
E

kE C k0
E

�2
D
 p

E �
p

E � V0p
EC
p

E � V0

!2
(6.68)

is the (intensity) reflection coefficient and

T D jTj2 D Jt

Ji

D v0
E

vE

ˇ̌
ˇ̌C
A

ˇ̌
ˇ̌
2

D k0
E

kE

�
2kE

kE C k0
E

�2

D 4kEk0
E�

kE C k0
E

�2 D
4
p

E
p

E � V0�p
EC
p

E � V0

�2 (6.69)

is the (intensity) transmission coefficient. The fact that

RC T D 1; (6.70)

is a statement of conservation of probability.

It is interesting to note that both R and T are independent of „. That is, even if I

take a classical limit in which „ ! 0, I do not recover the classical result of R! 0.

The reason is simple. For the classical limit to hold, changes in the potential must

occur on a length scale that is large compared with the de Broglie wavelength. Since

the potential changes abruptly this is not possible. If the potential rose smoothly over

a distance large compared with the de Broglie wavelength, there would be virtually

no reflection as „ ! 0. In fact, for a smooth potential step of the form

V.x/ D V0

1C e�x=a
; (6.71)

where a > 0 is the length scale of the step; it is possible to solve Schrödinger’s

equation exactly in terms of hypergeometric functions and to show analytically that

the reflection coefficient is3

R D
"

sinh
�
�
�
kE � k0

E

�
a
�

sinh
�
�
�
kE C k0

E

�
a
�
#2
; (6.72)

which reduces to Eq. (6.68) when kEa D 2�a=�dB � 1, but varies as

exp
�
�4�k0

Ea
�
� 0 in the limit that a is finite and „ ! 0.

3See L. D Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory (Pergamon

Press, London, 1958), pp. 75–76.
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The quantum step potential problem with E > V0 is analogous to the reflection

of light at a dielectric. As long as the interface is sharper than a wavelength, there

is always a reflected wave. For normal incidence from vacuum to a medium having

index of refraction n, the ratio of reflected to incident pulse amplitudes is

R D B

A

ˇ̌
ˇ̌
light

D 1 � n

1C n
(6.73)

and the speed of light in the dielectric is c=n: This agrees with Eq. (6.67a) if I set

n! neff D
r

E � V0

E
D
r
1 � V0

E
< 1 (6.74)

Thus, even though the particle speed decreases, the effective index is less than unity.

The analogue with reflection at a dielectric is not exact, although the results take on

the same form. Changes in the incident wavelength for light do not seriously affect

the index of refraction, but the effective index depends in a significant way on the

incident energy for matter waves.

In solving the Schrödinger equation for both E < V0 and E > V0, I automatically

determined the eigenergies and the eigenfunctions. For E < V0, I found that any

energy in the range 0 < E < V0 gives rise to a solution and that the eigenfunctions

are nondegenerate. For E > V0, I found that any energy gives rise to a doubly-

degenerate solution.

6.3.2 Square Well Potential

Now I turn my attention to the square well potential shown in Fig. 6.12 for which

V.x/ D
�
�V0 < 0 jxj < a=2

0 jxj > a=2
: (6.75)

I consider E < 0 and E > 0 separately. I must solve the Schrödinger equation in

three regions, x < �a=2, �a=2 < x < a=2, x > a=2, and equate the wave functions

of the solutions and their derivatives at x D �a=2 and x D a=2.

6.3.2.1 E < 0

In the classical problem, a particle is always bound in the well for E < 0. In the

quantum mechanics problem, you will see that there is always at least one bound

state. However, the wave function penetrates into the classically forbidden regime.

You might think that there is no bound state for sufficiently small well depths

based on the following argument. Since �x is of order a; �p is of order „=a,
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Fig. 6.12 Square well potential. There are unbound eigenfunctions for all positive energies and a

finite number of bound states En for negative energies. The number of bound states is equal to the

integer value of .1C ˇ=�/, where ˇ2 D 2mV0a
2=„2

corresponding to an energy of „2=2ma2. Therefore if V0 < „2=2ma2, the well is

not deep enough to bind the particle. You will see what is wrong with this argument

after I analyze the problem in detail.

For E < 0; the eigenenergies are discrete and there is no degeneracy. I can

simplify the problem somewhat by noting that the Hamiltonian commutes with

the parity operator. Therefore the energy eigenfunctions are guaranteed to be

simultaneous eigenfunctions of the parity operator. The boundary conditions are

such that the wave function must vanish as x approaches ˙1: The even parity

solutions of Schrödinger’s equation satisfying the boundary conditions at x D ˙1
are

 C
E .x/ D

8
<̂

:̂

BCe�
C
E x x < �a=2

AC cos
�
k0C

E x
�

� a=2 < x < a=2

BCe��C
E x x > a=2

(6.76)

and the odd parity solutions are

 �
E .x/ D

8
<
:

B�e�
�
E x x < �a=2

A� sin
�
k0�

E x
�

� a=2 < x < a=2

�B�e���
E x x > a=2

; (6.77)

where

k0˙
E D

p
2mE0˙

„ > 0; (6.78)

�˙
E D

p
�2mE˙

„ > 0; (6.79)

E0˙ D
�
E˙ C V0

�
; (6.80)
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m is the particle mass, and C (�/ corresponds to even (odd) parity. The energy E0˙

is the difference between E˙ and the energy �V0 at the bottom of the well (see

Fig. 6.12).

By choosing the energy eigenfunctions to be simultaneous eigenfunctions of the

parity operator, I guarantee that if I satisfy the boundary conditions on the wave

function and its derivative at x D a=2, they are automatically satisfied at x D �a=2.

Matching the wave functions their derivatives at x D a=2, I find

AC cos

 
k0C

E a

2

!
D BC exp

 
��

C
E a

2

!
(6.81a)

ACk0C
E sin

 
k0C

E a

2

!
D BC�C

E exp

 
��

C
E a

2

!
(6.81b)

for the even parity solutions and

A� sin

�
k0�

E a

2

�
D B� exp

�
��

�
E a

2

�
(6.82a)

A�k0�
E cos

�
k0�

E a

2

�
D �B���

E exp

�
��

�
E a

2

�
(6.82b)

for the odd parity solutions.

Equations (6.81) and (6.82) are typical of the type encountered in solving bound

state problems for piecewise constant potentials. They are homogeneous equations

with the same number of equations as unknowns. The only way to have non-trivial

solutions of such equations is for the determinant of the coefficients to vanish. In

solving the determinant equation, you find solutions for only specific values of the

energy. This is why bound state motion leads to discrete or quantized eigenenergies.

Instead of setting the determinant of the coefficients in Eqs. (6.81) and (6.82)

equal to zero, it is simpler to divide the equations to obtain

tan

 
k0C

E a

2

!
D �C

E

k0C
E

(6.83)

for the even parity solutions and

tan

�
k0�

E a

2

�
D �k0�

E

��
E

(6.84)

for the odd parity solutions. Note that k0�
E D 0 is not an acceptable odd parity

solution [even though it is a solution of Eq. (6.84)] since it is not a solution of

Eqs. (6.82). In other words, Eq. (6.84) gives the solutions to Eqs. (6.82) provided

k0�
E ¤ 0.
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I define dimensionless quantities

ˇ2 D 2mV0

„2 a2; (6.85)

�
y˙�2 D

�
k0˙

E

�2
a2; (6.86)

such that

�˙
E a D

s
2m

�
V0 � E0˙�

„2 a D
q
ˇ2 �

�
y˙�2: (6.87)

The quantity ˇ2 is a dimensionless measure of the strength of the well that we will

encounter often. The condition determining the even parity eigenenergies is

tan

�
yC

2

�
D �C

E

k0C
E

D
s

ˇ2

.yC/2
� 1 > 0; (6.88)

while the condition for the odd parity eigenfunctions is

tan

�
y�

2

�
D � 1r

ˇ2

.y�/2
� 1

< 0: (6.89)

Equations (6.88) and (6.89) can be solved graphically. The graphical solution for

the even parity solution, Eq. (6.88), is shown in Figs. 6.13 and 6.14 for ˇ D 0:5

and ˇ D 20, respectively. As you can see there is always at least one solution,

irrespective of the value of ˇ. Why does the uncertainty principle argument given

above fail? For ˇ � 1, the value of �C
E a becomes small and the eigenfunction

penetrates a long distance into the classically forbidden region. Thus the estimate

that �x D a is wrong—I should use �x D
�
�C

E

��1 � a=ˇ � a, giving a

corresponding �E which is less than V0. The corresponding odd parity solutions

are left to the problems. Using the graphical solutions, it is easy to show that the

number of bound states in the well is equal to the integer value of .1C ˇ=�/.
I can estimate the energy EC of the bound state in the limit of a weakly binding

well, ˇ � 1. I define

z D
r
�2mEC

„2 a > 0; (6.90)

such that

ˇ2 D
�
yC�2 C z2: (6.91)
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Fig. 6.13 Graphical solution of Eq. (6.88) for ˇ D 0:5. The blue dashed curve is

q
.ˇ=yC/

2 � 1

and the red solid curve is tan
�
yC=2

�

Fig. 6.14 Graphical solution of Eq. (6.88) for ˇ D 20. The blue dashed curve is

q
.ˇ=yC/

2 � 1

and the red solid curve is tan
�
yC=2

�

Setting

yC D ˇ � � (6.92)

and assuming that � � ˇ and ˇ � 1, I can approximate Eq. (6.88) as

tan

�
ˇ

2

�
� ˇ

2
D

s
ˇ2

.ˇ � �/2
� 1 �

s
2�

ˇ
(6.93)
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or

� � ˇ3

8
: (6.94)

This result, in turn, implies that

z2 D ˇ2 �
�
yC�2 D ˇ2 � .ˇ � �/2 � 2�ˇ D ˇ4=4 (6.95)

or

E D � „
2z2

2ma2
D �„

2ˇ4

8ma2
D �ˇ

2

4
V0: (6.96)

Even if ˇ � 1, there is always a bound state having an energy whose absolute value

is much less than the well depth.4

In the opposite limit of a very deep well, that is, when V0 ! 1 and E0 D
.EC V0/ � V0, I should recover the eigenfunctions and eigenenergies of the

infinite potential well. In the limit that V0 ! 1 and .EC V0/ � V0, Eqs. (6.88)

and (6.89) reduce to

tan

 
k0C

E a

2

!
D 1; (6.97a)

tan

�
k0�

E a

2

�
D 0: (6.97b)

The first condition is satisfied if

k0C
E a D .2nC 1/ � ; n D 0; 1; : : : (6.98)

and the second if

k0�
E a D 2n� ; n D 1; 2; : : : (6.99)

4Equation (6.96) can be written as

E D �
�
m=2„2

�
V2
0a2 D �

�
m=2„2

� �Z 1

�1

V.x/dx

�2
:

This is a general result for “weak” potential wells having arbitrary shape—see L. D Landau and E.

M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory (Pergamon Press, London, 1958), pp.

155–156.
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which, taken together, yield

k0
Ea D n� ; n D 1; 2; 3,. . . , (6.100)

where

k0
E D

p
2m .EC V0/

„ D
p
2mE0

„ : (6.101)

Equation (6.100) is recognized as the equation for the energy levels in an infinite

square well. Similarly, the eigenfunctions go over to

 C
II .x/ D AC cos

�
k0C

E x
�
I (6.102)

 �
II .x/ D A� sin

�
k0�

E x
�
; (6.103)

which are the corresponding eigenfunctions.

6.3.2.2 E > 0

Since I am interested in transmission and reflection coefficients, I consider only the

solution corresponding to a wave incident from the left. The mathematics can be

simplified somewhat if I now take the well located between 0 and a. Although the

potential no longer commutes with the parity operator with this choice of origin, the

solution of interest does not have definite parity in any event since I am considering

a wave incident from the left. The eigenfunctions are

 E.x/ D

8
<
:

AeikEx C Be�ikEx x < 0

Ceik0
Ex C De�ik0

Ex 0 < x < a

FeikEx x > a

(6.104)

with

kE D
p
2mE

„ I (6.105a)

k0
E D

p
2m .EC V0/

„ : (6.105b)

I now equate the wave functions in the various regions and their derivatives at both

x D 0 and x D a. The appropriate equations are

AC B D CC DI (6.106a)

kE .A � B/ D k0
E .C � D/ I (6.106b)
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Ceik0
Ea C De�ik0

Ea D FeikEaI (6.106c)

k0
E

�
Ceik0

Ea � De�ik0
Ea
�
D kEFeikEa: (6.106d)

From these four equations I can calculate B=A, C=A, D=A, and F=A by setting the

determinant of the coefficients equal to zero. The algebra is a little complicated but

the solution can be obtained easily using a symbolic program such as Mathematica.

Explicitly, you can show that the amplitude reflection and transmission coefficients

are equal to

R D B

A
D

i
�
k0

E
2 � k2E

�
sin
�
k0

Ea
�

2kEk0
E cos

�
k0

Ea
�
� i

�
k02

E C k2E
�

sin
�
k0

Ea
� I (6.107a)

T D F

A
D 2kEk0

Ee�ikEa

2kEk0
E cos

�
k0

Ea
�
� i

�
k02

E C k2E
�

sin
�
k0

Ea
� : (6.107b)

The solution for the intensity transmission coefficient can be written as

T D Jt

Ji

D kE

kE

jTj2 D 1

cos2
�
k0

Ea
�
C �02

4
sin2

�
k0

Ea
� (6.108)

and for the intensity reflection coefficient as

R D �Jr

Ji

D kE

kE

jRj2 D 1 � T ; (6.109)

where

�0 D kE

k0
E

C k0
E

kE

D k2E C k02
E

kEk0
E

D 2EC V0p
E
p

EC V0
: (6.110)

The intensity transmission coefficient can be written in an alternative way as

T D 1

1C V20
4E.ECV0/

sin2
�
k0

Ea
� : (6.111)

In the limit that E � V0, T � 1, as expected, since the energy is much higher

than the well depth (recall that, classically, T D 1 for any energy E > 0). On

the other hand, it is not so clear as to what to expect when E ! 0, since this

corresponds to the quantum regime (de Broglie wavelength greater than well size a).

From Eq. (6.111), you see that the transmission goes to zero as E! 0, unless k0
Ea D

m� , for integer m. That is, there is a resonance (sharp increase) in transmission for

low energy scattering if k0
Ea � ˇ D m� . This corresponds approximately to the

condition for having a bound state whose energy is very close to zero. For arbitrary
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energies, there are maxima in transmission whenever k0
Ea D m� . At these points the

transmission is equal to unity, but the resonances become broader with increasing

energy.

This problem is somewhat analogous to light incident on a thin dielectric film

from vacuum if the index of refraction of the film is replaced by

n! neff D
p
1C V0=E: (6.112)

In optics, when light is incident from vacuum normally on a thin dielectric slab

having index of refraction n and thickness d; the reflection and transmission

coefficients are

R D 1 � T I (6.113a)

T D 1

cos2 .kd/C �2n
4

sin2 .kd/
; (6.113b)

where

�n D nC 1

n
; (6.114)

k D nk0; (6.115)

and k0 D 2�=�0 is the free-space propagation constant. The maxima in transmission

occur when kd D m� or 2d D m�n D m�0=nI that is, when twice the thickness is

an integral number of wavelengths in the medium. These are the same resonances

that occur in the quantum problem; however, in the quantum problem, the effective

index depends significantly on the energy while the index of refraction in the optical

problem is approximately constant for a wide range of wavelengths. Details are left

to the problems.

If I construct an initial wave packet and send it in from the left, the actual dynam-

ics depends critically on the width of the packet. The reflection and transmission

coefficients are derived for a monoenergetic wave. The range of energies �E in

the packet must be sufficiently small to satisfy �E�=„ � 1, where � is the time

it takes for the packet to be scattered (including bounces back and forth between

x D 0 and x D a) if one is to find transmission and reflection coefficients given

by Eqs. (6.108) and (6.109). For example, a wave packet having spatial width less

than a could never have a transmission resonance at low energy—it would be totally

reflected at the x D 0 discontinuity in the potential. Scattering of wave packets in

one dimension is discussed in Chap. 17.

The analogy between the quantum and radiation problems is useful only when

considering the reflection and transmission coefficients associated with nearly

monoenergetic wave packets and nearly monochromatic radiation pulses. The

analogy breaks down for wave packets or radiation pulses whose spatial extents are

much smaller than the scattering region. For example, you can see from Eq. (6.112)
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Fig. 6.15 Potential barrier

that a potential well corresponds to an index of refraction neff > 1. A narrow

wave packet would speed up as it passes through the potential region, whereas an

optical pulse would propagate at a slower speed in a dielectric corresponding to this

potential well.

6.3.3 Potential Barrier

Now I turn my attention to the barrier potential shown in Fig. 6.15 for which

V.x/ D
�

V0 > 0 0 < x < a

0 otherwise
: (6.116)

I consider only E < V0: For E > V0, the results of the square well with E > 0 can

be taken over directly by replacing �V0 with V0 in Eqs. (6.111) and (6.105b). In the

classical problem, a particle is always reflected by the barrier when E < V0. In the

quantum-mechanical problem, you will see that the particle can tunnel through the

barrier. The eigenenergies are continuous and there is a two-fold degeneracy.

As in the case of the potential well, I consider only the eigenfunction correspond-

ing to a wave incident from the left, namely

 E.x/ D

8
<
:

AeikEx C Be�ikEx x < 0

Ce�Ex C De��Ex 0 < x < a

FeikEx x > a

; (6.117)

where

kE D
p
2mE

„ > 0I (6.118)

�E D
p
2m .V0 � E/

„ > 0: (6.119)



6.4 Delta Function Potential Well and Barrier 147

I should now equate the wave functions in the various regions and their derivatives

at both at x D 0 and x D a. It is not necessary to do so, however, since a

comparison of Eqs. (6.104) and (6.117) shows they are identical if I replace ik0
E by

�E or, equivalently, V0 by �V0 in Eqs. (6.104). With this replacement, sin2
�
k0

Ea
�
!

� sinh2 .�Ea/ and Eq. (6.111) goes over into

T D 1

1C V20
4E.V0�E/

sinh2 .�Ea/
: (6.120)

As E ! V0 (�Ea� 1), the energy approaches the barrier height and you might

expect that significant transmission is possible. In this limit,

T � 1

1C V20 �
2
Ea2

4V0.V0�E/

D 1

1C ˇ2

4

; (6.121)

where ˇ is defined as in Eq. (6.85). You see that T � 1 only if the dimensionless

barrier strength ˇ is much less than unity. Note that Eq. (6.121) agrees with

Eq. (6.111) when V0 is replaced by �V0 in that equation and the limit E ! V0
is taken. In other words, the solutions for E < V0 and E > V0 match each other in

the limit that E! V0, as you would expect.

On the other hand, for �Ea� 1,

T � 16 .V0 � E/E

V2
0

e�2�Ea; (6.122)

which represents tunneling through the barrier. [If you play tennis, you are familiar

with tunneling—you swear you hit the ball, but it appears to have tunneled through

your racket. Unfortunately this argument does not hold water since the tunneling

probability is negligibly small)]. In the limit that „ ! 0, �E � 1, the de Broglie

wavelength goes to zero, and there is no tunneling. Tunneling can occur in optics

if two prisms are separated by a small amount, as was originally discovered by

Newton. Light that would normally be totally internally reflected by the first prism

can tunnel into the second prism if the separation between the prisms is less than or

on the order light’s wavelength. Tunneling is a wave phenomenon.

6.4 Delta Function Potential Well and Barrier

The limit of a delta function potential,

V.x/ D ˙V0aı.x/; (6.123)

can be approximated if I let the potential well or barrier width a go to zero while

its amplitude V0 goes to infinity, keeping the product V0a constant. In Eq. (6.123)
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both V0 and a are positive; the plus sign corresponds to a barrier and the minus sign

to a potential well. From the nature of the solutions of the potential barrier or well

problems, it follows that the wave function is continuous at the position of the delta

function potential. On the other hand, the derivative of the wave function undergoes

a jump. To see this, I start from the Schrödinger equation

d2 .x/

dx2
D �2m

„2 ŒE � V.x/�  .x/ (6.124)

and integrate about x D 0 to obtain

d .x/

dx

ˇ̌
ˇ̌
xD�
� d .x/

dx

ˇ̌
ˇ̌
xD��

D � lim
�!0

2m

„2
Z �

��
ŒE � V.x/�  .x/dx

D � lim
�!0

2m .0/

„2
Z �

��
ŒE � V.x/� dx

D ˙2mV0a .0/

„2 : (6.125)

The derivative of the wave function undergoes a point jump discontinuity at the

position of the delta function potential.

6.4.1 Square Well with E < 0

As a ! 0 in the square well problem, the dimensionless strength parameter ˇ2 D
2mV0a

2=„2 ! 0, since V0a goes to a constant and a! 0. If ˇ2 ! 0, the only bound

state solution is the lowest energy, even parity solution. The energy is determined

from Eq. (6.96),

E D �„
2ˇ4

8ma2
D �mV2

0a2

2„2 : (6.126)

Now let’s solve the problem directly. With �E D
p
�2mE=„2, the eigenfunction

of the bound state can be taken as

 E.x/ D
�

Be�Ex x < 0

Be��Ex x > 0
; (6.127)

which satisfies continuity of the wave function at x D 0: Using Eq. (6.125), I find

d .x/

dx

ˇ̌
ˇ̌
xD�
� d .x/

dx

ˇ̌
ˇ̌
xD��

D �2B�E D �2B

r
�2mE

„2

D �2mV0a .0/

„2 D �2mV0aB

„2 : (6.128)
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Therefore,

� 2mE

„2 D
�

mV0a

„2
�2
I (6.129)

E D �mV2
0a2

2„2 ; (6.130)

in agreement with Eq. (6.126).

6.4.2 Barrier with E > 0

From Eq. (6.120), with V0 � E and �Ea � ˇ ! 0,

T D 1

1C V20
4E.V0�E/

sinh2 .�Ea/
' 1

1C V0ˇ
2

4E

D 1

1C mV20a2

2„2E

: (6.131)

To solve the problem directly, I take

 E.x/ D
�

AeikEx C Be�ikExI x < 0

FeikEx x > 0
; (6.132)

where kE D
p
2mE=„2. The wave function is continuous at x D 0 and its derivative

undergoes a jump discontinuity,

AC B D FI (6.133)

d .x/

dx

ˇ̌
ˇ̌
xD�
� d .x/

dx

ˇ̌
ˇ̌
xD��

D ikE .F � AC B/

D 2mV0a .0/

„2 D 2mV0aF

„2 ; (6.134)

which can be rewritten as

� B

A
C F

A
D 1I (6.135)

B

A
C F

A

�
1C 2imV0a

kE„2
�
D 1: (6.136)

Solving for the transmission coefficient, I find

T D
ˇ̌
ˇ̌F
A

ˇ̌
ˇ̌
2

D 4
ˇ̌
ˇ2C 2imV0a

kE„2
ˇ̌
ˇ
2
D 1

1C mV20a2

2„2E

D 1

1C
�
ˇ2

2kEa

�2 ; (6.137)
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in agreement with Eq. (6.131). In the limit ˇ2V0=4E D mV2
0a2=2„2E � 1,

T � 0, which is the strong barrier limit. On the other hand, for ˇ2V0=4E � 1,

the transmission goes to unity. If you consider the problem of transmission for a

negative delta function potential, the transmission coefficient is unchanged, since T

depends only on V2
0 .

6.5 Summary

I have examined a number of prototypical one-dimensional problems in quantum

mechanics involving piecewise constant potentials. In all these problems, I was

able to solve the Schrödinger equation in a number of distinct regions and piece

together the solutions using the continuity of the wave function and its derivative.

In considering the motion of particles in potentials that change abruptly at a given

point, we always encounter wave-like properties of the particles since the potential

changes in a distance small compared with the de Broglie wavelength of the particle.

In the limit that „ ! 0 in such problems, we recover the geometrical or ray

optics limit of optics for light incident on a dielectric interface. Processes such as

transmission and reflection resonances, as well as tunneling, have optical analogues.

6.6 Appendix: Periodic Potentials

To arrive at the band structure of solids, one often models the problem of electrons

interacting with atomic sites in a crystal by considering the electrons to move in a

periodic potential having period d. If periodic boundary conditions are imposed, it

is possible to find eigenfunctions  E.x/ that satisfy Bloch’s theorem,

 E.x/ D ei˛x=duE.x/; (6.138)

where uE.x/ is a periodic function having period d and ˛ is the Bloch phase. Both

˛ and uE.x/ are functions of the energy E and the detailed nature of the potential.

It is possible to relate the Bloch states to the transmission resonances that occur

when matter waves are incident on an equally spaced array of identical potential

barriers.5 The problem can then be mapped onto one involving periodic boundary

conditions by imposing the requirement that the wave function at the entrance of

the array be equal to the wave function at the exit. I will consider only the problem

of the transmission resonances in detail, but then make a connection with the Bloch

states.

5For a more detailed discussion with references to earlier work, see P. R. Berman, Transmission

resonances and Bloch states from a periodic array of delta function potentials, American Journal

of Physics, 81, 190–201 (2013).
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Fig. 6.16 (a) A finite array of delta function potentials on a line. (b) A periodic array of delta

function potentials on a ring

To simplify the problem, I take the potential as

V.x/ D V0a

NX

jD1
ı

�
x � 2j � 1

2
d

�
; (6.139)

where V0 and a are positive constants. The array has period d in the interval from

x D 0 to x D Nd with a delta function at the middle of each period [see Fig. 6.16a].

Periodic potentials with rectangular barriers constitute the so-called Kronig-Penney

model. The wave function is taken as

 .x/ D

8
<
:

A0e
izx C B0e

�izx D eizx C RNe�izx �1 < x < 1=2

Aneiz.x�n/ C Bne�iz.x�n/
�
n � 1

2

�
< x <

�
nC 1

2

�

ANeiz.x�N/ C BNe�iz.x�N/ D TNeiz.x�N/ x >
�
N � 1

2

� ; (6.140)

where z D kd, k D
p
2mE=„, and 1 � n � N � 1. The quantity x has been

redefined to be dimensionless, measured in units of the period d, and I have set

A0 D 1 and B0 D RN . With this choice, the quantities RN and TN are the reflection

and transmission amplitudes for an N-period array, for a wave incident from the left.

By matching the wave function and its (discontinuous) derivative at x D
�
n � 1

2

�

using Eq. (6.140), I find

�
An�1
Bn�1

�
DM

�
An

Bn

�
; (6.141)

where

M D
�

we�iz y

y� eizw�

�
; (6.142)
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and

w D .1C i�/ ; y D i�; (6.143)

with

� D z0=z; (6.144a)

z D kd; (6.144b)

z0 D
mV0a

„2 d: (6.144c)

The matrix M is a transfer matrix. Had I considered potentials other than a delta

function potential, the form of M would remain the same, but the values of w and y

would change, subject to the constraint

jwj2 � jyj2 D 1; (6.145)

provided by unitarity. Many of the equations are left in terms of w and y; but all

calculations are performed for delta function potentials.

The transmission coefficient can now be calculated by writing

�
1

RN

�
DMN

�
TN

0

�
; (6.146)

with

MN DMN : (6.147)

Thus, it is clear that

TN D 1= .MN/11 I (6.148a)

RN D .MN/21 TN D .MN/21 = .MN/11 : (6.148b)

The amazing thing is that MN can be calculated analytically for any N: It is

possible to write the result for MN , TN , and RN in the compact form

MN D
M sin .N�/ � 1 sin Œ.N � 1/ ��

sin�
; (6.149a)

1

TN

D M11 sin .N�/ � sin Œ.N � 1/ ��
sin�

D we�iz sin .N�/ � sin Œ.N � 1/ ��
sin�

; (6.149b)
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RN D
M21

M11

�
1C sin Œ.N � 1/ ��

sin�
TN

�

D y�eiz

w

�
1C sin Œ.N � 1/ ��

sin�
TN

�
; (6.149c)

where � is defined by

cos� D Re .M11/ D Re .1=T1/ D Re .w cos z/C Im .w sin z/ ; (6.150)

and 1 is the 2 � 2 identity matrix. This completes the solution to the problem.

It is not difficult to calculate the energies for which the transmitted intensity is

equal to unity using Eq. (6.149b). I need to find values � D �T for which

1

TN

D M11 sin .N�T/ � sin Œ.N � 1/ �T �

sin�T

D ˙1: (6.151)

For arbitrary M11 the solution is obtained by setting

sin .N�T/

sin�T

D 0; (6.152a)

� sin Œ.N � 1/ �T �

sin�T

D cos.N�T/ D ˙1: (6.152b)

These equations are satisfied if

�T D q�=N; q D 1; 2; : : : ;N � 1: (6.153)

Note that q cannot be equal to zero or N since �T D 0 and � are not solutions

of Eq. (6.151). For each value of q, there is an infinite number of solutions of

Eq. (6.150) for z D kd, with successive solutions corresponding to different energy

bands. Since q can take on N � 1 distinct values, there are N � 1 transmission reso-

nances in each band. The transmission amplitude at each transmission resonance is

TN D .�1/q.

The transmission coefficient TN D jTN j2 is shown in Fig. 6.17 for N D 10 and

z0 D 5 as a function of z=� D kd=� . You can see that the transmission peaks are

contained in bands which (almost) go over into the band structure of crystals. The

upper band edge of the mth band is close, but not equal to z D m� . A blow-up of

the first band is shown in Fig. 6.18 and the real part of the transmission amplitude

for this band is shown in Fig. 6.19.

In general, there are .N � 1/ transmission peaks contained in each band. Of the

N � 1 resonances, there are .N � 2/ =2 values where TN D 1 when N is even and

.N � 1/ =2 values where TN D 1 when N is odd. The other resonances correspond

to TN D �1: I will return to this shortly.
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Fig. 6.17 Intensity transmission coefficient for a periodic array of 10 delta functions with z0 D 5

Fig. 6.18 Blow-up of the first “band” of the intensity transmission coefficient for a periodic array

of 10 delta functions with z0 D 5: There are .N � 1/ D 9 transmission resonances in each band

Fig. 6.19 Real part of the transmission amplitude in the first “band” of a periodic array of 10 delta

functions with z0 D 5: There are four resonances with T D 1 and five with T D �1

The net result is that, in the low energy bands where � D z0=m� � 1; the

transmission resonances are resolved and correspond to quasi-bound states of the

“lattice.” The quasi-resonances are confined to these energy bands and the width of

the mth band, with upper band edge at z � m�; is of order �z D �kd � 2m�=z0
for delta function potentials. On the other hand, for high energies, � D z0=m� � 1,
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the transmission resonances are not resolved and form a series of bands with narrow

gaps between the bands, having a gap width�z D �kd � 2z0=m� for delta function

potentials: In these high energy bands (not yet seen in Fig. 6.17) TN � 1. The high

energy bands correspond to quasi-free particle states that can exist at these energies.

6.6.1 Bloch States

The Bloch theory of a crystal assumes a periodic potential in all space. Of course,

no crystal exists in all space, so what is usually done is to imagine the periodic

potential on a ring, that is, N identical delta function potentials, periodically placed

on a ring [see Fig. 6.16b]. I can map the ring, having radius R; onto a line of length

L D 2�R D Nd with  .x D 0/ D  .x D L=d/; and

� D 2�x=N: (6.154)

The ring radius R grows with increasing N for fixed d.

It can be shown that the Bloch energies correspond to a subset of the solutions

associated with Eq. (6.153), containing those values for which TN D 1; but not those

for TN D �1. The wave functions with TN D �1 are out of phase by � when they

return to the same physical point. This implies that there are approximately half as

many Bloch state energies as transmission energies, but each of these Bloch states

is two-fold degenerate, since waves can move either clockwise or counterclockwise.

Moreover, there are additional Bloch energies that occur that are absent in the

transmission resonances, namely values of � which are equal to zero or � .

As a consequence, the energy “bands,” each contain .N C 2/ =2 discrete energy

levels for N even and .N C 1/ =2 discrete energy levels for N odd: The discrete

energies correspond to the transmission resonances for which TN D 1, plus an

energy eigenfunction for � D 0 and, if N is even, an additional one for � D � . Each

state is two-fold degenerate, except for those corresponding to � D 0 or � . Thus

there are 2 Œ.N C 2/ =2 � 2�C2 D N states for N even and 2 Œ.N C 1/ =2 � 1�C1 D
N states for N odd. Each band contains exactly N states. Note that as N ! 1, the

number of states in each band goes to infinity but the states remain discrete. Despite

the fact that these states remain discrete, the resulting structure is referred to as the

(continuous) band structure of solids.

6.7 Problems

1. Show that solutions of

d2f

dx2
D �k2f
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are e˙ikx and solutions of

d2f

dx2
D k2f

are e˙kx.

2. Suppose you are given a constant potential V0 in some region of space in a one-

dimensional problem. For energies E > V0 (classically allowed region), prove that

possible solutions of the Schrödinger equation are eik0x, e�ik0x, cos.k0x/, sin.k0x/,
provided k0 D

p
2m.E � V0/=„2. For energies E < V0 (classically forbidden

region), prove that possible solutions of the Schrödinger equation are e�x, e��x,

cosh.�x/, sinh.�x/, provided � D
p
2m.V0 � E/=„2. In each case, why is the

eigenfunction in that region a linear combination of at most two of the four solutions

shown? What determines which linear combination and how many independent

solutions are needed?

3. What is the difference in energy between the two lowest energy states of a

1.0 g particle moving in a 1.0 cm infinite square well potential? What does this tell

you about measuring the energy spacing of the quantized states of a macroscopic

particle?

4–5. At t D 0, the wave function for a particle of mass m in an infinite one-

dimensional potential well located between x D 0 and x D L is equal to

 .x; 0/ D
(

e�.x�L=2/2=2x0
2

0 < x < L

0 otherwise
;

which can be expanded as

 .x; 0/ D
� p

2=L
P1

nD1 an sin .n�x=L/ 0 < x < L

0 otherwise
;

where x0 << L [note that  .x; 0/ is not normalized, but it is not important for this

problem—it just gives an overall scaling factor to the an’s]. In practice, you must

cut off the sum at some value n D nmax. Without formally solving the problem,

estimate the value of nmax needed to provide a good approximation to  .x; 0/. Now

show that your estimate is reasonable by taking L D 100; x0 D 1, and numerically

integrating the appropriate equation to obtain the ans to find the maximum n that

contributes significantly.

6–7. The k-state probability distribution for the eigenfunctions of the infinite square

well having width L is given by [see Eq. (6.28)]

j�n.k/j2 D
�Ln2

ˇ̌
1 � .�1/ne�ikL

ˇ̌2
h
.kL/2 � .n�/2

i2 :
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First, prove that the height of the lobes centered at k D ˙n�=L in the limit that

n � 1 is equal to L=4�: Next show that the half width at half maximum of each

lobe is approximately equal to 2:79=L when n� 1. [Hint: Set k D n�=LC � with

� � n�=L and solve the equation

j�n.n�=LC �/j2 D L=8�:

Note you cannot assume that eiL� � 1C iL� since it will turn out that � is of order

1=L.]

8. For the potential step problem with energy E > V0, consider the eigenfunction

 R
E.x/ D

�
 R

IE.x/ x < 0

 R
IIE.x/ x > 0

;

where

 R
IE.x/ D CRe�ikExI

 R
IIE.x/ D ARe�ik0

Ex C BReik0
Ex;

corresponds to a wave incident from the right. Calculate the amplitude reflection

and transmission coefficients, R and T; and show that they can be obtained from

those for the left incident wave by interchanging kE and k0
E. Prove that the intensity

reflection and transmission coefficients, R and T ; are unchanged. The quantities kE

and k0
E are defined in Eqs. (6.47) and (6.62), respectively.

9. One of the eigenfunctions for the step potential problem with energy E > V0 is

 L
kE
.x/ D

8
<
:

�
eikEx C kE�k0

E

kECk0
E

e�ikEx
�

x < 0�
2kE

kECk0
E

�
eik0

Ex x > 0
kE > 0:

Calculate the probability current density of the entire wave function (do not break up

the x < 0 part into incident and reflected waves) for x < 0 and x > 0 and show that

the two results agree at x D 0: In fact, show that the current density is constant in all

space. The quantities kE and k0
E are defined in Eqs. (6.47) and (6.62), respectively.

10. The eigenfunctions for the step potential with energy E < V0 is

 L
kE
.x/ D

8
<
:

�
eikEx C kE�i�E

kECi�E
e�ikEx

�
x < 0�

2kE

kECi�E

�
e��Ex x > 0

kE > 0:

Calculate the probability current density of the entire wave function and show that it

vanishes in all space. The quantities kE and �E are defined in Eqs. (6.47) and (6.50),

respectively.
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11. Obtain a graphical solution for the odd parity eigenenergies of the potential

well problem. Find the minimum value of ˇ D
q

2mV0
„2 a2 needed to support an odd

parity bound state.

12. Suppose a potential well having depth V0 and width b is located inside of an

infinite potential well having width a > b. Use a simple argument based on the

uncertainty principle to derive an approximate condition for the existence of a bound

state having E < 0. How does this problem differ from the one studied in the text,

in which it was shown that a bound state always exists?

13–14. Now solve Problem 6.12 formally. Take both the finite well and infinite well

centered at x D 0, such that the Hamiltonian commutes with the parity operator.

Find the condition on V0, b, and a, that will guarantee at least one bound state for

E < 0. Show that in the limit that a!1, there is always a bound state. Hint: What

parity will the lowest energy state have? Choose a wave function that automatically

satisfies the boundary condition at x D a=2.

15–18. In optics, when light is incident normally on a thin dielectric slab having

index of refraction n and thickness d; the reflection and transmission coefficients are

R D 1 � T I

T D 1

cos2 .kd/C �2n
4

sin2 .kd/
;

where

�n D nC 1

n
;

k D nk0;

and k0 D 2�=�0 is the free-space propagation constant. Plot T as a function of

k0d for n D 2 and n D 6: Interpret your plots—that is, explain the positions of the

maxima and minima in transmission on the basis of simple principles of optics.

In quantum mechanics, prove that the corresponding reflection and transmission

coefficients for scattering of a particle having mass m by a potential barrier having

length d and height V0 are identical, provided one sets

n! nE D
p
1 � V0=EI

k ! k0
E D nEkE D nE

r
2mE

„2 D
r
2m .E � V0/

„2 :

It is assumed that E > V0. The difference from the radiation problem is that as kE

is varied, the index nE changes as well, whereas k0 can be changed in the radiation

problem without changing the index significantly. Thus it makes sense to define
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Fig. 6.20 Problem 6.21

k0
Ed D � I ˛ D E=V0I

� D �0

s�
E � V0

V0

�
D �0

p
˛ � 1I

�0 D
r
2mV0

„2 dI

T D 1

cos2 � C �2nE

4
sin2 �

;

so that the only parameters in the problem are �0 and ˛ D E=V0: Plot T as a function

of ˛ for �0 D 10, ˛ D .1; 4/ and �0 D 100, ˛ D .1; 1:05/: Qualitatively how do the

results differ from the radiation case? Note that with increasing �0 you would need

better energy resolution in your incident beam to be able see the resonances. That is

if you used too wide an energy bin, you could miss some of the resonances.

19. Calculate the transmission coefficient for a potential barrier having a height of

3 eV when a particle having energy 1 eV is incident, assuming the particle mass is

1 g and the barrier width is 1 cm.

20. Calculate the reflection and transmission coefficients for a particle having mass

m scattered by the potential V.x/ D V0aı.x/, where V0 and a are positive constants.

21. For the double barrier potential shown in Fig. 6.20 it turns out that there are

certain energies where the transmission is 100%, even though the transmission

coefficient of each barrier is much less than unity. How can that be if it is very

difficult for a particle incident from the left to tunnel into the space between the

barriers and then tunnel out of the other side?

22. For a particle in an infinite potential well centered at the origin, prove that

quantum revivals [j .x; t/j2 D j .x; 0/j2] occur for times t that are integral

multiples of tr=8 if the initial wave function is symmetric about the origin and for

times t that are integral multiples of tr=4 if the initial wave function is antisymmetric

about the origin, where tr is given by Eq. (6.44).

23. For a particle in an infinite potential well centered at the origin, prove that

j .�x; tr=2/j2 D j .x; 0/j2
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where tr is given by Eq. (6.44). This result implies that there are quantum revivals at

t D tr=2 whenever the absolute square of the initial wave packet is either symmetric

or antisymmetric about the origin.

6.7.1 Advanced Problems

1. There are two ways to calculate the expectation values of Ok2 and Ok4
�
Ok D Op=„

�

in an eigenstate of the particle in an infinite square well potential. One is to use

j�n.k/j2 given in Problem 6.6–7, while the other is to use

Ok D 1

i

d

dx

and work with the spatial eigenfunctions. Prove that both methods lead to the same

value for
D
Ok2
E
. Now show that the coordinate space method leads to a finite value

of
D
Ok4
E
, while the momentum space method yields an infinite result. This problem

shows you that some care must be taken when the Fourier transform of the potential

is not well defined. The momentum space method gives the correct (infinite) result.6

2. Solve Newton’s equations of motion (that is, do not simply use energy

conservation, solve for the dynamics) for a classical particle incident from the left

on a potential step in one dimension. Consider both E < V0 and E > V0. Show

that you arrive at results consistent with energy conservation. To solve this problem,

replace the “step” by a ramp potential

V.x/ D lim
a!0C

8
<
:

V0 .xC a/ =2a � a < x < jaj
0 x � �a

V0 x � a

;

where lima!0C means that a approaches zero from positive values. The slope of

the ramp potential is V0=2a and approaches a potential step as a ! 0C: Use this

potential to solve Newton’s equation for the position and velocity of the particle and

then take the limit that a! 0C:

6See F. E. Cummings, The particle in a box is not simple, American Journal of Physics, Volume

45, pp 158–160 (1977), who looks at the infinite well as the limit of a potential having steep walls.

Alberto Rojo of Oakland University sent me an alternative calculation to prove that

D
Ok4
E

diverges

by considering the infinite well as the limit of a finite well whose depth is then allowed to go to

infinity.
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3. Normalize the wave function

 L
k .x/ D N

( �
eikx C k�d.k/

kCd.k/
e�ikx

�
x < 0

2k
kCd.k/

eid.k/x x > 0
k > 0;

where

d.k/ D
r
2m.E � V0/

„2 D
r

k2 � 2mV0

„2 :

To do this write

 L
k .x/ D N lim

�!0C

( �
eikx C k�d.k/

kCd.k/
e�ikx

�
e�x=2 x < 0

2k
kCd.k/

eid.k/xe��x=2 x > 0
k > 0;

and find N such that

Z 1

�1
dx
�
 L

k0.x/
��
 L

k .x/ D ı
�
k � k0�

in the limit that � ! 0 from positive values.

4. Consider a particle having mass m in the potential

V.x/ D V0a Œı.x/C ı.x � b/� ;

where V0, a, and b are positive constants. Moreover consider the limit ˇ2=kEa� 1;

where kE D
p
2mE=„, for which the transmission of a single barrier is small. Write

the eigenfunctions as

 E.x/ D

8
<
:

eikEx C Be�ikEx x < 0

CeikEx C De�ikEx 0 � x � b

FeikEx x > b

:

Plot the transmission coefficient T D jFj2 as a function of y D kEb for ˇ0 D 8 and

0 � y � 20 and show that T D 1 when y � q� , for integer q: The quantity ˇ0 is

defined by

ˇ02 D 2mV0ab

„2 D ˇ2 b

a
:

Also plot jCj2 for the same values to show that the wave between the barriers is large

compared to that outside the barriers at resonance. Interpret your result in terms of

quasibound states between the barriers.
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5. A particle having mass m moves in a one-dimensional potential

V.x/ D

8
<
:

0 x < 0

�V0 < 0 0 < x < a

V1 > 0 x > a

:

Write the general form of the eigenfunctions for bound states having E < 0 that

satisfy the boundary conditions as jxj � 1. Using the boundary conditions at x D 0
and x D a obtain a single equation that could be solved graphically to obtain the

eigenenergies. It simplifies the solution if you use sin and cos solutions for 0 < x <

a: Prove that, in the limit of a very weak well, ˇ20 D 2mV0a
2=„2 � 1, a bound state

exists only if ˇ1 < ˇ
2
0, where ˇ21 D 2mV1

„2 a2.



Chapter 7

Simple Harmonic Oscillator: One Dimension

In the case of piecewise constant potentials, solving the Schrödinger equation was

relatively easy. I obtained solutions in the various spatial regions where the potential

was constant and matched the wave functions and their derivatives at places where

the potential underwent a point jump discontinuity. In certain cases, additional

boundary conditions had to be imposed for x � 1 and/or x � �1. For arbitrary

continuous potentials, the Schrödinger equation must be solved as an entity and, in

general, such a solution must be carried out numerically. The numerical methods

generally involve the use a discretized form of the Schrödinger equation, in

which the kinetic energy operator and the potential are approximated on a finite

grid of points. Different approaches can then be used to obtain the eigenergies

and eigenfunctions.1 For certain potentials such as the gravitational-like potential

V.x/ D mgx, the smooth potential well potential, V.x/ D �V0 sech2 .x=a/, and

the Morse potential (an anharmonic potential that is used to model intermolecular

interactions),

V.x/ D V0

h
1 � 2e�.x�x0/=a

i2
; (7.1)

it is possible to get solutions in terms of so-called special functions of mathematical

physics. Special functions refer to quantities such as Bessel, Laguerre, hypergeo-

metric, or Hermite functions that have been studied extensively by mathematicians.

In this chapter I study the harmonic oscillator potential. As you will see, an analytic

form for the eigenfunctions of the harmonic oscillator can be obtained in terms of

Hermite polynomials.

1See, for example, Mohandas Pillai, Joshua Goglio, and Thad Walker, Matrix Numerov method

for solving Schrödinger’s equation, American Journal of Physics 80, 1017–1019 (2012), and the

references therein. See, also, Paolo Giannozzi, Lecture notes Numerical Methods in Quantum

Mechanics, at http://www.fisica.uniud.it/~giannozz/Corsi/MQ/mq.html.
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The potential for a simple harmonic oscillator (SHO) associated with a particle

having mass m subjected to a restoring force �
p

m!2xux can be written as

V.x/ D 1

2
m!2x2: (7.2)

Aside from this being the potential characterizing a particle bound by an ideal

spring, it is the approximate potential for any interaction potential that has a point

of stable equilibrium located at x D 0; since, in the region about x D 0,

V.x/ � V.0/C 1

2Š

d2V

dx2

ˇ̌
ˇ̌
xD0

x2: (7.3)

Near a point of stable equilibrium d2V=dx2
ˇ̌
xD0 can be identified with m!2 of the

equivalent problem of a particle having mass m moving in a SHO potential. For

example, in optical lattices, standing wave laser fields are used to trap atoms at the

bottom of potential wells that can be approximated as harmonic oscillator potentials.

The interaction potential between the nuclei of diatomic molecules can also be

approximated by a harmonic oscillator potential, giving rise to vibrational energy

levels.

7.1 Classical Problem

Most likely, you have already studied the dynamics of a classical, simple harmonic

oscillator. The harmonic oscillator potential is amazing in that the motion is periodic

with (angular) frequency !, no matter how you start the oscillator. It returns to its

initial position and velocity at all integral multiples of its period, T D 2�=!. The

particle spends the least amount of time near x D 0 since it is moving fastest there

and the most amount of time near the endpoints of its orbit,

˙ xmax D ˙
r

2E

m!2
; (7.4)

where E is the energy of the oscillator.

The position of the oscillator as a function of time is given by

x D xmax cos .!t/ ; (7.5)

assuming the particle starts with maximum displacement. The time-averaged prob-

ability density Pclass.x/ to find the particle between x and xC dx is just the fraction

of a half period that the particle is located between x and xC dx, namely

Pclass.x/dx D
ˇ̌
ˇ̌ dt

�=!

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌! .dt=dx/ dx

�

ˇ̌
ˇ̌ : (7.6)



7.2 Quantum Problem 165

To find dt=dx, I use the equation for conservation of energy

1

2
m

�
dx

dt

�2
C 1

2
m!2x2 D E (7.7)

and solve for

dt

dx
D 1

dx
dt

D 1q
2E
m
� !2x2

(7.8)

to obtain

Pclass.x/ D
1

�
p

x2max � x2
; (7.9)

provided jxj � xmax: For jxj > xmax, Pclass.x/ D 0.

As predicted, the probability density is greatest (actually infinite) at the endpoints

of the motion .x D ˙xmax/, and smallest at the equilibrium position (x D 0). The

momentum probability density is smallest at x D ˙xmax (where p D 0) and a

maximum at x D 0 (where p D ˙jpmaxj). In fact, owing to the symmetry of

the Hamiltonian on exchange of momentum and position when both are expressed

in dimensionless variables [see Eq. (7.13) below], the time-averaged momentum

probability density Wclass.p/ has the same form as Pclass.x/, namely

Wclass.p/ D
1

�
p

p2max � p2
; (7.10)

provided jpj � pmax D
p
2mE: For jpj > pmax, Wclass.p/ D 0. The minimum

possible energy of a classical particle in the well is equal to zero.

7.2 Quantum Problem

The Hamiltonian for the quantum problem is

OH D Op
2

2m
C 1

2
m!2 Ox2: (7.11)

It is useful to introduce dimensionless coordinate and momentum variables

defined by

O� D
r

m!

„ OxI (7.12a)
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O� D
r

1

„m! Op D
1

i

d

d�
; (7.12b)

such that

OH D 1

2
„!

�
O�2 C O�2

�
; (7.13)

which is obviously symmetric between the dimensionless momentum and coordi-

nate variables. The commutator of O� and O� is

h
O�; O�
i
D i: (7.14)

If I measure energy in units of „!, I can define a dimensionless Hamiltonian

operator OH0 by

OH0 D
OH
„! D

1

2

�
O�2 C O�2

�
: (7.15)

We already know a great deal about the solutions of the oscillator problem. The

energy levels are discrete and there is no energy degeneracy. Since the Hamiltonian

commutes with the parity operator, the eigenfunctions must also be eigenfunctions

of the parity operator, that is, they must be either even or odd functions of x.

Moreover we expect the ground state wave function to be a symmetric bell-shaped

curve centered at x D 0 (though not a sin function), the first excited state wave

function to be an antisymmetric function with a node at the origin, the second

excited state wave function to be symmetric about the origin with two nodes, etc.

Without loss of generality I can label the lowest energy state by n D 0, the first

excited state by n D 1; etc.

A lower bound for the ground state energy can be obtained using the uncertainty

principle. Since the eigenstates have definite parity, it is clear that

hO�in D
D
O�
E
n
D 0 (7.16)

for any dimensionless eigenfunction Q n.�/ of OH0. The notation used is

D
OO
E
n
D
Z 1

�1

� Q n.�/
�� OO Q n.�/d�; (7.17)

where OO is some arbitrary operator. From Eqs. (7.15)–(7.17), I can calculate

D
OH0
E
0
D 1

2

D
O�2 C O�2

E
0
D 1

2

�
��2 C��2

�
; (7.18)
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where ��2 is the variance of O� and ��2 is the variance of O� in the n D 0 state. It

follows from Eqs. (5.94) and (7.14) that

��2 � 1

4��2
; (7.19)

implying that

� D E

„! �
1

2

�
1

4��2
C��2

�
: (7.20)

The minimum value of the right-hand side of this expression occurs for��2 D 1=2;

consequently

� � 1

2

�
1

2
C 1

2

�
D 1

2
I (7.21a)

E � „!
2
: (7.21b)

We will see that „!=2 is the exact ground state energy, since the ground state

eigenfunction turns out to be a Gaussian (recall that the only minimum uncertainty

wave function is a Gaussian).

I can also deduce the eigenenergies (to within a constant) by demanding thatˇ̌ Q .�; t/
ˇ̌2

is a periodic function of time having period T D 2�=!. Since

ˇ̌ Q .�; t/
ˇ̌2 D

X

n;n0

ana�
n0
Q n.�/

� Q n0.�/
��

exp Œ�i .En � En0/ t=„� ; (7.22)

periodicity requires that

.En � En0/ .2�=!/ =„ D 2�q; (7.23)

where q is an integer. This implies that

En D „! .nC C/ , (7.24)

where n is a positive integer or zero and C is a constant that is greater than or equal

to 1=2 [which follows from Eq. (7.21b)]. Equation (7.23) could also be satisfied if

En D „! .nm C C/ for a positive integer m; but it is not hard to argue that m must be

equal to one. We have already seen that the infinite square well energy levels vary

as n2. Since the SHO potential is less steep than the infinite well, its energy levels

must vary with n less rapidly than n2; the only integral value of m that will work

is m D 1.
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7.2.1 Eigenfunctions and Eigenenergies

For the oscillator problem the Schrödinger equation in dimensionless variables can

be written as

1

2

�
� d2

d�2
C �2

�
Q n.�/ D �n

Q n.�/; (7.25)

where

�n D
En

„! : (7.26)

Thus, I must solve

d2 Q n.�/

d�2
C
�
2�n � �2

�
Q n.�/ D 0: (7.27)

As I often stress, you can solve a differential equation only if you know the

solution. However you can make some progress towards a solution by building in

the asymptotic form of the wave functions. We know the solution must go to zero as

jxj ! 1. In the case of a square well potential, the bound state eigenfunctions vary

as exp .�� jxj/ for large jxj : Since the oscillator, potential increases with increasing

jxj, we would expect a faster fall-off for the eigenfunctions.

For j�j � 1, I approximate Eq. (7.27) as

d2 Q n.�/

d�2
� �2 Q n.�/ D 0 (7.28)

and guess a solution, Q n.�/ D e�a�2 . Then

d Q n.�/

d�
D �2a�e�a�2 I

d2 Q n.�/

d�2
D 4a2�2e�a�2 � 2ae�a�2

� 4a2�2e�a�2 D 4a2�2 Q n.�/: (7.29)

If a D 1=2, Q n.�/ D e�a�2 is an approximate solution of Eq. (7.27) for j�j � 1. I

build this dependence into the overall solution by setting

Q n.�/ D e��2=2Hn.�/; (7.30)

where Hn.�/ is a function to be determined.
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I already know that Hn.�/ must be an even or odd function of � since the

eigenfunctions are also eigenfunctions of the parity operator. I also know that

the lowest energy wave function has no node in the classically allowed region, the

second energy level has one node, etc. This implies that Hn.�/ could be a polynomial

of order n:

Using Eq. (7.30) and substituting

d2 Q n.�/

d�2
D �2H0

n.�/�e��2=2 � Hn.�/e
��2=2

C�2Hn.�/e
��2=2 C H00

n .�/e
��2=2 (7.31)

into Eq. (7.27), I am led to the following differential equation for Hn.�/:

H00
n .�/ � 2�H0

n.�/C .2�n � 1/Hn.�/ D 0; (7.32)

where the primes indicate differentiation with respect to �. This is a well-known

(to those who know it well) equation of mathematical physics—Hermite’s differen-

tial equation. It admits polynomial solutions only if

2�n D 2nC 1; (7.33)

where n is a non-negative integer. The polynomial solutions are the only physically

acceptable solutions of Hermite’s equation that need concern us.2 In Mathematica,

the polynomial solutions of Hermite’s equation,

H00
n .�/ � 2�H0

n.�/C 2nHn.�/ D 0; (7.34)

are designated as HermiteH[n; ��. Note that by limiting the solution to polynomials,

I already have determined the eigenenergies, since it follows from Eq. (7.33) that

�n D nC 1

2
I n D 0; 1; 2; : : : : (7.35)

En D „!
�

nC 1

2

�
I n D 0; 1; 2; : : : . (7.36)

The energy levels are equally spaced with spacing „!, a result I had already

predicted based on the periodicity of the solution.

2The series solutions given in Eqs. (7.41) and (7.42) lead to divergent wave functions as � �
˙1 for non-integer n; however, solutions of Eq. (7.27) do exist that are regular as � � 1 (see

problems).
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You can guess the first few polynomial solutions of Eq. (7.34) with little effort:

H0.�/ D 1I (7.37)

H1.�/ D 2�I (7.38)

H2.�/ D 4�2 � 2I (7.39)

H3.�/ D 8�3 � 12�: (7.40)

[The Hermite polynomials Hn.�/ are defined with the convention that the coefficient

of the highest power of � is 2n]. Others can be obtained from recursion relations, a

series solution, or the so-called generating function. Hermite polynomials are one

of a class of orthogonal polynomials that can all be treated by similar methods.

I now list several useful properties of the Hermite polynomials. The series

solution for the Hermite polynomials for n even is

Hn.�/ D
.�1/n=2 nŠ

.n=2/Š

�
1 � 2 n

2Š
�2 C 22 n.n � 2/

4Š
�4 � 23 n.n � 2/.n � 4/

6Š
�6 C � � �

�

(7.41)

and for n odd is

Hn.�/ D
.�1/.n�1/=2 2nŠ

Œ.n � 1/ =2�Š

�
� � 2.n � 1/

3Š
�3 C 22 .n � 1/.n � 3/

5Š
�5 � � � �

�
I

(7.42)

Hn.�/ is a polynomial of order n having even parity if n is even and odd parity if n

is odd. Some recursion relations are:

H0
n.�/ D 2nHn�1.�/I (7.43a)

HnC1.�/C 2nHn�1.�/ D 2�Hn.�/I (7.43b)

HnC1.�/ D 2�Hn.�/ � H0
n.�/: (7.43c)

The last of these equations allows you to calculate HnC1.�/ from Hn.�/ and H0
n.�/;

in other words, it lets you construct all the Hermite polynomials starting from

H0.�/ D 1. The recursion relations will prove very useful in calculating integrals

that are needed in perturbation theory involving oscillators.

The Hermite polynomials are orthogonal (the wave functions must be orthogonal

since there is no degeneracy) if a weighting factor is used in the integrand, namely

Z 1

�1
e��2Hn.�/Hm.�/d� D 2nnŠ

p
�ın;m: (7.44)

Moreover there is a generating function for the Hermite polynomials: A generating

function is an analytic function that can be expressed as a power series of some



7.2 Quantum Problem 171

variable multiplied by the corresponding orthogonal polynomial. For the Hermite

polynomials, the generating function is

F.�; q/ D e�q2C2q� D
1X

nD0

qnHn.�/

nŠ
: (7.45)

To evaluate the Hn.�/, the exponential is expanded and compared term by term with

the series. The generating function can be used to evaluate integrals such as the one

appearing in Eq. (7.44).

The normalized eigenfunctions for the SHO are

Q n.�/ D
1p

2nnŠ
p
�

e��2=2Hn.�/I (7.46a)

 n.x/ D
1

�
„

m!

�1=4p
2nnŠ
p
�

e� m!
2„

x2Hn

�r
m!

„ x

�
: (7.46b)

It is often useful to rewrite the recursion relations given in Eqs. (7.43) in terms of

the wave function, namely

p
2

d Q n .�/

d�
D
p

n Q n�1 .�/ �
p

nC 1 Q nC1 .�/ I (7.47a)

p
2� Q n .�/ D

p
nC 1 Q nC1 .�/C

p
n Q n�1 .�/ I (7.47b)

p
2 .nC 1/ Q nC1 .�/ D � Q n .�/ �

d Q n .�/

d�
: (7.47c)

The first few dimensionless eigenfunctions are

Q 0.�/ D
1

�1=4
e��2=2I (7.48)

Q 1.�/ D
p
2�

�1=4
e��2=2I (7.49)

Q 2.�/ D

�
2�2 � 1

�

�1=4
p
2

e��2=2I (7.50)

Q 3.�/ D

�
2�3 � 3�

�

�1=4
p
3

e��2=2: (7.51)

These are graphed in Fig. 7.1. The ground state eigenfunction is a Gaussian,

implying that it represents a minimum uncertainty state. It is obvious from the form

of the Hamiltonian that the energy is shared equally between the kinetic (�2=2) and

potential (�2=2) energy. Thus, in an eigenstate,
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Fig. 7.1 Dimensionless oscillator wave functions, Q n .�/ ; for n D 0 (red, solid), n D 1 (blue,

dashed), n D 2 (black, dotted); and n D 3 (brown, solid)

Fig. 7.2 Graphs of

hˇ̌ Q n .�/
ˇ̌2 C .n C 1=2/

i
as a function of � for n D 0 � 4. The harmonic

oscillator potential is superposed on the plot

D
O�2
E
n
D
D
O�2
E
n
D
�

nC 1

2

�
: (7.52)

In Fig. 7.2, I plot
hˇ̌ Q n .�/

ˇ̌2 C .nC 1=2/
i

as a function of � for n D 0 � 4.

Each curve is displaced by the corresponding eigenenergy so that you can see

the probability distributions relative to the potential at the appropriate energy.

The probability distributions oscillate in the classically allowed region and fall off

exponentially in the classically forbidden region.

Finally I look at the eigenfunctions in the large n limit, when we would expect

the spatially averaged probability density to approach the classical probability

distribution in the classically allowed regime. To make a connection between the

classical and quantum problems I set x D
q

„
m!
�; and Eclass D .nC 1=2/ „! in

Eq. (7.9) to arrive at the dimensionless probability distribution,
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Fig. 7.3 Graphs of the dimensionless classical (blue, dashed) and quantum (red, solid) probability

distributions for n D 20. The quantum distribution corresponds to the n D 20 eigenfunction, while

the classical distribution corresponds to an energy E D 20:5„!

QPclass .�/ D
r
„

m!
Pclass .x/ D

1

�

q
2nC 1 � �2:

; (7.53)

which is plotted in Fig. 7.3 along with
ˇ̌ Q n.�/

ˇ̌2
for n D 20. You can see that the

value of
ˇ̌ Q 20.�/

ˇ̌2
, averaged over oscillations, is approximately equal to QPclass .�/ in

the classically allowed regime.

7.2.2 Time-Dependent Problems

Having solved for the eigenfunctions and eigenvalues, I can construct the time-

dependent solution, given some initial condition. The general time-dependent

solution is

 .x; t/ D
X

n

bne�i.nC 1
2 /!t n .x/ : (7.54)

The solution for j .x; t/j2 is periodic with period T D 2�=!, as in the classical

problem (the solution for  .x; t/ is periodic with period T D 4�=!/. In contrast to

the infinite square well problem, these revivals can be viewed as classical in nature

since the revival times are integral multiples of the oscillator period, independent

of „. The dimensionless wave function is

Q .�; t/ D e�i!t=2

1X

nD0
bne�in!t Q n .�/ ; (7.55)
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with

bn D
Z 1

�1
d� Q n .�/ Q .�; 0/ : (7.56)

One especially interesting case occurs for an initial wave function

Q .�; 0/ D 1

�1=4
e�.���0/

2
=2; (7.57)

corresponding to the ground state wave function displaced by �0. For this initial

wave function,

bn D
1p
2nnŠ�

Z 1

�1
d�e��2=2Hn.�/e

�.���0/
2
=2 D e��20=4�n

0p
2nnŠ

; (7.58)

where the integral could be carried out using the generating function or a table of

integrals. Thus, Q .�; 0/ can be expanded as

Q .�; 0/ D e��20=4
1X

nD0

�n
0p
2nnŠ
Q n .�/

D e�.�0=
p
2/
2
=2
X

n

�
�0=
p
2
�n

p
nŠ

Q n .�/ : (7.59)

This wave function is referred to as a coherent state wave function and appears

in quantum optics, as well. The coherent state wave function has special properties

that I will return to when I consider the oscillator using ladder operators and Dirac

notation in Chap. 11. From Eqs. (7.55) and (7.58), it follows that

Q .�; t/ D e�i!t=2e��20=4
X

n

�n
0p
2nnŠ

e�in!t Q n .�/

D e�i!t=2 e��20=4

�1=4
e��2=2X

n

1

nŠ

�
�0
2

e�i!t

�n

Hn .�/ : (7.60)

The sum is exactly that encountered with the generating function (7.45), so

Q .�; t/ D e�i!t=2 e��20=4

�1=4
e��2=2 exp

"
2

�
�0
2

e�i!t

�
� �

�
�0
2

e�i!t

�2#

D e�i!t=2 e��20=4

�1=4
e�

2=2 exp

(
�
�
� �

�
�0
2

e�i!t

��2)
I (7.61a)
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ˇ̌ Q .�; t/
ˇ̌2 D e��20=2

�1=2
e�

2

exp
h
�2�2 C 2��0 cos .!t/ � �20 cos .2!t/ =2

i

D 1

�1=2
exp

"
��2 C 2��0 cos .!t/ � �

2
0

2
Œ1C cos .2!t/�

#

D 1

�1=2
exp

h
��2 C 2��0 cos .!t/ � �20 cos2 .!t/

i

D 1

�1=2
e�Œ���0 cos.!t/�

2

: (7.61b)

The wave packet oscillates in the potential without changing its envelope. This

is referred to as a coherent state since it mimics the behavior of a classical

particle. Any spreading of the wave packet resulting from the various momentum

components in the packet is exactly compensated by the forces acting on the particle.

7.3 Summary

In obtaining the eigenfunctions and eigenvalues of the SHO, I have solved one of

the most important elementary problems in quantum mechanics. Many potentials

are modeled as harmonic oscillator potentials, so these solutions are used in a wide

range of applications. I did not go through a detailed derivation of the series solution

of Hermite’s equation, since it can be found in any standard mathematical physics

text. Basically one assumes a series solution, obtains the recursion relation for the

coefficients, and argues that the series must terminate, or the solution would diverge

for large jxj. In this way, you obtain the quantization condition.

7.4 Problems

1. How do you know the eigenfunctions of the 1-D oscillator must be even or odd?

How many nodes are there for Q n .�/? Based on the general solution of the time-

dependent Schrödinger equation and properties of the simple harmonic oscillator,

give an argument to show that the frequency difference between any two energy

levels must be an integer times !, where ! is the oscillator frequency. In general, to

form a wave packet that corresponds to a particle having energy E D 1 J moving in

a well having frequency 1Hz, how many states would be needed?

2. Write the normalized eigenfunctions Q n.�/ of the harmonic oscillator and plot

the first four normalized eigenfunctions.



176 7 Simple Harmonic Oscillator: One Dimension

3. For a dimensionless potential V.�/ varying as

V.�/ D A j�j� ;

where � is a dimensionless variable, the (dimensionless) Hamiltonian is

OH D �1
2

d2

d�2
C A j�j� :

For large positive � show that the asymptotic form of the wave function is

Q .�/ � exp
h
�a�.

�
2 C1/

i
;

where a is a constant that depends on � and A. For � D 0; 2, show the result

agrees with what was obtained for piecewise potentials and the harmonic oscillator,

respectively.

4. The Virial Theorem in mechanics states that, for closed orbits,

hTi D 1

2
hr � rVi ;

where T is the kinetic energy. For the 1-D oscillator prove that this implies

hTi D hVi

and for the electron in hydrogen [V .r/ D �Ke=r] that

hTi D �1
2
hVi :

5. For a 5mW standing wave laser field having a waist area of 4mm2, the potential

energy of a 85Rb atom in a “well” of the standing wave field can be approximated as

V.x/ D 7:9 � 10�28 sin2.kx/ J,

where k D 2�=� and � D 780 nm. Estimate the frequency spacing of the energy

levels near the bottom of the well. How cold do the atoms have to be to have most of

the atoms in the ground state of the well in thermal equilibrium? Such temperatures

can be achieved using techniques of laser cooling.

6. Expand the generating function

F.�; q/ D e�q2C2q� D
1X

nD0

qnHn.�/

nŠ

to fourth order in q and show that it gives the correct Hermite polynomials.
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7. Given an initial state for the 1-D oscillator

Q .�; 0/ D Ne��2=2
�
�2 C 2

�
:

Find N such that Q .�; 0/ is normalized. Find Q .�; t/. Calculate the average energy

in this state.

8. Given a particle having mass m moving in the dimensionless potential (in units

of „!),

V.�/ D
�
�2=2 � > 0

0 � < 0
;

show explicitly that the intensity reflection coefficient is equal to unity. [Hint, for

� > 0, the time-independent Schrödinger equation is

d2 Q n.�/

d�2
C
�
2�k � �2

�
Q n.�/ D 0;

where

�k D
Ek

„! D
„k2
2m!

D �k C
1

2
> 0:

A solution of this equation that goes to zero as � � 1 is

Q �k
.�/ D D�k

�p
2�
�
D 2��k=2e��2=2H�k

.�/ ;

where D� is a parabolic cylinder function. This equation defines Hermite functions

H� when � is non-integral. Solve Schrödinger’s equation for � < 0 and � > 0.

Then use the continuity of the wave function and its derivative at � D 0 to obtain an

expression for the reflection coefficient. You may use the fact that H� .�/ is real and

that dH�=d� can be calculated using Eq. (7.43a).]



Chapter 8

Problems in Two and Three-Dimensions:
General Considerations

8.1 Separable Hamiltonians in x; y; z

Going from one to two or three dimensions significantly increases the difficulty of

solving Schrödinger’s equation. In general the problem must be solved numerically.

Moreover, the numerical solutions may be difficult to obtain. However there are

classes of separable potentials for which the solution can be obtained easily. If the

classical potential can be written as

V.x; y; z/ D Vx.x/C Vy.y/C Vz.z/; (8.1)

then the corresponding quantum Hamiltonian for a particle having mass m moving

in this potential is

OH D OHx C OHy C OHz; (8.2)

where

OHj D
Op2j
2m
C OVjI j D x; y; z: (8.3)

The eigenfunctions of OH are simply the products of the eigenfunctions of OHx and OHy

and OHz,

 E .x; y; z/ D  Ex
.x/  Ey

.y/  Ez
.z/ ; (8.4)

provided

E D Ex C Ey C Ez; (8.5)

© Springer International Publishing AG 2018

P.R. Berman, Introductory Quantum Mechanics, UNITEXT for Physics,

https://doi.org/10.1007/978-3-319-68598-4_8

179

https://doi.org/10.1007/978-3-319-68598-4_8


180 8 Problems in Two and Three-Dimensions: General Considerations

where  Ej
.j/ is an eigenfunction of OHj and Ej an eigenenergy of OHj (j D x; y; z).

You can convince yourselves that the trial solution (8.4) works if Eq. (8.5) holds.

Of course you can construct an infinite number of potentials of the form given

by Eq. (8.1), but I discuss only the free particle, infinite square well, and simple

harmonic oscillator potential. These are the separable potentials of physical interest.

8.1.1 Free Particle

In the case of a free particle having mass m, the eigenfunctions are

 p .r/ D  px
.x/  py

.y/  pz
.z/ D 1

.2�„/3=2
eipxx=„eipyy=„eipzz=„

D 1

.2�„/3=2
eip�r=„; (8.6)

with

Ep D
p2x C p2y C p2z

2m
D p2

2m
: (8.7)

I have already discussed this solution in Chaps. 3 and 5.

8.1.2 Two- and Three-Dimensional Infinite Wells

For a particle having mass m moving in a two-dimensional, infinite height rectangu-

lar well potential located between 0 � x � ax; 0 � y � ay, the eigenfunctions are

 nx;ny
.x; y/ D

s
2

ax

2

ay

sin

�
nx�x

ax

�
sin

�
ny�y

ay

�
I

nx; ny D 1; 2; 3; : : : ; (8.8)

with

Enx;ny
D „

2�2

2m

"
n2x

a2x
C

n2y

a2y

#
: (8.9)

If ax and ay are incommensurate, there is no energy degeneracy. If ax D ay, there

is clearly at least a two-fold degeneracy when nx ¤ ny. However, there is more

degeneracy than this, in general. The problem reduces to a well-known problem
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in number theory to find pairs of integers nx and ny for which n2x C n2y D n,

where n is an integer.1 The degeneracy grows with increasing n, but very slowly,

approximately as log
p

n. There may be some underlying symmetry associated with

this extra deneneracy, but I have yet to find it.

For a particle having mass m moving in a three-dimensional infinite well box

potential, the eigenfunctions are

 nx;ny
.x; y/ D

s
2

ax

2

ay

2

az

sin

�
nx�x

ax

�
sin

�
ny�y

ay

�
sin

�
nz�z

az

�
I

nx; ny; nz D 1; 2; 3; : : : ; (8.10)

with

Enx;ny;nz
D „

2�2

2m

"
n2x

a2x
C

n2y

a2y
C

n2z

a2z

#
: (8.11)

If ax D ay D az the degeneracy of the states increases roughly linearly with n Dq
n2x C n2y C n2z :

8.1.3 SHO in Two and Three Dimensions

It is a trivial matter to solve the SHO problem in two and three dimensions using

rectangular coordinates. In two dimensions the Hamiltonian is

OH D OHx C OHy; (8.12a)

OHx D
Op2x
2m
C 1

2
m!2x Ox2; (8.12b)

OHy D
Op2y
2m
C 1

2
m!2y Oy2: (8.12c)

The eigenenergies are

Enx;ny
D „!x

�
nx C

1

2

�
C „!y

�
ny C

1

2

�
; nx; ny D 0; 1; 2; 3; : : : (8.13)

1This problem in number theory is related to the so-called Ramanujan or “taxi cab” numbers. The

famous number theorist Srinivasa Ramanujan is said to have commented on a taxi-cab number,

1729, as a very interesting number, since it is the smallest number expressible as the sum of two

cubes in two different ways, 13 C 123 or 93 C 103. Generalized Ramanujan numbers are different

integral solutions fn1; n2g to the equation nm
1 C nm

2 D n, for integer n and m:
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and eigenfunctions are

 nx;ny
.x; y/ D  nx

.x/  ny
.y/ ; (8.14)

where  nx
.x/ and  ny

.y/ are eigenfunctions of OHx and OHy, respectively, given by

Eq. (7.46b). If !x and !y are incommensurable, there is no degeneracy. In the limit

that !x D !y D !, I can write the energy as

En D „! .nC 1/ ; (8.15)

with

n D nx C ny: (8.16)

In this case there is an .nC 1/-fold degeneracy.

Similarly, in three dimensions, the eigenenergies are

Enx;ny;nz
D „!x

�
nx C

1

2

�
C „!y

�
ny C

1

2

�
C „!z

�
nz C

1

2

�
(8.17)

�
nx; ny; nz D 0; 1; 2; 3; : : :

�
and eigenfunctions are

 nx;ny;nz
.x; y; z/ D  nx

.x/  ny
.y/  nz

.z/ : (8.18)

In the limit that !x D !y D !z D !,

En D „!
�

nC 3

2

�
; (8.19)

with

n D nx C ny C ny: (8.20)

In this case there is an .nC 1/ .nC 2/ =2-fold degeneracy.

8.2 General Hamiltonians in Two and Three Dimensions

If there is no symmetry in the problem and the Hamiltonian is not a sum of the

form of Eq. (8.1), you are faced with solving the Schrödinger equation numerically,

in general. However, if there is symmetry, you can identify operators that commute

with the Hamiltonian. For example, with cylindrical symmetry, the z component

of linear momentum and z component of angular momentum commute with the
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Hamiltonian; in this limit, the eigenfunctions are products of eipzz=„eim� (m must be

integral for the wave function to return to itself when � ! � C 2�) times some

function of the radial (cylindrical) coordinate. There is always energy degeneracy

in this problem for m ¤ 0 since states having ˙m must have the same energy since

the potential is invariant under a rotation about the z axis. In the case of problems

with spherical symmetry, the angular momentum is conserved and can be used to

classify the solutions. I turn my attention to problems with spherical symmetry in

the next two chapters.

8.3 Summary

I have taken a brief excursion to look at some simple problems in two and

three dimensions. In problems lacking some global symmetries, it is possible to

arrive at some systematic solution of the Schrödinger equation only for separable

Hamiltonians.

8.4 Problems

1. Prove that the trial solution (8.4) is an eigenfunction of the Hamiltonian (8.3) if

Eq. (8.5) holds.

2. Find the eigenfunctions and eigenenergies of an infinite, two-dimensional square

well having equal sides L: That is

V.x; y/ D 0 0 � x � L; 0 � y � L

and is infinite otherwise. In general, there is at least a two-fold degeneracy of the

energy levels, but, in certain cases, show that there can be no degeneracy or greater

than two-fold degeneracy.

3. Prove that the energy degeneracy for the isotropic 2-D oscillator is .nC 1/ and

that for the isotropic 3-D oscillator is .nC 1/ .nC 2/ =2.

4. Prove that the parity of the eigenfunctions of both the isotropic 2-D oscillator

and the isotropic 3-D oscillator is .�1/n:



Chapter 9

Central Forces and Angular Momentum

I have been dealing mainly with problems involving one-dimensional motion. Since

nature is three-dimensional, I want to look at solutions of Schrödinger’s equation

in three dimensions. I consider only problems having spherical symmetry, that is,

potentials that are a function of r only. These correspond to central forces. Moreover,

for the most part, I restrict the discussion to bound state problems, such as the

important problem of determining the bound states of the hydrogen atom. Problems

related to continuum states will be discussed in the context of scattering theory

in Chap. 18. Since angular momentum is conserved for central forces, we are led

naturally to the quantum theory of angular momentum. It is important to remember,

however, that the results to be derived for the angular momentum operator are valid

independent of the specific nature of the interaction potential, spherically symmetric

or not.

9.1 Classical Problem

In classical physics, the concept of angular momentum plays a critical role in central

force motion. A particle having mass m, velocity v, and momentum p D mv moving

in a central potential V .r/ experiences a force given by

F D �rV .r/ D �dV .r/

dr
ur; (9.1)

where ur is a unit vector in the r direction. The torque � on the particle vanishes,

� D r � F D 0; (9.2)
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which implies that the angular momentum ,

L D r � p; (9.3)

is a constant of the motion. Moreover,

r � L D 0; (9.4)

the motion of the particle is in a plane perpendicular to L.

For the moment, I assume that L D Luz, so that the motion is in the x � y

plane. Using polar coordinates r and � in this plane, I construct the displacement

and velocity vectors,

r D r
�
cos�uxC sin�uy

�
D rur; (9.5a)

v D Pr D Pr
�
cos�uxC sin�uy

�
Cr

�
� sin�uxC cos�uy

� P�

D Prur C r P�u� ; (9.5b)

where

ur D cos�uxC sin�uy; (9.6a)

u� D � sin�uxC cos�uy; (9.6b)

and u� is a unit vector in the direction of increasing �. The kinetic energy is

T D 1

2
mv2 D 1

2
m
h
Pr2 C r2 P�2

i
: (9.7)

Using the relationship

L D r � p D mr � v D mr2 P�uz; (9.8)

I can rewrite the kinetic energy as

T D 1

2
mPr2 C L2

2mr2
D p2r

2m
C L2

2mr2
; (9.9)

where

pr D p � ur D mPr (9.10)

is the radial momentum. Although Eq. (9.9) was derived assuming that L D Luz, it

remains valid for arbitrary directions of L if Eq. (9.5a) is replaced by

r D r
�
sin � cos�uxC sin � sin�uy C cos �uz

�
D rur; (9.11)

where .r; � ; �/ are now spherical coordinates.
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The first term in Eq. (9.9) is the radial and the second term the angular or

rotational motion contribution to the kinetic energy. The total energy is

E D p2r

2m
C L2

2mr2
C V .r/ ; (9.12)

such that

1

2
mPr2 D E �

�
V .r/C L2

2mr2

�
: (9.13)

In other words, the radial motion is determined by the so-called effective potential

defined by

Veff .r/ D V .r/C L2

2mr2
: (9.14)

The effective potential is extremely useful in analyzing problems involving central

forces, as you shall see in Chap. 10.

9.2 Quantum Problem

9.2.1 Angular Momentum

The classical definition of angular momentum can be taken over to the quantum

domain; that is, a Hermitian angular momentum operator in quantum mechanics

can be defined as

OL D Or � Op D OLxux C OLyuy C OLzuz; (9.15)

where

OLx D OyOpz � OzOpyI (9.16a)

OLy D OzOpx � OxOpzI (9.16b)

OLz D OxOpy � OyOpx: (9.16c)

You can show easily that OL is Hermitian (recall that the product of any two Hermi-

tian operators is Hermitian if the operators commute). Since the angular momentum

is a constant of the motion, we expect it to commute with the Hamiltonian. Before

proving this, let me establish some basic commutation properties of the angular

momentum operators. The commutator of OLx and OLy is
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h
OLx; OLy

i
D
��
OyOpz � OzOpy

�
; .OzOpx � OxOpz/

�

D OyOpx ŒOpz; Oz�C Opy Ox ŒOz; Opz� D i„
�
OxOpy � OyOpx

�
D i„OLz: (9.17)

In obtaining this result you do not have to worry about the order of commuting

operators. I can cycle this relation by letting x! y; y! z; z! x, to obtain

h
OLy; OLz

i
D i„OLxI (9.18a)

h
OLz; OLx

i
D i„OLy: (9.18b)

The different components of the angular momentum operator do not commute, so

it is not possible to measure two components simultaneously. If we knew all three

components of the angular momentum simultaneously, it would imply that we could

simultaneously measure both the position and momentum of the particle precisely,

which would constitute a violation of the uncertainty principle.

Other useful commutation relations are:

h
OLx; Ox

i
D 0;

h
OLx; Oy

i
D i„OzI

h
OLx; Oz

i
D �i„OyI (9.19a)

h
OLx; Opx

i
D 0;

h
OLx; Opy

i
D i„OpzI

h
OLx; Opz

i
D �i„OpyI (9.19b)

h
OLx; Op2

i
D
h
OLx; Op2x

i
C
h
OLx; Op2y

i
C
h
OLx; Op2z

i
D 0I (9.19c)

h
OLx; OV

i
D
h�
OyOpz � OzOpy

�
; OV
i
D y ŒOpz;V.r/� � z

�
Opy;V.r/

�

D „
i

�
y
@V.r/

@z
� z

@V.r/

@y

�

D „
i

�
y

dV.r/

dr

@r

@z
� z

dV.r/

dr

@r

@y

�

D „
i

dV.r/

dr

h
y

z

r
� z

y

r

i
D 0; (9.19d)

plus terms with x ! y; y ! z; z ! x. The fact that r D
p

x2 C y2 C z2 was

used in deriving the last commutation relation, in which I also replaced OV with

V.r/ by assuming implicitly that each commutator acted on a function of r. As a

consequence of the commutator relations,

h
OL; OH

i
D
�
OL; Op

2

2m
C OV

�
D 0: (9.20)

The angular momentum commutes with the Hamiltonian and is a constant of the

motion.
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Since the individual components of OL do not commute it is not possible to

find simultaneous eigenfunctions of OLx; OLy; OLz. As you will see, the eigenvalues

of one component of OL are not sufficient to uniquely label the degenerate energy

eigenfunctions of a Hamiltonian in problems having spherical symmetry. A new

operator is needed that commutes with both OL and OH. An operator that satisfies

these requirements is the square of the angular momentum operator, defined by

OL2 D OL2x C OL2y C OL2z ; (9.21)

since

h
OL; OL2

i
D 0I (9.22a)

h
OL2; Op2

i
D 0; (9.22b)

in general, and

h
OL2; OV

i
D 0I (9.23a)

h
OL2; OH

i
D 0; (9.23b)

for spherically symmetric potentials. In effect, eigenvalues of the operator OL2
determine what values of the magnitude of the angular momentum can be measured

in a quantum system. Since

h
OL2; OH

i
D 0I

h
OL; OH

i
D 0I

h
OL; OL2

i
D 0; (9.24)

it is possible to find simultaneous eigenfunctions of OL2, OH; and (any) one component

of OL for a spherically symmetric potential. It turns out that the eigenvalues of OH; OL2;
and (any) one component of OL can be used to uniquely label the eigenfunctions of

the Hamiltonian associated with spherically symmetric potentials.

9.2.1.1 Eigenfunctions of OL2 and OL

As you might imagine it is not especially convenient to get eigenfunctions of OL2 and
OL in rectangular coordinates. Spherical coordinates are the natural venue. There is

still a lot of algebra involved. In coordinate space,

OL D Or � Op D „
i

r � r : (9.25)
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I can express r and r in spherical coordinates as

r D rur (9.26)

and

r D ur

@

@r
C u�

1

r

@

@�
C u�

1

r sin �

@

@�
; (9.27)

where the u’s are orthogonal unit vectors,

ur D sin � cos�ux C sin � sin�uy C cos �uzI (9.28a)

u� D cos � cos�ux C cos � sin�uy � sin �uzI (9.28b)

u� D � sin�ux C cos�uy: (9.28c)

As a consequence,

OL D „
i

rur�
�

ur

@

@r
C u�

1

r

@

@�
C u�

1

r sin �

@

@�

�

D „
i

�
u�

@

@�
� u�

1

sin �

@

@�

�
; (9.29)

such that

OL D �i„

2
4

�
� sin� @

@�
� cot � cos� @

@�

�
ux

C
�

cos� @
@�
� cot � sin� @

@�

�
uy C @

@�
uz

3
5 : (9.30)

Therefore,

OLx D �
„
i

�
sin�

@

@�
C cot � cos�

@

@�

�
I (9.31a)

OLy D
„
i

�
cos�

@

@�
� cot � sin�

@

@�

�
I (9.31b)

OLz D
„
i

@

@�
: (9.31c)

The operator OLz has a simple form in spherical coordinates owing to the fact that �

is measured from the z-axis.

I still need an expression for OL2. I use Eq. (9.29) to write

OL2 D OL � OL D „
i
OL�
�

u�
@ 

@�
� u�

1

sin �

@ 

@�

�

D �„2
�

u�
@

@�
� u�

1

sin �

@

@�

�
�
�

u�
@ 

@�
� u�

1

sin �

@ 

@�

�
: (9.32)
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It is important to realize that the u� and u� are functions of � and �, with

@u�

@�
D � sin � cos�ux � sin � sin�uy � cos �uz D �urI (9.33a)

@u�

@�
D � cos � sin�ux C cos � cos�uy D cos �u� I (9.33b)

@u�

@�
D 0I (9.33c)

@u�

@�
D � cos�ux � sin�uy; (9.33d)

such that

OL2 D �„2
�

u�
@

@�
� u�

1

sin �

@

@�

�
�
�

u�
@ 

@�
� u�

1

sin �

@ 

@�

�

D �„2u� �

2
4 u�

@2 

@�2

Cur
1

sin �

@ 

@�
� u�

@
@�

�
1

sin �

@ 

@�

�
3
5

C„2 u�

sin �
�
"�
� cos�ux � sin�uy

�
@ 

@�
C u�

@2 

@�@�

� cos �u�
1

sin �

@ 

@�
� u�

1
sin �

@2 

@�2

#

D �„2
�
@2 

@�2
C cot �

@ 

@�
C 1

sin2 �

@2 

@�2

�
; (9.34)

which implies that

OL2 D �„2
�
@2

@�2
C cot �

@

@�
C 1

sin2 �

@2

@�2

�

D �„2
�
1

sin �

@

@�
sin �

@

@�
C 1

sin2 �

@2

@�2

�
: (9.35)

In deriving Eq. (9.34), I used the fact that the unit vectors is spherical coordinates

are orthogonal, along with the identity u� �
�
cos�ux C sin�uy

�
D cos � .

I want to get the simultaneous eigenfunctions of OL2 and one component of OL.

Since OLz has the simplest form, I choose it. It is easy to solve for eigenfunctions ˆm

of OLz using

OLzˆm D
„
i

@ˆm

@�
D m„ˆm; (9.36)
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where m labels the eigenvalue of OLz having value m„. The solution is

ˆm .�/ D eim� : (9.37)

The quantity m is not arbitrary; whenever the azimuthal angle � increases by 2� ,

ˆm .�/ must return to its same value. This can happen only if m is an integer

(positive, negative, or zero). Thus the normalized eigenfunctions are

ˆm .�/ D
r

1

2�
eim� ; m D 0;˙1;˙2; : : : (9.38)

and the eigenvalues of OLz are integral multiples of „. The quantum number m is

referred to as the magnetic quantum number, for reasons that will become apparent

when I consider the Zeeman effect in Chap. 21.

There is already an important difference from the classical case where, for a

given angular momentum L, the z component of angular momentum can take

on continuous values from �L to L. In quantum mechanics, the z-component

(any component, for that matter) of angular momentum can take on only integral

multiples of „.
The eigenvalue equation for OL2 is

OL2‚`m .�; �/ D „2` .`C 1/‚`m .�; �/ ; (9.39)

where ` is totally arbitrary at this point (i.e., it need not be an integer). I assume a

solution of the form

‚`m .�; �/ D G`m .�/ eim� ; (9.40)

which is guaranteed to be a simultaneous eigenfunction of OLz. Substituting this trial

solution into Eq. (9.39) and using Eq. (9.35), I find that G`m .�/ satisfies the ordinary

differential equation

�„2
�
1

sin �

d

d�
sin �

dG`m .�/

d�
� m2

sin2 �
G`m .�/

�
D „2` .`C 1/G`m .�/ : (9.41)

By setting x D cos � and G`m .�/ � Pm
` .x/, I can transform this equation into

d

dx

��
1 � x2

� dPm
` .x/

dx

�
C
�
` .`C 1/ � m2

1 � x2

�
Pm
` .x/ D 0; (9.42)

which is known as Legendre’s equation. The only solutions of Legendre’s equation

that are regular (do not diverge) at x D ˙1 [� D 0; �] are the so-called associated

Legendre polynomials Pm
` .x/ for which ` is a positive integer or zero that is greater

than or equal to jmj {Mathematica symbol LegendreP[`;m; x�}. In other words, the
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physically acceptable solutions have

` D 0; 1; 2; : : : : (9.43)

and, for each value of `,

m D �`;�`C 1; : : : ` � 1; `: (9.44)

The eigenvalues of OL2 are

L2 D „2` .`C 1/ , ` D 0; 1; 2; : (9.45)

The quantum number ` is referred to as the azimuthal or angular momentum

quantum number.

Before looking at the eigenfunctions in more detail, I can summarize the results

so far. Classically the magnitude squared of the angular momentum L2 can take

on any value from zero to infinity and Lz can take on continuous values from

�L to L. In quantum mechanics, the eigenvalues of OL2 are limited to the set of

discrete (quantized) values 0„2; 2„2; 6„2; : : : ` .`C 1/ „2. For each value of `, the

eigenvalues of OLz (or of any component of angular momentum, for that matter) vary

from �`„ to `„ in integral steps of „. In other words, for each value of `, there

.2`C 1/ values of m that are allowed.

Moreover, in quantum mechanics, we cannot know the vector angular momen-

tum exactly since the components of OL do not commute. We can specify the

magnitude of the angular momentum and one of its components, say Lz, but then

there is uncertainty in both Lx and Ly. All we know about these other components is

that they are constrained by

L2x C L2y D L2 � L2z : (9.46)

In other words, there is an uncertainty cone of Lx and Ly having radius�
` .`C 1/ � m2

�1=2 „ for a given value of ` and m. I will return to a discussion

of the physical interpretation of angular momentum in quantum mechanics after I

look at the eigenfunctions.

You might be wondering about the result that the magnitude of the angular

momentum is quantized in units of
p
` .`C 1/„ and not `„. This follows from

solving the eigenvalue equation, but there does not seem to be a simple geometric

interpretation of this result as there was for Lz. Based on the uncertainty principle,

you can rule out the possibility that L2 D .`„/2 . If this were the case for integer `

and if the maximum value of m is equal to `; then the state of maximum ` would

have no uncertainty in L2x C L2y , which is impossible since OLz does not commute

with OLx and OLy. You can also derive the result if you assume that ` is integral and

that m takes on integral values from �` to `. With this assumption, for a spherically

symmetric state
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˝
L2
˛
D 3

˝
L2z
˛
D 3„2
2`C 1

X̀

�`
m2 D ` .`C 1/ „2: (9.47)

However this is a bit of a swindle since I am trying to understand how the magnitude

of the angular momentum is quantized and I have already implicitly assumed it to

be the case by assuming that m takes on integral values from �` to `.

The normalized simultaneous eigenfunctions of OL2 and OLz are the so-called

spherical harmonics Ym
` .�; �/ defined by

Ym
` .�; �/ D

s
2`C 1
4�

.` � m/Š

.`C m/Š
Pm
` .cos �/eim� (9.48)

(Mathematica symbol SphericalHarmonicY[`;m; � ; �]). Thus

OL2Ym
` .�; �/ D „2` .`C 1/ Ym

` .�; �/ ; ` D 0; 1; 2; : : : (9.49a)

OLzY
m
` .�; �/ D m„Ym

` .�; �/ I m D 0;˙1;˙2 : : :˙ `:
(9.49b)

The first few Ym
` .�; �/ are

Y00 .�; �/ D
r

1

4�
I (9.50a)

Y01 .�; �/ D
r

3

4�
cos � I (9.50b)

Y˙1
1 .�; �/ D �

r
3

8�
sin �e˙i� I (9.50c)

Y02 .�; �/ D
r

5

4�

�
3 cos2 � � 1

2

�
I (9.50d)

Y˙1
2 .�; �/ D �

r
15

8�
sin � cos �e˙i� I (9.50e)

Y˙2
2 .�; �/ D 1

4

r
15

2�
sin2 �e˙2i� I (9.50f)

Y�m
` D .�1/m

�
Y�m
`

��
: (9.50g)

The Ym
` .�; �/ are orthonormal,

Z 2�

0

d�

Z �

0

sin � d�
�
Ym
` .�; �/

��
Ym0

`0 .�; �/ D ı`;`0ım;m0 : (9.51)
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Under an inversion of coordinates, r! �r, the angles change by � ! � � �; � !
� C � , and

Ym
` .� � �; � C �/ D .�1/` Ym

` .�; �/ : (9.52)

Thus, the parity of Ym
` .�; �/ is .�1/`; that is, the Ym

` .�; �/ are also simultaneous

eigenfunctions of the parity operator. This must be the case since the OL2, OLz, and the

parity operator commute and the eigenfunctions of OL2 and OLz are nondegenerate.

I also list a few properties of the associated Legendre polynomials Pm
` .x/. For

m D 0, the associated Legendre polynomials reduce to the Legendre polynomials

P`.x/ (Mathematica symbol LegendreP[`; x]); that is, P0`.x/ D P`.x/, which satisfies

the differential equation

d

dx

��
1 � x2

� dP`.x/

dx

�
C Œ` .`C 1/�P`.x/ D 0; (9.53)

and

P`.x/ D
1

2``Š

d`

dx`

�
x2 � 1

�`
(Rodrigues formula); (9.54a)

.`C 1/P`C1 � .2`C 1/ xP` C `P`�1 D 0I (9.54b)

�
1 � x2

� dP`

dx
D �`xP` C `P`�1I (9.54c)

Z 1

�1
dxP`.x/P`0.x/ D 2

2`C 1ı`;`
0 I (9.54d)

Z �

0

sin � d�P`.cos �/P`0.cos �/ D 2

2`C 1ı`;`
0 I (9.54e)

1p
1 � 2xqC q2

D
1X

`D0
q`P`.x/; (generating function); (9.54f)

P0 .x/ D 1I P1 .x/ D xI P2 .x/ D
3x2 � 1
2
I P3 .x/ D

5x3 � 3x

2
: (9.54g)

The Legendre polynomials are defined such that

P` .˙1/ D .˙1/` ; (9.54h)

implying that P` .cos �/ D 1 for � D 0 and .�1/` for � D � .

The associated Legendre polynomials can be obtained from the Legendre

polynomials via
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Pm
` .x/ D .�1/m

�
1 � x2

�m=2 dm

dxm
P`.x/; m � 0I (9.55a)

P�m
` .x/ D .�1/m .` � m/Š

.`C m/Š
Pm
` .x/ m � 0I (9.55b)

Z 1

�1
dxPm

` .x/P
m
`0.x/ D

2

2`C 1
.`C m/Š

.` � m/Š
ı`;`0 : (9.55c)

Note that for odd m the associated Legendre “polynomials” are not polynomials at

all since they contain the factor
�
1 � x2

�m=2
.

9.2.2 Physical Interpretation of the Spherical Harmonics

I now return to a discussion of the physics. It should be clear by now that the angular

momentum operator plays an important role in central force problems since it is a

constant of the motion. In the classical problem, suppose the angular momentum

is in the positive z direction, L D Luz. This means the orbit is in the xy plane and

there is � dependence in a specific orbit, e.g. an elliptical orbit in which the semi-

major axis is along x: For a given value of energy and angular momentum, the �

dependence is determined by the initial conditions. If, on the other hand, we average

over all possible initial conditions having the same energy E and angular momentum

L D Luz, there cannot be any � dependence owing to the overall symmetry about

the z-axis. In some sense, quantum mechanics does this averaging for you with

respect to the eigenfunctions. This is the reason why
ˇ̌
Ym
` .�; �/

ˇ̌2
is independent

of �.

You will see in the next chapter that the eigenfunctions of the Hamiltonian for

spherically symmetric potentials that are simultaneous eigenfunction of OL2 and OLz

can be written quite generally as

 E`m .r/ D RE`.r/Y
m
` .�; �/ ; (9.56)

where RE`.r/ is a radial wave function. Since
ˇ̌
Ym
` .�; �/

ˇ̌2
is independent of � , I

can define an angular probability distribution for the polar angle � by

W`m.�/ D 2� sin �
ˇ̌
Ym
` .�; �/

ˇ̌2
: (9.57)

This distribution is normalized,

Z �

0

W`m.�/ d� D 1: (9.58)
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It is fairly amazing that, for fixed ` and m, the angular probability distribution

W`m.�/ associated with an eigenfunction of a spherically symmetric potential is

the same for all central forces, independent of the energy.

It is a simple matter to plot W`m.�/ as a function of � . Graphs of W`m.�/ are

shown as the solid red curves in Figs. 9.1, 9.2, and 9.3 for ` D 50 and m D 50; 25; 0,

respectively. There are .` � jmj/ zeroes in W`m.�/ for 0 < � < � , reflecting the fact

that there are .` � jmj/ nodes in Pm
` .cos �/. This is similar to what we found for the

energy eigenfunctions for one-dimensional potentials. In this case, however, there

are zero nodes for jmj D ` and a new node appears with each decrease in the value

of jmj.
The question that remains, however, is “What is the physical significance of these

curves?” To answer this question, I can make a comparison with the corresponding

classical problem. In the limit of large quantum numbers, the quantum probability

distribution, averaged over oscillations in the classically allowed region, should

be approximately equal to the classical probability distribution, averaged over all

possible initial conditions consistent with the constant values of energy, magnitude

of angular momentum, and z-component of angular momentum.

To compare the classical and quantum probability distributions, I must specify

the values of the angular momentum that are consistent with the conserved

quantities of the quantum problem. In other words, I set

L D
p
` .`C 1/„ (9.59)

and

Lz D m„: (9.60)

With these values, the classical angular momentum can be located anywhere on an

uncertainty cone (see Fig. 9.4) for which

L2x C L2y D L2 � L2z : (9.61)

Figure 9.4 can help you to understand the nature of the classical motion. Since

the motion is in a plane perpendicular to L, for any position of L on the uncertainty

cone, the motion must be confined to polar angles

�=2 � cos�1 .Lz=L/ � � � �=2C cos�1 .Lz=L/ ; (9.62)

so that the classically allowed region is

�=2 � cos�1
�

m=
p
` .`C 1/

�
� � � �=2C cos�1

�
m=
p
` .`C 1/

�
(9.63)

when Eqs. (9.59) and (9.60) are used.

It can be shown (see Appendix) that the classical polar angle probability

distribution is given by



198 9 Central Forces and Angular Momentum

Fig. 9.1 Polar angle probability distribution W`m as a function of � for ` D 50 and m D 50: The

solid curve is the exact, quantum result and the dashed curve is the classical probability distribution

Fig. 9.2 Same as Fig. 9.1, but with ` D 50 and m D 25

Fig. 9.3 Same as Fig. 9.1, but with ` D 50 and m D 0
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= [ ℓ(ℓ+1)–m2]1/2 h+

L

L2 L2
x y

Lz = mh

x

y

z

Fig. 9.4 Uncertainty cone for the x and y components of angular momentum

W`m .�/
class D sin �

�
n
`.`C1/�m2

`.`C1/ � cos2 �
o1=2 ; (9.64)

restricted to positive values of the term in curly brackets. Owing to the symmetry,

the classical motion, averaged over all values of L2x C L2y , consistent with Eq. (9.61),

cannot depend on the azimuthal angle �, even if there is a � dependence for specific

orbits.

In Figs. 9.1, 9.2 and 9.3, the classical distribution function is shown as the dashed

blue curves. For m D 50; the motion is constrained to be very close to the xy plane

(� D �=2) since this corresponds to L � Lzuz. For m D 25; the values of � are

restricted to the classically allowed regime

0:52 � � � 2:62: (9.65)

When m D 0, the angular momentum lies in xy plane so, for a given value of

L � Lxuz C Lyuz, the classical motion must be in a plane perpendicular to the xy

plane. In this case, W`0 .�/
class D 1=� ; the classical angle distribution, averaged

over all possible initial conditions, is constant. Since the motion is in a plane

perpendicular to the xy plane and since an average over all initial conditions is taken,

the resultant time-averaged angular probability distribution must be independent

of � . For values of ` � 1, the quantum probability distribution, averaged over

oscillations in the classically allowed region, is approximately equal to the classical

probability distribution.

Returning to the quantum problem, I note that the eigenfunction with m D `

comes closest to the classical state in which the angular momentum is in the z

direction. In other words, the eigenfunction with m D ` minimizes the angle of

uncertainty cone. For this state,
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ˇ̌
Y`` .�; �/

ˇ̌2 � sin2` � I (9.66a)

W`m .�/ D 2� sin �
ˇ̌
Ym
` .�; �/

ˇ̌2 � sin2`C1 �: (9.66b)

Thus,
ˇ̌
Y`` .�; �/

ˇ̌2
is peaked about � D �=2, and the sharpness of the peak increases

with increasing `: This corresponds to the fact that the classical orbit is constrained

to be very close to the xy plane. In fact, I can estimate how far the orbit strays from

the xy plane by calculating

h�i D
R �
0

d� � sin2`C1 �
R �
0

d� sin2`C1 �
D �

2
(9.67a)

�� D
 R �

0
d� �2 sin2`C1 �

R �
0

d� sin2`C1 �
� �

2

4

!1=2
� 1p

2`C 1
: (9.67b)

The integral in the equation for �� can be evaluated exactly in terms of hypergeo-

metric functions, but has been approximated for large `. You can also determine the

dependence on ` by looking at the value �� � .� � �=2/ for which the function

sin2`C1 � is equal to 1=2.

The uncertainty in the magnitude of L, �L; is of order of the radius of the

uncertainty cone,

�L �
rD
OL2x C OL2y

E
D
p
Œ` .`C 1/ � `2�„ D „

p
` (9.68)

Therefore

�L�� � „

s
`

2`C 1 (9.69)

which is an angular momentum—angle uncertainty relation, although it is not a

strict uncertainty relation since there is no Hermitian operator that corresponds to

angle. For values of m ¤ `, the values of both �L and �� increase.

The key point to remember is that the motion in the � direction is, for the

most part, restricted to a range of angles given by Eq. (9.63) when the system is

in an eigenstate of OL2 and OLz. There is no � dependence in the angular probability

distribution because I have chosen eigenfunctions of OL2 and OLz. Had I chosen OL2
and OLx the eigenfunctions would be linear combinations of the Ym

` .�; �/ ; and

the absolute square of an eigenfunction could depend on �, but it would be a

function only of the angle that L makes with the x-axis (see problems). The

angular probability distribution associated with the simultaneous eigenfunctions of

a spherically symmetric Hamiltonian and the operators OL2 and OLz does not depend

in any way on the specific form of the potential.
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9.3 Summary

We have seen that angular momentum plays a critical role in problems having

spherical symmetry. I obtained the eigenvalues and simultaneous eigenfunctions

of the operators OL2 and OLz. Moreover I was able to make a correspondence with

the analogous classical problem to help give you a physical interpretation to the

spherical harmonics for problems involving spherical symmetry.

9.4 Appendix: Classical Angular Distribution

The classical polar angle probability distribution for central force motion is given by

Wm
` .�/

class D 1

T21

ˇ̌
ˇ̌ dt

d�

ˇ̌
ˇ̌ (9.70)

where

T21 D
Z rmax

rmin

dt

dr
dr (9.71)

and rmin is the minimum value of r and rmax the maximum value of r for the orbit:

For bound orbits of a particle having mass m, it is easy to calculate rmin and rmax as

roots of

E � V .r/ � „
2` .`C 1/
2mr2

D 0: (9.72)

On the other hand, for unbound orbits corresponding to a scattering problem, rmax

approaches infinity. For closed orbits, T21 can be related to the period of the orbit.

The probability distribution (9.70) must be averaged over all possible classical

trajectories consistent with Eqs. (9.59)–(9.61). A simple way to envision this is to

first imagine the angular momentum in the z-direction. The radial coordinate r is a

function of .� � �0/, r D r.� � �0/, where � is the azimuthal angle and �0 is a

constant that determines the orientation of the orbit in the x�y plane. I must average

the results over all values of �0 from 0 to 2� . For bound state orbits � � �0 varies

from 0 to 2� , but for unbound orbits � � �0 may vary from some fixed angle ˇ to

2� � ˇ: For example, in the Coulomb problem with positive energy, you can have

ˇ D cos�1.1=�/; (9.73)

where � is the eccentricity of the orbit; this value of ˇ corresponds to an asymptote

of a hyperbolic orbit. Once the average over �0 is performed, the entire result can
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be rotated such that the plane of the orbit is perpendicular to L. Following this

procedure, I must calculate

W`m .�/
class D 1

T21

�ˇ̌
ˇ̌ dt

d�

ˇ̌
ˇ̌
�

�0

; (9.74)

which is independent of the azimuthal angle of L.

To calculate dt=d� , I start from

L � r D 0; (9.75)

with

L D L .uz cos˛ C ux sin˛/ (9.76a)

r D r
�
uz cos � C ux sin � cos� C uy sin � sin�

�
(9.76b)

(without loss of generality, I can take L in the x � z plane). Clearly,

cos˛ D Lz=L: (9.77)

From Eqs. (9.75) and (9.76), I find

cos� D � cot˛ cot � (9.78)

and

sin� D
p

sin2 ˛ � cos2 �

sin˛ sin �
: (9.79)

The square of the angular momentum is given by

L2 D m2r4
�
P�2 C sin2 � P�2

�
: (9.80)

Using Eq. (9.78), I obtain

� sin� P� D cot˛

sin2 �
P�; (9.81)

allowing me to calculate

P� D � cos˛

sin �
p

sin2 ˛ � cos2 �

P�: (9.82)
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Combining Eqs. (9.80) and (9.82), I can express the square of the angular momen-

tum as

L2 D m2r4 P�2 sin2 �

sin2 ˛ � cos2 �
; (9.83)

from which it follows that

dt

d�
D mr2

L

sin �p
sin2 ˛ � cos2 �

: (9.84)

Finally, using Eqs. (9.74) and (9.84), I arrive at

W`m .�/
class D 1

T21

�ˇ̌
ˇ̌ dt

d�

ˇ̌
ˇ̌
�

�0

D 1

T21

m
˝
r2
˛
�0

L

sin �
�
sin2 ˛ � cos2 �

�1=2 :

(9.85)

Equation (9.85) is somewhat surprising. It seems to imply that

1

T21

m
˝
r2
˛
�0

L

must be independent of energy for any central potential. I now show that this is

actually the case, starting from

˝
r2
˛
�0
D 1

2�

Z 2�

0

r2 .� � �0/ d'0 D
1

2�

Z 2�

0

r2. N�/d N�; (9.86)

where N� D � � �0. By writing

d N� D d N�
dt

dt

dr
dr D P� dt

dr
dr; (9.87)

I can obtain

˝
r2
˛
�0
D 2

2�

Z rmax

rmin

P�r2
dt

dr
dr D L

�m

Z rmax

rmin

dt

dr
dr D LT21

2�m
; (9.88)

where Eq. (9.71) was used. The extra factor of 2 in Eq. (9.88) arises from the fact that

as N� varies from 0 to 2� , r varies twice from rmin to rmax. The classical probability

distribution, calculated using Eqs. (9.85) and (9.88) is

W`m .�/
class D 1

T21

�ˇ̌
ˇ̌ dt

d�

ˇ̌
ˇ̌
�

�0

D 1

�

sin �
�
sin2 ˛ � cos2 �

�1=2 : (9.89)
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It is easy to verify that W`m .�/
class is normalized properly,

Z �=2C˛

�=2�˛
W`m .�/

class
d� D 1: (9.90)

Using the value of ˛ defined in Eq. (9.77),

˛ D cos�1.Lz=L/ D cos�1Œm=
p
` .`C 1/�; (9.91)

I arrive at Eq. (9.64).

9.5 Problems

1. How does quantum angular momentum differ from classical angular momen-

tum? Why is a quantum state with ` D 0 spherically symmetric, whereas a

classical state with L D 0 has a straight line trajectory through the origin? Why

is it customary to choose OL2 and OLz as the commuting operators for which to find

simultaneous eigenfunctions?

2. Prove that OL is Hermitian, that
h
OLy; OLz

i
D i„OLx, that

h
OLx; Opy

i
D i„Opz, and that

h
OLx; Op2

i
D 0.

3. Prove that
h
OL2; OL

i
D 0, that

h
OL2;V.r/

i
D 0, and that

h
OL2; Op2

i
D 0.

4. Prove that OL2 and OL commute with the parity operator and that the parity of

Ym
` .�; �/ is .�1/`.

5. By making the substitutions x D cos � , G`m .�/ ! Pm
` .x/, prove that the

equation

1

sin �

d

d�
sin �

dG`m .�/

d�
� m2

sin2 �
G`m .�/ D �` .`C 1/G`m .�/

can be transformed into

d

dx

��
1 � x2

� dPm
` .x/

dx

�
C
�
` .`C 1/ � m2

1 � x2

�
Pm
` .x/ D 0:

6–7. Classically, if the magnitude of the angular momentum is 100„ and the z-

component of angular momentum is 50„, by what angle can the motion deviate from

the xy plane. Plot W`m.�/ D 2� sin �
ˇ̌
Ym
` .�; �/

ˇ̌2
as a function of � for ` D 100

and m D 50 to see if the quantum result corresponds to the classical one. Repeat

the plot for ` D 100 and m D 100 and for ` D 100 and m D 0 and interpret your

results.
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8. A rigid rotator of mass m has a Hamiltonian given by

OH D
OL2
2ma2

;

where a is a constant. Find the eigenfunctions and eigenenergies of the rigid

rotator. Are these rotational energy levels equally spaced? For an H2O molecule

at room temperature, estimate the number of energy levels that are occupied and the

frequency spacing of the lowest rotational transition. Show that your result implies

that heating in a microwave oven, which uses a frequency of about 2.4 GHz, does not

occur by resonant absorption by the water molecules. Of course, the bond lengths

in molecules are not rigid, giving rise to vibrations that modify the energy levels of

the “rigid” rotator.

9–10. In general, what can you say about the simultaneous eigenfunctions of OL2
and OLx? Specifically show that the eigenfunctions of OLx for ` D 1 are

ˆ`D1;`x
.�; �/ D

8
ˆ̂<
ˆ̂:

1
2

h
Y11 .�; �/C

p
2Y01 .�; �/C Y�1

1 .�; �/
i

1p
2

�
Y11 .�; �/ � Y�1

1 .�; �/
�

1
2

h
Y11 .�; �/ �

p
2Y01 .�; �/C Y�1

1 .�; �/
i

and find the eigenvalues associated with these states (what must they be?). Note

that jˆ`D1;`x
.�; �/j2 now depends on � in a non-trivial way. Prove, however, that

jˆ`D1;`x
.�; �/j2 depends only on the angle between the position vector and the

x-axis.



Chapter 10

Spherically Symmetric Potentials: Radial
Equation

Now that we have studied angular momentum, it is an easy matter to obtain a

solution of the Schrödinger equation for spherically symmetric potentials V.r/.

I will look at bound state solutions of Schrödinger’s equation for the infinite

spherical well potential, the finite spherical well potential, the Coulomb potential

(hydrogen atom), and the isotropic, 3-D harmonic oscillator potential. Among these,

the Coulomb potential is undoubtedly the most important, since the solution of the

Coulomb problem was one of the major triumphs of quantum mechanics.

To help understand the quantum bound state radial probability distributions, it

will be helpful to compare the quantum results with the classical radial probability

distributions. For a particle having mass � moving in a potential V.r/, the effective

potential is

Veff.r/ D V.r/C L2=
�
2�r2

�
; (10.1)

where L is the magnitude of the angular momentum of the particle. For the effective

potentials that I discuss (see, for example, Fig. 10.1), the bound state classical

motion is always restricted to a range rmin � r � rmax, where the values of rmin and

rmax are classical radial turning points of the orbits for a given energy and angular

momentum (for L D 0, the classical orbit is a bounded straight line though the

origin, but rmin D 0 is still a turning point for the radial motion). In this chapter I use

the symbol � for the mass to distinguish it from the magnetic quantum number m—

it has the added advantage that in two-body problems such as hydrogen, � actually

refers to the reduced mass of the electron.

I define a time T21 as the time it takes for a classical particle having mass � to

move from rmin to rmax. In the case of the Coulomb and oscillator potentials, the

bound orbits are closed. The time T21 is half the orbital period in the Coulomb

problem and one-quarter the orbital period in the oscillator problem. For other
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Fig. 10.1 Effective potential for the Coulomb potential, V.r/ D �Ke=r in units of Ke=a0 as a

function of r=a0, where a0 is the Bohr radius. To relate the classical and quantum problems, the

angular momentum is set equal to „
p
`.`C 1/: The lowest curve has ` D 0 and the other curves

are in order of increasing `

potentials the motion is not periodic and the orbits, while bound, are not closed.

I assume that there is a single rmin and a single rmax in the effective potential for

each energy.

The classical radial probability distribution is equal to the time the particle

spends in an interval dt during its motion between rmin and rmax, divided by T21,

namely

Pclass .r/ dr D jdtj
T21
D 1

T21

ˇ̌
ˇ̌ dt

dr

ˇ̌
ˇ̌ dr: (10.2)

I use conservation of energy to calculate jdt=drj : The energy in the classical case

can be written as

E D �

2

�
dr

dt

�2
C L2

2�r2
C V .r/ : (10.3)

From this equation, it follows that

dt

dr
D 1r

2
�

�
E � V .r/ � L2

2�r2

� ; (10.4)

which implies that

T21 D
Z rmax

rmin

drr
2
�

�
E � V .r/ � L2

2�r2

� : (10.5)

Combining Eqs. (10.2), (10.4), and (10.5), I find



10 Spherically Symmetric Potentials: Radial Equation 209

Pclass .r/ D 1

T21

r
2
�

�
E � V .r/ � L2

2�r2

�

D 1r
2
�

�
E � V .r/ � L2

2�r2

� R rmax

rmin

drr
2
�

�
E�V.r/� L2

2�r2

�

; (10.6)

where rmin and rmax are the solutions of the equation

Veff.rmin;max/ D V .rmin;max/C
L2

2�r2min;max

D E: (10.7)

The effective potential is extremely useful in analyzing problems involving

central forces. For example, consider the attractive Coulomb problem for which

the potential energy is

V .r/ D �Ke

r
; (10.8)

where Ke is a positive constant. The effective potential is drawn in Fig. 10.1 for

several angular momenta. Classically, if the particle has negative energy, E < 0, it is

always bound. For L D 0 the particle orbit passes through the center of force and the

energy can go to �1. For any L > 0, the particle can never go through the origin

and the particle must have a minimum energy Emin that can be obtained by setting

dVeff .r/ =dr D 0: For L > 0 and Emin � E < 0; the classical orbit is bound between

the two radii rmin;max. At such turning points in the orbit, the radial kinetic energy

vanishes.

If the angular momentum is zero, the orbit passes through the origin and all

the kinetic energy arises from its radial component. At points where the effective

potential has a minimum, the particle undergoes circular motion and all the kinetic

energy arises from the angular motion. If we fix the energy in bound state problems,

there is a maximum value of the angular momentum determined by

1

2

L2max

�r20
D E � V .r0/ ; (10.9)

where r0 is the value of the radius for which the effective potential is a minimum.

On the other hand, if instead of fixing the energy we fix the angular momentum

and if L > 0, then the energy of the particle must be greater than or equal to some

minimum energy,

Emin D V .r0/C
1

2

L2

�r20
; (10.10)

since there is a non-vanishing component of the kinetic energy resulting from the

angular motion.
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In quantum mechanics there is something analogous to the radial momentum

defined in Eq. (9.10), allowing us to reduce the quantum problem to an effective

one-dimensional problem for the radial motion. The effective potential serves as the

potential for this one-dimensional radial motion. For example, we can expect that

there may be bound state motion for E < 0 for the Coulomb effective potential

shown in Fig. 10.1. However, for L D 0, we do not expect the minimum energy to

equal �1 and, for any L ¤ 0, we expect that, if there are bound states for a given

L, the minimum energy will be larger than the minimum energy of the classical

problem. The particle cannot rest at the minimum of the effective potential since

this would violate the uncertainty principle. As in the classical problem, for a given

bound state energy, there will be a maximum value of the magnitude of the angular

momentum that is allowed.

10.1 Radial Momentum

The classical Hamiltonian is given by

Hclass D
p2r

2�
C L2

2�r2
C V .r/ ; (10.11)

where

pr D
p � r

r
; (10.12)

is the radial component of the momentum. On the other hand, the quantum

Hamiltonian is

OH D Op
2

2�
C OV D � „

2

2�
r2 C V .r/ : (10.13)

Writing r2 in spherical coordinates,

r2 D 1

r2

@

@r
r2
@

@r
C 1

r2 sin �

@

@�
sin �

@

@�
C 1

r2 sin2 �

@2

@�2
; (10.14)

and using the fact that

OL2 D �„2
�
1

sin �

@

@�
sin �

@

@�
C 1

sin2 �

@2

@�2

�
; (10.15)

I can rewrite the quantum Hamiltonian as

OH D � „
2

2�

�
1

r2

@

@r
r2
@

@r

�
C
OL2
2�r2

C V .r/ : (10.16)
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If you compare Eqs. (10.11) and (10.16), it would seem that

Op2r D �„2
�
1

r2

@

@r
r2
@

@r

�
; (10.17)

but this is not guaranteed. I must obtain an expression for the quantum-mechanical

radial momentum operator corresponding to the classical variable given in

Eq. (10.12) to show whether or not this is the case. To get an Hermitian operator

that corresponds to this classical variable, I take the symmetrized form

Opr D
1

2

�r

r
� OpC Op�r

r

�
D „
2i
.ur � r C r � ur/ : (10.18)

I next evaluate

Opr D
„
2i
Œur � r C r � .ur /�

D „
2i

�
@ 

@r
C  r � ur C ur � r 

�

D „
2i

�
2
@ 

@r
C  r � ur

�
: (10.19)

To calculate r � ur, I use spherical coordinates,

r � ur D
1

r2

@

@r
r2 D 2

r
: (10.20)

It then follows that

Opr D
„
i

�
@

@r
C 1

r

�
(10.21)

and

Op2r D �„2
�
@

@r
C 1

r

��
@ 

@r
C  

r

�

D �„2
�
@2 

@r2
C 2

r

@ 

@r
�  

r2
C  

r2

�

D �„2
�
@2 

@r2
C 2

r

@ 

@r

�
D �„2

�
1

r2

@

@r
r2
@ 

@r

�
; (10.22)

or

Op2r D �„2
�
1

r2

@

@r
r2
@

@r

�
: (10.23)
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Combining Eqs. (10.16) and (10.23), I find

OH D Op
2
r

2�
C 1

2

OL2
�r2
C OV; (10.24)

which mirrors the classical Hamiltonian given in Eq. (10.11).

[As an aside, I might point out the situation is different for problems with cylin-

drical symmetry about the z-axis. The classical Hamiltonian for two-dimensional

motion in the xy plane is

Hclass D
p2�

2�
C

L2z

2��2
C V.�/; (10.25)

where � is a cylindrical coordinate and p� D p � u�. The corresponding quantum

Hamiltonian is

OH D � „
2

2�
r2 C V.�/ D � „

2

2�

�
1

�

@

@�
�
@

@�

�
C
OL2z
2��2

C V.�/; (10.26)

which would suggest that

Op2� D �„2
�
1

�

@

@�
�
@

@�

�
(10.27)

in the quantum case, but this is not true. Instead, (see problems)

Op2� D �„2
�
1

�

@

@�
�
@

@�

�
C „

2

4�2
; (10.28)

and the effective potential in the quantum problem is

OVeff D OV C
OL2z
2��2

� „2
8��2

: (10.29)

There is an attractive quantum correction, �„2=8��2, to the classical effective

potential.]

10.2 General Solution of the Schrödinger Equation for

Spherically Symmetric Potentials

The time-independent Schrödinger equation that must be solved is

OH E.r/ D
�
� „

2

2�
r2 C V .r/

�
 E.r/ D E E.r/ (10.30)
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or

„2
2�

�
1

r2

@

@r
r2
@ E.r/

@r

�
C
"

E � V.r/ �
OL2
2�r2

#
 E.r/ D 0: (10.31)

Based on the fact that OH, OL2, and OLz commute and that the Ym
` .�; �/ are simultaneous

eigenfunctions OL2 and OLz, I try a solution of the form

 E`m.r/ D RE`.r/Y
m
` .�; �/ ; (10.32)

substitute it into Eq. (10.31), and use the fact that

OL2Ym
` .�; �/ D „2` .`C 1/ Ym

` .�; �/ (10.33)

to obtain

„2
2�

�
1

r2

d

dr
r2

dRE`.r/

dr

�
C
�

E � V.r/ � „
2` .`C 1/
2�r2

�
RE`.r/ D 0I

d2RE`.r/

dr2
C 2

r

dRE`.r/

dr
C 2�

„2
�

E � V .r/ � „
2` .`C 1/
2�r2

�
RE`.r/ D 0: (10.34)

Using the results of Chap. 9, I have shown that it is a simple matter to reduce all

central field problems to the solution of a one-dimensional radial equation for

the radial wave function RE`.r/. Note that the radial wave function has units of

volume�3=2:
Let’s pause for a second and appreciate the importance of Eq. (10.34). We see

that, for each value of `, there is a radial equation that must be solved for an effective

potential

Veff.r/ D V .r/C „
2` .`C 1/
2�r2

: (10.35)

That is, for each value of `, we can determine what bound states, if any, are

present. It is helpful to remember that each value of `, in effect, corresponds

to a separate problem for a given central force field. You see that the magnetic

quantum number m of Ym
` .�; �/ does not appear in Eq. (10.34). Owing to the

spherical symmetry of the potential, the energy depends only on the magnitude

of the angular momentum and not on its direction. In the classical problem, this

leads to an infinite degeneracy since all directions of L are allowed. In quantum

mechanics, however, the degeneracy is discrete since, for each value of `, m can

take on .2`C 1/ values [�`;�`C1; : : : `�1; `]. In other words, owing to spherical

symmetry, the eigenfunctions  E`m.r/ are at least .2`C 1/-fold degenerate for a

given value of E and `.
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It is sometimes convenient to introduce a function

uE`.r/ D rRE`.r/ (10.36)

which transforms Eqs. (10.34) into

d2uE`.r/

dr2
C 2�

„2
�

E � V .r/ � „
2` .`C 1/
2�r2

�
uE`.r/ D 0: (10.37)

From here onwards, I usually drop the E subscript—it is implicit.

10.2.1 Boundary Conditions

As in any problem in quantum mechanics, we must examine the boundary condi-

tions. It is assumed that V .r/ > E as r ! 1, since the discussion is restricted to

bound states. As such, I expect the radial wave function to fall off exponentially

as some power of the radius as r ! 1 since r ! 1 corresponds to the

classically forbidden region (a region where the radial contribution to the kinetic

energy is negative). The exact form of the dependence depends on the nature of the

potential, but the centrifugal (angular momentum term) potential does not contribute

as r!1 since it falls off as 1=r2.

As r ! 0, I require that the radial probability density, r2 jR`.r/j2 D ju`.r/j2 ; be

finite at the origin. Let us first consider ` ¤ 0 and assume the centrifugal potential

term is larger than V.r/ as r ! 0. As r ! 0, the radial equation can then be

approximated as

d2u`.r/

dr2
� ` .`C 1/

r2
u`.r/ D 0; (10.38)

which has solutions u`.r/ D r�`; r`C1. The r�` solution must be rejected since it

leads to a radial probability density that is not finite at the origin. Thus

u`.r/ � r`C1 (10.39)

as r ! 0. This is a general result for any potential that rises or falls less quickly

than 1=r2 as r! 0. The power law dependence in Eq. (10.39) is not surprising; the

larger the angular momentum, the further away from the origin we can expect to find

the particle. The origin is a classically forbidden region if ` ¤ 0, since a classical

particle having non-zero angular momentum cannot pass through the origin.

For ` D 0, the situation must be examined on a case to case basis, using

d2u0.r/

dr2
C 2�

„2 ŒE � V .r/� u0.r/ D 0: (10.40)
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For attractive potentials that fall off faster than �1=r2 there is no solution of the

radial equation that satisfies the necessary boundary condition as r ! 0 when

` D 0. In fact, for attractive potentials that fall off faster than �1=r2 as r ! 0,

there is no normalizable solution for any value of `. For attractive potentials that

fall off more slowly than 1=r2 as r ! 0, it would seem that the requirement that

ju0.r/j2 be finite at the origin would not rule out the possibility that R0.r/ varies

as 1=r; since r2 jR0.r/j2 would then be finite; however,  .r/ �1=r is not a solution

of Schrödinger’s equation since, in that limit, the r2 .r/ term in the Hamiltonian

would give rise to a delta function that is not present in the potential. Therefore, as

r! 0, we must require that

u0.r/ D rR0.r/ � 0 as r! 0: (10.41)

Generally speaking, for the potentials that I consider, the radial wave function u`.r/

satisfies the boundary condition

u`.r/ D rR`.r/ � r`C1 as r! 0 (10.42)

for all values of `. In other words, R`.r/ is finite at the origin.

To summarize, in bound state problem and for ` ¤ 0, there is a classically

forbidden region that extends from r D 0 to rmin, a classically allowed region

between rmin and rmax, and another classically forbidden region for r > rmax (recall

that rmin and rmax are the turning points of the classical orbits for a given energy).

For each value of `, the lowest energy state radial wave function will have zero

nodes in the classically allowed region, the next higher states, one node, etc. We can

expect the radial wave function to have a polynomial or sinusoidal-like dependence

in the classically allowed region. In the classically forbidden regions, the radial wave

function has no nodes and RE`.r/ approaches zero as r ! 0 (for ` ¤ 0) as r` and

as some exponential power of r as r ! 1. Each state having angular momentum

quantum number ` is .2`C 1/ fold degenerate, owing to the spherical symmetry.

I now analyze the infinite spherical potential well, finite spherical potential well,

Coulomb, and isotropic oscillator potentials.

10.3 Infinite Spherical Well Potential

The infinite spherical well potential is

V.r/ D
�
0 r < a

1 r > a
: (10.43)

The effective potential in units of „2=2�a2, with L2 D „2` .`C 1/, is shown in

Fig. 10.2 as a function of r=a. Classically, there are bound states for any value of L
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Fig. 10.2 Effective potential (in units of „2=2�a2) for an infinite spherical well as a function of

r=a. Curves corresponding to several values of angular momentum L D „
p
` .`C 1/ are shown

(the ` D 0 curve is along the horizontal axis). For each value of angular momentum, there is

an infinity of discrete energies E possible classically. In the quantum problem, the energies are

discrete. In both the classical and quantum cases, there is no upper bound to the allowed energies

and, for a given value of L, bound states occur for all energies

E � L2

2�a2
; (10.44)

where � is the mass of the particle moving in the potential. In the quantum problem,

you will see that the minimum energy for a given value of L is larger than that

predicted by Eq. (10.44). Moreover the allowed energies are quantized rather than

continuous. Classically, the particle is reflected each time it bounces off the spherical

potential wall at r D a, but moves with constant velocity between bounces. There

are no simple closed orbits, except for L D 0, when the particle moves along a

diameter.

To introduce the quantum problem, let me first consider ` D 0: The effective

potential for L D 0 looks similar to that of the one-dimensional infinite square

well potential (except, in the one-dimensional problem, the well width would be 2a,

going from �a to a), but there is an important difference. In the three-dimensional

problem, even though the potential vanishes at the center of the well, r D 0, there is

a boundary condition that must be satisfied there. The boundary condition at r D 0

is uk;`D0.r/ � uk;0.r/ � r, implying that uk;0.0/ D 0. In other words, solutions

corresponding to even parity solutions of the analogous one-dimensional problem

(which do not vanish at the center of the well) cannot occur in the three-dimensional

case. Remember, the radial coordinate is always positive.

The solution for ` D 0 is pretty simple. Equation (10.37) for the radial wave

function when r < a is

d2uk;0.r/

dr2
C k2uk;0.r/ D 0; (10.45)
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where

k D
p
2�E

„ : (10.46)

Solutions of this equation are sines and cosines of kr, but only the sine functions

vanish at the origin, as required. Moreover, for the wave function to vanish at r D a,

k! kn;`D0 � kn0 D
n�

a
; n D 1; 2; 3; : : : ; (10.47a)

implying that the energy levels are quantized,

En;`D0 D
„2k2n0
2�

: (10.47b)

The radial eigenfunctions are

Rn0.r/ D
un0.r/

r
D
(

A
sin. n�r

a /
r

r < a

0 r � a
; (10.48)

where A is a normalization constant that is calculated below.

The radial probability distribution Pn`.r/ is obtained by looking at the probabil-

ity to find the particle in a spherical shell between r and rC dr, namely

Pn`.r/ D r2
Z

d� j n`.r/j2 D r2 jRE`.r/j2
Z

d�
ˇ̌
Ym
` .�; �/

ˇ̌2 D jun`.r/j2 :
(10.49)

[For ` ¤ 0, I can still label the eigenfunctions by n; although the energy is no longer

given by Eqs. (10.46) and (10.47a).] For ` D 0,

Pn0.r/ D jun0.r/j2 D
�

A2 sin2
�

n�r
a

�
r < a

0 r � a

D
�
2
a

sin2
�

n�r
a

�
r < a

0 r � a
; (10.50a)

where the value of A was obtained using the normalization condition

Z 1

0

drPn0.r/ D A2
Z a

0

dr sin2
�n�r

a

�
D 1: (10.50b)

You can view the radial probability distribution as corresponding to the odd parity

eigenstates of the one-dimensional problem for a well of size 2a located between

x D �a and x D a, provided you restrict the solution to x > 0.
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Having considered the solution for ` D 0, I now discuss the solution when ` ¤ 0.

For each value of ` ¤ 0, there is an infinity of quantized energy levels with some

minimum energy. It might be surprising, but, for ` ¤ 0, it is simpler to write the

equation for r < a in terms of Rk`.r/ instead of uk`.r/; since the resulting equation

d2Rk`.r/

dr2
C 2

r

dRk`.r/

dr
C
�

k2 � ` .`C 1/
r2

�
Rk`.r/ D 0 (10.51)

is recognized as a form of Bessel’s equation. The independent solutions are the so-

called spherical Bessel and Neumann functions,

j`.x/ D
r
�

2x
J`C1=2.x/I (10.52a)

n`.x/ D
r
�

2x
N`C1=2.x/; (10.52b)

where J`.x/ and N`.x/ are ordinary Bessel and Neumann functions. The Bessel

functions Jn.x/ D BesselJ[n,x] and Nn.x/ D BesselY[n,x] are built in functions

of Mathematica, as are the spherical Bessel functions jn.x/ D SphericalBesselJ[n,x]

and nn.x/ D SphericalBesselY[n,x]. The general solution of the radial equation for

r < a is then

Rk`.r/ D
uk`.r/

r
D A`j`.kr/C B`n`.kr/; (10.53)

where A` and B` are constants (that also depend implicitly of k). The solution must

be consistent with the boundary condition that Rk`.r/ be finite at the origin. As

x! 0

j`.x/ �
x`C1

.2`C 1/ŠŠ I (10.54a)

n`.x/ �
(
� 1

x
` D 0

� .2`�1/ŠŠ
x`C1 ` ¤ 0 ; (10.54b)

where

.2`C 1/ŠŠ D .1/ .3/ : : : .2` � 1/ .2`C 1/ I

therefore, I must set B` D 0 in Eq. (10.53) for all ` to satisfy the boundary at the

origin. As a consequence, the radial wave functions are

Rk`.r/ D
uk`.r/

r
D
�

A`j`.kr/ r < a

0 r � a
: (10.55)
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The first few spherical Bessel and Neumann functions are:

j0.x/ D
sin x

x
I (10.56a)

j1.x/ D
sin x

x2
� cos x

x
I (10.56b)

j2.x/ D
�
3

x3
� 1

x

�
sin x � 3cos x

x2
I (10.56c)

n0.x/ D �
cos x

x
I (10.56d)

n1.x/ D �
cos x

x2
� sin x

x
I (10.56e)

n2.x/ D �
�
3

x3
� 1

x

�
cos x � 3 sin x

x2
; (10.56f)

and a useful asymptotic limit is

j`.x/ �
sin
�
x � `�

2

�

x
I (10.57)

n`.x/ �
� cos

�
x � `�

2

�

x
; (10.58)

valid for x� 1 and x� `.

Returning to the solution (10.55) and imposing the boundary condition that

Rk`.a/ D 0; I find

jl.ka/ D 0: (10.59)

This equation can be solved numerically. For each `, there is an associated effective

potential that has an infinite number of energy levels. That is, for a given `, the

discrete energy levels can be labeled by

zn` D kn`a; (10.60)

where zn` is the nth zero of the `th spherical Bessel function (n D 1; 2; 3; : : :). For

example, with ` D 1; the lowest energy state has z11 D .ka/11 � 4:5, implying that

E11 D
„2k211
2�
D „

2k211a
2

2�a2
� 20:25 „

2

2�a2
: (10.61)

The difference between the ground state energy for a given ` and the correspond-

ing classical minimum energy
�
„2` .`C 1/ =2�a2

�
, measured in units of „2=2�a2

is equal to

�
E1` � Eclass

`

�
=
�
„2=2�a2

�
D .z1`/2 � ` .`C 1/ ; (10.62)
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which is equal to �2, 18:2, 27:2, 36:8 for ` D 0; 1; 2; 3. The difference grows

with increasing ` since �r decreases with increasing ` (see Fig. 10.2), leading to

larger values of �pr. As in the one-dimensional well, the energy levels for a given

` increase roughly as n2 for large n, where n labels the corresponding zero of the

spherical Bessel function.

The radial eigenfunctions are

Rn`.r/ D
�

An`j`.kn`r/ r < a

0 r � a
(10.63)

and the radial probability distributions are

Pn`.r/ D r2A2n`j
2
`.kn`r/; (10.64)

where the normalization coefficient is determined from

An` D
�Z a

0

dr r2j2`.kn`r/

��1=2
: (10.65)

For each value of `, the radial probability distribution has no node (other than

that at r D 0 and r D a) for the lowest lying energy state, one node for the next

higher energy state, etc. The dimensionless radial probability distribution aPn`.r/ is

plotted in Figs. 10.3, 10.4, and 10.5 as a function of r=a for ` D 0, 5, 10 and n D 1,

2, 3: As you can see, the probability distribution is pushed further away from the

origin with increasing `, as would be expected from the effective potential shown in

Fig. 10.2.

The classical radial probability distribution, obtained from Eqs. (10.6)

and (10.7), is

Fig. 10.3 Dimensionless radial probability distribution aPn` for the infinite well potential for ` D
0 and n D 1 (red, solid), n D 2 (blue, dashed) and n D 3 (brown, dotted)
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Fig. 10.4 Dimensionless radial probability distribution aPn` for the infinite well potential for ` D
5 and n D 1 (red, solid), n D 2 (blue, dashed) and n D 3 (brown, dotted)

Fig. 10.5 Dimensionless radial probability distribution aPn` for the infinite well potential for ` D
10 and n D 1 (red, solid), n D 2 (blue, dashed) and n D 3 (brown, dotted)

aPclass
n` .r/ D zn`r�

z2
n` �

`.`C1/a2
r2

�r�
1 � `.`C1/

z2
n`

� : (10.66)

To arrive at this result, I set

E D
„2k2

n`

2�
; (10.67a)

L2 D „2` .`C 1/ ; (10.67b)

in Eqs. (10.6) and (10.7) to make a correspondence with the quantum problem and

used rmin D a
p
` .`C 1/=zn` and rmax D a in carrying out the integral appearing in

Eq. (10.6). In Fig. 10.6, I plot aPn`.r/ as a function of r=a for ` D 5 and n D 10,

along with the classical probability distribution. As you can see, the quantum radial
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Fig. 10.6 Dimensionless radial probability distribution aPn` for the infinite well potential for ` D
5 and n D 10I quantum distribution (red, solid), classical distribution (blue, dashed)

probability distribution in the classically allowed region, averaged over oscillations,

is in good agreement with the classical distribution. The classically allowed region,

obtained by solving Eq. (10.7), is defined by

p
` .`C 1/=zn` < r=a < 1: (10.68)

For ` D 5 and n D 10, I find that z10;5 D 38:9 and that the classically allowed

region is 0:141 < r=a < 1:

Before leaving this section, I would like to return to the case of ` D 0, for which

Pn0.r/ D
�
2
a

sin2
�

n�r
a

�
r < a

0 r � a
:

For large n, the radial probability density oscillates rapidly. When averaged over

these oscillations, the radial probability distribution reduces to Pn0.r/ D 1=a, the

classical probability distribution for a free particle moving along a diameter of

the well. In the classical problem, the particle moves along a specific diameter

(depending on the initial conditions), but in the quantum problem j E`m.r/j2 Dˇ̌
RE`.r/Y

0
0 .�; �/

ˇ̌2 D R2
E`.r/=4� is spherically symmetric. Remember that in the

classical limit, quantum probability distributions correspond to classical distribu-

tions, averaged over all possible initial conditions. If we average the classical result

over all possible initial conditions when L D 0, there cannot be any � dependence

since motion along every diameter of the sphere is equally likely.
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Fig. 10.7 Effective potential (in units of „2=2�a2) for a finite spherical well as a function of r=a

for ˇ2 D 50. Curves corresponding to several values of angular momentum L D „
p
` .`C 1/ are

shown

10.4 Finite Spherical Well Potential: Bound States

Next I consider the spherical well potential,

V.r/ D
�
�V0 < 0 r < a

0 r > a
: (10.69)

I consider only bound states, that is states for which E < 0: The effective potential

in units of „2=2�a2, with L2 D „2` .`C 1/, is shown in Fig. 10.7 as a function

of r=a for ` D 0; 2; 5; 9. Note that the value of V0 in these units is ˇ2 (that is,

V0=
�
„2=2�a2

�
D ˇ2). It is clear from the figure that, for fixed V0, the number of

bound states decreases with increasing angular momentum. A necessary (but not

sufficient) condition for bound states to exist is

` .`C 1/ < 2�V0

„2 a2 D ˇ2I (10.70)

otherwise, the effective potential is everywhere positive and E must be positive

as well. When condition (10.70) is satisfied, the number of bound states, if any,

depends on the values of ` and ˇ.

The radial equation for r < a is

d2RE`.r/

dr2
C 2

r

dRE`.r/

dr
C
�

k02 � ` .`C 1/
r2

�
RE`.r/ D 0; (10.71)

where

k0 D
p
2� .EC V0/

„ > 0; (10.72)
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while, for r > a, the equation is

d2RE`.r/

dr2
C 2

r

dRE`.r/

dr
C
�
��2 � ` .`C 1/

r2

�
RE`.r/ D 0; (10.73)

where

� D
p
�2�E

„ > 0: (10.74)

In both cases, the equation is a form of Bessel’s equation, but I must chose

the appropriate solutions consistent with the boundary conditions. The radial wave

function must be finite at the origin and must not blow up as r ! 1: To satisfy

these boundary conditions, I take

RE`.r/ D
(

A`jl.k
0r/ r < a

B`h
.1/
l .i�r/ r > a

; (10.75)

where

h
.1/
l .z/ D jl.z/C in`.z/ (10.76)

is a spherical Hankel function of the first kind for which h
.1/
l .i�r/ � e��r as r!1.

The eigenenergies can then be obtained by equating the radial wave function and its

derivative at r D a, and then solving the resulting equations graphically. In other

words, I set

A`jl.k
0a/ D B`h

.1/
l .i�a/I (10.77a)

k0A`j
0
l.k

0a/ D i�B`h
0.1/
l .i�a/; (10.77b)

where the primes on the Bessel or Hankel functions indicate derivatives that are a

shorthand notation for

j0l.k
0a/ D djl.z/

dz

ˇ̌
ˇ̌
zDk0a

(10.78a)

h
.1/0
l .i�a/ D dh

.1/
l .z/

dz

ˇ̌
ˇ̌
ˇ
zDi�a

: (10.78b)

Dividing Eqs. (10.77), I find

jl.k
0a/

k0j0l.k
0a/
D h

.1/
l .i�a/

i�h
.1/0
l .i�a/

: (10.79)
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If you use the fact that .k0a/2 D ˇ2 � .�a/2, where ˇ is defined by Eq. (10.70), you

can solve Eq. (10.79) graphically for .�a/ for each value of ` and ˇ. The solution

determines the energy (see problems).1

For ` D 0, I can use the fact that

j0.z/ D
sin z

z
; h

.1/
0 .z/ D �i

eiz

z
(10.80)

to evaluate Eq. (10.79), but it is easiest to return directly to Eq. (10.37),

d2uE;0.r/

dr2
C k02uE;0.r/ D 0 (10.81)

for r < a and

d2uE;0.r/

dr2
� �2uE;0.r/ D 0 (10.82)

for r > a: The appropriate solutions of these equations are

uE;`D0.r/ D
�

A0 sin.k0r/ r < a

B0 exp.��r/ r > a
(10.83)

(only the sin solution can be taken for r < a since R0.r/ D u0.r/=r must be regular

at the origin). You can now solve as we did for a potential well in one dimension

having width 2a, although the solution corresponds only to the odd parity solutions

of that problem since uE;0 must vanish at r D 0, and only to the region x > 0 since

r must be positive. There is a bound state for ` D 0 only if ˇ > �=2.

For values of ` � 1; there are correspondingly higher values of ˇ needed to

support a bound state. The actual values for the eigenenergies and the number of

allowed solutions are obtained by solving Eq. (10.79). For sufficiently large ` that

violate condition (10.70), no bound states can exist in the quantum problem, even

though positive energy, classical bound states can always be found for the effective

potentials shown in Fig. 9.8 for any value of `.

10.5 Bound State Coulomb Problem (Hydrogen Atom)

The electrostatic Coulomb potential is

V.r/ D �Ke

r
; (10.84)

1The function h
.1/
l .i�a/ is real for even ` and purely imaginary for odd `, while the function

h
0.1/
l .i�a/ is real for odd ` and purely imaginary for even `; as a consequence, the right-hand

side of Eq. (10.79) is always real.
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where Ke D e2=4��0 is a constant. For hydrogen, the mass that appears in the

Hamiltonian is not the electron mass m; but the reduced mass � D mmp=
�
mC mp

�

where mp is the proton mass. The radius r appearing in Eq. (10.84) is then the

relative electron–proton separation. The effective potential is shown in Fig. 10.1;

classical bound states are possible for a range of negative energies, independent

of the value of `. Looking at the effective potentials in Fig. 10.1, you might think

that, for large `, the wells are too shallow to support a bound state in the quantum

problem. It turns out, however, that this is not the case. The slow fall off of a 1=r

potential leads to a situation where, for any value of `, there is an infinite number of

bound states. For the classical problem, there is a continuum of bound state energies

for each L, while in the quantum problem there is a discrete infinity of bound state

energies for each `.

For the potential of Eq. (10.84), the radial equation, Eq. (10.37), reduces to

d2u`.r/

dr2
C 2�

„2
�

EC Ke

r
� „

2` .`C 1/
2�r2

�
u`.r/ D 0: (10.85)

It is convenient to introduce dimensionless variables

� D r=a0I (10.86a)

� D �E=ERI (10.86b)

u`.r/! v`.�/; (10.86c)

where

a0 D
„2
�Ke

D „
�c

1

˛FS

D 5:29 � 10�11 m; (10.87a)

ER D
1

2

Ke

a0
D 1

2
�c2˛2FS D 13:6 eV; (10.87b)

˛FS D
Ke

„c D
1

4��0

e2

„c �
1

137
: (10.87c)

In terms of these variables, Eq. (10.85) is transformed into

d2v`.�/

d�2
C
�
��C 2

�
� ` .`C 1/

�2

�
v`.�/ D 0: (10.88)

This is a somewhat general dimensionless form of the radial equation. For

different potentials the only term that changes is the 2=� term. I can build in the

asymptotic dependence of the radial wave functions as � ! 0 and as � ! 1. The

boundary condition as �! 0 is

v`.�/ � �`C1: (10.89)
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As �!1; the radial equation can be approximated as

d2v`.�/

d�2
� �v`.�/ D 0 (10.90)

which has solutions v`.�/ D e˙
p
��. The e

p
�� solution must be rejected since it

leads to a radial wave function that blows up as �!1. Thus

v`.�/ � e�
p
�� (10.91)

as �!1. This is a general result for the radial equation for any potential that goes

to zero as � ! 1. The exponential dependence is not surprising since the particle

must penetrate into the classically forbidden.

Building in both asymptotic limits, I try a solution of the form

v`.�/ D �`C1e�
p
��f`.�/; (10.92)

calculate

v00
` .�/ D ` .`C 1/ �`�1e�

p
��f`.�/

�2
p
� .`C 1/ �`e�

p
��f`.�/ � 2

p
��`C1e�

p
��f 0

`.�/

C2 .`C 1/ �`e�
p
��f 0

`.�/C �`C1e�
p
��f 00

` .�/

C��`C1e�
p
��f`.�/; (10.93)

and substitute the result into Eq. (10.88) to arrive at

�f 00
` .�/C 2

h
.`C 1/ � �

p
�
i

f 0
`.�/C 2

h
1 � .`C 1/

p
�
i

f`.�/ D 0: (10.94)

I now make two additional changes of variable,

y D 2�
p
�I (10.95a)

f` .�/! g`.y/; (10.95b)

which transforms Eq. (10.94) into

y
d2g`

dy2
C .˛ C 1 � y/

dg`

dy
C
�
1p
�
� .`C 1/

�
g` D 0; (10.96)

where

˛ D 2`C 1: (10.97)
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Equation (10.96) is known as Laguerre’s differential equation. Only if ˛ > �1
do solutions of this equation exist that are regular as � ! 1: This condition on ˛

is a necessary but not sufficient condition for regular solutions to exist as � ! 1.

In addition it is necessary that

1p
�
� .`C 1/ D q; (10.98)

where q is a positive integer or zero: When both these conditions are satisfied, the

physically acceptable solutions of Eq. (10.96) are

g˛�.y/ D L˛q .y/: (10.99)

The L˛q .y/ are the generalized Laguerre polynomials that satisfy the differential

equation

y
d2L˛q .y/

dy2
C .˛ C 1 � y/

dL˛q .y/

dy
C qL˛q .y/ D 0: (10.100)

Some properties of the generalized Laguerre polynomials [Mathematica symbol

LaguerreL[q; ˛; y]D L˛q .y/] are listed in the Appendix.

For the hydrogen atom problem,

˛ D 2`C 1 > �1I (10.101a)

q D 1p
�
� .`C 1/ : (10.101b)

The requirement that q be a non-negative integer leads us to the condition

1p
�
D qC `C 1 D n; (10.102)

where n is defined as .qC `C 1/. From Eq. (10.102) and the fact that both q and `

are non-negative integers, it follows that

n � 1 and ` � n � 1: (10.103)

As was to be expected from classical considerations, there is a maximum angular

momentum for a fixed energy.

The eigenenergies are given by

En D ��ER D �
1

2

�c2˛2FS

n2
; n D 1; 2; 3; : : : : (10.104)
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For each value of n, ` can equal 0; 1; : : : ; .n � 1/, and, for each value of `, m can

equal 0;˙1;˙2; : : :˙ `. Thus, the energy degeneracy for a given n is

n�1X

`D0
.2`C 1/ D n2: (10.105)

There is an “accidental degeneracy” for states having the same n, but different `.

This can be related to the fact that there is a conserved dynamic constant called

the Lenz vector that points in the direction of the semi-major axis of the classical

problem (the orbits are closed). In group theory the symmetry is related to the group

O(4), the orthogonal group in four dimensions.

The solution of Eq. (10.96) is

g˛q.y/ D L˛q .y/ D L2`C1
n�`�1

�
2�
p
�
�
D L2`C1

n�`�1

�
2�

n

�
: (10.106)

To get the total radial wave function Rn`.�/ � v`.�/=�, I must multiply L2`C1
n�`�1

�
2�

n

�

by �`e��=n [see Eq. (10.92)]. The normalized dimensionless wave function can then

be written as

Q n`m .�/ D QRn`.�/Y
m
` .�; �/ ; (10.107)

where the dimensionless radial wave function QRn`.�/ is

QRn`.�/ D
�
2

�n3

�1=2
ƒ2`C1

n�`�1

�
2�

n

�

D 2

n2

s
.n � ` � 1/Š
.nC `/Š

�
2�

n

�`
e��=nL2`C1

n�`�1

�
2�

n

�
; (10.108)

and

ƒ2`C1
q .�/ D

s
qŠ

.qC 2`C 1/Še
��=2�`C1=2L2`C1q .�/ (10.109)

is an associated Laguerre function. The Q n`m .�/ constitute an orthonormal set.

From the Appendix, some properties of the L2`C1
n�`�1 and ƒ2`C1

q functions are

L2`C1q .�/ is a polynomial of order qI (10.110a)

Z 1

0

d�L2`C1q .�/L2`C1
q0 .�/e���2`C1 D .qC 2`C 1/Š

qŠ
ıq;q0 I (10.110b)
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�ƒ2`C1
n�`�1.�/ D 2nƒ2`C1

n�`�1.�/ �
p
.nC `C 1/ .n � `/ƒ2`C1

n�` .�/

�
p
.n � ` � 1/ .nC `/ƒ2`C1

n�`�2.�/I (10.110c)
Z 1

0

d�ƒ˛
q .�/ƒ

˛
q0.�/ D ıq;q0 I (10.110d)

2

�
1

n3n03

�1=2 Z 1

0

d� �ƒ2`C1
n�`�1

�
2�

n

�
ƒ2`C1

n0�`�1

�
2�

n0

�
D ın;n0 : (10.110e)

The number of nodes in the radial wave function is q D n � ` � 1.

The first few dimensionless radial wave functions are

QR10.�/ D 2e��I (10.111a)

QR20.�/ D
.2 � �/ e��=2

2
p
2

I (10.111b)

QR21.�/ D
�e��=2

2
p
6
I (10.111c)

QR30.�/ D
2
�
27 � 18�C 2�2

�
e��=3

81
p
3

I (10.111d)

QR31.�/ D
4 .6 � �/ �e��=3

81
p
6

I (10.111e)

QR32.�/ D
2

81

r
2

15
�2e��=3: (10.111f)

Dimensionless radial wave functions are plotted in Figs. 10.8, 10.9 and 10.10 for

n D 1; 2; 3.

Fig. 10.8 Dimensionless hydrogenic radial wavefunction for n D 1
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Fig. 10.9 Dimensionless hydrogenic radial wave function for n D 2. ` D 0 (red, solid); ` D 1

(blue, dashed)

Fig. 10.10 Dimensionless hydrogenic radial wavefunction for n D 3. ` D 0 (red, solid); ` D 1

(blue, dashed); ` D 2 (black, dotted)

Going from an eigenfunction that is dimensionless to one that has dimensions of

1/
p

volume is accomplished by taking

 n`m .r/ D Rn`.r/Y
m
` .�; �/ ; (10.112)

where the radial wave function is

Rn`.r/ D
1

a
3=2
0

QRn`

�
r

a0

�
(10.113)

or

Rn`.r/ D
1

a
3=2
0

�
2

n2

�s
.n � ` � 1/Š
.nC `/Š

�
2r

na0

�`
e�r=na0L2`C1

n�`�1

�
2r

na0

�
: (10.114)
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In order to gain some physical insight into the radial dependence of the

eigenfunctions, I calculate the radial probability distribution and compare it with

the corresponding classical radial probability distribution. In dimensionless units,

the quantum radial probability distribution is

QPn` .�/ D �2 QR2n`.�/ D
�
2

n3

�
�
h
ƒ2`C1

n�`�1.2�=n/
i2

D
�
1

n2

�
.n � ` � 1/Š
.nC `/Š e�2�=n

�
2�

n

�2`C2

�
h
L2`C1

n�`�1.2�=n/
i2
: (10.115)

On the other hand, the classical radial probability distribution in dimensionless

units, obtained using Eq. (10.6), is given by

QPclass
n` .�/ D a0P

class .a0�/

D a0

T21

q
2Ke

�a0

r�
� 1
2n2
C 1

�
� `.`C1/

2�2

� ; (10.116)

where a0 is the Bohr radius and I have set E D �ER=n2 D �Ke=
�
2n2a0

�
and

L2 D „2` .`C 1/. Equations (10.5) and (10.7) can be used to obtain

T21 D �
r
��K2

e

8E3
D �n3

s
�a30

Ke

: (10.117)

Note that T21 is one-half the period of the classical orbit. Combining Eqs. (10.116)

and (10.117), I obtain the classical probability distribution

QPclass
n` .�/ D 1

�n3
q
� 1

n2
C 2

�
� `.`C1/

�2

: (10.118)

There are two turning points, given by

�min;max.n; `/ D n2

"
1�

r
1 � ` .`C 1/

n2

#
: (10.119)

These classical turning points correspond to positions in the orbit when the electron

is located along the semi-major axis of the ellipse. For fixed energy (fixed n)

�min.n; `/ decreases and �max.n; `/ increases with decreasing `, a result that is

deduced easily from graphs of the effective potential. The value ` D n � 1
corresponds most closely to circular orbits; in this limit
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�min;max.n; n � 1/ D n2
�
1� 1

n

�
(10.120)

and the relative width of the distribution is

�max.n; n � 1/ � �min.n; n � 1/
Œ�max.n; n � 1/C �min.n; n � 1/� =2

D 2n

n2
D 2

n
: (10.121)

With increasing n, the classical distribution for ` D n� 1 corresponds more closely

to circular orbits. Of course, circular orbits are possible in the classical case for an

energy equal to the effective potential at its minimum; however, the values I chose

to simulate the quantum variables, En D �Ke=
�
2n2a0

�
and L2 D „2` .`C 1/ ; do

not correspond to circular orbits.

I now return to the quantum probability distribution, Eq. (10.115). It possesses

many of the features of the classical distribution function in the classically allowed

region. For example, for ` D n � 1

QPn;n�1 .�/ D
1

n2 .2n � 1/Š

�
2

n

�2n

e�2�=n�2n: (10.122)

This function possesses a single maximum at �c D n2 or rc D n2a0 and a relative

width of order of that given by Eq. (10.121). For smaller values of `, the orbits

correspond to classical elliptical orbits and the electron spends less time when it is

nearest to the proton, corresponding to the fact that the speed in the classical orbits

is larger, the closer the electron is to the nucleus. There are n � ` � 1 nodes in the

classically allowed region. Using the recursion relation (10.110c), you can show that

h�i D
Z 1

0

� QPn` .�/ D
3n2 � ` .`C 1/

2
; (10.123)

which is also equal to h�i for the classical probability distribution given by

Eq. (10.118).

The (dimensionless) quantum radial probability distribution is plotted in

Figs. 10.11, 10.12 and 10.13 as a function of �=n2 for n D 40 and ` D 39; 25; 0 as

the solid red curves. For ` D n�1 D 39 (which corresponds most closely to circular

orbits), the maximum of occurs at �=n2 D 1: For ` D 10, you can see the relative

maxima in the envelope of the distribution at the inner and outer turning points,

�min;max.n; `/=n2 D 0:23; 1:77; with the probability largest at the outer turning

point. For ` D 0, the probability distribution extends to the center of force and the

envelope has a single maximum near the classical turning point at �=n2 D 2. The

classical radial probability distribution QPclass
n` .�/ is superimposed on the quantum

distribution as the dashed blue curves in Figs. 10.11, 10.12 and 10.13. It is seen that

it agrees very well with the quantum distribution, averaged over oscillations, in the

classically allowed region.
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Fig. 10.11 Quantum (solid, red) and classical (blue, dashed) radial probability distributions for

hydrogen for n D 40, ` D 39

Fig. 10.12 Quantum (solid, red) and classical (blue, dashed) radial probability distributions for

hydrogen for n D 40, ` D 25

Fig. 10.13 Quantum (solid, red) and classical (blue, dashed) radial probability distributions for

hydrogen for n D 40, ` D 0
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10.6 3-D Isotropic Harmonic Oscillator

The potential energy for an isotropic oscillator is

V.r/ D 1

2
�!2r2: (10.124)

I have already solved this problem in rectangular coordinates [see Sect. 8.1.3]. The

eigenenergies are

En D
�

nC 3

2

�
„!; (10.125)

where n is a positive integer or zero. There is an .nC 1/ .nC 2/ =2 fold degeneracy

for each value of n:

I can formulate a “Bohr theory” for circular orbits for the oscillator, in which

�vr D �!r2 D .nC 1/ „; n D 0; 1; 2; : : : : (10.126)

F D �v2

r
D �!2r; (10.127)

leading to

rn D
p
.nC 1/

s
„
�!

; (10.128)

vn D
p
.nC 1/

s
„!
�
; (10.129)

and

En D „! .nC 1/ : (10.130)

The energy spacing is correct, but the levels are displaced by �„!=2 from the true

values.

The effective potential in units of „! is shown in Fig. 10.14 as a function of

� D
p
�!=„r for ` D 0; 2; 5; 9. The effective potential for ` D 0 is the same as

that for the one-dimensional harmonic oscillator, restricted to x > 0. However, since

the wave function must be finite at the origin, only the odd parity solutions of the

one-dimensional oscillator are allowed. In other words, for ` D 0, the energies are

En;`D0 D .qC 1=2/ „!; q D 1; 3; 5; : : : (10.131a)

D .nC 3=2/ „!; n D 0; 2; 4; : : : (10.131b)

Thus, ` D 0 states appear only in states with n even. This is not a surprise. The

parity of the eigenstates, obtained from Eq. (8.18) is .�1/nxCnyCnz D .�1/n. Since
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Fig. 10.14 Effective potential for the 3-D oscillator in units of „! as a function of � D
p
�!=„r

for ` D 0; 2; 5; 9

the parity of an ` D 0 state is equal toC1; the value of n for all states having ` D 0
must be even. As you shall see, for a given n, only those ` values are allowed for

which .�1/` D .�1/n.

In spherical coordinates, the radial equation in terms of a dimensionless coordi-

nate

� D
r
�!

„ r (10.132)

and a dimensionless energy

� D 2E=„! (10.133)

is

d2u�`.�/

d�2
C
�
� � �2 � ` .`C 1/

�2

�
u�`.�/ D 0: (10.134)

Assuming a solution of the form

u�`.�/ D �`C1e��2=2f�`.�/; (10.135)

I calculate

u00
�`.�/ D ` .`C 1/ �`�1e��2=2f�`.�/

� .2`C 3/ �`C1e��2=2f�`.�/ � 2�`C2e��2=2f 0
�`.�/
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C2 .`C 1/ �`e��2=2f 0
�`.�/C �`C1e��2=2f 00

�`.�/

C�`C3e��2=2f�`.�/; (10.136)

and substitute the result into Eq. (10.134) arrive at

�f 00
�`.�/C 2

h
.`C 1/ � �2

i
f 0
�`.�/C Œ� � 3 � 2`� �f�`.�/ D 0: (10.137)

In contrast to Eq. (10.94) for the hydrogen atom problem, the quantity �2 appears

rather than � in the factor multiplying f 0
�`.�/. With the replacements

y D �2; (10.138a)

d

d�
D 2�

d

dy
D 2py

d

dy
I (10.138b)

d2

d�2
D 2

d

dy
C 4�py

d2

dy2
D 2 d

dy
C 4y

d2

dy2
I (10.138c)

f�`.�/! g�` .y/ ; (10.138d)

Eq. (10.137) is transformed into

yg00
�`.y/C

��
`C 3

2

�
� y

�
g0
�`.y/C

�
� � 3 � 2`

4

�
g�`.y/ D 0; (10.139)

which is Laguerre’s equation. For physically acceptable solutions, it is necessary

that

� � 3 � 2`
4

D q (10.140)

where q is a positive integer or zero and

˛ D `C 3

2
> �1: (10.141)

The condition on ˛ is satisfied automatically, while the condition on � is

� D .4qC 2`/C 3 D 2nC 3; (10.142)

or, using Eq. (10.133),

En D
�

nC 3

2

�
„!; (10.143)
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where

n D 2qC `; (10.144)

which implies that n D `; ` C 2; ` C 4; : : : Alternatively, for a given n � 0, ` D
n; n � 2; : : :, with the minimum value of ` equal to zero if n is even and one if n is

odd. Thus

` D 0; 2; 4; : : : ; n n even (10.145a)

` D 1; 3; 5; : : : ; n n odd. (10.145b)

Since there are .2`C 1/ degenerate substates for each `, you can verify easily that

the degeneracy of a state of given n is .nC 1/ .nC 2/ =2, as was found previously

using rectangular coordinates. There is an “accidental” degeneracy, as in hydrogen,

owing to the fact that the classical orbits are closed ellipses, but, in contrast to

hydrogen, all degenerate states have the same parity. This is connected with the

fact that the Lenz vector for the Coulomb problem does not commute with the

parity operator, but the Lenz “vector” (actually a second rank tensor consisting of

five operators) for the harmonic oscillator does commute with the parity operator.

The symmetry group for the oscillator is SU.3/, the special unitary group in three

dimensions.

The physically acceptable solution of Eq. (10.139) is

gn` .y/ D L
.`C 1

2 /
. n�`

2 /
.y/ (10.146)

or

fn` .�/ D L
.`C 1

2 /
. n�`

2 /

�
�2
�
: (10.147)

As a consequence, I can write the normalized (dimensionless) radial wave func-

tions as

QRn` .�/ D
s
2

�
ƒ
.`C 1

2 /
. n�`

2 /

�
�2
�

(10.148)

D
p
2

��
n�`
2

�
Š
�1=2

�
�
�

nC`C3
2

��1=2 �
`
e��2=2L

.`C 1
2 /

. n�`
2 /

�
�2
�
; (10.149)

where ƒ˛
q is defined by Eq. (10.169) and � is the gamma function defined by

� .x/ D
Z 1

0

tx�1e�tdt; (10.150)
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such that � .nC 1/ D nŠ for integers n � 0. The first few dimensionless radial wave

functions are

QR00.�/ D
2

�1=4
e��2=2I (10.151a)

QR11.�/ D
2

�1=4

r
2

3
�e��2=2I (10.151b)

QR20.�/ D
2

�1=4

r
2

3

�
3

2
� �2

�
e��2=2I (10.151c)

QR22.�/ D
2

�1=4

r
4

15
�2e��2=2: (10.151d)

The radial wave functions in coordinate space are given by

Rn` .r/ D
��!
„
�3=4 QRn`

�r
�!

„ r

�
: (10.152)

Qualitatively, the results are similar to those for the hydrogen atom, since the

orbits are elliptical in both cases; however, the radial coordinate is a minimum on

the semi-minor axis rather than the semi-major axis of the ellipse, since the center

of force is at the origin in the case of the oscillator whereas it is at one of the foci in

the Coulomb problem. The (dimensionless) radial probability distribution is

QPn` .�/ D �2 QR2n`.�/ D
2�2

.`C1/
e��2

�
L
.`C 1

2 /
. n�`

2 /

�
�2
��2 �

n�`
2

�
Š

�
�

n
2
C `

2
C 3

2

� : (10.153)

The maximum of QPn;n .�/ (which corresponds most closely to circular orbits) occurs

at �max D
p
.nC 1/, the prediction of Eq. (10.128) of the Bohr theory of the

oscillator. In contrast to hydrogen, �max grows much more slowly with increasing

n (as
p

nC 1 rather than as n2) owing to the fact that the binding force is much

stronger for the oscillator than for the electron in hydrogen.

For the oscillator, it follows from Eqs. (10.5) and (10.7) that

T21 D
T

4
D �

2!
; (10.154)

where T is the period of the classical orbit. As a consequence, the classical

radial probability distribution in dimensionless units, obtained from Eqs. (10.6)

and (10.7), is
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QPclass
n` .�/ D

s
„
�!

Pclass

 s
„
�!

�

!

D 2

�
q
2nC 3 � �2 � `.`C1/

�2

; (10.155)

where the argument of the square root is restricted to positive values and I have

set E D
�
nC 3

2

�
„!, L2 D „2` .`C 1/ : For ` D n � 1 (which corresponds most

closely to circular orbits), the distribution QPclass
n` .�/ is confined to a small range about

� D
p

nC 1, as is the quantum probability distribution: For ` D 0, the classical

radial probability distribution extends to the center of force and there is a turning

point at � D
p
2nC 3: As in the Coulomb problem, the classical radial probability

agrees very well with the quantum distribution, averaged over oscillations, in the

classically allowed region. Comparisons are left to the problems.

10.7 Summary

The Schrödinger equation for problems with spherical symmetry can be reduced to

a one-dimensional equation for the radial wave function. I have solved the radial

equation for a number of problems involving spherically symmetric potentials. It is

fortuitous that the solution of the spherical well potential, the Coulomb potential,

and the isotropic oscillator potential can be written in terms of known functions. In

most cases, it is necessary to solve the radial equation numerically. To help interpret

the results, I made comparisons of the quantum probability distributions with the

corresponding classical distributions.

10.8 Appendix: Laguerre Polynomials

Laguerre’s equation

yf 00.y/C Œ˛ C 1 � y� f 0.y/C qf .y/ D 0 (10.156)

admits polynomial solutions of order q when q is a positive integer or zero and

˛ > �1. The solutions of this equation with these restrictions are the generalized

Laguerre polynomials

f .y/ D L˛q .y/: (10.157)

If these conditions are not met, the solutions of Eq. (10.156) are not convergent in the

interval .0;1/ and do not enter as physically acceptable solutions in the problems

I am considering.
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Some equations related to Eq. (10.156) and their appropriate solutions are

yf 00.y/C ŒyC 1� f 0.y/C
�

qC ˛

2
C 1 � ˛

2

4y

�
f .y/ D 0I (10.158a)

f D e�yy˛=2L˛q .y/I (10.158b)

f 00.y/C
�

qC .˛ C 1/ =2
y

C 1 � ˛2
4y2

� 1
4

�
f .y/ D 0I (10.159a)

f D e�y=2y.˛C1/=2L˛q .y/I (10.159b)

f 00.y/C
 
4qC 2˛ C 2 � y2 C

1
4
� ˛2

y2

!
f .y/ D 0I (10.160a)

f D e�y2=2y˛C1=2L˛q .y
2/: (10.160b)

Some properties of the generalized Laguerre polynomials are listed belowW
The orthogonality of the generalized Laguerre polynomials is expressed as

Z 1

0

dyL˛q .y/L
˛
q0.y/e

�yy˛ D � .qC ˛ C 1/
qŠ

ıq;q0 ; (10.161)

where

� .x/ D
Z 1

0

tx�1e�tdt (10.162)

is the gamma function; a series expansion is

L˛q .y/ D
qX

mD0

 
qC ˛
q � m

!
.�y/m

mŠ
; (10.163)

where the binomial coefficient is defined as

 
a

b

!
D �.aC 1/
�.bC 1/�.a � bC 1/ I (10.164)

the generating function is

F.y; h/ D 1

.1 � h/˛C1 e� hy
1�h D

1X

qD0
L˛q .y/h

qI (10.165)
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the identity

d

dy
L˛qC1.y/ D �L˛C1

q .y/ D 1

y

�
.qC 1/L˛qC1.y/ � .qC 1C ˛/ L˛q .y/

�
(10.166)

and the fact that L˛0 .y/ D 1 can be used to generate all the generalized Laguerre

polynomials; the first few generalized Laguerre polynomials are

L˛0 .y/ D 1I (10.167a)

L˛1 .y/ D �yC ˛ C 1I (10.167b)

L˛2 .y/ D
1

2

�
y2 � 2 .˛ C 2/ yC .˛ C 1/ .˛ C 2/

�
I (10.167c)

a useful recursion relation is

.qC 1/ L˛qC1.y/ � .2qC ˛ C 1 � y/ L˛q .y/C .qC ˛/L˛q�1.y/ D 0: (10.168)

The associated Laguerre functions defined by

ƒ˛
q .y/ D

s
qŠ

� .qC ˛ C 1/e�y=2y˛=2L˛q .y/ (10.169)

satisfy the orthogonality relations

Z 1

0

dyƒ˛
q .y/ƒ

˛
q0.y/ D ıq;q0 I (10.170)

2

�
1

n3n03

�1=2 Z 1

0

d� �ƒ2`C1
n�`�1

�
2�

n

�
ƒ2`C1

n0�`�1

�
2�

n0

�
D ın;n0 ; (10.171)

and the recursion relation

p
.qC 1/ .qC ˛ C 1/ƒ˛

qC1.y/ � .2qC ˛ C 1 � y/ƒ˛
q .y/

C
p

q .qC ˛/ƒ˛
q�1.y/ D 0: (10.172)

10.9 Problems

1. Find the three lowest energy states in electron volts for the ` D 0 and ` D 1 states

of a particle having mass � D 10�30 kg moving in an infinite, spherical potential

well having radius a D 10�9 m.
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2. A particle having mass � moves in a spherical well potential

V.r/ D
�
�V0 < 0 r < a

0 r > a
:

The lowest energy state has ` D 0. Find the value of V0 needed to guarantee a bound

state. How does this problem differ from a three-dimensional square well potential,

for which a bound state always exists?

3. Draw the effective potential for the potential of Problem 10.2. For a given energy,

find values of the angular momentum for which bound states can exist classically.

Classically, can bound states exist for E > 0‹ Explain. In the quantum problem, can

bound states exist for E > 0‹ Explain. Find a condition on ` in the quantum problem

that will guarantee that a bound state cannot exist.

4–5. For the potential of Problem 10.2, calculate the eigenenergies for ` D 1 and

ˇ D 2; 4; 6, where ˇ D
p
2�V0a2=„2. In each case express the eigenenergies

in terms of the dimensionless quantity x D �a D
p
�2�Ea2=„2. You will have

to solve Eq. (10.79) graphically to obtain the solutions. Classically, what is the

minimum value of ˇ needed to have a bound state with E < 0 for an angular

momentum L D „
p
` .`C 1/ and ` D 1? How does this compare with the

minimum value of ˇ needed to support a bound state in the quantum problem?

6. Give a very rough uncertainty principle argument to estimate the ground state

energy of hydrogen. To do this replace h1=ri by 1= hri and set
˝
p2r
˛
D „2=

�
4 hri2

�

in
D
OH
E
.

7. Using the effective potential for hydrogen,

Veff D �
Ke

r
C „

2` .`C 1/
2�r2

;

where Ke D e2=4��0, show that, for fixed

E D �1
2
�c2

�
K2

e

„2c2
�
1

n2
< 0;

there is a maximum value of ` allowed and that it corresponds roughly to what is

found in the quantum theory, that is to `max D n � 1.

8. Plot the dimensionless radial probability distribution, �2
ˇ̌ QRn` .�/

ˇ̌2
; for the n D

2, ` D 1; n D 2, ` D 0; n D 10, ` D 9; n D 10, ` D 5I and n D 10, ` D 0 states of

the hydrogen atom. Interpret your results.
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9. Use the recursion relation

�ƒ2`C1
n�`�1.�/ D 2nƒ2`C1

n�`�1.�/ �
p
.nC `C 1/ .n � `/ƒ2`C1

n�` .�/

�
p
.n � ` � 1/ .nC `/ƒ2`C1

n�`�2.�/

to derive

h�i D
Z 1

0

� QPn` .�/ D
3n2 � ` .`C 1/

2
;

where QPn` .�/ is the dimensionless radial probability distribution for the electron in

hydrogen.

10. Construct a “Bohr theory” for the 3-D isotropic harmonic oscillator and show

that the maximum of the quantum radial probability distribution for the oscillator

agrees with your theory for states having n D `.
11. Plot the dimensionless radial probability distribution QPn` .�/ for the n D 60,

` D 60; 30; 0 states of the 3-D isotropic harmonic oscillator given in Eq. (10.153),

along with the classical distribution given by Eq. (10.155). Interpret your results.

12. Prove that the wave function for the 3-D isotropic harmonic oscillator is

periodic and that hri obeys the classical equation of motion for the oscillator. Does

the radial motion oscillate at frequency !? Explain.

13–14. Consider the n D 2 state of the 3-D isotropic oscillator. Write the

dimensionless wave functions in both rectangular and spherical coordinates. Write

each of the rectangular wave functions in terms of the eigenfunctions in spherical

coordinates.

15–16. In cylindrical coordinates (�, �), the Hamiltonian for a particle having mass

� moving in a potential V.�/ is

OH D � „
2

2�
r2 C V.�/

D � „
2

2�

�
1

�

@

@�
�
@

@�
C 1

�2
@2

@�2

�
C V.�/:

The angular momentum operator is OLz D „
i
@
@�

, so the Hamiltonian can be written as

OH D � „
2

2�

 
1

�

@

@�
�
@

@�
�
OL2z
„2�2

!
C V.�/

D � „
2

2�

�
1

�

@

@�
�
@

@�

�
C
OL2z
2��2

C V.�/:
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On the other hand, the classical Hamiltonian is

Hclass D
p2�

2�
C

L2z

2��2
C V.�/ D

p2�

2�
C Veff;

where p� D p � u�. This would suggest that

Op2� D �„2
�
1

�

@

@�
�
@

@�

�

and

Veff D
OL2z
2��2

C V.�/;

but this is not the case. To prove this show that Op� defined as

Op� D
1

2

�
Op � u� C u� � Op

�

D „
2i

�
r � u� C u� � r

�

is equal to

Op� D
„
i

�
@

@�
C 1

2�

�

and that

Op2� D �„2
�
1

�

@

@�
�
@

@�

�
C „

2

4�2
:

As a consequence show that, in the quantum problem,

Veff D
OL2z
2��2

� „2
8��2

C V.�/:

In other words, there is an attractive “barrier” in the 2-D problem, even for

eigenfunctions corresponding to
D
OL2z
E
D 0: This is the reason why there is always a

bound state for a “circular” potential well in two dimensions.

17. The Hamiltonian for the previous problem is

OH D � „
2

2�

�
1

�

@

@�
�
@

@�
C 1

�2
@2

@�2

�
C V.�/:
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Assume a solution for the eigenfunctions of the form

 Em.�/ D uEm.�/e
im�=
p
�;

where m is an integer, and show that the radial equation for uEm.�/ is

u00
Em.�/C

�
2�

„2 ŒE � V.�/�C 1 � 4m2

4�2

�
uEm.�/ D 0:

For the potential V.�/ D ��2!2=2 (isotropic two-dimensional harmonic oscillator),

introduce dimensionless variables

� D
r
�!

„ �; � D 2E=„!;

and show that the dimensionless radial function Qu�m .�/ obeys the differential

equation

Qu00
�m .�/C

 
�C

�
1 � 4m2

�

4�2
� �2

!
Qu�m .�/ D 0:

Compare this with Eq. (10.160) to show that the eigenenergies are

En D .nC 1/„!; n D 0; 1; 2; : : : :

and that the dimensionless radial eigenfunctions are

QRnm .�/ D

vuuut2

�
n�jmj
2

�
Š

�
nCjmj
2

�
Š
� jmj

e��2=2Ljmj
n�jmj
2

.�2/;

where m varies from �n to n in integer steps of 2.

18–19. The classical Hamiltonian for a particle having mass� and charge q moving

in a constant magnetic field B is given by

H D .p � qA/2

2�

where

A D �r � B=2
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is the vector potential. Prove that B D r �A and show that the Hamiltonian can be

written as

H D p2

2�
� qL � B

2�
C A2

2�
;

where L D r � p and p is the canonical momentum, related to the velocity by

p D �PrC qA:

If the initial velocity is perpendicular to B, prove that the motion is in a plane

perpendicular to B.

Now assume that the magnetic field is along the z-direction, B D Buz and

consider the motion to be confined in the xy plane. Use cylindrical coordinates

.�; �/. At t D 0, take

�.0/ D �0 D x0ux C y0uyI
v.0/ D v0 D vx0ux C vy0uy:

Use the Lorentz force equation to find v.t/ and integrate the result to obtain �.t/.

Prove that the orbit of the particle is a circle of radius R D v0=!c centered at

xc D x0 C vy0=!cI
yc D y0 � vx0=!c;

where

!c D
qB

�

is the cyclotron frequency. Prove the following relationships:

H D 1

2
�v.t/2 D constant D 1

2
�v20 I

Lz D constant D j�0 � p0j D �
�
x0v0y � y0v0x

�
C !c�

2
0=2

D !c�
2
c=2I

H D 1

2
� P� .t/2 C Veff.�/;

where

�.t/ D x.t/ux C y.t/uy D �.t/u�I
�2c D x2c C y2c I
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v.t/ D P�.t/ D vx.t/ux C vy.t/uy D P� .t/u� C �.t/ P�.t/u� I

Veff.�/ D
L2z

2��2
� qLzB

2�
C q2B2

8�
�2:

Note that the distance from the origin to the center of the orbit scales as
p

Lz:

20–21. Now consider the corresponding quantum problem with the magnetic field

in the z-direction, for which

OH D

�
Op � q OA

�2

2�

D Op
2

2�
C q2B2

8�
�2 � q OLzB

2�

(the fact that Opj commutes with OAj is needed to arrive at this result). Show that the

Hamiltonian is the same as that for an isotropic two-dimensional harmonic oscillator

having frequency

! D !c

2
D qB

2�
;

except that there is an additional term,

�q„mB

2�
D �m„!;

in the radial equation. As a consequence of this term, show that the equation for the

radial function uEm of problem 10.17 acquires an additional term, 2muEm, and then

use the results of of problem 10.17 to show that the energy levels are given by

En D
�

nC 1

2

�
„!c;

where n is an integer � 0 and m is an integer that ranges from �n to infinity.

Thus, there is an infinite degeneracy for each n, a result that can be traced to

the translational symmetry of the problem. Use the effective potential to show

why this degeneracy is possible for this problem, but not for the isotropic two-

dimensional oscillator. The equally spaced n levels for this potential are referred

to as Landau levels (after Lev Landau). Obtain the radial eigenfunctions and plot

the dimensionless radial probability distribution for n D 10 and m D 100; 400 on

the same graph. Check to see if changing the value of m results in a translation of

the probability distribution and if the radial position of the center of the distribution

scales approximately as
p

m, as predicted from classical considerations.



Chapter 11

Dirac Notation

We’ve reached a plateau. You now know how to solve problems in one, two, and

three dimensions. Hopefully you have the basics under your belt. In this chapter, I

present a somewhat more general way of specifying the state of a quantum system,

based on a formalism developed by Dirac.1

11.1 Vector Spaces and Dirac Notation

Up to this point, I have focused on methods for obtaining the eigenfunctions

associated with various Hamiltonians; moreover, the discussion has been limited

mainly to the coordinate representation. The eigenfunctions form a complete set

of functions, allowing you to expand any function as a linear superposition of the

eigenfunctions. This is similar to, but not exactly identical to the situation with

vectors. As you know you can expand a vector as

A D Axux C Ayuy C Azuz: (11.1)

An orthonormal basis set (ux;uy;uz) has been chosen for convenience. You can

obtain any component of the vector by projection,

Aj D uj�A; j D x; y; z: (11.2)

In quantum mechanics, on the other hand, an arbitrary function  .r/ can be

expanded in the set of basis functions corresponding to the eigenfunctions  f .r/

of some Hermitian operator OF, namely

1P. A. M. Dirac, Principles of Quantum Mechanics, Fourth Edition (Oxford University Press,

Oxford, U.K., 1958).
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 .r/ D
X

f

bf f .r/; (11.3)

where

bf D
�
 f ;  

�
D
Z

dr �
f .r/  .r/ I (11.4)

the scalar product projection operation used for vectors is replaced by integration.

The analogy with vector spaces can be made exact if we deal with eigenstates

and state vectors rather than eigenfunctions and wave functions. Dirac developed a

powerful formalism for representing state vectors in quantum mechanics. Students

leaving an introductory course in quantum mechanics often can use Dirac notation,

but may not appreciate its significance.

11.1.1 Vector Spaces

It is probably easiest to think of Dirac notation in relation to a three-dimensional

vector space. Any three dimensional vector can be written as

A DAxux C Ayuy C Azuz; (11.5)

where Ax;Ay;Az are the components of the vector in this x; y; z basis. I can represent

the unit vectors as column vectors,

uxD

0
@
1

0

0

1
A I uyD

0
@
0

1

0

1
A I uzD

0
@
0

0

1

1
A ; (11.6)

such that the vector A can be written as

A D

0
@

Ax

Ay

Az

1
A : (11.7)

Of course, the basis vectors ux;uy;uz are not unique; any set of three non-collinear

unit vectors would do as well. Let’s call one such set u1;u2;u3, such that

A D A1u1 C A2u2 C A3u3: (11.8)

The vector A is absolute in the sense that it is basis-independent. For a given basis,

the components of A change in precisely the correct manner to insure that A remains

unchanged. The example in the problems should make this clear.
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The scalar product of two vectors is defined in the usual fashion as the cosine of

the angle between the vectors. Although not necessary, it is convenient to choose

an orthonormal basis, one in which the scalar product of different basis vectors

vanishes and the scalar product of a basis vector with itself is equal to unity. The

basis vectors ux;uy;uz constitute an orthogonal basis since

ux � ux D uy � uy D uz � uz D 1I
ux � uy D uy � uz D ux � uz D 0: (11.9)

In addition to a geometric interpretation to the scalar product, I can give

a definition based on matrix multiplication. Even though the vectors are real

quantities, in preparation for quantum mechanics, I define the adjoint of a vector

A as

A� D
�

A�
x A�

y A�
z

�
; (11.10)

that is as a row matrix whose components are the complex conjugates of those of

the column matrix A. The scalar product of vectors A and B is then defined as

A � B D A
¯

�B
¯
D
�

A�
x A�

y A�
z

�
0
@

Bx

By

Bz

1
A D A�

x Bx C A�
y By C A�

z Bz; (11.11)

such that

A � A D A
¯

�A
¯
D
�

A�
x A�

y A�
z

�
0
B@

Ax

Ay

Az

1
CA D jAxj2 C

ˇ̌
Ay

ˇ̌2 C jAzj2 D jAj2 ; (11.12)

as desired. A line below a symbol indicates a matrix.

Expressed as matrices, the adjoints of the unit vectors given in Eq. (11.6) are

u
¯

�
x D

�
1 0 0

�
I u

¯

�
y D

�
0 1 0

�
I u

¯

�
z D

�
0 0 1

�
: (11.13)

You can verify that, consistent with Eq. (11.9),

ui � uj D u
¯

�
i u
¯

j D ıi;j; i; j D fx; y; zgI (11.14)

these unit vectors form an orthonormal basis. The jth component of a vector is then

obtained by projection as

Aj D uj � A D u
¯

�
j A

¯
I j D fx; y; zg: (11.15)
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Next, I define the action of an operator OO on a vector A by the equation

A0 D OOAI (11.16)

that is, the operator OO acting on a vector A produces a new vector A0. For example,

the operator OO may result in a translation or a rotation of the vector A. It won’t

take you too much effort to realize that a translation doesn’t change a vector, but

a rotation mixes up its components in some specified manner. A linear operator is

one that produces a new vector having components that are a linear combination of

the initial components of the vector. In other words, a linear operator OO acting on a

vector A produces a new vector A0 having components

A0
x D OxxAx C OxyAy C OxzAz (11.17a)

A0
y D OyxAx C OyyAy C OyzAz (11.17b)

A0
z D OzxAx C OzyAy C OzzAz: (11.17c)

Equation (11.16) corresponds to what is called an active transformation. The vector

itself is operated on (e.g., the vector is rotated), but the basis vectors are left

unchanged. Thus, the new vector is expressed in terms of the original basis as

A0 D A0
xux C A0

yuy C A0
zuz: (11.18)

It is possible to write Eq. (11.17) as a matrix equation if I define

O
¯
D

0
@

Oxx Oxy Oxz

Oyx Oyy Oyz

Ozx Ozy Ozz

1
A I (11.19)

that is, I represent a linear operator as a matrix, such that the transformation (11.16)

can be written in matrix form as

A
¯

0 D O
¯

A
¯
: (11.20)

This is an important result; linear operators can be represented as matrices. I can

introduce a set of basis matrices of the form

m
¯

xy D u
¯

xu
¯

�
y D

0
@
1

0

0

1
A�0 1 0

�
D

0
@
0 1 0

0 0 0

0 0 0

1
A I (11.21)

that is, a one for the xy element and zeroes everywhere else. If I re-label x; y; z as

1; 2; 3, then m
¯

ij has a one for the ij element and zeroes everywhere else, such that
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O
¯
D

3X

i;jD1
Oijm

¯
ij (11.22)

I also replace ux;uy;uz by u1;u2;u3: In that way, Eq. (11.22) remains valid in any

orthonormal basis with

m
¯

ij D u
¯

iu
¯

�
j I i; j D f1; 2; 3g: (11.23)

Of course, the matrix elements of the matrix O
¯

depend on the basis. You are at

liberty to represent the basis vectors as

0
@
1

0

0

1
A ;

0
@
0

1

0

1
A ;

0
@
0

0

1

1
A (11.24)

in any one orthonormal basis, but once you choose this basis, you must express all

other unit vectors in terms of this specific basis. As with marriage, you make your

choice and you live with it.

Note that, for orthonormal basis vectors,

u
¯

�
i O

¯
u
¯

j D
3X

i0;j0D1
u
¯

�
i Oi0j0m

¯
i0j0u

¯
j D

3X

i0;j0D1
Oi0j0u

¯

�
i m

¯
i0j0u

¯
j

D
3X

i0;j0D1
Oi0j0u

¯

�
i u
¯

i0u
¯

�

j0
u
¯

jD
3X

i0;j0D1
Oi0j0ıi;i0ıj;j0 D Oij; (11.25)

which shows you how to get matrix elements by projection.

11.1.2 Hilbert Space

I can take these ideas over to quantum mechanics. Things will be a little vague and

confusing at first, but I hope that they clear up as I proceed. I consider only time-

independent operators and, for the moment, only time-independent state vectors.

The analogue of the vector A is the state vector jAi, which is an abstract vector

in a Hilbert space that can be finite or infinite-dimensional. Such a state vector is

referred to as a ket. As in a normal vector space, I can introduce unit vectors or basis

kets jni. Thus, the ket jni can be thought of as a column matrix having a 1 in the nth

place and a zero everywhere else. The state vector can be expanded as

jAi D
X

n

An jni : (11.26)
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In other words, the state vector jAi is a column matrix whose nth element is An.

As in the vector case, the state vector jAi has an absolute meaning. If I change the

basis kets, I change the coordinates An but do not change jAi. The adjoint of a ket is

called a bra and can be represented by a row matrix. The adjoint of the basis ket jni
is written as

hnj D .jni/� (11.27)

If the basis kets are orthonormal, as is often the case, then

hn jmi D ım;n: (11.28)

You can see the origin of the bra-ket (bracket) notation. Unless stated otherwise,

I will assume that the basis kets are orthonormal. The adjoint of Eq. (11.26) is

defined by

.jAi/� D hAj D
X

n

A�
n hnj ; (11.29)

such that, for any two state vectors jAi and jBi in the same Hilbert space,

hB jAi D
X

n;n0

An0B�
n hn

ˇ̌
n0˛ D

X

n

AnB�
n D

 X

n

A�
n Bn

!�

D hA jBi� : (11.30)

I can use Eq. (11.28) to obtain the Am appearing in Eq. (11.26) by multiplying

that equation by hmj and using Eq. (11.28) to obtain

Am D hm jAi : (11.31)

Furthermore,

jAi D
X

n

An jni D
X

n

jni hn jAi ; (11.32)

which implies that

X

n

jni hnj D 1; (11.33)

a statement of the completeness relation. For continuous kets such as jri ; the

corresponding relationships are

hr
ˇ̌
r0˛ D ı.r � r0/I (11.34a)
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Z
dr jri hrj D 1: (11.34b)

Whereas the discrete kets are dimensionless, the continuous kets jri have units of

1=
p

volume.

I can also consider the effect of a linear operator OO acting on the state vector jAi.
It will produce a new state vector jAi0 that

jAi0 D
X

n

A0
n jni D OO jAi D OO

X

n

An jni D
X

n

An
OO jni : (11.35)

If you multiply Eq. (11.35) on the left by hmj and use the orthonormal property of

the bras and kets, you can obtain

A0
m D

X

n

An hmj OO jni D
X

n

OmnAn; (11.36)

where

Omn D hmj OO jni (11.37)

is a matrix element of the operator OO in the jni basis. Linear operators can be

represented as matrices, just as in three-dimensional vector space. It is convenient

to define unit matrices by

m
¯

nq D jni hqj ; (11.38)

such that

O
¯
D
X

i;j

Oijm
¯

ij: (11.39)

Remember that jni hqj is a matrix with a one for the nq element and zeroes

everywhere else. The matrix O
¯

is Hermitian if Onm D .Omn/
�.

I now come to the fundamental difference between a vector space and Hilbert

space, as applied to quantum mechanics. In three-dimensional vector space, in

general, one chooses the basis vectors without making any reference to the operators

acting in the space. In quantum mechanics, a central feature is to choose a set of

basis vectors that is intimately connected with operators acting in the Hilbert space.

Moreover, it is assumed that the Hermitian operator associated with each physical

observable has a matrix representation that is diagonal in its own basis.

That is, in a given basis jhi associated with a Hermitian operator OH, it is assumed

that H
¯

is diagonal,

hhj OH
ˇ̌
h0˛ D hıh;h0 : (11.40)
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If I multiply this equation on the left by jhi and sum over h using the completeness

relation given in Eq. (11.33), I find

OH
ˇ̌
h0˛ D

X

h

h jhi ıh;h0 D h0 ˇ̌h0˛ ; (11.41)

which is just an eigenvalue equation for OH! Consequently, we can use all the results

that were derived in connection with the eigenvalue problem (eigenkets exist, are

complete, can be chosen to form an orthonormal basis, simultaneous eigenkets can

always be chosen for commuting operators, etc.). The eigenvalues h are the only

possible outcomes of a measurement of the physical observable associated with OH
when made on a single quantum system.

I define the time-dependent state vector j .t/i to be the solution of the time-

dependent Schrödinger equation,

i„d j .t/i
dt

D OH j .t/i : (11.42)

It is a simple matter to show that the solution of this equation can be written in the

form

j .t/i D
X

E

bEe�iEt=„ jEi ; (11.43)

provided

OH jEi D E jEi : (11.44)

Thus, if we solve Eq. (11.44), we have a complete solution to any problem for a

Hamiltonian OH.

Since I have assumed that an operator is diagonal in its own basis, it follows that

OH jEi D E jEi I (11.45a)

Or jri D r jri I (11.45b)

Op jpi D p jpi : (11.45c)

Furthermore, any operator corresponding to a classical variable that is a function

only of r has jri as its eigenkets and any operator corresponding to a classical

variable that is a function only of p has jpi as its eigenkets; that is, for operators
OV and Op2, the matrices V

¯
and p

¯

2 associated with these operators are diagonal in the

jri and jpi bases, respectively,

OV jri D V .r/ jri I (11.46a)

Op2 jpi D p2 jpi : (11.46b)
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All this is well and good, but what have I accomplished? Normally in quantum

mechanics we want to find the eigenenergies of the Hamiltonian, now expressed as

the matrix H
¯
: In the jEi basis, H

¯
is simply a diagonal matrix whose elements are

the eigenenergies, but we have no way of calculating them yet. In other words, if

we don’t know the eigenenergies, the equation OH jEi D E jEi doesn’t help us to

find them. It may be that we know the matrix elements of H
¯

in some other basis,

however. If that were the case, it turns out that if we diagonalize the matrix H
¯

, we

can find the eigenenergies of OH, as well as the eigenkets of OH in terms of the basis

kets for which we know the matrix elements of H
¯

.

Let me give you an example. Say that the Hamiltonian is that of a free particle,

H
¯
D

p
¯

2

2m
: (11.47)

Since H
¯

is diagonal in the jpi basis, the jpi states are the eigenkets of H
¯

and the

corresponding eigenenergies are p2=2m: But what if the Hamiltonian is of the form

H
¯
D

p
¯

2

2m
C V

¯
; (11.48)

where V
¯

is the matrix corresponding to the potential energy operator OV . I know the

matrix elements of Op2 in the jpi basis and those of OV in the jri basis, but not those

of the entire Hamiltonian in any one basis.

To proceed further, I need to inject some quantum physics. Previously, one of

the postulates I used was to assume that the wave functions in coordinate and

momentum space were Fourier transforms of one another. This allowed me to

calculate the momentum operator in coordinate space. I now replace this postulate

by one in which the Poisson bracket of classical mechanics for two variables is

replaced by the commutator of the matrices in quantum mechanics corresponding to

those variables, multiplied by .i„/�1. The Poisson bracket of two arbitrary functions

F and G with respect to canonical variables q and p is defined as

ŒF;G�q;p D
@H

@q

@G

@p
� @H

@p

@G

@q
: (11.49)

As a consequence, the Poisson bracket of x and px is

Œx; px�x;px
D @x

@x

@px

@px

� @x

@px

@px

@x
D 1: (11.50)

To arrive at the analogous equation for quantum mechanics, I replace Œx; px�x;px
by

.i„/�1 ŒOx; Opx� to arrive at the commutator relation ŒOx; Opx� D i„: This will allow me to

evaluate matrix elements of Op in the jri basis.
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Armed with this commutator, I can try to evaluate matrix elements of

OH D Op
2

2m
C OV (11.51)

in the jri basis. Matrix elements of the second term are easy to obtain since

hrj OV
ˇ̌
r0˛ D V .r/ ı.r � r0/I (11.52)

the potential energy matrix is diagonal in the jri basis. But what about matrix

elements of Op2 in the jri basis? I start from the assumed form for the commutator,

ŒOx; Opx� D i„; (11.53)

and evaluate

hxj ŒOx; Opx�
ˇ̌
x0˛ D i„ hx

ˇ̌
x0˛ D i„ı.x�x0/I

hxj OxOpx � Opx Ox
ˇ̌
x0˛ D i„ı.x�x0/: (11.54)

Since Ox is a Hermitian operator and since Ox jx0i D x0 jx0i, it follows that

hxj Ox D .Ox jxi/� D x .jxi/� D x hxj , (11.55)

allowing me to rewrite Eq. (11.54) as

�
x � x0� hxj Opx

ˇ̌
x0˛ D i„ı.x�x0/: (11.56)

Equation (11.56) is of the form xf .x/ D aı.x/; which has as solution

f .x/ D �a
d

dx
ı.x/: (11.57)

To prove that this is a solution, I work backwards starting from

xf .x/ D �ax
d

dx
ı.x/ D �a

d

dx
Œxı.x/�C aı.x/ D aı.x/; (11.58)

having used the relation xı.x/ D 0. Thus,

hxj Opx

ˇ̌
x0˛ D „

i

d

dx
ı.x�x0/I (11.59a)

hrj Opx

ˇ̌
r0˛ D „

i

@

@x
ı.r � r0/I (11.59b)

hrj Op
ˇ̌
r0˛ D „

i
r rı.r � r0/: (11.59c)
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Similarly,

hpj Or
ˇ̌
p0˛ D i„r pı.p � p0/: (11.60)

It is clear that Opx is not diagonal in the jxi basis since the derivative of a delta function

is not proportional to ı.x�x0/; that is, it is non-zero for values of x ¤ x0. You can

understand this easily. A delta function ı.x/ is like a narrow Gaussian centered at

x D 0 whose derivative vanishes at x D 0, has a sharp maximum for x < 0, and a

sharp minimum for x > 0—it is non-zero for values of x ¤ 0: Of course we knew

beforehand that Op could not be diagonal in the jri basis since two operators can have

simultaneous eigenkets if and only if the operators commute.

I have made some progress. Using the assumed commutation relation between

Ox and Opx, I found a matrix representation of Op in the jri basis. The matrix is

not diagonal, nor will the matrix p
¯

2 be diagonal. As a consequence, to get the

eigenvalues of H
¯

, I must diagonalize H
¯
: In other words, I seek a linear combination

of energy kets in the jri basis,

jEi D
Z

dr hr jEi jri (11.61)

that diagonalizes H
¯

, that is, a basis for which

OH jEi D E jEi : (11.62)

If I can find the expansion coefficients hr jEi, I will have accomplished this task. In

other words, I will have found a basis in which OH is diagonal—the eigenenergies

are simply the diagonal elements of the matrix H
¯

in the new basis.

To get the expansion components, I start from Eq. (11.62) and multiply on the

left by hrj to obtain

hrj
� Op2
2m
C OV

�
jEi D E hr jEi : (11.63)

I now use the completeness relation

Z
dr jri hrj D 1 (11.64)

and insert complete sets at will. In fact, when dealing with Dirac notation and you

are lost about what to do, you can always insert some complete sets and see what

happens! Inserting Eq. (11.64) into Eq. (11.63), I find

Z
dr0 hrj

� Op2
2m
C OV

� ˇ̌
r0˛ ˝r0 jEi D E hr jEi ; (11.65a)
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Z
dr0

� hrj Op2 jr0i
2m

C hrj OV
ˇ̌
r0˛
� ˝

r0 jEi D E hr jEi ; (11.65b)

Z
dr0

� hrj Op2 jr0i
2m

C V.r/ı.r � r0/

� ˝
r0 jEi D E hr jEi ; (11.65c)

Z
dr0 hrj Op2 jr0i

2m

˝
r0 jEi C V.r/ hr jEi D E hr jEi ; (11.65d)

and the problem reduces to evaluating

Z
dr0 hrj Op2

ˇ̌
r0˛ ˝r0 jEi D

Z
dr00

Z
dr0 hrj Op

ˇ̌
r00˛ �

˝
r00 ˇ̌ Op

ˇ̌
r0˛ ˝r0 jEi

D
Z

dr00
Z

dr0 „
i
r rı.r � r00/ �

˝
r00 ˇ̌ Op

ˇ̌
r0˛ ˝r0 jEi : (11.66)

Since r r acts only on r, I can take it out of the integral and obtain

Z
dr0 hrj Op2

ˇ̌
r0˛ ˝r0 jEi

D „
i
r r

Z
dr00

Z
dr0ı.r � r00/ �

˝
r00 ˇ̌ Op

ˇ̌
r0˛ ˝r0 jEi

D „
i
r r �

Z
dr0 hrj Op

ˇ̌
r0˛ ˝r0 jEi D „

i
r r �

Z
dr0 „

i
r rı.r � r0/

˝
r0 jEi

D �„2r r � r r

Z
dr0ı.r � r0/

˝
r0 jEi D �„2r 2

r hr jEi (11.67)

or

� „
2

2m
r 2

r hr jEi C V.r/ hr jEi D E hr jEi : (11.68)

But this is nothing more (or less) than Schrödinger’s equation if I identify

hr jEi D  E.r/: (11.69)

Diagonalizing H
¯

in the jri basis is equivalent to solving the Schrödinger equation! I

now have the connection between Dirac notation and the wave function. In general,

the bra-ket notation doesn’t simplify the problem, since we still have to solve the

Schrödinger equation. Nevertheless Dirac notation provides a powerful formalism

that lets us express results in a basis-independent fashion.

Often, I will need to calculate the matrix elements of an operator OA in the energy

basis, namely hEj OA jE0i. Suppose that the operator OA corresponds to a physical

variable A.r/ that is a function of coordinates only— OA is diagonal in the jri basis.
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Then

hEj OA
ˇ̌
E0˛ D

Z
drdr0 hE jri hrj OA

ˇ̌
r0˛ ˝r0 ˇ̌E0˛

D
Z

drdr0 �
E.r/A.r/ı

�
r � r0� E0.r0/

D
Z

dr �
E.r/
OA.r/ E0.r/ (11.70)

is the way in which matrix elements are most often evaluated.

11.1.3 Schrödinger’s Equation in Momentum Space

As an example of the use of Dirac notation, I derive the time-independent

Schrödinger’s equation in momentum space. As in coordinate space, I expand

jEi D
Z

dp hp jEi jpi (11.71)

and try to find the expansion coefficients hp jEi. I start from OH jEi D E jEi and

multiply on the left by hpj to get

hpj
� Op2
2m
C OV

�
jEi D E hp jEi : (11.72)

I proceed as before and obtain

Z
dp0 hpj

� Op2
2m
C OV

� ˇ̌
p0˛ ˝p0 jEi D E hp jEi I

Z
dp0

�
p2

2m
ı.p � p0/C hpj OV

ˇ̌
p0˛
� ˝

p0 jEi D E hp jEi I

p2

2m
hp jEi C

Z
dp0 hpj OV

ˇ̌
p0˛ ˝p0 jEi D E hp jEi : (11.73)

However, I do not know matrix elements of OV in the jpi basis, but do know them

in the jri basis. So I add some more completeness relations:

Z
dp0 hpj OV

ˇ̌
p0˛ ˝p0 jEi

D
Z

dr0
Z

dr

Z
dp0 hp jri hrj OV

ˇ̌
r0˛ ˝r0 ˇ̌ p0˛ ˝p0 jEi
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D
Z

dr0
Z

dr

Z
dp0 hp jriV.r0/ı.r � r0/

˝
r0 ˇ̌ p0˛ ˝p0 jEi

D
Z

drV.r/

Z
dp0 hp jri hrj p0˛ ˝p0 jEi : (11.74)

To evaluate this I need to know the value of hp jri D hrj pi�.

To evaluate hrj pi, I start from the eigenvalue equation

Op jpi D p jpi I (11.75)

hrj Op jpi D p hr jpi I (11.76)
Z

dr0 hrj Op
ˇ̌
r0˛ ˝r0 ˇ̌ pi D p hr jpi I (11.77)

„
i

Z
dr0r rı.r � r0/

˝
r0 ˇ̌ pi D p hr jpi I (11.78)

„
i
r r

Z
dr0ı.r � r0/

˝
r0 ˇ̌ pi D p hr jpi I (11.79)

„
i
r r hrj pi D p hr jpi I (11.80)

hrj pi D 1

.2�„/3=2
eip�r=„ D hp jri� ; (11.81)

where a normalization factor has been included to ensure that

hrj r0˛ D
Z

dp hr jpi hp
ˇ̌
r0˛ D 1

.2�„/3
Z

dpeip�.r�r0/=„ D ı
�
r � r0� : (11.82)

Substituting Eq. (11.81) into Eq. (11.74) I obtain

Z
dp0 hpj OV

ˇ̌
p0˛ ˝p0 jEi D .2�„/�3

Z
dp0

Z
drV.r/e�i.p�p0/�r=„ ˝p0 jEi

D .2�„/�3=2
Z

dp0 QV
�
p � p0� ˝p0 jEi ; (11.83)

where

QV.q/ D .2�„/�3=2
Z

drV.r/e�iq�r=„ (11.84)

is the Fourier transform of V.r/: Combining Eqs. (11.73), (11.74), and (11.83), I

arrive at
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p2

2m
ˆE.p/C

1

.2�„/3=2
Z

dp0 QV
�
p � p0�ˆE.p

0/ D EˆE.p/; (11.85)

which is Schrödinger’s equation in momentum space for the wave function

ˆE.p/ D hp jEi : (11.86)

In momentum space, Schrödinger’s equation is an integral equation.

Also, given the fact that

jri D
Z

dp hp jri jpi ; (11.87)

I can multiply on the left by hEj and use Eq. (11.81) to obtain

hE jri D 1

.2�„/3=2
Z

dp hE jpi e�ip�r=„: (11.88)

Taking the complex conjugate of this equation and using Eqs. (11.69) and (11.86), I

find

 E.r/ D
1

.2�„/3=2
Z

dpˆE.p/e
ip�r=„: (11.89)

The energy eigenfunctions in coordinate and momentum space are Fourier trans-

forms of one another. Earlier I postulated this result and was able to derive the

commutation relations for the position and momentum operators. Here I postulated

the commutation relations and was led to the result that E.r/ andˆE.p/ are Fourier

transforms of one another.

Although I have shown that diagonalizing the Hamiltonian in the coordinate

representation is equivalent to solving the Schrödinger equation, there are some

cases where it is possible to get the eigenvalues and eigenfunctions working directly

from the Dirac notation formalism. I now turn my attention to two such cases, the

simple harmonic oscillator and the angular momentum operator.

11.2 Simple Harmonic Oscillator

Let us reconsider the SHO in 1-D which has a Hamiltonian in units of „! given by

OH0 D
OH
„! D

1

2

�
O�2 C O�2

�
; (11.90)
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where

O� D
r

m!

„ OxI (11.91a)

O� D
r

1

„m! Op D
1

i

@

@�
: (11.91b)

It will prove convenient to introduce operators a and a� (I don’t put hats on them

even though they are operators) that are defined by

a D
r

m!

2„

�
OxC i

Op
m!

�
D
O� C iO�p
2
I (11.92a)

a� D
r

m!

2„

�
Ox � i

Op
m!

�
D
O� � iO�p
2
: (11.92b)

In terms of these operators,

OH0 D a�aC 1

2
D OnC 1

2
; (11.93)

where

On D a�a: (11.94)

The operators a and a� satisfy the commutation relations

�
a; a�

�
D �

�
a�; a

�
D 1; Œa; a� D

�
a�; a�

�
D 0: (11.95)

It turns out, by being a bit clever, you can find the eigenenergies and eigenfunctions

of the SHO without solving the Schrödinger equation. For reasons that will become

obvious, the operators a and a� are often referred to as ladder operators and On as the

number operator.

To start, I label the eigenkets of On by jni without any restriction on n (it need not

be an integer) such that

OH0 jni D
�
OnC 1

2

�
jni D �n jni (11.96)

where

�n D En=„! D .nC 1=2/: (11.97)

and the energy En is given by

En D .nC 1=2/„!: (11.98)
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This is perfectly arbitrary since there is no restriction on n.

The operator a is a lowering or destruction operator, which can be proved as

follows: First I note that

OH0 .a jni/ D OH0a jni D
�h
OH0; a

i
C a OH0

�
jni : (11.99)

But

h
OH0; a

i
D
�
a�a; a

�
D a� Œa; a�C

�
a�; a

�
a D �a; (11.100)

implying that

OH0 .a jni/ D
�
�aC a OH0

�
jni D Œ�aC a .nC 1=2/� jni

D Œ.n � 1/C 1=2� .a jni/ : (11.101)

In other words, .a jni/ is an eigenket of OH0 having eigenvalue n � 1.

By successively applying the operator a, I keep lowering the eigenvalue by one.

However, the expectation value of the number operator is always positive or zero,

since

hnj On jni D hnj a�a jni D .a jni/� .a jni/ � 0: (11.102)

Thus as I keep applying the operator a, I must come to a lowest state jnmini for

which a jnmini D 0: As a consequence,

a� .a jnmini/ D 0 D On jnmini D nmin jnmini ; (11.103)

which requires that nmin D 0: The value of nmin D 0 was reached by continually

lowering n by one; therefore, n must be a positive integer or zero and the

(dimensionless) eigenenergies are

�n D .nC 1=2/; n D 0; 1; 2; 3; : : : : (11.104)

I have obtained the eigenenergies without having solved Schrödinger’s equation.

Since .a jni/ is an eigenket of OH having eigenvalue n � 1; I can write

a jni D cn jn � 1i ; (11.105)

where cn is a constant. Thus

n D hnj a�a jni D .a jni/� .a jni/ D .cn jn � 1i/� .cn jn � 1i/
D jcnj2 hn � 1 jn � 1i D jcnj2 : (11.106)
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If I choose the phase of cn equal to zero, then cn D
p

n and

a jni D
p

n jn � 1i : (11.107)

In a similar manner I can show that a� is a raising or creation operator and that

a�jni D
p

nC 1jnC 1i ; (11.108)

such that the number operator leaves the ket unchanged,

On jni D a�a jni D njni; (11.109)

as required since the Hamiltonian is diagonal in the jni basis.

From Eq. (11.108), it follows that

j1i D a�p
1Š
j0iI j2i D a�p

1Š
j1i D

�
a�
�2

p
2Š
j0i; (11.110)

and so forth, leading to

jni D
�
a�
�n

p
nŠ
j0i: (11.111)

The (dimensionless) wave function in terms of dimensionless variables is given by

 n.�/ D h� jni : (11.112)

Using ladder operators I have obtained the eigenenergies and expressions for all the

eigenkets in terms of the eigenket j0i, but have not yet found explicit expressions

for the wave functions.

To do so, I look at the equation

a j0i D 0; (11.113)

put in a complete set via

Z 1

�1
d� 0

a
ˇ̌
� 0˛ ˝� 0 j0i D 0; (11.114)

and multiply on the left by h�j,
Z 1

�1
d� 0 h�j a

ˇ̌
� 0˛ 0.�

0/ D 0I (11.115a)

Z 1

�1
d� 0 h�j

�
O� C iO�

� ˇ̌
� 0˛ 0.�

0/ D 0I (11.115b)
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Z 1

�1
d� 0

"
�ı
�
� � � 0�C

dı
�
� � � 0�

d�

#
 0.�

0/ D 0I (11.115c)

� 0.�/C
d

d�

Z 1

�1
d� 0ı

�
� � � 0� 0.�

0/ D 0; (11.115d)

which leads to

� 0.�/C
d 0.�/

d�
D 0: (11.116)

The solution of this equation is

 0.�/ D N exp
�
��2=2

�
(11.117)

where N D ��1=4 is a normalization factor. Thus I have found the ground state

wave function. Higher order wave functions can be calculated using the recursion

relations that are given in Chap. 7. In fact I could derive the needed recursion relation

by starting from Eq. (11.108) and multiplying on the left by h�j; that is,

h�j a�jni D
p

nC 1 h� jnC 1i D
p

nC 1 nC1.�/ D h�j
�
O� � iO�

�
jni=
p
2:

(11.118)

Following the same procedure that led to Eq. (11.116), I find

p
2 .nC 1/ nC1.�/ D � n.�/ �

d n.�/

d�
; (11.119)

which is Eq. (7.47c) and allows you to calculate all the wave functions if you

know  0.�/. The ladder operators a and a� are particularly useful for obtaining

matrix elements of operators of the form �m for the harmonic oscillator. I will use

them in applications of perturbation theory.

11.2.1 Coherent State

I want to return to the coherent state that I have already introduced in my discussion

of the harmonic oscillator in Chap. 7, where I found that, for an initial wave function

 coh .�; 0/ D
1

�1=4
e�.���0/

2
=2 D

1X

nD0

�
�0=
p
2
�n

e�.�0=
p
2/
2
=2

p
nŠ

 n .�/ ; (11.120)
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the wave packet envelope does not change its shape as a function of time. In terms

of Dirac notation this state is

j .0/icoh D
1X

nD0

�
�0=
p
2
�n

e�.�0=
p
2/
2
=2

p
nŠ

jni ; (11.121)

such that

j .t/icoh D e�i!t=2

1X

nD0

�
�0=
p
2
�n

e�.�0=
p
2/
2
=2e�in!t

p
nŠ

jni

D e�i!t=2 j coh .t/i ; (11.122)

where

j coh .t/i D
1X

nD0

�
�0=
p
2
�n

e�.�0=
p
2/
2
=2e�in!t

p
nŠ

jni : (11.123)

is the conventional form for a coherent state vector. In taking expectation values of

operators, it makes no difference whether I use j .t/icoh or j coh .t/i.
It is now a relatively simple matter to calculate

D
O�
E
coh
D 1p

2
h coh .t/j

�
aC a�

�
j coh .t/i (11.124)

and

D
O�2
E
coh
D 1

2
h coh .t/j

�
aC a�

�2 j coh .t/i

D 1

2
h coh .t/j

�
a2 C a�2 C 2a�aC 1

�
j coh .t/i (11.125)

and show they are consistent with a wave packet that oscillates in the potential

without changing its shape.

Instead, I adopt somewhat different method that is useful in oscillator problems

and in quantum optics. I define

�.t/ D �0e�i!t=
p
2 (11.126)

and operate with the destruction operator on j coh .t/i,

a j coh .t/i D
1X

nD0

Œ�.t/�n e�j�.t/j2=2
p

nŠ

p
n jn � 1i
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D �.t/
1X

nD1

Œ�.t/�n�1
e�j�.t/j2=2

p
.n � 1/Š

jn � 1i

D �.t/
1X

nD0

Œ�.t/�n e�j�.t/j2=2
p

nŠ
jni

D �.t/ j coh .t/i : (11.127)

Thus, the coherent state at time t is an eigenstate of the destruction operator with

eigenvalue �.t/.2 I change the notation by writing

j�.t/icoh � j coh .t/i D
1X

nD0

Œ�.t/�n e�j�.t/j2=2
p

nŠ
jni ; (11.128a)

such that

a j�.t/icoh D �.t/ j�.t/icoh : (11.128b)

Somewhat more generally, the coherent state of an oscillator, j˛i, can be defined by

a j˛i D ˛ j˛i (11.129)

with

j˛i D
X

n

˛n

p
nŠ

e�j˛j2=2jni

D
X

n

.˛a�/n

nŠ
e�j˛j2=2j0i D e˛a�e�j˛j2=2j0i : (11.130)

Equation (11.129) is an alternative definition of a coherent state. Thus for the

coherent state j coh .t/i having

˛.t/ D
�
�0e

�i!t=
p
2
�
; (11.131)

with �0 real,

h�icoh D
1p
2
h˛ .t/j

�
aC a�

�
j˛ .t/i D ˛ .t/C ˛� .t/p

2
D �0 cos .!t/ (11.132)

2Since Oa is not a Hermitian operator, there is no guarantee that it possesses an orthonormal set of

eigenkets (in fact, the eigenkets are not orthogonal). If you try to follow a procedure similar to the

one that led to Eq. (11.127) to arrive at an eigenvalue equation for Oa�, you will find that it is not

possible—a set of normalizable eigenkets does not exist for the operator Oa�.
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and

D
�2
E
coh
D 1

2
h˛ .t/j

�
a2 C a�2 C 2a�aC 1

�

2
j˛ .t/i

D 1

2

h
˛2 .t/C

�
˛� .t/

�2 C 2 j˛ .t/j2 C 1
i

D
�
�0p
2

�2
e2i!t C e�2i!t C 2

2
C 1

2

D �20 cos2 .!t/C 1=2: (11.133)

From Eqs. (11.132) and (11.133), I find that the variance

��2 D
D
�2
E
� h�i2 D 1

2
(11.134)

is constant in time—the wave packet does not spread.3 The coherent state with �0 D
0 is the vacuum state of the oscillator and is simply the ground state of the oscillator.

For �0 ¤ 0, the wave packet corresponds to the ground state eigenfunction displaced

by an amount �0 and oscillates in the potential without changing its shape.

11.3 Angular Momentum Operator

Angular momentum can also be analyzed using ladder operators. I designate the

simultaneous eigenkets of OL2 and OLz by jˇi; that is,

OL2 jˇi D „2 jˇi (11.135a)

OLz jˇi D „ˇ jˇi : (11.135b)

At this point,  and ˇ are totally arbitrary. Given that OL is Hermitian, OL2 D OL� � OL
must have non-negative eigenvalues;  � 0: Moreover, since the expectation value

of OL2x C OL2y in any state must also be non-negative, it follows that

hˇj
�
OL2 � OL2z

�
jˇi D hˇj

�
OL2x C OL2y

�
jˇi D „2

�
 � ˇ2

�
� 0; (11.136)

3 I have proved only that the variance is constant, not that the absolute square of the wave function

does not change its shape. That result was proved in Chap. 7. However, you can prove that all

moments of the coordinate for the oscillator are constant, which is equivalent to proving the wave

packet does not change its shape.



11.3 Angular Momentum Operator 271

or

 � ˇ2: (11.137)

This is not a surprising result—we expect the z-component of angular momentum

to be less than or equal to the magnitude of the angular momentum.

I now form ladder operators

OL˙ D OLx ˙ i OLy: (11.138)

The fact that these are ladder operators follows from the commutation relations

h
OLz; OL˙

i
D
h
OLz; OLx ˙ i OLy

i
D i„

�
OLy � i OLx

�
D ˙„OL˙: (11.139)

Using these commutation relations, I find

OL˙ OLz jˇi D „ˇ OL˙ jˇi D
�
�„OL˙ C OLz

OL˙
�
jˇi ; (11.140)

or

OLz

h
OL˙ jˇi

i
D „ .ˇ ˙ 1/

h
OL˙ jˇi

i
: (11.141)

In other words, OL˙ jˇi is an eigenket of OLz having eigenvalue „ .ˇ ˙ 1/, namely

OL˙ jˇi D „C˙ .; ˇ/ j; ˇ ˙ 1i ; (11.142)

where C˙ .; ˇ/ is a constant.

Thus, by applying OL˙ to jˇi successively, I keep raising or lowering the

eigenvalues by one unit of „. This cannot go on forever, however, since I know

that  � ˇ2. Thus there must be a maximum value ˇmax and a minimum value ˇmin

for which

OLC j; ˇmaxi D 0I (11.143a)

OL� j; ˇmini D 0; (11.143b)

implying that

.ˇmax � ˇmin/ D positive integer or zero. (11.144)

I now calculate

h; ˇmaxj OL� OLC jˇmaxi D 0I (11.145)

h; ˇmaxj
�
OLx � i OLy

� �
OLx C i OLy

�
jˇmaxi D 0I (11.146)
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h; ˇmaxj OL2x C OL2y � i
h
OLy; OLx

i
jˇmaxi D 0I (11.147)

h; ˇmaxj OL2 � OL2z � „OLz jˇmaxi D 0I (11.148)

 � ˇ2max � ˇmax D 0I (11.149)

 D ˇmax .ˇmax C 1/ : (11.150)

Similarly by considering h; ˇminj OLC OL� jˇmini D 0, I find

 D ˇmin .ˇmin � 1/ ; (11.151)

from which it follows that ˇmin D �ˇmax and, using Eq. (11.144), that

2ˇmax D positive integer or zero. (11.152)

From Eqs. (11.150) and (11.144) you see that  D ` .`C 1/, where ` D ˇmax is a

positive half-integer, integer, or zero, and ˇ, which I now denote by m; can take on

values from�` to ` in integer steps. Thus, as for the SHO, I obtained the eigenvalues

of the operators OL2 and OLz without solving a differential equation.

To obtain the values of CC .`;m/ appearing in Eq. (11.142), I evaluate

h`;mj OL� OLC j`;mi D
�
OLC j`;mi

�� OLC j`;mi

D „2 jCC .`;m/j2 h`;mC 1 j`;mC 1i D „2 jCC .`;m/j2

D h`;mj OL2 � OL2z � „OLz j`;mi D „2
�
` .`C 1/ � m2 � m

�
; (11.153)

having used the identity OL� OLC D OL2 � OL2z � „OLz. Consequently,

CC .`;m/ D
p
` .`C 1/ � m2 � m (11.154)

and

OLC j`;mi D „CC .`;m/ j`;mC 1i D „
p
` .`C 1/ � m2 � m j`;mC 1i

D „
p
.` � m/ .`C mC 1/ j`;mC 1i : (11.155)

Similarly, you can show that

C� .`;m/ D
p
` .`C 1/ � m2 C m (11.156)

and

OL� j`;mi D „C� .`;m/ j`;m � 1i D „
p
` .`C 1/ � m2 C m j`;m � 1i

D „
p
.`C m/ .` � mC 1/ j`;m � 1i : (11.157)
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These are equations that will prove useful in later chapters.

Finally, I need to say something about the half-integral values of ` and m, which

are not ruled out by this discussion. Half-integral values of angular momentum are

possible when electron spin is included. However, without spin I can expand the

j`mi kets in terms of the kets in coordinate space as

j`mi D
Z

dr hr j`mi jri : (11.158)

In Appendix B, I obtain matrix elements of OL in the jri basis and, starting from

OLz j`mi D m„ j`mi I (11.159a)

OL2 j`mi D „2` .`C 1/ j`mi ; (11.159b)

I prove that the expansion coefficients hr j`mi are solutions of the differential

equation for the spherical harmonics. I have already shown that the only physically

acceptable solutions for the spherical harmonics that are regular at both � D 0; �

and are unchanged when � ! �C2� correspond to integral values of ` and m with

` � jmj. As a consequence, the half-integral values of ` and m must be rejected.

The expansion coefficient hr j`mi is proportional to, but not equal to Ym
` .�; �/

(it has the wrong units). To identify the spherical harmonic with an inner product in

Dirac notation, I write the ket jri as

jri D jri juri
r

; (11.160)

where juri satisfies the orthogonality condition

hur

ˇ̌
u0

r

˛
D ı

�
cos � � cos � 0� ı

�
� � �0� (11.161)

and can be interpreted as a solid-angle ket since the unit vector ur depends only on

the spherical angles � and �. Equations (11.160) and (11.161) are consistent with

the fact that

hr
ˇ̌
r0˛ D ı

�
r � r0� D

ı .r � r0/ ı
�
cos � � cos � 0� ı

�
� � �0�

r2
: (11.162)

In terms of these solid angle kets (see Appendix B)

hur j`mi D Ym
` .�; �/ ; (11.163)

which relates the spherical harmonics to inner products in Dirac notation.
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11.4 Solving Problems Using Dirac Notation

Things have been a bit formal in discussing Dirac notation, so let me summarize

where and when you use it in practical situations relative to the Schrödinger

equation. In general, you can often solve problems involving a discrete subspace

using Dirac notation, but need the Schrödinger equation to solve problems involving

an infinite number of levels. I give a few examples below to help illustrate these

points.

11.4.1 Hydrogen Atom

I have already solved Schrödinger’s equation for the hydrogen atom potential and

found that, if E < 0; there is an infinite number of bound states. I also obtained the

wave functions associated with these bound states. For E > 0, there is an infinite

number of continuum states along with their associated eigenfunctions.

If you try to solve this problem using Dirac notation, you start from

OH jEi D E jEi ; (11.164)

but this is useless for obtaining the eigenvalues since you don’t already know them!

To proceed, you expand

jEi D
Z

dr hr jEi jri (11.165)

and try to find the expansion coefficients hr jEi. I have already shown that these

expansion coefficients satisfy the Schrödinger equation, so there is no advantage in

using Dirac notation to obtain the eigenvalues and eigenfunctions of the hydrogen

atom. On the other hand, you can label the eigenkets of the hydrogen atom by the

eigenvalues of the commuting operators OH; OL2; OLz, namely jn; `;mi, where n; `;m

are the quantum numbers corresponding to these physical quantities.

11.4.2 Harmonic Oscillator

This is a mixed case. You can solve for the eigenfunctions and eigenvalues

using the Schrödinger equation without much trouble. However, as we have seen,

it is also possible to introduce ladder operators and solve for the eigenvalues

and eigenfunctions without having ever solved the Schrödinger equation directly.

Calculation of matrix elements is easiest using the ladder operators. Although not

so obvious, it is also possible to solve for the eigenvalues of the hydrogen atom
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without solving the Schrödinger equation based on the group O.4/ and the fact that

both angular momentum and the Lenz vector are conserved.4

11.4.3 Angular Momentum

I will discuss formal aspects of angular momentum in Chaps. 19–20. Dirac notation

is the preferred notation for dealing with angular momentum since you can label

the simultaneous eigenkets of OL2 and OLz by j`m`i and write matrices for both L2

and OLz. For a given integral value of `, each of these diagonal matrices has dimension

.2`C 1/ � .2`C 1/:
To illustrate the power of Dirac notation, I would like to discuss the eigenkets of

OL2 and either OLx and OLz. I represent the eigenkets of OL2 and OLx by j`; `xi and those of
OL2 and OLz by j`; `zi. Clearly the eigenvalues must be identical, since there is nothing

physically that can distinguish OLx from OLz. I can take the basis kets (a column vector

with a 1 in one place and zeroes everywhere else) to be those of OLx or OLz, but not

both. For example, let me take the basis kets to be j`; `zi and take ` D 1. In this

` D 1 subspace

L
¯

z D

0
@
1 0 0

0 0 0

0 0 �1

1
A „; (11.166)

where the order is `z D 1; 0;�1. Moreover, using ladder operators, it is easy to

calculate

L
¯

x D

0
@
0 1 0

1 0 1

0 1 0

1
A „p

2
: (11.167)

By diagonalizing L
¯

x I find the eigenvalues `x D 1; 0;�1 as expected: The eigenkets

(with the ` D 1 label suppressed) are given by

j`x D 1i D
1

2

�
j`z D 1i C

p
2 j`z D 0i C j`z D �1i

�
I

j`x D 0i D
1p
2
.j`z D 1i � j`z D �1i/ I

j`x D �1i D
1

2

�
j`z D 1i �

p
2 j`z D 0i C j`z D �1i

�
: (11.168)

4For a concise, excellent discussion, see Chap. 7 in Quantum Mechanics, Third Edition (McGraw

Hill, New York, 1968) by L. Schiff.
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The difference between OLx and OLz becomes apparent when I consider the

eigenfunctions rather than the eigenkets. The reason for this is that the spherical

coordinate system is one in which the polar angle is measured from the z axis,

making the eigenfunctions of OLz simpler than those of OLx. If I take the inner product

of Eqs. (11.168) with hurj and use the fact that hur j`; `zi � hur j`mi D Ym
` .�; �/,

I find

ˆ11 .�; �/ D 1
2

h
Y11 .�; �/C

p
2Y01 .�; �/C Y�1

1 .�; �/
i

ˆ01 .�; �/ D 1p
2

�
Y11 .�; �/ � Y�1

1 .�; �/
�

ˆ�1
1 .�; �/ D 1

2

h
Y11 .�; �/ �

p
2Y01 .�; �/C Y�1

1 .�; �/
i (11.169)

are the eigenfunctions of OLx. You see that, although the eigenkets are essentially

identical, the eigenfunctions are most simply expressed if you use OLz rather than OLx.

To solve for the eigenfunctions of OLx directly using OLxˆ
m
1 .�; �/ D m„ˆm

1 .�; �/

with OLx given by Eq. (9.31a) would be more difficult.

11.4.4 Limited Subspaces

Sometimes an atom–field interaction is limited to a discrete subspace. Examples

are an atom interacting with a field that is resonant with its ground to first excited

state transition frequency or a magnetic field acting on an atom in its ground state,

including spin. Whenever there are just a few levels in the problem, Dirac notation

is usually the method of choice for attacking the problem.

11.5 Connection with Linear Algebra

Suppose you have a Hamiltonian matrix of the form

H
¯
D

0
@
1 0:5 2

0:5 5 1

2 1 8

1
A : (11.170)

You know this is not the Hamiltonian in the energy basis since it would be diagonal

in that basis. Let us imagine that Eq. (11.170) represents the Hamiltonian in the u

basis with

u
¯
1D

0
@
1

0

0

1
A I u

¯
2D

0
@
0

1

0

1
A I u

¯
3D

0
@
0

0

1

1
A ; (11.171)
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How can I get the eigenvalues of H
¯

and its eigenvectors expressed in the u basis? To

do so I expand

jEi D
3X

nD1
hun jEi juni (11.172)

and show that obtaining the hun jEi is equivalent to diagonalizing the H
¯

matrix. I

start from

H
¯
jEi D

3X

nD1
H
¯
juni hun jEi D E jEi (11.173)

and multiply by humj to obtain

3X

nD1
humjH

¯
juni hun jEi D E hum jEi : (11.174)

This is just the equation that you encountered in linear algebra to diagonalize a

matrix and find its eigenvectors, that is

.H
¯
11 � E/ hu1 jEi C H

¯
21 hu2 jEi C H

¯
31 hu3 jEi D 0I (11.175a)

H
¯
21 hu1 jEi C .H

¯
22 � E/ hu2 jEi C H

¯
23 hu3 jEi D 0I (11.175b)

H
¯
31 hu1 jEi C H

¯
32 hu2 jEi C .H

¯
22 � E/ hu3 jEi D 0: (11.175c)

The equation has a non-trivial solution only if the determinant of the coefficients

vanishes. By setting the determinant of the coefficients equal to zero, I can use this

result to obtain the three energy eigenvalues En fn D 1; 2; 3g : For each eigenenergy

Em, Eqs. (11.175) are solved for the hun jEmi fn D 1; 2; 3g, allowing me to obtain

the eigenkets as

jEmi D
3X

nD1
hun jEmi juni D

3X

nD1
a.m/n juni ; (11.176)

where

a.m/n D hun jEmi : (11.177)

In matrix form,

jE1i D

0
@
hu1 jE1i
hu2 jE1i
hu3 jE1i

1
A I jE2i D

0
@
hu1 jE2i
hu2 jE2i
hu3 jE2i

1
A I jE3i D

0
@
hu1 jE3i
hu2 jE3i
hu3 jE3i

1
A : (11.178)

Thus, finding the expansion coefficients of jEi in the u basis is equivalent to

diagonalizing the Hamiltonian.
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I form a matrix S
¯
� by placing the eigenvectors in columns, such that

S
¯

� D

0
@
hu1 jE1i hu1 jE2i hu1 jE3i
hu2 jE1i hu2 jE2i hu2 jE3i
hu3 jE1i hu3 jE2i hu3 jE3i

1
A : (11.179)

The eigenvectors are then given by

0
@
jE1i
jE2i
jE3i

1
A D

�
S
¯

�
�T

0
@
ju1i
ju2i
ju3i

1
A D S

¯

�

0
@
ju1i
ju2i
ju3i

1
A (11.180)

For normalized eigenkets, S
¯
� is a unitary matrix, having inverse of

�
S
¯

�
��1 D S

¯
and

S
¯
H
¯

S
¯

� D E
¯

(11.181)

where E
¯

is a diagonal matrix whose elements are the eigenvalues of H
¯

. To get

the matrix S
¯

� in Mathematica, use Transpose[Orthogonalize[Eigenvectors[H]]],

where H={{h11,h12,h13},{h21,h22,h23g;{h31,h32,h33gg. To get the eigenvalues, use

Eigenvalues[H].

It is easy to show that S
¯
H
¯

S
¯
� DE

¯
, in general; that is, for matrices having arbitrary

dimension. Since H
¯
jEmi D Em jEmi, it follows that

hEnjH jEmi D Enın;mI (11.182)

X

p;q

hEn

ˇ̌
up

˛ ˝
up

ˇ̌
H
ˇ̌
uq

˛ ˝
uq jEmi D Enın;mI (11.183)

X

p;q

�
a.n/p

��
Hpqa.m/q D Enın;mI (11.184)

X

p;q

�
S�
��

pn
Hpq

�
S�
�

qm
D
X

p;q

SnpHpq

�
S�
�

qm
D Enın;mI (11.185)

�
S
¯
H
¯

S
¯

�
�

nm
D Enın;m: (11.186)

As an example, consider

H
¯
D
�
2 �2i

2i 5

�
(11.187)

in the j1i ; j2i basis in some arbitrary units. To diagonalize H
¯

, I set

jH
¯
j D

ˇ̌
ˇ̌2 � E �2i

2i 5 � E

ˇ̌
ˇ̌ D 0 (11.188)
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and evaluate the determinant to obtain

E2 � 7EC 6 D 0I E D 6; 1: (11.189)

For E D 6

� 4a
.1/
1 � 2ia

.1/
2 D 0I

a
.1/
2 D 2ia

.1/
1 (11.190)

Therefore

jE1i D a
.1/
1 .j1i C 2i j2i/ : (11.191)

I normalize by taking

ˇ̌
ˇa.1/1

ˇ̌
ˇ
2

.1C 4/ D 1I

a
.1/
1 D

1p
5
; (11.192)

such that

jE1i D
1p
5
.j1i C 2i j2i/ : (11.193)

Similarly, for E D 1

a
.2/
1 � 2ia

.2/
2 D 0I

a
.2/
1 D 2ia

.2/
2 (11.194)

and

jE2i D a
.2/
2 .2i j1i C j2i/ D 1p

5
.2i j1i C j2i/ : (11.195)

Therefore

S
¯

� D 1p
5

�
1 2i

2i 1

�
I S

¯
D 1p

5

�
1 �2i

�2i 1

�
; (11.196)

�
jE1i
jE2i

�
D S

¯

�
�
j1i
j2i

�
D 1p

5

�
1 2i

2i 1

��
j1i
j2i

�
; (11.197)
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and

S
¯
H
¯

S
¯

� D
�
6 0

0 1

�
: (11.198)

Note that for any matrix that is 3�3 or larger, you need to diagonalize numerically

rather than analytically since the characteristic equation to find the eigenvalues will

be cubic or higher. In Mathematica, simply put a decimal point in one of the entries.

Thus for

H
¯
D

0
@
1 1 2

1 5 3

2 3 8

1
A ; (11.199)

you can write

h D ff1:; 1; 2g; f1; 5; 3g; f2; 3; 8gg (11.200)

and Mathematica gives eigenvalues

f10:383; 3:1598; 0:457203g

and eigenvectors {{0.231057, 0.50604, 0.830985}, {0.0690456, -0.860472,

0.504798}, {0.970487, -0.0592615, -0.233758}}, corresponding to

jE1i D 0:231057 j1i C 0:50604 j2i C 0:830985 j3i I (11.201a)

jE2i D 0:0690456 j1i � 0:860472 j2i C 0:504798 j3i I (11.201b)

jE3i D 0:970487 j1i � 0:0592615 j2i � 0:233758 j3i ; (11.201c)

with energies from highest to lowest.

11.5.1 Time Dependence

The time-dependent Schrödinger equation is solved in the same manner used in

the wave function approach, once the eigenvectors and eigenkets are determined.

The only tricky problem is that the initial conditions are often given in terms of the

original basis rather than the eigenket basis. A simple example illustrates this point.

Consider the matrix

H
¯
D „!

�
2 �2i

2i 5

�
(11.202)
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in the j1i ; j2i basis; the variable ! has units of frequency. Suppose at t D 0 the

system is in state j1i. What is j .t/i? I have already calculated the eigenenergies and

eigenkets of this Hamiltonian in the previous section. Using Eq. (11.43), I expand

j .t/i as

j .t/i D b1e
�iE1t=„ jE1i C b2e

�iE2t=„ jE2i : (11.203)

The initial condition is

j .0/i D j1i D b1 jE1i C b2 jE2i : (11.204)

Taking inner products with the eigenkets and using Eqs. (11.193) and (11.195), I

find the expansion coefficients

b1 D hE1j  .0/i D hE1j 1i D
1p
5
.h1j � 2i h2j/ 1i D 1p

5
I (11.205a)

b2 D hE2j  .0/i D hE2j 1i D
1p
5
.�2i h1j C h2j/ 1i D �2ip

5
; (11.205b)

and then use Eq. (11.203) to obtain the state vector

j .t/i D 1p
5

�
e�6i!t jE1i � 2ie�i!t jE2i

�
: (11.206)

The state vector can be re-expressed in terms of the original basis as

j .t/i D 1p
5

�
e�6i!t

p
5
.j1i C 2i j2i/ � 2ip

5
e�i!t .2i j1i C j2i/

�

D 1

5

��
e�6i!t C 4e�i!t

�
j1i C 2i

�
e�6i!t � e�i!t

�
j2i
�
: (11.207)

As a consequence the state probabilities in terms of the original basis states are

P1.t/ D
1

25
Œ17C 8 cos .5!t/� I (11.208a)

P2.t/ D
8

25
Œ1 � cos .5!t/� ; (11.208b)

and both these probabilities oscillate in time.

In general, for an arbitrary system, the state vector is

j .t/i D
X

n

bne�iEnt=„ jEni D
X

n

hnj  .0/i e�iEnt=„ jEni ; (11.209)
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where the eigenkets jEni are the eigenkets of a Hamiltonian H
¯

having eigenenergies

En. Suppose, however, that we know matrix elements of the Hamiltonian only in

some other basis denoted by jni and that, although H
¯

is not diagonal in this basis,

the initial state vector j .0/i can be expressed in this basis as

j .0/i D
X

n

an jni : (11.210)

You can then calculate the state vector at any time using Eq. (11.209) to be

j .t/i D
X

m;n

an hEmj ni e�iEmt=„ jEmi : (11.211)

However, from Eq. (11.180), you know that

jEmi D
X

n0

�
S��

mn0

ˇ̌
n0˛ : (11.212)

The adjoint of this equation is

hEmj D
X

m0

.S/mm0

˝
m0 ˇ̌ (11.213)

(note the use of different dummy variables). Substituting these expressions into

Eq. (11.211), I find

j .t/i D
X

n;n0;m;m0

an .S/mm0

˝
m0 ˇ̌ ni e�iEmt=„ �S��

mn0

ˇ̌
n0˛

D
X

n;n0;m

an .S/mn e�iEmt=„ �S��
mn0

ˇ̌
n0˛

D
X

n;n0;m

an

�
S�
�

n0m
.S/mn e�iEmt=„ ˇ̌n0˛ ; (11.214)

which is the desired result.

In our previous example, a1 D 1, a2 D 0; and

S
¯

� D 1p
5

�
1 2i

2i 1

�
; S

¯
D 1p

5

�
1 �2i

�2i 1

�
; (11.215)
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such that

j .t/i D
X

n;m

�
S�
�

nm
.S/m1 e�iEmt=„ jni

D
h�

S�
�
11
.S/11 e�iE1t=„ C

�
S�
�
12
.S/21 e�iE2t=„

i
j1i

C
h�

S�
�
21
.S/11 e�iE1t=„ C

�
S�
�
22
.S/21 e�iE2t=„

i
j2i

D 1

5

��
e�6i!t C 4e�i!t

�
j1i C 2i

�
e�6i!t � e�i!t

�
j2i
�
; (11.216)

in agreement with Eq. (11.207).

11.6 Summary

I have shown that Dirac notation is a powerful method for dealing with problems in

quantum mechanics. Rather than specify a given representation, you can write state

vectors in a basis-independent manner. Connection with specific representations

such as the coordinate or momentum representation can then be obtained by taking

inner products. In Dirac notation, operators are represented by matrices. As such

Dirac notation is closely related to Heisenberg’s matrix formulation of quantum

mechanics.

11.7 Appendix A: Matrix Properties

In this Appendix, I list some matrix properties. I simply use standard type for all

matrices, rather than underlined quantities. The identity matrix I has Iij D ıi;j, that

is, ones along the diagonal and zeroes everywhere else. The inverse A�1 of a matrix
A satisfies

A�1A D AA�1 D 1: (11.217)

The transpose AT of a matrix A is defined by

�
AT
�

ij
D Aji: (11.218)

The Hermitian adjoint A� of a matrix A is defined by

�
A�
�

ij
D A�

ji or A� D
�
AT
��

(11.219)
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and

.AB/�1 D B�1A�1I (11.220a)

.AB/T D BTAT I (11.220b)

.AB/� D B�A�: (11.220c)

A matrix U is unitary if

U�U D UU� D 1 (11.221)

and a matrix O is orthogonal if

OTO D OOT D 1: (11.222)

For a unitary matrix U�1 D U� and the determinant of U is a complex number

having unit magnitude. For an orthogonal matrix O�1 D OT and the determinant of

O is unity.

A matrix H is Hermitian if

H� D H: (11.223)

For any Hermitian matrix it is always possible to find a unitary matrix U such that

UHU� D E (11.224)

where E is a diagonal matrix. The columns of U� are the eigenvectors and the

diagonal elements of E are the eigenvalues. If H is real, then U is also real so it

is an orthogonal matrix.

11.8 Appendix B: Spherical Harmonics in Dirac Notation

To express the spherical harmonics in Dirac notation, I first obtain matrix elements

of OL in the jri basis. To do so, I write OL D Or � Op and use Eq. (11.59c) to arrive at

hrj OLx

ˇ̌
r0˛ D

�
y
@

@z
� z

@

@y

�
ı
�
r � r0� ; (11.225)

along with its cyclical permutations. I next use the the relationships r Dp
x2 C y2 C z2, � D cos�1.z=r/, � D tan�1 .y=x/, x D r sin � cos�, and

y D r sin � sin� to express the partial derivatives in spherical coordinates as
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@

@x
D @r

@x

@

@r
C @�

@x

@

@�
C @�

@x

@

@�

D x

r

@

@r
C cos � cos�

r

@

@�
� sin�

r sin �

@

@�
I (11.226a)

@

@y
D y

r

@

@r
C cos � sin�

r

@

@�
C cos�

r sin �

@

@�
I (11.226b)

@

@z
D z

r

@

@r
� sin �

r

@

@�
: (11.226c)

It then follows that

hrj OLx

ˇ̌
r0˛ D �„

i

�
sin�

@

@�
C cot � cos�

@

@�

�
ı
�
r � r0� I (11.227a)

hrj OLy

ˇ̌
r0˛ D „

i

�
cos�

@

@�
� cot � sin�

@

@�

�
ı
�
r � r0� I (11.227b)

hrj OLz

ˇ̌
r0˛ D „

i

@

@�
ı
�
r � r0� (11.227c)

and

hrj OL2
ˇ̌
r0˛ D

Z
dr00 hrj OLx

ˇ̌
r00˛ ˝r00 ˇ̌ OLx

ˇ̌
r0˛

C
Z

dr00 hrj OLy

ˇ̌
r00˛ ˝r00 ˇ̌ OLy

ˇ̌
r0˛

C
Z

dr00 hrj OLz

ˇ̌
r00˛ ˝r00 ˇ̌ OLz

ˇ̌
r0˛

D �„2
�
@2

@�2
C cot �

@

@�
C 1

sin2 �

@2

@�2

�
ı
�
r � r0� : (11.228)

Using the eigenvalue equation

OLz j`mi D m„ j`mi ; (11.229)

I insert a complete set and multiply on the left by hrj to transform this equation into

Z
dr0 hrj OLz

ˇ̌
r0˛ ˝r0 j`mi D m„ hr j`mi (11.230)
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and then use Eq. (11.227c) to obtain

Z
dr0 @

@�
ı
�
r � r0� ˝r0 j`mi D im hr j`mi ;

@

@�
hr j`mi D im hr j`mi : (11.231)

Similarly, starting from

OL2 j`mi D „2` .`C 1/ j`mi ; (11.232)

and using Eq. (11.228), I find

�
�
@2

@�2
C cot �

@

@�
C 1

sin2 �

@2

@�2

�
hr j`mi D ` .`C 1/ hr j`mi : (11.233)

To relate the hr j`mi to the spherical harmonics I write the ket jri as

jri D jri juri
r

; (11.234)

multiply Eqs. (11.231) and (11.233) by r2 jri, integrate over r, and use the

completeness relation

Z 1

0

dr r2 jri hrj D 1 (11.235)

to arrive at

@

@�
hur j`mi D im hur j`mi I (11.236a)

�
�
@2

@�2
C cot �

@

@�
C 1

sin2 �

@2

@�2

�
hur j`mi D ` .`C 1/ hur j`mi ; (11.236b)

implying that

hur j`mi D Ym
` .�; �/ : (11.237)

Note that Eq. (11.237) has the correct normalization, since

˝
`0m0 j`mi D

Z
d˝

˝
`0m0 juri hur j`mi

D
Z

d˝
h
Ym0

`0 .�; �/
i�

Ym
` .�; �/ D ı`;`0ım;m0 . (11.238)
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11.9 Problems

1. In Dirac notation, how are Hermitian operators represented? What does it mean

to say that the matrix elements of an operator depend on the basis? Give an

example by considering the matrix elements of the operator Ox in the coordinate and

momentum bases. Is it diagonal in the coordinate basis? in the momentum basis?

Why is the diagonalization of the Hamiltonian in the coordinate basis equivalent to

solving the Schrödinger equation?

2. Consider the two-dimensional vector A D ux C 2uy. Suppose you want to use

different orthonormal basis vectors defined by

u1;2D
ux˙uyp

2
:

Express the unit vectors ux and uy as column vectors in this basis and find the

coordinates of A in this basis. Show explicitly that A1u1 C A2u2 D Axux C Ayuy.

3. The adjoint or Hermitian conjugate A� of a matrix A is defined by
�
A�
�

mn
D

.Anm/
�. Show that for two matrices A and B for which matrix multiplication can

be defined, .AB/� D B�A�. As a consequence prove that OA OB is Hermitian only ifh
OA; OB

i
D 0.

4. Using Dirac notation, prove that the eigenvalues of a Hermitian operator are real

and the eigenkets having nondegenerate eigenvalues are orthogonal.

5. Using Dirac notation prove that two Hermitian operators can possess simultane-

ous eigenkets if, and only if, the operators commute.

6. Suppose that in the jgi basis, a Hamiltonian has the form

H D
�
3 1

1 2

�
:

Find the eigenvalues and (normalized) eigenvectors (express the eigenvectors in the

jgi basis). Do the calculation yourself and then check the result on a computer

using, for example, the Eigenvalues and Eigenvectors operations in Mathematica

(e.g., Orthogonalize[Eigenvectors[{{3.,1},{1,2}}]]—putting the decimal point in

will give you numerical values).

7. In Problem 11.6, find a matrix S
¯

such that S
¯
H
¯

S
¯
� is a diagonal matrix having

diagonal elements equal to the eigenvalues of H
¯

. Check your answer using a

computer program.

8. In Problem 11.6, suppose that at t D 0 a particle is in the state j1i in the jgi
basis. Find the wave function as a function of time in terms of the jgi basis. Show

that the probability to be in state j1i in the jgi basis oscillates as a function of time.
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9. The time-dependent Schrödinger equation in Dirac notation can be written as

i„d j .t/i
dt

D OH j .t/i :

For an operator OA that has no explicit time dependence, prove

d
D
 .t/

ˇ̌
ˇ OA
ˇ̌
ˇ .t/

E
=dt D 1

i„
D
 .t/

ˇ̌
ˇ
h
OA; OH

iˇ̌
ˇ .t/

E
:

What can you conclude about operators that commute with the Hamiltonian?

10. Using ladder operators, evaluate matrix elements hnj Ox jqi and hnj Ox2 jqi for the

1-D harmonic oscillator. What is the general structure of the matrices H
¯

, x
¯
, and x

¯
2

in the jni basis? That is, are these matrices diagonal or, if not, which elements are

non-vanishing?

11. Using ladder operators, evaluate matrix elements hnj Opx jmi and hnj Op2x jmi for

the 1-D harmonic oscillator. Moreover, prove that

� hnj Op2x jqi
2m

C m!2 hnj Ox2 jqi
2

�
D „!

�
nC 1

2

�
ın;q D Enın;q:

12. Using ladder operators, evaluate matrix elements,

hnj Opx Ox jqi and hnj OxOpx jqi ;

for the 1-D harmonic oscillator and show explicitly that

hnj OxOpx jqi � hnj Opx Ox jqi D i„ın;q:

13. At t D 0; a particle having mass m moving in a one-dimensional oscillator

potential having associated frequency ! is in the state

j .0/i D N .j0i C 2 j1i/ ;

where N is a normalization constant. Find the expectation value of the position

operator as a function of time.

14–15. Consider the one-dimensional harmonic oscillator in dimensionless coordi-

nates for which

OH D „!
2

�
O�2 C �2

�
D „!

�
a�aC 1

2

�
:
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Suppose that the normalized state vector at time t is given by

j .t/i D e�i!t=2

1X

nD0
ane�in!t jni ;

where jni are the eigenkets of OH:

(a) Using this state vector, evaluate
D
O�2
E
D h .t/j O�2 j .t/i and show that it has a

time-independent component and a component that oscillates with frequency

2!: How does this dependence compare with that of x.t/2 for a classical

oscillator?

(b) Evaluate
D
OH
E
.

(c) Obtain a differential equation for d2
D
O�2
E
=dt2 that could be solved in terms of

the initial conditions and the value of
D
OH
E
: [Hint: First obtain an equation for

d
D
O�2
E
=dt that will involve some product of operators. Then obtain an equation

of motion for this product of operators and use the fact that
D
OH
E
D „!

2

D
O�2 C O�2

E

to eliminate
D
O�2
E
:]

(d) Show that the solution of the differential equation of part (c) has the correct

form found in part (a).

Note: The answers to parts (a) and (b) will be in the form of sums.

16–17. Starting from the coherent state

j .t/i D e�i!t=2

1X

nD0

�
�0=
p
2
�n

e�.�0=
p
2/
2
=2e�in!t

p
nŠ

jni ;

use Eqs. (11.107) and (11.108) to calculate

h�i D h .t/j
�
aC a�

�
j .t/i =

p
2

and

D
�2
E
D h .t/j

�
aC a�

�2 j .t/i =2:

Show that the results agree with Eqs. (11.132) and (11.133).

18. (a) Using your knowledge of Dirac notation, evaluate

Z
d�

h
Ym0

`0 .�; �/
i� OLxYm

` .�; �/;

where the integral is over solid angle.
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(b) Given an arbitrary operator OA that commutes with OL2. Prove that

˝
`0m0 ˇ̌ OA j`mi D 0

unless ` D `0.

19. Evaluate h`mj OLy j`0m0i using ladder operators and find explicit expressions for

the eigenkets of OLy for ` D 1, in terms of the j`mi basis.

20–21. Show that for a spherically symmetric potential, the momentum space

eigenfunctions in spherical (momentum) coordinates can be written as

ˆE .p/ D PE`.p/Y
m
`

�
�p; �p

�
;

where the “radial” wave function PE`.p/ is a solution of

�
p2 � 2mE

�
PE`.p/ D �

2m

.2�„/3=2
Z 1

0

p02dp0 QV`
�
p; p0�PE`.p

0/;

and

QV`
�
p; p0� D .4�/2

.2�„/3=2
Z 1

0

r2drV.r/j`.pr=„/j`.p0r=„/:

Find PE`.p/ for a free particle.

To solve this problem you will need to use the expansion

eik�r D 4�
1X

`D0

X̀

mD�`
i`j`.kr/

�
Ym
` .�; �/

��
Ym
` .� k; �k/ ;

in which j`.kr/ is a spherical Bessel function.



Chapter 12

Spin

12.1 Classical Magnetic Moment

I have completed most of the material typically covered in a one-semester course

on quantum mechanics. There is one additional topic, however, that needs to be

discussed, that of intrinsic angular momentum or spin. Spin arises naturally when

one considers the relativistic version of the Schrödinger equation, namely the Dirac

equation. In that equation the wave function for a free electron has four components,

two of which correspond to positive energy solutions. The two positive energy

solutions can be associated with two spin components of the electron (the negative

energy solutions correspond to anti-particles). Historically, spin was deduced from

atomic spectra. In turned out that the spectra could be explained if one assigned an

intrinsic angular momentum to the electron. Today we know that all elementary

particles possess such an intrinsic angular momentum (which can be zero for

some particles). Fermions (named after Enrico Fermi) are particles whose intrinsic

angular momentum quantum number corresponds to half integral values of intrinsic

spin (measured in units of „) while bosons (named after Satyendra Nath Bose)

are particles whose intrinsic angular momentum quantum number corresponds to

integral values of intrinsic spin.

Before discussing spin, it is useful to recall the relationship between the magnetic

moment of a charged particle and its angular momentum relative to some origin. The

magnetic moment of an electron circulating about the origin is given by

� D 1

2

Z
r0�J.r0/dr0 D � e

2

Z
r0�v.r0/ı.r � r0/dr0 D �er � v

2

D �er�mev

2me

D �er � p

2me

D � eL

2me

; (12.1)

where J.r0/ D �ev.r/ı.r � r0/ is the (electric) current density associated with

an electron located at position r moving with velocity v. Remember that e is the
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magnitude of the charge of the electron—the magnetic moment of an electron and

its angular momentum are in opposite directions. When a particle having a magnetic

moment � is placed in a magnetic field characterized by a field induction vector B,

there is an energy

V D �� � B D eL � B
2me

(12.2)

associated with the magnetic moment–magnetic field interaction. If the field is taken

to be along the z axis, then

V D �� � B D eBLz

2me

D ˇ0B
Lz

„ ; (12.3)

where

ˇ0 D
e„
2me

D 9:27 � 10�24 J T�1 D 5:79 � 10�5 eV T�1 (12.4)

is the Bohr magneton. In frequency units,

ˇ0
h
D 14:0 GHz/T D 1:40 MHz/Gauss. (12.5)

In the quantum problem, the magnetic moment becomes an operator and the

potential is replaced by the operator

OV D � O� � B D eB OLz

2me

D ˇ0B
OLz

„ : (12.6)

For the electron in hydrogen, the energy levels characterized by a given value of `

are .2`C 1/-fold degenerate in the absence of the magnetic field. In the presence

of an external magnetic field these degenerate levels are split into .2`C 1/ distinct

energy levels, with the spacing between adjacent levels of order �Em D ˇ0B: I will

derive explicit expressions for this so-called Zeeman splitting in Chap. 21. In the

Earth’s magnetic field, which is typically of order 0.5 Gauss, the splittings are of

order 1 MHZ.

12.2 Spin Magnetic Moment

Since ` is integral, each state of a given ` splits into an odd number of states in a

magnetic field. This is referred to as the normal Zeeman effect. However, in some

cases it is observed that the splitting is into an even number of levels. This is referred

to as the anomalous Zeeman effect. In order to explain this and other observed
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Fig. 12.1 Schematic representation of the Stern-Gerlach experiment. A beam of atoms having

randomly oriented magnetic moments are passed through a region where there is a magnetic field

gradient. Classically, there is a continuous range of deflection angles. For atoms having quantized

angular momentum characterized by the quantum number `, one would expect .2`C 1/ distinct

traces

features of atomic structure, Goudsmit and Uhlenbeck proposed the concept of an

intrinsic angular momentum or spin for the electron.1 This also helped to explain an

apparent anomaly in another experiment.

The other experiment is the Stern-Gerlach experiment carried out in 1921 (see

Fig. 12.1).2 If a beam of neutral particles, each having a magnetic moment �, is

sent into an inhomogeneous magnetic field B.r/, there is a force on each particle

given by

F.r; t/ D r Œ�.t/�B.r/� D r
�
�x.t/Bx.r/C �y.t/By.r/C �z.t/Bz.r/

�
: (12.7)

Owing to its interaction with the field, the magnetic moment becomes a function of

time. In the experiment of Stern and Gerlach, neutral atoms moving in the x direction

pass through a region in which there is a magnetic field having a large homogeneous

component in the z direction and smaller spatially varying components in all

directions (the field components must satisfy r � B D 0). An atom can possess

a magnetic moment owing to the motion of its electrons about the nucleus. The

magnetic moment precesses about the large homogeneous field component in the z

direction, resulting in values of �x.t/ and �y.t/ that effectively average to zero and

to a value of �z that is approximately constant, such that the resulting force on an

atom produced by the field gradient is given approximately by

F � �z

@Bz

@z
uz � �z

@B

@z
uz: (12.8)

1See, for example, George E. Uhlenbeck and Samuel A. Goudsmit, Spinning Electrons and the

Structure of Spectra, Nature 117, 264–265 (1926). For an interesting paper on this discovery, see

the article by Abraham Pais, George Uhlenbeck and the discovery of electron spin, Physics Today

42, 34–40 (1989).
2Walter Gerlach and Otto Stern, Der experimentelle Nachweis der Richtungsquantelung im

Magnetfeld (Experimental Proof of Space Quantization in a Magnetic Field), Zeitschrift für

Physik. 9, 349–352 (1922); an English translation can be found at

http://www.applet-magic.com/sterngerlach.htm.

http://www.applet-magic.com/sterngerlach.htm
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Classically, we would expect a beam of particles having a magnetic moment �

oriented in random directions to be deflected over a continuous range in the z-

direction corresponding to the range of values �� � �z � � in the incoming

beam.

In the quantum case, �z is replaced by the expectation value of the z-component

of the magnetic moment operator which, in turn, is proportional to the expectation

value of OLz. Thus, owing to the gradient force, atoms having an angular momentum

quantum number ` should be split into .2`C 1/ discrete paths after passing through

the magnetic field region, each path corresponding to a different value of the z-

component of angular momentum or magnetic moment. It was found, however, that

when silver atoms were sent through the apparatus, two paths were detected even

though ground state silver atoms were known to have ` D 0.

Compton and Pauli had previously suggested that the electron could possess

an intrinsic magnetic moment, but the credit for the explanation usually goes

to Goudsmit and Uhlenbeck (although they never won the Nobel prize for the

discovery of spin). To fit the experimental data, the operator O�s associated with

intrinsic magnetic moment of the electron and the operator OS associated with the

intrinsic spin angular momentum of the electron must be related by

�s D �ge

eS

2me

I (12.9)

moreover, it is necessary that the spin operator OS appearing in Eq. (12.9) corresponds

to an angular momentum quantum number s D 1=2. The quantity ge appearing

in Eq. (12.9) is referred to as the electron g-factor. To fit the spectroscopic data,

Goudsmit and Uhlenbeck took ge D 2. It turns out that ge is approximately equal to

2, but there are corrections related to the interaction of the electron with the vacuum

field. The electron g-factor is one of the most precisely determined constants in

physics with

ge D 2:0023193043622˙ 0:0000000000015; (12.10)

and is in agreement with theoretical calculations. I will take ge D 2.

It is natural to talk about spin using Dirac notation. The spin state of an electron

can be described by the eigenket jsmsi where s D 1=2, ms D ˙1=2. The state with

ms D C1=2 is referred to as spin up and that with ms D �1=2 as spin down. As for

any angular momentum,

OS2 jsmsi D ¯2s .sC 1/ jsmsi D
3

4
¯2 jsmsi I (12.11a)

OSz j˙1=2i D ms„ j˙1=2i D ˙
1

2
„ j˙1=2i I (12.11b)

h
OSx; OSy

i
D i„OSzI (12.11c)
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OSC j�1=2i D
�
OSx C iOSy

�
j�1=2i D „ j1=2i ; (12.11d)

OS� j1=2i D
�
OSx � iOSy

�
j1=2i D „ j�1=2i I (12.11e)

OSC j1=2i D 0; OS� j�1=2i D 0: (12.11f)

(the s quantum number is suppressed in most of these equations since it always

equals 1/2). It is important to remember that electron spin is an intrinsic spin

and has nothing to do with motion of charge—any classical models based on a

rotating charge give meaningless results. Thus, spin acts in its own abstract space,

independent of the orbital angular momentum of the particle. The intrinsic magnetic

moment of the spin is a direction opposite to its intrinsic spin angular momentum.

In the jmsi basis, the spin operators are 2 � 2 matrices

S
¯

2 D 3

4
„2
�
1 0

0 1

�
I (12.12a)

S
¯

z D
1

2
„
�
1 0

0 �1

�
I (12.12b)

S
¯

x D
1

2
„
�
0 1

1 0

�
I (12.12c)

S
¯

y D
1

2
„
�
0 �i

i 0

�
I (12.12d)

S
¯

C D „
�
0 1

0 0

�
; S

¯
� D „

�
0 0

1 0

�
; (12.12e)

where the order of the matrix indices is

j1=2i D j"i ; j�1=2i D j#i (12.13)

(that is,
�
S
¯

z

�
11
D
�
S
¯

z

�
"") and j"i and j#i are referred to as spin up and spin down

eigenkets, respectively. It is customary to write

S
¯
D „�=2; (12.14)

where

� D � xux C � yuy C � zuz; (12.15)

� x D
�
0 1

1 0

�
I (12.16a)
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� y D
�
0 �i

i 0

�
I (12.16b)

� z D
�
1 0

0 �1

�
; (12.16c)

and the components of � are referred to as Pauli matrices. Together with the identity,

1 D
�
1 0

0 1

�
; (12.17)

the Pauli matrices form a complete basis set for all 2 � 2 Hermitian matrices. Note

that

Tr .� x/ D
3X

iD1
.� x/ii D 0I (12.18a)

�2x D 1I (12.18b)

� x� y C � y� x D 0I (12.18c)
�
� x; � y

�
D 2i� zI (12.18d)

� x� y D i� z; (12.18e)

along with all cyclic variations of these equations with x ! y, y ! z, and z ! x.

Since they satisfy Eq. (12.18c), the Pauli matrices are said to anti-commute.

A general spin state can be written as

j�i D ˛ j"i C ˇ j#i D
�
˛

ˇ

�
: (12.19)

The corresponding wave functions for spin up and spin down can be written

as �C and ��, respectively, although these wave functions have no meaning in

coordinate space. They are defined only in the abstract spin vector space. Thus, the

eigenfunctions of the electron in the hydrogen atom can be written as  n`m .r/ �˙
and the eigenkets as

jn`mI s D 1=2;ms D ˙1=2i D jn`mi jsmsi : (12.20)

Spin is a strange quantity. To help you understand why, I will look at the way

in which the spin components transform under a rotation of the coordinate system.

Although the spin wave functions are not functions in coordinate space, they will

change under a rotation of the coordinate system since the x; y; z, components of the

spin are inter-mixed. Imagine that we have a Stern-Gerlach experiment that picks

out spin up relative to some quantization axis. We now pass these atoms through a
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second Stern-Gerlach magnet that is oriented at an angle � � � relative to the first

(that is, the spin is now defined relative to a new axis that is at an angle � relative to

the first). The question is, “What is the spin state after passing through the second

magnet?”

Before answering this question let us think about what happens in a similar

situation with the electric field vector of light, which is a vector quantity. After

passing through a polarizer whose axis is in the z direction (the light is propagating

in the y direction/ and an analyzer in the x � z plane whose axis is at an angle

� � � relative to the z-axis; the field intensity after passing through the analyzer is

proportional to cos2 � . That is, if the analyzer is rotated by � relative to the polarizer,

the intensity is unchanged. If the analyzer is rotated by �=2 (crossed polarizers), no

light gets through.

But what happens with spin? In the spin experiment, the first magnet has B D
B0uz and the second

B D B0 .uz cos � C ux sin �/ : (12.21)

To see what occurs, I must express the original state vector in terms of the new state

vectors defined relative to the new direction of the field. In other words, I need to

look at the interaction of the spin magnetic moment with the new field,

OV D � O�s � B D
e OS � B

me

D eB0

me

�
OSx sin � C OSz cos �

�
I (12.22)

V
¯
D eB0„

2me

�
cos � sin �

sin � � cos �

�
D ˇ0B0

�
cos � sin �

sin � � cos �

�
: (12.23)

It is a simple matter to diagonalize this matrix. The eigenvalues are ˙ˇ0B0 and the

eigenkets are (work this out)

j"i0 D cos

�
�

2

�
j"i C sin

�
�

2

�
j#i I (12.24a)

j#i0 D � sin

�
�

2

�
j"i C cos

�
�

2

�
j#i : (12.24b)

Expressing the original ket in terms of the new ket, I find

j"i D cos

�
�

2

�
j"i0 � sin

�
�

2

�
j#i0 : (12.25)

Thus the probability to find the atom in spin up after the second magnet is cos2 .�=2/

instead of being proportional to cos2 � as I found for the electric field case. It

takes a rotation of � to block the passage of the spin up component emerging

from the second magnet [only a spin down component (with respect to the new
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quantization axis) is transmitted], whereas it takes a rotation of �=2 to (totally)

block the emerging optical field. It is not difficult to understand why a rotation of �

leads to no transmission of a spin up component—when it enters the second magnet,

there is no longer any spin up component with respect to the new quantization axis.

In order to see the effect of rotation on the spin state vector from a somewhat

different perspective, imagine an electron having its magnetic moment aligned

along a strong homogeneous magnetic field, taken to be in the z-direction. Now

slowly rotate the magnetic field about the y-axis. For sufficiently slow rotations,

the magnetic moment will stay aligned with the field. As a consequence, after a

rotation of � the spin has been flipped from down to up (recall that spin angular

momentum and magnetic moment differ in sign for an electron) relative to the

original quantization axis. After a rotation of 2� , the magnetic moment is again

aligned along the positive z-direction, but the sign of the spin state vector has

changed [see Eq. (12.25) with � D 2�]. It takes a rotation of 4� to return the state

vector to its original value. The state vector is said to transform as a spinor under

rotation. Rotations are discussed in more detail in Chaps. 19 and 20.

12.3 Spin-Orbit Coupling in Hydrogen

If we put ourselves in the rest frame of the electron in a hydrogen atom, we would

see the proton undergoing orbital motion. This orbital motion produces a magnetic

field at the position of the electron. Since the electron has a magnetic moment, there

is spin–orbit interaction in hydrogen that adds a term to the Hamiltonian that is

given classically by

Hso D �� � Bproton: (12.26)

There are two ways to evaluate Hso that both give the same (wrong) answer. First we

can look at the field produced by the proton at the position re of the electron. From

the Biot-Savart law, the magnetic induction can be calculated as

B.re/ D
�0
4�

Z
dr0 Jp.r

0/ � .re � r0/

jre � r0j3
; (12.27)

where the current density Jp.r
0/ of the proton is given by

Jp.r
0/ D e

�
vp � ve

�
ı
�
r0 � rp

�
D �evı

�
r0 � re C r

�
; (12.28)

vp is the velocity of the proton, ve is the electron velocity, rp is proton’s coordinate,

and

r D re � rp; v D ve � vp (12.29)
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are the position and velocity of the electron relative to the proton. As a consequence,

B.re/ D �e
�0v � r

4�r3
D e

4��0

r � v

r3c2
: (12.30)

This leads to

Hso D �� � B.re/ D
1

4��0

e2S

me

� r � v

r3c2

D 1

4��0

e2S � L
m2

er3c2
: (12.31)

Alternatively, we can use the relativistic formula for the magnetic induction in

the electron’s instantaneous rest frame produced by the static electric field Ep.r/ in

the proton’s rest frame, namely

B.r/ � �v � Ep.r/

c2
D � e

4��0

v � r

r3c2
; (12.32)

a result that agrees with Eq. (12.30).

Both methods give a result which is twice the correct result. There is a correction,

known as the Thomas Precession,3 connected with the fact that the electron is in an

accelerating reference frame. Why the correction factor is exactly one/half remains

somewhat of a mystery to me.4 In any event the correct spin–orbit interaction is

OHso D
1

8��0

e2 OS � OL
m2

er3c2
; (12.33)

where classical variables have been replaced by quantum-mechanical operators.

As I have mentioned, the correct spin-orbit coupling emerges naturally in Dirac’s

relativistic treatment of the bound states of hydrogen. In Chap. 21, I use perturbation

theory within the framework of the Schrödinger equation to calculate the changes

in the energy levels resulting from the spin-orbit coupling.

12.4 Coupling of Orbital and Spin Angular Momentum

Since the spin and orbital angular momentum act in different Hilbert spaces, they

commute,

h
OSi; OLj

i
D 0: (12.34)

3It is discussed in Sect. 11.8 in Jackson Classical Electrodynamics, but the derivation is too

involved to reproduce here.
4But see this link, http://aether.lbl.gov/www/classes/p139/homework/seven.pdf.

http://aether.lbl.gov/www/classes/p139/homework/seven.pdf
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Thus, I can label the eigenkets as

j`; sIm`;msi D j`;m`i js;msi ; (12.35)

which are eigenkets of OL2; OLz; OS2; OSz. For an isolated atom, however, it turns out that
OLz and OSz need not be constants of the motion when the spin-orbit interaction given

by Eq. (12.33) is included. On the other hand, the total angular momentum

OJ D OLC OS (12.36)

is a constant of the motion. As a result, it is often convenient to use eigenkets of the

commuting operators OL2; OS2; OJ2; OJz, denoted by j`; s; I j;mi. They are related to the

product state eigenkets by

j`; s; I j;mi D
X

m`;ms

h`;m`I s;ms j`; sI j;mi j`; sIm`;msi ; (12.37)

where the expansion coefficients,

h`; sIm`;ms j`; sI j;mi �
�
` s j

m` ms m

�
; (12.38)

are referred to as Clebsch-Gordan coefficients. These coefficients, as well as the

associated 3-J symbols, are discussed in detail in Chap. 20. The Clebsch-Gordan

coefficients are built-in functions in many symbolic mathematical programs, which

use a closed form expression to evaluate them.

For s D 1=2, owing to the properties of the Clebsch-Gordan coefficients, only

two terms enter the sum,

ˇ̌
ˇ̌`; 1
2
; I j D `˙ 1

2
;m

�
D
�

` 1=2 `˙ 1
2

m � 1=2 1=2 m

� ˇ̌
ˇ̌`; 1
2
Im � 1

2
;
1

2

�

C
�

` 1=2 `˙ 1
2

mC 1=2 �1=2 m

� ˇ̌
ˇ̌`; 1
2
ImC 1

2
;�1
2

�

D ˙

s
`˙ mC 1=2
2`C 1

ˇ̌
ˇ̌`; 1
2
Im � 1

2
;
1

2

�

C

s
`� mC 1=2
2`C 1

ˇ̌
ˇ̌`; 1
2
ImC 1

2
;�1
2

�
: (12.39)

It is not really possible to write an equivalent expression for the wave functions

since the ket
ˇ̌
`; 1

2
; I j D `˙ 1

2
;m
˛

represents a mixture of orbital and spin states.

Of course you could define the wave function by taking the inner product of this
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equation with hrj. In this way the eigenfunctions of hydrogen, including spin can be

written as

 n;`;jD`˙ 1
2 ;m
.r/ D hr

ˇ̌
ˇ̌n; `; 1

2
; I j D `˙ 1

2
;m

�

D ˙

s
`˙ mC 1=2
2`C 1  n`;m�1=2 .r/ �C

C

s
`� mC 1=2
2`C 1  n`;mC1=2 .r/ ��; (12.40)

where the  n`m`
.r/ are eigenfunctions of the hydrogen atom without spin.

States of hydrogen are labeled as nLJ where n is the energy or electronic quantum

number, L is the ` quantum number in an old-fashioned scheme in which ` D 0 is

S (sharp), ` D 1 is P (principal), ` D 2 is D (diffuse), ` D 3 is F (fundamental),

` D 4 is G, etc., and J is the j value. Thus 2P3=2 is the state having n D 2, ` D 1,

and j D 3=2.

12.5 Spin and Statistics

Most of the discussion to date has focused on the quantum mechanics of a single

particle. I did look at the eigenfunctions of a Hamiltonian that was the sum of two

commuting Hamiltonians in Chap. 5. That result is strictly valid only if the particles

governed by each of the Hamiltonians are distinguishable. But what happens if they

are indistinguishable, such as the two electrons in the helium atom?

The eigenfunctions of a two-particle system can be written as  E .r1; r2/ where

rj is the coordinate of particle j. If the particles are indistinguishable, there is an

exchange degeneracy in this system. I can define an operator that interchanges

the coordinates of the two particles. This exchange or permutation operator is

Hermitian and commutes with the Hamiltonian so it is possible to find simultaneous

eigenfunctions of the Hamiltonian and the permutation operator. Let me denote the

exchange or permutation operator that interchanges particle 1 and 2 by OP12 and its

eigenfunctions by  E;P .r1; r2/ : Clearly

OP212 E;P .r1; r2/ D  E;P .r1; r2/ (12.41)

and, since OP12 is Hermitian, this implies that the eigenvalues of OP12 must equal ˙1.

This, in turn, implies that either

 E;P .r2; r1/ D  E;P .r1; r2/ (12.42)
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or

 E;P .r2; r1/ D � E;P .r1; r2/ : (12.43)

It turns out that the wave functions of all elementary particles satisfy either

Eq. (12.42) or (12.43). Particles having integral intrinsic spin that satisfy Eq. (12.42)

and are called bosons (photon, graviton, mesons) while particles having half-integral

intrinsic spin satisfy Eq. (12.43) and are called fermions (electron, neutrino, quarks,

baryons).

For multi-particle systems, the eigenfunctions for bosons must be symmetric on

the interchange of any two particles and that for fermions must be antisymmetric

on the interchange of any two particles. In practice you can show that you need not

worry about this symmetrization of the wave function if the spatial wave functions

for the particles never overlap.

For two spin 1/2 particles moving in a potential, it is always possible to write the

eigenfunctions as a product of a symmetric (antisymmetric) spatial wave function

multiplied by an antisymmetric (symmetric) spin state. The spin eigenkets of the two

particles are eigenkets of the total spin operator, OS D OS1C OS2; and can be expressed

in terms of Clebsch-Gordan coefficients as

js1; s2; I s;mi D
X

m1;m2

�
s1 s2 s

m1 m2 m

�
js1m1i js2m2i ; (12.44)

where the ket js1; s2; I s;mi is a simultaneous eigenket of the operators OS21; OS22; OS2; OSz.

Using this equation with s1 D s2 D 1=2; I find that the coupled spin eigenkets of

two electrons consist of an antisymmetric or spin singlet state

ˇ̌
ˇ̌1
2
;
1

2
I s D 0;ms D 0

�
D 1p

2
.j"#i � j#"i/ ; (12.45)

and a spin triplet state

ˇ̌
ˇ̌1
2
;
1

2
I s D 1;ms D 1

�
D j""i I (12.46a)

ˇ̌
ˇ̌1
2
;
1

2
I s D 1;ms D 0

�
D 1p

2
.j"#i C j#"i/ I (12.46b)

ˇ̌
ˇ̌1
2
;
1

2
I s D 1;ms D 1

�
D j##i ; (12.46c)

where the first arrow in the kets on the right-hand side of the equation refers

to particle 1 and the second to particle 2. For N spin 1/2 particles, with N >

2, it is no longer possible to construct total spin eigenkets all of which are

symmetric or antisymmetric on the exchange of any two particles. There is no totally
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antisymmetric spin state for N > 2. Of the 2N total spin eigenkets, only .N C 1/ are

totally symmetric on the interchange of any two particles and these correspond the

the spin state having total spin s D N=2.

There is a profound difference in the allowed energy levels of a system of

indistinguishable particles, depending on whether the particles are fermions or

bosons. A simple example will suffice to illustrate this idea. Imagine we have

three non-interacting particles in a one-dimensional infinite square well potential.

You are asked to obtain the ground state energy and eigenfunction of the system

assuming (1) the particles are bosons and (2) the particles are spin 1=2 fermions.

If the particles are bosons they can all be in the same energy state so the ground

state energy is simply 3E0, where E0 is the ground state energy of a single particle

in the well. The ground state wave function is simply a product of the ground state

wave functions for each particle, multiplied by a symmetric state of the spins of the

particles.

On the other hand, if the particles are spin 1/2 fermions, they cannot all have

the same ground state spatial wave function. Such a wave function is symmetric on

exchange of any two particles, which would require that the spin wave function be

antisymmetric on the exchange of any two particles. It is impossible to form such a

state for three particles that is non-vanishing. Thus the third particle must be in the

first excited state of the well having energy E1. The total energy of this 3-particle

system is E D 2E0 C E1, while the wave function is

 E .x1; x2; x3/ D
1p
3Š

ˇ̌
ˇ̌
ˇ̌
 0 .x1/ �".1/  0 .x1/ �#.1/  1 .x1/ �".1/
 0 .x2/ �".2/  0 .x2/ �#.2/  1 .x2/ �".2/
 0 .x3/ �".3/  0 .x3/ �#.3/  1 .x3/ �".3/

ˇ̌
ˇ̌
ˇ̌ ; (12.47)

where the determinant is referred to as a Slater determinant and is manifestly

antisymmetric on the exchange of any two particles. (The third state could have

equally well been spin down rather than spin up.)

As a second example of the role of spin and statistics, consider a conductor that

is modeled as a sea of free electrons confined to a volume. If I take the volume to be

a cube having side L and assume that the wave function vanishes on the surfaces of

the cube, the energy levels of a single electron in this volume are given by

En D
„2k2n
2me

D „
2n2�2

2meL2
D
„2
�
n2x C n2y C n2z

�
�2

2meL2
; (12.48)

where me is the electron mass and nx; ny; nz take on all positive integral values, with

n D
q

n2x C n2y C n2z . If there are N electrons in the volume, then two electrons can

occupy the lowest energy level (nx D ny D nz D 1), six electrons can occupy the

next highest energy level [(nx D ny D 1; nz D 2) or (nx D nz D 1; ny D 2) or (ny D
nz D 1; nx D 2)], etc. If N is large and the electrons occupy the lowest possible

energy state, then the total number of particles in the Fermi sphere is given by

N D 2 � 1
8

4�n3F

3
(12.49)
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where the factor of 2 is for two spin states for each value of
�
nx; ny; nz

�
; while

the factor of 1=8 is required since only one quadrant of the sphere is permitted

for positive
�
nx; ny; nz

�
. The quantity nF is the smallest value of n that is needed

to accommodate the N electrons. For an electron density N D N=L3, the

corresponding k value and energy corresponding to nF are given by

kf D
�nF

L
D
�
3�2N

�1=3 I (12.50a)

Ef D
„2k2f
2me

D
„2
�
3�2N

�2=3

2me

: (12.50b)

The quantities kf and Ef are referred to as the magnitude of the Fermi k-vector and

Fermi energy, respectively. The total energy of all the electrons is equal to

Etotal D
Z N

0

Ef .N
0/dN0 D Ef

Z N

0

.N0=N/2=3dN0 D 3

5
NEf (12.51)

and the average energy of an electron is

hEi D Etotal

N
D 3

5
Ef : (12.52)

12.6 Summary

The concept of electron spin was introduced. The electron possesses an intrinsic

angular momentum corresponding to a spin angular momentum quantum number

s D 1=2. Some of the properties of spin were discussed, as were the modifications

to the energy levels of hydrogen resulting from spin. Finally, systems of identical

particles were considered and were found to obey either Bose or Fermi statistics,

depending on their intrinsic spin angular momentum. No two identical fermions can

possess all the same quantum labels since their wave function must be antisymmetric

on exchange of particles. The fact that no two electrons can possess all the same

quantum numbers is often referred to as the Pauli Exclusion Principle, based on a

proposal of Pauli to explain the shell structure of atoms.

12.7 Problems

1. Consider an electron in a magnetic induction B D B0ux. Find the eigenkets and

eigenvalues for the Hamiltonian OH D 2ˇ0B � OS=„. Calculate the state vector as a

function of time if the electron is in its spin down state at t D 0. Neglect any center-

of-mass motion of the electron—consider only its spin components.
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2. Suppose that the lowest energy eigenvalue for a single electron moving in a one-

dimensional infinite potential well is 1.0 eV. The well is located between x D 0 and

x D a so the eigenfunctions for a single electron are given by

 n.x/ D
r
2

a
sin
�n�x

a

�
I n D 1; 2; 3; : : : :

(a) For two non-interacting electrons moving in this potential find the ground state

eigenfunction and eigenenergy. You must include the fact that electrons are

fermions.

(b) Calculate the next highest energy and explain why there are four eigenfunctions

having this energy.

(c) Calculate the third highest energy and explain why this energy state is nonde-

generate.

3. Two non-interacting particles, each having mass m move in a one-dimensional

oscillator potential characterized by frequency !.

(a) If the particles have spin zero write the eigenfunctions and eigenenergies for

the three lowest energy state manifolds of the two-particle system.

(b) If the particles have spin 1=2write the eigenfunctions and eigenenergies for the

three lowest energy state manifolds of the two-particle system.

In each case, you can express your answers in terms on the single particle

eigenfunctions  n1
.x1/ and  n2

.x2/. By “three lowest energy state manifolds” I

mean all and any degenerate states having one of the three lowest energies. Explain

your reasoning.

4. Consider the protons in water as independent spin 1/2 particles. The spin of the

proton is equal to 1/2, its g factor of 5.59, and its magnetic moment operator is

O�p D 5:59
e

2mp

OSp;

where mp D 1:67 � 10�27 kg is the proton mass and OSp is its spin operator. Note,

the nuclear Bohr magneton ˇn D ˇ0 me

mp
D 5:05 � 10�27 J�T�1

(a) Calculate the energy level splitting in frequency units for the spin states of

protons in a static magnetic field of 1.0 T.

(b) Assume the protons are in thermal equilibrium at room temperature (about

300 ıK). Estimate the population ratio of the two spin states according to Boltz-

mann’s law, W.E/ � exp .�E=kBT/. Even though the population difference is

small, it is still sufficient to use for magnetic resonance imaging (MRI) since

there are so many protons present. In MRI, a radio frequency magnetic field is

applied to drive transitions between the spin states.
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5. The Hamiltonian for a spin in a magnetic induction B is OH D 2ˇ0B � OS=„, where

ˇ0 is the Bohr magneton and OS is the spin operator. Prove that

d
D
OS
E

dt
D ! �

D
OS
E

and obtain an expression !.

6. Write all the eigenfunctions for the electron in the n D 3 state of hydrogen using

the
ˇ̌
n`jmj

˛
basis.

7–8. Prove that the eigenkets of OSx and OSy can be written in terms of the eigenkets

of OSz as

j˙ix D
1p
2
.j"i ˙ j#i/ I

j˙iy D
1p
2
.j"i ˙ i j#i/ ;

where theC refers to spin up and � to spin down. For a quantization axis defined by

u .�; �;  / D cos u� C sin u' ;

prove that the eigenkets of the operator OS�;�; D OS � u .�; �;  / can be written in

terms of the eigenkets of OSz as

jCi�;�; D
r
1 � cos sin �

2
j"i C ei� cos cos � C i sin �p

2 .1 � cos sin �/
j#i I

j�i�;�; D e�i� cos cos � � i sin �p
2 .1 � cos sin �/

j"i �
r
1 � cos sin �

2
j#i :

The angles � and � are the polar and azimuthal angles of a spherical coordinate

system, while  is the angle of the quantization axis relative to the u� direction in a

plane perpendicular to ur.

9–10. (a) Use Eq. (12.44) with s D s12 to prove Eqs. (12.45) and (12.46) for a

two-electron system.

(b) Now add a third electron to the system and form total spin eigenkets of a three-

electron system defined by

js1; s2; s3; s12I s;mi D
X

m12;m3

�
s12 s3 s

m12 m3 m

�
js12; s3; Im12;m3i ;
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where the ket js1; s2; s3;s12I s;mi is a simultaneous eigenket of the operators
OS21; OS22; OS23; OS212; OS2; OSz and

OS D OS1 C OS2 C OS3 D OS12 C OS3

is the total spin operator. Express your answer in terms of the eigenkets

js1; s2; s3Im1;m2;m3i and show that eigenkets having s D 3=2 are totally

symmetric on the interchange of any two particles, but the other eigenkets are

neither symmetric nor antisymmetric on the interchange of any two particles.

You will have to look up the needed values of the Clebsch-Gordan coefficients.



Chapter 13

(A) Review of Basic Concepts (B) Feynman
Path Integral Approach (C) Bell’s Inequalities

Revisited

Chapters 1–12 form what could be the basis for a one semester course in quantum

mechanics. Before moving on to advanced topics such as time-independent per-

turbation theory, the variational method, the WKB approximation, and irreducible

tensor operators, it can’t hurt to review the basic concepts of quantum mechanics

that I have covered up to this point. I also use this chapter to discuss an alternative

formulation of quantum mechanics given by Feynman based on path-integrals.

Finally I present a proof of Bell’s theorem and see how it can be tested.

13.1 Review of Basic Concepts

13.1.1 Postulates

The postulates of quantum mechanics are:

1. The absolute square of the wave function j .r; t/j2 corresponds to the probabil-

ity density of finding the particle at position r at time t.

2. To each physical observable in classical mechanics, there corresponds a Hermi-

tian operator in quantum mechanics.

3. The time dependence of  .r; t/ is governed by the Schrödinger equation,

i„@ .r; t/
@t

D OH .r; t/ (13.1)

where OH is the energy operator of the system.

4. The only possible outcome of a measurement on a single quantum system of

a physical observable associated with a given Hermitian operator is one of the

eigenvalues of the operator.
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5. The fifth postulate can take different forms. One way to state the postulate is

that the Poisson brackets of two dynamic variables of classical mechanics are

replaced by the .i„/�1 times the commutator of the corresponding Hermitian

operators in quantum mechanics, the postulate I used when discussing Dirac

notation. An alternative and equivalent postulate is that the Fourier transform

of  .r; t/, denoted by ˆ.p; t/, corresponds to the wave function in momentum

space, the postulate I used in the wave function approach.

The fundamental equation of quantum mechanics is the time-dependent

Schrödinger equation,

i„@ .r; t/
@t

D OH .r; t/ D
� Op2
2m
C OV

�
 .r; t/

D
"
�„2r2
2m

C V.r/

#
 .r; t/ I (13.2a)

i„@ .x; t/
@t

D OH .x; t/ D
� Op2x
2m
C OV

�
 .x; t/

D
��„2
2m

@2

@x2
C V.x/

�
 .x; t/ : (13.2b)

That is, matter is described by a wave equation, in which j .r; t/j2 is given the

interpretation of the probability density to find a particle at position r at time t: I list

equations in both one and three dimensions.

13.1.2 Wave Function Approach

A solution of the time-dependent Schrödinger equation is

 .r; t/ D e�iEt=„ .r/ I (13.3a)

 .x; t/ D e�iEt=„ .x/ ; (13.3b)

provided

OH .r/ D E .r/ I (13.4a)

OH .x/ D E .x/ : (13.4b)

Thus, if you solve the time-independent Schrödinger equation and find the eigen-

functions  E .r/ [ E .x/] and the eigenvalues E, you have a complete solution to

the problem. In other words,



13.1 Review of Basic Concepts 311

 .r; t/ D
X

E

bEe�iEt=„ E .r/ I (13.5a)

 .x; t/ D
X

E

bEe�iEt=„ E .x/ (13.5b)

is a general solution of the time-dependent Schrödinger equation, provided Eqs.

( 13.4) hold. I can equally write this as

 .r; t/ D
X

E

bE.t/ E .r/ I (13.6a)

 .x; t/ D
X

E

bE.t/ E .x/ ; (13.6b)

with

bE.t/ D e�iEt=„bE: (13.7)

In this form it is clear that the probability to be in an eigenstate,

PE D jbE.t/j2 D jbEj2 ; (13.8)

is independent of time. The quantity bE.t/ is referred to as the state amplitude.

Although the probability to be in a given eigenstate is constant in time, the wave

function squared or probability density evolves in time, since

j .r; t/j2 D
X

E;E0

b�
EbE0 �

E .r/  E0 .r/ ei.E�E0/t=„I (13.9a)

j .x; t/j2 D
X

E;E0

b�
EbE0 �

E .x/  E0 .x/ ei.E�E0/t=„; (13.9b)

is a function of time, in general. The relative phases of the state amplitudes give rise

to the time dependence.

To solve a dynamic problem in which you are given  .r; 0/ [ .x; 0/], you first

find the eigenfunctions and eigenenergies of the Hamiltonian. Then you set

 .r; 0/ D
X

E

bE E .r/ I (13.10a)

 .x; 0/ D
X

E

bE E .x/ ; (13.10b)

which lets you calculate

bE D . E;  .r; 0// D
Z

dr �
E .r/  .r; 0/ I (13.11a)

bE D . E;  .x; 0// D
Z

dx �
E .x/  .x; 0/ (13.11b)
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and

 .r; t/ D
X

E

bEe�iEt=„ E .r/ I (13.12a)

 .x; t/ D
X

E

bEe�iEt=„ E .x/ : (13.12b)

Example 1 A particle having mass m moves in an infinite square well potential

located between x D 0 and x D L. At t D 0,

 .x; 0/ D
( q

1
a
; L

2
� a

2
� x � L

2
C a

2

0; otherwise
; (13.13)

with a < L. Find  .x; t/.

The eigenfunctions and eigenvalues are

 n.x/ D
r
2

L
sin
�n�x

L

�
I n D 1; 2; 3; : : : (13.14a)

En D
„2n2�2
2mL2

: (13.14b)

Therefore

bn D
Z L

0

dx �
n .x/  .x; 0/ D

r
1

a

r
2

L

Z L
2C a

2

L
2� a

2

dx sin
�n�x

L

�

D �
r
2L

a

1

n�

n
cos

hn�

2

�
1C a

L

�i
� cos

hn�

2

�
1 � a

L

�io
(13.15)

and

 .x; t/ D
r
2

L

1X

nD1
bn exp

�
�i
„2n2�2
2mL2

t

�
sin
�n�x

L

�
: (13.16)

Example 2 Sometimes you can read off the expansion coefficients by inspection.

Imagine in the previous problem that

 .x; 0/ D 1p
2

r
2

L

�
sin
��x

L

�
C sin

�
2�x

L

��
: (13.17)

Clearly b1 D b2 D 1p
2

and all other bn are zero, such that

 .x; t/ D 1p
2

r
2

L

2
4 exp

�
�i „2�2

2mL2
t
�

sin
�
�x
L

�

C exp
�
�i 4„

2�2

2mL2
t
�

sin
�
2�x

L

�

3
5 : (13.18)
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Note that j .x; t/j2 is a function of time,

j .x; t/j2 D 1

L

�
sin2

��x

L

�
C sin2

�
2�x

L

�

C 2 sin
��x

L

�
sin

�
2�x

L

�
cos

�
3„2�2
2mL2

t

��
: (13.19)

13.1.3 Quantum-Mechanical Current Density

The total probability is conserved for a single-particle quantum system. The

probability current density,

J .r; t/ D i„
2m

�
 .r; t/r � .r; t/ �  � .r; t/r .r; t/

�
I (13.20a)

Jx .x; t/ D
i„
2m

�
 .x; t/

@ � .x; t/

@x
�  � .x; t/

@ .x; t/

@x

�
; (13.20b)

satisfies an equation of continuity

@

@t
� .r; t/C r � J .r; t/ D 0I (13.21a)

@

@t
� .x; t/C @Jx .x; t/

@x
D 0; (13.21b)

where

� .r; t/ D j .r; t/j2 I (13.22a)

� .x; t/ D j .x; t/j2 (13.22b)

is the probability density.

13.1.4 Eigenfunctions and Eigenenergies

It is important to recognize that each potential energy function gives rise to its own

set of eigenfunctions. Thus, the eigenfunctions of a free particle are infinite, plane

mono-energetic waves, while those of any bound state problem are localized in

space. But what about the unbound state eigenfunctions of the hydrogen atom? They

are not localized states, nor are they plane wave states. Instead they must be found by

solving the Schrödinger equation for positive energies. Similarly, for the problem of
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a one-dimensional well and particle energies E > 0, the solutions of Shcrödinger’s

equation are sines and cosines in each region, but the eigenfunction is not a single

plane wave state. In three-dimensional problems with spherical symmetry, there is

a separate effective potential problem to solve for each value of `.

13.1.5 Operators

The expectation value of an operator for a quantum system is defined by

D
OA
E
D
Z

dr � .r; t/ OA .r; t/ : (13.23)

For operators with no explicit time dependence,

i„
@
D
OA
E

@t
D
Dh
OA; OH

iE
(13.24)

where OH is the Hamiltonian operator. The time dependence in
D
OA
E

arises from the

time dependence in  .r; t/. If
h
OA; OH

i
D 0, this implies that the dynamic variable

associated with OA is a constant of the motion. For an operator that doesn’t commute

with the Hamiltonian, its expectation value is not constant, in general.

The expectation values obey the laws of classical physics. This is known as

Ehrenfest’s theorem. That is

d hOri
dt
D 1

i„
Dh
Or; OH

iE
D 1

i„

��
Or; Op

2

2m

��
D hOpi

m
I (13.25a)

d h Opi
dt
D 1

i„
Dh
Op; OH

iE
D 1

i„ hŒ Op;V.r/�i

D � hrV.r/i D
D
OF
E
; (13.25b)

where OF D� rV.r/ can be thought of the operator associated with the force acting

on the particle.

13.1.5.1 Commuting Operators: Simultaneous Eigenfunctions

Two Hermitian operators possess simultaneous eigenfunctions if and only if they

commute. Moreover, any operator that commutes with the Hamiltonian is a constant

of the motion. Constants of the motion can be used to label eigenfunctions of the

Hamiltonian. In general, whenever there is a dynamic constant of the motion such
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as momentum or angular momentum, there is an energy degeneracy associated with

that conserved quantity. In that case the eigenvalues of the conserved operators can

be used to label different eigenfunctions that have the same energy. For example,

for the free particle, there is infinite degeneracy for any non zero energy since the

direction of the momentum can be in any direction. However, by using simultaneous

eigenfunctions of both the energy and momentum (momentum is conserved),

you can uniquely label each energy eigenfunction. Similarly, in problems with

spherical symmetry, angular momentum is conserved and you can label states by the

eigenvalues associated with the commuting operators OL2, OLz, and OH. There is always

a .2`C 1/ energy degeneracy associated with each state of a given `. In general,

the energy in problems with spherical symmetry depends on both the ` quantum

number and some additional quantum number—only in problems with some extra

symmetry such as hydrogen and the 3-d harmonic oscillator does the energy depend

only on a single quantum number n: For example, in an infinite spherical potential

well, for each `; there is a set of possible energies for each ` that can be labeled by

the zeroes of the spherical Bessel functions. In that case, the energy is determined

by both ` and a quantum number n for which j`.kna/ D 0, where n D 1; 2; 3; : : :

labels the zeroes of the Bessel function.

13.1.6 Measurement in Quantum Mechanics

What truly sets quantum mechanics apart from classical physics is the existence of

a single quantum system. There is no classical analogue of a single quantum system

in a superposition state. In contrast to a closed classical system of particles and

fields for which the energy is constant, it is impossible to assign a unique energy

to a single quantum system that is in a superposition state of two or more energies.

A measurement of the energy will yield one of the energies in the superposition

state, but we don’t know which one. If you measure the dynamic variable associated

with a Hermitian operator for any single quantum system in a superposition state

of eigenfunctions of that operator, you get one and only one eigenvalue of that

operator. Large numbers of measurements on identically prepared quantum systems

are needed to map out the probability function for each of the eigenvalues.

13.1.7 Dirac Notation

Although the wave function usually gives us some information about the spa-

tial probability distribution, it is possible to formulate quantum mechanics in a

somewhat more abstract formalism using Dirac notation. In Dirac notation each

Hermitian operator has its own set of eigenkets. These kets can be represented as

column vectors with a 1 in one position and zeroes everywhere else. Each operator

is diagonal in its own basis with the diagonal elements simply the eigenvalues of the
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operator. In some cases, as for the harmonic oscillator or for angular momentum, it

is possible to define ladder operators and obtain the eigenenergies without solving

Schrödinger’s equation. However in most cases, this is impossible and one reverts to

solving eigenvalue equations using the wave function formalism. The real import of

Dirac notation is that different representations, such as momentum and coordinate,

appear on an equal footing.

By calculating matrix elements of the momentum operator in the coordinate

representation I could establish a connection between the wave function formalism

and Dirac notation. To calculate matrix elements of the momentum operator in the

coordinate representation, I used the fifth postulate and the Poisson bracket of x and

px to obtain the commutation relation between Ox and Opx and used the commutator to

show that

hrj Op
ˇ̌
r0˛ D „

i
r rı.r � r0/: (13.26)

As a consequence, matrix elements of the entire Hamiltonian could be evaluated in

the coordinate basis. The Hamiltonian is not diagonal in the coordinate representa-

tion; however when the energy eigenkets are expanded in terms of the coordinate

representation, the expansion coefficients turn out to be the wave function in

coordinate space,

 E.r/ D hr jEi : (13.27)

I will often use Dirac notation. Remember, however, that one must often revert

to the wave function formalism to carry out any calculations. The time-dependent

Schrödinger equation can be written in Dirac notation as

i„d j .t/i
dt

D OH j .t/i D
� Op2
2m
C OV

�
j .t/i : (13.28)

The most general solution is

j .t/i D
X

n

bne�iEnt=„ jEni ; (13.29)

provided

OH jEni D En jEni : (13.30)

Remember that the eigenkets are just column vectors with a 1 in one position and

zeroes everywhere else and that j .t/i is a column vector with bne�iEnt=„ in the nth

position.

In contrast to the wave function approach, if you are given j .0/i in terms of the

eigenkets,

j .0/i D
X

n

bn jEni ; (13.31)
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you already know all the bn’s. If you were given the initial wave function, you must

calculate the bn’s as before. In other words,

bn D hEn j .0/i D
Z

dr hEn jri hr j .0/i D
Z

dr �
En
.r/  .r; 0/ : (13.32)

Example: As an example of the use of Dirac notation, consider a hydrogen atom

(neglecting spin) in an external magnetic field. The Hamiltonian for the electron is

OH D OH0 C ˇ0B � OL=„; (13.33)

where OH0 is the Hamiltonian in the absence of the magnetic field and ˇ0 is the

Bohr magneton. As long as the field is along the z axis, it is simple to find

the eigenfunctions and eigenenergies since the Ym
` ’s are still eigenfunctions. The

energies are simply shifted by ˇ0mB, where m is the magnetic quantum number.

However if the field is not along the z axis, it is not at all obvious how to solve for

the eigenfunctions.

In Dirac notation, it is trivial to obtain the eigenkets. The eigenkets are simply

jn`mBi, where mB„ is the eigenvalue associated with the component of L along the

direction of the magnetic field. The eigenenergies are shifted by ˇ0mBB. Of course,

the eigenfunctions are still not simple to obtain since hOr j`mBi is not a spherical

harmonic. However, if we express the Hamiltonian in terms of the (complete) set of

eigenkets jn`mzi which is easy to do, then the eigenkets in the jn`mBi basis can be

obtained by diagonalizing the Hamiltonian, just as was done in Sect. 11.4.3 for the

operator OLx. The eigenfunctions are obtained as linear combinations of the spherical

harmonics having the same `, but different m.

13.1.8 Heisenberg Representation

As a second example of the use of Dirac notation, I would like to discuss the

Heisenberg representation or Heisenberg picture. The Schrödinger operators I

have been using are time-independent. The expectation values of these operators

are time-dependent, in general, owing to the time-dependence of the wave functions

or state vectors associated with a quantum system. In the Heisenberg representation,

these roles are reversed. The state vector of the system becomes constant in time,

whereas the Heisenberg operators are functions of time, in general.

There is a unitary operator that connects the two representations. For a quantum

system characterized by a Hamiltonian OH, I define the state vector in the Heisenberg

representation by

j iH D e
i
„

OHtj .t/i D e
i
„

OHte� i
„

OHtj .0/i D j .0/i ; (13.34)
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which is constant in time. The expectation value of an operator OO is

h OOi D h .t/j OOj .t/i D h .0/j e i
„

OHt OOe� i
„

OHtj .0/i

D h .0/j e i
„

OHt OOe� i
„

OHtj .0/i DH h j OOH.t/j iH; (13.35)

where

OOH.t/ D e
i
„

OHt OOe� i
„

OHt: (13.36)

The Heisenberg operator OOH.t/ is time-dependent, in general and obeys the equation

of motion

i„d OOH.t/

dt
D �e

i
„

OHt OH OOe� i
„

OHt C e
i
„

OHt OO OHe� i
„

OHt D Œ OOH.t/; OH�: (13.37)

The advantage of the Heisenberg picture is that the operators often obey equations

of motion that are identical to their classical counterparts. Thus, Ehrenfest’s theorem

holds directly for the Heisenberg operators. It is important to note that commutation

laws such as ŒOxH.t/; OpH.t/� D i„ remain valid in the Heisenberg picture, but that

ŒOxH.t/; OpH.t0/� ¤ i„, in general, if t ¤ t0. The time-independent operator OH is the

same in both the Schrödinger and Heisenberg representations.

13.2 Feynman Path-Integral Approach

In 1948 Richard Feynman published a paper in Reviews of Modern Physics entitled

Space-Time Approach to Non-Relativistic Quantum Mechanics.1 In this paper, Feyn-

man formulated an alternative theory of quantum mechanics based on propagators,

rather than the Schrödinger equation. As Feynman noted in his introduction, “The

formulation is equivalent to the more usual formulations. There are, therefore, no

fundamentally new results. However, there is a pleasure in recognizing old things

from a new point of view.” It turns out that the propagator or path-integral approach

is now used routinely in both non-relativistic and relativistic quantum mechanics.2

The approach is related to the WKB method that is discussed in Chap. 16 in that

both effectively involve what is called a stationary phase approximation.

Feynman’s approach is based on the classical action. The classical action S for

a particle having mass m moving in a potential V.r/ from position ra at time ta to

position rb at time tb is defined by

1R. P. Feynman, Reviews of Modern Physics, Vol. 20, pp. 367–387 (1948).
2A general discussion of the path-integral approach can be found in L. S. Schulman, Techniques

and Applications of Path Integration (Dover Publications, Mineola, N.Y., 2005).
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S.ra; taI rb; tb/ D
Z tb

ta

L .r; Pr/ dt; (13.38)

where

L .r; Pr/ D mPr � Pr
2
� V.r/; (13.39)

is the associated Lagrangian. The position r and velocity Pr appearing in these

equations are implicit functions of time. The Principle of Least Action states that

of all the possible classical paths that take the particle from position ra at time ta
to position rb at time tb, the path that makes S an extremum corresponds to the

actual dynamics of the particle. It is not overly difficult to show that the requirement

ıS D 0, where ı corresponds to a variational derivative over particle trajectories

having fixed endpoints .ra; ta/ and .rb; tb/, leads to Lagrange’s equation for the

particle.

In analogy with this concept, Feynman postulated that the wave function in

quantum mechanics evolves as

 .r; t/ D
Z 1

�1
K.r; tI r0; t0/ .r0; t0/dr0; (13.40)

where the propagator is K.rb; tbI ra; ta/ is assumed to be given by

K.b; a/ � K.rb; tbI ra; ta/ D
1

N

Z rb

ra

exp

�
i

„S.ra; taI rb; tb/

�
Dr.t/

� 1

N

Z rb

ra

exp

�
i

„S.b; a/

�
Dr.t/; (13.41)

where N is a normalization constant. The functional differential Dr.t/ is not an

integral over position; it defines an operation in which the integrand is summed over

all classical paths from .ra; ta/ to .rb; tb/.

Of course, you can postulate anything you want. Only if the postulates are

consistent with experiment can they form the basis for a useful theory. In Feynman’s

case, he showed (by an argument reproduced in the Appendix) that his formulation

was totally equivalent to that described by Schrödinger’s equation. Moreover his

formalism can offer some computational advantages for calculations in both non-

relativistic and relativistic quantum mechanics. I will show how the propagator can

be calculated and then evaluate it for a free particle.

The Feynman approach is similar to the Principle of Least Action, but there is

a fundamental difference. In the Principle of Least Action, one path is picked out

by demanding that the action is an extremum. On the other hand, the propagator

in Eq. (13.41) involves a sum over all classical paths from .ra; ta/ to .rb; tb/: In

quantum mechanics it is impossible to deterministically define the path of a particle.

However, owing to the fact that „ appears in the denominator of the phase in the
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exponent in Eq. (13.41), the phase is expected to be large. In that case, the major

contribution to the integral will be along the path for which the phase is an extremum

(path of stationary phase), a condition on the action similar to that encountered in

the classical case. For all other paths, the exponential factor oscillates rapidly and

leads to destructive interference when the integral in Eq. (13.41) is evaluated.

In order to evaluate the propagator, the time integral can be broken down into

multiple steps, with the number of steps eventually approaching infinity. From the

definition given in Eq. (13.38), it is clear that

S.b; a/ D S.c; a/C S.b; c/: (13.42)

Since S.b; a/ is the classical action, it contains no quantum-mechanical operators.

As a consequence

exp

�
i

„S.b; a/

�
D exp

�
i

„ ŒS.c; a/C S.b; c/�

�

D exp

�
i

„S.b; c/

�
exp

�
i

„S.c; a/

�
: (13.43)

The integral in Eq. (13.41) can be written as an integral from the ra to rc multiplied

by an integral from rc to rb. To allow for all classical paths, I must integrate over all

possible intermediate locations rc; that is;

K.b; a/ D 1

N

Z rb

ra

exp

�
i

„S.b; a/

�
Dr.t/

D 1

N

Z
drc

Z rb

rc

Dr2.t/

Z rc

ra

Dr1.t/ exp

�
i

„S.b; c/

�
exp

�
i

„S.c; a/

�

D 1

N

Z
drcK.b; c/K.c; a/: (13.44)

The integral is over all space.

I can now continue this process, dividing the interval from ra to rb into n sections,

each having a temporal duration �. At the end of the calculation a limit is taken in

which n!1 and � ! 0, with the product n� ! .tb � ta/ : Since each time interval

interval becomes infinitely small, I can use Eqs. (13.38) and (13.41) to estimate the

propagator in the interval from .ri; ti/ to .riC1; tiC1/ as

K.iC 1; i/ D 1

N

Z riC1

ri

exp

�
i

„

Z tiC1

ti

L .r; Pr/ dt

�
Dr.t/

� 1

N
exp

�
i�

„ L

�
ri C riC1

2
;

riC1 � ri

�

��
; (13.45)
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since the classical path from .ri; ti/ to .riC1; tiC1/ reduces to an infinitesimal interval

for which r
�
tj
�
� .ri C riC1/ =2 and Pr

�
tj
�
D v

�
tj
�
� .riC1 � ri/ =�. It then follows

that the total propagator is equal to

K.b; a/ D lim
�!0

n!1
n�!.tb�ta/

�
2� i„�

m

�� 3n
2
Z

dr1 : : : drn�1

�
n�1Y

jD0
exp

�
i�

„ L

�
rj C rjC1

2
;

rjC1 � rj

�

��
; (13.46)

where r0 D ra, rn D rb. The normalization factor that was used,

N D
�
2� i„�

m

�3=2
; (13.47)

is derived in the Appendix.

As an example, I recalculate the one-dimensional free particle propagator already

obtained in Eq. (3.48): The one-dimensional propagator is given by

K.b; a/ D lim
�!0

n!1
n�!.tb�ta/

�
2� i„�

m

�� n
2
Z 1

�1
dx1 : : : dxn�1

�
n�1Y

jD0
exp

�
i�

„ L

�
xj C xjC1

2
;

xjC1 � xj

�

��
; (13.48)

where the free-particle Lagrangian for a particle having mass m is

L

�
xj C xjC1

2
;

xjC1 � xj

�

�
D m

v2j

2
D m

�
xjC1 � xj

�2

2�2
: (13.49)

Using the fact that

Z 1

�1
dxj exp

�
im

2„�
�
xj � xj�1

�2
�

exp

�
im

2.n � j/„�
�
xn � xj

�2
�

D
�
2� i„�

m

n � j

n � jC 1

�1=2
exp

�
im

2„� .n � jC 1/
�
xn � xj�1

�2
�
; (13.50)
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you can show by successive integrations starting with the integral over xn�1 that

K.b; a/ D lim
�!0

n!1
n�!.tb�ta/

�
2� i„�

m

�� n
2

n�1Y

jD1

�
2� i„�

m

n � j

n � jC 1

�1=2

� exp

�
im

2n�„ .xn � x0/
2

�
: (13.51)

Since x0 D xa, xn D xb, and

n�1Y

jD1

�
n � j

n � jC 1

�1=2
D
r
1

n
; (13.52)

it then follows that

K.b; a/ D
�

m

2� i„ .tb � ta/

�1=2
exp

"
im

2„
.xb � xa/

2

.tb � ta/

#
; (13.53)

which agrees with Eq. (3.48).

13.3 Bell’s Theorem

13.3.1 Proof of Bell’s Theorem

In Chap. 1, I promised a more detailed discussion of Bell’s inequalities, once

electron spin was introduced. I now make good on that promise. The proof of Bell’s

Theorem has nothing to do directly with quantum mechanics. It is based solely on

measurements on correlated systems. I shall refer to each system as a “particle,” but

this need not be the case. I assume that we have two particles (A and B/ and two

detectors (1 and 2). The same property of each particle is measured at each detector,

particle A is measured at detector 1 and particle B at detector 2. The measurements

are assumed to be correlated and the correlation is assumed to occur as the result of

some hidden variable encoded in the particles. The detectors are separated by a large

distance, insofar as the measurement of one of the particles at one of the detectors

cannot influence the measurement of the other particle at the other detector (this

assumption implies that only local hidden variables, created in the particles at their

creation, are used to explain the correlations between the particles).

I now assume that each detector can result only in a measurement of ˙1 when

measuring the property of the particle. The value that is measured will depend on

the angular orientation of the detector. Moreover, I assume that the measurements

are perfectly anti-correlated for the same orientation of the detectors. That is, if
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detector 1 measures a value C1 for an orientation ˛ of detector 1, then detector 2

must measure a value of�1 for the same orientation ˛ of detector 2. This correlation

is assumed to occur as a result of a hidden variable �.

The proof of Bell’s Theorem then follows directly.3 Let me denote the orientation

angle ˛ of detector 1 by �1˛ and the orientation angle ˇ of detector 2 by �2ˇ: Then,

according to my assumptions, the only possible measurements are

A.�1˛; �/ D ˙1; B.�2ˇ; �/ D ˙1; (13.54)

with

A.�1˛; �/ D �B.�2˛; �/: (13.55)

It is assumed that the measurements are controlled by a hidden variable �, with

0 � � � 1, governed by some distribution � .�/ with

Z 1

0

� .�/ d� D 1: (13.56)

I now define E
�
�1˛; �2ˇ

�
as the expectation value of the product of the two

measurements. (It is important to recognize that E
�
�1˛; �2ˇ

�
is not a probability—it

can be negative.) Then

E
�
�1˛; �2ˇ

�
D
Z 1

0

d� � .�/A.�1˛; �/B.�2ˇ; �/

D �
Z 1

0

d� � .�/A.�1˛; �/A.�1ˇ; �/; (13.57)

where the second line is obtained using Eq. (13.55). As a consequence, it follows

that4

E
�
�1˛; �2ˇ

�
� E

�
�1˛; �2

�

D �
Z 1

0

d�� .�/
�
A.�1˛; �/A.�1ˇ; �/ � A.�1˛; �/A.�1 ; �/

�
: (13.58)

Using the fact that
�
A.�1ˇ; �/

�2 D 1; I can rewrite this equation as

E
�
�1˛; �2ˇ

�
� E

�
�1˛; �2

�

D
Z 1

0

d� � .�/A.�1˛; �/A.�1ˇ; �/
�
A.�1ˇ; �/A.�1 ; �/ � 1

�
: (13.59)

3John Bell, On the Einstein Podolsky Rosen Paradox, Physics 1, 195–200 (1964).
4Some authors object to Bell using the same value of � for different measurements. See, for

example, Karl Hess, Einstein Was Right! (CRC Press, Boca Raton, FL, 2015).
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Since the product
ˇ̌
A.�1˛; �/A.�1ˇ; �/

ˇ̌
� 1 and 1 � A.�1ˇ; �/A.�1 ; �/ � 0; I

know that

ˇ̌
ˇ̌
Z 1

0

d� � .�/A.�1˛; �/A.�1ˇ; �/
�
A.�1ˇ; �/A.�1 ; �/ � 1

�ˇ̌ˇ̌

�
Z 1

0

d� � .�/
�
1 � A.�1ˇ; �/A.�1 ; �/

�
D 1C E

�
�1ˇ; �2

�
; (13.60)

which, when combined with Eq. (13.59), yields

ˇ̌
E
�
�1˛; �2ˇ

�
� E

�
�1˛; �2

�ˇ̌
� E

�
�1ˇ; �2

�
� 1: (13.61)

Equation (13.61) is a statement of Bell’s Theorem. If measurements on any perfectly

anti-correlated system of two particles violate this inequality, then the correlations

cannot be attributed to a local hidden variable.

Often a modified form of Bell’s inequalities is used,5

ˇ̌
E.�1˛; �2ˇ/ � E.�1˛; �2ˇ0/C E.�1˛0 ; �2ˇ/C E.�1˛0 ; �2ˇ0/

ˇ̌
� 2: (13.62)

which does not depend on the condition that the events at similarly oriented

detectors be perfectly correlated or anti-correlated.

13.3.2 Electron Spin Measurements

Electron spin measurements satisfy all the requirements given above for perfectly

anti-correlated measurements if the two electrons are prepared in the spin singlet

state,

j i D 1p
2
.j"#i � j#"i/ ; (13.63)

where the first arrow in each ket refers to electron 1 and the second to electron 2.6

The electrons are assumed to move in the˙z directions. The expectation value of the

product of spin measurements when detector 1 is oriented at an angle �1˛ relative to

the x-axis and detector 2 is oriented at an angle �2ˇ relative to the x-axis is given by

5J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt (1969), Proposed experiment to test local

hidden-variable theories, Physical Review Letters 23, 880–4 (1969).
6Although the singlet state is written for a quantization axis in the z direction, the same state is

realized for any quantization axis.
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E
�
�1˛; �2ˇ

�
D
�

� A �
�
cos �1˛ux C sin �1˛uy

�

� � B �
�
cos �2ˇux C sin �2ˇuy

�
�

D
˝�
�Ax cos �1˛ C �Ay sin �1˛

� �
�Bx cos �2ˇ C �By sin �2ˇ

�˛
; (13.64)

where

� j D � jxux C � jyuy C � jzuz; j D A;B; (13.65)

and � j� f� D x; y; zg is a Pauli spin matrix acting in the space of spin j fj D A;Bg.
In other words, the expectation value of spin (in units of „=2) for a single spin

system measured relative to a quantization direction u is h� � ui. Calculation of the

expectation value given in Eq. (13.64) for the state vector given in Eq. (13.63) is

straightforward. For example,

h�Ax�Bxi D
1

2
.h"#j � h#"j/ �Ax�Bx .j"#i � j#"i/

D 1

2
.h"#j � h#"j/ �Ax .j""i � j##i/

D 1

2
.h"#j � h#"j/ .j#"i � j"#i/ D �1: (13.66)

Similarly,

˝
�Ax�By

˛
D 0I (13.67a)

˝
�Ay�Bx

˛
D 0I (13.67b)

˝
�Ay�By

˛
D �1: (13.67c)

Substituting these results into Eq. (13.64), I find

E
�
�1˛; �2ˇ

�
D �

�
cos �1˛ cos �2ˇ C sin �1˛ sin �2ˇ

�
D � cos .˛ � ˇ/ : (13.68)

By combining Eqs. (13.61) and (13.68), I arrive at Bell’s inequality for the spin

system,

jcos .˛ � ˇ/ � cos .˛ � /j C cos .ˇ � / � 1: (13.69)

If I take ˛ D 0, ˇ D 3�=4,  D �=4, then the left-hand side of this equation is

equal to
p
2 which violates the inequality. The correlations that occur in quantum

mechanics cannot be explained by a local hidden variable theory.

In experiments, the correlation functions E
�
�1˛; �2ˇ

�
are not measured directly.

What is measured are individual and coincidence counts at the two detectors.

However it is possible to relate the coincidence counts to the correlation functions

to obtain a form of Bell’s inequalities for the measurable quantities. A violation of
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Fig. 13.1 Cascade emission to test Bell’s inequalities. The emission on the 3–2 transition propa-

gating in one direction is correlated with the radiation emitted on the 2–1 transition propagating in

the opposite direction. Measurements are made for different settings of the polarizers

Bell’s inequality has been observed using electron spin states in nitrogen vacancy

centers in diamond with detectors placed 1.3 km apart.7 The experimental spin

measurements agree with the quantum predictions.

13.3.3 Photon Polarization Measurements

Experimentally it proved easier to use photons rather than spin to look for violations

of Bell’s inequalities. To understand how an experiment using photons can be used

in a Bell’s experiment, look at the atomic level scheme shown in Fig. 13.1. Atoms

are prepared in level three and then undergo spontaneous emission that takes them

to levels 2 and 1 via a cascade process in which a single photon is emitted on each

transition (it is actually better to say that a single photon state is emitted on each

transition since the radiation emerges as a pulse, not as a monochromatic plane

wave state). There is no classical analogue of a single photon state, which makes it

ideal to use in experiments to test Bell’s inequalities.

The polarization of the radiation depends on the angular momentum associated

with each level and the direction of emission. If an ` D 0 ! 1 ! 0 cascade

is chosen, the radiation emitted on each transition is unpolarized in all directions,

but the polarization of the successively emitted single photon states is correlated.

In other words, if the polarization of the radiation emitted on the 3–2 transition is

not measured, then measurements of the radiation on the 2–1 transition will show

it to be unpolarized in any direction. The situation changes if polarizers are placed

between the atoms and the detectors, and the outcome of the measurement on the

2–1 transition is correlated with that on the 3–2 transition. For example, when the

detectors are placed along opposite directions from the source and the polarizers

7B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L.

Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D.

J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau and R. Hanson, Loophole-free Bell inequality

violation using electron spins separated by 1.3 kilometres, Nature 526, 682–686 (2015).
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have the same orientation relative to the axis between the detectors, if a photon

is detected at detector 1 then there is a 100% probability that a photon detected at

detector 2 will have the same polarization, assuming perfect detectors (e.g. in a given

direction, a linearly polarized photon emitted on the 3–2 transition is correlated with

a photon emitted in the opposite direction on the 3–2 transition having the same

linear polarization). In an ideal Bell’s experiment, the direction of the polarizers is

chosen after the radiation is emitted so the orientation of the detectors cannot affect

the emission process.8

With ideal measurements,

E.�1˛; �2ˇ/ D cos
�
2
�
�1˛ � �2ˇ

��
: (13.70)

For a relative angle of zero or � between the polarizers there is perfect correlation

between the detectors, E D 1, while for relative polarizer angles of �=2 and

3�=2 the events at the detectors are perfectly anti-correlated, E D �1. Substituting

Eq. (13.70) into Eq. (13.62), I obtain

ˇ̌
ˇ̌ cos

�
2
�
�1˛ � �2ˇ

��
� cos

�
2.�1˛ � �2ˇ0/

�

C cos
�
2.�1˛0 � �2ˇ/

�
C cos

�
2.�1˛0 � �2ˇ0/

�
ˇ̌
ˇ̌ � 2: (13.71)

An optimal geometry for violating Bell’s inequality is one in which

� D
ˇ̌
�2ˇ � �1˛

ˇ̌
D
ˇ̌
�2ˇ0 � �1˛0

ˇ̌
D
ˇ̌
�2ˇ � �1˛0

ˇ̌
D
ˇ̌
�2ˇ0 � �1˛

ˇ̌
=3: (13.72)

For � D �=8 or 3�=8, the left-hand side of Eq. (13.71) takes on its maximum value

of 2
p
2 and violates the inequality. The experimental measurements agree with the

quantum predictions and violate Bell’s inequalities.

There is another way to see the inconsistency of local hidden variable theories

that does not make direct use of the inequality given in Eq. (13.62).9 Suppose that

the radiation is emitted in opposite directions along the x-axis and that each detector

is oriented in the y � z plane so that its axis makes an angle of 0, 2�=3 or 4�=3

relative to the z-axis; that is, each detector has three possible positions. If a photon

gets through the detector, I denote this by a y (yes) and if it does not get through

8S. J. Freedman and J. F. Clauser, Experimental Test of Local Hidden-Variable Theories, Physical

Review Letters 28, 938–941 (1972); E. S. Fry and R. C. Thompson, R. C. (1976), Experimental

Test of Local Hidden Variables Theories, Physical Review Letters 37, 465-468 (1976); A.

Aspect, P. Grangier, and G. Roger, Experimental Realization of Einstein-Podolsky-Rosen-Bohm

Gedankenexperiment: A New Violation of Bell’s Inequalities, Physical Review Letters 49, 91–94

(1982); W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Violation of Bell inequalities by photons more

than 10 km apart, Physical Review Letters 81, 3563–3566 (1998); J-A. Larsson, M. Giustina, J.

Kofler, B. Wittmann, R. Ursin, and S. Ramelow, Bell violation with entangled photons, free of the

coincidence-time loophole. Physical. Review A 90, 032107 (2014).
9This argument follows that given by Robert Adair in The Great Design, Particles, Fields, and

Creation (Oxford University Press, New York, 1987), pp. 185–187.
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by an n (no). For a given orientation of a single detector, 50% of the photons get

through, on average. Thus if the detectors are at the same angles, there will be 50%

yy and 50% nn and 0% yn or ny. When the detectors are at different angles, if the

first photon gets through the first detector (which has a 50% probability), the second

photon must have the same polarization as the first and there is a 25% [cos2.2�=3/

or cos2.4�=3/] chance that it gets through the second detector and a 75% that it does

not. Thus the probabilities are 0:125 .0:5�0:25/ for yy and 0:375 .0:5�0:75/ for yn.

On the other hand, if the first photon does not get through the first detector (which

has a 50% probability), the second photon must have its polarization perpendicular

to that of the first photon and there is a 75% [cos2.�=6/ or cos2.5�=6/] chance that

it gets through the second detector and a 25% that it does not. Thus the probabilities

are 0:375 .0:5 � 0:75/ for ny and 0:125 .0:5 � 0:25/ for nn: I now show how these

results lead to a contradiction if a local hidden variables theory is used.

Assume now that each photon that is emitted already has its polarization encoded.

When the detectors are aligned, there is a 100% correlation between the two

photons, which implies that the photons carry the same code. Since there are three

detector positions and two possible outcomes for each position (y or n), there are

eight possible codes for each photon .yyy; yyn; yny; ynn; nyy; nny; nyn; nnn/. For

example, yny implies that a photon will get through the detector for � D 0; 4�=3 but

not for � D 2�=3. Since n and y are equally likely for a given position, this implies

that the probability for each of yyn; yny; ynn; nyy; nny; nyn must be equal (call it ˇ)

and that for each of yyy; nnn must be equal (call it ˛). Set the detectors at a relative

angle of 2�=3 and try to calculate ˛ and ˇ. Let W.a; b; c/ represent the probability

that we get the result a when the first detector is at 0, b when it is at 2�=3, and c

when it is at 4�=3. In this example, only the a and b indices are relative—the third

index can be either y or n and must be summed over for a specific choice of the first

two indices. Thus,

W.yy/ D W.yyy/CW.yyn/ D 0:125 D ˛ C ˇ; (13.73a)

W.nn/ D W.nny/CW.nnn/ D 0:125 D ˛ C ˇ; (13.73b)

W.yn/ D W.yny/CW.ynn/ D 0:375 D 2ˇ; (13.73c)

W.ny/ D W.nyy/CW.nyn/ D 0:375 D 2ˇ: (13.73d)

For example, the first line asks what is the probability that both photons get through

the detectors (which was found to be 0.125 when the detectors are at a relative angle

of 2�=3) and the third line that the first photon gets through and the second one

doesn’t (which was found to be 0.375 when the detectors are at a relative angle of

2�=3). Solving for ˛ and ˇ gives ˇ D 0:375=2 and ˛ D �0:125=2. Since

negative probabilities are not allowed, we are led to a contradiction. Of course,

inequality (13.62) can be viewed as a statement that negative probabilities are not

allowed.
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13.3.4 Quantum Teleportation

Entangled Bell states can be used as the basis for quantum teleportation.10 In clas-

sical digital communication, messages to be transmitted are encoded into a stream

of zeroes or ones, so-called classical bits of information. Such communication is

not secure insofar as it can be intercepted by an “eavesdropper.” To avoid such

problems, it is now possible to send encoded messages using quantum bits or qubits

of information over distances as large as 1200 km.11

A qubit is a quantum superposition state. For example, suppose Alice (in such

examples, it seems that it is Alice who always sends information to Bob, trying to

avoid eavesdropping by Eve) wants to send the superposition state

j i1 D .˛ jHi1 C ˇ jVi1/ (13.74)

to Bob. You can think of the states jHi1 and jVi1 as two orthogonal polarization

states (horizontal and vertical) of a single photon state; the subscript 1 indicates that

this is the first photon state in this teleportation scheme. To initiate the teleportation

protocol, she creates an entangled Bell state of two other single photon states, using

a method such as cascade emission. For example, the entangled Bell state might be

j i23 D
1p
2
.jHi2 jHi3 C jVi2 jVi3/ : (13.75)

The subscripts 2 and 3 indicate that these states belong to the second and third single

photon states. The third single photon state is sent to Bob and the second is kept by

Alice. Alice now has two, single photon states (1 and 2), while Bob has one (3).

The entire state of the system of quantum bit and Bell state is

j iT D
1p
2
.jHi2 jHi3 C jVi2 jVi3/ .˛ jHi1 C ˇ jVi1/ : (13.76)

10See, for example, The Physics of Quantum Information, edited by Dirk Bouwmeester, Artur

Ekert, and Anton Zeilinger (Springer-Verlag, Berlin, 2000), and references therein.
11See, for example, Xiao-Song Ma, Thomas Herbst, Thomas Scheidl, Daqing Wang, Sebastian

Kropatschek, William Naylor, Bernhard Wittmann, Alexandra Mech, Johannes Kofler, Elena

Anisimova, Vadim Makarov, Thomas Jennewein, Rupert Ursin and Anton Zeilinger, Quantum

teleportation over 143 kilometres using active feed-forward, Nature 489, 269–273 (2012); Raju

Valivarthi, Marcel.li Grimau Puigibert, Qiang Zhou, Gabriel Aguilar, Varun Verma, Francesco

Marsili, Matthew D. Shaw, Sae Woo Nam, Daniel Oblak and Wolfgang Tittel, Quantum telepor-

tation across a metropolitan fibre network, Nature Photonics 10, 676–680 (2016); J. Yin et al.,

Satellite-based entanglement distribution over 1200 kilometers, Science 356, 1140-1144 (2017).
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Alice now makes a measurement of the state of her two single photon states in a

Bell-state basis.12 That is, she measures one of the four states

j iA1 D
1p
2
.jHi1 jHi2 C jVi1 jVi2/ I (13.77a)

j iA2 D
1p
2
.jHi1 jHi2 � jVi1 jVi2/ I (13.77b)

j iA3 D
1p
2
.jHi1 jVi2 C jVi1 jHi2/ I (13.77c)

j iA4 D
1p
2
.jHi1 jVi2 � jVi1 jHi2/ : (13.77d)

Alice’s measurement projects Bob’s single photon state into one of the states (see

problems)

j iB1 D ˛ jHi3 C ˇ jVi3 I (13.78a)

j iB2 D ˛ jHi3 � ˇ jVi3 I (13.78b)

j iB3 D ˇ jHi3 C ˛ jVi3 I (13.78c)

j iB4 D ˇ jHi3 � ˛ jVi3 : (13.78d)

Bob and Alice share a publicly accessible key distribution that correlates each

Bell state in Eqs. (13.77) with the corresponding single photon state in Eqs. (13.78).

Alice sends Bob two classical bits of information over a public line to tell him

which Bell state measurement she made (for example, f0; 0g could correspond to

an A1 measurement, f0; 1g to an A2 measurement, etc.) Bob then knows what to do

to recover the initial quantum bit. For example, if Alice measured the state given

in Eq. (13.77a), he already has the desired qubit. If she measured the state given in

Eq. (13.77c), he carries out the unitary quantum gate operation

j i0B1 D � x j iB3 D
�
0 1

1 0

��
ˇ

˛

�
D ˛ jHi3 C ˇ jVi3 ; (13.79)

in which he swaps the horizontal and vertical polarization components of his state.

Other states are treated in a similar fashion.

12For example, she can make such a Bell state measurement by entangling her single photon

states using beam splitters [Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl,

Harald Weinfurter and Anton Zeilinger, Experimental quantum teleportation, Nature 390, 575–

579 (1997)] or nonlinear crystals [Yoon-Ho Kim, Sergei Kulik, and Yanhua Shih, Quantum

Teleportation of a Polarization State with a Complete Bell State Measurement, Physical Review

Letters 86, 1370–1374 (2001)].
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If the eavesdropper Eve intercepts the classical communication between Alice

and Bob, it is useless to her since she doesn’t have the single photon state that

was sent to Bob. Moreover, if she intercepts the single photon state and makes a

measurement on it, she will necessarily corrupt that superposition state. It will be

evident to Alice and Bob that someone has been listening in.

13.3.5 Why the Big Fuss?

There are thousands of papers written on Bell’s inequalities and more appear

regularly. Many people believe in the validity of Bell’s theorem and some don’t.

The carrying out of “loophole-free” experiments demonstrating violations of Bell’s

inequalities has enhanced or even made some scientific careers. The New York

Times seems to be enamored with experiments that prove “Einstein was wrong”

and confirm “spooky action at a distance.” It seems that people are either fascinated,

disturbed, or dissatisfied (or some combination of these) with experiments that have

shown violations of Bell’s inequalities.

I am not of the opinion that all this attention is merited. In the spin experiment, for

example, each observer detects spin up or spin down 50% of the time, on average,

independent of the orientation of her detector. It is only when the observers use

classical communication channels to compare the results of their measurements do

they find that there are correlations. How do they explain such correlations? To say

that one measurement influenced the other is not particularly meaningful. In effect,

the best answer to this question is “the reason there are correlations is because there

are correlations.” It is the same as asking people why two neutral objects attract

one another. Attributing this attraction to “gravity” does not in any way explain the

attraction. The laws of nature are what they are. People have become familiar with

gravitational attraction, but do not experience the effects of quantum correlations

in their everyday lives. If quantum mechanics is a correct theory, there will be

violations of Bell’s inequalities even if the proof of Bell’s theorem has flaws. This

does not prevent people from looking for alternative theories, as Einstein did in

formulating an alternative theory of gravity in his Theory of General Relativity, but

so far there has not yet been a theory to replace quantum mechanics. I believe that

quantum mechanics remains in incomplete theory insofar as it does not address the

dynamics of wave function collapse.

13.4 Summary

This chapter serves as a bridge between the introductory course material and the

more advanced applications of the basic theory. A brief review was presented.

I have also taken the opportunity to present two additional topics. The first was an

alternative approach to the quantum theory based on the Feynman’s path integrals
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and the second a more detailed treatment of Bell’s theorem. These are both

interesting topics, but the results that were derived are not used in the remainder

of this text.

13.5 Appendix: Equivalence of Feynman Path Integral

and Schrödinger Equation

In this Appendix, I show that Schrödinger’s equation can be derived from the

Feynman propagator. I work in one-dimension to simplify matters, but the results

can be generalized easily to three dimensions. In the Feynman approach, the wave

function at time t is related to that at time t0 by the integral equation

 .x; t/ D
Z 1

�1
K.x; tI x0; t0/ .x0; t0/dx0; (13.80)

where the propagator is defined in Eq. (13.41). To derive a differential equation for

 .x; t/ I consider an infinitesimal time interval � with t D t0 C � for which the

propagator can be approximated as

K.x; tI x0; t0/ D 1

N
exp

"
i

„

Z t0C�

t0
L .x; Px/ dt00

#

� 1

N
exp

�
i�

„ L

�
xC x0

2
;

x � x0

�

��
; (13.81)

since Px.t00/ � Œx.t0 C �/ � x.t0/� =� and x.t00/ � Œx.t0 C �/C x.t0/� =2: The quantity

N is a normalization constant, whose value is derived below. In this limit

 .x; tC �/ D 1

N

Z 1

�1
exp

�
i�

„ L

�
xC x0

2
;

x � x0

�

��
 .x0; t/dx0: (13.82)

I choose a specific form for the Lagrangian consistent with the Hamiltonian I

have used in discussing the Schrödinger equation, namely

L .x; Px/ D mPx2
2
� V.x/; (13.83)

which corresponds to a particle having mass m moving in the potential V.x/. With

this Lagrangian,

 .x; tC �/ D 1

N

Z 1

�1
exp

"
i

„

 
m .x � x0/2

2�
� �V

�
xC x0

2

�!#
 .x0; t/dx0;

(13.84)
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or, setting x � x0 D y;

 .x; tC �/ D 1

N

Z 1

�1
exp

�
i
my2

2„�

�
exp

h
�i�V

�
x � y

2

�
=„
i
 .x � y; t/dy:

(13.85)

The first exponent blows up as � ! 0. As a consequence the exponential will

oscillate rapidly and lead to destructive interference for the integral except in a small

interval about y D 0: I keep the first exponential intact, but expand the remaining

factors in a power series in both � and y to arrive at

 .x; tC �/ D 1

N

Z 1

�1
exp

�
i
my2

2„�

�
Œ1 � i�V .x/ =„�

�
�
 .x; t/ � @ .x; t/

@x
yC 1

2

@2 .x; t/

@x2
y2
�

dy: (13.86)

All higher order terms in the expansion vanish in the limit that � ! 0. If I keep only

the lead term in the expansion, I find

 .x; tC �/ � 1

N

Z 1

�1
exp

�
i
my2

2„�

�
 .x; t/dy D 1

N

r
2� i„�

m
 .x; t/; (13.87)

where the integral can be evaluated using contour integrals in the complex plane or

taken from integral tables. For this equation to be valid as � ! 0, I must require that

N D
r
2� i„�

m
: (13.88)

Using the relationships

Z 1

�1
exp

�
i
my2

2„�

�
dy D

r
2� i„�

m
I (13.89a)

Z 1

�1
exp

�
i
my2

2„�

�
ydy D 0I (13.89b)

Z 1

�1
exp

�
i
my2

2„�

�
y2dy D 2„�

i

d

dm

Z 1

�1
exp

�
i
my2

2„�

�
dy

D �„�
i

r
2� i„�
m3=2

; (13.89c)

and Eq. (13.88) in Eq. (13.86), and taking the limit � ! 0, I find
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@ .x; t/

@t
D lim

�!0

 .x; tC �/ �  .x; t/
�

D �1
2

„
im

@2 .x; t/

@x2
� i

„V .x/  .x; t/;

(13.90)

or

i„@ .x; t/
@t

D � „
2

2m

@2 .x; t/

@x2
C V .x/  .x; t/; (13.91)

which is Schrödinger’s equation.

13.6 Problems

1–2. Write an expression in the form of Eq. (13.48) for the propagator of a particle

having mass m moving in a uniform gravitational field for which the classical

Hamiltonian is H D p2=2mCmgx. In this case the calculation is more complicated

than it is for a free particle, but it can be shown that13

K.b; a/ D
� m

2� i„�
�1=2

� exp

�
i
m�

2„

��xb � xa

�

�2
� g .xb C xa/ �

g2�2

12

��
;

where � D .tb � ta/. Show that the kernel is equal to

K.b; a/ D
� m

2� i„�
�1=2

exp ŒiScl.b; a/=„� ;

where Scl.b; a/ is the classical action.

Using this kernel with

 .x; 0/ D 1

�1=4�1=2
e�.x�x0/

2=.2�2/eik0x;

prove that

j .x; t/j2 D
�

1

��.t/2

�1=2
e�.x�x0�v0t�gt2=2/

2
=�.t/2 ;

13See, for example, S. Huerfano, S. Sahu, and M. Socolovsky, Quantum Mechanics and the

Weak Equivalence Principle, International Journal of Pure and Applied Mathematics 49, 153–166

(2008).
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where

�.t/2 D �2 C
� „t

m�

�2

and v0 D „k0=m. In other words, in a uniformly accelerating reference frame, the

particle spreads as if it were a free particle.

3–4. Write an expression in the form of Eq. (13.48) for the propagator of a particle

having mass m moving in a 1-D simple harmonic potential for which the classical

Hamiltonian is H D p2=2mCm!2x2=2. Again, the calculation is more complicated

than it is for a free particle, but it can be shown that14

K.b; a/ D
�

m!

2� i„ sin .!�/

�1=2

� exp

�
im!

2„ sin .!�/

��
x2b C x2a

�
cos .!�/ � 2xbxa

��
;

where � D .tb � ta/. Show that the kernel is equal to

K.b; a/ D
�

m!

2� i„ sin .!�/

�1=2
exp ŒiScl.b; a/=„� ;

where Scl.b; a/ is the classical action.

Using this kernel, find j .�; t/j2, given

 .�; 0/ D 1

�1=4
e�.���0/

2
=2;

where � D
p

m!=„x is a dimensionless variable, and show that your answer agrees

with Eq. (7.61b).

5. Suppose that two electrons are emitted in the correlated spin state

j i D 1p
2
.j"#i � j#"i/

and propagate in opposite directions,˙ur, where

ur D sin � cos�uxC sin � sin�uy C cos �uz

14See, for example, K. Hira, Derivation of the harmonic oscillator propagator using the Feynman

path integral and recursive relations, European Journal of Physics 34, 777–785 (2013).
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is a unit vector, and r, � , and � are spherical coordinates. If the detectors are located

in planes perpendicular to ur such that the orientation of the detectors is given by

uA .�; �;  A/ D cos Au� C sin Au' I
uB .�; �;  B/ D cos Bu� C sin Bu' :

Prove that

h.� A � uA/ .� B � uB/i D � cos . A �  B/ ;

where

� j D � jxux C � jyuy C � jzuz; j D A;B;

and � j� f� D x; y; zg is a Pauli spin matrix acting in the space of spin j fj D A;Bg.
6. Under a rotation of the quantization axis, the state vector

j i D 1p
2
.j"#i � j#"i/ D 1p

2
.j"i1 j#i2 � j#i1 j"i2/

is transformed into

j i0 D 1p
2

�
j"i01 j#i02 � j#i01 j"i02

�

where

�
j"i01;2
j#i01;2

�
D U

¯

�
j"i1;2
j#i1;2

�

and U
¯

is a unitary matrix having determinant equal to 1. Prove that, j i0 D j i;
that is, the spins are always anti-correlated for the singlet state, independent of the

choice of quantization axis, as you would expect.

7. Make a contour plot of the left side of Eq. (13.69) with axes x D ˇ � ˛ and

y D  � ˛ to determine the range of detector angles for which the Bell’s inequality

is violated.

8. Make a contour plot of the left side of Eq. (13.71) with axes �1˛0 and �2ˇ for

�1˛ D 0 and �2ˇ0 D 0; �=8; �=4; 3�=8; �=2 to determine the range of detector

angles for which the Bell’s inequality is violated.

9. The excited state of a quantum dot can decay into a superposition of two, nearly

degenerate ground states j1i and j2i. If the decay is to state j1i, the radiation

has horizontal (H/ polarization and, if the decay is to state j2i, the radiation has
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vertical (V/ polarization along a given direction of emission. Following emission,

the radiation and the quantum dot are in the entangled state15

j i D 1p
2
.j1;Hi � i j2;Vi/ :

If a polarizer is placed in the path of the emitted radiation at an angle � relative to

the x axis and a signal is detected, what is the resultant state vector for the quantum

dot? Experimentally, an effective polarization angle can be associated with the

superposition state of the quantum dot and the state of the quantum dot can be read

out using auxiliary laser pulses. By using different rotation angles for the polarizer

and using different rotations of the quantum dot’s polarization, it is possible to use

the entangled state to demonstrate a violation of a Bell’s inequality.

10. Show that when Alice makes measurements of the quantum state given in

Eq. (13.76) using the Bell states given in Eq. (13.77), Bob’s single photon state is

projected into the states given in Eq. (13.78).

15J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, A. S. Bracker, D.

Gammon, L. Sham, and D. G. Steel, Entanglement between a Single Electron Spin Confined to an

InAs Quantum Dot and a Photon, Physical Review Letters 110, 167401 pp. 1–5 (2013).



Chapter 14

Perturbation Theory

Unfortunately, it is impossible to obtain analytic solutions of the Schrödinger

equation for most potentials. However there is a large class of problems in quantum

mechanics where the Hamiltonian consists of two parts. The first part corresponds to

an isolated quantum system, such as a hydrogen atom, for which we know the exact

eigenfunctions and eigenenergies. The second part of the Hamiltonian corresponds

to the interaction of the isolated quantum system with some external potential. If the

second potential is weak (and I have to define what I mean by weak), it is possible to

develop a systematic procedure to approximate the eigenfunctions and eigenvalues

of the total Hamiltonian. This procedure is referred to as perturbation theory.

Perturbation theory is covered in all standard texts. I will stress some points that

are not often discussed in the standard treatments of the problem. The basic idea is

simple. Suppose we can write the Hamiltonian of a system as

OH D OH0 C � OH0 (14.1)

or, in matrix form, as

H
¯
D H

¯
0 C �H

¯

0: (14.2)

The quantity � is just for bookkeeping—I will eventually set it equal to unity. It

lets us keep track of the fact that OH0 is supposed to be a small perturbation to OH0,

whatever that means. Furthermore I assume that we know the eigenfunctions .0/
n .r/

of OH0 and the corresponding eigenvalues E
.0/
n ;

OH0 
.0/
n .r/ D E.0/n  .0/

n .r/: (14.3)

In Dirac notation,

H
¯
0 jEni.0/ D E.0/n jEni.0/ (14.4)
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(remember that jEni.0/ is a column matrix with 1 in the nth location and zeroes

everywhere else). The problem is then straightforward—how can we approximate

the energies and eigenfunctions or eigenkets for the total Hamiltonian. In Dirac

notation, we are simply trying to develop methods for approximately diagonalizing

a Hamiltonian.

14.1 Non-degenerate Perturbation Theory

I will derive the perturbation theory results using Dirac notation and then simply list

the corresponding results for the wave functions. In non-degenerate perturbation

theory, it is assumed that any states coupled by the perturbation (that is, states jni
and jn0i for which H

¯
0
nn0 ¤ 0) have different energies.

I start from

H
¯
D H

¯
0 C �H

¯

0; (14.5a)

H
¯
0 jEni.0/ D E.0/n jEni.0/ ; (14.5b)

H
¯
jEni D En jEni ; (14.5c)

and try a solution

En D E.0/n C �E.1/n C �2E.2/n C � � � (14.6a)

jEni D jEni.0/ C � jEni.1/ C �2 jEni.2/ C � � � ; (14.6b)

substitute it into Eq. (14.5c) and equate equal powers of �. After that, I can set

� D 1, since it was used only for bookkeeping. I calculate corrections to the energy

to order E
.2/
n and to the wave function to order jEni.1/.

Equating coefficients of �0 simply reproduces Eq. (14.5b). Equating coefficients

of � yields

H
¯
0 jEni.1/ C H

¯

0 jEni.0/ D E.0/n jEni.1/ C E.1/n jEni.0/ : (14.7)

Multiplying Eq. (14.7) by .0/ hEnj, I obtain

.0/ hEnjH
¯
0 jEni.1/ C.0/ hEnjH

¯

0 jEni.0/ D E.0/ .0/n hEn jEni.1/ C E.1/n : (14.8)

In the .0/ hEnjH
¯
0 jEni.1/ term, I can let H

¯
0 act to the left,

.0/ hEnjH
¯
0 D

h
H
¯
0 jEni.0/

i�
D E.0/ .0/n hEnj (14.9)
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to arrive at

E.0/ .0/n hEn jEni.1/ C H0
nn D E.0/ .0/n hEn jEni.1/ C E.1/n ; (14.10)

or

E.1/n D.0/ hEnjH
¯

0 jEni.0/ D H0
nn; (14.11)

where all matrix elements are taken with respect to the unperturbed basis. The first

order corrections to the energy are simply the diagonal elements of H
¯

0.
Multiplying Eq. (14.7) by .0/ hEmj with m ¤ n and using Eq. (14.9), I find

E.0/ .0/m hEm jEni.1/ C H0
mn D E.0/ .0/n hEm jEni.1/ ; (14.12)

or

.0/ hEm jEni.1/ D
H0

mn

E
.0/
n � E

.0/
m

: (14.13)

This can now be used to calculate jEni to first order, since

jEni D
X

m

.0/ hEm jEni jEmi.0/

� jEni.0/ C
X

m

.0/ hEm jEni.1/ jEmi.0/

� jEni.0/ C
X

m¤n

H0
mn

E
.0/
n � E

.0/
m

jEmi.0/ C.0/ hEn jEni.1/ jEni.0/

D
h
1C.0/ hEn jEni.1/

i
jEni.0/ C

X

m¤n

H0
mn

E
.0/
n � E

.0/
m

jEmi.0/ : (14.14)

The .0/ hEn jEni.1/ term in this expression is often confusing to students. In mth

order perturbation theory, the value of .0/ hEn jEni.m/ is completely arbitrary since it

cannot be determined from Eqs. (14.5) and (14.6). This is not tragic, however, since

the mth order value of the energy and mth order expectation values of all operators

in a state j i are independent of the values of .0/ hEn jEni.q/ for q < m. In effect,

different choices for .0/ hEn jEni.m/ simply result in different normalization factors

for the eigenkets.

Conventionally the value of .0/ hEn jEni.m/ is set equal to zero for all m. With this

choice, the eigenkets calculated in each order of perturbation theory are determined

uniquely and the mth order eigenket does not depend on the values of .0/ hEn jEni.q/
for q < m (clearly, since they have been set equal to zero). The price you pay is that

the eigenkets are not normalized, in general, in each order of perturbation theory.

The first order eigenkets are normalized, however, since
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hEn jEni �
ˇ̌
ˇ1C.0/ hEn jEni.1/

ˇ̌
ˇ
2

D 1; (14.15)

where terms of order H02
mn have been neglected. With .0/ hEn jEni.1/ D 0,

jEni.1/ D
X

m¤n

H0
mn

E
.0/
n � E

.0/
m

jEmi.0/ : (14.16)

Equating coefficients of �2 in Eq. (14.5c) yields

H
¯
0 jEni.2/ C H

¯

0 jEni.1/ D E.0/n jEni.2/ C E.1/n jEni.1/ C E.2/n jEni.0/ : (14.17)

Multiplying Eq. (14.17) by .0/ hEnj ; Eq. (14.9), and canceling terms, I obtain

E.2/n D .0/ hEnjH
¯

0 jEni.1/ D hEnjH
¯

0 X

m¤n

H0
mn

E
.0/
n � E

.0/
m

jEmi.0/

D
X

m¤n

H0
nmH0

mn

E
.0/
n � E

.0/
m

D
X

m¤n

ˇ̌
H0

nm

ˇ̌2

E
.0/
n � E

.0/
m

: (14.18)

This completes the derivation. If wave functions rather than kets are used, all the

results are still valid. In terms of the wave function, Eq. (14.16) is replaced by

 .1/
n .r/ D

X

m¤n

H0
mn

E
.0/
n � E

.0/
m

 .0/
m .r/ (14.19)

and the matrix elements of H
¯

0 are evaluated as

H0
mn D.0/ hEmjH

¯

0 jEni.0/ D
Z

dr
�
 .0/

m .r/
�� OH0 .0/

n .r/: (14.20)

The combined results are

En D E.0/n C H0
nn C

X

m¤n

ˇ̌
H0

nm

ˇ̌2

E
.0/
n � E

.0/
m

C � � � (14.21a)

jEni D jEni.0/ C
X

m¤n

H0
mn

E
.0/
n � E

.0/
m

jEmi.0/ C � � � (14.21b)

 n.r/ D  .0/
m .r/C

X

m¤n

H0
mn

E
.0/
n � E

.0/
m

 .0/
m .r/C � � � : (14.21c)
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For perturbation theory to be valid, the off diagonal matrix elements of
ˇ̌
H
¯

0
mn

ˇ̌

must be small compared with the difference in eigenvalues

ˇ̌
ˇE.0/n � E

.0/
m

ˇ̌
ˇ and the

ratio

ˇ̌
ˇE.1/n � E

.1/
m

ˇ̌
ˇ =
ˇ̌
ˇE.0/n � E

.0/
m

ˇ̌
ˇ must be much less than unity. Clearly this fails for

any degenerate states that are coupled by the perturbation.

14.1.1 Examples

(1) Find the eigenvalues to order 0.01 and the eigenvectors to order 0.1 of the

following matrix:

H
¯
D

0
BB@

1:1 0:1 �0:2 0:2

0:1 4:2 0:1 �0:1
�0:2 0:1 8 �0:2
0:2 �0:1 �0:2 13:9

1
CCA ; (14.22)

written in the jEmi.0/ basis (m D 1 � 4). I set

H
¯
0 D

0
BB@

1 0 0 0

0 4 0 0

0 0 8 0

0 0 0 14

1
CCA I (14.23a)

H
¯

0 D

0
BB@

0:1 0:1 �0:2 0:2

0:1 0:2 0:1 �0:1
�0:2 0:1 0 �0:2
0:2 �0:1 �0:2 �0:1

1
CCA ; (14.23b)

with E
.0/
1 D 1, E

.0/
2 D 4, E

.0/
3 D 8, E

.0/
2 D 12. Therefore, from Eq. (14.21a),

I find

E1 � 1C 0:1C
0:01

1 � 4 C
0:04

1 � 8 C
0:04

1 � 14 D 1:08788;

E1(exact) D 1:08777 ; (14.24a)

E2 � 4C 0:2C
0:01

4 � 1 C
0:01

4 � 8 C
0:01

4 � 14 D 4:19983;

E2(exact) D 4:20013 ; (14.24b)

E3 � 8C 0C
0:04

8 � 1 C
0:01

8 � 4 C
0:04

8 � 14 D 8:00155;

E3(exact) D 8:00093 ; (14.24c)
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E4 � 14 � 0:1C
0:04

14 � 1 C
0:01

14 � 4 C
0:04

14 � 8 D 13:9107;

E4(exact) D 13:9112 , (14.24d)

where the exact values were obtained by numerically diagonalizing the Hamil-

tonian. The eigenvectors are obtained from Eq. (14.21a) as

jE1i �

0
BB@

1

0

0

0

1
CCAC

0
BB@

0
0:1
1�4�0:2
1�8
0:2
1�14

1
CCA D

0
BB@

1

�0:0333
0:0286

�0:0154

1
CCA ;

jE1i (exact) D

0
BB@

0:999

�0:0335
0:0289

�0:0154

1
CCA I (14.25a)

jE2i �

0
BB@

0

1

0

0

1
CCAC

0
BB@

0:1
4�1
0
0:1
4�8�0:1
4�14

1
CCA D

0
BB@

0:0333

1

�0:025
0:010

1
CCA ;

jE2i (exact) D

0
BB@

0:0344

0:999

�0:0240
0:0091

1
CCA I (14.25b)

jE3i �

0
BB@

0

0

1

0

1
CCAC

0
BB@

�0:2
8�1
0:1
8�4
0

�0:2
8�14

1
CCA D

0
BB@

�0:0286
0:025

1

0:0333

1
CCA ;

jE3i (exact) D

0
BB@

�0:0276
0:0246

0:999

0:0352

1
CCA I (14.25c)

jE4i �

0
BB@

0

0

0

1

1
CCAC

0
BB@

0:2
14�1�0:1
14�4�0:2
14�8
0

1
CCA D

0
BB@

0:0154

�0:01
�0:0333

1

1
CCA ;
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jE4i (exact) D

0
BB@

0:0161

�0:0105
�0:0345
0:999

1
CCA : (14.25d)

(2) An infinite square well of width a has a potential bump at its center of the form

H0.x/ D
�

V0 jxj � b=2

0 a=2 > jxj � b=2
; (14.26)

with V0 > 0 and a > b > 0. Find corrections to the energy and the

eigenfunctions to order V0: I have positioned the well between �a=2 and a=2

to exploit the symmetry of the problem. The unperturbed eigenfunctions and

eigenenergies are

E.0/n D
„2n2�2
2ma2

I (14.27a)

 .0/
n .x/ D

r
2

a

�
cos

�
n�x

a

�
n odd

sin
�

n�x
a

�
n even

: (14.27b)

Therefore,

En � E.0/n C E.1/n

D „
2n2�2

2ma2
C 2V0

a

Z b=2

�b=2

dx

�
cos2

�
n�x

a

�
n odd

sin2
�

n�x
a

�
n even

D „
2n2�2

2ma2
C V0

a

"
b˙

a sin
�

bn�
a

�

n�

#
; (14.28)

where Eqs. (14.11) and (14.20) were used, and the plus (minus) sign is for n odd

(even). The energy of each state is raised by the potential, as is expected from

the positive energy bump, but odd n (even parity) states are raised more since

the wave function squared is a maximum at the center of the perturbation. The

new eigenfunctions are

 n.x/ �  .0/
n .x/C .1/

n .x/

D  .0/
n .x/C

X

q¤n

H0
qn

E
.0/
n � E

.0/
q

 .0/
q .x/

D  .0/
n .x/C

X

q¤n

V0
R b=2

�b=2
dx .0/

q .x/ 
.0/
n .x/

„2�2
2ma2

.n2 � q2/
 .0/

q .x/: (14.29)
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For n odd, I find

 n.x/ �
r
2

a
cos

�n�x

a

�
� 4ma2V0

„2�3

�
X

q¤nI q odd

2
4
.qC n/ sin

�
b�.q�n/

2a

�
C .q � n/ sin

�
b�.qCn/

2a

�

.n2 � q2/
2

3
5

�
r
2

a
cos

�q�x

a

�
(14.30)

and, for n even,

 n.x/ �
r
2

a
sin
�n�x

a

�
� 4ma2V0

„2�3

�
X

q¤nI q even

2
4
.qC n/ sin

�
b�.q�n/

2a

�
� .q � n/ sin

�
b�.qCn/

2a

�

.n2 � q2/
2

3
5

�
r
2

a
sin
�q�x

a

�
: (14.31)

The lowest energy eigenfunctions are pushed away from the origin by the

potential, but less so for the even n (odd parity) eigenfunctions, since the

odd-parity eigenfunctions vanished at the origin (where the perturbation is a

maximum). The series converges rapidly for q� n.

(3) Consider a 1-D harmonic oscillator in dimensionless units having

OH0 D a�aC 1=2; (14.32)

subjected to a perturbation

OH0 D � O�4 D �
�
aC a�

�4

4
; (14.33)

where � is a positive constant having magnitude much less than unity. Find the

corrections to the energy to order �:

The first order correction to the energy is

E.1/n D H0
nn D

�

4
hnj
�
aC a�

�4 jni : (14.34)

When you expand
�
aC a�

�4
the only nonvanishing diagonal matrix elements

result from terms having equal powers of a and a� (why?). That is,
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E.1/n D H0
nn D

�

4
hnj
�
aC a�

�4 jni

D �

4
hnj a2a�2 C a�2a2 C aa�2aC a�a2a� C a�aa�aC aa�aa� jni

D �

4

h
.nC 1/ .nC 2/C n .n � 1/C 2n .nC 1/C n2 C .nC 1/2

i

D �

4

�
6n2 C 6nC 3

�
: (14.35)

For sufficiently large n, perturbation theory breaks down since E
.0/
n varies

linearly with n and E
.1/
n varies quadratically with n.

(4) van der Waals interaction: Finally consider two hydrogen atoms in their ground

states separated by a distance R > a0, where a0 is the Bohr radius. Imagine

they both lie on the z axis. The electrostatic interaction energy in lowest non-

vanishing order is the dipole–dipole interaction for which

OH0 D �3 . Ope1 � uz/ . Ope2 � uz/ � Ope1 � Ope2

4��0R3

D �e2
2Oz1Oz2 � Ox1 Ox2 � Oy1 Oy2

4��0R3
; (14.36)

where Opej D �eOrj (j D 1; 2) is the dipole moment operator of atom j. I want to

calculate the change in the ground state energy

�Eg D Eg � E.0/g

resulting from the electrostatic interaction, an energy associated with the

van der Waals interaction. The unperturbed Hamiltonian is the sum of the

Coulomb potential Hamiltonians for each atom, implying that the unperturbed

eigenkets are

jn1`1m1I n2`2m2i D jn1`1m1i jn2`2m2i (14.37)

and the unperturbed eigenenergies are

E.0/n1;n2
D � e2

8��0a0

�
1

n21
C 1

n22

�
; (14.38)

where a0 is the Bohr radius. I denote the ground state eigenket of the

noninteracting two-atom system by

jgi D j100I 100i : (14.39)
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It is easy to prove that the first order energy change is zero. To second order,
with carets on the operators suppressed,

�Eg D Eg � E
.0/
1;1 D E

.2/
g D

X0

n1;`1;m1
n2;`2;m2

n1;n2¤1;1

ˇ̌
hgjH0 jn1`1m1I n2`2m2i

ˇ̌2

E
.0/
1;1 � E

.0/
n1;n2

D
X0

n1;`1;m1
n2;`2;m2

n1;n2¤1;1

hgjH0 jn1`1m1I n2`2m2i hn1`1m1I n2`2m2jH0 jgi
E
.0/
1;1 � E

.0/
n1;n2

: (14.40)

The prime on the summation symbol in Eq. (14.40) is a shorthand notation for

a sum over bound states and an integral over continuum states of the hydrogen

atoms. Since all intermediate states are included in the sum in Eq. (14.21a), the

continuum states have to be included as well. The sum (and integral) can be

evaluated using hydrogenic wave functions, but I can get a rough estimate of

the sum by evaluating the denominator in Eq. (14.40) at specific values of n1
and n2. In Chap. 15, I will get a lower bound on �Eg by using only the n1 D 2,

n2 D 2 intermediate state, but here I evaluate the denominator at the ionization

energy n1 D1, n2 D1
h
E
.0/
n1;n2 D 0

i
, for which

�Eg �
1

E
.0/
1;1

X0

n1;`1;m1
n2;`2;m2

n1;n2¤1;1

hgjH0 jn1`1m1I n2`2m2i

� hn1`1m1I n2`2m2jH0 jgi

D
X0

n1;`1;m1
n2;`2;m2

hgjH0 jn1`1m1I n2`2m2i hn1`1m1I n2`2m2jH0 jgi
E
.0/
1;1

� 1

E
.0/
1;1

ˇ̌
hgjH0 jgi

ˇ̌2 D 1

E
.0/
1;1

hgjH02 jgi ; (14.41)

where the completeness relation was used, as well as the fact that

hgjH0 jgi D 0: (14.42)

Evaluating the denominator at the ionization energy is not such a bad idea since

it is at the border between the discrete and continuum states, that is, somewhere

in the “middle” of the summation.

In evaluating the matrix elements needed in Eq. (14.41), the only non-

vanishing terms are

�Eg �
e4

.4��0/
2

R6E
.0/
1;1

hgj 4z21z
2
2 C x21x

2
2 C y21y

2
2 jgi

D e4

.4��0/
2

R6E
.0/
1;1
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� hgj r21r22

0
@

4 cos2 �1 cos2 �2
C sin2 �1 sin2 �2 cos2 �1 cos2 �2
C sin2 �1 sin2 �2 sin2 �1 sin2 �2

1
A jgi

D e4

.4��0/
2

R6E
.0/
1;1

ˇ̌
ˇ̌
Z 1

0

r4 jR10.r/j2 dr

ˇ̌
ˇ̌
2 �
4
1

3

1

3
C 1

3

1

3
C 1

3

1

3

�

D 6e4

9 .4��0/
2

R6E
.0/
1;1

ˇ̌
ˇ̌
Z 1

0

r4 jR10.r/j2 dr

ˇ̌
ˇ̌
2

D 6e4�

9 .4��0/
2

R6E
.0/
1;1

ˇ̌
ˇ̌
Z 1

0

4

a30
r4e�2r=a0dr

ˇ̌
ˇ̌
2

D 6a40e
4

.4��0/
2

R6E
.0/
1;1

D 6a40e
4

.4��0/
2

R6 .�2e2=8��0a0/
D � 6a50e

2

4��0R6
: (14.43)

Since a0 is proportional to „2; the van der Waals interaction is of quantum-

mechanical origin, although the quantum-mechanical dependence is linked

to the quantum states of the individual atoms through a0, rather than the

quantum nature of the interaction between the atoms. The value from an

accurate variational calculation1 (see Chap. 15 for a discussion of variational

calculations) is

�Eg � �
6:50a50e

2

4��0R6
; (14.44)

so I didn’t do too bad.

In the intermediate steps used to arrive at Eqs. (14.43), I needed to use the

ground state wave function

 g.r/ D  100.r/ D R10.r/Y
0
0 .�; �/ D

2

.a0/
3=2

e�r=a0

r
1

4�
; (14.45)

the integral identities

1

4�

Z 2�

0

d�

Z �

0

cos2 � sin �d� D 1

3
; (14.46a)

1

4�

Z �

0

sin2 �d�

Z 2�

0

sin2 �d�

D 1

4�

Z �

0

sin2 �d�

Z 2�

0

cos2 �d� D 1

3
; (14.46b)

and the value of E
.0/
1;1 given by Eq. (14.38).

1Linus Pauling and J. Y. Beach, The van der Waals Interaction of Hydrogen Atoms, Physical

Review 47, 686–692 (1935).
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14.2 Degenerate Perturbation Theory

Clearly nondegenerate perturbation theory breaks down whenever there is energy

degeneracy, if the degenerate levels are coupled by the perturbation. As an example,

consider the 2 � 2 matrix

H
¯
D
�

a �

� a

�
; (14.47)

with � � a and both a and � positive. The eigenvalues are

E1 D a � �; E2 D aC �; (14.48)

and the eigenkets are

jE1i �
1p
2

�
1

�1

�
; jE2i �

1p
2

�
1

1

�
: (14.49)

In other words, although the eigenenergies are changed only slightly if � � a, the

eigenkets are changed to zeroth order in �. Sometimes it is possible to guess the

correct eigenkets by building in some physics and using “good” quantum numbers.

I will look at this more carefully after I have reviewed angular momentum and spin.

However without some physics to fall back on, you must diagonalize any degenerate

submatrix exactly and then proceed using normal degenerate perturbation theory.

Even then, there can be some traps.

Before giving some examples, let me put the problem in some perspective.

Consider the energy levels in hydrogen, neglecting spin. Each state characterized

by the quantum number n is n2 fold degenerate. If a perturbation couples states

within a given manifold designated by n, then nondegenerate perturbation theory

fails. In essence, each submatrix corresponding to the degenerate manifold must

be diagonalized exactly. Then, using the new eigenkets, you can carry out non-

degenerate perturbation theory between different n manifolds. Often, the small

additional corrections produced by such coupling are of little interest. In that case,

degenerate perturbation theory consists simply of diagonalizing each degenerate

manifold of levels. The examples should make this clear.

Example 1 Approximate matrix diagonalization.

Suppose that a Hamiltonian has the form

H
¯
D

0
@
1 0:1 0:2

0:1 1 �0:1
0:2 �0:1 4

1
A (14.50)
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in the jE1i.0/, jE2i.0/, jE3i.0/ basis. The basis kets,

jE1i.0/ D

0
@
1

0

0

1
A ; jE2i.0/ D

0
@
0

1

0

1
A ; jE3i.0/ D

0
@
0

0

1

1
A (14.51)

are eigenkets of

H
¯
0 D

0
@
1 0 0

0 1 0

0 0 4

1
A : (14.52)

I want to find the approximate eigenenergies and eigenkets of H
¯

. Since there is

energy degeneracy and coupling between the degenerate levels, I must diagonalize

the degenerate subblock. To this end, I define

eH
¯
0 D

0
@
1 0:1 0

0:1 1 0

0 0 4

1
A I (14.53a)

H
¯

0 D

0
@
0 0 0:2

0 0 �0:1
0:2 �0:1 0

1
A : (14.53b)

I first diagonalize eH
¯
0 and find the eigenvalues and eigenkets,

E1 D 0:9; ejE1i D
1p
2

0
@
1

�1
0

1
A I (14.54a)

E2 D 1:1; ejE2i D
1p
2

0
@
1

1

0

1
A I (14.54b)

E3 D 4; ejE3i D jE3i D

0
@
0

0

1

1
A : (14.54c)

As expected, the eigenkets are changed to zeroth order. The energy of the symmetric

ket is increased and that of the antisymmetric ket is decreased (if the coupling

were negative, as in an attractive interaction, the symmetric state would be lowered

in energy).

The procedure for diagonalizing a matrix is reviewed in Sect. 11.3. I form the

matrix
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S
¯

� D

0
B@

1p
2

1p
2
0

� 1p
2

1p
2
0

0 0 1

1
CA ; (14.55)

with the eigenvectors put in as columns. In other words,

ejEni D
X

m

S�mn jEmi D
X

m

S�
nm jEmi ; (14.56)

S�mn D hEm
ejEni; (14.57)

[note the order of the indices in Eq. (14.56)] such that

S
¯
eH
¯
0S

¯

� D

0
@
0:9 0 0

0 1:1 0

0 0 4

1
A : (14.58)

In terms of the new eigenkets

eH
¯
D S

¯
eH
¯
0S

¯

� C S
¯
H
¯

0S
¯

� (14.59a)

D

0
@
0:9 0 0

0 1:1 0

0 0 4

1
AC 1p

2

0
@
0 0 0:3

0 0 0:1

0:3 0:1 0

1
A (14.59b)

D eH
¯
0 CeH

¯

0, (14.59c)

where I have redefined the eigenkets of eH
¯
0 as having a 1 in one row and zeroes

everywhere else, that is

ejE1i.0/ D

0
@
1

0

0

1
A ; ejE2i.0/ D

0
@
0

1

0

1
A I ejE3i.0/ D

0
@
0

0

1

1
A : (14.60)

Now I can use nondegenerate perturbation theory to find

E1 � 0:9C 0:32=2

0:9 � 4 D 0:8855; E1(exact) D 0:88544I (14.61a)

E2 � 1:1C 0:12=2

1:1 � 4 D 1:0983; E2(exact) D 1:0984I (14.61b)

E3 � 4C 0:32=2

4 � 0:9 C
0:12=2

4 � 1:1 D 4:01624; E3(exact) D 4:01616: (14.61c)
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The eigenkets are

jE1i �

0
@
1

0

0

1
AC

0
B@

0

0
0:3=

p
2

0:9�4

1
CA D

0
@

1

0

�0:0684

1
A ; (14.62a)

jE2i �

0
@
0

1

0

1
AC

0
B@

0

0
0:1=

p
2

1:1�4

1
CA D

0
@

1

0

�0:0244

1
A ; (14.62b)

jE3i �

0
@
0

0

1

1
AC

0
B@
0:3=

p
2

4�0:9
0:1=

p
2

4�1:1
0

1
CA D

0
@
0:0684

0:0244

1

1
A . (14.62c)

To get the eigenkets in terms of the original basis, I use Eq. (14.54) and find

jE1i � ejE1i.0/ � 0:0711ejE3i.0/

D 1p
2

�
jE1i.0/ � jE2i.0/

�
� 0:0684 jE3i.0/

D

0
@
0:707

�0:707
�0:0684

1
A ; jE1i (exact) D

0
@
0:721

�0:689
�0:0684

1
A ; (14.63a)

jE2i � ejE2i.0/ � 0:0244ejE3i.0/

D 1p
2

�
jE1i.0/ C jE2i.0/

�
� 0:0244 jE3i.0/

D

0
@
0:707

0:707

�0:0244

1
A ; jE2i (exact) D

0
@
0:690

0:724

�0:0226

1
A ; (14.63b)

jE3i � 0:0684ejE1i.0/ C 0:0244ejE2i.0/ CejE3i.0/

D 0:0684p
2

�
jE1i.0/ � jE2i.0/

�

C
0:0244

�
jE1i.0/ C jE2i.0/

�

p
2

C jE3i.0/

D

0
@
0:0656

�0:0311
1

1
A ; jE3i (exact) D

0
@
0:0651

�0:0309
0:997

1
A : (14.63c)
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The eigenenergies are good approximations to the exact eigenenergies as is

eigenket jE3i, but eigenkets jE1i and jE2i are not as good as expected. Where did

I go wrong? It turns out that if you calculate second order corrections to the wave

function, corrections to jE1i and jE2i are of order of the coupling matrix elements

(of order 0.1) divided by QE.0/2 � QE
.0/
1 D 0:2; multiplied by first order corrections to

jE3i. That is, you can show that the second order corrections to the eigenket jEni are

given by

jEni.2/ D �
X

m¤n

eH0
mn
eH0

nn
ejEmi.0/h

QE.0/n � QE.0/m

i2 C
X

k;m¤n

eH0
km
eH0

mn
ejEki.0/h

QE.0/n � QE.0/m

i h
QE.0/n � QE.0/k

i : (14.64)

A glance at Eq. (14.59b) will reveal that the first term does not contribute since
eH0

nn D 0. However, if I evaluate jE1i.2/, the second term yields [recall that eH0
12 D 0]

jE1i.2/ D
eH0
23
eH0
31
ejE2i.0/h

QE.0/1 � QE
.0/
3

i h
QE.0/1 � QE

.0/
2

i D 1

2

0:1 � 0:3
.�3:1/ � .�0:2/

ejE2i.0/

D 0:024ejE2i.0/; (14.65)

whereas

jE3i.1/ D 0:0684ejE1i.0/ C 0:0244ejE2i.0/: (14.66)

Thus the second order correction to jE1i is of the same order as the first order

corrections of jE3i. Thus, if you want eigenkets jE1i and jE2i correct to order 0:001

you must diagonalize the entire matrix.

To be a bit more specific, if the matrix elements that couple the degenerate

states in a given manifold of levels is large compared to those that couple these

levels to levels outside the degenerate subblock, then the procedure of diagonalizing

the degenerate subblock and then applying degenerate perturbation theory is valid.

However when these couplings are comparable, the method fails to give the new

eigenkets of the degenerate states to first order in the coupling, it gives it only to

zeroth order in the coupling. It does give the correct energies. Usually in degenerate

perturbation theory we are content to have the degenerate eigenkets correct to zeroth

order in the perturbation. In other words, in degenerate perturbation theory, the states

outside the degenerate subspace are often not considered at all, since they produce

small modifications to the eigenkets, provided the coupling strength is much less

than the energy spacing between nondegenerate energy manifolds.

Example 2 Linear Stark shift in hydrogen for n D 2:
A classic example of degenerate perturbation theory is the linear Stark effect in

hydrogen. In the n D 2 state of hydrogen, neglecting spin and the Lamb shift [the

modifications of the energy levels resulting from spin and the Lamb shift (produced
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by fluctuations of the vacuum field) are discussed in Chap. 21], there are four

degenerate levels corresponding to n D 2; ` D 0 and n D 2; ` D 1;m` D 0;˙1. In

the presence of a static electric field, E D Euz directed along the z axis,

OH0 D �Ope � E D eE 1r cos �; (14.67)

where Ope D �eOr is the electric dipole moment operator, e the magnitude of the

charge of the electron, and z the coordinate of the electron relative to the proton.

This interaction couples only states having different parity. It couples only the n D
2; ` D 0 and ` D 1 states. Moreover, the matrix element of Oz is nonvanishing only

between the n D 2; ` D 0 and n D 2; ` D 1;m` D 0 states. The matrix element

that is needed, h210j eE 1r cos � j200i, can be calculated using the hydrogenic wave

functions and one finds

h210j eE 1r cos � j200i D �3eEa0; (14.68)

where a0 is the Bohr radius. Thus the symmetric state,

 s D
1p
2
. 200 C  210/ ; (14.69)

is lowered in energy by 3eEa0 and the antisymmetric state,

 a D
1p
2
. 200 �  210/ ; (14.70)

is raised by this amount. There are higher order corrections to the energy and wave

functions of the n D 2 state that arise from couplings to states outside the n D 2

manifold. These can be calculated using nondegenerate perturbation theory with the

eigenfunctions  s and  a.

The mixing of different parity states of hydrogen produced by an external electric

field is important in problems involving spontaneous emission. The  200 state is

metastable, living for about 1/7 of a second, since it cannot decay to the ground

state via a dipole transition. However, if an electric field mixes in some of the  210

state, the transition becomes electric-dipole allowed and the atom decays rapidly, on

the order on nanoseconds. For atoms other than hydrogen, there is no “accidental”

degeneracy of states having different parity and there is no linear Stark shift, only a

quadratic Stark shift that can be calculated using second order perturbation theory.

14.3 Summary

We have seen that it is possible to develop a systematic approach for approxi-

mating the eigenenergies and eigenfunctions of a quantum system for which the

Hamiltonian can be written as the sum of an exactly solvable part and a “small”
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perturbation. Different techniques are required when there is degeneracy in the

unperturbed energy levels; effectively, part of the Hamiltonian corresponding to

coupled degenerate states must be diagonalized exactly. The perturbation theory

outlined in this chapter can be applied to a wide range of problems in quantum

mechanics. However there are other classes of problems where approximate solu-

tions can still be obtained even though the Hamiltonian cannot be written as the sum

of an exactly solvable part and a “small” perturbation. It is to such cases that I now

turn my attention.

14.4 Problems

1–2. To see the effect of the normalization term ˛n D.0/ hEn jEni.1/ on the expec-

tation value of operators, suppose there is a two-state quantum system whose eigen-

kets in the absence of any perturbations are j1i.0/ and j2i.0/. Moreover, assume that

there is a perturbation having matrix elements H0
21 D H0

12 such that, to first order in

H0
21,

j1i � .1C ˛1/ j1i.0/ � ˇ j2i.0/ I
j2i � .1C ˛2/ j2i.0/ C ˇ j1i.0/ ;

where ˇ D H0
12=

�
E
.0/
2 � E

.0/
1

�
. To simplify matters, neglect all terms of order ˇ2 in

this problem (first order perturbation theory) and take ˛1, ˛2, as real (ˇ is assumed

real since H0
21 D H0

12 and OH0 is Hermitian). Take the state vector for the quantum

system as j i D j1i.0/ and assume that there is a Hermitian operator OA associated

with this system having matrix elements in the unperturbed basis given by Aij (i D
1; 2; j D 1; 2): Clearly the expectation value of OA in the state j i is equal to A11.

(a) Expand the state vector j i as

j i D b1 j1i C b2 j2i

and evaluate b1 and b2 in terms of ˛1, ˛2, and ˇ to first order in ˇ. This shows

you that the new state vectors depend on the choice of ˛1 and ˛2.

(b) Evaluate h1 j1i and h2 j2i in terms of ˛1, ˛2, and ˇ to first order in ˇ.

(c) Finally calculate

h j OA j i D
P

i;jD1;2 bib
�
j hjj OA jiiP

iD1;2 jbij2 hi jii

and show that it is equal to A11. In other words, the expectation values of

operators in a given quantum state cannot depend on the choice of ˛1 and ˛2.
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3. Show that in second order perturbation theory, the value of E
.2/
n is independent

of ˛n D.0/ hEn jEni.1/.
4–5. Use perturbation theory to find the approximate eigenvalues (correct to order

0.01) and eigenvectors (correct to order 0.1) for the Hamiltonian

H
¯
D

0
BBBB@

2:1 0:1 �0:3 0:2

0:1 5 0:15 �0:1
�0:3 0:15 9 0

0:2 �0:1 0 11:9

1
CCCCA
:

Compare your answer with the exact results obtained from a computer solution. For

example, you can use the Eigenvalues and Eigenvectors operations in Mathematica.

Mathematica also has an operation Orthogonalize that will orthogonalize the vectors

for you [e.g., Orthogonalize[Eigenvectors[{{2.1,0.1,�0.3,0.2},{0.1,5,0.15,�0.1},

{�0.3,0.15,9,0},{0.2,�0.1,0,11.9}}]]—putting the decimal point in will give you

numerical values].

6–7. Consider a particle having mass m moving in a one-dimensional infinite

potential well located between �a=2 and a=2, subject to the perturbation

H0.x/ D
�

V0 � b=2 � x � b=2

0 otherwise
;

given in Eq. (14.26). Under what conditions are the perturbation solutions given in

Eqs. (14.28), (14.30), and (14.31) valid? Take V0=E
.0/
1 D 0:1 and b=a D 0:8 and

plot the change in the (dimensionless) eigenfunctions defined by

p
a=2ı n.x/ D

p
a=2

�
 n.x/� .0/

n .x/
�
;

for n D 1; 2 as a function of x=a; where  n.x/ is given by Eqs. (14.30), and (14.31).

Show that both states are pushed away from the origin, but the symmetric state more

than the antisymmetric one. Why is this so?

Now obtain exact equations from which the eigenenergy of the ground state can

be calculated. Graphically, find the change in k1a,

ı .k1a/ D k1.exact/a � �;

for V0=E
.0/
1 D 0:1 and b=a D 0:8. Compare your result with the perturbative

solution that can be obtained from Eq. (14.28). [Hint: Use the fact that the ground

state has even parity and choose a wave function that builds in the boundary

condition at x D a.]

8–9. Consider a one-dimensional harmonic oscillator having OH0 D O�2
2
C O�2

2
in

dimensionless variables subjected to a perturbation OH0 D bO� with b� 1. The total
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Hamiltonian is OH D O�2
2
C O�2

2
C bO� . To what simple physical system does this

system correspond? Classically what is the motion of a particle governed by this

Hamiltonian?

Using perturbation theory, calculate the new eigenenergies to second order in

b and the new wave functions to first order in b. Now solve the problem exactly

and compare the results with perturbation theory (you may have to use some of the

recursion relations given in Chap. 7). Do you think higher order perturbation theory

will converge to the exact values?

Using the fact that the exact solution for
D
O�
E

as a function of time is the same as

that of classical mechanics, obtain an expression for
D
O�
E

as a function of time, given

that
D
O�
E
D hO�i D 0 at t D 0 and show that the solution depends linearly on b. What

does this imply about all higher contributions to
D
O�
E

using perturbation theory?

10–11. A one-dimensional harmonic oscillator having OH0 D O�2
2
C O�2

2
in dimen-

sionless variables is subjected to a perturbation OH0 D bO�2
2

with b � 1. Using

perturbation theory, calculate the new eigenenergies to second order in b and the

new wave functions to first order in b. Now solve the problem exactly and compare

the results with perturbation theory. Do you think higher order perturbation theory

will converge to the exact values?

12–13. Given the matrix

0
BBBB@

2 0:1 �0:3 0:2

0:1 2 0:15 �0:1
�0:3 0:15 6 0

0:2 �0:1 0 10

1
CCCCA
:

Use degenerate perturbation theory to find the eigenvalues correct to order 0.01 and

the eigenvectors correct to order 0.1. Check your answer using a computer solution.

14. Consider the simple harmonic oscillator in two dimensions. The eigenfunctions

can be written as  nxny
.x; y/ D  nx

.x/ ny
.y/, where  nx

.x/ and  ny
.y/ are eigen-

functions for the one-dimensional simple harmonic oscillator. The corresponding

eigenenergies are Enxny
D „!.nx C ny C 1/. The ground state is nondegenerate, but

the first excited state is two-fold degenerate. Suppose the oscillator is subject to a

perturbation OH0 D gOxOy, where g is a constant. Find corrections to the energies of the

first excited states using degenerate perturbation theory and find the wave functions

for the first excited states correct to zero order in g. Even though you diagonalized

the matrix exactly for the first excited states, why is your result for the energies not

exact? Without doing any detailed calculations, estimate the error in the energies.
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15. Prove that

h210j 1r cos � j200i D �3a0:

16. For the linear Stark effect in hydrogen, what external field strength is needed

to produce a frequency splitting of 1.0 GHz (equal to the Lamb shift) between the

2S and 2P levels (in this problem, neglect the Lamb shift and assume the levels are

degenerate in the absence of the field). Is this a large or small field compared with

the breakdown voltage of air (� 106 V/m/? Recall that the Stark coupling matrix

element is �3ea0E .

17–18. In a “real” hydrogen atom, the 2P level decays via spontaneous emission

at a rate � � 6 � 108 s�1 (corresponding to a lifetime of about 1.6 ns) while the

2S level is metastable and its decay can be neglected in this problem (the lifetime

of the 2S level is about 1=7 s). In some experiments, hydrogen atoms are prepared

in their 2S levels and a “quenching” Stark field is applied to measure the 2S level

population by observing the radiation emitted from the 2P levels back to the ground

state. Assume that a hydrogen atom is prepared in the 2S level and a Stark field

is applied along the z axis at t D 0 such that the Stark coupling matrix element,

�3ea0E , is equal to 10„� . Neglect spin and the Lamb shift (which modifies this

result). Decay adds a term � .�=2/ b2P to the equation for the time derivative Pb2P of

the 2P state amplitude. With this knowledge, proceed as you should in any quantum

problem. Use the approximate correct eigenkets for the n D 2 manifold,

ja; si D 1p
2
.j200i ˙ j210i/ ;

and obtain equations for Pba;s. Show that these equations are

Pbs.t/ D i�bs.t/ �
�

4
Œbs.t/ � ba.t/�

Pba.t/ D �i�ba.t/C
�

4
Œbs.t/ � ba.t/� ;

where � D 10� . In this problem the unperturbed energy of the n D 2 manifold has

been set arbitrarily to zero since it does not enter into the solution.

Given the initial condition, solve these equations (you can use a program such as

DSolve in Mathematica or solve them on your own) and plot the total excited state

population, jbaj2 C jbsj2, as a function of �t to show that it exhibits oscillations.

These are not the quantum beats of quantum optics. In a standard quantum beat

experiment the total upper state population does not oscillate, whereas the total

radiated emission does exhibit such beats owing to interference in the radiation

emitted from each state. In this problem the oscillations are caused by the coupling

of the symmetric and antisymmetric states via spontaneous emission.
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Variational Approach

The variational approach is a powerful technique for obtaining ground state (and, to

a lesser extent, excited state) energies. The idea behind the method is simple—guess

a trial wave function. That is, choose a trial function

 t.r/ �  t.r; ˛1; ˛2; : : : ˛N/; (15.1)

with as many free parameters .˛1; ˛2; : : : ˛N/ as you wish and use it to calculate

the ground state energy. The trial function should be consistent with the boundary

conditions of the problem. In that case,  t.r/ can be expanded in terms of the exact

eigenfunctions of a Hamiltonian OH as

 t.r/ D
X

n

cn n.r/: (15.2)

Now form

E D
R
 �

t .r/
OH t.r/drR

 �
t .r/ t.r/dr

D
P

n;n0

R
 �

n0.r/ OH n.r/c
�
n0cndr

P
n;n0

R
 �

n0.r/ n.r/c
�
n0 cndr

D
P

n En jcnj2P
n jcnj2

� E0; (15.3)

where E0 is the ground state energy [i.e., the sum starts from n D 0)]. The

denominator can be set equal to unity if the trial wave function is normalized.

By varying the parameters ˛1; ˛2; : : : ˛N such that E is a minimum, you can get

an upper bound on the ground state energy of the system since E0 � E: If you

know something about the wave functions and can choose a wave function that is
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orthogonal to the ground state wave function, then you can also use this method

to estimate the energy of the first excited state. For example, if the ground state is

an ` D 0 state, you can choose a trial wave function for the first excited state that

corresponds to a ` D 1 state, implying that c0 D 0. Most of the time the variational

method is used to obtain ground state energies.

The advantage of the variational approach over perturbation theory is that the

exact Hamiltonian is used. That is, sometimes the Hamiltonian cannot be written

as OH D OH0 C OH0 in any obvious fashion. The disadvantage of the method is that it

depends on how good your guess is. There is no simple way to estimate its accuracy.

Generally speaking you keep adding parameters to your trial wave function and see

if the energy converges.

Another advantage of the variational approach is that if you are a fairly good

guesser, you are rewarded with an excellent approximation to the energy. Imagine

you guess

 t.r/ D  n.r/C ı n.r/; (15.4)

where  n.r/ is the exact wave function. Then

E D
R
 �

t .r/
OH t.r/drR

 �
t .r/ t.r/dr

D
R
Œ n.r/C ı n.r/�

� OH Œ n.r/C ı n.r/� drR
Œ n.r/C ı .r/�� Œ n.r/C ı n.r/� dr

D
En C En

R ˚
 �

n .r/ı n.r/C Œı n.r/�
�  n.r/


dr

1C
R ˚
 �

n .r/ı n.r/C Œı n.r/�
�  n.r/


dr

C O
�
Œı n.r/�

2
�

D En C O
�
Œı n.r/�

2
�
I (15.5)

that is, the error is of order Œı n.r/�
2.

Of course there may be no way you can guess the wave function. However, if the

Hamiltonian can be written as

OH D OH0 C OH0; (15.6)

where OH0 is a small perturbation to OH0, you can use the wave function obtained

from perturbation theory that is correct to second order in OH0 as a trial function to

calculate the energy correct to order OH04:
I will give two examples of calculations using the variational approach. First,

suppose that

OH D „!
2

�
� d2

d�2
C �2

�
; (15.7)
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where

� D
r

m!

„ x (15.8)

is a dimensionless variable. I guess

 t D e�˛�2 (15.9)

since I know the ground state must have even parity. Then I can use

R1
�1 e�˛�2�2e�˛�2d�
R1

�1 e�2˛�2d�
D 1

4˛
(15.10)

and calculate

E D
R1

�1  �
t .x/
OH t.x/dxR1

�1  �
t .x/ t.x/dx

D
„!
2

R1
�1 e�˛�2

�
� d2

d�2
C �2

�
e�˛�2d�

R1
�1 e�2˛�2d�

D
„!
2

R1
�1 e�˛�2

�
2˛ � 4˛2�2 C �2

�
e�˛�2d�

R1
�1 e�2˛�2d�

D „!
�
˛

2
C 1

8˛

�
� E0: (15.11)

I minimize this expression with respect to ˛,

dE

d˛
D „!

�
1

2
� 1

8˛2

�
D 0I (15.12a)

˛ D 1=2: (15.12b)

For this value of ˛,

 t D e��2=2 (15.13a)

E D „!=2 � E0: (15.13b)

I ended up with the exact wave function and the exact ground state energy since

I made a perfect guess! On the other hand, the results associated with some other

guesses are
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 t D e�ˇ�4 I ˇ D 1=6I E D 0:585„!I (15.14a)

 t D sech .ˇ�/ I ˇ D
r
�

2
D 1:2533I E D 0:524„!I (15.14b)

 t D
1

ˇ2 C �2
I ˇ D 1

21=4
D 0:841I E D 0:707„!; (15.14c)

where the value of ˇ in each case is chosen to minimize the energy. Thus, how well

I do depends on my guess. There is no easy way to estimate the error.

As a second example, I consider

OH D � „
2

2m

d2

dx2
C mg jxj (15.15)

and use a trial wave function

 t D
�
2˛

�

�1=4
e�˛x2 ; (15.16)

which is normalized. Then

E D
Z 1

�1
 �

t .x/
OH t.x/dx

D
�
2˛

�

�1=2 Z 1

�1
e�˛x2

�
� „

2

2m

d2

dx2
C mg jxj

�
e�˛x2dx

D „
2˛

2m
C mgp

2�˛
� E0: (15.17)

Setting

dE

d˛
D
� „2
2m
� mg

2˛
p
2�˛

�
D 0I (15.18a)

˛ D
�

m2gp
2�„2

�2=3
; (15.18b)

which leads to

E D 3

2 .2�/1=3

�
mg2„2

�1=3 D 0:813
�
mg2„2

�1=3 � E0; (15.19)

whereas the exact eigenvalue (obtained from solving the Schrödinger equation in

terms of Airy functions) is E0 D 0:809
�
mg2„2

�1=3
: The calculated upper bound for

the ground state energy is almost equal to the exact eigenenergy, since the Gaussian

trial function is a good approximation to the exact ground state wave function.
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15.1 Combining Perturbation Theory and the Variational

Approach

The variational approach gives an upper bound for the ground state energy of a

quantum system. It is sometimes possible to use conventional perturbation theory to

get a lower bound for the ground state energy. In this way you can get both upper

and lower bounds for the energy. Suppose you have a quantum system for which the

Hamiltonian is

OH D OH0 C OH0: (15.20)

It is assumed that you know the eigenenergies and eigenfunctions of OH0 and that
OH0 can be considered as a perturbation. I denote the ground state energy by E

.0/
g

and the change in the ground state energy resulting from the perturbation by �Eg.

Moreover I assume that the first order correction resulting from the perturbation

vanishes, H0
gg D 0. Then the change in the ground state energy, calculated using

perturbation theory, is given approximately by

�Eg D
X0

n¤g

ˇ̌
H0

gn

ˇ̌2

E
.0/
g � E

.0/
n

� 1

E
.0/
g � E

.0/
1

X0
n¤g

ˇ̌
H0

gn

ˇ̌2

D 1

E
.0/
g � E

.0/
1

��
OH0
�2�

gg

: (15.21)

where E
.0/
1 is the energy of the lowest energy state for which H0

g1 ¤ 0 (this choice

leads to the most restrictive lower bound). The completeness relation,
P

n

ˇ̌
H0

gn

ˇ̌2 D
1, along with the fact that H0

gg D 0, was used in the last step of the derivation.

Recall that the prime on the summation symbol is a shorthand notation for a sum

over bound states and an integral over continuum states. To illustrate the technique,

I calculate both upper and lower bounds for the van der Waals interaction energy

between two ground state hydrogen atoms.

The Hamiltonian in this case is given by Eq. (15.20) with

OH0 D �
„2r21
2me

� e2

4��0r1
� „

2r22
2me

� e2

4��0r2
(15.22)

and

H0 D �e2
2z1z2 � x1x2 � y1y2

4��0R3
(15.23)

(even though H0 is an operator, I leave the “hat” off of it since all calculations are

carried out in the coordinate representation where the operators in OH0 are replaced

by their functional values). The ground state has n1 D n2 D 1 and the lowest energy

state for which H0
gn ¤ 0 has n1 D n2 D 2.
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The perturbation theory calculation is virtually identical to that in Chap. 14 with

E.0/g D E
.0/
1;1 D �

e2

4��0a0
(15.24a)

E
.0/
1 D E

.0/
2;2 D �

e2

4��0a0

1

4
; (15.24b)

where E
.0/
n1;n2 is the unperturbed energy for one atom having quantum number n1

and the other n2. The only difference from Chap. 14 is that I need to replace

1=
�

E
.0/
1;1

�
appearing in Eq. (14.41) by 1=

�
E
.0/
1;1 � E

.0/
2;2

�
; which multiplies the final

result, Eq. (14.44), by a factor 4/3, namely

�Eg D �E
.2/
1;1 � �

8a50e
2

4��0R6
: (15.25)

Using a variational approach, I assume an (unnormalized) wave function of the

form

 t.r1; r2/ D  g.r1/ g.r2/
�
1C ˇH0� (15.26)

where  g.r/ D  100.r/ is the ground state wave function of an isolated hydrogen

atom and H0 is the perturbation energy, which is a function of r1 and r2. From the

variational principle I know that

Eg C�Eg �

R
 �

t .r1; r2/
�
OH0 C H0

�
 t.r1; r2/dr1dr2

R
 �

t .r1; r2/ t.r1; r2/dr1dr2
: (15.27)

I substitute Eqs. (15.22) and (15.23) into Eq. (15.27) and use the fact that

Z ˇ̌
 g.r1/ g.r2/

ˇ̌2
H0dr1dr2 D 0 (15.28)

and that the unperturbed ground state wave functions are real to obtain

Eg D E
.0/
g C�Eg

�

R �
1C ˇH0� g.r1/ g.r2/

�
OH0 C H0

�
 g.r1/ g.r2/

�
1C ˇH0� dr1dr2

R ˇ̌
 g.r1/ g.r2/

ˇ̌2
.1C ˇH0/2 dr1dr2

D
E
.0/
g C

R
 g.r1/ g.r2/

h
2ˇH02 C ˇ2H0 OH0H0

i
 g.r1/ g.r2/dr1dr2

R ˇ̌
 g.r1/ g.r2/

ˇ̌2 �
1C ˇ2H02

�
dr1dr2

: (15.29)
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keeping terms up to order H02 only. The contributions to

Z
 g.r1/ g.r2/

h
ˇ2H0 OH0H

0
i
 g.r1/ g.r2/dr1dr2; (15.30)

from all the cross terms in the integrand (that is, terms varying as z1z2x1x2, z1z2y1y2,

x1x2y1y2) vanish. Thus, Eq. (15.30) consists of a sum of three terms and each term

contains a factor of the form

Z
 g.r/r˛

 
�„

2r2
2me

� e2

4��0r

!
�
r˛ g.r/

�
dr; (15.31)

where r˛ D x, y, or z. It is possible to show that all such integrals vanish as well.

For example,

Z
 g.r/z

 
�„

2r2
2me

� e2

4��0r

!
�
z g.r/

�
dr

D 1

�a30

Z
r cos �e�r=a0

 
�„

2r2
2me

� e2

4��0r

!
�
r cos �e�r=a0

�
dr

D 2

a30

Z 1

0

r2dr

Z �

0

sin �d�e�r=a0r cos �

�
�
�„

2 cos �

2me

�
r � 4a0

a20

�
e�r=a0 � e2 cos �

4��0
e�r=a0

�

D
� „2
2me

� e2a0

8��0

�
D 0: (15.32)

As a consequence, Eq. (15.29) reduces to

E.0/g C�Eg �
E
.0/
g C 2ˇ

R
 g.r1/ g.r2/H

02 g.r1/ g.r2/dr1dr2

1C ˇ2
R ˇ̌
 g.r1/ g.r2/

ˇ̌2
H02dr1dr2

� E.0/g .1 � ˇ2K/C 2ˇK; (15.33)

where

K D
Z
 g.r1/ g.r2/H

02 g.r1/ g.r2/dr1dr2 D
6a60

�
E
.0/
g

�2

R6
: (15.34)
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Minimizing with respect to ˇ, I find

ˇ D 1=E.0/g ; (15.35)

such that

�Eg � K=E.0/g D
6a60E

.0/
g

R6
D � 6e2a50

4��0R6
: (15.36)

The perturbation and variational results can be combined to provide both upper

and lower limits for the shift,

� 8e2a50

4��0R6
� �Eg � �

6e2a50

4��0R6
: (15.37)

The result from a multi-parameter variational approach is �E � � 6:50e2a50
4��0R6

.1

15.2 Helium Atom

The Hamiltonian for the helium atom is

OH D Op21
2me

C Op22
2me

� e2

4��0

�
2

r1
C 2

r2
� 1

jr2 � r1j

�
(15.38)

where the two electrons are denoted by 1 and 2. Although the last term, which

represents the electron–electron interaction is not much smaller than the attractive

terms, I can still try to treat it by perturbation theory setting

OH0 D
Op21
2me

C Op22
2me

� Ze2

4��0

�
1

r1
C 1

r2

�
I (15.39a)

H0 D e2

4��0 jr2 � r1j
; (15.39b)

where Z D 2 is the nuclear charge. The Hamiltonian OH0 is the sum of two

Hamiltonians, one for each particle. Each of these Hamiltonians is identical to that

of hydrogen if the replacement e2 ! Ze2 D 2e2 is made. This implies that the Bohr

radius a0 (which varies as 1=e2) must be replaced by

a D a0=2 (15.40)

1Linus Pauling and J. Y. Beach, The van der Waals Interaction of Hydrogen Atoms, Physical

Review 47, 686–692 (1935).
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in the hydrogenic wave functions. As a consequence, the unperturbed ground state

wave function is

 .0/ .r1; r2/ D  g .r1/  g .r2/ D
1

�a3
e�.r1Cr2/=a (15.41)

and the unperturbed ground state energy is

E.0/g D 2
� �Ze2

8��0a

�
D 2

� �Ze2

4��0a0

�
D �108:8 eV D 8E0; (15.42)

where E0 is the ground state energy of hydrogen. The ground state energy of helium,

calculated using perturbation theory, is

Eg � 8E0 C
e2

4��0

Z
dr1

Z
dr2

1

�2a6
e�2.r1Cr2/=a 1

jr2 � r1j
: (15.43)

The integral in Eq. (15.43) can be evaluated by expanding 1
jr2�r1j in terms of

spherical harmonics as2

1

jr2 � r1j
D 4�

1X

`D0

X̀

mD�`

1

2`C 1
r`<

r`C1>

�
Ym
` .�1; �1/

��
Ym
` .�2; �2/ ; (15.44)

where r< is the lesser of r1 and r2 while r> is the greater of r1 and r2: With this

expansion, only the ` D 0 term in the sum in Eq. (15.44) contributes to the integrals

in Eq. (15.43) owing to the fact that

Z
d�Ym

` .�; �/ D
p
4�ı`;0ım;0: (15.45)

As a consequence, using Eqs. (15.43), (15.44), and (15.40), I find

Eg � 8E0 C
16e2

4��0a6

Z 1

0

r21dr1

Z 1

0

r22dr2
e�2.r1Cr2/=a

r>

D 8E0 C
16e2

4��0a6

Z 1

0

r21dr1

Z r1

0

r22dr2
e�2.r1Cr2/=a

r1

C 16e2

4��0a6

Z 1

0

r21dr1

Z 1

r1

r22dr2
e�2.r1Cr2/=a

r2

D 8E0 C
16e2

4�a�0

�
5

256
C 5

256

�
D E.0/g C

5

8

e2

4�a�0

D 8E0 � 2:5E0 D �74:8 eV. (15.46)

2See, for example, John David Jackson, Classical Electrodynamics, Third Edition (John Wiley and

Sons, Inc., New York, 1999) Sect. 3.6.
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The experimental result is �78:9 eV so I have done better than might be expected.

I can use the variational method to get an even better estimate. Since each

electron is partially shielded from the nucleus by the other electron, I try a

(normalized) trial wave function of the form

 t .r1; r2/ D
1

�a3
e�.r1Cr2/=a (15.47)

where

a D a0=Zeff (15.48)

and Zeff is the parameter to be varied. I expect to find 1 < Zeff < 2, since Zeff is

the shielded nuclear charge seen by each electron. The Hamiltonian (15.38) can be

written as OH D OH1 C OH2, with

OH1 D
Op21
2me

C Op22
2me

� e2

4��0

�
Zeff

r1
C Zeff

r2

�
I (15.49a)

H2 D
e2

4��0 jr2 � r1j
� e2

4��0

�
2 � Zeff

r1
C 2 � Zeff

r2

�
; (15.49b)

In this form, the the trial wave function is the ground state eigenfunction of the

Hamiltonian OH1, while H2 can be considered as a small perturbation. Since OH1

corresponds to a Hamiltonian in which each electron moves independently in the

field of a nucleus having change Zeff, it follows immediately that

“
d3r1d

3r2 
�
t .r1; r2/

OH1 t .r1; r2/ D �
2Zeffe

2

8��0a
D � 2Z2effe

2

8��0a0
: (15.50)

Moreover, I have already shown in Eq. (15.46) that

“
d3r1d

3r2 
�
t .r1; r2/

e2

4��0 jr2 � r1j
 t .r1; r2/ D

5

8

e2

4�a�0
D 5

8

Zeffe
2

4��0a0
:

(15.51)

Thus I need only calculate

� e2

4��0

“
d3r1d

3r2 
�
t .r1; r2/

�
2 � Zeff

r1
C 2 � Zeff

r2

�
 t .r1; r2/

D �2e2 .2 � Zeff/

4��0a
D �e2Zeff .2 � Zeff/

2��0a0
: (15.52)
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Combining Eqs. (15.50)–(15.52), I find

E D
“

d3r1d
3r2 

�
t .r1; r2/

OH t .r1; r2/

D e2

8�a0�0

�
�2Z2eff C

5

4
Zeff � 4Zeff .2 � Zeff/

�

D jE0j
�
2Z2eff �

27

4
Zeff

�
: (15.53)

Minimizing this expression with respect to Zeff, I find Zeff D 27=16 and

Eg � 5:695E0 D �77:46 eV, (15.54)

which is about 2% from the experimental value of �78:9 eV. By writing the

Hamiltonian as the sum of the two terms given in Eqs. (15.49), I was able to obtain

a good guess for the ground state wave function.

15.3 Summary

The variational method is an extremely powerful method for obtaining the ground

state energy of quantum systems. It is the preferred method for approximating the

ground state energy of atoms such as helium. In certain cases, the variational method

can be combined with perturbation theory to obtain both lower and upper bounds

for the ground state energy.

15.4 Problems

1. Use the variational method to estimate the ground state energy E0 of the potential

V D mgz, z > 0; V D1, z < 0: Use the (normalized) trial wave function

 t D
�
128˛3

�

�1=4
ze�˛z2 ;

which satisfies the boundary condition at z D 0. Compare your answer with

the value, E0 D 2:3381.„2mg2=2/1=3; obtained from an exact solution of the

Schrödinger equation.

2–3. Use the variational method to estimate an upper bound E0� to the ground state

energy of a particle having mass m moving in a potential V.x/ D V0 jx=aj�, using

a Gaussian trial wave function,  t D e�x2=b2 . You can assume that �, V0, and a are

greater than zero and use the fact that



372 15 Variational Approach

Z 1

0

z�e�z2dz D �
�
1C �
2

�
;

where � is the gamma function. Show that your result yields E0� D „!0=2 when

� D 2 and V0 D m!20=2. Why does the upper bound give the exact result in this

case? Plot Eu=V0 as a function of � for ˇ2 D 2mV0a
2=„2 D 1 and 0 � � � 5.

As � ! 1, show that the potential approaches that of an infinite square well

having width 2a, but that the variational upper bound for the energy diverges.

This shows that the choice of a Gaussian trial function for large values of � is

not a good choice. Why not? [Note: The exact ground state energies are given by

.Eexact=V0/ ˇ
�=.�C2/ D 1:0188; 1; 1:02295; 1:06036; 1:1023 for � D 1; 2; 3; 4; 5.]

4. Repeat the previous calculation to estimate an upper bound E1� to the first

excited state energy of a particle having mass m moving in the potential V.x/ D
V0 jx=aj�, where � is a positive integer. Now you must take a trial wave function

that is consistent with the parity of the first excited state.

5. The Hamiltonian of a quantum system is given by OH D OH0C OH0, where OH0 can be

considered as a perturbation. If the first order perturbation theory contribution to the

ground state energy E
.1/
0 vanishes, prove that the second order correction satisfies

E
.2/
0 �

1

E
.0/
0 � E

.0/
1

h0j OH02 j0i :

where E
.0/
1 is the first excited state energy. Use this result to get a lower bound for

the Stark shift of the ground state of hydrogen when the atom is put into an external,

constant electric field E along the z axis for which OH0 D eE Oz. It turns out that the

second order correction can be evaluated exactly and is given by

�E D �9
4
.4��0/ E

2a30:

How does your bound compare?

6–7. Now do a variational calculation to get an upper bound for the ground state

energy of hydrogen in a static electric field. Since the field couples states with

opposite parity, you can try a trial wave function of the form

 t D
e�r=a0

p
�a

3=2
0

.1C ˇH0/;

with H0 D eEz, and vary ˇ to get the upper bound. Combine this result with that of

Problem 15.5 and show that the exact solution fits between your two bounds.
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[Hint: Follow the same procedure used in the text for the variational calculation

of the van der Waals energy. You can use the fact that

Z
 �

t H0 OH0

�
H0 t

�
dr D 0

(you can try to prove this if you wish, but it is not required)].

8. Starting with a (normalized) trial wave function t D
�
˛
�

�1=4
e�˛x2=2 with ˛ > 0,

use the variational method to prove that, for a one-dimensional potential that is

attractive in the sense that

Z 1

�1
dxV.x/ < 0

and for which V.x/ ! 0 as jxj ! 1, there is always a bound state (that is,

an eigenstate with E < 0/: [Hint: Consider the limit that ˛ � 0 for the energy

associated with the trial wave function.]

9–10. Obtain an upper bound for the ground state energy of a particle having

mass m confined to a square well potential having depth V0 located between �a=2

and a=2. Use normalized trial wave functions

 
.1/
t D

�˛
�

�1=4
e�˛x2=2I

 
.2/
t D

�˛
2

�1=2
sech .˛x/ ;

with ˛ > 0. In the limit that ˇ2 D 2mV0a
2=„2 � 1, show that the upper bound to

the energy is always greater than that given in Eq. (6.96). Why does the second trial

function provide a better limit for the exact energy?



Chapter 16

WKB Approximation

16.1 WKB Wave Functions

The WKB (Wentzel, Kramers, Brillouin) approximation is covered in most standard

quantum mechanics texts. Basically, the WKB approximation is a type of eikonal

approximation in which it is assumed the potential varies very slowly compared

with the average de Broglie wavelength of a particle. In some sense, the quantum

particle is acting somewhat like a classical particle. This is not quite the case, since

the particle is still described by a wave function. It is like trying to have the best

of both the classical and quantum worlds. Generally it is valid for high energies

such that the de Broglie wavelength is large compared with distances over which

the potential varies significantly.

Since this is a type of semi-classical approximation, it makes sense to look for

a solution of Schrödinger’s equation as a power series in „. Terms to zeroth order

in „ correspond to a classical limit and the higher order terms provide quantum

corrections. The WKB method generally works only in 1-D problems, but can be

used in problems in 3-D with spherical symmetry, since the radial equation is an

equation in one variable. I consider only one-dimensional motion in the x direction

in this chapter, but return to the radial equation in discussing scattering theory.

The time independent Schrödinger equation is

 00 C k2.x/ D 0 (16.1)

where

k.x/ D
r
2m

„2 ŒE � V.x/� D p.x/=„ (16.2)

and primes indicate derivatives with respect to x: For the moment I assume that

E > V.x/ so that k.x/ is real and positive. If k were a constant, then the solution of

Eq. (16.1) would be  .x/ D e˙ikx: This suggests that I try a solution of the form
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 .x/ D eiS.x/=„ (16.3)

and obtain equations for S .x/ that can be solved to give S.x/ as a power series in „.
If I do so, I need retain only those terms varying as „0 or „, since higher order terms

do not contribute to Eq. (16.3) in the limit that „ ! 0.

To obtain such a series solution for S.x/, I first calculate the derivatives of  .x/,

 0 D
�
iS0 .x/ =„

�
eiS.x/=„I (16.4a)

 00 D �
�
S0 .x/ =„

�2
eiS.x/=„ C

�
iS00 .x/ =„

�
eiS.x/=„; (16.4b)

and substitute the expression for  00 into Eq. (16.1) to arrive at

�
S0 .x/

�2 D „2k2.x/C i„S00 .x/ : (16.5)

Note that

p2.x/ D „2k2.x/ (16.6)

is independent of „:
It looks like I haven’t accomplished much since I started from a linear differential

equation for  .x/ and ended up with a highly nonlinear differential equation

for S .x/. The idea is to solve Eq. (16.5) iteratively, assuming that S .x/ is slowly

varying so that the second derivative term in Eq. (16.5) can be treated as a small

correction. This is equivalent to solving for S .x/ as a power series in „. To lowest

order

S0 .x/ D ˙„k.x/ D ˙p.x/: (16.7)

I use this to approximate

S00 .x/ D ˙p0.x/; (16.8)

and substitute this result back into Eq. (16.5) to obtain

�
S0 .x/

�2 D p2.x/˙ i„p0.x/I

S0 .x/ D ˙p.x/
p
1˙ i„p0.x/=p2.x/

� ˙p.x/C i„ p0.x/

2p.x/

D ˙„k.x/C i„ k0.x/

2k.x/
; (16.9)
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having used the fact that the sign of the i„p0.x/ term is correlated with the sign of

the˙p.x/ factor.

The solution of this equation, neglecting integration constants, is

S.x/ D ˙„
Z

k.x/dxC i„
Z

k0.x/

2k.x/
dx

D ˙„
Z

k.x/dxC i„
2

Z
d

dx
ln Œk.x/� dx

D ˙„
Z

k.x/dxC i„
2

ln Œk.x/� ; (16.10)

leading to

 WKB.x/ D eiS.x/=„ D exp

�
˙i

Z
k.x/dx � 1

2
ln Œk.x/�

�

D Cp
k.x/

exp

�
˙i

Z
k.x/dx

�
; (16.11)

where the integration constants have been absorbed into the normalization con-

stant C.

If the energy is less than V.x/; this equation is replaced by

 WKB.x/ D
Cp
�.x/

exp

�
˙
Z
�.x/dx

�
; (16.12)

where

�.x/ D
r
2m

„2 ŒV.x/ � E� > 0: (16.13)

It is not too difficult to estimate the validity conditions for the WKB approxima-

tion. From Eq. (16.10) a necessary condition for the validity of the approach requires

the second term be smaller than the first, or

ˇ̌
ˇ̌ k0.x/

2k2.x/

ˇ̌
ˇ̌� 1I (16.14a)

„
ˇ̌
ˇ̌ p0.x/

2p2.x/

ˇ̌
ˇ̌� 1: (16.14b)

Since

p0.x/ D �
p
2m

2

dV=dxp
E � V

; (16.15)
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the validity condition can be written as

„
p
2m

4

ˇ̌
ˇ̌ dV=dxp

E � V

ˇ̌
ˇ̌�

ˇ̌
p2.x/

ˇ̌
D h2

�2dB.x/
I

�dB.x/

ˇ̌
ˇ̌dV

dx

ˇ̌
ˇ̌�

r
jE � Vj
2m

8�h

�dB.x/
D 8�

ˇ̌
p2.x/

ˇ̌

2m
; (16.16)

where �dB.x/ D h= jp.x/j. The potential must change slowly compared to the kinetic

energy over distances of order of a wavelength for the WKB approximation to be

valid.

Equation (16.16) is a necessary condition for the validity of the WKB approxi-

mation, but it is not sufficient. If higher order terms in the expansion used to solve

Eq. (16.5) are included, they lead to additional phases in the exponent appearing in

Eq. (16.3). As I have stressed, when terms appear in an exponent, they must have an

absolute value much less than unity for them to be neglected. If you carry out the

expansion to next order, you will see that the condition

Œ�dB.x/�
2

ˇ̌
ˇ̌d
2V

dx2

ˇ̌
ˇ̌�

ˇ̌
p2.x/

ˇ̌

2m
(16.17)

must also be satisfied.

16.2 Connection Formulas

As long as conditions (16.16) and (16.17) are satisfied, the WKB method can be

used to approximate the eigenfunctions for a particle moving in a potential V.x/.

Let’s check to see when we can expect this to be the case for the potentials shown

in Fig. 16.1. (a) Assuming that conditions (16.16) and (16.17) hold, then the WKB

approximation is valid for all x, and the WKB eigenfunctions for a given energy

correspond to particles moving to the right or left. If you construct a wave packet

having average energy E greater than the barrier height incident from the left, you

will find that there is no reflected wave, the wave packet and simply moves to the

right, adjusting its kinetic energy to changes in the barrier height. (b) In this case,

the WKB approximation necessarily breaks down at the point discontinuities in the

potential since dV=dx D 1 at these points. In the exact quantum problem, there

is always a reflected wave. We have seen already that the reflection coefficient is

independent of „ for step potentials in the high energy limit. In Fig. 16.1c–f, the

WKB approximation necessarily fails at the classical turning points a and b since

the momentum p.x/ D 0 at such points.

Even when there are classical turning points for a given energy, it is still

possible to use the WKB approximation. One proceeds by calculating the WKB

wave functions in the regions away from the turning points and piecing together

the solutions using the exact solutions in the vicinity of the turning points. At each
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Fig. 16.1 The WKB approximation fails at point discontinuities in the potential and at the classical

turning points. The classical turning point a has the classical region to the left and the classical

turning point b has the classical region to the right. (a) smooth barrier (b) square barrier (c) classical

region to left of turning point (d) classical region to right of turning point (e) bound states (f) barrier

with tunneling

classical turning point, the spatially dependent de Broglie wavelength �dB.x/ D
h=p.x/ D 2�=k.x/ is infinite. It is generally assumed that the potential varies

linearly with x in the region of a turning point and that the slope is sufficiently

small to insure that the exact solution for a linear potential (which are so-called Airy

functions) extends into the region where the WKB wave functions are valid. In this

manner, one arrives at a number of connection formulas which tell you how to piece

together the solutions. I give a derivation of one of the connection formulas in the

Appendix; derivations can also be found in most textbooks on quantum mechanics.

The connection formulas must be written for the two possible cases of a turning

point with the classically allowed region to the right or to the left of the turning

point:
Turning point at x D b (classically allowed region to the right):

Ap
�.x/

exp

(
�
Z b

x

�.x0/dx0
)
C Bp

�.x/
exp

( Z b

x

�.x0/dx0
)

$ 2Ap
k.x/

cos

�Z x

b

k.x0/dx0 � �
4

�
� Bp

k.x/
sin

�Z x

b

k.x0/dx0 � �
4

�
: (16.18)



380 16 WKB Approximation

Turning point at x D a (classically allowed region to the left):

2Ap
k.x/

cos

�Z a

x

k.x0/dx0 � �
4

�
� Bp

k.x/
sin

�Z a

x

k.x0/dx0 � �
4

�

$ Ap
�.x/

exp

�
�
Z x

a

�.x0/dx0
�
C Bp

�.x/
exp

�Z x

a

�.x0/dx0
�
: (16.19)

16.2.1 Bound State Problems

If you look at Fig. 16.1e, you can deduce that there is a discrete infinity of bound

states for this potential. You can estimate the bound state energies using the WKB

approximation. The answer should be good for the high energy states. To do so,

begin on the left (x < b) with an exponentially decreasing function and use

1p
�.x/

exp

�
�
Z b

x

�.x/dx

�
! 2p

k.x/
cos

�Z x

b

k.x/dx � �
4

�
(16.20)

to connect the solution to the region b < x < a. To connect the wave function in

the region b < x < a to one in the region x > a, I rewrite the right-hand side of

Eq. (16.20) as

2p
k.x/

cos

�Z x

b

k.x/dx � �
4

�

D 2p
k.x/

cos

�
�
Z a

x

k.x/dxC
Z a

b

k.x/dx � �
4

�

D 2p
k.x/

cos

�Z a

x

k.x/dx �
Z a

b

k.x/dx � �
4
C �

2

�

D 2p
k.x/

cos

�Z a

x

k.x/dx � �
4

�
cos

�Z a

b

k.x/dx � �
2

�

C 2p
k.x/

sin

�Z a

x

k.x/dx � �
4

�
sin

�Z a

b

k.x/dx � �
2

�
: (16.21)

I can now use the connection formula (16.19) to extend the solution to the x > a

region; however, in doing so, the sin term leads to an exponentially increasing wave

function, which is not physical. The only way to avoid this is to have

sin

�Z a

b

k.x/dx � �
2

�
D 0; (16.22)
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which implies that

Z a

b

k.x/dx D
�

nC 1

2

�
� (16.23)

(n is a positive integer or zero) or

Z a

b

p.x/dx D
�

nC 1

2

�
�„; n D 0; 1; 2 : : : : (16.24)

This is the semiclassical quantization condition. Note that the WKB approximation

breaks down near the turning points, which is the reason that it may not be possible

to normalize the entire wave function.

If the potential is infinite for x < 0, then you start from the right of the turning

point at x D a and work backwards towards the turning point at x D b D 0 to obtain

2p
k.x/

cos

�Z a

x

k.x/dx � �
4

�
 1p

�.x/
exp

�
�
Z x

a

�.x/dx

�
: (16.25)

Since the wave function must vanish at x D 0; you are led to the requirement that

Z a

0

k.x/dx � �
4
D
�

nC 1

2

�
� (16.26)

or

Z a

0

k.x/dx D
�

nC 3

4

�
� ; n D 0; 1; 2 : : : : (16.27)

If the potential is infinite at both x D a and x D b, this equation is replaced by

Z a

b

k.x/dx D .nC 1/ � ; n D 0; 1; 2 : : : . (16.28)

16.3 Examples

Equation (16.24) may not give the correct energies, but it always gives a good idea

of how the energy levels scale with n at high energy: For example, consider the

potential

V.x/ D V0 jx=x0jq D ˛ jxjq ; (16.29)
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with q > 0, V0 > 0, x0 > 0; and

˛ D V0=x
q

0: (16.30)

The classical energy for a particle having mass m moving in this potential is

E D p2

2m
C ˛ jxjq (16.31)

and the classical turning points [p.x/ D 0] occur at

a D �b D .E=˛/1=q; (16.32)

leading to the quantization condition

Z .E=˛/1=q

�.E=˛/1=q

p
2m .E � ˛ jxjq/dx

D 2
Z .E=˛/1=q

0

p
2m .E � ˛ jxjq/dx D

�
nC 1

2

�
�„: (16.33)

The integral is tabulated and one finds

p
2m�

E

�
1
q

C 1
2

�

˛1=q

�.1C 1=q/

�.3=2C 1=q/
D
�

nC 1

2

�
�„; (16.34)

where � is the gamma function. Solving for the energy, I find

Eq;n

V0
D Cq;n

�
1

ˇ2

� q

qC2

; (16.35)

where

Cq;n D
�
�.3=2C 1=q/

p
�

�.1C 1=q/

�
nC 1

2

��2q=.qC2/
(16.36a)

and

ˇ2 D 2mV0x
2
0

„2 : (16.36b)

For the harmonic oscillator potential with q D 2 and ˛ D m!2=2, it follows that

V0 D m!2x20=2;
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ˇ2 D 4V2
0

„2!2 ; (16.37)

C2;n D
�.2/
p
�

�.3=2/

�
nC 1

2

�
D 2

�
nC 1

2

�
; (16.38)

and

E2;n D
�

nC 1

2

�
„!: (16.39)

The fact that I got the exact answer is an “accident.” In the classically allowed

region, the WKB wave function looks nothing like the true wave function for the

n D 0 state. With increasing n, by choosing the WKB wave functions to agree with

the exact wave functions at the origin (with this choice the WKB wave functions are

not normalized), you will find that the WKB and exact wave functions are in good

agreement as long as you stay away from the turning points.

For arbitrary q, the energies vary as

Eq;n � .nC 1=2/2q=.qC2/: (16.40)

For q D 4, C4;n D 2:185 .nC 1=2/4=3 D 0:867, 3:75, 7:41, 11:6 for n D 0, 1, 2,

3, while the numerical solution of the Schrödinger equation1 yields C4;n D 1:06,

3:80, 7:46, 11:6. Not so great for n D 0; but not too bad for n � 1. As q ! 1,

the potential approximates an infinite square well potential having width 2x0 and

the WKB energies vary as .nC 1=2/2. The WKB energies given by Eq. (16.35) of

the high-lying n states nearly coincide with the exact results, but the n D 0 state

energy is off by a factor of 4, since a better quantization condition to use is the

one given in Eq. (16.28), rather than that given in Eq. (16.23), because the potential

walls approximate those of an infinite potential well. In certain cases, the WKB

approximation may provide a lower bound for the ground state energy.2

The condition given in Eq. (16.16) for the WKB approximation to be valid

reduces to

q

4ˇ

ˇ̌
ˇ̌ x

x0

ˇ̌
ˇ̌
q�1

ˇ̌
ˇ̌
ˇCq;n

�
1

ˇ2

� q

qC2

�
ˇ̌
ˇ̌ x

x0

ˇ̌
ˇ̌
q
ˇ̌
ˇ̌
ˇ

�3=2

� 1: (16.41)

1I took these values from the lecture notes of Professor Klaus Schulten on the web site http://www.

ks.uiuc.edu/Services/Class/PHYS480/.
2L.F. Barrágan-Gil and A. Camacho, Modern Physics Letters 22, 2675–2687 (2007) prove that a

lower bound to the ground state energy can be obtained using WKB considerations for potentials

that vary as xq for x > 0 and are infinite for x < 0, provided 1 < q < 5=2. However the lower bound

they obtain is lower than that which would be calculated using the WKB quantization condition.

http://www.ks.uiuc.edu/Services/Class/PHYS480/
http://www.ks.uiuc.edu/Services/Class/PHYS480/
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It turns out that inequality (16.41) holds over a large range of parameter space. It

is violated near x=x0 D 0 if q � 1 (the derivative of the potential diverges at the

origin if q < 1) and near the turning points. The worst violations (that is, over the

largest range of x=x0) occur for n D 0 and for q of order unity. It is not readily

apparent to me how the validity condition for the WKB wave function given in

Eq. (16.41) translates into one for the accuracy of the energy levels calculated using

the WKB approximation. That is, although the violation of inequality (16.41) for

n D 0 decreases with increasing q for fixed ˇ, the relative error in the n D 0

energy calculated in the WKB approximation increases with increasing q. As was

mentioned previously, this can be associated with using the wrong quantization

condition as the potential begins to approximate the infinite square well potential.3

For fixed q and ˇ, the WKB approximation becomes better with increasing n.

The connection formulas can also be used to calculate the reflection and

transmission coefficients for the barrier shown in Fig. 16.1f. You start with the WKB

wave function for x > b in the form

2Fp
k.x/

cos

�Z x

b

k.x/dx � �
4

�
� Gp

k.x/
sin

�Z x

b

k.x/dx � �
4

�
(16.42)

and choose G such that this is in the form of a wave moving to the right only, that

is, something varying as T exp
˚
i
�R x

b
k.x/dx � �

4

�
. You then propagate this solution

all the way back to x < a using the connection formulas and write the wave function

for x < a in the form of a wave moving to the right plus one moving to the left as

A exp

�
i

�Z a

x

k.x/dx � �
4

��
C R exp

�
�i

�Z a

x

k.x/dx � �
4

��
: (16.43)

The (intensity) transmission coefficient is then jT=Aj2 and the reflection coefficient

is jR=Aj2. The result for the transmission coefficient is the same as that given by

Eq. (6.120) for a square barrier, if the quantity �d is replaced by
R b

a
�.x/dx, where d

is the width for the square barrier and a and b are the classical turning points. You

are asked to prove this in the problems.

16.4 Summary

The WKB approximation is generally referred to as a semi-classical approximation

since it is valid in the limit of large energies, where the de Broglie wave length

is large over distances in which the potential varies significantly. It always fails at

classical turning points, but connection formulas can be used to connect the WKB

3See H. Friedtich and J. Trost, Nonintegral Maslov indices, Physical Review A 54, 1136–1145

(1996). I thank R. Shakeshaft for pointing out this reference to me.
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wave functions in regions on both sides of the turning point. The WKB method

provides a relatively simple way for estimating the energies of all but the lowest

energy bound states in one-dimensional problems. The equation that allows you to

do this, Eq. (16.24), is essentially the Bohr quantization condition.

16.5 Appendix: Connection Formulas

To illustrate how the connection formulas can be derived, I consider the case where

the turning point is at x D a such that the classical region is to the left of the turning

point. The basic idea is to expand the potential in the region of the turning point and

keep only the term that is linear in x� a. That is, in the region of the turning point I

approximate

V.x/ � V.a/C dV

dx

ˇ̌
ˇ̌
xDa

.x � a/; (16.44)

such that

E � V.x/ � � dV

dx

ˇ̌
ˇ̌
xDa

.x � a/; (16.45)

since E D V.a/: From Fig. 16.1 you can see that the slope is positive at the turning

point at x D a: The next step is to obtain an exact solution of Schrödinger’s equation

for this potential and hope that the solution remains valid at distances sufficiently

far from x D a to join with the WKB solutions. This will normally be the case if

the general validity conditions for the WKB approximation given in Eqs. (16.16)

and (16.17) are satisfied, provided the first derivative of the potential at the turning

point does not vanish.

In the region of the turning point, Schrödinger’s equation is

d2 

dx2
� K2.x/ D 0; (16.46)

where

K2.x/ D 2m

„2
dV

dx

ˇ̌
ˇ̌
xDa

.x � a/ D
�
�k2.x/ x < a

�2.x/ x > a
(16.47)

is positive for x > a and negative for x < a. In terms of a dimensionless variable z

defined by

z D
�
2m

„2
dV

dx

ˇ̌
ˇ̌
xDa

�1=3
.x � a/; (16.48)
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Eq. (16.46) is transformed into

d2 

dz2
� z D 0: (16.49)

This is a well-known (to those who know it well) differential equation of

mathematical physics known as Airy’s equation, having independent solutions

denoted by Ai.z/ and Bi.z/ (Mathematica symbols AiryAi[z] and AiryBi[z]). The

general solution of Eq. (16.49) is

 .z/ D C1Ai.z/C C2Bi.z/: (16.50)

The idea is to use the asymptotic forms of the Airy functions to join the solution

for  .z/ to the WKB solutions in the regions x < a and x > a: The WKB validity

condition given in Eq. (16.16) corresponds to the requirement that jzj � 1. To see

this, I use Eq. (16.45) and assume that dV=dx > 0 is constant in the region near the

turning point to write

dV

dx
D
ˇ̌
ˇ̌E � V.x/

jx � aj

ˇ̌
ˇ̌ D jp.x/j2

2m jx � aj : (16.51)

Condition (16.16) then reduces to

dV

dx
D jp.x/j2

2m jx � aj �
8� jp.x/j2

2m�dB.x/
(16.52)

or

jx � aj � „=4 jp.x/j , (16.53)

which corresponds to

jzj3 D 2m

„2
dV

dx
jx � aj3 D 2m

„2
jp.x/j2 jx � aj3

2m jx � aj D jp.x/j
2 jx � aj2

„2 � 1

16
:

(16.54)

I need the asymptotic forms of Ai.z/ and Bi.z/ for jzj � 1.

The needed asymptotic forms are

Ai.z/ � 1

2
p
�

z�1=4e�y z� 1I (16.55a)

Ai.z/ � 1p
�
.�z/�1=4 cos

�
y � �

4

�
z� �1I (16.55b)
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Bi.z/ � 1p
�

z�1=4ey z� 1I (16.55c)

Bi.z/ � � 1p
�
.�z/�1=4 sin

�
y � �

4

�
z� �1; (16.55d)

where

y D 2

3
jzj3=2 : (16.56)

I am now in a position to connect the WKB solution for x < a to that for x > a.

To simplify matters I write the WKB solution in the form

 WKB.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

A1p
k.x/

cos
�R a

x
k.x0/dx0 � �

4

�

C A2p
k.x/

sin
�R a

x
k.x0/dx0 � �

4

�
x < a

B1p
�.x/

e�
R x

a �.x
0/dx0 C B2p

�.x/
e
R x

a �.x
0/dx0

x > a

; (16.57)

while the exact asymptotic solution (for z � 1) near the turning point, obtained

using Eqs. (16.50) and (16.55), is

 Airy.z/ D

8
ˆ̂̂
<
ˆ̂̂
:

C1
1p
�
.�z/�1=4 cos

�
y � �

4

�

�C2
1p
�
.�z/�1=4 sin

�
y � �

4

�
x < a

C1
1

2
p
�

z�1=4e�y C C2
1p
�

z�1=4ey x > a

: (16.58)

In the range where the potential is linear, if x < a;

Z a

x

k.x0/dx0 D
r
2m

„2
dV

dx

Z a

x

p
a � x0dx0 D 2

3

r
2m

„2
dV

dx
.a � x/3=2 D y; (16.59)

and, if x > a;

Z x

a

�.x0/dx0 D
r
2m

„2
dV

dx

Z x

a

p
x0 � adx0 D 2

3

r
2m

„2
dV

dx
.x � a/3=2 D y: (16.60)

Comparing Eqs. (16.57) and (16.58), and using Eqs. (16.47) and (16.48) to show

that �z D c
p

k.x/ for x < a and z D c
p
�.x/ for x > a (c D constant); I find that

B1 D A1=2I B2 D �A2; (16.61)
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giving rise to the connection formula given in Eq. (16.19). The calculation proceeds

in the same manner for the turning point at x D b, but the slope of the potential is

negative at this turning point.

16.6 Problems

1. In the WKB approximation, what is the reflection coefficient when a wave packet

is sent into a one-dimensional barrier with the energy above the barrier height? How

and why does this differ from the problem of a rectangular barrier?

2. Use the WKB method to estimate the energy levels of a particle having mass m

in the potential

V.z/ D
�

mgz z > 0

1 z < 0
:

In this case, because of the infinite wall at the origin, the semi-classical quantization

condition is given by Eq. (16.27). Compare your answer with the solutions En D
2:338; 4:088; 5:521; 6:787 for n D 0; 1; 2; 3 obtained from an exact solution of the

Schrödinger equation, where En is expressed in units of .„2mg2=2/1=3. Show that

the exact solution for the ground state energy lies between the WKB value and the

variational upper bound of E0 D 2:34477 calculated in Problem 15.2–3

3. Evaluate Eq. (16.35) for the potential V.x/ D V0 jx=x0jq when n D 0 to get the

WKB approximation to the ground state energy. Compare your result with the exact

solutions .E=V0/ ˇ
q=.qC2/ D 1:0188, 1, 1:02295, 1:06036, 1:1023 for q D 1, 2, 3,

4, 5, with ˇ2 D 2mV0x
2
0=„2. Also compare your result with the variational solution

of Problem 15.2–3 by plotting the ratio of the variational to WKB solutions as a

function of q. Show that the WKB solution is greater than the variational solution

for q < 2 and less than the variational solution for q > 2. Also show that the WKB

solution deviates more and more from the variational result with increasing q when

q > 2. You may use the fact that the variational solution is

E=V0 D ˇ� q

qC2

2
4 1
�2
C 1

2
q
2

�
�
1Cq

2

�

p
�

�q

3
5

with

� D

2
42

q
2C1

q

p
�

�
�
1Cq

2

�

3
5

1
qC2

:
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4. Show that the WKB estimate of the energy levels of a particle having mass m in

the potential

V.x/ D
�

V0 jx=x0j� x > 0

1 x < 0

ˇ̌
ˇ̌

can be obtained from Eq. (16.36a) by replacing .nC 1=2/ with .2nC 3=2/ : With

this substitution, verify that the results are consistent with Problem 16.2 for n D
0; 1; 2; 3. For this potential, show that the variational approximation to the ground

state energy is identical to that of Problem 15.4 if you use the same trial function.

Plot the ratio of the variational to WKB solutions for the ground state energy as

a function of q and determine the range of q for which it is possible (but not

guaranteed) that the WKB ground state energy is a lower bound to the true energy.

5. For q ! 1, show that the potential V.x/ D V0 jx=x0jq approaches that of an

infinite square well. Show that, as q! 1, Eq. (16.35) gives the correct energy for

the infinite square well potential for n� 1 and 1/4 of the exact result for n D 0.

6. The Hamiltonian for the harmonic oscillator in dimensionless coordinates is

H0 D
�
�2 C �2

�
=2. The semiclassical quantization condition for the dimensionless

energy levels �n of this Hamiltonian is

Z p
2�

�
p
2�

vuut2

 
�n �

�2

2

!
d� D

�
nC 1

2

�
� ; n D 0; 1; : : : ;

where the dimensionless value of kn.x/ is Qk.�/ D 2�n � �2. Show that the WKB

quantization condition gives the exact energies, �n D nC 1=2. Plot the WKB wave

function

� Q n

�
WKB
D Cnq

Qkn.�/

cos

"Z p
2nC1

�

d� 0
r�

2nC 1 � � 02
�
� �
4

#

in the classically allowed regime and compare it with the exact wave function

Q n.�/ D
1p

2nnŠ
p
�

e��2=2Hn.�/

for n D 0 and n D 24. Choose the constant Cn of the WKB wave function so

it agrees with the exact wave function at � D 0 and plot the n D 0 case from

0 � � � 0:7 and the n D 24 case from 0 � � � 6:7 (that is to within about 0:3 from

the classical turning point). The WKB energies are exact, but are the WKB wave

functions also exact?
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7. Use the connection formulas to extend the WKB solution of the previous

problem to the region to the right of the classical turning point. Plot the approximate

wave function for n D 24 using the WKB solutions in the regions 0 � � � 6:4

and � > 7:6 and the Airy function solution given by Eq. (16.50) in the region

6:4 � � � 7:6; on the same graph, plot the exact eigenfunction of the oscillator.

[Hint: Show that the variable z defined by Eq. (16.48) is

z! zn D .2�/1=3
�
� �

p
.2nC 1/

�
;

express Qkn.�/ in terms of zn, and compare Eqs. (16.57) and (16.58) to obtain the

constants C1 and C2 appearing in Eq. (16.50).]

8–9. Use the WKB method to estimate the transmission coefficient for a smooth

potential barrier when the energy is less than the barrier height. Show that the result

is the same as that for a square barrier if the quantity e��d is replaced by e�
R b

a �.x/dx,

where d is the width for the square barrier and a and b are the classical turning

points for the smooth barrier.



Chapter 17

Scattering: 1-D

Most of what we know about the structure of matter comes from scattering

experiments. When I discuss scattering in 3-D, I will review classical scattering

theory, but for the time being, I want to discuss the scattering problem in one-

dimension. Scattering is simple in principle—send something in and see what

comes out. I will give a detailed analysis of scattering in one-dimension for the

step potential shown in Fig. 17.1 and then give a qualitative discussion for other

potentials. The step potential can be written as

V.x/ D V0‚.x/; (17.1)

where‚.x/ is the Heaviside step function which is zero for x < 0 and one for x � 0:
Classically, this is a simple problem. If the energy of a particle incident from the

left is less than V0, it is reflected at the potential step with a change in the sign of

its velocity; if the energy is greater than V0 there is no reflection and the particle

is transmitted with reduced energy. However, for a true step potential, the problem

is always quantum-mechanical in nature since the potential changes over a distance

that is small compared to a de Broglie wavelength of the particle. In that case, part

of the wave packet is always reflected if E > V0. Of course, a real potential can only

approximate a step function; quantum mechanics is needed if the potential changes

over a distance that is small compared to a de Broglie wavelength of the particle. As

you will see, there is an additional quantum effect when the energy is less than the

height of the step.

There are two basic approaches to solving a scattering problem. In the steady-

state approach, it is assumed that some type of steady-state has been reached in

which a continuous, mono-energetic beam of particles is incident on the scattering

region. You can then identify a current density for both the incident and scattered

particles. This is the easiest way to do scattering theory and corresponds to

the idealized situation in which there is a single energy in the problem, since

the incoming beam is mono-energetic. In effect we deal with a single energy
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Fig. 17.1 Step potential: (a) Energy less than the barrier height. (b) Energy greater than the barrier

height

eigenstate of the system. The second approach is more difficult mathematically,

but more interesting from a physical viewpoint. In this time-dependent approach,

one sends in a wave packet to the scattering region and looks at the emerging

wave packets. Both methods give identical results for the reflection and transmission

coefficients when the spatial width of the wave packet is taken to be arbitrarily large

(approaching a mono-energetic wave). Scattering is usually a uniquely well-defined

problem only in this limit.

Before we start, let me consider the classical scattering problem with one particle

a second having energy E > V0 moving towards the step potential from the left

with a velocity of one meter per second. The situation is depicted in Fig. 17.2 for

successive times differing by one second. As can be seen, the density per unit length

increases for particles once they are past the barrier, and the speed of each particle

decreases. However the current density J D Nv, where N is the density per unit

length, remains constant. The ratio of the transmitted to incident particle current

density is a measure of the transmission coefficient, which is unity in the classical

case.

Returning to the quantum problem, I proceed as in any problem in quantum

mechanics by finding the stationary state eigenfunctions. If Ek D „2k2=2m > V0
and m is the mass of the particle, independent (normalized) eigenfunctions for the

potential step may be taken as
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Fig. 17.2 Particles passing the barrier slow down, but their density increases in such a manner that

the particle current density remains constant

 C
k .x/ D

‚.k/p
2�

�
eikx C a.k/e�ikx x < 0

b.k/eik0x x � 0 I (17.2a)

 �
k .x/ D

‚.k � kb/p
2�

r
k

k0

�
e�ik0x C a�.k/eik0x x � 0
b�.k/e�ikx x < 0

; (17.2b)

where

a.k/ D k � k0

kC k0 I a�.k/ D �
k � k0

kC k0 ; (17.3)

b.k/ D 2k

kC k0 ; b�.k/ D
2k0

kC k0 ; (17.4)

k0 D
r
2m .Ek � V0/

„2 D
q

k2 � k2b; (17.5)

and

kb D
r
2mV0

„2 : (17.6)

There are two independent eigenfunctions for a given value of

k D
r
2mEk

„2 : (17.7)

The  C
k .x/ eigenfunction corresponds to a wave incident from the left and the

 �
k .x/ eigenfunction to one incident from the right.
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If Ek < V0, then the eigenfunctions are non-degenerate and given by

 C
k .x/ D

‚.k/p
2�

�
eikx C c.k/e�ikx x < 0

d.k/e��x x � 0 ; (17.8)

where

� D
q

k2b � k2 (17.9)

and

c.k/ D k � i�

kC i�
D e�2i˛.k/; ˛.k/ D tan�1 �

k
; (17.10)

d.k/ D 2k

kC i�
D 2kp

k2 C �2
e�i˛.k/: (17.11)

17.1 Steady-State Approach

I assume that there is a single energy eigenfunction, corresponding to a wave

incident from the left. The trick is to break up the probability current density

associated with  C
k .x/ into three parts, the eikx part for x < 0 corresponding to

the incident wave, the e�ikx part for x < 0 corresponding to the reflected wave, and

the eikx or e��x part for x > 0 corresponding to the transmitted wave. Thus, the

incident probability current density is calculated using  i.x/ D eikx=
p
2� as

Ji D
„
2mi

�
 �

i .x/
d i.x/

dx
�  i.x/

d �
i .x/

dx

�

� „
2mi

�
e�ikxikeikx � eikx

�
�ike�ikx

��
� D �vk; (17.12)

where � D 1= .2�/ is the probability density associated with the incident wave and

vk D
„k
m
: (17.13)

For E > V0, the reflected probability current density is calculated using  r.x/ D
a.k/e�ikx=

p
2� as

Jr D � ja.k/j2 �vk; (17.14)

and the transmitted probability current density is calculated using  t.x/ D
b.k/eik0x=

p
2� as

Jt D jb.k/j2 �v0
k; (17.15)
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where

v0
k D
„k0

m
D „

m

q
k2 � k2b: (17.16)

The reflection coefficient is

R D �Jr

Ji

D ja.k/j2 D
�

k � k0

kC k0

�2
(17.17)

and the transmission coefficient is

T D Jt

Ji

D v0
k

vk

jb.k/j2 D k0

k
jb.k/j2 D 4kk0

.kC k0/2
; (17.18)

with

RC T D 1: (17.19)

For Ek < V0, the reflected probability current density is calculated using r.x/ D
c.k/eikx=

p
2� as

Jr D � jc.k/j2 �vk D �vk: (17.20)

The reflection coefficient is

R D �Jr

Ji

D 1: (17.21)

The probability current density in the barrier vanishes since the wave function is

real for x > 0. All these results were derived previously in Chap. 6.

17.2 Time-Dependent Approach

In the time-dependent approach, the initial state wave function is expanded in terms

of the stationary state eigenfunctions  
C;�
k .x/ to obtain the expansion coefficients

ˆ.k/, which are then used to calculate  .x; t/ as

 .x; t/ D
Z 1

0

dk
�
ˆC.k/ 

C
k .x/Cˆ�.k/ 

�
k .x/

�
e�i„k2t=2m: (17.22)

The integral is restricted to positive values of k since the eigenfunctions  
C;�
k .x/

given in Eqs. (17.2) and (17.8) are so restricted. The key point in solving the

scattering problem in this fashion is to choose a wave packet incident from the left
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that is sufficiently broad to insure that it does not spread much on the time scale of

the scattering. Moreover, it should be much broader than the distance over which

the potential varies significantly (in this case the variation occurs as a step, so the

packet is always larger in extent than the interval over which the potential changes).

In other words, you want the central energy E0 associated with the incident wave

packet to be fairly well-defined. The same type of formalism can then be used for

both E0 > V0 and E0 < V0.

Since the incident wave packet is localized to the left of the step and moving to

the right, ˆ�.k/ � 0. Moreover, to calculate the expansion coefficients from the

initial wave packet, I can neglect any of the e�ikx components of the eigenfunctions

 C
k .x/ given in Eqs. (17.2a) and (17.8), respectively, since they correspond to a

wave packet moving to the left. To a good approximation, the initial wave function,

centered at x D �x0 < 0 at time t D 0 can be expanded as

 .x; 0/ �
Z 1

0

dkˆC.k/ 
C
k .x/ �

1p
2�

Z 1

�1
dkˆ.k/eikx; (17.23)

whereˆ.k/ is a real function, sharply peaked about k D k0, corresponding to energy

E0 D „2k20=2m; (17.24)

and the integral is extended to�1 based on the assumption thatˆ.k/ � 0 for k < 0.

In other words, the initial wave packet doesn’t yet know about the step potential it

is going to encounter, so it can be expanded in terms of free-particle plane wave

eigenfunctions. This is a key step in solving the problem.

After a time t� x0=v0, with v0 defined by

v0 D „k0=m; (17.25)

the scattering is finished. I now look at the wave function for times t� x0=v0.

There is one final point to note before starting the calculation. For a wave packet

moving to the right with a fairly well-defined energy, I can write Eq. (17.23) as

 .x; 0/ � 1p
2�

Z 1

�1
dkˆ.k/eikx D 1p

2�
eik0x

Z 1

�1
dkˆ.k/ei.k�k0/x: (17.26)

If ˆ.k/ is symmetric about k D k0, as I shall assume, then

 .x; 0/ � 1p
2�

eik0x

Z 1

�1
dkˆ.k/ cosŒ.k � k0/ x�: (17.27)

Without loss of generality, I can assume that the integral is positive, implying that

 .x; 0/ D j .x; 0/j eik0x: (17.28)
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The phase factor gives rise to the motion of the wave packet to the right with speed

v0 D „k0=m.

17.2.1 E0 > V0 for Step Potential

I expand the wave function at time t in terms of the exact eigenfunctions, but neglect

any contributions from  �
k .x/. For E0 > V0

 .x; t/ � 1p
2�

Z 1

0

dkˆ.k/ C
k .x/e

�ihk2t=2m

D 1p
2�

Z 1

�1
dkˆ.k/e�ihk2t=2m

�
eikx C a.k/e�ikx x < 0

b.k/eik0x x � 0 ; (17.29)

where ˆ.k/ is a sharply peaked, real function centered at k D k0. The calculation

proceeds exactly as in Chap. 3. That is, neglecting spreading [i.e., approximating

k2 D Œk0 C .k � k0/�
2 � k20 C 2k0 .k � k0/ D 2kk0 � k20], I find

 .x; t/ D
Z 1

�1
dkˆ.k/ k.x/e

�ihk2t=2m � 1p
2�

ei„k20 t=2m

�
Z 1

�1
dkˆ.k/e�ikv0t

�
eikx C a.k0/e

�ikx x < 0

b.k0/e
ik0x x � 0 ; (17.30)

where a.k/ and b.k/ are evaluated at k D k0. The only extra feature I have to deal

with is the eik0x term.

Since k0 appears in an exponent and is a function of k, as is evident from

Eq. (17.5), I cannot simply evaluate it at k D k0, but must include a correction

term as well, to insure that each term in the exponent has a magnitude much less

than unity. Consequently, I expand k0 around k D k0 in the exponent,

eik0x � exp

"
i

 
k0
0 C

dk0

dk

ˇ̌
ˇ̌
kDk0

.k � k0/

!
x

#
; (17.31)

where

k0
0 D

q
k20 � k2b:

I then use the relationship

dk0

dk
D k

k0 (17.32)
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to evaluate

k0
0 C

dk0

dk

ˇ̌
ˇ̌
kDk0

.k � k0/ D k0
0 C

k0k

k0
0

� k20

k0
0

; (17.33)

and substitute this result into Eqs. (17.31) and (17.30) to arrive at

 .x; t/ � 1p
2�

ei„k20 t=2m

Z 1

�1
dkˆ.k/e�ikv0t

�
(

eikx C a.k0/e
�ikx x < 0

ei.k0
0�k20=k0

0/xb.k0/e
ikk0x=k0

0 x � 0
: (17.34)

Comparing Eq. (17.34) with Eq. (17.23), I find that

 .x; t/ D ei„k20 t=2m

8
<
:
 .x � v0t; 0/C a.k0/ .�x � v0t; 0/ x < 0

b.k0/e
i.k0

0�k20=k0
0/x 

h�
k0
k0
0

�
x � v0t; 0

i
x � 0

: (17.35)

Equation (17.35) gives the time-dependent wave function, neglecting spreading. I

should note that the expansion of k0 around k D k0 breaks down when Ek � V0.

In that case, dispersion leads to a wave packet that no longer propagates without

distortion. A necessary condition to neglect this dispersion is k0
0� � 1, where � is

the width of the incident packet. This condition may not be sufficient, however, for

certain types of wave packets and values of x.

I look at each term in Eq. (17.35) separately and remember that the original wave

packet is centered at x D �x0 < 0 at t D 0. I consider only those times t � x0=v0,

for which the scattering is complete. The first term in the first line of Eq. (17.35),

 .x � v0t; 0/, is peaked at

xc � v0t D �x0I
xc D v0t � x0; (17.36)

which corresponds to positive xc � 0 for t� x0=v0. In other words,

 .x � v0t; 0/ � 0 for x < 0 and t� x0=v0; (17.37)

implying that the first term in the first line of Eq. (17.35) is approximately equal

to zero for times t � x0=v0. The second term in the first line of Eq. (17.35),

a.k0/ .�x � v0t; 0/, is peaked at

�xc � v0t D �x0I
xc D x0 � v0t (17.38)
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and corresponds to the reflected wave for t� x0=v0. The term in the second line of

Eq. (17.35), b.k0/ 
h�

k0
k0
0

�
x � v0t; 0

i
, is peaked at

�
k0

k0
0

�
xc � v0t D �x0I

xc D v0
0

�
t � x0

v0

�
; (17.39)

where

v0
0 D
„k0

0

m
(17.40)

is the speed of the transmitted wave. For t � x0=v0, this corresponds to the

transmitted wave packet, moving with speed v0
0. Note that it takes a time

t0 D x0=v0 (17.41)

for the center of the initial wave packet to reach the origin.

I now return to the final result, Eq. (17.35), which gives an approximation to

 .x; t/ for all times. I can use Eq. (17.28) to transform this equation into

 .x; t/ � e�i„k20 t=2m

8
<̂

:̂

eik0x j .x � v0t; 0/j
Ca.k0/e

�ik0x j .�x � v0t; 0/j x < 0

b.k0/e
ik0
0x

ˇ̌
ˇ 
h�

k0
k0
0

�
x � v0t; 0

iˇ̌
ˇ x � 0

: (17.42)

To illustrate the physical content of Eq. (17.42), I choose an initial wave packet of

the form

 .x; 0/ D 1

.��2/
1=4

e�.xCx0/
2=2�2eik0x (17.43)

and substitute it into Eq. (17.42) to arrive at

 .x; t/ � e�i„k20 t=2m

.��2/
1=4

8
<̂

:̂

eik0xe�.xCx0�v0t/2=2�2

C a.k0/e
�ik0xe�.�xCx0�v0t/2=2�2 x < 0

b.k0/e
ik0
0xe�Œx�v0

0.t�x0=v0/�
2
=2� 02

x � 0
; (17.44)

where

� 0 D �k0
0=k0 < �: (17.45)
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Fig. 17.3 Graphs of � j .x; 0/j2 (blue, dashed curve), along with j .x; t D 2t0/j2 (red, solid

curve) for k0� D 200, kb� D 190, k0
0� D 62:5, v0t0=� D 6

In Fig. 17.3 I plot � j .x; 0/j2, along with � j .x; t D 2t0/j2. The reflected and

transmitted packets are seen clearly in the figure. For the dimensionless parameters

k0� D 200, kb� D 190, k0
0� D 62:5, v0t0=� D 6, the peak value of j .x; t/j2 of the

reflected wave is reduced by a factor of ja.k0/j2 D 0:274 and that of the transmitted

wave is increased by a factor of jb.k0/j2 D 2:32. Moreover, since � 0 < � , the

transmitted packet is compressed, as was the classical particle density shown in

Fig. 17.3, and the speed of the transmitted wave packet is reduced by a factor of

k0
0=k0 D 0:31. Although the amplitude of the transmitted packet is larger than that

of the incident packet, the transmitted probability current density is less than that of

the initial packet, as I now show.

I can use Eqs. (17.42) and (5.139) to show that the probability current density

associated with the incident wave packet is approximately

Ji D
„
2mi

�
 �

i .x; t/
d i .x; t/

dx
�  i .x; t/

d �
i .x; t/

dx

�

D „
2mi

"
j � .x � v0t; 0/j e�ik0x

d
�
j .x � v0t; 0/j eik0x

�

dx

#
C c.c.

� „
2mi

h
ik0 j .x � v0t; 0/j2

i
C c.c. D v0 j .x � v0t; 0/j2 ; (17.46)

where  i .x; t/ corresponds to the incident wave packet before it reaches the barrier.

In deriving Eq. (17.46), I assumed that k0� � 1, consistent with the assumption

that the incident wave packet is sharply peaked in momentum space. Similarly,the

reflected probability current density for times well after the packet has scattered

from the barrier is approximately

Jr D � ja.k0/j2 v0 j ŒxC v0t; 0�j2 : (17.47)
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and the transmitted probability current density is

Jt D jb.k0/j2 v0
0

ˇ̌
ˇ̌ 
��

k0

k0
0

�
x � v0t; 0

�ˇ̌
ˇ̌
2

: (17.48)

Since jb.k0/j2 v0
0 < v0, the maximum transmitted current density is less than the

maximum incident current density.

The reflection coefficient is equal to the magnitude of time-integrated reflected

probability current density (this is what a detector placed in the path of the particle

would measure) divided by the time-integrated initial probability current density

R D �
R

JrdtR
Jidt

D ja.k0/j
2 v0

v0
D ja.k0/j2 D

�
k0 � k0

0

k0 C k0
0

�2
(17.49)

and the transmission coefficient is

T D
R

JtdtR
Jidt
D ja.k0/j

2 v0
0

v0
D k0

0

k0
jb.k0/j2 D

4k0k
0
0�

k0 C k0
0

�2 < 1: (17.50)

These results agree with the steady-state approach.

17.2.2 E0 < V0 for Step Potential

For E0 < V0

 .x; t/ �
Z 1

0

dkˆ.k/ C
k .x/e

�ihk2t=2m

�
Z 1

�1
dkˆ.k/e�ihk2t=2m

�
eikx C c.k/e�ikx x < 0

d.k/e��x x � 0 : (17.51)

The calculation proceeds as before, except that there are a few wrinkles. You might

think that all that is necessary is to replace k0 by i� and k0
0 by i�0 but you would be

wrong on two counts. First, for x > 0, the major contribution to the integral over k

may no longer be centered at k D k0, even though ˆ.k/ is peaked at k D k0. The

reason for this is that the eigenfunction for x > 0 is an exponentially decreasing

function of �x D
q

k2b � k2x, so it is possible to get a relatively larger contribution

to the integral over k near k D kb rather than k D k0. In general, the integral in

Eq. (17.51) must be done numerically for x > 0:On the other hand, for the scattering

problem I am interested in calculating the wave function only when t� t0 D x0=v0,

times for which the wave function in the region x > 0 is negligibly small. Thus I

neglect the region x > 0 in my analysis of the problem, at least for the moment.
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The second problem with replacing k0 by i� and k0
0 by i�0 is linked to the fact

that, while a.k/ and b.k/ are real, c.k/ and d.k/ are complex; that is,

c.k/ D e�i�.k/I (17.52a)

d.k/ D 2kp
k2 C �2

e�i�.k/=2I (17.52b)

�.k/ D 2˛.k/ D 2 tan�1 .�=k/ D 2 tan�1
�q

k2b � k2=k

�
: (17.52c)

When a function appears in an exponent and you expand the function, only terms

that are much less than unity can be neglected. I cannot simply replace �.k/ by

�.k0/. Instead, I must expand it as

�.k/ � �.k0/C
d�

dk0
.k � k0/ (17.53)

where

d�

dk0
D d�

dk

ˇ̌
ˇ̌
kDk0

D � 2
�0

(17.54)

and

�0 D
r
2m .V0 � E0/

„2 : (17.55)

Using this result and Eq. (17.621) in Eq. (17.51) with k2 � �k20 C 2k0k, I find

for x < 0;

 .x; t/ � ei„k20 t=2m .x � v0t; 0/C ei„k20 t=2e
�i�.k0/Cik0

d�
dk0

�
Z 1

�1
dkˆ.k/e�ikv0te�ikxe

�ik
d�
dk0

D ei„k20 t=2 .x � v0t; 0/

Cei„k20 t=2e
�i�.k0/Cik0

d�
dk0  

�
�x � v0t �

d�

dk0
; 0

�

D e�i„k20 t=2eik0x j .x � v0t; 0/j

Ce�i„k20 t=2e�i�.k0/e�ik0x

ˇ̌
ˇ̌ 
�
�x � v0t �

d�

dk0
; 0

�ˇ̌
ˇ̌ : (17.56)
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Since

d�

dk0
D d�

dE0

dE0

dk0
D „

2k0

m

d�

dE0
D „v0

d�

dE0
D � 2

�0
; (17.57)

it follows that the reflected wave packet is centered at

�xc � v0
�

tC „d�

dE

�
D �x0I

xc D x0 � v0
�

tC „d�

dE

�
; (17.58)

or

xc D x0 � v0
�

t � 2

�0v0

�
: (17.59)

There is a time delay in the scattering given by

td D �
1

v0

d�

dk0
D �„ d�

dE0
D 2

�0v0
D „p

E .V0 � E/
: (17.60)

The delay is proportional to „—this is a quantum effect. How can we interpret

this time delay? In the stationary state approach to the scattering problem, the

probability current density vanishes for x > 0. In the wave packet approach,

however, it cannot vanish at all times. There must be a positive probability current

density up until the time the center of the wave packet reaches the step and a negative

probability current density as the (time delayed) wave packet is reflected. It is as if

the packet is checking out the potential barrier and then decides it does not have

enough energy to be transmitted so it goes back from whence it came, but it takes a

time delay for the wave packet to figure this out. The probability current density at

the origin, given by

J.x D 0; t/ D i„
2m

�
 .x; t/

@ �.x; t/

@x
�  �.x; t/

@ .x; t/

@x

�

xD0
; (17.61)

with  .x; t/ given by Eq. (17.56) and  .x; 0/ by Eq. (17.43), is plotted in Fig. 17.4

in units of v0=
�p
�
�

as a function of v0t=� for x0=� D 6, kb� D 200 and k0� D
190; 100. You can see that the curve has a “dispersion-like” form, even though it

is not exactly proportional to the derivative of the wave packet envelope. The peak

amplitude of the curve and the time delay decrease with increasing kb=k0. In the low

energy limit kb=k0 � 1, J.0; t/ � 0 and td � 0. The time delay is largest when

E � V0I in this limit, the wave function penetrates significantly into the barrier.
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Fig. 17.4 Probability current density at x D 0 in dimensionless units as a function of v0t=� for

x0=� D 6 and kb� D 200. The red solid curve is for k0� D 190 and the blue dashed curve for

k0� D 100

Fig. 17.5 Different piecewise constant potentials and incident scattering energies

Similar analyses can be used for different potentials. I will describe in qualitative

terms what happens in each of the cases shown in Fig. 17.5.

Cases (a) and (b) are analogous to an optical field incident normally on a thin

dielectric film. There is constructive interference in reflection when twice the film

thickness, 2d, is a half integral number of wavelengths and destructive interference

when it is an integral number of wavelengths. The transmission goes to unity

at positions of destructive interference in reflection. The resonances can be very

narrow if the index of refraction is high. In the quantum-mechanical problem, you

can also have very narrow transmission resonances as a function of k0
0d. In the

scattering problem, such resonances are accompanied by large time delays. To avoid

wave packet spreading and to see these resonances, you must take the width of

the initial wave packet to be much larger than the barrier width, multiplied by the
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number of “bounces” the packet makes in the region of the potential. The number

of “bounces” is simply the barrier width d divided by v0
0td.

In case (c), there can be quantum-mechanical tunneling through the barrier. There

is also a time delay in this problem, but no resonance phenomena. The wave function

simply builds up and decays inside the barrier.

Case (d) is perhaps the most interesting. It corresponds to a Fabry-Perot filter

for light. If each barrier has a very small transmission coefficient separately,

the transmission coefficient for the double barrier can approach unity when the

incoming wavelength corresponds to a standing wave pattern between the two

barriers! This is the result found from the steady-state approach. How can this be?

How can the wave penetrate significantly through the first barrier since it doesn’t

even know about the second barrier? The answer to this question is “It can’t” if the

width of the packet is much less than a, the separation of the barriers. In that case,

the wave packet is partially transmitted by the barrier, but mostly reflected by it.

The part that is transmitted bounces back and forth between the barriers, leaking

out a little bit each time. Thus, the transmitted wave is a series of packets, as is the

reflected wave, with the time between reflected or transmitted packets equal to the

round-trip time in the cavity.

How then does a Fabry-Perot filter work? In order to see the narrow resonances,

you must choose an initial wave packet that is much larger than the distance a

between the barriers, multiplied by number of bounces in the cavity, a/.v0td/, which

can be enormous. The time delay near resonance is inversely proportional to the

transmission coefficient for a single barrier. In other words, you need an incoming

packet that is quasi-monochromatic to see the narrow resonances. Part of the packet

penetrates through the barrier, is reflected from the second barrier, and interferes

with subsequent transmission through the barrier. After a long time, a steady state

standing wave pattern is formed in the cavity having an intensity that is much larger

than that of the incident wave—the part that leaks out the other end has an intensity

equal to the initial wave intensity. After very long times, the initial wave packet can

be almost totally transmitted by the double barrier.

17.3 Summary

We have seen several interesting features of scattering from one-dimensional

potentials. Both steady-state and time-dependent approaches were used. In some

sense, the time-dependent approach provides a justification for the equations

for the reflection and transmission coefficients used in the steady-state approach

and provides a prescription for obtaining the time delay from the phase of the

steady-state eigenfunctions. I now turn my attention to scattering from spherically

symmetric potentials.
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17.4 Problems

1. How does one-dimensional scattering by a step potential differ for classical

and quantum-mechanical scattering of a particle? What is the optical analogue of

scattering by an attractive square well? Why would you expect resonances in this

case?

2. In the time-dependent scattering approach I assumed that a wave packet with a

fairly well-defined energy was incident on the potential step from the left. If the

energy is greater than the step height, there could be contributions to the wave

function from the eigenfunctions given in Eq. (17.2b). Prove that such contributions

are negligible at all times. Moreover, prove that the contribution for the e�ikx part of

the  C
k .x/ eigenfunction makes a negligible contribution to ˆC.k/.

3–5. (a) Consider classical scattering of a particle having mass m by a square well

potential for which V.x/ D �V0 < 0 for jxj � a=2 and is zero otherwise.

A particle is incident from the left with energy E D mv20=2: Show that,

compared to the case when there is no potential, there is a negative time delay

(that is the particle reaches a point x > 0 faster than it would in the absence of

the potential) given by

tcl
d D �

a

v0
C a

v0
0

;

where v0
0 D

p
2m .EC V0/

(b) Now consider the analogous quantum problem for the scattering of a quasi-

monoenergetic wave packet having energy centered at E0 D mv20=2 D
„2k20=2m. The (amplitude) reflection and transmission coefficients for a mono-

energetic wave packet having energy E D „k are given in Eqs. (6.107) with kE

replaced by k. If you write these coefficients as

R.k/ D jR.k/j ei�R.k/I T.k/ D jT.k/j ei�T .k/;

show that the quantum time delays for the reflected and transmitted packets are

given by

tR
d D �

1

v0

d�R

dk0
I

tT
d D

1

v0

d�T

dk0
:

(c) Plot the intensity transmission coefficient as a function of y D k0a for ˇ Dp
2mV0=„2a D 500 and 0 < y < 120. Show that there are narrow resonances

when
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k0
0a D

r
2m .E0 C V0/

„2 a D n�

for integer n > ˇ=�:

(d) Plot the classical time delay and the quantum transmission time delay on the

same graph in units of a=v0 D ma2=„y as a function of y D k0a for ˇ D 500

and 0 < y < 120. Show that, at the position of the resonances, the quantum

delay is greater than the classical delay. This supports the contention that the

particle “bounces” back and forth in as it is scattered near resonance.

(e) In the low energy limit, y� 1, show that the time delay is given by

tT
d D �

ma2

„y

�
1C 2 cotˇ

ˇ

�
:

It follows from Eqs. (6.88) and (6.89) that, for y� 1; a new bound state appears

near zero energy whenever ˇ D n� . Thus the time delay diverges near such

resonances. Since the phase varies rapidly in such regions, there is considerable

dispersion and the picture of a transmitted, time-delayed, undistorted wave

packet is no longer valid.1

6. Calculate the time delay in transmission of the scattering of a quasi-

monoenergetic wave packet of a particle having mass m by a delta function potential

barrier,

V.x/ D V0aı .x/

where V0; d, and a are positive constants. Show that it vanishes in the limit „ ! 0.

7–8. Consider scattering of a particle having mass m by a one-dimensional potential

V.x/ D V0a Œı .x/C ı .x � d/� ;

where V0, d, and a are positive constants.

(a) Calculate and plot the intensity transmission coefficient T D jTj2 as a function

of y D kd (k D
p
2mE=„2) for ˇ02 D 2mV0ad=„2 D 100 in the strong barrier

limit,

ˇ2

2ka
D mV0a

2

ka„2 D
ˇ02

2y
� 1:

1The dependence of the time delay on ˇ is similar to that encountered in the dependence of the

scattering length (the scattering length is discussed in Chap. 18) on magnetic field strength when

the field is used to tune the energy in an open scattering channel to that of a bound state in a

closed channel of the intermolecular potentials. Such Feshbach resonances play an important role

in controlling interactions in Bose-Einstein condensates [for a review, see the article by C. Chin, R.

Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Reviews of Modern

Physics 82, 1225–1286 (2010)].
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Show that there are resonances where the transmission goes to unity and

interpret your result.

(b) From the expression for the transmission amplitude T calculate and plot the

scattering time delay, in units of d=v D md2=„y, experienced by a quasi-

monoenergetic wave packet as a function of y. Show that, at the position of

the resonances, the time delay goes through a maximum. Interpret your results.

The time delay in these units is the number of bounces the particle makes before

being scattered.

9. Consider the scattering of a quasi-monoenergetic wave packet having central

energy E D „2k2=2m by the potential

V.x/ D
�

V0aı .x/ x < d

1 x > d
;

where V0 and a are positive constants and m is the particle’s mass. Plot the time delay

in units of d=v D md2=„y as a function of y D ka for ˇ02 D 2mV0ad=„2 D 100 in

the strong barrier limit, ˇ02=2y � 1; and interpret your results. The time delay in

these units is the number of bounces the particle makes before being scattered.



Chapter 18

Scattering: 3-D

In order to appreciate the intricacies of quantum-mechanical scattering, you have

to know something about classical scattering. When two particles collide and

undergo elastic scattering, both the classical and quantum scattering problems can

be very difficult to solve. The first step in the analysis of this problem is to make a

transformation to the center-of-mass frame of the two particles. Then the interaction

can be reduced to the scattering of a particle having reduced mass � from a

center of potential having relative coordinate r. One calculates the scattering in the

center-of-mass frame and then must transform back to laboratory coordinates. I will

discuss only the problem of scattering in the center-of-mass frame or, equivalently,

scattering of a particle having mass � from a potential V.r/ that is assumed to

possess spherical symmetry. The particle is incident along the z axis and has

energy E.

18.1 Classical Scattering

Let me first review classical scattering, indicated schematically in Fig. 18.1.

The scattering depends on the impact parameter b and energy E of the incoming

particle, as well as on the nature of V.r/. If the particle has initial speed

v0 D
p
2E=�; the magnitude of the particle’s angular momentum, impact

parameter, and energy are related by

jLj D L D �v0b D
p
2�EbI (18.1a)

E D L2

2�b2
: (18.1b)
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Fig. 18.1 Scattering by a spherically symmetric potential. Particles having initial velocity v0 D
v0uz that are incident with an impact parameter between b and b C db are scattered into a ring

having area 2�r2 sin �d�

Since the potential is spherically symmetric the angular momentum is a constant of

the motion.

Moreover, as shown in Fig. 18.1, any particle incident within a ring having radius

b and width db is scattered into a ring on a spherical surface having polar angle �

(0 � � � �/; circumference 2�r sin � and width rd� . Thus, the area of the ring

into which the particle is scattered d�=d˝ is 2�r2 sin �d� . The differential cross

section d�=d˝ is then defined by

d�

d�
d� D number of particles scattered into d� per unit time

I
; (18.2)

where I is the number of particles incident per unit area per unit time and

d� D 2� sin �d� (18.3)

is an element of solid angle. Since each particle in the ring having radius b and width

db is scattered into d�,

d�

d�
2� sin �d� D I2�bdb

I
(18.4)

or

d�

d�
D
ˇ̌
ˇ̌ b

sin �

db

d�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ

b

sin � d�
db

ˇ̌
ˇ̌
ˇ ; (18.5)

where, by convention, d�
d�

is always positive. If more than one impact parameter bj

gives rise to scattering at the same � , then Eq. (19.1) is replaced by

d�

d�
D
X

j

ˇ̌
ˇ̌
ˇ

bj

sin � d�
dbj

ˇ̌
ˇ̌
ˇ : (18.6)

The problem is reduced to finding � as a function of b:
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The total cross section � is defined as

� D number of particles scattered per unit time

I

D
Z

d�

d�
d�: (18.7)

For any infinite range potential, the classical cross section is infinite, since particles

are scattered no matter how large their impact parameter. For potentials having a

finite range rmax, � D �r2max.

Calculating � as a function of b is a standard problem in classical mechanics.

Since the potential is spherically symmetric, the orbit is in a plane perpendicular to

the direction of the angular momentum and the total energy,

E D 1

2
�Pr2 C L2

2�r2
C V.r/; (18.8)

is the sum of the potential energy and both radial and angular contributions to the

kinetic energy. The radial motion is determined by the effective potential

Veff.r/ D V.r/C L2

2�r2
; (18.9)

already discussed in Chaps. 9 and 10.

Equation (18.8) can be integrated directly to obtain r as a function of t or of the

scattering angle � ; however, I need to distinguish the scattering angle � measured

in the laboratory from the deflection angle ‚, which is the final value of the orbit

angle relative to the z-axis (see Fig. 18.2). The scattering angle is always restricted

to lie between 0 and � . If the potential is repulsive, the deflection angle must also

be between 0 and � since the particle either goes straight through or is deflected

away from the scattering center. In this case the scattering and deflection angles are

identical. For attractive potentials, the particle is attracted so the deflection angle

is negative (remember Apollo 13). Moreover the attraction can be so great that

Fig. 18.2 At any point in the scattering the orbit angle can be considered as a function of the radial

distance r. The final value of the orbit angle as t � 1 is designated as the deflection angle
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the deflection angle can even approach negative infinity under certain conditions

(orbiting). The relation between the two angles is given by

� D j‚j ; � � � ‚ � � I
� D ‚C 2q� ; � 2q� � ‚ � .�2qC 1/ � I
� D �‚ � 2q� ; � .2qC 1/ � � ‚ � �2q�; (18.10)

where q is a non-negative integer. Since d‚=db D ˙d�=db and sin‚ D ˙ sin � , �

can be replaced by ‚ in Eq. (18.5).

In any scattering problem involving a spherically symmetric potential, there is a

radius of closest approach r D rmin about which the orbit is symmetric. The time

origin is chosen such that t D 0when r D rmin. For spherically symmetric potentials

the orbit is in a plane perpendicular to L and the orbit at any time can be specified

by the radial coordinate and the orbit angle ‚, which can be taken to be a function

of time or radial coordinate. Since the orbit is symmetric about r D rmin; ‚.r/

is a double valued function of r; for each value of r, there are two values of ‚.

However, if you restrict r such that r < rmin or r > rmin; it becomes a single-

valued function. The particle is incident along the negative z-axis at t D �1, with

‚.r!1; t! �1/ D � . Owing to the symmetry of the orbit

‚.r D rmin; t D 0/ D � C
‚.r!1; t!1/ � �

2

D � C‚
2

; (18.11)

where

‚ � ‚.r!1; t!1/ (18.12)

is the deflection angle (see Fig. 18.2).

Equation (18.8) can be solved to yield

Pr D ˙
s
2

�

s
E � L2

2�r2
� V.r/ (18.13)

with

L D ��r2 P‚ (18.14)

(note that Pr < 0 for r < rmin, Pr > 0 for r > rmin, and P‚ < 0). Therefore, for r > rmin

d‚

dr
D
P‚
Pr D

�L

�r2
q

2
�

q
E � L2

2�r2
� V.r/

: (18.15)
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Since ‚ is a single-valued function of r for r > rmin, I can integrate Eq. (18.15) to

obtain

‚ �‚.r D rmin/ D �
Lp
2�

Z 1

rmin

dr

r2
q

E � L2

2�r2
� V.r/

I

‚ �
�
� C‚
2

�
D � Lp

2�

Z 1

rmin

dr

r2
q

E � L2

2�r2
� V.r/

I

‚ D � � 2b

Z 1

rmin

dr

r2
q
1 � b2

r2
� V.r/

E

; (18.16)

where Eq. (18.1b) was used.

As an example, consider scattering from a hard sphere having radius a (see

Fig. 18.3), for which rmin D a and V.r/ D 0 for r > a. Then, for b < a

‚ D � � 2b

Z 1

a

dr

r2
q
1 � b2

r2

D 2 cos�1.b=a/; (18.17)

which can also be read from the figure. For b > a; ‚ D 0. With

d‚

db
D � 2

a
p
1 � .b=a/2

I (18.18a)

sin‚ D 2 cos
‚

2
sin

‚

2
D 2b

a

s

1 � b2

a2
; (18.18b)

Fig. 18.3 Hard sphere scattering. The graph insert shows the deflection angle as a function of

impact parameter
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it follows that

d�

d�
D
ˇ̌
ˇ̌
ˇ

b

sin‚ d‚
db

ˇ̌
ˇ̌
ˇ

D b

2b
a

p
1 � .b=a/2 2

a
p
1�.b=a/2

D a2

4
: (18.19)

The scattering is isotropic! Moreover the total cross section is

� D
Z

d�

d�
d� D a2

4

Z
d� D a2

4
4� D �a2; (18.20)

as expected.

To discuss arbitrary potentials, it is useful to look at the effective potential.

Remember that

L D
p
2�EbI (18.21)

for a given energy, specifying the angular momentum is equivalent to specifying the

impact parameter. Using the effective potential for scattering problems is a little

different than using it for bound state problems, as I did in Chap. 10. In bound state

problems, the radial motion is restricted between a minimum and maximum radius.

In scattering problems, however, the particle is incident from r D 1, enters the

scattering region, reaches a minimum radial distance r D rmin, and then exits the

scattering region with its radial distance again approaching r D 1 as t � 1:
Remember that the effective potential is for the radial motion only and does not

give a complete description of the orbit. At r D rmin, Pr D 0 and all contributions to

the kinetic energy of the particle come from the angular motion.

Let us first look at the case where there is no potential. Of course, there is no

preferred origin in this problem, but we can pick one at random. For a free particle

the path is a straight line having impact parameter b relative to the origin, as shown

in Fig. 18.4. However, relative to this arbitrarily chosen origin, the particle has both a

radial and angular contribution to its kinetic energy if L ¤ 0 (both the radial distance

and polar angle of the particle vary during its motion). The effective potential for a

free particle is

Veff D
L2

2�r2
D Eb2

r2
: (18.22)

and the minimum radial distance is

rmin D
s

L2

2�E
D b: (18.23)

These features are seen clearly in Fig. 18.4.
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Fig. 18.4 “Scattering” in the absence of a potential. The effective potential is shown for L ¤ 0.

The minimum radius is rmin D b. In coordinate space, the particle path in space is a straight line

parallel to the z-axis

Fig. 18.5 Scattering by a finite range repulsive potential when the energy is less than the maximum

of the potential

Next consider scattering by a monotonically decreasing repulsive potential

having finite range rmax, such as that shown in Fig. 18.5, when the energy E of the

particle is less than the maximum height V0 of the potential. In this case, for b D 0
(L D 0) the particle is repelled by the potential and goes back along its original

direction, ‚ D � . With increasing impact parameter b, the strength of the potential

and the scattering angle decreases monotonically, ultimately reaching zero when the

impact parameter is larger than the range rmax. If b > rmax, the particle moves on a
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Fig. 18.6 Scattering by a finite range repulsive potential when the energy is greater than the

maximum of the potential

straight line and does not encounter the potential at all. Graphs of ‚ as a function

of b are shown in Fig. 18.5. For a given impact parameter b < rmax the deflection

angle decreases with increasing energy, as would be expected.

The scattering is more interesting when the energy is greater than the maximum

of the potential energy (see Fig. 18.6). In this case, for b D 0 (L D 0) the particle

slows down when it reaches the potential, passes through the origin, and speeds

up as it leaves the potential; the deflection angle is ‚ D 0. But the scattering

angle must also go to zero when the impact parameter is larger than the range

rmax of the potential. As a consequence, the scattering angle must pass through a

maximum. A graph of ‚ as a function of b is shown in Fig. 18.6. Since d‚=db D 0
at some scattering angle, the differential scattering cross section becomes infinite at

this impact parameter, analogous to rainbow scattering (actually rainbow scattering

actually depends on the wave nature of light—see below).

For attractive potentials new features appear in the scattering since the effective

potential is no longer a monotonic function of r: I will assume that the potential falls

off faster than 1=r2 for large r and that the potential is finite at r D 0: With these

restrictions, the effective potential for different values of angular momentum takes

on the general structure indicated in Fig. 18.7. It is positive at r D 0 (except for

L D 0) and also positive as r!1 (except for L D 0). For sufficiently small values

of L D
p
2�Eb ¤ 0 there is a maximum in the effective potential (see Fig. 18.7),
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Fig. 18.7 Effective potentials for an attractive potential. The lowest curve is for L D 0 and each

subsequent curve corresponds to a higher value of angular momentum. For sufficiently large L,

there is no longer a local maximum

Fig. 18.8 Deflection angle for the attractive Gaussian potential of Eq. (18.24) for V0=E D 4,

corresponding to an energy such as E1 shown in Fig. 18.7

but for larger values of L; no maximum occurs and the effective potential simply

decays monotonically.

How is a particle scattered by such a potential? For impact parameter b D 0

(L D 0) the particle passes through the origin, ‚ D 0. The deflection angle also

goes to zero for large values of b, but from negative values, since the potential

is attractive. For intermediate values of b, the nature of the scattering depends on

the energy of the incoming particle. For an energy such as E1 shown in Fig. 18.7

there is no value of the angular momentum for which the energy intersects the

effective potential at a local maximum. In this limit, a graph of the deflection angle

versus impact parameter is shown in Fig. 18.8 for a potential of the form

V.r/ D �V0e
�r2=a2 : (18.24)

There is rainbow-like scattering where d‚=db D 0, as there was for repulsive

scattering with E > V0.
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Fig. 18.9 Deflection angle for the attractive Gaussian potential of Eq. (18.24) for V0=E D 16,

corresponding to an energy such as E2 shown in Fig. 18.7. Orbiting occurs for b=a D 2:27

On the other hand, for energies such as E2 in Fig. 18.7 there is always a value of

angular momentum for which the energy intersects the effective potential at its local

maximum. At this angular momentum or impact parameter, the particle approaches

the radius r D b0 corresponding to the local maximum, but it takes an infinite time to

get there. This corresponds to orbiting and the deflection angle can take on infinitely

many values an infinite number of times. Although the deflection angle diverges, the

differential cross section is finite. In Fig. 18.9, the deflection angle ‚ is plotted as

a function of b=a for the potential given by Eq. (18.24) with V0=E D 16. Near

b=a D 2:27; which corresponds to the impact parameter where dV.r/=dr D 0 for

this potential and energy, the deflection angle is greater than 12� , indicating that

orbiting has occurred.1

When orbiting occurs, there can be several impact parameters b ¤ 0 for which

�‚N is an even multiple of � (forward scattering) and for which �‚N is an odd

multiple of � (backscattering). Since the scattering angle � is equal to either 0 or �

for these values of the deflection angle ‚N , the differential scattering cross section,

d�=d� D jb= .sin �d�=db/j, become large or even infinite at such deflection angles

(depending on the value of d�=db at these points). This enhanced scattering is

referred to as glory scattering. Road signs have a coating that gives rise to glory

backscattering; the backscattering of light from water droplets is another example

of the glory effect.

Although I said that there is no longer a local maximum with increasing L for

attractive potentials, there is an exception to this general result. For potentials having

a sharp cutoff, such as the spherical well potential,

1If you expand the square root in the denominator of Eq. (18.16) about r D rmin at the impact

parameter corresponding to orbiting, you will find it varies as .r � rmin/, giving a deflection

angle that diverges as ln Œ.r � rmin/ =a:� Numerically, it is very hard to reproduce this very slow

divergence. There are very special values, V0=E D e2, B0=E D 4; rmin=a D
p
2, for which the

second derivative also vanishes when E D E0; in this case, the divergence is more rapid, varying

as Œ.r � rmin/ =a�
�1=2

.
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Fig. 18.10 Effective potential for a spherical well potential

V.r/ D
�
�V0 r � a

0 r > a
; (18.25)

there is always a local maximum in the effective potential for L ¤ 0 (see Fig. 18.10),

independent of the value of L. The spherical well potential is attractive in the sense

that any particle incident with impact parameter b < a undergoes scattering with a

negative deflection angle. It gives rise to scattering that is analogous to the scattering

of electromagnetic radiation by a dielectric sphere having index of refraction,

n D
p
1C V0=E; (18.26)

but with no reflections off the sphere (only transmission). For the spherical well

potential, the deflection angle as a function of impact parameter can be calculated

from Eq. (18.16) as

‚ D 2
�
� sin�1

�
b

a

�
C sin�1

�
b

na

��
Heaviside.1 � b=a/; (18.27)

where Heaviside.x/ D 1 if x > 0 and is zero otherwise. The deflection angle is

shown in Fig. 18.11 as a function of b=a for n D 1:4: The differential cross section,

which can be calculated using Eqs. (18.5) and (18.27), is given by

d�

d�
D n2a2

4 cos .�=2/

Œn � cos .�=2/� Œn cos .�=2/ � 1�
�
1C n2 � 2n cos .�=2/

�2

�Heaviside Œn cos .�=2/ � 1� (18.28)

and vanishes for deflection angles having ‚ < ‚min D �2 cos�1.1=n/: There is no

rainbow-like or glory scattering in this classical problem.

I finish this section with a brief discussion of scattering of light rays by a

dielectric sphere. In contrast to classical particle scattering by a spherical well

potential, the scattering of light rays by a dielectric sphere, such as a water droplet,
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Fig. 18.11 Deflection angle for a spherical well potential with n D
p
1C V0=E D 1:4

Fig. 18.12 Classical scattering by a spherical potential and rainbow scattering by a dielectric

sphere (the wave reflected off the outer surface of the dielectric sphere is not shown)

can lead to rainbow and glory scattering as a result of reflections of the light on

the inner surface of the water droplet (see Fig. 18.12). Even though the rainbow

represents a geometrical optics limit for light (as does refraction at a dielectric

interface), the formation of a rainbow still relies on the fact that light is a wave. Since

there is a sudden change of index of refraction at the air–water droplet interface,

there are wave-like effects (just as the reflection coefficient at a potential step in

the quantum problem is independent of „—it is a geometrical, wave-like effect).

The scattering cross section can be thought to result from rays of light incident with

different impact parameters. A light ray that is incident on the sphere with impact

parameter b is partially reflected and partially transmitted at the outer surface of the

sphere. It then undergoes an infinite number of reflections (and transmissions) on the

inner surface of the sphere. You can show using geometric optics that the deflection

angle ‚N for the light that emerges after N reflections on the inner surface of the

sphere is given by
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‚N D
˚�
� � 2 sin�1.b=a/

�
� N

�
� � 2 sin�1.b=na/

�
Heaviside.1 � b=a/;

(18.29)

where n is the index of refraction of the sphere relative to the medium surrounding it.

Equation (18.29) also holds for the reflection of an incoming ray off the outer

surface of the sphere if you set N D 0.

For N D 1 the result is similar to that of classical scattering by a spherical well

potential having depth V0; with V0=E D n2�1—there is no contribution to rainbow

or glory scattering. For N � 2, you can use Eq. (18.29) to search for contributions

to rainbows (where d‚N=db D 0/ or glories (values of �‚N that are an integral

multiple of � for b ¤ 0). In this manner, you can show that, for n D 4=3 (water),

the principal rainbow angle, corresponding to N D 2, occurs at ‚N D �138ı or

42ı from the back scattering angle. Note that there is no total internal reflection on

the inner surface, simply reflection. Contributions to glory scattering are possible

for N � 3.

Equation (18.29) is also valid in the case where light goes from a higher to lower

index as from scattering off an air bubble in water, provided b=a < n (n < 1 is the

relative index of refraction of the bubble to the medium surrounding the bubble). On

the other hand, if n < b=a < 1; there is total reflection from the outer surface of the

sphere with ‚ D 2 cos�1.b=a/: In general, for n < 1, Eq. (18.29) is replaced by

‚N D
˚�
� � 2 sin�1.b=a/

�
� N

�
� � 2 sin�1.b=na/

�
Heaviside.n � b=a/

C2 cos�1.b=a/Heaviside.1 � b=a/ıN;0: (18.30)

In this case you can show that there is no rainbow scattering, but contributions to

glories are still possible for N � 3. For N D 0 the result corresponds to the classical

problem of scattering by a repulsive, spherical barrier potential when the energy of

the particle is greater than the height V0 of the well, with V0=E D 1 � n2:

18.2 Quantum Scattering

I now turn my attention to quantum scattering. This is a really important problem,

since many experiments must be analyzed in terms of the differential cross sections

associated with the scattering process. It is clear that quantum effects become

important as soon as the scattering potential varies significantly over distances of

a de Broglie wavelength of the incident particle (wave). If there is a sharp change

in the potential, such as in hard sphere scattering, there are always diffraction

effects. In this limit, no matter what the energy of the incident particle, there is a

“wave-like” contribution to the scattering. We have already seen such effects in the

scattering of a wave packet from a one-dimensional potential barrier or well. Aside

from the sharp cutoff effects, there can be additional quantum effects when the de

Broglie wavelength of the incident particle is comparable to distances over which

the potential changes. Thus, for low energy scattering, a quantum treatment is often
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needed. The rainbow-like, orbiting, and glory effects that occur for fixed impact

parameters in classical scattering are “washed out” in quantum scattering since it is

not possible to specify both a precise impact parameter and scattering angle owing

to the uncertainty principle, but analogous processes still occur. Moreover, we will

see that tunneling also occurs in certain limits, leading to very sharp resonances in

the scattering.

Quantum-mechanical scattering represents a very complex problem in most

cases. There are many books devoted to this subject. In this introductory presen-

tation, I limit the discussion to scattering of structureless particles by spherically

symmetric potentials. The use of the effective potential greatly aids the analysis

of the problem. As for one-dimensional problems, the calculations can be given

in terms of a steady-state or time-dependent approach. I will mention the time-

dependent approach briefly, but concentrate on the steady-state approach. In both

cases, the theory is based on the prediction (I will prove this later on) that the

asymptotic form of the (unnormalized) eigenfunctions as r!1 is of the form

 k.r/ �
�

eikz C fk.�/
eikr

r

�
: (18.31)

The first term in Eq. (18.31) corresponds to a plane wave incident from the left in

the positive z direction, while the second term corresponds to a spherically scattered

wave that is weighted with the scattering amplitude fk.�/. Had I carried out a time-

dependent treatment, I would find that an initial wave packet having spatial extent w

in the z direction and propagating in the z direction is transformed into the original

wave packet propagating as if no scattering occurred, plus an outgoing shell having

thickness w that is centered at radius r D �z0Cv0t, where �z0 is the initial location

of the center of the packet and v0 is the average speed of the initial packet. The

spherical shell is weighted by fk.�/. To arrive at this picture of the scattering, it

is necessary to assume that the initial wave packet has a k-space amplitude ˆ.k/

that is sharply peaked about k D k0uz and that the phase of fk.�/ is approximately

constant for values of k close to k0uz. If the phase is not constant, but is slowly

varying, there is a time delay associated with the scattering process that can depend

on the scattering angle. For more rapid variations of the phase, such as those that

occur near resonances, the outgoing wave packet has a complicated structure owing

to dispersion associated with the phase of the scattering amplitude.

As in the 1-D case, I can get the differential scattering cross section by

considering the probability current density in all but the forward direction (I return

to what happens in the forward direction below). The incident probability current

density is that associated with the eikz term in Eq. (18.31) and is equal to

Ji D vkuz D .„k=�/uz; (18.32)

where vk D „k=�. The scattered current density is that associated with the  s.r/ D
fk.�/e

ikr=r term in Eq. (18.31) and is given by
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Js.r/ D
i„
2�

�
 s.x/r 

�
s .r/ �  �

s .r/r s.r/
�

D i„
2�

�
fk.�/

eikr

r
r

�
f �
k .�/

e�ikr

r

�
� f �

k .�/
e�ikr

r
r

�
fk.�/

eikr

r

��
: (18.33)

I use the expression for the gradient operator in spherical coordinates,

r D
@

@r
urC

1

r

@

@�
u�C

1

r sin �

@

@�
u� ; (18.34)

to calculate

r

�
fk.�/

eikr

r

�
D
�

ik � 1
r

�
fk.�/

eikr

r
urC

eikr

r2

dfk.�/

d�
u� : (18.35)

To get the outgoing probability flux into a solid angle d�, I multiply Js.r/ by r2d�,

take the scalar product with ur, and let r!1,

lim
r!1

Js � urr
2d� D vk jfk.�/j2 d�: (18.36)

The differential cross section is then calculated as

d�

d�
d� D vk jfk.�/j2 d�

Ji � uz

D jfk.�/j2 d�: (18.37)

That is,

d�

d�
D jfk.�/j2 (18.38)

is the differential scattering cross section and

� D
Z
jfk.�/j2 d� D 2�

Z �

0

jfk.�/j2 sin � d� (18.39)

is the total scattering cross section.

There are effectively two ways to calculate fk.�/. One involves a formal solution

of the Schrödinger equation and gives rise to the Born series. The second involves

a solution of the radial equation for a given value of angular momentum ` and

is referred to as the method of partial waves, for reasons to be discussed in a

moment. Of course, if you can find the exact eigenfunctions for a given potential,

you need only expand them for large r and compare the results with Eq. (18.31) to

identify fk.�/.
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18.2.1 Method of Partial Waves

In the classical problem, for a given energy, each incident impact parameter or

value of the angular momentum is associated with a single scattering angle. In

quantum mechanics this picture is no longer valid since it would imply that we

could simultaneously specify both the position (impact parameter) and momentum

(given by the scattering angle) of the particle. Nevertheless, it is possible to write

the differential scattering amplitude as arising from contributions from each value

of `, since ` is a conserved quantum number. This is the origin of the terminology,

method of partial waves. Several (in principle, all) values of ` give rise to scattering

at the same angle, and there can be interference among the various contributions.

Nevertheless, it is convenient to view the quantum-mechanical scattering as arising

from contributions from different impact parameters.

An uncertainty principle argument can also help you to understand why quantum

total cross sections can be finite for infinite range potentials, whereas they are infi-

nite in the corresponding classical case. The question is, when does the uncertainty

principle lead to a breakdown of a classical approach. The uncertainty principle

requires that the transverse momentum �pt imparted to the particle by the potential

multiplied by the impact parameter that gives rise to this scattering must be greater

than or of order „; that is

b�pt & „: (18.40)

For a potential V varying as C=rs, the change in transverse momentum can be

estimated as

�pt D
Z

Fdt � dV

dr

b

v
� C

bsC1
b

v
D C

bs

b

v
; (18.41)

where v is the incident speed: Therefore, the maximum impact parameter bmax for

which a classical picture can remain valid is determined from the condition

bmax

C

vbs
max

� „; (18.42)

which yields

bmax �
�

C

„v

� 1
s�1

: (18.43)

As a consequence, we might expect that the total quantum cross section is of

order
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�b2max D �
�

C

„v

� 2
s�1

; (18.44)

a quantity that is finite for s > 1. Note that Eq. (18.44) predicts an infinite

cross section for Coulomb scattering, which is actually the case, even quantum-

mechanically. For potentials that fall off faster than 1=r as r ! 1 there is always

an effective maximum range of the potential given by rmax D bmax and an associated

diffractive scattering component in the differential scattering cross section that

would arise from a potential having a sharp cut-off at r D rmax.

To apply the method of partial waves, I must solve the Schrödinger equation

exactly. This is no easy task, but at least I can solve it for large r. If I assume that

the scattering potential falls off faster than 1=r2, the effective potential at large r is

dominated by the angular momentum term—in other words, the effective potential

is that of a free particle. I have considered free particle solutions in spherical

coordinates in Chap. 10. The general solution for the radial wave function of a free

particle for r ¤ 0 can be written as (see Appendix 1)

R`.r/ D ru`.r/ D A`j`.kr/C B`n`.kr/; (18.45)

where

k D
r
2�E

„2 ; (18.46)

are j`.kr/ and n`.kr/ are spherical Bessel and Neumann functions.

Thus, for spherically symmetric potentials, the solution for the wave function,

valid at large r, is

 k.r/ �
1X

`D0
ŒA`j`.kr/C B`n`.kr/�P`.cos �/: (18.47)

Owing to the azimuthal symmetry of the scattering process about the z-axis, the

wave function has no � dependence, which is why the Legendre polynomials appear

in the summation rather than the spherical harmonics. The actual values of A` and

B` can be obtained only if you solve the radial equation exactly for all r. To obtain

an expression for the scattering amplitude, I must expand Eq. (18.47) for large kr.

Using the asymptotic form of the spherical Bessel and Neumann functions,

j`.x/ �
sin
�
x � `�

2

�

x
I (18.48)

n`.x/ �
� cos

�
x � `�

2

�

x
; (18.49)
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valid for x� 1 and x� `, I find

 k.r/ �
1X

`D0

A` sin
�
kr � `�

2

�
� B` cos

�
kr � `�

2

�

kr
P`.cos �/: (18.50)

Since I have already assumed that

 k.r/ �
�

eikz C fk.�/
eikr

r

�
; (18.51)

I must now equate Eqs. (18.50) and (18.51) to find the appropriate fk.�/.

To do so, I first use the identity

eikz D eikr cos � D
1X

`D0
i`.2`C 1/j`.kr/P`.cos �/; (18.52)

which follows from the solution of the free particle Schrödinger equation in

spherical coordinates (see Appendix 1). For large kr I use the asymptotic form of

the Bessel function to rewrite this equation as

eikz �
1X

`D0
i`.2`C 1/

sin.kr � `�
2
/

kr
P`.cos �/: (18.53)

I next set

A` D D` cos ı`I (18.54a)

B` D �D` sin ı`I (18.54b)

tan ı` D �
B`

A`
; (18.54c)

such that

A` sin

�
kr � `�

2

�
� B` cos

�
kr � `�

2

�
D D` sin

�
kr � `�

2
C ı`

�
: (18.55)

The quantity ı` is referred to as a partial wave phase. By combining

Eqs. (18.50), (18.51), (18.53), and (18.55), I find

 k.r/ �
1

kr

1X

`D0
D` sin

�
kr � `�

2
C ı`

�
P`.cos �/

D 1

kr

1X

`D0
i`.2`C 1/ sin

�
kr � `�

2

�
P`.cos �/C fk.�/

r
eikr (18.56)
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or

fk.�/e
ikr D 1

k

1X

`D0

�
D` sin

�
kr � `�

2
C ı`

�
� i`.2`C 1/ sin

�
kr � `�

2

��

�P`.cos �/: (18.57)

To solve this equation, I equate coefficients of e˙ikr appearing on both sides of

the equation. Equating coefficients of e�ikr I find

0 D 1

k

1X

`D0
i`
�
D`e

�iı` � i`.2`C 1/
�

P`.cos �/: (18.58)

Since � is arbitrary, the only possible solution is

D` D i`eiı`.2`C 1/: (18.59)

Equating coefficients of eikr then yields

fk.�/ D
1

2ik

1X

`D0
.�i/`

�
D`e

iı` � i`.2`C 1/
�

P`.cos �/: (18.60)

Combining Eqs. (18.59) and (18.60), I obtain the scattering amplitude

fk.�/ D
1

2ik

1X

`D0
.2`C 1/

�
e2iı` � 1

�
P`.cos �/; (18.61)

which can also be written as

fk.�/ D
1

k

1X

`D0
.2`C 1/eiı` sin .ı`/P`.cos �/: (18.62)

The problem is solved once you calculate the partial wave phases ı`.

To find the ı`, you can proceed as follows:

• For each value of `, solve Schrödinger’s equation exactly for the given potential

to obtain the eigenfunctions.
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• As r!1; express the radial eigenfunctions in the form

u`.r/ D R`.r/=r D A`j`.kr/C B`n`.kr/

� A` sin

�
kr � `�

2

�
� B` cos

�
kr � `�

2

�

D D` sin

�
kr � `�

2
C ı`

�
(18.63)

from which the ı` can be extracted.

Of course it is not easy to solve the Schrödinger equation for most potentials. If

you need only a few partial waves, then the method of partial waves is most useful.

If the range of the potential is of order a, then impact parameters of order a are

needed. That is

bmax D
Lmax

�v
� „`max

�v
� aI (18.64a)

`max �
�va

„ D
pa

„ D ka: (18.64b)

Therefore, the partial wave expansion is especially useful when ka . 1. On the

other hand, even for high energies, ka � 1, it is often possible to solve the radial

equation using the WKB method and then extract the phase shifts. In this limit, the

method of partial waves can also be used at high energies.

18.2.1.1 Differential and Total Cross Sections: Optical Theorem

Before discussing some specific examples and examining the meaning of the partial

wave phases, I derive an expression for the total cross section and relate it to the

scattering amplitude. In doing so, I can address the question of the nature of the

scattering in the forward direction. From Eqs. (18.38) and (18.62), I find

d�

d�
D 1

k2

ˇ̌
ˇ̌
ˇ

1X

`D0
.2`C 1/eiı` sin ı`P`.cos �/

ˇ̌
ˇ̌
ˇ

2

(18.65)

and

� D 2�

k2

1X

`;`0D0

Z 1

�1
d.cos �/.2`C 1/eiı` sin ı`P`.cos �/.2`0 C 1/e�iı`0

� sin ı`0P`0.cos �/
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D 2�

k2

1X

`;`0D0
.2`C 1/eiı` sin ı`.2`

0 C 1/e�iı`0 sin ı`0

2ı`;`0

.2`C 1/

D 4�

k2

1X

`D0
.2`C 1/ sin2 ı`: (18.66)

Since P`.1/ D P` Œcos .� D 0/� D 1, this can be re-expressed as

� D 4�

k
Im

"
1

k

1X

`D0
.2`C 1/eiı` sin ı`P`.cos 0/

#

D 4�

k
Im fk.0/; (18.67)

which is known as the optical theorem. It relates the total cross section to the forward

scattering amplitude. What is the physical meaning of this equation?

Some insight into the answer to this question can be obtained by returning to the

asymptotic form of the wave function

 k.r/ �
�

eikz C fk.�/
eikr

r

�
: (18.68)

The initial probability current density is

Ji D
„k
�

uz (18.69)

and the final probability current density is

Jf D
i„
2�

�
eikz C fk.�/

eikr

r

�

�
�
�ike�ikzuz � f �

k .�/
e�ikr

r

�
ikC 1

r

�
ur C

e�ikr
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df �
k .�/

d�
u�

�

Cc.c.

D „k
�

uz C
„k
�

jfk.�/j2

r2
ur

C
�

i„
2�

�
eikz C fk.�/

eikr

r

�
e�ikr

r2

df �
k .�/

d�
u� C c.c.

�
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C„k
2�

�
e�ikzfk.�/

eikr

r
uz C c.c:

�

C„k
2�

�
eikzf �

k .�/

�
1C 1

ikr

�
e�ikr

r
ur C c.c:

�
: (18.70)

For probability to be conserved, the change in the normal component of the

probability density integrated over a spherical surface must vanish as the radius

R of the sphere approaches infinity. Using the facts that z D r cos �; uz�ur D cos � ,H
cos �d� D 0; ur�u� D 0, d� D d�d .cos �/, and carrying out the integration

over �, I find

0 D �

„k
lim

R!1

I
R2d�

�
Jf � Ji

�
�ur D

Z
d� jfk.�/j2 C 2�

� lim
R!1

Z 1

�1

d .cos �/

(
R
2

�
e�ikR cos � cos � fk.�/e

ikR C c.c:
�

C R
2

�
eikR cos � f �

k .�/
�
1C 1

ikR

�
e�ikR C c.c:

�
)
: (18.71)

There are two types of terms, the first involves the radial flow of the scattered wave

and the second and third represent interference of the incident and scattered waves.

Integrating the second and third terms by parts, I obtain

Z
d� jfk.�/j2 C �

�
fk.0/C fk.�/e

�2ikR

�ik
C c.c:

�

C�
�

f �
k .0/ � f �

k .�/e
2ikR

ik
C c.c:

�
D 0: (18.72)

Additional terms in the integration by parts are neglected since they vanish in the

limit R!1. The e˙2ikR terms cancel and I am left with

� D
Z

d� jfk.�/j2 D
2�

ik

�
fk.0/ � f �

k .0/
�
D 4�

k
Im fk.0/: (18.73)

This result now has a very simple physical interpretation. The incident wave (or

wave packet) is scattered in all directions. In the forward direction the incident wave

interferes with the scattered wave to reduce the probability current in the forward

direction in precisely the amount that corresponds to scattering in all the other

directions. In other words, the optical theorem is just a statement of conservation

of probability.

18.2.1.2 Interpretation of the Partial Wave Phases

There is also a simple interpretation that can be given to the partial wave phases.

For a free particle
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R`.r/ D j`.kr/ �
sin
�
kr � `�

2

�

kr
(18.74)

as r ! 1. For a particle scattered by a potential, sin
�
kr � `�

2

�
is replaced by

sin
�
kr � `�

2
C ı`

�
[see Eqs. (18.50) and (18.55)]. Thus the partial wave phases are

simply phase shifts in the asymptotic wave function produced by the potential. For

example, for an infinitely repulsive hard sphere potential having radius a, the wave

function is displaced from the origin. For ` D 0 it is displaced by a; giving rise to

a phase shift ı0 D �ka. For higher `, the shift depends on ` but is always negative.

Any purely repulsive potential always produces negative phase shifts, analogous to

the fact that classical repulsive scattering always leads to positive deflection angles.

For scattering by attractive potentials, new and interesting phenomena can occur.

The phase shifts are positive, in general, because the wave function is pulled in

by the potential, but for strong potentials the wave function can be pulled in so

much that an extra oscillation occurs and gives rise to negative phase shifts of

the type you would normally associate with a repulsive interaction. Although the

deflection angle is negative for classical scattering by attractive potentials, deflection

angles such as those satisfying �� < ‚ < �2� correspond to scattering that can

mimic that of a repulsive potential. It is often stated that the interatomic potential in

Bose condensates is repulsive since repulsive interactions are needed to produce the

condensates. Actually the true interaction is attractive, but the effective interaction

is repulsive.

There is another interpretation that can be given to the phase shifts that is valid for

large energy and angular momenta. The radial wave equation for u`.r/ D rR`.r/ is

d2u`

dr2
C k2u` �

2�V.r/u`

„2 � ` .`C 1/
r2

u` D 0: (18.75)

Asymptotically, as r!1,

u`.r/ � sin

�
kr � `�

2
C ı`

�
: (18.76)

Equation (18.75) can be solved using the WKB method in the limit of high energies

and high angular momentum, since the effective potential does not vary significantly

over a de Broglie wavelength in this limit. By solving Eq. (18.75) as I did in

Chap. 16, you can show that the WKB wave function for r > a, where a is the

classical turning point, is given by

uWKB
` .r/ D Cp

k.r/
sin

�Z r

a

k.r0/dr0 C �=4
�

(18.77)
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where C is a constant and

k.r/ D
r

k2 � 2�V.r/

„2 � ` .`C 1/
r2

D
r
2�

„2

s
E � V.r/ � „

2` .`C 1/
2�r2

: (18.78)

As r!1, the radial function can be written as

uWKB
` .r/ D Cp

k.r/
sin

�
krC

Z 1

a

dr0 �k.r0/ � k
�
� kaC �=4

�
: (18.79)

By comparing Eqs. (18.76) and (18.79), you can see that the partial wave phase shift

is given by

ıWKB
` D `�

2
C
Z 1

a

dr
�
k.r0/ � k

�
� kaC �=4

D `�

2
C
r
2�E
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dr

0
@
s
1 � V.r/

E
� „

2` .`C 1/
2�Er2

� 1

1
A

�kaC �=4: (18.80)

For a classical limit in which ` � 1, ` .`C 1/ � `2, the derivative of the phase

shift with respect to ` is given by

d

d`
ıWKB
` � �

2
� „2`

s
1

2�E„2
Z 1

a

dr

r2
�q

1 � V.r/

E
� „2`2

2�Er2

� : (18.81)

If I set L D „` D �vb D
p
2�Eb and compare Eq. (18.81) with Eq. (18.16), I find

2
d

d`
ıWKB
` D � � 2b

Z 1

a

dr

r2
q
1 � b2

r2
� V.r/

E

D ‚I (18.82)

the derivative of the phase shift is related to the deflection angle for scattering with

impact parameter b! Using this approximation, one can show that it is possible to

recover the classical limit for the differential scattering cross section in the high

energy limit.
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18.2.1.3 Calculation of the Partial Phase Shifts

I consider only two examples: scattering by a hard sphere and scattering by a

spherical well potential, but first I discuss some general qualitative features of the

partial wave approach. The scattering associated with the first few partial waves

is designated by the standard letter scheme of angular momentum. Thus, ` D 0

corresponds to S wave scattering, ` D 1 to P wave scattering, ` D 2 to D wave

scattering, etc. The largest angular momentum quantum number `max that can be

expected to contribute to the sum over ` for scattering by a potential having finite

range rmax is

`max D
Lmax

„ D �vrmax

„ � rmax

�dB

� krmax: (18.83)

At low energies, krmax � 1, only S wave scattering is important. In that case

d�

d�
� sin2 ı0

k2
I (18.84a)

� D 4� sin2 ı0

k2
D sin2 ı0

�
�2dB: (18.84b)

The scattering is isotropic and, since the de Broglie wavelength is larger than

the scattering range, the incoming wave “surrounds” the scattering center and is

scattered by the total surface area of the potential rather than the cross-sectional

area.

In the opposite limit of high energy scattering, where

`max D
Lmax

„ D �vrmax

„ � rmax

�dB

� krmax � 1; (18.85)

many partial waves contribute to the scattering. One can convert the sum over

` to an integral over impact parameters. For each impact parameter, there is a

scattering angle that corresponds to the maximum contribution to the integral (point

of stationary phase). In some sense, we recapture the classical limit in which

scattering at a given impact parameter gives rise to scattering at a particular angle.

The calculation is reminiscent of the Feynman path integral approach where the

classical path makes the major contribution to an integral of the action between

two fixed points. There is a difference from the classical case however, since

contributions from different ` can interfere, giving rise to rapid oscillations in the

differential cross section as a function of angle—it is only when these oscillations

are assumed to average to zero (as would be the case if an experiment could not

resolve the oscillations as a function of angle) does one recover the classical limit

of the differential cross section.
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Hard Sphere Scattering

I first consider the hard sphere potential

V.r/ D
�
1 r � a

0 r > a
: (18.86)

Recall that in the classical case, the differential scattering cross section is a2=4

(isotropic) and the total cross section is �a2. The maximum impact parameter giving

rise to scattering is bmax D a. For an incident energy E D �v2=2, there is no

scattering for L > �va. In the quantum problem we would expect that partial waves

having ` < �va=„ D ka provide the major contribution to the scattering.

In the quantum problem, the radial wave function vanishes for r � a. For r > a

the potential is that of a free particle, giving a general solution

R`.r/ D A`j`.kr/C B`n`.kr/: (18.87)

The radial wave function must vanish at r D a, leading to the condition

0 D A`j`.ka/C B`n`.ka/ (18.88)

or

tan ı` D �
B`

A`
D j`.ka/

n`.ka/
: (18.89)

Some care must be used in interpreting ı` if you use a computer program to evaluate

it, since most programs return the principal value of tan�1.
On the other hand there is no ambiguity in calculating the value of sin ı` using

ı` D tan�1 Œj`.ka/=n`.ka/�. The result is

sin ı` D
j`.ka/q

Œj`.ka/�2 C Œn`.ka/�2
: (18.90)

As a consequence, the differential cross section can then be obtained using

Eq. (18.65) as

d�

d�
D 1

k2

ˇ̌
ˇ̌
ˇ̌
ˇ

1X

`D0

.2`C 1/e
i tan�1

�
j`.ka/

n`.ka/

�
j`.ka/q

Œj`.ka/�
2 C Œn`.ka/�

2
P`.cos �/

ˇ̌
ˇ̌
ˇ̌
ˇ

2

; (18.91)
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and the total cross section using Eq. (18.66) as

� D 4�

k2

1X

`D0
.2`C 1/ Œj`.ka/�2

Œj`.ka/�2 C Œn`.ka/�2
: (18.92)

Recall that �dB D 2�=k and k2 D 2�E=„2, such that

ka D 2� a

�dB

D
r
2�Ea2

„2 (18.93)

is a dimensionless measure of the energy. If ka � 1, the de Broglie wavelength is

larger than the scattering radius and quantum effects are important. For ka� 1 you

might expect that the quantum result reduces to the classical one, but this is only

partially true. Let me analyze the scattering in the low and high energy regions,

ka� 1 and ka� 1, respectively.

Low Energy - ka� 1

In this limit, only ` D 0 contributes significantly. For ` D 0,

tan ı0 D
sin.ka/

� cos.ka/
D � tan kaI (18.94a)

ı0 D �ka; (18.94b)

the wave is shifted so that there is a node in the radial wave function at r D a.

As I already mentioned, the radial wave function is displaced by a distance a when

` D 0 for hard sphere scattering: The differential and total cross sections are given

approximately by

d�

d�
� 1

k2

Œj0.ka/�2

Œj0.ka/�2 C Œn0.ka/�2
D sin2.ka/

k2
� a2I (18.95a)

� � 4�a2: (18.95b)

The scattering is isotropic and the total cross section is four times the geometrical

one—in some sense the wave “sees” the entire surface area of the sphere, instead of

just the cross section.

High Energy - ka� 1

In this limit, values of ` . ka contribute to the cross section. For ka � 1,

the differential and total cross sections can be approximated by methods that are

discussed in Appendix 2. Near � D 0, there is a peak resulting from diffractive

scattering at the sharp boundary of the hard sphere. For larger � , the differential

cross section settles down to a value close to the classical limit of a2=4. The

diffraction peak has an amplitude of order
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d� .� D 0/
d�

� a2

4
.ka/2 ; (18.96)

width of order �� � 4=ka, and contributes �a2 to the total cross section. The

classical part of the scattering also contributes �a2 to the total cross section, such

that the total cross section is

� D 2�a2; (18.97)

twice the classical limit. This is another example where a sharp change in the

potential gives rise to a wave effect, regardless of the incident energy. Of course

you never see such diffractive scattering in classical experiments since you would

have to prepare a coherent wave to scatter off another particle. In some laser

spectroscopy experiments, evidence for diffractive scattering of Yb (atomic mass

=178) was shown explicitly.2 Diffractive scattering also contributes significantly to

the diffusion coefficients of atoms in vapors.

For arbitrary ka, you can simply use Eq. (18.89) to evaluate the phase shifts and

then carry out the sums in Eqs. (18.65) and (18.66) to obtain the differential and total

cross sections. This may take some time to do on a computer, but not that long if

ka < 100. Some graphs are shown in Figs. 18.13, 18.14 and 18.15, the last of which

corresponds to high energy scattering, where the forward scattering diffractive peak

is seen clearly. A graph �=�a2 as a function of ka is shown in Fig. 18.16. The cross

section varies from 4�a2 in the low energy limit to 2�a2 in the high energy limit.

Scattering by a Spherical Potential Well

I now consider scattering by the spherical well potential

V.r/ D
�
�V0 r � a

0 r > a
: (18.98)

Although I concentrate mainly on the case of positive V0, the analysis is equally

valid for a spherical barrier potential, with V0 < 0. This is an extraordinarily rich

problem and I cannot discuss many aspects of the solution, but you can examine the

numerical solutions at your leisure. In this case, many features of the scattering are

not related to the sharp discontinuity in the potential; they occur for any finite range

potential. That is what makes a study of the spherical well potential so important.

Recall that in the corresponding case of electromagnetic scattering by a dielectric

sphere, there were many interesting effects possible, such as rainbow and glory

2See, for example, R. A. Forber, L. Spinelli, J. E. Thomas, and M. S. Feld, Observation of Quantum

Diffractive Velocity-Changing Collisions by Use of Two-Level Heavy Optical radiators, Physical

Review Letters 50, 331–334 (1983).
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Fig. 18.13 Hard sphere scattering for ka D 0:01. The total scattering cross section is � D 4:0�a2

Fig. 18.14 Hard sphere scattering for ka D 1. The total scattering cross section is � D 3:4�a2

Fig. 18.15 Hard sphere scattering for ka D 5, showing a forward diffraction peak and isotropic

scattering outside the peak. The total scattering cross section is � D 2:6�a2
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Fig. 18.16 Total cross section � (in units of �a2) as a function of ka for hard sphere scattering. At

high energies the cross section approaches �=�a2 � 2; twice the classical value

scattering. We can try to look for some of these effects in the quantum case. The

maximum impact parameter giving rise to scattering is bmax D a in the classical

problem so, as in the case of hard sphere scattering, we can expect that partial waves

having ` . ka to provide the major contribution to the scattering.

The potential is constant for both r < a and r > a, but the radial wave function

must be finite as r! 0: As such, the general solution for the radial wave function is

R`.r/ D
�

C`j`.k1r/ r < a

A`j`.kr/C B`n`.kr/ r > a
; (18.99)

where

k D
r
2�E

„2 ; k1 D
r
2� .EC V0/

„2 : (18.100)

[For V0 < 0, k1 is replaced by k2 D
p
2� .E � V0/ =„2. Although k2 is purely

imaginary for E < V0, j`.k2r/ is still real.] Matching the radial wave function and

its derivatives at r D a, I find

A`j`.x/C B`n`.x/ D C`j`.x1/ (18.101a)

A`kj0`.x/C B`kn0
`.x/ D C`k1j

0
`.x1/ (18.101b)

where j0`.x/ is a shorthand notation for dj`.y/=dyjyDx, n0
`.x/ is a shorthand notation

for dn`.y/=dyjyDx, and

x D ka; x1 D k1a: (18.102)

The partial wave phase shifts are given by Eq. (18.54c), namely

tan ı` D �
B`

A`
: (18.103)
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Solving Eqs. (18.101), I find

tan ı` D �
B`

A`
D xj`.x1/j

0
`.x/ � x1j`.x/j

0
`.x1/

xn0
`.x/j`.x1/ � x1j

0
`.x1/n`.x/

: (18.104)

In effect I have solved the problem since all the phase shifts can be evaluated easily

using a simple computer program. Once I have calculated the phase shifts from

Eq. (18.104), I can construct

fk.�/ D
1

k

1X

`D0
.2`C 1/eiı` sin ı`P`.cos �/I (18.105a)

� k D
4�

k2

1X

`D0
.2`C 1/ sin2 ı`: (18.105b)

The dimensionless variables that enter are

x D ka; x1 D
q

x2 C ˇ2; ˇ D
r
2�V0a2

„2 : (18.106)

From your work on the eigenenergies of a particle in a spherical potential well, you

will recognize that ˇ is a measure of the number of bound states in the potential.

Low Energy - x D ka� 1

In this limit, only ` D 0 contributes significantly and

d�

d�
� sin2 ı0

k2
I (18.107a)

� � 4� sin2 ı0

k2
: (18.107b)

For spherical barrier potentials, the dependence of the cross section on ˇ is

somewhat boring (see problems) and need not be discussed.

Spherical well potentials present a whole new story. There are values of ˇ for

which ı0 D 0 and S wave scattering is totally suppressed—this is known as the

Ramsauer-Townsend effect. On the other hand, there are values of ˇ D .nC 1=2/�
for which bound states in the potential well occur near zero energy—the first such

state occurs when ˇ D �=2: For these values of ˇ there is a resonance near x D
ka D 0 and the wave function “bounces back and forth many times” as it is scattered.

As a result the scattering cross section has a narrow, sharply peaked resonance as a

function of ˇ for fixed x.

These features are seen clearly in Figs. 18.17 and 18.18 where both the res-

onances and Ramsauer-Townsend effect can be seen. Note that this does not

necessarily imply there is a resonance in the cross section as a function of energy
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Fig. 18.17 Differential scattering cross section (in units of a2) as a function of well strength

parameter ˇ

Fig. 18.18 Blow-up of Fig. 18.17 showing the Ramsauer-Townsend effect

for fixed ˇ. The resonance effect at low energy is related to that associated with the

perfect transmission for a one-dimensional square-well potential having width 2a

[see Eq. (6.110) with a replaced by 2a].

An expression for the differential cross section can be obtained without difficulty

by substituting in the values of the spherical Bessel and Neumann functions and

their derivatives for ` D 0. Alternatively you can solve the radial equation directly

for ` D 0. Using either method, and setting x1 � ˇ since x� 1, you will find

tan ı0 D x

�
tanˇ

ˇ
� 1

�
; (18.108a)
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sin ı0 D
x
�

tanˇ

ˇ
� 1

�

r
1C x2

�
tanˇ

ˇ
� 1

�2 ; (18.108b)

and

d�

d�
� sin2 ı0

k2
D

a2
�

tanˇ

ˇ
� 1

�2

1C x2
�

tanˇ

ˇ
� 1

�2 : (18.109)

Note that, as a function of ˇ, there are resonances whenever ˇ D .n C 1=2/� . At

the resonance positions, a�2d�=d� D 1=x2 and the width �ˇ of the resonances is

of order x: There is a Ramsauer-Townsend effect whenever tanˇ=ˇ D 1:
Since x� 1; for all values of ˇ except those corresponding to resonance,

d�

d�
� a2

�
tanˇ

ˇ
� 1

�2
D a2s (18.110)

where

as D �a

�
tanˇ

ˇ
� 1

�
D lim

k!0

�
�1

k
tan ı0

�
(18.111)

is referred to as the scattering length. Thus, low energy scattering can be char-

acterized by a single parameter as, except in the region of a resonance (where a

second parameter called the effective range reff is also needed). This is a very general

result for any type of low energy scattering. In other words, the specific form of the

potential is unimportant; the low energy cross section depends only on the scattering

length which, in turn, depends on some integral property of the potential, such as

the strength parameter ˇ.

There is a simple geometric interpretation that can be given to the scattering

length. Recall that the radial equation for ` D 0 is simply

(
d2u0.r/

dr2
C k21u0.r/ D 0 r < a

d2u0.r/

dr2
C k2u0.r/ D 0 r > a

: (18.112)

The general solution of these equations satisfying the boundary condition that

u0.0/ D 0 is

�
u0.r/ D A sin .k1r/ r < a

u0.r/ D B sin .krC ı0/ r > a
: (18.113)
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Matching the radial wave functions and their derivatives at r D a, and using the fact

that x D ka� 1, I obtain the solution

u0.r/ �
(

A sin .ˇr=a/ r < a
A sinˇ

x cos ı0Csin ı0
sin .xr=aC ı0/ r > a

; (18.114)

where ı0 is determined from Eq. (18.108a). The value of ˇ determines how many

oscillations there are in u0.r/ in the region r < a [there are no oscillations for

a spherical barrier potential since sin .ˇr=a/ ! i sinh .ˇr=a/ which increases

monotonically for r < a]. The slope of the radial wave function at r D a;

du0.r/

dr

ˇ̌
ˇ̌
rDa

D Aˇ

a
cos .ˇ/ ; (18.115)

is associated with the tangent to the function u0.r/ at that point. I extend this tangent

and look for the point rs where it crosses the r-axis (see Fig. 18.19). I can calculate

rs using

u0.a/ �
du0.r/

dr

ˇ̌
ˇ̌
rDa

.a � rs/ D u0.rs/ D 0; (18.116)

which has as solution

rs D a

�
1 � tanˇ

ˇ

�
D � tan .ı0/

k
D as: (18.117)

In other words, the scattering length is the radius at which the tangent to the radial

wave function u0.r/ at r D a crosses the r-axis. For spherical well potentials

with ˇ < �=2, the slope is positive but always less than u0.a/=a; consequently,

as < 0. Since as ¤ 0 there is no Ramsauer-Townsend when ˇ < �=2: At the first

resonance, ˇ D �=2, as D �1 (the tangent is parallel to the r-axis), but for a

value of ˇ slightly larger than �=2 the wave function “turns over” and the scattering

length becomes positive, mimicking the effects of a repulsive potential. This is how

the scattering in a Bose condensate can appear to be repulsive, even if the actual

potential is attractive. For still larger values of ˇ; the scattering length decreases and

eventually passes through as D 0; giving rise to the Ramsauer-Townsend effect, just

before the next resonance. These features are illustrated in Fig. 18.19. [For spherical

barrier potentials the radial wave function varies as sinh .ˇr=a/ and the slope at

r D a; Aˇ cosh .ˇ/ =a, is positive and always greater than u0.a/=a D A tanh .ˇ/ =a;

consequently, as > 0.]

High Energy - x D ka� 1

When I consider scattering at high energies, a new range of phenomena can

appear. I have already noted that the scattering is analogous to scattering by a

dielectric sphere having index of refraction



18.2 Quantum Scattering 443

Fig. 18.19 Graphs of u0 as a function of r=a for a spherical well potential with A D 1, x D 0:1 and

ˇ D 1 (red curve), 2 (blue curve), 4.5 (green curve). The dashed curves intersect the horizontal axis

at a value corresponding to the scattering length. For ˇ D 1, the scattering length is negative, for

ˇ D 2, the scattering length is positive, and for ˇ D 4:5, the scattering length is zero (Ramsauer-

Townsend effect)

neff D
r
1C V0

E
D

s

1C ˇ2

x2
: (18.118)

Therefore, for x D ka � 1 and ˇ of order unity, the index approaches unity and

there is very little scattering. The more interesting regime is when x and ˇ are

comparable, so that neff is on the order or 1.4 or so. In that limit, one may see

such effects as rainbow and glory scattering, although it may be necessary to go to

values of x as large as 1000 to clearly see the rainbow effects.

I need to consider three ranges of angular momenta values to get a qualitative

understanding of the scattering. First consider ` < ka which corresponds to impact

parameters b < a [see Fig. 18.20 with energy E3]. This is analogous to the situation

in optics where a ray enters the dielectric sphere and undergoes internal reflections

in the sphere. Both rainbow and glory scattering occur. You can almost “see” the

result. If a “particle” comes in, it is reflected and transmitted at r D a; reaches a

point of closest approach r0 and then is transmitted and reflected on its way out at

r D a. The wave that exits the sphere is the “normal” refracted wave, but that wave

is also reflected on the inner surface of the sphere and can emerge at some other

direction and correspond to rainbow scattering for some incident impact parameter.

Since an infinite number of reflections are possible, all scattering angles can occur

and glory scattering occurs a well.

For ` > x1 D
q

x2 C ˇ2; any penetration into the barrier is weak and there is

very little scattering since b� a [see Fig. 18.20 with energy E1]. No tunneling into

a classically allowed region is possible. However for x1 > ` > x, such tunneling is

possible even though the impact parameter b > a (this is a wave-like effect) [see

Fig. 18.20 with energy E2]. Most of the time the scattering is negligible, but if the
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Fig. 18.20 Effective potential for a spherical well potential

incident energy corresponds to the energy of the quasi-bound states in the effective

potential, there can be very narrow resonances in the scattering at these energies. Of

course, the differential scattering cross section involves a sum over all values of `,

so all three types of effects are present at once.

The differential scattering cross section is shown in Figs. 18.21, 18.22, and 18.23,

for x D ka D ˇ D 5; 20; 100: There is a forward diffraction peak as in scattering by

a hard sphere, but now there is evidence for glory scattering at � D � . Moreover,

for this value of the effective index of refraction, neff D
p
2, the rainbow angle

is predicted to be � � 2:6 rad; the peak at this value in the ka D 100 graph,

which sharpens with increasing ka, may be an indication that rainbow scattering

is occurring. The oscillations in the graph correspond to interference effects arising

from contributions from different ` to scattering at a given angle.

The classical differential cross section, given in Eq. (18.28) with n D neff Dp
1C V0=E, is also plotted in Figs. 18.21, 18.22 and 18.23 as the dashed curves.

The classical cross section does not have a forward diffraction peak, but otherwise is

in good agreement with the quantum distribution, averaged over oscillations, in the

classically allowed region, which extends to �max D 2 cos�1 .1=neff/. For neff D
p
2,

�max D �=2 D 1:57.

For the case of scattering by a spherical barrier potential I can carry over the

results of those for the spherical well potential by replacing V0 with � jV0j : In the

limit that E � jV0j, the results are similar to that for hard sphere scattering. For

E > jV0j, the net change from the attractive case is that the effective index is now

neff D
q
1 � jV0j

E
and the quantity ˇ becomes pure imaginary. There is no longer

any rainbow scattering and the interference effects that are present for scattering

by a spherical well potential are diminished, since there are not as many impact
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Fig. 18.21 Scattering by a spherical well potential showing the forward diffraction peak. The

dashed, blue curve is the corresponding result for classical particle scattering, for which the

diffraction peak is absent

Fig. 18.22 Scattering by a spherical well potential showing the glory. The dashed, blue curve is

the classical result

Fig. 18.23 Scattering by a spherical well potential showing the glory and a possible rainbow. The

dashed, blue curve is the classical result
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Fig. 18.24 Scattering by a spherical barrier potential. The dashed, blue curve is the classical result

parameters that give rise to the same scattering angle for repulsive scattering as there

are for attractive scattering. In Fig. 18.24, where x D 100 and ˇ D 100i=
p
2 (neff D

1=
p
2), you can see that there are fewer oscillations than in the corresponding case

of scattering by a spherical well potential and that there is no rainbow, but there does

appear to be a slight glory.

18.2.2 Born Approximation

For potentials requiring numerical solutions, the method of partial waves is espe-

cially useful in the low energy scattering limit, when only a few partial waves are

needed. It would be good to have a result that is valid in the high energy limit,

other than the WKB partial wave result. The Born series provides such a solution to

this problem. The Born series is effectively a perturbative approach, valid when the

scattering cross section can be expanded in a power series in the potential.

To derive the Born series, I start from the Schrödinger equation written in the

form

r2 C k2 D U.r/ ; (18.119)

where

U.r/ D 2�

„2 V.r/: (18.120)
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The idea is to treat the right-hand side as a perturbation. I look for a solution to this

equation in the form

 k.r/ D eik�r � 1

4�

Z
dr0G.r � r0/U.r0/ .r0/; (18.121)

substitute it into Eq. (18.119) and find that, for this to be a solution, I must require

that

�
r2 C k2

�
G.r � r0/ D �4�ı.r � r0/: (18.122)

The quantity G.r � r0/ is known as a Green function. It is not difficult to verify by

direct substitution that

G.r � r0/ D e˙ikjr�r0j

jr � r0j (18.123)

is a solution of Eq. (18.122). Which sign in the exponent to take depends on the

physics. If the scattering is to correspond to outgoing spherical waves, the positive

sign must be taken.

Thus, the formal solution for  k.r/, obtained from Eqs. (18.121) and (18.123), is

 k.r/ D eik�r � 1

4�

Z
dr0 eikjr�r0j

jr � r0jU.r
0/ k.r

0/: (18.124)

It looks like I haven’t accomplished anything but to go from a differential to an

integral equation. However, this is precisely the form that is useful for an iterative

or perturbation series solution in powers of U.r/. In other words, to zeroth order

in U.r/

 
.0/
k .r/ D eik�r (18.125)

and to first order

 
.1/
k .r/ D eik�r � 1

4�

Z
dr0 eikjr�r0j

jr � r0jU.r
0/eik�r0

; (18.126)

which is known as the first Born approximation. You can continue iterating the

solution to obtain the Born series as a power series in the potential, but it is usually

difficult to go beyond the first term. The first Born approximation is the most

important result in high energy scattering.

To get the scattering amplitude, I must compare Eq. (18.126) in the limit r!1
with Eq. (18.31). To do so, I take the z axis along k, and expand

eikjr�r0j � eikr.1�Or�r0/ D eikre�ik0�r0

; (18.127)
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where

k0 D kur (18.128)

gives the direction of scattering. In this manner, I find that as r!1,

 
.1/
k .r/ � eikz � eikr

4�r

Z
dr0e�iq�r0

U.r0/; (18.129)

where

q D k0 � k: (18.130)

Comparing Eqs. (18.31) and (18.129), I obtain the scattering amplitude

fk.�/ D �
1

4�

Z
dre�iq�rU.r/ D � �

2�„2
Z

dre�iq�rV.r/: (18.131)

For spherically symmetric potentials, V.r/ is a function of r only. In this limit, to

evaluate the integral, I take z along q such that

q � r Dqr cos �; (18.132)

enabling me to compute

Z
dre�iq�rV.r/ D

Z
dre�iqr cos �V.r/

D 2�
Z 1

0

r2dr

Z 1

�1
d.cos �/e�iqr cos �V.r/

D 4�

q

Z 1

0

dr sin .qr/ rV.r/; (18.133)

such that

fk.�/ D �
2�

q„2
Z 1

0

dr sin .qr/ rV.r/: (18.134)

The magnitude of q is given by

q D
ˇ̌
k0 � k

ˇ̌
D k jur � uzj D k

p
2 .1 � cos �/ D 2k sin .�=2/ : (18.135)

Roughly speaking, Eq. (18.134) is the Fourier sine transform of r times the potential.

The hope is that the dependence of the Born cross section on q will reveal something

about the nature of the potential giving rise to the scattering.
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It is difficult to give a rigorous estimate of the corrections to the first Born

approximation. Sometimes the Born approximation is used without justification

since it is the only simple calculation that can be carried out. By looking at the

second order term in the Born series and evaluating the terms in the integrand at

r D 0, one can estimate that the first Born approximation is valid if

ˇ̌
ˇ̌ �
k„2

Z 1

0

drV.r/
�
e2ikr � 1

�ˇ̌ˇ̌� 1: (18.136)

If there is some effective range a0 to the potential and if the maximum of the

potential is V0, then the validity condition given by Eq. (18.136) reduces to

�V0a
2
0=„2 � 1 if ka0 � 1I (18.137a)

�V0a
2
0=
�
ka0„2

�
� 1 if ka0 � 1: (18.137b)

Looking at Eq. (18.137b), you see that the first Born approximation is generally

valid for high energy scattering, ka0 � 1. It can be valid even for low energy

scattering if ˇ2 D 2�V0a
2
0=„2 � 1; that is, for values of the strength ˇ that

are sufficiently small to insure that no bound states could exist in the case of an

attractive potential. In fact, since condition (18.137a) is generally satisfied when

condition (18.137b) holds, a sufficient condition for the Born series to converge

is that � jV.r/j is not strong enough to support a bound state (along with the

additional requirements that both
R1
0

dr jV.r/j r and
R1
0

dr jV.r/j r2 are finite).

Although conditions (18.137) are sufficient, they may not be necessary for validity

of the first Born approximation.

Examples:

If

V.r/ D V0e
�r2=a2 ; (18.138)

then

fk.�/ D f .q/ D �2�V0

q„2
Z 1

0

dr sin .qr/ re�r2=a2

D �2�V0

q„2
�p

�

4
a3qe�a2q2=4

�
D ��V0

p
�a3e�a2q2=4

2„2 (18.139)

and

d�

d�
D jfk.�/j2 D �a2

"�
�V0a

2

2„2
�2

e�2k2a2 sin2.�=2/

#
; (18.140)
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where Eq. (18.135) was used. For ka � 1, the differential cross section exhibits

a diffraction-like central peak with a maximum at � D 0; but, in contrast to the

diffraction pattern of an opaque disk, there are no oscillations for larger values of � .

Note that, if ka� 1, d�=d� is constant, as for any low energy S-wave scattering.

The first Born approximation is valid if condition (18.136) holds

ˇ̌
ˇ̌�V0

k„2
Z 1

0

dre�r2=a2
�
e2ikr � 1

�ˇ̌ˇ̌� 1; (18.141)

which can be rewritten as

ˇ̌
ˇ̌
ˇ
ˇ2

2x

Z 1

0

d�e��2 �e2ix� � 1
�
ˇ̌
ˇ̌
ˇ� 1; (18.142)

where x D ka. The integral can be evaluated in terms of known functions, but can

also be done numerically. The inequality is satisfied for ˇ � 1 if x � 1 and for

ˇ2 � x if x� 1.

As a second example, I take

V.r/ D
�
�V0 r � a

0 r > a
: (18.143)

For this potential

fk.�/ D f .q/ D 2�V0

q„2
Z a

0

dr sin .qr/ r

D 2�V0

q„2
�

sin .aq/ � aq cos .aq/

q2

�
(18.144)

and

d�

d�
D jf .q/j2 D a2ˇ4

�
sin .aq/ � aq cos .aq/

q3a3

�2
; (18.145)

where

ˇ D
r
2�V0a2

„2 (18.146)

is a measure of the number of bound states supported by the potential. Recall that

q D 2k sin .�=2/ :

If ka� 1, then

d�

d�
� ˇ4a2

9
(18.147)



18.2 Quantum Scattering 451

and the scattering is isotropic. This low energy result agrees with Eq. (18.110)

obtained using the method of partial phases, provided ˇ � 1 [in that limit,

.tanˇ=ˇ � 1/2 � ˇ4=9]:

Next consider the limit that qa � 1, that is, high energy scattering outside the

diffraction cone defined by �d � 1=ka. In this case,

f .q/ � �ˇ2acos .aq/

q2a2
(18.148)

and

d�

d�
� ˇ4a2 cos2 .aq/

q4a4
: (18.149)

Inside the diffraction cone, that is, for �d � 1=ka, the result is still given by

Eq. (18.147). The overall pattern is similar to that for Fraunhofer diffraction of

optical radiation by a circular aperture.

According to conditions (18.136), the first Born approximation should be valid if

ˇ̌
ˇ̌�V0

k„2
Z a

0

dr
�
e2ikr � 1

�ˇ̌ˇ̌ D ˇ2

2x

ˇ̌
ˇ̌
�

e2ix � 1
2ix

� 1
�ˇ̌
ˇ̌� 1; (18.150)

where x D ka. Thus the first Born approximation is valid for ˇ2 � 1 if x � 1 and

for ˇ2=x� 1 if x� 1. However these are sufficient, but not necessary conditions.

By comparing the exact solution given by Eqs. (18.104)–(18.105), you can show

that if ˇ=x D
p

V0=E � 1, then the first Born approximation is valid for all � .

This limit corresponds to scattering by a sphere whose effective index of refraction

is approximately equal to unity.

The total cross section is given by

� k D 2�
Z �

0

jf .q/j2 sin �d�

D 2�a2ˇ4

k2a2

Z 2ka

0

dy
Œsin y � y cos y�2

y5

D �ˇ4a2
�
32x4 � 8x2 � 1C 4x sin .4x/C cos .4x/

64x6

�
; (18.151)

where Eq. (18.145) was used along with the substitutions y D qa D 2ka sin .�=2/ D
2x sin .�=2/ and sin � D 2 sin .�=2/ cos .�=2/.

Note that the Born approximation can fail even in the limit „ � 0 (ka � 1),

owing to the sharp boundary of the spherical potential well. That is, in the limit

ka D x� 1,
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� � �a2ˇ4

2x2
D �a2ˇ2

2

�
ˇ

x

�2
; (18.152)

which is a good approximation to the total cross section when ˇ=x D
p

V0=E� 1.

However, if ˇ D x � 1; this result is not valid since it gives � � �a2ˇ2=2

whereas the correct cross section, calculated from Eqs. (18.105) and (18.104), is

of order 2�a2.

18.3 Summary

I have given a rather detailed discussion of elementary quantum scattering theory,

trying to emphasize the underlying physics. To facilitate the discussion, I reviewed

aspects of classical scattering of particles and electromagnetic radiation, since many

features encountered in classical scattering, such as rainbows and glories, resurface

in quantum scattering theory. There are two different methods that can be used to

solve the quantum scattering problem. The method of partial waves is especially

useful for low energy scattering while the Born approximation is basically a high

energy, perturbative approach. Scattering by various potentials was considered and

different types of resonance phenomena were explored, as were diffractive effects

associated with sharp changes in the scattering potential.

18.4 Appendix A: Free Particle Solution in Spherical

Coordinates

For a free particle, we know that the (unnormalized) eigenfunctions are simply

 k.r/ D eik�r; (18.153)

where k2 D 2�E=„2. Why should we go the trouble of solving this in spherical

coordinates when there is no natural origin to the problem? The reason for this is

that, although the particle is not free in the scattering problem, the functional form

of the eigenfunctions for the region r > rmax is the same as that of a free particle,

provided the potential vanishes for r > rmax.

To solve the free particle problem in spherical coordinates, I recall, that for any

spherically symmetric potential, the eigenfunctions have the form

 k`m.r/ D R`.r/Y
m
` .�; �/; (18.154)
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where the Ym
` .�; �/s are spherical harmonics and R`.r/ D u`.r/=r and u`.r/ satisfy

the radial equations

1

r2

d

dr

�
r2

dR`

dr

�
C
�

k2 � 2�V.r/

„2 � ` .`C 1/
r2

�
R` D 0I (18.155a)

d2u`

dr2
C
�

k2 � 2�V.r/

„2 � ` .`C 1/
r2

�
u` D 0: (18.155b)

For V.r/ D 0, the equations are

d

dr

�
r2

dR`

dr

�
C k2r2R` � ` .`C 1/R` D 0I (18.156a)

d2u`

dr2
C k2u` �

` .`C 1/
r2

u` D 0; (18.156b)

having linearly independent solutions that are spherical Bessel and Neumann

functions,

R
.1/

` .kr/ D j`.x/ D
r
�

2x
J`C1=2.x/I (18.157a)

R
.2/

` .kr/ D n`.x/ D
r
�

2x
N`C1=2.x/; (18.157b)

where J`.x/ and N`.x/ are ordinary Bessel and Neumann functions and x D kr. For

the free particle, the Neumann function solutions must be rejected because they are

not regular at the origin.

As a consequence, the free particle eigenfunction eik�r can be expanded in terms

of spherical harmonics and spherical Bessel functions as

 k.r/ D eik�r D
1X

`D0

X̀

mD�`
A`mj`.kr/Ym

` .�; �/: (18.158)

It is not trivial to find the expansion coefficients A`m directly from Eq. (18.158), but

it can be shown that3

A`m D 4� i`
�
Ym
` .� k; �k/

��
; (18.159)

3Actually, Eq. (18.159) can be derived from Eq. (18.160) using the addition theorem for spherical

harmonics. For a derivation of the addition theorem, see George Arfken, Mathematical Methods

for Physicists, Third Edition (Academic Press, San Diego, 1985).
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where .� k; �k/ are the polar and azimuthal angles of the vector k. If the z axis is

taken along k, then � k D 0 and Eq. (18.158) reduces to

eikz D eikr cos � D
1X

`D0
i`.2`C 1/j`.kr/P`.cos �/; (18.160)

the result I needed to obtain the scattering amplitude using the method of partial

waves.

I can give a simple derivation of Eq. (18.160). In Eq. (18.158) with the z axis

taken along k, the left-hand side is independent of � so I can set � D 0 in the right-

hand side. Then the spherical harmonics reduce to Legendre polynomials and the

sum over m can be carried out, enabling me to expand

eikz D eikr cos � D
1X

`0D0
B`0 j`0.kr/P`0.cos �/; (18.161)

where the B`0s are some new expansion coefficients. I multiply by P`.cos �/ and

integrate over cos � using the orthogonality of the Legendre polynomials to obtain

B`j`.kr/ D 2`C 1
2

Z 1

�1
dxeikrxP`.x/dx; (18.162)

where x D cos � . I now take the limit that r !1 on both sides. On the right-hand

side I can integrate by parts using u D P`.x/ and dv D eikrx and on the left-hand

side I use Eq. (18.48) to arrive at

B`
sin
�
kr � `�

2

�

kr
D 2`C 1

2

�
P`.1/e

ikr � P`.�1/eikr

ikr

�
: (18.163)

I have neglected the integral term in the integration by parts since it vanishes in the

limit r!1 (you can see this by carrying out additional integration by parts on the

integral term). Since P`.1/ D 1 and P`.�1/ D .�1/`, it follows from Eq. (18.163)

that

B`
eikre�i`�=2 � e�ikrei`�=2

2ikr
D 2`C 1

2

�
eikr � .�1/`e�ikr

ikr

�
I

B`e
�i`�=2

�
eikr � e�ikr.�1/`

�
D .2`C 1/

�
eikr � .�1/`e�ikr

�
I

B` D ei`�=2 .2`C 1/ D i`.2`C 1/; (18.164)

and the proof is complete.
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18.5 Appendix B: Hard Sphere Scattering when ka � 1

In this Appendix, I give some of the mathematical details for hard sphere scattering

in the limit that ka � 1. The maximum value of ` that contributes to the sum

over partial waves in Eq. (18.62) is approximately equal to ka. To apply asymptotic

methods, I break the scattering into two regions, � � .ka/�1=3 and � � .ka/�1=3

in all cases I assume that ka� 1.

If � � .ka/�1=3 and ` . ka,

P`.cos �/ � J0 Œ.`C 1=2/ �� ; (18.165)

where J0 Œ.`C 1=2/ �� is a normal Bessel function, leading to a scattering amplitude

[Eq. (18.62)]

fk.�/ �
1

2ik

1X

`D0
.2`C 1/

�
e2iı` � 1

�
J0 Œ.`C 1=2/ �� : (18.166)

The ı` are determined from Eq. (18.89). The function e2iı` oscillates rapidly for

` < ka and goes to unity for ` > ka, allowing me to write

fk.�/ �
�1
2ik

kaX

`D0
.2`C 1/J0 Œ.`C 1=2/ �� : (18.167)

I can set z D `C 1=2 and replace the sum by the integral to arrive at

fk.�/ �
�1
ik

Z ka

0

dzJ0 Œz�� z D
ia

�
J1 Œka�� ; (18.168)

such that

d�

d�
D jfk.�/j2 �

a2

4

�
2J1 Œka��

ka�

�2
k2a2: (18.169)

Equation (18.169) is valid for 0 � � � .ka/�1=3, when ka � 1. The first

minimum in the differential cross section occurs at � � 3:83=ka < .ka/�1=3. As

such, Eq. (18.169) correctly describes the forward diffraction peak associated with

hard sphere scattering. Since J1.z/ � z=2 as z ! 0, the diffraction peak has an

amplitude

d�

d�
.� D 0/ � a2

4
.ka/2 : (18.170)
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The contribution to the total cross section from the diffractive component can

be obtained by assuming that most of the contributions come from small angles

� . 1=ka� .ka/�1=3. This allows me to replace sin � by � and to replace the upper

integration limit .ka/�1=3 by1; that is,

�diff D 2�
k2a4

4

Z .ka/�1=3

0

�
2J1 Œka��

ka�

�2
sin �d�

� 2� k2a4

4

Z 1

0

�
2J1 Œka��

ka�

�2
�d�

D 2�a2
Z 1

0

�
J1.z/

z

�2
zdz D 2�a2

�
1

2

�
D �a2: (18.171)

To obtain the differential cross section outside the diffraction cone, that is, for

� � .ka/�1=3 ; I can approximate

P`.cos �/ �
r

1

�` sin �
cos

h
.`C 1=2/ � � �

4

i
; (18.172)

such that

fk.�/ �
1

2ik

1X

`D0
.2`C 1/

�
e2iı` � 1

�
r

1

�` sin �
cos

h
.`C 1=2/ � � �

4

i
:

(18.173)

Equation (18.172) is valid only for ` � 1, but large values of ` provide the major

contribution to the sum given in Eq. (18.173). The sum can be replaced by an integral

and the method of stationary phase can be used to evaluate the integral. That is,

after converting to an integral, for a given � , there is a major contribution to the

integral from the angular momentum (impact parameter) giving rise to the scattering

at this angle; moreover, this impact parameter corresponds to the classical impact

parameter giving rise to the scattering at this angle. This is a general result for high-

energy scattering for any potential. Explicitly for the hard sphere potential, one finds

fk.�/ �
a

2
ei˛; (18.174)

where ˛ is some phase that can be calculated using a WKB type approximation.

Thus, outside the diffraction cone,

d�

d�
D jfk.�/j2 �

a2

4
; (18.175)

the classical result.
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The total cross section can be obtained directly from Eq. (18.168) as

� D 4�

k
Im fk.0/ D

4�

k

ka2

2
D 2�a2: (18.176)

The diffractive and classical scattering each contribute �a2 to the total cross section.

18.6 Problems

1. Explain why specifying the impact parameter and the energy is equivalent

to specifying the angular momentum and the energy in classical scattering by a

spherically symmetric potential. Under what conditions can there be rainbow-like

and glory scattering of classical particles? Why is the total cross section for classical

scattering infinite for a potential having infinite range?

2. This problem refers to classical scattering.

(a) For the potential

V.r/ D
�
0; r � a

1; r < a
;

find the angular momentum for which the scattering angle goes to zero.

(b) For the potential

V.r/ D �V0e
�r2=a2 ;

where V0 is positive, plot the effective potential as a function of r=a when

L2

2�a2
D V0

3
D 100

in some appropriate energy units. For a particle of mass � having energy E > 0,

show that both bound and free orbits are possible. Indicate on the graph the

energy for which orbiting can occur.

3. Outline the procedures that are used for solving a scattering problem using the

method of partial waves and using the Born approximation. In general, when is each

method most useful? Are there cases where only the ` D 0 partial wave contributes,

yet the first Born approximation gives a result that agrees with ` D 0 scattering?

Explain. Why can’t the Born approximation give a good result for hard sphere

scattering?
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4–6. Consider the hard sphere potential,

V.r/ D
�
0 r � aI
1 r < a

:

Numerically obtain the total cross section for x D ka D 0:1; 10; 100; 500 and

compare it with �a2. You need only go from ` D 0 to ` D kaC 25 in evaluating the

sum over partial waves in each case (why?). Interpret your result.

For ka D 75; numerically calculate and plot the differential scattering cross

section for � < 0:25 and in the range �=4 < � < � . Interpret your results.

Plot cos .2ı`/ as a function of ` for ka D 50 to illustrate that, for ka � 1,

cos .2ı`/ oscillates rapidly for ` < ka and is approximately equal to unity for ` >

ka. Use this result to show that the total cross section for ka� 1 is equal to 2�a2.

7–8. (a) In scattering of light rays by a sphere having index of refraction n > 1

and radius a, you can show using simple geometric optics (you are not asked

to do this), that the scattering angle ‚N after N internal reflections is given

by Eq. (18.29), where b is the impact parameter of the incident light ray. Plot

‚1 as a function of b=a, which mirrors classical scattering by a spherical well

potential with V0=E D n2 � 1. Find the maximum value of j‚1j. Also show

that a primary rainbow (N D 2) exists for n D
p
2 and find the rainbow angle.

Find the rainbow angle for n D 4=3 (water) and translate this result into an angle

from which the rainbow is seen from Earth. For n D
p
2 show that contributions

to glory scattering are possible, but only for N � 4.

(b) In the case of scattering by a sphere whose index of refraction relative to its

surroundings is less than unity, �N is given by Eq. (18.30). In this case, show

that for n D 1=
p
2 that there is no rainbow scattering but contributions to glories

are still possible for N � 3.

9–11. Now look at the quantum problem of scattering of a particle having mass �

by the spherical well potential,

V.r/ D
�
�V0 r � a

0 r > a
;

with V0 > 0. The scattering is analogous to scattering of electromagnetic radiation

by a dielectric sphere having relative index of refraction

neff D
r
1C V0

E
:

Take V0=E D 1 and plot the differential cross section as a function of � for ka D 15:
Identify the structures in the cross section.
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Next repeat the calculation for scattering by the spherical barrier potential

V.r/ D
�

V0 r � a

0 r > a
;

with V0=E D 1=2: In this case, the scattering is analogous to the scattering of

electromagnetic radiation by a bubble in a dielectric medium, when the index of

refraction of the bubble relative to that of its surrounding medium is given by

neff D
r
1 � V0

E
:

Why does the qualitative structure of the differential cross sections differ?

In this problem you must sum the contributions from the phase shifts numerically.

Do you see rainbow and glories in each case?

12. Derive Eq. (18.108a). Show that, for low energy scattering by a spherical barrier

potential, the differential scattering cross section does not exhibit any of the resonant

structures found for scattering by a spherical well potential.

13. Derive Eq. (18.114) and the corresponding result for scattering by a spherical

barrier potential. Prove that the scattering length is always positive for scattering by

a spherical barrier potential.

14. Prove that G.r/ D eikr=r is a solution of the equation

�
r2 C k2

�
G.r/ D �4�ı.r/:

You can use the fact that r2.1=r/ D �4�ı.r/: Hint: You can also use the fact that,

for any two functions f and g,

r2 .fg/ D r � r .fg/ D r� .f rgC gr f / D fr2gC gr2f C 2r f � rg:

15. Calculate the differential scattering cross section in first Born approximation

for a potential V.r/ D V0sech.r=a/. Plot your results as a function of � for ˇ D�
2�V0=„2

�1=2
a D 0:5 and x D ka D

�
2�E=„2

�1=2
a D 2: In general, when would

you expect the Born approximation to be a good approximation for this potential?

16–17. Consider scattering by the spherical well potential,

V.r/ D
�
�V0 < 0 r � a

0 r > a
:

Using the validity condition (18.136), show that the Born approximation is valid

provided ˇ2=x� 1, when x D ka� 1.

Compare the exact solution [obtained using Eqs. (18.104) and (18.105a)] and the

Born approximation result [Eq. (18.145)] for the differential cross section for x D 10
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and ˇ D 1, x D 10 and ˇ D 2; and x D 10 and ˇ D 6. Do you think the condition

ˇ2=x� 1 is necessary for the validity of the Born approximation?

18. The total cross section for scattering by a spherical well potential in Born

approximation is given by Eq. (18.151). You can try to reproduce this result, but

it is not part of the problem. Find � in the limit that ka � 1 and ka � 1. For

ka D 0:1; 1; 30 compare the total cross section with that calculated “exactly” (that

is, summing the partial waves) using the method of partial waves. In each case take

a value of ˇ � ka, ˇ D ka, and ˇ � ka. Under what conditions is the Born

approximation valid?

19–20. Return to Problem 18.9–11 and plot two graphs of the total cross section

(in units of �a2) for ˇ D 10 as a function of x D ka. In one graph take 0 � x � 20
and in the second graph, take 20 � x � 100. Show that there are resonances in

the total cross section. The positions of the resonances should coincide with the

energies of the quasibound states of the effective potential. To check this in a very

rough manner, calculate the energies of the quasibound states for ` � 15 using the

WKB approximation,

Z r2

r1

k.r/dr D .nC 1=2/ �;

where

k.r/a D
s

x2 C ˇ2 � ` .`C 1/
r2=a2

;

and r1 and r2 are the classical turning points of the classical bound states of the

effective potential for energy E > 0 (the WKB approximation cannot be expected

to provide accurate positions of the resonances since there is at most one bound

state for each value of `). For x � 1, compare your result with that of the Born

approximation, � D �ˇ4=2x2. If you take larger values of ˇ, there will be more

quasibound states since the depth of the well in the effective potential and the

number of quasibound states grows with increasing ˇ.



Chapter 19

Symmetry and Transformations: Rotation
Matrices

Now that I have looked at approximation techniques and scattering theory, I return

to some more formal aspects of quantum mechanics. I begin with a discussion

of symmetry and see how this leads to a somewhat more sophisticated picture of

angular momentum. We have seen already that energy degeneracy arises in problems

for which there is an associated symmetry. Moreover, in most of these cases, there

is also a conserved dynamic variable that was connected with the symmetry (e.g.,

in central field potentials, angular momentum is conserved and the potential is

spherically symmetric).

Symmetry is central to modern physics. When you learn about the standard

model of particle physics, you will see the critical role symmetry plays in the classi-

fication of particles and forces. Even in elementary quantum mechanics, symmetry

considerations are important. I will try to give you a very brief introduction to this

topic. I might say from the outset that I often encounter sign problems in considering

either active or passive transformations, but I have learned to live with it. I need to

consider transformations of coordinates, vectors, scalar functions, vector functions,

and operators. These quantities transform differently under symmetry operations.

Before applying the ideas of symmetry operations to quantum mechanics, I review

what happens to coordinates, vectors, and functions under translation and rotation.

19.1 Active Versus Passive Transformations

In general, it is possible to define scalar, vector, and tensor operators by their

transformation properties under a given symmetry operation such as translation or

rotation. To make matters confusing, one can look at changes from either a passive

(coordinate axes change) or an active (axes remain fixed, but vectors and functions

are transformed) point of view. I will review these concepts for translation in one-

dimension and rotations in both two and three dimensions. The study of translations
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Fig. 19.1 Passive transformation of the coordinate axis to the left by a units. A point that has

coordinate xold in the original coordinate system has xnew D x C a in the new coordinate system.

The upper axis in the figure is the translated one

and rotations is important from a practical standpoint. For example, if you need to

average collision cross sections over different orientations of the colliding particles,

you can calculate the result for a given orientation of the colliding particles and then

use rotation matrices to transform the result to account for arbitrary orientations.

19.1.1 Passive and Active Translations

19.1.1.1 Passive Translation

In a passive translation of the coordinate system the coordinate axes are translated.

Imagine that the x-axis in Fig. 19.1 is translated a units to the left. If I label the

coordinate of a point in the original coordinate system by xold and in the new

coordinate system by xnew, then xnew D xold C a. I define a translation operator
OTP.�a/ for a passive transformation to the left by a units as one that changes the

coordinate of a point from xold to xnew according to

xnew D OTP.�a/xold D xold C a: (19.1)

Under this passive transformation, functions f .x/ are not translated; however,

since the coordinate axis is translated, the functional form of f .x/ changes. The new

functional form is denoted by fP .xI �a/, where the minus sign is associated with a

translation of the coordinate axis to the left. Since the value of the function at a fixed

point in space is unchanged, the relationship between fP .xI �a/ and f .x/ is given by

fP .xI �a/ D f

��
OTP.�a/

��1
x

�
D f

h
OTP.a/x

i
D f .x � a/ ; (19.2)

where

�
OTP.�a/

��1
D OTP.a/ (19.3)
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Fig. 19.2 Active transfomation of the function f .x/ to the right by a units

is the inverse transformation. For example, suppose the original function is f .x/ D
e�x2 , which is centered at x D 0. The new function, fP .xI �a/ D e�.x�a/2, is now

centered at x D a since xnew D a is the transformed coordinate of xold D 0 in the

original coordinate system. In effect, Eq. (19.2) defines the properties of a scalar

function fP under translation.

19.1.1.2 Active Translation

I define an active translation OTA.a/ of a function to the right by a units as producing

the same function I would get by translating the axis by a units to the left in a passive

transformation (see Fig. 19.2), that is,

fA.xI a/ D OTA.a/f .x/ D fP .xI �a/ D f
h�
OTP.a/

�
x
i
D f .x � a/ : (19.4)

If the original function was centered at x D 0, the transformed function is centered

at x D a. A translation of the function to the right is equivalent to a transformation

of the coordinate axis to the left. Note that the passive transformation acts on

coordinates while the active transformation acts on functions. In other words, OTA.a/

translates functions to the right by a units while OTP.a/ translates the coordinate axis

to the right by a units.

19.1.2 Passive and Active Rotations

19.1.2.1 Passive Rotations

Consider a rotation of the coordinate axes in which the position vector r remains

fixed. The axes are rotated by an angle �� (see Fig. 19.3) about the z-axis. The unit

vectors are denoted by u1 D ux, u2 D uy. Under the rotation, coordinates of the

position vector change (even though the vector remains fixed in space) according to
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Fig. 19.3 A passive rotation of the coordinate axes by an angle �� about the z axis. The position

vector r and the constant vector f are unchanged in an absolute sense, but their coordinates change.

On the other hand, the unit vectors, which are aligned along the coordinate axes change in this

passive rotation. The position vector shown has coordinates .xold; yold/ in the original coordinate

system and .xnew; ynew/ in the new coordinate system

rnew D
�

xnew

ynew

�
D R

¯

P.��/rold D
�

cos� � sin�

sin� cos�

��
xold

yold

�
; (19.5)

where

R
¯

P.�/ D
�

cos� sin�

� sin� cos�

�
(19.6)

is the passive rotation matrix. In other words, under this passive transformation of

��, the position vector rold D .xold; yold/ in the old system has coordinates in the

new system given by

xnew D xold cos� � yold sin�I (19.7a)

ynew D xold sin� C yold cos�: (19.7b)

Moreover, the basis vectors have also changed since they are aligned along the new

axes, with

.ui/new D
3X

jD1
R
¯

P
ij.��/

�
uj

�
old
; (19.8)

where R
¯

P
ij are elements of the passive rotation matrix (19.6).

The effect of a passive rotation on a scalar function is defined in an analogous

manner to that for translations, namely

fP.rI ��/ D f
h�

R
¯

P.��/
��1

r
i
D f

h�
R
¯

P.��/
��

r
i
D f

�
R
¯

P.�/r
�
; (19.9)
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where I used the fact that R
¯

P.�/ is a unitary matrix whose inverse is simply its

adjoint. Things can get a little more complicated when you look at the effect of

rotations on vector functions (such as the electric field). For a vector function E.r/,

under a passive rotation of ��,

EP.rI ��/ D R
¯

P.��/E
�
R
¯

P.�/r
�
; (19.10)

the components are changed and they are evaluated at the new coordinates.

19.1.2.2 Active Rotations

As in the case of translations I can define an active rotation of a scalar function by

an operator ORA.�/ that, when acting on a function f .r/, produces a new function

according to

fA.rI�/ D ORA.�/f .r/ D fP.rI ��/ D f
�
R
¯

P.�/r
�
: (19.11)

Now here’s where things get really confusing. Note that ORA.�/ is an operator while

R
¯

P.�/ is a matrix. The operator ORA.�/ operates on functions and the matrix R
¯

P.�/

operates on the position vector. However I can define an active transformation

matrix by

R
¯

A.�/ D R
¯

P.��/ D
�
R
¯

P.�/
�� D

�
cos� � sin�

sin� cos�

�
: (19.12)

With this definition, Eq. (19.11) becomes

fA.rI�/ D ORA.�/f .r/ D f
h�

R
¯

A.�/
��

r
i
D f

h�
R
¯

A.�/
��1

r
i
: (19.13)

A vector function E.r/ transforms under an active rotation by � as

EA.rI�/ D ORA.�/E.r/ D R
¯

A.�/E
h�

R
¯

A.�/
��1

r
i
: (19.14)

The operation of ORA.�/ on a vector function is to change the components and

evaluate the coordinates at the rotated values, leaving the length of the vector

unchanged. For a constant vector function f,

fA.�/ D ORA.�/f D R
¯

A.�/f: (19.15)

For constant vectors, the rotation operator acts as a matrix and we can think of the

rotation operator as rotating the vector (see Fig. 19.4).
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Fig. 19.4 An active rotation of a constant vector f by angle � about the z axis. The axes and unit

vectors remain constant, but the coordinates of the vector change

19.1.3 Extension to Three Dimensions

To specify a rotation in three dimensions, I need to specify the axis of rotation

un.�; �/ and the angle of rotation ! about this axis. The quantity un.�; �/ is a unit

vector in a spherical coordinate system having polar angle � and azimuthal angle �.

Thus, three angles have to be specified.

Instead of specifying the axis of rotation and the rotation angle, I can equally

well represent any rotation by the Euler angles .˛; ˇ; /. The convention chosen

for a passive rotation is one that takes the axes .x; y; z/ into the axes .X;Y;Z/ (see

Fig. 19.5) using

• a rotation by ˛ about the z axis

• a rotation by ˇ about the new y axis

• a rotation by  about the new z axis.

This leads to the passive rotation matrix

R
¯

P.˛; ˇ; / D

0
@

cos  sin  0

� sin  cos  0

0 0 1

1
A
0
@

cosˇ 0 � sinˇ

0 1 0

sinˇ 0 cosˇ

1
A

�

0
@

cos˛ sin˛ 0

� sin˛ cos˛ 0

0 0 1

1
A

D

0
@

cos˛cosˇcos�sin sin˛ coscosˇsin˛Ccos˛sin �sinˇcos

�sincosˇcos˛�sin˛cos �sin˛cosˇsinCcoscos˛ sinˇsin

cos˛sinˇ sin˛sinˇ cosˇ

1
A :

(19.16)
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Fig. 19.5 Euler angles. A passive rotation of ˛ about the z axis takes the axes (x; y; z) into (x0; y0; z).

This is followed by a passive rotation of ˇ about the y0 axis that takes the axes (x0; y0; z) into

(x00; y0;Z) and a passive rotation of  about the Z axis that takes the axes (x00; y0;Z) into (X;Y;Z).

The vector N that lies along the intersection of the xy and XY planes is referred to as the line of

nodes

The active rotation matrix is defined as the inverse of this passive rotation matrix,

R
¯

A.˛; ˇ; / D
�
R
¯

P.˛; ˇ; /
��1 D R

¯

A
z .˛/R

¯

A
y .ˇ/R

¯

A
z ./

D

0
@

cos˛cosˇcos�sin sin˛ �cos˛cosˇsin�sin˛cos cos˛sinˇ

sin˛cosˇcosCcos˛sin �sin˛cosˇsinCcos˛cos sin˛sinˇ

�sinˇcos sinˇsin cosˇ

1
A; (19.17)

where the rotations are now relative to the fixed axes. The matrix R
¯

A
z .˛/ is the active

rotation matrix for a rotation about the z axis by an angle ˛ given by Eq. (19.12); note

that in active rotations, the  rotation is carried out first. Under an active rotation,

fA.rI˛; ˇ; / D ORA.˛; ˇ; /f .r/ D f
h�

R
¯

A.˛; ˇ; /
��1

r
i

(19.18)

for scalar functions and

EA.rI˛; ˇ; / D ORA.˛; ˇ; /E .r/ D R
¯

A.˛; ˇ; /E
h�

R
¯

A.˛; ˇ; /
��1

r
i

(19.19)

for vector functions. The rotation matrix acting on a vector must leave the length of

the vector unchanged. Since the rotation matrix is real, the rotation matrix must be

an orthogonal matrix to preserve the length of vectors. In fact, the matrix given in

Eq. (19.17) is the most general orthogonal 3 � 3 matrix having determinant equal

toC1.
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For a constant vector field,

fA.˛; ˇ; / D ORA.˛; ˇ; /f D R
¯

A.˛; ˇ; /f. (19.20)

As a simple example consider the vector f D
�
ux C uy

�
=
p
2. I want to rotate this

vector so it is aligned along the z axis. I can do this by a passive transformation

.˛; ˇ; / D .�=4; �=2; 0/ : Under such a passive transformation

fP.�=4; �=2; 0/ D R
¯

P.�=4; �=2; 0/f

0
B@

0 0 �1
� 1p

2

1p
2
0

1p
2

1p
2
0

1
CA

0
B@

1p
2
1p
2

0

1
CA D

0
B@
0

0

1

1
CA: (19.21)

The vector is now along the new z axis.

Alternatively I can use an active rotation with .˛; ˇ; / D .0;��=2;��=4/
(recall in active rotations the  rotation is carried out first): Under this active

rotation,

fA .0;��=2;��=4/ D R
¯

A .0;��=2;��=4/ f

D

0
@

0 0 �1
�1=
p
2 1=
p
2 0

1=
p
2 1=

p
2 0

1
A
0
@
1=
p
2

1=
p
2

0

1
A D

0
@
0

0

1

1
A : (19.22)

The vector has been rotated to lie along the (original) z axis. Additional examples

are given below.

Although the unit vectors used to expand vectors are unchanged by an active

transformation, I can nevertheless see how the unit vectors, considered as vectors,

transform in this case. Since the unit vectors are constant vectors, they transform as

uA.˛; ˇ; /i D R
¯

A.˛; ˇ; /ui; (19.23)

so that, for example,

uA.˛; ˇ; /1 D R
¯

A.˛; ˇ; /

0
@
1

0

0

1
A D

0
@

R
¯

A
11.˛; ˇ; /

R
¯

A
21.˛; ˇ; /

R
¯

A
31.˛; ˇ; /

1
A : (19.24)

In other words, the transformation can be written as

uA.˛; ˇ; /i D
3X

jD1
R
¯

A
ji.˛; ˇ; /uj: (19.25)

Note the order of the indices on the rotation matrix elements.
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19.2 Quantum Mechanics

All these ideas can now be taken over to quantum mechanics. In fact we can

use our understanding of the physics associated with Hamiltonians for the free

particle and spherically symmetric potentials to obtain expressions for operators

such as the translation and rotation operators. To this point, I have defined these

operators only implicitly through Eqs. (19.4) and (19.11), in terms of their actions

on functions.

Before starting any formalism, it might be helpful to remind you of what

you already know about symmetry operations. For the moment I consider only

continuous symmetry operations such as translation or rotation, but will discuss

discrete symmetry operations as well. So what do you know?

1. If an operator commutes with the Hamiltonian, the expectation value of the

physical observable associated with that operator is a constant of the motion.

2. If an operator OA commutes with a Hamiltonian OH, and if jEi is an eigenket of
OH with eigenenergy E, then OA jEi is also an eigenket of OH with eigenenergy E:

We are guaranteed that OA jEi is equal to a constant times jEi only if there is no

degeneracy in the eigenenergies of OH. When there is degeneracy, OA jEi is not

necessarily equal to a constant times jEi, this implies that there can be more

than one eigenket with the same energy—when an operator commutes with the

Hamiltonian, there is often energy degeneracy.

3. An operator OA acting on an eigenket jEi of a given Hamiltonian OH produces

a new ket jEi0, in general, that is not necessarily an eigenket of OH. Suppose

that OA corresponds to a symmetry operation such as a translation or rotation in

Hilbert space. If the Hamiltonian OH is invariant under this symmetry operation,

the eigenenergy of the transformed state jEi0 cannot change; it must also be an

eigenket of OH. Since jEi0 ¤ jEi, in general, this again implies some energy

degeneracy.

4. Combining these ideas, we see that if a Hamiltonian is invariant under some

symmetry operation, there is associated with the symmetry operation a Hermitian

operator that commutes with the Hamiltonian. As you will see, the operator is a

generator of infinitesimal transformations on the wave function or eigenkets that

leave the Hamiltonian invariant.

A simple example will serve to illustrate these ideas. Let us look at the case of a

free particle having mass m in one-dimension for which the Hamiltonian is

OH D Op
2

2m
(19.26)

where Op D �i„d=dx. The (unnormalized) eigenfunctions can be taken as

 k.x/ D e˙ikx (19.27)
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with

k D
r
2mE

„2 > 0: (19.28)

Equally well, the eigenfunctions can be taken as

 k.x/ D cos .kx/ I sin .kx/ : (19.29)

The eigenfunctions are two-fold degenerate.

How is all this related to the momentum operator? Since
h
Op; OH

i
D 0, if  k.x/ is

an eigenfunction, then Op k.x/ is also an eigenfunction having the same energy. If I

take eikx as an eigenfunction, then Op k.x/ D „keikx, which is the same eigenfunction.

That is, if I use the simultaneous eigenfunctions of Op and OH, I do not generate a new

eigenfunction by applying Op to an eigenfunction. On the other hand, if I choose

cos .kx/ as an eigenfunction of OH then Op k.x/ D i„k sin .kx/. It generates a new

eigenfunction with the same energy, demonstrating the energy degeneracy.

19.2.1 Translation Operator

Since the momentum operator commutes with the Hamiltonian and since the

free particle Hamiltonian is invariant under translation, we might expect that the

momentum operator is somehow connected with the translation operator in quantum

mechanics. To demonstrate that this is indeed the case, I start by considering an

infinitesimal displacement � of an arbitrary wave function  .x/, for which

 .x � �/ �
�
1 � � d

dx

�
 .x/ D

�
1 � i

„� Op
�
 .x/: (19.30)

The momentum operator is said to be the generator of infinitesimal translations. I

can build up a finite translation a by taking N infinitesimal translations, each having

� D a=N, and then take the limit as N !1. In this manner I obtain

 .xI a/T D OT.a/ .x/ D lim
N!1

�
1 � e� i

„
a
N

Op
�N

 .x/

D lim
N!1

�
1 � e� i

„
a
N

Op
�N�1

 .x � a=N/

D lim
N!1

�
1 � e� i

„
a
N

Op
�N�2

 .x � a=N � a=N/ D � � �

D lim
N!1

 .x � Na=N/ D  .x � a/; (19.31)
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where

OT.a/ D lim
N!1

�
1 � e� i

„
a
N

Op
�N

D e�iOpa=„ D e�a d
dx (19.32)

is the translation operator and  .xI a/T is the translated function. The translation

operator is unitary.

If the exponential in Eq. (19.32) is expanded in a Taylor series about a D 0 and

operates on a function  .x/; the following series is generated:

e�a d
dx .x/ D

 
1 � a

d

dx
C .�a/2

2Š

d2

dx2
� � � �

!
 .x/

D  .x/ � a
d .x/

dx
C .�a/2

2Š

d2 .x/

dx2
� � � � : (19.33)

The right side of this equation is a Taylor expansion of  .x � a/ about a D 0, but

the Taylor expansion does not necessarily converge. Thus,

e�iOpa=„ .x/ D  .x � a/ (19.34)

only if the series expansion of  .x � a/ about a D 0 converges for all x. This is

always the case for any infinitesimal translation if  .x/ is an analytic function, for

polynomial  .x/, and for an  .x/ that is an exponential of an analytic function, but

it is not true in general (see the Appendix for more details).

[Here is a simple example where it works. Take

 .x/ D 2x2 C x (19.35)

and let the translation of the function be two units to the right. The function is

transformed as

 .xI 2/T D e� i
„
2Op .x/ D e�2 d

dx

�
2x2 C x

�

D
 
1 � 2 d

dx
C .�2/2

2Š

d2

dx2
� � � �

!
�
2x2 C x

�

D 2x2 C x � 8x � 2C 8 D 2x2 � 7xC 6; (19.36)

which can be written as

 .xI 2/T D 2 .x � 2/2 C .x � 2/ I (19.37)

the original function is simply translated to the right by two units.]
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If the momentum operator commutes with the Hamiltonian, then the Hamiltonian

is invariant under translation, OT.a/ OH OT�.a/ D OH: This is a general result, continuous

operators that commute with a Hamiltonian are the generators of infinitesimal

transformations under which the Hamiltonian remains invariant. In this case,

the momentum operator generates infinitesimal translations. By looking at the

infinitesimal transformations that are generated by operators that commute with

the Hamiltonian, we can determine the symmetry properties of the Hamiltonian!

The situation is a bit different for discrete operators such as the parity operator

defined by

OP .x/ D  .�x/: (19.38)

There can be no infinitesimal transformations associated with a discrete operator of

this form. On the other hand, if an operator commutes with the parity operator, this

could imply degeneracy. You can see this if you choose the eigenfunctions of the

free particle Hamiltonian that are not eigenfunctions of the parity operator, namely

e˙ikx. Clearly,

OPeikx D e�ikx (19.39)

produces a new eigenfunction with the same energy. Other discrete operators of

importance are the time-reversal operator and the charge-conjugation operator (see

problems). All physical processes are believed to be invariant under the product of

the parity, charge-conjugation, and time-reversal operators (CPT theorem).

19.2.2 Rotation Operator

Now let us consider a Hamiltonian with a spherically symmetric potential. You

know that the angular momentum operator commutes with this Hamiltonian so you

can see what type of infinitesimal transformation it generates. Of course, you can

probably guess that it will produce a rotation since the Hamiltonian is invariant

under rotations, but let’s see. I need only consider OLz since the results can be

generalized for the other components. I look at

�
1 � i

„ı�
OLz

�
 .r/ D

�
1 � i

„ı�
�
xOpy � yOpx

��
 .r/

D
�
1 � ı�

�
x
@

@y
� y

@

@x

��
 .r/

D  .r/ � ı�
�

x
@ .r/

@y
� y

@ .r/

@x

�
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D  .x; y; z/C @ .x; y; z/

@x
.yı�/ � @ .x; y; z/

@y
.xı�/

�  .xC yı�; y � xı�; z/; (19.40)

where ı� is an infinitesimal angle. But under an active rotation OR of the vector r by

an infinitesimal angle ı� about the z axis,

ORz .ı�/ r D R
¯

z .ı�/ r D .x � yı�/ux C .yC xı�/uy C uz (19.41)

Therefore,

 .rIı�/R D
�
1 � i

„ı�
OLz

�
 .r/ �  .xC yı�; y � xı�; z/ �  

h
R
¯

z .ı�/
�1 r

i
;

(19.42)

where R
¯

z .ı�/ is a rotation matrix corresponding to a rotation about the z-axis

and  .rIı�/R is the rotated function. A comparison with Eq. (19.13) allows us to

conclude that the operator OLz is the generator of infinitesimal rotations about the z

axis. For an arbitrary infinitesimal rotation ı! about the un direction,

 .rIun; ı!/R D
�
1 � i

„un� OLı!
�
 .r/ �  .R

¯
.un; ı!/

�1 r/ (19.43)

and, for a finite rotation ! about the un direction, the rotation operator is

OR .un; !/ D lim
N!1

�
1 � i

„un� OL
!

N

�N

D e� i
„
!un� OL: (19.44)

In this case, the transformed function is

 .rIun; !/R D e� i
„
!un� OL .r/ D  .R

¯
.un; !/

�1 r/: (19.45)

We have seen already that rotations can be described as active rotations about the

z, y, and z axes by the Euler angles .; ˇ; ˛/ I as a consequence, the rotation operator

can also be written as

OR .˛; ˇ; / D e� i
„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz (19.46)

and the transformed wave function as

 .r/˛;ˇ; D e� i
„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz .r/ D  .R

¯
.˛; ˇ; /�1 r/: (19.47)

Since the exp
�

i OH
�

is unitary if OH is Hermitian, the rotation operator is unitary; that

is, the value of j .r/j is unchanged when acted upon by the rotation operator.
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19.2.2.1 Transformation of Eigenkets Under Rotation

So far I have been looking at the effect of transformations on wave functions. In

some sense, the eigenkets replace the unit vectors, since they can be represented as

column vectors. However, I cannot simply use the three-dimensional rotation matrix

to transform the infinite dimensional basis vectors in Hilbert space. Instead I need a

generalization of Eq. (19.25). To do this I define an active rotation of the eigenkets

j`mi by

j`miR D OR .˛; ˇ; / j`mi D
X

`0;m0

ˇ̌
`0m0˛ ˝`0m0 ˇ̌ OR .˛; ˇ; / j`mi

D
X

m0

ˇ̌
`m0˛ ˝`m0 ˇ̌ OR .˛; ˇ; / j`mi D

X

m0

D
.`/

m0m
.˛; ˇ; /

ˇ̌
`m0˛ ;(19.48)

where j`miR is the transformed basis ket and

D
.`/

m0m
.˛; ˇ; / D

˝
`m0 ˇ̌ OR .˛; ˇ; / j`mi D

˝
`m0 ˇ̌ e� i

„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz j`mi

(19.49)

is a matrix element of the rotation operator in the j`mi basis, which is diagonal

in the ` quantum number. Note the order of the subscripts in Eq. (19.48), which is

consistent with Eq. (19.25). For a state vector

j i D
X

`0m0

a`m j`mi ; (19.50)

the rotated state vector is

j iR D OR .˛; ˇ; / j i D
X

`;m

a`m OR .˛; ˇ; / j`mi

D
X

`;m;m0

a`mD
.`/

m0m
.˛; ˇ; /

ˇ̌
`m0˛

D
X

`;m;m0

.a`m0/R
ˇ̌
`m0˛ ; (19.51)

where

.a`m0/R D
X

m0

D
.`/

m0m
.˛; ˇ; / .a`m/ : (19.52)

The components of the state vector transform as would be expected for any vector.

I will usually refer to the D
.`/

m0m
.˛; ˇ; / as rotation matrices (even though they

are actually matrix elements of the rotation operator), to be distinguished from
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the three-dimensional rotation matrix R
¯
.˛; ˇ; /. Some properties of the rotation

matrices are:

D
.`/

m0m
.˛; ˇ; / D

h
D
.`/

mm0 .�;�ˇ;�˛/
i�
I (19.53a)

h
D
.`/

m0m
.˛; ˇ; /

i�
D .�1/m�m0

D
.`/

�m0;�m
.˛; ˇ; / I (19.53b)

h
D
.`/ .˛; ˇ; /

i�1
D
h
D
.`/ .˛; ˇ; /

i�
D D

.`/ .�;�ˇ;�˛/ I (19.53c)

X

m

D
.`/

mm0

h
D
.`/

mm00

i�
D ım0;m00 D

X

m

D
.`/

m0m

h
D
.`/

m00m

i�
I (19.53d)

D
.`/

mm0 .˛; ˇ; / D h`mj e� i
„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz
ˇ̌
`m0˛ I

D e�im˛e�im0 r
.`/

mm0 .ˇ/ ; (19.53e)

where

r
.`/

mm0 .ˇ/ D h`mj e� i
„
ˇ OLy
ˇ̌
`m0˛ : (19.53f)

The derivation of the explicit expressions for the matrix elements is not trivial, but

can be obtained using recursion relations.1 A Mathematica program to evaluate the

D
.`/

m0m
.˛; ˇ; / is given on the book’s web site. Since

D
.`/

m0m
.˛; ˇ; / D

˝
`m0 ˇ̌ OR .˛; ˇ; / j`mi D h`mj OR� .˛; ˇ; /

ˇ̌
`m0˛� ; (19.54)

it follows from Eq. (19.53a) that

OR� .˛; ˇ; / D OR .�;�ˇ;�˛/ D OR�1 .˛; ˇ; / ; (19.55)

consistent with the fact that OR .˛; ˇ; / is a unitary operator.

The rotation matrices are important. You will learn more about them if you take

a graduate course in quantum mechanics. Just as I defined a scalar function under

translation, I can define a scalar function under rotation. Even more important is that

vector and tensor operators can be defined under rotation by their transformation

properties. Vector and tensor operators, as well as irreducible tensor operators, are

described briefly in Chap. 20.

The way in which the spherical harmonics transform under rotation can also be

calculated. Recall that

Ym
` .�; �/ D hur .�; �/ j`mi : (19.56)

The transformed spherical harmonics are defined by

1For example, see U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press, Inc, New

York, 1959), appendices D and E.
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Ym
` .�; �/R � hur .�; �/ j`mi0 D

X

m0

D
.`/

m0m
.˛; ˇ; / hur .�; �/

ˇ̌
`m0˛

D
X

m0

D
.`/

m0m
.˛; ˇ; / Ym0

` .�; �/ : (19.57)

It is seen that the spherical harmonics transform in the same manner as the kets.

19.2.3 Extension to Include Spin Angular Momentum

The angular momentum operator is a unitary operator that preserves the length of

state vectors. In other words,

R h`m j`miR D h`mj OR� OR j`mi D h`m j`mi : (19.58)

Although I derived an expression for the rotation operator using spatial wave

functions, I could equally well have derived it by considering the most general

unitary operator that satisfies Eq. (19.58). If I follow the same procedure for the

eigenkets jsmsi D
ˇ̌
1
2
;ms

˛
of the spin operator OS, I find a spin rotation operator

ORspin .un; !/ D e� i
„
!un� OS D e�i!un��=2; (19.59)

or

ORspin .˛; ˇ; / D e�i˛� z=2e�i˛ˇ�y=2e�i� z=2; (19.60)

where

� D � xux C � yuy C � zuz; (19.61)

�˛ f˛ D x; y; zg is a Pauli spin matrix, and f˛; ˇ; g are the Euler angles. The

operator given by Eq. (19.59) or (19.60) is the most general operator that preserves

the length of a two-component state vector. The effect of a rotation on the spin

eigenkets is then given by

jsmsiR D ORspin j`msi D
X

m0
s

D
.1=2/

m0
sms
.˛; ˇ; /

ˇ̌
sm0

s

˛
; (19.62)

where jsmsiR is the transformed basis ket and

D
.1=2/

m0
sms
.un; !/ D

˝
sm0

s

ˇ̌
e�i!un��=2 jsmsi I (19.63a)

D
.1=2/

m0
sms
.˛; ˇ; / D

˝
sm0

s

ˇ̌
e�i˛� z=2e�i˛ˇ�y=2e�i� z=2 jsmsi ; (19.63b)
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with s D 1=2. Even though the spin wave functions are defined in an abstract

space and not in coordinate space, their components are changed under rotation

of coordinates. I have already emphasized this property in Chap. 12.

Somewhat surprisingly, Eqs. (19.63) can help in evaluating matrix elements of

the rotation operator exp
�
�i!un� OL=„

�
given in Eq. (19.44). To understand why,

recall that there are closed form expressions available for the D
.`/

m0m
.˛; ˇ; /, which

are matrix elements of the operator e� i
„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz , but none for the matrix

elements of exp
�
�i!un� OL=„

�
. The most straightforward way to evaluate such

matrix elements is to calculate the Euler angles f˛; ˇ; g that correspond to the

rotation specified by fun; !g, and then calculate the corresponding D
.`/

m0m
.˛; ˇ; /.

But up to this point, we have no simple prescription for relating the fun; !g to the

f˛; ˇ; g. Equations (19.63) afford us this possibility.

To relate the fun; !g to the f˛; ˇ; g, I write

e�i!un��=2 D cos .!un � �=2/ � i sin .!un � �=2/ ; (19.64)

expand the sines and cosines, and use the identity

.un � � / .un � � / D 1 (19.65)

to show that

e� i
„
!un��=2 D 1 cos .!=2/ � i un � � sin .!=2/ ; (19.66)

where 1 is the 2 � 2 unit matrix. I then insert sums over complete sets of spin

eigenkets between the exponential in Eq. (19.63b) to calculate

D
.1/

m0
sms
.˛; ˇ; / D e�im0

s˛e�ims
˝
sm0

s

ˇ̌
e�iˇ�y=2 jsmsi (19.67)

and use Eq. (19.66) with un D uy and ! D ˇ to arrive at

D.1=2/ .˛; ˇ; / D
�

cos .ˇ=2/ e�i.˛C/=2 � sin .ˇ=2/ e�i.˛�/=2

sin .ˇ=2/ ei.˛�/=2 cos .ˇ=2/ ei.˛C/=2

�
; (19.68)

where, by convention, the matrix indices go from highest to lowest values of m. By

equating Eqs. (19.66) and (19.68), you can calculate the Euler angles f˛; ˇ; g in

terms of fun; !g.
The eigenkets of hydrogen consist of both orbital and spin angular momentum

components. To determine how an eigenket of the form

j`; sIm`;msi D j`m`i jsmsi (19.69)
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transforms under rotation, you need only remember that the orbital and spin

operators act in different Hilbert spaces. It then follows that the effect of a rotation

on the ket j`; sIm`;msi is to produce a new ket

j`; sIm`;msiR D e� i
„
!un� OL j`m`i e� i

„
!un� OS jsmsi D e� i

„
!un�OJ j`m`i jsmsi ;

(19.70)

where

OJ D OLC OS (19.71)

is the total angular momentum operator and I have used the fact that OL and OS
commute. As we have seen in Chap. 12, it is sometimes more convenient to use

the eigenkets j`; sI j;mi instead of j`; sIm`;msi. The j`; sI j;mi basis is the natural

one for evaluating matrix elements of the rotation operator,

D
.j/

m0m
.˛; ˇ; / D

˝
jm0 ˇ̌ OR .˛; ˇ; / jjmi

D
˝
jm0 ˇ̌ e� i

„
˛OJz e� i

„
ˇOJy e� i

„
 OJz jjmi

D e�im0˛e�im
˝
jm0 ˇ̌ e� i

„
ˇOJy jjmi ; (19.72)

for reasons to be discussed in Chap. 20. Closed form expressions for the

D
.j/

m0m
.˛; ˇ; / are given on the book’s web site. Equations (19.53) remain valid

when ` is replaced by j.

19.2.4 Transformation of Operators

Imagine there is an operator OA such that

 2.r/ DOA 1.r/: (19.73)

Under a unitary transformation OU that transforms the wave function as

 u.r/ D OU .r/; (19.74)

Eq. (19.73) is transformed into

 2u.r/ D OU 2.r/ D OU OA 1.r/ D OU OA OU� 2.r/ D OAu 2.r/; (19.75)

where OAu is the transformed operator and I have used the fact that OU� OU D O1. Thus,

under translation, an operator OA is transformed into

OAT D OT OA OT�; (19.76)
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while under rotation it is transformed into

OAR D OR OA OR�: (19.77)

It can be a bit confusing when one encounters a Hamiltonian of the form OH D ˛Or�
E; where ˛ is a constant and E is a (classical) electric field. Although conventional

vectors are transformed under rotation, in quantum mechanics the only quantities

that are transformed under rotation (and any other symmetry operation, for that

matter) are quantum-mechanical operators. That is, under rotation, OHR D ˛OrR � E,

where OrR D OROr OR�, only the operator is transformed. The electric field appearing in

the Hamiltonian is taken to be an external field (not an operator) and is unaffected

by the transformation. You can expand your quantum system to include the electric

field (it is no longer an external field in this case), but to do so you must quantize

the field. Once the field is quantized, the electric field becomes an operator that is

also transformed under rotation.

19.3 Rotations: Examples

In dealing with rotations, I distinguish between the rotation matrix (all operations

are for active transformations)

R
¯
.˛; ˇ; /

D

0
B@

cos˛cosˇcos�sinsin˛ �cos˛cosˇsin�sin˛cos cos˛sinˇ

sin˛cosˇcosCcos˛sin �sin˛cosˇsinCcos˛cos sin˛sinˇ

�sinˇcos sinˇsin cosˇ

1
CA ; (19.78)

the rotation operator

OR .un;!/ D e� i
„
!un� OLI (19.79a)

OR .˛; ˇ; / D e� i
„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz ; (19.79b)

and the rotation matrices

D
.`/

mm0 .un;!/ D h`mj e� i
„
!un� OL ˇ̌`m0˛ (19.80a)

D
.`/

mm0 .˛; ˇ; / D h`mj e� i
„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz
ˇ̌
`m0˛ . (19.80b)

Each has a specific function which I now review.
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19.3.1 Rotation Matrix

I start with the rotation matrix, Eq. (19.78). The rotation matrix tells you how the

coordinates of a vector change under an active rotation of the vector. Remember in

an active rotation the axes remain fixed and the vector is rotated, first by  about the

z axis, then by ˇ around the y axis, and finally by ˛ around the z axis. For example,

the rotation .˛ D 0; ˇ D ��=2;  D 0/ rotates a unit vector f D ux along the x axis

into one along the z axis and I find accordingly

0
@

fRx

fRy

fRz

1
A D R

¯
.0; �=2; 0/

0
@

fx

fy

fz

1
A D

0
@
0 0 �1
0 1 0

1 0 0

1
A
0
@
1

0

0

1
A D

0
@
0

0

1

1
A : (19.81)

A somewhat more complicated example is to rotate the vector

f D 1p
3

0
@
1

1

1

1
A (19.82)

into the “negative” of itself

fR D �
1p
3

0
@
1

1

1

1
A : (19.83)

You can convince yourself that this is accomplished by the rotation

R
¯
.˛ D �3�=4; ˇ D � � 2 cos�1.1=

p
3/;  D ��=4/

D 1

3

0
@
�2 1 �2
1 �2 �2
�2 �2 1

1
A : (19.84)

On the other hand, the same transformation is given simply by the matrix

M
¯
D

0
@
�1 0 0

0 �1 0

0 0 �1

1
A ; (19.85)

but this matrix cannot be obtained from the rotation matrix R
¯
.˛; ˇ; /. The reason

for this is that the rotation matrices I am using are called proper rotations (having

determinant C1), since they can be generated continuously from the unit matrix.

The improper rotation matrices form another whole set of rotation matrices having

determinant �1; that cannot be generated from the identity. Since there are two

ways of generating rotations in this fashion, the rotation group (groups are discussed

briefly in the following chapter) is not simply connected.
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19.3.2 Rotation Operator

Now let me move on to the rotation operator. The rotation operator acts on state

vectors or wave functions. In general you would expect the result to be very

complicated since

OR .˛; ˇ; /  .r/ D e� i
„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz .r/ (19.86)

appears very difficult to evaluate. However, if you remember that the wave function

is a scalar, then

 .r/R D OR .˛; ˇ; / .r/ D  ŒR
¯
.˛; ˇ; /�1 r�; (19.87)

where R
¯
.˛; ˇ; /�1 is just the transpose of the (active) rotation matrix.

As an example, let us see how the spherical harmonic Y01 .�; �/ is transformed

under a rotation of��=2 about the y-axis, for which the Euler angles are .˛; ˇ; / D
.0;��=2; 0/. The transformed function is

Y01 .�; �/R D Y01 .x; y; z/R D R
¯
.0;��=2; 0/ Y01 .�; �/ D e

i
2„
� OLy Y01 .�; �/ :

(19.88)

Recall that the spherical coordinates can be considered to be functions of x, y, and

z. This looks a bit complicated, but using Eq. (19.87), I find

Y01 .x; y; z/R D e
i
2„
� OLy Y01 .�; �/ D  ŒR

¯
.0;��=2; 0/�1 r�

D  

2
4
0
@
0 0 1

0 1 0

�1 0 0

1
A
0
@

x

y

z

1
A
3
5 D Y01 .z; y;�x/ (19.89)

The problem reduces to expressing Y01 as a function of .x; y; z/ instead of .�; �/. To

do this I write

Y01 .�; �/ D
r

3

4�
cos � D

r
3

4�

z

r
D Y01 .x; y; z/ ; (19.90)

such that

Y01 .z; y;�x/ D �
r

3

4�

x

r
D �

r
3

4�
sin � cos�

D �
r

3

4�
sin �

ei� C e�i�

2
D 1p

2

�
Y11 .�; �/ � Y�1

1 .�; �/
�
: (19.91)
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Thus

 .r/R D e
i
2„
� OLy Y01 .�; �/ D

1p
2

�
Y11 .�; �/ � Y�1

1 .�; �/
�
; (19.92)

a result I will derive now using the rotation matrices.

19.3.3 Rotation Matrices

The rotation matrices are defined by

D
.`/

mm0 .˛; ˇ; / D
˝
`m0 ˇ̌ e� i

„
˛ OLz e� i

„
ˇ OLy e� i

„
 OLz j`mi . (19.93)

The state vector transforms as

j`miR D
X

m0

D
.`/

m0m
.˛; ˇ; /

ˇ̌
`m0˛ ; (19.94)

as do the spherical harmonics,

Ym
` .�; �/R D

X

m0

D
.`/

m0m
.˛; ˇ; /Ym0

` .�; �/ : (19.95)

Equations (19.93) and (19.94) remain valid when ` is replaced by the total angular

momentum quantum number j, which can be integral or half-integral.

For ` D 1,

D.1/ .˛; ˇ; / D

0
BB@

cos2
�
ˇ

2

�
e�i.˛C/ � 1p

2
sinˇe�i˛ sin2

�
ˇ

2

�
e�i.˛�/

1p
2

sinˇe�i cosˇ � 1p
2

sinˇei

sin2
�
ˇ

2

�
ei.˛�/ 1p

2
sinˇei˛ cos2

�
ˇ

2

�
ei.˛C/

1
CCA

(19.96)

and, for j D 1=2,

D.1=2/ .˛; ˇ; / D
�

cos .ˇ=2/ e�i.˛C/=2 � sin .ˇ=2/ e�i.˛�/=2

sin .ˇ=2/ ei.˛�/=2 cos .ˇ=2/ ei.˛C/=2

�
: (19.97)

I can check to see if Eq. (19.95) agrees with Eq. (19.92) when .˛ D 0; ˇ D
��=2;  D 0/. In that case

D.1/.0;��=2; 0/ D

0
B@

1
2

1p
2

1
2

� 1p
2

0 1p
2

1
2
� 1p

2

1
2

1
CA (19.98)
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and

Y01 .�; �/R D
kX

q0D�k

D
.k/

q00
.˛; ˇ; /Y

q0

1 .�; �/

D 1p
2

�
Y11 .�; �/ � Y�1

1 .�; �/
�

(19.99)

in agreement with Eq. (19.92).

19.4 Summary

In this chapter, a brief introduction was given of the role played by transformations

and symmetry in quantum mechanics. The interplay between degeneracy, symmetry,

and operators that commute with the Hamiltonian was elaborated. It was shown that

the operators associated with conserved physical quantities can be used to generate

transformations on the eigenfunctions that leave the Hamiltonian invariant. The

transformations of the eigenfunctions and eigenkets under translation and rotation

were derived. It was shown that the transformations of the eigenkets under rotation

matrices could be expressed in terms of the rotation matrices, whose elements,

D
.`/

m0m
.˛; ˇ; /, are simply matrix elements of the rotation operator in the j`mi basis.

19.5 Appendix: Finite Translations and Rotations

19.5.1 Translation Operator

I can use a slightly different definition of the translation operator (in one-dimension),

writing it as

OT.a/ D lim
N!1

�
1 � e� i

„
a
N

Op
�N

D 1
e�ipa=„; (19.100)

with the operator 1e�ipa=„ defined such that

1
e�ipa=„ ˇ̌p0˛ D e�ip0a=„ ˇ̌p0˛ : (19.101)

Equation (19.101) is consistent with Eq. (5.64).

It is then straightforward to show that this operator produces the correct

translations of kets. That is, with
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jxi D
Z 1

�1
dx
˝
p0 jxi

ˇ̌
p0˛ D 1p

2�„

Z 1

�1
dp0e�ip0x=„ ˇ̌p0˛ ; (19.102)

I find that

jxiT D
1

e�ipa=„ jxi D 1p
2�„

Z 1

�1
dpe�ipx=„ 1

e�ipa=„ jpi

D 1

2�„

Z 1

�1
dx0
Z 1

�1
dpe�ipx=„e�ipa=„ ˇ̌x0˛ ˝x0 jpi

D 1

2�„

Z 1

�1
dx0
Z 1

�1
dp0e�ipx=„e�ipa=„eipx0=„ ˇ̌x0˛

D
Z 1

�1
dx0ı

�
x0 � x � a

� ˇ̌
x0˛ D jxC ai ; (19.103)

Thus, the operator 1e�ipa=„ translate kets to the left by a.

To see the effect of this operator on functions, I use Eq. (5.66),

1
e�ipa=„f .x/ D 1

.2�„/3=2
Z 1

�1
dx0 QB.x � x0/f .x0/: (19.104)

where

QB.x/ D 1

.2�„/3=2
Z 1

�1
dp e�ipa=„eipx=„ D .2�„/3=2 ı .x � a/ (19.105)

is the Fourier transform of e�ipa=„. Combining Eqs. (19.104) and (19.105),

1
e�ipa=„f .x/ D f .x � a/I (19.106)

the operator 1e�ipa=„ translates functions to the right by a.

In other words, the assumption that,

1
e�ipa=„g.p/ D e�ipa=„g.p/; (19.107)

which led to Eq. (5.66) guarantees that the operator 1e�ipa=„ translates functions. On

the other hand, when interpreted in terms of its series expansion,

e�iOpa=„f .x/ D f .x � a/ (19.108)

only if the series expansion of f .x � a/ about a D 0 converges for all x.
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19.5.2 Rotation Operator

Similar considerations hold for the rotation operator. I can define the rotation

operator via

OR .un; !/ D lim
N!1

�
1 � i

„un� OL
!

N

�N

D3
e� i

„
!un� OL: (19.109)

In this case, however, I am not able to prove that

3
e� i

„
!un� OL .r/ D  .R

¯
.un; !/

�1 r/; (19.110)

since the angular momentum operator is a function of both momentum and position

and I have no simple prescription for the action of such an operator on functions

such as f .r/ or g.p). I can resort to setting

3
e� i

„
!un� OL D e� i

„
!un� OL (19.111)

and define e� i
„
!un� OL in terms of its Taylor expansion. Fortunately, when defined in

this manner, the rotation operator acting on a spherical harmonic produces a series

that is always convergent. Thus, for all cases of practical interest, I can take the

rotation operator to be given by Eq. (19.44) or (19.46).

19.6 Problems

1. Explain in general terms why symmetry, energy degeneracy, and conserved

dynamic variables are related concepts? Give several reasons why it is useful to

identify operators that commute with the Hamiltonian.

2. The parity operator is defined such that

OP .r/ D  .�r/:

Prove that OP is a Hermitian operator having eigenvalues˙1. Under what conditions

does the parity operator commute with the Hamiltonian for a one-dimensional

potential? For potentials V.r/, prove the parity operator commutes with the Hamil-

tonian, which implies that simultaneous eigenfunctions of the Hamiltonian and the

parity operator can be found, namely

 E`m.r/ D RE`.r/Y
m
` .�; �/:

Prove that the parity of these eigenfunctions is (�1/`.
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3. Starting from the operator

OT.�/ D e� i
„
�Op � 1 � i

„� Op

which is the generator of infinitesimal translations �, prove that that OT.a/ D e�iaOp=„.

To derive this result expand OT.a C �/ to obtain a differential equation for OT.a/. It

is often stated that OT.a/ is the translation operator for a finite displacement a. As

shown in the Appendix, however, this assignment is valid only when OT.a/ acts on

functions f .x/ for which the series expansion of f .x� a/ about a D 0 converges for

all x.

4. Calculate

�
1 � � d

dx

�
f .x/

and show that it corresponds to the function f .x/ translated � units to the right in the

limit that � ! 0, provided f .x/ is an analytic function. This implies that OT.�/ is the

generator of infinitesimal translations for such functions.

Show, however, that the operator OT.a/ D e� i
„

aOp acting on the function f .x/ D
1=
�
1C x2

�
does not translate the function a units to the right.

5. Why does

e� i
„
�n� OLe�r2 D e�r2 ;

where n is a unit vector?

6. Evaluate

Y01 .�; �/R D e� i
„
�
4

OLx Y01 .�; �/ ;

using the fact that

Y01 .�; �/R D Y01
�
R
¯

�1r
�
;

where R
¯

is the rotation matrix. (Hint: What Euler angles give you a rotation of �=4

about the x axis?).

7. Evaluate

e� i
„
�
4

OLx Y01 .�; �/ ;

using the fact that the Ym
` .�; �/ transform under rotation as
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�
Ym
` .�; �/

�
R
D
X

m0

D
.1/

m0m
.˛; ˇ; /Ym0

` .�; �/

Compare your answer with that of the previous problem.

8. If you apply the rotation operator to a state jn; `;mi of the hydrogen atom, how

many distinct new eigenkets can you produce using different values of the rotation

angles. Use four different sets of rotation angles to calculate the effect of a rotation

on the state vector jn D 1; ` D 1;m D 0i. Show that the four new eigenkets that are

generated are not linearly independent. Why must this be the case? Do not take any

angles equal to zero or integral or half integral values of � in choosing your angles.

9. Suppose that you are given a state vector

j i D j"i

for a spin 1/2 quantum system. Find the transformed state vector

j iR D jxi

for a rotation that takes a vector along the z-axis to the x-axis and

j iR D jyi

for a rotation that takes a vector along the z-axis to the y-axis. Prove that

hxj OSx jxi D hyj OSy jyi D 1I

hyj OSx jyi D hxj OSy jxi D 0;

In other words, if the quantum system is in the state jxi (jyi), a measurement of the

spin along the x.y/-direction always yields a value of „=2.

10. You might expect that, in the absence of any external interactions, the

Schrödinger equation would be invariant under time reversal. Show, however,

that the solution of the time-dependent Schrödinger equation changes under the

substitution t! �t, that is

i„@ .r;�t/

@t
¤ OH .r;�t/;

but, instead,

i„@ Œ .r;�t/��

@t
D OH Œ .r;�t/�� : (19.112)
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The time-independent, time-reversal operator OT (not to be confused with the

translation operator) is defined such that

OT .r/ D  t.r/ D Œ .r/��

and

OT
X

n

an .r/ D
X

n

a�
n
OT .r/ D

X

n

a�
n Œ .r/�

� :

Prove that OT�1 D OT D OT�. Show that by applying the operator OT to the

time-dependent Schrödinger equation, you reproduce Eq. (19.112), provided the

Hamiltonian is invariant under time reversal, OT OH OT�1 D OH.

11. Under the time reversal operation, OT Or OT�1 D Or, OT Op OT�1 D �Op, and OT OL OT�1 D
� OL. Prove these transformation properties by considering the actions of the

operators on a wave function  .r/, using OT .r/ D OT�1 .r/ D Œ .r/��.

12. The transformation OT .r/ D Œ .r/�� equation holds only for wave functions

corresponding to particles without spin. Prove that, in order to have OT OS OT�1 D �OS
for a spin 1/2 particle, you can take OT .r/ D exp

�
�i� OSy=„

�
Œ .r/�� : This

definition also extends to the total angular momentum operator OJ: The operator

corresponds to a rotation of � about the y-axis.

13. For a time-reversal invariant Hamiltonian OH, prove that, if j˛i is an eigenket of
OH, then OT j˛i is also an eigenket with the same energy eigenvalue. As a consequence

if OT j˛i ¤ j˛i, then there is a degeneracy related to time-reversal invariance that is

referred to as Kramers degeneracy (after Hans Kramers). Show that for a spinless

particle, there is no Kramers degeneracy but, for a particle having spin 1/2, OT j"i D
j#i I there is a two-fold Kramers degeneracy.

14. For a single-particle system, the charge conjugation operator OC changes the

particle into its antiparticle—it effectively changes the sign of the particle’s charge

without affecting its other properties. The equations of physics are believed to

be invariant under the combined action of the parity, time-reversal, and charge

conjugation operators. Explain why the interaction potentials �Ope �E and � O� �B are

invariant under OC OP OT by considering the action of each of these operators separately

on the atomic dipole moment pe D �eOr and the magnetic dipole moment operator

O� D �e OL=2me. The electric and magnetic fields appearing in these equations are

taken to be external fields (not operators) and are unaffected by the transformations.

Also determine if these interactions preserve parity and if they are time-reversal

invariant.

15. Prove that the Bell state j‰�i D .j"#i � j#"i/ =
p
2 of two electrons is invari-

ant under an arbitrary rotation. Prove that the Bell state jˆCi D .j""i C j##i/ =
p
2

is unchanged under a rotation that takes the z-axis into the x-axis, but that it is



19.6 Problems 489

transformed (to within a phase) into the Bell state jˆ�i D .j""i � j##i/ =
p
2 under

a rotation that takes the z-axis into the y-axis:

16. Prove that

.un � � / .un � � / D 1;

where un is a unit vector, and use this identity to prove that

cos .!un � �=2/ � i sin .!un � �=2/ D 1 cos .!=2/ � iun � � sin .!=2/ .

In turn, use this expression to show that

e�iˇ�y=2 D
�

cos .ˇ=2/ � sin .ˇ=2/

sin .ˇ=2/ cos .ˇ=2/

�
:

17–18. Use Eqs. (19.66) and (19.68) to express the Euler angles in terms of un

and !. Verify that your solution is correct for un D ux, un D uy, and un D uz by

calculating the rotation matrix R
¯
.˛; ˇ; / in each case.

19–21. In Problem 12.7–8 you were asked to obtain the electron spin eigenkets for

a quantization axis in the direction of the unit vector

u .�; �;  / D cos u� C sin u' .

The angles � and � are the polar and azimuthal angles of a spherical coordinate

system, while  is the angle of the quantization axis relative to the u� direction

in a plane perpendicular to ur. To obtain the eigenkets using the rotation matrices,

find the Euler angles that correspond to a rotation that takes the unit vector v D uz

to the direction u .�; �;  / (since this takes the original quantization axis into the

new one). Then use Eqs. (19.48) and (19.97) to calculate the eigenkets. Show that,

to within a phase factor, they agree with the ones given in Problem 12.7–8. [Hint:

Since v D uz, the first rotation does not affect the vector v D uz; that is,  D 0. To

get the remaining Euler angles, set u .�; �;  / DR
¯
.˛; ˇ; /uz.]

22. Using Eq. (5.86),

e
OA OOe�OA D OOC

h
OA; OO

i
C 1

2Š

h
OA;
h
OA; OO

ii
C � � � ;

prove that, under an active translation produced by the operator OT.a/ D e�iaOpx=„, the

operators Ox and Ox2 are transformed as

OxT D Ox � a; Ox2T D .Ox � a/2 ;
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and that under an active momentum boost produced by the momentum translation

operator OB.q/ D eiqOx=„, the operators Opx and Opx are transformed as

.Opx/T D Opx � q;
�
Op2x
�

T
D .Opx � q/2 :

23. Consider one-dimensional motion with Op D Opx. The combined operation of a

translation and a momentum boost of the previous problem,

OB.q/ OT.a/ D eiqOx=„e�iaOpx=„

translates both the momentum and position wave functions. If a D vbt and q D mvb

for a particle having mass m, this combined operation would seem to constitute

a Galilean transformation. Of course, we are free to multiply this operator by

any phase factor that does not contain any operators. Show that the free particle

Hamiltonian is changed under the transformation produced by the operator

OG.vb; t/ D e�imv2b t=2 OB.mvb/ OT.vbt/

but the wave function

 .x; t/G D OG.vb; t/ .x; t/

still satisfies the Schrödinger equation. This result proves that the free particle

Schrödinger equation is invariant under a Galilean transformation. It can be

generalized to many-particle systems whose interaction energies depend only on

the relative position vectors of the particles. In that case, the transformation is

made with respect to center-of-mass variables. In solving this problem, it may prove

helpful to use Eq. (5.85),

e
OACOB D e

OAe
OBe�Œ OA; OB�=2:

24. Prove that under the Galilean transformation,

OG.vb; t/ D e�imv2b t=2eimvb Ox=„e�ivbtOpx=„;

the free particle spatial wave function,

 .x; t/ D exp .ip0=„/ exp
�
�ip20t=2m„

�
;

and free particle momentum wave function,

ˆ.p; t/ D ı .p � p0/ exp
�
�ip2t=2m„

�
;

transform as you would expect.



Chapter 20

Addition of Angular Momenta, Clebsch-Gordan
Coefficients, Vector and Tensor Operators,

Wigner-Eckart Theorem

20.1 Addition of Angular Momenta and Clebsch-Gordan

Coefficients

Now that we have seen how wave functions and state vectors are changed under

symmetry operations, it is natural to ask how operators are transformed under the

same operations. To do so, however, requires a slight digression. I first need to

discuss the way in which angular momenta are coupled in quantum mechanics.

I have already introduced the concept of coupling of orbital and spin angular

momentum in Chap. 12, but want to generalize this to the coupling of any two

angular momenta. For the moment let us consider two, non-interacting quantum

systems having total angular momentum operator OJ1 associated with system 1 and

total angular momentum operator OJ2 associated with system 2. Since the systems are

non-interacting, the operators OJ1 and OJ2 commute and an eigenket for the combined

system can be written as

jj1; j2Im1;m2i D jj1;m1i jj2;m2i (20.1)

which is a simultaneous eigenstate of the operators OJ21 ; OJ22 ; OJ1z; OJ2z.

If I form the operator

OJ D OJ1 C OJ2 (20.2)

it is easy to prove that

h
OJx; OJy

i
D i„OJzI (20.3)
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the components of OJ satisfy the usual commutation laws for angular momenta. As

a consequence, a simultaneous eigenket of OJ21 ; OJ22 ; OJ2, and OJz can also be written as

jj1; j2I j;mi,where j and m are the quantum numbers associated with OJ2 and OJz. I want

to relate the jj1; j2I j;mi eigenkets to the jj1;m1i jj2;m2i eigenkets.

In effect, I need to see how the matrix elements of the sum operator, OJ D OJ1C OJ2,
is related to those of the individual operators OJ1 and OJ2. Classically, you know how

to add two vectors J1 and J2 to get the sum vector J D J1CJ2. You can prove easily

that

jJ1 � J2j � jJ1 C J2j � J1 C J2: (20.4)

Quantum-mechanically, we will find a similar condition. Classically, you can ask,

“How many ways can we combine J1 C J2 to a given total value J‹” Clearly the z

components must add, J1zCJ2z D Jz. But even with this restriction there is an infinite

number of ways to add the vectors together, provided they satisfy condition (20.4)

with the < rather than � signs. [To see this, draw a triangle J1 C J2 D J in a plane.

You can now rotate J2 around J1 keeping the angle between J1 and J2 constant.

For each angle of rotation, J1 C J2 D J:] At the extreme values, there is only one

way to sum the vectors since they must be aligned. In quantum mechanics, there is

also only one way to sum the vectors at the extreme values; however, for other than

extreme values of J, there is always a finite rather than infinite number of ways to

add the vectors to get the final vector, since angular momentum is quantized.

To relate the two bases I write

jj1; j2I j;mi D
X

m1;m2

hj1; j2Im1;m2 jj1; j2I j;mi jj1; j2Im1;m2i : (20.5)

The coupling coefficients are written as

hj1; j2Im1;m2 jj1; j2I j;mi � hj1; j2Im1;m2 jj;mi D
�

j1 j2 j

m1 m2 m

�
(20.6)

and are Clebsch-Gordan coefficients. Unconventionally, I use square brackets for

the Clebsch-Gordan coefficients. The Clebsch-Gordan coefficients are given by a

Mathematica function

�
j1 j2 j

m1 m2 m

�
D ClebschGordan Œfj1;m1g ; fj2;m2g ; fj3;m3g� : (20.7)

They are usually evaluated by noting first that

�
j1 j2 j1 C j2

j1 j2 j1 C j2

�
D 1 (20.8)
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(there is only one way to couple the vectors if they are aligned). One then operates

with the ladder operator

OJ� D OJx � iOJy D OJ1x C OJ2x � i
�
OJ1y C OJ2y

�
D OJ1� C OJ2� (20.9)

on Eq. (20.5) with m D j to obtain a set of algebraic equations for the Clebsch-

Gordan coefficients. For other values of j ¤ j1 C j2 the ladder operators

can be used to determine all the Clebsch-Gordan coefficients in terms of

hj1j2;m1 D j1;m2 D j � j1 jj1j2I j; ji, whose value is then fixed by normalization.

The phase is chosen such that all the Clebsch-Gordan coefficients are real,

implying that

hj1; j2Im1;m2 jj;mi D hj;m jj1; j2Im1;m2i : (20.10)

In this way it is possible to get a closed form expression for all the Clebsch-Gordan

coefficients in terms of a sum, which is the way Mathematica calculates these

coefficients.1 The Clebsch-Gordan coefficients are related to 3-J symbols defined by

�
j1 j2 j

m1 m2 �m

�
D .�1/j1�j2Cm

p
2jC 1

�
j1 j2 j

m1 m2 m

�
: (20.11)

The 3-J symbols are, in some sense, symmetrized forms of the Clebsch-Gordan

coefficients. In the “old days” one resorted to published tables of Clebsch-Gordan

coefficients and 3-J symbols; now most symbolic mathematical programs have them

as built-in functions. Mathematica subroutines for evaluating these functions are

also listed on the book’s web site.

I list some properties of Clebsch-Gordan coefficients and 3-J symbols:

�
j1 j2 j

m1 m2 m

�
is real; (20.12)

�
j1 j2 j

m1 m2 m

�
D 0 unless m1 C m2 D m and jj2 � j1j � j � j1 C j2I (20.13)

j1X

m1D�j1

j2X

m2D�j2

�
j1 j2 j

m1 m2 m

� �
j1 j2 j0

m1 m2 m0

�
D ıj;j0ım;m0 I (20.14)

1See, for example, A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton

University Press, Princeton, N. J.,1960), Chap. 3.
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j1Cj2X

jDjj2�j1j

jX

mD�j

�
j1 j2 j

m1 m2 m

� �
j1 j2 j

m0
1 m0

2 m

�
D ım1;m

0
1
ım2;m

0
2
I (20.15)

�
j1 j2 j

m1 m2 m

�
D .�1/j1Cj2�j

�
j2 j1 j

m2 m1 m

�
(20.16a)

D .�1/j1Cj2�j

�
j1 j2 j

�m1 �m2 �m

�
(20.16b)

D .�1/j1�jCm2

s
2jC 1
2j1 C 1

�
j j2 j1

m �m2 m1

�
(20.16c)

D .�1/j2�j�m1

s
2jC 1
2j2 C 1

�
j1 j j2

�m1 m m2

�
: (20.16d)

Equation (20.13) is the quantum analogue of the restrictions encountered in the

classical addition of angular momentum vectors.

The 3-J symbol,

�
j1 j2 j

m1 m2 m

�
;

vanishes unless m1 C m2 C m D 0 and jj2 � j1j � j � j1 C j2, it is invariant under

a circular permutation of all columns, and it is multiplied by .�1/j1Cj2Cj under a

permutation of any two columns or when the signs of all the m’s are changed. Also

�
j1 j2 j

0 0 0

�
D 0 if j1 C j2 C j is odd, (20.17)

as is the corresponding Clebsch-Gordan coefficient.

As an example, I can write

jj1 D 1; j2 D 1I j D 1;m D 0i D
X

m1;m2

�
1 1 1

m1 m2 0

�
jj1; j2Im1;m2i

D
�
1 1 1

1 �1 0

�
j1; 1I 1;�1i C

�
1 1 1

0 0 0

�
j1; 1I 0; 0i

C
�
1 1 1

1 �1 0

�
j1; 1I �1; 1i

D 1p
2
j1; 1I 1;�1i C 0 j1; 1I 0; 0i � 1p

2
j1; 1I �1; 1i : (20.18)
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The Clebsch-Gordan coefficients are very important in calculating transition

rates. Often we look at transitions between two manifolds of atomic levels, each

containing a number of magnetic sublevels (corresponding to different values of m).

The ratio of the various transition rates between levels having different m’s is equal

to the square of the Clebsch-Gordan coefficients associated with the transition rates.

20.2 Vector and Tensor Operators

Some of you may have learned about groups in your mathematics courses. A group

consists of a number of elements and some group operation. For example, all the

real numbers form a group under addition since the addition of any two real numbers

produces another real number which is a member of the group, there is an identity

element zero, which when added to any real number produces the same number, and

an inverse (the negative of a number) which, when added to an element gives the

identity element [xC .�x/ D 0]. This is not the course to go into elements of group

theory as applied to quantum mechanics, but it is a powerful method. In fact I really

only want to get to the Wigner-Eckart theorem, which offers a very useful method

for evaluating matrix elements of operators or ratios of matrix elements of operators.

To do this, I need to introduce the concept of an irreducible tensor operator.

Rotations also form a group, as do the rotation operators and the rotation matrices

R
¯
.˛; ˇ; /.2 Any two successive rotations are equivalent to a single rotation. The

identity element is no rotation at all (or a rotation of 2n� about an axis) and

the inverse of a rotation is just the reverse rotation. However, you can convince

yourself that if you perform rotations R1 and then R2 about different axes in three

dimensions, it does not give the same result as if you reverse the order of the

rotations. Rotations are said to form a nonabelian group. We have already seen

that angular momentum is the generator of infinitesimal rotations. The nonabelian

nature of the rotation group can be linked to the fact that the different components

of the angular momentum operator do not commute with one another. In fact the

commutation relations of the angular momentum operators are said to form an

algebra (algebras have two operations) that determines the properties of the rotation

group in the vicinity of the identity.

Why am I introducing these concepts? The reason is that the group structure

of rotations is determined totally by the angular momentum operators. Thus we

can define scalar, vector, and tensor operators under rotation in terms of their

commutation relations with the angular momentum operators, as well as in the way

they transform under rotation.

2The rotation matrices R
¯
.˛; ˇ; / form a group of orthogonal 3 � 3 matrices having determinant

equal to C1, a group that is refered to as the special orthogonal group in three dimensions, SO(3).

The group of unitary 2 � 2 matrices having determinant equal to C1, such as the D
.1=2/ .˛; ˇ; /

matrices, is refered to as the special unitary group in two dimensions, SU(2).
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A scalar operator OA under rotation is one for which

OAR D OR OA OR� D OA: (20.19)

Consider an infinitesimal rotation ı�: When looking at the effects of rotation on

kets that involve both orbital and spin angular momentum, rotation operators for

both the spin and orbital angular momenta must be used. An appropriate rotation

operator is

OR .un; !/ D e� i
„
!un� OLe� i

„
!un� OS D e� i

„
!un�OJ: (20.20)

For an infinitesimal rotation ı� D unı!,

OR .ı�/ D e�iı��OJ=„ �
�
1 � i

„ı� �
OJ
�
: (20.21)

Under this rotation, Eq. (20.19) becomes

OAR D
�
1 � i

„ı� �
OJ
�
OA
�
1C i

„ı� �
OJ
�

� OA � i

„

2
4
�
ı�x
OJx C ı�y

OJy C ı�z
OJz

�
OA

�OA
�
ı�x
OJx C ı�y

OJy C ı�z
OJz

�
3
5

D OA � i

„
n
ı�x

h
OJx; OA

i
C ı�y

h
OJy; OA

i
C ı�z

h
OJz; OA

io
D OA; (20.22)

where terms of order .ı�/2 have been neglected. For arbitrary ı�, the only way

Eq. (20.22) can be satisfied is if

h
OA; OJ

i
D 0; (20.23)

which is an alternative definition of a scalar operator under rotation. That is, either

Eq. (20.19) or Eq. (20.23) can be used to define a scalar operator under rotation.

A vector operator or tensor operator of rank 1 is defined as a set of three

operators that transform as a Cartesian vector under a rotation as

�
OAR

�
i
D OR OAi

OR� D
3X

jD1
R
¯

ji
OAj: i D 1 � 3 (20.24a)

OAR D R
¯

�1 OA D R
¯

T OA; (20.24b)

where R
¯

ji is a matrix element of the (active) rotation matrix given by Eq. (19.78).

Note the order ji of the indices—in other words, although constant vectors f trans-
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form under rotation as f0 D R
¯

f, the vector operator OA D
�
OA1; OA2; OA2

�
transforms as

OAR DR
¯

T OA, where R
¯

T is the transpose of the rotation matrix.

To see that this works, let us rotate the operator Or by �=2 about the y axis.

Under such a rotation we would expect the Ox component to transform into �Oz, the

Oy component to remain unchanged, and the Oz component to transform into Ox. The

rotation matrix in this case has Euler angles ˛ D  D 0 and ˇ D �=2, giving

R
¯

�
0;
�

2
; 0
�
D

0
@
0 0 1

0 1 0

�1 0 0

1
A ; R

¯

T
�
0;
�

2
; 0
�
D

0
@
0 0 �1
0 1 0

1 0 0

1
A : (20.25)

Then

Or0 D

0
@
Ox0

Oy0

Oz0

1
A D R

¯

T

0
@
Ox
Oy
Oz

1
A D

0
@
�Oz
Oy
Ox

1
A ; (20.26)

as expected.

Equations (20.24) can be used to derive commutation relations of a vector

operator with the angular momentum operator. To see this, I write the rotation matrix

for an infinitesimal rotation. I consider a rotation of �x about the x axis, followed by a

rotation of �y about the y axis and a rotation of �z about the z axis. Normally I would

have to worry about the order of rotations since the rotation group is nonabelian.

However, for infinitesimal rotations, the errors introduced by ignoring the order of

the rotations are of second order in � and can be neglected: The rotation matrix to

first order in � is given by

R
¯
.�/ D

0
@
1 ��z �y

�z 1 ��x

��y �x 1

1
A ; (20.27)

independent of the order of the rotations. Under such an infinitesmal rotation,

�
OAR

�
i
D OR .�/ OAi

OR� .�/

D
�
1 � i

„� � OJ
�
OAi

�
1C i

„� � OJ
�
: (20.28)

Taking i D 1 � x; I calculate

�
OAR

�
x
� OAx �

i

„� � OJ OAx C
i

„
OAx� � OJ D OAx �

i

„� �
h
OJ; OAx

i

D OAx �
i

„
�
�x

h
OJx; OAx

i
C �y

h
OJy; OAx

i
C �z

h
OJz; OAx

i�
: (20.29)
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On the other hand, it follows from Eqs. (20.24a) and (20.27) that the x-component

of a vector operator must transform as

�
OAR

�
x
D R11 .�/ OAx C R21 .�/ OAy C R31 .�/ OAz

D OAx C �z
OAy � �y

OAz: (20.30)

Equating coefficients of �x; �y; �z in Eqs. (20.29) and (20.30), I find that, if OA is a

vector operator, its x-component must satisfy the commutation relations

h
OJx; OAx

i
D 0;

h
OJy; OAx

i
D �i„ OAz

h
OJz; OAx

i
D i„ OAy: (20.31)

By considering cyclic permutations of x; y; z, I can generate the remaining com-

mutation relations. According to this definition, Or, Op, and OJ are vector operators.

Equations (20.31) and their cyclical permutations provide an alternative way to

define a vector operator.

I can extend this technique to consider tensor operators of rank two and beyond

by combining vector operators of rank 1. For example, given two vector operators OA
and OB, a tensor operator of rank 2 is defined as the set of nine operators OCij D OAi

OBj

(i; j D 1; 2; 3) that transform under rotation as

�
OCR

�
ij
D OR OCij

OR� D
3X

i0;j0D1
R
¯

i0iR
¯

j0j
OCi0j0 : (20.32)

On the other hand, if I try to establish commutation relations of these tensor

operators with the angular momentum operator, the results are not particularly

useful.

The reason for this is that the set of nine operators OCij D OAi
OBj do not constitute

what is referred to as an irreducible tensor operator. To understand something about

irreducible tensor operators, you need to know something about representations of

groups. A matrix representation of a group is the assignment of a matrix to each

group element. Clearly the rotation matrix is a three-dimensional representation of

the rotation group. We say it is isomorphic to the rotation group since each element

in the group corresponds to a single matrix. However, a representation of the group

can also be the unit matrix in any number of dimensions—each group element is

replaced by the unit matrix. This is referred to as a homomorphism since the same

matrix corresponds to more than one group element.

The rotation matrices D
.j/

mm0 .˛; ˇ; / form a .2jC 1/ irreducible representation

of the rotation group. To understand what is meant by an irreducible representation,

let me go back to coupling of two angular momenta, which I take for the sake of

definiteness as J1 D J2 D 1: The eigenkets for these two independent angular

momenta can be written in the direct product basis as
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jj1 D 1; j2 D 1Im1;m2i D jj1;m1i jj2;m2i : (20.33)

Under rotation each of the eigenkets transforms separately and the resultant

transformation matrix is a very complicated 9 � 9 matrix. However we know that

we can couple these two angular momenta into states having j D 0; 1; 2 specified

by the kets jj1; j2I j;mi. Under rotation the components of each value of j transform

separately such that the total transformation breaks down the 9 � 9 matrix into one

that has a block-diagonal form with 1 � 1 .j D 0/, 3 � 3 .j D 1/, and 5 � 5 .j D 2/
sub-matrices along the diagonals. A matrix representation that is reduced to block

diagonal form is called an irreducible representation.

This leads me to the definition of an irreducible tensor of rank k as a set of

.2kC 1/ operators OTq

k that transform under rotations as

�
OTq

k

�
R
D OR OTq

k
OR� D

kX

q0D�k

D
.k/

q0q
OTq0

k ; (20.34)

where the D
.k/

q0q
are elements of the rotation matrices defined by Eq. (19.49). I can use

this equation to obtain commutation relations of the OTq

k with the angular momentum

operators. For an infinitesimal rotation,

�
OTq

k

�
R
D
�
1 � i

„� � OJ
�
OTq

k

�
1C i

„� � OJ
�
D

kX

q0D�k

D
.k/

q0q
.�/ OTq0

k : (20.35)

It is convenient to express the scalar product as

� � OJ D �C OJ� C �� OJC
2

C �z
OJz; (20.36)

where

�˙ D �x ˙ i�x; (20.37a)

OJ˙ D OJx ˙ iOJy: (20.37b)

Then, by substituting

D
.k/

q0q
.�/ D

˝
kq0 ˇ̌ e� i

„
��OJ jkqi �

˝
kq0 ˇ̌

�
1 � i

„� � OJ
�
jkqi ; (20.38)

into Eq. (20.35), using the relationships

OJ˙ jkqi D „
p
.k� q/ .k˙ qC 1/ jkq˙ 1i I (20.39a)

OJz jkqi D „q jkqi ; (20.39b)
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derived in Chap. 11, and comparing coefficients of �˙ and �z in Eq. (20.35), I can

obtain

h
OJz; OTq

k

i
D „q OTq

k I (20.40a)

h
OJ˙; OTq

k

i
D „

p
.k� q/ .k˙ qC 1/ OTq˙1

k ; (20.40b)

which can serve as an alternative definition of an irreducible tensor of rank k under

rotation.

What are some examples of irreducible tensor operators? Any scalar operator

that commutes with OJ (such as OJ2) is an irreducible tensor of rank zero. It is not

difficult to show that the components OAx; OAy; OAz of a vector operator do not form an

irreducible tensor of rank 1. However it can be proven rather easily using Eq. (20.31)

that the operators

A˙1
1 D �

OAx ˙ i OAyp
2

; A01 D OAz (20.41)

do form an irreducible tensor of rank 1 since they have the correct commutation

relations with OJ. Thus, if we have a vector operator, we can form an irreducible

tensor of rank 1 from its components using Eq. (20.41).

Imagine there are two commuting vector operators OA and OB. Then you can show

(using the commutation relations of the components with the angular momentum

operator) that the combination OA � OB is an irreducible tensor of rank 0, OA � OB is an

irreducible tensor of rank 1, and

1

2

�
OAx
OBy C OAy

OBx

�
;
1

2

�
OAy
OBz C OAz

OBy

�
;
1

2

�
OAz
OBx C OAx

OBz

�
I

�
OAx
OBx � OAy

OBy

�
;
�
2 OAz
OBz � OAx

OBx � OAy
OBy

�
(20.42)

form an irreducible tensor of rank 2 (quadrupole tensor).

The adjoint of an irreducible tensor operator
�
OT.k/
��

of rank k can be defined as

the set of operators

��
OT.k/
���q

k

for which

��
OT.k/
���q

k

D .�1/q
�
OT�q

k

��
: (20.43)

With this definition, any irreducible tensor of rank 1 formed from a Hermitian vector

operator is also Hermitian. In addition, the OYm
` .�; �/ considered as operators in

coordinate space form a Hermitian irreducible tensor operator of rank `.
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20.3 Wigner-Eckart Theorem

I now state the Wigner-Eckart theorem without proof (a proof is given in the

Appendix). The matrix elements of an irreducible tensor operator can be written as

h˛jmj OTq

k

ˇ̌
˛0j0m0˛ D 1p

2jC 1

�
j0 k j

m0 q m

�
h˛jkT.k/

˛0j0
˛

D .1/j�m

�
j k j0

�m q m0

�
h˛jkT.k/

˛0j0
˛

(20.44)

where h˛jk T.k/ k˛0j0i is referred to as a reduced matrix element and ˛ and ˛0 are

additional quantum numbers (such as n in the hydrogen atom). The matrix element

of an irreducible operator is a product of a term that is independent of q, m, and m0,
multiplied by a Clebsch-Gordan coefficient. This theorem is extremely useful since

it lets you calculate matrix elements of different components of a vector or tensor

operator in terms of one quantity which itself must be calculated explicitly. Some

authors use a different form for Eq. (20.44) (e.g., they omit the 1=
p
2jC 1 factor),

but the form I use is the most common.

As a first example, let me consider a matrix element of the operator Or in the j˛`mi
basis. I will need to evaluate matrix elements of this type when I look at atom–field

interactions that are proportional to Or � E, where E is the electric field. From the

definitions (20.41), I can write

Ox D
OT�1
1 � OT11p

2
I (20.45a)

Oy D �
OT�1
1 C OT11p

2i
I (20.45b)

Oz D OT01 ; (20.45c)

so

h˛`mj Ox
ˇ̌
˛0`0m0˛ D �h˛`mj

 
OT11 � OT�1

1p
2

!
ˇ̌
˛0`0m0˛

D � 1p
2

1p
2`C 1

��
`0 1 `
m0 1 m

�
�
�
`0 1 `

m0 �1 m

��
h˛`k r.1/

˛0`0˛ I (20.46a)

h˛`mj Oy
ˇ̌
˛0`m0˛ D �h˛`mj

 
OT11 C OT�1

1p
2i

!
ˇ̌
˛0`0m0˛

� 1p
2i

1p
2`C 1

��
`0 1 `
m0 1 m

�
C
�
`0 1 `

m0 �1 m

��
h˛`k r.1/

˛0`0˛ I (20.46b)

h˛`mj Oz
ˇ̌
˛0`m0˛ D 1p

2`C 1

�
`0 1 `
m0 0 m

�
h˛`k r.1

˛0`0˛ : (20.46c)
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Note that the reduced matrix element, h˛`k r.1 k˛0`0i, can be calculated from the

last of these equations as

h˛`j jr.1/j
ˇ̌
˛0`0˛ D

p
2`C 1

�
`0 1 `
m 0 m

�
Z

dr �
˛`m.r/z ˛0`0m.r/; (20.47)

using any value of m you choose. The ratio of matrix elements depends solely on

the Clebsch-Gordan coefficients. This is useful in calculating branching ratios for

transitions originating on different degenerate (or nearly-degenerate) sublevels in a

given energy manifold of levels.

As a second example, consider matrix elements of OJ itself. Following the same

steps that led to Eq. (20.47), I can calculate

h˛jk J.1/
˛0j0

˛
D
p
2jC 1

�
j0 1 j

m 0 m

� h˛jmj OJz

ˇ̌
˛0j0m

˛

D
p
2jC 1m„
�

j 1 j

m 0 m

� ıj;j0ı˛;˛0 (20.48)

Taking m D j, I find

h˛jk J.1/
˛0j0

˛
D
p
2jC 1j„
�

j 1 j

j 0 j

� ıj;j0ı˛;˛0 D
p
2jC 1j„p
j=
p

jC 1
ıj;j0ı˛;˛0

D „
p

j .2jC 1/ .jC 1/ıj;j0ı˛;˛0 : (20.49)

Further examples will be given when I discuss the Zeeman effect in the next chapter.

Let me return briefly to the reduced matrix elements, which can be calculated

using Eq. (20.44). You might ask about the relationship between h˛jkT.k/ k˛0j0i and

h˛0j0k T.k/ k˛ji : To examine this relationship, I use Eqs. (20.43) and (20.44) to write

˝
˛0j0m0 ˇ̌

��
OT.k/
����q

k

j˛jmi D 1p
2j0 C 1

�
j k j0

m �q m0

� ˝
˛0j0


�
OT.k/
��
k˛ji

D .�1/q
˝
˛0j0m0 ˇ̌ � OTq

k

��
j˛jmi D .�1/q h˛jmj OTq

k

ˇ̌
˛0j0m0˛� : (20.50)

By combining this equation with Eqs. (20.44) and (20.16d), I obtain

h˛jkT.k/
˛0j0

˛
D .�1/j�j0

˝
˛0j0


�
OT.k/
��
k˛ji� : (20.51)
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For any Hermitian vector operator OV, it then follows that

h˛jkV.1/
˛0j0

˛
D .�1/j�j0

˝
˛0j0

V.1/ k˛ji� : (20.52)

As a simple example, consider matrix elements of the position operator between

eigenkets jn`mi of the hydrogen atom. In that case, the matrix elements vanish

unless ` D `0 ˙ 1 and

hn`k r.1/
n0; `0 ˙ 1

˛
D �

˝
n0; `0 ˙ 1

 r.1/ kn`i ; (20.53)

where r.1/ is an irreducible tensor having components given by Eqs. (20.45). The

fact that the reduced matrix element is real can be deduced from Eq. (20.44) using

q D 0.

20.4 Summary

Several topics were covered in this chapter. Coupling of angular momentum in

quantum mechanics can be formulated in terms of the Clebsch-Gordan or 3-J

symbols. In contrast to classical coupling of two vectors, there are only discrete

ways in which angular momentum can be coupled in quantum mechanics. The

definition of vector and tensor operators under rotation was introduced and related

to the commutation relations of the operators with the angular momentum operators.

It turned out to be useful to introduce a new class of operators, irreducible tensor

operators, that transformed under rotation in terms of the irreducible representations

of the rotation group, that is, the D
.k/

q0q
. A matrix element of an irreducible

tensor operators could be expressed as a product of a Clebsch-Gordan coefficients

multiplied by a reduced matrix element that is independent of the magnetic quantum

numbers, a result embodied in the Wigner-Eckart theorem.

20.5 Appendix: Proof of the Wigner-Eckart Theorem

Consider

ejjmi D
X

m0;q

OTq

k

ˇ̌
˛0j0m0˛

�
k j0 j

q m0 m

�
; (20.54)

where OTq

k is an irreducible tensor operator. The ket ejjmi is an implicit function of

j0; k, and ˛0 (˛0 represents an additional quantum number such as energy). You

can show that ejjmi is an eigenket of OJ2 and OJz by using the commutation relations
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between the irreducible tensor operator OTq

k and OJ. For example,

OJz
ejjmi D OJz

X

m0;q

OTq

k

ˇ̌
˛0j0m0˛

�
k j0 j

q m0 m

�

D
X

m0;q

�
k j0 j

q m0 m

� �h
OJz; OTq

k

i
C OTq

k
OJz

� ˇ̌
˛0j0m0˛

D „
X

m0;q

�
k j0 j

q m0 m

� �
qC m0� OTq

k

ˇ̌
˛0j0m0˛

D m„
X

m0;q

�
k j0 j

q m0 m

�
OTq

k

ˇ̌
˛0j0m0˛ D m„ejjmi; (20.55)

since the Clebsch-Gordan coefficients vanish unless .qC m0/ D m. However,

although different ejjmi are orthogonal (ehjmAjj0m0i vanishes unless j D j0 and m D
m0), the ehjm ejjmi are not normalized, ehjm ejjmi ¤ 1.

I expand ejjmi in the j˛j0m0i basis as

ejjmi D
X

˛;j0;m0

˝
˛j0m0 ˇ̌ejmi

ˇ̌
˛j0m0˛ : (20.56)

Since both ejjmi and j˛j0m0i are simultaneous eigenkets of OJ2 and OJz, the coupling

coefficients h˛j0m0jejmi vanish unless j D j0, m D m0I

ejjmi D
X

˛

h˛jmjejmi j˛jmi : (20.57)

If you act on both sides of this equation with OJC you will find that

CjjmC 1i D
X

˛

h˛jmjejmi j˛j;mC 1i I (20.58)

however, from Eq. (20.56) it follows that

Cjj;mC 1i D
X

˛

h˛j;mC 1jCj;mC 1i j˛j;mC 1i : (20.59)

By comparing Eqs. (20.58) and (20.59), you see that the coupling coefficients

h˛jmjejmi must be independent of m.
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I now invert Eq. (20.54),

OTq

k

ˇ̌
˛0j0m0˛ D

X

j00;m00

�
k j0 j00

q m0 m00

�
Ajj00m00i

D
X

˛00;j00;m00

�
k j0 j00

q m0 m00

�
h˛j00m00jAj00m00ij˛00j00m00i; (20.60)

multiply on the left by h˛jmj, and use Eq. (20.16a) to obtain

h˛jmj OTq

k

ˇ̌
˛0j0m0˛ D 1p

2jC 1
.�1/k�j0Cj

�
k j0 j

q m0 m

�
h˛jk T.k/

˛0j0
˛

D 1p
2jC 1

�
j0 k j

m0 q m

�
h˛jkT.k/

˛0j0
˛
; (20.61)

where

1p
2jC 1

.�1/k�j0Cj h˛jkT.k/
˛0j0

˛
D h˛jmjejmi (20.62)

is independent of m; but still depends on ˛0 and j0 and the properties of T.k/ [recall

that Ajj0m0i, as defined by Eq. (20.54) is an implicit function of j0; k and ˛0]. The

choice of writing this is somewhat arbitrary, but the result states that the matrix

element of an irreducible tensor operator is equal to the product of a Clebsch-Gordan

coefficient and a term that is independent of m;m0; q.

20.6 Problems

1. In qualitative terms, to what do the Clebsch-Gordan coefficients correspond?

What does it mean to say that an operator is a scalar or vector operator under

rotation? What does it mean to say that a set of operators is an irreducible tensor

operator under rotation? Under a rotation about the z axis by 2� , what happens to

the rotation operator?, to the spin-rotation operator?

2. Write a subroutine that will let you calculate jj1j2I jmi in terms of

jj1m1I j2m2i and the Clebsch-Gordan coefficients. (Use the Clebsch-Gordan

function in Mathematica or some equivalent function). Obtain the solution for

jj1 D 1; j2 D 3I j D 2;m D 1i.
3. Prove that

"
j1 j2 j1 C j2

j1 j2 j1 C j2

#
D 1:



506 20 Advanced Topics in Angular Momentum

Derive the orthogonality relation for the Clebsch-Gordan coefficients,

j1X

m1D�j1

j2X

m2D�j2

�
j1 j2 j

m1 m2 m

� �
j1 j2 j0

m1 m2 m0

�
D ıj;j0ım;m0 :

Prove that

jj1m1I j2m2i D
j1Cj2X

jDjj2�j1j

jX

mD�j

�
j1 j2 j

m1 m2 m

�
jj1j2I jmi

and derive the orthogonality relation

j1Cj2X

jDjj2�j1j

jX

mD�j

�
j1 j2 j

m1 m2 m

� �
j1 j2 j

m0
1 m0

2 m

�
D ım1;m

0
1
ım2;m

0
2
:

4. Evaluate

h3; 2; 2j Opx j2; 1; 1i
h3; 2; 0j Opy j2; 1;�1i

;

where the states jn`mi are eigenkets of the hydrogen atom. Note: You do not have

to evaluate any integrals in this problem.

5. Sodium atoms have a single valence electron. In the ground state, L D 0 (writing

L D 0 is actually a convention corresponding to ` D 0), while in the first excited

state, L D 1. What are the possible values for J in the ground state and first excited

state? Sodium has a nuclear spin quantum number I D 3=2. The nuclear spin

couples with the angular momentum J to give a total angular momentum F D JC I.

For each of the J states in the ground and first excited states, calculate the possible

values for the total angular momentum quantum number F: States having different

F are split in energy by the hyperfine interaction of the spin of the electron with the

spin of the nucleus. What are the various fine and hyperfine frequency separations

in the 3S (ground state) and 3P (first excited state) states of sodium?

6–7. Calculate the effect of a rotation with Euler angles (˛ D 0; ˇ D �=2;  D
0) on the hydrogen eigenket

ˇ̌
n D 2; ` D 1; j D 1=2;mj D 1=2

˛
and obtain an

expression for the wave function of the rotated state.

8. Suppose that angular momentum operators are defined such that OK D OJ1 C OJ2.
By operating with the operators OK˙ D OJ1˙ C OJ2˙ on the state

jj1j2IKQi D
X

m1;m2

�
j1 j2 K

m1 m2 Q

�
jj1m1i jj2m2i
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prove the recursion relation

p
.K � Q/ .K ˙ QC 1/

�
j1 j2 K

m1 m2 Q˙ 1

�

D
p
.j1 � .m1 � 1// .j1 ˙ .m1 � 1/C 1/

�
j1 j2 K

m1 � 1 m2 Q

�

C
p
.j2 � .m2 � 1// .j2 ˙ .m2 � 1/C 1/

�
j1 j2 K

m1 m2 � 1 Q

�
:

9–10. In Chap. 11, I showed that any operator in Dirac notation could be expanded

in terms of a complete set of basis operators j˛i hˇj. If the eigenkets are specified

as jjmi, then a complete set of basis operators can be specified by u
¯
.j1m1I j2m2/ D

jj1m1i hj2m2j. The u
¯
.j1m1I j2m2/ do not constitute a set of irreducible tensor basis

operators.

(a) Prove that the set of basis operators defined by

u
¯

K
Q .j1; j2/ D

X

m1;m2

.�1/j2�m2

�
j1 j2 K

m1 �m2 Q

�
jj1m1i hj2m2j

do form an irreducible tensor of rank K by showing they obey Eqs. (20.39).

(b) Prove that these operators are orthogonal in the sense that

Tr

�
u
¯

K
Q .j1; j2/

h
u
¯

K0

Q0

�
j01; j

0
2

�i��
D ıj1;j

0
1
ıj2;j

0
2
ıK;K0ıQ;Q0 :

(c) As a consequence, an arbitrary operator A
¯

can be expanded in terms of its

irreducible tensor components as

A
¯
D

X

j1;j2;K;Q

AK
Q .j1; j2/ u

¯

K
Q .j1; j2/ :

Show that the expansion coefficients AK
Q .j1; j2/ are given by

AK
Q .j1; j2/ D Tr

�
A
¯

�
u
¯

K
Q .j1; j2/

���

D
X

m1;m2

.�1/j2�m2

�
j1 j2 K

m1 �m2 Q

�
hj1m1j OA jj2m2i :

The use of an irreducible tensor basis for operators is useful since the components

transform in a simple way under rotation.
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11. Suppose that angular momentum operators are defined such that OJ D OJ1 C OJ2.
By operating with the rotation operator on the state

jj1j2I jmi D
X

m1;m2

�
j1 j2 j

m1 m2 m

�
jj1m1i jj2m2i

prove the decomposition relation

D
.j/

mm0 .˛; ˇ; / D
X

m1;m2
m0
1;m

0
2

�
j1 j2 j

m1 m2 m

� �
j1 j2 j

m0
1 m0

2 m0

�

�D.j1/

m1m0
1
.˛; ˇ; /D

.j2/

m2m0
2
.˛; ˇ; / :

12. For a rotation specified by the rotation operator OR .˛; ˇ; /, find the transformed

angular momentum operator

OLR .˛; ˇ; / D OR .˛; ˇ; / OL OR�1 .˛; ˇ; / :

If

B D Bxux C Byuy C Bzuz

D B
�
sin �B cos�Bux C sin �B sin�Buy C cos �Buz

�
;

is a constant vector having polar angles .�B; �B/, prove that an interaction Hamilto-

nian of the form OH D ˛ OL � B, where ˛ is a constant, is transformed into

OHR D ˛ OLR .0;��B;��B/ � B D OLzB

under the action of the rotation operator OR .0;��B;��B/; in other words, in the

transformed Hamiltonian, it is as if the vector B lies along the z-axis, even though

this constant vector is unaffected by the transformation (recall that only operators

are transformed under quantum transformations).

13–14. If a constant magnetic field induction B is applied to a hydrogen atom, there

is an extra interaction term in the Hamiltonian of the form

OH0 D e

2me

OL � B;

where me is the electron mass and spin has been neglected. I have already shown

that, if the quantization axis is taken along the field direction, the eigenkets are

unchanged and each ` level is split into .2`C 1/ equally spaced levels separated

in frequency by ! D qB=2me. Sometimes it is more convenient to take the
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quantization axis along a different direction (e.g., along the polarization vector of

an optical field that is also present). Evaluate the matrix elements hn`mj OH0 jn0`0m0i
for a magnetic field induction

B D Bx C Byuy C Bzuz

D B
�
sin � cos�ux C sin � sin�uy C cos �uz

�
;

where � and � are the polar angles of the field. Explicitly diagonalize the ` D 1

submatrix to obtain the changes in the energy produced by the field and the new

eigenkets.

The D.`/ .˛; ˇ; / matrices can be used to get a general expression for the new

eigenkets. Under a rotation .0;��B;��B/ the eigenkets transform as

j`mi0R D OR .0;��B;��B/ j`mi0 :

But we have seen in the previous problem that such a transformation produces

an effective interaction in which the field is along the z-direction; that is, the

transformed kets are simply the standard kets when the quantization axis is taken

along the z-axis, j`mi0R D j`mi, which implies that

j`mi D OR .0;��B;��B/ j`mi0 :

Invert this equation to prove that

j`mi0 D
X

m0

D
.`/

m0m
.�B; �B; 0/

ˇ̌
`m0˛ ;

the eigenkets for which the quantization axis is along the field can be obtained from

the standard kets by rotation that takes the z-axis into the field direction. Check to

see if your result for ` D 1 agrees with that obtained by direct diagonalization. The

result derived is quite general for any Euler angles .˛; ˇ; /; that is, the eigenkets

relative to a quantization axis defined by the Euler angles .˛; ˇ; / are given by

j`mi0 D
X

m0

D
.`/

m0m
.˛; ˇ; /

ˇ̌
`m0˛ :

15–16. For two irreducible tensor operators, OTq

k .1/ and OTq

k .2/, associated with two

separate atoms, you can form a set of irreducible tensor operators as

OTQ
K .k1; k2/ D

X

q1;q2

�
k1 k2 K

q1 q2 Q

�
OTq1

k1
.1/ OTq2

k2
.2/:
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An interaction potential OV connecting the two atoms can then be expanded as

OV D
X

q1;q2

A.k1q1; k2q2/ OTq1
k1
.1/ OTq2

k2
.2/

D
X

K;Q

A
Q
K.k1; k2/

OTQ
K .k1; k2/:

As a specific example, take OV as the dipole–dipole interaction between the atoms,

OV D 1

4��0

Ope.1/ � Ope.2/ � 3 Œ Ope.1/ � uR� Œ Ope.2/ � uR�

R3
;

where Ope.j/ is the electric dipole moment operator of atom j and uR is a unit vector

in the direction of the interatomic separation R from atom 1 to atom 2. Choose a

coordinate system in which atom 1 is located at the origin and � and � are the polar

angles of R. For this interaction, prove that

A
Q
K.k1; k2/ D �3

.4�/1=2

�0R3

�
2

15

�1=2 h
Y

Q
2 .�; �/

i�
ık1;1ık2;1ıK;2;

provided OTq1
k1
.j/ is taken to be an irreducible tensor component of the electric dipole

operator of atom j. In this form, both the expansion coefficients A
Q
K.k1; k2/ and the

irreducible tensor operators OTQ
K .k1; k2/ have simple transformation properties under

rotation. Explain on physical grounds why the K D 0 component (which must be

invariant under rotation) and the K D 1 component (which is odd under parity) must

vanish.



Chapter 21

Hydrogen Atom with Spin in External Fields

Having established the properties of irreducible tensor operators, I am now in a

position to use perturbation theory to study how the energy levels of the hydrogen

atom are modified in external magnetic and electric fields. Before doing so, however,

I will use perturbation theory to obtain the relativistic corrections to the energy

levels of hydrogen in the absence of any external fields. This will lead naturally to

a discussion of the fine-structure and hyperfine structure of hydrogen.

In the absence of any external fields, the energy levels of hydrogen (including

electron spin) are given by the solution of the Dirac equation. The Dirac equation

consistently treats all relativistic effects, but does not include hyperfine structure

(arising from the magnetic moment of the proton), nor the Lamb shift (to be

mentioned below). Explicitly, in the absence of any external fields, the energy levels

are given by

Enj D
mec2

8
<
:1C

˛2FS�
n�j� 1

2C
q
.jC 1

2 /
2�˛2FS

�2

9
=
;

1=2
I
�

n D 1; 2; : : : ;
j D 1

2
; 3
2
: : : ; n � 1

2

; (21.1)

where

˛FS D
e2

4��0„c
� 1

137
(21.2)

is the fine structure constant and me should be thought of as the reduced mass of

the electron. Note that ` does not appear explicitly in this equation; j is the quantum

number corresponding to the total angular momentum operator OJ D OL C OS of the

electron.
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Expanding this equation in a power series in ˛2FS, you can show that

Enj � mec2 � �ER

n2
� ˛2FS

ER

n4

 
n

jC 1
2

� 3
4

!
C � � � ; (21.3)

where

ER D
1

2
mec2˛2FS � 13:6 eV (21.4)

is the Rydberg energy.

Even though the Schrödinger equation is a non-relativistic equation, it is possible

to use perturbation theory to calculate the relativistic corrections to the hydrogenic

energy levels, corrections that can be attributed to relativistic mass effects, spin–

orbit interactions, and the so-called Darwin term. In this manner, the ˛2FS term

appearing in Eq. (21.3) can be obtained within the context of non-relativistic

quantum mechanics. I have already discussed spin and the spin–orbit interaction

in Chap. 12, so you should review those results.

In perturbation theory, the Hamiltonian is written as OH D OH0 C OH0, where OH0

includes relativistic corrections, hyperfine interactions, and any atom–external field

interactions, while OH0 is the Hamiltonian of hydrogen in the absence of such effects.

The exact eigenkets are expanded in terms of eigenkets of OH0 and approximate

expressions are obtained for the eigenenergies and eigenkets. If there is degeneracy

and if OH0 couples degenerate states, I must first exactly diagonalize any degenerate

sub-blocks in which there are off-diagonal matrix elements.

In dealing with any stationary state problem in quantum mechanics, the first

step is to identify the constants of the motion. Operators corresponding to dynamic

variables that are constants of the motion commute with the Hamiltonian. I can find

simultaneous eigenkets of the Hamiltonian and these operators. In problems involv-

ing perturbation theory, there are two Hamiltonians, the unperturbed Hamiltonian
OH0 and the total Hamiltonian OH D OH0 C OH0. If an operator OA having eigenvalues

labeled by a commutes with both OH0 and OH0, it corresponds to an exact constant

of the motion. As a consequence, the eigenkets of both OH0 and OH can be chosen as

simultaneous eigenkets of OA: If the eigenkets are chosen in this manner, only states

having the same value of the eigenvalue a can be coupled by OH0, since, under these

circumstances, OH0 is diagonal in the jai basis.

Let me be more specific. Suppose that both OL2 and OLz commute with both OH0 and
OH0; and that OH0 is the Hamiltonian operator for hydrogen without spin. This means

that the exact eigenkets of OH D OH0 C OH0 can be written as jE; `;mi ; whereas the

eigenkets of OH0 are given by jE; `;mi.0/ � jn; `;mi. In carrying out perturbation

theory using the jn; `;mi basis for a given n, only states having the same ` and the

same m can be coupled by OH0; in other words, no degenerate states of OH0 are coupled

by the perturbation and I can use nondegenerate perturbation theory. By identifying

the constants of the motion, I have dramatically simplified the problem. Note that

since n does not correspond to the exact energy, states having different n (but the
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same ` and the same m) can be coupled by OH0; however, contributions from these

terms are usually relatively small since they involve large energy denominators.

I first consider the hydrogen atom without spin and calculate the relativistic mass

correction. Spin is then included and the modifications to the energy levels from the

spin–orbit interaction are obtained. The role played by the Darwin term is discussed.

Finally I allow for interactions with constant external magnetic or electric fields. The

hyperfine interaction is discussed in detail in Appendix 2.

21.1 Energy Levels of Hydrogen

21.1.1 Unperturbed Hamiltonian

The Hamiltonian for the hydrogen atom without any relativistic corrections is

OH0 D
Op2
2me

� e2

4��0r
D Op2
2me

� Ke

r
; (21.5)

where

Ke D
e2

4��0
: (21.6)

The eigenenergies of OH0 are given by

E.0/n D �
1

2n2
˛2FSmec2 D � 1

2n2

e2

4��0a0
D �ER

n2
D �13:6 eV

n2
; (21.7)

where a0 is the Bohr radius. There is an n2 degeneracy for states having a given n;

for a given n, ` D 0; 1; : : : .n � 1/, and for a given `, m` varies from �` to ` in

integer steps.

21.1.2 Relativistic Mass Correction

Relativistic corrections are best treated by the exact solution of the Dirac equation

for hydrogen. However I can get a perturbative solution for the relativistic mass

correction (actually a relativistic energy correction, since mass is an invariant) if I

replace the classical kinetic energy term by its relativistic equivalent,

p2

2me

!
q

m2
ec4 C p2c2 � mec2 D mec2

 s
1C p2

2m2
ec2
� 1

!

� p2

2me

� 1
8

p4

m3
ec2
; (21.8)
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implying that, to lowest order, the relativistic mass correction adds a term to the

Hamiltonian,

OH0
rel D �

1

8

Op4
m3

ec2
; (21.9)

and the total Hamiltonian is

OH � OH0 �
1

8

Op4
m3

ec2
: (21.10)

The operators OH; OL2; OLz still form a set of commuting operators allowing me to

specify the states by the quantum numbers E; `;m`. However, there is no longer

a single quantum number n that uniquely determines the energy. The energy of a

given level now depends on both n and `, since the relativistic term has broken

the dynamic symmetry (the classical orbit precesses—it is no longer closed and the

Lenz vector is not a constant of the motion). To get the energies exactly I would

need to solve the Dirac equation. To get approximate energies and eigenfunctions I

can use the Schrödinger equation and perturbation theory.

Since the perturbation matrix is diagonal in all the quantum numbers except n,

I do not need to use degenerate perturbation theory. The first order change in the

energy is given simply by

�E
.1/

n` D �
1

8m3
ec2
hn; `;mj Op4 jn; `;mi (21.11)

It is possible to evaluate this term as

hn; `;mj Op4 jn; `;mi D
Z

dr �
nlm.r/Op4 nlm.r/

D
Z

dr
�
Op2 nlm.r/

�� Op2 nlm.r/

� .2me/
2

Z
dr
hn
OH0 � V.r/

o
 nlm.r/

i� n OH0 � V.r/
o
 nlm.r/

D .2me/
2

Z
dr nlm.r/

�
� OH2

0 � V.r/ OH0

� OH0V.r/C ŒV.r/�2
�
 nlm.r/

D .2me/
2

2
4

E2n C 2 e2

4��0
En hn; `;mj 1r jn; `;mi

C
�

e2

4��0

�2
hn; `;mj 1

r2
jn; `;mi

3
5 : (21.12)
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The needed matrix elements can be calculated as (see Appendix 1),

Z
dr �

nlm.r/
1

r
 nlm.r/ D

1

n2a0
I (21.13a)

Z
dr �

nlm.r/
1

r2
 nlm.r/ D

1�
`C 1

2

�
n3a20

; (21.13b)

where a0 is the Bohr radius. The final energy shift is

�En` D �
ˇ̌
E.0/n

ˇ̌ ˛2FS

n2

�
n

`C 1=2 �
3

4

�
: (21.14)

You see that the energy now now depends on both n and `; the “accidental”

degeneracy is lifted by the relativistic term. Since

n

`C 1=2 �
.`C 1/
`C 1=2 > 1; (21.15)

it follows that �En` < 0 and the energy of each state is lowered, which is not

surprising since H0
rel is negative. The energies of the low angular momentum states

for a given n are lowered the most, since the electron’s average speed decreases

with increasing angular momentum for a fixed energy, giving a smaller relativistic

correction.

The relativistic mass corrections in frequency units are given by

�f mass
n` D �175 GHz

n4

 
n

`C 1
2

� 3
4

!
: (21.16)

For the two lowest energy states of hydrogen,

n ` �f mass
n`

1 0 � 219 GHZ

2 0 � 35:6 GHZ

2 1 � 6:38 GHZ

:

To zeroth order in the perturbation, the eigenkets are unchanged. What about

higher order relativistic mass corrections to the eigenkets and eigenenergies? You

can use nondegenerate perturbation theory to get higher order corrections. For

example,

jE; `;m`i � jn; `;m`i C
X

n0¤n

hn0; `;m`jH0
rel jn; `;m`i jn0; `;m`i
E
.0/
n � E

.0/

n0

(21.17)
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and

En` � E.0/n C�E
.1/

n` C
X

n0¤n

ˇ̌
hn0; `;m`jH0

rel jn; `;m`i
ˇ̌2

E
.0/
n � E

.0/

n0

; (21.18)

where I used the fact that H0
rel is diagonal in both ` and m`, since both OL2 and OLz

are constants of the motion. The second order energy corrections are ˛2FS times

smaller than the first order corrections.1 I neglect any such corrections throughout

this chapter.

21.1.3 Spin Included

If spin is included, but spin-dependent interactions are neglected, the degeneracy of

each state is doubled since the electron can have spin quantum numbers ms D ˙1=2.

The total (orbital plus spin) angular momentum operator is

OJ D OLC OS: (21.19)

Since OJ2 and OJz and are constants of the motion, states can be labeled by either

jn; `;m`; s;msi or
ˇ̌
n; `; s; j;mj

˛
. You cannot use both sets of labels since OJ2 does not

commute with OLz and OSz separately, only with their sum, OJz D OLz C OSz.

The results obtained in Sect. 21.1.2 are unchanged since the relativistic mass

correction to the Hamiltonian given in Eq. (21.9) is spin-independent. States having

a given ` and different j are still degenerate. Thus, the n D 2,` D 1 state is six-fold

degenerate and can be labeled either by n D 2; ` D 1;m` D ˙1; 0Ims D ˙1=2 or

by n D 2; ` D 1; j D 1=2; 3=2 with mj D �3=2;�1=2; 1=2; 3=2 for j D 3=2 and

mj D �1=2; 1=2 for j D 1=2:

21.1.4 Spin–Orbit Interaction

The spin–orbit interaction leads to an additional term in the Hamiltonian given by

Eq. (12.33),

OH0
so D

1

8��0

e2S � L
m2

er3c2
: (21.20)

1For consistency, if I were to include such corrections, I would need to take the next term in the

expansion of Eq. (21.8) and calculate its effect in first order perturbation theory.
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(From this point onwards, I drop the carets on the angular momentum and

spin operators, unless there is some possible cause for confusion.) For angular

momentum states having ` D 0 there is no spin–orbit interaction. All equations

in this subsection are restricted to values ` ¤ 0.

Since the states having the same n are degenerate, it is best to use a basis in which

the levels within a given n manifold are not coupled. In that way I do not have to use

degenerate perturbation theory. To find such a basis, I write

S � L D SxLx C SyLy C SzLz D
J2 � L2 � S2

2
: (21.21)

Clearly, S�L is not diagonal in the jn; `; sIm`;msi basis; however in the jn; `; s; I j;mi
basis

hn; `; s; I j;mj S � L
r3

ˇ̌
n0; `0; s; I j0;m0˛

D hn; `; s; I j;mj J2 � L2 � S2

2r3

ˇ̌
n0; `0; s; I j0;m0˛

D „2 j .jC 1/ � ` .`C 1/ � 3=4
2

� hn; `; s; I j;mj 1
r3

ˇ̌
n0; `; s; I j;m

˛
ı`;`0ıj;j0ım;m0 : (21.22)

In the jn; `; s; I j;mi basis, there is coupling between different electronic state

manifolds (which I already said I will neglect), but within a given n state manifold,

there is no coupling! The quantum numbers `; j;m are said to be good quantum

numbers since they correspond to exact constants of the motion. In effect I am

exploiting the fact that the total angular momentum is conserved, even if L and

S are not conserved separately.

Thus, to lowest order perturbation theory (that is, neglecting coupling between

different electronic state manifolds),

En`j D E.0/n C
1

8��0

e2„2
m2

ec2

j .jC 1/ � ` .`C 1/ � 3=4
2

� hn; `; s; I j;mj 1
r3
jn; `; s; I j;mi (21.23)

and j D ` ˙ 1=2. The matrix elements of r�3 can be evaluated analytically (see

Appendix 1) as

hn; `; s; I j;mj 1
r3
jn; `; s; I j;mi D

Z
dr �

nlm.r/
1

r3
 nlm.r/

D 1

`
�
`C 1

2

�
.`C 1/ n3a30

; (21.24)
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leading to

En`;jD`� 1
2
D E.0/n �

˛2FS

2n

ˇ̌
E.0/n

ˇ̌ 1

`
�
`C 1

2

� I (21.25a)

En`;jD`C 1
2
D E.0/n C

˛2FS

2n

ˇ̌
E.0/n

ˇ̌ 1�
`C 1

2

�
.`C 1/

. (21.25b)

The fine structure splitting for a state having ` ¤ 0 is equal to

ıEso
n` D En`jD`C 1

2
� En`jD`� 1

2
D ˛2FS

n

ˇ̌
E.0/n

ˇ̌ 1

` .`C 1/ : (21.26)

For the 2P state of hydrogen, this splitting is equal to 4:53�10�5 eV which is about

11 GHz in frequency units. For the alkali atoms the fine structure splitting is much

larger—it is about 515 GHz for the 3P state of sodium (in sodium the ground state

is a 3S state and the first excited states are 3P states).

The spin orbit corrections in frequency units are given by

�f so

n`;jD`� 1
2

D �175 GHz

2n3

1

`
�
`C 1

2

� I (21.27)

�f so

n`;jD`C 1
2

D 175 GHz

2n3

1

.`C 1/
�
`C 1

2

� I (21.28)

ıf so
n` D �f so

n`;jD`C 1
2

��f so

n`;jD`� 1
2

D 175 GHz

n3

1

` .`C 1/ : (21.29)

For the n D 2 state

n ` j �f so
n`j

2 1 1=2 � 7:30 GHZ

2 1 3=2 3:65 GHZ

I n ` ıf so
n`

2 1 10:94 GHZ
:

The prediction for the fine structure splitting obtained using the Dirac equation

is 10.943 GHz, when the reduced mass is used in the calculation, while the

experimental value is 10.969 GHz. There are corrections to the Dirac equation

arising from the finite size of the nucleus and radiative corrections, involving

fluctuations of the vacuum field. When these are included, experiment and theory

are in excellent agreement.
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21.1.5 Darwin Term

Although ` D 0 states are not shifted by the spin–orbit interaction, they are shifted

by what is called the Darwin term (named for Charles Galton Darwin). The Darwin

term shifts only states having ` D 0. In some rough sense this term arises owing to

the fact that the electron cannot have a speed greater than c. As a consequence of the

uncertainty principle, the electron wave packet must then always be constrained to

a sphere of radius of order of the Compton wavelength to insure that �v < c: The

potential energy is averaged over this sphere. That is, the average potential seen by

the electron is

V.r/ D 1

4
3�
N�3c

Z

sphere

d�V.rC �/

� V.r/C 1

4
3�
N�3c

Z

sphere

d�

2
4� � rV.r/C 1

2

3X

i;jD1
�i�j

@2V.r/

@xi@xj

3
5 ; (21.30)

where the integral is over a sphere having radius N�c D „=mec centered at position

r and V.r/ is the Coulomb potential. The first term in the integral vanishes on

integrating over � and the second contributes only for i D j: In this manner, you

can obtain

H0Darwin .r/ D 1

4
3
� N�3c

1

2

Z

sphere

d�

3X

i

�2i
@2V.r/

@x2i
(21.31)

But

Z

sphere

d� �2i D
1

3

Z

sphere

d� �2 D 4�
N�5c
15

(21.32)

since each component gives the same result. As a consequence,

H0Darwin .r/ �
N�2c
10

3X

i

@2V.r/

@x2i
D
N�2c
10
r2V.r/ D e2 N�2c

10�0
ı.r/; (21.33)

which is of the same order of magnitude as the result that can be derived from the

Dirac equation,

H0Darwin .r/ D e2 N�2cı .r/
8�0

: (21.34)

The energy shift vanishes for all but ` D 0, j D 1=2 states. The (correct) Darwin

energy shift is given by
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�EDarwin
n D e2 N�2c

8�0
hn00j ı.r/ jn00i ; (21.35)

where jn`m`i is an eigenket of the hydrogen atom neglecting spin. The matrix

element is evaluated easily [see Eq. (21.108) in Appendix 2] and one finds

�EDarwin
n D ER˛

2
FS

n3
I (21.36a)

�f Darwin
n D 175 GHz

n3
: (21.36b)

The frequency shifts for n D 1; 2 states are given by

n ` j �f Darwin
n

1 0 1=2 175 GHZ

2 0 1=2 21:9 GHZ

:

21.1.6 Total Fine Structure

The total fine structure (mass+spin-orbit+Darwin terms) is obtained by combining

Eqs. (21.14), (21.25), and (21.36). The result is

�Etot
nj D �˛2FS

ER

n4

 
n

jC 1
2

� 3
4

!
I j D 1

2
;
3

2
: : : ; n � 1

2
I (21.37a)

�f tot
nj D �

175 GHz

n4

 
n

jC 1
2

� 3
4

!
I j D 1

2
;
3

2
: : : ; n � 1

2
: (21.37b)

These results agree with the solutions of the Dirac equation [see Eq. (21.3)], if

corrections of order ˛4FSER are neglected: Note that the `-dependence is now

implicit, with j D `˙ 1
2
: For n D 1; 2

n ` j �f tot
n`

1 0 1=2 � 43:8 GHZ

2 0 1=2 � 13:7 GHZ

2 1 1=2 � 13:7 GHZ

2 1 3=2 � 2:74 GHZ

:

All energies are lowered, a result attributable mainly to the relativistic mass

correction. States having the same values of n and j are still degenerate.
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Fig. 21.1 Hydrogen fine structure for the n D 1 and n D 2 states (not to scale), including

relativistic mass, spin-orbit and Darwin contributions, as well as the Lamb shift. The values shown

are those obtained using the results of perturbation theory with me equal to the reduced mass and

differ slightly from the experimental values

21.1.7 Lamb Shift

The Lamb shift [named for Willis E. Lamb, Jr. (my thesis advisor)] arises from

quantum electrodynamic corrections, that is, effects related to changes in atomic

energy levels resulting from fluctuations of the vacuum radiation field. The Lamb

shift affects mainly ` D 0 states. The n D 2, ` D 0; j D 1=2 level is shifted up

by about 1.06 GHz and the n D 1, ` D 0; j D 1=2 level is shifted up by about

8.17 GHz. The Lamb shift breaks the degeneracy of states having the same n but

different j.

In Fig. 21.1;the relativistic corrections to the n D 1; 2 states of hydrogen are

illustrated. In the remainder of this chapter, I neglect the Lamb shift.

21.1.8 Hyperfine Structure

As does the electron, the proton in hydrogen possesses an intrinsic spin angular

momentum having quantum number I D 1=2 and an intrinsic magnetic moment. In

hydrogen, this results in an interaction of the magnetic moment of the proton with

the magnetic field produced by the electron. The magnetic moment of the proton is

mp D
egpI

2mp

; (21.38)
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where mp is the proton mass and gp is the proton g-factor, equal to 5:586. The

hyperfine interaction strength is roughly me=mp D 1=1836 times smaller than the

fine structure interaction strength. A calculation of the energy level shifts produced

by the hyperfine interaction is given in Appendix 2. It is possible to define a total

(orbital plus electronic spin plus nuclear spin) angular momentum operator by

F D JC I; (21.39)

having associated quantum number f D j˙ 1=2. In frequency units, the hyperfine

level shifts, �f hf
n`jf , and splittings, ıf hf

n`j, for the n D 1; 2 states of hydrogen are:

n ` j f �f hf
n`jf

1 0 1=2 0 � 1:06 GHZ

1 0 1=2 1 0:355 GHZ

2 0 1=2 0 � 133 MHZ

2 0 1=2 1 44:4 MHZ

2 1 1=2 0 � 44:4 MHZ

2 1 1=2 1 14:8 MHZ

2 1 3=2 1 � 14:8 GHZ

2 1 3=2 2 8:88 MHZ

n ` j ıf hf
n`j

1 0 1=2 1:42 GHZ

2 0 1=2 177 MHZ

2 1 1=2 59:2 MHZ

2 1 3=2 23:7 MHZ

:

These results are indicated schematically in Fig. 21.2.

Fig. 21.2 Hydrogen hyperfine structure for the n D 1 and n D 2 states (not to scale) with

splittings ıfn;`;;j
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21.1.9 Addition of a Magnetic Field

I now want to consider the influence of external magnetic and electric fields on

the energy levels of hydrogen. Although external magnetic fields couple different

hyperfine levels much more strongly than different fine structure levels (see

Appendix 2), I neglect hyperfine structure in discussing magnetic and electric field

effects. This is not because they are unimportant, but simply because I want to

illustrate some physical concepts that are more easily understood if the hyperfine

interaction is neglected.

The modifications of the energy levels of atoms by an external magnetic field are

often referred to as the Zeeman effect (after Pieter Zeeman). If a magnetic field is

present along the z direction, a term

OH0
B D

ˇ0B

„ .Lz C 2Sz/ D
ˇ0B

„ .Jz C Sz/ (21.40)

must be added to the Hamiltonian. Recall that ˇ0 D e„=2me is the Bohr magneton

and that ˇ0/h � 14 GHz/T. The total Hamiltonian then consists of the unperturbed

Hamiltonian of hydrogen plus contributions from both the relativistic corrections

(relativistic mass, spin-orbit, and Darwin terms) and the Zeeman effect. The only

constants of the motion for the total Hamiltonian are E;L2; S2; Jz. The magnitude

of the total angular momentum is not a constant of the motion since OJ2 does not

commute with OSz, and the z-components of the orbital and spin angular momenta

are not constants of the motion since OLz and OSz do not commute with OL � OS, which

appears as a factor in the spin-orbit term of the Hamiltonian. Thus the eigenkets

can be labeled by
ˇ̌
E; `; s D 1=2;mj

˛
. I will drop the s label since s D 1=2. In a

given n manifold, the energy E of a state having a given `;mj now depends on some

complicated combination of the spin–orbit and Zeeman interactions.

To apply degenerate perturbation theory, I can use either the
ˇ̌
n; `; j;mj

˛
or the

jn; `;m`;msi basis kets, remembering that only states having the same ` and the

same mj D m` C ms can be coupled since L2 and Jz are constants of the motion. In

other words, ` and mj D m` C ms remain good quantum numbers in the presence

of an external magnetic field. It is relatively easy to calculate the matrix elements

in either basis in a state of given n. Once the matrix elements are calculated, you

need to diagonalize each degenerate sub-block. If the spin-orbit coupling is much

larger than the magnetic field interaction strength, then j is an approximate good

quantum number since J2 is an approximate constant of the motion. In this limit theˇ̌
n; `; j;mj

˛
are approximate eigenkets that can be used to carry out nondegenerate

perturbation theory for the magnetic-field interaction. On the other hand, if the

magnetic field interaction strength is much larger than the spin-orbit coupling

strength, then m` and ms are approximate good quantum number since Lz and

Sz are an approximate constants of the motion. In this case, the jn; `;m`;msi are

approximate eigenkets that can be used to carry out nondegenerate perturbation

theory for the spin–orbit and other relativistic interactions.
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In the
ˇ̌
n; `; j;mj

˛
basis, the only matrix elements that are a little tricky to evaluate

are those involving
˝
n; `; j;mj

ˇ̌ OSz

ˇ̌
n; `; j0;mj

˛
: You must convert the

ˇ̌
n; `; j;mj

˛
kets

back to the jn; `;m`;msi basis using

ˇ̌
n; `; j;mj

˛
D
X

m`;ms

�
` s D 1=2 j

m` ms mj

�
jn; `;m`;msi (21.41)

to arrive at

˝
n; `; j;mj

ˇ̌ OSz

ˇ̌
n; `; j0;mj

˛
D „

X

m`;ms

ms

�
` 1

2
j

m` ms mj

� �
` 1

2
j0

m` ms mj

�
: (21.42)

In this way, using tabulated values of the Clebsch-Gordan coefficients, you can

obtain

˝
n; `; j;mj

ˇ̌ OH
ˇ̌
n; `; j0;mj

˛
D E.0/n ıj;j0

�˛
2
FS

4n2

�
4n

`C 1=2 � 3
� ˇ̌

E.0/n

ˇ̌
ıj;j0

C˛
2
FS

2n

�
ıj;`C1=2

.`C 1=2/ .`C 1/ �
ıj;`�1=2

` .`C 1=2/

� ˇ̌
E.0/n

ˇ̌
ıj;j0

Cˇ0Bmj

��
1C 1

2`C 1

�
ıj;`C1=2 C

�
1 � 1

2`C 1

�
ıj;`�1=2

�
ıj;j0

�ˇ0B

q
.`C 1=2/2 � m2

j

2`C 1
�
ıj;`C1=2ıj0;`�1=2 C ıj;`�1=2ıj0;`C1=2

�
; (21.43)

or

˝
n; `; j;mj

ˇ̌ OH
ˇ̌
n; `; j0;mj

˛
D E.0/n ıj;j0

�˛
2
FS

n2

�
n

jC 1=2 �
3

4

� ˇ̌
E.0/n

ˇ̌
ıj;j0

Cˇ0Bmj

��
1C 1

2`C 1

�
ıj;`C1=2 C

�
1 � 1

2`C 1

�
ıj;`�1=2

�
ıj;j0

�ˇ0B

q
.`C 1=2/2 � m2

j

2`C 1
�
ıj;`C1=2ıj0;`�1=2 C ıj;`�1=2ıj0;`C1=2

�
: (21.44)

On the other hand, in the jn; `;m`;msi basis it is simple to evaluate matrix

elements of the magnetic field interaction, but the S � L factor in the spin–orbit

interaction has to be written as .LCS� C L�SC/ =2 C LzSz to evaluate its matrix

elements. In this manner you can find
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hn; `;m`;msj OH
ˇ̌
n; `;m0

`;m
0
s

˛
D E.0/n ım`;m

0
`
ıms;m0

s

�˛
2
FS

n2

�
n

`C 1=2 �
3

4

� ˇ̌
E.0/n

ˇ̌
ım`;m

0
`
ıms;m0

s

C
˛2FS

ˇ̌
ˇE.0/n

ˇ̌
ˇ .1 � ı`;0/

n` .`C 1=2/ .`C 1/
n
m`msım`;m

0
`
ıms;m0

s

C1
2

q�
` � m0

`

� �
`C m0

` C 1
�
ım`;m

0
`C1ıms;�1=2ım0

s;1=2

C1
2

q�
`C m0

`

� �
` � m0

` C 1
�
ım`;m

0
`�1ıms;1=2ım0

s;�1=2

�

C
˛2FS

ˇ̌
ˇE.0/n

ˇ̌
ˇ ı`;0ıms;m0

s

n
C ˇ0B .m` C 2ms/ ım`;m

0
`
ıms;m0

s
: (21.45)

To obtain the exact (exact only in the sense that I neglect coupling between different

electronic state manifolds) eigenkets and eigenenergies, I must diagonalize these

matrices for a given value of n and `. Before doing so, let me look at the weak and

strong field limits.

Consider the n D 2; ` D 1 manifold which consists of six degenerate levels

in the absence of any magnetic fields and any relativistic corrections. The fine

structure splitting is about 11 GHz and, since ˇ0=h D 14:0 GHz/T, the magnetic

and fine structure interactions are comparable for field strengths of 1 T or above.

In weak fields of much less than 1 T, the
ˇ̌
n; `; j;mj

˛
are approximate eigenkets.

That is, to lowest order I can neglect the magnetic field interaction entirely. The

corrections arising from the magnetic field interaction can then be calculated using

nondegenerate perturbation theory in the
ˇ̌
n; `; j;mj

˛
basis. In this limit, the change

in the energy levels produced by the magnetic field is given approximately by the

diagonal matrix elements in Eq. (21.44), namely

�EnD2;`D1;j;mj
D
˝
2; 1; j;mj

ˇ̌ OH � OH0

ˇ̌
2; 1; j;mj

˛

D �˛
2
FS

4

�
2

jC 1=2 �
3

4

� ˇ̌
ˇE.0/2

ˇ̌
ˇ

Cˇ0Bmj

�
4

3
ıj;3=2 C

2

3
ıj;1=2

�
; (21.46)
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which implies that

�EnD2;`D1;3=2;mj

h
D
�
�2:74C 18:7mjB(T/

�
GHz; (21.47a)

�E
.0/

nD2;`D1;1=2;mj

h
D
�
�13:7C 9:33mjB(T)

�
GHz, (21.47b)

where B(T) is the magnetic induction in units of Tesla.

On the other hand, in fields much greater than 1 T, the spin–orbit interaction can

be neglected to lowest order compared with the magnetic field interaction. In that

limit, the jn; `;m`;msi are approximate eigenkets and the magnetic field coupling

strength is sufficiently large to allow me to use nondegenerate perturbation theory in

this basis to approximate the changes in the energy levels produced by the spin–orbit

interaction. These changes are given approximately by the diagonal matrix elements

in Eq. (21.45), namely

�EnD2;`D1;m`;ms
D h2; 1;m`;msj OH � OH0 j2; 1;m`;msi

D �˛2FS

7

48

ˇ̌
ˇE.0/2

ˇ̌
ˇC ˇ0B .m` C 2ms/C

˛2FS

ˇ̌
ˇE.0/2

ˇ̌
ˇ

6
m`ms; (21.48)

which implies that

�EnD2;`D1;m`;ms

h
D Œ�6:38C 14:0 .m` C 2ms/B(T)C 7:30m`ms�GHz.

(21.49)

Note that the energy of the m` D 1;ms D 1=2 level in Eq. (21.49) agrees with

that of the j D 3=2;mj D 3=2 level in Eq. (21.47a), as does the energy of the

m` D �1;ms D �1=2 level in Eq. (21.49) with that of the j D 3=2;mj D �3=2
level in Eq. (21.47a). These pairs of states are identical in both bases.

For arbitrary field strengths I can use either basis. I will use jn D 2; ` D 1;m`;msi
basis kets, for which the perturbation Hamiltonian in frequency units, obtained using

Eqs. (21.45), is

�H
¯

h
D

0
BBBBBBB@

�2:73C 28B 0 0 0 0 0

0 �10.0 5.16 0 0 0

0 5.16 �6:38C 14B 0 0 0

0 0 0 �6:38� 14B 5.16 0

0 0 0 5.16 �10.0 0

0 0 0 0 0 �2:73� 28B

1
CCCCCCCA

GHz

(21.50)
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where the order for jm`;msi is

ˇ̌
ˇ̌1; 1
2

�
;

ˇ̌
ˇ̌1;�1

2

�
;

ˇ̌
ˇ̌0; 1
2

�
;

ˇ̌
ˇ̌0;�1

2

�
;

ˇ̌
ˇ̌�1; 1

2

�
;

ˇ̌
ˇ̌�1;�1

2

�
: (21.51)

The eigenenergies and eigenkets are obtained easily by diagonalizing the 2� 2 sub-

matrices of the Hamiltonian. The eigenkets
ˇ̌
E; ` D 1;mj

˛
are of the form

jE1; 1; 3=2i D j2; 1; 1; 1=2i I (21.52a)

jE2; 1; 1=2i D ˛ j2; 1; 1;�1=2i C ˇ j2; 1; 0; 1=2i I (21.52b)

jE3; 1; 1=2i D  j2; 1; 1;�1=2i C ı j2; 1; 0; 1=2i I (21.52c)

jE4; 1;�1=2i D ˛0 j2; 1; 0;�1=2i C ˇ0 j2; 1;�1; 1=2i I (21.52d)

jE5; 1;�1=2i D  0 j2; 1; 0;�1=2i C ı0 j2; 1;�1; 1=2i I (21.52e)

jE6; 1;�3=2i D j2; 1;�1;�1=2i ; (21.52f)

where the coefficients ˛; ˇ; ; ı; ˛0; ˇ0;  0; ı0 emerge in the diagonalization proce-

dure, but are not written explicitly. The corresponding eigenfrequencies in GHZ are

�f1 D �2:74C 28BI (21.53a)

�f2 D �8:21C 7BC 7
p
0:611C 0:521BC B2I (21.53b)

�f3 D �8:21C 7B � 7
p
0:611C 0:521BC B2I (21.53c)

�f4 D �8:21 � 7BC 7
p
0:611 � 0:521BC B2I (21.53d)

�f5 D �8:21 � 7B � 7
p
0:611 � 0:521BC B2I (21.53e)

�f6 D �2:74 � 28B; (21.53f)

where B is in Tesla. The eigenvalues (change in frequency, �f ) in GHz are plotted

in Fig. 21.3 as a function of magnetic field strength in Tesla (T).

For weak fields (B � 1 T), the frequencies are given by Eq. (21.47), and

for strong fields (B � 1 T), the frequencies begin to approach those given by

Eq. (21.49). Note that in very strong fields the states having m` D 1;ms D �1=2
and m` D �1;ms D 1=2 approach degeneracy, a result predicted in Eq. (21.49). The

strong field region is referred to as the Paschen-Back region.

21.1.10 Addition of an Electric Field

If, instead of a magnetic field, there is a constant electric field having amplitude E0

along the z axis, then an additional term,
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Fig. 21.3 Changes in the eigenfrequencies of the n D 2, ` D 1 states of hydrogen produced by a

constant external magnetic field

OH0
E D eE0Oz; (21.54)

must be added to the Hamiltonian.2 The splitting of atomic energy levels by an

electric field is commonly referred to as the Stark effect (Johannes Stark discovered

this effect in 1913). I have already discussed the linear Stark effect in hydrogen in the

context of degenerate perturbation theory, but relativistic corrections and spin were

neglected in that discussion. In the presence of a constant external electric field, L2;

L, and J2 are no longer constants of the motion for the total Hamiltonian. The only

constants of the motion are E; S2; and Jz. For example, in the n D 2 manifold there

are eight states that can be characterized by their energy and mj values. The states

having mj D 3=2 Œm` D 1;ms D 1=2� and mj D �3=2 Œm` D �1;ms D �1=2� are

not coupled to any other states by the field and remain a degenerate doublet. The

other states break up into two triplets of states coupled by both the spin–orbit and

electric field interactions. It turns out that the energies of the levels do not depend

on the sign of mj.

In the jn; `;m`;msi basis it is simple to evaluate matrix elements of the electric

field interaction since

hn; `;m`;msj Oz
ˇ̌
n0; `0;m0

`;m
0
s

˛
D
ım`;m

0
`
ıms;m0

sp
2`C 1

�
`0 1 `

m` 0 m`

�
hn; `k z

n0; `0˛ :
(21.55)

The Clebsch-Gordan coefficients restrict �` D ` � `0 to values ˙1; 0, but �` D
0 is ruled out owing to parity considerations; in other words, the reduced matrix

elements vanish if �` D 0: A general formula for the reduced matrix elements can

be given in terms of hypergeometric functions, but I do not give it here. The matrix

2Technically there are no longer any bound states of hydrogen in an external electric field. However,

the lifetimes of the low-lying energy states are effectively infinite for static fields and the shifts of

these levels can be calculated using perturbation theory.
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elements for the entire Hamiltonian in a state of fixed n are

hn; `;m`;msj OH
ˇ̌
n; `0;m0

`;m
0
s

˛
D E.0/n ım`;m

0
`
ıms;m0

s
ı`;`0

�˛
2
FS

4n2

�
4n

`C 1=2 � 3
� ˇ̌

E.0/n

ˇ̌
ım`;m

0
`
ıms;m0

s
ı`;`0

C
˛2FS

ˇ̌
ˇE.0/n

ˇ̌
ˇ .1 � ı`;0/

n` .`C 1=2/ .`C 1/
n
m`msım`;m

0
`
ıms;m0

s

C1
2

q�
` � m0

`

� �
`C m0

` C 1
�
ım`;m

0
`C1ıms;�1=2ım0

s;1=2

C1
2

q�
`C m0

`

� �
` � m0

` C 1
�
ım`;m

0
`�1ıms;1=2ım0

s;�1=2

�
ı`;`0

C
˛2FS

ˇ̌
ˇE.0/n

ˇ̌
ˇ ı`;0ıms;m0

s

n

CeE0 hn; `;m`j Oz
ˇ̌
n; `0;m`

˛
ım`;m

0
`
ıms;m0

s
: (21.56)

For the n D 2manifold, h2; 1; 0; j Oz j2; 0; 0i D �3a0, and, with the states denoted

by jn; `Im`;msi ; there are eight unperturbed eigenkets that can be written as

j1i D
ˇ̌
ˇ̌2; 0I 0; 1

2

�
; mj D 1=2; (21.57a)

j2i D
ˇ̌
ˇ̌2; 0I 0;�1

2

�
I mj D �1=2; (21.57b)

j3i D
ˇ̌
ˇ̌2; 1I 1; 1

2

�
I mj D 3=2; (21.57c)

j4i D
ˇ̌
ˇ̌2; 1I 1;�1

2

�
I mj D 1=2; (21.57d)

j5i D
ˇ̌
ˇ̌2; 1I 0; 1

2

�
I mj D 1=2; (21.57e)

j6i D
ˇ̌
ˇ̌2; 1I 0;�1

2

�
I mj D �1=2; (21.57f)

j7i D
ˇ̌
ˇ̌2; 1I �1; 1

2

�
I mj D �1=2; (21.57g)

j8i D
ˇ̌
ˇ̌2; 1I �1;�1

2

�
I mj D �3=2: (21.57h)
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If I set

A D �3:84 � 10�5E0(V/m) (21.58)

and use Eq. (21.56), I can write the perturbation Hamiltonian sub-matrix for the

n D 2 manifold as

�H
¯

h
D

0
BBBBBBBBBBB@

�13:7 0 0 0 A 0 0 0

0 �13:7 0 0 0 A 0 0

0 0 �2:74 0 0 0 0 0

0 0 0 �10:0 5:16 0 0 0

A 0 0 5:16 �6:38 0 0 0

0 A 0 0 0 �6:38 5:16 0

0 0 0 0 0 5:16 �10:0 0

0 0 0 0 0 0 0 �2:74

1
CCCCCCCCCCCA

GHz

(21.59)

States j3i and j8i having mj D ˙3=2 are degenerate and are uncoupled to other

states by the field. States j1i,j4i,j5i having mj D 1=2 are coupled to each other as

are states j2i,j6i,j7i having mj D �1=2. However, the eigenvalues do not depend on

the sign of mj. Thus, these six states break up into three degenerate pairs of levels,

with one state in each doublet having mj D 1=2 and the other mj D �1=2. These

six states contain an admixture of both ` D 1 and ` D 0 states.

The eigenfrequencies (change in frequency) in GHz, obtained by numerically

diagonalizing Eq. (21.59), are plotted in Fig. 21.4 as a function of electric field

strength in units of 105 V/m. Note that there are four distinct energies. The

horizontal straight line in the figure corresponds to the mj D ˙3=2 states, while

each other line corresponds to a doublet having mj D ˙1=2. Explicit expressions for

eigenenergies and eigenkets are not given, but can be obtained easily by numerically

diagonalizing the Hamiltonian. The energy degeneracy is not totally lifted by

the field, which implies there is still some remaining symmetry in the problem.

The Hamiltonian for a hydrogen atom in an external electric field remains invariant

under time reversal. Since the time-reversal operator effectively reverses the sign of

mj in the eigenkets, the energy must be independent of the sign of mj.
3 In the case of

hydrogen in an external magnetic field, time reversal symmetry is broken since the

magnetic moment operator changes sign under time reversal; as a consequence, the

magnetic field can totally lift the degeneracy of the different magnetic sublevels.

3In other words, the time-reversal operator OT (see Problem 19.12) acting on a ket
ˇ̌
Emj

˛
producesˇ̌

E;�mj

˛
, but OT

ˇ̌
Emj

˛
must be an eigenket of the Hamiltonian having the same energy as that

associated with
ˇ̌
Emj

˛
if the Hamiltonian is invariant under time-reversal, implying that there is a

two-fold degeneracy for states having mj ¤ 0.
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Fig. 21.4 Frequency shift �f in GHz of the n D 2, ` D 1 states of hydrogen as a function of

electric field amplitude in units of 105 V/m

21.2 Multi-Electron Atoms in a Magnetic Field:

Vector Model

In multi-electron atoms the coupling of the orbital and spin angular momentum

of all the electrons constitutes a very difficult problem. For atoms having atomic

number Z . 30, however, it is often a good approximation to couple the spin angular

momentum of the valence band electrons into a total spin angular momentum S and

the orbital angular momentum of the valence band electrons into a total orbital

angular momentum L. The total angular momentum of all the electrons is then

J D LC S (Russel-Saunders or L-S coupling scheme).4 If a multi-electron atom

whose structure can be approximated by an L-S coupling scheme is placed in a

magnetic field, it is relatively easy to calculate the level splitting approximately in

the limits that the spin-orbit coupling is much less than or much greater than the

Zeeman splitting. Moreover, there is a classical vector model that can be used in

each of these cases. In all cases, I take the magnetic field along the z-axis. In an

external magnetic field, L, S; and mJ D mL C ms remain good quantum numbers.

21.2.1 Zeeman Splitting Much Greater Than Spin-Orbit

Splitting

As in the case of hydrogen, I can simply ignore the spin-orbit coupling to lowest

order. In this limit the magnetic field splitting in a state of given S and L is

4In the opposite limit of high Z atoms, a j�j coupling scheme can be used in which the total angular

momentum of the atom is the sum of the total angular momenta of the individual electrons.
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Fig. 21.5 Vector coupling schemes for calculating the Zeeman splitting. (a) Strong field limit (b)

Weak field limit

�ELS � ˇ0B .mL C 2mS/ : (21.60)

In a vector model [see Fig. 21.5 (a)], the magnetic field is sufficiently strong to cause

the total spin and total orbital angular momentum to precess separately around the

field vector. All components of the spin and orbital magnetic moments average to

zero owing to the precession, except their components along the z-axis. These

projections account for �ELS.

21.2.2 Spin-Orbit Splitting Much Greater Than Zeeman

Splitting

In analogy with hydrogen, J is now an approximate good quantum number and the

magnetic field splitting in a state of given J is

�EJmJ
D ˇ0B

„ hL; S; J;mJj OJz C OSz jL; S; J;mJi

D ˇ0BmJ C
ˇ0B

„ hL; S; J;mJj OSz jL; S; J;mJi : (21.61)

To calculate hL; S; J;mJj OSz jL; S; J;mJi, I can use the Wigner-Eckart theorem. First,

I prove the following lemma: For any vector operator OA,

˝
˛0; J;m0

J

ˇ̌ OAq

1 j˛; J;mJi D
h˛0; J;mJj OJ � OA j˛; J;mJi

„2J .J C 1/
˝
˛; J;m0

J

ˇ̌ OJq

1 j˛; J;mJi ;
(21.62)
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where the OAq

1 are the components of an irreducible tensor operator of rank 1 given by

Eq. (20.41) and ˛; ˛0 represent additional quantum numbers. The proof is relatively

simple. It follows from the Wigner-Eckart theorem that

˝
˛0; J;m0

J

ˇ̌ OAq

1 j˛; J;mJi D
1p
2J C 1

�
J 1 J

mJ q m0
J

� ˝
˛0; J

A.1/ k˛; Ji

D h˛
0; JkA.1/ k˛; Ji
h˛; Jk J.1/ k˛; Ji

˝
˛; J;m0

J

ˇ̌
J

q

1 j˛; J;mJi : (21.63)

Since OJ � OA is a scalar or irreducible tensor of rank zero, it also follows from the

Wigner-Eckart theorem that

˝
˛0; J;mJ

ˇ̌ OJ � OA j˛; J;mJi D
1p
2J C 1

˝
˛0; J

 J � A k˛; Ji : (21.64)

In other words, these matrix elements are independent of mJ . Moreover, if you

expand

OJ � OA D �OJ11 OA�1
1 � OJ�1

1
OA11 C OJ01 OA01 D �

�
OJC OA�1

1 C OJ� OA11
�

p
2

C OJ01 OA01; (21.65)

use Eqs. (22.123) and the Wigner-Eckart theorem, you will find that the left-

hand side of Eq. (21.64) is proportional h˛0; Jk J � A k˛; Ji, with a proportionality

constant that appears to depend on J and mJ , but not on OA; ˛; and ˛0. However, I

know from Eq. (21.64) that the proportionality constant is independent of mJ , so

˝
˛0; J;mJ

ˇ̌ OJ � OA j˛; J;mJi D C.J/
˝
˛0; J

A.1/ k˛; Ji ; (21.66)

where the constant C.J/ is independent of ˛, ˛0, and the properties of the operator
OA. As a consequence,

h˛0; JkA.1/ k˛; Ji
h˛; Jk J.1/ k˛; Ji D

h˛0; J;mJj OJ � OA j˛; J;mJi
h˛; J;mJj OJ � OJ j˛; J;mJi

D h˛
0; J;mJj OJ � OA j˛; J;mJi
„2J .J C 1/ : (21.67)

By combining Eqs. (21.67), and (21.63), I arrive at Eq. (21.62).
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Using Eq. (21.62), I find that the diagonal matrix elements of OSz are

hL; S; J;mJj OSz jL; S; J;mJi D
hL; S; J;mJj OJ � OS jL; S; J;mJi

„2J .J C 1/ hJ;mJj OJz jJ;mJi

D „mJ

hL; S; J;mJj OJ2 C OS2 � OL2 jL; S; J;mJi
2„2J .J C 1/

D „mJ

J .J C 1/C S .SC 1/ � L .LC 1/
2J .J C 1/ ; (21.68)

having used the relationship

J � S D .LC S/ �S D L � SC S2 D J2 � S2 � L2

2
C S2: (21.69)

When this result is substituted into Eq. (21.61), I obtain the Zeeman splitting

�EJmJ
D ˇ0BgJmJ; (21.70)

where

gJ D 1C
J .J C 1/C S .SC 1/ � L .LC 1/

2J .J C 1/ (21.71)

is referred to as the Landé g factor (after Alfred Landé).

In the vector model, the spin-orbit coupling couples L and S into J. Both L and

S precess rapidly about J, as do the magnetic moments. Only the projection of the

total magnetic moment mLS onto J does not average to zero. In other words, in terms

of Fig. 21.5 (b),

mJ � �
e

2me

.LC 2S/ � J
J

J

J

D � e

2me

ŒL cos .L � J/C 2S cos .S � J/� J

J

D � eJ

2me

��S2 C L2 C J2

2J2
C �L2 C S2 C J2

J2

�

D � eJ

2me

�
1C J2 C S2 � L2

2J2

�

) � eJ

2me

�
1C J .J C 1/C S .SC 1/ � L .LC 1/

2J .J C 1/

�
; (21.72)



21.4 Appendix A: Radial Integrals for Hydrogen 535

where I replaced J2; S2;L2 by their quantum equivalents. The interaction energy

�E D �mJ � B D� .mJ/z B agrees with Eq. (21.70) if Jz in Eq. (21.72) is replaced

by „mJ .

21.3 Summary

I have presented a rather detailed account of the relativistic corrections to the energy

levels of hydrogen. In addition, the modifications of the energy levels produced by

external magnetic and electric fields were calculated. Special emphasis was placed

on the role played by approximate constants of the motion. The vector model of

coupling of angular momentum was introduced and used to calculate the Zeeman

splitting of atomic energy levels characterized by some total angular momentum

quantum number. A calculation of the hyperfine splitting in hydrogen is given in

Appendix 2, where the Zeeman splitting, including the hyperfine interaction, is also

discussed.

21.4 Appendix A: Radial Integrals for Hydrogen

In this Appendix, I calculate matrix elements of the form

˝
rˇ
˛
D
Z

dr �
nlm.r/r

ˇ nlm.r/ D
Z 1

0

dr Œunl.r/�
2

rˇ; (21.73)

where the  nlm.r/ are hydrogenic wave functions and the unl.r/ D rRn`.r/ are

radial wave functions. These matrix elements can be calculated using the generating

function for the associated Laguerre polynomials. Each integral is simply the

integral of a power with an exponential, so the integrals are fairly simple to carry

out. However there is a simpler method for obtaining the results that involves a few

“tricks.” To start I derive a recursion relation for
˝
rˇ
˛
:

The equation for the radial wave function un` for hydrogen is

d2un`

dr2
C
�
� 1

n2a20
C 2

a0r
� ` .`C 1/

r2

�
un` D 0; (21.74)

where a0 D 4��0„2=mee2 is the Bohr radius. I start from

Z 1

0

dr
d2un`.r/

dr2
rˇunl.r/D

Z 1

0

dr

�
1

n2a20
� 2

a0r
C ` .`C 1/

r2

�
rˇ Œunl.r/�

2

D 1

n2a20

˝
rˇ
˛
� 2

a0

˝
rˇ�1˛C ` .`C 1/

˝
rˇ�2˛ : (21.75)



536 21 Hydrogen Atom with Spin in External Fields

As r ! 0, un`.r/d
2un`.r/=dr2 � r2` for ` ¤ 0 and as � r for ` D 0; as a

consequence, the integral on the left-hand side of Eq. (21.75) is convergent only if

�
ˇ > �2 ` D 0
ˇ > �2` � 1 ` > 0

: (21.76)

Integrating the left-hand side of this equation by parts and using the fact that the

endpoint contributions vanish if condition (21.76) is satisfied, I find

Z 1

0

dr
d2un`.r/

dr2
rˇunl.r/D �

Z 1

0

dr
dun`.r/

dr

�
ˇrˇ�1unl.r/Crˇ

dun`.r/

dr

�
:

(21.77)

Integration by parts can be used on the first term on the right-hand side of this

equation to transform it into

�
Z 1

0

dr
dun`.r/

dr
ˇrˇ�1unl.r/

D
Z 1

0

drun`.r/

�
ˇ .ˇ � 1/ rˇ�2unl.r/Cˇrˇ�1 dun`.r/

dr

�
; (21.78)

which implies that

�
Z 1

0

dr
dun`.r/

dr
ˇrˇ�1unl.r/ D

1

2
ˇ .ˇ � 1/

˝
rˇ�2˛ : (21.79)

I integrate the second term in Eq. (21.77) by parts and use Eq. (21.74) to obtain

�
Z 1

0

dr rˇ
�

dun`.r/

dr

�2
D 2

Z 1

0

dr
rˇC1

ˇ C 1
dun`.r/

dr

d2un`.r/

dr2

D 2
Z 1

0

dr
rˇC1

ˇ C 1
dun`.r/

dr

�
1

n2a20
� 2

a0r
C ` .`C 1/

r2

�
un`.r/: (21.80)

I can now use Eq. (21.79) to rewrite this equation as

�
Z 1

0

dr rˇ
�

dun`.r/

dr

�2
D 1

ˇ C 1

"
� .ˇC1/hrˇi

n2a20
C 2ˇhrˇ�1i

a0

�` .`C 1/ .ˇ � 1/
˝
rˇ�2˛

#
: (21.81)

Combining Eqs. (21.75)–(21.81), I arrive at the recursion relation

1

n2a20

˝
rˇ
˛
� .2ˇ C 1/
.ˇ C 1/ a0

˝
rˇ�1˛C ˇ

4

h
.2`C 1/2 � ˇ2

i

.ˇ C 1/
˝
rˇ�2˛ D 0: (21.82)
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Equation (21.82) is valid only when conditions (21.76) hold, consistent with the fact

that
˝
rˇ�2˛ is non-divergent only for ˇ > �2`�1 (a result that is also derived easily

using the fact that un`.r/ � r`C1 as r! 0).

Since the wave functions are normalized, it follows immediately that
˝
r0
˛
D 1:

By choosing ˇ D 0 in Eq. (21.82), I then find

˝
r�1˛ D 1

n2a0
; (21.83)

a result that also follows from the Virial theorem. Using this result and the fact that˝
r0
˛
D 1; you can take ˇ D 1 in Eq. (21.82) to obtain

1

n2a20
hri � 3

2a0
C 1

4

h
.2`C 1/2 � 1

i

2

1

n2a0
D 0; (21.84)

or

hri D a0

2

�
3n2 � ` .`C 1/

�
: (21.85)

All higher powers of hrqi can be generated in the same manner by taking ˇ D q in

Eq. (21.82); for example, with q D 2,

˝
r2
˛
D 5n2a0

3
hri � n2a20

2

h
.2`C 1/2 � 4

i

3

˝
r0
˛

D n2a20

2

�
5n2 C 1 � 3` .`C 1/

�
: (21.86)

To get values of hr�qi for q � 2; I first set ˇ D �1 in Eq. (21.82) and find

˝
r�2˛ D ` .`C 1/ a0

˝
r�3˛ : (21.87)

By setting ˇ D �q in Eq. (21.82) with q � 2, you can get expressions for
˝
r�q�2˛

in terms of
˝
r�q�1˛ and hr�qi. Thus, to obtain all values of hr�qi for q � 2, it is

sufficient to calculate since
˝
r�2˛ and

˝
r�3˛ ; since all the others can be expressed in

terms of these quantities; moreover I need only calculate
˝
r�2˛, since

˝
r�3˛ can then

be determined from Eq. (21.87).

The value of
˝
r�2˛ can be found using a “trick.” Suppose the hydrogen atom is

subjected to a perturbation H0 D �=r2. The first order energy change produced by

this perturbation is

ıEn` D
Z

dr �
nlm.r/

�

r2
 nlm.r/ D �

˝
r�2˛ : (21.88)
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However, the total Hamiltonian is exactly solvable in this case since the

„2` .`C 1/ =2mer2 term in the effective potential is replaced by

„2
2mer2

�
` .`C 1/ � 2me�

„2
�
� „

2

2me

`0 �`0 C 1
�
=r2; (21.89)

where

`0 �`0 C 1
�
D ` .`C 1/ � 2me�

„2 (21.90)

and `0 is not an integer. To have an acceptable solution of the Schrödinger equation,

it is necessary that q D n � `0 � 1 be an integer (note that n is no longer an integer,

except in the limit that � ! 0). In that case the energy is

En` D �
e2

4��0

1

2a0n2
D � e2

4��0

1

2a0.qC `0 C 1/2 : (21.91)

Expanding this result to first order in �, I find

ıEn` �
@En`

@`0

ˇ̌
ˇ̌
�D0

@`0

@�

ˇ̌
ˇ̌
�D0

�

D � e2

4��0

� �1
a0n3

�
me

„2 .`C 1=2/�: (21.92)

Comparing this result with Eq. (21.88), I can identify

˝
r�2˛ D 1�

`C 1
2

�
n3a20

(21.93)

and, using Eq. (21.87), that

˝
r�3˛ D 1

`
�
`C 1

2

�
.`C 1/ n3a30

; ` ¤ 0: (21.94)

Remember that
˝
rˇ
˛

is defined only if ˇ > �2` � 3 or ` > � .ˇ C 3/ =2.

21.5 Appendix B: Hyperfine Interactions

All baryons have half-integral nuclear spin. Both the neutron and proton have

nuclear spin I D 1=2: They also have associated magnetic moments given by
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Omp D
egpIp

2mp

I (21.95a)

Omn D
egnIn

2mn

; (21.95b)

where mp is the proton mass, mn is the neutron mass, and gp;n is a nuclear g-factor.

For the proton gp � 5:586 and for the neutron gn � �3:826. Note that the neutron

has a magnetic moment even though it is neutral. The reason for this is that the

neutron, like the proton, is a composite particle, composed of three quarks bound

by gluons. Whereas the magnetic moment of the electron arises naturally from

the Dirac equation, there is no analogous equation that gives the nuclear magnetic

moments. Theories based on quantum chromodynamics attempt to predict the values

of nuclear magnetic moments by considering the baryons to be composed of quarks

and gluons.

For hydrogen, the nucleus consists of a single proton, whose magnetic moment

interacts with the magnetic field produced by the electron. There are two contri-

butions to the magnetic field produced by the electron, one from its orbital motion

and one from its intrinsic spin. There is no Thomas precession in calculating the

hyperfine interaction as there was for the fine structure calculation since the proton

is in an inertial frame whereas the electron was in an accelerating frame. Classically,

the electron can be modeled as a point magnetic dipole having mass me, magnetic

moment ms, and charge�e. If this point dipole is located at position r and has orbital

angular momentum L about the origin, it produces a field at the origin given by

B.0/ D �0
4�

�
8�

3
msı.r/C

3ur .ur �ms/ �ms

r3
C 2m`

r3

�
; (21.96)

where ur is a unit vector in the radial direction,

m` D �
eL

2me

(21.97)

is the orbital magnetic moment, and �0 is the vacuum permeability. The first two

terms in Eq. (21.96) give the field associated with the point magnetic moment of

the electron—the delta function term is necessary for the consistency of Maxwell’s

equations and is related to the fact that the field at the center of a “point” dipole

diverges. The third term is the field arising from the orbital motion of the electron.

The proton is modeled classically as a point dipole at the origin having magnetic

moment mp. The interaction energy of the proton’s magnetic moment with the

magnetic field of the electron is

H D �mp � B.0/: (21.98)
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To go over to a quantum description, I replace mp by Eq. (21.95a), ms by

Oms D �
eS

me

; (21.99)

and all angular momenta by operators (although I leave off the carets) to arrive at

the hyperfine interaction contribution to the Hamiltonian,

OHhf D � Omp � B.0/

D �0e
2gp

8�memp

�
8�ı.r/

3
S � I C 3 .ur � S/ .ur � I/� S � I

r3
C L � I

r3

�
: (21.100)

If I define the total angular momentum as

F D JC I D LC SC I; (21.101)

then it is convenient to use basis kets labeled by
ˇ̌
n`jfmf

˛
where the electron spin

quantum number S D 1=2 and the proton spin quantum number I D 1=2 have

been suppressed in the label. In perturbation theory, the change in the energy levels

produced by the hyperfine interaction is given by

�En`jf D
˝
n`jfmf

ˇ̌ OHhf

ˇ̌
n`jfmf

˛
: (21.102)

The ket
ˇ̌
n`jfmf

˛
is the eigenket in the absence of the hyperfine interaction. The

constants of the motion are L2; S2; J2; I2;F2;Fz.

21.5.1 Hyperfine Splitting

I first derive the contribution to �En`jf from the first term in Eq. (21.100), the so-

called contact interaction. I will then outline a method for calculating the other

terms. Only ` D 0 states contribute to the contact interaction since they are the

only states for which the eigenfunctions do not vanish at the origin. If ` D 0, then

j D 1=2; and f can be equal to 0 or 1 Thus, the contact term gives rise to a hyperfine

splitting of S states. To evaluate this term I need to calculate

�Econtact
nf D

˝
n; ` D 0; j D 1=2; f ;mf

ˇ̌ OHhf

ˇ̌
n; ` D 0; j D 1=2; f ;mf

˛

D �0e
2gp

3memp

˝
n; ` D 0; j D 1=2; f ;mf

ˇ̌
ı.r/S � I

ˇ̌
n; ` D 0; j D 1=2; f ;mf

˛
:

(21.103)
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However, since ` D 0, it follows that F D SC I, implying that

S � I D F2 � I2 � S2

2
I

˝
n; f ;mf

ˇ̌
ı.r/S � I

ˇ̌
n; f ;mf

˛
D „2 f .f C 1/ � 3=2

2

�
˝
n; f ;mf

ˇ̌
ı.r/

ˇ̌
n; f ;mf

˛
: (21.104)

The hyperfine energy shifts of the f D 0; 1 levels are given by

�Econtact
f D1 D ˇ„2 f .f C 1/ � 3=2

2
D ˇ„2

4
I (21.105a)

�Econtact
f D0 D �3ˇ„

2

4
; (21.105b)

where

ˇ D e2�0gp

3mpme

˝
n; f ;mf

ˇ̌
ı.r/

ˇ̌
n; f ;mf

˛
: (21.106)

It is straightforward to show that

˝
n; `; j; f ;mf

ˇ̌
g.r/

ˇ̌
n; `; j; f ;mf

˛
D hn; `;m`j g.r/ jn; `;m`i (21.107)

for any function g.r/ that does not depend on electron or nuclear spin. Therefore,

ˇ D e2�0gp

3mpme

hn00j ı.r/ jn00i

D e2�0gp

3mpme

Z
dr j n00.r/j2 ı.r/

D e2�0gp

3mpme

Z
dr jRn0.r/j2 jY00.�; �/j2 ı.r/

D e2�0gp

3mpme

jRn0.0/j2

4�
; (21.108)

where Rn0.0/ is the value of the radial wave function at the origin.5 The hyperfine

splitting of any S (` D 0/ state of hydrogen is then

5In spherical coordinates

Z
drı.r/ D

Z 2�

0

d�

Z 1

�1

d .cos �/

Z 1

0

drr2
ı.r/ı.cos �/ı.�/

r2
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ıEcontact
n;`D0 D �Econtact

n;`D0;f D1 ��Econtact
n;`D0;f D0 D

�0e
2gp„2

3memp

jRn0.0/j2

4�
: (21.109)

The value of jRn0.0/j2 can be obtained from Eq. (10.114) as

jRn0.0/j2 D
1

a30

�
4

n5

� �
L1n�1.0/

�2 D 1

a30

�
4

n3

�
; (21.110)

where a0 D „= .˛FSmec/ is the Bohr radius and L1n�1.0/ D n is a Laguerre

polynomial. Combining Eqs. (21.109) and (21.110) and using the fact that �0�0 D
1=c2, I find for the ground state of the hydrogen atom that

ıE1;`D0 D
�0e

2gp

3mpme

„2
�a30

D
ˇ̌
ˇE.0/1

ˇ̌
ˇ
8gp˛

2
FSme

3mp

D 5:88 � 10�6 eV; (21.111a)

ıE1;`D0
h

D 1:42 GHz; (21.111b)

� D c=f D 21:1 cm. (21.111c)

This corresponds to the famous 21 cm astrophysical line of radio astronomy.

It turns out that the spin–spin interaction [second term in Eq. (21.100)] averages

to zero for ` D 0 states; moreover, the contribution to the hyperfine interaction from

the orbital motion of the electron also vanishes for ` D 0 states. As a consequence,

the only contribution to the hyperfine splitting of ` D 0 states arises from the contact

interaction term. This is why the “contact” label was suppressed in Eqs. (21.111).

For ` ¤ 0, the calculation is more complicated and is given at the end of this

Appendix. The hyperfine shift for ` ¤ 0 is

�En`jf D
ˇ̌
E.0/n

ˇ̌ gp˛
2
FSme

nmp

f .f C 1/ � j .jC 1/ � 3=4
j .jC 1/ .2`C 1/ (21.112)

and the hyperfine splitting is

is somewhat ambiguous owing to the endpoint contributions to the integrals. I use the convention

that, for any spherically symmetric function f .r/,

Z
drı.r/f .r/ D f .0/:

This will insure that
R

drı.r/ D 1.
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ıEn`j D �En`jf DjC1=2 ��En`jf Dj�1=2 D
ˇ̌
E.0/n

ˇ̌ gp˛
2
FSme

nmp

2jC 1
j .jC 1/ .2`C 1/ :

(21.113)

Equations (21.112) and (21.113) are also valid for ` D 0 states [see Eq. (21.111a)],

even though they are derived assuming ` ¤ 0.

For a spin 1/2 atom such as hydrogen, the only contribution to the hyperfine

interaction is associated with the magnetic dipole moment of the proton. Nuclei

having spin I � 1 possess an electric quadrupole moment as well, which also

gives rise to a hyperfine interaction. In this case, the additional hyperfine interaction

results from the interaction of the nuclear quadrupole with the electric field gradient

at the nucleus produced by the atomic electrons.

21.5.2 Zeeman Splitting

In the presence of an external magnetic field, there is an additional interaction

Hamiltonian that is still given approximately by Eq. (21.40) (the interaction of

the nuclear magnetic moment with the field can be neglected since it is about

me=mp times smaller than the electronic contribution). Within a given fine structure

manifold j there are two hyperfine levels having f D j ˙ 1=2. The calculation

of the effect of a magnetic field on these levels is similar to that of a magnetic

field on the two fine structure levels j D ` ˙ 1=2 within a given ` manifold

that was considered in Sect. 21.1.9. In other words, in weak magnetic fields, mf is

approximately a good quantum number and each hyperfine level splits into .2f C 1/
components. With increasing field strength there is a transition to the Paschen-Back

region in which mj and mI are approximately good quantum numbers. This region

actually corresponds to the weak field regime of the Zeeman splitting of a state

characterized by quantum number j—that is, the components coalesce into a set of

.2jC 1/ distinct energy levels, each of which is doubly-degenerate, owing to the

nuclear spin. The .2jC 1/ energy levels are those of the weak field Zeeman effect

for this j D 1=2 state. I concentrate mainly on the weak field regime, since the

strong-field regime reproduces the weak field results that were obtained neglecting

hyperfine structure.

I first consider S states, for which the hyperfine and Zeeman interaction

Hamiltonian can be written as

OH0 D �0e
2gp

3memp

ı.r/S � IC ˇ0B

„ .Jz C Sz/ : (21.114)

Using the
ˇ̌
mImj

˛
basis and writing

S � I D J � I D JCI� C J�IC
2

C JzIz (21.115)
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(S D J since ` D 0), I calculate matrix elements of OH0 for n, ` D 0 states as

H
¯

0
n

h
D

0
BBB@

An

4 � bB.T/ 0 0 0

0 �An

4 � bB.T/ An

2 0

0 An

2 �An

4 C bB.T/ 0

0 0 0 An

4 C bB.T/

1
CCCA ; (21.116)

where the order is

ˇ̌
mI ;mj

˛
D
ˇ̌
ˇ̌�1
2
;�1
2

�
;

ˇ̌
ˇ̌�1
2
;
1

2

�
;

ˇ̌
ˇ̌1
2
;�1
2

�
;

ˇ̌
ˇ̌1
2
;
1

2

�
; (21.117)

An D
�
1:42=n3

�
GHZ; b D 14 GHZ; and B .T/ is the magnetic induction in units of

Tesla. The eigenkets and eigenergies are

jE1i D
ˇ̌
ˇ̌�1
2
;�1
2

�
; E1 D An=4 � bB.T/I (21.118a)

jE2i D a22

ˇ̌
ˇ̌�1
2
;
1

2

�
C a23

ˇ̌
ˇ̌1
2
;�1
2

�
;

E2 D �An=4 �
q

A2n C 4b2B.T/2=2I (21.118b)

jE3i D a32

ˇ̌
ˇ̌�1
2
;
1

2

�
C a33

ˇ̌
ˇ̌1
2
;�1
2

�
;

E3 D �An=4C
q

A2n C 4b2B.T/2=2I (21.118c)

jE4i D
ˇ̌
ˇ̌1
2
;
1

2

�
; E4 D An=4C bB.T/; (21.118d)

where

a22 D NAnI (21.119a)

a23 D �N

�
�2bB.T/C

q
A2n C 4 ŒbB.T/�2

�
I (21.119b)

a32 D �N

�
2bB.T/ �

q
A2n C 4 ŒbB.T/�2

�
I (21.119c)

a33 D NAnI (21.119d)

N D 1=
(�
2bB.T/ �

q
A2n C 4 ŒbB.T/�2

�2
C A2n

) 1=2
: (21.119e)



21.5 Appendix B: Hyperfine Interactions 545

Fig. 21.6 Frequency shifts of the ground state of hydrogen resulting from the hyperfine interaction

and the interaction with an external magnetic field

Each S-state manifold consists of four non-degenerate levels (one f D 0 level and

three f D 1 levels) in weak magnetic fields. With increasing field strength, these

levels approximately coalesce into two pairs of levels (the mj D ˙1=2 levels of

the j D 1=2 state). For B.T/ � An=b, the eigenkets and eigenenenergies are those

associated with the
ˇ̌
fmf

˛
basis. For B .T/ � An=b, the eigenkets and eigenvalues

are those associated with the
ˇ̌
jmj

˛
basis, with an (almost) two-fold degeneracy for

each energy. The eigenfrequencies for the ground state sublevels as a function of

magnetic induction are plotted in Fig. 21.6.

There is an important difference from the Zeeman effect that we encountered for

fine structure levels. Since the hyperfine splitting is 10 to a 1000 times smaller than

the fine structure splitting, the crossover to the Paschen-Back region occurs at much

lower field strengths for hyperfine levels. In fact, the ability to tune the energy of

the hyperfine levels using magnetic field strengths that are easily accessible in the

laboratory plays an important role in modern atomic spectroscopy.

In weak fields for other than S states, the Zeeman shift of the energy levels

of a hydrogenic state characterized by quantum numbers n`jfmf is given approxi-

mately by

�E`jfmf
D .ˇ0B=„/

˝
n`jfmf

ˇ̌ OLz C 2OSz

ˇ̌
n`jfmf

˛
=„

D .ˇ0B=„/
X

mj;m
0
j ;mI ;m

0
I

�
j 1=2 f

mj mI mf

�"
j 1=2 f

m0
j m0

I mf

#

�
˝
n`jmj

ˇ̌ OLz C 2OSz

ˇ̌
n`jmj

˛
ımI ;m

0
I
ı0

mj;mj
: (21.120)

The matrix element
˝
n`jmj

ˇ̌ OLzC2OSz

ˇ̌
n`jmj

˛
is the one we encountered in the Zeeman

effect without hyperfine structure—it is equal to „gjmj; moreover, mj must equal�
mf � mI

�
, owing to the properties of the Clebsch-Gordan coefficients: Therefore
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�E`jfmf
D ˇ0Bgj

1=2X

mID�1=2

�
mf � mI

� � j 1=2 f

mf � mI mI mf

�2
: (21.121)

The sum can be carried out to give

�E`jfmf
D ˇ0Bgf mf

where the Landé gf factor is

gf D gj

f .f C 1/C j .jC 1/ � 3=4
2f .f C 1/ ; (21.122)

with gj given by Eq. (21.71) with J D j, L D `, and S D 1=2. For a multi-electron,

multi-nucleon atom characterized by angular momentum quantum numbers L, S, J,

I, and F, the corresponding result is

gf D gJ

F .F C 1/C J .J C 1/ � I.I C 1/
2F .F C 1/ ; (21.123)

with gJ given by Eq. (21.71). The same result can be obtained using a vector model

in which the vector F D JC I precesses about the magnetic field direction.

In the strong field vector model, J and I and their magnetic moments precess

separately about the magnetic field direction; however, the contribution to level

shifts resulting from the nuclear spin magnetic moment is me=mp times smaller than

that of the electronic magnetic moment. This is the reason the strong field result

approximately reproduces the weak field results neglecting hyperfine interactions.

21.5.3 Contribution to the Hyperfine Splitting from

Non-contact Interaction Terms

I now give some details of the calculation of the hyperfine level shifts from the

second and third terms in Eq. (21.100). The hyperfine splitting from these non-

contact interaction terms can be written as

�En`jf D
�0e

2gp

8�memp

�
An`jf C 3Bn`jf

�
; (21.124)

where

An`jf D hn; `; j; f ; 0j

�
OL � OS

�
� OI

r3
jn; `; j; f ; 0i (21.125)
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and

Bn`jf D hn; `; j; f ; 0j

�
ur � OS

� �
ur � OI

�

r3
jn; `; j; f ; 0i : (21.126)

I have set mf D 0, since the result is independent of mf . I now calculate An`jf and

Bn`jf separately.

21.5.3.1 An`jf

If Eq. (21.62) is written as a vector equation involving OA and OJ with OA D OL; it

follows that6

hn; `; j; f ; 0j OL � OI jn; `; j; f ; 0i D hn; `; j; f ; 0j
OL � OJ jn; `; j; f ; 0i

„2j .jC 1/

� hn; `; j; f ; 0j OI � OJ jn; `; j; f ; 0i

D „2
�

j.jC 1/C `.`C 1/ � 3=4
2j .jC 1/

� �
f .f C 1/ � j.jC 1/ � 3=4

2

�
;

(21.127)

where I used the relations S D .J � L/ and F D .JC I/. Similarly,

hn; `; j; f ; 0j OS � OI jn; `; j; f ; 0i D hn; `; j; f ; 0j
OS � OJ jn; `; j; f ; 0i

„2j .jC 1/

� hn; `; j; f ; 0j OI � OJ jn; `; j; f ; 0i

D „2
�

j.jC 1/ � `.`C 1/C 3=4
2j .jC 1/

� �
f .f C 1/ � j.jC 1/ � 3=4

2

�
:

(21.128)

Combining Eqs. (21.125), (21.127), and (21.128), I obtain

An`jf D „2
�
`.`C 1/ � 3=4

j .jC 1/

� �
f .f C 1/ � j.jC 1/ � 3=4

2

� ˝
r�3˛ ; (21.129)

where
˝
r�3˛ is given by Eq. (21.94).

6Equations (21.127) and (21.128) can also be obtained by expanding the kets in the uncoupled

basis and directly evaluating the matrix elements (see the Supplementary Material at the book’s

web site).
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21.5.3.2 Bn`jf

To evaluate Eq. (21.126), I use the fact that

ur D sin � cos�ux C sin � sin�uy C cos �uz (21.130)

to write

.ur � S/ .ur � I/
r3

D
1X

q;q0D�1
.�1/qCq0 uqI�qu�q0Sq0

r3
; (21.131)

where

u˙1 D �
.ur/x ˙ i .ur/yp

2
D � sin �e˙i�

p
2
I u0 D cos �: (21.132)

Then, to evaluate the matrix elements needed in Eq. (21.126), I expand the basis

kets as

jn; `; j; f ; 0i D
1=2X

mI ;msD�1=2

�
` 1=2 j

�mI � ms ms �mI

� �
j 1=2 f

�mI mI 0

�

� jn; `;m` D �mI � msi jImIi jSmsi (21.133)

with a corresponding equation for the bra, and use the relationships

OG˙1
ˇ̌
g;mg

˛
D „

q�
g� mg

� �
g˙ mg C 1

� ˇ̌
g;mg ˙ 1

˛
I (21.134a)

OG0

ˇ̌
g;mg

˛
D mg„

ˇ̌
g;mg

˛
; (21.134b)

where the OG˙1, OG0 ( OG D OS; OI) are components of an irreducible tensor operator of

rank 1. It then follows that

Bn`jf D
˝
r�3˛

1=2X

mI ;msD�1=2

1X

q;q0D�1
.�1/qCq0

�
` 1=2 j

�mI � ms ms �mI

�

�
�

j 1=2 f

�mI mI 0

� �
` 1=2 j

�m0
I � m0

s m0
s �m0

I

� �
j 1=2 f

�m0
I m0

I 0

�

�Sq0m0
sms

Iqm0
I mI

B`.q; q
0;�m0

I � m0
s;�mI � ms/; (21.135)

where

B`.q; q
0;m0

`;m`/ D
˝
`;m0

`

ˇ̌
uqu�q0 j`;m`i (21.136)
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and

Sqm0
sms
D
˝
Sm0

s

ˇ̌ OSq

1 jSmsi D „

2
64

msıq;0ıms;m0
s

C 1p
2

 
�ıq;1ıms;�1=2ım0

s;1=2

Cıq;�1ıms;1=2ım0
s;�1=2

!
3
75 I (21.137a)

Iqm0
sms
D
˝
Im0

I

ˇ̌ OIq

1 jImIi D „

2
64

mIıq0;0ımI ;m
0
I

C 1p
2

 
�ıq;1ımI ;�1=2ım0

I ;1=2

Cıq;�1ımI ;1=2ım0
I ;�1=2

!
3
75 : (21.137b)

To evaluate the B`.q; q
0;m0

`
;m`/, I use the identities

.u0/
2 D cos2 � D

p
4�Y00 .�; �/C

q
16�
5

Y02 .�; �/

3
; (21.138a)

u1u�1 D �
sin2 �

2
D

q
16�
5

Y02 .�; �/ � 2
p
4�Y00 .�; �/

6
; (21.138b)

u0u˙1 D �
cos � sin �e˙i�

p
2

D
r
4�

15
Y˙1
2 .�; �/ ; (21.138c)

.u˙1/
2 D sin2 �e˙2i�

2
D
r
8�

15
Y˙2
2 .�; �/ ; (21.138d)

and

Z 2�

0

d�

Z �

0

sin �d�
h
Y

m3
`3
.�; �/

i�
Y

m2
`2
.�; �/Y

m1
`1
.�; �/

D
s
.2`1 C 1/ .2`2 C 1/
4� .2`1 C 1/

�
`1 `2 `3
0 0 0

� �
`1 `2 `3
m1 m2 m3

�
(21.139)

to obtain

B`.1; 1;m
0
`;m`/ D B`.�1;�1;m0

`;m`/ D
1 � `.`C 1/ � m2

`

.2`C 3/ .2` � 1/ ım`;m
0
`
I (21.140a)

B`.1; 0;m
0
`;m`/ D B`.0;�1;m0

`;m`/

D
�
2m0

` � 1
�q

`.`C 1/ � m0
`

�
m0
` � 1

�
p
2 .2`C 3/ .2` � 1/

ım`;m
0
`�1I (21.140b)
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B`.1;�1;m0
`;m`/ D �

q
.1C ` � m0

`/
�
2C ` � m0

`

�
.`C m0

` � 1/
�
`C m0

`

�

.2`C 3/ .2` � 1/
�ım`;m

0
`�2I (21.140c)

B`.0; 1;m
0
`;m`/ D B`.�1; 0;m0

`;m`/

D �
�
2m0

` C 1
�q

`.`C 1/ � m0
`

�
m0
` C 1

�
p
2 .2`C 3/ .2` � 1/

ım`;m
0
`C1I

B`.0; 0;m
0
`;m`/ D

2`.`C 1/ � 2m2
` � 1

.2`C 3/ .2` � 1/ ım`;m
0
`
I (21.140d)

B`.�1; 1;m0
`;m`/ D �

q
.` � m0

` � 1/
�
2C `C m0

`

�
.`C m0

` C 1/
�
` � m0

`

�

.2`C 3/ .2` � 1/
�ım`;m

0
`C2: (21.140e)

The sum in Eq. (21.135) can then be carried out to arrive at

Bn`jf D „2
4 Œf .f C 1/ � j .jC 1/� � 3

32j .jC 1/
˝
r�3˛ : (21.141)

Using Eqs. (21.129) and (21.141), I find

An`jf C 3Bn`jf D „2
`.`C 1/
j .jC 1/

�
f .f C 1/ � j.jC 1/ � 3=4

2

� ˝
r�3˛ ; (21.142)

which, when combined with Eqs. (21.124) and (21.94), leads to Eq. (21.112). Note

that the right-hand side of Eq. (21.142) vanishes if a small volume about the origin

is excluded in evaluating
˝
r�3˛, implying that the only contributing term to the

hyperfine level shifts from ` D 0 states arises from the contact interaction. The

hyperfine splitting associated with the non-contact, spin–spin interaction alone can

be obtained from Eqs. (21.124)–(21.126), (21.128), and (21.141) as

�E
spin�spin

n`jf D ��0e
2gp„2

8�memp

�
j.jC 1/C `.`C 1/C 3=4

2j .jC 1/

�

�
�

f .f C 1/ � j.jC 1/ � 3=4
2

� ˝
r�3˛

C 3�0e
2gp„2

8�memp

4 Œf .f C 1/ � j .jC 1/� � 3
32j .jC 1/

˝
r�3˛
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D ��0e
2gp„2

8�memp

�
j.jC 1/ � `.`C 1/ � 3=4

4j .jC 1/

�

� Œf .f C 1/ � j.jC 1/ � 3=4�
˝
r�3˛ ; (21.143)

which vanishes for ` D 0; j D 1=2 states:

21.6 Problems

1. What is meant by a “good” quantum number. If the spin-orbit coupling in

hydrogen is much greater than the Zeeman splitting produced by an external

magnetic field, what are the approximate good quantum numbers? In the opposite

limit, what are the approximate good quantum numbers? For hydrogen in an external

magnetic field, what are the only good eigenvalue labels? Explain. For hydrogen

in an external electric field, what are the only good eigenvalue labels? Explain.

For hydrogen in both external electric and magnetic fields, what are the only good

eigenvalue labels? Explain.

2. Given a Hamiltonian of the form

OH D Op2
2me

� e2

4��0r
� 1
8

Op4
m3

ec2
;

use the facts that Op4 commutes with OL2 and OLz to prove that

hn; `;mj Op4
ˇ̌
n0; `0;m0˛ / ı`;`0ım;m0 :

Why isn’t the matrix element also diagonal in the n quantum number?

3. Calculate the change in the 2P-1S transition frequencies in GHz (a) including

only the relativistic mass corrections and (b) including both the relativistic mass,

spin-orbit, and Darwin corrections. For case (b) compare your result with the exact

result of the Dirac equation given in Eq. (21.1).

4. For an electron in a spherically symmetric potential plus a constant magnetic

field, prove that L2 is a constant of the motion, but L is not a constant of the

motion. For an electron in a spherically symmetric potential plus a constant electric

field, prove that L2 and L are not constants of the motion. Neglect any spin–orbit

interactions. Give a simple physical explanation of the results based on classical

considerations.

5–7. Consider the hydrogen atom in the n D 2, ` D 1 manifold of levels. Calculate

the eigenvalues and eigenkets when the atom is subjected to an external, constant

magnetic field along the z axis. Use the
ˇ̌
n`jmj

˛
basis. Plot the energy eigenvalues

divided by h in units of GHZ as a function of magnetic field strength for fields
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between 0 and 10 T. Plot this in two graphs, one for 0 T� B � 1 T and one for 1

T� B � 10 T. Show that the slopes of your energy graphs agree with perturbation

theory predictions in the limits of weak and strong fields. Include all relativistic

corrections.

8. For a hydrogen atom in a constant electric field E D E0uz aligned along the z

axis, the perturbation Hamiltonian is

OH0 D 1

8��0

e2S � L
m2

er3c2
C eE0Oz;

where the relativistic mass and Darwin correction terms have been neglected. Write

matrix elements of H0 in both the jn`sm`msi and
ˇ̌
n`sjmj

˛
bases, allowing for all

values of the quantum numbers. You need not evaluate the radial integrals, but

determine the states that are coupled by the perturbation in each basis. What are

the only exact constants of the motion in this problem?

9–10. For a hydrogen atom in a constant electric field aligned along the x axis,

prove that OLx is a constant of the motion. Now consider the n D 2 electronic state

manifold of hydrogen, neglecting all relativistic corrections. Find the eigenkets of

the n D 2 manifold in this field. Show that the nondegenerate eigenkets of the

Hamiltonian are eigenkets of OLx (as they must be), and that a linear combination

of the degenerate eigenkets of the Hamiltonian can be chosen such that they

are eigenkets of OLx. Conversely show that the nondegenerate eigenkets of OLx are

eigenkets of the Hamiltonian (as they must be), and that a linear combination of

the degenerate eigenkets of OLx can be chosen such that they are eigenkets of the

Hamiltonian.

11. Consider the hyperfine plus Zeeman interaction Hamiltonian for the ground

state of hydrogen in the
ˇ̌
mImj

˛
basis. Take the interaction Hamiltonian in frequency

units as

OH0=h D 1:42 GHz
S � I
„2 C

�
2Sz

„

�
14 GHz/T B(T)

Use the fact that S D J and obtain an explicit form for the interaction Hamiltonian

matrix. Diagonalize the Hamiltonian to obtain the eigenkets and eigenfrequencies.

Show that for B.T/ D 0, the eigenkets and eigenvalues are those associated with

states characterized by f D 0; 1, and, for B .T/ � 0:1 T, the eigenkets and

eigenvalues are those associated with a (doubly-degenerate) j D 1=2 state whose

magnetic sublevels are split by the Zeeman effect.

12–13. The ground state of 87Rb is a 52S1=2 state having L D 0; S D 1=2; J D 1=2
while the first excited states are a 52P1=2 state having L D 1; S D 1=2; J D 1=2 and

a 52P3=2 state having L D 1; S D 1=2; J D 3=2. The 87Rb has nuclear spin I D 3=2.

What are the possible total angular momentum states for each of these levels? When

a pair of off-resonant, optical fields that are counter-propagating in the Z-direction



21.6 Problems 553

drive a transition between the F D 1 hyperfine levels of the 52S1=2 state and the

F D 2 hyperfine levels of the 52P1=2 state, they produce an effective perturbation

Hamiltonian for the F D 1 ground state hyperfine levels whose matrix elements are

given by7

H0
mF ;m

0
F
D A

2X

j;j0D1

X

K;Q

eikjj0 �R .�1/KCQC1

��K
Q

�
j; j0
�
.�1/m0

F

�
1 1 K

mF �m0
F Q

� �
1 1 K

1 1 2

�
;

where

kjj0 D kj � kj0 ; k1 D �k2 D kuzI

�K
Q.1; 1/ D �

1p
3
ıK;0ıQ;0 C ıK;2

�
� 1p

6
ıQ;0 C

1

2

�
ıQ;2 C ıQ;�2

��
I

�K
Q.2; 2/ D �

1p
3
ıK;0ıQ;0 � ıK;2

�
1p
6
ıQ;0 C

1

2

�
ıQ;2 C ıQ;�2

��
I

�K
Q.1; 2/ D

�
�K

�Q.2; 1/
�� D ip

2

�
ıK;1ıQ;0 C

1p
2
ıK;2

�
ıQ;2 � ıQ;�2

��
;

A is a constant proportional to the field intensity and inversely proportional

to the frequency difference between the applied field and the atomic tran-

sition, and the curly bracket term is a 6-J symbol [Mathematica symbol,

SixJSymbol[{1; 1;Kg; f1; 1; 2g]. Diagonalize the perturbation matrix and plot the

eigenenergies E=A as a function of kZ to obtain the optical lattice potentials.

Counter-propagating optical fields can be used to cool atoms to microKelvin

temperatures and the optical potentials associated with these fields can be used

to trap the atoms.

7See, for example, P. R. Berman and V. Malinovsky, Principles of Laser Spectroscopy and

Quantum Optics (Princeton University Press, Princeton, N.J., 2011) pp. 414–418. The atoms are

pre-cooled using Doppler cooling (see Sect. 5.5.3 in the cited work) before these fields produce

sub-Doppler cooling (see Chap. 18 in the cited work).



Chapter 22

Time-Dependent Problems

The topics I will cover in the last three chapters of this book relate to time-dependent

problems. Generally speaking, these will involve problems in which some classical,

time-dependent interaction, such as that produced by an applied electric or magnetic

field, induces transitions between states of a quantum system. I will first consider

some very general features of time-dependent problems and then look in detail at

a spin 1/2 system in a magnetic field and a two-level atom in an optical field. The

density matrix of a single quantum system will be defined and the Bloch and optical

Bloch equations will be derived. After studying these “exact” problems, I will

look at approximation techniques involving time-dependent problems in Chap. 23,

including both the sudden and adiabatic limits. Finally, I will discuss the transitions

between a discrete state and a continuum of states in Chap. 24, including Fermi’s

golden rule.

22.1 Time-Dependent Problems

There are classes of problems in quantum mechanics in which an isolated quantum

system interacts with some externally applied fields. The isolated quantum system

is characterized by a Hamiltonian OH0 and its interaction with the external fields by a

time-dependent contribution OV.t/ to the total Hamiltonian OH. In Dirac notation the

total Hamiltonian is written in matrix form as

H
¯
.t/ D H

¯
0 C V

¯
.t/: (22.1)

For example, H
¯
0 can be the Hamiltonian associated with an isolated atom and V

¯
.t/

can represent the interaction energy of the atom with a classical optical field. If H
¯
.t/

depends on time, the energy is no longer a constant of the motion. Let the eigenkets

of H
¯
0 be denoted by jni, such that

© Springer International Publishing AG 2018

P.R. Berman, Introductory Quantum Mechanics, UNITEXT for Physics,

https://doi.org/10.1007/978-3-319-68598-4_22

555

https://doi.org/10.1007/978-3-319-68598-4_22


556 22 Time-Dependent Problems

H
¯
0jni D Enjni; (22.2)

where En is the eigenenergy associated with the eigenket jni.
Since the eigenkets are complete, I can expand the state vector as

j .t/i D
X

n

an.t/jni (22.3)

and substitute this expansion into Schrödinger’s equation,

i„@j .t/i
@t

D ŒH
¯
0 C V

¯
.t/� j .t/i; (22.4)

to obtain the set of differential equations

i„
X

n

Pan.t/jni D H
¯
0

X

n

an.t/jni C V
¯
.t/
X

n

an.t/jni: (22.5)

Using the orthogonality of the eigenkets [that is, multiplying Eq. (22.5) by hn0j],
I find that the state amplitudes evolve as

i„Pan.t/ D Enan.t/C
X

n

Vnm.t/an.t/ ; (22.6)

where the matrix element Vnm.t/ is defined as

Vnm.t/ D hnj OV.t/jmi

D
Z
 �

n .r/
OV.t/ m.r/dr . (22.7)

I can write Eq. (22.6) as the matrix equation

i„Pa.t/ D E
¯
a.t/C V

¯
.t/a.t/ ; (22.8)

in which a.t/ is a vector [or, equivalently, a column matrix a
¯
.t/�, E

¯
D H

¯
0 is a

diagonal matrix whose elements are the eigenvalues of OH0 (E
¯

is simply equal to H
¯
0

written in the energy representation) and V
¯
.t/ is a matrix having elements Vnm.t/.

The fact that V
¯
.t/ is not diagonal, in general, implies that there are transitions

between the eigenstates of H
¯
0.

To obtain the dynamics, I must solve Eq. (22.8) for the state amplitudes. If V
¯
.t/

is a finite matrix, the coupled equations can be solved numerically. As with any

differential equation, you can obtain an analytic solution only if you already know

the solution. You can guess a solution based upon what others have learned in the

past. For example, based on the solution of the scalar equation
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i„Px.t/ D f .t/x.t/; (22.9)

which is

x.t/ D exp

�
� i

„

Z t

0

f .t0/dt0
�

x.0/; (22.10)

you might think (and you would have some company) that a solution to Eq. (22.8) is

a.t/ D exp

�
� i

„

�
E
¯
tC

Z t

0

V
¯
.t0/dt0

��
a.0/; (22.11)

but you would be wrong. That is, if you substitute the trial solution given by

Eq. (22.11) into Eq. (22.8), it does not work if V
¯
.t/ and V

¯
.t0/ do not commute. If

V
¯

is independent of time, you can write the solution as

a.t/ D exp

�
� i

„ .E¯ C V
¯
/t

�
a.0/I (22.12)

however, in general, it is impossible to obtain analytic solutions to Eq. (22.8) when

V
¯

is a function of time.

22.1.1 Interaction Representation

In some sense, I am done. Either I can solve Eq. (22.8) or I cannot. That does not

prevent me from modifying the equation into what may be a more convenient form.

Remember, however, that modifying the equation does not make it solvable, but it

may reveal a structure where the solution is more apparent. The first such mod-

ification that I use, applicable to any time-dependent quantum problem, involves

an interaction representation. The idea behind the interaction representation is to

have the state amplitudes be constant in the absence of the interaction V
¯
.t/. To

accomplish this, I must remove the rapidly varying phase factor exp.�iEnt=„/ from

the state amplitudes by writing

j .t/i D
X

n

cn.t/ exp .�iEnt=„/ jni: (22.13)

It then follows from Schrödinger’s equation that the amplitudes cn.t/ of the

interaction representation obey the differential equation

i„Pcn.t/ D
X

m

Vnm.t/cm.t/ exp .i!nmt/ �
X

m

V I
nm.t/cm.t/; (22.14)
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where

!nm D .En � Em/=„ (22.15)

is a transition frequency and

V I
nm.t/ D exp .i!nmt/Vnm.t/ (22.16)

is a matrix element in the interaction representation. Note that

cn.t/ D an.t/ exp .iEnt=„/ ; (22.17)

such that jcn.t/j2 D jan.t/j2 is equal to the probability for the quantum system to be

in state n.

In the interaction representation, the state vector can be written as

j .t/i D
X

n

cn.t/ exp .�iEnt=„/ jni �
X

n

cn.t/jnI.t/i ; (22.18)

where “eigenkets” jnI.t/i D exp .�iEnt=„/ jni are time-dependent. It is important

not to forget this time dependence when calculating expectation values of operators.

In general, the interaction representation is used often in numerical solutions

rather than the Schrödinger representation; in this manner, you need not start the

integration until the interaction is turned on. In the Schrödinger representation, the

phases of the state amplitudes evolve even in the absence of the interaction.

22.2 Spin 1/2 Quantum System in a Magnetic Field

As a first example, I consider the interaction of the spin 1/2 quantum system with

an external magnetic field induction

B.t/ D B0uz C jBx.t/j cos Œ!t � �.t/� ux; (22.19)

In other words, the z-component of the field is constant and the x-component is

an oscillatory field having carrier frequency !, amplitude jBx.t/j ; and phase �.t/.

The interaction of a spin 1/2 quantum system with a magnetic field of the type

given in Eq. (22.19) is not only of theoretical interest. For example, when a strong

constant magnetic field is applied in the z-direction, and pulsed oscillating fields

are applied in the x-direction that are in resonance with the transition between the

spin states, it is possible to control the population difference between the spin up

and spin down states, as well as the relative phase between the state amplitudes.

The ability to control the dynamics of a spin 1/2 quantum system with a series

of radio frequency pulses is the basis for NMR (nuclear magnetic resonance) and
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MRI (magnetic resonance imaging). In MRI, the protons in hydrogen in the water

molecule serve as the spin 1/2 quantum system.

For the sake of definiteness, I take the spin 1/2 quantum system to be an electron

having s D j D 1=2 that is bound in the ground state of an atom having no

hyperfine structure. The Hamiltonian characterizing the electron spin—magnetic

field system is

H
¯

B.t/ D ˇ0� � B .t/; (22.20)

where

� D �xux C � yuy C � zuz; (22.21)

� x D
�
0 1

1 0

�
; � y D

�
0 �i

i 0

�
I � z D

�
1 0

0 �1

�
; (22.22)

me is the electron mass, and ˇ0 D e„=2me is the Bohr magneton.

With B .t/ given by Eq. (22.19), the Hamiltonian (22.20) can be written in terms

of the Pauli matrices as

H
¯

B.t/ D
„
2
f!0� z C 2!x.t/ cos Œ!t � �.t/� � xg ; (22.23)

where

!0 D
2ˇ0B0

„ D eB0

me

D 1:76 � 1011 B0.T/ s�1 D 1:76 � 107 B0.Gauss/ s�1

(22.24)

is the frequency spacing of the two spin states in the absence of the oscillating

component of the field and

!x.t/ D
ˇ0 jBx.t/j
„ : (22.25)

is a measure of the coupling field strength in frequency units. In frequency units,

!0=2� D 28 GHz/TD 2:8 MHz/Gauss. The physical system is represented

schematically in Fig. 22.1a.

From Eqs. (22.6) and (22.23), it follows that the equation for the state amplitudes

in the Schrödinger representation is

PaB.t/ D �i

�
!0=2 !x.t/ cosŒ!t � �.t/�ei!0t

!x.t/ cosŒ!t � �.t/�e�i!0t �!0=2

�
aB.t/;

(22.26)

with aB D
�
a"; a#

�
, and the up (down) arrow refers to the state having magnetic

quantum number 1=2 (�1=2/.



560 22 Time-Dependent Problems

Fig. 22.1 Two-level quantum systems interacting with an external field. (a) A two-level spin

system corresponding to an electron in an atom. An external magnetic field having a constant

component B0 in the z direction splits the spin up and spin down energy eigenkets, while an

oscillating component Bx cos .!t/ in the x direction drives transitions between the two spin states.

(b) The analogous situation for a “two-level” atom in which an optical field [having electric field

E0 cos .!t/] drives transitions between two electronic states. In both cases the two-level quantum

system is assumed to be fixed at the origin. Generalizations to allow for time-dependent amplitudes

and phases of the fields are included in the text

In general, these equations must be solved numerically (see problems). To get

some insight into the nature of the response of the spin to the external magnetic field,

I consider two cases where it is possible to get analytic solutions of the equations.

22.2.1 Analytic Solutions

22.2.1.1 !x.t/ D !x D Constant; ! D 0; �.t/ D � D Constant

This limit corresponds to a constant field

B D B0uz C Bxux ; (22.27)

such that

H
¯

B D „
�!0� z

2
C !x cos� � x

�
D „
2

�
!0 2!x cos�

2!x cos� �!0

�
: (22.28)

This Hamiltonian is representative of a generic two-level problem in which two

levels are coupled by a constant interaction. The solution of Eq. (22.26) is

aB.t/ D exp

�
� i

2

�
!0 2!x cos�

2!x cos� �!0

�
t

�
aB.0/

D exp
h
�i
�!0� z

2
C !x cos� � x

�
t
i

aB.0/: (22.29)
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The exponential is of the form

e�i�n�� D 1 cos � � in � � sin �; (22.30)

with

n D 2!x cos�ux C !0uzq
4 .!x cos�/2 C !20

I � D

q
4 .!x cos�/2 C !20

2
t; (22.31)

leading to the solution

a".t/ D �i
2!x cos�

X
sin

Xt

2
a#.0/C

�
cos

Xt

2
� i
!0

X
sin

Xt

2

�
a".0/ ; (22.32a)

a#.t/ D
�

cos
Xt

2
C i

!0

X
sin

Xt

2

�
a#.0/ � i

2!x cos�

X
sin

Xt

2
a".0/ ; (22.32b)

where

X D
q
!20 C 4 .!x cos�/2: (22.33)

If the initial condition is a#.0/ D 1, a".0/ D 0, then

ˇ̌
a".t/

ˇ̌2 D 4!2x cos2 �

!20 C 4!2x cos2 �
sin2 .Xt=2/ I (22.34a)

ˇ̌
a#.t/

ˇ̌2 D !20 C 4!2x cos2 � cos2 .Xt=2/

!20 C 4!2x cos2 �
: (22.34b)

Both upper and lower state populations oscillate as a function of time. These

oscillations are referred to as Rabi oscillations (after I. I. Rabi). If !0 D 0, the

maximum value of the upper state population is equal to unity—in this limit,

complete inversion of the population is possible whenever sin2 .Xt=2/ D 1.

22.2.1.2 !0 D 0

If there is no longitudinal field ŒBz D 0�, the energy levels are degenerate and

are coupled by the field oscillating in the x direction. Equations for the probability

amplitudes obtained from Eq. (22.26) have the form

Pa".t/ D �if .t/a#.t/ I (22.35a)

Pa#.t/ D �if .t/a".t/ ; (22.35b)
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where

f .t/ D !x.t/ cos Œ!t � �.t/� : (22.36)

By adding and subtracting the equations, I obtain

Pa".t/˙ Pa#.t/ D �if .t/
�
a".t/˙ a#.t/

�
; (22.37)

for which the solution is

a#.t/˙ a#.t/ D
�
a#.0/˙ a#.0/

�
e�i�.t/; (22.38)

where

�.t/ D
Z t

0

f .t0/dt0: (22.39)

Using this equation you can deduce easily that the state amplitudes evolve as

a".t/ D cos Œ�.t/� a".0/ � i sin Œ�.t/� a#.0/I (22.40a)

a#.t/ D �i sin Œ�.t/� a".0/C cos Œ�.t/� a#.0/ ; (22.40b)

where

�.t/ D 1

„

Z t

0

V12.t
0/dt0 D

Z t

0

!x.t
0/ cos

�
!t0 � �.t0/

�
dt0: (22.41)

Note that this solution is quite general; it remains valid for any degenerate, two-level

quantum system whose degenerate energy levels are coupled by a time-dependent

interaction having real matrix elements V12.t/.

Although this is a simple solution, it can be used to illustrate some interesting

physical concepts. If I take �.t/ D 0 and !x.t/ D !x D constant, then

�.t/ D !x

!
sin!t; (22.42)

which implies that the probability amplitudes contain all harmonics of the field. To

see this more clearly I can expand cos Œ.!x=!/ sin!t� in terms of a series of Bessel

functions Jn using

cos .z sin˛/ D J0.z/C 2
1X

nD1
J2n.z/ cos.2n˛/ : (22.43)
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For example, if the initial state has a#.0/ D 1, a".0/ D 0, then

ˇ̌
a".t/

ˇ̌2 D sin2
�!x

!
sin!t

�
D
1 � cos

�
2!x

!
sin!t

�

2

D
1 � J0

�
2!x

!

�

2
�

1X

nD1
J2n

�
2!x

!

�
cos.2n!t/: (22.44)

In contrast to a harmonic oscillator, which is intrinsically a linear device, a two-

level quantum system acts as a nonlinear device—the response does not depend

linearly on the applied field and contains all harmonics of the driving field frequency.

For !x=! � �=2, there are still times for which complete inversion can occur,ˇ̌
a".t/

ˇ̌2 D 1:
The time-averaged, spin-up population is

ˇ̌
a".t/

ˇ̌2 D
1 � J0

�
2!x

!

�

2
: (22.45)

The larger the applied frequency, the smaller is the time-averaged value of the

spin-up state population, provided ! > 0:52!x. This is not surprising since the

degenerate levels are resonant with a static field; the more rapid the oscillation of

the field, the less effective it is in driving the transition. Interestingly, there are values

of !x=! for which
ˇ̌
a".t/

ˇ̌2
> 1=2. The maximum value of

ˇ̌
a".t/

ˇ̌2 D 0:70 occurs

for 2!x=! D 3:83.

22.3 Two-Level Atom

The problem of a spin 1/2 particle in a magnetic field is isomorphic to the problem

of a two-level atom interacting with an optical field. It is not difficult to imagine a

situation where such a two-level approximation is valid. For example, if an optical

field is nearly resonant with the ground to first excited state transition frequency

of an atom whose ground and excited states have angular momentum quantum

numbers J D 0 and J D 1; respectively, and if the field is z-polarized, then the

field interacts effectively with only the ground state and the m D 0 sublevel of the

excited state. To make matters simple, you can think of the atom as a one electron

atom whose nucleus is located at position R. The position of the electron relative to

the nucleus is denoted by r.

In dipole approximation, the interaction Hamiltonian is given by

OV.R; t/ D OVAF.R; t/ � �Ope�E.R; t/ D eOr � E.R; t/ ; (22.46)
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where Ope D �eOr is the atomic dipole moment operator (a matrix in the Dirac picture)

and E.R; t/ is the applied electric field, evaluated at the nuclear position. Recall that

the charge of the electron is �e in my notation. If atomic motion is neglected as I

assume, I can set R D 0.

The applied electric field at the nucleus of the atom is assumed to vary as

E.t/ D uz jE0.t/j cos Œ!t � '.t/� D 1

2
uzjE0.t/j

�
ei'.t/e�i!t C e�i'.t/ei!t

�
;

(22.47)

where

1

2
E0.t/e

�i!t D 1

2
jE0.t/j ei'.t/e�i!t (22.48)

is the positive frequency component of the field,

E0.t/ D jE0.t/j ei'.t/ (22.49)

is the complex field amplitude, ! is the carrier frequency of the field, jE0.t/j is

the field amplitude, and '.t/ is the field phase. Both the amplitude and phase

can be functions of time. A time-varying amplitude could correspond to a pulse

envelope, while a time-varying phase gives rise to a frequency “chirp” (a frequency

that varies in time). With this choice of field, the interaction Hamiltonian becomes

OV.t/ D eOzjE0.t/j cos Œ!t � '.t/� ; (22.50)

where Oz is the z-component of the position operator.

For the two-level atom, I take the energy of the ground state as �„!0=2 and that

of the excited state as „!0=2. Denoting the ground state eigenket as j1i and the

excited state eigenket by j2i, I write the probability amplitudes as

a.t/ D
�

a1.t/

a2.t/

�
(22.51)

and matrix elements of the interaction Hamiltonian as

V12.t/ D ez12 jE0.t/j cos Œ!t � '.t/� I (22.52a)

V21.t/ D ez21 jE0.t/j cos Œ!t � '.t/� I (22.52b)

V11 D V22 D 0 ; (22.52c)

where

z12 D h1jOzj2i D h2jOzj1i� D z�
21 : (22.53)
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The diagonal elements of the interaction Hamiltonian vanish since the operator Oz
has odd parity. In general the matrix element z12 is complex, but any single transition

matrix element can be taken as real by an appropriate choice of phase in the wave

function (however, if z12 is taken to be real, then one is not at liberty to take x12
real since the phase of the electronic part of the wave function has been fixed—the

matrix element of one component only of r12 can be taken as real and this choice

determines whether or not the other components are real or complex). Therefore

I set

ez12 D ez21 D �.pez/12 (real) ; (22.54)

V12.t/ D V21.t/ D �.pez/12jE0.t/j cos Œ!t � �.t/� ; (22.55)

and write the Hamiltonian as

H
¯
.t/ D H

¯
0 C V

¯
.t/ D „

2

�
�!0 0

0 !0

�

C„
�

0 j�0.t/j cos Œ!t � �.t/�
j�0.t/j cos Œ!t � �.t/� 0

�
; (22.56)

where

�0.t/ D
�.pez/12E0.t/

„ D ez12E0.t/

„ D j�0.t/j ei'.t/ (22.57)

is referred to as the Rabi frequency and is a measure of the atom–field interaction

strength in frequency units. The Rabi frequency is defined such that it is positive for

positive E0.t/ and z12. For the Hamiltonian given in Eq. (22.56), Eq. (22.8) for the

probability amplitudes a.t/ can be written as

Pa.t/ D � i

2

�
�!0 2 j�0.t/j cos Œ!t � �.t/�

2 j�0.t/j cos Œ!t � �.t/� !0

�
a.t/ : (22.58)

This equation can be solved numerically.

The Hamiltonian given in Eq. (22.56) can be recast as

H
¯
.t/ D �„!0

2
� z C „ j�0.t/j cos Œ!t � �.t/� � x : (22.59)

This is the same type of Hamiltonian that we encountered for the interaction

of the electron spin with a magnetic-field. The sign of the lead terms in the

Hamiltonians (22.59) and (22.23) differ, however, since, for the optical case, I have

chosen the basis a D .a1; a2/, while, for the magnetic case, the standard convention

for the Pauli matrices requires that I take aB D
�
a"; a#

�
. The connection between

the two cases is given by the substitutions:
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.a1; a2/,
�
a

#
; a"

�
I (22.60a)

!0 ,
2ˇ0B0

„ I (22.60b)

j�0.t/j cos Œ!t � �.t/�, !x.t/ cos Œ!t � �.t/� : (22.60c)

Although the equations for the two-level atom interacting with an electric field

and the spin system interacting with a magnetic field look the same, the physical

values of the parameters for the two systems differ markedly. That is, the frequency

separation of the spin up and spin down states in a constant external magnetic

field can range between 0 Hz and 10 GHz, while radio-frequency (rf) coupling

strengths !x.t/ are typically less than 1.0 MHz. In the optical case, electronic

transition frequencies !0 are of order 1014–1016 Hz and coupling strengths vary, but

are typically much less than the frequency separation of the levels. Only for intense

laser pulses having intensities greater than 1017 W/cm2 can the coupling strength

be comparable to the optical frequency separations. For a typical cw (continuous-

wave) lasers having a few mW of power, coupling strengths are typically in the MHz

to GHz range. Given this qualitative difference in the magnetic and electric cases,

it is not surprising that different approximation schemes are used in the two cases.

You will see that a rotating wave approximation is usually a good approximation for

atom–optical field interactions, based on the assumption that !0 � j�0.t/j, but this

is not necessarily so for the magnetic case.

I will restrict the discussion to the optical case, but you should appreciate the fact

that the discussion applies equally well to the magnetic field case if j!x.t/j � !0
and j! � !0j = j! C !0j � 1, conditions under which many NMR experiments are

carried out.

22.3.1 Rotating-Wave or Resonance Approximation

Although Eq. (22.58) can be solved numerically, it is best to gain some physical

insight into this equation before launching into any solutions. You shouldn’t be

deceived by the apparent simplicity of these coupled equations. There are books

devoted to these equations and even numerical solutions can be difficult to obtain in

certain limits.

Without solving the problem, you can ask under what conditions the field is

effective in driving transitions between levels 1 and 2. I assume that the amplitude

j�0.t/j and phase �.t/ of the field are slowly varying on a time scale of order !�1.
In this limit, the field can be considered to be quasi-monochromatic. Moreover, I

assume that j.!0 � !/ =.!0 C !/j � 1 and j�0.t/=.!0 C !/j � 1. Under these

assumptions, the field is effective in driving the 1-2 transition provided j!0 � !j is
small compared with j�0.t/j.
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The equation for Pa.t/ can be written as

Pa.t/ D � i

2

�
�!0 �0.t/e

�i!t C��
0 .t/e

i!t

�0.t/e
�i!t C��

0 .t/e
i!t !0

�
a.t/ : (22.61)

In the interaction representation, the corresponding equation for Pc.t/ is

Pc.t/ D � i

2

�
0 �0.t/e

�i.!0C!/t C��
0 .t/e

�iıt

�0.t/e
iıt C��

0 .t/e
i.!0C!/t 0

�
c.t/ ;

(22.62)

where

c.t/ D
�

c1.t/

c2.t/

�
; (22.63)

and

ı D !0 � ! (22.64)

is the atom-field detuning.

In the interaction representation we see that there are terms that oscillate with

frequency !0C! and those that oscillate at frequency ı. Moreover there can also be

oscillation at frequency j�0.t/j. As long as j�0.t/=.!0C!/j � 1, jı=.!0 C !/j �
1, as is assumed, the rapidly oscillating terms do not contribute much since they

average to zero in a very short time. In other words, if I take a coarse-grain time

average over a time interval much greater than 1=.!0 C !/, the contribution from

these rapidly varying terms is negligibly small compared with the slowly varying

terms. The neglect of such terms is called the rotating-wave approximation (RWA)

or resonance approximation. The reason for the nomenclature “rotating-wave” will

soon become apparent. In the RWA, Eqs. (22.61) and (22.62) reduce to

Pa.t/ D � i

2

�
�!0 ��

0 .t/e
i!t

�0.t/e
�i!t !0

�
a.t/ I (22.65)

Pc.t/ D � i

2

�
0 ��

0 .t/e
�iıt

�0.t/e
iıt 0

�
c.t/ : (22.66)

In component form, Eq. (22.66) is

Pc1.t/ D �i��.t/e�iıtc2.t/ (22.67a)

Pc2.t/ D �i�.t/eiıtc1.t/ : (22.67b)

where

�.t/ D �0.t/=2; (22.68)
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Equations (22.67) also look deceptively simple. For a wide range of parameters,

they are easy to solve numerically; however, if the envelope �.t/ corresponds to

a pulse having duration T and if jıjT � 1, the numerical solutions can become

extremely challenging. The reason for this is that the transition amplitudes are

exponentially small in jıjT requiring very small round-off errors, while the step

size required for the calculations varies inversely with jıjT . The effective two-level

atom-optical field system is depicted schematically in Fig. 22.1b. To gain some

insight into the atom-field dynamics, I look at some limits in which an analytic

solution of Eqs. (22.67) can be obtained.

22.3.2 Analytic Solutions

When

�.t/ D j�.t/jei�.t/ (22.69)

is a function of time, there are very few analytic solutions of Eqs. (22.67), although

there are certain combinations of j�.t/j and �.t/ for which such solutions can be

found. If �.t/ is constant and ı ¤ 0 the only smooth symmetric pulse shape for

which an analytic solution is possible is the hyperbolic secant pulse shape.1 In

that case the amplitudes can be expressed as hypergeometric functions. Analytic

solutions are also possible for [�.t/ real] and ı D 0; or for �.t/ D constant, limiting

cases that I now consider.

22.3.2.1 �.t/ real, ı D 0

In this case, the amplitude equations (22.67) become

Pc1.t/ D �i�.t/c2.t/I (22.70a)

Pc2.t/ D �i�.t/c1.t/: (22.70b)

These equations have the same form as Eqs. (22.35), so the solution is

c1.t/ D cos Œ�.t/� c1.0/ � i sin Œ�.t/� c2.0/I (22.71a)

c2.t/ D �i sin Œ�.t/� c1.0/C cos Œ�.t/� c2.0/ ; (22.71b)

where

�.t/ D
Z t

0

�.t0/dt0: (22.72)

1N. Rosen and C. Zener, Double Stern-Gerlach experiment and related collision phenomena,

Physical review 40, 502–507 (1932).
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In the case of an applied field pulse which “turns on” at t D �1, the initial

conditions should be taken at t D �1, in which case Eqs. (22.71) are replaced by

c1.t/ D cos Œ�.t/� c1.�1/ � i sin Œ�.t/� c2.�1/ (22.73a)

c2.t/ D �i sin Œ�.t/� c1.�1/C cos Œ�.t/� c2.�1/ ; (22.73b)

with

�.t/ D
Z t

�1
�.t0/dt0: (22.74)

Note that, if at t D �1, c1.�1/ D 1 and c2.�1/ D 0, then

jc2.1/j2 D sin2 .A=2/ ; (22.75)

where

A � 2�.1/ D
Z 1

�1
�0.t

0/dt0 D 2
Z 1

�1
�.t0/dt0 (22.76)

is referred to as the pulse area. The pulse area determines how much population is

transferred from the initial to final state. For reasons to be discussed in connection

with the Bloch vector, A is defined such that a pulse area of � corresponds to a

complete inversion, jc1.1/j D 0, jc2.1/j D 1, while A D �=2, results in an equal

superposition of ground and excited states, jc1.1/j D jc2.1/j D 1=
p
2.

I have arrived at a pretty interesting result. You can control the degree of

excitation that is achieved by a proper choice of pulse area, I might note, however,

that the use of a � pulse for level inversion is not a “robust” method (when I

was young, “robust” was used only to describe coffee). One must insure that the

pulse intensity is uniform over the entire sample and that the pulse area is exactly

equal to � to insure that all the atoms are inverted. There are other methods for

achieving level inversion that are more robust. One such method is discussed in the

next chapter.

22.3.2.2 �.t/ D �0=2 D Constant

In this case, Eqs. (22.67) reduce to

Pc1.t/ D �
i

2
��
0 e�iıtc2.t/I (22.77a)

Pc2.t/ D �
i

2
�0e

iıtc1.t/ : (22.77b)
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Taking the derivative of Eq. (22.77b) and using Eq. (22.77a), I obtain

Rc2.t/ � iıPc2.t/C
j�0j2

4
c2.t/ D 0: (22.78)

The solution of Eq. (22.78) is

c2.t/ D eiıt=2

�
A cos

�
�t

2

�
C B sin

�
�t

2

��
: (22.79)

where

� D
q
ı2 C j�0j2 (22.80)

is known as the generalized Rabi frequency. In a similar manner you can obtain the

solution

c1.t/ D e�iıt=2

�
D cos

�
�t

2

�
C E sin

�
�t

2

��
: (22.81)

Only two of the integration constants A;B;D;E can be independent since I

started with two, first order coupled differential equations—the constants are related

through the differential equations. It is convenient to take A and D as independent

since, clearly, A D c2.0/ and D D c1.0/. Using Eqs. (22.77), (22.78) and (22.79),

you can then show that

E D i
ı

�
c1.0/ � i

��
0

�
c2.0/ (22.82)

and

B D �i
�0

�
c1.0/ � i

ı

�
c2.0/ : (22.83)

Finally, the solution of Eqs. (22.77) is

c1.t/ D e�iıt=2

( �
cos

�
�t
2

�
C i ı

�
sin
�
�t
2

��
c1.0/

� i
��
0

�
sin
�
�t
2

�
c2.0/

)
I (22.84a)

c2.t/ D eiıt=2

�
�i�0

�
sin
�
�t
2

�
c1.0/

C
�
cos

�
�t
2

�
� i ı

�
sin
�
�t
2

��
c2.0/

�
: (22.84b)

This solution is of fundamental importance since it gives the response of a two-level

atom to a monochromatic field. Note that the amplitudes depend nonlinearly on the

applied amplitude—an atom acts as a nonlinear device, in contrast to an harmonic

oscillator.
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If c1.0/ D 1I c2.0/ D 0; then

jc2.t/j2 D
j�0j2

�2
sin2

�
�

2
t

�
D j�0j2

ı2 C j�0j2
sin2

0
B@

q
ı2 C j�0j2

2
t

1
CA : (22.85)

The population undergoes Rabi oscillations or Rabi flopping as a function of time.

The time-averaged excited state population is

jc2.t/j2 D
1

2

j�0j2

�2
D 1

2

j�0j2

ı2 C j�0j2
: (22.86)

For jıj � j�0j, jc2.t/j2 � j�0j2 =.2ı2/. This is a somewhat surprising result.

Even though the field is off resonance, the time-averaged transition probability falls

off inversely only as 1=ı2. In fact, I can turn off the field at a time t D T D �=� and

find that jc2.T/j2 � j�0j2 =ı2. From the energy-time “uncertainty principle,” you

might expect that the transition probability would vanish at least exponentially with

jıjT (recall that increasing the light intensity in the photoelectric experiment does

not increase the number of photoelectrons if the field frequency is not sufficiently

high). What is going on?

Had the field been turned on and off smoothly, one would indeed find that

jc2.t/j2 � e�f .jıjT/, where f is some positive function. However, in the calculation

that was carried out, the field is turned on instantaneously at t D 0 and turned

off instantaneously at t D T . Owing to the point jump discontinuities, the Fourier

components of a step function vary inversely with ıT , rather than as an exponentially

decaying function of jıjT .

22.3.3 Field-Interaction Representation

There is another representation that is especially useful when a single quasi-

monochromatic field drives transitions between two levels or two manifolds of

levels. Instead of extracting the atomic frequency, I can extract the laser frequency

(and phase) and write

j .t/i D Qc1.t/eiŒ!t=2��.t/=2�j1i C Qc2.t/e�iŒ!t=2��.t/=2�j2i
� Qc1.t/jQ1.t/i C Qc2.t/jQ2.t/i ; (22.87)

where

jQ1.t/i D eiŒ!t=2��.t/=2�j1i I (22.88a)

jQ2.t/i D e�iŒ!t=2��.t/=2�j2i (22.88b)
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are time-dependent kets, as were the standard interaction representation kets.

The transformation from the Schrödinger representation to this field interaction

representation can be written as

a1.t/ D Qc1.t/eiŒ!t=2��.t/=2�I (22.89a)

a2.t/ D Qc2.t/e�iŒ!t=2��.t/=2�; (22.89b)

and from the interaction representation to the field interaction as

c1.t/ D Qc1.t/e�iŒıt=2C�.t/=2�I (22.90a)

c2.t/ D Qc2.t/eiŒıt=2C�.t/=2�: (22.90b)

Note that

ˇ̌
aj.t/

ˇ̌2 D
ˇ̌
cj.t/

ˇ̌2 D
ˇ̌
Qcj.t/

ˇ̌2 I

state population probabilities are the same in all representations. It follows from

Eqs. (22.90) and (22.62) that

PQc1.t/ D i
ı.t/

2
Qc1.t/ � i

j�0.t/j
2
Qc2.t/ � i

j�0.t/j
2

e�2iŒ!t��.t/� Qc2.t/I (22.91a)

PQc2.t/ D �i
ı.t/

2
Qc2.t/ � i

j�0.t/j
2
Qc1.t/ � i

j�0.t/j
2

e2iŒ!t��.t/� Qc1.t/ ; (22.91b)

where

ı.t/ D ı C P�.t/ D !0 �
�
! � P�.t/

�
(22.92)

and
�
! � P�.t/

�
can be viewed as the time-varying frequency of the optical field. In

a frame rotating at the field frequency, there are rapidly varying terms oscillating

at twice the field frequency. The neglect of such terms in this rotating frame is the

origin of the nomenclature RWA. In the RWA, the equations reduce to

PQc1.t/ D i
ı.t/

2
Qc1.t/ � i

j�0.t/j
2
Qc2.t/ I (22.93a)

PQc2.t/ D �i
ı.t/

2
Qc2.t/ � i

j�0.t/j
2
Qc1.t/ ; (22.93b)

or

i„PQc D eH
¯
.t/Qc.t/ ; (22.94)
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where

eH
¯
.t/ D „

2

�
�ı.t/ j�0.t/j
j�0.t/j ı.t/

�
: (22.95)

In terms of the Pauli matrices, the RWA Hamiltonian is

eH
¯
.t/ D „

2
Œ�ı.t/� z C j�0.t/j � x� : (22.96)

The effective energy levels in the field interaction representation are �„ı.t/=2
and the magnitude of the Rabi frequency determines the coupling of the levels.

Remember that the eigenkets of eH
¯
.t/ are time-dependent [even if�0.t/ is constant].

You might ask which representation is the best to use. The answer is, “It

depends.” Rarely does one use the Schrödinger representation, except in formal

manipulations of the equations. For the two-level problem and arbitrary�0.t/, there

is not much difference between the interaction and field interaction representations.

Differences between the two representations arise in problems involving more than

two levels and more than a single field. Generally speaking, the field interaction

representation is most useful when a single field drives transitions between two

manifolds of levels, while the interaction representation should be used when

fields having two or more frequencies drive transitions between two levels or two

manifolds of levels.

22.4 Density Matrix for a Single Atom

In the previous section, I showed in detail how to obtain solutions of the time-

dependent Schrödinger equation for the state amplitudes of a two-level spin system

interacting with a magnetic field and a two-level atom interacting with an optical

field. To make connection with experiment, however, you need to know how the

state amplitudes are related to the possible outcomes of measurements. Any physical

measurement yields real results, while the state amplitudes are complex. From the

considerations of Chap. 5, you know that the expectation value of any Hermitian

operator corresponding to a physical observable depends on bilinear products of

the state amplitudes. For example, if you were to calculate the expectation value of

the electric dipole moment of a two-level atom, you would find that it depends on

the bilinear products a�
1 .t/a2.t/ and a�

2 .t/a1.t/ since

hOri D h .t/jOrj .t/i
D ha1.t/ 1 C a2.t/ 2jOrja1.t/ 1 C a2.t/ 2i
D a�

1 .t/a2.t/h1jOrj2i C c.c.; (22.97)
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Fig. 22.2 Spontaneous emission in a two-level atom

where the fact that Or is an odd parity operator has been used.

A knowledge of the state amplitudes allows you to calculate the expectation

values of any operators. Although all the information is contained in the state

amplitudes, we are not necessarily interested in all the information. If we measure

only part of the information content of a system, an amplitude approach is often no

longer satisfactory. This concept can be illustrated with a simple example.

Let us look at spontaneous decay in a two-level atom, Fig. 22.2. As a result

of spontaneous decay (to be discussed in Chap. 24), the upper state population

n2.t/ D ja2.t/j2 decreases and the lower state population n1.t/ D ja1.t/j2 increases

according to

Pn2.t/ D �2n2.t/I (22.98a)

Pn1.t/ D 2n2.t/ ; (22.98b)

where the excited state decay rate 2 is real. Is it possible to account for this decay

in an amplitude picture? You can try the equation

Pa2.t/ D �
2
2

a2.t/ ; (22.99)

which implies

d

dt
ja2.t/j2 D

d

dt
Œa2.t/a

�
2 .t/� D Pa2.t/a�

2 .t/Ca2.t/Pa�
2 .t/ D �2ja2.t/j2 : (22.100)

It works! But try to reproduce Eq. (22.98b) in a simple amplitude picture—you will

find it impossible to do so.

In problems of this nature, where atoms interact with a thermal bath, such as

the vacuum field for spontaneous emission, the total Hamiltonian consists of a term

for the atoms, a term for the fields and a term for the atom–field interaction. The

vacuum field is quantized, so all terms in the Hamiltonian are time-independent.

The state amplitudes are labeled by the eigenvalues associated with both the atoms
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and the fields. If we are interested in the atomic state variables only, it is necessary to

average over the field variables. A convenient method for carrying out this average

involves the density matrix of the atom-field system. In statistical mechanics, the

density matrix is used to characterize an ensemble of atoms. Even when considering

a single atom interacting with external fields, the density matrix approach is useful—

so let me start there.

The expectation value of an arbitrary Hermitian operator OA in the state

j .t/i D
X

n

an.t/jni (22.101)

of a single atom (possibly interacting with time-dependent external fields, but not

with a thermal bath) is given by

h .t/j OAj .t/i D
X

n;m

hmja�
m.t/
OAan.t/jni D

X

n;m

a�
m.t/an.t/hmj OAjni

D
X

n;m

a�
m.t/an.t/Amn ; (22.102)

where the an.t/ are the atomic state amplitudes. I want to define a matrix �.t/ whose

elements in the energy basis are equal to an.t/a
�
m.t/. A matrix satisfying this criterion

is the density matrix

�.t/ D j .t/ih .t/j ; (22.103)

since

hnj�.t/jmi D hnj .t/ih .t/jmi D
X

p;p0

ap.t/a
�
p0.t/ hn jpi

˝
p0 jmi D an.t/a

�
m.t/ :

(22.104)

Note that �.t/ is not a bona fide Schrödinger operator since it is time-dependent,

whereas all operators in the Schrödinger picture are taken as time independent. With

this definition

h .t/j OAj .t/i D
X

n;m

�nm.t/Amn D Tr
�
�.t/A

¯

�
: (22.105)

where Tr stands for “trace.”

In the energy basis

�.t/ D
X

n;m

�nm.t/jnihmj I (22.106)
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recall that jnihmj is a matrix with a 1 in the nm location and zeroes elsewhere. It is

also possible to expand �.t/ in other bases, such as an irreducible tensor basis. It is

easy to establish some properties for �.t/ for the single atom case. First, I note that

�.t/ D a
¯
.t/a

¯

�.t/ ; (22.107)

where a
¯

is interpreted as a column vector and a
¯
� as a row vector,

a
¯
D

0
B@

a1

a2
:::

1
CA I (22.108)

a
¯

� D
�
a�
1 a�

2 � � �
�
; (22.109)

such that

� D a
¯
a
¯

� D

0
B@

a1

a2
:::

1
CA
�
a�
1 a�

2 � � �
�
D

0
B@
ja1j2 a1a

�
2 � � �

a2a
�
1 ja2j2 � � �
:::

:::
: : :

1
CA : (22.110)

The density matrix is an idempotent operator since

�2 D j ih j ih j D j ih j D � : (22.111)

Critical to the development is the equation for the time evolution of �,

i„
d�

dt
D i„ d

dt
.a
¯
a
¯

�/ D ŒH
¯

a
¯
a
¯

� � a
¯
.H

¯
a
¯
/�� D H

¯
� � �H

¯
D ŒH

¯
; �� : (22.112)

Note that the sign is different from that in the evolution equation for the expectation

values of operators,

i„h .t/j
OAj .t/i
dt

D h .t/jŒ OA; OH�j .t/i : (22.113)

I have suppressed the explicit time dependence in the amplitudes and operators in

Eqs. (22.108)–(22.113). For the most part, I do not indicate such time dependence

explicitly from this point onwards, although I retain it in some of the equations as a

reminder.

As an example, consider a two-level atom interacting with an optical field in

the RWA. In this case,

H
¯
.t/ D „

2

�
�!0 ��

0 .t/e
i!t

�0.t/e
�i!t !0

�
; (22.114)
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and

i„
�
P�11 P�12
P�21 P�22

�
D „

2

��
�!0 ��

0 .t/e
i!t

�0.t/e
�i!t !0

��
�11 �12
�21 �22

�

�
�
�11 �12
�21 �22

��
�!0 ��

0 .t/e
i!t

�0.t/e
�i!t !0

��
;

(22.115)

or, since �.t/ D �0.t/=2,

P�11 D �i��.t/ei!t�21 C i�.t/e�i!t�12 I (22.116a)

P�22 D i��.t/ei!t�21 � i�.t/e�i!t�12 I (22.116b)

P�12 D i!0�12 � i��.t/ei!t .�22 � �11/ I (22.116c)

P�21 D �i!0�21 C i�.t/e�i!t .�22 � �11/ : (22.116d)

One can solve these equations for a given �.t/, but it is easier to solve in the

amplitude picture and then simply construct �11.t/ D ja1.t/j2, �22.t/ D ja2.t/j2,
�12.t/ D a1.t/a

�
2 .t/, �21.t/ D a2.t/a

�
1 .t/. It looks like I have not gained anything,

except making the equations more difficult! In a sense that is correct. The density

matrix becomes useful and essential when dealing with ensembles of particles or

particles interacting with a bath.

The key point is that it is often possible to get a simple equation for atomic

density matrix elements that incorporates the effects of some thermal bath acting

on the atoms. A general method for doing this is developed in the Appendix. For

example, spontaneous emission results from an atom interacting with the vacuum

field. Although the vacuum field plays a critical role in spontaneous decay, its net

effect on atomic state density matrix elements is given simply by

P�11/sp D 2�22 I (22.117a)

P�22/sp D �2�22 I (22.117b)

P�12/sp D �
2
2
�12 I (22.117c)

P�21/sp D �
2
2
�21 : (22.117d)

These contributions can be added to the terms given in Eqs. (22.116a)–(22.116d).

Equation (22.107) loses its meaning once relaxation is introduced.

Including spontaneous decay,

P�11 D �i��.t/ei!t�21 C i�.t/e�i!t�12 C 2�22 I (22.118a)

P�22 D i��.t/ei!t�21 � i�.t/e�i!t�12 � 2�22 I (22.118b)
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P�12 D i!0�12 � i��.t/ei!t .�22 � �11/ � �12 I (22.118c)

P�21 D �i!0�21 C i�.t/e�i!t .�22 � �11/ � �21 ; (22.118d)

where

 D 2=2: (22.119)

Note that P�11.t/ C P�22.t/ D 0, consistent with conservation of population. Now

I have gotten somewhere. It is impossible to write analogous equations using

state amplitudes, since Eqs. (22.118) are already averaged over a thermal bath.

Equations (22.118) are the starting point for many applications involving the

interaction of radiation with matter.

The corresponding equations in the field-interaction representation are

P�11 D �i j�.t/j Q�21 C i j�.t/j Q�12 C 2�22 I (22.120a)

P�22 D i j�.t/j Q�21 � i j�.t/j Q�12 � 2�22 I (22.120b)

PQ�12 D iı.t/ Q�12 � i j�.t/j .�22 � �11/ �  Q�12I (22.120c)

PQ�21 D �iı.t/ Q�21 C i j�.t/j .�22 � �11/ �  Q�21 ; (22.120d)

where

Q�12 D e�iŒ!t��.t/��12 ;
Q�21 D eiŒ!t��.t/��21 :

(22.121)

Even if j�.t/j and ı.t/ are constant, it is not easy to obtain analytic solutions of

Eqs. (22.120). You can eliminate �11.t/ from the equations using �11.t/ D 1��22.t/,
but you are still faced with solving an auxiliary equation for the roots r of the trial

solution, Q�ij.t/ D Q�ij.0/e
rt; that is cubic. On the other hand, for constant � and ı, it is

a simple matter to obtain the steady-state solutions of these equations by setting the

derivatives equal to zero. For constant � D �0=2 and ı, the steady-state population

of the excited state is given by

�22 D
2

2
j�j2

ı2 C 2B
; (22.122)

where

B D 
s
1C 4j�j2

2
: (22.123)



22.4 Density Matrix for a Single Atom 579

The excitation spectrum (that is, �22 as a function of ı) is a Lorentzian centered at

ı D !0 � ! D 0, having width (half-width at half-maximum) equal to B. The fact

that B increases with increasing field intensity is referred to as power broadening.

22.4.1 Magnetic Bloch Equations

The off-diagonal density matrix elements are complex, in general, and cannot

correspond to any measurable physical observable. However, it is possible to define

real variables that correspond to physically measurable quantities. I do this first for

the density matrix elements associated with an electron spin in a magnetic field

and then for the density matrix elements for a two-level atom interacting with an

optical field. For the magnetic case, I use the Schrödinger representation and, in

the optical case, I use the field interaction representation. Both approaches lead to

Bloch equations (named after Felix Bloch), but you will see that the field-interaction

representation allows one to obtain a simple geometric picture of the quantum state

evolution.

The Hamiltonian for the spin-magnetic field case is

H
¯

B D
e

me

S � B D e„
2me

� � B D !M � S, (22.124)

where

!M D
e

me

B (22.125)

is the cyclotron frequency and

S D „
2

��
0 1

1 0

�
ux C

�
0 �i

i 0

�
uy C

�
1 0

0 �1

�
uz

�
: (22.126)

The density matrix associated with the two-component spin system is

� D
 
�"" �"#
�#" �##

!
: (22.127)

Since the spin operator corresponds to an angular momentum and is Hermitian,D
OS
E
D „ h� i =2 is real. Using

D
OS
E
D Tr

�
�S
�

(22.128)
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with S given by Eq. (22.126), you can show easily that

D
OSz

E
D „
2

�
�"" � �##

�
I (22.129a)

D
OSx

E
D „
2

�
�"# C �#"

�
I (22.129b)

D
OSy

E
D „
2

�
i
�
�"# � �#"

��
: (22.129c)

If you can calculate the expectation value of the spin components, you can use

Eqs. (22.129), along with conservation of probability, �"" C �## D 1, to obtain

the density matrix elements. Thus, specifying the expectation value of the spin

components is equivalent to specifying the density matrix elements.

The time evolution of OS can be obtained from

d
D
OS
E

dt
D 1

i„
Dh
OS; OHB

iE
D 1

i„
Dh
OS;!M � OS

iE
D !M �

D
OS
E
: (22.130)

The three equations represented by Eq. (22.130) are referred to as the magnetic

Bloch equations. The vector
D
OS
E

is the Bloch vector. Equation (22.130) is the

same equation you would find for the components of a classical magnetic moment

precessing in a magnetic field. Note that !M can be an arbitrary function of time. For

the magnetic field of Eq. (22.19), the x-component of !M oscillates with frequency

!. For such a field, the axis about which the spin angular momentum is precessing

is also oscillating as a function of time and it is not easy to get a simple picture of

the dynamics.

22.4.2 Optical Bloch Equations

When the RWA is valid, as is often the case for fields driving optical transitions, it

is possible to use the field interaction representation to remove the rapid oscillation

of the precession axis associated with the frequency ! of the field. For a two-level

atom, it is conventional to define real variables

u D Q�12 C Q�21 I
v D i . Q�21 � Q�12/ I
w D �22 � �11 I
m D �22 C �11 ;

(22.131)

in terms of the density matrix elements in the field-interaction representation. The

inverse transformation is
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Q�12 D uCiv
2
I

Q�21 D u�iv
2
I

�11 D m�w
2
I

�22 D mCw
2
:

(22.132)

Note that a matrix element such as �12 D Q�12eiŒ!t��.t/� can be written in terms of

these variables as

�12 D .uC iv/eiŒ!t��.t/�=2: (22.133)

It is especially important not to forget that the variables .u; v/ are related to density

matrix elements in the field-interaction representation. In calculating expectation

values of operators, it is necessary to convert back to the Schrödinger representation.

In the absence of relaxation, it follows from these definitions and Eqs. (22.120)

that

Pu D �ı.t/v I
Pv D ı.t/u � j�0.t/jwI
Pw D j�0.t/j v I
Pm D 0 :

(22.134)

Conservation of probability is expressed by the relation m D 1. If I construct column

vectors

�.t/ D

0
@
j�0.t/j
0

ı.t/

1
A ; (22.135)

and

B D

0
@

u

v

w

1
A ; (22.136)

Eq. (22.134) takes the vectorial form

dB=dt D �.t/ � B : (22.137)

The vector B is referred to as the optical Bloch vector, the vector �.t/ is referred

to as the pseudofield vector, and Eq. (22.137) is referred to as the optical Bloch

equation.

The elements of the Bloch vector have a simple interpretation. The quantity m is

the total population of the levels and w is the population difference. For the electric

dipole transitions under consideration, u and v correspond to components of the
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atomic dipole moment that are in-phase and out-of-phase with the applied field.

One often refers to u and v (as well as Q�12 and Q�21) as “coherence.” There is a simple

geometric interpretation of Eq. (22.137) as well. The Bloch vector B precesses about

the pseudofield vector �.t/ with angular frequency

�.t/ D
p
ı.t/2 C j�0.t/j2:

Often it is easy to picture the dynamics produced by the interaction using the Bloch

vector.

Since B precesses about the pseudofield vector, its magnitude must remain

constant. I can show this explicitly by using Eq. (22.137) to write

d

dt
jBj2 D d

dt
.B � B/ D 2B�dB

dt
D 2B � Œ�.t/ � B� D 0 : (22.138)

Therefore

jBj2 D u2 C v2 C w2 D constant : (22.139)

With the definitions given in Eqs. (22.131), I find

jBj2 D u2 C v2 C w2

D Q�212 C 2 Q�12 Q�21 C Q�221 � Q�212 C 2 Q�12 Q�21 � Q�221 C �222 � 2�22�11 C �211
D �222 C 2�22�11 C �211 D .�22 C �11/2 D 1 ; (22.140)

where the relationship Q�12 Q�21 D jQc1j2jQc2j2 D �11�22 was used. Note that this

relationship is valid only in the absence of any relaxation, allowing me to set

Q�12 D Qc1 Qc2� D Q��
21. Since the magnitude of B is unity, the Bloch vector traces out

a curve on the surface of the Bloch sphere, a sphere having radius unity in u; v;w

space.

As a simple example consider the case when ı.t/ D 0 and j�0j D constant,

with initial conditions �11.0/ D 1 Œ Q�12.0/ D Q�21.0/ D �22.0/ D 0�. This implies

that u.0/ D v.0/ D 0 and w.0/ D �1, see Fig. 22.3. Since � D j�0juu, it follows

that B precesses about the u-axis with frequency j�0j, namely

u.t/ D 0 I
v.t/ D sin .j�0jt/ I
w.t/ D � cos .j�0jt/ :

(22.141)

If, instead, j�0.t/j corresponds to a time-varying pulse envelope whose ampli-

tude vanishes for t < 0, the precession phase angle at any time is given by

A.t/ D
Z t

0

j�0.t
0/jdt0: (22.142)
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Fig. 22.3 When ı.t/ D 0 and j�0j Dconstant, the Bloch vector B.t/ rotates in the .w; v/ plane

with angular velocity j�0j

For this field, Eqs. (22.141) are replaced by

u.t/ D 0 I
v.t/ D sin A.t/ I
w.t/ D � cos A.t/ ;

(22.143)

where A.t/ can be viewed as the pulse area at time t [see Eq. (22.76)]. For times

when A D � , the population is completely inverted .w D 1/, while for times when

A D ˙�=2 the coherence is at a maximum (jvj D 1/. Additional examples are

given in the problems and the next chapter.

22.4.3 Selection Rules for Electric Dipole and Magnetic Dipole

Transitions

You can use what you have learned about irreducible tensor operators and the

Wigner-Eckart theorem to derive selection rules for electric dipole and magnetic

dipole transitions. The selection rules tell you what states can be coupled by these

interactions. For the sake of definiteness, I assume the eigenkets of an atom in the

absence of the atom–field interactions can be written as jnLSIJFmFi ;where n labels

the electronic state manifold. In other words, I assume a Russell-Saunders coupling

scheme in which the total orbital and spin angular momenta remain good quantum

numbers.
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22.4.3.1 Electric Dipole Transitions

The electric dipole interaction is given by Eq. (22.46), namely

OH0
e D �Ope � E.R; t/; (22.144)

where Ope is the electric dipole moment operator of the atom. To derive selection

rules, I must determine which of the matrix elements

˝
n0L0S0IJ0F0m0

F

ˇ̌
Ope jnLSIJFmFi (22.145)

are non-vanishing. Since Ope is a vector operator that can be written in terms of the

components of an irreducible tensor of rank 1, it follows from the Wigner-Eckart

theorem and the properties of the Clebsch-Gordan coefficients that this matrix

element vanishes unless �F D F0 � F D ˙1; 0, and that any F D F0 D 0

matrix element also vanishes. Furthermore if I use the Clebsch-Gordan coefficients

to expand jnLSIJFmFi in terms of jnLSJmJi jI mIi eigenkets, it also follows that a

second selection rule is �J D ˙1; 0 and J D 0! 0 transitions are forbidden. The

reason for this is that the operator Ope depends only on spatial coordinates and must

be diagonal in the nuclear spin quantum numbers. Continuing the development by

expanding jnLSJmJi in terms of jnLmLi jSmSi eigenkets, I arrive at the selection

rules �S D 0, �L D ˙1; 0. However, since Ope is an odd parity operator, L must

change by an odd integer—�L D 0 is ruled out. To summarize, for the electric

dipole matrix elements to be non-vanishing, the selection rules �F D ˙1; 0,

�J D ˙1; 0, �S D 0, and �L D ˙1 must be satisfied, with F D 0 ! 0 and

J D 0! 0 transitions also forbidden.

It also follows from the Wigner-Eckart theorem and the properties of the Clebsch-

Gordan coefficients that the selection rules for the azimuthal quantum numbers are

�mF D ˙1; 0. The relative contribution of the �mF D ˙1; 0 matrix elements

depends on the polarization of the electric field. I take the electric field to be of the

form

E.R; t/ D 1

2
E0�ei.k�R�!t/ C 1

2
E0�

�e�i.k�R�!t/; (22.146)

which corresponds to a classical monochromatic field propagating in the k direction.

You can show that this field satisfies Maxwell’s equations in vacuum provided

! D kc and k � � D 0. I have taken the field amplitude E0 to be real, but the field

polarization

� D �xux C �yuy C �xuz (22.147)

can be complex. I will restrict the discussion to optical fields which resonantly

couple different electronic levels, n ¤ n0.
Let us imagine that the field couples a state jn1F1mF1i to a state jn2F2mF2i in an

atom located at position R and that the energy of state 2 is greater than that of state
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1 (all other state labels have been suppressed). In the interaction representation, the

state amplitude c2 evolves according to

Pc2 D
1

i„ hn2F2mF2 j OH0
e jn1F1mF1i ei!0tc1

D i

2„ hn2F2mF2 j � � Ope jn1F1mF1iE0eik�Reiıtc1; (22.148)

where I have made the RWA approximation by neglecting a term rapidly oscillating

at the sum frequency ! C !0. This equation will allow me to determine the �mF

selection rules for specific field polarizations.

To do so, I write

� � Ope D
1X

qD�1
.�1/q��q Ope;q; (22.149)

where

Ope;˙1 D �.Ope;x ˙ iOpe;y/=
p
2I (22.150a)

Ope;0 D Opz: (22.150b)

and

�˙1 D �
�x ˙ i�yp

2
I (22.151a)

�0 D �z : (22.151b)

I consider three field polarizations, linearly polarized light with

�lp
x D �lp

y D �
lp

˙1 D 0I �
lp

0 D 1; k D kux; (22.152)

left-circularly polarized light (LCP) with

�lcp
x D

r
1

2
I �lcp

y D i

r
1

2
I �

lcp

1 D 0I �
lcp

�1 D 1I �
lcp

0 D 0; k D kuz;

(22.153)

and right-circularly polarized light (RCP) with

�rcp
x D

r
1

2
I �rcp

y D �i

r
1

2
I �

rcp

1 D �1I �
rcp

�1 D 0I �
rcp

0 D 0; k D kuz:

(22.154)

In the case of linear polarization, the field propagates in the X-direction and the

electric field is
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Elp.R; t/ D E0 cos .kX�!t/uz; (22.155)

while, for circular polarization, the field propagates in the Z-direction and electric

field is

Elcp.R; t/ D 1p
2

E0
�
ux cos .kZ � !t/ � uy sin .kZ � !t/

�
I (22.156a)

Ercp.R; t/ D 1p
2

E0
�
ux cos .kZ � !t/C uy sin .kZ � !t/

�
: (22.156b)

Left circular polarization radiation has angular momentum directed along its prop-

agation direction. When viewed “head-on” with the radiation approaching you, the

polarization vector has constant amplitude and rotates in a counterclockwise direc-

tion. Right circular polarization (RCP) radiation has angular momentum directed

opposite to its propagation direction. When viewed “head-on” with the radiation

approaching you, the polarization has constant amplitude rotates in a clockwise

direction. Note that the polarization given in Eq. (22.153) would correspond to LCP

and that in Eq. (22.154) to RCP if the field propagates in the �Z direction.

Now that I have written the interaction in terms of the irreducible components of

the electric dipole operator, I can use Eqs. (22.148)–(22.154) and the Wigner-Eckart

theorem to evaluate

hn2F2mF2 j
1X

qD�1
.�1/q��q Ope;q jn1F1mF1i

D
X

q

.�1/qhn2F2jjp.1/e jjn1F1i

� ��qp
2F2 C 1

�
F1 1 F2

mF1 q mF2

�
; (22.157)

from which it follows that the selection rules on absorption are:

�mF D 0 linear polarization; (22.158a)

�mF D 1 LCP with k D kuz; RCP with k D �kuzI (22.158b)

�mF D �1 RCP with k D kuz; LCP with k D �ku: (22.158c)

The signs are reversed for emission, that is, for transitions from a higher to lower

energy state in the RWA.2

2Had I not made the RWA, the selection rules for LCP and RCP resulting from the rapidly varying

term would be reversed from those of the resonant term.
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22.4.3.2 Magnetic Dipole Transitions

The magnetic dipole interaction is given by

OH0
m D � . OmL C Oms/ �B.R; t/ D

ˇ0B

„
�
OLC 2 OS

�
�B.R; t/; (22.159)

Since OL and OS are vector operators, the selection rules for �F and �J are the same

as those for electric dipole transitions, namely �F D ˙1; 0, �J D ˙1; 0, with

F D 0 ! 0 and J D 0 ! 0 transitions also forbidden. The selection rule on

spin angular momentum is still �S D 0 since the interaction cannot change the

magnitude of the spin; however, the selection rule for �L is now �L D 0; since

the interaction (22.159) couples only those states having the same parity. Moreover,

since the interaction does not depend on spatial operators such as Ope, there is now

a selection rule on n, �n D 0. Magnetic fields couple only those states within a

given electronic state manifold. The selection rules for �mF are unchanged from

the electric dipole case, except that it may no longer be a good approximation to

make the RWA for radio-frequency fields that drive transitions between different

hyperfine states.

22.5 Summary

In this chapter, I presented an introduction to problems that can be categorized as

semi-classical, in which a classical time-dependent field interacts with a quantum

system. Some general results were derived and specific examples were given related

to the interaction of a magnetic field with a spin 1/2 quantum system and an optical

field with a two-level atom. The concept of the density matrix was introduced and

the Bloch equations were derived.

22.6 Appendix: Interaction of an Atom with a Thermal Bath

Consider what happens when a single atom interacts with a thermal bath. The total

Hamiltonian is

OHD OH1C OH2C OV ; (22.160)

where OH1 is the Hamiltonian of the atomic system (possibly including interactions

with time-dependent external fields), OH2 is the time-independent Hamiltonian of

the bath, and OV is the atom–bath interaction energy. The eigenkets of the time-

independent part of OH1 are denoted by jn1i and the eigenkets of OH2 are denoted by
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jn2i. Suppose we have an operator OA1 that acts only in the space of OH1; that is, OA1
acts only on atomic state variables. For a wave function

j .t/i D
X

n1;n2

an1n2.t/jn1ijn2i ; (22.161)

I calculate

h OA1i D h j OA1j i D
X

n1;n2

X

n0
1;n

0
2

a�
n1n2

an0
1n0
2
hn1jhn2j OA1jn0

2ijn0
1i

D
X

n1;n2

X

n0
1;n

0
2

a�
n1n2

an0
1n0
2
ın2;n

0
2
hn1j OA1jn0

1i
(22.162)

or

h j OA1j i D
X

n1;n
0
1

.A1/n1n0
1

 
X

n2

a�
n1n2

an0
1n2

!
: (22.163)

I define the reduced density matrix for the atom as the total density matrix, traced

over the states of the bath,

�.1/ D Tr2�I (22.164)

that is,

�
.1/

nn0 D
X

n2

�nn2In0n2
D
X

n2

ann2a
�
n0n2

: (22.165)

It is clear from Eqs. (22.163) and (22.165) that

h OA1i D
X

n1;n
0
1

.A1/n1n0
1
�
.1/

n0
1n1
D Tr.A

¯
1�
.1// : (22.166)

The key point is that it is often possible to get a simple equation for �.1/ that

incorporates the effects of the bath. For example, I show explicitly in Chap. 24 that

the result of spontaneous emission is to introduce terms in the equations of motion

for the reduced density matrix elements for the atom given by Eqs. (22.120). One

can also consider the bath as an ensemble of perturber atoms that collide with the

atom of interest. The collisions cause sudden changes in energy of the various levels,

but are not energetically able to cause transitions between the two levels. In this

model,

P�11.t/coll D 0 I (22.167a)
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P�22.t/coll D 0 I (22.167b)

P�12.t/coll D � .� C iS/ �12.t/ I (22.167c)

P�21.t/coll D � .� � iS/ �21.t/ ; (22.167d)

where � is a decay rate and S is a shift, both of which are proportional to

the perturber density. The collision effects can be incorporated into Eqs. (22.118)

and (22.120) by replacing  with 2=2C .� C iS/ in Eqs. (22.118c) and (22.120c)

and  with 2=2C.� � iS/ in Eqs. (22.118d) and (22.120d) and can be incorporated

into Eq. (22.122) by replacing ı with ı � S and  with 2=2C � .

22.7 Problems

1. In time-dependent problems, the Hamiltonian is often taken to be of the form
OH.t/ D OH0 C OV.t/. On average, is energy conserved for this Hamiltonian? Explain.

Even if OH0 consists of only two states (such as for a spin 1/2 system), why is it

impossible, in general, to solve for the state amplitudes analytically given some

initial conditions. What are some general conditions on OV.t/ if it is to effectively

cause transitions between two states of OH0.

2. Two degenerate states, 1 and 2, are coupled by a constant interaction potential,

h1j OV j2i D h2j OV j1i D V12 Dconstant. If at t D 0, the system is in state 1, find the

probability amplitudes for the system to be in state 1 and in state 2 for all t > 0:

Assume that V11 D V22 D 0.

3–4. In dimensionless units, the equations for the probability amplitudes for a spin

1/2 system in an oscillating magnetic field are given by

daB .�/ =d� D �i

�
x=2 z cos .y�/

z cos .y�/ �x=2

�
aB .�/

where aB D .a"; a#/, x D !0TI y D !TI z D !xT; and � D t=T . Use a computer

program such as NDSolve in Mathematica to obtain and plot solutions for Pup .�/ Dˇ̌
a".�/

ˇ̌2
as a function of � for

i. !T D 0I !xT D 0:5; 1; 2; 10I !0T D 5I
ii. !T D 2I !xT D 0:5; 1; 2; 10I !0T D 0I

iii. !T D 10I !xT D 0:5; 1; 2; 10I !0T D 10;

given a".0/ D 0I a#.0/ D 1. In each case, are there single or multiple frequencies

present in Pup .�/?
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5–6. Consider a classical spin having magnetic moment ms D �eS=me where S

is a spin angular momentum. In an external magnetic field B the spin experiences a

torque

� D dS

dt
D ms � B:

Show that the equation for the spin angular momentum is

dS

dt
D !B � S;

where

!B D
eB

me

:

Write the differential equation for the spin in component form.

Now take

!B D !0uz C !s cos .!t/ux

and solve numerically and plot Sz as a function of time with initial condition

Sz.0/ D �1 (in arbitrary units). Take time to have dimensionless units, � D t=T ,

and consider two cases (i) !0T D 10, !sT D 1, !T D 6 (off-resonant) and (ii)

!0T D 10, !sT D 1, !T D 10 (resonant). What is the difference between the two

cases? Also plot Sx.t/ for the resonant case with the same initial conditions; in this

case you will see that there are rapid oscillations in Sx.t/ even though the rotating-

wave approximation is valid—you need to go to a rotating frame (field interaction

representation) to remove these rapid oscillations.

7–8. The optical Bloch equations with decay for a monochromatic field are

Pu D �ıv � u I
Pv D ıu � j�0jw � v I
Pw D j�0jv � 2.wC 1/I
Pm D 0 ;

where  D 2=2: Derive these equations starting from Eqs. (22.131) and (22.120).

Solve these equations in steady-state. Look at the results in the limit that �0 �
2 and interpret your result. In particular show that the expression for the steady-

state, upper state population, �22 D .1C w/ =2, is a Lorentzian having HWHMq
2 C �20

2
; since the width increases with increasing field intensity, this is known

as power broadening.
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9. Now solve the Bloch equations of Problem 22.7–8 numerically for T D
2T=2 D 1=2 and (ıT D 0:1, �0T D 0:2/ and (ıT D 0:1, �0T D 3/ and plot

w as a function of dimensionless time � D t=T , assuming the atom is initially in

its ground state. In which case does the Bloch vector approach its steady-state value

monotonically? Why would you expect this from the Bloch vector picture?

10–11. Assuming a constant field amplitude, solve Eqs. (22.120) analytically for

 D 2=2, ı D 0, and �11.0/ D 1 to show that the upper state population is

given by

�22.t/ D
j�0j2=2

22 C j�0j2
f1 � Œcos.�t/C 3

2�
sin.�t/�e�3 t=2g ;

where � D .j�0j2 � 2=4/1=2. Evaluate �22 for j�0j �  and give an interpretation

in terms of the Bloch vector. Show that, as t ! 1, result is consistent with

Problem 22.7–8.

12. In the field interaction representation, neglecting relaxation, the state vector

can be written quite generally as

j .t/i D sin.�=2/
ˇ̌Q1.t/

˛
C cos.�=2/e�i�

ˇ̌Q2.t/
˛
;

where � and � are arbitrary real functions of time with 0 � � � � and 0 � � � 2� .

Show that the angles � and � correspond to the spherical angles of the Bloch vector

on the Bloch sphere.

13–15. Consider the differential equation Py.t/ D Ay.t/, where y.t/ is a column

vector and A is a constant matrix.

(a) Show, by direct substitution, that a solution to this equation is y.t/DeAty.0/.

In the following parts, take

A D �i

�
�a b

b a

�
I y.0/ D

�
y1.0/

y2.0/

�
I y.t/ D

�
y1.t/

y2.t/

�
;

where a and b are real.

(b) Solve the differential equation directly by assuming a solution of the form

y.t/ D ye�t.

(c) Solve the equations using the identity

e�i� On�� D 1 cos � � i On � � sin�;

where On is a unit vector and � is a vector having matrix components

� x D
�
0 1

1 0

�
I � y D

�
0 �i

i 0

�
I � z D

�
1 0

0 �1

�
:
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(d) Solve the equation using the MatrixExp[{{I a,�I b},{�I b,�I a}}] function of

Mathematica or some equivalent program.

(e) Find a matrix T such that TAT� D ƒ, where ƒ D
�
ƒ1 0

0 ƒ2

�
is a diagonal

matrix. Prove that

y.t/ D T�eƒtTy.0/ D T�
�

eƒ1t 0

0 eƒ2t

�
Ty.0/;

and evaluate this explicitly.

(f) Show that all your results give the same solution. Note that the last method can

be used for matrices of any dimension.

16. Imagine that a circularly polarized field drives a J D 0 to J D 1 transition in an

atom. At the atomic position, Z D 0, take the field to be of the form

E.t/ D E0
�
uxcos .!t/C uysin .!t/

�
;

where E0 is constant. Prove that, if one considers transitions between the J D 0

and J D 1;mJ D 1 levels only, it is not necessary to make any RWA to arrive at

equations of the form in Eq. (22.65). On the other hand, show that the “counter-

rotating” (rapidly oscillating) terms drive transitions between the J D 0 and

J D 1;mJ D �1 levels. If the field is far off-resonance, both transitions contribute

comparable amounts to the atomic response.



Chapter 23

Approximation Techniques in Time-Dependent
Problems

In this chapter, I discuss some general techniques that can be used to obtain

approximate solutions to time-dependent problems in quantum mechanics.

23.1 Time-Dependent Perturbation Theory

I already have derived the equations of motion for the state amplitudes when the

Hamiltonian is of the form OH D OH0 C OV.t/. In the Schrödinger representation

they are

i„Pan.t/ D Enan.t/C
X

n

Vnm.t/an.t/ ; (23.1)

when the wave function is expanded as j .t/i D
P

n an.t/jni . In the interaction

representation they are

i„Pcn.t/ D
X

m

Vnm.t/cm.t/ exp .i!nmt/ ; (23.2)

when the wave function is expanded as j .t/i D
P

n cn.t/jni exp .�iEnt=„/. Recall

that

!nm D .En � Em/=„ (23.3)

is the transition frequency between levels n and m.

Generally speaking, these equations correspond to an infinite number of coupled

equations. Imagine, however, that the system starts in its ground state, denoted by

n D 0, at t D �1 and that the perturbation is weak. Then I can use time-dependent

perturbation theory to estimate the amplitude of the other states (n ¤ 0) as
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cn.t/ �
1

i„

Z t

�1
dt0Vn0.t

0/c0.t
0/ exp

�
i!n0t

0� � 1

i„

Z t

�1
dt0Vn0.t

0/ exp
�
i!n0t

0� ;
(23.4)

where I have assumed that the initial state is not affected very much by the

perturbation, allowing me to replace c0.t
0/ by unity in the integrand. Clearly this

approach is valid only if

X

n¤0
jcn.t/j2 � 1: (23.5)

It turns out that this condition is necessary, but not sufficient, for perturbation theory

to be valid. Since state amplitudes have phases, it is possible for these phases to

become greater than unity even when condition (23.5) holds. In that case there is

also a breakdown of perturbation theory.

As an example of the use of time-dependent perturbation theory, consider a pulse

of laser radiation having electric field amplitude at the position of an atom that

varies as

E.t/ D �E0.t/ cos .!t/ ; (23.6)

where � is the field polarization and E0.t/ is the field amplitude envelope function.

The atom–field interaction is taken as

OV.t/ � eOr � E.t/ D eOr��E0.t/ cos .!t/ ; (23.7)

where Or is the position operator for the electron. As a consequence

cn.t/ �
ern0 � �

i„

Z t

�1
dt0E0.t

0/ cos
�
!t0
�

exp
�
i!n0t

0� ; (23.8)

where rn0 is a matrix element of the position operator.

For the sake of definiteness I assume that

E0.t/ D E0e
�t2=T2 : (23.9)

The excited state amplitudes cn.1/ after the pulse has passed are given by

cn.1/ D
ern0 � �E0

i„

Z 1

�1
dt0e�t2=T2 cos .!t/ exp .i!n0t/

D ern0 � �E0
p
�T

2„
h
e�.!�!n0/

2
T2=4 C e�.!C!n0/

2
T2=4

i
(23.10)
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and the final state probabilities, Pn, by

Pn D jcn.1/j2

D A2

4

h
e�.!�!n0/

2
T2=2 C e�.!C!n0/

2
T2=2 C 2e�.!2C!2n0/T2=2

i
; (23.11)

where

A D
p
�

ern0 � �E0T

„ (23.12)

is the pulse area defined by Eq. (22.76). For perturbation theory to be valid, the

pulse area must be much less than unity.1 We see here a manifestation of the “time-

energy” uncertainty principle. To significantly excite a transition with a pulse that

is detuned by ! � !n0, the pulse duration must be less than or comparable to

j! � !n0j�1. In general, significant excitation occurs only if the perturbation has

frequency components at the transition frequency.

As a second example, I use perturbation theory to calculate the induced dipole

moment of a 3-D harmonic oscillator having mass m produced by an external

electric field

E.t/ D
�
0 t < 0

uxE0 cos .!t/ t > 0
: (23.13)

For t > 0; the Hamiltonian is

OH.t/ D „!0
�
a�aC 3=2

�
C OV.t/;

where

OV.t/ � �qOr � E.t/ D �qOxE0 cos .!t/ ; (23.14)

q is the charge of the oscillating mass, !0 its natural frequency, and a and a� are

lowering and raising operators. At t D 0, the oscillator is in its ground state.

The average induced dipole moment pd.t/ is given by

pd.t/ D q hx.t/iux: (23.15)

I use number state eigenkets for the oscillator, such that the initial condition is

j .0/i D j0i : To lowest order in the applied field amplitude, only the n D 1 state

is excited so I can set

1In this example, condition (23.5) is necessary but not sufficient for perturbation theory to be valid.

It turns out that a necessary and sufficient condition is that the pulse area be much less than unity.
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j .t/i � j0i C c1.t/e
�i!0t j1i : (23.16)

It then follows that

hx.t/i D

s
„

2m!0

�
x01c1.t/e

�i!0t C x10c
�
1 .t/e

i!0t
�
; (23.17)

where

xnn0 D hnj Ox
ˇ̌
n0˛ D

s
„

2m!0
hnj aC a�

ˇ̌
n0˛

D

s
„

2m!0

�p
n0ın;n0�1 C

p
n0 C 1ın;n0C1

�
; (23.18)

such that

x01 D x10 D

s
„

2m!0
: (23.19)

In lowest order perturbation theory, c0.t/ D 1, and Eqs. (23.8), (23.14),

and (23.19) can be used to calculate

c1.t/ D � .i=„/
Z t

0

dt0V10.t
0/ei!0t0 D iqE0

s
1

2„m!0

Z t

0

dt0 cos
�
!t0
�

ei!0t0

D qE0

2

s
1

2„m!0

"
ei.!0C!/t � 1
!0 C !

C ei.!0�!/t � 1
!0 � !

#
; (23.20)

which, together with Eqs. (23.17) and (23.19), implies that

hx.t/i D qE0

4m!0

�
ei!t � e�i!0t

!0 C !
C e�i!t � e�i!0t

!0 � !

�
C c.c.

D qE0

m

cos .!0t/ � cos .!t/

!2 � !20
: (23.21)

In this case, I can get the exact solution for hx.t/i from the equation of motion

d2 hx.t/i
dt2

C !20 hx.t/i D
qE0

m
cos .!t/ : (23.22)
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With initial conditions hx.0/i D 0, d hx.0/i =dt D 0, corresponding to the oscillator

in its ground state, the solution of this equation is

hx.t/i D qE0

m

cos .!0t/ � cos .!t/

!2 � !20
: (23.23)

This is an amazing result—the exact solution agrees with the solution to first

order in perturbation theory. The reason for this is clear. The response of a simple

harmonic oscillator to an applied electric field is always linear in the field. Since

higher order perturbation theory would produce terms that are nonlinear in the field

amplitude, any such contributions to hx.t/i must vanish! This does not mean that

successive terms in higher order perturbation theory vanish. On the contrary, such

terms drive the quantum oscillator up and down the ladder of n states; however, they

do so in such a fashion that these higher order terms do not contribute to hx.t/i.

23.2 Adiabatic Approximation

The adiabatic approximation seems mysterious and even magical, but it is really

based on a simple premise. Consider the equation of motion

Pa.t/ D �iW.t/a.t/ (23.24)

where

W.t/ D H.t/=„; (23.25)

and I have changed the notation somewhat by representing matrices by boldface

variables, rather than with underscores. You can think of W.t/ as an effective

Hamiltonian in frequency units. Imagine that W is constant. Then I could simply

obtain the eigenvalues and eigenkets of W and expand the state vector in terms

of these eigenkets. The state populations remain constant and their amplitudes

acquire a phase factor, e�i!nt, where the !n are eigenvalues of W. If W is not

constant, it no longer possesses time-independent eigenkets; however, if W.t/ does

not contain Fourier components equal or nearly equal to the frequency separation

of the instantaneous eigenvalues of W.t/ (that is, the eigenvalues at time t), then

transitions between the instantaneous eigenkets of W.t/ can be neglected. In that

limit it is relatively easy to solve for the state amplitudes.

To see this more formally, I set

x.t/ D T.t/a.t/ ; (23.26)
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where the unitary matrix T.t/ is chosen such that

ƒ.t/ D T.t/W.t/T�.t/ (23.27)

is diagonal. Then

Px.t/ D T.t/Pa.t/C PT.t/a.t/
D �iT.t/W.t/a.t/C PT.t/a.t/
D �iT.t/W.t/T�.t/x.t/C PT.t/T�.t/x.t/
D �iƒ.t/x.t/C PT.t/T�.t/x.t/ : (23.28)

The adiabatic approach is useful only if the PT.t/T�.t/ term can be neglected, which

is generally the case if the frequency difference between the diagonal elements of

ƒ.t/ is much larger than the inverse of the time interval in which T.t/ changes

significantly. In that limit,

xn.t/ � xn.0/ exp

�
�i

Z t

0

ƒnn

�
t0
�

dt0
�

(23.29)

and

a.t/ D T�.t/x.t/: (23.30)

23.2.1 A Simple Example

Let me consider the interaction of the spin magnetic moment of an electron with the

magnetic field

B D B0 fuz cos Œ�.t/�C ux sin Œ�.t/�g : (23.31)

where �.t/ is some arbitrary function of time. The Hamiltonian in frequency units is

W.t/ D ��s�B
„ D

eS � B
me„

D eB0

me„
fSx sin Œ�.t/�C Sz cos Œ�.t/�g

D !0

2

�
cos Œ�.t/� sin Œ�.t/�

sin Œ�.t/� � cos Œ�.t/�

�
; (23.32)

where

!0 D
eB0

me

: (23.33)
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It is a simple matter to diagonalize this matrix. The eigenvalues are w1;2 D ˙!0=2
(which are time-independent in this problem) and the eigenkets are

j"i0 D cos

�
�.t/

2

�
j"i C sin

�
�.t/

2

�
j#i I (23.34a)

j#i0 D cos

�
�.t/

2

�
j#i � sin

�
�.t/

2

�
j"i : (23.34b)

The matrix T.t/ that diagonalizes W.t/ is

T.t/ D

0
@cos

�
�.t/

2

�
� sin

�
�.t/

2

�

sin
�
�.t/

2

�
cos

�
�.t/

2

�
1
A (23.35)

and

PT.t/T�.t/ D
P�
2

�
0 �1
1 0

�
: (23.36)

Therefore, if

ˇ̌
ˇ P�
ˇ̌
ˇ � !0, the adiabatic approximation should be good. In that limit,

if j .0/i D j#i, the spin stays adiabatically in the instantaneous spin down state.

In other words, the state vector is approximately

j .t/i D j# .t/i0 D cos

�
�.t/

2

�
j#i � sin

�
�.t/

2

�
j"i ; (23.37)

such that the probability to find the spin down in a basis quantized along the z-axis

is simply

P#.t/ D cos2
�
�.t/

2

�
: (23.38)

The solution given in Eq. (23.38) can be compared with the exact solution,

P#.t/ D
ˇ̌
a#.t/

ˇ̌2
, where a#.t/ is obtained as a numerical solution of the differential

equations,

�
Pa".t/
Pa#.t/

�
D �i

!0

2

�
cosŒ�.t/� sinŒ�.t/�

sinŒ�.t/� � cosŒ�.t/�

��
a".t/
a#.t/

�
; (23.39)

subject to the initial condition a#.0/ D 1. As an example, I choose

�.t/ D �

2

�
1 � e�t2=T2

�
‚.t/; (23.40)
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Fig. 23.1 A graph of P#.t/ vs t=T . The upper solid blue curve is for !0T D 0:5 and the lower

solid red curve for !0T D 10. The dashed black curve is the adiabatic solution

where ‚.t/ is a Heaviside function, such that � varies from 0 to �=2 in a time of

order T: I expect the adiabatic approximation to be good if !0T � 1. In Fig. 23.1,

the numerical solution for P#.t/ is plotted as a function of t=T for !0T D 0:5 (upper

solid curve) and !0T D 10 (lower solid curve), along with the adiabatic solution

(dashed curve). You can see that the adiabatic solution is very good for !0T D 10.

23.3 Sudden Approximation

The “opposite” of the adiabatic approximation is the sudden approximation. In the

sudden approximation, the Hamiltonian is changed suddenly from one Hamiltonian,

say OH1, to another, say OH2, at time t D t0. If this is the case the result is simple.

You can expand the wave function at t D t0 in terms of the new eigenkets. The

state vector then evolves under the new Hamiltonian with this initial condition. The

sudden approximation is valid if the Hamiltonian is changed in a time that is much

shorter than all the inverse transition frequencies of the original Hamiltonian.

For example, consider the interaction of the spin magnetic moment of the

electron with a magnetic field

B D B0 Œuz cosŒ�.t/�C ux sinŒ�.t/�� : (23.41)

Suppose that at t D 0; the magnetic field direction is switched suddenly from the z

direction .� D 0/ to some angle � f . The initial state before switching is spin down

(in the original basis). I write the initial state in terms of the new eigenkets as

j#i D j .0/i D cos
�
� f =2

�
j#i0 C sin

�
� f =2

�
j"i0 ; (23.42)
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where the new eigenkets
�
j#i0 ; j"i0

�
are given by Eq. (23.34). The eigenfrequency

associated with the j"i0 ket is !0=2 and that associated with the j#i0 ket is (�!0=2),

with !0 given by Eq. (23.33). As a consequence, the state vector for t > 0 is

j .t/i D ei!0t=2 cos
�
� f =2

�
j#i0 C sin

�
� f =2

�
e�i!0t=2 j"i0 : (23.43)

Using Eq. (23.34) to re-express the new kets in terms of the original basis eigenkets,

I find

j .t/i D
"

cos
�
� f =2

�
ei!0 t=2

�
cos

�
� f =2

�
j#i � sin

�
� f =2

�
j"i
�

Ce�i!0 t=2 sin
�
� f =2

� �
cos

�
� f =2

�
j"i C sin

�
� f =2

�
j#i
�
#

D
�
cos2

�
� f =2

�
ei!0 t=2 C sin2

�
� f =2

�
e�i!0 t=2

�
j#i

� sin
�
� f =2

�
cos

�
� f =2

� �
ei!0 t=2 � e�i!0 t=2

�
j"i

D
�
cos .!0t=2/C i sin .!0t=2/ cos � f

�
j#i � i sin � f sin .!0t=2/ j"i ; (23.44)

such that

P#.t/ D cos2
�!0t
2

�
C sin2

�!0t
2

�
cos2 � f : (23.45)

Note that if � f D � , P#.t/ D 1 since the initial state is an eigenstate of the new

Hamiltonian.

I can check the validity of the sudden approximation by again taking �.t/ given

by Eq. (23.40). For � f D �=2

P#.t/ D cos2
�!0t
2

�
D cos2

�
!0T

2
.t=T/

�
: (23.46)

The sudden approximation should be valid if !0T � 1, since this constitutes a rapid

change in the field direction: In Fig. 23.2, the numerical solution for P#.t/ is plotted

as a function of t=T for !0T D 0:2 and in Fig. 23.3 for !0T D 2, along with the

sudden solution (dashed curve). You can see that the sudden solution is almost exact

for !0T D 0:2.

23.4 Summary

In this chapter, I have explored several techniques for obtaining approximate

solutions to the time-dependent Schrödinger equation when a time-dependent

interaction is present. For weak interaction potentials, a perturbative approach can

be used. Under certain conditions it is also possible to use adiabatic or sudden

approximations. In general the adiabatic approximation is valid if the matrix

elements coupling any instantaneous eigenstates of the system does not contain the
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Fig. 23.2 A graph of P#.t/ vs t=T . The solid red curve is for !0T D 0:2. The dashed black curve

is the sudden approximation solution

Fig. 23.3 A graph of P#.t/ vs t=T . The solid red curve is for !0T D 2. The dashed black curve

is the sudden approximation solution

Fourier components needed to drive transitions between those states. The sudden

approximation is valid when the change in the interaction potential occurs on a time

scale that is sufficiently fast to contain Fourier components that cover all the relevant

states that can be coupled by the potential.

23.5 Problems

1. Under what conditions is the adiabatic approximation valid? Under what

conditions is the sudden approximation valid? Explain.

Problems 2–11 involve the interaction of a two-level atom with a classical optical

field. In the interaction representation and the RWA, the equations for the state

amplitudes are given by Eqs. (22.77), namely

Pc1.t/ D �
i

2
��
0 e�iıtc2.t/I
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Pc2.t/ D �
i

2
�0e

iıtc1.t/ ;

and, in the field interaction representation, by Eqs. (22.93), namely

PQc1.t/ D i
ı.t/

2
Qc1.t/ � i

j�0.t/j
2
Qc2.t/ I

PQc2.t/ D �i
ı.t/

2
Qc2.t/ � i

j�0.t/j
2
Qc1.t/ ;

where �0.t/ is the Rabi frequency,

ı.t/ D ı C P�.t/ D !0 �
�
! � P�.t/

�
;

ı D !0 � ! is the atom-field detuning, and �.t/ if the phase of the applied field. In

all these problems, assume that c1.�1/ D Qc1.�1/ D 1; c2.�1/ D Qc2.�1/ D 0,

and ı > 0:

2. Solve for P2.1/ D jc2.1/j2 using first-order time-dependent perturbation

theory with �.t/ D 0 and

.1/ �0.t/ D �0 expŒ�.t=T/2�I

.2/ �0.t/ D �0 sech .� t=T/ I

.3/ �0.t/ D
�
�0 0 � t � T

0 otherwise
:

In cases (1) and (2) show that P2.1/ is consistent with what you might have

expected from the time-energy uncertainty principle, that is, the excitation proba-

bility falls off exponentially with some power of ıT , but that in case (3), the fall off

is as an inverse power law. Why is this so?

3. You might think that the criterion for applying perturbation theory in the previous

problem is that jQc2.t/j2 � 1. It turns out that this condition is necessary, but not

sufficient. To see this, you can use the exact solution for the hyperbolic secant pulse.

Rosen and Zener solved this problem in 1932 and found that, if

�0.t/ D .A=T/ sech .� t=T/ ;

where

A D
Z 1

�1
�0.t/dt
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is the pulse area, then

P2.1/ D jQc2.1/j2 D sin2.A=2/sech2 .ıT=2/ :

Show that this result is consistent with the perturbation theory result only if A� 1.

Moreover, show that if ıT � 1, it is possible that the perturbation theory result is

wrong even though jc2.1/j2 � 1. Explain why the fact that P2.1/ saturates with

increasing A is consistent with what you learned from the photoelectric effect.

4–5. Prove that, in the adiabatic limit [that is, if ı.t/ and �0.t/ are slowly varying

over the duration of the field pulse],

jc2.t/j2 D jQc2.t/j2 �
1

2

�
1 � ı.t/

�.t/

�
;

where

�.t/ D
q
ı2 C j�0.t/j2

is the generalized Rabi frequency. To solve this problem you need to instantaneously

diagonalize the matrix

A.t/ D 1

2

�
�ı.t/ j�0.t/j
j�0.t/j ı.t/

�

that appears in the field interaction representation equations. This can be accom-

plished with a matrix of the form

T.t/ D
�

cos Œ�.t/� � sin Œ�.t/�

sin Œ�.t/� cos Œ�.t/�

�
:

Find the value of �.t/ for which

T.t/A.t/T�.t/ D 1

2

�
��.t/ 0

0 �.t/

�
:

6. Obtain an integral expression for c2.t/ using first-order time-dependent perturba-

tion theory, assuming that �.t/ D 0. Assume that ı �
ˇ̌ P�0.t/

ˇ̌
, and use integration

by parts to show that

P2.t/ D jc2.t/j2 �
Œ�0.t/�

2

4ı2
:

Prove that this result is consistent with the previous problem. This would seem to

imply that P2.1/ � 0, whereas you found this not to be the case in Problem 23.2.
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This result illustrates the fact that the adiabatic approximation (as do many

asymptotic expansions) misses terms that are exponentially small in the adiabaticity

parameter (which is
ˇ̌ P�0.t/

ˇ̌
=ı in this example).

7–8. Numerically calculate the transition probability P2.t/ as a function of time for

a pulse envelope,

j�0.t/j D j�0j expŒ�.t=T/2�

and detunings,

.1/ ı.t/ D ı0 I

.2/ ı.t/ D �ı0 tan�1.t=T/ ;

where T > 0 is the pulse duration. Use dimensionless variables with � D t=T

and take (i) ı0T D 3 and j�0jT D 3 and (ii) ı0T D 10 and j�0jT D 10: Plot

P2.�T/ D jQc2.�T/j2 as a function of � for cases (1)(i), (1)(ii), (2)(i), and (2)(ii).

Show that in case (1)(ii), the population returns to state 1 at the end of the pulse

while in case (2)(ii) (adiabatic switching) the population is transferred to state 2

by the pulse. Compare your numerical solutions with the predictions of adiabatic

following obtained in Problem 23.4–5.

9. Give a simple argument to explain why the Bloch vector stays aligned (or anti-

aligned) with the pseudofield vector if
ˇ̌ P�.t/=�.t/

ˇ̌
� 1,�0 .˙1/ D 0, ı .˙1/ ¤

0, and Qc1 .�1/ D 1: Use this result to explain why the atom returns to its ground

state in case i of the previous problem, but is transferred to its excited state in case

ii of the previous problem.

10. Prove that, in the sudden approximation limit [that is, if the Rabi frequency is

changed “instantaneously” from 0 to �0 at t D 0], for t > 0,

jQc2.t/j2 �
j�0j2

�2
sin2

�
�t

2

�
;

where

� D
q
ı2 C j�0j2

is the generalized Rabi frequency.

11. Numerically calculate the transition probability P2.t/ as a function of time for

j�0.t/j D j�0j
�
1 � expŒ�.t=T/2�

�

and �.t/ D 0. Use dimensionless variables with � D t=T and take (i) ıT D 0 and

j�0jT D 0:1, (ii) ıT D 0 and j�0jT D 3, and (iii) ıT D 3 and j�0jT D 0:1:
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Numerically calculate and plot P2.�/ D jQc2.�/j2 as a function of � for these cases.

Compare your numerical solutions with the predictions of the sudden approximation

solution obtained in the previous problem. Under what conditions do you expect the

sudden approximation to give results that are in good agreement with the exact

solutions?

12–13. Consider a one-dimensional harmonic oscillator (modeled as a mass on a

spring having mass m and charge q) driven by an external electric field E.t/. The

Hamiltonian is

OH.t/ D Op
2

2m
C 1

2
m!20 Ox2 � qOxE.t/:

Assume that the oscillator is in its ground state at t D 0. Treating the last term in

the Hamiltonian as a perturbation, find the state vector as a function of time. Using

this state vector, calculate hx.t/i. Now calculate hx.t/i exactly, using d hx.t/i =dt D
.i„/�1

Dh
Ox; OH.t/

iE
and show that it agrees with the result of first order perturbation

theory. How can this be?

14. Consider a one-dimensional harmonic oscillator that is in its ground state at

t D 0. Suppose that the natural frequency ! of the oscillator is changed as a function

of time, that is ! ! !.t/ for t > 0. If the frequency is changed adiabatically, find

the wave function and average energy as a function of time. What is the condition

that must be satisfied for the adiabatic approximation to hold?

15. Repeat the calculation of the previous problem assume the frequency is changed

suddenly from ! to 2! at t D 0. Your answer will involve a sum of terms involving

integrals that are tabulated. The sum converges very rapidly (why?) so that only a

few terms are needed. What is the condition that must be satisfied for the sudden

approximation to hold?



Chapter 24

Decay of a Discrete State into a Continuum
of States: Fermi’s Golden Rule

The last topics I will cover are Fermi’s Golden Rule and irreversible decay. These are

pretty interesting topics that involve situations in which a discrete state of a quantum

system is coupled to an infinite continuum of quantum states. Although one starts

with a Hermitian Hamiltonian, there is irreversible behavior in the system. This

is approximately true in many cases of practical interest. For example, an atom that

is prepared in an excited state decays as a result of its interaction with the continuum

of vacuum field modes. A hydrogen atom placed in a high frequency optical field

is photo-ionized into a continuum of (Coulomb modified) free-particle states. The

reason we can get irreversible behavior in these cases is connected with the fact

that the quantization volume goes to infinity. This feature in already seen in the

quantum revivals of a wave packet in the infinite square square well discussed in

Chap. 6. There are always quantum revivals, but the revival time goes to infinity as

the well size approaches infinity. In other words, an outgoing wave packet can never

be reflected back by the boundary of the quantization volume. In problems of this

nature, I start by writing equations in which all states are discrete and then take the

limit in which some of the states form a continuum.

24.1 Discrete State Coupled to a Continuum

The generic problem that I am interested in is illustrated in Fig. 24.1. A discrete

state, labeled by 0 and having energy E0, is coupled to a large number of states

labeled by n: Eventually, I take the limit of the number of states going to infinity

and the energy spacing � between the states going to zero. In doing so I will replace

any sums over n by an integral over energy using the prescription

X

n

!
Z
�.E/dE; (24.1)
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Fig. 24.1 Discrete state 0 coupled to a discrete continuum of states labeled by n. The energy

difference between successive levels is �

where �.E/ is referred to as the (energy) density of states. I have already calculated

the density of states for the radiation field in Chap. 1 and for matter waves in Chap. 5.

There are two general classes of problems in which levels schemes such as those

shown in Fig. 24.1 are encountered. In processes such as spontaneous emission, the

Hamiltonian is of the form

OH D OHatom C OHfield C OVAF; (24.2)

where OHatom is the atomic Hamiltonian, OHfield is the (quantized) Hamiltonian for

the vacuum radiation field, and OVAF is the atom–field interaction potential. The

eigenstates of OHfield constitute the continuum levels of the problem. The atom is

prepared initially in some excited state and decays to a lower energy state as a result

of the interaction with the vacuum field. In this problem, all operators are bona-fide,

time-independent Schrödinger operators.

In the second class of problems such as photoionization, a time-dependent

classical field drives an electron in an atom from some initial bound state to a

continuum of unbound energy states. Although the ionized electron still sees a

residual field from the ion that is left behind, it is sometimes a good approximation

to consider the final states of the electron as free-particle states. The external field is

assumed to have a constant amplitude and to oscillate at frequency !.

In addressing both types of problems, I assume that at t D 0 the atom is prepared

in eigenket j0i and begins to make transitions to states jni : In the interaction

representation, the state amplitudes evolve according to

Pc0.t/ D �
i

„
X

n

V0n.t/e
�i!n0tcn.t/ (24.3)

Pcn.t/ D �
i

„Vn0.t/e
i!n0tc0.t/; (24.4)

where

!n0 D .En � E0/ =„: (24.5)



24.1 Discrete State Coupled to a Continuum 609

and Vn0.t/ are matrix elements of the interaction that couple the initial state to the

continuum states. For the problems I consider, either Vn0.t/ is constant or it oscillates

at frequency !L. In the latter case, I will make the RWA and replace Vn0.t/ by

Vn0e
�i!Lt=2; the net effect is that of a constant perturbation with

!0 ! !0
0 D !0 C !L: (24.6)

Thus without loss of generality, I can take the equations for the state amplitudes

to be

Pc0.t/ D �
i

„
X

n

V0ne�i!n0tcn.t/ (24.7a)

Pcn.t/ D �
i

„Vn0e
i!n0tc0.t/; (24.7b)

where the coupling matrix elements are constants and any time dependence of an

applied oscillatory field is incorporated by a redefinition of the initial state energy

E0 ! E0
0 D „!0

0 D „ .!0 C !L/ : (24.8)

I integrate Eq. (24.7b) and substitute the result into Eq. (24.7a) to obtain

Pc0.t/ D �
1

„2
X

n

jVn0j2
Z t

0

dt0e�i!n0.t�t0/c0.t
0/: (24.9)

The prescription (24.1) is used to convert the sum to an integral,

Pc0.t/ D �
1

„2
Z

dE�.E/ jV.E/j2
Z t

0

dt0e�i.E�E0/.t�t0/=„c0.t
0/; (24.10)

where I have set Vn0 � V.E/ to allow for the possibility that the matrix elements

depend on energy. To proceed further I need to know something about the nature of

�.E/ and V.E/. For the moment I assume that these quantities are slowly varying

functions of energy compared with the exponential factor in the integrand. Since the

exponential factor makes it maximum contribution at E D E0, I evaluate both �.E/

and V.E/ at E D E0 and remove them from the integral. Moreover I assume that the

range of allowed energies in the integration extends from �1 to 1. If this is the

case, then

Pc0.t/ D �
jV.E0/j2

„2 �.E0/

Z t

0

dt0
Z 1

�1
dEe�i.E�E0/.t�t0/=„c0.t

0/

D �2� jV.E0/j
2

„ �.E0/

Z t

0

dt0ı
�
t � t0

�
c0.t

0/ D ��
2

c0.t/; (24.11)
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where

� D 2�

„ jV.E0/j
2 �.E0/ (24.12)

is the decay rate of the initial state population. (In deriving this result, I used the

relationship
R t

0
dt0ı .t � t0/ D 1=2, based on the fact that ı .t � t0/ is a symmetric

function about t0 D t.) Equation (24.12) is known as Fermi’s Golden Rule, although

it is usually derived using a somewhat different approach.

From Eq. (24.11), we see that

c0.t/ D e��t=2; jc0.t/j2 D e��t: (24.13)

Both the initial state amplitude and initial state probability undergo exponential

decay. The irreversible behavior occurs because I have taken an infinite quantization

volume—the emitted ionized electron or emitted photon cannot return to re-excite

the quantum system undergoing decay.

Although the behavior is irreversible, the fact that the decay is exponential

depends on the assumptions that were made concerning the density of states and

V.E/. If both �.E/ and V.E/ are constant for �1 < E < 1, then Eq. (24.11)

is exact. This results in what is known is a Markov process since the effective

correlation time of the continuum of states giving rise to the decay is equal to

zero. The delta function appearing in the integrand of Eq. (24.11) is a signature

of the fact that the process is Markovian—it has no temporal memory. At any

instant of time, the decay is independent of past events—it is always exponential.

Of course, both �.E/ and V.E/ usually depend on energy. Moreover the energy

spectrum is usually bounded from below since negative kinetic energies of particles

and negative energies of photons are not allowed. As a consequence, the decay of

a discrete state into the continuum can never be exactly exponential. However, to a

very good approximation, processes such as spontaneous decay and particle decay

can be represented as Markovian in nature. I will return to this point in discussing the

Zeno effect later in this chapter. I will also discuss how the decay process is modified

if the continuum is bounded from above and below. For the present, however, I

consider two examples, photoionization and spontaneous decay.

24.1.1 Photoionization

As a first example of Fermi’s Golden Rule, I consider the photoionization of

hydrogen from its ground state produced by a high frequency (X-ray) radiation

field. It is assumed that the frequency of the field is much greater than the ionization

energy of hydrogen divided by h. In this limit, the electron that emerges can be

treated in first approximation as a free particle. Moreover, since the matrix element

involves a coupling from the ground state, the integral that determines the value
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of the matrix element is restricted to radii on the order of the Bohr radius. As a

consequence, I use the dipole approximation and assume an interaction potential of

the form

OV .t/ D �Ope � E0 cos .!Lt/ D eE0 � Or cos .!Lt/ ; (24.14)

where E0 is the field amplitude, Ope is the dipole moment operator of the atom,

and Or is the position operator of the atom. In the rotating wave approximation, the

equations of motion for the state amplitudes are

Pc0.t/ D �
i

„
X

n

V0ne�i.En�E0�„!L/t=„cn.t/ (24.15a)

Pcn.t/ D �
i

„Vn0e
i.En�E0�„!L/t=„c0.t/; (24.15b)

where

V0n D �hnj Ope � E0j0i=2 (24.16)

is one-half the matrix element of the interaction operator between the ground state

j0i D jn D 1; ` D 0;m D 0i of the electron in hydrogen and the final state jni of the

electron, which is approximated as a free-particle state. For the ionization problem,

I have to evaluate matrix elements of eE0 � Or between the final free particle states

(quantized using periodic boundary conditions having period L in all directions),

�
 f

�
n
D eikn�r
p

L3
! eik�r
p

L3
; (24.17)

and the initial state

 0 D
e�r=a0

q
�a30

; (24.18)

where a0 is the Bohr radius. In the final state wave function

knx D
2�ny

L
I kny D

2�ny

L
; knz D

2�nz

L
; (24.19)

and the nx, ny, nz are integers (positive, negative, or zero), as discussed in the

Appendix of Chap. 5. To go over to continuum states I use the prescription given

by Eq. (5.161), namely

X

nx;ny;nz

!
�

L

2�

�3 Z
dk D

�
L

2�

�3 Z
k2dkd�k: (24.20)
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I can then talk about a density of states per unit solid angle �.E; �k/ by setting

�
L

2�

�3 Z
k2dk D

Z
�.E; �k/dE: (24.21)

With kE D
p
2mE=„2 and m the electron mass, I find that �.E; �k/ is then given by

�.E; �k/ D
mL3

8�3„2 kE: (24.22)

According to Eq. (24.6), I must evaluate kE at

kE D kf D
r
2m

„ .!L � !0/ (24.23)

where

„!0 D 13:6 eV D �E0 (24.24)

is the ionization energy of hydrogen. It is assumed that !L � !0; but that

.!L � !0/ = .!L C !0/� 1 to insure the validity of the RWA.

If I take the field along the z axis, then

OV .t/ D eE0Oz cos .!Lt/ D eE0 1r cos � cos .!Lt/ ; (24.25)

where E0 is the magnitude of the field amplitude. From Eq. (24.12), I can calculate

the photoionization rate per unit solid angle as

� .�k/ D
d�

d�k

D 2�

„
ˇ̌
V.Ef ; �k/

ˇ̌2
�.Ef D „2k2f =2m; �k/ (24.26)

where

V.Ef ; �k/ D
1

2

Z
dr

eik�r
p

L3
r cos �

e�r=a

p
�a3

ˇ̌
ˇ̌
kDkf

: (24.27)

As you can see, the matrix element V.Ef / depends on the direction of emission k of

the electron.

To evaluate the matrix element, I use the spherical wave expansion

eik�r D 4�
1X

`D0

X̀

mD�`
i`j`.kr/

�
Ym
` .�; �/

��
Ym
` .� k; �k/ ; (24.28)
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where .�; �/ are the spherical angles of r and .� k; �k/ are the spherical angles of

k. Since cos � D
q

4�
3

Y01 .�; �/, the integral over angles .�; �/ in Eq. (24.27) is

nonvanishing only if ` D 1 and m D 0, yielding

Z
dreik�rr cos �e�r=a D 4� i

r
3

4�
Y01 .� k; �k/

Z 1

0

drj1.kr/r3e�r=a

D 4� i
8a5k cos � k

.1C k2a2/
3
: (24.29)

By combining Eqs. (24.26), (24.22), (24.27), and (24.29) I arrive at

� .�k/ D
64mk3f a70e

2E20 cos2 � k

�„3
�
1C k2f a20

�6 : (24.30)

The total ionization rate is

� D
Z

d�k� .�k/ D
4�

3

64mk3f a70e
2E20

�„3
�
1C k2f a20

�6 : (24.31)

Note that

kf a0 D

s
2mca20

„
.!L � !0/

c
�
r
2mca0

„
!La0

c

D
r
2mca0

„ kLa0 � 17
p

kLa0: (24.32)

For the dipole approximation to be valid, it is necessary that kLa0 � 1. On the

other hand, the theory is probably valid only in the limit that kf a0 � 1. Thus the

result should not be viewed as an accurate description, except for a limited range of

parameter space.

24.1.2 Spontaneous Decay

As a second example, I calculate the spontaneous emission rate at which an atom

decays from an excited state to its ground state. To solve this problem it is necessary

to quantize the radiation field since the continuum states that lead to decay are those

of the vacuum field. You can find discussions of field quantization in most any book

on quantum optics. I will not present any formal derivation of field quantization.

A standard treatment involves the use of periodic boundary conditions for the field.
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Once the normal modes of the field are found (in this case, plane waves subject to

periodic boundary conditions), creation and annihilation operators are assigned to

each field mode. The net effect is that the Hamiltonian for the quantized field can be

written as

OHfield D
X

kn

„!kn
a
�

kn
akn

(24.33)

where akn
(a
�
kn

) is a destruction (creation) operator for mode n having frequency

!kn
D ckn. The summation index kn is meant to imply a summation over

˚
nx; ny; nz



with

kn D
2�nx

L
ux C

2�ny

L
uy C

2�nz

L
uz: (24.34)

The corresponding electric field is

E.R/ D i
X

kn

� „!kn

2�0V

�1=2
�kn

�
akn

eikn�R � a
�

kn
e�ikn�R

�
; (24.35)

where V D L3 is the quantization volume and �kn
is the field polarization unit vector.

There are two, independent polarizations for each k. The creation and destruction

operators for the field are similar to those for the harmonic oscillator, having the

same commutation relations. Instead of creating and destroying number states of

the oscillator, they create and destroy photon states of the field. That is,

a
�

kn
j0i D j1kn

i ; (24.36)

where j0i is the vacuum state and j1kn
i is a state with one photon in mode kn of the

field. These are the only states I need to discuss spontaneous decay.

Rather than use Fermi’s Golden Rule to derive an expression for the transition

rate, I will calculate the state vector of the system as a function of time directly. The

total Hamiltonian is given by

OH D OHatom C OHfield C OVAF;

where OHatom is the atomic Hamiltonian, OHfield is the free-field Hamiltonian given by

Eq. (24.33), and OVAF is the atom–field interaction potential given by

OVAF D �Ope � E.R D 0/; (24.37)

where Ope is the dipole moment operator of the atom. The nucleus of the atom is

assumed to be fixed at the origin.
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Fig. 24.2 Spontaneous emission between an excited and ground state manifold of levels

The eigenkets of OHatom are written as jn; Jn;mni; where Jn is the total angular

momentum of a manifold of levels in electronic state n and mn a magnetic quantum

number associated with Jn. In practice I consider emission from a state j2; J2;m2i
which has been excited at time t D 0 to the manifold of ground states denoted

by j1; J1;m1i (see Fig. 24.2). The transition is driven by the atom-vacuum field

interaction. Of course, it is impossible to instantaneously excite the atom at a given

time, so what I really mean is that the atom is excited in a time � that is much less

than the decay rate of the system, but much longer than the inverse of the transition

frequency. It is important not to forget that it is simply a vacuum field induced decay

process with which we are dealing, since the algebra can get a little messy.

Initially, the system is in the state j2; J2;m2I 0i where the 0 labels the vacuum

state of the field. In the interaction representation, it follows from Eq. (24.7a) that

the excited state amplitude evolves as

Pc2;J2;m2I0.t/ D
1

i„
X

k;�k

X

m1

e�i.!k�!0/t

�h2; J2;m2I 0j OVAFj1; J1;m1Ik; �kic1;J1;m1Ik;�k
.t/ : (24.38)

where !0 D !21 D .E2 � E1/ =„ is the transition frequency, fk; �kg labels a one-

photon state of the field having propagation vector k and polarization �k. The sum

over �k refers to a sum over the two independent field polarizations for each k and

the sum over k is a shorthand notation for summing over all kn. A formal solution

for the ground state amplitude, obtained using Eq. (24.7b), is

c1;J1;m1Ik;�k
.t/ D 1

i„

Z t

0

ei.!k�!0/t0
X

J0
2;m

0
2

�h1; J1;m1Ik; �kj OVAFj2; J0
2;m

0
2I 0ic2;J0

2;m
0
2I0.t

0/ ; (24.39)

which, when substituted back into Eq. (24.38), yields
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Pc2;J2;m2I0.t/ D �
1

„2
X

k;�k

X

J0
2;m

0
2

Z t

0

e�i.!k�!0/.t�t0/c2;J0
2;m

0
2I0.t

0/

�h2; J2;m2I 0j OVAFj1; J1;m1Ik; �ki
h1; J1;m1Ik; �kj OVAFj2; J0

2;m
0
2I 0i ; (24.40)

where I have allowed for transitions back to another level J0
2 in the same state 2

electronic state manifold.

The sum over k is converted to an integral using

X

kn

! V

.2�/3

Z
d3k D V

.2�/3

Z 1

0

k2dk

Z
d�k

D V

.2�/3

Z 1

0

!2k
c3

d!k

Z
d�k: (24.41)

In this continuum limit, Eq. (24.35) is replaced by

E.R D 0/ D i
1

.2�/3

Z 1

0

!2k
c3

d!k

Z
d�k

�„!kV

2�0

�1=2
�k

�
ak � a

�

k

�
; (24.42)

By combining Eq. (24.37) with Eqs. (24.40)–(24.42), I find that the quantization

volume cancels (as it must, if the results are to make any sense) and that I am faced

with an integral of the form

Z t

0

dt0
Z 1

0

!3kd!ke�i.!k�!0/.t�t0/c2;J0
2;m

0
2I0.t

0/: (24.43)

Although the integral over !k diverges, it is not unreasonable to cut off the

integral at some value of .!k � !0/ of order !0.
1 With such a cutoff, the major

contribution to the !k integral comes from a region j!k � !0j �  � !0. This

allows me to replace !3k by !30; remove it from the integral and extend the lower

integration limit of the !k integral to �1. These two approximations constitute

the so-called Weisskopf-Wigner approximation,2 and are equivalent to the Markov

1Based on theoretical considerations, the cutoff frequency could be determined by the range of

validity of the dipole approximation, ka0 D !ka0=c � 1, which gives an !k.cutoff) of order 1018

s�1. Based on experimental considerations, the cutoff can be taken at !k.cutoff) D !0 C .1=T/,

where  � .1=T/ � !0 and T is the time it takes to excite the atom to its ground to excited

state [see P. R. Berman, Wigner-Weisskopf approximation under typical experimental conditions,

Physical Review A 72, 025804 (2005)].
2V. Weisskopf and E. Wigner, Berechnung der natürlichen Linienbreite auf Grund der Diracschen

Lichttheorie, Zeitschrift für Physik 63, pp. 54–73 (1930); a translation is available, Calculation

of the Natural Line Width on the Basis of Dirac’s Theory of Light, in W. R. Hindmarsh, Atomic
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approximation used in arriving at Fermi’s Golden Rule. In the Weisskopf–Wigner

approximation,

Z t

0

dt0
Z 1

0

!3kd!ke�i.!k�!0/.t�t0/c2;J0
2;m

0
2I0.t

0/

� !30
Z t

0

dt0
Z 1

�1
d!ke�i.!k�!0/.t�t0/c2;J0

2;m
0
2I0.t

0/

D 2�!30
Z t

0

ı
�
t � t0

�
c2;J0

2;m
0
2I0.t

0/dt0 D �!30c2;J0
2;m

0
2I0.t/: (24.44)

Combining this result with Eq. (24.37) with Eqs. (24.40)–(24.42), I find

Pc2;J2;m2I0.t/ D �
1

„
�!30

2�0.2�/3c3

X

J0
2;m

0
2

Z
d�k

�
X

�k

h2; J2;m2j Ope � �kj1; J1;m1i

�h1; J1m1j Ope � �kj2; J0
2;m

0
2ic2;J0

2;m
0
2I0.t/ : (24.45)

I now need to carry out the angular integration. To do so I must write explicit

expressions for the unit polarization vectors. The unit vectors �
.1/

k , �
.2/

k , and Ok make

up a right-handed system with

Ok D sin � k cos�kux C sin � k sin�kuy C cos � kuz I (24.46a)

�
.1/

k D O�k D cos � k cos�kux C cos � k sin�kuy � sin � kuz I (24.46b)

�
.2/

k D O�k D � sin�kux C cos�kuy : (24.46c)

It is then straightforward to carry out the summations and integrations in Eq. (24.45)

to obtain

2X

�D1

3X

i;jD1
di
Ndj

Z
d�k

�
�
.�/

k

�
i

�
�
.�/

k

�
j
D 8�

3

X

i;j

ıijdi
Ndj

D 8�

3
d � Nd; (24.47)

Spectra (Pergamon Press, London, 1967), pp. 304–327. For an extensive discussion of the validity

of the Weisskofp-Wigner approximation, see the article by Paul R. Berman and George W. Ford,

Spontaneous Decay, Unitarity, and the Weisskopf-Wigner Approximation, in Advances in Atomic,

Molecular, and Optical Physics, edited by E. Arimondo, P. R. Berman, and C. C. Lin (Elsevier-

Academic Press, New York, 2010), volume 59, pp. 175–221.
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where

d D h2; J2;m2j Opej1; J1;m1iI (24.48a)

Nd D h1; J1m1j Opej2; J0
2;m

0
2i: (24.48b)

I have denoted the first and second matrix elements in Eq. (24.45) by d and Nd;
respectively.

To proceed further, I write the components of the matrix elements d and Nd, as

well as those of the dipole moment operator, in spherical form as

Ope1 D �
Opex C iOpeyp

2
; Ope;�1 D

Opex � iOpeyp
2

; Ope0 D Opez ; (24.49a)

d1 D �
dx C idyp

2
; d�1 D

dx � idyp
2

; d0 D dz; (24.49b)

such that

d � Nd D
X

q

.�1/qdq
Nd�q : (24.50)

I can now use the Wigner-Eckart theorem and the relationship

�
Ope;q

�� D .�1/q Ope;�q (24.51)

to evaluate

dq D h2; J2;m2jOpe;qj1; J1;m1i

D 1p
2J2 C 1

�
J1 1 J2

m1 q m2

�
h2; J2kp.1/k1; J1i ; (24.52)

and

Nd�q D h1; J1m1jOpe;�qj2; J0
2;m

0
2i

D
�
h2; J0

2;m
0
2j
�
Ope;�q

�� j1; J1;m1i
��

D .�1/q
�
h2; J0

2m
0
2jOpe;qj1; J1;m1i

��

D 1p
2J2 C 1

.�1/q
�

J1 1 J2

m1 q m0
2

� �
h2; J2kp.1/e k1; J1i

��
: (24.53)
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It then follows that

X

q;m1

.�1/qdq
Nd�q D

1

2J2 C 1
jh2; J2kp.1/e k1; J1ij2

�
X

q;m1

�
J1 1 J2

m1 q m2

� �
J1 1 J0

2

m1 q m0
2

�

D 1

2J2 C 1
jh2; J2kp.1/e k1; J1ij2ıJ2 ;J

0
2
ım2 ;m

0
2
; (24.54)

where the orthogonality property of the Clebsch-Gordan coefficients has been used.

The sum is proportional to ıJ2 ;J
0
2
ım2 ;m

0
2
. Incorporating Eqs. (24.47) and (24.54) into

Eq. (24.45), I find the upper state amplitude decays as

Pc2;J2;m2I0.t/ D �c2;J2;m2I0.t/; (24.55)

which has as solution [given c2;J2;m2I0.0/ D 1],

c2;J2;m2I0.t/ D e� t; (24.56)

where

 D 2;J2I1;J1=2 D
2

3

˛FS

2J2 C 1
jh2; J2kr.1/k1; J1ij2

!321
c2

; (24.57)

˛FS is the fine structure constant, h2; J2kr.1/k1; J1i is the reduced matrix element for

the position operator, and 2;J2I1;J1 is the decay rate from state j2; J2i to j1; J1i.
For dipole allowed optical transitions from an excited state to the ground state,

2;J2I1;J1=!21 is of order 10�7; that is, decay rates from the first excited states

of atoms back to the ground state are typically in the nanosecond to tens of

nanoseconds range.

Using the quantized vacuum field, I have derived a fundamental and important

equation for the spontaneous emission rate. The fact that Pc2;J2;m2I0 is not coupled

to c2;J0
2;m

0
2I0 for J0

2 ¤ J2 or m0
2 ¤ m2 can be understood simply in terms of

conservation of angular momentum. States in the excited state manifold differing

in total angular momentum or the z-component of angular momentum cannot be

coupled by “emitting” and “absorbing” the same photon. Equation (24.57) also

contains the important result that the decay rate is proportional to the cube of the

transition frequency.3 I had to invoke the Weisskopf-Wigner approximation to carry

out the calculation. When used consistently, the Weisskopf-Wigner approximation

3This assumes that the reduced matrix element is independent of frequency as it is for atoms. For

an oscillator, however, the square of the reduced matrix element varies inversely with the transition

frequency such that the decay rate depends on the square of the transition frequency.
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results in overall conservation of probability for the atom-field system. You can

use Eqs. (24.39) and (24.56) to evaluate
P

m1

ˇ̌
c1;J1;m1Ik;�k

.1/
ˇ̌2

, which provides

a measure of the spectral and directional properties of the emitted radiation (see

problems).

24.2 Bounded Continuum

In many situations, the continuum is bounded. For example, in spontaneous decay,

you cannot have emission at negative frequencies—the continuum is bounded from

below at E D 0. When the continuum is bounded, there can never be purely

exponential decay and the exact solutions are very complicated. However, there are

two limiting cases that can be solved approximately. If the energy of the continuum

encompasses the discrete state (as it does in spontaneous emission since the discrete

state has energy „!0), and the width of the continuum is much larger than the

decay rate (as in spontaneous emission), then the decay is exponential to a very

good approximation. In this limit, the infinite continuum model provides a good

approximation to the exact result.

The second case is very different. Imagine in the photoelectric effect that you

send in a field having frequency !L for which „!L is less than the work function

Ea D „!a. In that case, you might think that the initial state amplitude remains equal

to unity and this is approximately true. But some of the initial state amplitude is lost.

The situation is similar to that in off-resonant Rayleigh scattering, where there is a

small, but non-vanishing, excited state probability amplitude. To model this effect,

I take the zero of energy such that E0 D 0 and assume that the continuum extends

from energy Ea D „!a to Eb D „!b, with Eb > Ea > „!L. In other words, the

field frequency is not sufficiently high to effectively drive transitions from the initial

state into the continuum.

The coupling matrix elements are taken as VE0.t/ D VE0 cos .!Lt/ : I assume

the effect of the field is sufficiently weak to allow me to solve Eq. (24.7b) with

c0.t/ � 1. In that case, I find

cE.t/ � �
i

„VE0

Z t

0

dt0ei!E t0 cos
�
!Lt0

�
� VE0

2„

�
1 � ei.!E�!L/t

�

!E � !L

; (24.58)

where !E D E=„ and I have assumed that !E � !L � !E C !L. The initial state

probability is then given by

jc0.t/j2 � 1 �
Z 1

�1
dE

ˇ̌
ˇ̌VE0

„

ˇ̌
ˇ̌
2

�.E/
sin2

�
.!E�!L/t

2

�

.!E � !L/
2
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D 1 �
ˇ̌
ˇ̌V
„

ˇ̌
ˇ̌
2

�

Z Eb

Ea

dE
sin2

�
.!E�!L/t

2

�

.!E � !L/
2
; (24.59)

where, for simplicity, I assumed that both the matrix elements and density of states

are constant over the energy range of the continuum. This can be rewritten as

jc0.t/j2 � 1 �
jVj2 �
„

Z !bL

!aL

d!
sin2

�
!t
2

�

!2

D 1 � jVj
2 �

„!aL

Z !bL=!aL

1

dx
sin2

�
!aLt

2
x
�

x2
; (24.60)

where

!aL D !a � !L; !bL D !b � !L: (24.61)

This whole treatment is valid only if jc0.t/j2 � 1, so the correction term must be

small. It is small, provided

ˇ D jVj
2 �

2„!aL

� 1; (24.62)

a condition that is obtained by replacing sin2 .!t=2/ by 1=2 in the integrand, but ˇ

is not equal to zero. Let me take !b D 1. The integral is a tabulated function, but

not particularly simple. The behavior of jc0.t/j2 is simple, however. It starts from a

value of unity, oscillates and decays to a final value equal to

P0.1/ D jc0.1/j2 � 1 �
1

2„!aL

jVj2 �
Z 1

1

dx
1

x2
D 1 � ˇ: (24.63)

A graph of P0.t/ D jc0.t/j2, with jc0.t/j2 given by Eq. (24.60), is shown in Fig. 24.3

for ˇ D 0:1 as a function of !aLt. The oscillations appear because the field is

turned on suddenly at t D 0. If, instead, the matrix coupling element is of the form

VE0.t/ D V.t/ cos .!Lt/, where V.t/ increases from an initial value of zero to a final

value of V in a time that is long compared with !�1
aL , P0.t/ would not be oscillatory;

it would decay smoothly as 1�jV.t/j2 �= .4„!aL/, assuming a final value of 1�ˇ=2,

instead of 1 � ˇ (see problems).

If we apply this idea to photoionization with a field frequency below the

ionization frequency, it looks like we violate energy conservation if an electron is

ionized. Actually, the “free” electron amplitude oscillates rapidly between zero and

a small value for each possible final energy state of the ionized electron. Thus the

“free” electron cannot get very far away from the atom since each excited state

returns to the initial state periodically. To measure the free electron you would

have to make a measurement on a time scale less than the inverse of the oscillation



622 24 Decay of a Discrete State into a Continuum of States: Fermi’s Golden Rule

Fig. 24.3 Initial state probability P0 as a function of !aLt for ˇ D 0:1. The asymptotic value

P0 � 0:9 is indicated by the dashed line

frequency which would introduce Fourier components to compensate for the energy

mismatch. The situation is the same for the anti-resonant component of the vacuum

field interacting with a ground state atom. The “emitted” field never gets very far

from the atom. On the other hand, such fields, which are of quantum origin, can

be viewed as being responsible for the van der Waals interaction. Two ground state

atoms separated by a distance less than the wavelength associated with a ground to

excited state transition in the atoms “emit” fields that lead to an interaction energy

between the atoms.

24.3 Zeno Paradox and Zeno Effect

It has become fashionable for introductory and graduate quantum mechanics texts

to mention the quantum Zeno paradox.4 The original Zeno paradoxes consist of a

number of scenarios in which it appears that motion is impossible. For example, in

the stadium paradox, the question is raised as to how long it will take to cross a

stadium. To cross the stadium, you must first reach the midway point. But to reach

the midway point, you must first reach the quarter way point, and so on. Since you

have to reach an infinite number of points to cross the stadium, it will take you an

infinite time to cross the stadium. The “paradox” is that you know it takes a finite

time to cross the stadium. Although it is obvious to us that we can traverse an infinite

number of points in a finite time, Zeno’s paradoxes were troubling to the ancients—

Aristotle spent considerable time trying to refute them.

4See, for example, David Griffiths, Introduction to Quantum Mechanics, Second Edition (Pearson

Prentiss Hall, Upper Saddle River, N.J., 2005) (Sect. 12.5) and Eugen Merzbacher, Quantum

Mechanics, Third Edition (John Wiley and Sons, New York, 1998), Sect. 19.8.
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Just like the ancients were confused by Zeno’s paradoxes, it appears that

the quantum Zeno paradox is confusing to contemporary scientists. Part of the

reason for this is related to semantics. The quantum Zeno paradox was originally

formulated by Misra and Sudarshan in terms of a bubble chamber experiment.5

Imagine that an unstable particle enters a bubble chamber and leaves a track of

bubbles. Each bubble is an indication that the particle has not yet decayed. In

some sense, therefore, the bubbles constitute measurements in which the particle

is projected into its original state. By increasing the bubble density, it would seem

that the particle is continuously projected into its initial state—it does not decay at

all! The paradox is that, in the experiment, the particle decays with its normal decay

rate, independent of any bubbles. What is going on?

I have shown that a Markovian decay process has no memory—decay is always

exponential. For a Markovian process, you cannot change the decay rate, period.

There is no Zeno paradox in this limit. The reason is simple. To modify the decay

rate, you must act on the quantum system many times within the correlation time

of the bath. For a Markovian process the correlation time of the bath giving rise

to the relaxation is zero, so it is impossible to inhibit decay. Of course, no decay

process is strictly Markovian. However, processes such as spontaneous emission and

particle decay are close enough to Markovian to render any attempts to inhibit decay

useless.

Why, then, is there all this interest in the Zeno effect. I like to distinguish the

Zeno effect from the Zeno paradox. I have just resolved the Zeno paradox—there

can be no change in spontaneous decay rates produced by measurements on the

system owing to the Markovian nature of the decay. On the other hand, there can be

a Zeno effect for coherently driven transitions. I like to illustrate this by asking

someone to explain something to me. As soon as she starts talking, I begin to

yell gibberish so she must stop and begin the explanation anew. While not really

an example of the quantum Zeno effect, it provides the central idea behind the

effect. To cause a transition from one state to another, an interaction must build

up a phase. We have already seen this in the optical Bloch equations where the

application of a pulse having area equal to � leads to an inversion of a two level

quantum system. If, during the pulse, you apply some other pulses, it is possible

to inhibit the coherent build-up of the phase responsible for level inversion.6 There

is nothing magical about this—in fact you often try to avoid processes that lead to

phase decoherence. In certain quantum information protocols, you can reverse the

effects of phase decoherence using the quantum Zeno effect, but this is not phase

5B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quantum theory, Journal of Mathematical

Physics 18, 756–763 (1977).
6In fact, a revival of interest in the Zeno effect was generated by an article by W. M. Itano, D. J.

Heinzen, J. J. Bollinger, and D. J. Wineland, Quantum Zeno effect, Physical Review 41, 2295–2300

(1990). In that article, they showed that excitation of a long-lived state from the ground state using

by a � pulse could be totally inhibited if an auxiliary field is used to drive a coupled ground to

dipole-allowed optical transition. The observation of the spontaneously emitted radiation (or lack

therof) on the dipole-allowed transition constituted the “measurements” on the atom.
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decoherence caused by Markovian processes. Rather it is phase decoherence caused

by effects such as fluctuating magnetic or electric fields whose coherence time is

finite.

Misra and Sudarshan proved that, under certain conditions, any quantum system

can have its decay inhibited by continuously measuring the system. To understand

their argument and to see why it fails for Markovian processes, imagine that there

is a Hamiltonian OH that characterizes a quantum system in which some initial

discrete state j 0i is coupled to a continuum. We can ask for the probability that

we measure the quantum system in the state j 0i at time t, predicated on the fact

that we measured in state j 0i at times t1; t2 : : : tn. This probability is given by

P.t/ D
ˇ̌
ˇh 0j e�i OHt1=„ j 0i

ˇ̌
ˇ
2 ˇ̌
ˇh 0j e�i OH.t2�t1/=„ j 0i

ˇ̌
ˇ
2

� � �

� � � �
ˇ̌
ˇh 0j e�i OH.t�tn/=„ j 0i

ˇ̌
ˇ
2

: (24.64)

Misra and Sudarshan showed rigorously that P � 1 as n � 1, provided OH
is a Hermitian and semi-bounded operator (e.g., OH is semi-bounded if all its

eigenenergies are greater than or equal to some energy E0). In other words, in the

limit of continuous measurement on the system, the initial state never decays! They

then went on to say that a bubble chamber does not really constitute continuous

measurement of the undecayed particle, which explains why the decay is not

inhibited.

For early times when !n0t� 1, it follows from Eqs. (24.7) that

cn.t/ � �
i

„Vn0tI (24.65a)

c0.t/ � 1 �
X

n

jV0nj2 t2

2„2 : (24.65b)

If the sum is replaced by an integral over continuum states, it follows that

jc0.t/j2 � 1 � t2=t2c ; (24.66)

where

tc D
p
2

�R1
�1 dE

ˇ̌
ˇV.E/

„

ˇ̌
ˇ
2

�.E/

�1=2 (24.67)

can be viewed as the correlation time of the bath. If tc is finite, Eq. (24.64) reduces to

P.t/ D
ˇ̌
1 � t21=t2c

ˇ̌ ˇ̌
ˇ1 � .t2 � t1/

2 =t2c

ˇ̌
ˇ � � �

ˇ̌
ˇ1 � .t � tn/

2 =t2c

ˇ̌
ˇ : (24.68)
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Taking equal time intervals
�
tjC1 � tj

�
D t=n and letting n � 1, I find

P.t/ D lim
n�1

ˇ̌
1 � t2=n2t2c

ˇ̌n D lim
n�1

e�t2=nt2c D 1: (24.69)

As long as tc is finite, continuous measurement produces a quantum Zeno effect.

For a Markovian process, however, �.E/ and V.E/ are constant for �1 < E <1,

implying that tc D 0. In that limit, I found that, for �t� 1

jc0.t/j2 � 1 � �t; (24.70)

which implies that, for a Markovian process,

P.t/ D lim
n�1
j1 � �t=njn D e��t: (24.71)

There is no quantum Zeno effect for a Markovian process. Spontaneous emission

is very close to a Markovian process, for which tc is of order of an inverse optical

frequency, making it all but impossible to make “continuous” measurements on such

a system.

24.4 Summary

The important problem of transitions from a discrete state to a continuum of

states has been studied. In such cases, irreversible behavior can occur, such as that

observed in photoemission and spontaneous decay. Fermi’s Golden Rule can be used

to evaluate the decay rate, although a better picture of the decay processes can be

obtained by solving the equations of motion for the state amplitudes and forming

the appropriate probability distributions for the final and initial states. Although it

might appear to be possible to inhibit such decay by constant measurements on a

quantum system, I have shown that this is not possible for Markovian processes.

24.5 Problems

1–2. Estimate the 2P�1S and the 2S�2P decay rates in hydrogen using Eq. (24.57).

You will need to use the Wigner-Eckart theorem and look up the wave functions and

frequency spacings of the levels.

3. For two fine structure levels within the same electronic state manifold, the ratio

of the decay rates to some lower level is approximately equal to the ratio of cube

of the transition frequencies of the two transitions. Estimate the ratio of the decay



626 24 Decay of a Discrete State into a Continuum of States: Fermi’s Golden Rule

rates for the D2 .� D 588:995 nm/ and D1 .� D 589:522 nm/ transitions in Na.

The experimental ratio is approximately equal to 1.0028.7

4. Prove that

2X

�D1

Z
d�k

X

i

�
�
.�/

k

�
i
di

X

j

�
�
.�/

k

�
j

Ndj D
8�

3

X

i

di
Ndi :

5–6. The frequency spectrum P .!k/ d!k of the radiation emitted in spontaneous

decay is given by the probability that a photon is emitted into a mode of the radiation

field having that frequency. In terms of continuous frequency variables,

P .!k/ d!k D
V

.2�/3
!2k
c3

J1X

m1D�J1

2X

�D1

Z
d�k

ˇ̌
ˇc
1;J1;m1Ik;�.�/k

.1/
ˇ̌
ˇ
2

d!k;

where V is the quantization volume. Show that P .!k/ is proportional to !3k times

a Lorentzian function of !k. In the Weisskopf-Wigner approximation prove that all

the initial energy in the atom is converted into the energy of the radiated field,

Z 1

0

„!kP .!k/ d!k D „!0n2.0/;

where n2.0/ is the initial excited state probability in the atom. Thus, when applied

in a consistent manner, the Weisskopf-Wigner approximation leads to conservation

of energy, although there was no guarantee that this would be the case.

7–8. Complementary to the frequency spectrum of spontaneous decay is the

radiation pattern I
k;�

.�/
k

d�k (direction and polarization of radiation emitted into an

element of solid angle) given by

I
k;�

.�/
k

d�k D
V

.2�/3
1

c3

J1X

m1D�J1

Z 1

0

!2kd!k

ˇ̌
ˇc
1;J1;m1Ik;�.�/k

.1/
ˇ̌
ˇ
2

d�k:

In the Weisskopf-Wigner approximation, show that if an atom is prepared in the

m D 0 sublevel of a J2 D 1 excited state and decays to a J1 D 0 ground state,

the radiation pattern is the same as that emitted by a classical dipole oscillator whose

dipole moment is in the z-direction.

7U. Volz, M. Majerus, H. Liebel, A. Schmitt, and H. Schmoranzer, Precision Lifetime Measure-

ments on NaI 3p2P1=2 and 3p2P3=2 by Beam-Gas-Laser Spectroscopy, Physical Review Letters 76,

2862 (1996)].
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9. An atom undergoes spontaneous decay with a central wavelength of 600 nm and

a lifetime of 100 ns. Estimate the Rabi frequency if the field from this atom interacts

with a similar atom one cm away. If, instead, the single photon pulse can be focused

to an area of �2 when it strikes the atom, show that the Rabi frequency is of the

order of the decay rate and the pulse area is of order unity; that is, a single photon

pulse focused to a wavelength can fully excite an atom.

10–11. A particle having mass m moves in a one-dimensional potential

V.x/ D
�
�V0 x � jaj =2
0 otherwise

;

where V0 is a positive constant.

Assume that the particle is in the ground state of the potential and, in addition,

there is a perturbative contribution to the Hamiltonian of the form

OV.x; t/ D ˛Ox cos .!t/ ;

where „! is much greater than the magnitude of the ground state energy and ˛ is

a constant. Calculate the rate at which the particle is “ionized” (escapes from the

potential into unbound states). You can leave your answer in terms of the ground

state energy E1 and an integral involving the ground state eigenfunction  E1
.x/.

You need not evaluate the integral. [Hint: To solve this problem, assume that the

final states can be approximated as free particle states. You need to calculate the

density of states for these free particle states in one-dimension.]

12–13. In the calculation of Sect. 24.3 for a bounded continuum, I assumed that the

field was turned on instantaneously at t D 0. Suppose, instead, that the coupling

matrix element is VE0.t/ D V.t/ cos .!Lt/, where V.t/ is a smooth function that

increases from an initial value of zero at t D 0 to a final value of V in some

characteristic time T . Repeat the calculation of Sect. 24.3 with !b D 1 and

show that

P0.t/ � 1 �
jV.t/j2 �
4„!aL

; (24.72)

provided !aLT � 1. In other words, the approach to the steady-state value

occurs without oscillations if V.t/ is turned on adiabatically with respect to the

frequency !aL.

Now derive an expression for P0.t/ by solving Eq. (24.7b) with c0.t/ � 1 and

V.t/ D
�
0 t < 0

V
�
1 � e�t=T

�
t � 0 :
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Fig. 24.4 Level scheme for Problem 24.14. Level 3 is the 22P3=2 that decays back to level 1. The

parameters shown refer to the article of Itano et al. In their experiment the uv pulse width was

2.4 ms and up to N D 64 pulses were used

Plot P0 as a function of !aLt for ˇ D jVj2 �= .2„!aL/ D 0:1 and 1=!aLT D 0:1

and compare the result with the prediction of Eq. (24.72). There are still some very

small oscillations owing to the fact that the derivative of V.t/ is not continuous at

t D 0. Also plot P0 as a function of !aLt for ˇ D 0:1 and 1=!aLT D 40 (sudden

turn-on of field) and compare the result with that shown in Fig. 24.3. Note that the

asymptotic value for P0.1/ is 1 � ˇ for a sudden turn-on of the field and 1 � ˇ=2
for an adiabatic turn on of the field. The parameter

14. In the experiment of Itano et al.,8 a transition between two, 22S1=2, ground state

hyperfine levels of a Be ion is driven by a radio-frequency (rf) field. Let the initial

state be denoted by 1 and the final state by 2. A � pulse having duration T D 256

ms transfers the population from state 1 to 2, assuming no other interactions played

a role. To demonstrate a Zeno effect, Itano et al. added a number of ultraviolet

pulses that could excite state 1 to a 22P3=2 level that undergoes rapid spontaneous

decay back to level 1 on a time scale of order 10 ns. (see Fig. 24.4). The optical

pulses are sufficiently long (but still have duration � T) and intense to insure

that several spontaneously emitted photons can be observed, provided the 22P3=2
level is excited during the pulse. The emission of the spontaneous radiation (or lack

thereof) is said to effect a “measurement” on the atom. The ion “collapses” into

state 1 if the emission occurs and into state 2 if no emission occurs (no emission

implies the ion must have been in state 2 when the uv pulse was applied). If N such

equally spaced pulses are applied, calculate the population of the initial 22S1=2 at

time t D T . Show that in the limit N !1, this population approaches zero—there

is a Zeno effect produced by the measurement pulses. To carry out this calculation,

you can assume that at t D 0 the Bloch vector is .u.0/; v.0/;w.0// D .0; 0;�1/.
Following the first measurement pulse at time t1, the Bloch vector “collapses” into

.u.t1/; v.t1/;w.t1// D .0; 0;w.t1//, since there is a probability �11.t1/ that the

8W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Quantum Zeno effect, Physical

Review 41, 2295–2300 (1990).
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ion is in state 1 and a probability �22.t1/ that the ion is in state 2 at the time of

the measurement. The ion then evolves freely under the influence of the rf pulse

until the second measurement pulse at time t2 “collapses” the Bloch vector into

.u.t2/; v.t2/;w.t2// D .0; 0;w.t2//; and so on.9

9As you know I am not a fan of the “collapse” picture. It is not necessary to invoke the collapse

picture to arrive at the final result, a simple density matrix calculation gives the same result. See

Ellen Block and P. R. Berman, Quantum Zeno effect and quantum Zeno paradox in atomic physics,

Physical Review A 44, 1466–1472 (1991).
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Symbols

3-J symbol, 493

properties, 494

A

action, classical, 318

adiabatic approximation, see time-dependent

problems

angular momentum

addition, 492

classical, 186

angular momentum operator, 187

commutation relations, 187

with other operators, 188

eigenfunctions, 192

in spherical coordinates, 190

matrix elements in Dirac notation, 263, 284

total, 300
OL2

eigenfunctions, 194

eigenvalues, 193

in spherical coordinates, 191

B

Baker-Campbell-Hausdorff theorem, 93

Bell state, 488

Bell’s theorem, 322

Bell inequality, 21, 324

CHSH inequality, 324

electron spin measurements, 324

hidden variables, 322

optical polarization measurements, 326

proof, 323

Bessel’s equation, 218

spherical Bessel functions, 218

spherical Hankel functions, 224

spherical Neumann functions, 218

blackbody spectrum, 7, 25

Bloch equations

magnetic, 579, 580

optical, 580, 581

Bloch sphere, 582

Bloch vector, 581

pseudofield vector, 581

Bloch’s theorem, 150

Bohr magneton, 292

Bohr radius, 12

Bohr theory, 11

Boltzmann constant, 7

Born approximation, see scattering

boson, 291

C

classically allowed region, 120

classically forbidden region, 120

Clebsch-Gordan coefficients, 300, 492

properties, 493

commutator, 90

fundamental relationships, 90

simultaneous eigenfunctions, 91

Compton wavelength, 12

continuous eigenvalues, 86, 109

completeness, 87

orthogonalization, 87

units, 87

Coulomb potential, see spherically symmetric

potentials
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creation operator, see raising operator

cyclotron frequency, 579

cylindrically symmetric potentials, 244

2-D isotropic oscillator, 246

Landau levels, 248

radial momentum, 245

D

de Broglie wavelength, 14

density matrix, 575

time evolution, 576

density of states

energy, 608

matter wave, 110

radiation field, 21

box normalization, 22

periodic boundary conditions, 23

destruction operator, see lowering operator

dipole-dipole interaction, 510

Dirac delta function, 46

Dirac notation

basis kets, 253

bra, 254

connection with linear algebra, 276

eigenvalue equation, 256

ket, 253

matrix element, 255, 261

state vector, 253

time-dependent Schrödinger equation, 256,

280

unit matrices, 255

wave function, 260

E

effective potential, 187

Ehrenfest’s theorem, 314

eigenfunctions, 78

eigenvalues, 78

electron g factor, 294

entangled states, 19, 107

EPR paradox, 19

equation of continuity, 102

Euler angles, 466

exponential decay, 610

F

Fermi energy, 304

Fermi’s Golden Rule, 610

photoionization, 610

angular distribution, 613

total decay rate, 613

fermion, 291

field quantization, see photon states

fine structure constant, 12

Fourier transforms, 43

G

Galilean transformation, 490

Gauss theorems, 38

Gaussian distribution, 41

generating function

associated Laguerre polynomials, 241

Hermite polynomials, 171

Legendre polynomials, 195

H

Heaviside function, 419

Heisenberg representation, 317

Heisenberg uncertainty relation, 94

Hermite polynomials, 169

recursion relations, 170

Hilbert space, 253

hydrogen atom

Dirac equation, 511

hyperfine interaction

contact terms, 540

ground state splitting, 542

Hamiltonian, 540

level shifts, 522

non-contact terms, 546

Zeeman splitting, 543

in a magnetic field, 523

Paschen-Back region, 526, 527

Zeeman splitting, 525

in an electric field, 527

Lamb shift, 521

radial integrals, 535

relativistic corrections

Darwin term, 520

fine structure splitting, 518

mass correction, 513

spin-orbit, 518

total fine structure, 520

hydrogen spectrum, 13

I

infinite square well potential, 120

classical probability distributions, 121

eigenenergies, 123

eigenfunctions, 123, 124

k�space distribution, 156

momentum probability distribution, 126
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quantum revivals, 130, 159

spatial probability distribution, 125

three dimensions, 181

two dimensions, 180

wave packet dynamics, 127

interaction representation, 557

irreducible tensor operators, see operators

K

Kronig-Penney model, 151

Bloch states, 155

eigenfunctions, 151

transmission coefficient, 153

L

ladder operators

angular momentum, 270

action on kets, 272

raising and lowering operators, 271

simple harmonic oscillator

lowering operator, 264, 265

raising operator, 264, 265

Laguerre’s equation, 228

associated Laguerre function, 229

properties, 229, 242

differential equations, 241

generalized Laguerre polynomials, 228

properties, 229, 241

Landé g factor, 534

Legendre’s equation, 192

associated Legendre polynomials, 192

Legendre polynomials, 195

properties, 195

M

magnetic moment

classical, 291

quantum, 292

Markov process, 610

matrix

Hermitian, 284

inverse, 283

orthogonal, 284

transpose, 283

unitary, 284

measurement, 106

collapse of the wave function, 107

momentum operator

in coordinate space, 89

N

normal distribution, see Gaussian distribution

nuclear g factor, 539

O

one-dimensional potentials, 115

barrier, 116, 146

eigenfunctions, 146

tunneling, 147

bound state, 118

delta function, 147

bound state energy, 149

derivative discontinuity, 148

transmission, 149

double barrier, 159

general considerations, 115

reflecting, 117

square well, 118, 137

eigenenergies, 139

eigenfunctions for E < V0, 138

eigenfunctions for E > V0, 143

electromagnetic scattering analogue,

145

strength parameter, 140

step, 118

eignenfunctions for E < V0, 133

eigenfunctions for E > V0, 135

operators, 69

commutator, 90

coupled tensor, 510

expectation value, 79

time dependence, 104, 576

using density matrix, 575

function of coordinates, 72

function of momenta, 89

Hamiltonian, 71

Hermitian

completeness, 80, 85

definition, 80

orthogonality, 81

inner product, 81

irreducible tensor, 499

commutators with J, 500

kinetic energy, 78

linear, 252

momentum, 78

acting on functions of coordinates, 93

eigenfunctions, 97

in coordinate space, 97

matrix elements in coordinate

representation, 258
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operators (cont.)

position, 78

acting on functions of momentum, 93

eigenfunctions, 97

matrix elements in momentum

representation, 259

potential energy, 78

scalar, 496

tensor, 498

transformation

under rotation, 479

under translation, 478

vector, 496

commutators with J, 498

optical theorem, see scattering

P

parity operator, 98, 472

eigenvalues and eigenfunctions, 98

Parseval’s theorem, 49

path integral approach, 318

Pauli matrices, 296

properties, 296

permutation operator, 301

eigenfunctions, 301

perturbation theory, 339

degenerate, 350

linear Stark effect, 354

perturbed matrix, 350

non-degenerate, 340

eigenenergies, 342

eigenfunctions, 342

eigenkets, 342

perturbed matrix, 343

perturbed oscillator, 346

van der Waals interaction, 347

time-dependent, 593

atom + radiation pulse, 594

oscillator in electric field, 595

photoelectric effect, 9

photon states, 614

field quantization, 614

vacuum state, 614

Planck constant, 8

plane wave expansion

in Legendre polynomials, 426, 454

in spherical harmonics, 290, 453

Poisson bracket, 257

postulates, 77

potentials

separable, 179

power broadening, 579

probability current density, 103

propagator

Feynman, 319, 321

free-particle, 62, 322

gravitational potential, 334

simple harmonic oscillator, 335

pseudofield vector, see Bloch equations

pulse area, see two-level atom

Q

quantum nondemolition, 107

quantum revivals, 607

quantum teleportation, 329

Bell states, 330

key distribution, 330

quantum gate operation, 330

R

Rabi frequency, 565

generalized, 570

Rabi oscillations, 561, 571

radial momentum

classical, 210

cylindrical coordinates, 212

quantum operator, 211

Rayleigh-Jeans Law, 24

reduced mass, 226

reflection coefficient

amplitude

square well, 144

step potential, 133, 135

intensity

square well, 144

step potential, 133, 136

rotating-wave approximation, 566, 567, 572,

576, 580

for circular polarization, 592

rotation

active, 465

matrices, 474

for j D 1=2, 477, 482

for ` D 1, 482

for spin, 476

properties, 475

operator, 473

in terms of Euler angles, 473

passive, 463

transformation of kets, 474

rotation matrix

active, 465, 467

passive, 464, 466

RWA, see rotating-wave approximation

Rydberg, 12
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S

scattering

Born approximation, 446

Gaussian potential, 449

Green function, 447

scattering amplitude, 448

spherical well potential, 450

validity conditions, 449

classical, 409

attractive potentials, 416

deflection angle, 411

differential cross section, 410

glory , 418

hard sphere, 413, 436

orbiting, 418

rainbow, 416

repulsive potentials, 415

scattering angle, 411

spherical well, 418

total cross section, 411

differential cross section, 423

electromagnetic

by dielectric sphere, 419

deflection angle, 420, 421

glory, 421

rainbow, 421

hard sphere, 436

high energy limit, 455

one-dimensional

by delta function, 407

by double barrier, 407

by square well, 406

by various potentials, 404

steady-state approach, 391

time delay, 403

wave packet approach, 395

optical theorem, 429

partial waves, 424

differential cross section, 428

hard sphere, 434

partial wave phase, 426

scattering amplitude, 427

semi-classical approximation, 431

spherical barrier, 444

spherical well, 436

total cross section, 428

scattering amplitude, 422

scattering length, 441

total cross section, 423

uncertainty principle estimate, 424

Schmidt orthogonalization, 84

Schrödinger equation

general solution, 72, 101

in momentum space, 262

time-dependent, 56

time-independent, 72

Schrödinger’s cat, 18

selection rules, 583

circular polarization

without RWA, 592

electric dipole, 586

magnetic dipole, 587

Semiclassical approximation, see WKB

approximation

simple harmonic oscillator

3-D isotropic, 235

Bohr theory, 235

classical radial probability distribution,

239

effective potential, 236

eigenenergies, 235

eigenfunctions, 238

radial probability distribution, 239

radial wave functions, 239

one dimension, 163

classical probability distributions, 165

coherent state, 174, 267

dimensionless variables, 165

eigenenergies, 169

eigenfunctions, 171

number operator, 264

potential energy, 164

recursion relations, 171

three dimensions, 182

two dimensions, 181

simultaneous eigenfunctions, 91

Slater determinant, 303

spherical harmonics, 194

classical polar angle probability

distribution, 197, 201

physical interpretation, 196

spherically symmetric potentials, 207

3-D Isotropic oscillator, see simple

harmonic oscillator

boundary conditions, 215

classical radial probability distribution, 208

Coulomb, 225

classical radial probability distribution,

232

degeneracy, 229

effective potential, 207

eigenenergies, 228

eigenfunctions, 229

radial equation, 226

radial probability distribution, 232, 233

radial wave functions, 230

effective potential, 207

finite well, 223
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spherically symmetric potentials (cont.)

effective potential, 223

eigenenergy equation, 224

eigenfunctions, 224

infinite well, 215

classical radial probability distribution,

220

effective potential, 216

eigenenergies, 219

eigenfunctions, 218

radial equation, 213

radial equation for u`.r/, 214

radial probability distribution, 217

spin

in a magnetic field, 558

spin angular momentum

magnetic moment, 294

singlet state, 302

spin matrices, 295

triplet state, 302

spin-orbit interaction, 298, 299

spontaneous decay, 359, 613

decay rate, 619

square well potential, see one-dimensional

potentials

Stark effect

in hydrogen, 528

linear, 354

nonlinear, 372

Stefan-Boltzmann law, 26

Stern-Gerlach experiment, 293

Stokes theorems, 38

sudden approximation, see time-dependent

problems

T

Taylor series, 35

tensor operator, see operators

time-dependent perturbation theory, see

perturbation theory

time-dependent problems

adiabatic approximation, 597

adiabatic switching, 605

bounded continuum, 620

sudden approximation, 600

translation

active, 463

operator, 471

passive, 462

transmission coefficient

amplitude

square well, 144

step potential, 135

intensity

barrier, 147

delta function potential, 149

square well, 144

step potential, 136

tunneling, 147

two-level atom, 563

in optical field, 563

density matrix equations, 577, 578

detuning, 567

dipole approximation, 563

field-interaction representation, 572

pulse area, 569

resonance approximation, 567

rotating-wave approximation, 567

steady-state solution, 578

U

ultraviolet catastrophe, 8

V

variational approach, 361

combined with perturbation theory, 362,

365

Stark shift , 372

vand der Waals energy, 368

helium atom, 368

linear potential, 364

oscillator potential, 362

upper energy bound, 361

vector operator, see operators

W

wave function, 15

coordinate space, 77

minimum uncertainty, 95

momentum space, 78

wave packet

Gaussian, 58

spreading, 60

Wien’s Law, 7

Wigner-Eckart theorem, 501

proof, 503

WKB approximation, 375

barrier transmission, 384

connection formulas, 379

derivation, 385

partial wave phases, 432

radial wave function, 431

semiclassical quantization condition, 381

power law potential, 381
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validity condition, 378

wave function, 377

Z

Zeeman effect

anomalous, 292

for multi-electron atoms

strong field region, 531

weak field region, 534

in hydrogen, 525

normal, 292

vector model, 532, 534

Zeno

effect, 623

experiment, 628

paradox, 622
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