

 [image: Cover image]

 Ian Chivers and Jane Sleightholme
Introduction to Programming with Fortran4th ed. 2018
[image: ../images/112282_4_En_BookFrontmatter_Figa_HTML.gif]

Ian ChiversRhymney Consulting, London, UK

Jane SleightholmeFortranplus, London, UK

				ISBN 978-3-319-75501-4e-ISBN 978-3-319-75502-1
https://doi.org/10.1007/978-3-319-75502-1
Library of Congress Control Number: 2018942915
© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

 The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 The Yorkshire connection dedicates the book to Steve, Mark and Jonathan. The Welsh connection dedicates the book to Joan, Martin and Jenny.

Acknowledgements

 The material in the book has evolved first
 	
 from our combined experience of working in Computing Services within the University of London at
 	King’s College, IDC (1986–2002) and JS (1985–2008)

	Chelsea College, JS (1978–1985)

	Imperial College, IDC (1978–1986)

 in the teaching, advice and support of Fortran and related areas, and second

	
 in the provision of commercial training courses. The following are some of the organisations we’ve provided training for:
 	AMEC, Warrington

	Aveva, Cambridge

	AWE, Aldermaston

	Centre for Ecology and Hydrology, Wallingford

	DTU—Danish Technical University

	Environment Agency, Worthing

	Esso Petroleum, Fawley

	JET—Joint European Torus

	The Met Office, Bracknell and Exeter

	National Nuclear Laboratory

	Natural Resources Canada, Ottawa

	Petroleum Geo-Services (PGS), Houston and Weybridge

	QinetiQ, Farnborough

	RAF Waddington

	Ricardo Software

	Risk Management Solutions

	Rolls Royce, Derby

	SHMU, Slovak Hydrometeorological Institute, Bratislava, Slovakia

	University of Ulster, Jordanstown, Northern Ireland

	VCS, Germany

	Veritas DGC Ltd., Crawley

	Westland Helicopters, Yeovil.

 Thanks are due to:
 	The staff and students at King’s College, Chelsea College and Imperial College.

	The people who have attended the commercial courses. It has been great fun teaching you and things have been very lively at times.

	The people on the Fortran 90 list and comp.lang.fortran. Access to the expertise of several hundred people involved in the use and development of Fortran on a daily basis across a wide range of disciplines is inestimable.

	The people at NAG for the provision of beta test versions of their Fortran compilers and technical help and support.

	The people at Intel for the provision of beta test versions of their Fortran compilers and technical help and support.

	The people running the Archer service for their help.

	The people at Oracle who helped with the C Interop examples.

	The staff and facilities at PTR Associates. It is a pleasure training there.

	
 Helmut Michels at the Max Planck Institute for permission to use the
 dislin
 library.

	The patience of our families during the time required to develop the courses upon which this book is based and whilst preparing the camera-ready copy.

	Helen Desmond and Nancy Wade-Jones at Springer for their enthusiasm and encouragement when things were going wrong!

Our Fortran home page is:

 https://www.fortranplus.co.uk/

 All of the programme examples can be found there.
 	If you would like to contact us, our email addresses are:

	Ian Chivers: ian@rhymneyconsulting.co.uk

	Jane Sleightholme: jane@fortranplus.co.uk

 The manuscript was produced using Springer’s LaTeX style sheet. We used proTeXt, MiKTeX and TeXnicCentre on the Windows platform. The graphs and plots were produced using the
 dislin
 graphics library. We started using TeX at Imperial College on several CDC systems in the 1980s. TeX and LaTeX have come a long way since then and plain TeX seems a distant memory.

Contents

 1 Overview
 1

 1.​1 Introduction
 1

 1.​2 Program Examples
 4

 1.​3 Web Addresses
 5

 2 Introduction to Problem Solving
 7

 2.​1 Introduction
 8

 2.​2 Natural Language
 8

 2.​3 Artificial Language
 8

 2.​3.​1 Notations
 9

 2.​4 Resume
 9

 2.​5 Algorithms
 9

 2.​5.​1 Top-Down
 10

 2.​5.​2 Bottom-Up
 10

 2.​5.​3 Stepwise Refinement
 11

 2.​6 Modular Programming
 11

 2.​7 Object Oriented Programming
 12

 2.​8 Systems Analysis and Design
 12

 2.​8.​1 Problem Definition
 12

 2.​8.​2 Feasibility Study and Fact Finding
 13

 2.​8.​3 Analysis
 13

 2.​8.​4 Design
 13

 2.​8.​5 Detailed Design
 13

 2.​8.​6 Implementation
 13

 2.​8.​7 Evaluation and Testing
 14

 2.​8.​8 Maintenance
 14

 2.​9 Unified Modelling Language - UML
 14

 2.​10 Conclusions
 15

 2.​11 Problems
 15

 2.​12 Bibliography
 15

 3 Introduction to Programming Languages
 19

 3.​1 Introduction
 19

 3.​2 Some Early Theoretical Work
 20

 3.​3 What Is a Programming Language?​
 20

 3.​4 Program Language Development and Engineering
 20

 3.​5 The Early Days
 20

 3.​5.​1 Fortran’s Origins
 21

 3.​5.​2 Fortran 77
 21

 3.​5.​3 Cobol
 22

 3.​5.​4 Algol
 22

 3.​6 Chomsky and Program Language Development
 23

 3.​7 Lisp
 23

 3.​8 Snobol
 24

 3.​9 Second-Generation Languages
 24

 3.​9.​1 PL/​1 and Algol 68
 24

 3.​9.​2 Simula
 24

 3.​9.​3 Pascal
 25

 3.​9.​4 APL
 25

 3.​9.​5 Basic
 25

 3.​9.​6 C
 26

 3.​10 Some Other Strands in Language Development
 27

 3.​10.​1 Abstraction, Stepwise Refinement and Modules
 27

 3.​10.​2 Structured Programming
 27

 3.​10.​3 Data Structuring and Procedural Programming
 27

 3.​10.​4 Standardisation
 28

 3.​11 Ada
 28

 3.​12 Modula
 29

 3.​13 Modula 2
 29

 3.​14 Other Language Developments
 30

 3.​14.​1 Logo
 30

 3.​14.​2 Postscript, TEX and LATEX
 30

 3.​14.​3 Prolog
 31

 3.​14.​4 SQL
 31

 3.​14.​5 ICON
 31

 3.​15 Object Oriented Programming
 32

 3.​15.​1 Simula
 32

 3.​15.​2 Smalltalk
 32

 3.​15.​3 Oberon and Oberon 2
 33

 3.​15.​4 Eiffel
 33

 3.​15.​5 C++
 34

 3.​15.​6 Java
 35

 3.​15.​7 C#
 36

 3.​15.​8 Python
 36

 3.​16 Back to Fortran!
 38

 3.​16.​1 Fortran 90
 38

 3.​16.​2 Fortran 95
 38

 3.​16.​3 ISO Technical Reports TR15580 and TR15581
 39

 3.​16.​4 Fortran 2003
 39

 3.​16.​5 DTR 19767 Enhanced Module Facilities
 41

 3.​16.​6 Fortran 2008
 41

 3.​16.​7 TS 29113 Further Interoperability​ of Fortran with C
 43

 3.​16.​8 Fortran 2018
 43

 3.​17 Fortran Discussion Lists
 46

 3.​18 ACM Fortran Forum
 46

 3.​19 Other Sources
 47

 3.​20 Summary
 47

 3.​21 Bibliography
 47

 4 Introduction to Programming
 55

 4.​1 Introduction
 55

 4.​2 Language Strengths and Weaknesses
 56

 4.​3 Elements of a Programming Language
 56

 4.​3.​1 Data Description Statements
 57

 4.​3.​2 Control Structures
 57

 4.​3.​3 Data-Processing Statements
 57

 4.​3.​4 Input and Output (I/​O) Statements
 57

 4.​4 Example 1:​ Simple Text I/​O
 58

 4.​5 Variables — Name, Type and Value
 59

 4.​6 Example 2:​ Simple Numeric I/​O and Arithmetic
 60

 4.​7 Some More Fortran Rules
 61

 4.​8 Fortran Character Set
 62

 4.​9 Good Programming Guidelines
 64

 4.​10 Compilers Used
 65

 4.​11 Compiler Documentation
 66

 4.​11.​1 gfortran
 66

 4.​11.​2 IBM
 67

 4.​11.​3 Intel
 67

 4.​11.​4 Nag
 68

 4.​11.​5 Oracle/​Sun
 68

 4.​12 Program Development
 69

 4.​13 Problems
 70

 5 Arithmetic
 71

 5.​1 Introduction
 72

 5.​2 The Fortran Operators and the Arithmetic Assignment Statement
 72

 5.​3 Example 1:​ Simple Arithmetic Expressions in Fortran
 73

 5.​4 The Fortran Rules for Arithmetic
 74

 5.​5 Expression Equivalence
 76

 5.​6 Rounding and Truncation
 77

 5.​7 Example 2:​ Type Conversion and Assignment
 77

 5.​8 Example 3:​ Integer Division and Real Assignment
 78

 5.​9 Example 4:​ Time Taken for Light to Travel from the Sun to Earth
 79

 5.​10 The Parameter Attribute
 80

 5.​11 Round Off Errors and Computer Arithmetic
 81

 5.​12 Relative and Absolute Errors
 82

 5.​13 Example 5:​ Relative and Absolute Error
 83

 5.​14 Range, Precision and Size of Numbers
 84

 5.​15 Overflow and Underflow
 85

 5.​15.​1 Example 6:​ Overflow
 85

 5.​15.​2 Example 7:​ Underflow
 86

 5.​16 Health Warning:​ Optional Reading, Beginners Are Advised to Leave Until Later
 87

 5.​16.​1 Positional Number Systems
 87

 5.​16.​2 Fortran Representational​ Models
 87

 5.​17 Kind Types
 89

 5.​17.​1 Example 8:​ Testing What Kind Types Are Available
 89

 5.​18 Testing the Numerical Representation of Different Kind Types on a System
 90

 5.​19 Example 9:​ Using the Numeric Inquiry Functions with Integer Types
 91

 5.​20 Example 10:​ Using the Numeric Inquiry Functions with Real Types
 93

 5.​21 gfortran Support for Intel Extended (80 bit) Precision
 97

 5.​22 Example 11:​ Literal Real Constants in a Calculation
 97

 5.​23 Summation and Finite Precision
 98

 5.​23.​1 Example 12:​ Rounding Problem
 99

 5.​24 Example 13:​ Binary Representation of Different Integer Kind Type Numbers
 99

 5.​25 Example 14:​ Binary Representation of a Real Number
 101

 5.​26 Example 15:​ Initialisation of Physical Constants, Version 1
 102

 5.​27 Example 16:​ Initialisation of Physical Constants, Version 2
 104

 5.​28 Example 17:​ Initialisation of Physical Constants, Version 3
 104

 5.​29 Summary of How to Select the Appropriate Kind Type
 105

 5.​30 Variable Status
 106

 5.​31 Fortran and the IEEE 754 Standard
 106

 5.​32 Summary
 107

 5.​33 Bibliography
 107

 5.​34 Problems
 108

 6 Arrays 1:​ Some Fundamentals
 113

 6.​1 Tables of Data
 113

 6.​1.​1 Telephone Directory
 114

 6.​1.​2 Book Catalogue
 114

 6.​1.​3 Examination Marks or Results
 115

 6.​1.​4 Monthly Rainfall
 115

 6.​2 Arrays in Fortran
 116

 6.​2.​1 The Dimension Attribute
 116

 6.​2.​2 An Index
 116

 6.​2.​3 Control Structure
 116

 6.​3 Example 1:​ Monthly Rainfall
 117

 6.​4 Possible Missing Data
 119

 6.​5 Example 2:​ People’s Weights and Setting the Array Size With a Parameter
 121

 6.​6 Summary
 122

 6.​7 Problems
 123

 7 Arrays 2:​ Further Examples
 127

 7.​1 Varying the Array Size at Run Time
 128

 7.​1.​1 Example 1:​ Allocatable Arrays
 128

 7.​2 Higher-Dimension Arrays
 129

 7.​2.​1 Example 2:​ Two Dimensional Arrays and a Map
 129

 7.​2.​2 Example 3:​ Sensible Tabular Output
 131

 7.​2.​3 Example 4:​ Average of Three Sets of Values
 132

 7.​2.​4 Example 5:​ Booking Arrangements in a Theatre or Cinema
 133

 7.​3 Additional Forms of the Dimension Attribute and Do Loop Statement
 134

 7.3.1 Example 6: Voltage from –20 to
 [image: $$+$$]
 20 Volts

 134

 7.3.2 Example 7: Longitude from –180 to
 [image: $$+$$]
 180

 135

 7.​3.​3 Notes
 136

 7.​4 The Do Loop and Straight Repetition
 136

 7.​4.​1 Example 8:​ Table of Liquid Conversion Measurements
 136

 7.​4.​2 Example 9:​ Means and Standard Deviations
 137

 7.​5 Summary
 138

 7.​6 Problems
 139

 8 Whole Array and Additional Array Features
 143

 8.​1 Terminology
 143

 8.​2 Array Element Ordering
 144

 8.​3 Whole Array Manipulation
 144

 8.​4 Assignment
 144

 8.​5 Expressions
 145

 8.​6 Example 1:​ Rank 1 Whole Arrays in Fortran
 146

 8.​7 Example 2:​ Rank 2 Whole Arrays in Fortran
 147

 8.​8 Array Sections
 148

 8.​8.​1 Example 3:​ Rank 1 Array Sections
 148

 8.​8.​2 Example 4:​ Rank 2 Array Sections
 149

 8.​9 Array Constructors
 150

 8.​9.​1 Example 5:​ Rank 1 Array Initialisation — Explicit Values
 150

 8.​9.​2 Example 6:​ Rank 1 Array Initialisation Using an Implied Do Loop
 151

 8.9.3 Example 7: Rank 1 Arrays and the
 dot_product
 Intrinsic

 152

 8.​9.​4 Initialising Rank 2 Arrays
 152

 8.​9.​5 Example 8:​ Initialising a Rank 2 Array
 153

 8.​10 Miscellaneous Array Examples
 154

 8.​10.​1 Example 9:​ Rank 1 Arrays and a Stride of 2
 154

 8.​10.​2 Example 10:​ Rank 1 Array and the Sum Intrinsic Function
 155

 8.​10.​3 Example 11:​ Rank 2 Arrays and the Sum Intrinsic Function
 156

 8.10.4 Example 12: Masked Array Assignment and the
 where
 Statement

 157

 8.​10.​5 Notes
 158

 8.​11 Array Element Ordering in More Detail
 159

 8.​11.​1 Example 13:​ Array Element Ordering
 159

 8.​12 Physical and Virtual Memory
 160

 8.​13 Type Declaration Statement Summary
 161

 8.​14 Summary
 161

 8.​15 Problems
 162

 8.​16 Bibliography
 162

 8.​16.​1 DEC Alpha
 162

 8.​16.​2 AMD
 162

 8.​16.​3 Intel
 163

 9 Output of Results
 165

 9.​1 Introduction
 166

 9.2 Integers and the
 i
 Format or Edit Descriptor

 166

 9.​2.​1 Example 1:​ Twelve Times Table
 166

 9.2.2 Example 2: Integer Overflow and the
 i
 Edit Descriptor

 167

 9.3 Reals and the
 f
 Edit Descriptor

 168

 9.​3.​1 Example 3:​ Imperial Pints and US Pints
 168

 9.​3.​2 Example 4:​ Imperial Pints and Litres
 169

 9.3.3 Example 5: Narrow Field Widths and the
 f
 Edit Descriptor

 170

 9.3.4 Example 6: Overflow and the
 f
 Edit Descriptor

 171

 9.4 Reals and the
 e
 Edit Descriptor

 171

 9.4.1 Example 7: Simple
 e
 Edit Descriptor Example

 172

 9.5 Reals and the
 g
 Edit Descriptor

 173

 9.5.1 Example 8: Simple
 g
 Edit Descriptor Example

 173

 9.​6 Spaces
 174

 9.​6.​1 Example 9:​ Three Ways of Generating Spaces
 174

 9.7 Characters —
 a
 Format or Edit Descriptor

 175

 9.​7.​1 Example 10:​ Character Output and the Edit Descriptor
 175

 9.​7.​2 Example 11:​ Character, Integer and Real Output in a Format Statement
 176

 9.​8 Common Mistakes
 177

 9.​9 Files in Fortran
 177

 9.9.1 The
 open
 Statement

 177

 9.9.2 The
 close
 Statement

 178

 9.​9.​3 Example 12:​ Open and Close Usage
 178

 9.​9.​4 Example 13:​ Timing of Writing Formatted Files
 179

 9.​9.​5 Example 14:​ Timing of Writing Unformatted Files
 181

 9.​10 Example 15:​ Implied Do Loops and Array Sections for Array Output
 182

 9.​11 Example 16:​ Repetition and Whole Array Output
 184

 9.​12 Example 17:​ Choosing the Decimal Symbol
 184

 9.​13 Example 18:​ Alternative Format Specification Using a String
 185

 9.​14 Example 19:​ Alternative Format Specification Using a Character Variable
 186

 9.​15 The Remaining Control and Data Edit Descriptors
 186

 9.​16 Summary
 187

 9.​17 Problems
 188

 10 Reading in Data
 191

 10.​1 Reading from Files
 191

 10.​2 Example 1:​ Reading Integer Data
 192

 10.​3 Example 2:​ Reading Real Data
 194

 10.​4 Met Office Historic Station Data
 195

 10.​5 Example 3:​ Reading One Column of Data from a File
 196

 10.​6 Example 4:​ Skipping Lines in a File
 198

 10.​7 Example 5:​ Reading from Several Files Consecutively
 199

 10.​8 Example 6:​ Reading Using Array Sections
 201

 10.​9 Example 7:​ Reading Using Internal Files
 203

 10.​10 Example 8:​ Timing of Reading Formatted Files
 204

 10.​11 Example 9:​ Timing of Reading Unformatted Files
 205

 10.​12 Summary
 206

 10.​13 Problems
 207

 11 Summary of I/​O Concepts
 209

 11.​1 I/​O Concepts and Statements
 209

 11.​2 Records
 210

 11.​3 File Access
 210

 11.4 The
 open
 Statement

 210

 11.​5 Data Transfer Statements
 211

 11.6 The
 inquire
 Statement

 212

 11.​7 Error, End of Record and End of File
 213

 11.7.1 Error Conditions and the
 err=
 Specifier

 214

 11.7.2 End-of-File Condition and the
 end=
 Specifier

 214

 11.7.3 End-of-Record Condition and the
 eor=
 Specifier

 214

 11.7.4
 iostat=
 Specifier

 214

 11.7.5
 iomsg=
 Specifier

 215

 11.​8 Examples
 215

 11.8.1 Example 1: Simple Use of the
 read
 ,
 write
 ,
 open
 ,
 close
 ,
 unit
 Features

 215

 11.8.2 Example 2: Using
 iostat
 to Test for Errors

 216

 11.8.3 Example 3: Use of
 newunit
 and
 lentrim

 217

 11.​9 Unit Numbering
 219

 11.​10 Summary
 219

 11.​11 Problems
 219

 12 Functions
 221

 12.​1 Introduction
 221

 12.​2 An Introduction to Predefined Functions and Their Use
 222

 12.​2.​1 Example 1:​ Simple Function Usage
 223

 12.​3 Generic Functions
 224

 12.3.1 Example 2: The
 abs
 Generic Function

 224

 12.​4 Elemental Functions
 224

 12.​4.​1 Example 3:​ Elemental Function Use
 224

 12.​5 Transformational​ Functions
 225

 12.​5.​1 Example 4:​ Simple Transformational​ Use
 225

 12.5.2 Example 5: Intrinsic
 dot_product
 Use

 225

 12.​6 Notes on Function Usage
 226

 12.​7 Example 6:​ Easter
 226

 12.​8 Intrinsic Procedures
 228

 12.​9 Supplying Your Own Functions
 229

 12.​9.​1 Example 7:​ Simple User Defined Function
 229

 12.​10 An Introduction to the Scope of Variables, Local Variables and Interface Checking
 231

 12.​11 Recursive Functions
 232

 12.​11.​1 Example 8:​ Recursive Factorial Evaluation
 232

 12.​12 Example 9:​ Recursive Version of gcd
 234

 12.​13 Example 10:​ gcd After Removing Recursion
 235

 12.​14 Internal Functions
 236

 12.​14.​1 Example 11:​ Stirling’s Approximation
 236

 12.​15 Pure Functions
 237

 12.​15.​1 Pure Constraints
 238

 12.​16 Elemental Functions
 238

 12.​17 Resume
 239

 12.​18 Formal Syntax
 239

 12.​19 Rules and Restrictions
 240

 12.​20 Problems
 241

 12.​21 Bibliography
 241

 12.​21.​1 Recursion and Problem Solving
 242

 13 Control Structures and Execution Control
 243

 13.​1 Introduction
 244

 13.​2 Selection Among Courses of Action
 244

 13.​3 The Block If Statement
 245

 13.​3.​1 Example 1:​ Quadratic Roots
 247

 13.​3.​2 Example 2:​ Date Calculation
 248

 13.​4 The Case Statement
 249

 13.​4.​1 Example 3:​ Simple Calculator
 250

 13.​4.​2 Example 4:​ Counting Vowels, Consonants, etc.​
 251

 13.​5 The Various Forms of the Do Statement
 252

 13.​5.​1 Example 5:​ Sentinel Usage
 253

 13.​5.​2 Cycle and Exit
 254

 13.​5.​3 Example 6:​ The Evaluation of e**x
 254

 13.​5.​4 Example 7:​ Wave Breaking on an Offshore Reef
 256

 13.​6 Do Concurrent
 257

 13.​7 Summary
 260

 13.​7.​1 Control Structure Formal Syntax
 260

 13.​8 Problems
 261

 13.​9 Bibliography
 263

 14 Characters
 265

 14.​1 Introduction
 265

 14.​2 Character Input
 266

 14.2.1 Example 1: The
 *
 Edit Descriptor

 267

 14.2.2 Example 2: The
 a
 Edit Descriptor

 267

 14.​3 Character Operators
 268

 14.​4 Character Substrings
 269

 14.​4.​1 Example 3:​ Stripping Blanks from a String
 270

 14.​5 Character Functions
 270

 14.5.1 Example 4: The
 index
 Character Function

 270

 14.5.2 The
 len
 and
 len_trim
 Functions

 271

 14.5.3 Example 5: Using
 len
 and
 len_trim

 271

 14.​6 Collating Sequence
 272

 14.​7 Example 6:​ Finding Out About the Character Set Available
 273

 14.8 The
 scan
 Function

 275

 14.8.1 Example 7: Using the
 scan
 Function

 275

 14.​9 Summary
 276

 14.​10 Problems
 277

 15 Complex
 281

 15.​1 Introduction
 281

 15.2 Example 1: Use of
 cmplx
 ,
 aimag
 and
 conjg

 282

 15.​3 Example 2:​ Polar Coordinate Example
 283

 15.​4 Complex and Kind Type
 284

 15.​5 Summary
 284

 15.​6 Problem
 284

 16 Logical
 287

 16.​1 Introduction
 287

 16.​2 I/​O
 290

 16.​3 Summary
 291

 16.​4 Problems
 291

 17 Introduction to Derived Types
 293

 17.​1 Introduction
 293

 17.​2 Example 1:​ Dates
 294

 17.​3 Type Definition
 295

 17.​4 Variable Definition
 295

 17.​4.​1 Example 2:​ Variant of Example 1 Using Modules
 295

 17.​5 Example 3:​ Address Lists
 296

 17.​6 Example 4:​ Nested User Defined Types
 298

 17.​7 Problem
 300

 18 An Introduction to Pointers
 301

 18.​1 Introduction
 301

 18.​2 Example 1:​ Illustrating Some Basic Pointer Concepts
 302

 18.3 Example 2: The
 associated
 Intrinsic Function

 304

 18.​4 Example 3:​ Referencing Pointer Variables Before Allocation or Pointer Assignment
 304

 18.​4.​1 gfortran
 305

 18.​4.​2 Intel
 305

 18.​4.​3 Nag
 306

 18.​5 Example 4:​ Pointer Allocation and Assignment
 306

 18.​6 Memory Leak Examples
 307

 18.​6.​1 Example 5:​ Simple Memory Leak
 307

 18.​6.​2 Example 6:​ More Memory Leaks
 308

 18.​7 Non-standard Pointer Example
 309

 18.7.1 Example 7: Using the C
 loc
 Function

 309

 18.​8 Problems
 310

 19 Introduction to Subroutines
 313

 19.​1 Introduction
 313

 19.​2 Example 1:​ Roots of a Quadratic Equation
 314

 19.​2.​1 Referencing a Subroutine
 316

 19.​2.​2 Dummy Arguments or Parameters and Actual Arguments
 317

 19.2.3 The
 intent
 Attribute

 317

 19.​2.​4 Local Variables
 317

 19.2.5 Local Variables and the
 save
 Attribute

 317

 19.​2.​6 Scope of Variables
 318

 19.​2.​7 Status of the Action Carried Out in the Subroutine
 318

 19.​2.​8 Modules ‘Containing’ Procedures
 318

 19.​3 Why Bother with Subroutines?​
 319

 19.​4 Summary
 319

 19.​5 Problems
 320

 20 Subroutines:​ 2
 321

 20.​1 More on Parameter Passing
 321

 20.​1.​1 Assumed-Shape Array
 321

 20.​1.​2 Deferred-Shape Array
 322

 20.​1.​3 Automatic Arrays
 322

 20.​1.​4 Allocatable Dummy Arrays
 322

 20.​1.​5 Keyword and Optional Arguments
 322

 20.​2 Example 1:​ Assumed Shape Parameter Passing
 323

 20.​2.​1 Notes
 325

 20.​3 Example 2:​ Character Arguments and Assumed-Length Dummy Arguments
 325

 20.​4 Example 3:​ Rank 2 and Higher Arrays as Parameters
 327

 20.​4.​1 Notes
 328

 20.​5 Example 4:​ Automatic Arrays and Median Calculation
 329

 20.​5.​1 Internal Subroutines and Scope
 332

 20.​6 Example 5:​ Recursive Subroutines – Quicksort
 332

 20.​6.​1 Note — Recursive Subroutine
 335

 20.​6.​2 Note — Flexible Design
 335

 20.​7 Example 6:​ Allocatable Dummy Arrays
 336

 20.​8 Example 7:​ Elemental Subroutines
 339

 20.​9 Summary
 340

 20.​10 Problems
 340

 20.​11 Bibliography
 342

 20.​12 Commercial Numerical and Statistical Subroutine Libraries
 342

 21 Modules
 343

 21.​1 Introduction
 343

 21.​2 Basic Module Syntax
 344

 21.​3 Modules for Global Data
 344

 21.​4 Example 1:​ Modules for Precision Specification and Constant Definition
 345

 21.​5 Example 2:​ Modules for Globally Sharing Data
 347

 21.​6 Modules for Derived Data Types
 349

 21.​7 Example 3:​ Person Data Type
 350

 21.​8 Example 4:​ A Module for Simple Timing of a Program
 352

 21.9
 private
 ,
 public
 and
 protected
 Attributes

 353

 21.10 The
 use
 Statement

 354

 21.​11 Notes on Module Usage and Compilation
 354

 21.​12 Example 5:​ Modules and Include Statements
 354

 21.​13 Formal Syntax
 355

 21.​13.​1 Interface
 355

 21.​13.​2 Implicit and Explicit Interfaces
 356

 21.​13.​3 Explicit Interface
 356

 21.​14 Summary
 356

 21.​15 Problems
 357

 22 Data Structuring in Fortran
 359

 22.​1 Introduction
 359

 22.​2 Example 1:​ Singly Linked List:​ Reading an Unknown Amount of Text
 359

 22.​3 Example 2:​ Reading in an Arbitrary Number of Reals Using a Linked List and Copying to an Array
 363

 22.​4 Example 3:​ Ragged Arrays
 365

 22.​5 Example 4:​ Ragged Arrays and Variable Sized Data Sets
 366

 22.​6 Example 5:​ Perfectly Balanced Tree
 369

 22.​7 Example 6:​ Date Class
 372

 22.​7.​1 Notes:​ DST in the USA
 383

 22.​8 Example 7:​ Date Data Type with USA and ISO Support
 383

 22.​9 Bibliography
 388

 22.​10 Problems
 389

 23 An Introduction to Algorithms and the Big O Notation
 391

 23.​1 Introduction
 391

 23.​2 Basic Background
 392

 23.​3 Brief Explanation
 392

 23.​4 Example 1:​ Order Calculations
 393

 23.​5 Sorting
 394

 23.​6 Basic Array and Linked List Performance
 395

 23.​7 Bibliography
 395

 24 Operator Overloading
 397

 24.​1 Introduction
 397

 24.​2 Other Languages
 397

 24.​3 Example 1:​ Overloading the Addition (+) Operator
 398

 24.​4 Problem
 399

 25 Generic Programming
 401

 25.​1 Introduction
 401

 25.​2 Generic Programming and Other Languages
 401

 25.​3 Example 1:​ Sorting Reals and Integers
 402

 25.​3.​1 Generic Quicksort in C++
 410

 25.​3.​2 Generic Quicksort in C#
 411

 25.​4 Example 2:​ Generic Statistics Module
 413

 25.​5 Problems
 419

 25.​6 Bibliography
 420

 25.​6.​1 Generic Programming References
 420

 25.​6.​2 Generic Programming and C++
 420

 25.​6.​3 Generic Programming and C#
 420

 26 Mathematical and Numerical Examples
 421

 26.​1 Introduction
 422

 26.​2 Example 1:​ Using Linked Lists for Sparse Matrix Problems
 422

 26.​2.​1 Inner Product of Two Sparse Vectors
 422

 26.​3 Example 2:​ Solving a System of First-Order Ordinary Differential Equations Using Runge–Kutta–Merson
 427

 26.​3.​1 Note:​ Alternative Form of the Allocate Statement
 434

 26.​3.​2 Note:​ Automatic Arrays
 434

 26.​3.​3 Note:​ Subroutine as a Dummy Procedure Argument:​
 435

 26.​3.​4 Note:​ Compilation When Using Modules
 435

 26.​3.​5 Keyword and Optional Argument Variation
 436

 26.​4 Example 3:​ A Subroutine to Extract the Diagonal Elements of a Matrix
 437

 26.​5 Example 4:​ The Solution of Linear Equations Using Gaussian Elimination
 438

 26.​5.​1 Notes
 443

 26.​6 Example 5:​ Allocatable Function Results
 444

 26.​7 Example 6:​ Elemental e**x Function
 445

 26.​8 Example 7:​ Absolute and Relative Errors Involved in Subtraction Using 32 bit Reals
 447

 26.​9 Example 8:​ Absolute and Relative Errors Involved in Subtraction Using 64 bit Reals
 448

 26.​10 Problems
 450

 26.​11 Bibliography
 450

 27 Parameterised Derived Types (PDTs) in Fortran
 453

 27.​1 Introduction
 453

 27.​2 Example 1:​ Linked List Parameterised by Real Kind
 454

 27.​3 Example 2:​ Ragged Array Parameterised by Real Kind Type
 456

 27.4 Example 3: Specifying
 len
 in a PDT

 457

 27.​5 Problems
 460

 28 Introduction to Object Oriented Programming
 461

 28.​1 Introduction
 461

 28.​2 Brief Review of the History of Object Oriented Programming
 461

 28.​3 Background Technical Material
 462

 28.​3.​1 The Concept of Type
 463

 28.​3.​2 Type Classification
 463

 28.​3.​3 Set of Values
 463

 28.​3.​4 Type
 463

 28.​3.​5 Class
 463

 28.​3.​6 Attributes
 464

 28.​3.​7 Passed Object Dummy Arguments
 464

 28.​3.​8 Derived Types and Structure Constructors
 465

 28.​3.​9 Structure Constructors and Generic Names
 465

 28.​3.​10 Assignment
 466

 28.​3.​11 Intrinsic Assignment Statement
 466

 28.​3.​12 Defined Assignment Statement
 466

 28.​3.​13 Polymorphic Variables
 467

 28.​3.​14 Executable Constructs Containing Blocks
 467

 28.3.15 The
 associate
 Construct

 467

 28.3.16 The
 select type
 Construct

 467

 28.​4 Example 1:​ The Basic Shape Class
 468

 28.​4.​1 Key Points
 470

 28.​4.​2 Notes
 473

 28.​5 Example 2:​ Base Class with Private Data
 473

 28.​6 Example 3:​ Using an Interface to Use the Class Name for the Structure Constructor
 475

 28.​6.​1 Public and Private Accessibility
 477

 28.​7 Example 4:​ Simple Inheritance
 478

 28.​7.​1 Base Shape Class
 478

 28.​7.​2 Circle - Derived Type 1
 478

 28.​7.​3 Rectangle - Derived Type 2
 481

 28.​7.​4 Simple Inheritance Test Program
 483

 28.​8 Example 5:​ Polymorphism and Dynamic Binding
 485

 28.​8.​1 Base Shape Class
 485

 28.​8.​2 Circle - Derived Type 1
 487

 28.​8.​3 Rectangle - Derived Type 2
 488

 28.​8.​4 Shape Wrapper Module
 488

 28.​8.​5 Display Subroutine
 488

 28.​8.​6 Test Program for Polymorphism and Dynamic Binding
 489

 28.​9 Fortran 2008 and Polymorphic Intrinsic Assignment
 492

 28.​10 Summary
 494

 28.​11 Problems
 494

 28.​12 Further Reading
 495

 29 Additional Object Oriented Examples
 497

 29.​1 Introduction
 497

 29.​2 The Date Class
 498

 29.​3 Example 1:​ The Base Date Class
 498

 29.​3.​1 Day and Month Name Module
 500

 29.​3.​2 Date Module
 500

 29.​3.​3 Diff Output Between Original Module and New oo Module
 507

 29.​3.​4 Main Program
 515

 29.​3.​5 Diff Output Between Original Program and New oo Test Program
 518

 29.​4 Example 2:​ Simple Inheritance Based on an ISO Date Format
 523

 29.​4.​1 ISO Date Module
 523

 29.​4.​2 ISO Test Program
 527

 29.​5 Example 3:​ Using the Two Date Formats and Showing Polymorphism and Dynamic Binding
 531

 29.​5.​1 Date Wrapper Module
 531

 29.​5.​2 Polymorphic and Dynamic Binding Test Program
 532

 29.​6 Dates, Date Validity and Calendars
 533

 29.​6.​1 Calendars
 533

 29.​6.​2 Date Formats
 534

 29.​6.​3 Other Calendar Systems
 535

 29.​6.​4 Proleptic Gregorian Calendar
 535

 29.​6.​5 References
 535

 29.​7 An Abstract Base Class in Fortran
 536

 29.​8 Problems
 540

 29.​9 Bibliography
 542

 30 Introduction to Submodules
 543

 30.​1 Introduction
 543

 30.​2 Brief Technical Background
 544

 30.​3 Example 1:​ Rewrite of the Date Class Using Submodules
 546

 30.​4 Example 2:​ Rewrite of the First Order RKM ODE Solver Using Modules
 560

 30.​5 Problems
 566

 30.​6 Bibliography
 566

 31 Introduction to Parallel Programming
 567

 31.​1 Introduction
 567

 31.​2 Parallel Computing Classification
 569

 31.​3 Amdahl’s Law
 569

 31.​3.​1 Amdahl’s Law Graph 1–8 Processors or Cores
 570

 31.​3.​2 Amdahl’s Law Graph 2–64 Processors or Cores
 570

 31.​4 Gustafson’s Law
 571

 31.​4.​1 Gustafson’s Law Graph 1–64 Processors or Cores
 571

 31.​5 Memory Access
 571

 31.​6 Cache
 572

 31.​7 Bandwidth and Latency
 572

 31.​8 Flynn’s Taxonomy
 573

 31.​9 Consistency Models
 573

 31.​10 Threads and Threading
 573

 31.​11 Threads and Processes
 574

 31.​12 Data Dependencies
 574

 31.​13 Race Conditions
 574

 31.​14 Mutual Exclusion - Mutex
 574

 31.​15 Monitors
 574

 31.​16 Locks
 574

 31.​17 Synchronization
 575

 31.​18 Granularity and Types of Parallelism
 575

 31.​19 Partitioned Global Address Space - PGAS
 575

 31.​20 Fortran and Parallel Programming
 575

 31.​21 MPI
 576

 31.​22 OpenMP
 577

 31.​23 Coarray Fortran
 578

 31.​24 Other Parallel Options
 578

 31.​24.​1 PVM
 579

 31.​24.​2 HPF
 579

 31.​25 Top 500 Supercomputers
 579

 31.​26 Summary
 580

 32 MPI - Message Passing Interface
 581

 32.​1 Introduction
 581

 32.​2 MPI Programming
 581

 32.​3 Compiler and Implementation Combination
 582

 32.​4 Individual Implementation
 582

 32.​4.​1 MPICH2
 582

 32.​4.​2 Open MPI
 583

 32.​5 Compiler and MPI Combinations Used in the Book
 583

 32.​5.​1 Cray Archer System
 583

 32.​6 The MPI Memory Model
 584

 32.​7 Example 1:​ Hello World
 584

 32.​8 Example 2:​ Hello World Using Send and Receive
 586

 32.​9 Example 3:​ Serial Solution for pi Calculation
 590

 32.​10 Example 4:​ Parallel Solution for pi Calculation
 594

 32.​11 Example 5:​ Work Sharing Between Processes
 600

 32.​12 Summary
 604

 32.​13 Problem
 604

 33 OpenMP
 605

 33.​1 Introduction
 605

 33.​2 OpenMP Memory Model
 606

 33.​3 Example 1:​ Hello World
 607

 33.​4 Example 2:​ Hello World Using Default Variable Data Scoping
 610

 33.5 Example 3: Hello World with Private
 [image: $${} \texttt {thread_number variable}{} $$]

 612

 33.​6 Example 4:​ Parallel Solution for pi Calculation
 613

 33.​7 Example 5:​ Comparing the Timing of Whole Array Syntax, Simple Do Loops, Do Concurrent and an OpenMP Solution
 616

 33.​8 Summary
 619

 33.​9 Problem
 619

 34 Coarray Fortran
 621

 34.​1 Introduction
 621

 34.​2 Some Basic Coarray Terminology
 622

 34.​3 Example 1:​ Hello World
 623

 34.​4 Example 2:​ Broadcasting Data
 624

 34.​5 Example 3:​ Parallel Solution for pi Calculation
 625

 34.​6 Example 4:​ Work Sharing
 628

 34.​7 Summary
 632

 34.​8 Problem
 632

 35 C Interop
 633

 35.​1 Introduction
 633

 35.2 The
 iso_c_binding
 Module

 633

 35.​3 Named Constants and Derived Types in the Module
 634

 35.​4 Character Interoperability​
 635

 35.​5 Procedures in the Module
 635

 35.​6 Interoperability​ of Intrinsic Types
 635

 35.​7 Other Aspects of Interoperability​
 636

 35.​7.​1 Interoperability​ with C Pointer Types
 636

 35.​7.​2 Interoperability​ of Scalar Variables
 636

 35.​7.​3 Interoperability​ of Array Variables
 636

 35.​7.​4 Interoperability​ of Procedures and Procedure Interfaces
 636

 35.​7.​5 Interoperation with C Global Variables
 636

 35.​7.​6 Binding Labels for Common Blocks and Variables
 637

 35.​7.​7 Interoperation with C Functions
 637

 35.​8 Compilers Used in the Examples
 637

 35.​9 Example 1:​ Kind Type Support
 638

 35.​10 Example 2:​ Fortran Calling a C Function
 640

 35.​11 Example 3:​ C Calling a Fortran Function
 641

 35.​12 Example 4:​ C++ Calling a Fortran Function
 642

 35.​13 Example 5:​ Passing an Array from Fortran to C
 643

 35.​14 Example 6:​ Passing an Array from C to Fortran
 644

 35.​15 Example 7:​ Passing an Array from C++ to Fortran
 645

 35.​16 Example 8:​ Passing a Rank 2 Array from Fortran to C
 646

 35.​17 Example 9:​ Passing a Rank 2 Array from C to Fortran
 647

 35.​18 Example 10:​ Passing a Rank 2 Array from C++ to Fortran
 649

 35.​19 Example 11:​ Passing a Rank 2 Array from C++ to Fortran and Taking Care of Array Storage
 651

 35.​19.​1 Compiler Switches
 653

 35.​20 Example 12:​ Passing a Rank 2 Array from C to Fortran and Taking Care of Array Storage
 654

 35.​20.​1 Compiler Switches
 656

 35.​21 Example 13:​ Passing a Fortran Character Variable to C
 657

 35.​22 Example 14:​ Passing a Fortran Character Variable to C++
 660

 35.23
 c_loc
 Examples on Our Web Site

 662

 35.23.1
 c_loc(x)
 Description

 662

 35.​24 Problem
 664

 36 IEEE Arithmetic
 665

 36.​1 Introduction
 665

 36.​2 History
 665

 36.​3 IEEE Specifications
 667

 36.​4 Floating Point Formats
 669

 36.​5 Procedure Summary
 669

 36.​6 General Comments About the Standard
 671

 36.​7 Resume
 672

 36.​8 Fortran Support for IEEE Arithmetic
 673

 36.​9 Derived Types and Constants Defined in the Modules
 673

 36.9.1
 ieee_exceptions

 673

 36.9.2
 ieee_arithmetic

 674

 36.9.3
 ieee_features

 675

 36.​9.​4 Further Information
 675

 36.​10 Example 1:​ Testing IEEE Support
 675

 36.​11 Example 2:​ Testing What Flags Are Supported
 676

 36.​12 Example 3:​ Overflow
 678

 36.​13 Example 4:​ Underflow
 678

 36.​14 Example 5:​ Inexact Summation
 679

 36.​15 Example 6:​ NAN and Other Specials
 682

 36.​16 Summary
 683

 36.​17 Bibliography
 684

 36.​17.​1 Web-Based Sources
 684

 36.​17.​2 Hardware Sources
 685

 36.​17.​3 Operating Systems
 686

 36.​18 Problem
 687

 37 Derived Type I/​O
 689

 37.​1 Introduction
 689

 37.​2 User-Defined Derived-Type Editing
 691

 37.​3 Example 1:​ Basic Syntax, No Parameters in Call
 691

 37.​4 Example 2:​ Extended Syntax, Passing Parameters
 694

 37.​5 Example 3:​ Basic Syntax with Timing
 699

 37.​6 Example 4:​ Extended Syntax with Timing
 701

 37.​7 Summary
 702

 37.​8 Problem
 702

 38 Sorting and Searching
 703

 38.​1 Example 1:​ Generic Recursive Quicksort Example with Timing Details
 703

 38.​2 Example 2:​ Non Recursive Quicksort Example with Timing Details
 708

 38.​2.​1 Notes - Version Control Systems
 714

 38.​3 Subroutine and Function Libraries
 715

 38.​4 The Nag Library for SMP and Multicore
 715

 38.​5 Example 3:​ Calling the Nag m01caf Sorting Routine
 715

 38.​6 Example 4:​ Sorting an Array of a Derived Type
 718

 38.​6.​1 Compare Function
 719

 38.​6.​2 Fortran Sources
 719

 38.​6.​3 Date Module
 719

 38.​6.​4 Sort Module
 725

 38.​6.​5 Main Program
 726

 38.​7 Example 5:​ Binary Search Example
 728

 38.​8 Problems
 732

 39 Handling Missing Data in Statistics Calculations
 733

 39.​1 Introduction
 733

 39.​2 Example 1:​ Program to Download and Save the Data Files Locally
 733

 39.​3 Example 2:​ The Sed Script and Command File That Converts the Missing Values
 736

 39.​4 Example 3:​ The Program to Do the Statistics Calculations
 737

 39.​5 Example 4:​ Met Office Utility Program
 746

 39.​6 Bibliography
 751

 39.​7 Problem
 752

 40 Converting from Fortran 77
 753

 40.​1 Introduction
 753

 40.​2 Deleted Features from Fortran 90
 754

 40.​3 Deleted Features from Fortran 2008
 755

 40.​4 Obsolescent Features
 755

 40.​4.​1 Alternate Return
 756

 40.​4.​2 Computed GO TO Statement
 756

 40.​4.​3 Statement Functions
 756

 40.​4.​4 DATA Statements Among Executables
 756

 40.​4.​5 Assumed Character Length Functions
 757

 40.​4.​6 Fixed Form Source
 757

 40.​4.​7 CHARACTER* Form of CHARACTER Declaration
 757

 40.​4.​8 ENTRY Statements
 757

 40.​4.​9 Label DO Statement
 758

 40.​4.​10 COMMON and EQUIVALENCE Statements and the Block Data Program Unit
 758

 40.​4.​11 Specific Names for Intrinsic Functions
 758

 40.​4.​12 FORALL Construct and Statement
 758

 40.​5 Better Alternatives
 758

 40.​6 Free and Commercial Conversion Tools
 759

 40.​6.​1 Convert
 760

 40.​6.​2 Forcheck
 760

 40.​6.​3 Nag Compiler Polish Tool
 760

 40.​6.​4 Plusfort
 761

 40.​7 Example 1:​ Using the plusFORT Tool Suite from Polyhedron Software
 761

 40.​7.​1 Original Fortran 66
 761

 40.​7.​2 Fortran 77 Version
 762

 40.​7.​3 Fortran 90 Version
 762

 40.​8 Example 2:​ Leaving as Fortran 77
 763

 40.​9 Example 3:​ Simple Conversion to Fortran 90
 764

 40.​10 Example 4:​ Simple Syntax Conversion to Modern Fortran
 769

 40.​11 Example 5:​ Date Case Study
 775

 40.​12 Example 6:​ Creating 64 Bit Integer and 128 Bit Real Sorting Subroutines from the Netlib Sorting Routines
 784

 40.​13 Summary
 796

 40.​14 Problems
 796

 41 Graphics Libraries - Simple Dislin Usage
 797

 41.​1 Introduction
 797

 41.​2 The Dislin Graphics Library
 797

 41.​3 Example 1:​ Using Dislin to Plot Amdahl’s Law Graph 1–8 Processors or Cores
 798

 41.​4 Example 2:​ Using Dislin to Plot Amdahl’s Law Graph 2–64 Processors or Cores
 800

 41.​5 Example 3:​ Using Dislin to Plot Gustafson’s Law Graph 1–64 Processors or Cores
 802

 41.​6 Example 4:​ Using Dislin to Plot Tsunami Events
 804

 41.​7 Example 5:​ Using Dislin to Plot the Met Office Data
 811

 41.​8 Graphics Production Notes
 814

 41.​9 Bibliography
 814

 41.​10 Problems
 815

 42 Abstract Interfaces and Procedure Pointers
 817

 42.​1 Introduction
 817

 42.​2 Example 1:​ Abstract Interfaces and Procedure Pointers
 817

 42.​3 Problem
 820

Appendix A: Glossary821
Appendix B: Attribute Declarations and Specifications833
Appendix C: Compatibility835
Appendix D: Intrinsic Functions and Procedures841
Appendix E: Text Extracts, English, Latin and coded911
Appendix F: Formal syntax913
Appendix G: Compiler Options917
Index933

List of Tables

Table 3.1 C++ standardisation history34

Table 3.2 Fortran standardisation history45

Table 4.1 Variable name, type and value60

Table 4.2 The Fortran character set63

Table 4.3 ASCII character set63

Table 5.1 Fortran operators72

Table 5.2 Hierarachy or precedence of the Fortran operators75

Table 5.3 Some commonly used physical constants81

Table 5.4 Word size and integer numbers84

Table 5.5 Word size and real numbers84

Table 5.6 Kind inquiry functions90

Table 5.7 Numeric inquiry functions91

Table 5.8 Integer kind type parameter name and integer value92

Table 5.9 Integer kind and huge comparision93

Table 5.10 Extended real type comparison96

Table 6.1 Fortran statement ordering123

Table 8.1 Array element ordering in Fortran159

Table 9.1 Summary of data edit descriptors187

Table 9.2 Text edit descriptors187

Table 11.1 Open statement options211

Table 11.2 Data transer statement options212

Table 11.3 Inquire statement options212

Table 12.1 Some of the intrinsic functions available in Fortran223

Table 13.1 Fortran logical and relational operators246

Table 14.1 String functions in Fortran277

Table 16.1 Simple truth table289

Table 16.2 Fortran operator hierarchy289

Table 23.1 Big O notation and complexity392

Table 23.2 Quicksort and insertion sort comparison395

Table 23.3 Array and linked list performance395

Table 25.1 ch2502 results419

Table 28.1 Polymorphic intrinsic assignment support494

Table 31.1 Bandwidth and latency572

Table 32.1 Intel I7 with hyperthreading599

 Table 35.1
 iso_c_binding
 module - named constants
 634

Table 35.2 C Interop character interoperability635

Table 35.3 Compilers used637

Table 35.4 Basic C Interop table639

Table 36.1 Computer hardware and manufacturers666

Table 36.2 Operating systems666

Table 36.3 IEEE formats669

Table 36.4 IEEE Arithmetic module procedure summary670

Table 36.5 IEEE Exceptions module procedure summary671

Table 36.6 Compiler IEEE support for various precisions676

Table 38.1 Generic recursive quicksort timing707

Table 38.2 Non recursive quicksort timing714

Table 38.3 Sixty four bit real sort timings717

Table 38.4 Nag sort m01caf timing717

Table C.1 Previous editions of the Fortran standard835

Table D.1 Argument and return type abbreviations841

Table D.2 Classes of function842

Table D.3 Common optional arguments842

Table D.4 Standard generic intrinsic procedure summary845

Table D.5 Intrinsic functions by standard - Fortran 90 to Fortran 2018903

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_1

1. Overview

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 I don’t know what the language of the year 2000 will look like, but it will be called Fortran

C.A.R. Hoare

 Aims

The aims of the chapter are to provide a background to the organisation of the book.
1.1 Introduction
The book aims to provide coverage of a reasonable working subset of the Fortran programming language. The subset chosen should enable you to solve quite a wide range of frequently occurring problems.
This book has been written for three audiences:	the complete beginner with little or no programming background

	an experienced Fortran programmer who wants to update their skills and move to a modern version of the language

	a programmer familiar with another language wanting to see what modern Fortran has to offer

Chapters 2 and 3 provide a coverage of problem solving and the history and development of programming languages. Chapter 2 is essential for the beginner as the concepts introduced there are used and expanded on throughout the rest of the book. Chapter 3 should be read at some point but can be omitted initially. Programming languages evolve and some understanding of where Fortran has come from and where it is going will prove valuable in the longer term.

 	Chapter 2 looks at problem solving in some depth, and there is a coverage of the way we define problems, the role of algorithms, the use of both top-down and bottom-up methods, and the requirement for formal systems analysis and design for more complex problems.

	Chapter 3 looks at the history and development of programming languages. This is essential as Fortran has evolved considerably from its origins in the mid-1950s, through the first standard in 1966, the Fortran 77 standard, the Fortran 90 standard, the Fortran 95 standard, TR 15580 and TR 15581, Fortran 2003, Fortran 2008 to Fortran 2018. It helps to put many of the current and proposed features of Fortran into context. Languages covered include Cobol, Algol, Lisp, Snobol, PL/1, Algol 68, Simula, Pascal, APL, Basic, C, Ada, Modula, Modula 2, Logo, Prolog, SQL, ICON, Oberon, Oberon 2, Smalltalk, C++, C#, Java and Python.

Chapters 4–8 cover the major features provided in Fortran for numeric programming in the first instance and for general purpose programming in the second. Each chapter has a set of problems. It is essential that a reasonable range of problems are attempted and completed, as it is impossible to learn any language without practice.

 	Chapter 4 provides an introduction to programming with some simple Fortran examples. For people with a knowledge of programming this chapter can be covered fairly quickly.

	Chapter 5 looks at arithmetic in some depth, with a coverage of the various numeric data types, expressions and assignment of scalar variables. There is also a thorough coverage of the facilities provided in Fortran to help write programs that work on different hardware platforms.

	Chapter 6 is an introduction to arrays and do loops. The chapter starts with some examples of tabular structures that one should be familiar with. There is then an examination of what concepts we need in a programming language to support manipulation of tabular data.

	Chapter 7 takes the ideas introduced in Chap. 6 and extends them to higher-dimensioned arrays, additional forms of the dimension attribute and corresponding form of the do loop, and the use of looping for the control of repetition and manipulation of tabular information without the use of arrays.

	Chapter 8 looks at more of the facilities offered for the manipulation of whole arrays and array sections, ways in which we can initialise arrays using constructors, look more formally at the concepts we need to be able to accurately describe and understand arrays, and finally look at the differences between the way Fortran allows us to use arrays and the mathematical rules governing matrices.

Chapters 9, 10 and 11 look at input and output (I/O) and file handling in Fortran. An understanding of I/O is necessary for the development of so-called production, non interactive programs. These are essentially fully developed programs that are used repeatedly with a variety of data inputs and results.

 	Chapter 9 looks at output of results and how to generate something that is more comprehensible and easy to read than what is available with free format output and also how to write the results to a file rather than the screen.

	Chapter 10 extends the ideas introduced in Chap. 9 to cover input of data, or reading data into a program and also considers file I/O.

	Chapter 11 provides a summary of input and output concepts introduced in Chaps. 9 and 10, and expands on them by introducing additional features of the read, write, open and close statements.

Chapter 12 introduces the first building block available in Fortran for the construction of programs for the solution of larger, more complex problems. It looks at the functions available in Fortran, the so-called intrinsic functions and procedures (over 100 of them) and covers how you can define and use your own functions.
It is essential to develop an understanding of the functions provided by the language and when it is necessary to write your own.
Chapter 13 introduces more formally the concept of control structures and their role in structured programming. Some of the control structures available in Fortran are introduced in earlier chapters, but there is a summary here of those already covered plus several new ones that complete our coverage of a minimal working set.
Chapters 14–16 complete our coverage of the intrinsic facilities in Fortran for data typing.

 	Chapter 14 looks at the character data type in Fortran. There is a coverage of I/O again, with the operators available—only one in fact.

	Chapter 15 looks at the last numeric data type in Fortran, the complex data type. This data type is essential to the solution of a small class of problems in mathematics and engineering.

	Chapter 16 looks at the logical data type. The material covered here helps considerably in increasing the power and sophistication of the way we use and construct logical expressions in Fortran. This proves invaluable in the construction and use of logical expressions in control structures.

Chapter 17 introduces derived or user defined types with a small number of examples.
Chapter 18 looks at the dynamic data-structuring facilities now available in Fortran with the addition of pointers. This chapter looks at the basic syntax of pointers. They are used in range of examples in later chapters in the book.
The next two chapters look at the second major building block in Fortran — the subroutine. Chapter 19 provides a gentle introduction to some of the fundamental concepts of subroutine definition and use and Chapter 20 extends these ideas.
Chapter 21 introduces one of modern Fortran’s major key features - the module. A Fortran module can be thought of as equivalent to a class in C++, Java and C#. This chapter looks at the basic syntax, with a couple of simple examples.
Chapter 22 looks at simple data structuring in Fortran, as we have now covered modules in a bit more depth.
Chapter 23 introduces algorithms and the big O notation.
Chapter 24 looks briefly at operator overloading, first introduced in Fortran 90.
Chapter 25 looks at generic programming.
Chapter 26 has a small set of mathematical examples.
Chapter 27 introduces parameterised derived types.
Chapter 28 introduces object oriented programming in Fortran.
Chapter 29 is the second chapter on object oriented programming
Chapters 30–34 look at parallel programming in Fortran with coverage of MPI, OpenMP and Coarray Fortran.
Chapter 35 looks at C interoperability.
Chapter 36 looks at IEEE Arithmetic support in Fortran.
Chapter 37 looks at derived type I/O in Fortran
Chapter 38 looks at a number examples of sorting and searching
Chapter 39 looks at handling missing data in calculations
Chapter 40 looks at converting from Fortran 77 to more modern Fortran.
Chapter 41 looks at using a graphics library for plotting
Chapter 42 has an example of abstract interfaces and procedure pointers in Fortran
Some of the chapters have annotated bibliographies. These often have pointers and directions for further reading. The coverage provided cannot be seen in isolation. The concepts introduced are by intention brief, and fuller coverage must be sought where necessary. References to the standard in the book are to the current Fortran 2018 revision unless otherwise stated. There are several appendices:	Appendix A—This is a glossary which provides coverage of both the new concepts provided by Fortran and a range of computing terms and ideas.

	Appendix B—is a reference appendix on attribute declarations and specifications

	Appendix C—provides details of compatibility between standards

	Appendix D—Contains a list of some of the more commonly used intrinsic procedures in Fortran and includes an explanation of each procedure with a coverage of the rules and restrictions that apply and examples of use where appropriate. There also some tables summarising information about the procedures

	Appendix E—Contains the English and Latin text extracts used in one of the problems in the chapter on characters, and the coded text extract used in one of the problems in Chap. 14.

	Appendix F—Formal syntax.

	Appendix G—Sample compiler options

This book is not and cannot possibly be completely self-contained and exhaustive in its coverage of the Fortran language. Our first intention has been to produce a coverage of the features that will get you started with Fortran and enable you to solve a range of problems successfully. All in all Fortran is an exciting language, and it has caught up with language developments of the last 50 years.
1.2 Program Examples
All of the program examples are available on line at [image: ../images/112282_4_En_1_Chapter/112282_4_En_1_Figa_HTML.gif]

All examples have been reformatted using the Nag compiler polish option. This makes the programs have a consistent style. The examples in the book have been formatted to have a line length of 48 characters to fit the printed page. They were then manually edited to improve where the lines broke. The examples on the web site have been formatted to have a line length of 132 characters.
1.3 Web Addresses
Web addresses are used throughout the book. As some of these are likely to change over the lifetime of the book our web site will have up to date addresses. We have organised them by chapter.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_2

2. Introduction to Problem Solving

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 They constructed ladders to reach to the top of the enemy’s wall, and they did this by calculating the height of the wall from the number of layers of bricks at a point which was facing in their direction and had not been plastered. The layers were counted by a lot of people at the same time, and though some were likely to get the figure wrong the majority would get it right...Thus, guessing what the thickness of a single brick was, they calculated how long their ladder would have to be

Thucydides, The Peloponnesian War
‘When I use a word,’ Humpty Dumpty said, in a rather scornful tone, ‘it means just what I choose it to mean — neither more nor less’

 ‘The question is,’ said Alice, ‘whether you can make words mean so many different things’

Lewis Carroll, Through the Looking Glass and What Alice Found There

 It is possible to invent a single machine which can be used to compute any computable sequence

Alan Turing

 Aims

The aims of this chapter are:	To examine some of the ideas and concepts involved in problem solving.

	To introduce the concept of an

 algorithm.

	To introduce two ways of approaching algorithmic problem solving.

	To introduce the ideas involved with systems analysis and design, i.e., to show the need for pencil and paper study before using a computer

 system.

	To introduce the Unified modelling Language - UML, a general purpose modelling language used in the field of software

 engineering.

2.1 Introduction
It is informative to consider some of the dictionary definitions of problem:	A matter difficult of settlement or solution, Chambers.

	A question or puzzle propounded for solution, Chambers.

	A source of perplexity, Chambers.

	Doubtful or difficult question, Oxford.

	Proposition in which something has to be done, Oxford.

	A question raised for inquiry, consideration, or solution, Webster’s.

	An intricate unsettled question, Webster’s.

A common thread seems to be a question that we would like answered or solved. So one of the first things to consider in problem solving is how to pose the problem. This is often not as easy as is seems. Two of the most common methods to use here are:	In natural language.

	In artificial or stylised language.

Both methods have their advantages and disadvantages.
2.2 Natural Language
Most
 people use natural language and are familiar with it, and the two most common forms are the written and spoken word. Consider the following language usage:	The difference between a 3-year-old child and an adult describing the world.

	The difference between the way an engineer and a physicist would approach the design of a car engine.

	The difference between a manager and a worker considering the implications of the introduction of new technology.

Great care must be taken when using natural language to define a problem and a solution. It is possible that people use the same language to mean completely different things, and one must be aware of this when using natural language whilst problem solving.
Natural language can also be ambiguous: Old men and women eat cheese. Are both the men and women old?
2.3 Artificial Language
The

 two most common forms of artificial language are technical terminology and notations.

 Technical terminology generally includes both the use of new words and alternate use of existing words. Consider some of the concepts that are useful when examining the expansion of gases in both a theoretical and practical fashion:	Temperature.

	Pressure.

	Mass.

	Isothermal expansion.

	Adiabatic expansion.

Now look at the following:	A chef using a pressure cooker.

	A garage mechanic working on a car engine.

	A doctor monitoring blood pressure.

	An engineer designing a gas turbine.

Each has a particular problem to solve, and all will approach their problem in their own way; thus they will each use the same terminology in slightly different ways.
2.3.1 Notations
Some

 examples of notations are:	Algebra.

	Calculus.

	Logic.

All of the above have been used as notations for describing both problems and their solutions.
2.4 Resume
We therefore have two ways of describing problems and they both have a learning phase until we achieve sufficient understanding to use them effectively. Having arrived at a satisfactory problem statement we next have to consider how we get the solution. It is here that the power of the algorithmic approach becomes useful.
2.5 Algorithms
An
 algorithm is a sequence of steps that will solve part or all of a problem. One of the most easily understood examples of an algorithm is a recipe. Most people have done some cooking, if only making toast and boiling an egg.
A recipe is made up of two parts:	A check list of things you need.

	The sequence or order of steps.

Problems can occur at both stages, e.g., finding out halfway through the recipe that you do not have an ingredient or utensil; finding out that one stage will take an hour when the rest will be ready in ten minutes. Note that certain things can be done in any order — it may not make any difference if you prepare the potatoes before the carrots.
There are two ways of approaching problem solving when using a computer. They both involve algorithms, but are very different from one another. They are called top-down and bottom

 up.
The name algorithm is derived from the name of a ninth century Persian mathematician Abu Ja’far Mohammed ibn Musa al-Kuwarizmi (father of Ja’far Mohammed, son of Moses, native of Kuwarizmi), and has been corrupted in western culture as Al-Kuwarizmi.
2.5.1 Top-Down
In a

 top-down approach the problem is first specified at a high or general level: prepare a meal. It is then refined until each step in the solution is explicit and in the correct sequence, e.g., peel and slice the onions, then brown in a frying pan before adding the beef. One drawback to this approach is that it is very difficult to teach to beginners because they rarely have any idea of what primitive tools they have at their disposal. Another drawback is that they often get the sequencing wrong, e.g., now place in a moderately hot oven is frustrating because you may not have lit the oven (sequencing problem) and secondly because you may have no idea how hot moderately hot really is. However, as more and more problems are tackled, top-down becomes one of the most effective methods for programming.
2.5.2 Bottom-Up
Bottom-up
 is the reverse to top-down! As before you start by defining the problem at a high level, e.g., prepare a meal. However, now there is an examination of what tools, etc. you have available to solve the problem. This method lends itself to teaching since a repertoire of tools can be built up and more complicated problems can be tackled. Thinking back to the recipe there is not much point in trying to cook a six course meal if the only thing that you can do is boil an egg and open a tin of beans. The bottom-up approach thus has advantages for the beginner. However, there may be a problem when no suitable tool is available. A colleague and friend of the authors learned how to make Bechamel sauce, and was so pleased by his success that every other meal had a course with a Bechamel sauce. Try it on your eggs one morning. Here is a case of specifying a problem, prepare a meal, and using an inappropriate but plausible tool, Bechamel sauce.
The effort involved in tackling a realistic problem, introducing the constructs as and when they are needed and solving it is considerable. This approach may not lead to a reasonably comprehensive coverage of the language, or be particularly useful from a teaching point of view. case studies do have great value, but it helps if you know the elementary rules before you start on them. Imagine learning French by studying Balzac, before you even look at a French grammar book. You can learn this way but even when you have finished, you may not be able to speak to a Frenchman and be understood. A good example of the case study approach is given in the book Software Tools, by Kernighan and Plauger.
In this book our aim is to gradually introduce more and more tools until you know enough to approach the problem using the top-down method, and also realise from time to time that it will be necessary to develop some new tools.
2.5.3 Stepwise Refinement
Both
 of the above techniques can be combined with what is called stepwise refinement. The original ideas behind this approach are well expressed in a paper by Wirth, entitled “Program Development by Stepwise Refinement”, published in 1971. It means that you start with a global problem statement and break the problem down in stages, into smaller and smaller sub problems that become more and more amenable to solution. When you first start programming the problems you can solve are quite simple, but as your experience grows you will find that you can handle more complex problems.
When you think of the way that you solve problems you will probably realise that unless the problem is so simple that you can answer it straight-away some thinking and pencil and paper work are required. An example that some may be familiar with is in practical work in a scientific discipline, where coming unprepared to the situation can be very frustrating and unrewarding. It is therefore appropriate to look at ways of doing analysis and design before using a computer.
2.6 Modular Programming
As
 the problems we try solving become more complex we need to look at ways of managing the construction of programs that comprise many parts. Modula 2 was one of the first languages to support this methodology and we will look at modular programming in more depth in a subsequent chapter.
2.7 Object Oriented Programming
There
 is a class of problems that are best solved by the treatment of the components of these problems as objects. We will look at the concepts involved in object oriented programming and object oriented languages in the next chapter.
2.8 Systems Analysis and Design
When
 one starts programming it is generally not apparent that one needs a methodology to follow to become successful as a programmer. This is usually because the problems are reasonably simple, and it is not necessary to be explicit about all of the stages one has gone through in arriving at a solution. As the problems become more complex it is necessary to become more rigorous and thorough in one’s approach, to keep control in the face of the increasing complexity and to avoid making mistakes. It is then that the benefit of systems analysis and design becomes obvious. Broadly we have the following stages in systems analysis and design:	Problem definition.

	Feasibility study and fact finding.

	Analysis.

	Initial system design.

	Detailed design.

	Implementation.

	Evaluation.

	Maintenance.

and each problem we address will entail slightly different time spent in each of these stages. Let us look at each stage in more detail.
2.8.1 Problem Definition
Here we are interested in defining what the problem really is. We should aim at providing some restriction on both the scope of the problem, and the objectives we set ourselves. We can use the methods mentioned earlier to help us out. It is essential that the objectives are:	Clearly defined.

	Understood and agreed to by all people concerned, when more than one person is involved.

	Realistic.

2.8.2 Feasibility Study and Fact Finding
Here we look to see if there is a feasible solution. We would try and estimate the cost of solving the problem and see if the investment was warranted by the benefits, i.e., cost-benefit analysis.
2.8.3 Analysis
Here we look at what must be done to solve the problem. Note that we are interested in finding out what we need to do, but that we do not actually do it at this stage.
2.8.4 Design
Once the analysis is complete we know what must be done, and we can proceed to the design. We may find there are several alternatives, and we thus examine alternate ways in which the problem can be solved. It is here that we use the techniques of top-down and bottom-up problem solving, combined with stepwise refinement to generate an algorithm to solve the problem. We are now moving from the logical to the physical side of the solution. This stage ends with a choice among several alternatives. Note that there is generally not one ideal solution, but several, each with its own advantages and disadvantages.
2.8.5 Detailed Design
Here we move from the general to the specific, The end result of this stage should be a specification that is sufficiently tightly defined to generate actual program code.
It is at this stage that it is useful to generate pseudocode. This means writing out in detail the actions we want carried out at each stage of our overall algorithm. We gradually expand each stage (stepwise refinement) until it becomes Fortran — or whatever language we want.
2.8.6 Implementation
It is at this stage that we actually use a computer system to create the program(s) that will solve the problem. It is here that we actually need to know enough about a programming language to use it effectively to solve our problem. This is only one stage in the overall process, and mistakes at any of the stages can create serious difficulties.
2.8.7 Evaluation and Testing
Here
 we try to see if the program(s) we have produced will actually do what they are supposed to. We need to have data sets that enable us to say with confidence that the program really does work. This may not be an easy task, as quite often we only have numeric methods to solve the problem, which is why we are using the computer in the first place — hence we are relying on the computer to provide the proof; i.e., we have to use a computer to determine the veracity of the programs — and as Heller says, Catch 22.
2.8.8 Maintenance
It is rare that a program is run once and never used again. This means that there will be an ongoing task of maintaining the program, generally to make it work with different versions of the operating system or compiler, and to incorporate new features not included in the original design. It often seems odd when one starts programming that a program will need maintenance, as we are reluctant to regard a program in the same way as a mechanical object like a car that will eventually fall apart through use. Thus maintenance means keeping the program working at some tolerable level, often with a high level of investment in manpower and resources. Research in this area has shown that anything up to 80% of the manpower investment in a program can be in maintenance.
2.9 Unified Modelling Language - UML
UML
 is a general purpose modelling language used in the field of software engineering. It was developed by Grady Booch, Ivar Jacobson and James Rumbaugh whilst working at Rational Software in the 1990’s. They were three of the leading exponents of object oriented software methodologies at the time and decided to unify the various approaches that each had developed.
UML combines techniques from data modelling (entity relationship diagrams), business modelling (work flows), object modelling, and component modelling. It can be used with all processes, throughout the software development life cycle, and across different implementation technologies.
It tends to be used more in business computing than scientific computing.
2.10 Conclusions
A drawback, inherent in all approaches to programming and to problem solving in general, is the assumption that a solution is indeed possible. There are problems which are simply insoluble — not only problems like balancing a national budget, weather forecasting for a year, or predicting which radioactive atom will decay, but also problems which are apparently computationally solvable.
Knuth gives the example of a chess problem — determining whether the game is a forced victory for white. Although there is an algorithm to achieve this, it requires an inordinately long time to complete. For practical purposes it is unsolvable.
Other problems can be shown mathematically to be undecidable. The work of Gödel in this area has been of enormous importance, and the bibliography contains a number of references for the more inquisitive and mathematically orientated reader. The Hofstader coverage is the easiest, and least mathematical.
As far as possible we will restrict ourselves to solvable problems, like learning a programming language.
Within the formal world of Computer Science our description of an algorithm would be considered a little lax. For our introductory needs it is sufficient, but a more rigorous approach is given by Hopcroft and Ullman in Introduction to Automata Theory, Languages and Computation, and by Beckman in Mathematical Foundations of programming.
2.11 Problems
2.1
What is an algorithm?

2.2
What distinguishes top-down from bottom-up approaches to problem solving? Illustrate your answer with reference to the problem of a car, motor-cycle or bicycle having a flat tire.

2.12 Bibliography
A.V. Aho A.V., Hopcroft J.E., and J.D. Ullman J.D., The Design and Analysis of Computer Algorithms, Addison-Wesley,

 1982.

 	Theoretical coverage of the design and analysis of computer algorithms.

Beckman F.S., Mathematical Foundations of Programming, Addison-Wesley, 1981.

 	Good clear coverage of the theoretical basis of computing.

Bulloff J.J., Holyoke T.C., Hahn S.W., Foundations of Mathematics — Symposium Papers Commemorating the 60[image: $${\text {th}} $$] Birthday of Kurt Gödel, Springer-Verlag, 1969.

 	The comment by John von Neumann highlights the importance of Gödel’s work,.. Kurt Gödel’s achievement in modern logic is singular and monumental — indeed it is more than a monument, it is a landmark which will remain visible far in space and time. Whether anything comparable to it has occurred in the logic of modern times may be debated. In any case, the conceivable proxima are very, very few. The subject of logic has certainly changed its nature and possibilities with Gödel’s achievement.

Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured programming, Academic Press, 1972.

 	This is the seminal book on structured programming.

Davis M., Computability and Unsolvability, Dover, 1982.

 	The book is an introduction to the theory of computability and noncomputability — the theory of recursive functions in mathematics. Not for the mathematically faint hearted!

Davis W.S., Systems Analysis and Design, Addison-Wesley, 1983.

 	Good introduction to systems analysis and design, with a variety of case studies. Also looks at some of the tools available to the systems analyst.

Edmonds D., Eidinow J., Wittgensteins Poker, Faber and Faber, 2001.

 	The subtitle of the book provides a better understanding of the content - ‘The story of a 10 minute argument between two great philosophers’, which took place on Friday 25 October 1946 at the Cambridge Moral Science Club. The title of Poppers paper was ’Are there Philosophical problems?’. Ludwig Wittgenstein and Bertrand Russell were in the audience. Well worth a read.

	Here is an extract of a quote from the Times Literary Supplement. A succinctly composed, informative, wonderfully readable and often funny account of a single impassioned encounter between the great overbearing philosopher Ludwig Wittgenstein and the younger, less great but equally overbearing philosopher Karl Popper... reads like an inspired collaboration between Iris Murdoch and Monty Python.

Fogelin R.J., Wittgenstein, Routledge and Kegan Paul, 1980.

 	The book provides a gentle introduction to the work of the philosopher Wittgenstein, who examined some of the philosophical problems associated with logic and reason.

Gödel K., On Formally Undecidable Propositions of Principia Mathematica and Related Systems, Oliver and Boyd, 1962.

 	An English translation of Gödel’s original paper by Meltzer, with quite a lengthy introduction by R.B. Braithwaite, then Knightbridge Professor of Moral Philosophy at Cambridge University, England, and classified under philosophy at the library at King’s, rather than mathematics.

Hofstadter D., The Eternal Golden Braid, Harvester Press, 1979.

 	A very readable coverage of paradox and contradiction in art, music and logic, looking at the work of Escher, Bach and Gödel, respectively.

Hopcroft J.E., Ullman J.D., Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.

 	Coverage of the theoretical basis of computing.

Jacobson, Ivar, Grady Booch, James Rumbaugh, (1998). The Unified Software Development Process. Addison Wesley Longman. ISBN 0-201-57169-2.

 	The original book on UML.

Kernighan B.W., Plauger P.J., Software Tools,

 Addison-Wesley, 1976.

 	Interesting essays on the program development process, originally using a nonstandard variant of Fortran. Also available using Pascal.

Knuth D.E., The Art of Computer Programming, Addison-Wesley,	Vol 1. Fundamental Algorithms, 1974

	Vol 2. Semi-numerical Algorithms, 1978

	Vol 3. Sorting and Searching, 1972	Contains interesting insights into many aspects of algorithm design. Good source of specialist algorithms, and Knuth writes with obvious and infectious enthusiasm (and erudition).

Millington D., Systems Analysis and Design for Computer Applications, Ellis Horwood, 1981.

 	Short and readable introduction to systems analysis and design.

Popper K., The Logic of Scientific Discovery, 1934 (as Logik der Forschung, English translation 1959), Routledge, ISBN 0-415-27844-9.

 	Popper argues that science should adopt a methodology based on falsifiability, because no number of experiments can ever prove a theory, but a single experiment can contradict one. A classic.

Salmon M.H., Logic and Critical Thinking, Harcourt Brace Jovanovich, 1984.

 	Quite a good introduction to logic and critical thinking. Coverage of arguments, deductive and inductive arguments, causal arguments, probability and inductive logic, confirmation of hypotheses.

Wirth N., Algorithms + Data Structures = Programs, Prentice Hall, 1976.

 	One of the seminal texts in computer science. Essential reading.

Wirth N., Program Development by Stepwise Refinement, Communications of the ACM, April 1971, Volume 14, Number 4, pp. 221–227.

 	Clear and simple exposition of the ideas of stepwise refinement.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_3

3. Introduction to Programming Languages

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 We have to go to another language in order to think clearly about the problem

Samuel R. Delany, Babel-17

 Aims

The primary aim of this chapter is to provide a short history of program language development and give some idea as to the concepts that have had an impact on Fortran. It concentrates on some but not all of the major milestones of the last 40 years, in roughly chronological order. The secondary aim is to show the breadth of languages available. The chapter concludes with coverage of a small number of more specialised languages.
3.1 Introduction
It is important to realise that programming languages are a recent invention. They have been developed over a relatively short period — 60 years — and are still undergoing improvement. Time spent gaining some historical perspective will help you understand and evaluate future changes. This chapter starts right at the beginning and takes you through some, but not all, of the developments during this 55 year span. The bulk of the chapter describes languages that are reasonably widely available commercially, and therefore ones that you are likely to meet. The chapter concludes with a coverage of some more specialised and/or recent developments.
3.2 Some Early Theoretical Work
Some of the most important early theoretical work in computing was that of Turing and von Neumann. Turing’s work provided
 the base from which it could be shown that it was possible to get a machine to solve problems. The work of von Neumann added the concept of storage and combined with Turing’s work to provide the basis for most computers designed to this day.
3.3 What Is a Programming Language?
For a large number of people a programming language provides the means of getting a digital computer to solve a problem. There is a wide range of problems and an equally wide range of programming languages, with particular languages being suited to a particular class of problems, all of which often appears bewildering to the beginner.
3.4 Program Language Development and Engineering
There is much in common between the development of programming languages and the development of anything from the engineering world. Consider the car: old cars offer much of the same functionality as more modern ones, but most people prefer driving newer models. The same is true of programming languages, where you can achieve much with the older languages, but the newer ones are easier to use.
3.5 The Early Days
A concept that proves very useful when discussing programming languages is that of the level of a machine. By this is meant how close a language is to the underlying machine that the program runs on. In the early days of programming (up to 1954) there were only two broad categories: machine languages and assemblers. The language that digital machines use is that of 0 and 1, i.e., they are binary devices. Writing a program in terms of patterns of 0 and 1 was not particularly satisfactory and the capability of using more meaningful mnemonics was soon introduced. Thus it was realised quite quickly that one of the most important aspects of programming languages is that they have to be read and understood by both machines and humans.
3.5.1 Fortran’s Origins
The next stage was the development

 of higher-level languages. The first of these was Fortran and it was developed over a 3 year period from 1954 to 1957 by an IBM team led by John Backus. This group achieved considerable success, and helped to prove that the way forward lay with high-level languages for computer-based problem solving. Fortran stands for formula translation and was used mainly by people with a scientific background for solving problems that had a significant arithmetic content. It was thus relatively easy, for the time, to express this kind of problem in Fortran.
By 1966 and the first standard Fortran:	Was widely available.

	Was easy to teach.

	Had demonstrated the benefits of subroutines and independent compilation.

	Was relatively machine independent.

	Often had very efficient implementations.

Possibly the single most important fact about Fortran was, and still is, its widespread usage in the scientific community.
3.5.2 Fortran 77
The next standard
 in 1977 (actually 1978, and thus out by one — a very common programming error, more of this later!) added a number of major improvements including	Block IF and END IF statements, with optional ELSE and ELSE IF clauses, to provide improved language support for structured programming

	DO loop extensions, including parameter expressions, negative increments, and zero trip counts

	OPEN, CLOSE, and INQUIRE statements for improved I/O capability

	IMPLICIT statement, to override implicit conventions that undeclared variables are INTEGER if their name begins with I, J, K, L, M, or N (and REAL otherwise)

	CHARACTER data type, replacing Hollerith strings with vastly expanded facilities for character input and output and processing of character-based data

	PARAMETER statement for specifying constants

	SAVE statement for persistent local variables

	Generic names for intrinsic functions

	A set of intrinsics (LGE, LGT, LLE, LLT) for lexical comparison of strings

One important feature sometimes overlooked was backwards compatibility. This meant that the standard did not invalidate any standard conformant Fortran 66 program. This protected investment in old code.
3.5.3 Cobol
The business world also
 realised that computers were useful and several languages were developed, including FLOWMATIC, AIMACO, Commercial Translator and FACT, leading eventually to Cobol — COmmon Business Orientated Language. There is a need in commercial programming to describe data in a much more complex fashion than for scientific programming, and Cobol had far greater capability in this area than Fortran. The language was unique at the time in that a group of competitors worked together with the objective of developing a language that would be useful on machines used by other manufacturers.
The contributions made by Cobol include:	Firstly the separation among:

	The task to be undertaken.

	The description of the data involved.

	The working environment in which the task is carried out.

	Secondly a data description mechanism that was largely machine independent.

	Thirdly its effectiveness for handling large files.

	Fourthly the benefit to be gained from a programming language that was easy to read.

Modern developments in computing — of report generators, file-handling software, fourth-generation development tools, and especially the increasing availability of commercial relational database management systems — are gradually replacing the use of Cobol, except where high efficiency and/or tight control are required.
3.5.4 Algol
Another important development
 of the 1950s was Algol. It had a history of development from Algol 58, the original Algol language, through Algol 60 eventually to the Revised Algol 60 Report. Some of the design criteria for Algol 58 were:	The language should be as close as possible to standard mathematical notation and should be readable with little further explanation.

	It should be possible to use it for the description of computing processes in publications.

	The new language should be mechanically translatable into machine programs.

A sad feature of Algol 58 was the lack of any input/output facilities, and this meant that different implementations often had incompatible features in this area.
The next important step for Algol occurred at a UNESCO-sponsored conference in June 1959. There was an open discussion on Algol and the outcome was Algol 60, and eventually the Revised Algol 60 Report.
It was at this conference that John Backus gave his now famous paper on a method for defining the syntax of a language, called Backus Normal Form, or BNF. The full significance of the paper was not immediately recognised. However, BNF was to prove of enormous value in language definition, and helped provide an interface point with computational linguistics.
The contributions of Algol to program language development include:	Block structure.

	Scope rules for variables because of block structure.

	The BNF definition by Backus — most languages now have a formal definition.

	The support of recursion.

	Its offspring.

Thus Algol was to prove to make a contribution to programming languages that was never reflected in the use of Algol 60 itself, in that it has been the parent of one of the main strands of program language development.
3.6 Chomsky and Program Language Development
Programming languages are of considerable
 linguistic interest, and the work of Chomsky in 1956 in this area was to prove of inestimable value. Chomsky’s system of transformational grammar was developed in order to give a precise mathematical description to certain aspects of language. Simplistically, Chomsky describes grammars, and these grammars in turn can be used to define or generate corresponding kinds of languages. It can be shown that for each type of grammar and language there is a corresponding type of machine. It was quickly realised that there was a link with the earlier work of Turing.
This link helped provide a firm scientific base for programming language development, and modern compiler writing has come a long way from the early work of Backus and his team at IBM. It may seem unimportant when playing a video game at home or in an arcade, but for some it is very comforting that there is a firm theoretical basis behind all that fun.
3.7 Lisp
There were also developments
 in very specialized areas. List processing was proving to be of great interest in the 1950s and saw the development of IPLV between 1954 and 1958. This in turn led to the development of Lisp at the end of the 1950s. Lisp has proved to be of considerable use for programming in the areas of artificial intelligence, playing chess, automatic theorem proving and general problem solving. It was one of the first languages to be interpreted rather than compiled. Whilst interpreted languages are invariably slower and less efficient in their use of the underlying computer systems than compiled languages, they do provide great opportunities for the user to explore and try out ideas whilst sitting at a terminal. The power that this gives to the computational problem solver is considerable.
Possibly the greatest contribution to program language development made by Lisp was its functional notation. One of the major problems for the Lisp user has been the large number of Lisp flavours, and this has reduced the impact that the language has had and deserved.
3.8 Snobol
Snobol was developed to aid
 in string processing, which was seen as an important part of many computing tasks, e.g., parsing of a program. Probably the most important thing that Snobol demonstrated was the power of pattern matching in a programming language, e.g., it is possible to define a pattern for a title that would include Mr, Mrs, Ms, Miss, Rev, etc., and search for this pattern in a text using Snobol. Like Lisp it is generally available as an interpreter rather than a compiler, but compiled versions do exist, and are often called Spitbol. Pattern-matching capabilities are now to be found in many editors and this makes them very powerful and useful tools. It is in the area of text manipulation that Snobol’s greatest contribution to program language development lies.
3.9 Second-Generation Languages
3.9.1 PL/1 and Algol 68
It is probably true
 that Fortran, Algol 60 and Cobol

 are the three main first-generation high-level languages. The 1960s saw the emergence of PL/1 and Algol 68. PL/1 was a synthesis of features of Fortran, Algol 60 and Cobol. It was soon realised that whilst PL/1 had great richness and power of expression this was in some ways offset by the greater difficulties involved in language definition and use.
These latter problems were also true of Algol 68. The report introduced its own syntactic and semantic conventions and thus forced another stage in the learning process on the prospective user. However, it has a small but very committed user population who like the very rich facilities provided by the language.
3.9.2 Simula
Another strand that makes
 up program language development is provided by Simula, a general purpose programming language developed by Dahl, Myhrhaug and Nygaard of the Norwegian Computing Centre. The most important contribution that Simula makes is the provision of language constructs that aid the programming of complex, highly interactive problems. It is thus heavily used in the areas of simulation and modelling. It was effectively the first language to offer the opportunity of object orientated programming, and we will come back to this very important development in programming languages later in this chapter.
3.9.3 Pascal
The designer of Pascal

 , Niklaus Wirth, had participated in the early stages of the design of Algol 68 but considered that the generality and complexity of Algol 68 was a move in the wrong direction. Pascal (like Algol 68) had its roots in Algol 60 but aimed at providing expressive power through a small set of straightforward concepts. This set is relatively easy to learn and helps in producing readable and hence more comprehensible programs.
It became the language of first choice within the field of computer science during the 1970s and 1980s, and the comment by Wirth sums up the language very well: “although Pascal had no support from industry, professional societies, or government agencies, it became widely used. The important reason for this success was that many people capable of recognising its potential actively engaged themselves in its promotion. As crucial as the existence of good implementations is the availability of documentation. The conciseness of the original report made it attractive for many teachers to expand it into valuable textbooks. Innumerable books appeared between 1977 and 1985, effectively promoting Pascal to become the most widespread language used in introductory programming courses. Good course material and implementations are the indispensable prerequisites for such an evolution.”
3.9.4 APL
APL is another interesting language
 of the early 1960s. It was developed by Iverson early in the decade and was available by the mid to late 1960s. It is an interpretive vector and matrix based language with an extensive set of operators for the manipulation of vectors, arrays, etc., of whatever data type. As with Algol 68 it has a small but dedicated user population. A possibly unfair comment about APL programs is that you do not debug them, but rewrite them!
3.9.5 Basic
Basic stands for Beginners
 All Purpose Symbolic Instruction Code, and was developed by Kemeny and Kurtz at Dartmouth during the 1960s. Its name gives a clue to its audience and it is very easy to learn. It is generally interpreted, though compiled versions do exist. It has proved to be well suited to the rapid development of small programs. It is much criticised because it lacks features that encourage or force the adoption of sound programming techniques.
3.9.6 C
There is a requirement
 in computing to be able to access the underlying machine directly or at least efficiently. It is therefore not surprising that computer professionals have developed high-level languages to do this. This may well seem a contradiction, but it can be done to quite a surprising degree. Some of the earliest published work was that of Martin Richards on the development of BCPL.
This language directly influenced the work of Ken Thompson and can be clearly seen in the programming languages B and C

 . The UNIX operating system is almost totally written in C and demonstrates very clearly the benefits of the use of high-level languages wherever possible.
With the widespread use of UNIX within the academic world C gained considerable ground during the 1970s and 1980s. UNIX systems also offered much to the professional software developer, and became widely used for large-scale software development and as Ritchie says: “C is quirky, flawed, and an enormous success. while accidents of history surely helped, it evidently satisfied a need for a system implementation language efficient enough to displace assembly language, yet sufficiently abstract and fluent to describe algorithms and interactions in a wide variety of environments.”
There have been several versions of C. Before the language was standardised most people relied on an informal specification contained in the book by Dennis

 Ritchie and Brian Kernighan, and this version is called K&R C. In 1989 the American National Standards Institute published the ANSI C or C89 standard. It became an ISO

 standard a year later. The second edition of the K&R book covers the ANSI C standard. ISO later released an extension

 to the internationalization support of the standard in 1995, and a revised standard (C99) in 1999.
C99 introduced several new features, including inline functions, several new data type s (including long long int and a complex type to represent complex numbers), variable-length arrays, improved support for

 IEEE 754 floating point, support for variadic macros (macros of variable arity), and support for one-line comments beginning with // which are part of C++. This increased the compatibility of C and C++. Many of these had already been implemented as extensions in several C compilers.
The current version

 of the standard - C11 was approved in December 2011.
The C11 standard adds several new features to C and the library, including type generic macros, anonymous structures, improved Unicode support, atomic operations, multithreading, and bounds-checked functions. It improved compatibility with C++.
3.10 Some Other Strands in Language Development
There are many strands that make up program language development and some of them are introduced here.
3.10.1 Abstraction, Stepwise Refinement and Modules
Abstraction has proved to be very

 important in programming. It enables a complex task to be broken down into smaller parts concentrating on what we want to happen rather than how we want it to happen. This leads almost automatically to the ideas of stepwise refinement and modules, with collections of modules to perform specific tasks or steps.
3.10.2 Structured Programming
Structured programming in its narrowest
 sense concerns itself with the development of programs using a small but sufficient set of statements and, in particular, control statements. It has had a great effect on program language design, and most languages now support the minimal set of control structures.
In a broader sense structured programming subsumes other objectives, including simplicity, comprehensibility, verifiability, modifiability and maintenance of programs.
3.10.3 Data Structuring and Procedural Programming
By the 1970’s languages started

 to emerge that offered the ability to organise data logically - so called data structuring, and we will look at two of these in the coverage below - C and Pascal.
C
 provided this facility via structs and Pascal
 did it via records. These languages also offered two ways of processing the data - directly or via procedures. The terms concrete and abstract data type

 are sometimes also used in the literature.
An example may help here. Consider a date. This is typically made up of three components, a day, a month and a year. In C we can create a user defined type called a date using structs. We can then create variables of this type. This is done in Pascal in a similar way using records.
Access to the components of a date (day, month and year) can then either be direct - an example of a concrete data types, or indirect (via procedures) - an abstract data types.
Simplistically direct access (or concrete data types) offer the benefit of efficiency, and the possibility of lack of data integrity. In our date example we may set a day to the value 31 when the month is February.
Indirect access (or abstract data types) are slightly less efficient as we now have the overhead of a procedure call to access the data, but better opportunity for data integrity as we can provide hidden code within the procedures to ensure that the day, month and year combinations are valid.
Fortran did not provide this facility until the Fortran 90 standard.
3.10.4 Standardisation
The purposes of a standard
 are quite varied and include:	Investment in people: by this we mean that the time spent in learning a standard language pays off in the long term, as what one learns is applicable on any hardware/software platform that has a standard conformant compiler.

	Portability: one can take the code one has written for one hardware/software platform and move it to any hardware/software platform that has a standard conformant compiler.

	Known reference point: when making comparisons one starts with reference to the standard first, and then between the additional functionality of the various implementations

These are some but not all of the reasons for the use of standards. Their importance is summed up beautifully by Ronald G. Ross in his introduction to the Cannan and Otten book on the SQL standard: “Anybody who has ever plugged in an electric cord into a wall outlet can readily appreciate the inestimable benefits of workable standards. Indeed, with respect to electrical power, the very fact that we seldom even think about such access (until something goes wrong) is a sure sign of just how fundamentally important a successful standard can be.”
3.11 Ada
Ada represents the
 culmination of many years of work in program language development. It was a collective effort and the main aim was to produce a language suitable for programming large-scale and real-time systems. Work started in 1974 with the formulation of a series of documents by the American Department of Defence (DoD), which led to the Steelman documents. It is a modern algorithmic language with the usual control structure s and facilities for the use of modules, and allows separate compilation with type checking across modules.
Ada is a powerful and well-engineered language. Its widespread use is certain as it has the backing of the DoD. However, it is a large and complex language and consequently requires some effort to learn.
The latest version of the language is Ada 2012. The following url[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figa_HTML.gif]

provides a good starting point. Visit this site if you want up to date details about Ada.
Another good source is[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figb_HTML.gif]

Both sites have free electronic versions of the various Ada standards.
3.12 Modula
Modula was designed by
 Wirth during the 1970s at ETH, for the programming of embedded real-time systems. It has many of the features of Pascal, and can be taken for Pascal at a glance. The key new features that Modula introduced were those of processes and monitors.
As with Pascal it is relatively easy to learn and this makes it much more attractive than Ada for most people, achieving much of the capability without the complexity.
3.13 Modula 2
Wirth carried on developing
 his ideas about programming languages and the culmination of this can be seen in Modula 2. In his words: “In 1977, a research project with the goal to design a computer system (hardware and software) in an integrated approach, was launched at the Institut fur Informatik of ETH Zurich. This system (later to be called Lilith) was to be programmed in a single high level language, which therefore had to satisfy requirements of high level system design as well as those of low level programming of parts that closely interact with the given hardware. Modula 2 emerged from careful design deliberations as a language that includes all aspects of Pascal and extends them with the important module concept and those of multi-programming. Since its syntax was more in line with Modula than Pascal’s the chosen name was Modula 2.”
The language’s main additions with regard to Pascal are:	The module concept, and in particular the facility to split a module into a definition part and an implementation part.

	A more systematic syntax which facilitates the learning process. In particular, every structure starting with a keyword also ends with a keyword, i.e., is properly bracketed.

	The concept of process as the key to multiprogramming facilities.

	So-called low-level facilities, which make it possible to breach the rigid type consistency rules and allow one to map data with Modula 2 structure onto a store without inherent structure.

	The procedure type, which allows procedures to be dynamically assigned to variables.

A sad feature of Modula 2 was the long time taken to arrive at a standard for the language.
3.14 Other Language Developments
The following is a small selection of language developments that the authors find interesting — they may well not be included in other people’s coverage.
3.14.1 Logo
Logo is a language that
 was developed by Papert and colleagues at the Artificial Intelligence Laboratory at MIT. Papert is a professor of both mathematics and education, and has been much influenced by the psychologist Piaget. The language is used to create learning environments in which children can communicate with a computer. The language is primarily used to demonstrate and help children develop fundamental concepts of mathematics. Probably the turtle and turtle geometry are known by educationalists outside of the context of Logo. Turtles have been incorporated into the Smalltalk computer system developed at Xerox Palo Alto Research Centre — Xerox PARC.
3.14.2 Postscript, TeX and LaTeX
The 1980s saw a rapid spread

 in the use of computers for the production of printed material. The 3 languages are each used quite extensively in this area.
Postscript is a low-level interpretive programming language with good graphics capabilities. Its primary purpose is to enable the easy production of pages containing text, graphical shapes and images. It is rarely seen by most end users of modern desktop publishing systems, but underlies many of these systems. It is supported by an increasing number of laser printers and typesetters.
TeX is a language designed for the production of mathematical texts, and was developed by Donald Knuth. It linearises the production of mathematics using a standard computer keyboard. It is widely used in the scientific community for the production of documents involving mathematical equations.
LaTeX is Leslie Lamport’s version of TeX, and is regarded by many as more friendly. It is basically a set of macros that hide raw TeX from the end user. The TeX ratio is probably 1–9 (or so I’m reliably informed by a TeXie).
3.14.3 Prolog
Prolog was originally developed
 at Marseille by a group led by Colmerauer in 1972/73. It has since been extended and developed by several people, including Pereira (L.M.), Pereira (F), Warren and Kowalski. Prolog is unusual in that it is a vehicle for logic programming. Most of the languages described here are basically algorithmic languages and require a specification of how you want something done. Logic programming concentrates on the what rather than the how. The language appears strange at first, but has been taught by Kowalski and others to 10-year-old children at schools in London.
3.14.4 SQL
SQL stands for Structured
 Query Language, and was originally developed by people mainly working for IBM in the San Jose Research Laboratory. It is a relational database language, and enables programmers to define, manipulate and control data in a relational database. Simplistically, a relational database is seen by a user as a collection of tables, comprising rows and columns. It has become the most important language in the whole database field.
3.14.5 ICON
ICON is in the
 same family as Snobol, and is a high-level general purpose programming language that has most of the features necessary for efficient processing of nonnumeric data. Griswold (one of the original design team for Snobol) has learnt much since the design and implementation of Snobol, and the language is a joy to use in most areas of text manipulation.
It is available for most systems via anonymous FTP from a number of sites on the Internet.
3.15 Object Oriented Programming
Object oriented represents
 a major advance in program language development. The concepts that this introduces include:	Classes.

	Objects.

	Messages.

	Methods.

These in turn draw on the ideas found in more conventional programming languages and correspond to	Extensible data types.

	Instances of a class.

	Dynamically bound procedure calls.

	Procedures of a class.

Inheritance is a very powerful high-level concept introduced with object oriented programming. It enables an existing data type with its range of valid operations to form the basis for a new class, with more data types added with corresponding operations, and the new type is compatible with the original.
Fortran 2003 offered support for object oriented programming. This is achieved via the module facility rather than the class facility found in other languages like C++, Java and C#.
3.15.1 Simula
As was mentioned earlier, the first
 language to offer functionality in this area was Simula, and thus the ideas originated in the 1960s. The book Simula Begin by Birtwistle, Dahl, Myhrhaug and Nygaard is well worth a read as it represents one of the first books to introduce the concepts of object oriented programming.
3.15.2 Smalltalk
Language plus use
 of a computer system.
Smalltalk has been under development by the Xerox PARC Learning Research Group since the 1970s. In their words: “Smalltalk is a graphical, interactive programming environment. As suggested by the personal computer vision, Smalltalk is designed so that every component in the system is accessible to the user and can be presented in a meaningful way for observation and manipulation. The user interface issues in Smalltalk revolve around the attempt to create a visual language for each object. The preferred hardware system for Smalltalk includes a high resolution graphical display screen and a pointing device such as a graphics pen or mouse. With these devices the user can select information viewed on the screen and invoke messages in order to interact with the information.” Thus Smalltalk represents a very different strand in program language development. The ease of use of a system like this has long been appreciated and was first demonstrated commercially in the Macintosh microcomputers.
Wirth has spent some time at Xerox PARC and has been influenced by their work. In his own words “the most elating sensation was that after sixteen years of working for computers the computer now seemed to work for me.” This influence can be seen in the design of the Lilith machine, the original Modula 2 engine, and in the development of Oberon as both a language and an operating system.
3.15.3 Oberon and Oberon 2
As Wirth says: “The programming language Oberon

 is the result of a concentrated effort to increase the power of Modula-2 and simultaneously to reduce its complexity. Several features were eliminated, and a few were added in order to increase the expressive power and flexibility of the language.”
Oberon and Oberon 2 are thus developments beyond Modula 2. The main new concept added to Oberon was that of type extension. This enables the construction of new data types based on existing types and allows one to take advantage of what has already been done for that existing type.
Language constructs removed included:	Variant records.

	Opaque types.

	Enumeration types.

	Subrange types.

	Local modules.

	With statement.

	Type transfer functions.

	Concurrency.

The short paper by Wirth provides a fuller coverage. It is available at ETH via anonymous FTP.
3.15.4 Eiffel
Eiffel was originally developed
 by Interactive Software Engineering Inc. (ISE) founded by Bertrand Meyer. Meyer’s book Object-Oriented Software Construction contains a detailed treatment of the concepts and theory of the object technology that led to Eiffel’s design.
The language first became available in 1986, and the first edition of Meyer’s book was published in 1988. The following is a quote from the Wikipedia entry.

 	The design goal behind the Eiffel language, libraries, and programming methods is to enable programmers to create reliable, reusable software modules. Eiffel supports multiple inheritance, genericity, polymorphism, encapsulation, type-safe conversions, and parameter covariance. Eiffel’s most important contribution to software engineering is design by contract (DbC), in which assertions, preconditions, postconditions, and class invariants are employed to help ensure program correctness without sacrificing efficiency.

3.15.5 C++
Stroustrup did his PhD thesis
 at the Computing Laboratory, Cambridge University, England, and worked with Simula. He had previously worked with Simula at the University of Aarhus in Denmark. His comments are illuminating: “but was pleasantly surprised by the way the mechanisms of the Simula language became increasingly helpful as the size of the program increased. The class and co-routine mechanisms of Simula and the comprehensive type checking mechanisms ensured that problems and errors did not (as I - and I guess most people - would have expected) grow linearly with the size of the program. Instead, the total program acted like a collection of very small (and therefore easy to write, comprehend and debug) programs rather than a single large program.”
He designed C++ to provide Simula’s functionality within the framework of C’s efficiency, and he succeeded in this goal as C++ is one of the most widely used object oriented programming language.
The language began as enhancements to C, adding classes, virtual functions, operator overloading, multiple inheritance, templates and exception handling by the time of the first standard.
Its influence in the area of programming language design can be seen in Java and C#.
Table 3.1 summarises the C++ standardisation history.Table 3.1C++ standardisation history

	Year
	C++ standard
	Informal name

	1998
	ISO/IEC 14882:1998
	C++98

	2003
	ISO/IEC 14882:2003
	C++03

	2007
	ISO/IEC TR 19768:2007
	C++TR1

	2011
	ISO/IEC 14882:2011
	C++11

The following are some

 of the guidelines used by the standards committee in the development of C++11.

 	Maintain stability and compatibility with C++98 and possibly with C;

	Prefer introduction of new features through the standard library, rather than extending the core language;

	Prefer changes that can evolve programming technique;

	Improve C++ to facilitate systems and library design, rather than to introduce new features useful only to specific applications;

	Increase type safety by providing safer alternatives to earlier unsafe techniques;

	Increase performance and the ability to work directly with hardware;

	Provide proper solutions for real-world problems;

	Implement zero-overhead principle (additional support required by some utilities must be used only if the utility is used);

	Make C++ easy to teach and to learn without removing any utility needed by expert programmers.

C++14

 was a small extension over C++11 and was published in December 2014.
C++17

 was a major update and was published in December 2017.
3.15.6 Java
Bill Joy (of Sun fame) had by the
 late 1980s decided that C++ was too complicated and that an object oriented environment based upon C++ would be of use. At around about the same time James Gosling (mister emacs) was starting to get frustrated with the implementation of an SGML editor in C++. Oak was the outcome of Gosling’s frustration.
Sun over the next few years ended up developing Oak for a variety of projects. It wasn’t until Sun developed their own web browser, Hotjava, that Java as a language hit the streets. And as the saying goes the rest is history.
Java is a relatively simple object oriented language. Whilst it has its origins in C++ it has dispensed with most of the dangerous features. It is OO throughout. Everything is a class.
It is interpreted and the intermediate byte code will run on any machine that has a Java virtual machine for it. This is portability at the object code level, unlike portability at the source code level — which is what we expect with most conventional languages. Some of the safe features of the language include:	Built in garbage collection.

	Array subscript checking.

	No pointers — everything is passed by reference.

It is multithreaded, which makes it a delight for many applications. It has an extensive windows toolkit, the so called AWT that was in the original release of the language and Swing that came in later.
It is under continual development and at the time of writing was in its eighth major release.
Sun was acquired by Oracle in 2010.
3.15.7 C#
C# is a recent
 language from Microsoft and is a key part of their .NET framework. It is a modern, well-engineered language in the same family of programming languages in terms of syntax as C, C++ and Java. If you have a knowledge of one of these languages it will look very familiar.
One of the design goals was to produce a component oriented language, and to build on the work that Microsoft had done with OLE, ActiveX and COM:	ActiveX is a set of technologies that enables software components to interact with one another in a networked environment, regardless of the language in which they were created. ActiveX was built on the Component Object Model (COM).

	COM is the object model on which ActiveX Controls and OLE are built. COM allows an object to expose its functionality to other components and to host applications. It defines both how the object exposes itself and how this exposure works across processes and networks. COM also defines the object’s life cycle.

	OLE is a mechanism that allows users to create and edit documents containing items or objects created by multiple applications. OLE was originally an acronym for Object Linking and Embedding. However, it is now referred to simply as OLE. Parts of OLE not related to linking and embedding are now part of Active technology.

Other design goals included creating a language:	Where everything is an object — C# also has a mechanism for going between objects and fundamental types (integers, reals, etc.).

	Which would enable the construction of robust and reliable software — it has garbage collection, exception handling and type safety.

	Which would use a C/C++/Java syntax which is already widely known and thus help programmers converting from one of these languages to C#.

It has been updated three times since its original release. Some of the more important features added in C# 2 were Generics, Iterators, Partial Classes, Nullable Types and Static Classes. The major feature that C# 3 added for most people was LINQ, a mechanism for data querying. C# 4 was released in 2010 and added a number of additional features.
3.15.8 Python
Python is an object-oriented

 , interpreted, and interactive programming language. Python was conceived in the late 1980s, and its implementation was started in December 1989 by Guido van Rossum at CWI in the Netherlands as a successor to the ABC language (itself inspired by SETL) capable of exception handling and interfacing with the Amoeba operating system. Van Rossum is Python’s principal author, and his continuing central role in deciding the direction of Python is reflected in the title given to him by the Python community, (benevolent dictator for life - BDFL).
Heres a very brief summary of what started it all, written by Guido van Rossum:I had extensive experience with implementing an interpreted language in the ABC group at CWI, and from working with this group I had learned a lot about language design. This is the origin of many Python features, including the use of indentation for statement grouping and the inclusion of very-high-level data types (although the details are all different in Python). I had a number of gripes about the ABC language, but also liked many of its features. It was impossible to extend the ABC language (or its implementation) to remedy my complaints in fact its lack of extensibility was one of its biggest problems. I had some experience with using Modula−2[image: $$+$$] and talked with the designers of Modula-3 and read the Modula−3 report. Modula−3 is the origin of the syntax and semantics used for exceptions, and some other Python features. I was working in the Amoeba distributed operating system group at CWI. We needed a better way to do system administration than by writing either C programs or Bourne shell scripts, since Amoeba had its own system call interface which wasnt easily accessible from the Bourne shell. My experience with error handling in Amoeba made me acutely aware of the importance of exceptions as a programming language feature. It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I decided that I needed a language that was generally extensible. During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During the next year, while still mostly working on it in my own time, Python was used in the Amoeba project with increasing success, and the feedback from colleagues made me add many early improvements. In February 1991, after just over a year of development, I decided to post to USENET. The rest is in the Misc/HISTORY file.

Python 2.0
 was released on 16 October 2000 and had many major new features, including a cycle-detecting garbage collector and support for Unicode. With this release the development process was changed and became more transparent and community-backed.
Python 3.0 (also called Python 3000 or py3k), a major, backwards-incompatible release, was released on 3 December 2008 after a long period of testing. Many of its major features have been backported to
 the backwards-compatible Python 2.6 and 2.7.
Here is the main Python web site.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figc_HTML.gif]

It is quite widely used. Large organizations that make use of Python include Google, Yahoo!, CERN, and NASA.
Our involvement with Python started when we were asked about Python training by people working at the Atomic Weapons Establishment in Aldermaston. We put together a short 3 day intensive course for them.
Quite a fun language!
3.16 Back to Fortran!
We finish off with a coverage of the developments since the Fortran 77 standard. Practically all of the Fortran compilers available today fully support the Fortran 90 and 95 standards. Support for features from the Fortran 2003 and 2008 standards is improving on a regular basis. See the following document[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figd_HTML.gif]

for up to date information on what each compiler offers in terms of standard support.
3.16.1 Fortran 90
Almost as soon
 as the Fortran 77 standard was complete and published, work began on the next version. The language drew on many of the ideas covered in this chapter and these help to make Fortran 90 a very promising language. Some of the new features included:	New source form, with blanks being significant and names being up to 31 characters.

	Implicit none.

	Better control structures.

	Control of the precision of numerical computation.

	Array processing.

	Pointers.

	User defined data types and operators.

	Procedures.

	Modules.

	Recursion.

	Dynamic storage allocation.

This was the major update that the Fortran community had been waiting a long time for. Backwards compatibility was again a key aim. This standard did not invalidate any standard conformant Fortran 77 program.
3.16.2 Fortran 95
Fortran was next
 standardised in 1996 — yet again out by one! Firstly we have a clear up of some of the areas in the standard that had emerged as requiring clarification. Secondly Fortran 95 added the following major concepts:	The forall construct.

	Pure and elemental procedures.

	Implicit initialisation of derived-type objects.

	Initial association status for pointers.

The first two help considerably in parallelization of code.
Minor features include amongst others:	Automatic deallocation of allocatable arrays.

	Intrinsic sign function distinguishes between –0 and [image: $$+$$]0.

	Intrinsic function null returns disconnected pointer.

	Intrinsic function cpu_time returns the processor time.

	References to some pure functions are allowed in specification statements.

	Nested where constructs.

	Masked elsewhere

 construct.

	Small changes to the ceiling, floor, maxloc and minloc intrinsic functions

Some of these were added to keep Fortran in line with High Performance Fortran (HPF). More details are given later.
Part 2 of the standard (ISO/IEC 1539-2:1994) adds the functional specification for varying length character data type, and this extends the usefulness of Fortran for character applications very considerably.
3.16.3 ISO Technical Reports TR15580 and TR15581

There are two additional reports that have been published on Fortran. TR 15580 specifies three modules that provide access to IEEE floating point arithmetic and TR15581 allows the use of the allocatable attribute on dummy arguments, function results and structure components.
3.16.4 Fortran 2003
The language is known as Fortran 2003
 even though the language did not make it through the standardisation process until 2004. It was a major revision.

 	Derived type enhancements
	parameterised derived types (allows the kind, length, or shape of a derived type’s components to be chosen when the derived type is used)

	mixed component accessibility (allows different components to have different accessibility)

	public entities of private type

	improved structure constructors

	
 finalisers

	Object oriented programming support
	enhanced data abstraction (allows one type to extend the definition of another type)

	polymorphism (allows the type of a variable to vary at run time)

	dynamic type allocation

	select type construct (allows a choice of execution flow depending upon the type a polymorphic object currently has)

	type-bound procedures

	The associate construct (allows a complex expression or object to be denoted by a simple symbol)

	Data manipulation enhancements
	allocatable components

	deferred-type parameters

	volatile attribute

	explicit type specification in array constructors

	intent specification of pointer arguments

	specified lower bounds of pointer assignment, and pointer rank remapping

	extended initialisation expressions

	max and min intrinsics for character type

	enhanced complex constants

	Input/output enhancements
	asynchronous transfer operations (allow a program to continue to process data while an input/output transfer occurs)

	stream access (allows access to a file without reference to any record structure)

	user specified transfer operations for derived types

	user specified control of rounding during format conversions

	the flush statement

	named constants for preconnected units

	regularisation of input/output keywords

	access to input/output error messages

	Procedure pointers

	Scoping enhancements
	the ability to rename defined operators (supports greater data abstraction)

	control of host association into interface bodies

	Support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the extent a processor’s arithmetic supports the IEC standard)

	Interoperability with the C programming language (allows portable access to many libraries and the low-level facilities provided by C and allows the portable use of Fortran libraries by programs written in C)

	Support for international usage
	ISO 10646

	choice of decimal or comma in numeric formatted input/output

	Enhanced integration with the host operating system
	access to command line arguments and environment variables

	access to the processor’s error messages (improves the ability to handle exceptional conditions)

The earlier web address has details of Fortran compiler conformance to this standard.
3.16.5 DTR 19767 Enhanced Module Facilities

The module system in Fortran has a number of shortcomings and this DTR addresses some of the issues.
One of the major issues was the so-called recompilation cascade. Changes to one part of a module forced recompilation of all code that used the module. Modula 2 addressed this issue by distinguishing between the definition or interface and implementation. This can now be achieved in Fortran via submodules.
3.16.6 Fortran 2008
The next standard

 , ISO/IEC 1539-1:2010, commonly known as Fortran 2008, was approved in September 2010. The new features include:	
 Submodules

	
 Coarrays

	Performance enhancements
	do concurrent

	Contiguous attribute

	Simply contiguous arrays

	Data declaration

	Maximum rank

	Long integers

	Allocatable components of recursive type

	Implied-shape array

	Pointer initialization

	Data statement restrictions lifted

	Kind of a forall index

	Type statement for intrinsic types

	Declaring type-bound procedures

	Extensions to value attribute

	Data usage
	Omitting an allocatable component in a structure constructor

	Multiple allocations with source[image: $$=$$]

	Copying the properties of an object in an allocate statement

	Polymorphic assignment

	Accessing real and imaginary parts

	Pointer functions

	Elemental dummy argument restrictions lifted

	Input/Output
	Finding a unit when opening a file

	g0 edit descriptor

	Unlimited format item

	Recursive input/output

	Execution control
	The block construct

	Exit statement

	Stop code

	Intrinsic procedures and modules
	Bit processsing

	Storage size

	Optional argument radix added to selected real kind

	Extensions to trigonometric and hyperbolic intrinsic functions

	Bessel functions

	Error and gamma functions

	Euclidean vector norms

	
 Parity

	Execute command line

	Optional argument back added to maxloc and minloc

	Find location in an array

	String comparison

	
 Constants

	Compiler information

	Function for C sizeof

	Additional optional argument for ieee_selected_real_kind

	Programs and procedures
	Save attribute for module and submodule data

	Empty contains part

	Form of the end statement for an internal or module procedure

	Internal procedure as an actual argument or pointer target

	Null pointer or unallocated allocatable as an absent dummy argument

	Non-pointer actual for pointer dummy argument

	Generic resolution by pointer/allocatable or data/procedure

	Elemental procedures that are not pure

	Entry statement becomes obsolescent

	Source form
	Semicolon at line start

A more thorough coverage can be found in John Reid’s paper.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Fige_HTML.gif]

3.16.7 TS 29113 Further Interoperability of Fortran with C
This TS was published in 2012.
3.16.8 Fortran 2018
According to the current
 WG5 work schedule it is expected that the Fortran 2018 standard will be published in August 2018.
Here is a short list of some of the changes introduced by this standard. It has been taken from John Reid’s paper on the new features of Fortran 2018. The first edition of this paper is N2127 and was published in 2017. The second edition is N2145 and was published in January 2018.

 	Additional parallel features in Fortran
	
 Teams

	Image failure

	Form team statement

	Change team construct

	Coarrays allocated in teams

	Critical construct

	Lock and unlock statements

	Sync team statement

	Image selectors

	Intrinsic functions get team and team number

	Intrinsic function image index

	Intrinsic function num images

	Intrinsic function this image

	Intrinsic function move alloc

	Fail image statement

	Detecting failed and stopped images

	Collective subroutines

	New and enhanced atomic subroutines

	Failed images and stat[image: $$=$$]specifiers

	
 Events

	Conformance with ISO/IEC/IEEE 60559:2011
	Subnormal values

	Type for floating-point modes

	Round away from zero

	Decimal rounding mode

	Rounded conversions

	Fused multiply-add

	Test sign

	Conversion to integer type

	Remainder function

	Maximum and minimum values

	Adjacent machine numbers

	
 Comparisons

	Removal of deficiencies and discrepancies
	Default accessibility for entities accessed from a module

	Implicit none enhancement

	Enhancements to inquire

	d0.d, e0.d, es0.d, en0.d, g0.d and ew.d e0 edit descriptors

	Formatted input error conditions

	Rules for generic procedures

	Enhancements to stop and error stop

	Intrinsics that access the computing environment

	New elemental intrinsic function out of range

	New reduction intrinsic reduce

	Intrinsic function coshape

	Intrinsic subroutine random init

	Intrinsic function sign

	Intrinsic functions extends type of and same type as

	Nonstandard procedure from a standard intrinsic module

	Kind of the do variable in implied do

	Locality clauses in do concurrent

	Control of host association

	Connect a file to more than one unit

	Advancing input with size=

	Extension to the generic statement

	Removal of anomalies regarding pure procedures

	Recursive and non-recursive procedures

	Simplification of calls of the intrinsic cmplx

	Removal of the restriction on argument dim of many intrinsic functions

	Kinds of arguments of intrinsic and IEEE procedures

	Hexadecimal input/output

	
 Deletions
 	Arithmetic if

	Nonblock do construct

	New obsolescences
	common and equivalence

	Labelled do statements

	Specific names for intrinsic functions

	The forall construct and statement

Both N2127 and N2145 can be found on the WG5 site.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figf_HTML.gif]

Both versions can also be found at the ACM Fortran Forum site.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figg_HTML.gif]

N2127 was published in the August 2017 edition, and N2145 can be found in the April 2018 edition.
Table 3.2 summarises the Fortran standardisation history.Table 3.2Fortran standardisation history

	Year
	Fortran standard
	Informal name

	1966
	Ansi x3.9-1966
	Fortran 66

	1978
	Ansi x3.9-1977
	Fortran 77

	1978
	ISO 1539-1980
	Fortran 77

	1991
	ISO/IEC 1539:1991
	Fortran 90

	1997
	ISO/IEC 1539-1:1997
	Fortran 95

	1998
	ISO/IEC TR 15580:1998
	Floating-point exception handling

	1998
	ISO/IEC TR 15581:1998
	Enhanced data type facilities

	1999
	ISO/IEC 1539-3:1999
	Conditional compilation

	2000
	ISO/TEC 1539-2:2000
	Part 2: varying length character strings

	2001
	ISO/TEC TR 15580:2001
	Floating-point exception handling

	2004
	ISO/IEC 1539-1:2004
	Fortran 2003

	2009
	ISO/IEC 1539-1
	Module TSR

	2010
	1539-1:2010
	Fortran 2008

	2012
	ISO/TEC TS 29113:2012
ISO/TEC NP TS 18508
	Further interoperability of fortran with C
Additional parallel features in fortran

	201?
	1539-1:2018
	Fortran 2018

Fortran 2018 is currently on schedule for a 2018 publication date.
3.17 Fortran Discussion Lists
The first to look at
 is the Fortran 90 list. Details can be found at[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figh_HTML.gif]

If you subscribe you will have access to people involved in Fortran standardisation, language implementers for most of the hardware and software platforms, people using Fortran in many very specialised areas, people teaching Fortran, etc.
There is also a comp.lang.fortran list available via USENET news. This provides access to people worldwide with enormous combined expertise in all aspects of Fortran. Invariably someone will have encountered your problem or one very much like it and have one or more solutions.
Here is an extract from Wikipedia.Usenet is a worldwide distributed Internet discussion system. It was developed from the general purpose UUCP dial-up network architecture. Tom Truscott and Jim Ellis conceived the idea in 1979 and it was established in 1980. Users read and post messages (called articles or posts, and collectively termed news) to one or more categories, known as newsgroups. Usenet resembles a bulletin board system (BBS) in many respects, and is the precursor to Internet forums that are widely used today. Usenet can be superficially regarded as a hybrid between email and web forums. Discussions are threaded, as with web forums and BBSes, though posts are stored on the server sequentially.
One notable difference between a BBS or web forum and Usenet is the absence of a central server and dedicated administrator. Usenet is distributed among a large, constantly changing conglomeration of servers that store and forward messages to one another in so-called news feeds. Individual users may read messages from and post messages to a local server operated by a commercial usenet provider, their Internet service provider, university, employer, or their own server.

Another to consider is the Fortran group on ‘linkedin’ The address is[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figi_HTML.gif]

3.18 ACM Fortran Forum
Ian Chivers is also Editor of Fortran Forum, the SIGPLAN Special Interest Publication on Fortran, ACM Press. Visit[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figj_HTML.gif]

for more information.
3.19 Other Sources
The following URLs are very useful:
Our Fortran web site.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figk_HTML.gif]

The Fortran Company, maintained by Walt Brainerd.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figl_HTML.gif]

3.20 Summary
It is hoped that you now have some idea about the wide variety of uses that programming languages are put to.
3.21 Bibliography
Fortran 2008 Standard, ISO/IEC 1539-1:2010, price CHF 338. Publication date: 2010-10-06.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figm_HTML.gif]

Fortran 2003 Standard, ISO/IEC DIS 1539-1:2004(E)
DTR 19767: Enhanced module Facilities: ISO/IEC TR 19767:2004(E)
The Fortran 77 and 66 standards are available from the WG5 site.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Fign_HTML.gif]

The ISO home page is[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figo_HTML.gif]

The J3 home page is:[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figp_HTML.gif]

The WG5 home page is:[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figq_HTML.gif]

Both have copies of working documents.
Adobe Systems Incorporated, Postscript Language:
Tutorial and Cookbook, Addison-Wesley, 1985; Reference Manual, Addison-Wesley, 1985; Program Design, Addison-Wesley, 1985.

 	The three books provide a comprehensive coverage of the facilities and capabilities of Postscript.

They third edition of the reference manual is available online.[image: ../images/112282_4_En_3_Chapter/112282_4_En_3_Figr_HTML.gif]

ACM SIG PLAN, History of programming Languages Conference — HOPL-II, ACM Press, 1993.

 	One of the best sources of information on C++, CLU, Concurrent Pascal, Formac, Forth, Icon, Lisp, Pascal, Prolog, Smalltalk and Simulation Languages by the people involved in the original design and or implementation. Very highly recommended. This is the second in the HOPL series, and the first was edited by Wexelblat. Details are given later.

Adams J.C., Brainerd W.S., Hendrickson R.A., Maine R.E., Martin J.T., Smith B.T., The Fortran 2003 Handbook, Springer, 2009.

 	Their most recent version, and a complete coverage of the 2003 standard. As with the Metcalf, Reid and Cohen book some of the authors were on the J3 committee. Very thorough.

Annals of the History of Computing, Special Issue: Fortran’s 25 Anniversary, ACM, Article 6,1, 1984.

 	Very interesting comments, some anecdotal, about the early work on Fortran.

Barnes J., Programming in Ada 95, Addison-Wesley, 1996.

 	One of the best Ada books. He was a member of the original design team.

Bergin T.J., Gibson R.G., History of Programming Languages, Addison-Wesley, 1996.

 	This is a formal book publication of the Conference Proceedings of HOPL II. The earlier work is based on preprints of the papers.

Birtwistle G.M., Dahl O. J., Myhrhaug B., Nygaard K.,
SIMULA BEGIN, Chartwell-Bratt Ltd, 1979.

 	A number of chapters in the book will be of interest to programmers unfamiliar with some of the ideas involved in a variety of areas including systems and models, simulation, and co-routines. Also has some sound practical advice on problem solving.

Brinch-Hansen P., The Programming Language Concurrent Pascal, IEEE Transactions on Software Engineering, June 1975, 199-207.

 	Looks at the extensions to Pascal necessary to support concurrent processes.

Cannan S., Otten G., SQL — The Standard Handbook, McGraw-Hill, 1993.

 	Very thorough coverage of the SQL standard, ISO 9075:1992(E).

Chivers I.D., Clark M.W., History and Future of Fortran, data Processing, vol. 27 no 1, January/February 1985.

 	Short article on an early draft of the standard, around version 90.

Chivers Ian, Essential C# Fast, Springer, ISBN 1-85233-562-9.

 	A quick introduction to the C# programming language.

Chivers I.D., A Practical Introduction to Standard Pascal, Ellis Horwood, 1986.

 	A short introduction to Pascal.

Date C.J., A Guide to the SQL Standard, Addison-Wesley, 1997.

 	Date has written extensively on the whole database field, and this book looks at the SQL language itself. As with many of Date’s works quite easy to read.

Deitel H.M., Deitel P.J., Java: How to program, 10th Edition Pearson Education	A good introduction to Java and programming for people with little or no background in programming.

Deitel H.M., Deitel P.J., Visual Basic How to Program, Pearson Education, 2014.

 	Good practical introduction to VB .NET.

Dyson G., Turing’s Cathedral, The origins of the Digital Universe, Pantheon Books, 2012.

 	The following is taken from the books blurb. ... Dyson focuses on a small group of men and women, led by John von Neuman at the Institute of Advanced Study in Princeton, New Jersey, who build one of the first computers to realise Alan Turing’s vision of a Universal Machine.

Eckstein R., Loy M., Wood D., Java Swing, O’Reilly, 1998.

 	Comprehensive coverage of the visual interface features available in Java.

Geissman L.B., Separate Compilation in Modula 2 and the Structure of the Modula 2 Compiler on the Personal Computer Lilith, Dissertation 7286, ETH Zurich.

 	Fascinating background reading concerning Modula 2 and the Lilith architecture.

Goldberg A., Robson D., Smalltalk 80: The Language and its Implementation, Addison-Wesley, 1983.

 	Written by some of the Xerox PARC people who have been involved with the development of Smalltalk. Provides a good introduction (if that is possible with the written word) of the capabilities of Smalltalk.

Goos G., Hartmanis J. (Eds), The programming Language Ada — Reference Manual, Springer Verlag, 1981.

 	The definition of the language.

Goossens M., Mittelbach F., Rahtz S., Roegel D., Voß H. The LaTeX Graphics Companion, second edition, Addison Wesley, 2007.

 	Another essential LaTeX book.

Griswold R.E., Poage J.F., Polonsky I.P., The Snobol4 programming Language, Prentice-Hall, 1971.

 	The original book on the language. Also provides some short historical material on the language.

Griswold R.E., Griswold M.T., The Icon programming Language, Prentice-Hall, 1983.

 	The definition of the language with a lot of good examples. Also contains information on how to obtain public domain versions of the language for a variety of machines and operating systems.

Harbison S.P., Steele G.L., A C Reference Manual, Prentice-Hall, 2002.

 	Very good coverage of the various flavours of C, including K&R C, Standard C 1989, Standard C 1995, Standard C 1999 and Standard C++

Hellman D., The Python Standard Library by Example, Addison-Wesley, 2011.

 	Good introduction to the Python standard library.

Hoare C.A.R., Hints on programming Language Design, SIGACT/SIGPLAN Symposium on Principles of programming Languages, October 1973.

 	The first sentence of the introduction sums it up beautifully: “I would like in this paper to present a philosophy of the design and evaluation of programming languages which I have adopted and developed over a number of years, namely that the primary purpose of a programming language is to help the programmer in the practice of his art.”

Jacobi C., Code Generation and the Lilith Architecture, Dissertation 7195, ETH Zurich	Fascinating background reading concerning Modula 2 and the Lilith architecture.

Jenson K., Wirth N., Pascal: User Manual and Report, Springer-Verlag, 1975.

 	The original definition of the Pascal language. Understandably dated when one looks at more recent expositions on programming in Pascal.

Kemeny J.G., Kurtz T.E., Basic programming, Wiley, 1971.

 	The original book on Basic by its designers.

Kernighan B.W., Ritchie D.M., The C programming Language, Prentice-Hall; first edition 1978; second edition 1988.

 	The original work on the C language, and thus essential for serious work with C.

Kowalski R., Logic programming in the Fifth Generation, The Knowledge Engineering Review, The BCS Specialist Group on Expert Systems.

 	A short paper providing a good background to Prolog and logic programming, with an extensive bibliography.

Knuth D. E., The TeXbook, Addison-Wesley, 1986.

 	Knuth writes with an tremendous enthusiasm and perhaps this is understandable as he did design TeX. Has to be read from cover to cover for a full understanding of the capability of TeX.

Lamport L., LaTeX User’s Guide and Reference Manual, 2005, Addison Wesley, ISBN 0201529831.

 	The original LaTeX book. Essential reading.

Lyons J., Chomsky, Fontana/Collins, 1982.

 	A good introduction to the work of Chomsky, with the added benefit that Chomsky himself read and commented on it for Lyons. Very readable.

Malpas J., Prolog: A Relational Language and its Applications, Prentice-Hall, 1987.

 	A good introduction to Prolog for people with some programming background. Good bibliography. Looks at a variety of versions of Prolog.

Marcus C., Prolog programming: Applications for Database Systems, Expert Systems and Natural Language Systems, Addison-Wesley.

 	Coverage of the use of Prolog in the above areas. As with the previous book aimed mainly at programmers, and hence not suitable as an introduction to Prolog as only two chapters are devoted to introducing Prolog.

Metcalf M. and Reid J., Cohen M., Modern Fortran Explained, Oxford University Press, 2011	A clear compact coverage of the main features of Fortran. John Reid is Convener of the WG5 committee and Malcolm Cohen was the editor of Fortran 2008.

Mittelbach F., Goossens M., Braams J., Carlisle D., and Rowley C., The LaTeX Companion, 2005, Addison Wesley, ISBN 0201362996.

 	The LaTeX book. It is required if you are setting a book using LaTeX.

Mossenbeck H., Object-Orientated programming in Oberon-2, Springer-Verlag, 1995.

 	One of the best introductions to object oriented programming. Uses Oberon-2 as the implementation language. Highly recommended.

Papert S., Mindstorms - Children, Computers and Powerful Ideas, Harvester Press, 1980.

 	Very personal vision of the uses of computers by children. It challenges many conventional ideas in this area.

Sammet J., programming Languages: History and Fundamentals, Prentice-Hall, 1969.

 	Possibly the most comprehensive introduction to the history of program language development — ends unfortunately before the 1980s.

Sethi R., programming Languages: Concepts and Constructs, Addison-Wesley, 1989.

 	The annotated bibliographic notes at the end of each chapter and the extensive bibliography make it a useful book.

Reiser M., Wirth N., programming in Oberon — Steps Beyond Pascal and Modula, Addison-Wesley, 1992.

 	Good introduction to Oberon. Revealing history of the developments behind Oberon.

Reiser M., The Oberon System: User Guide and programmer’s Manual, Addison-Wesley, 1991.

 	How to use the Oberon system, rather than the language.

Stroustrup B., The C++ Programming Language, Addison-Wesley; third edition 1997; fourth edition 2014. 1997.

 	The C++ book. Written by the designer of the language. The third edition is a massive improvement over the earlier editions. The fourth edition covers C++11. One of the best books on C++ and C++11 in particular.

Young S. J., An Introduction to Ada, 2[image: $${\mathrm{nd}}$$] Edition, Ellis Horwood, 1984.

 	A readable introduction to Ada. Greater clarity than the first edition.

Wexelblat, History of programming Languages, HOPL I, ACM Monograph Series, Academic Press, 1978.

 	Very thorough coverage of the development of programming languages up to June 1978. Sessions on Fortran, Algol, Lisp, Cobol, APT, Jovial, GPSS, Simula, JOSS, Basic, PL/I, Snobol and APL, with speakers involved in the original languages. Very highly recommended.

Wiener R., Software development using Eiffel, Prentice Hall, 1995.

 	The book’s subtitle is There can be life other than C++ The book gives a good introduction to object oriented analysis and design using the Booch 94 method using Eiffel.

Wirth N., An Assessment of the Programming Language Pascal, IEEE Transactions on Software Engineering, June 1975, 192-198.

 	Short paper by Wirth on his experience with Pascal.

Wirth N., History and Goals of Modula 2, Byte, August 1984, 145-152.

 	Straight from the horse’s mouth!

Wirth N., On the Design of programming Languages, Proc. IFIP Congress 74, 386-393, North-Holland.

 	Short paper given in 1974 on designing programming languages.

Wirth N., The programming Language Pascal, Acta Informatica 1, 35-63, 1971.

 	Short paper on the development of Pascal from Algol 60.

Wirth N., Modula: a language for modular multiprogramming, Software Practice and Experience, 7, 3–35, 1977.

 	Short paper on Modula, the precursor of Modula 2.

Wirth N., Programming in Modula 2, Springer-Verlag, 1983.

 	The original definition of the language. Essential reading for anyone considering programming in Modula 2 on a long term basis.

Wirth N. Type Extensions, ACM Trans. on Prog. Languages and Systems, 10, 2 (April 1988), 2004-214	Short paper on type extension.

Wirth N. From Modula 2 to Oberon, Software — Practice and Experience, 18,7 (July 1988), 661–670	Brief paper on the move from Modula 2 to Oberon, looking at features that were removed and added.

Wirth N., Gutknecht J., Project Oberon: The Design of an Operating System and Compiler, Addison-Wesley, 1992.

 	Fascinating background to the development of Oberon. Highly recommended for anyone involved in large scale program development, not only in the areas of programming languages and operating systems, but more generally.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_4

4. Introduction to Programming

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Though this be madness, yet there is method in ’t

Shakespeare

 Plenty of practice’ he went on repeating, all the time that Alice was getting him on his feet again. ‘plenty of practice.

The White Knight, Through the Looking Glass and What Alice Found There, Lewis Carroll

 Aims

The aims of the chapter are:	To introduce the idea that there is a wide class of problems that can be solved with a computer and, further, that there is a relationship between the kind of problem to be solved and the choice of programming language that is used.

	To give some of the reasons for the choice of Fortran.

	To introduce the fundamental components or kinds of statements to be found in a general purpose programming language.

	To introduce the three concepts of name, type and value.

	To illustrate the above with sample programs based on three of the five intrinsic data types:

	character, integer and real.

	To introduce some of the formal syntactical rules of Fortran.

4.1 Introduction
We have seen that an algorithm is a sequence of steps that will solve a part or the whole of a problem. A program is the realisation of an algorithm in a programming language, and there are at first sight a surprisingly large number of programming languages. The reason for this is that there is a wide range of problems that are solved using a computer, e.g., the telephone company generating itemised bills or the meteorological centre producing a weather forecast. These two problems make different demands on a programming language, and it is unlikely that the same language would be used to solve both.
The range of problems that you want to solve will therefore strongly influence your choice of programming language. Fortran stands for FORmula TRANslation, which gives a hint of the expected range of problems for which it is suitable.
4.2 Language Strengths and Weaknesses
Some of the reasons for choosing Fortran are:	It is a modern and expressive language;

	The language is suitable for a wide class of both numeric and nonnumeric problems;

	The language is widely available on a range of hardware and operating system platforms;

	A lot of software already exists that has been written in Fortran. Some 15% of code worldwide is estimated to be in Fortran.

There are a few warts, however. Given that there has to be backwards compatibility with earlier versions some of the syntax is clumsy to say the least. However, a considerable range of problems can now be addressed quite cleanly, if one sticks to a subset of the language and adopts a consistent style.
4.3 Elements of a Programming Language
As with ordinary (so-called natural) languages, e.g., English, French, Gaelic, German, etc., programming languages have rules of syntax, grammar and spelling. The application of these rules in a programming language is more strict. A program has to be unambiguous, since it is a precise statement of the actions to be taken. Many everyday activities are rather vaguely defined — Buy some bread on your way home — but we are generally sufficiently adaptable to cope with the variations which occur as a result. if, in a program to calculate wages, we had an instruction deduct some money for tax and insurance we could have an awkward problem when the program calculated completely different wages for the same person for the same amount of work every time it was run. One of the implications of the strict syntax of a programming language for the novice is that apparently silly error messages will appear when one first starts writing programs. As with many other new subjects you will have to learn some of the jargon to understand these messages.
Programming languages are made up of statements. We will look at the various kinds of statements briefly below.
4.3.1 Data Description Statements
These are necessary to describe the kinds of data that are to be processed. In the wages program, for example, there is obviously a difference between people’s names and the amount of money they earn, i.e., these two things are not the same, and it would not make any sense adding your name to your wages. The technical term for this is data type — a wage would be of a different data type (a number) to a surname (a sequence of characters).
4.3.2 Control Structures
A program can be regarded as a sequence of statements to solve a particular problem, and it is common to find that this sequence needs to be varied in practice. Consider again the wages program. It will need to select among a variety of circumstances (say married or single, paid weekly or monthly, etc), and also to repeat the program for everybody employed. So there is the need in a programming language for statements to vary and/or repeat a sequence of statements.
4.3.3 Data-Processing Statements
It is necessary in a programming language to be able to process data. The kind of processing required will depend on the kind or type of data. In the wages program, for example, you will need to distinguish between names and wages. Therefore there must be different kinds of statements to manipulate the different types of data, i.e., wages and names.
4.3.4 Input and Output (I/O) Statements
For flexibility, programs are generally written so that the data that they work on exist outside the program. In the wages example the details for each person employed would exist in a file somewhere, and there would be a record for each person in this file. This means that the program would not have to be modified each time a person left, was ill, etc., although the individual records might be updated. It is easier to modify data than to modify a program, and it is less likely to produce unexpected results. To be able to vary the action there must be some mechanism in a programming language for getting the data into and out of the program. This is done using input and output statements, sometimes shortened to I/O statements.
4.4 Example 1: Simple Text I/O
Let us now consider a simple program which will read in somebody’s first name and print it out:[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Figa_HTML.gif]

There are several very important points to be covered here, and they will be taken in turn:	Each line is a statement.

	There is a sequence to the statements. The statements will be processed in the order that they are presented, so in this example the sequence is print, read, print.

	The first statement names the program. It makes sense to choose a name that conveys something about the purpose of the program.

	The next three lines are comment statements. They are identified by a !. Comments are inserted in a program to explain the purpose of the program. They should be regarded as an integral part of all programs. It is essential to get into the habit of inserting comments into your programs straight away.

	The implicit none statement means that there has to be explicit typing of each and every data item used in the program. It is good programming practice to include this statement in every program that you write, as it will trap many errors, some often very subtle in their effect. Using an analogy with a play, where there is always a list of the persona involved before the main text of the play we can say that this statement serves the same purpose.

	The character*20 statement is a type declaration. It was mentioned earlier that there are different kinds of data. There must be some way of telling the programming language that these data are of a certain type, and that therefore certain kinds of operations are allowed and others are banned or just plain stupid! It would not make sense to add a name to a number, e.g., what does Fred [image: $$+$$] 10 mean? So this statement defines that the variable first_name is to be of type character and only character operations are permitted. The concept of a variable is covered in the next section. character variables of this type can hold up to 20 characters.

	The print statements print out an informative message to the screen — in this case a guide as to what to type in. The use of informative messages like this throughout your programs is strongly recommended.

	The read statement is one of the I/O statements. It is an instruction to read from the terminal or keyboard; whatever is typed in from the keyboard will end up being associated with the variable first_name. Input/output statements will be explained in greater detail in later sections.

	The print statement is another I/O statement. This statement will print out what is associated with the variable first_name and, in this case, what you typed in.

	The end program statement terminates this program. It can be thought of as being similar to a full stop in natural language, in that it finishes the program in the same way that a period (.) ends a sentence. Note the use of the name given in the program statement at the start of the program.

	Note also the use of the asterisk in three different contexts.

	Indentation has been used to make the structure of the program easier to determine. Programs have to be read by human beings and we will look at this in more depth later.

	Lastly, when you do run this program, character input will terminate with the first blank character.

The above program illustrates the use of some of the statements in the Fortran language. Let us consider the action of the read * statement in more detail — in particular, what is meant by a variable and a value.
4.5 Variables — Name, Type and Value
The idea of a variable is one that you are likely to have met before, probably in a mathematical context. Consider the following:[image: $$\begin{aligned} circumference = 2 \pi r \end{aligned}$$]

 (4.1)

This is an equation for the calculation of the circumference of a circle. The following represents a translation of this into Fortran:

 circumference = 2 * pi * radius

There are a number of things to note about this equation:	Each of the variables on the right-hand side of the equals sign (pi and radius) will have a value, which will allow the evaluation of the expression.

	When the expression is fully evaluated the value is assigned to the variable on the left-hand side of the equals sign.

	In mathematics the multiplication is implied. In Fortran we have to use the * operator to indicate that we want to multiply 2 by pi by the radius.

	We do not have access to mathematical symbols like [image: $$\pi $$] in Fortran but have to use variable names based on letters from the Roman alphabet.

The whole line is an example of an arithmetic assignment statement in Fortran.
The following arithmetic assignment statement illustrates clearly the concepts of name and value, and the difference in the equals sign in mathematics and computing:[image: $$\begin{aligned} i = i + 1 \end{aligned}$$]

 (4.2)

In Fortran this reads as take the current value of the variable i and add one to it, store the new value back into the variable i, i.e., i takes the value i+1. Algebraically, [image: $$ i = i + 1 $$] does not make any sense.
Variables can be of different types. Table 4.1 shows some of those available in Fortran.Table 4.1Variable name, type and value

	Variable name
	Data type
	Value stored

	Temperature
	Real
	28.55

	Number_of_people
	Integer
	100

	First_name
	Character
	Jane

Note the use of underscores to make the variable names easier to read.
The concept of data type seems a little strange at first, especially as we commonly think of integers and reals as numbers. However, the benefits to be gained from this distinction are considerable. This will become apparent after you have written several programs.
4.6 Example 2: Simple Numeric I/O and Arithmetic
Let us now consider another program, one that reads in three numbers, adds them up and prints out both the total and the average:[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Figb_HTML.gif]

Here are some of the key points about this program.

 	This program has declarations for numeric variables and Fortran (in common with most programming languages) discriminates between real and integer data types.

	The variables average, total and n are also given initial values within the type declaration. Variables are initially undefined in Fortran, so the variables n1, n2, n3 fall into this category, as they have not been given values at the time that they are declared.

	The first print statement makes a text message (in this case what is between the apostrophes) appear at the screen. As was noted earlier, it is good practice to put out a message like this so that you have some idea of what you are supposed to type in.

	The read statement looks at the input from the keyboard (i.e., what you type) and in this instance associates these values with the three variables. These values can be separated by commas (,), spaces (), or even by pressing the carriage return key, i.e., they can appear on separate lines.

	The next statement actually does some data processing. It adds up the values of the three variables (n1, n2, and n3) and assigns the result to the variable total. This statement is called an arithmetic assignment statement. and is covered more fully in the next chapter.

	The next statement is another data-processing statement. It calculates the average of the numbers entered and assigns the result to average. We could have actually used the value 3 here instead, i.e., written average = total/3 and have exactly the same effect. This would also have avoided the type declaration for n. However, the original example follows established programming practice of declaring all variables and establishing their meaning unambiguously. We will see further examples of this type throughout the book.

	Indentation has been used to make the structure of the program easier to determine.

	The sum and average are printed out with suitable captions or headings. Do not write programs without putting captions on the results. It is too easy to make mistakes when you do this, or even to forget what each number means.

	Finally we have the end of the program and again we have the use of the name in the program statement.

4.7 Some More Fortran Rules
There are certain things to learn about Fortran which have little immediate meaning and some which have no logical justification at all, other than historical precedence. Why is a cat called a cat? At the end of several chapters there will be a brief summary of these rules or regulations when necessary. Here are a few:	Source is free format.

	Lower case letters are permitted, but not required to be recognised.

	Multiple statements may appear on one line and are separated by the semicolon character.

	There is an order to the statements in Fortran. Within the context of what you have covered so far, the order is:	Program statement.

	Type declarations, e.g., implicit, integer, real or character.

	Processing and I/O statements.

	End program statement.

	Comments may appear anywhere in the program, after program and before end; they are introduced with a ! character, and can be in line.

	Names may be up to 63 characters in length and include the underscore character.

	Lines may be up to 132 characters.

	Up to 39 continuation lines are allowed (using the ampersand (&) as the continuation character).

	The syntax of the read and print statement introduced in these examples is	read format, input-item-list.

	print format, output-item-list.

	where format is * in the examples and called list directed formatting.

	and input-item-list is a list of variable names separated by commas.

	and output-item-list is a list of variable

 names and/or a sequence of characters enclosed in either “or ” , again separated by commas.

	If the implicit none statement is not used, variables that are not explicitly declared will default to real if the first letter of the variable name is A–H or O–Z, and to integer if the first letter of the variable name is I–N.

4.8 Fortran Character Set
Table 4.2 has details of the Fortran character set.Table 4.2The Fortran character set

	Graphic
	Name of character
	Graphic
	Name of character

	Alphanumeric characters

	A–Z
	Uppercase letters
	0−9
	Digits

	a–z
	Lowercase letters
	_
	Underscore

	Special characters

	 	Blank
	;
	Semicolon

	
 [image: $$=$$]

	Equals
	!
	Exclamation mark

	
 [image: $$+$$]

	Plus
	
 "

	Quotation mark

	−
	Minus
	%
	Percent

	
 *

	Asterisk
	&
	Ampersand

	/
	Slash or oblique
	
 [image: ../images/112282_4_En_4_Chapter/112282_4_En_4_IEq6_HTML.gif]

	Tilde

	
 [image: ../images/112282_4_En_4_Chapter/112282_4_En_4_IEq7_HTML.gif]

	Backslash
	
 [image: $$\mathtt {<}$$]

	Less than

	(
	Left parenthesis
	
 [image: $$\mathtt {>}$$]

	Greater than

)
	Right parenthesis
	?
	Question mark

	
 [

	Left square bracket
	
 ’

	Apostrophe

	
]

	Right square bracket
	
 ‘

	Grave accent

	{
	Left curly bracket
	
 [image: ../images/112282_4_En_4_Chapter/112282_4_En_4_IEq10_HTML.gif]

	Circumflex accent

	}
	Right curly bracket
	
 [image: $$\texttt {|}$$]

	Vertical bar or line

	,
	Comma
	$
	Currency symbol

	.
	Period or decimal point
	#
	Number sign

	:
	Colon
	@
	Commercial at

The default character type shall support a character set that includes the Fortran character set. By supplying non-default character types, the processor may support additional character sets. The characters available in the ASCII and ISO 10646 character sets are specified by ISO/IEC 646:1991 (International Reference Version) and ISO/IEC 10646-1:2000 UCS-4, respectively; the characters available in other non default character types are not specified by the standard, except that one character in each non default character type shall be designated as a blank character to be used as a padding character.
Table 4.3 has details of the ASCII character set.Table 4.3ASCII character set

	Decimal
	Character
	Decimal
	Character
	Decimal
	Character
	Decimal
	Character

	0
	nul
	32
	&
	64
	@
	96
	
 ’

	1
	soh
	33
	!
	65
	A
	97
	a

	2
	stx
	34
	
 "

	66
	B
	98
	b

	3
	etx
	35
	#
	67
	C
	99
	c

	4
	eot
	36
	$
	68
	D
	100
	d

	5
	enq
	37
	%
	69
	E
	101
	e

	6
	ack
	38
	&
	70
	F
	102
	f

	7
	bel
	39
	’
	71
	G
	103
	g

	8
	bs
	40
	(
	72
	H
	104
	h

	9
	ht
	41
)
	73
	I
	105
	i

	10
	lf
	42
	
 *

	74
	J
	106
	j

	11
	vt
	43
	+
	75
	K
	107
	k

	12
	ff
	44
	,
	76
	L
	108
	l

	13
	cr
	45
	-
	77
	M
	109
	m

	14
	so
	46
	.
	78
	N
	110
	n

	15
	si
	47
	/
	79
	O
	111
	o

	16
	dle
	48
	0
	80
	P
	112
	p

	17
	dc1
	49
	1
	81
	Q
	113
	q

	18
	dc2
	50
	2
	82
	R
	114
	r

	19
	dc3
	51
	3
	83
	S
	115
	s

	20
	dc4
	52
	4
	84
	T
	116
	t

	21
	nak
	53
	5
	85
	U
	117
	u

	22
	syn
	54
	6
	86
	V
	118
	v

	23
	etb
	55
	7
	87
	W
	119
	w

	24
	can
	56
	8
	88
	X
	120
	x

	25
	em
	57
	9
	89
	Y
	121
	y

	26
	sub
	58
	:
	90
	Z
	122
	z

	27
	esc
	59
	;
	91
	
 [

	123
	{

	28
	fs
	60
	
 [image: $$\mathtt {<}$$]

	92
	
 [image: ../images/112282_4_En_4_Chapter/112282_4_En_4_IEq13_HTML.gif]

	124
	
 [image: $$\mathtt {|}$$]

	29
	gs
	61
	=
	93
	
]

	125
	}

	30
	rs
	62
	
 [image: $$\mathtt {>}$$]

	94
	
 [image: ../images/112282_4_En_4_Chapter/112282_4_En_4_IEq16_HTML.gif]

	126
	
 [image: ../images/112282_4_En_4_Chapter/112282_4_En_4_IEq17_HTML.gif]

	31
	us
	63
	?
	95
	_
	127
	del

If you live and work outside of the USA and UK you may well have problems with your keyboard when programming. There is a very good entry in Wikipedia on keyboards, that is well worth a look at for the curious.
4.9 Good Programming Guidelines
The following are guidelines, and do not form part of the Fortran language definition:	Use comments to clarify the purpose of both sections of the program and the whole program.

	Choose meaningful names in your programs.

	Use indentation to highlight the structure of the program. Remember that the program has to be read and understood by both humans and a computer.

	Use implicit none in all programs you write to minimise errors.

	Do not rely on the rules for explicit typing, as this is a major source of errors in programming.

4.10 Compilers Used
A number of hardware platforms, operating systems and compilers have been used when writing this book and earlier books. The following have been used in the production of this edition of the book:	NAG Fortran Builder 6.1 and 6.2 for Windows.

	NAG Fortran Compiler 6.1 and 6.2 for Windows.

	NAG Fortran Compiler 6.1 and 6.2 for Linux.

	Intel Fortran 16.x, 17.x, 18.x for Windows.

	Intel Fortran 16.x, 18.x for Linux.

	gnu gfortran 4.8.x, 4.9.x, 4.10.x, 5.4.x, 7.x, 8.0.x for Windows.

	gnu gfortran 4.8.x, 6.3.x for Linux.

	Cray Fortran: Version 8.x.x - Cray Archer service.

	Oracle Solaris Studio 12.6 for Linux.

Our recommendation is that you use at least two compilers in the development of your code. Moving code between compilers and platforms teaches you a lot.
The following were used in the production of the third edition of the book:	NAG Fortran Builder 6.0 for Windows.

	NAG Fortran compiler 6.0 for Windows.

	NAG Fortran Compiler 6.0 for Linux.

	NAG Fortran Builder 5.3.1 for Windows.

	Nag Fortran compiler 5.3.1 and 5.3.2 for Windows.

	Intel Fortran 14.x, 15.x for Windows.

	Intel Fortran 15.x for Linux.

	gnu gfortran 4.8.x, 4.9.x, 4.10.x for Windows.

	gnu gfortran 4.8.x for Linux.

	Cray Fortran: Version 8.2.1 - Cray Archer service.

	Oracle Solaris Studio 12.4 for Linux.

The following were used in the production of earlier editions.

 	NAG Fortran Builder 5.1, 5.2, 5.3 for Windows.

	NAG Fortran Compiler 5.1, 5.2, 5.3 for Linux.

	Intel Fortran 11.x, 12.x, 13.x for Windows.

	Intel Fortran 12.x for Linux.

	gnu gfortran 4.x for Windows.

	gnu gfortran 4.x for Linux.

	Cray Fortran: Version 7.3.1 - Cray Hector service.

	g95 for Linux.

	pgi 10.x - Cray Hector service.

	IBM XL Fortran for AIX, V13.1 (5724-X15), Version: 13.01.0000.0002.

	Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux.

The following have been used with earlier books:	DEC VAX under VMS and later OPEN VMS with the NAG Fortran 90 compiler.

	DEC Alpha under OPEN VMS using the DEC Fortran 90 compiler.

	Sun Ultra Sparc under Solaris:	NAGACE F90 compiler.

	NAGWare F95 compiler.

	Sun (Release 1.x) F90 compiler.

	Sun (Release 2.x) F90 compiler.

	PCs under DOS and Windows:	DEC/Compaq Fortran 90 and Fortran 95 compilers.

	Intel Compiler (7.x, 8.x).

	Lahey Fujitsu Fortran 95 (5.7).

	NAG Fortran 95 Compiler.

	NAG Salford Fortran 90 Compiler.

	Salford Fortran 95 Compiler.

	PCs under Linux:	Intel Compiler.

	Lahey Fujitsu Fortran 95 Pro (6.1).

	NAG Fortran 95 (4.x, 5.x).

It is very illuminating to use more than one compiler whilst developing programs.
4.11 Compiler Documentation
The compiler may come with documentation. Here are some details for a number of compilers.
4.11.1 gfortran
Manuals are available at[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Figc_HTML.gif]

The following[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Figd_HTML.gif]

is a 236 page pdf.
4.11.2 IBM
Here is a starting point. The urls have been split as the lines are too long.[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Fige_HTML.gif]

Here is a starting point for the XLF for AIX system.[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Figf_HTML.gif]

and the starting point for the pdf version of the documentation is.[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Figg_HTML.gif]

They provide	Getting Started with XL Fortran for AIX 15.1 This book introduces you to XL Fortran for Linux and its features, including features new for 15.1.

	Installation Guide - XL Fortran for AIX 15.1 This book contains information for installing XL Fortran and configuring your environment for basic compilation and program execution.

	Compiler Reference - XL Fortran for AIX 15.1 This book contains information about the many XL Fortran compiler options and environment variables that you can use to tailor the XL Fortran compiler to your application development needs.

	Language Reference - XL Fortran for AIX 15.1 This book contains information about the Fortran programming language as supported by IBM, including language extensions for portability and conformance to non-proprietary standards, compiler directives and intrinsic procedures.

	Optimization and Programming Guide - XL Fortran for AIX 15.1 This book contains information on advanced programming topics, such as application porting, inter language calls, floating-point operations, input/output, application optimization and parallelization, and the XL Fortran high-performance libraries.

4.11.3 Intel
Windows. The following will end up available after a complete install.

 	Intel MKL	Release notes

	Reference Manual

	User Guide

	Parallel Debugger Extension	Release Notes

	Compiler	Reference Manual, Visual Studio Help files or html.

	User Guide, Visual Studio Help files or html.

Intel also provide the following[image: ../images/112282_4_En_4_Chapter/112282_4_En_4_Figh_HTML.gif]

4.11.4 Nag
Windows	Fortran Builder Help	Fortran Builder Tutorial - 44 pages

	Fortran Builder Operation Guide - 67 pages

	Fortran Language Guide - 115 pages

	Compiler Manual - 149 pages

	LAPACK Guide - 70 pages (440 MB as PDF!)

	GTK+ Library - 201 pages

	OpenGL/GLUT Library - 38 pages

	SIMDEM Library - 78 pages

4.11.5 Oracle/Sun
Oracle make available a range of documentation. From within Oracle Solaris Studio	Help	Help Contents

	Online Docs and Support

	..

	..

	Quick Start Guide

and you will get taken to the Oracle site by some of these entries.
You can also download a 300+ MB zip file which contains loads of Oracle documentation. You should be able to locate (after some rummaging around)	Sun Studio 12: Fortran Programming Guide - 174 pages

	Sun Studio 12: Fortran User’s Guide - 216 pages

	Sun Studio 12: Fortran Library Reference - 144 pages

	Fortran 95 Interval Arithmetic Programming Reference - 166 pages

Happy reading :-)
4.12 Program Development
A number of ways of developing programs have been used, including:	Using an integrated development environment, including	NAG Fortran Builder under Windows.

	Microsoft Visual Studio with the Intel compiler under Windows.

	Oracle Sunstudio under SuSe Linux.

	Using a DOS box and simple command line prompt under Windows.

	Using ssh to log in to the Archer service.

	Using a VPN, and SSH to log in to the IBM Power 7 system at Slovak Hydrometeorological Institute Jeseniova 17.

	Using a console or terminal window under SuSe Linux.

	Using X-Windows software to log into the SUN Ultra Sparc systems.

	Using terminal emulation software to log into the SUN Ultra Sparc.

	Using DEC terminals to log into the DEC VAX and DEC Alpha systems.

	Using PCs running terminal emulation software to log into the DEC VAX and DEC Alpha systems.

It is likely that you will end up doing at least one of the above and probably more. The key stages involved are:	Creating and making changes to the Fortran program source.

	Saving the file.

	Compiling the program:

	If there are errors you must go back to the Fortran source and make the changes indicated by the compiler error messages.

	Linking if successful to generate an executable:

	Automatic link. This happens behind the scenes and the executable is generated for you immediately.

	Manual link. You explicitly invoke the linker to generate the executable.

	Running the program.

	Determining whether the program actually works and gives the results expected.

These steps must be taken regardless of the hardware platform, operating system and compiler you use. Some people like working at the operating system prompt (e.g., DOS, Linux and UNIX), and others prefer working within a development environment. Both have their strengths and weaknesses.
4.13 Problems
4.1
Compile and run Example 1 in this chapter. Experiment with the following types of input.
Ian
Ian Chivers
“Jane Margaret Sleightholme”

4.2
Compile and run Example 2 in this chapter.
Think about the following points:	Is there a difference between separating the input by spaces or commas?

	Do you need the decimal point?

	What happens when you type in too many data?

	What happens when you type in too few data?

If you have access to more than one compiler repeat the above and compare the results.

4.3
Write a program that will read in your name and address and print them out in reverse order.
Think about the following points:	How many lines are there in your name and address?

	What is the maximum number of characters in the longest line in your name and address?

	What happens at the first blank character of each input line?

	Which characters can be used in Fortran to enclose each line of text typed in and hence not stop at the first blank character?

	If you use one of the two special characters to enclose text what happens if you start on one line and then press the return key before terminating the text?

The action here will vary between Fortran implementations.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_5

5. Arithmetic

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Taking Three as the subject to reason about — A convenient number to state — We add Seven, and Ten, and then multiply out By One Thousand diminished by Eight. The result we proceed to divide, as you see, By Nine Hundred and Ninety and Two: then subtract Seventeen, and the answer must be Exactly and perfectly true.

Lewis Carroll, The Hunting of the Snark

 Round numbers are always false.

Samuel Johnson

 Aims

The aims of this chapter are to introduce:	The Fortran rules for the evaluation of arithmetic expressions to ensure that they are evaluated as you intend;

	The idea of truncation and

 rounding;

	The use of the parameter attribute to define or set up constants;

	The use of Fortran’s kind types to determine and control the precision by which arithmetic in Fortran is carried out;

	The concept of numeric models and positional number systems for integer and real arithmetic and their implementation on binary devices.

	Testing the numerical representation of different integer kind types on a system – 8, 16, 32 and 64 bit integers

	Testing the numerical representation of different real kind types
 on a system – 32, 64, 80 and 128 bit reals

	Round off

	
 Relative error

	
 Absolute error

5.1 Introduction
Most problems in the academic and scientific communities require arithmetic evaluation as part of the algorithm. The arithmetic performed by computers is not the same as the arithmetic you are familiar with in conventional mathematics and algebra.
There are two areas that we need to address	computation involving finite precision - so called computer arithmetic

	the rules that apply in a programming language - different programming languages have different rules for the evaluation of expressions

The outcome of the above means that [image: $$2+2$$] is not necessarily 4 when using a computer!
5.2 The Fortran Operators and the Arithmetic Assignment Statement
In

 the previous chapter, we introduced the arithmetic assignment statement, emphasising
 the concepts of name, type and value. Here we will consider the way that arithmetic expressions are evaluated in Fortran.
Table 5.1 lists the five arithmetic operators available in Fortran.Table 5.1Fortran operators

	Mathematical operation
	Fortran symbol or operator

	Addition
	
 [image: $$+$$]

	Subtraction
	−

	Division
	/

	Multiplication
	*

	Exponentiation
	**

Exponentiation

 is raising a number to a power. Note that the exponentiation operator is the * character twice.
The following are some examples of valid arithmetic assignment statements
 in Fortran:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figa_HTML.gif]

These expressions are all simple, and there are no problems when it comes to evaluating them. However, now consider the following:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figb_HTML.gif]

This is a poorly written arithmetic expression. There is a choice of doing the subtraction before or after the multiplication. Our everyday experience says that the subtraction should take place before the multiplication. However, if this expression were evaluated in Fortran the multiplication would be done before the subtraction.
5.3 Example 1: Simple Arithmetic Expressions in Fortran
A
 complete program to show the correct form in Fortran is as follow:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figc_HTML.gif]

Let us look at some of the key points of this program.

 	We have the implicit none statement which aids in detecting typing errors.

	We declare the variables gross_wage, net_wage, tax and tax_rate to be of type real as they will hold floating point values, i.e. numbers

 with a decimal point.

	The variable their_name is of type character and can hold up to 60 characters.

	The variable personal_allowance is of type integer as it holds integer values.

	We then have some i/o statements to prompt the user for input and read in their name and gross pay.

	We then calculate the tax payable and net income using two simple arithmetic
 assignment statements.

	We then print out the results.

This example illustrates some basic arithmetic in Fortran.
5.4 The Fortran Rules for Arithmetic
We need to look at three areas here:	The rules for forming expressions — the syntax.

	The rules for interpreting expressions — the semantics.

	The rules for evaluating expressions — optimisation.

The syntax rules determine which expressions are valid. The semantics determine a valid interpretation, and once this has been done the compiler can replace the expression with any other one that is mathematically equivalent, generally in the interests of optimisation.

Here is the section of the Fortran 2018 standard on expression evaluation.

 	10.1.5.2.4 Evaluation of numeric intrinsic operations	1 The execution of any numeric operation whose result is not defined by the arithmetic used by the processor is prohibited. Raising a negative real value to a real power is prohibited.

	2 Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any mathematically equivalent expression, provided that the integrity of parentheses is not violated.

	3 Two expressions of a numeric type are mathematically equivalent if, for all possible values of their primaries, their mathematical values are equal. However, mathematically equivalent expressions of numeric type may produce different computational results.

The rules for the evaluation of expressions in Fortran are as follows:	Brackets are used to define priority in the evaluation of an expression.

	Operators have a hierarchy of priority — a precedence. The hierarchy of operators is:

	Exponentiation: when the expression has multiple exponentiation, the evaluation is from right to left. For example, [image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figd_HTML.gif]
 is evaluated by first raising j to the power k, and then using this result as the exponent for i; more explicitly, [image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Fige_HTML.gif]
 Although this is similar to the way in which we might expect an algebraic expression to be evaluated, it is not consistent with the rules for multiplication and division, and may lead to some confusion. When in doubt, use brackets.

	Multiplication and division: within successive multiplications and divisions, the rules regarding any mathematically equivalent expression means that you must use brackets to ensure the evaluation you want. For example, with [image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figf_HTML.gif]
 for real and complex numeric types the compiler does not necessarily evaluate in a left to right manner, i.e., evaluate b times c, then divide the result by d and finally take that result and multiply by e.

	Addition and subtraction: as for multiplication and division the rules regarding any equivalent expression apply. However, it is seldom that the order of addition and subtraction is important, unless other operators are involved.

Table 5.2 summarises the hierarchy of the operators.Table 5.2Hierarachy or precedence of the Fortran operators

	Mathematical operation
	Fortran symbol or operator

	Exponentiation
	**

	Division
	/

	Multiplication
	*

	Addition
	
 [image: $$+$$]

	Subtraction
	−

The following are all examples of valid arithmetic expressions in Fortran:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figg_HTML.gif]

Note that brackets have been used to make the order of evaluation more obvious. It is often possible to write involved expressions without brackets, but, for the sake of clarity, it is often best to leave the brackets in, even to the extent of inserting a few extra ones to ensure that the expression is evaluated correctly. The expression will be evaluated just as quickly with the brackets as without. Also note that none of the expressions is particularly complex. The last one is about as complex as you should try: with more complexity than this it is easy to make a mistake.
5.5 Expression Equivalence
The
 rule regarding any equivalent expression means if a, b and c are numeric then the following are true:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figh_HTML.gif]

The last is nominally evaluated left to right, as the additions are of equal precedence:

[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figi_HTML.gif]
 and again the last is nominally evaluated left to right, as the multiplications are of equal precedence:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figj_HTML.gif]

The last is true for real and complex numeric types only.
Problems arise when the value that a faulty expression yields lies within the range of expected values and the error may well go undetected. This may appear strange at first, but a computer does exactly what it is instructed to do. If, through a misunderstanding on the part of a programmer, the program is syntactically correct but logically wrong from the point of view of the problem definition, then this will not be spotted by the compiler. If an expression is complex, break it down into successive statements with elements of the expression on each line, e.g.,[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figk_HTML.gif]
 and[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figl_HTML.gif]

5.6 Rounding and Truncation
Computer

 arithmetic can be subject to truncation and rounding.

 	Truncation. This operation involves throwing away part of the number, e.g., with 14.6 truncating the number to two figures leaves 14.

	Rounding. Consider 14.6 again. This is rounded to 15. Basically, the number is changed to the nearest whole number. It is still a real number. What do you think will happen with 14.5; will this be rounded up or down?

You must be aware of these two operations. They may occasionally cause problems in division and in expressions with more than one data type.
5.7 Example 2: Type Conversion and Assignment
To see
 some of the problems that can occur consider the examples below:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figm_HTML.gif]

After executing these statements c has the value 0.75, and i has the value zero! This is an example of type conversion across the [image: $$=$$] sign. The variables on the right are all real, but the last variable on the left is an integer. The value is therefore made into an integer by truncation. In this example, 0.75 is real, so i becomes zero when truncation takes place.
5.8 Example 3: Integer Division and Real Assignment
Consider
 now an example where we assign into a real variable (so that no truncation due to the assignment will take place), but where part of the expression on the right-hand side involves integer division:

[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Fign_HTML.gif]

The value of answer is 8, because the i/j term involves integer division. The expected answer of 10 is not that different from the actual one of 8, and it is cases like this that cause problems for the unwary, i.e., where the calculated result may be close to the actual one. In complicated expressions it would be easy to miss something like this.
To recap, truncation takes place in Fortran:	Across an [image: $$=$$] sign, when a real is assigned to an integer.

	In integer division.

It is very important to be careful when attempting mixed mode arithmetic — that is, when mixing reals and integers. If a real and an integer are together in a division or multiplication, the result of that operation will be real; when addition or subtraction takes place in a similar situation, the result will also be real. The problem arises when some parts of an expression are calculated using integer arithmetic and other parts with real arithmetic:

[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figo_HTML.gif]

The integer division is carried out before the addition and subtraction; hence the result of i/j is integer, although all the other parts of the expression will be carried out with real arithmetic.
5.9 Example 4: Time Taken for Light to Travel from the Sun to Earth
How
 long does it take for light to reach the Earth from the Sun? Light travels 9.46 10[image: 12] km in 1 year. We can take a year as being equivalent to 365.25 days. (As all school children know, the astronomical year is 365 days, 5 h, 48 min and 45.9747 s — hardly worth the extra effort.) The distance between the Earth and Sun is about 150,000,000 km. There is obviously a bit of imprecision involved in these figures, not least since the Earth moves in an elliptical orbit, not a circular one. One last point to note before presenting the program is that the elapsed time will be given in minutes and seconds. Few people readily grasp fractional parts of a year:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figp_HTML.gif]

The calculation is straightforward; first we calculate the distance travelled by light in 1 min, and then use this value to find out how many minutes it takes for light to travel a set distance. Separating the time taken in minutes into whole-number minutes and seconds is accomplished by exploiting the way in which Fortran will truncate a real number to an integer on type conversion. The difference between these two values is the part of a minute which needs to be converted to seconds. Given the inaccuracies already inherent in the exercise, there seems little point in giving decimal parts of a second.
It is worth noting that some structure has been attempted by using comment lines to separate parts of the program into fairly distinct chunks. Note also that the comment lines describe the variables used in the program.
Can you see any problems with this example?
5.10 The Parameter Attribute
This attribute is used to provide a way of associating a meaningful name with a constant in a program. Consider a program where [image: $$\pi $$] was going to be used a lot. It would be silly to have to type in 3.14159265358 every time. There would be a lot to type and it is likely that a mistake could be made typing in the correct value. It therefore makes sense to set up pi once and then refer to it by name. However, if pi was just a variable then it would be possible to do the following:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figq_HTML.gif]

The pi = 4*alpha/beta statement should have been li = 4*alpha/beta. What has happened is that, through a typing mistake (p and l are close together on a keyboard), an error has crept into the program. It will not be spotted by the compiler. Fortran provides a way of helping here with the parameter attribute, which should be added to or combined with a type declaration.

Table 5.3 has details of some commonly used physical constants.Table 5.3Some commonly used physical constants

	Atomic mass constant
	
 [image: $$m_\mathrm{u}$$]

	1.660 538 921 x 10[image: $$^{-27}$$] kg

	Avogadro constant
	[image: $$N_\mathrm{A}$$], L
	6.022 141 29 x 10[image: 23] mol[image: $$^{-1}$$]

	Boltzmann constant
	
 k

	1.380 6488 x 10[image: $$^{-23}$$] J K[image: $$^{-1}$$]

	Electron mass
	
 [image: $$m_\mathrm{e}$$]

	9.109 382 91 x 10[image: $$^{-31}$$] kg

	Elementary charge
	
 e

	1.602 176 565 x 10[image: $$^{-19}$$] C

	Proton mass
	
 [image: $$m_\mathrm{p}$$]

	1.672 621 777 x 10[image: $$^{-27}$$] kg

	Speed of light in vacuum
	
 [image: $$ c, c_0 $$]

	299 792 458 m s[image: $$^{-1}$$]

	Newtonian constant of gravitation
	
 G

	6.673 84 x 10[image: $$^{-11}$$] m[image: 3] kg[image: $$^t{-1}$$] s[image: $$^{-2}$$]

The data has been taken from[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figr_HTML.gif]

A type statement with a parameter attribute may contain an arithmetic expression, so that some relatively simple arithmetic may be performed in setting up these constants. The evaluation must be confined to addition, subtraction, multiplication, division and integer exponentiation.
The following are some examples of the parameter attribute for some of the physical constants.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figs_HTML.gif]

We have introduced the Fortran intrinsic functionatan in this example, and
 for further details see Appendix D. We will also be covering intrinsic functions in a later chapter. The advantage of the parameter attribute is that you could not then assign another value to pi, c or charge. If you tried to do this, the compiler would generate an error message.
5.11 Round Off Errors and Computer Arithmetic
Precision

 is not the same as accuracy. In this age of digital timekeeping, it is easy to provide an extremely precise answer to the question What time is it? This answer need not be accurate, even though it is reported to tenths (or even hundredths!) of a second. Do not be fooled into believing that an answer reported to ten places of decimals must be accurate to ten places of decimals. The computer can only retain a limited precision. When calculations are performed, this limitation will tend to generate inaccuracies in the result. The estimation of such inaccuracies is the domain of the branch of mathematics known as Numerical Analysis.
To give some idea of the problems, consider an imaginary decimal computer which retains two significant digits in its calculations. For example, 1.2, 12.0, 120.0 and 0.12 are all given to two-digit precision. Note therefore that 1234.5 would be represented as 1200.0 in this device. When any arithmetic operation is carried out, the result (including any intermediate calculations) will have two significant digits. Thus:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figt_HTML.gif]
 and similarly:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figu_HTML.gif]
 and:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figv_HTML.gif]
 where there are more involved calculations, the results can become even less attractive. Assume we wish to evaluate[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figw_HTML.gif]

We would like an answer in the region of 1828.5718, or, to two significant digits, 1800.0. if we evaluate the terms within the brackets first, the answer is 260/0.14, or 1857.1428; 1900.0 on the two-digit machine. Thinking that we could do better, we could rewrite the fraction as[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figx_HTML.gif]

Which gives a result of 1800.0.
Algebra shows that all these evaluations are equivalent if unlimited precision is available.
A round-off error, also called rounding error, is
 the difference between the calculated approximation of a number and its exact mathematical value. We will look at this issue in more depth later in this chapter.
5.12 Relative and Absolute Errors
When

 we are calculating numerical approximations to a solution we often need to measure how accurate our estimated solution is. If we are using an iterative method we could look at the difference between successive calculations, or our algorithm may have an expression for estimating errors.
Either way there are two types of errors, absolute and relative.
Looking at relative errors is a better way of measuring accuracy than absolute errors because an absolute error depends on the size of the number being approximated.
If [image: $$p'$$] is an approximation to p then the relative error is [image: $$ | p - p' | / | p | $$] and the absolute error is [image: $$ | p - p' | $$].
Here is an example to illustrate the above.
5.13 Example 5: Relative and Absolute Error

 [image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figy_HTML.gif]

This
 program introduces the intrinsic abs function
 and a new statement, the format statement and the (e) edit descriptor. For the moment just concentrate on the output. We will look at the format statement and (e) edit descriptor in more depth in a later chapter. See Appendix D for more information on the abs intrinsic.

Here is the output from the Nag compiler.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figz_HTML.gif]

This example shows that the same relative error of [image: $$ 0.25 * 10 ^{-1} $$] occurs for widely varying absolute errors, therefore the absolute error can be misleading.
The relative error is more meaningful because it takes into consideration the size of the number.
5.14 Range, Precision and Size of Numbers
The

 range of integer numbers and the precision and the size of floating point numbers in computing are directly related to the number of bits allocated to their internal representation. Tables 5.4 and 5.5 summarise this information for the two most common bit sizes in use for integers and reals — 32 bits and 64 bits, as defined in the IEEE standard. Most hardware in use today supports these standards to a greater or lesser extent.
We will look at IEEE 754 in later sections and in a separate chapter.
Table 5.4 looks at integer numbers and Table 5.5 looks at real numbers.Table 5.4Word size and integer numbers

	Number of bits
	Power of 2
	Power of 10
	Maximum integer

	32
	(2**31)-1
	O(10**9)
	2, 147, 483, 647

	64
	(2**63)-1
	O(10**18)
	9, 223, 372, 036, 854, 774, 807

 Table 5.5Word size and real numbers

	Number of bits
	Precision
	Smallest real
	Largest real

	32
	6–9
	[image: $$\approx $$]0.3E-38
	[image: $$\approx $$]1.7E38

	64
	15–18
	[image: $$\approx $$]0.5E-308
	[image: $$\approx $$]0.8E+308

For practical purposes all compilers support the information contained in these two tables.
5.15 Overflow and Underflow
Care

 should also be taken when is one is near the numerical limits of the machine. Consider the following:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figaa_HTML.gif]
 where b, c and d are all [image: $$ O(10^{30}) $$] and we are using 32-bit floating point numbers where the maximum real is [image: $$ O(10^{38}) $$]. Here the product b * c generates a number of [image: $$ O(10^{60}) $$] — beyond the limits of the machine. This is called overflow as the number is too large. Note that we could avoid this problem by retyping this as[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figab_HTML.gif]
 where the bracketed expression c/d would now be [image: $$ O(10^{30}) / O(10^{30}) $$], and is within machine limits.
5.15.1 Example 6: Overflow
Here
 is a sample program that illustrates the above.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figac_HTML.gif]

Here is the output from the Intel compiler.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figad_HTML.gif]

Here is the output from the Nag compiler.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figae_HTML.gif]

So the Nag compiler diagnoses the problem at compile time.
5.15.2 Example 7: Underflow
There
 is an inverse called underflow when the number is too small, which is illustrated below:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figaf_HTML.gif]
 where b and c are [image: $$ O(10^{-30}) / O(10^{30}) $$]. The intermediate result of b * c is [image: $$ O(10^{-60}) $$] — again beyond the limits of the machine. This problem could have been overcome by retyping as[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figag_HTML.gif]

Here is a simple program that illustrates underflow.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figah_HTML.gif]

Here is the output from running the program with the Nag and Intel compilers.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figai_HTML.gif]

We will look at underflow in more detail in the chapter on IEEE arithmetic.
5.16 Health Warning: Optional Reading, Beginners Are Advised to Leave Until Later
Most people take arithmetic completely for granted and rarely think much about the subject. It is necessary to look at it in a bit more depth if we are to understand what the computer is doing in this area.
5.16.1 Positional Number Systems
Our way of working with numbers is essentially a positional one. When we look at the number 1024, for example, we rarely think of it in terms of 1 * 1000 [image: $$+$$] 0 * 100 [image: $$+$$] 2 * 10 [image: $$+$$] 4 * 1. Thus the normal decimal system we use in everyday life is a positional one, with a base of 10.
We are probably aware that we can use other number bases, and 2, 8 and 16 are fairly common alternate number bases. As the computer is a binary device it uses base 2.

We are also reasonably familiar with a mantissa exponent or floating
 point combination when the numbers get very large or very small, e.g., a parsec is commonly expressed as 3.08 * 10 ** 16, and here the mantissa is 3.08, and the exponent is 10 ** 16.
The above information will help in understanding the way in which integers and reals are represented on computer systems.
5.16.2 Fortran Representational Models
 Fortran has three representational models for data	the
 bit model

	the
 integer number system model

	the real number
 system model

and these models (and the corresponding intrinsic functions) return values related to the models. We look at each in turn below.
5.16.2.1 Bit Data Type and Representation Model
The

 model is only defined for positive integers (or cardinal numbers),

 where they are represented as a sequence of binary digits, and is based on the model:[image: $$\begin{aligned} i = \sum _{k=0} ^{n-1} b_k 2^k \end{aligned}$$]

where i is the integer value, n is the number of bits, and [image: $$b_{k}$$] is a bit value of 0 or 1, with bit numbering starting at 0, and reading right to left. Thus the integer 43 and bit pattern 101011 is given by:

 [image: $$43 = (1 * 32) + (0 * 16) + (1 * 8) + (0 * 4) + (1 * 2) + (1 * 1)$$]

or

 [image: $$43 = (1 * 2^5) + (0 * 2^4) + (1 * 2^3) +(0 * 2^2) +(1 * 2^1) +(1 * 2^0)$$]

5.16.2.2 Integer Data Type and Representation Model
The

 integer data type is based on the model[image: $$\begin{aligned} i = s \sum _{k=1} ^{q} l_k r^{k-1} \end{aligned}$$]

where i is the integer value, s is the sign, q is the number of digits (always positive), r is the radix or base (integer greater than 1), and [image: $$l_{k}$$] is a positive integer (less than r).
A base of 2 is typical so 1023 is

 [image: $$ 1023 = (1 * 2^9) + (1 * 2^8) + (1 * 2^7) + (1 * 2^6) + (1 * 2^5) + (1 * 2^4) + (1 * 2^3) + (1 * 2^2) + (1 * 2^1) + (1 * 2^0)$$]

5.16.2.3 Real Data Type and Representation model
The

 real data type is based on the model[image: $$\begin{aligned} x = s b^e \sum _{k=1} ^{m} f_k b^{-k} \end{aligned}$$]

where x is the real number, s is the sign, b is the radix or base (greater than 1), m is the number of bits in the mantissa, e is an integer in the range [image: $$e_\mathrm{min}$$] to [image: $$e_\mathrm{max}$$], and [image: $$f_\mathrm{k}$$] is a positive number less than b.
This means that with, for example, a 32-bit real there would be 8 bits allocated to the exponent and 24 to the mantissa. One of the bits in each part would be used to represent the sign and is called the sign bit. This reduces the number of bits that can actually be used to represent the mantissa and exponent to 31 and 7, respectively. There is also the concept of normalisation, where the exponent is adjusted so that the most significant bit is in position 22 — bits are typically numbered 0–22, rather than 1–23. This form of representation is not new, and is first documented around 1750 BC, when Babylonian mathematicians used a sexagesimal (radix 60) positional notation. It is interesting that the form they used omitted the exponent!
This is the theoretical basis of the representation of these three data types in Fortran.
This information together with the following provide a good basis for writing portable code across a range of hardware.
5.17 Kind Types
Fortran 90 introduced the concept of a kind parameter for the intrinsic types. Each of the intrinsic types has a kind parameter that selects a processor dependent representation of objects of that type and kind.
Each intrinsic type is classified as a numeric type or a nonnumeric type. The numeric types are integer, real, and complex. The nonnumeric intrinsic types are character and logical.

5.17.1 Example 8: Testing What Kind Types Are Available
The

 follow program shows what kind types are available for each intrinsic type. [image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figaj_HTML.gif]

The intrinsic module ISO_FORTRAN_ENV provides public entities relating to the Fortran environment. The processor shall provide the named constants, derived types, and procedures described in sub-clause 16.10.2. of the Fortran 2018 standard.
Here is sample output from a number of compilers. In each case the numbers refer to the number of bytes.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figak_HTML.gif]

[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figal_HTML.gif]

[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figam_HTML.gif]

The Nag compiler has to be invoked with the -kind [image: $$=$$] byte flag to generate the above output.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figan_HTML.gif]

The gfortran compiler supports a 10 byte real kind. We will look at this in more depth later.
All four compilers support 1, 2, 4 and 8 byte integer types. The gfortran compiler also supports a 16 byte integer type.
All compilers support a 1 byte character type. gfortran also supports a 4 byte character type. Nag supports 2 and 3 byte character types.
All four compilers support a 1 byte logical type. Nag also supports 2, 3 and 4 byte logical types.
5.18 Testing the Numerical Representation of Different Kind Types on a System
Table 5.6 provides

 details of the kind query functions and Table 5.7 provides details of the numeric query functions.Table 5.6Kind inquiry functions

	Function name
	Simple explanation

	
 kind

	Kind parameter

	
 selected_char_kind

	Kind parameter of a specified character set

	
 selected_int_kind

	Kind parameter of an integer data type

	
 selected_real_kind

	Kind parameter of a real data type

 Table 5.7Numeric inquiry functions

	Function name
	Simple explanation

	
 digits

	Number of digits in the model number

	
 epsilon

	Smallest difference between two reals

	
 huge

	Returns the largest number

	
 maxexponent

	Maximum value for the model exponent

	
 minexponent

	Minimum value for the model exponent

	
 precision

	Returns the decimal precision

	
 radix

	Base of a model number

	
 range

	Decimal exponent range of a model number

	
 tiny

	Returns the smallest number

The

 next set of programs test out the kinds of the intrinsic types supported by compilers.
5.19 Example 9: Using the Numeric Inquiry Functions with Integer Types
This
 program looks at using the kind intrinsics with integer types.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figao_HTML.gif]

In this example we introduce parameters for each of the supported integer kind types.

Table 5.8 has details of the names we have given to the integer kind types.Table 5.8Integer kind type parameter name and integer value

	Parameter
	Integer type

	
 i8

	8 bit value

	
 i16

	16 bit value

	
 i32

	32 bit value

	
 i64

	64 bit value

As the kind type parameter has some information about the underlying representation.
Section 16.10.2.14 of the Fortran 2018 standard has details about these named constants:	
 int8

	
 int16

	
 int32

	
 int64

where the values correspond to an integer type whose storage size expressed in bits is 8, 16, 32, and 64 respectively.
They are available via the ISO_FORTRAN_ENV intrinsic module.
They were introduced in the Fortran 2008 standard, and as only one compiler supports the whole of the Fortran 2008 standard at the time of writing the book we will use i8, i16, i32 and i64 in the examples.
Table 5.9 has details of huge for each of the integer types.Table 5.9Integer kind and huge comparision

	gfortran
	Intel
	Nag

	Kind
	Huge
	Kind
	Huge
	Kind
	Huge

	4
	2147483647
	4
	2147483647
	3
	2147483647

	1
	127
	1
	127
	1
	127

	2
	32767
	2
	32767
	2
	32767

	4
	2147483647
	4
	2147483647
	3
	2147483647

	8
	9223372036854775807
	8
	9223372036854775807
	4
	9223372036854775807

As can be seen from the output for these three compilers they all support the same 4 integer kind types, namely 8 bit, 16 bit, 32 bit and 64 bit.
Run

 this program on whatever system you have access to and compare the output with the above examples.
5.20 Example 10: Using the Numeric Inquiry Functions with Real Types

 [image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figap_HTML.gif]

In

 the above example we use a naming convention used by LAPACK95, which is a Fortran 95 interface to LAPACK.
For the real numeric kind types, where we have	sp - single precision

	dp - double precision

	qp - quad precision

LAPACK is written in Fortran 90 and provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and singular value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schur factorizations and estimating condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex matrices, in both single and double precision.

Their address is[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figaq_HTML.gif]

Section 13.8.2.18 of the Fortran 2008 standard introduced real32, real64, and real128, where the values of these default integer scalar named constants shall be those of the kind type parameters that specify a real type whose storage size expressed in bits is 32, 64, and 128 respectively.
They are available via the ISO_FORTRAN_ENV intrinsic module.
As only one compiler supports the whole of the Fortran 2008 standard at the time of writing the book we will use sp, dp and qp in the examples.
Table 5.10 is a summary of the details of an extended type.Table 5.10Extended real type comparison

	Function name
	Cray
	gfortran
	Intel
	Nag
	Oracle

	
 digits

	113
	113
	113
	106
	113

	
 maxexponent

	16384
	16384
	16384
	1023
	16384

	
 minexponent

	−16381
	−16381
	−16381
	−968
	−16381

	
 precision

	33
	33
	33
	31
	33

	
 radix

	2
	2
	2
	2
	2

	
 range

	4931
	4931
	4931
	291
	4931

As can be seen all five compilers support the same 32 and 64 bit real types. They all support an extended 128 bit type, and Cray, gfortran, Intel and Oracle are the same, but Nag is different.
Here are the details for epsilon, huge and tiny for these compilers.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figar_HTML.gif]

Run this program on whatever system you have access to with your compiler(s) and compare the output with the above examples. Most compilers will offer support for 32, 64 and 128 bit reals.
5.21 gfortran Support for Intel Extended (80 bit) Precision
As was seen earlier the gfortran compiler also supports a 10 byte real. This is the Intel x86 extended precision format.
The x86 extended precision format is an 80-bit format first implemented in the Intel 8087 math coprocessor and is supported by all processors that are based on the x86 design which incorporate a floating-point unit (FPU). This 80-bit format uses one bit for the sign of the significand, 15 bits for the exponent field (i.e. the same range as the 128-bit quadruple precision IEEE 754 format) and 64 bits for the significand.
We will look at an example of using this kind type in a later chapter.
5.22 Example 11: Literal Real Constants in a Calculation
We
 have seen how to specify integer and real variables of different kind types but we also need to be able to do the same for literal constants. Examples of literal constants are 1.23, 5.643E-2 (default reals) and 400, -3 (default integers). To declare a literal constant to be of a different kind you need to specify the constant followed by an underscore and the kind type parameter. The following are two examples of 64 bit real literal constants:

 1.23_dp
 , 5.643E-2_dp.
You should be careful when writing programs using variables that are not the default kind making sure that any literal constants are also of the same kind. For example if you are using 64 bit real variables then make sure all your real literal constants are 64 bit. Here is a program where the variables and constants pi, area and r are 32 bit reals and pid, aread and rd are 64 bit reals. Try compiling and running the program. Do you get the same results as us?[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figas_HTML.gif]

Here is the Nag compiler output.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figat_HTML.gif]

Now edit the program and remove the _dp from the literal constant assigned to pid. You will see that the results for area (32 bit real) and aread (64 bit real) are the same. This is because the literal constant for pid reverts to a default 32 bit real.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figau_HTML.gif]

5.23 Summation and Finite Precision

The next example look at some of the problems that occur with the summation of floating point numbers. We will look
 at more summation problems in later chapters.
5.23.1 Example 12: Rounding Problem
Consider the following program.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figav_HTML.gif]

Here is the output from the Intel compiler.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figaw_HTML.gif]

Here is the output from the Nag compiler.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figax_HTML.gif]

In both cases the summation is inexact, due to rounding errors.
5.24 Example 13: Binary Representation of Different Integer Kind Type Numbers
For
 those who wish to look at the internal binary representation of integer numbers with a variety of kinds, we have included the following program
selected_int_kind(2) means provide at least an integer representation with numbers between –[image: $$10^{2}$$] and +[image: $$10^{2}$$].
selected_int_kind(4) means provide at least an integer representation with numbers between –[image: $$10^{4}$$] and +10[image: 4].
selected_int_kind(9) means provide at least an integer representation with numbers between –10[image: 9] and +10[image: 9].
We use the int function to convert from one integer representation to another.
We use the logical function btest to determine whether the binary value at that position within the number is a zero or a one, i.e., if the bit is set.
i_in_bits is a character string that holds a direct mapping from the internal binary form of the integer and a text string that prints as a sequence of zeros or ones:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figay_HTML.gif]

The

 do loop indices follow the convention of an 8-bit quantity starting at bit 0 and ending at bit 7, 16-bit quantities starting at 0 and ending at 15, etc.
The numbers written out follow the conventional mathematical notation of having the least significant quantity at the right-hand end of the digit sequence, i.e., with 127 in decimal we have 1 * 100, 2 * 10 and 7 * 1, so 00100001 in binary means 1 * 32 [image: $$+$$]1 * 1 decimal.
Try running this program on the system you are using. Does it produce the results you expect? Experiment with a variety of numbers. Try at least the following 0, [image: $$+$$]1, −1, −128, 127, 128, −32768, 32767, 32768.
5.25 Example 14: Binary Representation of a Real Number
The
 following program is a simple variant of the previous one, but we now look at a floating point number:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figaz_HTML.gif]

We
 use the intrinsic function transfer to help out here. The btest intrinsic takes an integer argument, so we need to copy the bit pattern of the real number into an integer variable.

5.26 Example 15: Initialisation of Physical Constants, Version 1
This
 is the first of three examples that uses the physical constant data in an earlier table to initialise parameters in a Fortran program.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figba_HTML.gif]

Here is the output from the Intel compiler.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbb_HTML.gif]

Here is the output from the Nag compiler.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbc_HTML.gif]

5.27 Example 16: Initialisation of Physical Constants, Version 2
This
 is the second of three examples that uses the physical constant data in an earlier table to initialise parameters in a Fortran program.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbd_HTML.gif]

5.28 Example 17: Initialisation of Physical Constants, Version 3
This
 is the third of three examples that uses the physical constant data in an earlier table to initialise parameters in a Fortran program.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbe_HTML.gif]

5.29 Summary of How to Select the Appropriate Kind Type
To write programs that will perform arithmetically in a similar fashion on a variety of hardware requires an understanding of:	The integer data representation model and in practice the word size of the various integer kind types.

	The real data representation model and in practice the word size of the various real kind types
 and the number of bits in both the mantissa and exponent.

Armed with this information we can then choose a kind type that will ensure minimal problems when moving from one platform to another. End of health warning!
5.30 Variable Status
Fortran has two concepts regarding the status of a variable: defined and undefined. If a program does not provide an initial value (in a type statement) for a variable then its status is said to be undefined. Consider the following code segment taken from the earlier example that calculated the sum and average of three numbers:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbf_HTML.gif]

In the above the variables average, total and n all have a defined status. However, n1, n2 and n3 are said to be undefined. The use of undefined values is implementation dependent and therefore not portable. Care must be taken when writing programs to ensure that your variables have a defined status wherever possible. We will look at this area again in subsequent chapters.
5.31 Fortran and the IEEE 754 Standard
The ISO TR 15580 introduced IEEE Arithmetic support to Fortran.
IEEE 754-2008 governs binary floating-point arithmetic. It specifies number formats, basic operations, conversions, and exceptional conditions. The 2008 edition superseded both the	754-1985

standard and the related	IEEE 854-1987

which generalized 754-1985 to cover decimal arithmetic as well as binary. The first standard IEEE 754: 1985 covered binary floating point arithmetic. The later IEEE 754: 1987 standard added decimal arithmetic.
The latest version of the standard is ISO/IEC/IEEE 60559:2011.
A considerable amount of hardware now offers support for the IEEE 754 standard. The standard can be purchased from[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbg_HTML.gif]

The following is a useful site.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbh_HTML.gif]

There are quite a lot of good links.
There is a separate chapter in the book on IEEE arithmetic and Fortran.
5.32 Summary
The following are some practical rules and guidelines:	Learn the rules for the evaluation of arithmetic expressions.

	Break expressions down where necessary to ensure that the expressions are evaluated in the way you want.

	Take care with truncation owing to integer division in an expression. Note that this will only be a problem where both parts of the division are integer.

	Take care with truncation owing to the assignment statement when there is an integer on the left-hand side of the statement, i.e., assigning a real into an integer variable.

	When you want to set up constants which will remain unchanged throughout the program, use the parameter attribute.

	Do not confuse precision and accuracy.

	Learn what the default kinds are for the numeric types you work with, what the maximum and minimum values and precision are for real data, and what the maximum and minimum are for integer data.

	You have been introduced to the use of several intrinsic functions.

5.33 Bibliography
Some understanding of floating point arithmetic and numerical analysis is essential for successful use of Fortran when programming. As Froberg says “numerical analysis is a science — computation is an art.” The separate chapter on IEEE arithmetic also has several references.
The following are some of the more accessible books available.
Burden R.L., Faires J.D., Numerical Analysis, Brooks Cole, 2010.

 	The first section of the book covers some of the mathematical preliminaries including a review of calculus, round-off errors and computer arithmetic, algorithms and convergence. They provide programs or software to solve the problems in C, Fortran, Maple, Mathematica, Matlab and Pascal.

Froberg C.E., Introduction to Numerical Analysis, Addison-Wesley, 1969.

 	The short chapter on numerical computation is well worth a read; it covers some of the problems of conversion between number bases and some of the errors that are introduced when we compute numerically. The Samuel Johnson quote owes its inclusion to Froberg!

Goldberg D., What Every Computer Scientist Should Know About Floating-Point Arithmetic, Computing Surveys, March 1991.

 	The paper is a very good introduction to floating point arithmetic. It is available on line.

Higham Nicholas J., Accuracy and Stability of Numerical Algorithms, SIAM, 2002.

 	The first four chapters cover finite precision computation, floating point arithmetic, error analysis and summation methods.

Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

 	A more thorough and mathematical coverage than Wakerly. The chapter on positional number systems provides a very comprehensive historical coverage of the subject. As Knuth points out the floating point representation for numbers is very old, and is first documented around 1750 B.C. by Babylonian mathematicians. Very interesting and worthwhile reading.

Wakerly J.F., Microcomputer Architecture and programming, Wiley, 1981.

 	The chapter on number systems and arithmetic is surprisingly easy. There is a coverage of positional number systems, octal and hexadecimal number system conversions, addition and subtraction of nondecimal numbers, representation of negative numbers, two’s complement addition and subtraction, one’s complement addition and subtraction, binary multiplication, binary division, bcd or binary coded decimal representation and fixed and floating point representations. There is also coverage of a number of specific hardware platforms, including DEC PDP-11, Motorola 68000, Zilog Z8000, TI 9900, Motorola 6809 and Intel 8086. A little old but quite interesting nevertheless.

5.34 Problems
5.1
Compile and run Examples 1–3 in this chapter.

5.2
Have another look at Example 4. Compile and run it. It will generate an error on some systems. Can you see where the error is?

5.3
Write a program to calculate the period of a pendulum. This is given mathematically as[image: $$\begin{aligned} t = 2 \pi \sqrt{length/9.81} \end{aligned}$$]

use
 the following Fortran arithmetic assignment statement:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbi_HTML.gif]

The length length is in metres, and the time t in seconds, and pi was given a value earlier in this chapter.
Repeat the above using two other methods. Try a hand-held calculator and a spreadsheet. Do you get the same answers?

5.4
Base conversion.
In this chapter you have seen a brief coverage of base conversion. The following program illustrates some of the problems that can occur when going from base 10 to base 2 and back again. Which numbers will convert without loss?[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbj_HTML.gif]

Which do you think will provide the same number as originally entered?

5.5
Simple subtraction. In this chapter we looked at representing floating point numbers in a finite number of bits.
Try the following program:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbk_HTML.gif]

What are the absolute and relative errors in this calculation?

5.6
Expression equivalence. We introduced some of the rules that apply in Fortran for expression evaluation. In mathematics the following is true:

 [image: $$ x^2 - y^2 = (x*x-y*y) = (x-y)*(x+y) $$]

Try the following program:[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbl_HTML.gif]

Solve the problem with pencil and paper, calculator and Excel.
The last three examples show that you must be careful when using a computer to solve problems.

5.7
The following is a simple variant of ch0504. In this case we initialise light year in an assignment statement. Do you think you will get the same results as from running the earlier example?[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbm_HTML.gif]

5.8
Many communications satellites follow a geosynchronous orbit, some 35,870 km above the Earth s surface. What is the time lag incurred in using one such satellite for a telephone conversation?
This will also be the time delay for satellite based internet access.
You can use the above program as the basis for this problem. You will need to calculate the time in seconds (rather than minutes and seconds), as the distance is much smaller.

5.9
The Moon is about 384,400 km from the Earth on average What implications does this have for control of experiments on the Moon? What is the time lag?

5.10
The following table gives the distance in mkm from the Sun to the planets in the Solar system.[image: ../images/112282_4_En_5_Chapter/112282_4_En_5_Figbn_HTML.gif]

Use this information to find the greatest and least time taken to send a message from the Earth to the other planets.
Assume that all orbits are in the same plane and circular. If it was good enough for Copernicus it’s good enough for this example.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_6

6. Arrays 1: Some Fundamentals

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Thy gifts, thy tables, are within my brain Full charactered with lasting memory.

William Shakespeare, The Sonnets

 Here, take this book, and peruse it well: The iterating of these lines brings gold.

Christopher Marlowe, The Tragical History of Doctor Faustus

 Aims

The aims of the chapter are to introduce the fundamental concepts of arrays and do loops, in particular:	To introduce the idea of tables of data and some of the formal terms used to describe them:	Array.

	Vector.

	List and linear list.

	To discuss the array as a random access structure where any element can be accessed as readily as any other and to note that the data in an array are all of the same type.

	To introduce the twin concepts of data structure and corresponding control structure.

	To introduce the statements necessary in Fortran to support and manipulate these data structures.

6.1 Tables of Data
Consider the examples below.
6.1.1 Telephone Directory
A telephone directory consists of the following kinds of entries:	Name
	Address
	Number

	Adcroft A.
	61 Connaught Road, Roath, Cardiff
	223309

	Beale K.
	14 Airedale Road, Balham
	745 9870

	Blunt R.U.
	81 Stanlake Road, Shepherds Bush
	674 4546

	...
	 	
	...
	 	
	...
	 	
	Sims Tony
	99 Andover Road, Twickenham
	898 7330

This structure can be considered in a variety of ways, but perhaps the most common is to regard it as a table of data, where there are three columns and as many rows as there are entries in the telephone directory.
Consider now the way we extract information from this table. We would scan the name column looking for the name we are interested in, and then read along the row looking for either the address or telephone number, i.e., we are using the name to look up the item of interest.
6.1.2 Book Catalogue
A catalogue could contain:	Author(s)
	Title
	Publisher

	Carroll L.
	Alice through the Looking Glass
	Penguin

	Steinbeck J.
	Sweet Thursday
	Penguin

	Wirth N.
	Algorithms plus data Structures = programs
	Prentice-Hall

Again, this can be regarded as a table of data, having three columns and many rows. We would follow the same procedure as with the telephone directory to extract the information. We would use the Author to look up what books are available.
6.1.3 Examination Marks or Results
This could consist of:	Name
	Physics
	Maths
	Biology
	History
	English
	French

	Fowler L.
	50
	47
	28
	89
	30
	46

	Barron L.W
	37
	67
	34
	65
	68
	98

	Warren J.
	25
	45
	26
	48
	10
	36

	Mallory D.
	89
	56
	33
	45
	30
	65

	Codd S.
	68
	78
	38
	76
	98
	65

This can again be regarded as a table of data. This example has seven columns and five rows. We would again look up information by using the Name.
6.1.4 Monthly Rainfall
The following data are a sample of monthly average rainfall for London in inches:	Month
	Rainfall

	January
	3.1

	February
	2.0

	March
	2.4

	April
	2.1

	May
	2.2

	June
	2.2

	July
	1.8

	August
	2.2

	September
	2.7

	October
	2.9

	November
	3.1

	December
	3.1

In this table there are two columns and twelve rows. To find out what the rainfall was in July, we scan the table for July in the Month column and locate the value in the same row, i.e., the rainfall figure for July.
These are just some of the many examples of problems where the data that are being considered have a tabular structure. Most general purpose languages therefore have mechanisms for dealing with this kind of structure. Some of the special names given to these structures include:	Linear list.

	List.

	Vector.

	Array.

The term used most often here, and in the majority of books on Fortran programming, is array.
6.2 Arrays in Fortran
There are three key things to consider here:	The ability to refer to a set or group of items by a single name.

	The ability to refer to individual items or members of this set, i.e., look them up.

	The choice of a control structure that allows easy manipulation of this set or array.

6.2.1 The Dimension Attribute
The dimension attribute defines
 a variable to be an array. This satisfies the first requirement of being able to refer to a set of items by a single name. Some examples are given below:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figa_HTML.gif]

For the variable wages it is of type real and an array of dimension or size 100, i.e., the variable array wages can hold up to 100 real items.
For the variable sample it is of type integer and an array of dimension or size 10,000, i.e., the variable sample can hold up to 10,000 integer items.
6.2.2 An Index
An index enables
 you to refer to or select individual elements of the array. In the telephone directory, book catalogue, exam marks table and monthly rainfall examples we used the name to index or look up the items of interest. We will give concrete Fortran code for this in the example of monthly rain fall.
6.2.3 Control Structure
The statement that
 is generally used to manipulate the elements of an array is the do statement. It is typical to have several statements controlled by the do statement, and the block of repeated statements is often called a do loop. Let us look at two complete programs that highlight the above.
6.3 Example 1: Monthly Rainfall
Let us look at this earlier example in more depth now. Consider the following:	Month
	Associated integer
representation
	Array
and index
	Rainfall
value

	January
	1
	rainfall(1)
	3.1

	February
	2
	rainfall(2)
	2.0

	March
	3
	rainfall(3)
	2.4

	April
	4
	rainfall(4)
	2.1

	May
	5
	rainfall(5)
	2.2

	June
	6
	rainfall(6)
	2.2

	July
	7
	rainfall(7)
	1.8

	August
	8
	rainfall(8)
	2.2

	September
	9
	rainfall(9)
	2.7

	October
	10
	rainfall(10)
	2.9

	November
	11
	rainfall(11)
	3.1

	December
	12
	rainfall(12)
	3.1

Most of you should be familiar with the idea of the use of an integer as an alternate way of representing a month, e.g., in a date expressed as 1/3/2000, for 1st March 2000 (Anglicised style) or January 3rd (Americanised style). Fortran, in common with other programming languages, only allows the use of integers as an index into an array. Thus when we write a program to use arrays we have to map between whatever construct we use in everyday life as our index (names in our examples of telephone directory, book catalogue, and exam marks) to an integer representation in Fortran. The following is an example of an assignment statement showing the use of an index:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figb_HTML.gif]

We saw earlier that we could use the dimension attribute to indicate that a variable was an array. In the above example Fortran statement our array is called rainfall. In this statement we are assigning the value 3.1 to the first element of the array; i.e., the rainfall for the month of January is 3.1. We use the index 1 to represent the first month. Consider the following statement:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figc_HTML.gif]

This statement says take the values of the rainfall for June, July and August, add them up and then divide by 3, and assign the result to the variable summeraverage, thus providing us with the rainfall average for the three summer months — Northern Hemisphere of course!
The following program reads in the 12 monthly values from the keyboard, computes the sum and average for the year, and prints the average out.[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figd_HTML.gif]

rainfall is the array name. The variable month in brackets is the index. It takes on values from 1 to 12 inclusive, and is used to pick out or select elements of the array. The index is thus a variable and this permits dynamic manipulation of the array at run time. The general form of the do statement is[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Fige_HTML.gif]

The block of statements that form the loop is contained between the do statement, which marks the beginning of the block or loop, and the enddo statement, which marks the end of the block or loop.
In this program, the do loops take the form:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figf_HTML.gif]

The body of the loop in the program above has been indented. This is not required by Fortran. However it is good practice and will make programs easier to follow.
The number of times that the do loop is executed is governed by the last part of the do statement,

 i.e., by the[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figg_HTML.gif]

start as it implies, is the initial value which the counter (or index, or control variable) takes. Each time the loop is executed, the value of the counter will be increased by the value of increment, until the value of end is reached. If increment is omitted, it is assumed to be 1. No other element of the do statement may be omitted. In order to execute the statements within the loop (the body) it must be possible to reach end from start. Thus zero is an illegal value of increment. In the event that it is not possible to reach end, the loop will not be executed and control will pass to the statement after the end of the loop.
In the example above, both loops would be executed 12 times. In both cases, the first time around the loop the variable month would have the value 1, the second time around the loop the variable month would have the value 2, etc., and the last time around the loop month would have the value 12.
A summation:[image: $$\begin{aligned} \sum _{i=1} ^{i=12} x_{i} \end{aligned}$$]

is often expressed in Fortran as a loop as in this example:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figh_HTML.gif]

6.4 Possible Missing Data
The rainfall data in this example has been taken from the UK Met Office site. Visit[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figi_HTML.gif]

to see where some of the stations are. One of us was born in Wales, the other in Yorkshire so we have chosen stations accordingly. The urls have been split over two lines when too long.
The following is one of the mid Wales stations:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figj_HTML.gif]

Here is a sample of data from this site for 1965.[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figk_HTML.gif]

Wales is relatively wet for the UK!
The following station is Whitby:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figl_HTML.gif]

Here is a sample of the Whitby data.[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figm_HTML.gif]

Bram Stoker found some of his inspiration for Dracula after staying in the town.
If you look at the data for some of these stations you will notice that data is missing for some months.
How do you think you could cope with missing data in Fortran?
The SQL standard has the concept of nulls or missing values, and missing data in a statistics package is commonly flagged by an exceptional value e.g. −999.
We will look at using this data in Chap. 10.
6.5 Example 2: People’s Weights and Setting the Array Size With a Parameter
In the table

 below we have ten people, with their names as shown. We associate each name with a number — in this case we have ordered the names alphabetically, and the numbers therefore reflect their ordering. weight is the array name. The number in brackets is called the index and it is used to pick out or select elements of the array. The table is read as the first element of the array weight has the value 85, the second element has the value 76, etc.	Person
	Associated integer
representation
	Array and
index
	Associated value

	Andy
	1
	Weight(1)
	85

	Barry
	2
	Weight(2)
	76

	Cathy
	3
	Weight(3)
	85

	Dawn
	4
	Weight(4)
	90

	Elaine
	5
	Weight(5)
	69

	Frank
	6
	Weight(6)
	83

	Gordon
	7
	Weight(7)
	64

	Hannah
	8
	Weight(8)
	57

	Ian
	9
	Weight(9)
	65

	Jatinda
	10
	Weight(10)
	76

In the first example we so-called hard coded the number 12, which is the number of months, into the program. It occurred four times. Modifying the program to work with a different number of months would obviously be tedious and potentially error prone.
In this example we parameterise the size of the array and reduce the effort involved in modifying the program to work with a different number of people:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Fign_HTML.gif]

6.6 Summary
The dimension attribute declares a variable to be an array, and must come at the start of a program unit, with other declarative statements. It has two forms and examples of both of them are given below. In the first case we explicitly specify the upper and lower bounds.[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figo_HTML.gif]

In the second case the lower limit defaults to 1 [image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figp_HTML.gif]

The latter form will be seen in legacy code, especially Fortran 77 code suites.
The parameter attribute declares a variable to have a fixed value that cannot be changed during the execution of a program. In our example above note that this statement occurs before the other declarative statements that depend on it. Table 6.1 summarises Fortran’s statement ordering.Table 6.1Fortran statement ordering

	Program
	First statement
	
	Integer
	 	In any order and the dimension and parameter attributes are added here

	Real
	Declarative
	
	Character
	 	
	Arithmetic assignment
	 	In any order

	Print *
	 	
	Read *
	Executable
	
	Do
	 	
	Enddo
	 	
	End program
	Last statement
	

We choose individual members using an index, and these are always of integer type in Fortran.
The do loop is a very convenient control structure for manipulating arrays, and we use indentation to clearly identify loops.
6.7 Problems
6.1
Compile and run example 1 from this chapter. If you live in the UK visit the Met Office site mentioned earlier and choose a site near you, and a year of interest, making sure that the data set is complete for that year.
If you don’t live in the UK is there a site similar to the Met Office site that has data for the country your are from?

6.2
Compile and run program 2.

6.3
Using a do loop and an array rewrite the program which calculated the average of three numbers to ten.

6.4
Modify the program that calculates the total and average of people’s weights to additionally read in their heights and calculate the total and average of their heights. Use the data given below, which have been taken from a group of first year undergraduates:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figq_HTML.gif]

6.5
Your body mass index is given by your weight (in kilos) divided by your height (in metres) squared. Calculate and print out the BMI for each person.
Grades of obesity according to Garrow as follows:	Grade 0 (desirable) 20–24.9

	Grade 1 (overweight) 25–29.9

	Grade 2 (obese) 30–40

	Grade 3 (morbidly obese) >40

	Ideal BMI range,

	Men, Range 20.1–25 kg/m[image: $$^{\text {2}}$$]

	Women, Range 18.7–23.8 kg/m[image: $$^{\text {2}}$$]

6.6
When working on either a UNIX system or a PC in a DOS box it is possible to use the following characters to enable you to read data from a file or write output to a file when running your program:[image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figr_HTML.gif]

On a typical UNIX system we could use [image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figs_HTML.gif]

to read the data from the file called data.txt and write the output to a file called results.txt.
On a PC in a DOS box the equivalent would be [image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figt_HTML.gif]

This is a quick and dirty way of developing programs that do simple I/O; we don’t have to keep typing in the data and we also have a record of the behaviour of the program. Rerun the program that prints out the BMI values to write the output to a file called results.txt. Examine this file in an editor.

6.7
Modify the program that read in your name to read in ten names. Use an array and a do loop. When you have read the names into the array write them out in reverse order on separate lines.
Hint: Look at the formal syntax of the do statement.

6.8
Modify the rainfall program (which assumes that the measurement is in inches) to convert the values to centimetres. One inch equals 2.54 cm. Print out the two sets of values as a table.
Hint: use a second array to hold the metric measurements.

6.9
Combine the programs that read in and calculate the average weight with the one that reads in peoples names. The program should read the weights into one array and the names into another. Allow 20 characters for the length of a name. print out a table linking names and weights.

6.10
In an earlier chapter we used the following formula to calculate the period of a pendulum: [image: ../images/112282_4_En_6_Chapter/112282_4_En_6_Figu_HTML.gif]

write a program that uses a do loop to make the length go from 1 to 10 m in 1-m increments.
Produce a table with two columns, the first of lengths and the second of periods.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_7

7. Arrays 2: Further Examples

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Sir, In your otherwise beautiful poem (The Vision of Sin) there is a verse which reads Every moment dies a man, every moment one is born. Obviously this cannot be true and I suggest that in the next edition you have it read Every moment dies a man, every moment 1 1/16 is born. Even this value is slightly in error but should be sufficiently accurate for poetry.

Charles Babbage in a letter to Lord Tennyson

 Aims

The aims of the chapter are to extend the concepts introduced in the previous chapter and in particular:	To set an array size at run time - allocatable arrays.

	To introduce the idea of an array with more than one dimension and the corresponding control structure to permit easy manipulation of higher-dimensioned arrays.

	To introduce an extended form of the dimension attribute declaration, and the corresponding alternative form to the do statement, to manipulate the array in this new form.

	To introduce the do loop as a mechanism for the control of repetition in general, not just for manipulating arrays.

	To formally define the block do syntax.

7.1 Varying the Array Size at Run Time
The earlier examples set the array size in the following two ways:	Explicitly using a numeric constant

	Implicitly using a parameterised variable

In both cases we knew the size of the array at the time we compiled the program. We may not know the size of the array at compile time and Fortran provides the allocatable attribute to accommodate this kind of problem.
7.1.1 Example 1: Allocatable Arrays
Consider the following example.[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figa_HTML.gif]

The first statement of interest is the type declaration with the dimension and allocatable attributes, e.g.,[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figb_HTML.gif]

The second is the allocate

 statement[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figc_HTML.gif]
 where the value of the variable number_of_people is not known until run time. This is known in Fortran as a deferred shape array.
7.2 Higher-Dimension Arrays
There are many instances where it is necessary to have arrays with more than one dimension. Consider the examples below.
7.2.1 Example 2: Two Dimensional Arrays and a Map
Consider the representation of the height of an area of land expressed as a two dimensional table of numbers e.g., we may have some information represented in a simple table as follows:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figd_HTML.gif]

The values in the array are the heights above sea level. The example is obviously artificial, but it does highlight the concepts involved. For those who have forgotten their geography, lines of latitude run east–west (the equator is a line of latitude) and lines of longitude run north–south (they go through the poles and are all of the same length). In the above table therefore the latitude values are ordered by row and the longitude values are ordered by column.
A program to manipulate this data structure would involve something like the following:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Fige_HTML.gif]

Note the way in which indentation has been used to highlight the structure in this example. Note also the use of a textual prompt to highlight which data value is expected. Running the program highlights some of the problems with the simple i/o used in the example above. We will address this issue in the next example.
The inner loop is said to be nested within the outer one. It is very common to encounter problems where nesting is a natural way to express the solution. Nesting is permitted to any depth. Here is an example of a valid nested do loop:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figf_HTML.gif]

This example introduces the concept of two indices, and can be thought of as a row and column data structure.
7.2.2 Example 3: Sensible Tabular Output
The first example had the values printed in a format that wasn’t very easy to work with. In this example we introduce a so-called implied do loop, which enables us to produce neat and humanly comprehensible output:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figg_HTML.gif]

The key statement in this example is[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figh_HTML.gif]

This is called an implied do loop, as the longitude variable takes on values from 1 through 3 and will write out all three values on one line.
We will see other examples of this statement as we go on.
7.2.3 Example 4: Average of Three Sets of Values
This example extends the previous one. Now we have three sets of measurements and we are interested in calculating the average of these three sets. The two new data sets are:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figi_HTML.gif]
 and[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figj_HTML.gif]
and we have chosen the values to enable us to quickly check that the calculations for the averages are correct.
This program also uses implied do loops to read the data, as data in files are generally tabular:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figk_HTML.gif]

The original data was accurate to three significant figures. The output from the above has spurious additional accuracy. We will look at how to correct this in the later chapter on output.
7.2.4 Example 5: Booking Arrangements in a Theatre or Cinema
A theatre or cinema consists of rows and columns of seats. In a large cinema or a typical theatre there would also be more than one level or storey. Thus, a program to represent and manipulate this structure would probably have a 2-d or 3-d array. Consider the following program extract:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figl_HTML.gif]

Note here the use of the term parameter in conjunction with the integer declaration. This is called an entity orientated declaration. An alternative to this is an attribute-orientated declaration, e.g.,[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figm_HTML.gif]
 and we will be using the entity-orientated declaration method throughout the rest of the book. This is our recommended method as you only have to look in one place to determine everything that you need to know about an entity.
7.3 Additional Forms of the Dimension Attribute and Do Loop Statement
7.3.1 Example 6: Voltage from –20 to [image: $$+$$]20 Volts
Consider the problem of an experiment where the independent variable voltage varies from –20 to [image: $$+$$]20 volts and the current is measured at 1-volt intervals. Fortran has a mechanism for handling this type of problem:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Fign_HTML.gif]

We appreciate that, due to experimental error, the voltage will not have exact integer values. However, we are interested in representing and manipulating a set of values, and thus from the point of view of the problem solution and the program this is a reasonable assumption. There are several things to note.
This form of the dimension attribute[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figo_HTML.gif]
 is of considerable use when the problem has an effective index which does not start at 1.
There is a corresponding form of the do statement which allows processing of problems of this nature. This is shown in the above program. The general form of the do statement statement is therefore:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figp_HTML.gif]
 where start, end and increment can be positive or negative. Note that zero is a legitimate value of the dimension limits and of a do loop index.
7.3.2 Example 7: Longitude from –180 to [image: $$+$$]180
Consider the problem of the production of a table linking time difference with longitude. The values of longitude will vary from –180 to [image: $$+$$]180 degrees, and the time will vary from [image: $$+$$]12 hours to –12 hours. A possible program segment is:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figq_HTML.gif]

7.3.3 Notes
The values of the time are not being calculated at every degree interval.
The variable time is a real variable. It would be possible to arrange for the time to be an integer by expressing it in either minutes or seconds.
This example takes no account of all the wiggly bits separating time zones or of British Summer Time or Daylight Saving Time.
What changes would you make to the program to accommodate [image: $$+$$]180? What is the time at –180 and [image: $$+$$]180?
7.4 The Do Loop and Straight Repetition
7.4.1 Example 8: Table of Liquid Conversion Measurements
Consider the production of a table of liquid measurements. The independent variable is the litre value; the gallon and US gallon are the dependent variables. Strictly speaking, a program to do this does not have to have an array, i.e., the do loop can be used to control the repetition of a set of statements that make no reference to an array. The following shows a complete but simple conversion program:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figr_HTML.gif]

Note here that the do statement has been used only to control the repetition of a block of statements — there are no arrays at all in this program.
This is the other use of the do statement. The do loop thus has two functions — its use with arrays as a control structure and its use solely for the repetition of a block of statements.
7.4.2 Example 9: Means and Standard Deviations
In the calculation of the mean and standard deviation of a list of numbers, we can use the following formulae. It is not actually necessary to store the values, nor to accumulate the sum of the values and their squares. In the first case, we would possibly require a large array, whereas in the second, it is conceivable that the accumulated values (especially of the squares) might be too large for the machine. The following example uses an updating technique which avoids these problems, but is still accurate. The do loop is simply a control structure to ensure that all the values are read in, with the index being used in the calculation of the updates:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figs_HTML.gif]

7.5 Summary
Arrays can have up to fifteen dimensions.
Do loops may be nested, but they must not overlap.
The dimension attribute allows limits to be specified for a block of information which is to be treated in a common way. The limits must be integer, and the second limit must exceed the first, e.g.,[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figt_HTML.gif]

The last example could equally be written[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figu_HTML.gif]
 where the first limit is omitted and is given the default value 1. The array list would contain 114 values, while surface would contain 10201.
A do statement and its corresponding enddo statement define a loop. The do statement provides a starting value, terminal value, and optionally, an increment for its index or counter.
The increment may be negative, but should never be zero. If it is not present, the default value is 1. It must be possible for the terminating value to be reached from the starting value.
The counter in a do loop is ideally suited for indexing an array, but it may be used anywhere that repetition is needed, and of course the index or counter need not be used explicitly.
The formal syntax of the block do construct is[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figv_HTML.gif]
 where the forms of the loop control are[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figw_HTML.gif]
 and the forms of the end-do are[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figx_HTML.gif]
 and [] identify optional components of the block do construct. This statement is looked at in much greater depth in Chap. 13.
We have introduced the concept of a deferred-shape array. Arrays do not need to have their shape specified at compile time, only their rank. Their actual shape is deferred until runtime. We achieve this by the combined use of the allocatable attribute on the variable declaration and the allocate statement, which makes Fortran a very flexible language for array manipulation.
7.6 Problems
7.1
Compile and run all the examples in this chapter, except example 5. This is covered in Problem 7.8.

7.2
Modify the first example to convert the height in feet to height in metres. The conversion factor is one 1 foot equals 0.305 m.
Hint: You can either overwrite the height array or introduce a second array.

7.3
The following are two equations for temperature conversion [image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figy_HTML.gif]

Write a complete program where t is an integer do loop variable and loop from –50 to 250. Print out the values of c, t and f on one line. What do you notice about the c and f values?

7.4
Write a program to print out the 12 times table. Typical output would be of the form: [image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figz_HTML.gif]

etc.
Hint: You don’t need to use an array here.

7.5
Write a program to read the following data into a two-dimensional array:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figaa_HTML.gif]

Calculate totals for each row and column and produce output similar to that shown below:[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figab_HTML.gif]

Hint 1: Example ch0602 shows how to sum over a loop.
Hint 2: You need to introduce two one-dimensional arrays to hold the row and column totals. You need to index over the rows to get the column totals and over the columns to get the row totals.

7.6
Modify the above to produce averages for each row and column as well as the totals.

7.7
Using the following data from Problem 6.​4 in Chap. 6: [image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figac_HTML.gif]
 Use the program that evaluated the mean and standard deviation to do so for these heights and weights.
In the first case use the program as is and run it twice, first with the heights then with the weights.
What changes would you need to make to the program to read a height and a weight in a pair?
Hint: You could introduce separate scalar variable s for the heights and weights.

7.8
Example 5 looked at seat bookings in a cinema or theatre. Here is an example of a sample data file for this program[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figad_HTML.gif]

The key for this is as follows: [image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figae_HTML.gif]
 Compile and run the program. The output would benefit from adding row and column numbers to the information displayed. We will come back to this issue in a subsequent chapter on output formatting.
The data are in a file on the web and the address is given below.[image: ../images/112282_4_En_7_Chapter/112282_4_En_7_Figaf_HTML.gif]

Problem 6.​6 in the last chapter shows how to read data from a file.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_8

8. Whole Array and Additional Array Features

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

A good notation has a subtlety and suggestiveness which at times make it seem almost like a live teacher.
Bertrand Russell

 Aims

The aims of the chapter are:	To look more formally at the terminology required to precisely describe arrays.

	To introduce ways in which we can manipulate whole arrays
 and parts of arrays (sections).

	To introduce the concept of array element ordering and physical and virtual

 memory.

	To introduce ways in which we can initialise arrays using array

 constructors.

	To introduce the where statement and array masking.

	To introduce the forall statement and construct.

	Physical and virtual memory

	Type declaration statement summary.

8.1 Terminology
Fortran

 supports an abundance of array handling features. In order to make the description of these features more precise a number of additional terms have to be covered and these are introduced and explained below.

 	Rank - The number of dimensions of an array is called its rank. A one dimensional array has rank 1, a two dimensional array has rank 2 and so

 on.

	Bounds - An array’s bounds are the upper and lower limits of the index in each

 dimension.

	Extent - The number of elements along a dimension of an array is called the

 extent. [image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figa_HTML.gif]
 has bounds –10 and 15 and an extent of 26.

	Size - The total number of elements in an array is its

 size.

	Shape - The shape of an array is determined by its rank and its extents in each

 dimension.

	Conformable - Two arrays are said to be conformable if they have the same shape, that is, they have the same rank and the same extent in each

 dimension.

8.2 Array Element Ordering
Array
 element ordering states that the elements of an array, regardless of rank, form a linear sequence. The sequence is such that the subscripts along the first dimension vary most rapidly, and those along the last dimension vary most slowly. This is best illustrated by considering, for example, a rank 2 array a defined by[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figb_HTML.gif]
a has 8 real elements whose array element order
 is a(1, 1), a(2, 1), a(3, 1), a(4, 1), a(1, 2), a(2, 2), a(3, 2), a(4, 2) i.e., mathematically by column and not

 row. We will look more formally at this later in this chapter.
8.3 Whole Array Manipulation
The
 examples of arrays so far have shown operations on arrays via array elements. One of the significant features of modern Fortran is its ability to manipulate arrays as whole objects. This allows arrays to be referenced not just as single elements but also as groups of elements. Along with this ability comes a whole host of intrinsic procedures for array processing. These procedures are mentioned in Chap. 12, and listed in alphabetical order with examples in Appendix D.
8.4 Assignment
An
 array name without any indices can appear on both sides of assignment and input and output statements. For example, values can be assigned to all the elements of an array in one statement:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figc_HTML.gif]

The elements of one array can be assigned to another:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figd_HTML.gif]

Arrays a and b must be conformable in order to do this.
The following example is illegal since x is rank 1 and extent 20, whilst z is rank 1 and extent 41.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Fige_HTML.gif]

But the following is legal because both arrays are now conformable, i.e., they are both of rank 1 and extent 41:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figf_HTML.gif]

8.5 Expressions
All
 the arithmetic operators available to scalars are available to arrays, but care must be taken because mathematically they may not make sense.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figg_HTML.gif]
 adds each element of a to the corresponding element of b and assigns the result to c.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figh_HTML.gif]
 multiplies each element of c by the corresponding element of d. This is not vector multiplication. To perform a vector dot product there is an intrinsic procedure dot_product, and an example of this is given in a subsequent section on array constructors.
For higher dimensions[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figi_HTML.gif]
 takes the square root of every element of f.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figj_HTML.gif]
 adds each element of f to the corresponding element of g.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figk_HTML.gif]
 multiplies each element of f by the corresponding element of g. The last statement is not matrix multiplication. An intrinsic procedure matmul performs matrix multiplication; further details are given in
 Appendix D.
8.6 Example 1: Rank 1 Whole Arrays in Fortran
Consider
 the following example, which is a solution to a problem set earlier, but is now addressed using some of the whole array features of Fortran[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figl_HTML.gif]

The statements[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figm_HTML.gif]
 are examples of whole array initialisation. Each element of the arrays is set to 0.0.
The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Fign_HTML.gif]
 is an example of whole array i/o, where we no longer have to use a do loop to read each element in.
Finally, we have the statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figo_HTML.gif]
 which is an example of whole array arithmetic and assignment.
8.7 Example 2: Rank 2 Whole Arrays in Fortran
Here
 is a two-dimensional example:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figp_HTML.gif]

Note the use of whole arrays in the print statements. The output does look rather messy though, and also illustrates array element

 ordering.
8.8 Array Sections
Often
 it is necessary to access part of an array rather than the whole, and this is possible with Fortran’s powerful array manipulation features.
8.8.1 Example 3: Rank 1 Array Sections
Consider

 the following:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figq_HTML.gif]

The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figr_HTML.gif]
 is working with a section of an array. It assigns the value –1 to elements x(-5) through x(-1).
The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figs_HTML.gif]
 is also working with an array section. It assigns the value 1 to elements x(1) through x(5).
8.8.2 Example 4: Rank 2 Array Sections
In

 Chap. 6 we gave an example of a table of examination marks, and this is given again below:	Name
	Physics
	Maths
	Biology
	History
	English
	French

	Fowler L.
	50
	47
	28
	89
	30
	46

	Barron L.W
	37
	67
	34
	65
	68
	98

	Warren J.
	25
	45
	26
	48
	10
	36

	Mallory D.
	89
	56
	33
	45
	30
	65

	Codd S.
	68
	78
	38
	76
	98
	65

The following program reads the data in, scales column 3 by 2.5 as the Biology marks were out of 40 (the rest are out of 100), calculates the averages for each subject and for each person and prints out the results.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figt_HTML.gif]

The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figu_HTML.gif]
 uses sections to replace the implied do loop

 in the earlier example, takes column 3 of the two dimensional array exam_results, multiplies it by 2.5 (as a whole array) and overwrites the original values.
The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figv_HTML.gif]
 uses array sections in the arithmetic and the assignment.
8.9 Array Constructors
Arrays
 can be given initial values in Fortran using array constructors.

 Some examples are given below.
8.9.1 Example 5: Rank 1 Array Initialisation — Explicit Values

 [image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figw_HTML.gif]

The

 statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figx_HTML.gif]
 provides initial values to the elements of the array rainfall.
8.9.2 Example 6: Rank 1 Array Initialisation Using an Implied Do Loop
The

 next example uses a simple variant:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figy_HTML.gif]

The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figz_HTML.gif]
 initialises the 10 elements of the litre array to the values 1,2,3,4,5,6,7,8,9,10 respectively.
8.9.3 Example 7: Rank 1 Arrays and the dot_product Intrinsic
This

 example uses an array constructor and the intrinsic
 procedure dot_product.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figaa_HTML.gif]
 and result has the value 44, which is obtained by the normal mathematical dot product operation, 1*2 [image: $$+$$] 3*4 [image: $$+$$] 5*6.
The general form of the array constructor is [list of expressions] or (/ a list of expressions /) where each expression is of the same type.
8.9.4 Initialising Rank 2 Arrays
To construct arrays of higher rank than one the intrinsic function reshape must be used.

 An introduction to intrinsic functions is given in Chap. 12, and an alphabetic list with a full explanation of each function is given in Appendix D. To use it in its simplest form:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figab_HTML.gif]
 where source is a rank 1 array containing the values of the elements required in the new array, matrix, and shape is a rank 1 array containing the shape of the new array matrix.
We consider the rank 1 array b=(1,3,5,7,9,11), and we wish to store these values in a rank 2 array a, such that a is the matrix:[image: $$ a = \left(\begin{array} {lr} 1 &{} 7 \\ 3 &{} 9 \\ 5 &{} 11\\ \end{array} \right) $$]

The following code extract is needed:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figac_HTML.gif]

Note that the elements of the source array b must be stored in the array element order of the required array a.
8.9.5 Example 8: Initialising a Rank 2 Array
The

 following example illustrates the additional forms of the reshape function that are used when the number of elements in the source array is less than the number of elements in the destination. The complete form is[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figad_HTML.gif]
pad and order are optional. See Appendix D for a complete explanation of pad and order:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figae_HTML.gif]

8.10 Miscellaneous Array Examples
The following are examples of some of the flexibility of arrays in Fortran.
8.10.1 Example 9: Rank 1 Arrays and a Stride of 2
Consider the following example:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figaf_HTML.gif]

The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figag_HTML.gif]
 steps through the array 2 at a time.
The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figah_HTML.gif]
 shows an array section where we go from elements two through ten in steps of two. The 2:10:2 is an example of a subscript triplet in Fortran, and the first 2 is the lower bound, the 10 is the upper bound, and the last 2 is the increment. Fortran uses the term stride to mean the increment in a subscript triplet.

8.10.2 Example 10: Rank 1 Array and the Sum Intrinsic Function
The

 following example is based on ch0805. It uses the sum intrinsic to
 calculate the sum of all the values in the rainfall array.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figai_HTML.gif]

The statement[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figaj_HTML.gif]
 replaces the statements below from the earlier example.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figak_HTML.gif]

In this example the sum intrinsic function adds up all of the elements of the array

 rainfall
 .
So we have three ways of processing arrays:	Element by element.

	Using sections.

	On a whole array basis.

The ability to use sections and whole arrays when programming is a major advance of the element by element processing supported by Fortran 77.
8.10.3 Example 11: Rank 2 Arrays and the Sum Intrinsic Function
This

 example is based on the earlier exam results program:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figal_HTML.gif]

This example has several interesting array features:	We initialise a rank 1 array with the values we want in our exam marks array. The data are laid out in the program as they would be in an external file in rows and columns.

	We use reshape to initialise our exam marks array. We use the fourth parameter (/2,1/) to populate the rank 2 array with the data in row order.

	We use sum with a dim of 1 to compute the sums for the subjects.

	We use sum with a dim of 2 to compute the sums for the people.

8.10.4 Example 12: Masked Array Assignment and the where Statement
Fortran

 has array assignment both on an element by element basis and on a whole array basis. There is an additional form of assignment based on the concept of a logical mask.
Consider the example of time zones given in Chap. 7. The time array will have values that are both negative and positive. We can then associate the positive values with the concept of east of the Greenwich meridian, and the negative values with the concept of west of the Greenwich meridian e.g.:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figam_HTML.gif]

8.10.5 Notes
The arrays must be conformable, i.e., in our example time and direction are the same shape.
The selective assignment is achieved through the where construct.
Both the where and elsewhere blocks can be executed.
The formal syntax is:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figan_HTML.gif]

The first array assignment is executed where time is positive and the second is executed where time is negative. For further coverage of logical expressions see Chaps. 13 and 16.
8.11 Array Element Ordering in More Detail
Fortran

 compilers will store arrays in memory according to the array element ordering scheme. Section 9.5.3.2 of the Fortran 2018 standard provides details of this. Table 8.1 summarises the information for rank 1, 2 and 3 arrays.Table 8.1Array element ordering in Fortran

	Rank
	Subscript bounds
	Subscript list
	Subscript order value

	1
	j1:k1
	s1
	1 [image: $$+$$] (s1 − j1)

	2
	j1:k1, j2:k2
	s1, s2
	1 [image: $$+$$] (s1 − j1)
[image: $$+$$] (s2 − j2)*d1

	3
	j1:k1, j2:k2, j3 − k3
	s1, s2, s3
	1 [image: $$+$$] (s1 − j1)
[image: $$+$$] (s2 − j2)*d1
[image: $$+$$] (s3 − j3)*d2*d1

8.11.1 Example 13: Array Element Ordering
Here
 is a short program illustrating the above for a 2*5 array. [image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figao_HTML.gif]
 and here is the output.[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figap_HTML.gif]

So for rank 2 arrays the array element ordering is by column, not row.
8.12 Physical and Virtual Memory
There will be a limit to the amount of physical memory available on any computer system. To enable problems that require more than the amount of physical memory available to be solved, most implementations will provide access to virtual memory, which in reality means access to a portion of a physical disk.
Access to virtual memory is commonly provided by a paging mechanism of some description. Paging is a technique whereby fixed-sized blocks of data are swapped between real memory and disk as

 required.
In order to minimise paging (and hence reduce execution time) array operations should be performed according to the array element

 order.
Page sizes, past and present, include:	Sun UltraSparc – 4 Kb,

 8 Kb.

	DEC Alpha – 8 Kb, 16 Kb, 32 Kb

 , 64 Kb.

	Intel [image: $$80\times 86$$]

 – 4 Kb.

	Intel Pentium PIII – 4 Kb, 2 Mb, 4 Mb.

	AMD64 – 4 Kb, 2 Mb, 4 Mb - legacy

 mode

	AMD64 – 4 Kb, 2 Mb, 1 Gb - 64 bit

 mode

	Intel 64 and IA-32 – 4 Kb, 2 Mb, 1 Gb - depending on

 mode.

See the references at the end of the chapter for more details.
8.13 Type Declaration Statement Summary
It is a convenient time to introduce a summary of the syntax of type declarations. You have already seen some of these, and we will cover the rest in later chapters.
A type declaration statement normally has three components	a type declaration

	optional attributes

	variable list

Here are details of the type declaration.

 	intrinsic type specifier

	type (derived type specification)

	class (derived type specification)

	class (*)

The attribute specification is one of	allocatable

	asynchronous

	bind

	dimension

	external

	intent

	intrinsic

	optional

	parameter

	pointer

	private

	protected

	public

	save

	target

	value

	
 volatile

8.14 Summary
We can now perform operations on whole arrays and partial arrays (array sections) without having to refer to individual elements. This shortens program development time and greatly clarifies the meaning of programs.
Array constructors can be used to assign values to rank 1 arrays within a program unit. The reshape function allows us to assign values to a two or higher rank array when used in conjunction with an array constructor.
8.15 Problems
8.1
Compile and run all the examples.

8.2
Give the rank, bounds, extent and size of the following arrays:[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figaq_HTML.gif]

Which two of these arrays are conformable?

8.3
Write a program to read in five rank 1 arrays, a, b, c, d, e and then store them as five columns in a rank 2 array table.

8.4
Take the first part of Problem 7.​5 in Chap. 7 and rewrite it using the sum intrinsic

 function.

8.16 Bibliography
8.16.1 DEC Alpha
Bhandarkar

 D.P., Alpha Implementation and Architecture: Complete Reference and Guide, Digital Press, 1995.
8.16.2 AMD
Visit

[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figar_HTML.gif]
 for details of the AMD manuals. The following five manuals are available for download as pdf’s from the above site.

 	AMD64 Architecture Programmer’s Manual Volume 1: Application Programming

	AMD64 Architecture Programmer’s Manual Volume 2: System Programming

	AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and System Instructions

	AMD64 Architecture Programmer’s Manual Volume 4: 128-bit and 256 bit media instructions

	AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 Floating-Point Instructions

8.16.3 Intel
Visit

[image: ../images/112282_4_En_8_Chapter/112282_4_En_8_Figas_HTML.gif]
 for a list of manuals. The following three manuals are available for download as pdf’s from the above site.

 	Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 1: Basic Architecture

	Intel 64 and IA-32 Architectures Software Developer’s Manual. Combined Volumes 2A and 2B: Instruction Set Reference, A-Z.

	Intel 64 and IA-32 Architectures Software Developer’s Manual. Combined Volumes 3A and 3B: System Programming Guide, Parts 1 and 2.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_9

9. Output of Results

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 “Why, sometimes I’ve believed as many as six impossible things before breakfast”

Lewis Carroll, Through the Looking-Glass and What Alice Found There

 Aims

The aims here are to introduce some of the facilities for producing neat output using edit descriptors. There is also coverage of how to write the results to a file, rather than to the screen.
There are examples which will illustrate the use of	The i edit descriptor for integer data

	The f edit descriptor for real data

	The e edit descriptor for real data

	The g edit descriptor for real data

	The x edit descriptor for spaces

	The a edit descriptor for character data

	Repetition of edit descriptors

	New lines

	Output using array sections

	Output using whole arrays

	The open, write, and close statements

 .

We will also provide a brief summary of the rest of the control and data
 edit descriptors, as people may see them in existing code.
9.1 Introduction
When you have used print * a few times it becomes apparent that it is not always as useful as it might be. The data are written out in a way which makes some sense, but may not be especially easy to read. Real numbers are generally written out with all their significant places, which is very often rather too many, and it is often difficult to line up the columns for data which are notionally tabular. It is possible to be much more precise in describing the way in which information is presented by the program. To do this, we use format statements. Through the use of the format we can:	Specify how many columns a number should take up.

	Specify where a decimal point should lie.

	Specify where there should be white space.

	Specify titles.

The format statement has a label associated with it; through this label, the print statement associates the data to be written with the form in which to write them.
9.2 Integers and the i Format or Edit Descriptor
Integer format (or edit descriptor) is reasonably

 straightforward, and offers clues for formats used in describing other numbers. i3 is an integer taking three columns. The number is right justified, a bit of jargon meaning that it is written as far to the right as it will go, so that there are no trailing or following blanks. Consider the following example:
9.2.1 Example 1: Twelve Times Table

 [image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figa_HTML.gif]

The first statement of interest is[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figb_HTML.gif]

The 100 is a statement label. There must be a format statement with this label in the program. The variables to be written out are t and t*12.
The second statement of interest is[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figc_HTML.gif]

Inside the brackets we have ’ ’ print out what occurs between the quote marks, in this case one space.
, the comma separates items in the format statement.

i3 print out the first variable in the print statement right justified in three columns
, item separator.

’ * 12 = ’ print out what occurs between the quote characters.
, item separator
i3 print out the second variable (in this case an expression) right justified in three columns.
All of the output will appear on one line.
9.2.1.1 Notes
The numbers are right justified in the field width.
If the edit descriptor has too few columns for the data we will get asterisks * displayed.

If the number to be displayed is negative we must allow one column for the minus sign.
9.2.2 Example 2: Integer Overflow and the i Edit Descriptor
Now consider
 the following example:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figd_HTML.gif]

This program will loop and the variable big will overflow, i.e., go beyond the range of valid values for a 32-bit integer (2, 147, 483, 647). Does the program crash or generate a run time error? This is the output from the NAG and Intel compilers. [image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Fige_HTML.gif]

Is there a compiler switch to trap this kind of error?
9.3 Reals and the f Edit Descriptor
The f edit descriptor can be seen as an extension of the integer format, but here we have to deal with the decimal point. The general form is	
 fw.d

	where w is the total width

	The . is decimal point

	d is the number of digits after the decimal point.

	as with the integer edit descriptor the number is right justified in the field width.

Let us look at some examples to illustrate the use of the f edit descriptor.

9.3.1 Example 3: Imperial Pints and US Pints

 [image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figf_HTML.gif]

The first two print statements are a heading for the subsequent output. Some experimentation is normally required to get a reasonable looking table. Note that is this example we used the f5.2 edit descriptor to print out both imperial_pint variable and the us_pint variable. That is an overall width of 5 spaces with 2 digits after the decimal point.

Note also that rounding has occurred, i.e. the real values are rounded to 2 digits after the decimal point.

9.3.2 Example 4: Imperial Pints and Litres

 [image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figg_HTML.gif]

Note that in this example we are using f6.2 to print out the pints variable, and f5.2 to print out the litres variable.
Note again that rounding is taking place, i.e. both variables are rounded to 2 digits after the decimal point.

9.3.3 Example 5: Narrow Field Widths and the f Edit Descriptor
Consider the
 following example.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figh_HTML.gif]

Here is the output.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figi_HTML.gif]

When the number is too large for the field width asterisks are printed. Note also that space has to be allowed for the sign of the variable.
9.3.4 Example 6: Overflow and the f Edit Descriptor
Consider the following program:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figj_HTML.gif]

In this program
 the variable small will underflow and big will overflow. The output from the Intel compiler is:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figk_HTML.gif]

When the number is too small for the format, the printout is what you would probably expect. When the number is too large, you get asterisks. When the number actually overflows the Intel compiler tells you that the number is too big and has overflowed. However the program ran to completion and did not generate a run time error.
9.4 Reals and the e Edit Descriptor
The exponential or scientific notation is useful in cases where we need to provide a format which may encompass a wide range of values. If likely results lie in a very wide range, we can ensure that the most significant part is given. This takes a form such as[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figl_HTML.gif]

The 12 refers to the total width and the 4 to the number of significant digits.

9.4.1 Example 7: Simple e Edit Descriptor Example
Let’s look at a simple example to see what the output is like and then go over some more about the rules that apply.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figm_HTML.gif]

Here is the output[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Fign_HTML.gif]

There are a number of things to note here	all exponent format numbers are written so that the number is between 0.1 and 0.9999..., with the exponent taking care of scale shifts, this implies that the first four significant digits are to be printed out.

	rounding is taking place

	the numbers are right justified

There is a minimum size for an exponential format. Because of all the extra bits and pieces it requires:	The decimal point.

	The sign of the entire number.

	The sign of the exponent.

	The magnitude of the exponent.

	The e.

The width of the number less the number of significant places should not be less than 6. In the example given above, e12.4 meets this requirement. When the exponent is in the range 0 to 99, the e will be printed as part of the number; when the exponent is greater, the e is dropped, and its place is taken by a larger value; however, the sign of the exponent is always given, whether it is positive or negative. The sign of the whole number will usually only be given when it is negative. This means that if the numbers are always positive, the rule of six given above can be modified to a rule of five. It is safer to allow six places over, since, if the format is insufficient, all you will get are asterisks.
The most common mistake with an e format is to make the edit descriptor too small, so that there is insufficient room for all the padding to be printed.
9.5 Reals and the g Edit Descriptor
This edit descriptor combines both the f and e edit descriptors, depending on the size of the number.
9.5.1 Example 8: Simple g Edit Descriptor Example
Here is a variant
 of the previous examples with the g edit descriptor replacing the e edit descriptor.

[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figo_HTML.gif]

Here is the output[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figp_HTML.gif]

Fortran provides quite a useful set of edit descriptors for real numbers. The print * is very useful when developing programs.
9.6 Spaces
Fortran provides a variety of ways of generating spaces in a format statement and these include using quotes (’), double quotes (”) and the x edit descriptor.
9.6.1 Example 9: Three Ways of Generating Spaces

 [image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figq_HTML.gif]

The output is the same from each format statement.
9.7 Characters — a Format or Edit Descriptor
This is perhaps the
 simplest output of all. Since you will already have declared the length of a character variable in your declarations,[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figr_HTML.gif]
 when you come to write out b, the length is known — thus you need only specify that a character string is to be output:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figs_HTML.gif]

If you feel you need a little extra control, you can append an integer value to the a, like a10 (a9 or a1), and so on. if you do this, only the first 10 (9 or 1) characters are written out; the remainder are ignored. Do note that 10a1 and a10 are not the same thing. 10a1 would be used to print out the first character of ten character variables, while a10 would write out the first 10 characters of a single character variable. The general form is therefore just a, but if more control is required, this may be followed by a positive integer.
9.7.1 Example 10: Character Output and the a Edit Descriptor
The following program is a simple rewrite of one of the programs from Chap. 4.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figt_HTML.gif]

9.7.2 Example 11: Character, Integer and Real Output in a Format Statement
The following
 example shows how to mix and match character, integer and real output in one format statement:

[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figu_HTML.gif]

Take care to match up the variables with the appropriate edit descriptors. You also need to count the number of characters and spaces when lining up the heading.
9.8 Common Mistakes
It must be stressed that an integer can only be printed out with an i format, and a real with an f (or e) format. You cannot use integer variables or expressions with f, e or g edit descriptors or real variables and expressions with i edit descriptors. If you do, unpredictable results will follow. There are (at least) two other sorts of errors you might make in writing out a value. You might try to write out something which has never actually been assigned a value; this is termed an indefinite value. You might find that the letter i is written out. In passing, note that many loaders and link editors will preset all values to zero — i.e., unset (indefinite) values are actually set to zero. On better systems there is generally some way of turning this facility off, so that undefined is really indefinite. More often than not, indefinite values are the result of mistyping rather than of never setting values. It is not uncommon to type O for 0, or 1 for either I or l. The other likely error is to try to print out a value greater than the machine can calculate — out of range values. Some machines will print out such values as R, but some will actually print out something which looks right, and such overflow and underflow conditions can go unnoticed. Be wary.
9.9 Files in Fortran
One of the particularly powerful features of Fortran is the way it allows you to manipulate files. Up to now, most of the discussion has centred on reading from the keyboard and writing to the screen. It is also possible to read and write to one or more files. This is achieved using the open, write, read and close statements. In a later chapter we will consider reading from files but here we will concentrate on writing.
9.9.1 The open Statement
This statement sets up a file for either reading or writing. A typical form is[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figv_HTML.gif]

The file will be known to the operating system as data.txt and can be written to by using the unit number. This statement should come before you first read data from or write data to to the file.
You can also use a character variable to hold the filename. This is shown in the code segment below.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figw_HTML.gif]

It is not possible to write to the file data.txt directly; it must be referenced through its unit number. Within the Fortran program you write to this file using a statement such as[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figx_HTML.gif]

or[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figy_HTML.gif]

These two statements are equivalent.
9.9.2 The close Statement
Besides opening a file, we really ought to close it when we have finished writing to it:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figz_HTML.gif]

In fact, on many systems it is not obligatory to open and close all your files. Almost certainly, the terminal will not require this, since INPUT and OUTPUT units will be there by default. At the end of the job, the system will close all your files. Nevertheless, explicit open and close cannot hurt, and the added clarity generally assists in understanding the program.
9.9.3 Example 12: Open and Close Usage
The following program contains all of the above statements:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figaa_HTML.gif]

In this example the file will be created in the directory that the program executable runs in.
Using the following open statement[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figab_HTML.gif]
 creates the file in the[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figac_HTML.gif]
 directory under the Windows operating system.
Using the following open statement[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figad_HTML.gif]
 creates the file in the[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figae_HTML.gif]
 directory under a Linux operating system.
9.9.4 Example 13: Timing of Writing Formatted Files
The following example looks at the amount of time spent in different sections of a program with the main emphasis on formatted output:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figaf_HTML.gif]

There is a call to the built-in intrinsic cpu_time to obtain timing information. Try this example out with your compiler. Formatted output takes up a lot of time, as we are converting from an internal binary representation to an external

decimal form.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figag_HTML.gif]

9.9.5 Example 14: Timing of Writing Unformatted Files
The following program
 is a variant of the above but now the output is in unformatted or binary form:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figah_HTML.gif]

Try this example out with your compiler. Unformatted is very efficient in terms of time. It also has the benefit for real or floating point numbers of no information loss.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figai_HTML.gif]

Note that binary or unformatted files are not necessarily portable between different compilers and different hardware platforms. You should consult your compiler documentation for help in this area.
9.10 Example 15: Implied Do Loops and Array Sections for Array Output
The following program

 shows how to use both implied do loops and array sections to output an array in a neat fashion:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figaj_HTML.gif]

The print 100 uses an implied do loop and the print 110 uses an array section.

Here
 is the output.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figak_HTML.gif]

We are using repeat factors in this example in the format statement to repeat the use of one or more edit descriptors,

 e.g. 6(1x, f5.1).
We have also added a print statement to make the output a bit more understandable.
9.11 Example 16: Repetition and Whole Array Output
Take care when

 using whole arrays. Consider the following program:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figal_HTML.gif]

There are several points to note with this example. Firstly, this is a whole array reference, and so the entire contents of the array will be written; there is no scope for fine control. Secondly, the order in which the array elements are written is according to Fortran’s array element ordering,

 i.e., the first subscript varying 1 to 10 (the array bound), with the second subscript as 1, then 1 to 10 with the second subscript as 2 and so on; the sequence is[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figam_HTML.gif]

Thirdly we have defined values for part of the array.
Finally we have used write(unit=*, fmt=100) and this will print to the screen.
9.12 Example 17: Choosing the Decimal Symbol
Fortran provides
 a mechanism to choose the decimal symbol. The dc edit descriptor sets the decimal symbol to a comma. The dp edit descriptor sets the decimal symbol to a full stop or period.
The following example[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figan_HTML.gif]

produces the following output.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figao_HTML.gif]

9.13 Example 18: Alternative Format Specification Using a String
Here is an example
 of an alternate format specification using a string.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figap_HTML.gif]

9.14 Example 19: Alternative Format Specification Using a Character Variable
Here is an example
 of using a character variable in a format specification.[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figaq_HTML.gif]

9.15 The Remaining Control and Data Edit Descriptors
Tables 9.1 and 9.2 summarise details of the control and data edit descriptors available in Fortran.

Table 9.1Summary of data edit descriptors

	Descriptor
	Description: data conversion

	A w
	character

	B w[.m]
	integer to/from binary

	D w.d
	real

	DT [character literal constant][(v-list)]
	derived type

	E w.d[Ee]
	real with exponent

	EN w.d[Ee]
	real to engineering

	ES w.d[Ee]
	real to scientific

	F w.d
	real with no exponent

	G w.d[Ee]
	any intrinsic type

	I w[.m]
	integer

	L w
	logical

	O
	octal

	Z
	hexadecimal

	Symbol
	Explanation

	w
	width of the field

	m
	number of digits in the field

	d
	number of digits after the decimal symbol

	e
	number of digits in the exponent field

	v
	signed integer literal constant

	 	interpretation depends on the user

	 	supplied derived type i/o subroutine

Table 9.2Text edit descriptors

	Descriptor
	Description: data conversion

	’text’
	transfer of a character literal constant to output record

	”text”
	transfer of a character literal constant to output record

9.16 Summary
You have been introduced in this chapter to the use of format or layout descriptors which will give you greater control over output.
The main features are:	The i format for integer variables.

	The e, f and g formats for real numbers.

	The a format for characters.

	The x, which allows insertion of spaces.

Output can be directed to files as well as to the terminal through the write statement.

The write, together with the open and close statements, also introduces the class of Fortran statements which use equated keywords, as well as positionally dependent parameters.
The format statement and its associated layout or edit descriptor are powerful and allow repetition of patterns of output (both explicitly and implicitly).
9.17 Problems
9.1
Rewrite the temperature conversion program which was Problem 7.​3 in Chap. 7 to produce neat tabular output. Pay attention to the number of significant decimal places.

9.2
Information on car fuel consumption is usually given in miles per gallon in Britain and the United States and in l/100 km in Europe. Just to add an extra problem US gallons are 0.8 imperial gallons.
Prepare a table which allows conversion from either US or imperial fuel consumption figures to the metric equivalent. Use the parameter statement where appropriate:[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figar_HTML.gif]

9.3
The two most commonly used operating systems for Fortran programming are UNIX and DOS. It is possible to use the operating system file redirection symbols[image: ../images/112282_4_En_9_Chapter/112282_4_En_9_Figas_HTML.gif]
 to read from a file and write to a file, respectively. Rerun the program in Problem 1 to write to a file using the open statement. Examine the file using an editor.

9.4
Modify any of the above to write to a file rather than the screen or terminal.

9.5
What features of Fortran reveal its evolution from punched card input?

9.6
Try to create a real number greater than the maximum possible on your computer — write it out. Try to repeat this for an integer. You may have to exercise some ingenuity.

9.7
Check what a number too large for the output format will be printed as on your local system — is it all asterisks?

9.8
Write a program which stores litres and corresponding pints in arrays. You should now be able to control the output of the table (excluding headings — although this could be done too) in a single write or print statement. If you don’t like litres and pints, try some other conversion (sterling to US dollars, leagues to fathoms, Scots miles to Betelgeusian pfnings). The principle remains the same.

9.9
Fortran is an old programming language and the text formatting functionality discussed in this chapter assumes very dumb printing devices.
The primary assumption is that we are dealing with so-called monospace fonts, i.e., that digits, alphabetic characters, punctuation, etc., all have the same width.
If you are using a PC try using:	Notepad

and	Word

To open your programs and some of the files created in this chapter. What happens to the layout?
If you are using Notepad look at the Word wrap and set Font options under the edit menu.
What fonts are available? What happens to the layout when you choose another font?
If you are using Word what fonts are available? What happens when you make changes to your file and exit Word? Is it sensible to save a Fortran source file as a Word document?

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_10

10. Reading in Data

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Winnie-the-Pooh read the two notices very carefully, first from left to right, and afterwards, in case he had missed some of it, from right to left

A A Milne, Winnie-the-Pooh

 Aims

The aims of this chapter are to introduce some of the ideas involved in reading data into a program. In particular, using the following:	
 Reading from files

	
 Reading integer data

	
 Reading real data

	Skipping columns of data in a file

	Skipping lines in a file

	Reading from several files consecutively

	
 Reading using internal files

	Timing of formatted and unformatted reads

10.1 Reading from Files
In the examples so far we have been reading from the keyboard using what Fortran calls list directed input. In this chapter we will look at reading data from files where the data is generally in tabular form.
10.2 Example 1: Reading Integer Data
In this example we are interested in reading in people’s heights and weights in imperial measurements (feet and inches and stones and pounds) from a file and converting to their metric equivalent (metres and kilograms). The data is taken from an undergraduate class of Mechanical Engineering students.
Here is the data. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figa_HTML.gif]

The first two columns are the heights in feet and inches, and the second two columns are the weights in stones and pounds.
Here is the program. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figb_HTML.gif]

Here is the output. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figc_HTML.gif]

The first statements of interest are [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figd_HTML.gif]
 which links the Fortran unit number 10 with a file called ch1001.txt, and links the Fortran unit number 20 with a file called ch1001.out.
The next statements of interest are [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Fige_HTML.gif]
 which reads 4 integer values from a line with integer data in columns 1–2, 5–6, 9–10 and 13–14 with 2 spaces between each value.
At the end of the program we close the files. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figf_HTML.gif]

We write out the metric versions of the height and weight with the following statement. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figg_HTML.gif]
 to the file called ch1001.out.
We recommend that when working with formatted files you use a text editor that displays the column and line details.
Notepad under Windows has a status bar option under the View menu. Gvim under Windows has line and column information available. Under Redhat, vim and gedit both display line and column information. Under SuSe Linux kedit and vim display line and column information. There should be an editor available on your system that has this option.
10.3 Example 2: Reading Real Data
This example reads in the height and weight data created by the previous program and calculates their BMI values. BMI stands for Body Mass Index and is calculated as Weight/Height[image: 2]
Here is the program. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figh_HTML.gif]

The following statement [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figi_HTML.gif]
 links the Fortran unit number 100 with the file ch1001.out.
The following statement [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figj_HTML.gif]
 reads the height and weight data from the file. We skip the first space then read the height from the next 5 columns in [image: $$\texttt {f5.1}$$] format. We skip two spaces and then read the weight from the next 4 columns in [image: $$\texttt {f4.1}$$] format.
The following statement [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figk_HTML.gif]
 closes the file.
The following statement [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figl_HTML.gif]
 writes out the BMI values in [image: $$\texttt {f4.1}$$] format.
Here is the output. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figm_HTML.gif]

10.4 Met Office Historic Station Data
The UK Met Office makes historic station data available.
Visit [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Fign_HTML.gif]
 to see the data. The line has been broken to fit the page width.
The data consists of	Mean daily maximum temperature (tmax)

	Mean daily minimum temperature (tmin)

	Days of air frost (af)

	Total rainfall (rain)

	Total sunshine duration (sun)

Here is a sample of the Nairn data. Nairn is a town in Scotland on the North Sea. The first seven lines have had to be formatted to fit the page width. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figo_HTML.gif]

In the examples that follow we will be using this station’s data.
10.5 Example 3: Reading One Column of Data from a File
Here is the file
 we will be reading the rainfall values from. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figp_HTML.gif]

We have added two additional lines at the end to indicate the columns where the data is. These lines are not read by the program.
Here is the program. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figq_HTML.gif]

The data file is called [image: $$\texttt {nairndata_01.txt}$$] and we open the file at the start of the program and associate the file with unit [image: $$\texttt {100}$$].
The following statements read the 12 monthly values from the file skipping the first 37 characters. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figr_HTML.gif]

We then close the file and calculate the rainfall sums and average and print out the results. Here is the output.[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figs_HTML.gif]

The format statement 110 uses a / to move to the next line, so that the headings line up.
10.6 Example 4: Skipping Lines in a File
This program
 is a simple variant of the last one.
Now we are reading from the original Met Office Nairn data file, which has seven header lines.[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figt_HTML.gif]

The key statements are [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figu_HTML.gif]
 which skips the data on these lines. Fortran reads a record at a time in this example.

The output is as before.
10.7 Example 5: Reading from Several Files Consecutively
In this example
 we read from eight of the Met Office data files for Cardiff, Eastbourne, Lerwick, Leuchars, Nairn, Paisley, Ross On Wye and Valley.
We skip the first seven lines, then read year, month rainfall and sunshine data, skipping the other columns.
We then calculate rainfall and sunshine yearly totals and averages for these eight stations.
We use a character array to hold the station file names.
Here is the program.[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figv_HTML.gif]

Each time round the loop we open one of the data files.

[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figw_HTML.gif]

We then skip the next seven lines.[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figx_HTML.gif]

We then read the data.[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figy_HTML.gif]

We then close the file. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figz_HTML.gif]

We then do the calculations and print out the sum and average data for each site. The format statement uses // to generate a blank line.
Programs that will download the latest versions of the Met Office station data files are available on our web site. The programs are available for both Windows and Linux.
10.8 Example 6: Reading Using Array Sections
Consider the
 following output, which is the exam results data from an earlier chapter after scaling. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figaa_HTML.gif]

A program to read this file using array sections is as follows:[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figab_HTML.gif]

Here is the output.[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figac_HTML.gif]

10.9 Example 7: Reading Using Internal Files
Sometimes external

 data does not have a regular structure and it is not possible to use the standard mechanisms we have covered so far in this chapter. Fortran provides something called internal file that allow us to solve this problem. The following example is based on a problem encountered whilst working at the following site[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figad_HTML.gif]

They have data that is in the following format[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figae_HTML.gif]
 where x and y can vary between 1 and 10 digits. The key here is to read the whole line (a maximum of 22 characters) and then scan the line for the blank character between the x and y digits.
We then use the [image: $$\texttt {index}$$] intrinsic to locate
 the position of the blank character. We now have enough information to be able to read the x and y integer data into the variables [image: $$\texttt {n1}$$] and [image: $$\texttt {n2}$$].[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figaf_HTML.gif]

The statement[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figag_HTML.gif]
 reads from the string [image: $$\texttt {buff1}$$] and extracts the x number into the variable [image: $$\texttt {n1}$$], and the statement[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figah_HTML.gif]
 reads from the string [image: $$\texttt {buff2}$$] and extracts the y number into the variable [image: $$\texttt {n2}$$].
This is a very powerful feature and allows you to manage quite widely varying external data formats in files. [image: $$\texttt {buff1}$$] and [image: $$\texttt {buff2}$$] are called internal files in Fortran terminology.
10.10 Example 8: Timing of Reading Formatted Files
A program to read

 a formatted file is shown below: [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figai_HTML.gif]

Here is some sample timing. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figaj_HTML.gif]

10.11 Example 9: Timing of Reading Unformatted Files
The following

 is a program to read from an unformatted file: [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figak_HTML.gif]

Here is some sample timing. [image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figal_HTML.gif]

10.12 Summary
This chapter has provided a coverage of some of the basics of reading data into a program in Fortran. We have seen examples that have	Read integer data

	Read real data

	Skipped lines in a file

	Skipped columns of data in a file

	Read from files

	Used the open and close statements

	Associated unit numbers with files

	Read using fixed format data files

	Shown the time difference between using formatted files and unformatted files

	Used internal files

The above coverage should enable you make effective use of reading data in Fortran.
We would recommend not using edit descriptors when reading numeric data entered via the keyboard as it is difficult to see if the data matches what the edit descriptors expect.
10.13 Problems
10.1
Compile and run the examples in this chapter. Note that you will have to run ch0913.f90 and ch0914.f90 to create the data files that are needed by ch1008.f90 and ch1009.f90

10.2
Write a program to read in and write out a real number using the following:[image: ../images/112282_4_En_10_Chapter/112282_4_En_10_Figam_HTML.gif]

What is the largest number that you can read in and write out with this format? What is the largest negative number that you can read in and write out with this format? What is the smallest number, other than zero, that can be read in and written out?

10.3
Rewrite two of the earlier programs that used [image: $$\texttt {read,*}$$] and [image: $$\texttt {print,*}$$] to use format statements.

10.4
Write a program to read the file created by either the temperature conversion program or the litres and pints conversion program. Make sure that the programs ignore any header and title information. This kind of problem is very common in programming (writing a program to read and possibly manipulate data created by another program).

10.5
Demonstrate that input and output formats are not symmetric — i.e., what goes in does not necessarily come out.

10.6
What happens at your computer when you enter faulty data, inappropriate for the formats specified? We will look at how we address this problem in Chap. 18.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_11

11. Summary of I/O Concepts

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 It is a capital mistake to theorise before one has data

Sir Arthur Conan Doyle

 Aims

This chapter covers more formally some of the concepts introduced in Chaps. 9 and 10. There is a coverage of	I/O concepts and I/O statements

	Files, records and streams

	
 Sequential, direct and stream access

	Options or specifiers on the open statement

	Options or specifiers on the close statement

	Options or specifiers on the write statement

	Options or specifiers on the read statement

11.1 I/O Concepts and Statements

Fortran input and output statements provide the means of transferring data from external media to internal storage or from an internal file to internal storage and vice versa.
The input/output statements are the open, close, read, write, print, backspace, endfile, rewind, flush, wait, and inquire statements.

The inquire statement is a file inquiry statement.
The backspace, endfile, and rewind statements are file positioning statements.
Data is commonly organised in either record files or stream files. In a record type file transfers are done a record at a time. In a stream type file transfers are done in file storage units.
11.2
 Records

A record is a sequence of values or a sequence of characters. There are three kinds of records:	
 formatted

	
 unformatted

	end of file

A record in Fortran is commonly called a logical record.
A formatted record is typically a sequence of printable characters. You have seen examples in earlier chapters.
You saw examples of unformatted i/o in the previous chapters.
11.3 File Access

The three file access methods are:	
 sequential

	
 direct

	
 stream

The examples so far have shown sequential access.
Direct access is a method of accessing the records of an external record file in arbitrary order.
Stream access is a method of accessing the file storage units of an external stream file. The properties of an external file connected for stream access depend on whether the connection is for unformatted or formatted access.
11.4 The open Statement

An open statement initiates or modifies the connection between an external file and a specified unit. The open statement can do a number of things including	connect an existing file to a unit;

	create a file that is preconnected;

	create a file and connect it to a unit;

	change certain modes of a connection between a file and a unit.

The only keyword option that can be omitted is the unit specifier. This is assumed to be the first parameter of the open statement.
Table 11.1 summarises the open statement options.Table 11.1Open statement options

	unit =
	file-unit-number

	access =
	sequential, direct or stream

	action =
	read, write or readwrite

	asynchronous =
	yes or no

	blank =
	null or zero

	decimal =
	comma or point

	delim =
	apostrophe, quote or none

	encoding =
	utf8 or default

	err =
	statement label

	file =
	file name

	form =
	formatted or unformatted

	iomsg =
	iomsg-variable

	iostat =
	scalar-int-variable

	newunit =
	scalar-int-variable

	pad =
	yes or no

	position =
	asis, rewind, append

	recl =
	record length, positive integer

	round =
	up, down, zero, neareset, compatible or processor defined

	sign =
	plus, suppress or processor defined

	status =
	old, new, scratch, replace or unknown

11.5 Data Transfer Statements

The read, write and print statements are used to transfer data to and from files.
Table 11.2 summarises the options of the data transfer statements.Table 11.2Data transer statement options

	unit =
	io-unit

	fmt =
	format

	nml =
	namelist-group-name

	advance =
	yes or no

	asynchronous =
	yes or no

	blank =
	null or zero

	decimal =
	comma or point

	delim =
	apostrophe, quote or none

	end =
	label

	eor =
	label

	err =
	label

	id =
	scalar-int-variable

	iomsg =
	iomsg-variable

	iostat =
	scalar-int-variable

	pad =
	yes or no

	pos =
	file position in file storage units

	rec =
	record number to be read or written

	round =
	up, down, zero, neareset, compatible or processor defined

	sign =
	plus, suppress or processor defined

	size =
	scalar-int-variable

11.6 The inquire Statement

Table 11.3 summarises the options on the inquire statement.Table 11.3Inquire statement options

	unit =
	file-unit-number

	file =
	file name

	access =
	sequential, direct, stream

	action =
	read, write, readwrite, undefined

	asynchronous =
	yes, no

	blank =
	zero, null

	decimal =
	comma, point

	delim =
	apostrophe, quote, none

	direct =
	yes, no, unknown

	encoding =
	utf8, default

	err =
	label

	exist =
	true, false

	form =
	formatted, unformatted, undefined

	formatted =
	yes, no, unknown

	id =
	scalar-int-expr

	iomsg =
	iomsg-variable

	iostat =
	scalar-int-variable

	name =
	file name

	named =
	scalar-logical-variable

	nextrec =
	scalar-int-variable

	number =
	unit number, -1 if unassigned

	opened =
	true, false

	pad =
	yes, no

	pending =
	scalar-logical-variable

	pos =
	scalar-int-variable

	position =
	scalar-default-char-variable

	read =
	yes, no, unknown

	readwrite =
	yes, no, unknown

	recl =
	scalar-int-variable

	round =
	up, down, zero, neareset, compatible or processor defined

	sequential =
	yes, no, unknown

	sign =
	plus, suppress, processor defined

	size =
	scalar-int-variable

	stream =
	yes, no, unknown

	unformatted =
	yes, no, unknown

	write =
	yes, no, unknown

11.7 Error, End of Record and End of File

The set of input/output error conditions is processor dependent.
An end-of-record condition occurs when a non-advancing input statement attempts to transfer data from a position beyond the end of the current record, unless the file is a stream file and the current record is at the end of the file (an end-of-file condition occurs instead). An end-of-file condition occurs when	an endfile record is encountered during the reading of a file connected for sequential access,

	an attempt is made to read a record beyond the end of an internal file,

 or

	an attempt is made to read beyond the end of a stream file.

An end-of-file condition may occur at the beginning of execution of an input statement. An end-of-file condition also may occur during execution of a formatted input statement when more than one record is required by the interaction of the input list and the format. An end-of-file condition also may occur during execution of a stream input statement.
11.7.1 Error Conditions and the err= Specifier

The set of error conditions which are detected is processor dependent. The standard does not specify any i/o errors. Compilers will vary in the errors they detect and how they treat them. The err= option provides one way of catching errors and taking the appropriate action.
11.7.2 End-of-File Condition and the end= Specifier

An end of file may occur during an input transfer. The end= option provides a way of handling the end of file in a program.
11.7.3 End-of-Record Condition and the eor= Specifier

An end of record may occur during an input transfer. The eor= option provides a way of handling this in a program.
11.7.4
 iostat=
 Specifier

Execution of an input/output statement containing the iostat= specifier causes the scalar-int-variable in the iostat= specifier to become defined with one of a set of values. Normally	0 if no errors occur

	a processor dependent negative value if end-of-file occurs

	a processor dependent negative value if an end-of-record occurs

If you use iostat_inquire_internal_unit from the intrinsic module iso_fortran_env you will get a processor-dependent positive integer value if a unit number in an inquire statement identifies an internal file.
When using iostat_inquire_internal_unit you will get a processor-dependent positive integer value which is different from the above if any other error condition occurs,
11.7.5
 iomsg=
 Specifier

If an error, end-of-file, or end-of-record condition occurs during execution of an input/output statement, the processor shall assign an explanatory message to iomsg-variable. If no such condition occurs, the processor shall not change the value of iomsg-variable

 .
11.8
 Examples

Here are three examples using the iostat= option. Examples illustrating some of the other options can be found throughout the rest of the book.
11.8.1 Example 1: Simple Use of the read, write, open, close, unit Features

This example shows the use of several of the i/o features including	the write statement

	the read statement

	the use of unit=6 on a write statement

	the use of unit=5 on a read statement

	several fmt= variations

	the open statement

	the file= option on the open statement

	the iostat= option on the open statement

	the close statement

 [image: ../images/112282_4_En_11_Chapter/112282_4_En_11_Figa_HTML.gif]

It is common for compilers to associate units 5 and 6 with the keyboard and screen

 .
11.8.2 Example 2: Using iostat to Test for Errors

 [image: ../images/112282_4_En_11_Chapter/112282_4_En_11_Figb_HTML.gif]

11.8.3 Example 3: Use of newunit and lentrim

This example illustrates the use of the following:	the len_trim function

	the newunit option on the read statement to get an unused unit number

	the use of iostat= to test whether a file was opened correctly

	the use of the cycle control statement to go back to the start of the do and try reading the file name again

	the use of the iostat option to test if the read was successful

 [image: ../images/112282_4_En_11_Chapter/112282_4_En_11_Figc_HTML.gif]

In this program based on an earlier example in Chap. 10, we have use of the newunit option on the open statement. A unique negative number is returned, which cannot clash with any user specified unit number, which are always positive.We are also using the character intrinsic function len_trim and the

 character operator
 //
We also introduce the do end do and cycle statements. These are covered in more
 detail in Chap. 13.
11.9 Unit Numbering

Care must be taken with unit numbering as firstly they must always be positive, and secondly many compilers have conventions that apply, for example unit 5 is often associated with the read * statement and unit 6 is often associated with the print * statement

 .
11.10
 Summary

This chapter has listed most of the i/o options available in Fortran. There are a small number of examples that illustrate some of their use.
Later chapters provide additional examples.
11.11
 Problems

The Whitby data and Cardiff data are on our web pages.
11.1
Compile and run the examples in this chapter.

11.2
With the Whitby or Cardiff data make a mistake, e.g. a non-numeric character in the last column. Test program ch1103.f90 to see that it picks this up.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_12

12. Functions

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 I can call spirits from the vasty deep. Why so can I, or so can any man; but will they come when you do call for them?

William Shakespeare, King Henry IV, part 1

 Aims

The aims of this chapter are:	To consider some of the reasons for the inclusion of functions in a programming language.

	To introduce, with examples, some of the predefined functions available in Fortran.

	To introduce a classification of intrinsic functions, generic, elemental

 , transformational.

	To introduce the concept of a user defined function.

	To introduce the concept of a recursive function.

	To introduce the concept of user defined elemental and pure

 functions.

	To briefly look at scope rules in Fortran for variables and functions.

	To look at internal user defined functions.

12.1 Introduction
The role of functions in a programming language and in the problem-solving process is considerable and includes:	Allowing us to refer to an action using a meaningful name, e.g., sine(x) a very concrete use of abstraction.

	Providing a mechanism that allows us to break a problem down into parts, giving us the opportunity to structure our problem solution.

	Providing us with the ability to concentrate on one part of a problem at a time and ignore the others.

	Allowing us to avoid the replication of the same or very similar sections of code when solving the same or a similar sub-problem which has the secondary effect of reducing the memory requirements of the final program.

	Allowing us to build up a library of functions or modules for solving particular sub-problems, both saving considerable development time and increasing our effectiveness and productivity.

Some of the underlying attributes of functions are:	They take parameters or

 arguments.

	The parameter(s) can be an expression.

	A function will normally return a value and the value returned is normally dependent on the parameter(s).

	They can sometimes take arguments of a variety of types.

Most languages provide both a range of predefined functions and the facility to define our own. We will look at the predefined functions first.
12.2 An Introduction to Predefined Functions and Their Use
Fortran provides over a hundred intrinsic functions

 and subroutines. For the purposes of this chapter a subroutine can be regarded as a variation on a function. Subroutines are covered in more depth in a later chapter. They are used in a straightforward way. If we take the common trigonometric functions, sine, cosine and tangent, the appropriate values can be calculated quite simply by:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figa_HTML.gif]

This is in rather the same way that we might say that x is a function of y, or x is sine y. Note that the argument, y, is in radians not degrees.
12.2.1 Example 1: Simple Function Usage
A complete
 example is given below:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figb_HTML.gif]

These functions are called intrinsic functions. Table 12.1 has details of some of the intrinsic functions available in Fortran.Table 12.1Some of the intrinsic functions available in Fortran

	Function
	Action
	Example

	int
	conversion to integer
	j=int(x)

	real
	conversion to real
	x=real(j)

	abs
	absolute value
	x=abs(x)

	mod
	remaindering
	k=mod(i, j)

	remainder when i divided by j
	
	sqrt
	square root
	x=sqrt(y)

	exp
	exponentiation
	y=exp(x)

	log
	natural logarithm
	x=log(y)

	log10
	common logarithm
	x=log10(y)

	sin
	sine
	x=sin(y)

	cos
	cosine
	x=cos(y)

	tan
	tangent
	x=tan(y)

	asin
	arcsine
	y=asin(x)

	acos
	arccosine
	y=acos(x)

	atan
	arctangent
	y=atan(x)

	atan2
	arctangent(a/b)
	y=atan2(a, b)

A

 more complete list is given in Appendix D.
12.3 Generic Functions
All but four of the intrinsic functions and procedures are generic, i.e., they can be called with arguments of one of a number of kind types.
12.3.1 Example 2: The abs Generic Function
The

 following short program illustrates this with the abs intrinsic

 function:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figc_HTML.gif]

Type this program in and run it on the system you use.
It is now possible with Fortran for the arguments to the intrinsic functions to be arrays. It is convenient to categorise the functions into either elemental or transformational, depending on the action performed on the array elements.
12.4 Elemental Functions
These functions work with both scalar and array arguments,

 i.e., with arguments that are either single or multiple valued.
12.4.1 Example 3: Elemental Function Use
Taking
 the earlier example with the evaluation of sine as a basis,

 we have:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figd_HTML.gif]

In the above example the sine function of each element of the array x is calculated and printed.
12.5 Transformational Functions
Transformational functions are those whose arguments are arrays, and work on these arrays to transform them in some way.
12.5.1 Example 4: Simple Transformational Use
To highlight the difference between an element-by-element function and a transformational function consider the following examples:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Fige_HTML.gif]

The sum function adds each element of the array and returns the sum as a scalar, i.e., the result is single valued and not an array.
12.5.2 Example 5: Intrinsic dot_product Use
The
 following program uses the transformational function dot_product:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figf_HTML.gif]

Try typing these examples in and running them to highlight the differences between elemental and transformational functions.

12.6 Notes on Function Usage
You should not use variables which have the same name as the intrinsic functions; e.g., what does sin(x) mean when you have declared sin to be a real array?
When a function has multiple arguments care must be taken to ensure that the arguments are in the correct position and of the appropriate kind type.
You may also replace arguments for functions by expressions, e.g.,[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figg_HTML.gif]

12.7 Example 6: Easter
This
 example uses only one function, the mod

 (or modulus). It is used several times, helping to emphasise the usefulness of a convenient, easily referenced function. The program calculates the date of Easter for a given year. It is derived from an algorithm by Knuth, who also gives a fuller discussion of the importance of its algorithm. He concludes that the calculation of Easter was a key factor in keeping arithmetic alive during the Middle Ages in Europe. Note that determination of the Eastern churches’ Easter requires a different algorithm:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figh_HTML.gif]

We have introduced a new statement here, the if then endif, and a variant the if then else endif. A more complete coverage is given in the chapter on control structures. The main point of interest is that the normal sequential flow from top to bottom can be varied. In the following case,[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figi_HTML.gif]

If the expression is true the block of statements between the if then and the endif is executed. If the expression is false then this block is skipped, and execution proceeds with the statements immediately after the endif.
In the following case,[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figj_HTML.gif]

if the expression is true block 1 is executed and block 2 is skipped. If the expression is false then block 2 is executed and block 1 is skipped. Execution then proceeds normally with the statement immediately after the endif.
As well as noting the use of the mod generic function in this program, it is also worth noting the structure of the decisions. They are nested, rather like the nested do loops we met earlier.
12.8 Intrinsic Procedures
An alphabetical list of all intrinsic functions and subroutines is given in Appendix D. This list provides the following information:	Function name.

	Description.

	Argument name and type.

	Result type.

	Classification.

	Examples of use.

This appendix should be consulted for a more complete and thorough understanding of intrinsic procedures and their use in Fortran.
12.9 Supplying Your Own Functions
There are two stages here: firstly, to define the function and, secondly, to reference or use it. Consider the calculation of the greatest common divisor of two

 integers.
12.9.1 Example 7: Simple User Defined Function
The
 following defines a function to achieve this:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figk_HTML.gif]

To use this function, you reference or call it with a form like:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figl_HTML.gif]

We will start by talking about the actual function and then cover the following statements[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figm_HTML.gif]

later in the chapter on modules.
The first line of the function[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Fign_HTML.gif]

has a number of items of interest:	Firstly the function has a type, and in this case the function is of type integer,

 i.e., it will return an integer value.

	The function has a name, in this case gcd.

	The function takes arguments or parameters, in this case a and

 b
 .

The structure of the rest of the function is the same as that of a program, i.e., we have declarations, followed by the executable part. This is because both a program and a function can be regarded as a program unit in Fortran terminology. We will look into this more fully in later chapters.
In the declaration we also have a new attribute for the integer declaration. The two parameters a and b are of type integer, and the intent(in) attribute means that these parameters will NOT be altered by the function. It is good programming practice for functions not to have side effects,

 i.e not modify their arguments, and do no i/o.
The value calculated is returned through the function name somewhere in the body of the executable part of the function. In this case gcd appears on the left-hand side of an arithmetic assignment statement
 at the bottom of the function. The end of the function is signified in the same way as the end of a program:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figo_HTML.gif]

We then have the program which actually uses the function gcd. In the program the function is called or invoked with i and j as arguments. The variables are called a and b in the function, and references to a and b in the function will use the values that i and j have respectively in the main program. We cover the area of argument association in the next section.
Note also a new control statement, the do while enddo. In the following case,[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figp_HTML.gif]

the block of statements between the do while and the enddo is executed whilst the expression is true. There is a more complete coverage in Chap. 13.
We have two options here regarding compilation. Firstly, to make the function and the program into one file, and invoke the compiler once. Secondly, to make the function and program into separate files, and invoke the compiler twice, once for each file. With large programs comprising one program and several functions it is probably worthwhile to keep the component parts in different files and compile individually, whereas if it consists of a simple program and one function then keeping things together in one file makes sense.
12.10 An Introduction to the Scope of Variables, Local Variables and Interface Checking
One

 of the major strengths of Fortran is the ability to work on parts of a problem at a time. This is achieved by the use of program units (a main program, one or more functions and one or more subroutines) to solve discrete sub-problems. Interaction between them is limited and can be isolated, for example, to the arguments of the function. Thus variables in the main program can have the same name as variables in the function and they are completely separate variables, even though they have the same name. Thus we have the concept of a local variable in a program unit.
In the example above i, j, result, are local to the main program. The declaration of gcd is to tell the compiler that it is an integer, and in this case it is an external function.
a and b in the function gcd do not exist in any real sense; rather they will be replaced by the actual variable values from the calling routine, in this case by whatever values i and j have. temp is local to gcd.
A common programming error in Fortran 66 and 77 was mismatches between actual and dummy arguments. Problems caused by this were often very subtle and hard to find.
Fortran 90 introduced a solution to the problem via the use of modules and contains statements. We have added[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figq_HTML.gif]

around the function definition, which contains the function in a module and the following statement in the main program[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figr_HTML.gif]

provides an explicit interface (in Fortran terminology) that requires the compiler to check at compile time that the call is correct, i.e. that there are the correct number of parameters, they are of the correct type and in this case that the function return type is correct. We will cover this area in greater depth in later chapters.
12.11 Recursive Functions
There is an additional form of the function header that was required when recursive function support was introduced in Fortran 90. The Fortran 2018 standard makes this form optional. Recursion means the breaking down of a problem into a simpler but identical sub-problem. The concept is best explained with reference to an actual example. Consider the evaluation of a factorial, e.g., 5!. From simple mathematics we know that the following is true:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figs_HTML.gif]

and thus [image: $$5! = 5*4*3*2*1$$] or 120.
12.11.1 Example 8: Recursive Factorial Evaluation
Let us
 look at a program with recursive function to solve the evaluation of factorials.[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figt_HTML.gif]

What additional information is there? Firstly, we have an additional attribute on the function header that declares the function to be recursive. Secondly, we must return the result in a variable, in this case answer. Let us look now at what happens when we compile and run the whole program (both function and main program). If we type in the number 5 the following will happen:	The function is first invoked with argument 5. The else block is then taken and the function is invoked again.

	The function now exists a second time with argument 4. The else block is then taken and the function is invoked again.

	The function now exists a third time with argument 3. The else block is then taken and the function is invoked again.

	The function now exists a fourth time with argument 2. The else block is then taken and the function is invoked again.

	The function now exists a fifth time with argument 1. The else block is then taken and the function is invoked again.

	The function now exists a sixth time with argument 0. The if block is executed and answer=1. This invocation ends and we return to the previous level, with answer=1*1.

	We return to the previous invocation and now answer=2*1.

	We return to the previous invocation and now answer=3*2.

	We return to the previous invocation and now answer=4*6.

	We return to the previous invocation and now answer=5*24.

The function now terminates and we return to the main program or calling routine. The answer 120 is the printed out.
Add a print *, i statement to the function after the last declaration and type the program in and run it. Try it out with 5 as the input value to verify the above statements.
Recursion is a very powerful tool in programming, and remarkably simple solutions to quite complex problems are possible using recursive techniques. We will look at recursion in much more depth in the later chapters on dynamic data types, and subroutines and modules.
12.12 Example 9: Recursive Version of gcd
The
 following is another example of the earlier gcd function but with the algorithm in the function replaced with an alternate recursive solution:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figu_HTML.gif]

Try this program out on the system you work with, look at the timing information provided, and compare the timing with the previous example. The algorithm is a much more efficient algorithm than in the original example, and hence should be much faster. On one system there was a twentyfold decrease in execution time between the two versions.
Recursion is sometimes said to be inefficient, and the following example looks at a non-recursive version of the second algorithm.
12.13 Example 10: gcd After Removing Recursion
The following is a variant of the above, with the same algorithm, but with the recursion removed:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figv_HTML.gif]

12.14 Internal Functions
An internal function is a more restricted and hidden form of the normal function definition.
Since the internal function is specified within a program segment, it may only be used within that segment and cannot be referenced from any other functions or subroutines, unlike the intrinsic or other user defined functions.
12.14.1 Example 11: Stirling’s Approximation
In
 this example we use Stirling’s approximation for large n,[image: $$\begin{aligned} n! = \sqrt{2 \pi n} (n/e)^n \end{aligned}$$]

and a complete program to use this internal function is given below:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figw_HTML.gif]

The difference between this example and the earlier ones lies in the contains statement. The function is now an integral part of the program and could not, for example, be used elsewhere in another function. This provides us with a very powerful way of information hiding and making the construction of larger programs more secure and bug free.
12.15 Pure Functions
We
 mentioned earlier that functions should not have side effects. If your functions do have side effects and are running the code on parallel systems we have the additional problem that it may not actually work! We would also like to be able to take advantage of automatic parallelisation if possible. In the following example we show how to do this using the pure prefix specification.[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figx_HTML.gif]

Subroutines can also be made pure.
12.15.1 Pure Constraints
The following are some of the constraints on pure procedures	a dummy argument must be intent(in)

	local variables may not have the save

 attribute

	no i/o must be done in the procedure

	any procedures referenced must be pure

	you cannot have a stop statement in a pure procedure

The above information should be enough to write simple pure functions.
12.16 Elemental Functions
Fortran 77 introduced the concept of generic intrinsic functions. Fortran 90 added elemental intrinsic functions and the ability to write generic user defined functions. Fortran 95 squared the circle and enabled us to write elemental user defined functions. Here is an example to illustrate this.[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figy_HTML.gif]

Here is the output from one compiler.[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figz_HTML.gif]

Hence we can call our own elemental functions with both scalar and array arguments.
Elemental functions require the use of explicit interfaces, and we have therefore used modules to achieve this.
12.17 Resume
There are a large number of Fortran supplied functions and subroutines (intrinsic functions) which extend the power and scope of the language. Some of these functions are of generic type, and can take several different types of arguments. Others are restricted to a particular type of argument. Appendix D should be consulted for a fuller coverage concerning the rules that govern the use of the intrinsic functions and procedures.
When the intrinsic functions are inadequate, it is possible to write user defined functions. Besides expanding the scope of computation, such functions aid in problem visualisation and logical subdivision, may reduce duplication, and generally help in avoiding programming errors.
In addition to separately defined user functions, internal functions may be employed. These are functions which are used within a program segment.
Although the normal exit from a user defined function is through the end statement, other, abnormal, exits may be defined through the return

 statement.
Communication with non-recursive functions is through the function name and the function arguments. The function must contain a reference to the function name on the left-hand side of an assignment. Results may also be returned through the argument list.
We have also covered briefly the concept of scope for a variable, local variables, and argument association. This area warrants a much fuller coverage and we will do this after we have covered subroutines and modules.
12.18 Formal Syntax
The
 syntax of a function is:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figaa_HTML.gif]

and prefix is:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figab_HTML.gif]

or[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figac_HTML.gif]

and the function_statement is:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figad_HTML.gif]

[] represent optional parts to the specification.
The simple syntax for a module as we have used them in this chapter is[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figae_HTML.gif]

and[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figaf_HTML.gif]

in the calling routine.
12.19 Rules and Restrictions
The
 type of the function must only be specified once, either in the function statement or in a type declaration.
The names must match between the function header and end function function name statement.
If there is a result clause, that name must be used as the result variable, so all references to the function name are recursive calls.
The function name must be used to return a result when there is no result

 clause.
We will look at additional rules and restrictions in later chapters.
12.20 Problems
12.1
Find out the action of the mod function function when one of the arguments is negative. Write your own modulus function to return only a positive remainder. Don’t call it mod!

12.2
Create a table which gives the sines, cosines and tangents for –1 to 91[image: $$^\circ $$] in 1[image: $$^\circ $$] intervals. Remember that the arguments have to be in radians. What value will you give pi? One possibility is pi=4*atan(1.0). Pay particular attention to the following angle ranges:[image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figag_HTML.gif]

What do you notice about sine and cosine at 0 and 90[image: $$^\circ $$] ? What do you notice about the tangent of 90[image: $$^\circ $$] ? Why do you think this is?
Use a calculator to evaluate the sine, cosine at 0 and 90[image: $$^\circ $$]. do the same for the tangent at 90[image: $$^\circ $$]. Does this surprise you?
Repeat using a spreadsheet, e.g., Excel.
Are you surprised?
Repeat the Fortran program using one or more real kind

 types.

12.3
Write a program that will read in the lengths a and b of a right-angled triangle and calculate the hypotenuse c. Use the Fortran sqrt intrinsic.

12.4
Write a program that will read in the lengths a and b of two sides of a triangle and the angle between them [image: $$\theta $$] (in degrees). Calculate the length of the third side c using the cosine rule: [image: $$c^2 = a^2 + b^2 - 2 a b cos(\theta)$$]

12.5
Write a function to convert an integer to a binary character representation. It should take an integer argument and return a character string that is a sequence of zeros and ones. Use the program in Chap. 5 as a basis for the solution.

12.21 Bibliography
Abramowitz M., Stegun I., Handbook of Mathematical Functions, Dover, 1968.

 	This book contains a fairly comprehensive collection of numerical algorithms for many mathematical functions of varying degrees of obscurity. It is a widely used source.

Association of Computing Machinery (ACM)	Collected Algorithms, 1960–1974

	Transactions on Mathematical Software, 1975 —

A good source of more specialised algorithms. Early algorithms tended to be in Algol, Fortran now predominates.
12.21.1 Recursion and Problem Solving
The following are a number of books that look at the role of recursion in problem solving and algorithms.
Hofstader D. R., Gödel, Escher, Bach — an Eternal Golden Braid, Harvester Press.

 	The book provides a stimulating coverage of the problems of paradox and contradiction in art, music and mathematics using the works of Escher, Bach and Gödel, and hence the title. There is a whole chapter on recursive structures and processes. The book also covers the work of Church and Turing, both of whom have made significant contributions to the theory of computing.

Kruse R.L., Data Structures and Program Design, Prentice-Hall, 1994.

 	Quite a gentle introduction to the use of recursion and its role in problem solving. Good choice of case studies with explanations of solutions. Pascal is used.

Sedgewick R., Algorithms in Modula 3, Addison-Wesley, 1993.

 	Good source of algorithms. Well written. The gcd algorithm was taken from this source.

Vowels R.A., Algorithms and data Structures in F and Fortran, Unicomp, 1998.

 	The only book currently that uses Fortran 90/95 and F. Visit the Fortran web site for more details. They are the publishers. Sadly no longer available. We found one at over 100 on Abebooks!

 [image: ../images/112282_4_En_12_Chapter/112282_4_En_12_Figah_HTML.gif]

Wirth N., Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

 	In the context of this chapter the section on recursive algorithms is a very worthwhile investment in time.

Wood D., Paradigms and Programming in Pascal, Computer Science Press.

 	contains a number of examples of the use of recursion in problem solving. Also provides a number of useful case studies in problem solving.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_13

13. Control Structures and Execution Control

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Summarizing: as a slow-witted human being I have a very small head and I had better learn to live with it and to respect my limitations and give them full credit, rather than try to ignore them, for the latter vain effort will be punished by failure

Edsger W. Dijkstra, Structured Programming

 Aims

The aims of this chapter are to introduce:	Selection among various courses of action as part of the algorithm.

	The concepts and statements in Fortran needed to support the above:	execution control.

	executable constructs containing blocks.

 	the associate construct.

	the block construct.

	the do construct.

	the if construct.

	the select case construct.

	the select rank construct.

	the select type construct.

	Logical expressions and logical operators.

	One or more blocks of statements.

13.1 Introduction
When we look at this area it is useful to gain some historical perspective concerning the control structures that are available in a programming language.
At the time of the development of Fortran in the 1950s there was little theoretical work around and the control structures provided were very primitive and closely related to the capability of the hardware.
At the time of the first standard in 1966 there was still little published work regarding structured programming and control structures. The seminal work by Dahl, Dijkstra and Hoare was not published until 1972.
By the time of the second standard there was a major controversy regarding languages with poor control structures like Fortran which essentially were limited to the goto statement. The facilities in the language had led to the development and continued existence of major code suites that were unintelligible, and the pejorative term spaghetti was applied to these programs. Developing an understanding of what a program did became an almost impossible task in many cases.
Fortran missed out in 1977 on incorporating some of the more modern and intelligible control structures that had emerged as being of major use in making code easier to understand and modify.
It was not until the 1990 standard that a reasonable set of control structures had emerged and became an accepted part of the language. The more inquisitive reader is urged to read at least the work by Dahl, Dijkstra and Hoare to develop some understanding of the importance of control structures and the role of structured programming.The paper by Knuth is also highly recommended as it provides a very balanced coverage of the controversy of earlier times over the goto

 statement.
13.2 Selection Among Courses of Action
In most problems you need to choose among various courses of action, e.g.,	if overdrawn, then do not draw money out of the bank.

	if Monday, Tuesday, Wednesday, Thursday or Friday, then go to work.

	if Saturday, then go to watch Queens Park Rangers.

	if Sunday, then lie in bed for another two hours.

As most problems involve selection between two or more courses of action it is necessary to have the concepts to support this in a programming language. Fortran has a variety of selection mechanisms, some of which are introduced below.
13.3 The Block If Statement
The following short example illustrates the main ideas:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figa_HTML.gif]

If today is Sunday then the block of statements between the if and the endif is executed. After this block has been executed the program continues with the statements after the endif. If today is not Sunday the program continues with the statements after the endif immediately. This means that the statements after the endif are executed whether or not the expression is true. The general form is:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figb_HTML.gif]

The logical expression is an expression that will be either true or false; hence its name. Some examples of logical expressions are given below:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figc_HTML.gif]

Table 13.1 lists the Fortran logical and relational operators.Table 13.1Fortran logical and relational operators

	Operator
	Meaning
	Type

	==
	Equal
	Relational

	/=
	Not equal
	Relational

	>=
	Greater than or equal
	Relational

	<=
	Less than or equal
	Relational

	<
	Less than
	Relational

	>
	Greater than
	Relational

	.AND.
	and
	Logical

	.OR.
	or
	Logical

	.NOT.
	not
	Logical

The first six should be self-explanatory. They enable expressions or variables to be compared and tested. The last three enable the construction of quite complex comparisons, involving more than one test; in the example given earlier there was a test to see whether today was Saturday or Sunday.
Use of logical expressions and logical variables (something not mentioned so far) is covered again in a later chapter on logical data types.
The if expression then statements endif is called a block if construct. There is a simple extension to this provided by the else statement. Consider the following example:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figd_HTML.gif]

In this instance, one or other of the blocks will be executed. Then execution will continue with the statements after the endif statement (in this case buy a round).
There is yet another extension to the block if which allows an elseif statement. Consider the following example:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Fige_HTML.gif]

Note that as soon as one of the logical expressions is true, the rest of the test is skipped, and execution continues with the statements after the endif. This implies that a construction like[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figf_HTML.gif]
 is inappropriate. If i is less than 2, the latter condition will never be tested. The else statement has been used here to aid in trapping errors or exceptions. This is recommended practice. A very common error in programming is to assume that the data are in certain well-specified ranges. The program then fails when the data go outside this range. It makes no sense to have a day other than Monday, Tuesday, Wednesday, Thursday, Friday, Saturday or Sunday.
13.3.1 Example 1: Quadratic Roots
A quadratic equation is:[image: $$\begin{aligned} ax^2 + bx +c = 0 \end{aligned}$$]

This program has a simple structure. The roots of the quadratic are either real, equal and real, or complex depending on the magnitude of the term b ** 2 - 4 * a * c. The program tests for this term being greater than or less than zero: it assumes that the only other case is equality to zero (from the mechanics of a computer, floating point equality is rare, but we are safe in this instance):[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figg_HTML.gif]

Given the understanding you now have about real arithmetic and finite precision will the else block above ever be executed?
13.3.2 Example 2: Date Calculation
This next example is also straightforward. It demonstrates that, even if the conditions on the if statement are involved, the overall structure is easy to determine. The comments and the names given to variables should make the program self-explanatory. Note the use of integer division to identify leap years:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figh_HTML.gif]

13.4 The Case Statement
The case statement provides a very clear and expressive selection mechanism between two or more courses of action. Strictly speaking it could be constructed from the if then else if endif statement, but with considerable loss of clarity. Remember that programs have to be read and understood by both humans and compilers!
13.4.1 Example 3: Simple Calculator

 [image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figi_HTML.gif]

The user is prompted to type in two integers and the operation that they would like carried out on those two integers. The case statement then ensures that the appropriate arithmetic operation is carried out. The program terminates when the user types in any character other than [image: $$+$$], −, * or /.
The case default option introduces the exit statement. This statement is used in conjunction with the do statement. When this statement is executed control passes to the statement immediately after the matching end do statement. In the example above the program terminates, as there are no executable statements after the end do.
13.4.2 Example 4: Counting Vowels, Consonants, etc.
This example is more complex, but again is quite easy to understand. The user types in a line of text and the program produces a summary of the frequency of the characters typed in:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figj_HTML.gif]

13.5 The Various Forms of the Do Statement
You have already been introduced in the chapters on arrays to the iterative form of the do loop, i.e.,[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figk_HTML.gif]

A complete coverage of this form is given in the three chapters on arrays.
There are a number of additional forms of the block do that complete our requirements:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figl_HTML.gif]

[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figm_HTML.gif]

[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Fign_HTML.gif]

The first form is often called a while loop as the block of statements executes whilst the logical expression is true, and the second form is often called a repeat until loop as the block of statements executes until the statement is true.
Note that the while block of statements may never be executed, and the repeat until block will always be executed at least once.
13.5.1 Example 5: Sentinel Usage
The following example shows a complete program using this construct:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figo_HTML.gif]

The repeat until construct is written in Fortran as:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figp_HTML.gif]

There are problems in most disciplines that require a numerical solution. The two main reasons for this are either that the problem can only be solved numerically or that an analytic solution involves too much work. Solutions to this type of problem often require the use of the repeat until construct. The problem will typically require the repetition of a calculation until the answers from successive evaluations differ by some small amount, decided generally by the nature of the problem. A program extract to illustrate this follows:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figq_HTML.gif]

Here the value of the tolerance is set to 1.0E–6. Note again the use of the exit statement. The do end do block is terminated and control passes to the statement immediately after the matching end do.
13.5.2 Cycle and Exit
These two statements are used in conjunction with the block do statement. You have seen examples above of the use of the exit statement to terminate the block do, and pass control to the statement immediately after the corresponding end do statement.
The cycle statement can appear anywhere in a block do and will immediately pass control to the start of the block do. Examples of cycle and exit are given in the next two examples, and later chapters in the book.
13.5.3 Example 6: The Evaluation of e**x
The function etox illustrates one use of the repeat until construct. The function evaluates [image: $$ e^x $$] This may be written as[image: $$\begin{aligned} 1 + x/1! + x^2/2! + x^3/3! \ldots \end{aligned}$$]

or[image: $$\begin{aligned} 1 + \sum ^{\infty } _{n=1} \frac{x^{n-1}}{(n-1)!} {x/n} \end{aligned}$$]

Every succeeding term is just the previous term multiplied by x/n. At some point the term x/n becomes very small, so that it is not sensibly different from zero, and successive terms add little to the value. The function therefore repeats the loop until x/n is smaller than the tolerance. The number of evaluations is not known beforehand, since this is dependent on x:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figr_HTML.gif]

The whole program compares the user defined function with the Fortran intrinsic exp function.
13.5.4 Example 7: Wave Breaking on an Offshore Reef
This example is drawn from a situation where a wave breaks on an offshore reef or sand bar, and then reforms in the near-shore zone before breaking again on the coast. It is easier to observe the heights of the reformed waves reaching the coast than those incident to the terrace edge.
Both types of loops are combined in this example. The algorithm employed here finds the zero of a function. Essentially, it finds an interval in which the zero must lie; the evaluations on either side are of different signs. The while loop ensures that the evaluations are of different signs, by exploiting the knowledge that the incident wave height must be greater than the reformed wave height (to give the lower bound). The upper bound is found by experiment, making the interval bigger and bigger. Once the interval is found, its mean is used as a new potential bound. The zero must lie on one side or the other; in this fashion, the interval containing the zero becomes smaller and smaller, until it lies within some tolerance. This approach is rather plodding and unexciting, but is suitable for a wide range of problems
Here is the program:[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figs_HTML.gif]

13.6 Do Concurrent
Here is some of the formal syntax of do loops taken from the standard.[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figt_HTML.gif]

Here are the rules that apply to the do concurrent loop control.

 	The concurrent-limit and concurrent-step expressions in the concurrent-control-list are evaluated. These expressions may be evaluated in any order. The set of values that a particular index-name variable assumes is determined as follows.

 	The lower bound m1, the upper bound m2, and the step m3 are of type integer with the same kind type parameter as the index-name. Their values are established by evaluating the first concurrent-limit, the second concurrent-limit, and the concurrent-step expressions, respectively, including, if necessary, conversion to the kind type parameter of the index-name according to the rules for numeric conversion (Table 10.9 from the current standard). If concurrent-step does not appear, m3 has the value 1. The value m3 shall not be zero.

	Let the value of max be (m2 m1 [image: $$+$$] m3)/m3. If max 0 for some index-name, the execution of the construct is complete. Otherwise, the set of values for the index-name is m1 [image: $$+$$] (k 1) m3 where k [image: $$=$$] 1, 2, ..., max.

	The set of combinations of index-name values is the Cartesian product of the sets defined by each triplet specification. An index-name becomes defined when this set is evaluated.

	The scalar-mask-expr, if any, is evaluated for each combination of index-name values. If there is no scalar-mask-expr, it is as if it appeared with the value true. The index-name variables may be primaries in the scalar-mask-expr.

	The set of active combinations of index-name values is the subset of all possible combinations for which the scalar-mask-expr has the value true.

Note that the index-name variables can appear in the mask, for example[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figu_HTML.gif]

The following example illustrates a case in which the user knows that there are no repeated values in the index array IND. The DO CONCURRENT construct makes it easier for the processor to generate vector gather/scatter code, unroll the loop, or parallelize the code for this loop, potentially improving performance.[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figv_HTML.gif]

The following code demonstrates the use of the LOCAL clause so that the X inside the DO CONCURRENT construct is a temporary variable, and will not affect the X outside the construct.[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figw_HTML.gif]

A complete example of the do concurrent statement can be found in the chapter on OpenMP programming. FThe examples compares the performance of four ways of solving the same problem in Fortran using whole array syntax, a traditional simple do loop, a do concurrent solution and a solution base on OpenMP usage.
13.7 Summary
You have been introduced in this chapter to several control structures and these include:	The block if.

	The if then else if.

	The case construct.

	The block do in three forms:

	The iterative do or do variable=start, end, increment ...end do.

	The while construct, or do while ...end do.

	The repeat until construct, or do ...if then exit end do.

	The cycle and exit statements, which can be used with the do statement

	The do concurrent statement.

These constructs are sufficient for solving a wide class of problems. There are other control statements available in Fortran, especially those inherited from Fortran 66 and Fortran 77, but those covered here are the ones preferred. We will look in Chap. 35 at one more control statement, the so-called goto statement, with recommendations as to where its use is appropriate.
13.7.1 Control Structure Formal Syntax

 [image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figx_HTML.gif]

13.8 Problems
13.1
Rewrite the program for the period of a pendulum. The new program should print out the length of the pendulum and period, for pendulum lengths from 0 to 100 cm in steps of 0.5 cm. The program should incorporate a function for the evaluation of the period.

13.2
Write a program to read an integer that must be positive.
Hint. use a do while to make the user re-enter the value.

13.3
Using functions, do the following:	Evaluate n! from [image: $$n=0$$] to [image: $$n=10$$]

	Calculate 76!

	Now calculate [image: $$(x^n)/n!$$], with [image: $$x=13.2$$] and [image: $$n=20$$].

	Now do it another way.

13.4
The program ch1307 is taken from a real example. In the particular problem, the reformed wave height was 1 m, and the water depth at the reef edge was 2 m. What was the incident wave height? Rather than using an absolute value for the tolerance, it might be more realistic to use some value related to the reformed wave height. These heights are unlikely to be reported to better than about 5% accuracy. Wave energy may be taken as proportional to wave height squared for this example. What is the reduction in wave energy as a result of breaking on the reef or bar for this particular case.

13.5
What is the effect of using int on negative real numbers? Write a program to demonstrate this.

13.6
How would you find the nearest integer to a real number? Now do it another way. Write a program to illustrate both methods. Make sure you test it for negative as well as positive values.

13.7
The function etox has been given in this chapter. The standard Fortran function exp does the same job. Do they give the same answers? Curiously the Fortran standard does not specify how a standard function should be evaluated, or even how accurate it should be.
The physical world has many examples in which processes require that some threshold be overcome before they begin operation: critical mass in nuclear reactions, a given slope to be exceeded before friction is overcome, and so on. Unfortunately, most of these sorts of calculations become rather complex and not really appropriate here. The following problem tries to restrict the range of calculation, whilst illustrating the possibilities of decision making.

13.8
If a cubic equation is expressed as[image: $$\begin{aligned} ax^3 + bx^2 + cx + d = 0 \end{aligned}$$]

and we let[image: $$\begin{aligned} \Delta = 18abcd - 4b^3d + b^2c^2 - 4ac^3 - 27a^2d^2 \end{aligned}$$]

We can determine the nature of the roots as follows
[image: $$\Delta > 0$$] : three distinct real roots
[image: $$\Delta = 0$$] : has a multiple root and all roots are real
[image: $$ \Delta < 0$$] : 1 real root and 2 non real complex conjugate roots
Incorporate this into a program, to determine the nature of the roots of a cubic from suitable input.

13.9
The form of breaking waves on beaches is a continuum, but for convenience we commonly recognise three major types: surging, plunging and spilling. These may be classified empirically by reference to the wave period, T (seconds), the breaker wave height, [image: $$H_b$$] (metres), and the beach slope, m. These three variables are combined into a single parameter, B, where[image: $$\begin{aligned} B = H_b/(gmT^2) \end{aligned}$$]

g is the gravitational constant (981 cm s[image: $$^{-2}$$]). If B is less than 0.003, the breakers are surging; if B is greater than 0.068, they are spilling, and between these values, plunging breakers are observed.
(i) On the east coast of New Zealand, the normal pattern is swell waves, with wave heights of 1 to 2 m and wave periods of 10 to 15 s. During storms, the wave period is generally shorter, say 6 to 8 s, and the wave heights higher, 3 to 5 m. The beach slope may be taken as about 0.1. What changes occur in breaker characteristics as a storm builds up?
(ii) Similarly, many beaches have a concave profile. The lower beach generally has a very low slope, say less than 1[image: $$^\circ $$] (m [image: $$=$$] 0.018), but towards the high-tide mark, the slope increases dramatically, to say 10[image: $$^\circ $$] or more (m [image: $$=$$] 0.18). What changes in wave type will be observed as the tide comes in?

13.9 Bibliography
Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured programming, Academic Press, 1972.

 	This is the original text, and a must. The quote at the start of the chapter by Dijkstra summarises beautifully our limitations when programming and the discipline we must have to master programming successfully.

Knuth D.E., Structured programming with goto Statements, in Current Trends in programming Methodology, Volume 1, Prentice-Hall, 1977.

 	The chapter by Knuth provides a very succinct coverage of the arguments for the adoption of structured programming, and dispels many of the myths concerning the use of the goto statement. Highly recommended.

ISO/IEC DIS 1539-1 Information technology – Programming languages – Fortran – Part 1: Base language	Fortran 2018 draft standard.

[image: ../images/112282_4_En_13_Chapter/112282_4_En_13_Figy_HTML.gif]

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_14

14. Characters

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 These metaphysics of magicians, And necromantic books are heavenly; Lines, circles, letters and characters.

Christopher Marlowe, The Tragical History of Doctor Faustus

 Aims

The aims of this chapter are:	To extend the ideas about characters introduced in earlier chapters.

	To demonstrate that this enables us to solve a whole new range of problems in a satisfactory way.

14.1 Introduction
For

 each type in a programming language there are the following concepts:	Values are drawn from a finite domain.

	There are a restricted number of operations defined for each type.

For the character data type the basic unit is an individual character The complete Fortran character set is given in Sect. 4.​8 in Chap. 4. This provides us with 95 printing characters. Other characters may be available. The Wikipedia entry[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figa_HTML.gif]
 has quite detailed information on how complex this area actually is.
As the most common current internal representation for the character data type uses 8 bits this should provide access to 256 characters. However, there is little agreement over the encoding of these 256 possible characters, and the best you can normally assume is access to the ASCII character set, which is given in Chap. 4. One of the problems at the end of this chapter looks at determining what characters one has available.
The only operations defined are concatenation (joining character strings together) and comparison.

We will look into the area of character sets in more depth later in this chapter.
We can declare our character

 variables:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figb_HTML.gif]

Note that there is no default typing of the character variable (unlike integer and real data types), and we can use any convenient name within the normal Fortran conventions. In the declaration above, each character variable would have been permitted to store one character. This is limiting, and, to allow character strings which are several units long, we have to add one item of information:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figc_HTML.gif]

This indicates that a holds 10 characters, string holds 16, and line holds 80. if all the character variables in a single declaration contain the same number of characters, we can abbreviate the declaration to[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figd_HTML.gif]

But we cannot mix both forms in the one declaration. We can now assign data to these variables, as follows:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Fige_HTML.gif]

The delimiter apostrophe (’) or quotation mark (“) is needed to indicate that this is a character string (otherwise the assignments would have looked like invalid variable names).
14.2 Character Input
In
 an earlier chapter we saw how we could use the read * and print * statements to do both numeric and character input and output or I/O. When we use this form of the statement we have to include any characters we type within delimiters (either the apostrophe ’ or the quotation mark “). This is a little restricting and there is a slightly more complex form of the read statement that allows one to just type the string on its own.
14.2.1 Example 1: The * Edit Descriptor
The

 following two programs illustrate the differences:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figf_HTML.gif]

This form requires enclosing the string with delimiters.
14.2.2 Example 2: The a Edit Descriptor
Consider

 the next form:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figg_HTML.gif]

With this form one can just type the string in and input terminates with the carriage return key. The additional syntax ’(a)’ where ’(a)’ is a character edit descriptor. The simple examples we have used so far have used implied format specifiers and edit descriptors. For each data type we have one or more edit descriptors to choose from. For the character data type only the a edit descriptor is available.
14.3 Character Operators
The

 first manipulator is a new operator — the concatenation operator //. With this operator we can join two character variables to form a third, as in[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figh_HTML.gif]
 where there is a discrepancy between the created length of the concatenated string and the declared lengths of the character strings, truncation will occur. For example,[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figi_HTML.gif]
 will only append the first five characters of the string ‘blind mice’ i.e., ‘blin’, and third will therefore contain ‘three blin’.
What would happen if we assigned a character variable of length ‘n’ a string which was shorter than n? For example,[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figj_HTML.gif]

The remaining two characters are considered to be blank, that is, it is equivalent to saying[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figk_HTML.gif]

However, while the strings ‘ab’ and ’ab ‘are equivalent, ‘ab’ and ‘ab’ are not. In the jargon, the character strings are always left justified, and the unset characters are trailing blanks.
If we concatenate strings which have ‘trailing blanks’, the blanks, or spaces, are considered to be legitimate characters, and the concatenation begins after the end of the first string. Thus[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figl_HTML.gif]
 would appear as[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figm_HTML.gif]
 at the terminal.
14.4 Character Substrings
Sometimes
 we need to be able to extract parts of character variables — substrings. The actual notation for doing this is a little strange at first, but it is very powerful. To extract a substring we must provide two items:	The position in the string at which the substring begins.

	The position at which it ends.

In the examples that follow we will use the following[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Fign_HTML.gif]

[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figo_HTML.gif]

Character variables may also form arrays:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figp_HTML.gif]
 sets up a character array of twenty elements, where each element contains ten characters. In order to extract substrings from these array elements, we need to know where the array reference and the substring reference are placed. The array reference comes first, so that[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figq_HTML.gif]
 places the first character of each element of the array into the variable first. The syntax is therefore ‘position in array, followed by position within string’.
Any argument can be replaced by an integer variable or expression:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figr_HTML.gif]

14.4.1 Example 3: Stripping Blanks from a String
This
 offers interesting possibilities, since we can, for example, strip blanks out of a string:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figs_HTML.gif]

14.5 Character Functions
There
 are special functions available for use with character variables:

 index
 will give the starting position of a string within another string.
14.5.1 Example 4: The index Character Function
If

 , for example, we were looking for all occurrences of the string ‘Geology’ in a file, we could construct something like:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figt_HTML.gif]

There are two things to note about this program. Firstly the index function will only report the first occurrence of the string in the line; any later occurrences in any particular line will go unnoticed, unless you account for them in some way. Secondly, if the string does not occur, the result of the index function is zero, and given the infinite loop (do enddo) the program will crash at run time with an end of file error message. This isn’t good programming practice.
14.5.2 The len and len_trim Functions
The

 len
 function provides the length of a character string. This function is not immediately useful, since you really ought to know how many characters there are in the string. However, as later examples will show, there are some cases where it can be useful. Remember that trailing blanks do count as part of the character string, and contribute to the length.
14.5.3 Example 5: Using len and len_trim
The

 following example illustrates the use of both len and len_trim:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figu_HTML.gif]

14.6 Collating Sequence
The
 next group of functions need to be considered together. They revolve around the concept of a collating sequence. In other words, each character used in Fortran is ordered as a list and given a corresponding weight. No two weights are equal. Although Fortran has only 63 defined characters, the machine you use will generally have more; 95 printing characters is a typical minimum number. On this type of machine the weights would vary from 0 to 94. There is a defined collating sequence, the ASCII sequence, which is likely to be the default. The parts of the collating sequence which are of most interest are fairly standard throughout all collating sequences.

In general, we are interested in the numerals (0–9), the alphabetic characters (A–Z, a-z) and a few odds and ends like the arithmetic operators (+ – / *), some punctuation (. and ,) and perhaps the prime (’). As you might expect, 0–9 carry successively higher weights (though not the weights 0 to 9), as do A to Z and a to z. The other odds and ends are a little more problematic, but we can find out the weights through the function ichar. This function takes a single character as argument and returns an integer value. The ASCII weights for the alphanumerics are as follows:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figv_HTML.gif]

One of the exercises is to determine the weights for other characters. The reverse of this procedure is to determine the character from its weighting, which can be achieved through the function char. char takes an integer argument and returns a single character. Using the ASCII collating sequence, the alphabet would be generated from[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figw_HTML.gif]

This idea of a weighting can then be used in four other functions:[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figx_HTML.gif]

In

 the sequence we have seen before, A is lexically less than B, i.e., its weight is less. Clearly, we can use ichar and get the same result. For example,[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figy_HTML.gif]
 is equivalent to[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figz_HTML.gif]
 but these functions can take character string arguments of any length. They are not restricted to single characters.
These functions provide very powerful tools for the manipulation of characters, and open up wide areas of non-numerical computing through Fortran. Text formatting and word processing applications may now be tackled (conveniently ignoring the fact that lower-case characters may not be available).
There are many problems that require the use of character variables. These range from the ability to provide simple titles on reports, or graphical output, to the provision of a natural language interface to one of your programs, i.e., the provision of an English-like command language. Software Tools by Kernighan and Plauger contains many interesting uses of characters in Fortran.
14.7 Example 6: Finding Out About the Character Set Available
The
 following program prints out the characters between 32 and 127.[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figaa_HTML.gif]

This is the output from the Intel compiler under Windows. [image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figab_HTML.gif]

Try this program out on the system you use. Do the character sets match?
14.8 The scan Function
The scan functions scans a string for characters from a set of characters. The syntax is given below.

 	scan(string, set) - Scans a string for any one of the characters in a set of characters.

14.8.1 Example 7: Using the scan Function

 [image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figac_HTML.gif]

Note
 the use of the trim function when using the concatenation operator to initialise the string to the text we want.
The output from one compiler is given below. The text has been wrapped to fit the page[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figad_HTML.gif]

The text in this program is used in two problems at the end of this chapter.
14.9 Summary
Characters represent a different data type to any other in Fortran, and as a consequence there is a restricted range of operations which may be carried out on them.
A character variable has a length which must be assigned in a character declaration statement.
Character strings are delimited by apostrophes (’) or quotation marks (“). Within a character string, the blank is a significant character.
Character strings may be joined together (concatenated) with the // operator.
Substrings occurring within character strings may be also be manipulated.
Table 14.1 has details of a number of functions especially for use with characters.Table 14.1String functions in Fortran

	Function name
	Explanation

	achar
	Return the character in the ASCII character set

	adjustl
	Adjust left, remove leading blanks, add trailing blanks

	adjustr
	Adjust right, remove trailing blanks, insert leading blanks

	char
	Return the character in the processor collating sequence

	iachar
	As above but in the ASCII character set

	index
	Locate one string in another

	len
	Character length including trailing blanks

	len_trim
	Character length without the trailing blanks

	lle
	Lexically less than or equal to

	lge
	Lexically greater than or equal to

	lgt
	Lexically greater than

	llt
	Lexically less than

	repeat
	Concatenate several copies of a string

	scan
	Scans a string for anyone of the characters in the set

	trim
	Remove the trailing blanks

	verify
	Verify that a set of characters contains all the characters in a string

A

 detailed explanation is given in appendix D.
14.10 Problems
14.1
Suggest some circumstances where PRIME=”” might be useful. What other alternative is there and why do you think we use that instead?

14.2
Write a program to write out the weights for the Fortran character set. Modify this program to print out the weights of the complete implementation defined character set for your version of Fortran. Is it ASCII? if not, how does it differ?

14.3
Write a program that produces the following output. [image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figae_HTML.gif]

We assume the ASCII character set in this example.

14.4
Modify the above program to produce the following output. [image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figaf_HTML.gif]

Again we assume the ASCII character set.

14.5
Modify program ch1407 to break the text into phrases, using the comma and full stop as breaking characters. The output expected is given below.[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figag_HTML.gif]

Modify the above to break the text into words and count the frequency of occurrence of words by length. The output should be similar to that given below.[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figah_HTML.gif]

14.6
Use the index function in order to find the location of all the strings ‘is’ in the following data:
If a programmer is found to be indispensable, the best thing to do is to get rid of him as quickly as possible.

14.7
Find the ‘middle’ character in the following strings. Do you include blanks as characters? What about punctuation?
Practice is the best of all instructors. experience is a dear teacher, but fools will learn at no other.

14.8
In English, the order of occurrence of the letters, from most frequent to least is[image: ../images/112282_4_En_14_Chapter/112282_4_En_14_Figai_HTML.gif]

Use this information to examine the two files given in appendix E (one is a translation of the other) to see if this is true for these two extracts of text. The second text is in medieval Latin (c. 1320). Note that a fair amount of compression has been achieved by expressing the passage in Latin rather than modern English. Does this provide a possible model for information compression?

14.9
A very common cypher is the substitution cypher, where, for example, every letter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on. These enciphered messages can be broken by reference to the frequency of occurrence of the letters (given in the previous question).
Since we know that (in English) E is the most commonly occurring letter, we can assume that the most commonly occurring letter in the enciphered message represents an E; we then repeat the process for the next most common and so on. Of course, these correspondences may not be exact, since the message may not be long enough to develop the frequencies fully.
However, it may provide sufficient information to break the cypher.
The file given in appendix E contains an encoded message. Break it.
Clue — Pg +Fybdujuvef jo Tdjfodf, Jorge Luis Borges.

14.10
Write a program that counts the total number of vowels in a sentence or text. Output the frequency of occurrence of each vowel.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_15

15. Complex

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

Make it as simple as possible, but no simpler.
Albert Einstein

 Aims

The aims of this chapter are:	To introduce the last predefined numeric data type in Fortran.

	To illustrate with examples how to use this type.

15.1 Introduction
This variable type reflects

 an extension of the real data type available in Fortran — the complex data type, where we can store and manipulate complex variables. Problems that require this data type are restricted to certain branches of mathematics, physics and engineering. Complex numbers are defined as having a real and imaginary part, i.e., [image: $$ a = x + iy $$] where i is the square root of –1.
They are not supported in many programming languages as a base type which makes Fortran the language of first choice for many people.
To use this variable type we have to write the number as two parts, the real and imaginary elements of the number, for example,[image: ../images/112282_4_En_15_Chapter/112282_4_En_15_Figa_HTML.gif]
 represents the complex number [image: $$1 + i2$$]. Note that the complex number is enclosed in brackets. We can do arithmetic on variables like this, and most of the intrinsic functions such as log, sin, cos, etc., accept a complex data type as argument.
All the usual rules about mixing

 different variable types, like reals and integers, also apply to complex. Complex numbers are read in and written out in a similar way to real numbers, but with the provision that, for each single complex value, two format descriptors must be given. You may use either E or F formats (or indeed, mix them), as long as there are enough of them. Although you use brackets around the pairs of numbers in a program, these must not appear in any input, nor will they appear on the output.
15.2 Example 1: Use of cmplx, aimag and conjg
There are a number

 of intrinsic functions to enable complex calculations to be performed. The program below uses some of them:[image: ../images/112282_4_En_15_Chapter/112282_4_En_15_Figb_HTML.gif]

15.3 Example 2: Polar Coordinate Example
The second order differential equation:[image: $$\begin{aligned} \frac{d^2y}{dt^2} + 2 \frac{dy}{dt} + y = x(t) \end{aligned}$$]

could describe the behaviour of an electrical system, where x(t) is the input voltage and y(t) is the output voltage and dy/dt is the current. The complex ratio[image: $$\begin{aligned} \frac{y(w)}{x(w)} = 1 / (-w^2 + 2jw +1) \end{aligned}$$]

is called the frequency response of the system because it describes the relationship between input and output for sinusoidal excitation at a frequency of w and where j is [image: $$ \sqrt{(}-1) $$] The following program reads in a value of w and evaluates the frequency response for this value of w together with its polar form (magnitude and phase):[image: ../images/112282_4_En_15_Chapter/112282_4_En_15_Figc_HTML.gif]

15.4 Complex and Kind Type
The standard requires that there be a minimum of two kind types for real numbers and this is also true of the complex data type. Chapter 5 must be consulted for a full coverage of real kind types.

 We would therefore use something like the following to select a complex kind type other than the default:[image: ../images/112282_4_En_15_Chapter/112282_4_En_15_Figd_HTML.gif]

Chapter 21 includes a good example of how to use modules to define and use precision throughout a program and subprogram units.

15.5 Summary
Complex is used to store and manipulate complex numbers: those with a real and an imaginary part. There are standard functions which allow conversion between the numerical data types — cmplx, real and int.
15.6 Problem
15.1
The program used in Chap. 13 which calculated the roots of a quadratic had to abandon the calculation if the roots were complex. You should now be able to remedy this, remembering that it is necessary to declare any complex variables. Instead of raising the expression to the power 0.5 in order to take its square root, use the function sqrt. The formulae for the complex roots are[image: $$ \frac{-b}{2a} \pm i \frac{ \sqrt{-(b^2-4ac)} }{2a} $$]

If you manage this to your satisfaction, try your skills on the roots of a cubic (see the problems in Chap. 13).

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_16

16. Logical

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 A messenger yes/no semaphore her black/white keys in/out whirl of morse hoopooe signals salvation deviously

Nathaniel Tarn, The Laurel Tree

 Aims

The aims of this chapter are:	To examine the last predefined type available in Fortran: logical.

	To introduce the concepts necessary to use logical expressions effectively:	Logical variables.

	Logical operators.

	The hierarchy of operations.

	Truth

 tables.

16.1 Introduction
Often we have situations where we need on or off, true or false, yes or no switches, and in such circumstances we can use logical type variables, e.g.,[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figa_HTML.gif]

Logicals

 may take only two possible values, as shown in the following:[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figb_HTML.gif]

Note the full stops, which are essential. With a little thought you can see why they are needed. You will already have met some of the ideas associated with logical variables from if statements:

[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figc_HTML.gif]

The logical expression (a == b) returns a value true or false, which then determines the route to be followed; if the quantity is true, then we execute the next statement, else we take the other route.
Similarly, the following example is also legitimate:[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figd_HTML.gif]

Again the expression if (answer) is evaluated; here the variable answer has been set to .true., and therefore the statements following the then are executed. Clearly, conventional arithmetic is inappropriate with logicals. What does 2 times true mean? (very true?). There are a number of special operators for logicals:	.not. which negates a logical value (i.e., changes true to false or vice versa).

	.and. logical intersection.

	.or. logical union.

To illustrate the use of these operators, consider the following program extract:[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Fige_HTML.gif]

Table 16.1 shows the effect of these operators on logicals in a simple case.Table 16.1Simple truth table

	x1
	x2
	.not.x1
	x1.and.x2
	x1.or.x2

	true
	true
	false
	true
	true

	true
	false
	false
	false
	true

	false
	true
	true
	false
	true

	false
	false
	true
	false
	false

As with arithmetic operators, there is an order of precedence associated with the logical operators:	.and. is carried out before

	.or. and .not.

In dealing with logicals, the operations are carried out within a given level, from left to right. Any expressions in brackets would be dealt with first. The logical operators are a lower order of precedence than the arithmetic operators,

 i.e., they are carried out later. Table 16.2 shows a more complete operator hierarchy.Table 16.2Fortran operator hierarchy

	Expressions within brackets

	Exponentiation

	Multiplication and division

	Addition and subtraction

	Relational and logical

	.and.

	.or. and .not

Although you can build up complicated expressions with mixtures of operators, these are often difficult to comprehend, and it is generally more straightforward to break ‘big’ expressions down into smaller ones whose purpose is more readily appreciated.
Historically, logicals have not been in evidence extensively in Fortran programs, although clearly there are occasions on which they are of considerable use. Their use often aids significantly in making programs more modular and comprehensible. They can be used to make a complex section of code involving several choices much more transparent by the use of one logical function, with an appropriate name. Logicals may be used to control output; e.g.,[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figf_HTML.gif]
 ensures that, while debugging a program you have more output then, when the program is correct, run with debug=.false.
Note that Fortran does try to protect you while you use logical variables. You cannot do the following:[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figg_HTML.gif]

or[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figh_HTML.gif]

The compiler will note that this is an error, and will not permit you to run the program. This is an example of strong typing, since only a limited number of predetermined operations are permitted. The real, integer and complex variable types are much more weakly typed (which helps lead to the confusion inherent in mixing variable types in arithmetic assignments).
16.2 I/O
Since logicals may take only the values .true. and .false., the possibilities in reading and writing logical values are clearly limited. The l edit descriptor or format allows logicals to be input and output. On input, if the first nonblank characters are either T or .T, the logical value .true. is stored in the corresponding list item; if the first nonblank characters are F or .F, then .false. is stored. (Note therefore that reading, say, ted and fahr in an l4 format would be acceptable.) if the first nonblank character is not F, T, .F or .T, then an error message will be generated. On output, the value T or F is written out, right justified, with blanks (if appropriate). Thus,[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figi_HTML.gif]

would produce[image: ../images/112282_4_En_16_Chapter/112282_4_En_16_Figj_HTML.gif]
 at the terminal.
Assigning a logical variable to anything other than a .true. or .false. value in your program will result in errors. The ’shorthand’ forms of .T, .F, F and T are not acceptable in the program.
16.3 Summary
This chapter has introduced the logical data type. A logical variable may take one of two values, .true. or .false..

 	There are special operators for manipulating logicals:	
 .not.

	
 .and.

	
 .or.

	Logical operators have a lower order of precedence than any others.

16.4 Problems
16.1
Why are the full stops needed in a statement like a = .true.?

16.2
Generate a truth table like the one given in this chapter.

16.3
Write a program which will read in numerical data from the terminal, but will flag any data which is negative, and will also turn these negative values into positive ones.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_17

17. Introduction to Derived Types

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Russell’s theory of types leads to certain complexities in the foundations of mathematics...Its interesting features for our purposes are that types are used to prevent certain erroneous expressions from being used in logical and mathematical formulae; and that a check against violation of type constraints can be made purely by scanning the text, without any knowledge of the value which a particular symbol might happen to have

C.A.R. Hoare, Structured Programming

 Aims

The aim of this chapter is to introduce the concepts and ideas involved in using the facilities offered in modern Fortran for the construction and use of derived or user defined

 types;	defining our own types.

	declaring variables to be of a user defined type.

	manipulating variables of our own types.

	nesting types within

 types.

The examples are simple and are designed to highlight the syntax. More complex and realistic examples of the use of user defined data types are to be found in later chapters.
17.1 Introduction
In

 the coverage so far we have used the intrinsic types provided by Fortran. The only data structuring technique available has been to construct arrays of these intrinsic types. Whilst this enables us to solve a reasonable variety of problems, it is inadequate for many purposes. In this chapter we look at the facilities offered by Fortran for the construction of our own types and how we manipulate data of these new, user defined

 types.
With the ability to define our own types we can now construct aggregate data types that have components of a variety of base types. These are given a variety of names including	Record in the Pascal family of languages and in many older books on computing and data structuring;

	Structs in C;

	Classes in C++, Java, C# and Eiffel;

	Cartesian product is often used in mathematics and this is the terminology adopted by Hoare;

Chapter 3 has details of some books for further reading:	Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programming;

	Wirth N., Algorithms + Data Structures = Programs;

	Wirth N., Algorithms + Data Structures.

We will use the term user defined type and derived types interchangeably.
There are two stages in the process of creating and using our own data types: we must first define the type, and then create variables of this type.
17.2 Example 1: Dates

 [image: ../images/112282_4_En_17_Chapter/112282_4_En_17_Figa_HTML.gif]

This
 complete program illustrates both the definition and use of the type. It also shows how you can define initial values within the type definition.
17.3 Type Definition
The type date is defined to have three component parts, comprising a day, a month and a year, all of integer type. The syntax of a type construction comprises:[image: ../images/112282_4_En_17_Chapter/112282_4_En_17_Figb_HTML.gif]

Reference can then be made to this new type by the use of a single word, date, and we have a very powerful example of the use of abstraction.
17.4 Variable Definition
This is done by[image: ../images/112282_4_En_17_Chapter/112282_4_En_17_Figc_HTML.gif]
 and we then define a variable d to be of this new type. The next thing we do is have a read * statement that prompts the user to type in three integer values, and the data are then echoed straight back to the user. We use the notation[image: ../images/112282_4_En_17_Chapter/112282_4_En_17_Figd_HTML.gif]

to refer to each component of the new data type.
17.4.1 Example 2: Variant of Example 1 Using Modules
The following is a variant on the above and achieves the same result with a small amount of additional syntax.[image: ../images/112282_4_En_17_Chapter/112282_4_En_17_Fige_HTML.gif]

The key here is that we have embedded the type declaration inside a module, and then used the module in the main program. Modules are covered in more detail in a later chapter.
If you are only using the type within one program unit then the first form is satisfactory, but if you are going to use the type in several program units the second is the required form.
We will use the second form in the examples that follow.
17.5 Example 3: Address Lists

 [image: ../images/112282_4_En_17_Chapter/112282_4_En_17_Figf_HTML.gif]

In this example we define a type address which has components that one would expect for a person’s address. We then define an array addr of this type. Thus we are now creating arrays of our own user defined types.

 We index into the array in the way we would expect from our experience with integer, real and character arrays. The complete example is rather trivial in a sense in that the program merely reads from one file and prints the file out to the screen. However, it highlights many of the important ideas of the definition and use of user defined

 types.
17.6 Example 4: Nested User Defined Types
The
 following example builds on the two data types already introduced. Here we construct nested user defined data types based on them and construct a new data type containing them both plus additional information.[image: ../images/112282_4_En_17_Chapter/112282_4_En_17_Figg_HTML.gif]

Here we have a date of birth data type (date_of_birth) based on the date data type from the first example, plus a slightly modified address data type, incorporated into a new data type comprising personal details. Note the way in which we reference the component parts of this new, aggregate data type.
17.7 Problem
17.1
Modify the last example to include a more elegant printed name. The current example will pad with blanks the first_ name, other_names and surname and span 80 characters on one line, which looks rather ugly.
Add a new variable name which will comprise all three subcomponents and write out this new variable, instead of the three subcomponents.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_18

18. An Introduction to Pointers

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Not to put too fine a point on it

Charles Dickens, Bleak House

 Aim

The primary aim of the chapter is to introduce some of the key concepts of pointers in Fortran.
18.1 Introduction
All of the data types introduced so far, with the exception of the allocatable array, have been static. Even with the allocatable array a size has to be set at some stage during program execution. The facilities provided in Fortran by the concept of a pointer combined with those offered by a user defined type enable us to address a completely new problem area, previously extremely difficult to solve in Fortran. There are many problems where one genuinely does not know what requirements there are on the size of a data structure. Linked lists allow sparse matrix problems to be solved with minimal storage requirements, two-dimensional spatial problems can be addressed with quad-trees and three-dimensional spatial problems can be addressed with oct-trees. Many problems also have an irregular nature, and pointer arrays address this problem.
First we need to cover some of the technical aspects of pointers. A pointer is a variable that has the pointer attribute A pointer is associated with a target by allocation or pointer assignment. A pointer becomes associated as follows:	The pointer is allocated as the result of the successful execution of an allocate statement referencing the pointer

or	The pointer is pointer-assigned to a target that is associated or is specified with the target attribute and, if allocatable, is currently allocated.

A pointer may have a pointer association status of associated, disassociated, or undefined. Its association status may change during execution of a program. Unless a pointer is initialised (explicitly or by default), it has an initial association status of undefined. A pointer may be initialised to have an association status of disassociated.
A pointer shall neither be referenced nor defined until it is associated. A pointer is disassociated following execution of a deallocate or nullify statement, following pointer association with a disassociated pointer, or initially through pointer initialisation.

Let us look at some examples to clarify these points.
18.2 Example 1: Illustrating Some Basic Pointer Concepts

With the introduction of pointers as a data type into Fortran we also have the introduction of a new assignment statement — the pointer assignment statement. Consider the following example:[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figa_HTML.gif]

The following[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figb_HTML.gif]
 is a declaration statement that defines a and b to be variables, with the pointer attribute. This means we can use a and b to refer or point to integer values. We also use the null intrinsic to set the status of the pointers a and b to disassociated. Using the null intrinsic means that we can test the status of a pointer variable and avoid making a number of common pointer programming errors. Note that in this case no space is set aside for the pointer variables a and b, i.e. a and b should not be referenced in this state.
The second declaration defines c to be an integer, with the target attribute, i.e., we can use pointers to refer or point to the value of the variable c.
The last declaration defines d to be an ordinary integer variable.

In the case of the last two declarations space is set aside to hold two integers.
Let us now look at the various executable statements in the program, one at a time:[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figc_HTML.gif]

This is an example of the normal assignment statement with which we are already familiar. We use the variable name c in our program and whenever we use that name we get the value of the variable c.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figd_HTML.gif]

This is an example of a pointer assignment statement. This means that both a and c now refer to the same value, in this case 1. a becomes associated with the target c. a can now be referenced. [image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Fige_HTML.gif]
 Conventional assignment statement, and c now has the value 2.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figf_HTML.gif]

Second example of pointer assignment.

 b
 now points to the value that c has, in this case 2. b becomes associated with the target c. b can now be referenced.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figg_HTML.gif]

Simple arithmetic assignment statement. The value that a points to is added to the value that b points to and the result is assigned to d.
The last statement prints out the values of a, b, c and d.
The output is [image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figh_HTML.gif]

18.3 Example 2: The associated Intrinsic Function

The associated intrinsic returns the association status of a pointer variable. Consider the following example which is a simple variant on the first.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figi_HTML.gif]

The output from running this program is shown below[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figj_HTML.gif]
 and as you can see we therefore have a mechanism to test pointers to see if they are in a valid state before use.
18.4 Example 3: Referencing Pointer Variables Before Allocation or Pointer Assignment

Consider the following example:[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figk_HTML.gif]

Here we are actually referencing the pointers a and b, even though their status is disassociated. Most compilers generate a run time error with this example with the default compiler options, and the error message tends to be a little cryptic. It is recommended that you look at the diagnostic compilation switches for you compiler. We include some sample output below from gfortran, Intel and Nag. The error messages are now much more meaningful.
18.4.1
 gfortran

Switches are[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figl_HTML.gif]

The program runs to completion with no error message. Here is the output.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figm_HTML.gif]

18.4.2
 Intel

Switches are[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Fign_HTML.gif]

Here is the output.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figo_HTML.gif]

18.4.3
 Nag

Switches are[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figp_HTML.gif]

Here is the output.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figq_HTML.gif]

18.5 Example 4: Pointer Allocation and Assignment

Consider the following example: [image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figr_HTML.gif]

In this example we allocate a and then can do conventional assignment. If we had not allocated a the assignment would be illegal. Try out problem 18.2 to see what will happen with your compiler.
Our simple recommendation when using pointers is to nullify them when declaring them and to explicitly allocate them before conventional assignment.
18.6 Memory Leak Examples

Dynamic memory brings greater versatility but requires greater responsibility.
18.6.1 Example 5: Simple Memory Leak

 [image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figs_HTML.gif]

What has happened to the memory allocated to a and b?
18.6.2 Example 6: More Memory Leaks

Now consider the following example.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figt_HTML.gif]

Before running the above example we recommend starting up a memory monitoring program.
Under Microsoft Windows holding [CTRL] + [ALT] + [DEL] will bring up the Windows Task Manager. Choose the [Performance] tab to get a screen which will show CPU usage, PF Usage, CPU Usage History and Page File Usage History. You will also get details of Physical and Kernel memory usage.
Under Linux type[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figu_HTML.gif]

in a terminal window.
In these examples we also see the recommended form of the allocate statement when working with arrays. This enables us to test if the allocation has worked and take action accordingly. A positive value indicates an allocation error, zero indicates OK.
The second program can require a power off on a Windows operating system with a compiler that will remain anonymous!
18.7 Non-standard Pointer Example

Some Fortran compilers provide a non-standard loc intrinsic. This can be used to print out the address of the variable passed as an argument.
18.7.1 Example 7: Using the C loc Function

Some Fortran compilers provide non standard access to functions supported in the C language. This example uses the C loc function.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figv_HTML.gif]

Here is the output from a compiler with loc support.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figw_HTML.gif]

This program clearly shows the memory leak.
18.8
 Problems

18.1
Compile and run all of the example programs in this chapter with your compiler and examine the output.

18.2
Compile and run example 4 without the allocate(a) statement. See what happens with your compiler.
Here is the output from the Nag compiler. The first run is with the default options.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figx_HTML.gif]

There is no meaningful output.
The following adds the -C=all compilation option.[image: ../images/112282_4_En_18_Chapter/112282_4_En_18_Figy_HTML.gif]

We now get a meaningful error message.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_19

19. Introduction to Subroutines

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 A man should keep his brain attic stacked with all the furniture he is likely to use, and the rest he can put away in the lumber room of his library, where he can get at it if he wants.

Sir Arthur Conan Doyle, Five Orange Pips

 Aims

The aims of this chapter are:	To consider some of the reasons for the inclusion of subroutines in a programming language.

	To introduce with a concrete example some of the concepts and ideas involved with the definition and use of subroutines.

 	Arguments or parameters.

	The intent attribute for parameters.

	The call statement.

	Scope of variables.

	Local variables and the save attribute

 .

	The use of parameters to report on the status of the action carried out in the subroutine.

	Module procedures to provide interfaces.

19.1 Introduction
In

 the earlier chapter on functions we introduced two types of function	Intrinsic functions - which are part of the language.

	User defined functions - by which we extend the language.

We now introduce subroutines which collectively with functions are given the name procedures. Procedures provide a very powerful extension to the language by:	Providing us with the ability to break problems down into simpler more easily solvable subproblems.

	Allowing us to concentrate on one aspect of a problem at a time.

	Avoiding duplication of code.

	Hiding away messy code so that a main program is a sequence of calls to procedures.

	Providing us with the ability to put together collections of procedures that solve commonly occurring subproblems, often given the name libraries, and generally compiled.

	Allowing us to call procedures from libraries written, tested and documented by experts in a particular field. There is no point in reinventing the wheel!

There are a number of concepts required for the successful use of subroutines and we met some of them in Chap. 12 when we looked at user defined functions. We will extend the ideas introduced there of parameters and introduce the additional concept of an interface via the use of modules. The ideas are best explained with a concrete example.
Note that we use the terms parameters

 and arguments interchangeably

 .
19.2 Example 1: Roots of a Quadratic Equation
This example is one we met earlier that solves a quadratic equation, i.e., solves[image: $$\begin{aligned} a x^2 + b x + c = 0 \end{aligned}$$]

The program to do this originally was just one program. In the example below we break that problem down into smaller parts and make each part a subroutine. The components are:	Main program or driving routine.

	Interaction with user to get the coefficients of the equation.

	Solution of the quadratic.

Let us look now at how we do this with the use of subroutines:[image: ../images/112282_4_En_19_Chapter/112282_4_En_19_Figa_HTML.gif]

19.2.1 Referencing a Subroutine
To reference a subroutine you use the call statement:[image: ../images/112282_4_En_19_Chapter/112282_4_En_19_Figb_HTML.gif]

and from the earlier example the call to subroutine interact was of the form:[image: ../images/112282_4_En_19_Chapter/112282_4_En_19_Figc_HTML.gif]

When a subroutine returns to the calling program unit control is passed to the statement following the call statement.
19.2.2 Dummy Arguments or Parameters and Actual Arguments
Procedures and their calling program units communicate through their arguments. We often use the terms parameter and arguments interchangeably through out this text. The subroutine statement normally contains a list of dummy arguments, separated by commas and enclosed in brackets. The dummy arguments have a type associated with them; for example, in subroutine solve x is of type real, but no space is put aside for this in memory. When the subroutine is referenced e.g., call solve(p,q,r, root1,root2,ifail), then the dummy argument points to the actual argument p, which is a variable in the calling program unit. The dummy argument and the actual argument must be of the same type - in this case real.
19.2.3 The intent Attribute
It

 is recommended that
 dummy arguments

 have an intent attribute. In the earlier example subroutine solve has a dummy argument e with intent(in), which means that when the subroutine is referenced or called it is expecting e to have a value, but its value cannot be changed inside the subroutine. This acts as an extra security measure besides making the program easier to understand. For each parameter it may have one of three attributes:	intent(in), where the parameter already has a value and cannot be altered in the called routine.

	intent(out), where the parameter does not have a value, and is given one in the called routine.

	intent(inout), where the parameter already has a value and this is changed in the called routine.

19.2.4 Local

 Variables
We saw with functions that variables could be essentially local to the function and unavailable elsewhere. The concept of local variables also applies to subroutines. In the example above term and a2 are both local variables to the subroutine solve.
19.2.5 Local Variables and the save Attribute
Local variables are usually created when a procedure is called and their value lost when execution
 returns to the calling program unit. To make sure that a local variable retains its values between calls to a subprogram the save attribute can be used on a type statement: e.g.,[image: ../images/112282_4_En_19_Chapter/112282_4_En_19_Figd_HTML.gif]

means that when this statement appears in a subprogram the value of the local variable i is saved between calls.
19.2.6 Scope
 of Variables
In most cases variables are only available within the program unit that defines them. The introduction of argument lists to procedures immediately opens up the possibility of data within one program unit becoming available in one or more other program units.
In the main program we declare the variables p, q, r, root1, root2, ifail and ok.
Subroutine interact has no variables locally declared. It works on the arguments a, b, c and ok; which map onto p, q, r and ok from the main program, i.e., it works with those variables.
Subroutine solve has two locally defined variables, term and a2. It works with the variables e, f, g, root1, root2 and ifail, which map onto p, q, r, root1, root2 and ifail from the main program.
19.2.7 Status of the Action Carried Out in the Subroutine
It is also useful to use parameters that carry information regarding the status of the action carried out by the subroutine. With the subroutine interact we use a logical variable ok to report on the status of the interaction with the user. In the subroutine solve we use the status of the integer variable ifail to report on the status of the solution of the equation.
19.2.8 Modules ‘Containing’ Procedures
At the same time as introducing procedures we have ‘contained’ them in a module and then the main program ‘uses’ the module in order to make the procedure available. Procedures ‘contained’ in modules are called module procedures.
With the use statement the interface to the procedure is available to the compiler so that the types and positions of the actual and dummy arguments can be checked. This was a major source of errors with Fortran 77.
The use statement must be the first statement in the main program or calling unit, also the modules must be compiled before the program or calling unit.
We will cover modules in more depth in later chapters.
There are times when an interface is mandatory in Fortran so it’s good practice to use module procedures from the start. There are other ways of providing explicit interfaces and we will cover them later.
19.3 Why Bother with Subroutines?
Given the increase in the complexity of the overall program to solve a relatively straightforward problem, one must ask why bother. The answer lies in our ability to manage the solution of larger and larger problems. We need all the help we can get if we are to succeed in our task of developing large-scale reliable programs.
We need to be able to break our problems down into manageable subcomponents and solve each in turn. We are now in a very good position to be able to do this. Given a problem that requires a main program, one or more functions and one or more subroutines we can work on each subcomponent in relative isolation, and know that by using features like module procedures we will be able to glue all of the components together into a stable structure at the end. We can independently compile the main program and the modules containing the functions and subroutines and use the linker to generate the overall executable, and then test that. Providing we keep our interfaces the same we can alter the actual implementations of the functions and subroutines and just recompile the changed procedures.
19.4 Summary
We now have the following concepts for the use of subroutines:	Module procedures providing interfaces.

	Intent attribute for parameters.

	Dummy parameters.

	The use of the call statement to invoke a subroutine.

	The concepts of variables that are local to the called routines and are unavailable elsewhere in the over all program.

	Communication between program units via the argument list.

	The concept of parameters on the call that enable us to report back on the status of the called routine.

19.5 Problems
19.1
Type the program and module procedures for Example 1 into one file. Compile, link and run providing data for complex roots to test this part of the code.

19.2
Split the main program and modules up into three separate files. Compile the modules and then compile the main program and link the object files to create one executable. Look at the file size of the executable and the individual object files. What do you notice?
The development of large programs is eased considerably by the ability to compile small program units and eradicate the compilation errors from one unit at a time. The linker obviously also has an important role to play in the development process.

19.3
Write a subroutine to calculate new coordinates [image: $$ (x' , y') $$] from (x, y) when the axes are rotated counter clockwise through an angle of a radians using:

 [image: $$ x'= x cos a + y sin a $$]

 [image: $$ y'= -x sin a + y cos a $$]

Hint:
The subroutine would look some thing like

 subroutine ChangeCoordinate(x, y, a, xd, yd)

Write a main program to read in values of x, y and a and then call the subroutine and print out the new coordinates. Use a module procedure.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_20

20. Subroutines: 2

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 It is one thing to show a man he is in error, and another to put him in possession of the truth

John Locke

 Aims

The aims of this chapter are to extend the ideas in the earlier chapter on subroutines and look in more depth at parameter passing, in particular using a variety of ways of passing arrays.
20.1 More on Parameter Passing
So far we have seen scalar

 parameters of type real, integer and logical. We will now look at numeric array parameters and character parameters. We need to introduce some technical terminology first. Don’t panic if you don’t fully understand the terminology as the examples should clarify things.
20.1.1 Assumed-Shape Array
An assumed-shape array is a nonpointer dummy argument array that takes its shape from the associated actual argument array.
20.1.2 Deferred-Shape Array
A deferred-shape array is an allocatable array or an array pointer. An allocatable array is an array that has the allocatable attribute and a specified rank, but its bounds, and hence shape, are determined by allocation or argument association.
20.1.3 Automatic Arrays
An automatic array is an explicit-shape array that is a local variable. Automatic arrays are only allowed in function and subroutine subprograms, and are declared in the specification part of the subprogram. At least one bound of an automatic array must be a nonconstant specification expression. The bounds are determined when the subprogram is called.
20.1.4 Allocatable Dummy Arrays
Fortran provides
 the ability to declare an array in the main program and allocate in a subroutine.
20.1.5 Keyword and Optional Arguments
Fortran provides the ability

 to supply the actual arguments to a procedure by keyword, and hence in any order.
To do this the name of the dummy argument is referred to as the keyword and is specified in the actual argument list in the form[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figa_HTML.gif]

A number of points need to be noted when using keyword and optional arguments:	if all the actual arguments use keywords, they may appear in any order.

	When only some of the actual arguments use keywords, the first part of the list must be positional followed by keyword arguments in any order.

	When using a mixture of positional and keyword arguments, once a keyword argument is used all subsequent arguments must be specified by keyword.

	if an actual argument is omitted the corresponding optional dummy argument must not be redefined or referenced, except as an argument to the present intrinsic function.

	if an optional dummy argument is at the end of the argument list then it can just be omitted from the actual argument list.

	Keyword arguments are needed when an optional argument not at the end of an argument list is omitted, unless all the remaining arguments are omitted as well.

	Keyword and optional arguments require explicit procedure interfaces, i.e., the procedure must be internal, a module procedure or have an interface block available in the calling program unit.

A number of the intrinsic procedures have optional arguments. Consult Appendix D for details. We look at a complete example using optional arguments in a later chapter.
20.2 Example 1: Assumed Shape Parameter Passing
We are going to use an example
 based on a main program and a subroutine that calculates the mean and standard deviation of an array of numbers. The subroutine has the following parameters:	x - the array containing the real numbers.

	n - the number of elements in the array.

	mean - the mean of the numbers.

	std_dev - the standard deviation of the numbers.

Consider the following program and subroutine.[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figb_HTML.gif]

A fundamental rule in modern Fortran is that the shape of an actual array argument and its associated dummy arguments are the same, i.e., they both must have the same rank and the same extents in each dimension. The best way to apply this rule is to use assumed-shape dummy array arguments as shown in the example above.
In the subroutine we have[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figc_HTML.gif]
 where x is an assumed-shape dummy array argument, and it will assume the shape of the actual argument when the subroutine is called.
In two of the calls we have passed a variable n as the size of the array and used a literal integer constant (10) in the other two cases. Both parameter passing mechanisms work.
20.2.1 Notes
There are several restrictions when using assumed-shape arrays:	The rank is equal to the number of colons, in this case 1.

	The lower bounds of the assumed-shape array are the specified lower bounds, if present, and 1 otherwise. In the example above it is 1 because we haven’t specified a lower bound.

	The upper bounds will be determined on entry to the procedure and will be whatever values are needed to make sure that the extents along each dimension of the dummy argument are the same as the actual argument. In this case the upper bound will be n.

	An assumed-shape array must not be defined with the pointer or allocatable attribute in Fortran.

	When using an assumed-shape array an interface is mandatory. In this example it is provided by the the stats subroutine being a contained subroutine in a module, and the use of the module in the main program.

20.3 Example 2: Character Arguments and Assumed-Length Dummy Arguments
The types of parameters considered

 so far have been real, integer and logical. Character variables are slightly different because they have a length associated with them. Consider the following program and subroutine which, given the name of a file, opens it and reads values into the real array x:[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figd_HTML.gif]

The main program reads the file name from the user and passes it to the subroutine that reads in the data. The dummy argument name is of type assumed-length, and picks up the length from the actual argument filename in the calling routine, which is in this case 20 characters. An interface must be provided with assumed-shape dummy arguments, and this is achieved in this case by the subroutine being in a module.
20.4 Example 3: Rank 2 and Higher Arrays as Parameters
The following example illustrates
 the modern way of passing rank 2 and higher arrays as parameters. We start with a simple rank 2 example.[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Fige_HTML.gif]

The subroutine is doing a matrix multiplication and transpose. There are intrinsic functions in Fortran called matmul and transpose that provide the same functionality as the subroutine. One of the problems at the end of the chapter is to replace the code in the subroutine with calls to the intrinsic functions.
20.4.1 Notes
The dummy array and actual array arguments look the same but there is a difference:	The dummy array arguments a, b, c, a_t are all assumed-shape arrays and take the shape of the actual array arguments one, two, three and one_t, respectively.

	The actual array arguments one, two, three and one_t in the main program are allocatable arrays or deferred-shape arrays. An allocatable array is an array that has an allocatable attribute. Its bounds and shape are declared when the array is allocated, hence deferred-shape.

20.5 Example 4: Automatic Arrays and Median Calculation
This example looks

 at the calculation of the median of a set of numbers and also illustrates the use of an automatic array.
The median is the middle value of a list, i.e., the smallest number such that at least half the numbers in the list are no greater. If the list has an odd number of entries, the median is the middle entry in the list after sorting the list into ascending order. If the list has an even number of entries, the median is equal to the sum of the two middle (after sorting) numbers divided by two. One way to determine the median computationally is to sort the numbers and choose the item in the middle.
Wirth classifies sorting into simple and advanced, and his three simple methods are as follows:	Insertion sorting — The items are considered one at a time and each new item is inserted into the appropriate position relative to the previously sorted item. If you have ever played bridge then you have probably used this method.

	Selection sorting — First the smallest (or largest) item is chosen and is set aside from the rest. Then the process is repeated for the next smallest item and set aside in the next position. This process is repeated until all items are sorted.

	Exchange sorting — if two items are found to be out of order they are interchanged. This process is repeated until no more exchanges take place.

Knuth also identifies the above three sorting methods. For more information on sorting the Knuth and Wirth books are good starting places. Knuth is a little old (1973) compared to Wirth (1986), but it is still a very good coverage. Knuth uses mix assembler to code the examples whilst the Wirth book uses Modula 2, and is therefore easier to translate into modern Fortran.
In the example below we use an exchange sort:[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figf_HTML.gif]

[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figg_HTML.gif]

In the subroutinestats the array y is automatic. It will be allocated automatically when we call the subroutine. We use this array as a work array to hold the sorted data. We then use this sorted array to determine the median.
Note the use of the sum intrinsic in this example:[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figh_HTML.gif]

These statements replace the do loop from the earlier example. A good optimising compiler would not make two passes over the data with these two statements.
20.5.1 Internal Subroutines and Scope
The stats subroutine contains the find subroutine. The stats subroutine has access to the following variables	x, n, mean, std_dev, median — these are made available as they are passed in as parameters.

	y, variance, sumxi, sumxi2 — are local to the subroutine stats.

The subroutine find has access to the above as it is contained within subroutine stats. It also has the following local variables that are only available within subroutine selection	i, j, k, minimum

This program uses an algorithm developed by Hoare to determine the median. The number of computations required to find the median is approximately 2 * n.
The limiting factor with this algorithm is the amount of installed memory. The program will crash on systems with a failure to allocate the automatic array. This is a drawback of automatic arrays in that there is no mechanism to handle this failure gracefully. You would then need to use allocatable local work arrays. The drawback here is that the programmer is then responsible for the deallocation of these arrays. Memory leaks are then possible.
20.6 Example 5: Recursive Subroutines – Quicksort
In Chap. 12 we saw an example

 of recursive functions. This example illustrates the use of a recursive subroutine. In this example we use the additional form of the subroutine header that was required when recursive procedure support was introduced in Fortran 90. The Fortran 2018 standard makes this form optional. It uses a simple implementation of Hoare’s Quicksort. References are given in the bibliography. We took the algorithm from Wirth’s book for our example.
The program times the various components parts of the program	dynamic allocation of the real array

	use the random_number subroutine to generate the numbers

	call the sort_data subroutine to sort the data

	print out the first 10 sorted elements

	deallocate the array

We also use the date_and_time intrinsic subroutine to provide the timing details.[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figi_HTML.gif]

[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figj_HTML.gif]

20.6.1 Note — Recursive Subroutine
The actual sorting is done in the recursive subroutine QuickSort. The actual algorithm is taken from the Wirth book. See the bibliography for a reference.
Recursion provides us with a very clean and expressive way of solving many problems. There will be instances where it is worthwhile removing the overhead of recursion, but the first priority is the production of a program that is correct. It is pointless having a very efficient but incorrect solution.
We will look again at recursion and efficiency in a later chapter and see under what criteria we can replace recursion with iteration.
20.6.2 Note — Flexible Design
The QuickSort recursive routine can be replaced with another sorting algorithm and we can maintain the interface to sort_data. We can thus decouple the implementation of the actual sorting routine from the defined interface. We would only need to recompile the sort_data routine and we could relink using the already compiled main routine.
A later chapter looks at a non recursive implementation of quicksort where we look at some of the ways of rewriting the above program by replacing the recursive quicksort with the non recursive version.
We call the date_and_time intrinsic subroutine to get timing information. The first three values are the year, month and day, and 5, 6 and 7 provide the hour minute and second. The last element of the array is milliseconds.
20.7 Example 6: Allocatable Dummy Arrays
In the examples

 so far allocation of arrays has taken place in the main program and the arrays have been passed into subroutines and functions.
In this example the allocation takes place in the read_data subroutine.[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figk_HTML.gif]

[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figl_HTML.gif]

We now have a choice of where we do the allocation. This is more flexible than having to do the allocation in the main program, which is effectively a more Fortran 77 style of programming.
20.8 Example 7: Elemental Subroutines
We saw an example

 in Chap. 12 of elemental functions. Here is an example of an elemental subroutine.[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figm_HTML.gif]

The subroutine is written as if the arguments are scalar, but works with arrays! User defined elemental procedures came in with Fortran 95.
20.9 Summary
We now have a lot of the tools to start tackling problems in a structured and modular way, breaking problems down into manageable chunks and designing subprograms for each of the tasks.
20.10 Problems
20.1
Below is the random number program that was used to generate the data sets for the Quicksort example:[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Fign_HTML.gif]

Run the Quick_Sort program in this chapter with the data file as input. Obtain timing details.
What percentage of the time does the program spend in each subroutine? Is it worth trying to make the sort much more efficient given these timings?

20.2
Try using the operating system SORT command to sort the file. What timing figures do you get now?
Was it worth writing a program?

20.3
Consider the following program:[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figo_HTML.gif]

The key thing to note is that we haven’t used a module procedure (we haven’t provided an interface for the subroutine) and we have an error in the subroutine where we go outside the array. Run this program. What answer do you get for the apparent total?
Are there any compiler flags or switches which will enable you to trap this error?

20.4
Use the intrinsic functions matmul and transpose to replace the current Fortran 77 style code in program ch2003.

20.11 Bibliography
Hoare C.A.R., Algorithm 63, Partition; Algorithm 64, Quicksort, p.321; Algorithm 65: FIND, Comm. of the ACM, 4 p.321–322, 1961.
Hoare C.A.R., Proof of a program: FIND, Comm A.C.M., 13, No 1 (1970) 39–45
Hoare C.A.R., Proof of a recursive program: Quicksort, Comp. J., 14, No 4 (1971) 391–95.
Knuth D.E., The Art of Computer programming, Volume 3 — Sorting and Searching, Addison-Wesley, 1973.
Wirth N., Algorithms and Data Structures, Prentice-Hall, 1986, ISBN 0-13-021999-1.
20.12 Commercial Numerical and Statistical Subroutine Libraries
There are two major suppliers of commercial numerical and statistical libraries:	NAG: Numerical Algorithms Group

and	Rogue Wave Software

They can be found at:[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figp_HTML.gif]
 and[image: ../images/112282_4_En_20_Chapter/112282_4_En_20_Figq_HTML.gif]
 respectively. Their libraries are written by numerical analysts, and are fully tested and well documented. They are under constant development and available for a wide range of hardware platforms and compilers. Parallel versions are also available. In a later chapter we look at using a sorting routine from the Nag SMP & Multicore library.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_21

21. Modules

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Common sense is the best distributed commodity in the world, for every man is convinced that he is well supplied with it.

Descartes

 Aims

The aims of this chapter are to look at the facilities found in Fortran provided by modules, in particular:	The use of a module to aid in the consistent definition of precision throughout a program and subprograms.

	The use of modules for global data.

	The use of modules for derived
 data types.

	Modules containing procedures

	A module for timing programs

	Public, private and

 protected attributes

	The use statement
 and its extensions

21.1 Introduction
We have now covered

 the major executable building blocks in Fortran and they are	The main program unit

	
 functions

	
 subroutines

and these provide us with the tools to solve many problems using just a main program, and one or more external and internal procedures.

 Both external and internal procedures communicate through their argument lists, whilst internal procedures have access to data in their host program units.

We have also introduced modules. The first set of examples was in the chapter on functions. The second set were in the chapter on derived types and the third set were in the subroutine chapters.
We will now look at examples of modules in more detail for	Precision definition.

	Global data

	Modules containing procedures

	Derived type definition

	Simple timing information of a program

Modules provide the code organisational mechanism in Fortran and can be thought of as the equivalent of classes in C++, Java and C#. They are one of the most important features of modern Fortran.
21.2 Basic Module Syntax
The form
 of a module is[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figa_HTML.gif]
 and the specifications and definitions contained within it is made available in the program units that need to access it by[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figb_HTML.gif]

The use statement must be the first statement after the program, function or

 subroutine statement.
21.3 Modules for Global Data
So far the only way that a program unit
 can communicate with a procedure is through the argument list. Sometimes this is very cumbersome, especially if a number of procedures want access to the same data, and it means long argument lists. The problem can be solved using modules; e.g., by defining the precision to which you wish to work and any constants defined to that precision which may be needed by a number of procedures.
21.4 Example 1: Modules for Precision Specification and Constant Definition
In the chapter
 on arithmetic we introduced the features in Fortran that enable us to specify the precision of real numbers.
For the real numeric kind types, we used	sp - single precision

	dp - double precision

	qp - quad precision

and here

 is the Fortran code segment from the program example.[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figc_HTML.gif]

In this example we are going to package the above in a module, and then use the module to enable us to choose a working precision for the program and associated functions and subroutines. This module will be referred to in many examples in the book.
We will also have a second module with a set of physical and mathematical constants.[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figd_HTML.gif]

[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Fige_HTML.gif]

[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figf_HTML.gif]

In our example we have[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figg_HTML.gif]
 and the wp => dp is called a rename-list in Fortran terminology. We are using it in this example to make wp point to the dp precision in the module.
Thus we can chose the working precision of our program very easily.
The kind type parameter wp is then used with all the real type declaration e.g.,[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figh_HTML.gif]

To make sure that all floating point calculations are performed to the working precision specified by wp any constants such as 2.0 in subroutine Sub1 are specified as const_wp e.g.,[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figi_HTML.gif]

We set e and pi to over 33 digits as this is the number in a 128 bit real. This ensures that all calculations are carried out accurately to the maximum precision.
21.5 Example 2: Modules for Globally Sharing Data
The following
 example uses a module to define a parameter and two arrays. The module also contains three subroutines that have access to the data in the module. The main program has the statement[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figj_HTML.gif]
 which interfaces to the three subroutines.
Note that in this example the calls to the subroutines have no parameters. They work with the data contained in the module.[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figk_HTML.gif]

21.6 Modules for Derived Data Types
When using derived data types
 and passing them as arguments to procedures, both the actual arguments and dummy arguments must be of the same type, i.e., they must be declared with reference to the same type definition. The only way this can be achieved is by using modules. The user defined type is declared in a module and each program unit that requires that type uses the module.
21.7 Example 3: Person Data Type
In this example
 we have a user defined type person which we wish to use in the main program and pass arguments of this type to the subroutines read_data and stats. In order to have the type person available to two subroutines and the main program we have defined person in a module personal_module and then made the module available to each program unit with the statement[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figl_HTML.gif]

Note that we have put both subroutines in one module.[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figm_HTML.gif]

21.8 Example 4: A Module for Simple Timing of a Program
It is a
 common requirement to need timing details on how long parts of a program take. In this module we have a start_timing and end_timing subroutines and a time_difference real function. We will be using this module in several examples in subsequent chapters.[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Fign_HTML.gif]

21.9 private, public and protected Attributes
With the examples of modules so far every entity in a module has been accessible to each program unit that ‘uses’ the module. By default all entities in a module have the public attribute, but sometimes it is desirable to limit the access. If entities have the private attribute this limits the possibility of inadvertent changes to a variable by another program unit.

Example of using public and private attributes:[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figo_HTML.gif]

If a variable in a module is declared to be public, its access can be partially restricted by also giving it the protected attribute. This means that the variable can still be seen by program units that use the module but its value cannot be changed e.g.[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figp_HTML.gif]

21.10 The use Statement
In its simplest form the use statement is[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figq_HTML.gif]
 which then makes all the module’s public entities available to the program unit. There may be times when only certain entities should be available to a particular program unit. In Example 1 subroutine sub1 ’uses’ maths_module but only needs pi and not c, e and g. The use statement could therefore be[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figr_HTML.gif]

There are also times when an entity in a module needs to have its name changed when used in a program unit. For example variable g in maths_module needs to be called gravity in subroutine sub1 so the use statement becomes[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figs_HTML.gif]

We have also used this facility in example 1 where we renamed dp to wp.
21.11 Notes on Module Usage and Compilation
In the
 examples so far we have organised our code using one file. The file will comprise one or more of the following program units:	main program

	subroutine

	function

	module

Another way of organising our code is to use several files and include statements.
The next example shows a way of doing this.
21.12 Example 5: Modules and Include Statements
Here is the program source.[image: ../images/112282_4_En_21_Chapter/112282_4_En_21_Figt_HTML.gif]
 and we will use both styles throughout the rest of the book.
21.13 Formal Syntax
The following is taken from the Fortran standard and describes more fully requirements in the interface area.
21.13.1 Interface
The interface of a procedure determines the forms of reference through which it may be invoked. The procedures interface consists of its name, binding label, generic identifiers, characteristics, and the names of its dummy arguments. The characteristics and binding label of a procedure are fixed, but the remainder of the interface may differ in differing contexts, except that for a separate module procedure body (15.6.2.5), the dummy argument names and whether it has the NON_RECURSIVE attribute shall be the same as in its corresponding module procedure interface body (15.4.3.2).
An abstract interface is a set of procedure characteristics with the dummy argument names.

21.13.2 Implicit and Explicit Interfaces
Within the scope of a procedure identifier, the interface of the procedure is either explicit or

 implicit. The interface of an internal procedure, module procedure, or intrinsic procedure is always explicit in such a scope.
The interface of a subroutine or a function with a separate result name is explicit within the subprogram where the name is accessible.
21.13.3 Explicit Interface
A procedure other than a statement function shall have an explicit interface if it is referenced and	a reference to the procedure appears	with an argument keyword, or

	in a context that requires it to be pure,

	the procedure has a dummy argument that	has the allocatable, optional, pointer, target, or value attribute,

	is an assumed-shape array,

	is a coarray,

	is polymorphic,

	the procedure has a result that	is an array,

	is a pointer or is allocatable, or

	has a nonassumed type parameter value that is not a constant expression,

	the procedure is elemental

21.14 Summary
We have now introduced the concept of a module, another type of program unit, probably one of the most important features of modern Fortran. We have seen in this chapter how they can be used:	Define global data.

	Define derived data types.

	Contain explicit procedure interfaces.

	Package together procedures.

This is a very powerful addition to the language, especially when constructing large programs and procedure libraries.
21.15 Problems
21.1
Write two functions, one to calculate the volume of a cylinder [image: $$ \pi r^2 l $$] where the radius is r and the length is l, and the other to calculate the area of the base of the cylinder [image: $$ \pi r^2 $$]
Define [image: $$\pi $$] as a parameter in a module which is used by the two functions. Now write a main program which prompts the user for the values of r and l, calls the two functions and prints out the results.

21.2
Make all the real variables in the above problem have 15 significant digits and a range of [image: $$10^{-307}$$] to [image: $$10^{+307}$$]. Use a module.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_22

22. Data Structuring in Fortran

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 The good teacher is a guide who helps others to dispense with his services.

R. S. Peters, Ethics and Education

 Aims

The aims of this chapter are to look at several complete examples illustrating data structuring in Fortran using the following	Singly linked lists

	
 Ragged arrays

	A perfectly balanced tree

	A date data type

22.1 Introduction
This chapter

 looks at simple data structuring in Fortran using a range of examples. We use modules throughout to define the data structures that we will be working with. The chapter starts with a number of pointer examples.
22.2 Example 1: Singly Linked List: Reading an Unknown Amount of Text
Conceptually a
 singly linked list consists of a sequence of boxes with compartments. In the simplest case the first compartment holds a data item and the second contains directions to the next box.
In the diagram below we have a singly linked list that holds characters Jane. We assume that the address of the start of the list is 100. We assume 4 bytes per character (a 32 bit word) and 4 bytes per pointer.

 	Element 1 is at address 100 and holds the character J and a pointer to the next element at address 108.

	Element 2 holds the character a and a pointer to the next element at address 116.

	Element 3 holds the character n and a pointer to the next element at address 124.

	Element 4 holds the character e and does not point to anything - we use the null pointer.

 [image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figa_HTML.gif]

We can construct a data structure in Fortran to work with a singly linked list by defining a link data type with two components, a character variable and a pointer variable to a link data type. A complete program to do this is given below:[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figb_HTML.gif]

The first thing of interest is the type definition for the singly linked list. We have[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figc_HTML.gif]
 and we call the new type link. It comprises two component parts: the first holds a character c, and the second holds a pointer called next to allow us to refer to another instance of type link.
We use the intrinsic null() to provide an initial value for the next pointer.
The next item of interest is the variable definition. Here we define two variables root and current to be pointers that point to items of type link. In Fortran when we define a variable to be a pointer we also have to define what it is allowed to point to. This is a very useful restriction on pointers, and helps make using them more secure. The first executable statement[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figd_HTML.gif]
 requests that the variable root be allocated memory. The next statement reads a character from the file. We are using a number of additional features of the read statement,

 including[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Fige_HTML.gif]
 and the two options combine to provide the ability to read an arbitrary number of text from a file a character at a time. If there is data in the file we allocate root%next and increment the character count i. We then loop until we reach end of file. When end of file is reached the while loop will terminate as next is null(). The statement[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figf_HTML.gif]
 means that both current and root point to the same physical memory location, and this holds a character data item and a pointer. We must do this as we have to know where the start of the list is. This is now our responsibility, not the compilers. Without this statement we are not able to do anything with the list except fill it up - hardly very useful.
When end of file is reached the while loop will terminate as next is null(). We then print out the number of characters read. We then allocate a character variable of the correct size. The next statement[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figg_HTML.gif]
 means that we are back at the start of the list, and in a position to traverse the list and copy each character from the linked list to the word character variable.
There is thus the concept with the pointer variable current of it providing us with a window into memory where the complete linked list is held, and we look at one part of the list at a time. Both while loops use the intrinsic function associated to check the association status of a pointer.
It is recommended that this program be typed in, compiled and executed. It is surprisingly difficult to believe that it will actually read in a completely arbitrary amount of text from a file. Seeing is believing.
22.3 Example 2: Reading in an Arbitrary Number of Reals Using a Linked List and Copying to an Array
In this
 example we will look at using a singly linked list to read in an arbitrary amount of data and then allocating an array to copy it to for normal numeric calculations at run time. Here is the program.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figh_HTML.gif]

A casual visual comparison of the two examples shows many similarities.
Diff is a line-oriented text file comparison utility. It tries to determine the smallest set of deletions and insertions to create one file from the other. The diff command displays the changes made in a standard format. Given one file and the changes, the other file can be created.
Here is the output from running this utility on these two examples.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figi_HTML.gif]

22.4 Example 3: Ragged Arrays
Arrays

 in Fortran are rectangular, even when allocatable. However if you wish to set up a lower triangular matrix that uses minimal memory Fortran provides a number of ways of doing this. The following example achieves it using allocatable components.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figj_HTML.gif]

Within the first do loop we allocate a row at a time and each time we go around the loop the array allocated increases in size.
22.5 Example 4: Ragged Arrays and Variable Sized Data Sets
The
 previous example showed how to use allocatable components in a derived type to achieve ragged arrays.
In this example we are going to use data from the UK Met Office. Here is the current web address.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figk_HTML.gif]

In this example both the number of stations and the number of data items for each station is read in at run time and allocated accordingly. Notice that 0 is valid as the number of data items for a station.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figl_HTML.gif]

Here is the input data file. It is the first 6 years rainfall data from the Met Office Cwmystwyth site.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figm_HTML.gif]

Here is the output.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Fign_HTML.gif]

22.6 Example 5: Perfectly Balanced Tree
Let

 us now look at a more complex example that builds a perfectly balanced tree and prints it out. A loose definition of a perfectly balanced tree is one that has minimum depth for n nodes. More accurately a tree is perfectly balanced if for each node the number of nodes in its left and right subtrees differ by at most 1:[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figo_HTML.gif]

There are a number of very important concepts contained in this example and they include:	The use of a module to define a type. For user defined data types we must create a module to define the data type if we want it to be available in more than one program unit.

	The use of a function that returns a pointer as a result.

	As the function returns a pointer we must determine the allocation status before the function terminates. This means that in the above case we use the nullify(result) statement. The other option is to target the pointer.

	The use of associated to determine if the node of the tree is terminated or points to another node.

Type the program in and compile, link and run it. Note that the tree only has the minimal depth necessary to store all of the items. Experiment with the number of items and watch the tree change its depth to match the number of items.
22.7 Example 6: Date Class
The

 following is a complete manual rewrite of Skip Noble and Alan Millers date module. Here are two urls for Alan Miller’s Fortran 90 version of the code. The original Skip Noble Fortran 77 version is in Chap. 38.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figp_HTML.gif]

Here are some details about the function and subroutine naming conversion.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figq_HTML.gif]

The original worked with the built-in Fortran intrinsic data types,

 i.e. year, month and day were plain integer data types. It has been rewritten to work with a derived date

 data type.
We have also added a function to print dates out in a variety of formats. This is based on a subroutine called date_stamp from the original code. The first key code segment is[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figr_HTML.gif]
 where the date data type is public but its components are private. This means that access to the components must be done via subroutines and functions within the date_module module. The next key segment is[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figs_HTML.gif]

which declares the variable day to be an array of characters of length 9. They are initialised with the names of the days. The variable day is declared in the module and is available to all contained functions and subroutines.
The variable month is an array of characters of length 9 and is initialised to the names of the months. The variable month is declared in the module and is available to all contained functions and subroutines. The next key code segment is[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figt_HTML.gif]
 where we explicitly make the listed subroutines and functions public, as the code segment from the top of the module,
We have to provide a user defined constructor when the components of the derived type are private. This is given below:[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figu_HTML.gif]

This in turn calls the built-in constructor date. As the date_ function is now an executable statement we cannot initialise in a declaration, i.e. the following is not allowed.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figv_HTML.gif]

We also provide three additional procedures to access the components of the date class:[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figw_HTML.gif]

This is common programming practice in object oriented and object based programming.
The print_date function also has examples of internal write statements. These are[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figx_HTML.gif]
 where we construct the elements of the character variable from the integer values of the x%day, x%month and x%year data.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figy_HTML.gif]

[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figz_HTML.gif]

[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figaa_HTML.gif]

[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figab_HTML.gif]

[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figac_HTML.gif]

There are wrap problems with some of the lengthier arithmetic expressions. The version on the web site is obviously correct.
We also have an alternate form of array declaration in this program, which is given below. It is common in Fortran 77 style code:[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figad_HTML.gif]

One improvement would be additional code to test the validity of dates. This would be called from within our constructor date_. This would mean that we could never have an invalid date when using the date_module. This is left as a programming exercise.
22.7.1 Notes: DST in the USA

The above program is no longer correct. Beginning in 2007, Daylight Saving Time was brought forward by 3 or 4 weeks in Spring and extended by one week in the Fall. Daylight Saving Time begins for most of the United States at 2 a.m. on the second Sunday of March. Time reverts to standard time at 2 a.m. on the first Sunday in November.
22.8 Example 7: Date Data Type with USA and ISO Support
The
 date derived type in this chapter handles conventional UK or world data types. To handle USA and ISO date formats we have added an extra component to this derived type. Here is the updated type.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figae_HTML.gif]

When we use the default constructor we set the date_type to 1. An integer variable is often used in a problem like this. In the date_iso constructor we set date_type to 3 and in the date_us constructor set set date_type to 2.
The only other method we have to alter is the print_date method. In this method we have an if then else construct to choose how to print the date, based on the date type.
We have solved the problem of how to handle a variety of date formats in a simple, non object oriented fashion. First we have the date module.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figaf_HTML.gif]

[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figag_HTML.gif]

[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figah_HTML.gif]

Note that we have put the common executable code from the earlier date module into an include file.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figai_HTML.gif]

Next we have the program that uses the module.[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figaj_HTML.gif]

Note that we used the alternate syntax of using the[image: ../images/112282_4_En_22_Chapter/112282_4_En_22_Figak_HTML.gif]

statement in this example.
22.9 Bibliography
Chapter 2 provided details of some books that address data structuring, but mainly from an historical viewpoint.
We provide a small number of references to books that look at data structuring more generally.
Schneider G.M., Bruell S.C., Advanced Programming and Problem Solving with Pascal, Wiley, 1981.

 	The book is aimed at computer science students and follows the curriculum guidelines laid down in Communications of the ACM, August 1985, Course CS2. The book is very good for the complete beginner as the examples are very clearly laid out and well explained. There is a coverage of data structures, abstract data types and their implementation, algorithms for sorting and searching, the principles of software development as they relate to the specification, design, implementation and verification of programs in an orderly and disciplined fashion — their words.

Sedgewick, Robert (1993). Algorithms in Modula 3, Addison-Wesley. ISBN 0-201-53351-0.

 	The Modula 3 algorithms are relatively easy to translate into Fortran.

22.10
 Problems

22.1
Compile and run the examples in this chapter with your compiler.

22.2
Using ch2202.f90 as a starting point rewrite it to work with a file of integer data. You may find the diff output useful here.

22.3
Modify the ragged array example that processes a lower triangular matrix to work with an upper triangular matrix.

22.4
Using the balanced tree example as a basis and modify it to work with a character array rather than an integer. The routine that prints the tree will also have to be modified to reflect this.

22.5
Modify the Date program to account for the current DST in the USA.

22.6
Modify ch2204 to calculate and print the average rainfall for each station.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_23

23. An Introduction to Algorithms and the Big O Notation

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Errors using inadequate data are much less than those using no data at all.

Charles Babbage

 Aims

The aims of this chapter are to provide an introduction to algorithms and their behaviour. In Computer Science this is normally done using the so called big O notation.
We will cover briefly a small set of behaviour types including	Order O(1)

	Order O(n)

	Order [image: $$O(log \ n)$$]

	Order [image: $$O(n \ log \ n)$$]

23.1 Introduction
A method for dealing

 with approximations was introduced by Bachman in 1892 in his work Analytische Zahlen Theorie. This is the big O notation.
The big O notation is used to classify algorithms by how they perform depending on the size of the input data set they are working on. This typically means looking at both their space and time behaviour.
A more detailed and mathematical coverage can be found in Knuth’s Fundamental Algorithms.
Chapter one of this book looks at the basic concepts and mathematical preliminaries required for analysing algorithms, and is around 120 pages. Well worth a read.
23.2 Basic Background
Table 23.1 summarises some of the details regarding commonly occurring types of problem.

Table 23.1Big O notation and complexity

	Notation
	Name

	O(1)
O(n)

 [image: $$ O(log \ n) $$]

	Constant
Linear
Logarithmic

	
 [image: $$ O(n \ log \ n) = O(log \ n!)$$]

	Linearithmic,
loglinear,
quasilinear

	
 [image: $$ O(log \ log \ n) $$]

 [image: $$ O(n \ log^* \ n) $$]

 [image: $$ O(n^2) $$]

 [image: $$ O(n^c) \ 0<c<1 $$]

	Double logarithmic
n log-star n
Quadratic
Fractional power

	
 [image: $$ O(n^c) \ c>1 $$]

	Polynomial
or algebraic

	
 [image: $$ O(c^n) \ c>1 $$]

O(n!)
	Exponential
Factorial

23.3 Brief Explanation

 	O(1) Determining if a number is even or odd; using a constant-size lookup table

	[image: $$O(log \ log \ n)$$] Finding an item using interpolation search in a sorted array of uniformly distributed values.

	[image: $$O(log \ n)$$] Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap.

	[image: $$O(n^c) \ 0< c < 1$$] Searching in a kd-tree

	O(n) Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers by ripple carry.

	[image: $$O(n \ log^* \ n)$$] Performing triangulation of a simple polygon using Seidel’s algorithm.

	[image: $$O(n \ log \ n)$$] Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort.

	[image: $$O(n^2)$$] Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), Shell sort, quicksort (worst case), selection sort or insertion sort.

	[image: $$O(n^c) \ c > 1 $$] Tree-adjoining grammar parsing; maximum matching for bipartite graphs.

	[image: $$ O(c^n) \ c>1 $$] Finding the (exact) solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search.

	O(n!) Solving the traveling salesman problem via brute-force search; generating all unrestricted permutations of a poset; finding the determinant with expansion by minors.

23.4 Example 1: Order Calculations
This program calculates values for 4 of the above functions, for n from 1 to [image: $$10^9$$].[image: ../images/112282_4_En_23_Chapter/112282_4_En_23_Figa_HTML.gif]

Here is the output from

 running the program.[image: ../images/112282_4_En_23_Chapter/112282_4_En_23_Figb_HTML.gif]

23.5 Sorting
In the book we use two sorting algorithms	Quicksort

	Insertion sort

Table 23.2 looks at their behaviour.Table 23.2Quicksort and insertion sort comparison

	Algorithm
	Data structure
	Time complexity
	 	 	Worst case auxiliary

	 	 	 	 	 	Space complexity

	 	 	Best
	Average
	Worst
	Worst

	Quicksort
	Array
	
 [image: $$O(n \ log(n))$$]

	
 [image: $$O(n \ log(n))$$]

	
 [image: $$O(n^2)$$]

	O(n)

	Insertion sort
	Array
	O(n)
	
 [image: $$O(n^2)$$]

	
 [image: $$O(n^2)$$]

	O(1)

23.6 Basic Array and Linked List Performance
Table 23.3

 summarises the array and linked list performance.Table 23.3Array and linked list performance

	Data structure
	Time complexity
	 	 	 	 	 	 	 	Space complexity

	 	Average
	 	 	 	Worst
	 	 	 	Worst

	 	Index
	Search
	Insert
	Delete
	Index
	Search
	Insert
	Delete
	
	Basic array
	O(1)
	O(n)
	–
	–
	O(1)
	O(n)
	–
	–
	O(n)

	Dynamic array
	O(1)
	O(n)
	O(n)
	O(n)
	O(1)
	O(n)
	O(n)
	O(n)
	O(n)

	Singly-linked list
	O(n)
	O(n)
	O(1)
	O(1)
	O(n)
	O(n)
	O(1)
	O(1)
	O(n)

23.7 Bibliography
The earliest books that we have used in this area are those by Donald Knuth, and details are given below in chronological order.
Volume 1, Fundamental Algorithms, first edition, 1968, xxi[image: $$+$$]634pp, ISBN 0-201-03801-3.
Volume 2, Seminumerical Algorithms, first edition, 1969, xi[image: $$+$$]624pp, ISBN 0-201-03802-1.
Volume 3, Sorting and Searching, first edition, 1973, xi[image: $$+$$]723pp, ISBN 0-201-03803-X
Volume 1, second edition, 1973, xxi[image: $$+$$]634pp, ISBN 0-201-03809-9.
Volume 2, second edition, 1981, xiii[image: $$+$$]688pp, ISBN 0-201-03822-6.

 	Knuth uses the Mix assembly language (an artificial language) and this limits the accessibility of the books.

	However within the Computer Science community they are generally regarded as the first and most comprehensive treatment of its subject.

For something more accessible, Sedgewick has written several programming language versions of a book on algorithms. He was a student of Knuth’s.
The earliest used Pascal, and later editions have used C, C++ and Modula 2 and Modula 3.
Sedgewick, Robert (1992). Algorithms in C++, Addison-Wesley. ISBN 0-201-51059-6.
Sedgewick, Robert (1993). Algorithms in Modula 3, Addison-Wesley. ISBN 0-201-53351-0.

 	The Modula 3 algorithms are relatively easy to translate into Fortran.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_24

24. Operator Overloading

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 All the persons in this book are real and none is fictitious even in part.

Flann O’Brien, The Hard Life

 Aims

The aims of this chapter are to look at operator overloading in Fortran.
24.1 Introduction
In
 programming operator overloading can be regarded as a way of achieving polymorphism in that operators (e.g. [image: $$+$$], −, * , / or [image: $$=$$]) can have different implementations depending on the types of their arguments.
In some programming languages overloading is defined by the language. In Fortran for example, the addition + operator invokes quite different code when used with integer, real or complex types.
Some languages allow the programmer to implement support for user defined types. Fortran introduced support for operator and assignment overloading in the 1990 standard.
24.2 Other Languages
Operator overloading is not new and several languages offer

 support for the feature including:	Algol 68 - 1968

	Ada - Ada 83

	C++ - First standard, 1998

	Eiffel - 1986

	C# - 2001

Java, however does not.
24.3 Example 1: Overloading the Addition (+) Operator

The following example overloads the addition operator.[image: ../images/112282_4_En_24_Chapter/112282_4_En_24_Figa_HTML.gif]

We have extended the meaning of the addition operator so that we can write simple expressions in Fortran based on it and have our new position calculated using a user supplied function that actually implements the calculation of the new position.
24.4
 Problem

24.1
Compile and run this example. Overload the subtraction operator as well.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_25

25. Generic Programming

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 General notions are generally wrong.

Letter to Mr. Wortley Montegu, 28th March 1710.

 Aims

This chapter looks at some examples that implement generic programming in Fortran.
25.1 Introduction
Fortran 77 had

 several generic functions, e.g. the sine function could be called with arguments of type real, double precision or complex. Fortran 90 extended the idea so that a programmer could write their own generic functions or subroutines. For example we can now write a sort routine which works with arguments of a variety of types, e.g. integer, real etc.
25.2 Generic Programming and Other Languages
Generic programming has a wider meaning in computer science and effectively is a style of computer programming in which an algorithm is written once, but can be made to work with a variety of types.
This style of programming is provided in several programming languages and in a variety of ways.
Languages that support

 generics include	Ada

	C#

	Eiffel

	Java

	C++

To
 quote the generic programming pioneer Alexander Stepanov;... Generic programming is about abstracting and classifying algorithms and data structures. It gets its inspiration from Knuth and not from type theory. Its goal is the incremental construction of systematic catalogs of useful, efficient and abstract algorithms and data structures. Such an undertaking is still a dream.

and quoting Bjarne Stroustrup:... lift algorithms and data structures from concrete examples to their most general and abstract form.

We’ll look at a concrete example in Fortran next.
25.3 Example 1: Sorting Reals and Integers
In Chap. 20 Example 5 had a module called sort_data_module that contained a sort_data subroutine. The sort_data subroutine in turn contained an internal quicksort subroutine that did the actual sorting.
Here is the start of the sort_data subroutine.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figa_HTML.gif]
 and we called this subroutine as shown below from the main program.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figb_HTML.gif]

The subroutine worked with an array of default real type. We will use the module sort_data_module and subroutine sort_data as the basis of a module that will work with arrays of four integer types and three real types.
The first thing we need are modules that defines kind type parameters for the three real types and four integer types.
These two modules are shown below.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figc_HTML.gif]

[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figd_HTML.gif]

We can now use these modules

 in the new module sort_data_module and main program.
We must use an interface to link the common calling name (sort_data) to the specific subroutines that handle each specific type.
Here is the interface block from the module sort_data_module.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Fige_HTML.gif]

In the
 original subroutine in Chap. 20 we had a call[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figf_HTML.gif]
 and the subroutine sort_data had two arguments or parameters, a real array, and an integer for the size.
So the call is still the same, but now we can call the sort_data subroutine with an array of any of the four integer types or three real types.
The compiler will then look at the type, kind and ranks of the parameters in the call to the sort_data subroutine and call the appropriate module procedure.
Here is the new module sort_data_module.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figg_HTML.gif]

[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figh_HTML.gif]

[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figi_HTML.gif]

In this module we have implementations for each of the module procedures listed in the interface block.
Here is the include file, [image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figj_HTML.gif]
 which is used in each of the seven subroutines and is effectively a common algorithm between all seven subroutines.
Here is the main program to test the generic sort module.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figk_HTML.gif]

This is obviously a very significant facility to have in a programming language.
Have a look at the following two examples which show the code for a generic quicksort in C++ and C#.
25.3.1 Generic Quicksort in C++
Here is the C++ program.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figl_HTML.gif]

25.3.2 Generic Quicksort in C#
Here is the C# version.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figm_HTML.gif]

In C++ and C# we only have one version of the sort procedure and the compiler generates the code for us for each type of array we call the procedure with, which we have to actually write in Fortran.
25.4 Example 2: Generic Statistics Module
In this example
 we extend the statistics module from Chap. 20 (Example 4) to work with all three real kind types

 .
Here
 is the statistics module.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Fign_HTML.gif]

[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figo_HTML.gif]

Here is the common include file.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figp_HTML.gif]

Here is the main program to test the statistics module.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figq_HTML.gif]

Here are some results for the gfortran, Intel, Nag and Oracle compilers (Table 25.1).Table 25.1ch2502 results

	Compiler
	gfortran
	Intel
	Nag
	Oracle
	
	n [image: $$=$$] 50,000,000
	 	 	 	 	Average time

	Single precision
	 	 	 	 	
	Allocate
	0.000
	0.000
	0.000
	0.000
	0.000

	Random
	0.484
	0.469
	0.484
	1.230
	0.667

	Statistics
	1.312
	0.766
	1.031
	0.773
	0.971

	Total time
	1.796
	1.235
	1.515
	2.003
	1.637

	Mean
	0.335544
	0.335544
	0.335544
	0.335544
	
	Standard deviation
	0.465684
	0.442725
	0.442758
	0.442686
	
	Median
	0.500006
	0.499965
	0.500044
	0.499957
	
	Double precision
	 	 	 	 	
	Allocate
	0.020
	0.016
	0.016
	0.000
	0.013

	Random
	1.105
	0.859
	0.359
	1.312
	0.909

	Statistics
	1.520
	0.953
	1.172
	1.055
	1.175

	Total time
	2.645
	1.828
	1.547
	2.367
	2.097

	Mean
	0.500017
	0.499931
	0.499984
	0.499984
	
	Standard deviation
	0.288686
	0.288691
	0.288699
	0.288695
	
	Median
	0.500011
	0.499889
	0.499935
	0.500012
	
	Quad precision
	 	 	 	 	
	Allocate
	0.027
	0.031
	0.031
	0.004
	0.023

	Random
	6.363
	2.500
	0.734
	2.395
	2.998

	Statistics
	7.766
	6.453
	4.109
	10.840
	7.292

	Total time
	14.156
	8.984
	4.874
	13.239
	10.313

	Mean
	0.500019
	0.499995
	0.500030
	0.500084
	
	Standard deviation
	0.288659
	0.288660
	0.288662
	0.288688
	
	Median
	0.500041
	0.499994
	0.500065
	0.500125
	

25.5 Problems
25.1
Write a generic swap routine, that swaps two rank 1 integer arrays and two rank 1 real arrays.

25.2
Using Example 2 from Chap. 22 as a starting point convert it to a generic variant which handles files of integer data type
 and real data type.

25.6 Bibliography
25.6.1 Generic Programming References
This site is a collection of Alex Stepanov’s papers, class notes, and source code, covering generic programming and other topics.[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figr_HTML.gif]

25.6.2 Generic Programming and C++
C++ Templates: The Complete Guide, David Vandevoorde, Nicolai M Josuttis, 2003 Addison-Wesley. ISBN 0-201-73484-2
25.6.3 Generic Programming and C#
Visit the following site[image: ../images/112282_4_En_25_Chapter/112282_4_En_25_Figs_HTML.gif]
 for a very good coverage of generics and C#.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_26

26. Mathematical and Numerical Examples

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 You look at science (or at least talk of it) as some sort of demoralising invention of man, something apart from real life, and which must be cautiously guarded and kept separate from everyday existence. But science and everyday life cannot and should not be separated. Science, for me, gives a partial explanation for life. In so far as it goes, it is based on fact, experience and experiment.

Rosalind Franklin.

 Aims

The aims of this chapter are to look at several mathematical and numeric examples in Fortran.

 	Using linked lists for sparse matrix problems.

	The solution of a system of ordinary differential equations using the Runge–Kutta–Merson method, with the use of a procedure as a parameter, and the use of work arrays.

	The use of optional and keyword arguments

	Diagonal extraction of a matrix.

	The solution of a system of linear simultaneous equations using Gaussian Elimination

	An elemental e**x function

	Examples of the relative and absolute errors involved in subtraction with 32 and 64 bit precision

26.1 Introduction
This chapter looks at a small number of mathematical and numeric examples in Fortran.
26.2 Example 1: Using Linked Lists for Sparse Matrix Problems
A matrix is said to be sparse if many of its elements are zero. Mathematical models in areas such as management science, power systems analysis, circuit theory and structural analysis consist of very large sparse systems of linear equations. It is not possible to solve these systems with classical methods because the sparsity would be lost and the eventual system would become too large to solve. Many of these systems consist of tens of thousands, hundreds of thousands and millions of equations. As computer systems become ever more powerful with massive amounts of memory the solution of even larger problems becomes feasible.
Direct Methods for Sparse Matrices, by Duff I.S., Erismon A.M. and Reid J.K., looks at direct methods for solving sparse systems of linear equations.
Sparse matrix techniques lend themselves to the use of dynamic data structures in Fortran. Only the nonzero elements of a sparse matrix need be stored, together with their positions in the matrix. Other information also needs to be stored so that row or column manipulation can be performed without repeated scanning of a potentially very large data structure. Sparse methods may involve introducing some new nonzero elements, and a way is needed of inserting them into the data structure. This is where the Fortran pointer construct can be used. The sparse matrix can be implemented using a linked list to which entries can be easily added and from which they can be easily deleted.
As a simple introduction, consider the storage of sparse vectors. What we learn here can easily be applied to sparse matrices, which can be thought of as sets of sparse vectors.
26.2.1 Inner Product of Two Sparse Vectors
Assume

 that we have two sparse vectors x and y for example[image: $$ \underline{x} = \left[\begin{array}{c} 3\\ 0\\ 5\\ 0\\ 0\\ 4\end{array} \right]\underline{y} = \left[\begin{array}{c} 0\\ 1\\ 3\\ 0\\ 2\\ 1\end{array} \right]$$]

and we wish to calculate the inner product[image: $$\begin{aligned} x^T y \equiv \sum ^n_{i=1}x_i y_i \end{aligned}$$]

There are a number of approaches to doing this and the one we use in the program below stores them as two linked lists. Only the nonzero elements are stored (together with their indices):[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figa_HTML.gif]
 Here is the program.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figb_HTML.gif]

[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figc_HTML.gif]

[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figd_HTML.gif]

26.3 Example 2: Solving a System of First-Order Ordinary Differential Equations Using Runge–Kutta–Merson
Simulation

 and mathematical modelling of a wide range of physical processes often leads to a system of ordinary differential equations to be solved. Such equations also occur when approximate techniques are applied to more complex problems. We will restrict ourselves to a class of ordinary differential equations called initial value problems. These are systems for which all conditions are given at the same value of the independent variable. We will further restrict ourselves to first-order initial value problems of the form:[image: $$ \frac{dy_1}{dt} = f_1(\underline{y}, t) $$]

[image: $$ \frac{dy_2}{dt} = f_2(\underline{y}, t) $$]

[image: $$... $$]

[image: $$ \frac{dy_n}{dt} = f_n(\underline{y}, t) $$]

or[image: $$\begin{aligned} \underline{\dot{y}} = \underline{f}(\underline{y}, t) \end{aligned}$$]

 (26.1)

with initial conditions[image: $$ \underline{y}(t0) = \underline{y}0 $$]

where[image: $$ \underline{y} = \left(\begin{array}{c} y_1\\ .\\ .\\ .\\ .\\ y_n\end{array} \right) \underline{f} = \left(\begin{array}{c} f_1\\ .\\ .\\ .\\ .\\ f_n\end{array} \right) \underline{y_0} = \left(\begin{array}{c} y_1(t_0)\\ .\\ .\\ .\\ .\\ y_nt(_0)\end{array} \right) $$]

If we have a system of ordinary differential equations of higher order then they can be reformulated to a system of order one. See the NAG library documentation for solving ordinary differential equations.

One well-known class of methods for solving initial value ordinary differential equations is Runge-Kutta. In this example we have coded the Runge-Kutta-Merson algorithm, which is a fourth-order method and solves (26.1) from a point [image: $$ t = a $$] to a point [image: $$ t= b. $$]
It starts with a step length [image: $$ h = (b-a)/100 $$] and includes a local error control strategy such that the solution at [image: $$ t+h $$] is accepted if:[image: $$ \vert error \ estimate \vert < user \ defined \ tolerance $$]

If this isn’t satisfied the step length h is halved and the solution attempt is repeated until the above is satisfied or the step length is too small and the problem is left unsolved. If the error criterion is satisfied the algorithm progresses with a suitable step length solving the equations at intermediate points until the end point b is reached. For a full discussion of the algorithm and the error control mechanism used see Numerical Methods in Practice by Tim Hopkins and Chris Phillips.
Here is a module containing the subroutine runge_kutta_merson.

[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Fige_HTML.gif]

[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figf_HTML.gif]

Consider trying to solve the following system of first-order ordinary differential equations:

[image: $$ \dot{y}_1 = \tan y_3 $$]

[image: $$ \dot{y}_2 = \frac{-0.032 \tan y_3}{y_2} - \frac{0.02 y_2}{\cos y_3} $$]

[image: $$ \dot{y}_3 = - \frac{0.032}{y^2_2} $$]

over an interval [image: $$ t = 0.0 $$] to [image: $$ t = 8.0 $$] with initial conditions[image: $$ y1 = 0 \ \ y2 = 0.5 \ \ y3=\pi /5 $$]

The user supplied subroutine, packaged as a module procedure, is:[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figg_HTML.gif]

and the main program to solve this system of ordinary differential equations is[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figh_HTML.gif]

The user is prompted for the number of equations, which is 3, the start and end of the interval over which the equations are to be solved (0.0, 8.0), the initial conditions (0.0, 0.5, [image: $$\pi /5$$]), and tolerance (1.0E-6).
26.3.1 Note: Alternative Form of the Allocate Statement
In

 the main program ch2602 we have defined y to be a deferred-shape array, allocating it space after the variable n is read in. In order to make sure that enough memory is available to allocate space to array y the allocate statement is used as follows:[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figi_HTML.gif]

If the allocation is successful variable all_stat returns zero; otherwise it is given a processor dependent positive value. We have included code to check for this and the program stops if all_stat is not zero.
26.3.2 Note: Automatic Arrays
The
 subroutine runge_kutta_merson needs a number of local rank 1 arrays s1, s2, s3, s4 and s5 for workspace, their shape and size being the same as the dummy argument y. Fortran supplies automatic arrays for this purpose and can be declared as[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figj_HTML.gif]

The size of automatic arrays can depend on the size of actual arrays: in our example they are the same shape and size as the dummy array y. Automatic arrays are created when the procedure is called and destroyed when control passes back to the calling program unit. They may have different shapes and sizes with different calls to the procedure, and because of this automatic arrays cannot be saved or initialised.
A word of warning should be given at this point. If there isn’t enough memory available when an automatic array needs to be created problems will occur. Unlike allocatable arrays there is no way of testing to see if an automatic array has been created successfully. The general feeling is that even though they are nice, automatic arrays should be used with care and perhaps shouldn’t be used in production code!
26.3.3 Note: Subroutine as a Dummy Procedure Argument:
In

 order to make the use of subroutine runge_kutta_merson as general as possible the user can choose the name of the subroutine in which the actual system of equations to be solved is defined. In this case we have chosen fun1 as the name of the subroutine, which is then used as an actual argument when calling runge_kutta_merson from the main program e.g.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figk_HTML.gif]

An explicit interface for subroutine fun1 is provided by it being contained in a module.
The equivalent dummy subroutine argument is fun and this needs an explicit interface in the subroutine runge_kutta_merson.

26.3.4 Note: Compilation When Using Modules
When

 compiling this program and the modules they must be done in the correct order:	
 precision_module

	
 rkm_module

	
 fun1_module

and then	
 main program.

26.3.5 Keyword and Optional Argument Variation
In

 modern Fortran arguments to procedures can be optional, and can be supplied by keyword. To illustrate this we will use the previous example. The definition of subroutine runge_kutta_merson and its dummy arguments is:[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figl_HTML.gif]
 where a is the initial point, b is the end point at which the solution is required, tol is the accuracy to which the solution is required and n is the number of equations.
The subroutine can be called as follows:[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figm_HTML.gif]
 where the dummy arguments a, b, tol and n are now being used as keywords. The use of keyword arguments makes the code easier to read and decreases the need to remember their precise position in the argument list.

Also with Fortran comes the ability to specify that an argument is optional. This is very useful when designing procedures for use by a range of programmers. Inside a procedure defaults can be set for the optional arguments providing an easy-to-use interface, while at the same time allowing sophisticated users a more comprehensive one.
The optional attribute is needed to declare a dummy argument to be optional. In the subroutine runge_kutta_merson the dummy argument tol could be declared to be optional (although internally in the subroutine the code would have to be changed to allow for this), e.g.,[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Fign_HTML.gif]

and because it is at the end of the dummy argument list, calling the subroutine with a positional argument list,

 tol
 can be omitted, e.g.,[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figo_HTML.gif]

The code of the subroutine will need to be changed to check to see if the argument tol is supplied, the intrinsic function

 present
 being available for this purpose. Sample code is given below:[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figp_HTML.gif]

26.4 Example 3: A Subroutine to Extract the Diagonal Elements of a Matrix
A
 common task mathematically is to extract the diagonal elements of a matrix. For example if[image: $$ A = \left(\begin{array}{ccc} 21&{}\quad 6 &{}\quad 7 \\ 9 &{}\quad 3 &{}\quad 2 \\ 4 &{}\quad 1 &{}\quad 8\end{array} \right) $$]

the diagonal elements are (21, 3, 8).
This can be thought of as extracting an array section, but the intrinsic function pack is needed.

 In its simplest form pack(array, vector) packs an array, array, into a rank 1 array, vector, according to array’s array element order.
Below is a complete program to demonstrate this:[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figq_HTML.gif]

26.5 Example 4: The Solution of Linear Equations Using Gaussian Elimination
At

 this stage we have introduced many of the concepts needed to write numerical code, and have included a popular algorithm, Gaussian Elimination, together with a main program which uses it and a module to bring together many of the features covered so far.
Finding the solution of a system of linear equations is very common in scientific and engineering problems, either as a direct physical problem or indirectly, for example, as the result of using finite difference methods to solve a partial differential equation. We will restrict ourselves to the case where the number of equations and the number of unknowns are the same. The problem can be defined as:

[image: $$ a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1 $$]

[image: $$ a_{22} x_2 + a_{22} x_2 + ... + a_{2n} x_n = b_2 $$]

[image: $$... $$]

[image: $$ a_{n1} x_1 + a_{n2} x_2 + ... + a_{nn} x_n = b_1 $$]

or[image: $$\begin{aligned} \left(\begin{array}{cccc} a_{11} &{} a_{12} &{} ... &{} a_{1n} \\ a_{21} &{} a_{22} &{} ... &{} a_{2n} \\ ... &{} ... &{} ... &{} ... \\ a_{n1} &{} a_{n2} &{} ... &{} a_{nn} \end{array} \right) \left(\begin{array}{c} x_1\\ x_2\\ ...\\ x_n\end{array} \right) = \left(\begin{array}{c} b_1\\ b_2\\ ...\\ b_n\end{array} \right) \end{aligned}$$]

 (26.2)

which can be written as:

 [image: $$ A x = b $$]

where A is the n x n coefficient matrix, b is the right-hand-side vector and x is the vector of unknowns. We will also restrict ourselves to the case where A is a general real matrix.
Note that there is a unique solution to (26.2) if the inverse, [image: $$A^{-1}$$], of the coefficient matrix A, exists. However, the system should never be solved by finding [image: $$A^{-1}$$] and then solving [image: $$ A^{-1} b = x $$] because of the problems of rounding error and the computational costs.
A well-known method for solving (26.2) is Gaussian Elimination, where multiples of equations are subtracted from others so that the coefficients below the diagonal become zero, producing a system of the form:

[image: $$ \left(\begin{array}{cccc} a^*_{11} &{} a^*_{12} &{} ... &{} a*_{1n} \\ 0 &{} a^*_{22} &{} ... &{} a^*_{2n} \\ ... &{} ... &{} ... &{} ... \\ 0 &{} 0 &{} 0 &{} a^*_{nn} \end{array} \right) \left(\begin{array}{c} x_1\\ x_2\\ ...\\ x_n\end{array} \right) = \left(\begin{array}{c} b^*_1\\ b^*_2\\ ...\\ b^*_n\end{array} \right) $$]

where A has been transformed into an upper triangular matrix. By a process of backward substitution the values of x drop out.

The subroutine gaussian_elimination implements the Gaussian Elimination algorithm with partial pivoting, which ensure that
 the multipliers are less than 1 in magnitude, by interchanging rows if necessary. This is to try and prevent the buildup of errors.
This implementation is based on two LINPACK routines SGEFA and SGESL and a Fortran 77 subroutine written by Tim Hopkins and Chris Phillips and found in their book Numerical Methods in Practice.

When the subroutine gaussian_elimination is called on exit both a and b are overwritten. Mathematically Gaussian Elimination is described as working on rows, and using partial pivoting row interchanges may be necessary. Due to Fortran’s row element ordering, to implement this algorithm efficiently it works on columns rather than rows by interchanging elements within a column if necessary.

[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figr_HTML.gif]

[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figs_HTML.gif]

26.5.1 Notes
26.5.1.1 Module for Precision Selection
We
 use the module precision_module from Chap. 21 and choose a working precision wp which maps to dp or double precision, to specify the floating point precision to which we wish to work. This module is then used by the main program and the subroutine, and wp is used with all the real type definitions and any constants, e.g.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figt_HTML.gif]

26.5.1.2 Deferred-Shape Arrays
In the main program matrix a and vectors b and x are declared as deferred-shape arrays, by specifying their rank only and using the allocatable attribute. Their shape is determined at run time when the variable n is read in and then the statement[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figu_HTML.gif]

is used.
26.5.1.3 Intrinsic Functions maxval and maxloc
In the context of subroutine gaussian_elimination we have used:[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figv_HTML.gif]

Breaking this down,[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figw_HTML.gif]

takes the rank 1 array[image: $$\begin{aligned} (|a(k, k)|,|a(k+1,k)|,...|a(n, k)|) \end{aligned}$$]

 (26.3)

where [image: $$ |a(k,k)| = abs(a(k, k)) $$] and of length [image: $$ n-k+1 $$]. It returns the position of the largest element as a rank 1 array of size one, e.g. l.
Applying maxval to this rank 1 array l returns l as a scalar, l being the position of the largest element of array (1).
What we actually want is the position of the largest element of (26.3), but in the kth column of matrix a. We therefore have to add k-1 to l to give the actual position in column k of a.
26.6 Example 5: Allocatable Function Results
A

 function may return an array, and in this example the array allocation takes place in the function.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figx_HTML.gif]

This facility was introduced in Fortran 95.
26.7 Example 6: Elemental e**x Function
The

 following is an elemental version of the etox function covered in an earlier chapter.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figy_HTML.gif]

Elemental functions require the use of explicit interfaces, and we have therefore used modules to achieve this.
26.8 Example 7: Absolute and Relative Errors Involved in Subtraction Using 32 bit Reals
It should be apparent by now that floating point arithmetic is by its very nature inexact. Knuth and others identify the concept of significant digits or relative error as a useful measure. As a general rule the operations of multiplication and division do not magnify the relative error by very much, but floating point subtraction does.
In the next two examples we look at the the relative error involved with subtraction. In the first example we use 32 bit reals, our sp kind type from our precision module.
Here is the program source.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figz_HTML.gif]

Here
 is sample output from the Nag compiler.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figaa_HTML.gif]

26.9 Example 8: Absolute and Relative Errors Involved in Subtraction Using 64 bit Reals
Here is the program source.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figab_HTML.gif]

Here is sample output from the Nag compiler.[image: ../images/112282_4_En_26_Chapter/112282_4_En_26_Figac_HTML.gif]

26.10 Problems
26.1
Compile and run the sparse matrix example with the data provided.

26.2
Compile and run the Runge Kutta Merson example with the data provided.

26.3
Compile and run the Gaussian Elimination example with the following data.[image: $$ A = \left(\begin{array}{ccc} 33 &{}\quad 16 &{}\quad 72 \\ -24 &{}\quad -10 &{}\quad -57 \\ -8 &{}\quad -4 &{}\quad -17 \end{array} \right) $$]

[image: $$ b = \left(\begin{array}{c} -359 \\ 281 \\ 85 \end{array} \right) $$]

and the solution is[image: $$ x = \left(\begin{array}{c} 1 \\ -2 \\ -5 \end{array} \right) $$]

26.4
Edit the Runge Kutta Merson subroutine so that tol is an optional argument. Compile and run the new code for the same set of ODE’s but don’t provide tol in the main program’s call to the subroutine. Next provide tol with a value 1.0e-4. What results do you get?

26.11 Bibliography
Duff I.S., Erismon A.M., Reid J.K., Direct Methods for Sparse Matrices, Oxford Science Publications, 1986.

 	Authoritative coverage of this area. Relatively old, but well regarded. Code segments and examples are a mixture of Fortran 77 and Algol 60 (which of course do not support pointers) and therefore the implementation of linked lists is done using the existing features of these languages. The onus is on the programmer to correctly implement linked lists using fixed size arrays rather than using the features provided by pointers in a language. It is remarkable how elegant these solutions are, given the lack of dynamic data structures
 in these two languages.

Hopkins T., Phillips C., Numerical Methods in Practice, Using the NAG Library. Addison-Wesley, 1988.

 	Good adjunct to the NAG library documentation for the less numerate user.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_27

27. Parameterised Derived Types (PDTs) in Fortran

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Aims

The aims of this chapter are to look at some additional data structuring examples in Fortran that use parameterised derived types - PDTs.
27.1 Introduction
Parameterised derived types were introduced in the Fortran 2003 standard. They allow the kind, length, or shape of a derived type’s components to be chosen when the derived type is used.
This feature was only available in two compilers (Cray and IBM) at the time of the second edition. Support for this feature is now available in three additional compilers. At the time of writing they were available in the following compilers:	Cray

	IBM

	Intel

	Nag (partial)

	PGI

Consult our Compiler Support for the Fortran 2003 and 2008 Standards document[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figa_HTML.gif]
 for up to date information.
A parameterised derived type can have the kind, length and shape of a derived type chosen at run time. All type parameters are of type integer and have a kind, len or dim attribute. A kind type parameter may be used in constant and specification expressions. A length type parameter may only be used in a specification expression, e.g. array declarations.
We have a small number of examples to illustrate their use.
27.2 Example 1: Linked List Parameterised by Real Kind
Here

 is the link module.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figb_HTML.gif]

Here is the complete program.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figc_HTML.gif]

Let us look at the link_module in more depth.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figd_HTML.gif]

The key is in the type declaration for link where the link type takes a parameter real_kind.
We then can reference this parameter within the link kind type definition. Thus the declarations for n and next are parameterised by real_kind.
In the main program we have[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Fige_HTML.gif]
 and the type declarations for root and current are parameterised by wp, where wp = dp.
This means that we write one type definition for the link type that will work with any supported real kind type.
Without parameterised derived type support we would have to write separate kind type definitions for each supported real kind.
27.3 Example 2: Ragged Array Parameterised by Real Kind Type
Here

 is the ragged module.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figf_HTML.gif]

Here is the complete program.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figg_HTML.gif]

Let us look at the ragged_module in more depth.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figh_HTML.gif]

The key is in the type declaration for the ragged type.
We have[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figi_HTML.gif]
 so the kind definition is parameterised by real_kind.
The ragged_row array declaration is parameterised by real_kind.
In the main program we have[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figj_HTML.gif]
 so that the lower_diag declaration is parameterised by wp, where wp = sp.
So we have one declaration for the ragged type and can use this type with any supported real kind type.
27.4 Example 3: Specifying len in a PDT
In
 this example we use both the kind attribute and the len attribute in the type specification.
Here is the matrix module.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figk_HTML.gif]

Here is the complete program.[image: ../images/112282_4_En_27_Chapter/112282_4_En_27_Figl_HTML.gif]

27.5 Problems
27.1
Modify example 1 to read the data from a file.

27.2
Rewrite the tree derived type in Chap. 22 as a parameterised derived type to work with an integer of any type. Test it out.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_28

28. Introduction to Object Oriented Programming

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 For Madmen only

Hermann Hesse, Steppenwolf

 Aims

The aims of this chapter are to look at object oriented programming in Fortran.
28.1 Introduction
This chapter looks at object oriented programming in Fortran. The chapter on programming languages covers the topic in a broader context.
28.2 Brief Review of the History of Object Oriented Programming

Object oriented programming is not new. One of the first languages to offer support was Simula 67, a language designed for discrete event simulation by Ole Johan Dahl, Bjorn Myhrhaug and Kristen Nygaard whilst working at the Norwegian Computing Centre in Oslo in the 1960’s.
One of the next major developments was in the 1970’s at the Xerox Palo Alto Research Centre Learning Research Group who began working on a vision of the ways different people might effectively use computing power. One of the outcomes of their work was the Smalltalk 80 system. Objects are at the core of the Smalltalk 80 system.
The 1980’s and 1990’s saw a number of object oriented programming languages emerge. They include	Eiffel. Bertrand Meyer, Eiffel Software.

	C++ from C with classes. Bjarne Stroustrup at Bell Labs.

	Oberon 2. Niklaus Wirth at ETH in Zurich.

	Java. James Gosling, originally Sun, now Oracle.

	C# is a recent Microsoft addition to the list.

Object-oriented programming is effectively a programming methodology or paradigm using objects (data structures made up of data and methods). We will use the concept of a shape class in our explanation and examples. The Simula Begin book starts with shapes, and it is often used in introductions to object oriented programming in other languages.
Some of the key concepts are	encapsulation or information hiding - the implementation of the data is hidden inside an object and clients or users of the data only have access to an abstract view of it. Methods are used to access and manipulate the data. For example a shape class may have an x and y position, and methods exist to get and set the positions and draw and move the shape.

	data abstraction - if we have an abstract shape data type we can create multiple variables of that type.

	inheritance - an existing abstract data type can be extended. It will inherit the data and methods from the base type and add additional data and methods. A key to inheritance is that the extended type is compatible with the base type. Anything that works with objects or variables of the base type also works with objects of the extended type. A circle would have a radius in addition to an x and y position, a rectangle would have a width and height.

	dynamic binding - if we have a base shape class and derive circles and rectangles from it dynamic binding ensures that the correct method to calculate the area is called at run time.

	polymorphism - variables can therefore be polymorphic. Using the shape example we can therefore create an array of shapes, one may be a shape, one may be a circle and another may be a rectangle.

Extensible abstract data types with dynamically bound methods are often called classes. This is the terminology we will use in what follows.
28.3 Background Technical Material
We need to look more formally at a number of concepts so that we can actually do object oriented programming in Fortran. The following sections cover some of the introductory material we need, and are taken from the standard.
28.3.1 The Concept of Type
Fortran provides an abstract means whereby data can be categorized without relying on a particular physical representation. This abstract means is the concept of type. A type has a name, a set of valid values, a means to denote such values (constants), and a set of operations to manipulate the values.
28.3.2 Type Classification
A type is either an intrinsic type or a derived type. This document defines five intrinsic types: integer, real, complex, character, and logical. A derived type is one that is defined by a derived-type definition (7.5.2) or by an intrinsic module. It shall be used only where it is accessible (7.5.2.2). An intrinsic type is always accessible.
28.3.3 Set of Values
For each type, there is a set of valid values. The sets of valid values for integer, character, and real are processor dependent. The set of valid values for complex consists of the set of all the combinations of the values of the real and imaginary parts. The set of valid values for a derived type is as defined in 7.5.8.
28.3.4
 Type

A type type specifier is used to declare entities that are assumed-type, or of an intrinsic or derived type.
An entity that is declared using the TYPE(*) type specifier is assumed-type and is an unlimited polymorphic entity. It is not declared to have a type, and is not considered to have the same declared type as any other entity, including another unlimited polymorphic entity. Its dynamic type and type parameters are assumed from its effective argument.
28.3.5
 Class

The CLASS type specifier is used to declare polymorphic entities. A polymorphic entity is a data entity that is able to be of differing dynamic types during program execution.
The declared type of a polymorphic entity is the specified type if the CLASS type specifier contains a type name.
An entity declared with the CLASS(*) specifier is an unlimited polymorphic entity. It is not declared to have a type, and is not considered to have the same declared type as any other entity, including another unlimited polymorphic entity.
28.3.6 Attributes
The additional attributes that may appear in the attribute specification of a type declaration statement further specify the nature of the entities being declared or specify restrictions on their use in the program.
28.3.6.1 Accessibility Attribute
The accessibility attribute specifies the accessibility of an entity via a particular identifier. The following is taken from Sect. 8.5.2 of the Fortran 2018 standard.

 	access-spec is public or private

	An access-spec shall appear only in the specification-part of a module.

Identifiers that are specified in a module or accessible in that module by use association have either the public or private attribute. Identifiers for which an access-spec is not explicitly specified in that module have the default accessibility attribute for that module. The default accessibility attribute for a module is public unless it has been changed by a private statement. Only identifiers that have the public attribute in that module are available to be accessed from that module by use association.
28.3.7 Passed Object Dummy Arguments
Section 3.107 of the Fortran 2018 standard
 introduces the concept of passed object dummy argument. Here is an extract from the standard:	A passed-object dummy argument is a distinguished dummy argument of a procedure pointer component or type-bound procedure (7.5.5). It affects procedure overriding (7.5.7.3) and argument association (15.5.2.2).

	If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object dummy argument.

	If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argument of a procedure pointer component or type-bound procedure is its passed-object dummy argument.

	If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy argument of the procedure pointer component or named type-bound procedure.

	Constraint C761 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data object with the same declared type as the type being defined; all of its length type parameters shall be assumed; it shall be polymorphic (7.3.2.3) if and only if the type being defined is extensible (7.5.7). It shall not have the VALUE attribute.

The key here is that we are going to use the pass and nopass attributes with type bound procedures - a component of object oriented programming in Fortran.
28.3.8 Derived Types
 and Structure Constructors
A derived type is a type that is not defined by the language but requires a type definition to declare its components. A scalar object of such a derived type is called a structure. Assignment of structures is defined intrinsically, but there are no intrinsic operations for structures. For each derived type, a structure constructor is available to provide values.
A derived-type definition implicitly defines a corresponding structure constructor that allows construction of values of that derived type.
28.3.9 Structure
 Constructors and Generic Names
A generic name may be the same as a type name. This can be used to emulate user-defined structure constructors for that type, even if the type has private components. The following example is taken from the standard to illustrate this.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figa_HTML.gif]

28.3.10 Assignment
Execution of an assignment statement causes a variable to become defined or redefined. Simplistically[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figb_HTML.gif]

28.3.11 Intrinsic Assignment

 Statement
An intrinsic assignment statement is an assignment statement that is not a defined assignment statement (10.2.1.4). In an intrinsic assignment statement,	if the variable is polymorphic it shall be allocatable and not a coarray,

	if expr is an array then the variable shall also be an array,

	the variable and expr shall be conformable unless the variable is an allocatable array that has the same rank as expr and is not a coarray,

	if the variable is polymorphic it shall be type compatible with expr; otherwise the declared types of the variable and expr shall conform as specified in Table 10.8 of the standard,

	if the variable is of type character and of ISO 10646, ASCII, or default character kind, expr shall be of ISO 10646, ASCII, or default character kind,

	otherwise if the variable is of type character expr shall have the same kind type parameter,

	if the variable is of derived type each kind type parameter of the variable shall have the same value as the corresponding kind type parameter of expr, and

	if the variable is of derived type each length type parameter of the variable shall have the same value as the corresponding type parameter of expr unless the variable is allocatable, is not a coarray, and its corresponding type parameter is deferred.

28.3.12 Defined
 Assignment Statement
A defined assignment statement is an assignment statement that is defined by a subroutine and a generic interface that specifies ASSIGNMENT ([image: $$=$$]).
28.3.13 Polymorphic Variables
Here are some of the technical definitions regarding polymorphic taken from the standard.

 	polymorphic - polymorphic data entity able to be of differing dynamic types during program execution (7.3.2.3)

	unlimited polymorphic - able to have any dynamic type during program execution (7.3.2.3)

A polymorphic variable must be a pointer or allocatable variable. We will use allocatable variables to achieve polymorphism in our examples.
28.3.14 Executable Constructs Containing Blocks
The following are executable constructs that contain blocks:	associate construct

	case construct

	do construct

	if construct

	
 select type
 construct

We will look at the associate construct and select type construct next.
28.3.15 The associate Construct
The associate construct associates named entities with expressions or variables during the execution of its block. These named construct entities are associating entities. The names are associate names.
The following example illustrates an association with a derived-type variable.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figc_HTML.gif]

28.3.16 The select type Construct
The select type construct
 selects for execution at most one of its constituent blocks. The selection is based on the dynamic type of an expression. A name is associated with the expression, in the same way as for the associate construct.
Quite a lot to take in! Let’s illustrate the use of the above in some actual examples.
28.4 Example 1: The Basic Shape Class
The
 code for the base shape class is given below.

 	shape class data: integer variables x and y for the position.

	shape class methods: get and set for the x and y values, and moveto and draw.

We have used an include statement in the examples that follow to reduce code duplication. In this example we have used the default accessibility for the data and methods in the shape_module.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figd_HTML.gif]

Here is the code in the include file.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Fige_HTML.gif]

28.4.1 Key Points
Some of the key concepts are:	We use a module as the organisational unit for the class.

	We use type and end type to contain the data and the procedures - called type bound procedures in Fortran terminology.

	The data in the base class is an x and y position.

	The type bound methods within the class are	get_x and set_x

	get_y and set_y

	
 draw

	
 moveto

	We have used the default accessibility for the data and methods in the type.

Let us look at the code in stages.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figf_HTML.gif]

The module is called shape_module[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figg_HTML.gif]

The type is called shape_type[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figh_HTML.gif]

The data associated with the shape type are integer variables that are the x and y coordinates of the shape. We initialise to zero.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figi_HTML.gif]

The type also contains procedures or methods.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figj_HTML.gif]

These are called type bound procedures in Fortran terminology. It is common in object oriented programming to have get and set methods for each of the data components of the type or object. We also have a moveto and draw method.
Each of these methods has the pass attribute. When a type bound procedure is called or invoked the object through which is invoked is normally passed as a hidden parameter. We have used the pass attribute to explicitly confirm the default behaviour of passing the invoking object as the first parameter. We have also followed the convention in object oriented programming of using the word this to refer to the current object.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figk_HTML.gif]

This is the end of the type definition.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figl_HTML.gif]

The module then contains the actual implementation of the type bound procedures. We will look at a couple of these.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figm_HTML.gif]

As we stated earlier it is common in object oriented programming to have get and set methods for each data item in an object. This function implements the get_x method. The first argument is the current object, referred to as this. We then have the type declaration for this parameter. We declare the variable using class rather than type as we want the variable to be polymorphic. The rest of the function is self explanatory.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Fign_HTML.gif]

The set_x procedure is a subroutine. It takes two parameters, the current object and the new x value. Again we use the class declaration mechanism as we want the variable to be polymorphic.
Here is a program to test the above shape module out.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figo_HTML.gif]

The first statement of interest is the use statement, where we make available the shape_module to the test program. The next statement of interest is[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figp_HTML.gif]

We then have a type declaration for the variable s1. We also have the use of what Fortran calls a structure constructorshape_type to provide initial values to the x and y positions. The term constructor is used in other object oriented programming languages, e.g. C++, Java, C#. It has the same name as the type or class and is created automatically for us by the compiler in this example.
The[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figq_HTML.gif]
 statement prints out the x andy values for the object s1. We use the standard % notation that we used in derived types, to separate the components of the derived types. If one looks at the implementation of the get_x function and examines the first line, repeated below[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figr_HTML.gif]
 how we refer to the current object, s1, through the syntax s1%get_x(). The following call:[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figs_HTML.gif]
 shows how to invoke the draw method for the s1 object, using the s1%draw() syntax. The first line of the draw subroutine[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figt_HTML.gif]
 shows how the current object is passed as the first argument.
28.4.2 Notes
In this example we have accepted the default Fortran accessibility behaviour. This means that we can use the compiler provided structure constructor shape_type()[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figu_HTML.gif]
 in the type declaration to provide initial values, as they are public by default. Direct access to the data is often not a good idea, as it is possible to makes changes to the data anywhere in the program. The next example makes the data private.
28.5 Example 2: Base Class with Private Data
Here

 is
 the modified base class.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figv_HTML.gif]

Here is the diff output between the two shape modules.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figw_HTML.gif]

This example will now not compile as the default compiler provided structure constructor does not have access to the private data

 .
The test program is the same as in the first example.
Here is the output from trying to compile this example.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figx_HTML.gif]

Not all compilers diagnose this problem. Test yours to see if you get an error message!

An earlier solution to this type of problem can be found in the date class in Chap. 22, where we provide our own structure constructor date_(). Most object oriented programming languages provide the ability to use the same name as a class as a constructor name even if the data is private. Modern Fortran provides another solution to this problem. In the example below we will provide our own structure constructor inside an interface.
28.6 Example 3: Using

 an Interface to Use the Class Name for the Structure Constructor
Here is the modified base class.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figy_HTML.gif]

Here is the diff output between the second and third shape modules.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figz_HTML.gif]

The key statements are[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figaa_HTML.gif]
 which enables us to map a call or reference to shape_type (our structure constructor name) to our implementation of shape_type_constructor. Here is the implementation of this structure constructor.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figab_HTML.gif]

The function is called shape_type_constructor hence we use this name to initialise the components of the type, and the function returns a value of type shape_type.
Here is the program to test the above out.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figac_HTML.gif]

Note that in this example we cannot initialise s1 at definition time using our own (user defined) structure constructor. This must now be done within the execution part of the program. This is a Fortran restriction, and makes it consistent with the rest of the language.
These examples illustrate some of the basics of object oriented programming in Fortran. To summarise	the data in our class is private;

	access to the data is via get and set methods;

	the data and methods are within the derived type definition

 - the methods are called type bound procedures in Fortran terminology;

	we can use interfaces to provide user defined structure constructors, which have the same name as the class - this is a common practice in object oriented programming;

	we have used class to declare the variables within the type bound methods. We need to use class when we want to use polymorphic variables in Fortran.

28.6.1 Public and Private Accessibility
We have only made the internal data in the class private in the above example. There will be cases where some of the methods are only used within the class, in which case they can be made private.
28.7 Example 4: Simple Inheritance
In
 this example we look at inheritance. We use the same base shape class and derive two classes from it - circle and rectangle.
A circle has a radius. This is the additional data component of the derived class. We also have get and set methods.
A rectangle has a width and height. These are the additional data components of the derived rectangle class. We also have get and set methods.
28.7.1 Base Shape Class
The base shape class is as in the previous example.
28.7.2 Circle - Derived Type 1
Here is the code.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figad_HTML.gif]

Let us look more closely at the statements within this class. Firstly we have[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figae_HTML.gif]
 which introduces our circle module. We then[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figaf_HTML.gif]
 within this module to make available the shape class. The next statement[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figag_HTML.gif]
 is the key statement in inheritance. What this statement says is base our new circle_type on the base shape_type. It is an extension of the shape_type. We then have the additional data in our circle_type[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figah_HTML.gif]
 and the following additional type bound procedures.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figai_HTML.gif]
 and we have the simple get and set methods for the radius, and a type specific draw method for our circle_type. It is this method that will be called when drawing with a circle, rather than the draw method in the base shape_type.
We then have an interface to provide us with our own user defined structure constructor for our circle_type.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figaj_HTML.gif]

As has been stated earlier it is common practice in object oriented programming to use the same name as the type for constructors.
We then have the implementation of the constructor.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figak_HTML.gif]

Note that we use the set_x and set_y methods to provide initial values to the x and y values. They are private in the base class so we need to use these methods.
We can directly initialise the radius as this is a data component of this class, and we have access to it.
We next have the get and set methods for the radius.
Finally we have the implementation for the draw circle method.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figal_HTML.gif]

Notice again that we use the get_x and get_y methods to access the x andy private data from the base shape class.
28.7.3 Rectangle - Derived Type 2
Here is the code for the second derived type.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figam_HTML.gif]

The code is obviously very similar to that of the first derived type.
28.7.4 Simple Inheritance Test Program
Here is a test program that illustrates the use of the shape type, circle type and rectangle type.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figan_HTML.gif]

The first statements of note are [image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figao_HTML.gif]
 which make available the shape, circle and rectangle types within the program. The following statements[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figap_HTML.gif]
 declare vs, vc and vr to be of type shape, circle and rectangle respectively. The following three statements[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figaq_HTML.gif]
 call the three user defined structure constructor functions.
We then use the get functions to print out the values of the private data in each object.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figar_HTML.gif]

We then call the draw method for each type.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figas_HTML.gif]
 and the appropriate draw method is called for each type. We finally call the set functions for each variable and repeat the calls to the draw methods.
The draw methods in the derived types override the draw method in the base shape class.
28.8 Example 5: Polymorphism and Dynamic Binding
An

 inheritance hierarchy can provide considerable flexibility in our ability to manipulate objects, whilst still taking advantage of static or compile time type checking. If we combine inheritance with polymorphism and dynamic binding we have a very powerful programming tool. We will illustrate this with a concrete example.
28.8.1 Base Shape Class
This is our base class. A polymorphic variable is a variable whose data type may vary at run time. It must be a pointer or allocatable variable, and it must be declared using the class keyword. Our original base class declared variables using the class keyword from the beginning as we always intended to design a class that could be polymorphic.
We have had to make one change to the previous one. To make the polymorphism work we have had to provide our own assignment operator. So we have[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figat_HTML.gif]

which means that our implementation of generic_shape_assign will replace the intrinsic assignment. Here is the actual implementation.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figau_HTML.gif]

In an assignment we obviously have[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figav_HTML.gif]
 and in our code we have variables lhs and rhs to clarify what is happening. We also have an enhanced form of allocation statement:[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figaw_HTML.gif]
 and the key is that the left hand side variable is allocated with the values and type of the right hand side variable. Here is the complete code.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figax_HTML.gif]

28.8.2 Circle - Derived Type 1
The circle code is the same as before.
28.8.3 Rectangle - Derived Type 2
The rectangle code is as before.
28.8.4 Shape Wrapper Module
As was stated earlier a polymorphic variable must be a pointer or allocatable variable. We have chosen to go the allocatable route. The following is a wrapper routine to allow us to have a derived type whose types can be polymorphic.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figay_HTML.gif]

So now x can be of shape_type or of any type derived from shape_type. Don’t panic if this isn’t clear at the moment, the complete program should help out!
28.8.5 Display Subroutine
This is the key subroutine in this example. We can pass into this routine an array of type shape_wrapper. In the code so far we have variables of type	
 shape_type

	
 circle_type

	
 rectangle_type

and we are passing in an array of elements and each element can be of any of these types, i.e. the shape_array is polymorphic.
The next statement of interest is[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figaz_HTML.gif]
 and at run time the correct draw method will be called. This is called dynamic binding. Here is the complete code.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figba_HTML.gif]

28.8.6 Test Program for Polymorphism and Dynamic Binding
We now have the complete program that illustrates polymorphism and dynamic binding in action.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbb_HTML.gif]

Let us look at the key statements in more detail.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbc_HTML.gif]

This is the key declaration statement. s will be our polymorphic array. The following six assignment statements[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbd_HTML.gif]
 will call our own assignment subroutine to do the assignment. The allocation is hidden in the implementation. We then have[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbe_HTML.gif]
 which calls the display subroutine. The compiler at run time works out which draw method to call depending of the type of the elements in the shape_wrapper array.
Imagine now adding another shape type, let us say a triangle. We need to do the following	inherit from the base shape type

	add the additional data to define a triangle

	add the appropriate get and set methods

	add a draw triangle method

	add a use statement to the shape_wrapper_module

	add a use statement to the main program

and we now can work with the new triangle shape type. The display subroutine is unchanged! We can repeat the above steps for any additional shape type we want. Polymorphism and dynamic binding thus shorten our development and maintenance time, as it reduces the amount of code we need to write and test.
We then have an example of the use of the select type statement. The compiler determines the type of the elements in the array and then executes the matching block.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbf_HTML.gif]

Now imagine adding support for the new triangle type. Anywhere we have select type constructs we have to add support for our new triangle shape. There is obviously more work involved when we use the select type construct in our polymorphic code. However some problems will be amenable to polymorphism and dynamic binding

 , others will require the explicit use of select type statements. This example illustrates the use of both.
28.9 Fortran 2008 and Polymorphic Intrinsic Assignment
The previous example works with Fortran 2003 conformant compilers. This example illustrates a simple variant that will work if your compiler supports a feature from the 2008 standard - polymorphic intrinsic assignment. In this case we do not need to provide a user defined assignment subroutine.
Here is the modified shape module.[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbg_HTML.gif]

The rest of the code is the same as in the previous example.
Compiling with gfortran 6.4 will generate the following error message.

 Error: Assignment to an allocatable polymorphic variable at (1) is not yet supported

We maintain compiler standard conformance tables that document what features from the 2003, 2008 and 2018 standards are supported by current compilers.
Visit [image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbh_HTML.gif]
 to get up to date information. At the time of writing Table 28.1 was correct for compilers we have used in this edition.Table 28.1Polymorphic intrinsic assignment support

	Compiler
	Version
	Assignment support

	Cray
	7.4
	Yes

	gfortran
	4.x
	No

	5.x
	No

	6.x
	No

	7.1
	Yes

	Intel
	17.x
	No

	18.x
	Yes

	Nag
	6.0
	Yes

	Oracle
	12.6
	No

	Pathscale
	6.0.1148
	No

	PGI
	17.4.0
	No

28.10 Summary
This chapter has introduced some of the essentials of object oriented programming. The first example looked at object oriented programming as an extension of basic data structuring. We used type bound procedures to implement our shape class. We used methods to access the internal data of the shape object.
The second example looked at simple inheritance. We saw in this example how we could reuse the methods from the base class and also add new data and methods specific to the new shapes - circles and rectangles.
The third example then looked at how to achieve polymorphism in Fortran. We could then create arrays of our base type and dynamically bind the appropriate methods at run rime. Dynamic binding is needed when multiple classes contain different implementations of the same method, i.e. to ensure in the following code[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbi_HTML.gif]
 that the correct draw method is invoked on the shape object.
28.11 Problems
28.1
Compile and run all of the examples in this chapter with your compiler.

28.2
Add a triangle type to the simple inheritance example.

28.3
Add a triangle type to the polymorphic example.

28.12 Further Reading
The following book
ISO/IEC DIS 1539-1 Information technology–Programming languages–Fortran–Part 1: Base language	Fortran 2018 draft standard.

[image: ../images/112282_4_En_28_Chapter/112282_4_En_28_Figbj_HTML.gif]

	Rouson D., Xia J., Xu X., Scientific Software Design: The Object Oriented Way, Cambridge University Press, 2011.

uses Fortran throughout and is a very good coverage of what is possible in modern Fortran. Well worth a read.
The second edition of the following book	Meyer Bertrand, Object Oriented Software Construction, Prentice Hall, 1997.

provides a very good coverage and uses Eiffel throughout - he did design the language!

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_29

29. Additional Object Oriented Examples

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Smalltalk is a vision. Adele Goldberg and David Robson, Xerox Palo Alto Research Center

 Aims

The aim of this chapter are to look at some additional object oriented programming examples in Fortran.
29.1
 Introduction

The first set of examples are based on the date example (ch2206.f90) in the data structuring chapter. We are going to convert this example into an object oriented version.

 	Example 1 - OO date example
We use the following files.

 	ch2206_module.f90 - this is the module file for the example in Chap. 22

	ch2206_program.f90 - the program to test out the date data structure

	ch2901_day_and_month_name_module.f90 - a separate module containing the day and month names. Has the advantage that one can provide versions for different natural languages. We will be using Welsh.

	ch2901_date_module.f90 - an object oriented implementation of the original date module.

	ch2901.f90 - a program to test out the above module.

	Example 2 - OO date example with simple inheritance
We use the following files.

 	ch2902_iso_date_module.f90 - simple inheritance module based on ISO date format (yyyymmdd)

	ch2902.f90 - a program to test out the above module.

	Example 3 - OO date example with polymorphism
We use the following files.

 	ch2903_date_wrapper_module.f90

	ch2903.f90

	Example 4 - abstract shape base class and concrete derived class
We use the following files.

 	ch2904_abstract_shape_module.f90

	ch2904_square_module.f90

	ch2904.f90

	Example 5 - date checking module
We use the following file.

 	ch2905_valid_date_module.f90.

29.2 The Date Class

The first thing to do is split the complete example in Chap. 22 into a date module and a date test program.
We will convert the date module into an object oriented version.
We will then convert the date program into one that can be used to test our object oriented date module.
29.3 Example 1: The Base Date Class

Files used	day and month name module

	oo date module

	oo date program.

The first thing we need to do is identify the functions and subroutines in the original program. Here is a list.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figa_HTML.gif]

The conversion means making the above type bound procedures.
We have also made the following changes	add setter subroutines for the day, month and year

	add a date constructor

	add a separate module for the day and month names, so that we can access this data in any inherited versions

	change the calling syntax from a conventional Fortran function and subroutine syntax to an object oriented version

Here are the type bound procedures, with partial signatures.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figb_HTML.gif]

Here is the interface for the date constructor.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figc_HTML.gif]

Here is the complete source code.
29.3.1 Day and Month Name Module

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figd_HTML.gif]

29.3.2 Date Module

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Fige_HTML.gif]

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figf_HTML.gif]

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figg_HTML.gif]

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figh_HTML.gif]

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figi_HTML.gif]

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figj_HTML.gif]

 [image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figk_HTML.gif]

29.3.3 Diff Output Between Original Module and New oo Module

Here is the diff output between the original module in example ch2206 and the new oo module.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figl_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figm_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Fign_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figo_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figp_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figq_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figr_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figs_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figt_HTML.gif]

29.3.4 Main Program

This is the main test program. This is a conversion of the main program in example ch2206.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figu_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figv_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figw_HTML.gif]

29.3.5 Diff Output Between Original Program and New oo Test Program
Here is the diff output between the original and the new oo one.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figx_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figy_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figz_HTML.gif]

Here is the build sequence[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figaa_HTML.gif]

Here is the output from running the program.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figab_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figac_HTML.gif]

29.4 Example 2: Simple Inheritance Based on an ISO Date Format
Files used	day and month name module

	oo date module

	iso date module

	iso date program.

29.4.1 ISO Date Module
Here is the source code for the ISO date module.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figad_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figae_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figaf_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figag_HTML.gif]

29.4.2 ISO Test Program
Here is the source code for the ISO date test program.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figah_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figai_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figaj_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figak_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figal_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figam_HTML.gif]

29.5 Example 3: Using the Two Date Formats and Showing Polymorphism and Dynamic Binding

Files used	day and month name module

	date module

	date wrapper module

	iso date module

	test program.

29.5.1 Date Wrapper Module

Here is the source code for the date wrapper module.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figan_HTML.gif]

29.5.2 Polymorphic and Dynamic Binding Test Program

Here is the source code for the polymorphic date test program.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figao_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figap_HTML.gif]

This example requires a compiler that supports polymorphic intrinsic assignment.
29.6 Dates, Date Validity and Calendars

In this section we look at dates, date validity and calendars.
29.6.1
 Calendars

A calendar date is most commonly regarded as a reference to a particular day represented within a calendar system.
The most widely used calendar system is the Gregorian.
The Gregorian calendar, also called the Western calendar and the Christian calendar, is internationally the most widely used civil calendar. It is named for Pope Gregory XIII, who introduced it in October 1582.
The calendar was a refinement to the Julian calendar amounting to a 0.002% correction in the length of the year. The motivation for the reform was to stop the drift of the calendar with respect to the equinoxes and solstices particularly the vernal equinox, which set the date for Easter celebrations. Transition to the Gregorian calendar would restore the holiday to the time of the year in which it was celebrated when introduced by the early Church. The reform was adopted initially by the Catholic countries of Europe. Protestants and Eastern Orthodox countries continued to use the traditional Julian calendar and adopted the Gregorian reform after a time, for the sake of convenience in international trade. The last European country to adopt the reform was Greece, in 1923.
A particular day may be represented by a different date in another calendar as in the Gregorian calendar and the Julian calendar, which have been used simultaneously in different places.
The Julian calendar, introduced by Julius Caesar in 46 BC (708 AUC), was a reform of the Roman calendar. It took effect in 45 BC (AUC 709), shortly after the Roman conquest of Egypt. It was the predominant calendar in the Roman world, most of Europe, and in European settlements in the Americas and elsewhere, until it was refined and gradually replaced by the Gregorian calendar, promulgated in 1582 by Pope Gregory XIII. The Julian calendar gains against the mean tropical year at the rate of one day in 128 years. For the Gregorian the figure is one day in 3,226 years. The difference in the average length of the year between Julian (365.25 days) and Gregorian (365.2425 days) is 0.002%.
From a history point of view the course of the Sun and Moon have been the basis of timekeeping, and hence calendars.
29.6.2 Date Formats

There are a number of commonly used date formats. Here are some Gregorian variations, with figures for the countries that use these formats.

 	DMY - Asia (Central, SE, West), Australia (24), New Zealand (5), parts of Europe (ca. 675), Latin America (570), North Africa; India (1240), Indonesia (250), Nigeria (170), Bangladesh (150), Russia (140) 3295

	YMD - China (1360), Koreas (75), Taiwan (23), Hungary (10), Iran (80), Japan (130), Lithuania. Known in other countries due to ISO 8601. 1660

	MDY - Federated States of Micronesia, United States (320) 320

	DMY, MDY Philippines (100), Saudi Arabia (30) 130

	DMY, YMD Albania (3), Austria (9), Croatia (4), Czech Republic (11), Denmark (6), [1] Germany (81), [2][not in citation given] Hong Kong (9), Kenya (45), Latvia (2), Macau (1), Nepal (50), South Africa (54), Slovenia (2), Sweden (10) [3] 290

	DMY, MDY, YMD Canada (40) 40

29.6.3 Other Calendar Systems

Quite a number of calendar systems exist, including	Chinese

	Coptic

	Islamic

	Jewish

	Julian

29.6.4 Proleptic Gregorian Calendar

The proleptic Gregorian calendar is produced by extending the Gregorian calendar backward to dates preceding its official introduction in 1582. In countries that adopted the Gregorian calendar later, dates occurring in the interim (between 1582 and the local adoption) are sometimes “Gregorian-ized” as well. For example, George Washington was born on February 11, 1731 (Old Style), as Britain was using the Julian calendar. After the switch, that day became February 22, which is the date commonly given as Washington’s birthday.
The proleptic Gregorian calendar is explicitly required for all dates before 1582 by ISO 8601:2004 (clause 4.3.2.1 The Gregorian calendar) if the partners to information exchange agree. It is also used by most Maya scholars, [2] especially when converting Long Count dates (1st century BC 10th century).
Extending the Gregorian calendar backwards to dates preceding its official introduction produces a proleptic calendar, which should be used with some caution. For ordinary purposes, the dates of events occurring prior to 15 October 1582 are generally shown as they appeared in the Julian calendar, with the year starting on 1 January, and no conversion to their Gregorian equivalents. For example, the Battle of Agincourt is universally considered to have been fought on 25 October 1415 which is Saint Crispin’s Day.
29.6.5
 References

Wikipedia is a good starting place.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figaq_HTML.gif]

29.7 An Abstract Base Class in Fortran
A type in Fortran can have the abstract attribute.
The DEFERRED attribute defers the implementation of a type-bound procedure to extensions of the type and it can appear only in an abstract type. The dynamic type of an object cannot be abstract; therefore, a deferred type-bound procedure cannot be invoked. An extension of an abstract type need not be abstract if it has no deferred type-bound procedures.
A short example of an abstract type taken from the standard is given below.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figar_HTML.gif]

Section C.2.4 of the standard has an additional example on abstract types. It illustrates how an abstract type can be used as the basis for a collection of related types, and how a non-abstract member of that collection can be created by type extension.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figas_HTML.gif]

The actual drawing procedure will draw a triangle in WINDOW with vertices at x and y coordinates at OBJECT%POSITION(1)[image: $$+$$]OBJECT%VERTICES(1,1:3) and OBJECT%POSITION(2)+OBJECT%VERTICES(2,1:3):[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figat_HTML.gif]

The following example is a variant of the shape class in the earlier chapter on object oriented programming.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figau_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figav_HTML.gif]

Let us look at this example in more depth.
Here is the derived class.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figaw_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figax_HTML.gif]

here is the test program that demonstrates the use of an abstract base class and simple concrete derived class.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figay_HTML.gif]

29.8
 Problems

29.1
Compile and run the examples in this chapter.

29.2
Add a US date module and test program for simple inheritance.

29.3
Add the US date data type to the polymorphic example.

29.4
The names of the days of the week and months in the year are English.
Here are their Welsh equivalents.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figaz_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figba_HTML.gif]

Choose a language of you own, and write another language version of the date class. Test it out.

29.5
The following module contains code that tests the validity of a date using a date expressed in terms of days, months and years.[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figbb_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figbc_HTML.gif]

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figbd_HTML.gif]

How easy would it be to add date checking to the base class?

29.9 Bibliography
ISO/IEC DIS 1539-1 Information technology – Programming languages – Fortran – Part 1: Base language	Fortran 2018 draft standard.

[image: ../images/112282_4_En_29_Chapter/112282_4_En_29_Figbe_HTML.gif]

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_30

30. Introduction to Submodules

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 The competent programmer is fully aware of the limited size of his own skull. He therefore approaches his task with full humility, and avoids clever tricks like the plague

Edsger Dijkstra

 Aims

The aims of this chapter is to provide a short introduction to submodules.
30.1 Introduction
Modules were introduced into Fortran in the 1990 standard. Over the next ten or so years a number of issues arose that lead to the TR on Enhanced Module Facilities, N1602, which was the starting point for the submodule facility in Fortran. A copy can be found at the WG5 site. Visit[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figa_HTML.gif]

to obtain a copy.
The actual published technical report (TR 19767) can be found at the ISO site.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figb_HTML.gif]

The document discussed the fact that the module system of Fortran was adequate for a wide range of problems, but had shortcomings when one ended up with large modules.
Four areas of concern were identified in this document:	Decomposing large and interconnected facilities. If an intellectual concept is large and internally interconnected, it requires a large module to implement it. Decomposing such a concept into components of tractable size using modules may require one to convert private data to public data. One problem occurs during maintenance, when one must then answer the question where is this entity used?

	Avoiding recompilation cascades. Once the design of a program is stable, few changes to a module occur in its interface, that is, in its public data, public types, the interfaces of its public procedures, and private entities that affect their definitions. We refer to the rest of a module, that is, private entities that do not affect the definitions of public entities, and the bodies of its public procedures, as its implementation. Changes in the implementation have no effect on the translation of other program units that access the module. The existing module facility, however, draws no structural distinction between the interface and the implementation. Therefore, if one changes any part of a module, most language translation systems have no alternative but to conclude that a change might have occurred that could affect the translation of other modules that access the changed module. This effect cascades into modules that access modules that access the changed module, and so on. This can cause a substantial expense to re-translate and re-certify a large program. Re-certification can be several orders of magnitude more costly than retranslation.

	Packaging proprietary software. If a module is used to package proprietary software, the source text of the module cannot be published as authoritative documentation of the interface of the module, without either exposing trade secrets, or requiring the expense of separating the implementation from the interface every time a revision is published.

	Easier library creation. Most Fortran translator systems produce a single file of computer instructions and data, frequently called an object file, for each module. This is easier than producing an object file for the specification part and one for each module procedure. It is also convenient, and conserves space and time, when a program uses all or most of the procedures in each module. It is inconvenient, and results in a larger program, when only a few of the procedures in a general purpose module are needed in a particular program.

We provide a brief technical background below and then look at an example based on the date class from the second object oriented chapter.
30.2 Brief Technical Background
The following is taken from Sect. 14.2.3 of the Fortran 2018 standard.
A submodule is a program unit that extends a module or another submodule. The program unit that it extends is its host, and is specified by the parent-identifier in the submodule-stmt.
A module or submodule is an ancestor program unit of all of its descendants, which are its submodules and their descendants. The submodule identifier is the ordered pair whose first element is the ancestor module name and whose second element is the submodule name; the submodule name by itself is not a local or global identifier.
A module and its submodules stand in a tree-like relationship one to another, with the module at the root. Therefore, a submodule has exactly one ancestor module and can have one or more ancestor submodules.
A submodule may provide implementations for separate module procedures (15.6.2.5), each of which is declared within that submodule or one of its ancestors, and declarations and definitions of other entities that are accessible by host association in its descendants.
Here is an example taken from N1602.
The example module POINTS below declares a type POINT and a module procedure interface body for a module function POINT_DIST. Because the interface body includes the MODULE prefix, it accesses the scoping unit of the module by host association, without needing an IMPORT statement; indeed, an IMPORT statement is prohibited.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figc_HTML.gif]

The example submodule POINTS A below is a submodule of the POINTS module. The type POINT and the interface POINT_DIST are accessible in the submodule by host association. The characteristics of the function POINT_DIST are redeclared in the module function body, and the dummy arguments have the same names. The function POINT_DIST is accessible by use association because its module procedure interface body is in the ancestor module and has the PUBLIC attribute.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figd_HTML.gif]

A complete example is given below.
30.3 Example 1: Rewrite of the Date Class Using Submodules
In this example we rewrite the base date module to have type declarations and interfaces for each of the contained module procedures.
The submodule will be based on the base date module and will have the implementations of the contained methods.
We have thus effectively decoupled the interface from the implementation.
The stages we followed are	Duplicate the original module, creating an interface module and a implementation submodule

	Add interfaces for each function and subroutine to the interface module

	Add the new syntax to the interfaces in the module, i.e. add the MODULE keyword to each function and subroutine

	Remove all executable code from the interface module, in this example all code after the contains statement

	Remove all code before the contains statement in the implementation module

	Add the new submodule syntax

	Add the new syntax to each contained procedure, i.e. add the MODULE keyword to each function and subroutine

	Copy the module test program

	Change the test program to use the new module names

We can distribute the module interface, and effectively keep the implementation functions and subroutines hidden.
Here is the first source file. This is the base date class, but now rewritten just to have the interfaces, and no executable or implementation code.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Fige_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figf_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figg_HTML.gif]

Here is the submodule that actually has the implementation.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figh_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figi_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figj_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figk_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figl_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figm_HTML.gif]

Here is the Fortran driving program to test the submodule out.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Fign_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figo_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figp_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figq_HTML.gif]

As can be seen the test or driving program is identical to the earlier, non submodule version.
30.4 Example 2: Rewrite of the First Order RKM ODE Solver Using Modules
The module rkm_module from Chap. 26 contained the runge_kutta_merson subroutine which was an implementation of the Runge Kutta Merson (RKM) algorithm.
We have now introduced a submodule called rkm_module_implementation which contains the runge_kutta_merson subroutine. By moving the body of the procedure into a submodule any subsequent changes to the body will typically only require recompilation of the submodule. Here is the new RKM module code.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figr_HTML.gif]

Here is the RKM submodule.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figs_HTML.gif]

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figt_HTML.gif]

Here is the fun1_module, which is the same code as in Chap. 26.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figu_HTML.gif]

Here is the main program, which is the same code as in Chap. 26.[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figv_HTML.gif]

30.5 Problems
30.1
Compile and run the above example. Compare the output to the previous version.

30.2
Convert an earlier module example to use submodules, with an interface module and an implementation submodule.

30.6 Bibliography
ISO/IEC DIS 1539-1 Information technology – Programming languages – Fortran – Part 1: Base language	Fortran 2018 draft standard.

[image: ../images/112282_4_En_30_Chapter/112282_4_En_30_Figw_HTML.gif]

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_31

31. Introduction to Parallel Programming

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 ‘Can you do addition?’ the White Queen asked. ‘What’s one and one and one and one and one and one and one and one and one and one?’

 ‘I don’t know’ said Alice. ‘I lost count.’

 ‘She can’t do addition,’ the Red Queen interrupted.

Lewis Carroll, Through the Looking Glass and What Alice Found There

 Aims

The aims of this chapter is to provide a short introduction to parallel programming.
31.1 Introduction
Parallel programming involves breaking a program down into parts that can be executed concurrently. Here is a simple diagram to illustrate the idea.[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figa_HTML.gif]

On the left hand side we have a sequential program and this steps through linearly from beginning to end. The right hand side has the same program that has been partially parallelised. There are two parallel regions and the work here is now shared between two processes or threads. At each parallel part of the program we have the following[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figb_HTML.gif]

The theory is that the overall run time of the program will have been reduced or we will have been able to solve a larger problem by parallelising our code. In the above example we have divided the work between two processes or threads. Here are some details of a range of processors which support multiple cores. Visit the AMD and Intel sites for up to date information.[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figc_HTML.gif]

Intel introduced hyperthreading technology in 2002. For each physical processor core the Intel chip has the operating system can see or address two virtual or logical cores, and can share the workload between them when possible. See the Wikipedia entry for more information.[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figd_HTML.gif]

There are several ways of doing parallel programming, and this chapter will look at three ways of doing this in Fortran. There are a common set of concepts and terminology that are useful to know about, whichever method we use, and we will cover these first.
31.2 Parallel Computing Classification
Parallel computing is often classified by the way the hardware supports parallelism. Two of the most common are:	multi-processor and multi-core computers having multiple processing elements within a single system

	clusters or grids with multiple computers connected to work together.

Modern large systems are increasingly hybrids of the two above.
31.3 Amdahl’s Law
Amdahl’s law is a simple equation for the speedup of a program when parallelised. It assumes that the problem size remains the same when parallelised. In the equation below	P is the proportion of the program that can be parallelised

	(1-P) is the serial proportion

	N is the number of processors

	speedup = 1 / ((1-P) [image: $$+$$] P/N).

We have included a couple of graphs to illustrate the above. We have written programs that use the dislin graphics library to do the plots. More information on these programs can be found in Chap. 35

 , where we have a look at third party numeric and graphics libraries.
31.3.1 Amdahl’s Law Graph 1–8 Processors or Cores
[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Fige_HTML.gif]
31.3.2 Amdahl’s Law Graph 2–64 Processors or Cores
[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figf_HTML.gif]
31.4 Gustafson’s Law
Gustafson’s Law is often seen as a contradiction of Amdahl’s Law. Simplistically it states that programmers solve larger problems when parallelising programs.
The equation for Gustafson’s Law is given below.

 	N is the number of processors

	Serial is the proportion that remains serial

	Speedup(N) = N - Serial * (N - 1).

We have again included a graph to illustrate the above.
31.4.1 Gustafson’s Law Graph 1–64 Processors or Cores
[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figg_HTML.gif]
31.5 Memory Access
Memory
 access times fall into two main categories that are of interest in parallel computing
	uma - uniform memory access. Each element of main memory can be accessed with the same latency and bandwidth. Multi-processor and multi-core computers typically have this behaviour.

	numa - non uniform memory access. Distributed memory systems have non-uniform memory access. Clusters or grids with multiple computers connected to work together have this behaviour.

31.6 Cache
Modern processors have a memory hierarchy. They typically have two or more levels:	main memory

	cpu memory

and there is a speed and cost link. Main memory is cheap and relatively slow in comparison to the cpu memory.
The cpu memory or cache is used to reduce the effective access time to memory. If the information that the program requires is in the cpu cache then the average latency of memory accesses will be closer to the cache latency than to the latency of main memory. Getting high performance from a computer normally means writing cache friendly programs. This means that the data and instructions that the program needs are already in the cache and don’t need to be accessed from the much slower main memory.
In a multi-core and multi-cpu system each core and cpu will have their own memory or cache. This introduces the problem of cache coherency - i.e. the consistency of data stored in local caches compared to the data in the common shared memory. This problem must obviously be addressed when doing parallel programming.
31.7 Bandwidth and Latency
Bandwidth is the rate at which data can be transferred. Latency is the start up time for a data transfer. We normally want a high bandwidth and low latency. Table 31.1 looks at some figures for several interconnects.Table 31.1Bandwidth and latency

	 	MPI bandwidth or theoretical maximum
GB/s
	latency

 [image: $$\upmu s$$]

	Gigabit ethernet
	0.125
	
 [image: $${\approx }100$$]

	Infiniband
	1.3
	4.0

	Myrinet 10-G
	1.2
	2.1

	Quadrics QsNet II
	0.9
	2.7

	Cray SeStar2
	2.1
	4.5

31.8 Flynn’s Taxonomy
Flynn’s taxonomy is an old, but still widely used, classification scheme for computer architecture.

 	Single Instruction, Single Data stream (SISD) A sequential computer which exploits no parallelism in either the instruction or data streams. Term rarely used.

	Single Instruction, Multiple Data streams (SIMD) A computer which exploits multiple data streams against a single instruction stream to perform operations which may be naturally parallelised. For example, an array processor or GPU.

	Multiple Instruction, Single Data stream (MISD) Multiple instructions operate on a single data stream. Term rarely used.

	Multiple Instruction, Multiple Data streams (MIMD) Multiple autonomous processors simultaneously executing different instructions on different data. Distributed systems are generally recognized to be MIMD architectures; either exploiting a single shared memory space or a distributed memory space. Essentially separate computers working together to solve a problem.

We also have the term	Single Program Multiple Data - An identical program executes on a MIMD computer system. Conditional statements in the code mean that different parts of the program execute on each system.

31.9 Consistency Models
Parallel programming languages and parallel computers must have a consistency model (also known as a memory model). The consistency model defines rules for how operations on computer memory occur and how results are produced.
31.10 Threads and Threading
In computing a thread of execution is often regarded as the smallest unit of processing that can be scheduled by an operating system. The implementation of threads and processes generally varies with operating system.
31.11 Threads and Processes
From a strict computer science point of view threads and processes are different. However when looking simply at parallel programming the term can often be used interchangeably. In the following we use the term thread.
31.12 Data Dependencies
A data dependency is when one statement in a program depends on a calculation from a previous statement. This will obviously hinder parallelism.
31.13 Race Conditions
Race conditions can occur in programs when separate threads depend on a shared state or variable.
31.14 Mutual Exclusion - Mutex
A mutex is a programming construct that is used to allow multiple threads to share a resource. The sharing is not simultaneous. One thread will acquire the mutex and then lock the other threads from accessing it until it has completed.
31.15 Monitors
In concurrent programming, a monitor is an object or module intended to be used safely by more than one thread. The defining characteristic of a monitor is that its methods are executed with mutual exclusion. That is, at each point in time, at most one thread may be executing any of its methods. This mutual exclusion greatly simplifies reasoning about the implementation of monitors compared with code that may be executed in parallel.
31.16 Locks
In computing a lock is a synchronization mechanism for enforcing limits on access to a resource in an environment where there are many threads of execution. Locks are one way of enforcing concurrency control policies.
31.17 Synchronization
The concept of synchronisation is often split into process and data synchronisation.
In process synchronisation several processes or threads come together at a certain part of a program.
Data synchronisation is concerned with keeping data consistent.
31.18 Granularity and Types of Parallelism
Granularity is a useful concept in parallel programming. A common classification is	Fine-grained - a lot of small components, larger amounts of communication and synchronisation

	Coarse-grained - a small number of larger components, hence smaller amounts of communication and less synchronisation

The terms are of course relative.
We also have the concept of	Embarrassingly parallel - very little effort is required to partition the task and there is little or no communication and synchronisation.

A simple example of this would be a graphics processor processing individual pixels.
31.19 Partitioned Global Address Space - PGAS
PGAS is a parallel programming model. It assumes a global memory address space that is logically partitioned and a portion of it is local to each processor. The PGAS model is the basis of Unified Parallel C, Coarray Fortran, Titanium, Fortress, Chapel and X10.
31.20 Fortran and Parallel Programming
Most Fortran compilers now offer support for parallel programming. We next provide a brief coverage of three methods	MPI - Message Passing Interface

	OpenMP - Open Multi-Processing

	CoArray Fortran.

Subsequent chapters look at simple examples using each method.
31.21 MPI
MPI started with a meeting that was held at the Supercomputing 92 conference. The attendants agreed to develop and implement a common standard for message passing. The first MPI standard, called MPI-1 was completed in May 1994. The second MPI standard, MPI-2, was completed in 1998.
MPI is effectively a library of C and Fortran callable routines. It has become widely used and is available on a number of platforms. Some useful web addresses are given below. The first is hosted at Argonne National Laboratory.[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figh_HTML.gif]

MPI was designed by a broad group of parallel computer users, vendors, and software writers. These included	Vendors - IBM, Intel, TMC, Meiko, Cray, Convex, Ncube

	Library writers - PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda

	Companies - ARCO, Convex, Cray Research, IBM, Intel, KAI, Meiko, NAG, nCUBE, Parasoft, Shell, TMC

	Laboratories - ANL, GMD, LANL, LLNL, NOAA, NSF, ORNL, PNL, Sandia, SDSC, SRC

	Universities - UC Santa Barbara, Syracuse University, Michigan State University, Oregon Grad Inst, University of New Mexico, Mississippi State University, University of Southampton, University of Colorado, Yale University, University of Tennessee, University of Maryland, Western Michigan University, University of Edinburgh, Cornell University, Rice University, University of San Francisco.

So whilst MPI is not a formal standard like Fortran, C or C++, its development has involved quite a wide range of people. The following site has details of MPI meetings.[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figi_HTML.gif]

The steering committee (March 2015) and affiliations are given below	Jack Dongarra - Computer Science Department, University of Tennessee

	Al Geist - Group Leader, Computer Science Research Group, Oak Ridge National Laboratory

	Richard Graham

	Bill Gropp - Computer Science Department, University of Illinois Urbana-Champaign

	Andrew Lumsdaine - Computer Science Department, Indianna University

	Ewing Lusk - Mathematics and Computer Science Division, Argonne National Laboratory

	Rolf Rabenseifner - High Performance Computing Center, Germany.

Another useful site is the Open MPI site.[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figj_HTML.gif]

The following is taken from their site.
The Open MPI Project is an open source MPI implementation that is developed and maintained by a consortium of academic, research, and industry partners. Open MPI is therefore able to combine the expertise, technologies, and resources from all across the High Performance Computing community in order to build the best MPI library available. Open MPI offers advantages for system and software vendors, application developers and computer science researchers.
Both sites provide free down loadable implementations. Commercial implementations are available from	Cray

	IBM

	Intel

	Microsoft

amongst others.
MPI is, at the time of writing, the dominant parallel programming method used in Fortran. MPI and Fortran currently account for over 80% of the code running on the Archer Service in Edinburgh. Archer is the UK’s national supercomputing resource, funded by the UK Research Councils. Visit[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figk_HTML.gif]
 for more information.
31.22 OpenMP
OpenMP (Open Multi-Processing) is an application programming interface that supports shared memory multiprocessing programming in three main languages (C, C++, and Fortran) on a range of hardware platforms and operating systems. It consists of a set of compiler directives, library routines, and environment variables that determine the run time behaviour of a program.
The OpenMP Architecture Review Board (ARB) has published several versions	October 1997 - OpenMP for Fortran 1.0. October the following year they released the C/C++ standard.

	2000 - Fortran version

	2005 - Fortran 2.5

	2008 - OpenMP 3.0. Included in the new features in 3.0 is the concept of tasks and the task construct.

	2011 - OpenMP 3.1

	2013 - OpenMP 4.0 was released in July 2013.

A number of compilers from various vendors or open source communities implement the OpenMP API, including	Absoft

	Cray

	gnu

	Hewlett Packard

	IBM

	Intel

	Lahey/Fujitsu

	Nag

	Oracle/Sun

	PGI

The main OpenMP web site is:[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figl_HTML.gif]

31.23 Coarray Fortran
Coarrays became part of Fortran in the 2008 standard. The original ideas came from work by Robert Numrich and John Reid in the 1990s. They are based on a single program multiple data model. A coarray Fortran program is interpreted as if it were duplicated several times and all copies execute asynchronously. Each copy has its own set of data objects and is termed an image. The array syntax of Fortran is extended with additional trailing subscripts in square brackets to provide a concise representation of references to data that is spread across images.
The syntax is architecture independent and may be implemented on:	Distributed memory machines.

	Shared memory machines.

	Clustered machines.

Work has now been completed on additional Coarray functionality and is in the Fortran 2018 standard.
31.24 Other Parallel Options
There are a number of additional parallel methods. They are covered for completeness.
31.24.1 PVM
Parallel Virtual Machine consists of a library and a run-time environment which allow the distribution of a program over a network of (even heterogeneous) computers. Visit	
 [image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figm_HTML.gif]

for more details.
31.24.2 HPF
To quote their home page[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Fign_HTML.gif]

‘The High Performance Fortran Forum (HPFF), a coalition of industry, academic and laboratory representatives, works to define a set of extensions to Fortran 90 known collectively as High Performance Fortran (HPF). HPF extensions provide access to high-performance architecture features while maintaining portability across platforms.’
They also provide details of:	Surveys of HPF compilers and tools.

	Currently available commercial HPF compilers.

	public domain HPF compilation systems.

	Research prototypes of HPF and HPF-related compilation systems.

	Mailing list.

31.25 Top 500 Supercomputers
Have a look at[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figo_HTML.gif]
 for a lot of links to supercomputing centres and information on parallel computing in general. To see what can be done with all this processing power visit:[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figp_HTML.gif]

31.26 Summary
Fortran has long been one of the main languages used in parallel programming. This chapter has provided a brief coverage of some of the background to parallel programming in general, and Fortran in particular.
In the next three chapters we will look at a small number of programs that introduce some of the basic syntax of parallel programming with MPI, OpenMP and Coarray Fortran. We will also look at solving one problem serially and then solve it using the parallel features provided by MPI, OpenMP and Coarray Fortran. We provide timing details so that we can see the benefits that parallel solutions offer.

 Bibliography

The ideas involved in parallel computing are not new and we’ve included a couple of references about computer hardware and operating systems, which provide information for the more inquisitive reader. Wikipedia is an on-line source of information in this area.
Up to date hardware information can be found at most hardware vendor sites. Here are the web sites for AMD, IBM and Intel.[image: ../images/112282_4_En_31_Chapter/112282_4_En_31_Figq_HTML.gif]

Baer J.L., Computer Systems Architecture, Computer Science Press, 1980.
The chapters on the memory hierarchy and memory management are old, but well written.
Deitel H.M., Operating Systems, Addison Wesley, 1990.
Part two of the book (process management) has chapters on process concepts, asynchronous concurrent processes, concurrent programming and deadlock and indefinite postponement. The bibliographies at the end of each chapter are quite extensive.
The following four books provide a good coverage of the essentials of MPI and OpenMP.
Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Parallel Programming in OpenMP, Morgan Kaufmann.
Chapman B., Jost G., Van Der Pas R., Using OpenMP, MIT Press.
Gropp W., Lusk E., Skjellum A., Using MPI: Portable Parallel Programming with the Message Passing Interface, MIT Press.
Pacheco P., Parallel Programming with MPI, Morgan Kaufmann.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_32

32. MPI - Message Passing Interface

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 In almost every computation a great variety of arrangements for the succession of the processes is possible, and various considerations must influence the selections amongst them for the purposes of a calculating engine. One essential object is to choose that arrangement which shall tend to reduce to a minimum the time necessary for completing the calculation.

Ada Lovelace

 Aim

The aims of this chapter is to provide a short introduction to MPI programming in Fortran.
32.1 Introduction
Documents for the MPI standard are available from the MPI Forum. Their web address is[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figa_HTML.gif]

If you are going to do MPI programming we recommend getting hold of the document that refers to your implementation.
32.2 MPI Programming
MPI programming typically requires two components, a compiler and an MPI implementation. Two common ways of doing MPI programming are	a cluster or multiple systems running MPI

	a single system running MPI

In both cases an MPI installation will normally provide an MPI daemon or service that can then be called from an MPI program.
32.3 Compiler and Implementation Combination
A number of commercial companies provide a combined bundle including	Cray

	IBM

	Intel

	PGI

The Cray and IBM offerings will most likely be for a cluster. Intel and PGI provide products for both clusters and single systems. You should check their sites for up to date information.
32.4 Individual Implementation
A low cost option is to get hold of an MPI implementation that works with your existing compiler, and install it yourself on your own system.
The Intel MPI product is available as a free download for evaluation purposes.
There are a number of free MPI implementations, and details are given below for two of them.
32.4.1 MPICH2
They are based at Argonne National Laboratory[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figb_HTML.gif]

MPICH2 is distributed as source (with an open-source, freely available license). It has been tested on several platforms, including Linux (on IA32 and x86-64), Mac OS/X (PowerPC and Intel), Solaris (32- and 64-bit), and Windows.
32.4.2 Open MPI
They can be found at[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figc_HTML.gif]

They develop Open MPI on Linux, OS X, Solaris (both 32 and 64 on all platforms) and Windows (Windows XP, Windows HPC Server 2003/2008 and also Windows 7 RC).
32.5 Compiler and MPI Combinations Used in the Book
We have used a variety of compilers and MPI combinations, including	Intel compiler + mpich2, Windows

	Intel compiler + Intel MPI, Windows

	gfortran + openmpi, openSuSe Linux

	Cray compiler, Hector Service

	Cray compiler, Archer Service

	PGI compiler, Hector Service

	IBM compiler, Met Office Slovakia

We haven’t tried out all of the examples with all of the compiler and MPI implementations.
32.5.1 Cray Archer System
The Archer hardware consists of the Cray XC30 MPP supercomputer, external login nodes and postprocessing nodes, and the associated filesystems. There are 4920 compute nodes in Archer phase 2 and each compute node has two 12-core Intel Ivy Bridge Xeon series processors (2.7 GHz Intel E5-2697) giving a total of 118,080 processing cores. Each node has a total of 64 GB of memory with a subset of large memory nodes having 128 GB. A high-performance Lustre storage system is available to all compute nodes. There is no local disk on the compute nodes as they are housed in 4-node blades (the image below shows an XC30 blade with 4 compute nodes).
32.6 The MPI Memory Model
MPI
 is characterised generally by distributed memory and	All threads/processes have access to their own private memory only

	Data transfer and most synchronization has to be programmed explicitly

	All data is private

	Data is shared explicitly by exchanging buffers in MPI terminology

but in this chapter we will also show the use of MPI on one system.
32.7 Example 1: Hello World
The first example is the classic hello world program.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figd_HTML.gif]

Let us look at each statement in turn.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Fige_HTML.gif]

With most modern MPI implementations we can make available the MPI setup with a use statement. Older implementations required an include file option.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figf_HTML.gif]

This must be the first MPI routine called. The Fortran binding only takes one argument, an integer variable that is used to return an error number. It sets up the MPI environment.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figg_HTML.gif]

is typically the second MPI routine called. All MPI communication is associated with a so called communicator that describes the communication context and an associated set of processes. In this simple example we use the default communicator, called mpi_comm_world. The number of processes available is returned via the second argument. This means that the above program is duplicated on each process, i.e. number_of_processes determines how many copies are running.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figh_HTML.gif]

The call above returns the process number for this process or copy of the program.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figi_HTML.gif]

Each copy of the program will print out this message.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figj_HTML.gif]

The call to mpi_finalize is the last call to the MPI system we need to make.
Here is the output from the Intel compiler and Intel MPI option under a Windows system.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figk_HTML.gif]

Notice that process numbering starts at 0. Note also that there is no particular order to the process numbers.
Here is the output from gfortran and openmpi on a openSuSe system. This is the same system as the above, as it is dual boot.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figl_HTML.gif]

Now the ordering is sequential.
Here is the output from the Cray Archer service. This uses 48 processes. The job is submitted as a batch job, via a queueing mechanism. This is a common mechanism on larger multi user systems.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figm_HTML.gif]

The order appears to be pretty random!
32.8 Example 2: Hello World Using Send and Receive
The
 following is a variation of the above. In the first example we had no communication between processes. Sending and receiving of messages by processes is the basic MPI communication mechanism. The basic point-to-point communication operations are send and receive. Their use is shown in the example below. These are blocking send and receive operations. A blocking send does not return until the message data and envelope have been safely stored away so that the sender is free to modify the send buffer. The message might be copied directly into the matching receive buffer, or it might be copied into a temporary system buffer.
In this example process 0 is the master process and this communicates with every other process or program.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Fign_HTML.gif]

The calls to	
 mpi_init

	
 mpi_comm_size

	
 mpi_comm_rank

	
 mpi_finalize

are the same as in the first example. We have the additional code	A test to see if we are process 0. If we are we then print out a message saying that we are process 0. We next loop from 1 to number_of_processes -1 and call mpi_recv.

	If we are not process 0 we make a call to mpi_send - remember that the program executes on all processes.

Let us look at the calls to mpi_recv and mpi_send in more depth. Here is an extract from the MPI 2.2 specification describing mpi_recv[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figo_HTML.gif]

The following shows the mapping between MPI data types and Fortran data types.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figp_HTML.gif]

our arguments to mpi_recv are	this_process_number - process 0 is doing the receiving

	1 item

	mpi_integer - an mpi_integer variable

	i - receive from this process

	1 - tag

	mpi_comm_world - the communicator

	status - an integer array of size mpi_status_size

	
 error_number

Here is an extract from the 2.2 specification regarding mpi_send[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figq_HTML.gif]
 the arguments to our mpi_send are	this_process_number - send from this process

	1

	
 mpi_integer

	0 - send to this process number

	1

	mpi_comm_world - the communicator

	
 error_number

and as you can see the sends and receives are in matching pairs.
Here is an Intel sample run.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figr_HTML.gif]

Here is a Cray Archer sample run.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figs_HTML.gif]

32.9 Example 3: Serial Solution for pi Calculation
We
 choose numerical integration in this example. The following integral[image: $$\begin{aligned} \int _{0}^{1} \frac{4}{1+x^2} \ dx \end{aligned}$$]

is one way of calculating an approximation to [image: $$\pi $$], and is a problem that is easy to parallelise. The integral can be approximated by[image: $$\begin{aligned} 1/n \sum _{1}^{n} \frac{4}{1+\left(\frac{i-0.5}{n}\right) ^2} \end{aligned}$$]

According to Wikipedia [image: $$\pi $$] to 50 digits is
3.14159265358979323846264338327950288419716939937510
Another way of calculating [image: $$\pi $$] is using the formula [image: $$ 4 \ tan^{-1} (1) $$] and in Fortran this is 4.0*atan(1.0).
Consider the following plot of the above equation.
[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figt_HTML.gif]
To do the evaluation numerically we divide the interval between 0 and 1 into n sub intervals. The higher the value of n the more accurate our value of [image: $$\pi $$] will be, or should be.
Here is a serial program to do this calculation. The program is in three main parts. These are	The module precision_module - to set the precision throughout the whole code.

	The module timing_module - a timing module to enable us to time parts of the program. We will be using this module throughout the parallel examples to provide information about the performance of the algorithms.

	the program - that actually does the integration.

The first two modules are straightforward and we will only cover the integration solution in depth. We will be using this integration example in this chapter on MPI and the subsequent two on OpenMP and coarray Fortran.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figu_HTML.gif]

The first part of the code has the declarations for the variables we will be using. These are[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figv_HTML.gif]

We have an integer variable for the number of intervals we will be using. We have made this of default integer type, which will be 32 bit on most platforms, and will be up to 2, 147, 483, 647.
We then have the following variables	
 interval_width

	z - the variable we will be calculating numerically

	total - our total for the integration

	pi - our calculated value of [image: $$\pi $$]

	fortran_internal_pi - we use a common way of defining this using the internal atan function.

We then call the start_timing routine to print out details of the start time.
We next set the number of intervals. We choose 10 as an initial value. We will be doing the calculation for a number of interval sizes.
We calculate [image: $$\pi $$] using the atan intrinsic and print out its value. We will be using this value to determine the accuracy of our calculations.
We then have the loop that does the calculations for 9 values of the interval size from 10 to 1,000,000,000.
We calculate the interval width at the start of each loop and reset the total to zero at the start of each loop.
The following[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figw_HTML.gif]
 is the code that actually does the integration. We calculate x each time round the loop and then use this calculated value in our call to our function, summing up as we go along. We need to subtract a as we need the mid point of the interval for our value of x.
The loop finishes and we then calculate the value of [image: $$\pi $$] and print out details of the number of intervals, the calculated value of pi and the difference between the internal value of [image: $$\pi $$] and the calculated value.
We also print out timing information about this calculation. We then increment the number of intervals and repeat the above.
We need to know how long the serial version takes and how accurate our calculated value for [image: $$\pi $$] is.
Here is output from this program on a couple of systems and compilers.
Compiler 1 - Intel compiler, Windows[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figx_HTML.gif]

Compiler 2 - gfortran, Windows[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figy_HTML.gif]

Compiler 3 - Cray, Archer Service. Hardware details of this system are given earlier.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figz_HTML.gif]

The three sample serial runs provide us with information that we can use as a basis for an analysis of our parallel solution. We have information about the accuracy of the solution and timing details.
32.10 Example 4: Parallel Solution for pi Calculation
This

 example is a parallel solution to the above problem using MPI. We only show the parallel program. The precision and timing modules are the same as in the previous example.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figaa_HTML.gif]

The first difference is the [image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figab_HTML.gif]
 statement. This makes available the MPI functionality. We next have several variable declarations.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figac_HTML.gif]
 The variables partial_pi, total_pi and partial_sum are required by our parallel algorithm. The variable n is the number of intervals and we start this at 100,000 rather than 10 as we have seen from the serial solution that there are quite large differences between the internal value of pi and the calculated value below 100,000.
The variables this_process, n_processes and error_number are required for the MPI solution.
The real work is done in the following do loop.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figad_HTML.gif]

The key is to split up the work of the calculation between the processes we have available. The following shows how the work will be split up for n [image: $$=$$] 10 and with the number of processes ranging from 1 to 8.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figae_HTML.gif]

The above also shows how the algorithm balances the load of the computation across the processes.
Each process has its own partial_sum and partial_pi. We then use the call to the MPI subroutine mpi_reduce to calculate the total value of pi from the partial values of pi. Here is the MPI description of the mpi_reduce routine[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figaf_HTML.gif]

and[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figag_HTML.gif]

We then control the printing from process 0.
Here is sample output from the Intel compiler on a 6 core AMD system.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figah_HTML.gif]

We get a nearly linear speed up over the serial version, which shows how good the parallel solution is. Note that the time value is not the total time taken by all processes, but rather the effective running time of the program. If we are sat in front of the pc the program would complete in about a quarter of the time of the serial version. The numerical results are similar to the serial solution.
Table 32.1 summarises the output from the Intel compiler on an Intel I7 system. The table has the execution time details when running the program on 1 to 8 cores. The timing for cores 1–4 are for the program runs on real physical cores. The timing for cores 5–8 are when running on hyperthreaded cores. The execution time is worse when running on 5–7 cores. You should time your programs on hyperthreaded systems to see if running on the extra cores brings any benefit.Table 32.1Intel I7 with hyperthreading

	 	Cores
	 	 	 	 	 	 	
	Intervals
	1
	2
	3
	4
	5
	6
	7
	8

	100,000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000

	1,000,000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000

	10,000,000
	0.016
	0.016
	0.012
	0.000
	0.016
	0.000
	0.000
	0.016

	100,000,000
	0.234
	0.109
	0.078
	0.062
	0.094
	0.094
	0.078
	0.062

	1,000,000,000
	2.203
	1.141
	0.816
	0.609
	0.984
	0.812
	0.703
	0.594

As can be seen the performance for 5–8 cores is similar to that for 4 cores. Cores 5–8 represent the hyperthreaded cores.
Here is the output from the Cray at the Archer service. This is for 48 processes running on 2 nodes.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figai_HTML.gif]

32.11 Example 5: Work Sharing Between Processes
This
 example looks at one way of splitting work up between processes. We use the process number of determine which process does which work.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figaj_HTML.gif]

What we are going to do is allocate an array based on the number of processes and then split the (simple) work on the array up between the processes. We will calculate array indices from the process numbers.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figak_HTML.gif]

This statement calculates the array size based on the number of processes and a constant factor.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figal_HTML.gif]

This statement allocates the array.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figam_HTML.gif]

This statement initialises the whole array to zero. The following statements define the start and end points for the array processing for each process.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figan_HTML.gif]
 and partition the work up between the processes. Each process will have its own start and end values. The following do loop does the work:[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figao_HTML.gif]
 and all we are doing as this is filling sections of the array up with data based in process numbers.
The following[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figap_HTML.gif]
 uses sends and receives to transfer the updated array sections back to process zero. We are using recv_start to specify the starting point for the array transfer, and x(start) is the starting point for the transfer from the x array to process zero.
Here is sample output from the program when the number of processes is three.[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figaq_HTML.gif]

So with three processes we have an array of size 15, and the work that each process does is[image: ../images/112282_4_En_32_Chapter/112282_4_En_32_Figar_HTML.gif]
 and each process works on its own section of the array. At the end we use the sends and receives to make sure that the x array on process zero now has all of the updated values.
This code achieves load balancing across the processes.
32.12 Summary
The programs in this chapter provide an introduction to the use of MPI to achieve parallel programs in Fortran. We have also seen some of the timing benefits of parallel programming with MPI.
32.13 Problem
32.1
Compile and run the programs with your compiler and implementation of MPI. You should get similar results.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_33

33. OpenMP

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 The best way to have a good idea is to have a lot of ideas.

Linus Pauling

 Aim

The aims of this chapter is to provide a short introduction to OpenMP programming in Fortran.
33.1 Introduction
The main OpenMP site is[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figa_HTML.gif]

and this has details about the various specifications[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figb_HTML.gif]

We recommend downloading the documentation if you are going to do OpenMP programming. You should visit[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figc_HTML.gif]

to see an up to date list of what compilers support the OpenMP specification, and at what level.
The OpenMP site has a range of resources available, check out[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figd_HTML.gif]

for more information.
We’ve run the examples in this chapter with one or more of the following compilers	Cray

	gfortran

	Intel

	Nag

33.2 OpenMP Memory Model
OpenMP is a shared memory programming model. It has several features including	All threads have access to the same shared memory

	Data can be shared or private

	Data transfer is transparent to the programmer

	Synchronization takes place and is generally implicit

We will look at a small number of examples to highlight some of the key features. We provide a brief coverage of some of the OpenMP glossary to provide a basic background to OpenMP.

 	Threading Concepts	Thread - An execution entity with a stack and associated static memory, called thread private memory.

	OpenMP thread - A thread that is managed by the OpenMP run time system.

	Thread-safe routine - A routine that performs the intended function even when executed concurrently (by more than one thread).

	OpenMP language terminology	Structured block - For Fortran, a block of executable statements with a single entry at the top and a single exit at the bottom.

	Loop directive - An OpenMP executable directive whose associated user code must be a loop that is a structured block. For Fortran, only the do directive and the optional end do directive are loop directives.

	Master thread - The thread that encounters a parallel construct, creates a team, generates a set of tasks, then executes one of those tasks as thread number 0.

	Work sharing construct - A construct that defines units of work, each of which is executed exactly once by one of the threads in the team executing the construct. For Fortran, work sharing constructs are do, sections, single and work share.

	Barrier - A point in the execution of a program encountered by a team of threads, beyond which no thread in the team may execute until all threads in the team have reached the barrier and all explicit tasks generated by the team have executed to completion.

	Data Terminology	Variable - A named data object, whose value can be defined and redefined during the execution of a program. Only an object that is not part of another object is considered a variable. For example, array elements, structure components, array sections and substrings are not considered variables.

	Private variable - With respect to a given set of task regions that bind to the same parallel region, a variable whose name provides access to a different block of storage for each task region.

	Shared variable - With respect to a given set of task regions that bind to the same parallel region, a variable whose name provides access to the same block of storage for each task region.

	Execution Model	The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution perform tasks defined implicitly or explicitly by OpenMP directives. OpenMP is intended to support programs that will execute correctly both as parallel programs (multiple threads of execution and a full OpenMP support library) and as sequential programs (directives ignored and a simple OpenMP stubs library).

The above coverage should be enough to get started with OpenMP and understand the examples that follow.
33.3 Example 1: Hello World
This is the classic hello world program.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Fige_HTML.gif]

Let us go through the program one statement at a time.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figf_HTML.gif]

This use statement makes available the OpenMP environment. OpenMP statements are treated as comments without this statement.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figg_HTML.gif]

The first statement sets the variable [image: $$\texttt {nthread}$$] to the value returned by the OpenMP function [image: $$\texttt {omp_get_max_threads()}$$]. We then print out this value.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figh_HTML.gif]

OpenMP directives in Fortran start with the comment character (!), followed by a $ symbol and the characters omp. We use this form as it is works with both free format and fixed format Fortran source code.
The parallel do words indicate that the code that follows is a parallel region construct. In this case a [image: $${} \texttt {do}{} $$] loop. Here is a small table listing some of the OpenMP directives.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figi_HTML.gif]

We next have the parallel do.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figj_HTML.gif]

This loop prints out a message from each thread showing the thread number.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figk_HTML.gif]

This marks the end of the OpenMP parallel loop.
So at the start of the loop the OpenMP run time system does a fork and creates multiple threads. At the end of the loop we have a join operation and we are back to one thread of execution.
Here is the output from the Intel compiler on an Intel i7 system.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figl_HTML.gif]

These Intel systems have four real cores and each core supports hyper threading in Intel terminology. So the OpenMP system sees eight threads.
Here is the output from the gfortran compiler on the same system.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figm_HTML.gif]

The output is very similar, as one would expect.
33.4 Example 2: Hello World Using Default Variable Data Scoping
This is a simple variation on the first example. At first sight it appears to be identical in effect to example one.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Fign_HTML.gif]

However we have introduced a variable [image: $$\texttt {thread_number}$$] and are using the OpenMP default data scoping rules, i.e. we have said nothing. Here is the output from the Intel compiler.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figo_HTML.gif]

We appear to have a working program. Here is the output from the gfortran compiler.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figp_HTML.gif]

Now something appears to be not quite right! The default variable scoping rules mean that the variable [image: $${} \texttt {thread_number}{} $$] is available to all threads - in OpenMP terminology it is shared. The opposite of shared is private and each thread has their own copy. Example 3 corrects this problem.
33.5 Example 3: Hello World with Private [image: $${} \texttt {thread_number variable}{} $$]

 [image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figq_HTML.gif]

Here is the output from the gfortran compiler.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figr_HTML.gif]

Care must be taken with variables in OpenMP to ensure they have the correct data scoping state.
33.6 Example 4: Parallel Solution for pi Calculation
This is an OpenMP parallel implementation of the integration problem (Example 3) from the previous chapter. You should compare it with the MPI solution - Example 4 in the last chapter.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figs_HTML.gif]

Here is the output from the Intel compiler.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figt_HTML.gif]

We have similar timing improvements to the MPI solutions.
33.7 Example 5: Comparing the Timing of Whole Array Syntax, Simple Do Loops, Do Concurrent and an OpenMP Solution
The chapter on data structuring introduced the [image: $${} \texttt {do concurrent}{} $$] statement. In the example we solve a summation problem using the following four methods:	whole array syntax

	simple do loop

	do concurrent loop

	OpenMP parallel loop

Here is the program.[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figu_HTML.gif]

[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figv_HTML.gif]

[image: ../images/112282_4_En_33_Chapter/112282_4_En_33_Figw_HTML.gif]

Here are some timing details for three compilers on one system under both Linux and Windows.	 	gfortran
	 	Intel
	 	Nag
	
	 	Linux
	Windows
	Linux
	Windows
	Linux
	Windows

	Whole array
	0.019
	0.018
	0.013
	0.015
	0.034
	0.053

	Do loop
	0.019
	0.019
	0.018
	0.019
	0.020
	0.019

	Do concurrent
	0.019
	0.018
	0.018
	0.020
	0.019
	0.020

	openmp
	0.016
	0.016
	0.012
	0.012
	0.016
	0.016

33.8 Summary
This chapter briefly introduced the essentials of OpenMP programming. We have also seen the timing benefits that OpenMP programming can offer in the solution of the same problem as in the MPI chapter. We finished off by doing a comparison of summation in Fortran using four methods.
33.9 Problem
33.1
Compile and run the examples in this chapter with your compiler and compare the results.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_34

34. Coarray Fortran

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Science is a wonderful thing if one does not have to earn one’s living at it.

Einstein

 Aim

The aims of this chapter is to provide a short introduction to coarray programming in Fortran.
34.1 Introduction
Coarrays were the major component of the Fortran 2008 standard. As stated earlier they are based on a single program multiple data model. Coarrays are a simple parallel programming extension to Fortran. They are effectively variables that can be shared across multiple instances of the same program or images in Fortran terminology.
Coarray variables look like conventional Fortran arrays, except that they use [] brackets instead of () brackets. In the simple declaration below[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figa_HTML.gif]

We declare name to be a coarray and the * in the [] brackets means that the bounds of the coarray are calculated at run time, rather than compile time.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figb_HTML.gif]
 is a reference to the coarray on the current image.
We can then use the following statement[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figc_HTML.gif]
 to broadcast the value read in to each of the other images.
Note the Fortran coarray syntax here. We use the [] brackets to reference the coarray variable on other images and the omission of the [] brackets is a reference to the coarray variable on the current image.
34.2 Some Basic Coarray Terminology
The following is taken from the Fortran 2018 standard and covers some of the basic coarray terminology.

 	codimension attribute - The codimension attribute species that an entity is a coarray. The coarray-spec specifies its corank or corank and cobounds.

	Allocatable coarray - A coarray with the allocatable attribute has a specified corank, but its cobounds are determined by allocation or argument association.

	Explicit-coshape coarray - An explicit-coshape coarray is a named coarray that has its corank and cobounds declared by an explicit-coshape-spec.

	Coindexed named objects - A coindexed-named-object is a named scalar coarray variable followed by an image selector.

	Image selectors - An image selector determines the image index for a coindexed object.

	Image execution control and image control statements - The execution sequence on each image is specified in 5.3.5 of the standard.

	Execution of an image control statement divides the execution sequence on an image into segments. Each of the following is an image control statement:

	sync all statement;

	sync images statement;

	sync memory statement;

	allocate or deallocate statement that has a coarray allocate-object;

	critical or end critical;

	lock or unlock statement;

	Any statement that completes execution of a block or procedure and which results in the implicit deallocation of a coarray;

	stop statement;

	end statement of a main program.

	Coarray - A coarray is a data entity that has nonzero corank; it can be directly referenced or defined by any image. It may be a scalar or an array.

	Coarray dummy variables - If the dummy argument is a coarray, the corresponding actual argument shall be a coarray and shall have the volatile attribute if and only if the dummy argument has the volatile attribute.

	Some coarray intrinsics
	image_index - convert a cosubscript to an image index

	lcobound - cobounds of a coarray

	num_images - the number of images

	this_image - image index or cosubscripts

	ucobound - cobounds of a coarray

Let us look now at some simple examples.
34.3 Example 1: Hello World
The first is the classic Hello world.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figd_HTML.gif]

Here is the output from the Intel compiler.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Fige_HTML.gif]

Here is sample output from the Cray Archer service.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figf_HTML.gif]

The output is obviously very similar to the corresponding MPI and OpenMP versions.
34.4 Example 2: Broadcasting Data
Here is a
 simple program that broadcasts data from one image to the rest. This is a common requirement in parallel programming.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figg_HTML.gif]

Here is the output from the Intel compiler.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figh_HTML.gif]

Again no particular ordering of the image numbers.
34.5 Example 3: Parallel Solution for pi Calculation

 [image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figi_HTML.gif]

Here is the

 output from the Intel compiler.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figj_HTML.gif]

Here is the output from the Cray compiler.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figk_HTML.gif]

We get the time improvement we have seen with both the MPI and OpenMP solutions.
34.6 Example 4: Work Sharing
This example looks
 at one way of splitting work up between images. We use the image number to determine which image does which work. It is a coarray version of the MPI work sharing example.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figl_HTML.gif]

The following statements define the start and end points for the array processing for each image:[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figm_HTML.gif]
 and partitions the work between the images. Each image will have its own start and end values. The following do loop does the work:[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Fign_HTML.gif]

We need the[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figo_HTML.gif]
 to ensure that each image has completed before further processing, and we then print out the data from each image on image 1.
Here is a subset of the output from the Intel compiler. This example runs on 8 images.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figp_HTML.gif]

Here is a sample of the output from the Cray compiler on the Archer service. This example runs on 48 images.[image: ../images/112282_4_En_34_Chapter/112282_4_En_34_Figq_HTML.gif]

34.7 Summary
This chapter has looked briefly at some of the simple syntax of coarrays using a small set of examples. We have also seen the timing benefits that coarray programming can offer in the solution of the same problem.
34.8 Problem
34.1
Compile and run the examples in this chapter with your compiler.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_35

35. C Interop

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 We can’t solve problems by using the same kind of thinking we used when we created them.

Einstein

 Aim

This chapter looks briefly at C interoperability.
35.1 Introduction
C is a widely used programming language and there is a considerable amount of software written in C or with a C calling interface. Fortran 2003 introduced a standardised mechanism for interoperating with C.
There were limitations to this interoperability and ISO TS 29113 significantly extended the scope of the interoperation facilities. The TS was published in 2012.
In this chapter we provide a brief coverage of some of the technical details required for interoperability and then have a look at a couple of examples.
35.2 The iso_c_binding Module
There is an intrinsic
 module called iso_c_binding that contains named constants, derived types and module procedures to support interoperability.
35.3 Named Constants and Derived Types in the Module
In Table 35.1 the entities
 listed in the second column are named constants of type default integer.Table 35.1iso_c_binding module - named constants

	Fortran type
	Named constant from the iso_c_binding module (kind type parameter is positive if supported)
	C type

	 integer
	c_int
	int

	c_short
	short int

	c_long
	long int

	c_long_long
	long long int

	c_signed_char
	signed char

	 	unsigned char

	c_size_t
	size_t

	c_int8_t
	int8_t

	c_int16_t
	int16_t

	c_int32_t
	int32_t

	c_int64_t
	int64_t

	c_int_least8_t
	int_least8_t

	c_int_least16_t
	int_least16_t

	c_int_least32_t
	int_least32_t

	c_int_least64_t
	int_least64_t

	c_int_fast8_t
	int_fast8_t

	c_int_fast16_t
	int_fast16_t

	c_int_fast32_t
	int_fast32_t

	c_int_fast64_t
	int_fast64_t

	c_intmax_t
	intmax_t

	c_intptr_t
	intptr_t

	 real
	c_float
	float

	c_double
	double

	c_long_double
	long double

	 complex
	c_float_complex
	float complex

	c_double_complex
	double complex

	c_long_double_complex
	long double complex

	logical
	c_bool
	bool

	character
	c_char
	char

35.4 Character Interoperability
Table 35.2 shows the mapping between Fortran and C character types. The semantics of these values are explained in 5.2.1 and 5.2.2 of the C International Standard.Table 35.2C Interop character interoperability

	Name
	C definition
	c_char = −1
	c_char /= −1

	c_null_char
	Null character
	char(0)
	
 ’\0’

	c_alert
	Alert
	achar(7)
	
 ’\a’

	c_backspace
	Backspace
	achar(8)
	
 ’\b’

	c_form_feed
	Form feed
	achar(12)
	
 ’\f’

	c_new_line
	New line
	achar(10)
	
 ’\n’

	c_carriage_return
	Carriage return
	achar(13)
	
 ’\r’

	c_horizontal_tab
	Horizontal tab
	achar(9)
	
 ’\t’

	c_vertical_tab
	Vertical tab
	achar(11)
	
 ’\v’

35.5 Procedures in the Module
There are several procedures in this module. In the descriptions below, procedure names are generic and not specific.
A C procedure argument is often defined in terms of a C address. The c_loc and c_funloc functions are provided so that Fortran applications can determine the appropriate value to use with C facilities.
The c_associated function is provided so that Fortran programs can compare C addresses.
The c_f_pointer and c_f_procpointer subroutines provide a means of associating a Fortran pointer with the target of a C pointer.
More information can be found in Chap. 18 of the Fortran 2018 standard.
35.6 Interoperability of Intrinsic Types

Table 35.1 shows the interoperability between Fortran
 intrinsic types and C types. A Fortran intrinsic type with particular type parameter values is interoperable with a C type if the type and kind type parameter value are listed in the table on the same row as that C type; if the type is character, interoperability also requires that the length type parameter be omitted or be specified by an initialization expression whose value is one. A combination of Fortran type and type parameters that is interoperable with a C type listed in the table is also interoperable with any unqualified C type that is compatible with the listed C type.
The second column of the table refers to the named constants made accessible by the iso_c_binding intrinsic module.
A combination of intrinsic type and type parameters is interoperable if it is interoperable with a C type.
The above mentioned C types are defined in the C International Standard, clauses 6.2.5, 7.17, and 7.18.1.
35.7 Other Aspects of Interoperability
There are considerable restrictions
 on other aspects of interoperability. The following provides some brief details of other areas:
35.7.1 Interoperability with C Pointer Types
c_ptr and c_funptr shall be derived

 types with private components. c_ptr is interoperable with any C object pointer type. c_funptr is interoperable with any C function pointer type.
35.7.2 Interoperability of Scalar Variables
A scalar Fortran variable
 is interoperable if its type and type parameters are interoperable and it has neither the pointer nor the allocatable attribute.
An interoperable scalar Fortran variable is interoperable with a scalar C entity if their types and type parameters are interoperable.
35.7.3 Interoperability of Array Variables
An array Fortran variable is interoperable if its type and type parameters are interoperable and it is of explicit shape or assumed size.
35.7.4 Interoperability of Procedures and Procedure Interfaces
A Fortran procedure is interoperable
 if it has the bind attribute, that is, if its interface is specified with a proc-language-binding-spec.
35.7.5 Interoperation with C Global Variables
A C variable with external
 linkage may interoperate with a common block or with a variable declared in the scope of a module. The common block or variable shall be specified to have the bind attribute.
35.7.6 Binding Labels for Common Blocks and Variables
The binding label of a variable
 or common block is a value of type default character that specifies the name by which the variable or common block is known to the companion processor.
35.7.7 Interoperation with C Functions
A procedure that is interoperable
 may be defined either by means other than Fortran or by means of a Fortran subprogram, but not both.Table 35.3Compilers used

	Main program
	Subprogram
	Operating system

	gfortran
	gcc
	cygwin, Windows

	gfortran
	gcc
	MinGW-W64, Windows

	gfortran
	gcc
	openSuSe Linux

	Intel Fortran
	Microsoft Visual C++
	Windows

	Intel Fortran
	Intel C++
	Windows

	Nag Fortran
	Nag integrated gcc
	Windows

	Nag Fortran
	gcc
	MinGW-W64, Windows

	Oracle Fortran
	Oracle cc
	openSuSe Linux

	gcc
	gfortran
	cygwin, Windows

	gcc
	gfortran
	openSuSe Linux

	Intel C
	Intel Fortran
	openSuSe Linux

	Nag C
	Nag Fortran
	Windows

	Oracle C
	Oracle Fortran
	openSuSe Linux

	g++
	gfortran
	cygwin, Windows

	g++
	gfortran
	openSuSe Linux

	Intel C++
	Intel Fortran
	openSuSe Linux

	Intel C++
	Intel Fortran
	Windows

	Microsoft Visual C++
	Intel Fortran
	Windows

	Nag C++
	Nag Fortran
	Windows

	Oracle C++
	Oracle Fortran
	openSuSe Linux

Another useful source can be found in the December 2009 edition of Fortran Forum. Details are given at the end of the chapter.
35.8 Compilers Used in the Examples
Not all Fortran compilers work with all C and C++ compilers and vice versa.
Table 35.3 has some details of the compilers we have used in the examples that follow.
35.9 Example 1: Kind Type Support
This example uses Table 35.1 as its basis. It prints out the kind types for each of the kind types in the table. If the value of one of the named constants is positive it will be a valid kind value for the intrinsic type, i.e. the corresponding C type is interoperable with the Fortran intrinsic type of that kind. If the value of one of the named constants is negative then there is no interoperable Fortran kind for that C type.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figa_HTML.gif]

Table 35.4 summarises support for several compilers.
A negative number means not supported.Table 35.4Basic C Interop table

	Compiler vendors
	gfortran
	Intel
	Nag
	Sun

	C interop type
	 	 	 	
	C_INT
	4
	4
	4
	4

	C_SHORT
	2
	2
	2
	2

	C_LONG
	8
	4
	4
	8

	C_LONG_LONG
	8
	8
	8
	8

	C_SIGNED_CHAR
	1
	1
	1
	1

	C_SIZE_T
	8
	8
	8
	8

	C_INT8_T
	1
	1
	1
	1

	C_INT16_T
	2
	2
	2
	2

	C_INT32_T
	4
	4
	4
	4

	C_INT64_T
	8
	8
	8
	8

	C_INT_LEAST8_T
	1
	1
	1
	1

	C_INT_LEAST16_T
	2
	2
	2
	2

	C_INT_LEAST32_T
	4
	4
	4
	4

	C_INT_LEAST64_T
	8
	8
	8
	8

	C_INT_FAST8_T
	1
	1
	1
	1

	C_INT_FAST16_T
	8
	2
	2
	2

	C_INT_FAST32_T
	8
	4
	4
	4

	C_INT_FAST64_T
	8
	8
	8
	8

	C_INTMAX_T
	8
	8
	8
	8

	C_INTPTR_T
	8
	8
	8
	8

	C_FLOAT
	4
	4
	4
	4

	C_DOUBLE
	8
	8
	8
	8

	C_LONG_DOUBLE
	10
	8
	-4
	-3

	C_FLOAT_COMPLEX
	4
	4
	4
	4

	C_DOUBLE_COMPLEX
	8
	8
	8
	8

	C_LONG_DOUBLE_COMPLEX
	10
	8
	-4
	-3

	C_BOOL
	1
	1
	1
	1

	C_CHAR
	1
	1
	1
	1

35.10 Example 2: Fortran Calling a C Function
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figb_HTML.gif]

Here is the C source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figc_HTML.gif]

The first key statement is[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figd_HTML.gif]
 which makes available named constants, derived types and module procedures to support interoperability.
The next part of the program[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Fige_HTML.gif]
 provides the compiler with details of the C function that is being called. It is called reciprocal, takes an argument of type real in Fortran or float in C terminology, and returns a value of type real in Fortran or float in C terminology.
35.11 Example 3: C Calling a Fortran Function
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figf_HTML.gif]

Here is the C source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figg_HTML.gif]

Let us look at the Fortran code first.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figh_HTML.gif]

This line tells the compiler that the reciprocal function has to have a name and calling convention that is interoperable with C.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figi_HTML.gif]
 says that the argument x is intent(in) and is of type real in Fortran and type float in C.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figj_HTML.gif]
 says that the function will return a value of type real in Fortran or float in C terminology.
The function prototype[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figk_HTML.gif]
 is required in the C source code to tell the compiler about the reciprocal function.
35.12 Example 4: C++ Calling a Fortran Function
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figl_HTML.gif]

Here is the C++ source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figm_HTML.gif]

The Fortran code and explanation is as for the previous example.
The[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Fign_HTML.gif]
 code is required in the C++ code to tell the compiler about the Fortran function reciprocal.
In C++ we have to tell the compiler that the function has C calling semantics.
35.13 Example 5: Passing an Array from Fortran to C
Here is the Fortran source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figo_HTML.gif]

Here is the C source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figp_HTML.gif]

The following code[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figq_HTML.gif]
 is required to tell the Fortran compiler the details of the C function.
Arrays in C are passed as pointers or by address so we have the following signature[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figr_HTML.gif]
 in the C code.
35.14 Example 6: Passing an Array from C to Fortran
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figs_HTML.gif]

Here is the C source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figt_HTML.gif]

The bind(c) attribute is required to tell the Fortran compiler that the function will be called from C.
The other declarations provide details of the parameters passed into the function from the C calling routine.
The following function prototype[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figu_HTML.gif]
 is required to tell the C compiler the details of the Fortran function.
35.15 Example 7: Passing an Array from C++ to Fortran
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figv_HTML.gif]

Here is the C++ source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figw_HTML.gif]

The explanation of the Fortran source is the same as for the previous example.
The following function prototype[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figx_HTML.gif]
 is required to tell the C++ compiler about the Fortran function.
35.16 Example 8: Passing a Rank 2 Array from Fortran to C
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figy_HTML.gif]

Here is the C source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figz_HTML.gif]

In this example we are using the variable length array syntax that was introduced in the C 99 standard.
This feature is not supported in all C compilers.
This enables us to use the following syntax in C.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figaa_HTML.gif]

35.17 Example 9: Passing a Rank 2 Array from C to Fortran
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figab_HTML.gif]

Here is the C source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figac_HTML.gif]

We use C99 VLAs in this example too.
35.18 Example 10: Passing a Rank 2 Array from C++ to Fortran
Here is the Fortran

 source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figad_HTML.gif]

Here is the C++ source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figae_HTML.gif]

The key syntax in this example is[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figaf_HTML.gif]
 where we have to pass pointers to the two d arrays.
35.19 Example 11: Passing a Rank 2 Array from C++ to Fortran and Taking Care of Array Storage
Two dimensional arrays are stored
 by column in Fortran and by row in C++. In this example we take care of the array element ordering changes between C++ and Fortran. We handle the change in the Fortran subroutine.
Here is the C++ calling program.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figag_HTML.gif]

Here is the Fortran subroutine.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figah_HTML.gif]

The key syntax in the C++ code is shown below.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figai_HTML.gif]
 where all arrays are passed by address.
The key statements in the Fortran are[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figaj_HTML.gif]
 where we use the reshape intrinsic to transform from row storage to column storage.
The reshape intrinsic and the following statements[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figak_HTML.gif]
 show the power and expressiveness of array handling in Fortran compared to the C family of languages (C, C++, C# and Java).
Here is some sample output.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figal_HTML.gif]

35.19.1 Compiler Switches
We now have to ensure that we include the necessary components of the Fortran run time system.
Here are details of how to make this work with the following compiler combinations.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figam_HTML.gif]

[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figan_HTML.gif]

[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figao_HTML.gif]

[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figap_HTML.gif]

35.20 Example 12: Passing a Rank 2 Array from C to Fortran and Taking Care of Array Storage
Two dimensional arrays are stored
 by column in Fortran and by row in C. In this example we take care of the array element ordering changes between C and Fortran. We handle the change in the Fortran subroutine.
Here is the C calling program.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figaq_HTML.gif]

Here is the Fortran subroutine.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figar_HTML.gif]

Here is some sample output.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figas_HTML.gif]

35.20.1 Compiler Switches
In this example we are calling a Fortran subroutine from C++ and the subroutine calls the reshape intrinsic function.
We now have to ensure that we include the necessary components of the Fortran run time system.
Here are details of how to make this work with the following compiler combinations.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figat_HTML.gif]

[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figau_HTML.gif]

[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figav_HTML.gif]

[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figaw_HTML.gif]

35.21 Example 13: Passing a Fortran Character Variable to C
A Fortran character variable normally has a length type parameter. In this example we will pass a Fortran character variable to three C routines.
We use a module to provide functions that help convert from Fortran style character variables to C style character variables.
Here is the C source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figax_HTML.gif]

Here is the Fortran source. The font size has been reduced to fit the page width.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figay_HTML.gif]

Here is the module that has the functions that help converting from Fortran style string variables to C style string variables.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figaz_HTML.gif]

Here is the sample output.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figba_HTML.gif]

35.22 Example 14: Passing a Fortran Character Variable to C++
This is a C++ version of the previous one.
Here is the Fortran source. The font size has been reduced to fit the page width.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbb_HTML.gif]

Here is the C++ source.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbc_HTML.gif]

We use the same module.
Here is the sample output.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbd_HTML.gif]

35.23 c_loc Examples on Our Web Site
We have examples of using the c_loc function on our web site for both 32 bit and 64 bit operating systems.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbe_HTML.gif]

Here is some background technical information on c_loc from the Fortran 2008 standard.
35.23.1 c_loc(x) Description
Description: Returns the C address of the argument.
Class: Inquiry function.
Argument: x shall either	(1) have interoperable type and type parameters and be	(a) a variable that has the target attribute and is interoperable,

	(b) an allocated allocatable variable that has the target attribute and is not an array of zero size, or

	(c) an associated scalar pointer, or

	(2) be a nonpolymorphic scalar, have no length type parameters, and be	(a) a nonallocatable, nonpointer variable that has the target attribute,

	(b) an allocated allocatable variable that has the target attribute, or

	(c) an associated pointer.

Result Characteristics: Scalar of type c_ptr.
Result Value: The result value will be described using the result name cptr.

 	(1) If x is a scalar data entity, the result is determined as if c_ptr were a derived type containing a scalar pointer componentpx of the type and type parameters of x and the pointer assignment
[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbf_HTML.gif]
 were executed.

	(2) If x is an array data entity, the result is determined as if c_ptr were a derived type containing a scalar pointer componentpx of the type and type parameters of x and the pointer assignment of cptr%px to the first element of x were executed.

If x is a data entity that is interoperable or has interoperable type and type parameters, the result is the value that the C processor returns as the result of applying the unary & operator (as defined in the C International Standard, 6.5.3.2) to the target of cptr
The result is a value that can be used as an actual cptr argument in a call to c_f_pointer where fptr has attributes that would allow the pointer assignment
[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbg_HTML.gif]

Such a call to c_f_pointer shall have the effect of the pointer assignment
[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbh_HTML.gif]

NOTE 15.6 - Where the actual argument is of noninteroperable type or type parameters, the result of c_loc provides an opaque “handle” for it. In an actual implementation, this handle may be the C address of the argument; however, portable C functions should treat it as a void (generic) C pointer that cannot be dereferenced (6.5.3.2 in the C International Standard).
The key issues are that we must take care with the argument to the function, the return value is of type c_ptr, and that this is an opaque type. Let us now look at some examples using this function.

 Bibliography

Standardized Mixed Language Programming for Fortran and C, Bo Einarsson, Richard J. Hanson and Tim Hopkins. Fortran Forum, Volume 28, Number 3, December 2009.
The C VLA information was taken from the standard.
ISO/IEC 9899:2011, Programming languages C. The official standard.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbi_HTML.gif]

Harbison S.P., Steele G.L., A C Reference Manual, Prentice-Hall, 2002.
Kernighan B.W., Ritchie D.M., The C programming Language, Prentice-Hall; first edition 1978; second edition 1988.
Both of the following texts cover C++11.
Josuttis N.M., The C++ Standard Library, second edition, Addison Wesley, 2012.
Stroustrup B., The C++ Programming Language, 4th edition, Addison Wesley, 2013.
ISO/IEC 14882:2011, Programming Languages - C++.[image: ../images/112282_4_En_35_Chapter/112282_4_En_35_Figbj_HTML.gif]

35.24 Problem
35.1
Compile and run the example programs in this chapter with your compiler and examine the output.

Acknowledgements
Thanks to Steve Clamage of Oracle and Themos Tsikas of Nag for technical advice with some of C interop examples.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_36

36. IEEE Arithmetic

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete. In particular, for any consistent, effectively generated formal theory that proves certain basic arithmetic truths, there is an arithmetical statement that is true, but not provable in the theory.

Godel, First incompleteness theorem

 Aims

The aims of this chapter are to look in more depth at arithmetic and in particular at the support that Fortran provides for the IEEE 754 and later standards. There is a coverage of:	hardware support for arithmetic.

	integer formats.

	floating point formats: single and double.

	special values: denormal, infinity and not a number — nan.

	exceptions and flags: divide by zero, inexact, invalid, overflow, underflow.

36.1 Introduction
The literature contains details of the IEEE arithmetic standards. The bibliography contains details of a number of printed and on-line sources.
36.2 History
When we use programming languages to do arithmetic two major concerns are the ability to develop reliable and portable numerical software. Arithmetic is done in hardware and there are a number of things to consider:	the range of hardware available both now and in the past.

	the evolution of hardware.

There has been a very considerable change in arithmetic units since the first computers. Table 36.1 is a list of hardware and computing systems that the authors have used or have heard of. It is not exhaustive or definitive, but rather reflects the authors’ age and experience.Table 36.1Computer hardware and manufacturers

	CDC
	Cray
	IBM
	ICL

	Fujitsu
	DEC
	Compaq
	Gateway

	Sun
	Silicon graphics
	Hewlett Packard
	Data general

	Harris
	Honeywell
	Elliot
	Mostek

	National semiconductors
	Intel
	Zilog
	Motorola

	Signetics
	Amdahl
	Texas instruments
	Cyrix

	AMD
	NEC
	 	

Table 36.2 lists some of the operating systems.Table 36.2Operating systems

	NOS
	NOS/BE
	Kronos
	UNIX

	VMS
	Dos
	Windows 3.x
	Windows 95

	Windows 98
	Windows NT
	Windows 2000
	Windows XP

	Windows vista
	Windows 7.x
	Windows 8.x
	MVS

	VM
	VM/CMS
	CP/M
	Macintosh

	OS/2
	Linux (too many)
	 	

Again the list is not exhaustive or definitive. The intention is simply to provide some idea of the wide range of hardware, computer manufacturers and operating systems that have been around in the past 50 years.
To cope with the anarchy in this area Doctor Robert Stewart (acting on behalf of the IEEE) convened a meeting which led to the birth of IEEE 754.
The first draft, which was prepared by William Kahan, Jerome Coonen and Harold Stone, was called the KCS draft and eventually adopted as IEEE 754. A fascinating account of the development of this standard can be found in An Interview with the Old Man of Floating Point, and the bibliography provides a web address for this interview. Kahan went on to get the ACM Turing Award in 1989 for his work in this area.
This has become a de facto standard amongst arithmetic units in modern hardware. Note that it is not possible to describe precisely the answers a program will give, and the authors of the standard knew this. This goal is virtually impossible to achieve when one considers floating point arithmetic. Reasons for this include:	the conversions of numbers between decimal and binary formats.

	the use of elementary library functions.

	results of calculations may be in hardware inaccessible to the programmer.

	intermediate results in subexpressions or arguments to procedures.

The bibliography contains details of a paper that addresses this issue in much greater depth — Differences Among IEEE 754 Implementations.
Fortran is one of a small number of languages that provides access to IEEE arithmetic, and it achieves this via TR1880 which is an integral part of Fortran 2003. The C standard (C9X) addresses this issue and Java offers limited IEEE arithmetic support. More information can be found in the references at the end of the chapter.
36.3 IEEE Specifications
There have been several IEEE arithmetic standards. The following information is taken from the ISO site.
The url is[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figa_HTML.gif]

ISO/IEC/IEEE 60559:2011(E) specifies formats and methods for floating-point arithmetic in computer systems - standard and extended functions with single, double, extended, and extendable precision and recommends formats for data interchange. Exception conditions are defined and standard handling of these conditions is specified. It provides a method for computation with floating-point numbers that will yield the same result whether the processing is done in hardware, software, or a combination of the two. The results of the computation will be identical, independent of implementation, given the same input data. Errors, and error conditions, in the mathematical processing will be reported in a consistent manner regardless of implementation. This first edition, published as ISO/IEC/IEEE 60559, replaces the second edition of IEC 60559.
Here is the standard history.

 	ISO/IEC/IEEE 60559:2011(E)

	IEC 559:1989

	IEC 559:1982

The standard provides coverage of the following areas, which is taken from the table of contents.

 	Floating-point formats	Overview

	Specification levels

	Sets of floating-point data

	Binary interchange format encodings

	Decimal interchange format encodings

	Interchange format parameters

	Extended and extendable precisions

	Attributes and rounding	Attribute specification

	Dynamic modes for attributes

	Rounding-direction attributes

	Operations	Overview

	Decimal exponent calculation

	Homogeneous general-computational operations

	Format of general-computational operations

	Quiet-computational operations

	Signaling-computational operations

	Non-computational operations

	Details of conversions from floating-point to integer formats

	Details of operations to round a floating-point datum to integral value

	Details of totalorder predicate

	Details of comparison predicates

	Details of conversion between floating-point data and external character sequences

	Infinity, NaNs, and sign bit	Infinity arithmetic

	Operations with NaNs

	The sign bit

	Default exception handling	Overview: exceptions and flags

	Invalid operation

	Division by zero

	Overflow

	Underflow

	Inexact

	Alternate exception handling attributes	Overview

	Resuming alternate exception handling attributes

	Immediate and delayed alternate exception handling attributes

	Recommended operations	Conforming language- and implementation-defined functions

	Recommended correctly rounded functions

	Operations on dynamic modes for attributes

	Reduction operations

	Expression evaluation	Expression evaluation rules

	Assignments, parameters, and function values

	preferred width attributes for expression evaluation

	Literal meaning and value-changing optimizations

	Reproducible floating-point results

36.4 Floating Point Formats
Table 36.3 summarises the formats specified in the IEEE 754-2008 standard.Table 36.3IEEE formats

	Name
	Common
name
	Base
	Digits
	Decimal
digits
	Exponent
bits
	Decimal
E max
	Exponent
bias[1]
	E min
E min
	
	Binary16
	Half precision
	2
	11
	3.31
	5
	4.51
	2**4−1 [image: $$=$$] 15
	−14 [image: $$+$$]15
	[2]

	Binary32
	Single precision
	2
	24
	7.22
	8
	38.23
	2**7−1 [image: $$=$$] 127
	−126 [image: $$+$$]127
	
	Binary64
	Double precision
	2
	53
	15.95
	11
	307.95
	2**10−1 [image: $$=$$] 1023
	−1022 [image: $$+$$]1023
	
	Binary128
	Quadruple precision
	2
	113
	34.02
	15
	4931.77
	2**14−1 [image: $$=$$] 16383
	−16382 [image: $$+$$]16383
	
	Binary256
	Octuple precision
	2
	237
	71.34
	19
	78913.2
	2**18−1 [image: $$=$$] 262143
	−262142 [image: $$+$$]262143
	[2]

	Decimal32
	 	10
	7
	7
	7.58
	96
	101
	−95 [image: $$+$$]96
	[2]

	Decimal64
	 	10
	16
	16
	9.58
	384
	398
	−383 [image: $$+$$]384
	
	Decimal128
	 	10
	34
	34
	13.58
	6144
	6176
	−6143 [image: $$+$$]6144
	

36.5 Procedure Summary
Tables 36.4 and 36.5 summarise the procedures.Table 36.4IEEE Arithmetic module procedure summary

	Procedure arguments
	Class
	Description

	IEEE_CLASS(X)
IEEE_COPY_SIGN(X,Y)
IEEE_FMA(A,B,C)
IEEE_GET_ROUNDING_MODE
(ROUND_VALUE[,RADIX])
IEEE_GET_UNDERFLOW_MODE
(GRADUAL)
IEEE_INT(A,ROUND[, KIND])
IEEE_IS_FINITE(X)
IEEE_IS_NAN(X)
IEEE_IS_NEGATIVE(X)
IEEE_IS_NORMAL(X)
IEEE_LOGB(X)
IEEE_MAX_NUM(X,Y)
IEEE_MAX_NUM_MAG(X,Y)
IEEE_MIN_NUM(X,Y)
IEEE_MIN_NUM_MAG(X,Y)
IEEE_NEXT_AFTER(X,Y)
IEEE_NEXT_DOWN(X)
IEEE_NEXT_UP(X)
IEEE_QUIET_EQ(A,B)
IEEE_QUIET_GE(A,B)
IEEE_QUIET_GT(A,B)
IEEE_QUIET_LE(A,B)
IEEE_QUIET_LT(A,B)
IEEE_QUIET_NE(A,B)
IEEE_REAL(A[,KIND])
IEEE_REM(X,Y)
IEEE_RINT(X)
IEEE_SCALB(X,I)
IEEE_SELECTED_REAL_KIND
([P,R,RADIX])
IEEE_SET_ROUNDING_MODE
(ROUND_VALUE[,RADIX])
IEEE_SET_UNDERFLOW_MODE
(GRADUAL)
IEEE_SIGNALING_EQ(A,B)
IEEE_SIGNALING_GE(A,B)
IEEE_SIGNALING_GT(A,B)
IEEE_SIGNALING_LE(A,B)
IEEE_SIGNALING_LT(A,B)
IEEE_SIGNALING_NE(A,B)
IEEE_SIGNBIT(X)
IEEE_SUPPORT_DATATYPE([X])
IEEE_SUPPORT_DENORMAL([X])
IEEE_SUPPORT_DIVIDE([X])
IEEE_SUPPORT_INF([X]) IEEE_SUPPORT_IO([X])
IEEE_SUPPORT_NAN([X])
IEEE_SUPPORT_ROUNDING
(ROUND_VALUE[, X])
	E
E
E
S
S
S
S
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
T
S
S
S
S
S
E
E
E
E
E
E
E
I
I
I
I
I
I
T
T
	Classify number
Copy sign
Fused multiply-add operation
Get rounding mode
Get rounding mode
Get underflow mode
Get underflow mode
Conversion to integer type
Whether a value is finite
Whether a value is an IEEE NaN
Whether a value is negative
Whether a value is a normal number
Exponent
Maximum numeric value
Maximum magnitude numeric value
Minimum numeric value
Minimum magnitude numeric value
Adjacent machine number
Adjacent lower machine number
Adjacent higher machine number
Quiet compares equal
Quiet compares greater than or equal
Quiet compares greater than
Quiet compares less than or equal
Quiet compares less than
Quiet compares not equal
Conversion to real type
Exact remainder
Round to integer
X 2I
IEEE kind type parameter value
IEEE kind type parameter value
Set
Set
Set underflow mode
Set underflow mode
Signaling compares equal
Signaling compares greater than or equal
Signaling compares greater than
Signaling compares less than or equal
Signaling compares less than
Signaling compares not equal
Test sign bit
Query IEEE arithmetic support
Query subnormal number support
Query IEEE division support
Query IEEE infinity support
Query IEEE formatting support
Query IEEE NaN support
Query IEEE rounding support
Query IEEE rounding support

	IEEE_SUPPORT_SQRT([X])
IEEE_SUPPORT_SUBNORMAL([X])
IEEE_SUPPORT_STANDARD([X])
IEEE_SUPPORT_UNDERFLOW
_CONTROL([X])
IEEE_UNORDERED(X,Y)
IEEE_VALUE(X, CLASS)
	I
I
I
I
I
E
E
	Query IEEE square root support
Query subnormal number support
Query IEEE standard support
Query underflow control support
Query underflow control support
Whether two values are unordered
Return number in a class

 Table 36.5IEEE Exceptions module procedure summary

	Procedure
	Arguments
	Class
	Description

	IEEE_GET_FLAG
IEEE_GET_HALTING_MODE
IEEE_GET_MODES
IEEE_GET_STATUS
IEEE_SET_FLAG
IEEE_SET_HALTING_MODE
IEEE_SET_MODES
IEEE_SET_STATUS
IEEE_SUPPORT_FLAG
IEEE_SUPPORT_HALTING
	(FLAG,FLAG_VALUE)
(FLAG,HALTING)
(MODES)
(STATUS_VALUE)
(FLAG,FLAG_VALUE)
(FLAG,HALTING)
(MODES)
(STATUS_VALUE)
(FLAG [, X])
(FLAG)
	ES
ES
S
S
PS
PS
S
S
T
T
	Get an exception flag
Get a halting mode
Get floating-point modes
Get floating-point status
Set an exception flag
Set a halting mode
Set floating-point modes
Restore floating-point status
Query exception support
Query halting mode support

36.6 General Comments About the Standard
The special bit patterns provide the following:	
 [image: $$ +0 $$]

	
 [image: $$ -0 $$]

	subnormal numbers in the range 1.17549421E-38 to 1.40129846E-45

	
 [image: $$ + \infty $$]

	
 [image: $$ - \infty $$]

	quiet NaN (Not a Number)

	signalling NaN

One of the first systems that the authors worked with that had special bit patterns set aside was the CDC 6000 range of computers that had negative indefinite and infinity. Thus the ideas are not new, as this was in the late 1970s.
The support of positive and negative zero means that certain problems can be handled correctly including:	The evaluation of the log function which has a discontinuity at zero.

	The equation [image: $$ \sqrt{1/z} = 1/z $$] can be solved when [image: $$ z = -1 $$]

See also the Kahan paper Branch Cuts for complex Elementary functions, or Much Ado About Nothing’s Sign Bit for more details.
Subnormals, which permit gradual underflow, fill the gap between 0 and the smallest normal number.
Simply stated underflow occurs when the result of an arithmetic operation is so small that it is subject to a larger than normal rounding error when stored. The existence of subnormals means that greater precision is available with these small numbers than with normal numbers. The key features of gradual underflow are:	When underflow does occur there should never be a loss of accuracy any greater than that from ordinary roundoff.

	The operations of addition, subtraction, comparison and remainder are always exact.

	Algorithms written to take advantage of subnormal numbers have smaller error bounds than other systems.

	if x and y are within a factor of 2 then x-y is error free, which is used in a number of algorithms that increase the precision at critical regions.

The combination of positive and negative zero and subnormal numbers means that when x and y are small and x-y has been flushed to zero the evaluation of [image: $$ 1 / (x-y) $$] can be flagged and located.
Certain arithmetic operations cause problems including:	
 [image: $$ 0 * \infty $$]

	0 / 0

	[image: $$ \sqrt{x} $$] when [image: $$ x < 0 $$]

and the support for NaN handles these cases.
The support for positive and negative infinity allows the handling of x / 0 when x is nonzero and of either sign, and the outcome of this means that we write our programs to take the appropriate action. In some cases this would mean recalculating using another approach.
For more information see the references in the bibliography.
36.7 Resume
The above has provided a quick tour of the IEEE standard. We’ll now look at what Fortran has to offer to support it.
36.8 Fortran Support for IEEE Arithmetic
Fortran first introduced support for IEEE arithmetic in ISO TR 15580. The Fortran 2003 standard integrated support into the main standard. Fortran 2018 offers more support, and for more details one should consult Chap. 17 of that document.
The intrinsic modules	
 ieee_features

	
 ieee_exceptions

	
 ieee_arithmetic

provide support for exceptions and IEEE arithmetic. Whether the modules are provided is processor dependent. If the module ieee_features is provided, which of the named constants defined in this standard are included is processor dependent. The module ieee_arithmetic behaves as if it contained a use statement for ieee_exceptions; everything that is public in ieee_exceptions is public inieee_arithmetic.
The first thing to consider is the degree of conformance to the IEEE standard. It is possible that not all of the features are supported. Thus the first thing to do is to run one or more test programs to determine the degree of support for a particular system.
36.9 Derived Types and Constants Defined in the Modules
The modules	
 ieee_exceptions

	
 ieee_arithmetic

	
 ieee_features

define five derived types, whose components are all private.
36.9.1
 ieee_exceptions

This module defines ieee_flag_type, for identifying a particular exception flag.
Possible values are[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figb_HTML.gif]

The module also defines the array named constants[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figc_HTML.gif]

[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figd_HTML.gif]

[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Fige_HTML.gif]
 The last is for saving the current floating point status.
36.9.2
 ieee_arithmetic

This module defines ieee_class_type, for identifying a class of floating-point values.
Possible values are:[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figf_HTML.gif]

The module defines ieee_round_type, for identifying a particular rounding mode. Its only possible values are those of named constants defined in the module: ieee_nearest, ieee_to_zero, ieee_up, and ieee_down for the ieee_modes; and ieee_other for any other mode.
The elemental operator == for two values of one of these types to return true if the values are the same and false otherwise.
The elemental operator /= for two values of one of these types to return true if the values differ and false otherwise.
36.9.3
 ieee_features

This module defines ieee_features_type, for expressing the need for particular ieee_features. Its only possible values are those of named constants defined in the module:	
 ieee_datatype

	
 ieee_denormal

	
 ieee_divide

	
 ieee_halting

	
 ieee_inexact_flag

	
 ieee_inf

	
 ieee_invalid_flag

	
 ieee_nan

	
 ieee_rounding

	
 ieee_sqrt

	
 ieee_underflow_flag

36.9.4 Further Information
There are a number of additional sources of information.

 	the Fortran standard.

	documentation that comes with your compiler.

The latter has the benefit of describing what is supported in that compiler.
36.10 Example 1: Testing IEEE Support
The first examples test basic IEEE arithmetic support.
Here is a program to illustrate the above.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figg_HTML.gif]

Table 36.6 summarises the support for a number of compilers.Table 36.6Compiler IEEE support for various precisions

	Precision
	gfortran
	intel
	nag
	sun

	32 bit IEEE support
	Yes
	Yes
	Yes
	Yes

	64 bit IEEE support
	Yes
	Yes
	Yes
	Yes

	128 bit IEEE support
	No
	Yes
	No
	Yes

36.11 Example 2: Testing What Flags Are Supported
Here is a program to illustrate the above.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figh_HTML.gif]

Here is the output from the Intel compiler.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figi_HTML.gif]

36.12 Example 3: Overflow
Here is a program to illustrate the above.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figj_HTML.gif]

36.13 Example 4: Underflow
Here is a program to illustrate the above.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figk_HTML.gif]

36.14 Example 5: Inexact Summation
Here is a program to illustrate the above.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figl_HTML.gif]

Here is the output from several compilers.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figm_HTML.gif]

[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Fign_HTML.gif]

[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figo_HTML.gif]

[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figp_HTML.gif]

What do you notice about the value of the computed sum?
36.15 Example 6: NAN and Other Specials
Here is a program to illustrate some additional IEEE functionality.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figq_HTML.gif]

36.16 Summary
Compiler support in this area is now quite widespread as the above examples have shown.
36.17 Bibliography
Hauser J.R., Handling Floating Point Exceptions in Numeric programs, ACM Transaction on programming Languages and Systems, Vol. 18, No. 2, March 1996, pp. 139–174.

 	The paper looks at a number of techniques for handling floating point exceptions in numeric code. One of the conclusions is for better structured support for floating point exception handling in new programming languages, or of course better standards for existing languages.

IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-2008, Institute of Electrical and Electronic Engineers Inc.

 	The formal definition of IEEE 754. This is available for purchase as both a pdf and printed version - see the address below.

 [image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figr_HTML.gif]

This standard specifies formats and methods for floating-point arithmetic in computer systems: standard and extended functions with single, double, extended, and extendable precision, and recommends formats for data interchange. Exception conditions are defined and standard handling of these conditions is specified. Keywords: 754-2008, arithmetic, binary, computer, decimal, exponent, floating-point, format, interchange, NaN, number, rounding, significand, subnormal. Product Code(s): STDPD95802,STD95802
Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

 	There is a coverage of floating point arithmetic, multiple precision arithmetic, radix conversion and rational arithmetic.

Sun, Numerical Computation Guide, SunPro.

 	Very good coverage of the numeric formats for IEEE Standard 754 for Binary Floating-Point Arithmetic. All SunPro compiler products support the features of the IEEE 754 standard.

36.17.1 Web-Based Sources

 	Differences Among IEEE 754 Implementations. The material in this paper will eventually be included in the Sun Numerical Computation Guide as an addendum to Appendix C, David Goldberg’s What Every Computer Scientist Should Know about Floating Point Arithmetic.

 [image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figs_HTML.gif]

 	The Numerical Computation Guide can be browsed on-line or downloaded as a pdf file. The last time we checked it was 294 pages. Good source of information if you have Sun equipment.

 [image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figt_HTML.gif]

 	The Explosion of the Ariane 5: A 64-bit floating point number relating to the horizontal velocity of the rocket with respect to the platform was converted to a 16-bit signed integer. The number was larger than 32,768, the largest integer storeable in a 16-bit signed integer, and thus the conversion failed.

36.17.2 Hardware Sources
Amd - Visit[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figu_HTML.gif]

for details of the AMD manuals. The following five manuals are available for download as pdf’s from the above site.

 	AMD64 Architecture Programmer’s Manual Volume 1: Application Programming

	AMD64 Architecture Programmer’s Manual Volume 2: System Programming

	AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and System Instructions

	AMD64 Architecture Programmer’s Manual Volume 4: 128-bit and 256 bit media instructions

	AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 Floating-Point Instructions

Intel - Visit[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figv_HTML.gif]
 for a list of manuals. The following three manuals are available for download as pdf’s from the above site.

 	Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 1: Basic Architecture

	Intel 64 and IA-32 Architectures Software Developer’s Manual. Combined Volumes 2A and 2B: Instruction Set Reference, A-Z.

	Intel 64 and IA-32 Architectures Software Developer’s Manual. Combined Volumes 3A and 3B: System Programming Guide, Parts 1 and 2

Osbourne A., Kane G., 4-bit and 8-bit Microprocessor Handbook, Osbourne and McGraw Hill, 1981.

 	Good source of information on 4-bit and 8-bit microprocessors.

Osbourne A., Kane G., 16-Bit Microprocessor Handbook, Osbourne and McGraw Hill, 1981.

 	Ditto 16-bit microprocessors.

Bhandarkar D.P., Alpha Implementations and Architecture: Complete Reference and Guide, Digital Press, 1996.

 	Looks at some of the trade-offs and design philosophy behind the alpha chip. The author worked with VAX, MicroVAX and VAX vectors as well as the Prism. Also looks at the GEM compiler technology that DEC/Compaq use.

Various companies home pages.[image: ../images/112282_4_En_36_Chapter/112282_4_En_36_Figw_HTML.gif]

36.17.3 Operating Systems
Deitel H.M., An Introduction to Operating Systems, Addison-Wesley, 1990.

 	The revised first edition includes case studies of UNIX, VMS, CP/M, MVS and VM. The second edition adds OS/2 and the Macintosh operating systems. There is a coverage of hardware, software, firmware, process management, process concepts, asynchronous concurrent processes, concurrent programming, deadlock and indefinite postponement, storage management, real storage, virtual storage, processor management, distributed computing, disk performance optimisation, file and database systems, performance, coprocessors, risc, data flow, analytic modelling, networks, security and it concludes with case studies of the these operating systems. The book is well written and an easy read.

36.18 Problem
36.1
Compile and run each of the examples in this chapter with your compiler(s). If you have access to more than one compiler do the compilers behave in the same way?

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_37

37. Derived Type I/O

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

37.1 Introduction
In this chapter we look at a facility introduced in the Fortran 2003 standard - derived type I/O. The Fortran 2018 standard calls it defined type input/output, and is now widely available in current compilers.
When a derived type is encountered in an I/O list, we can arrange to call a Fortran subroutine. For a particular derived type and a particular set of kind type parameter values, there are four possible sets of characteristics for defined input/output procedures; one each for	formatted input

	formatted output

	unformatted input

	unformatted output

A program need not supply all four procedures.
We will look at formatted I/O and the use of the DT edit descriptor in the examples that follow.
The following information is taken from Sect. 12.6.4.8.2 of the 2018 standard. The characteristics for a formatted read are the same as those specified by the following interface:[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figa_HTML.gif]

The characteristics for a formatted write are the same as those specified by the following interface:[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figb_HTML.gif]

Let us look at each parameter in turn.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figc_HTML.gif]

This is the derived type we are interested in printing out.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figd_HTML.gif]

The unit number for the I/O. It is a scalar of default integer type. It is negative if on an internal file.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Fige_HTML.gif]

For formatted data transfer, the processor shall pass an iotype argument that has the value:	LISTDIRECTED if the parent data transfer statement specified list directed formatting,

	NAMELIST if the parent data transfer statement specified namelist formatting, or

	DT concatenated with the char-literal-constant, if any, of the DT edit descriptor in the format specification of the parent data transfer statement.

[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figf_HTML.gif]

The v_list array. It is a rank one array of intent in and type default integer.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figg_HTML.gif]

The iostat value.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figh_HTML.gif]

The iomsg value.
For the edit descriptor DT’Link List’(10, 4, 2), iotype is “DTLink List” and v_list is [10, 4, 2].
If the v-list of the edit descriptor appears in the parent data transfer statement, the processor shall provide the values from it in the v_list dummy argument, with the same number of elements in the same order as v-list. If there is no v-list in the edit descriptor or if the data transfer statement specifies list-directed or namelist formatting, the processor shall provide v_list as a zero-sized array.
The elements of the v_list array can be used for anything in the subroutine. In our examples below we will use them to control the fields widths.
It can also choose an arbitrary interpretation (or none) for iotype.
37.2 User-Defined Derived-Type Editing
We have examples illustrating some of the basics of defined type I/O.
37.3 Example 1: Basic Syntax, No Parameters in Call
Here is the derived type.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figi_HTML.gif]

Here is the driving program.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figj_HTML.gif]

Here is the data input file.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figk_HTML.gif]

Extra lines have been added at the end to indicate the column positions in the read statement. Here is the output.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figl_HTML.gif]

37.4 Example 2: Extended Syntax, Passing Parameters
Here is the derived type.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figm_HTML.gif]

[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Fign_HTML.gif]

Here is the driving program.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figo_HTML.gif]

Here is the diff output between the two main programs.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figp_HTML.gif]

Here is the diff output between the two person modules.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figq_HTML.gif]

The data input file is the same as in the last example.
Here is the output.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figr_HTML.gif]

37.5 Example 3: Basic Syntax with Timing
This example is a variation on the first example. We are now interested in timing the I/O.
Here is the driving program.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figs_HTML.gif]

Here is the output from one compiler.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figt_HTML.gif]

37.6 Example 4: Extended Syntax with Timing
This example is a variation on the second example. We are now interested in timing the I/O.
Here is the driving program.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figu_HTML.gif]

Here is the output from one compiler.[image: ../images/112282_4_En_37_Chapter/112282_4_En_37_Figv_HTML.gif]

37.7 Summary
This chapter has illustrated simple usage of derived type I/O.
37.8 Problem
37.1
Compile and run the examples in this chapter. What timing figures do you get with your compiler for the last two examples?

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_38

38. Sorting and Searching

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 The Analytical Engine weaves algebraic patterns, just as the Jacquard loom weaves flowers and leaves.

Ada Lovelace

 Aims

We look at a number of sorting and searching examples:	three numeric sorting examples, using a recursive algorithm, a non recursive algorithm and a parallelised subroutine from the Nag library	timing details for our generic serial Quicksort algorithm for five of the numeric kind

 types

	timing details of the Netlib serial non recursive Quicksort for 32 bit integers, 32 bit reals and 64 bit reals

	a comparison of the timing of the above two sorting algorithms

	the Nag SMP sorting routine m01caf for 64 bit reals

	timing details of the parallel Nag sorting subroutine

	Sorting an array of a derived type

	A searching example

38.1 Example 1: Generic Recursive Quicksort Example with Timing Details
This
 example has several components	a module called precision_module from Chap. 21

	a module called integer_kind_module from Chap. 25

	a timing module

	the generic Quicksort module from Chap. 25

	a main program to provide the timing information

Here is the source code for the main program. The source code for the other modules is the same as in earlier chapters.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figa_HTML.gif]

[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figb_HTML.gif]

Table 38.1 has timing information for four compilers.Table 38.1Generic recursive quicksort timing

	 	 	gfortran
	Intel
	Nag
	Oracle
	Mean
	StdDev

	Allocate
	32 bit real
	0.008
	0.000
	0.000
	0.000
	0.002
	0.004

	Allocate
	32 bit int
	0.000
	0.000
	0.000
	0.008
	0.002
	0.004

	Allocate
	64 bit real
	0.094
	0.031
	0.031
	0.000
	0.039
	0.039

	Allocate
	64 bit int
	0.016
	0.000
	0.016
	0.000
	0.008
	0.009

	Allocate
	128 bit real
	0.156
	0.047
	0.047
	0.000
	0.063
	0.066

	Allocate
	Total
	0.274
	0.078
	0.094
	0.008
	0.114
	0.113

	Random
	32 bit real
	0.562
	0.422
	0.609
	2.125
	0.930
	0.801

	Random
	32 bit int
	0.219
	0.172
	0.328
	0.062
	0.195
	0.110

	Random
	64 bit real
	1.492
	0.594
	0.531
	2.219
	1.209
	0.804

	Random
	64 bit int
	0.414
	0.328
	0.609
	0.133
	0.371
	0.197

	Random
	128 bit real
	11.203
	3.797
	1.070
	3.625
	4.924
	4.368

	Random
	Total
	13.890
	5.313
	3.147
	8.164
	7.629
	4.653

	Sort
	32 bit real
	13.742
	12.328
	15.063
	11.586
	13.180
	1.541

	Sort
	32 bit int
	3.492
	2.891
	4.781
	2.203
	3.342
	1.095

	Sort
	64 bit real
	14.945
	13.266
	16.078
	12.664
	14.238
	1.561

	Sort
	64 bit int
	2.742
	2.312
	2.906
	1.633
	2.398
	0.568

	Sort
	128 bit real
	45.703
	33.141
	18.750
	36.633
	33.557
	11.201

	Sort
	Total
	80.624
	63.938
	57.578
	64.719
	66.715
	9.809

	Overall
	Total
	94.788
	69.329
	60.819
	72.891
	74.457
	14.469

Here are some simple observations about the timing information in this table:	allocation is a negligible component of the overall time

	random number generation takes between 5 and 15% of total timing

	integer sorting is much faster than real sorting

	sorting of 32 and 64 bit reals is similar

	overall processing of the Nag format 128 bit real is faster than the other 128 bit formats

38.2 Example 2: Non Recursive Quicksort Example with Timing Details
The
 subroutines in this example are taken from the Netlib site. They are 3 non recursive Fortran 77 implementation of Quicksort.
Visit the Netlib site for more details.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figc_HTML.gif]

The following is taken directly from their FAQ.

 	What is Netlib? The Netlib repository contains freely available software, documents, and databases of interest to the numerical, scientific computing, and other communities. The repository is maintained by AT&T Bell Laboratories, the University of Tennessee and Oak Ridge National Laboratory, and by colleagues world-wide. The collection is replicated at several sites around the world, automatically synchronized, to provide reliable and network efficient service to the global community.

The routines we are interested in are in the following directory.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figd_HTML.gif]

Three versions are provided.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Fige_HTML.gif]

They are fixed form Fortran 77. A small set of changes need to be made to enable them to be compiled and used in this example.
We will cover the changes we have made for the double precision sort routine dsort.f.
Here is the subroutine header for the double precision subroutine.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figf_HTML.gif]

The routine takes 4 parameters and we look at the implementation of the dsort routine to find out more details about each parameter. This line[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figg_HTML.gif]

provides the first clue as to the nature of the parameters.
The following provide some more.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figh_HTML.gif]

The following lines then complete the information.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figi_HTML.gif]

If we set the fourth parameter to 1, we can use the same array for the first and second arguments.
We have made source code changes to the three subroutines.
The changes are summarised below, and we have included details of the line numbers in each sort subroutine. The changes involve commenting out 4 sets of lines.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figj_HTML.gif]

Here are the lines that need to be commented out.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figk_HTML.gif]

The following lines[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figl_HTML.gif]
 provide details about the algorithm and its revision history. This information is extremely useful when working with the subroutine.
We are now going to look at one solution to the problem of how to integrate the original program and the three sorting subroutines.
The simplest solution is to independently compile the three routines as Fortran 77 source. Here is the Nag compiler command to achieve this[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figm_HTML.gif]

On the Windows platform this will generate the following files[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Fign_HTML.gif]

The following command will then compile the modern Fortran code and link the Fortran 77 compiled code into the executable.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figo_HTML.gif]

Here is the command line for the Intel compiler to compile the Fortran 77 netlib routines.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figp_HTML.gif]

Here is the command line for gfortran to compile the Fortran 77 Netlib routines.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figq_HTML.gif]

Here is the main program.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figr_HTML.gif]

[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figs_HTML.gif]

It is then possible to link to the already compiled subroutines when compiling the main program.
The following command will then compile the modern Fortran code and link the Fortran 77 compiled code into the executable using the Nag compiler.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figt_HTML.gif]

Table 38.2 summarises the timing information for the above four compilers.Table 38.2Non recursive quicksort timing

	 	 	gfortran
	Intel
	Nag
	Oracle
	Mean
	StdDev

	Allocate
Allocate
Allocate
	32 bit real
32 bit int
64 bit real
	0.000
0.000
0.094
	0.016
0.000
0.023
	0.008
0.000
0.031
	0.000
0.000
0.004
	0.006
0.000
0.038
	0.008
0.000
0.039

	Allocate
	Sum
	0.094
	0.039
	0.039
	0.004
	0.044
	0.037

	Random
Random
Random
	32 bit real
32 bit int
64 bit real
	0.562
0.203
1.484
	0.609
0.375
0.523
	0.625
0.297
0.516
	2.062
0.066
2.090
	0.965 0.235
1.153
	0.732
0.133
0.772

	Random
	Sum
	2.249
	1.507
	1.438
	4.218
	2.353
	1.296

	Sort
Sort
Sort
	32 bit real
32 bit int
64 bit real
	11.508
2.945
12.625
	11.563
2.961
12.406
	11.852
3.000
12.320
	12.207
2.242
12.953
	11.783
2.787
12.576
	0.321
0.364
0.282

	Sort
	Sum
	27.078
	26.930
	27.172
	27.402
	27.146
	0.198

	Overall
	Sum
	29.421
	28.476
	28.649
	31.624
	29.543
	1.447

Here are some simple observations about the timing information in this table:	allocation is again a negligible component of the overall time

	random number generation takes between 5% and 15% of total timing

	integer sorting is much faster than real sorting

	sorting of 32 and 64 bit reals is similar

	the sums for the sorting are very similar, as the standard deviation shows

38.2.1 Notes - Version Control Systems
The
 original program had the following statement[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figu_HTML.gif]
 and this statement was one used in version control or revision control software of the time. Two version control programs that were available on CDC systems from the 1970s and 1980s were called update and modify that used the above. In computer programming, revision control is any practice that tracks and provides control over changes to source code. Software developers also use revision control software to maintain documentation and configuration files as well as source code.
The use of this kind of software is common for medium to large scale program development.
Wikipedia provides a comparison of what is currently available. See[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figv_HTML.gif]

for more information.
38.3 Subroutine and Function Libraries
A software library is a set of precompiled program units (functions and subroutines) that has been written to solve common problems.
In a university environment many departments (e.g. Mechanical Engineering, Electrical Engineering, Mathematics, Physics etc) have libraries that solve common problems in each discipline.
38.4 The Nag Library for SMP and Multicore
The
 major commercial cross platform numerical library is the Nag library. Nag provide an SMP and multicore version of their library.
More information can be found at:-[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figw_HTML.gif]

The library is available on a range of platforms.

 	Windows

	Linux (including 64-bit)

	Solaris

	Mac OS X

	AIX

A subset of the library is thread safe.
Many of the algorithms, or routines, in the library are specifically tuned to run significantly faster on multi-socket and multicore systems. We will look at timing information for one of the sorting routines and compare the times to those of our serial sorting routines.
38.5 Example 3: Calling the Nag m01caf Sorting Routine
Here
 is the program source.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figx_HTML.gif]

Table 38.3 has details of timing information for the serial sorting algorithms.Table 38.3Sixty four bit real sort timings

	 	 	gfortran
	Intel
	Nag
	Oracle
	Mean
	StdDev

	Recursive sort
	64 bit real
	14.945
	13.266
	16.078
	12.664
	14.238
	1.561

	Non-recursive Sort
	64 bit real
	12.625
	12.406
	12.320
	12.953
	12.576
	0.282

The non recursive solution is faster for three out of four compilers.
Table 38.4 has the timing information for the Nag SMP routine, for 1–8 cores.Table 38.4Nag sort m01caf timing

	N threads
	Time

	1
	11.938

	2
	6.773

	3
	5.047

	4
	4.211

	5
	4.094

	6
	3.703

	7
	3.586

	8
	3.391

As can be seen the Nag m01caf timing is faster for one core and shows a very impressive speed up as the number of cores goes up. The system is an Intel I7 system, which has 4 physical cores and is also hyper-threaded giving 8 cores overall.
This link[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figy_HTML.gif]
 has some examples of how the NAG SMP library performance scales on multiple cores. At the time of writing they were drawn from the following library chapters	Sorting

	Correlation and Regression Analysis

	Wavelet Transforms

	Interpolation

	Random number generators

	Special Functions

This link[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figz_HTML.gif]
 has details of the tuned routines in the SMP library.
Here are some details that were correct at the time of writing.

 	There are 77 tuned LAPACK routines

	There are 149 Tuned NAG-specific routines within the Library

The Nag library may well offer you a very cost effective way to improve the speed of your programs. Nag have effectively done the work of parallelising many common problems and sub problems and thus the use of their library routines may save you significant development time and help you produce programs that run faster.
As you are probably aware by now parallelising your own code can be hard work!
38.6 Example 4: Sorting an Array of a Derived Type
In this section we look at rewriting the quicksort algorithm to work with an array of a user defined type, or Fortran derived type. We will use the date data type from an earlier chapter to illustrate the key points.
38.6.1 Compare Function
For each derived type the user needs needs to implement a logical function that compares two variables of that type. This comparison function will replace the < and > comparison tests in the quicksort sorting routine.
38.6.2 Fortran Sources
There are three source files:	The date module with comparison function

	the new sort routine

	the Fortran test program

They are listed below.
38.6.3 Date Module

 [image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figaa_HTML.gif]

 [image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figab_HTML.gif]

 [image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figac_HTML.gif]

 [image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figad_HTML.gif]

 [image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figae_HTML.gif]

38.6.4 Sort Module

 [image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figaf_HTML.gif]

38.6.5 Main Program

 [image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figag_HTML.gif]

Here
 is some sample output.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figah_HTML.gif]

38.7 Example 5: Binary Search Example
Searching is a common problem in programming. Wirth’s book has a short chapter on searching, with coverage of	linear search

	binary search

	table search

	straight string search

	the Knuth-Morris-Pratt string search

	the Boyer-Moore string search

A linear search of a collection can obviously be quite an expensive operation. The worst case is that the object of interest is the last member of the collection.
In this example we make the assumption that the data is sorted and can then use a very efficient algorithm - a binary search. Here is the program.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figai_HTML.gif]

[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figaj_HTML.gif]

The program reads in a dictionary. Historically on Unix systems there was a spelling checker, and there would be a words file, often in[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figak_HTML.gif]
This is an example of one of these files. Many language versions were available. We then search the dictionary to see if the word entered is in the dictionary. The program provides timing information.
Here is the output from a sample run. The data was read from a file.[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figal_HTML.gif]

As can be seen the timing reading in the file takes less than one tenth of a second, and the search takes less than a microsecond - the resolution made available via the date_time subroutine.
The dictionary has over 170,000 words. Handy for Scrabble!
The dictionary word file is called[image: ../images/112282_4_En_38_Chapter/112282_4_En_38_Figam_HTML.gif]

in the program.
38.8 Problems
38.1
Try out the examples on your system. What timing details do you get?

38.2
Using the non recursive 32 bit integer sort subroutine as a starting point produce a 64 bit integer version. How long did it take to get a working version?

38.3
If you have successfully solved the above problem now produce subroutines for 8 bit and 16 bit integers.

38.4
Using the non recursive 64 bit real subroutine as a starting point produce a 128 bit version. How long did this take?

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_39

39. Handling Missing Data in Statistics Calculations

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Jupiter and beyond the infinite

Stanley Kubrick - 2001: A Space Odyssey
39.1 Introduction
In this chapter we look at a case study of processing the Met Office historic data files and generating statistics accommodating missing data values.
Several steps are involved	a program to download and save the data files locally

	a sed script to convert the missing values.

	a modified statistics module that will process and report on missing values.

	a module that encapsulates the Met Office station data information.

	a program that actually does the calculations and generates the summary information.

	a site description module that encapsulates the site information.

	a program to generate the site information summary data.

39.2 Example 1: Program to Download and Save the Data Files Locally
This is a C# program. We have programs in Python and Java on our web site that have the same functionality.
Here is the Met Office web address.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figa_HTML.gif]

Here is the program.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figb_HTML.gif]
 [image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figc_HTML.gif]

39.3 Example 2: The Sed Script and Command File That Converts the Missing Values
Here is an extract from one of the Met Office station files.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figd_HTML.gif]

The Met Office uses [image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Fige_HTML.gif]
 to indicate a missing value. One way of processing the missing values is to convert the [image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figf_HTML.gif]
 into a number that cannot occur in the data.
We convert[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figg_HTML.gif]

in this case study. We use the Unix sed command.
sed (stream editor) is a Unix utility that parses and transforms text, using a simple programming language syntax. sed was developed from 1973 to 1974 by Lee E. McMahon of Bell Labs, and is available today for most operating systems. sed was based on the scripting features of the interactive editor ed. ed and vi are sometimes the only editors one has access to on a Unix system. ed is the command driven component of vi. sed was one of the earliest tools to support regular expressions.
The bibliography has some references to sed material.
We can then read the whole file in and adjust the statistics routines to ignore the [image: $$-999$$] data values.
Here is the sed command to do the conversion.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figh_HTML.gif]

Here is an example of the sed command to convert one of the Met Office data files.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figi_HTML.gif]

The -f means read the sed command from a file. sed will read from the file before_aberporthdata.txt and write the converted output to the file aberporthdata.txt
39.4 Example 3: The Program to Do the Statistics Calculations
The complete solution is made up of three source files.
Here is the source code for the statistics module.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figj_HTML.gif]

The following Fortran segment[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figk_HTML.gif]

is the code to skip processing of the missing data.
Here is the source code for the Met Office station module.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figl_HTML.gif]

[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figm_HTML.gif]

Here is the source code for the driving program.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Fign_HTML.gif]

[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figo_HTML.gif]

Here are the required files.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figp_HTML.gif]

Here is some sample output from running the program. It is a subset of the complete output, which can be found on our web site.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figq_HTML.gif]

[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figr_HTML.gif]

39.5 Example 4: Met Office Utility Program
The complete solution is made up of two source files.
Here is the source for the site description module.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figs_HTML.gif]

Here is the source for the driving program.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figt_HTML.gif]

[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figu_HTML.gif]

Here are the required files.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figv_HTML.gif]

Here is sample output. It has been reformatted to fit the printed page.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figw_HTML.gif]

39.6 Bibliography
Dougherty D., Robbins A., sed and awk, O’Reilly	One of the classic O’Reilly texts.

Unix in a Nutshell, O’Reilly.

 	The classic Nutshell text on Unix. Essential reading for Unix and Linux users.

The wikipedia entry is a good starting place.[image: ../images/112282_4_En_39_Chapter/112282_4_En_39_Figx_HTML.gif]

39.7 Problem
39.1
Compile and run the examples in this chapter.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_40

40. Converting from Fortran 77

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Twas brillig, and the slithy toves did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.

Lewis Carroll

 Aim

This chapter looks at some of the options available when working with older Fortran code.
40.1 Introduction
This chapter looks at converting Fortran 77 code to a modern Fortran style.
The aim is to provide the Fortran 77 programmer (and in particular the person with legacy code) with some simple guidelines for conversion.
The first thing that one must have is a thorough understanding of the newer, better language features of Fortran. It is essential that the material in the earlier chapters of this book are covered, and some of the problems attempted. This will provide a feel for modern Fortran.
The second thing one must have is a thorough understanding of the language constructs used in your legacy code. Use should be made of the compiler documentation for whatever Fortran 77 compiler you are using, as this will provide the detailed (often system specific) information required. The recommendations below are therefore brief.
It is possible to move gradually from Fortran 77 to modern Fortran. In many cases existing code can be quite simply recompiled by a suitable choice of compiler options. This enables us to mix and match old and new in one program. This process is likely to highlight nonstandard language features in your old code. There will inevitably be some problems here.
The standard identifies two kinds of decremented features; deleted and obsolescent. In the long-term these features are candidates for removal from future standards. These deleted and obsolescent features may well be supported by compilers even though they have been removed from the standard.
The following information is taken from the Fortran 2018 standard.
40.2 Deleted Features from Fortran 90
These deleted features are those features of Fortran 90 that were redundant and considered largely unused. The following Fortran 90 features are not required.

 	(1) Real and double precision DO variables.
In Fortran 77 and Fortran 90, a DO variable was allowed to be of type real or double precision in addition to type integer; this has been deleted. A similar result can be achieved by using a DO construct with no loop control and the appropriate exit test.

	(2) Branching to an END IF statement from outside its block.
In Fortran 77 and Fortran 90, it was possible to branch to an END IF statement from outside the IF construct; this has been deleted. A similar result can be achieved by branching to a CONTINUE statement that is immediately after the END IF statement.

	(3) PAUSE statement.
The PAUSE statement, provided in Fortran 66, Fortran 77, and Fortran 90, has been deleted. A similar result can be achieved by writing a message to the appropriate unit, followed by reading from the appropriate unit.

	(4) ASSIGN and assigned GO TO statements, and assigned format specifiers.
The ASSIGN statement and the related assigned GO TO statement, provided in Fortran 66, Fortran 77, and Fortran 90, have been deleted. Further, the ability to use an assigned integer as a format, provided in Fortran 77 and Fortran 90, has been deleted. A similar result can be achieved by using other control constructs instead of the assigned GO TO statement and by using a default character variable to hold a format specification instead of using an assigned integer.

	(5) H edit descriptor.
In Fortran 77 and Fortran 90, there was an alternative form of character string edit descriptor, which had been the only such form in Fortran 66; this has been deleted. A similar result can be achieved by using a character string edit descriptor.

	(6) Vertical format control.
In Fortran 66, Fortran 77, Fortran 90, and Fortran 95 formatted output to certain units resulted in the first character of each record being interpreted as controlling vertical spacing. There was no standard way to detect whether output to a unit resulted in this vertical format control, and no way to specify that it should be applied; this has been deleted. The effect can be achieved by post-processing a formatted file. See ISO/IEC 1539:1991 for detailed rules of how these deleted features worked.

40.3 Deleted Features from Fortran 2008
These deleted features are those features of Fortran 2008 that were redundant and considered largely unused. The following Fortran 2008 features are not required.

 	(1) Arithmetic IF statement.
The arithmetic IF statement is incompatible with ISO/IEC/IEEE 60559:2011 and necessarily involves the use of statement labels; statement labels can hinder optimization, and make code hard to read and maintain. Similar logic can be more clearly encoded using other conditional statements.

	(2) Nonblock DO construct
The nonblock forms of the DO loop were confusing and hard to maintain. Shared termination and dual use of labeled action statements as do termination and branch targets were especially error11 prone.

40.4 Obsolescent Features
The obsolescent features are those features of Fortran 90 that were redundant and for which better methods were available in Fortran 90. Subclause 4.4.3 describes the nature of the obsolescent features. The obsolescent features in this document are the following.

 	(1) Alternate return

	(2) Computed GO TO

	(3) Statement functions

	(4) DATA statements amongst executable statements

	(5) Assumed length character functions

	(6) Fixed form source

	(7) CHARACTER* form of CHARACTER declaration

	(8) ENTRY statements

	(9) Label form of DO statement

	(10) COMMON and EQUIVALENCE statements, and the block data program unit

	(11) Specific names for intrinsic functions

	(12) FORALL construct and statement

40.4.1 Alternate Return
An alternate return introduces labels into an argument list to allow the called procedure to direct the execution of the caller upon return. The same effect can be achieved with a return code that is used in a SELECT CASE construct on return. This avoids an irregularity in the syntax and semantics of argument association. For example,[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figa_HTML.gif]

can be replaced by[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figb_HTML.gif]

40.4.2 Computed GO TO Statement
The computed GO TO statement has been superseded by the SELECT CASE construct, which is a generalized, easier to use, and clearer means of expressing the same computation.
40.4.3 Statement Functions
Statement functions are subject to a number of nonintuitive restrictions and are a potential source of error because their syntax is easily confused with that of an assignment statement. The internal function is a more generalized form of the statement function and completely supersedes it.
40.4.4 DATA Statements Among Executables
The statement ordering rules allow DATA statements to appear anywhere in a program unit after the specification statements. The ability to position DATA statements amongst executable statements is very rarely used, unnecessary, and a potential source of error.
40.4.5 Assumed Character Length Functions
Assumed character length for functions is an irregularity in the language in that elsewhere in Fortran the philosophy is that the attributes of a function result depend only on the actual arguments of the invocation and on any data accessible by the function through host or use association. Some uses of this facility can be replaced with an automatic character length function, where the length of the function result is declared in a specification expression. Other uses can be replaced by the use of a subroutine whose arguments correspond to the function result and the function arguments. Note that dummy arguments of a function can have assumed character length.
40.4.6 Fixed Form Source
Fixed form source was designed when the principal machine-readable input medium for new programs was punched cards. Now that new and amended programs are generally entered via keyboards with screen displays, it is an unnecessary overhead, and is potentially error-prone, to have to locate positions 6, 7, or 72 on a line. Free form source was designed expressly for this more modern technology. It is a simple matter for a software tool to convert from fixed to free form source.
40.4.7 CHARACTER* Form of CHARACTER Declaration
In addition to the CHARACTER*char-length form introduced in Fortran 77, Fortran 90 provided the CHAR3 ACTER([LEN =] type-param-value) form. The older form (CHARACTER*char-length) is redundant.
40.4.8 ENTRY Statements
ENTRY statements allow more than one entry point to a subprogram, facilitating sharing of data items and executable statements local to that subprogram. This can be replaced by a module containing the (private) data items, with a module procedure for each entry point and the shared code in a private module procedure.
40.4.9 Label DO Statement
The label in the DO statement is redundant with the construct name. Furthermore, the label allows unrestricted branches and, for its main purpose (the target of a conditional branch to skip the rest of the current iteration), is redundant with the CYCLE statement, which is clearer.
40.4.10 COMMON and EQUIVALENCE Statements and the Block Data Program Unit
Common blocks are error-prone and have largely been superseded by modules. EQUIVALENCE similarly is error-prone. Whilst use of these statements was invaluable prior to Fortran 90 they are now redundant and can inhibit performance. The block data program unit exists only to serve common blocks and hence is also redundant.
40.4.11 Specific Names for Intrinsic Functions
The specific names of the intrinsic functions are often obscure and hinder portability. They have been redundant since Fortran 90. Use generic names for references to intrinsic procedures.
40.4.12 FORALL Construct and Statement
The FORALL construct and statement were added to the language in the expectation that they would enable highly efficient execution, especially on parallel processors. However, experience indicates that they are too complex and have too many restrictions for compilers to take advantage of them. They are redundant with the DO CONCURRENT construct, and many of the manipulations for which they might be used can be done more effectively using pointers, especially using pointer rank remapping.
40.5 Better Alternatives
Below we are looking at the new features of the Fortran standard, and how we can replace our current coding practices with the better facilities that now exist.

 	double precision — use the module precision_module which was introduced in Chap. 21 and used subsequently throughout the book.

	fixed format — use free format

	implicit typing — use implicit none

	block data — use modules

	common statement — use modules

	equivalence — Invariably the use of this feature requires considerable system specific knowledge. There will be cases where there have been extremely good reasons why this feature has been used, normally efficiency related. However with the rapid changes taking place in the power and speed of hardware these reasons are diminishing.

	assumed-size/explicit-shape dummy array arguments — if a dummy argument is assumed-size or explicit-shape (the only ones available in Fortran 77) then the ranks of the actual argument and the associated argument don’t have to be the same. With modern Fortran arrays are now objects instead of a linear sequence of elements, as was the case with Fortran 77, and now for array arguments the fundamental rule is that actual and dummy arguments have the same rank and same extents in each dimension, i.e., the same shape, and this is done using assumed-shape dummy array arguments. An explicit interface is mandatory for assumed-shape arrays.

	entry statement — use module plus use statement.

	statement functions — use internal function, see Chap. 12, and examples later this chapter.

	computed goto — use case statement, see Chap. 13.

	alternate return — use error flags on calling routine.

	external statement for dummy procedure arguments - use modules and interface blocks. See the Runge-Kutta-Merson example in Chap. 26.

Use explicit interfaces everywhere, i.e. use module procedures.
This also provides argument checking and other benefits.
40.6 Free and Commercial Conversion Tools
At
 the time of writing there are several options. Have a look at our Fortran resource file:[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figc_HTML.gif]

for up to date information.
Here are brief details of the tools currently available.
40.6.1 Convert
Fortran 77 to Fortran 90 converter by Mike Metcalf.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figd_HTML.gif]

Here are some of the comments from the program.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Fige_HTML.gif]

40.6.2 Forcheck
A Fortran analyser and programming aid.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figf_HTML.gif]

40.6.3 Nag Compiler Polish Tool
Here
 is the home page for the Nag compiler.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figg_HTML.gif]

Here is a brief description of the tools.In addition the Compiler provides software tools to: convert fixed-format code to free-format; pretty print (“polish”) code; list dependency information of modules and include files; produce callgraphs; and generate explicit procedure interfaces as module or INCLUDE files.

40.6.4 Plusfort
Fortran 77 to Fortran 90 converter.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figh_HTML.gif]

40.7 Example 1: Using the plusFORT Tool Suite from Polyhedron Software
Below
 is an example from their site that looks at the same subroutine in Fortran 66, 77 and 90 styles.
40.7.1
 Original Fortran 66

This subroutine picks off digits from an integer and branches depending on their value.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figi_HTML.gif]

40.7.2 Fortran 77 Version
In addition to restructuring, SPAG has renamed some variables, removed the unused variable IP, inserted declarations, and used upper and lower case to distinguish different types of variable:[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figj_HTML.gif]

40.7.3 Fortran 90 Version
SPAG has used do while, select case, exit and cycle. No GOTOs or labels remain.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figk_HTML.gif]

This tool suite can also be used in the maintenance of code during development.
40.8 Example 2: Leaving as Fortran 77
The simplest option if the function or subroutine works and does not need updating is to leave it as Fortran 66 or 77 fixed source form. The Netlib routines in Chap. 36 are a good example of this. They are[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figl_HTML.gif]

We had to make some changes to get them to compile, and the changes are documented in the earlier chapter.
40.9 Example 3: Simple Conversion to Fortran 90
The Metcalf convert program can be used to simply convert from Fortran 77 to Fortran 90.
Using this utility on the Netlib dsort.f Fortran 77 code will produce a Fortran 90 equivalent. Here is the converted code.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figm_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Fign_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figo_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figp_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figq_HTML.gif]

The Unix diff command will document the changes between the original Fortran 77 and the new Fortran 90 version.
As can be seen, converting the comment symbol from a C in column 1 to the ! character makes it valid free form Fortran 90.
40.10 Example 4: Simple Syntax Conversion to Modern Fortran
The Nag compiler offers a Polish option that will automatically convert Fortran 77 to Fortran 90.
Here is the converted version of the Netlib dsort.f subroutine.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figr_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figs_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figt_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figu_HTML.gif]

As can be seen we have a much more Fortran 90 style after conversion. We use the Nag compiler polish option on all of our old Fortran 77 style code.
40.11 Example 5: Date Case Study
In this example we look at a variety of conversions. We start with a set of Fortran 77 functions and subroutines for date manipulation put together by Skip Noble.
We next look at a modern Fortran 90 version written by Alan Miller.
Both of these versions manipulate dates using independent integer variables to represent days, months, and years.
We next refer to the version in Chap. 22, where we introduce a date derived type throughout.
We will start by looking at the Fortran 77 version.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figv_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figw_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figx_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figy_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figz_HTML.gif]

Here some comments about the code.

 	it is fixed format

	the Fortran code is upper case only

	variables names are a maximum of 6 characters

	There is no program statement at the start of the program

	default typing is in effect, with variables that begin with I-N as integer

	the following is a statement function [image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figaa_HTML.gif]

	the following is a statement function [image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figab_HTML.gif]

	The program has calls to a non-standard routine GETDAT

Here is the modern Fortran 90 version using independent integer variables for the days, months and years.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figac_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figad_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figae_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figaf_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figag_HTML.gif]

The next version using derived types and a modern Fortran 90 syntax can be found in Chap. 22.
This version required manual conversion. As can be seen by comparing the versions there is quite a difference.
The final version using an object oriented style can be found in Chap. 29. Again this required manual conversion.
40.12 Example 6: Creating 64 Bit Integer and 128 Bit Real Sorting Subroutines from the Netlib Sorting Routines
Netlib provides three non recursive sorting routines and they are	dsort.f - Fortran 77 double precision, 64 bit normally

	ssort.f - Fortran default real type, 32 bit normally

	isort.f - Fortran default integer type, 32 bit normally

The aim is to provide a 64 bit integer sorting subroutine and a 128 bit real sorting subroutine, to accompany the above routines.
The first step is to rewrite the double precision version to use our precision module, and use that to create the 128 bit real subroutine.
The second step is to rewrite the 32 bit integer subroutine to use our integer kind module. We can then create our 64 bit integer sorting routine from that one.
Here are some of the major differences between the original Netlib version which uses double precision and the latest real versions which use kind types.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figah_HTML.gif]

Here is the 128 bit real sort subroutine.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figai_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figaj_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figak_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figal_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figam_HTML.gif]

Here is the 64 bit integer sort subroutine.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figan_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figao_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figap_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figaq_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figar_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figas_HTML.gif]

[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figat_HTML.gif]

All five subroutines are available on our web site.[image: ../images/112282_4_En_40_Chapter/112282_4_En_40_Figau_HTML.gif]

We have also taken the generic recursive sort module from an earlier chapter and converted it to work with the Netlib routines. A copy of this module can also be found on our web site.
40.13 Summary
This chapter has shown some of the options open to you when working with legacy code. The emphasis has been on relatively straightforward code restructuring. The use of software tools to aid in this is highly recommended as converting manually using an editor is obviously going to involve much more work.
40.14 Problems
40.1
Compile and run the examples in this chapter.

40.2
Create a 16 bit integer sorting routine using the 32 bit integer sort subroutine in Example 5.

40.3
Create a generic sorting module from the subroutines in Example 5.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_41

41. Graphics Libraries - Simple Dislin Usage

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 Modern data graphics can do much more than simply substitute for small statistical tables. At their best, graphics are instruments for reasoning about quantitative information. Often the most effective way to describe, explore and summarise a set of numbers — even a large set — is to look at pictures of those numbers.

Edward R Tufte, The Visual Display of Quantitative Information.

 A picture paints a thousand words.

Reportedly first used by Frederick R. Barnard in Printer’s Ink (December, 1921), while commenting that graphics can tell a story as effectively as a large amount of descriptive text.
41.1 Introduction
In science and engineering graphics are essential part of the presentation of information.
A graphics library is generally a set of routines that can be called from one or more programming languages to help in the display of graphical output to a screen or monitor with the option normally of targetting a hard copy device.
Our resource file[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figa_HTML.gif]
 provides details of some of the graphics libraries available.
We will be using the Dislin library in our examples.
41.2 The Dislin Graphics Library
This is the
 dislin home page.[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figb_HTML.gif]

Here is a description of the software from the above page.

 	Dislin is a high-level and easy to use plotting library for displaying data as curves, bar graphs, pie charts, 3D-colour plots, surfaces, contours, and maps. The library contains about 500 plotting and parameter setting routines. The approach used is to have only a few graphics routines with short parameter lists. A large variety of parameter setting routines can then be used to create customized graphics. Several output formats are supported such as X11, VGA, PostScript, PDF, SVG, CGM, HPGL, TIFF, GIF, PNG and BMP. Dislin is available for the programming languages C, Fortran 77, Fortran 90, Perl, Python and Java.

41.3 Example 1: Using Dislin to Plot Amdahl’s Law Graph 1 – 8 Processors or Cores
Here is the source code for this program.[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figc_HTML.gif]

41.4 Example 2: Using Dislin to Plot Amdahl’s Law Graph 2 – 64 Processors or Cores
Here is the source code for this program.[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figd_HTML.gif]

It is similar to the previous example.
41.5 Example 3: Using Dislin to Plot Gustafson’s Law Graph 1 – 64 Processors or Cores
Here is the source code for this program.[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Fige_HTML.gif]

It is similar
 to the first example.
41.6 Example 4: Using Dislin to Plot Tsunami Events
Here is the source code for this

 program.[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figf_HTML.gif]

[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figg_HTML.gif]

The original program on which this is based was written by Ian whilst he was on secondment to the United Nations Environment Programme. Section 9 of their Environmental Data Reports cover natural disasters and these include	Earthquakes

	Volcanoes

	Tsunamis

	Floods

	Landslides

	Natural dams

	Droughts

	Wildfires

See the bibliography for more details of these publications. The tsunami data sets are from this chapter.
The tsunami data file and graphics program can be found at:[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figh_HTML.gif]

Here is the plot produced by this program.
[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figi_HTML.gif]
As you can see there are a lot of tsunami events in the Pacific rim area. A colour A4 pdf of the plot can be found at the Fortranplus website.
41.7 Example 5: Using Dislin to Plot the Met Office Data
Here is the source code for this program.[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figj_HTML.gif]

Here is dislin output.
[image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figk_HTML.gif]
These examples have shown some of the capability of the dislin library. Most graphics libraries will offer similar functionality.
41.8 Graphics Production Notes
Most graphics libraries will enable you to view the image on the screen. They will also have the option to generate the image in one or more file formats.
We used Postscript and encapsulated postscript in the production of the graphics included in the book.
There is a brief coverage of the postscript programming language in Chap. 3.
Encapsulated PostScript (EPS) is a postscript document with additional restrictions which is intended to be usable as a graphics file format. EPS files can be thought of as more-or-less self-contained postscript documents that describe an image or drawing and can be placed within another postscript document.
When generating the book we use the [image: ../images/112282_4_En_41_Chapter/112282_4_En_41_Figl_HTML.gif][image: $$->$$] ps [image: $$->$$] pdf print option.
41.9 Bibliography
United Nations Environment Programme, Environmental Data Report: 1989–1990, Second Edition, Blackwell Reference, 1989.
United Nations Environment Programme, Environmental Data Report: 1991–1992, Third Edition, Blackwell Reference, 1991.

 	Part 9 of these two publications are dedicated to natural disasters

Andries Van Dam; James D. Foley, The Fundamentals of Interactive Computer Graphics Addison-Wesley.

 	The classic graphics textbook. Dated, but very good.

Edward R Tufte, Visual Explanations, Images and quantities, evidence and narrative, Graphics Press, Chesire, Connecticut.
Edward R Tufte, The Visual Display of Quantitative Information, Graphics Press, Chesire, Connecticut.

 	Two very good books on how to present information visually

41.10 Problems
41.1
Try out the examples in this chapter.

41.2
Have a look at our resource file to find out more about what libraries are available.

© Springer International Publishing AG, part of Springer Nature 2018
Ian Chivers and Jane SleightholmeIntroduction to Programming with Fortranhttps://doi.org/10.1007/978-3-319-75502-1_42

42. Abstract Interfaces and Procedure Pointers

Ian Chivers1 and Jane Sleightholme2
(1)Rhymney Consulting, London, UK

(2)Fortranplus, London, UK

Ian Chivers
Email: ian.chivers@chiversandbryan.co.uk

 No amount of experimentation can ever prove me right; a single experiment can prove me wrong.

Albert Einstein
42.1 Introduction
We look at an example that illustrates the use of abstract interfaces and procedure pointers.
42.2 Example 1: Abstract Interfaces and Procedure Pointers
Abstract interfaces and procedure pointers were introduced into Fortran in the 2003 standard. One of the things their addition did was simplify the way we could program where several procedures shared a common interface.
Their addition also made it possible to solve problems involving procedure pointer components and abstract type bound procedures.
Here is some background technical material taken from the standard.
A procedure pointer is a procedure that has the EXTERNAL and POINTER attributes; it may be pointer associated with an external procedure, an internal procedure, an intrinsic procedure, a module procedure, or a dummy procedure that is not a procedure pointer.
An interface body in a generic or specific interface block specifies the EXTERNAL attribute and an explicit specific interface for an external procedure, dummy procedure, or procedure pointer.
A procedure declaration statement declares procedure pointers, dummy procedures, and external procedures. It specifies the EXTERNAL attribute for all entities in the proc-decl-list.
Here is the syntax for a procedure declaration statement.[image: ../images/112282_4_En_42_Chapter/112282_4_En_42_Figa_HTML.gif]

We use abstract interfaces and procedure pointers in the example below.[image: ../images/112282_4_En_42_Chapter/112282_4_En_42_Figb_HTML.gif]

[image: ../images/112282_4_En_42_Chapter/112282_4_En_42_Figc_HTML.gif]

Here is sample output.[image: ../images/112282_4_En_42_Chapter/112282_4_En_42_Figd_HTML.gif]

42.3 Problem
42.1
Try out the example in this chapter.

Appendix A

Glossary
This appendix is based on the terms and definitions chapter in the standard. References are to the standard.

 Actual argument
 entity (R1524) that appears in a procedure reference

 Allocatable
 having the ALLOCATABLE attribute (8.5.3)

 Array
 set of scalar data, all of the same type and type parameters, whose individual elements are arranged in a rectangular pattern (8.5.8, 9.5)
 	
 Array element

	scalar individual element of an array

	
 Array pointer

	array with the POINTER attribute (8.5.14)

	
 Array section

	array subobject designated by array-section, and which is itself an array (9.5.3.3)

	
 Assumed-shape array

	nonallocatable nonpointer dummy argument array that takes its shape from its effective argument (8.5.8.3)

	
 Assumed-size array

	dummy argument array whose size is assumed from that of its effective argument (8.5.8.5)

	
 Deferred-shape array

	allocatable array or array pointer, declared with a deferred-shape-spec-list (8.5.8.4)

	
 Explicit-shape array

	array declared with an explicit-shape-spec-list, which specifies explicit values for the bounds in each dimension of the array (8.5.8.2)

 ASCII character
 character whose representation method corresponds to ISO/IEC 646:1991 (International Reference Version)

 Associate name
 name of construct entity associated with a selector of an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE construct (11.1.3, 11.1.5, 11.1.10, 11.1.11)

 Associating entity
 ‘in a dynamically-established association’ the entity that did not exist prior to the establishment of the association (19.5.5)

 Association
 inheritance association, name association, pointer association, or storage association.
 	
 Argument association

	association between an effective argument and a dummy argument

	
 Construct association

	association between a selector and an associate name in an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE construct (11.1.3, 11.1.5, 11.1.10, 11.1.11, 19.5.1.6)

	
 Host association

	name association, other than argument association, between entities in a submodule or contained scoping unit and entities in its host (19.5.1.4)

	
 Inheritance association

	association between the inherited components of an extended type and the components of its parent component (19.5.4)

	
 Linkage association

	association between a variable or common block with the BIND attribute and a C global variable (18.9, 19.5.1.5)

	
 Name association

	argument association, construct association, host association, linkage association, or use association (19.5.1)

	
 Pointer association

	association between a pointer and an entity with the TARGET attribute (19.5.2)

	
 Storage association

	association between storage sequences (19.5.3)

	
 Use association

	association between entities in a module and entities in a scoping unit or construct that references that module, as specified by a USE statement (14.2.2)

 Assumed-rank dummy data object
 dummy data object that assumes the rank, shape, and size of its effective argument (8.5.8.7)

 Assumed-type
 declared with a TYPE(*) type specifier (7.3.2)

 Attribute
 property of an entity that determines its uses (8.1)

 Automatic data object
 nondummy data object with a type parameter or array bound that depends on the value of a specification-expr that is not a constant expression (8.3)

 Base object
 ‘data-ref’ object designated by the leftmost part-name (9.4.2)

 Binding
 type-bound procedure or final subroutine (7.5.5)

 Binding name
 name given to a specific or generic type-bound procedure in the type definition (7.5.5)

 Binding label
 default character value specifying the name by which a global entity with the BIND attribute is known to the companion processor (18.10.2, 18.9.2)

 Block
 sequence of executable constructs formed by the syntactic class block and which is treated as a unit by the executable constructs described in 11.1

 Bound
 array bound limit of a dimension of an array (8.5.8)

 Branch target statement
 action-stmt, associate-stmt, end-associate-stmt, if-then-stmt, end-if-stmt, select-case-stmt, end-select-stmt, selectrank-stmt, end-select-rank-stmt, select-type-stmt, end-select-type-stmt, do-stmt, end-do-stmt, block-stmt, endblock-stmt, critical-stmt, end-critical-stmt, forall-construct-stmt, where-construct-stmt, end-function-stmt, end-mp-subprogram-stmt, end-program-stmt, or end-subroutine-stmt.

 C address
 value identifying the location of a data object or procedure either defined by the companion processor or which might be accessible to the companion processor NOTE 3.1 This is the concept that ISO/IEC 9899:2011 calls the address.

 C descriptor
 C structure of type CFI_cdesc_t defined in the source file ISO_Fortran_binding.h (18.4, 18.5)

 Character context
 within a character literal constant (7.4.4) or within a character string edit descriptor (13.3.2)

 Characteristics
 ‘dummy argument’ being a dummy data object, dummy procedure, or an asterisk (alternate return indicator)

 Characteristics
 ‘dummy data object’ properties listed in 15.3.2.2

 Characteristics
 ‘dummy procedure or dummy procedure pointer’ properties listed in 15.3.2.3

 Characteristics
 ‘function result’ properties listed in 15.3.3

 Characteristics
 ‘procedure’ properties listed in 15.3.1

 Coarray
 data entity that has nonzero corank (5.4.7)
 	
 Established coarray

	coarray that is accessible using an image-selector (5.4.8)

 Cobound
 bound (limit) of a codimension (8.5.6)

 Codimension
 dimension of the pattern formed by a set of corresponding coarrays (8.5.6)

 Coindexed object
 data object whose designator includes an image-selector (R924, 9.6)

 Collating sequence
 one-to-one mapping from a character set into the nonnegative integers (7.4.4.4)

 Common block
 block of physical storage specified by a COMMON statement (8.10.2)

 	
 Blank common

	unnamed common block

 Companion processor
 processor-dependent mechanism by which global data and procedures may be referenced or defined (5.5.7)

 Component
 part of a derived type, or of an object of derived type, defined by a component-def-stmt (7.5.4)
 	
 Direct component

	one of the components, or one of the direct components of a nonpointer nonallocatable component (7.5.1)

	
 Parent component

	component of an extended type whose type is that of the parent type and whose components are inheritance associated with the inherited components of the parent type (7.5.7.2)

	
 Potential subobject component

	nonpointer component, or potential subobject component of a nonpointer component (7.5.1)

	
 Subcomponent

	‘structure’ direct component that is a subobject of the structure (9.4.2)

	
 Ultimate component

	component that is of intrinsic type, a pointer, or allocatable; or an ultimate component of a nonpointer nonallocatable component of derived type

 Component order
 ordering of the nonparent components of a derived type that is used for intrinsic formatted input/output and structure constructors (where component keywords are not used) (7.5.4.7)

 Conformable
 ‘of two data entities’ having the same shape, or one being an array and the other being scalar

 Connected
 relationship between a unit and a file: each is connected if and only if the unit refers to the file (12.5.4)

 Constant
 data object that has a value and which cannot be defined, redefined, or become undefined during execution of a program (6.2.3, 9.3)
 	
 Literal constant

	constant that does not have a name (R605, 7.4)

	
 Named constant

	named data object with the PARAMETER attribute (8.5.13)

 Construct entity
 entity whose identifier has the scope of a construct (19.1, 19.4)

 Constant expression
 expression satisfying the requirements specified in 10.1.12, thus ensuring that its value is constant

 Contiguous
 ‘array’ having array elements in order that are not separated by other data objects, as specified in 8.5.7

 Contiguous
 ‘multi-part data object’ that the parts in order are not separated by other data objects

 Corank
 number of codimensions of a coarray (zero for objects that are not coarrays) (8.5.6)

 Cosubscript
 (R925) scalar integer expression in an image-selector (R924)

 Data entity
 data object, result of the evaluation of an expression, or the result of the execution of a function reference

 Data object
 object constant, variable, or subobject of a constant

 Decimal symbol
 character that separates the whole and fractional parts in the decimal representation of a real number in a file (13.6)

 Declaration
 specification of attributes for various program entities NOTE 3.2 Often this involves specifying the type of a named data object or specifying the shape of a named array object.

 Default initialization
 mechanism for automatically initializing pointer components to have a defined pointer association status, and nonpointer components to have a particular value (7.5.4.6)

 Default-initialized
 ‘subcomponent’ subject to a default initialization specified in the type definition for that component (7.5.4.6)

 Definable
 capable of definition and permitted to become defined

 Defined
 ‘data object’ has a valid value

 Defined
 ‘pointer’ has a pointer association status of associated or disassociated (19.5.2.2)

 Defined assignment
 assignment defined by a procedure (10.2.1.4, 15.4.3.4.3)

 Defined input/output
 input/output defined by a procedure and accessed via a defined-io-generic-spec (R1509, 12.6.4.8)

 Defined operation
 operation defined by a procedure (10.1.6.1, 15.4.3.4.2)

 Definition
 ‘data object’ process by which the data object becomes defined (19.6.5)

 Definition
 ‘derived type (7.5.2), enumeration (7.6), or procedure (15.6)’ specification of the type, enumeration, or procedure

 Descendant
 ‘module or submodule’ submodule that extends that module or submodule or that extends another descendant thereof (14.2.3)

 Designator
 name followed by zero or more component selectors, complex part selectors, array section selectors, array element selectors, image selectors, and substring selectors (9.1)
 	
 Complex part designator

	designator that designates the real or imaginary part of a complex data object, independently of the other part (9.4.4)

	
 Object designator

	data object designator designator for a data object NOTE 3.3 An object name is a special case of an object designator.

	
 Procedure designator

	designator for a procedure

 Disassociated
 ‘pointer association’ pointer association status of not being associated with any target and not being undefined (19.5.2.2)

 Disassociated
 ‘pointer’ has a pointer association status of disassociated

 Dummy argument
 entity whose identifier appears in a dummy argument list in a FUNCTION, SUBROUTINE, ENTRY, or statement function statement, or whose name can be used as an argument keyword in a reference to an intrinsic procedure or a procedure in an intrinsic module
 	
 Dummy data object

	dummy argument that is a data object

	
 Dummy function

	dummy procedure that is a function

 Effective argument
 entity that is argument-associated with a dummy argument (15.5.2.3)

 Effective item
 scalar object resulting from the application of the rules in 12.6.3 to an input/output list

 Elemental
 independent scalar application of an action or operation to elements of an array or corresponding elements of a set of conformable arrays and scalars, or possessing the capability of elemental operation NOTE 3.4 Combination of scalar and array operands or arguments combine the scalar operand(s) with each element of the array operand(s).
 	
 Elemental assignment

	assignment that operates elementally

	
 Elemental operation

	operation that operates elementally

	
 Elemental operator

	operator in an elemental operation

	
 Elemental procedure

	elemental intrinsic procedure or procedure defined by an elemental subprogram (15.8)

	
 Elemental reference

	reference to an elemental procedure with at least one array actual argument

	
 Elemental subprogram

	subprogram with the ELEMENTAL prefix (15.8.1)

 END statement
 end-block-data-stmt, end-function-stmt, end-module-stmt, end-mp-subprogram-stmt, end-program-stmt, end-submodule-stmt, or end-subroutine-stmt

 Explicit initialization
 initialization of a data object by a specification statement (8.4, 8.6.7)

 Extent
 number of elements in a single dimension of an array

 External file
 file that exists in a medium external to the program (12.3)

 External unit
 external input/output unit entity that can be connected to an external file (12.5.3, 12.5.4)

 File storage unit
 unit of storage in a stream file or an unformatted record file (12.3.5)

 Final subroutine
 subroutine whose name appears in a FINAL statement (7.5.6) in a type definition, and which can be automatically invoked by the processor when an object of that type is finalized (7.5.6.2)

 Finalizable
 ‘type’ has a final subroutine or a nonpointer nonallocatable component of finalizable type

 Finalizable
 ‘nonpointer data entity’ of finalizable type

 Finalization
 process of calling final subroutines when one of the events listed in 7.5.6.3 occurs

 Function
 procedure that is invoked by an expression

 Function result
 entity that returns the value of a function (15.6.2.2)

 Generic identifier
 lexical token that identifies a generic set of procedures, intrinsic operations, and/or intrinsic assignments (15.4.3.4.1)

 Host instance
 ‘internal procedure, or dummy procedure or procedure pointer associated with an internal procedure’ instance of the host procedure that supplies the host environment of the internal procedure (15.6.2.4)

 Host scoping unit
 host scoping unit immediately surrounding another scoping unit, or the scoping unit extended by a submodule

 IEEE infinity
 ISO/IEC/IEEE 60559:2011 conformant infinite floating-point value

 IEEE NaN
 ISO/IEC/IEEE 60559:2011 conformant floating-point datum that does not represent a number

 Image
 instance of a Fortran program (5.3.4)
 	
 Active image

	image that has not failed or stopped (5.3.6)

	
 Failed image

	image that has not initiated termination but which has ceased to participate in program execution (5.3.6)

	
 Stopped image

	image that has initiated normal termination (5.3.6)

 Image index
 integer value identifying an image within a team

 Image control statement
 statement that affects the execution ordering between images (11.6)

 Inclusive scope
 nonblock scoping unit plus every block scoping unit whose host is that scoping unit or that is nested within such a block scoping unit NOTE 3.5 That is, inclusive scope is the scope as if BLOCK constructs were not scoping units.

 Inherit
 ‘extended type’ acquire entities (components, type-bound procedures, and type parameters) through type extension from the parent type (7.5.7.2)

 Inquiry function
 intrinsic function, or function in an intrinsic module, whose result depends on the properties of one or more of its arguments instead of their values

 Interface
 ‘procedure’ name, procedure characteristics, dummy argument names, binding label, and generic identifiers (15.4.1)
 	
 Abstract interface

	set of procedure characteristics with dummy argument names (15.4.1)

	
 Explicit interface

	interface of a procedure that includes all the characteristics of the procedure and names for its dummy arguments except for asterisk dummy arguments (15.4.2)

	
 Generic interface

	set of procedure interfaces identified by a generic identifier

	
 Implicit interface

	interface of a procedure that is not an explicit interface (15.4.2, 15.4.3.8)

	
 Specific interface

	interface identified by a nongeneric name

 Interface block
 abstract interface block, generic interface block, or specific interface block (15.4.3.2)
 	
 Abstract interface block

	interface block with the ABSTRACT keyword; collection of interface bodies that specify named abstract interfaces

	
 Generic interface block

	interface block with a generic-spec; collection of interface bodies and procedure statements that are to be given that generic identifier

	
 Specific interface block

	interface block with no generic-spec or ABSTRACT keyword; collection of interface bodies that specify the interfaces of procedures

 Interoperable
 ‘Fortran entity’ equivalent to an entity defined by or definable by the companion processor (18.3)

 Intrinsic
 type, procedure, module, assignment, operator, or input/output operation defined in this document and accessible without further definition or specification, or a procedure or module provided by a processor but not defined in this document
 	
 Standard intrinsic

	‘procedure or module’ defined in this document (16)

	
 Nonstandard intrinsic

	‘procedure or module’ provided by a processor but not defined in this document

 Internal file
 character variable that is connected to an internal unit (12.4)

 Internal unit
 input/output unit that is connected to an internal file (12.5.4)

 ISO 10646 character
 character whose representation method corresponds to UCS-4 in ISO/IEC 10646

 Keyword
 statement keyword, argument keyword, type parameter keyword, or component keyword
 	
 Argument keyword

	word that identifies the corresponding dummy argument in an actual argument list (15.5.2.1)

	
 Component keyword

	word that identifies a component in a structure constructor (7.5.10)

	
 Statement keyword

	word that is part of the syntax of a statement (5.5.2)

	
 Type parameter keyword

	word that identifies a type parameter in a type parameter list

 Lexical token
 keyword, name, literal constant other than a complex literal constant, operator, label, delimiter, comma, =, =>, :, ::, ;, or % (6.2)

 Line
 sequence of zero or more characters

 Main program
 program unit that is not a subprogram, module, submodule, or block data program unit (14.1)

 Masked array assignment
 assignment statement in a WHERE statement or WHERE construct

 Module
 program unit containing (or accessing from other modules) definitions that are to be made accessible to other program units (14.2)

 Name
 identifier of a program constituent, formed according to the rules given in 6.2.2

 NaN
 Not a Number, a symbolic floating-point datum (ISO/IEC/IEEE 60559:2011)

 Operand
 data value that is the subject of an operator

 Operator
 intrinsic-operator, defined-unary-op, or defined-binary-op (R608, R1003, R1023)

 Passed-object dummy argument
 dummy argument of a type-bound procedure or procedure pointer component that becomes associated with the object through which the procedure is invoked (7.5.4.5)

 Pointer
 data pointer or procedure pointer
 	
 Data pointer

	data entity with the POINTER attribute (8.5.14)

	
 Procedure pointer

	procedure with the EXTERNAL and POINTER attributes (8.5.9, 8.5.14)

	
 Local procedure pointer

	procedure pointer that is part of a local variable, or a named procedure pointer that is not a dummy argument or accessed by use or host association

 Pointer assignment
 association of a pointer with a target, by execution of a pointer assignment statement (10.2.2) or an intrinsic assignment statement (10.2.1.2) for a derived-type object that has the pointer as a subobject

 Polymorphic
 ‘data entity’ able to be of differing dynamic types during program execution (7.3.2.3)

 Preconnected
 ‘file or unit’ connected at the beginning of execution of the program (12.5.5)

 Procedure
 entity encapsulating an arbitrary sequence of actions that can be invoked directly during program execution
 	
 Dummy procedure

	procedure that is a dummy argument (15.2.2.3)

	
 External procedure

	procedure defined by an external subprogram (R503) or by means other than Fortran (15.6.3)

	
 Internal procedure

	procedure defined by an internal subprogram (R512)

	
 Module procedure

	procedure defined by a module subprogram, or a procedure provided by an intrinsic module (R1408)

	
 Pure procedure

	procedure declared or defined to be pure (15.7)

	
 Type-bound procedure

	procedure that is bound to a derived type and referenced via an object of that type (7.5.5)

 Processor
 combination of a computing system and mechanism by which programs are transformed for use on that computing system

 Processor dependent
 not completely specified in this document, having methods and semantics determined by the processor

 Program
 set of Fortran program units and entities defined by means other than Fortran that includes exactly one main program

 Program unit
 main program, external subprogram, module, submodule, or block data program unit (5.2.1)

 Rank
 number of array dimensions of a data entity (zero for a scalar entity)

 Record
 sequence of values or characters in a file (12.2)

 Record file
 file composed of a sequence of records (12.1)

 Reference
 data object reference, procedure reference, or module reference
 	
 Data object reference

	appearance of a data object designator (9.1) in a context requiring its value at that point during execution

	
 Function reference

	appearance of the procedure designator for a function, or operator symbol for a defined operation, in a context requiring execution of the function during expression evaluation (15.5.3)

	
 Module reference

	appearance of a module name in a USE statement (14.2.2)

	
 Procedure reference

	appearance of a procedure designator, operator symbol, or assignment symbol in a context requiring execution of the procedure at that point during execution; or occurrence of defined input/output (13.7.6) or derived-type finalization (7.5.6.2)

 Saved
 having the SAVE attribute (8.5.16)

 Scalar
 data entity that can be represented by a single value of the type and that is not an array (9.5)

 Scoping unit
 BLOCK construct, derived-type definition, interface body, program unit, or subprogram, excluding all nested scoping units in it
 	
 Block scoping unit

	scoping unit of a BLOCK construct

 Sequence
 set of elements ordered by a one-to-one correspondence with the numbers 1, 2, to n

 Sequence structure
 scalar data object of a sequence type (7.5.2.3)

 Sequence type
 derived type with the SEQUENCE attribute (7.5.2.3)
 	
 Character sequence type

	sequence type with no allocatable or pointer components, and whose components are all default character or of another character sequence type

	
 Numeric sequence type

	sequence type with no allocatable or pointer components, and whose components are all default complex, default integer, default logical, default real, double precision real, or of another numeric sequence type

 Shape
 array dimensionality of a data entity, represented as a rank-one array whose size is the rank of the data entity and whose elements are the extents of the data entity NOTE 3.6 Thus the shape of a scalar data entity is an array with rank one and size zero.

 Simply contiguous
 ‘array designator or variable’ satisfying the conditions specified in 9.5.4 NOTE 3.7 These conditions are simple ones which make it clear that the designator or variable designates a contiguous array.

 Size
 ‘array’ total number of elements in the array

 Specification expression
 expression satisfying the requirements specified in 10.1.11, thus being suitable for use in specifications

 Specific name
 name that is not a generic name

 Standard-conforming program
 program that uses only those forms and relationships described in, and has an interpretation according to, this document

 Statement
 sequence of one or more complete or partial lines satisfying a syntax rule that ends in -stmt (6.3)
 	
 Executable statement

	end-function-stmt, end-mp-subprogram-stmt, end-program-stmt, end-subroutine-stmt, or statement that is a member of the syntactic class executable-construct, excluding those in the block-specification-part of a BLOCK construct

	
 Nonexecutable statement

	statement that is not an executable statement

“aStatement entity entity whose identifier has the scope of a statement or part of a statement (19.1, 19.4)

 Statement label
 label unsigned positive number of up to five digits that refers to an individual statement (6.2.5)

 Storage sequence
 contiguous sequence of storage units (19.5.3.2)

 Storage unit
 character storage unit, numeric storage unit, file storage unit, or unspecified storage unit (19.5.3.2)
 	
 Character storage unit

	unit of storage that holds a default character value (19.5.3.2)

	
 Numeric storage unit

	unit of storage that holds a default real, default integer, or default logical value (19.5.3.2)

	
 Unspecified storage unit

	unit of storage that holds a value that is not default character, default real, double precision real, default logical, or default complex (19.5.3.2)

 Stream file
 file composed of a sequence of file storage units (12.1)

 Structure
 scalar data object of derived type (7.5)
 	
 Structure component

	component of a structure

	
 Structure constructor

	syntax (structure-constructor, 7.5.10) that specifies a structure value or creates such a value

 Submodule
 program unit that extends a module or another submodule (14.2.3)

 Subobject
 portion of data object that can be referenced, and if it is a variable defined, independently of any other portion

 Subprogram
 function-subprogram (R1529) or subroutine-subprogram (R1534)
 	
 External subprogram

	subprogram that is not contained in a main program, module, submodule, or another subprogram

	
 Internal subprogram

	subprogram that is contained in a main program or another subprogram

	
 Module subprogram

	subprogram that is contained in a module or submodule but is not an internal subprogram

 Subroutine
 procedure invoked by a CALL statement, by defined assignment, or by some operations on derived-type entities
 	
 Atomic subroutine

	intrinsic subroutine that performs an action on its ATOM argument atomically

	
 Collective subroutine

	intrinsic subroutine that performs a calculation on a team of images without requiring synchronization

 Target
 entity that is pointer associated with a pointer (19.5.2.2), entity on the right-hand-side of a pointer assignment statement (R1033), or entity with the TARGET attribute (8.5.17)

 Team
 ordered set of images created by execution of a FORM TEAM statement, or the initial ordered set of all images
 	
 Current team

	team specified by the most recently executed CHANGE TEAM statement of a CHANGE TEAM construct that has not completed execution (11.1.5), or initial team if no CHANGE TEAM construct is being executed

	
 Initial team

	team existing at the beginning of program execution, consisting of all images

	
 Parent team

	‘team except for initial team’ current team at time of execution of the FORM TEAM statement that created the team (11.6.9)

	
 Team number

	-1 which identifies the initial team, or positive integer that identifies a team within its parent team

 Transformational function
 intrinsic function, or function in an intrinsic module, that is neither elemental nor an inquiry function

 Type
 data type named category of data characterized by a set of values, a syntax for denoting these values, and a set of operations that interpret and manipulate the values (7.1)
 	
 Abstract type

	type with the ABSTRACT attribute (7.5.7.1)

	
 Declared type

	type that a data entity is declared to have, either explicitly or implicitly (7.3.2, 10.1.9)

	
 Derived type

	type defined by a type definition (7.5) or by an intrinsic module

	
 Dynamic type

	type of a data entity at a particular point during execution of a program (7.3.2.3, 10.1.9)

	
 Extended type

	type with the EXTENDS attribute (7.5.7.1)

	
 Extensible type

	type that may be extended using the EXTENDS clause (7.5.7.1)

	
 Extension type

	‘of one type with respect to another’ is the same type or is an extended type whose parent type is an extension type of the other type

	
 Intrinsic type

	type defined by this document that is always accessible (7.4)

	
 Numeric type

	one of the types integer, real, and complex

	
 Parent type

	‘extended type’ type named in the EXTENDS clause

	
 Type compatible

	compatibility of the type of one entity with respect to another for purposes such as argument association, pointer association, and allocation (7.3.2)

	
 Type parameter

	value used to parameterize a type (7.2)

	
 Assumed type parameter

	length type parameter that assumes the type parameter value from another entity NOTE 3.8 The other entity is the selector for an associate name, the constant-expr for a named constant of type character, or NOTE 3.8 (cont.) the effective argument for a dummy argument.

	
 Deferred type parameter

	length type parameter whose value can change during execution of a program and whose type-param-value is a colon

	
 Kind type parameter

	type parameter whose value is required to be defaulted or given by a constant expression

	
 Length type parameter

	type parameter whose value is permitted to be assumed, deferred, or given by a specification expression

	
 Type parameter inquiry

	syntax (type-param-inquiry) that is used to inquire the value of a type parameter of a data object (9.4.5)

	
 Type parameter order

	ordering of the type parameters of a type (7.5.3.2) used for derived-type specifiers (derived-type-spec, 7.5.9)

 Ultimate argument
 nondummy entity with which a dummy argument is associated via a chain of argument associations (15.5.2.3)

 Undefined
 ‘data object’ does not have a valid value

 Undefined
 ‘pointer’ does not have a pointer association status of associated or disassociated (19.5.2.2)

 Unit
 input/output unit means, specified by an io-unit, for referring to a file (12.5.1)

 Unlimited polymorphic
 able to have any dynamic type during program execution (7.3.2.3)

 Unsaved
 not having the SAVE attribute (8.5.16)

 Variable
 data entity that can be defined and redefined during execution of a program
 	
 Event variable

	scalar variable of type EVENT_TYPE (16.10.2.10) from the intrinsic module ISO_FORTRAN_ENV

	
 Local variable

	variable in a scoping unit that is not a dummy argument or part thereof, is not a global entity or part thereof, and is not an entity or part of an entity that is accessible outside that scoping unit

	
 Lock variable

	scalar variable of type LOCK_TYPE (16.10.2.19) from the intrinsic module ISO_FORTRAN_ENV

	
 Team variable

	scalar variable of type TEAM_TYPE (16.10.2.32) from the intrinsic module ISO_FORTRAN_ENV

 Vector subscript
 section-subscript that is an array (9.5.3.3.2)

 Whole array
 array component or array name without further qualification (9.5.2)

Appendix B

Attribute Declarations and Specifications

 This appendix is based on Chap.
 8
 in the standard. References are to the standard.

 Attributes of Procedures and Data Objects

Every data object has a type and rank and may have type parameters and other properties that determine the uses of the object. Collectively, these properties are the attributes of the object. The declared type of a named data object is either specified explicitly in a type declaration statement or determined implicitly by the first letter of its name (8.7). All of its attributes may be specified in a type declaration statement or individually in separate specification statements.
A function has a type and rank and may have type parameters and other attributes that determine the uses of the function. The type, rank, and type parameters are the same as those of the function result.
A subroutine does not have a type, rank, or type parameters, but may have other attributes that determine the uses of the subroutine.

 Type Declaration Statement

A type declaration statement specifies the declared type of the entities in the entity declaration list.

 Attribute Specification

 An attribute specifier can be one or more of
 	ALLOCATABLE

	ASYNCHRONOUS

	BIND C

	CODIMENSION

	CONTIGUOUS

	DIMENSION

	EXTERNAL

	INTENT

	INTRINSIC

	OPTIONAL

	PARAMETER

	POINTER

	PRIVATE

	PROTECTED

	PUBLIC

	SAVE

	TARGET

	VALUE

	VOLATILE

 Attribute Specification Statements

 These include
 	ALLOCATABLE

	ASYNCHRONOUS

	BIND C

	CODIMENSION

	CONTIGUOUS

	DATA

	DIMENSION

	INTENT

	OPTIONAL

	PARAMETER

	POINTER

	PROTECTED

	SAVE

	TARGET

	VALUE

	VOLATILE

Appendix C

Compatibility

 Previous Fortran Standards

 Table
 C.1
 lists the previous editions of the Fortran International Standard, along with their informal names.
 Table C.1Previous editions of the Fortran standard

	Official name
	Informal name

	ISO R 1539-1972
	Fortran 66

	ISO 1539-1980
	Fortran 77

	ISO/IEC 1539:1991
	Fortran 90

	ISO/IEC 1539-1:1997
	Fortran 95

	ISO/IEC 1539-1:2004
	Fortran 2003

	ISO/IEC 1539-1:2010
	Fortran 2008

 New Intrinsic Procedures

Each Fortran International Standard since ISO 1539:1980 (Fortran 77), defines more intrinsic procedures than the previous one. Therefore, a Fortran program conforming to an older standard might have a different interpretation under a newer standard if it invokes an external procedure having the same name as one of the new standard intrinsic procedures, unless that procedure is specified to have the EXTERNAL attribute.

 Fortran 2008 Compatibility

Except as identified in this subclause, and except for the deleted features noted in Annex B.2, the Fortran 2018 standard is an upward compatible extension to the preceding Fortran International Standard, ISO/IEC 1539-1:2010 (Fortran). Any standard-conforming Fortran 2008 program that does not use any deleted features, and does not use any feature identified in this subclause as being no longer permitted, remains standard-conforming in the Fortran 2018 standard.

 Fortran 2008 specifies that the IOSTAT
 [image: $$=$$]
 variable shall be set to a processor-dependent negative value if the flush operation is not supported for the unit specified. the Fortran 2018 standard specifies that the processor-dependent negative integer value shall be different from the named constants IOSTAT_EOR or IOSTAT_END from the intrinsic module ISO_FORTRAN_ENV.

Fortran 2008 permitted a noncontiguous array that was supplied as an actual argument corresponding to a contiguous INTENT (INOUT) dummy argument in one iteration of a DO CONCURRENT construct, without being previously defined in that iteration, to be defined in another iteration;
Fortran 2008 permitted a pure statement function to reference a volatile variable, and permitted a local variable of a pure subprogram or of a BLOCK construct within a pure subprogram to be volatile (provided it was not used); the Fortran 2018 standard does not permit this.
Fortran 2008 permitted a pure function to have a result that has a polymorphic allocatable ultimate component; the Fortran 2018 standard does not permit this.
Fortran 2008 permitted a PROTECTED TARGET variable accessed by use association to be used as an initial7 data-target; the Fortran 2018 standard does not permit this.
Fortran 2008 permitted a named constant to have declared type LOCK_TYPE, or have a noncoarray potential subobject component with declared type LOCK_TYPE; the Fortran 2018 standard does not permit this.
Fortran 2008 permitted a polymorphic object to be finalized within a DO CONCURRENT construct; the Fortran 2018 standard does not permit this.

 Fortran 2003 Compatibility

Except as identified in this subclause, the Fortran 2018 standard is an upward compatible extension to ISO/IEC 1539-1:2004 (Fortran 2003). Except as identified in this subclause, any standard-conforming Fortran 2003 program remains standard-conforming in the Fortran 2018 standard.
Fortran 2003 permitted a sequence type to have type parameters; that is not permitted by the Fortran 2018 standard.
Fortran 2003 specified that array constructors and structure constructors of finalizable type are finalized. The Fortran 2018 standard specifies that these constructors are not finalized.
The form produced by the G edit descriptor for some values and some input/output rounding modes differs from that specified by Fortran 2003.
Fortran 2003 required an explicit interface only for a procedure that was actually referenced in the scope, not merely passed as an actual argument. the Fortran 2018 standard requires an explicit interface for a procedure under the conditions listed in 15.4.2.2, regardless of whether the procedure is referenced in the scope.
Fortran 2003 permitted the function result of a pure function to be a polymorphic allocatable variable, to have a polymorphic allocatable ultimate component, or to be finalizable by an impure final subroutine. These are not permitted by the Fortran 2018 standard.
Fortran 2003 permitted an INTENT (OUT) argument of a pure subroutine to be polymorphic; that is not permitted by the Fortran 2018 standard.
Fortran 2003 interpreted assignment to an allocatable variable from a nonconformable array as intrinsic assignment, even when an elemental defined assignment was in scope; the Fortran 2018 standard does not permit assignment from a nonconformable array in this context.
Fortran 2003 permitted a statement function to be of parameterized derived type; the Fortran 2018 standard does not permit this.
Fortran 2003 permitted a pure statement function to reference a volatile variable, and permitted a local variable of a pure subprogram to be volatile (provided it was not used); the Fortran 2018 standard does not permit this

 Fortran 95 Compatibility

Except as identified in this subclause, the Fortran 2018 standard is an upward compatible extension to ISO/IEC 1539-1:1997 (Fortran 95). Except as identified in this subclause, any standard-conforming Fortran 95 program remains standard-conforming in the Fortran 2018 standard.
Fortran 95 permitted defined assignment between character strings of the same rank and different kinds. This document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.
The following Fortran 95 features might have different interpretations in the Fortran 2018 standard.
Earlier Fortran standards had the concept of printing, meaning that column one of formatted output had special meaning for a processor-dependent (possibly empty) set of external files. This could be neither detected nor specified by a standard-specified means. The interpretation of the first column is not specified by the Fortran 2018 standard.
The Fortran 2018 standard specifies a different output format for real zero values in list-directed and namelist output.

 If the processor distinguishes between positive and negative real zero, the Fortran 2018 standard requires different returned values for ATAN2(Y, X) when
 [image: $$X < 0$$]
 and Y is negative real zero and for LOG(X) and SQRT(X) when X is complex with
 [image: $$X\%RE < 0$$]
 and
 [image: $$X\%IM$$]
 is negative real zero.

The Fortran 2018 standard has fewer restrictions on constant expressions than Fortran 95; this might affect whether a variable is considered to be an automatic data object.
The form produced by the G edit descriptor with d equal to zero differs from that specified by Fortran 95 for some values.

 Fortran 90 Compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, the Fortran 2018 standard is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-conforming Fortran 90 program that does not use one of the deleted features remains standard-conforming in the Fortran 2018 standard.

 The PAD
 [image: $$=$$]
 specifier in the INQUIRE statement in the Fortran 2018 standard returns the value UNDEFINED if there is no connection or the connection is for unformatted input/output. Fortran 90 specified YES.

Fortran 90 specified that if the second argument to MOD or MODULO was zero, the result was processor dependent. The Fortran 2018 standard specifies that the second argument shall not be zero.
Fortran 90 permitted defined assignment between character strings of the same rank and different kinds. This document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.
The following Fortran 90 features have different interpretations in the Fortran 2018 standard:
if the processor distinguishes between positive and negative real zero, the result value of the intrinsic function SIGN when the second argument is a negative real zero;
formatted output of negative real values (when the output value is zero);
whether an expression is a constant expression (thus whether a variable is considered to be an automatic data object);
the G edit descriptor with d equal to zero for some values.

 FORTRAN 77 Compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, the Fortran 2018 standard is an upward compatible extension to ISO 1539:1980 (Fortran 77). Any standard-conforming Fortran 77 program that does not use one of the deleted features noted in Annex B.1 and that does not depend on the differences specified here remains standard-conforming in the Fortran 2018 standard. the Fortran 2018 standard restricts the behaviour for some features that were processor dependent in Fortran 77. Therefore, a standard-conforming Fortran 77 program that uses one of these processor-dependent features might have a different interpretation in the Fortran 2018 standard, yet remain a standard-conforming program. The following Fortran 77 features might have different interpretations in the Fortran 2018 standard.
Fortran 77 permitted a processor to supply more precision derived from a default real constant than can be represented in a default real datum when the constant is used to initialize a double precision real data object in a DATA statement. the Fortran 2018 standard does not permit a processor this option.
If a named variable that was not in a common block was initialized in a DATA statement and did not have the SAVE attribute specified, Fortran 77 left its SAVE attribute processor dependent. the Fortran 2018 standard specifies (8.6.7) that this named variable has the SAVE attribute.
Fortran 77 specified that the number 1 of characters required by the input list was to be less than or equal to the number of characters in the record during formatted input. the Fortran 2018 standard specifies (12.6.4.5.3) that the input record is logically padded with blanks if there are not enough characters in the record, unless the PAD= specifier with the value ‘NO’ is specified in an appropriate OPEN or READ statement.
A value of 0 for a list item in a formatted output statement will be formatted in a different form for some G edit descriptors. In addition, the Fortran 2018 standard specifies how rounding of values will affect the output field form, but Fortran 77 did not address this issue. Therefore, the form produced for certain combinations of values and G edit descriptors might differ from that produced by some Fortran 77 processors.
Fortran 77 did not permit a processor to distinguish between positive and negative real zero; if the processor does so distinguish, the result will differ for the intrinsic function SIGN when the second argument is negative real zero, and formatted output of negative real zero will be different.
Appendix D

Intrinsic Functions and Procedures

 This appendix has a brief coverage of some of the more commonly used intrinsic functions and procedures. Chapter
 16
 of the standard should be consulted for an exhaustive coverage.

The following abbreviations and typographic conventions are used in this appendix.
D.1 Argument Type and Return Type

 These are documented in Table
 D.1
 .
 Table D.1Argument and return type abbreviations

	Abbreviation
	Meaning

	a
	Any

	i
	Integer

	r
	Real

	c
	Complex

	n
	Numeric (any of integer, real, complex)

	l
	Logical

	p
	Pointer

	p*
	Polymorphic

	t
	Target

	dp
	Double precision

	char
	Character, length = 1

	s
	Character

	boz
	Boz-literal-constant

	co
	Coarray or coindexed object

	te
	Team type

D.2 Classes of Function

 There are several classes of function in Fortran and they are documented below (Table
 D.2
).
 Table D.2Classes of function

	Class
	Description

	a
	Indicates that the procedure is an atomic subroutine

	e
	Indicates that the procedure is an elemental function

	es
	Indicates that the procedure is an elemental subroutine

	i
	Indicates that the procedure is an inquiry function

	ps
	Indicates that the procedure is a pure subroutine

	s
	Indicates that the procedure is an impure subroutine

	t
	Indicates that the procedure in a transformational function

D.3 Optional Arguments
Arguments in italics or [] brackets are optional arguments.

 In the example
 ALL(mask,
 dim
)
 dim
 may be omitted.

D.4 Common Optional Arguments

 These are documented in Table
 D.3
 .

 Table D.3Common optional arguments

	Argument
	Description

	Back
	Controls the direction of string scan, forward or backward

	Dim
	A selected dimension of an array argument

	Kind
	Describes the kind type parameter of the result If the kind argument is absent the result is the same type as the first argument.

	Mask size
	A mask may be applied to the arguments f an array, the total number of elements

D.5 Double Precision
Before Fortran 90 if you required real variables to have greater precision than the default real then the only option available was to declare them as double precision. With the introduction of kind types with Fortran 90 the use of double precision declarations is not recommended, and instead real entities with a kind type offering more than the default precision should be used.
D.6 Result Type
When the result type is the same as the argument type then the result is not just the same type as the argument but also the same kind.
D.7 Miscellaneous Rules
All intrinsic procedures may be invoked with either positional arguments or argument keywords.
Many of the intrinsic functions have optional arguments.
Unless otherwise specified the intrinisc inquiry functions accept array arguments for which the shape need not be defined. The shape of array arguments to transformational and elemental intrinsic functions shall be defined.
Some array intrinsic functions are reduction functions - they reduce the rank of an array by collapsing one dimension (or all dimensions, usually producing a scalar result).

 When the argument is
 back
 it is of logical type.

 When the argument is
 count_rate
 ,
 count_max
 ,
 dim
 ,
 kind
 ,
 len
 ,
 order
 ,
 n_copies
 ,
 shape
 ,
 shift
 ,
 values
 it is of integer type.

 When the argument is
 mask
 it is of logical type.

 When the argument is
 target
 it is of
 pointer
 or
 target
 type.

Fortran 2008 introduced several changes to Fortran 2003 that affected intrinsic procedures.

 	
 The following functions can now have arguments of type complex:
 acos
 ,
 asin
 ,
 atan
 ,
 cosh
 ,
 sinh
 ,
 tan
 and
 tanh
 .

	
 The intrinsic function
 atan2
 can be referenced by the name
 atan
 .

	
 The intrinsic functions
 lge
 ,
 lgt
 ,
 lle
 and
 llt
 can have arguments of ASCII kind.

	
 The intrinsic functions
 maxloc
 and
 minloc
 have an additional
 back
 argument.

	
 The intrinsic function
 selected_real_kind
 has an additional
 radix
 argument.

 Fortran 2018 introduced the following intrinsic functions and procedures
 	ATOMIC_ADD (ATOM, VALUE [, STAT])

	ATOMIC_AND (ATOM, VALUE [, STAT])

	ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])

	ATOMIC_DEFINE (ATOM, VALUE [, STAT])

	ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT])

	ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])

	ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])

	ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])

	ATOMIC_OR (ATOM, VALUE [, STAT])

	ATOMIC_REF (VALUE, ATOM [, STAT])

	ATOMIC_XOR (ATOM, VALUE [, STAT])

	CO_BROADCAST(A, SOURCE_IMAGE [, STAT, ERRMSG])

	CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])

	CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])

	CO_REDUCE(A, OPERATION [, RESULT_IMAGE, STAT, ERRMSG])

	CO_SUM(A [, RESULT_IMAGE, STAT, ERRMSG])

	COSHAPE (COARRAY [, KIND])

	FAILED_IMAGES([TEAM, KIND])

	FINDLOC (ARRAY, VALUE, DIM [, MASK, KIND, BACK])

	FINDLOC (ARRAY, VALUE [, MASK, KIND, BACK])

	GET_TEAM([LEVEL])

	IMAGE_STATUS (IMAGE [, TEAM])

	LCOBOUND (COARRAY [, DIM, KIND])

	OUT_OF_RANGE (X, MOLD [, ROUND])

	RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT)

	RANK (A)

	REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, ORDERED])

	REDUCE (ARRAY, OPERATION, DIM [, MASK, IDENTITY, ORDERED])

	STOPPED_IMAGES([TEAM, KIND])

	TEAM_NUMBER([TEAM])

	THIS_IMAGE ([TEAM]) or THIS_IMAGE (COARRAY [, TEAM])

	THIS_IMAGE (COARRAY, DIM [, TEAM])

	UCOBOUND (COARRAY [, DIM, KIND])

D.8 Intrinsic functions list

 These are documented in Table
 D.4
 , where some of the procedure names are split over multiple lines.
 Table D.4Standard generic intrinsic procedure summary

	Procedure
	Class
	Description

	ABS
	E
	Absolute value

	ACHAR
	E
	Character from ASCII code value

	ACOS
	E
	function

	ACOSH
	E
	Inverse hyperbolic cosine function

	ADJUSTL
	E
	Left-justified string value

	ADJUSTR
	E
	Right-justified string value

	AIMAG
	E
	Imaginary part of a complex number

	AINT
	E
	Truncation toward 0 to a whole number

	ALL
	T
	Array reduced by AND operator

	ALLOCATED
	I
	Allocation status of allocatable variable

	ANINT
	E
	Nearest whole number

	ANY
	T
	Array reduced by OR operator

	ASIN
	E
	function

	ASINH
	E
	Inverse hyperbolic sine function

	ASSOCIATED
	I
	Pointer association status inquiry

	ATAN
	E
	function

	ATAN2
	E
	function

	ATANH
	E
	Inverse hyperbolic tangent function

	ATOMIC_ADD
	A
	Atomic addition

	ATOMIC_AND
	A
	Atomic bitwise AND

	ATOMIC_CAS
	A
	Atomic compare and swap

	ATOMIC_DEFINE
	A
	Define a variable atomically

	ATOMIC_FETCH_ADD
	A
	Atomic fetch and add

	ATOMIC_FETCH_AND
	A
	Atomic fetch and bitwise AND

	ATOMIC_FETCH_OR
	A
	Atomic fetch and bitwise OR

	ATOMIC_FETCH_XOR
	A
	Atomic fetch and bitwise exclusive OR

	ATOMIC_OR
	A
	Atomic bitwise OR

	ATOMIC_REF
	A
	Reference a variable atomically

	ATOMIC_XOR
	A
	Atomic bitwise exclusive OR

	BESSEL_J0
	E
	Bessel function of the 1st kind, order 0

	BESSEL_J1
	E
	Bessel function of the 1st kind, order 1

	BESSEL_JN
	E
	Bessel function of the 1st kind, order N

	BESSEL_JN
	T
	Bessel functions of the 1st kind

	BESSEL_Y0
	E
	Bessel function of the 2nd kind, order 0

	BESSEL_Y1
	E
	Bessel function of the 2nd kind, order 1

	BESSEL_YN
	E
	Bessel function of the 2nd kind, order N

	BESSEL_YN
	T
	Bessel functions of the 2nd kind

	BGE
	E
	Bitwise greater than or equal to

	BGT
	E
	Bitwise greater than

	BIT_SIZE
	I
	Number of bits in integer model

	BLE
	E
	Bitwise less than or equal to

	BLT
	E
	Bitwise less than

	BTEST
	E
	Test single bit in an integer

	CEILING
	E
	Least integer greater than or equal to A

	CHAR
	E
	Character from code value

	CMPLX
	E
	Conversion to complex type

	CO_BROADCAST
	C
	Broadcast value to images

	CO_MAX
	C
	Compute maximum value across images

	CO_MIN
	C
	Compute minimum value across images

	CO_REDUCE
	C
	Generalized reduction across images

	CO_SUM
	C
	Compute sum across images

	COMMAND_ARGUMENT_COUNT
	T
	Number of command arguments

	CONJG
	E
	Conjugate of a complex number

	COS
	E
	Cosine function

	COSH
	E
	Hyperbolic cosine function

	COSHAPE
	I
	Sizes of codimensions of a coarray

	COUNT
	T
	Logical array reduced by counting true values

	CPU_TIME
	S
	Processor time used

	CSHIFT
	T
	Circular shift of an array

	DATE_AND_TIME
	S
	Date and time

	DBLE
	E
	Conversion to double precision real

	DIGITS
	I
	Significant digits in numeric model

	DIM
	E
	Maximum of X - Y and zero

	DOT_PRODUCT
	T
	Dot product of two vectors

	DPROD
	E
	Double precision real product

	DSHIFTL
	E
	Combined left shift

	DSHIFTR
	E
	Combined right shift

	EOSHIFT
	T
	End-off shift of the elements of an array

	EPSILON
	I
	Model number that is small compared to 1

	ERF
	E
	Error function

	ERFC
	E
	Complementary error function

	ERFC_SCALED
	E
	Scaled complementary error function

	EVENT_QUERY
	S
	Query event count

	EXECUTE_COMMAND_LINE
	S
	Execute a command line

	EXP
	E
	Exponential function

	EXPONENT
	E
	Exponent of floating-point number

	EXTENDS_TYPE_OF
	I
	Dynamic type extension inquiry

	FAILED_IMAGES
	T
	Indices of failed images

	FINDLOC
	T
	Location(s) of a specified value

	FLOOR
	E
	Greatest integer less than or equal to A

	FRACTION
	E
	Fractional part of number

	GAMMA
	E
	Gamma function

	GET_COMMAND
	S
	Get program invocation command

	GET_COMMAND_ ARGUMENT
	S
	Get program invocation argument

	GET_ENVIRONMENT_VARIABLE
	S
	Get environment variable

	GET_TEAM
	T
	Team

	HUGE
	I
	Largest model number

	HYPOT
	E
	Euclidean distance function

	IACHAR
	E
	ASCII code value for character

	IALL
	T
	Array reduced by IAND function

	IAND
	E
	Bitwise AND

	IANY
	T
	Array reduced by IOR function

	IBCLR
	E
	I with bit POS replaced by zero

	IBITS
	E
	Specified sequence of bits

	IBSET
	E
	I with bit POS replaced by one

	ICHAR
	E
	Code value for character

	IEOR
	E
	Bitwise exclusive OR

	IMAGE_INDEX
	I
	Image index from cosubscripts

	IMAGE_STATUS
	T
	Image execution state

	INDEX
	E
	Character string search

	INT
	E
	Conversion to integer type

	IOR
	E
	Bitwise inclusive OR

	IPARITY
	T
	Array reduced by IEOR function

	ISHFT
	E
	Logical shift

	ISHFTC
	E
	Circular shift of the rightmost bits

	IS_CONTIGUOUS
	I
	Array contiguity test

	IS_IOSTAT_END
	E
	IOSTAT value test for end of file

	IS_IOSTAT_EOR
	E
	IOSTAT value test for end of record

	KIND
	I
	Value of the kind type parameter of X

	LBOUND
	I
	Lower bound(s)

	LCOBOUND
	I
	Lower cobound(s) of a coarray

	LEADZ
	E
	Number of leading zero bits

	LEN
	I
	Length of a character entity

	LEN_TRIM
	E
	Length without trailing blanks

	LGE
	E
	ASCII greater than or equal

	LGT
	E
	ASCII greater than

	LLE
	E
	ASCII less than or equal

	LLT
	E
	ASCII less than

	LOG
	E
	Natural logarithm

	LOG_GAMMA
	E
	Logarithm of the absolute value of the gamma function

	LOG10
	E
	Common logarithm

	LOGICAL
	E
	Conversion between kinds of logical

	MASKL
	E
	Left justified mask

	MASKR
	E
	Right justified mask

	MATMUL
	T
	Matrix multiplication

	MAX
	E
	Maximum value

	MAXEXPONENT
	I
	Maximum exponent of a real model

	MAXLOC
	T
	Location(s) of maximum value

	MAXVAL
	T
	Maximum value(s) of array

	MERGE
	E
	Expression value selection

	MERGE_BITS
	E
	Merge of bits under mask

	MIN
	E
	Minimum value

	MINEXPONENT
	I
	Minimum exponent of a real model

	MINLOC
	T
	Location(s) of minimum value

	MINVAL
	T
	Minimum value(s) of array

	MOD
	E
	Remainder function

	MODULO
	E
	Modulo function

	MOVE_ALLOC
	PS
	Move an allocation

	MVBITS
	ES
	Copy a sequence of bits

	NEAREST
	E
	Adjacent machine number

	NEW_LINE
	I
	Newline character

	NINT
	E
	Nearest integer

	NORM2
	T
	L2 norm of an array

	NOT
	E
	Bitwise complement

	NULL
	T
	Disassociated pointer or unallocated allocatable entity

	NUM_IMAGES
	T
	Number of images

	OUT_OF_RANGE
	E
	Whether a value cannot be converted safely

	PACK
	T
	Array packed into a vector

	PARITY
	T
	Array reduced by NEQV operator

	POPCNT
	E
	Number of one bits

	POPPAR
	E
	Parity expressed as 0 or 1

	PRECISION
	I
	Decimal precision of a real model

	PRESENT
	I
	Presence of optional argument

	PRODUCT
	T
	Array reduced by multiplication

	RADIX
	I
	Base of a numeric model

	RANDOM_INIT
	S
	Initialise the pseudorandom number generator

	RANDOM_NUMBER
	S
	Generate pseudorandom number(s)

	RANDOM_SEED
	S
	Restart or query the pseudorandom number generator

	RANGE
	I
	Decimal exponent range of a numeric model

	RANK
	I
	Rank of a data object

	REAL
	E
	Conversion to real type

	REDUCE
	T
	General reduction of array

	REPEAT
	T
	Repetitive string concatenation

	RESHAPE
	T
	Arbitrary shape array construction

	RRSPACING
	E
	Reciprocal of relative spacing of model numbers

	SAME_TYPE_AS
	I
	Dynamic type equality test

	SCALE
	E
	Real number scaled by radix power

	SCAN
	E
	Character set membership search

	SELECTED_CHAR_KIND
	T
	Character kind selection

	SELECTED_INT_KIND
	T
	Integer kind selection

	SELECTED_REAL_KIND
	T
	Real kind selection

	SET_EXPONENT
	E
	Real value with specified exponent

	SHAPE
	I
	Shape of an array or a scalar

	SHIFTA
	E
	Right shift with fill

	SHIFTL
	E
	Left shift

	SHIFTR
	E
	Right shift

	SIGN
	E
	Magnitude of A with the sign of B

	SIN
	E
	Sine function

	SINH
	E
	Hyperbolic sine function

	SIZE
	I
	Size of an array or one extent

	SPACING
	E
	Spacing of model numbers

	SPREAD
	T
	Value replicated in a new dimension

	SQRT
	E
	Square root

	STOPPED_IMAGES
	T
	Indices of stopped images

	STORAGE_SIZE
	I
	Storage size in bits

	SUM
	T
	Array reduced by addition

	SYSTEM_CLOCK
	S
	Query system clock

	TAN
	E
	Tangent function

	TANH
	E
	Hyperbolic tangent function

	TEAM_NUMBER
	T
	Team number

	THIS_IMAGE
	T
	Index of the invoking image

	THIS_IMAGE
	T
	Cosubscript(s) of this image

	TINY
	I
	Smallest positive model number

	TRAILZ
	E
	Number of trailing zero bits

	TRANSFER
	T
	Transfer physical representation

	TRANSPOSE
	T
	Transpose of an array of rank two

	TRIM
	T
	String without trailing blanks

	UBOUND
	I
	Upper bound(s)

	UCOBOUND
	I
	Upper cobound(s) of a coarray

	UNPACK
	T
	Vector unpacked into an array

	VERIFY
	E
	Character manipulation

D.9 Intrinsic Function Examples
In this section we provide coverage of a large subset of the intrinsic functions and procedures.

 ABS(a)
 : Absolute value.
 [image: $$\begin{array}{lr} {\mathbf {argument{:}}}\, \text {a} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 If
 a
 is
 complex(x, y)
 then the functions returns
 [image: $$ \sqrt{x^2+y^2} $$]

 Example(s)
 :
 r1=abs(a)

 ACHAR(i,
 kind
)
 : Returns character in the ASCII character set.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {char} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 Inverse of the
 iachar
 function.

 Example(s)
 :
 c=achar(i)

 ACOS(x)
 : Arccosine, inverse cosine.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 [image: $$ | x | <= 1 $$]

 Example(s)
 :
 y=acos(x)

 ACOSH(x)
 : Inverse hyperbolic cosine function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = acosh(x)

 ADJUSTL(string)
 : Adjust
 string
 left, removing leading blanks and inserting trailing blanks.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 s=adjustl(s)

 ADJUSTR(string)
 : Adjust
 string
 right, removing trailing blanks and inserting leading blanks.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 s=adjustr(s)

 AIMAG(z)
 : Imaginary part of complex argument.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {z} &{} \qquad \mathbf{type{:}} \, \text {c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y=aimag(z)

 AINT(a,
 kind)
 : Truncation toward zero to a whole number.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as a} &{} \qquad \mathbf{class{:}} \, \text {e} \\ \end{array}$$]

 Example(s)
 :
 y=aint(z)
 [image: ../images/112282_4_En_BookBackmatter_Figa_HTML.gif]

 ALL(mask,
 dim
)
 : Determines whether all values are true in
 mask
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 dim
 is optional and must be a scalar in the range
 [image: $$ 1<= dim <= n $$]
 where n is the rank of mask. The result is scalar if
 dim
 is absent or mask has rank 1. Otherwise it works on the dimension
 dim
 of mask and the result is an array of rank
 [image: $$ n-1 $$]

 Example(s)
 :
 t=all(m)

 ALLOCATED(variable)
 : Returns true if and only if the allocatable variable is allocated.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {variable} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 variable
 must be declared with the allocatable attribute and can be an array or a scalar.

 Example(s)
 :
 if (allocated(array)) then ...

 ANINT(a,
 kind
)
 : Nearest whole number.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as a} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=anint(a)
 [image: ../images/112282_4_En_BookBackmatter_Figb_HTML.gif]

 ANY(mask,
 dim
)
 : Determines whether any value is true in
 mask
 along dimension
 dim
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 mask
 must be an array. The result is a scalar if
 dim
 is absent or if
 mask
 is of rank 1. Otherwise it works on the dimension
 dim
 of
 mask
 and the result is an array of rank
 [image: $$ n-1 $$]

 Example(s)
 :
 t=any(a)

 ASIN(x)
 : Arcsine.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=asin(x)

 ASINH(x)
 : Inverse hyperbolic sine function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = asinh(x)

 ASSOCIATED(pointer,
 target
)
 : Returns the association status of the pointer.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {pointer} &{} \qquad \mathbf{type{:}} \, \text {p} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 1. If
 target
 is absent then the result is true if pointer is associated with a target, otherwise false.

 2. If
 target
 is present and is a target, the result is true if pointer is currently associated with target and false if it is not.

 3. If
 target
 is present and is a pointer, the result is true if both pointer and target are currently associated with the same target, and is false otherwise. If either
 pointer
 or
 target
 is disassociated the result is false.

 Example(s)
 :
 t=associated(p)

 ATAN(x)
 or

 ATAN(y, x)
 : Arctangent.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{argument{:}} \, \text {y} &{} \qquad \mathbf{type{:}} \, \text {r}\\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 If
 y
 appears,
 x
 shall be of type real with the same kind type parameter as
 y
 .

 If
 y
 has the value zero,
 x
 shall not have the value zero.

 If
 y
 does not appear,
 x
 shall be of type real or complex.

 Example(s)
 :
 z=atan(x)

 ATAN2(y, x)
 : Arctangent of y / x.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {y} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=atan2(y, x)

 ATANH(x)
 : Inverse hyperbolic tangent function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = atanh(x)

 BESSEL_J0(x)
 : Bessel function of the first kind, order 0.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = bessel_j0(1.0)
 has the value 0.765 (approximately)

 BESSEL_J1(x)
 : Bessel function of the first kind, order 1.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = bessel_j1(1.0)
 has the value 0.440 (approximately).

 BESSEL_JN(n, x)
 : Bessel functions of the first kind. Elemental

 BESSEL_JN(n1,n2,x)
 : Bessel function of the first kind. Transformational.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {n} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{arguments{:}} \, \text {n1} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{arguments{:}} \, \text {n2} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{arguments{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e or t} \end{array}$$]

 Note(s)
 :

 n
 shall be nonnegative.

 n1
 shall be nonnegative.

 n2
 shall be nonnegative.

 x
 if the function is transformational,
 x
 shall be scalar.

 Additional Note(s)
 :

 The result of
 bessel_jn(n, x)
 is processor dependent approximation to the Bessel function of the first kind and order
 n
 of
 x
 .

 Element i of the result value of
 bessel_jn(n1,n2,x)
 is a processor dependent approximation to the bessel function of the first kind and order
 [image: $$n1+i-1$$]
 of x.

 Example(s)
 :
 y = bessel_jn(2, 1.0)
 has the value 0.115 (approximately).

 BESSEL_Y0(x)
 : Bessel function of the second kind, order 0.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = bessel_y0(1.0)
 has the value 0.088 (approximately).

 BESSEL_Y1(x)
 : Bessel function of the second kind, order 1.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = bessel_y1(1.0)
 has the value −0.781 (approximately).

 BESSEL_YN(n1,n2,x)
 Bessel functions of the second kind. Transformational.

 BESSEL_YN(n, x)
 : Bessel functions of the second kind. Elemental.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {n} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{arguments{:}} \, \text {n1} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{arguments{:}} \, \text {n2} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{arguments{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e or t} \end{array}$$]

 Note(s)
 :

 n
 nonnegative.

 n1
 nonnegative.

 n2
 nonnegative.

 x
 if the function is transformational,
 x
 shall be scalar. Its value shall be greater than zero.

 Example(s)
 :
 y = bessel_yn(2, 1.0)
 has the value -1.651 (approximately).

 BGE(i, j)
 : True if
 i
 is bitwise greater than or equal to
 j
 .
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {i, j} &{} \qquad \mathbf{type{:}} \, \text {i or boz} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 : If
 bit_size(j)
 has the value 8,
 bge(z’ff’, j)
 has the value true for any value of j.
 bge(0, -1)
 has the value false.

 BGT(i, j)
 : True if
 i
 is bitwise greater than
 j
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {i, j} &{} \qquad \mathbf{type{:}} \, \text {i or boz} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 The result is true if the sequence of bits represented by
 i
 is greater than the sequence of bits represented by
 j
 , according to the method of bit sequence comparison in 16.3.2 of the standard; otherwise the result is false.

 Example(s)
 :
 bgt(z’ff’, z’fc’)
 has the value true.
 bgt(0, -1)
 has the value false.

 BLE(i, j)
 : True if
 i
 is bitwise less than or equal to
 j
 .
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {i, j} &{} \qquad \mathbf{type{:}} \, \text {i or boz} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 The result is true if the sequence of bits represented by
 i
 is less than or equal to the sequence of bits represented by
 j
 , according to the method of bit sequence comparison in 16.3.2 of the standard; otherwise the result is false.

 Example(s)
 :
 ble(0, j)
 has the value true for any value of j.
 ble(-1, 0)
 has the value false.

 BLT(i, j)
 : Bitwise less than.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {i, j} &{} \qquad \mathbf{type{:}} \, \text {i or boz} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 The result is true if the sequence of bits represented by
 i
 is less than the sequence of bits represented by
 j
 , according to the method of bit sequence comparison in 16.3.2 of the standard; otherwise the result is false.

 Example(s)
 :
 blt(0, -1)
 has the value true.
 blt(z’ff’, z’fc’)
 has the value false.

 BIT_SIZE(i)
 : Returns the number of bits, as defined by the bit model of Sect.
 16.​3
 of the standard.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 n_bits=bit_size(i)

 BTEST(i, pos)
 : True if and only if a specified bit of an integer value is one.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 t=btest(i, pos)

 CEILING(a,
 kind
)
 : Least integer greater than or equal to
 a
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 If
 kind
 is present the result has the kind type parameter
 kind
 . otherwise the result is of type default integer.

 Example(s)
 :
 i=ceiling(a)
 If a
 [image: $$=$$]
 12.21 then i
 [image: $$=$$]
 13, if a
 [image: $$=-3.16$$]
 then i
 [image: $$=-3$$]
 .

 CHAR(i,
 kind)
 : Returns the character in a given position in the processor collating sequence associated with the specified
 kind
 type parameter. It is the inverse of the
 ICHAR
 function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {char} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

ASCII is the default character set.

 Example(s)
 :
 c=char(65)
 and for the ASCII character set c=’a’.

 CMPLX(x,
 kind
)
 or

 CMPLX(x,
 y, kind
)
 : Converts to complex type.

 First form.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {c} \\ \mathbf{result{:}} \, \text {c} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Second form.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {i, r, boz} \\ \mathbf{argument{:}} \, \text {y} &{} \qquad \mathbf{type{:}} \, \text {i, r boz} \\ \mathbf{result{:}} \, \text {c} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1. The result is of type complex. If
 kind
 is present, the kind type parameter is that specified by the value of
 kind
 ; otherwise, the kind type parameter is that of default real kind

 2. If Y is absent and X is not complex, it is as if Y were present with the value zero. If
 kind
 is absent, it is as if
 kind
 were present with the value
 kind
 (0.0). If X is complex, the result is the same as that of
 cmplx (real (x), aimag (x), kind)
 . The result of
 cmplx (x, y, kind)
 has the complex value whose real part is
 real (x, kind)
 and whose imaginary part is
 real (y, kind)
 .

 Example(s)
 :
 z=cmplx(x, y)

 COMMAND_ARGUMENT_COUNT()
 : Number of command arguments.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {none} &{} \qquad \mathbf{result{:}} \, \text {i} \\ \mathbf{class{:}} \, \text {t} \end{array}$$]

The result value is equal to the number of command arguments available. If there are no command arguments available or if the processor does not support command arguments, then the result has the value zero. if the processor has a concept of a command name, the command name does not count as one of the command arguments.

 Example(s)
 :
 i = command_argument_count()

 CONJG(z)
 : Conjugate of a complex argument.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {z} &{} \qquad \mathbf{type{:}} \, \text {c} \\ \mathbf{result{:}} \, \text {as z} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z1=conjg(z)

 COS(x)
 : Cosine.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

The arguments of all trigonometric functions should be in radians, not degrees.

 Example(s)
 :
 a=cos(x)

 COSH(x)
 : Hyperbolic cosine.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=cosh(x)

 COUNT(mask,
 dim, kind
)
 : Returns the number of true elements in mask along dimension
 dim
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 dim
 must be a scalar in the range
 [image: $$ 1<= dim <= n $$]
 , where n is the rank of mask. The result is scalar if
 dim
 is absent or mask has rank 1. Otherwise it works on the dimension
 dim
 of mask and the result is an array of rank
 [image: $$ n-1 $$]

 Example(s)
 :
 n=count(a)

 CPU_TIME(time)
 : Returns the processor time.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {time} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {n/a} &{} \qquad \mathbf{class{:}} \, \text {s} \end{array}$$]

 Example(s)
 :
 call cpu_time(time)

 CSHIFT(array, shift,
 dim)
 : Circular shift on a rank 1 array or rank 1 sections of higher-rank arrays.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {as array} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 array
 must be an array

 shift
 must be a scalar if array has rank 1, otherwise it is an array of rank
 [image: $$ n-1 $$]
 , where n is the rank of
 array
 .

 dim
 must be a scalar with a value in the range
 [image: $$ 1< dim <= n $$]
 .

 Example(s)
 :
 array=cshift(array, 10)

 DATE_AND_TIME(
 date, time, zone, values)
 : Returns the current date and time (compatible with ISO 8601:1988).

 Note(s)
 :

 1.
 Date
 is optional and must be scalar and 8 characters long in order to return the complete value of the form
 ccyymmdd
 , where
 cc
 is the century,
 yy
 is the year,
 mm
 is the month and
 dd
 is the day. It is
 intent(out)
 .

 2.
 Time
 is optional and must be scalar and 10 characters long in order to return the complete value of the form
 hhmmss.sss
 where
 hh
 is the hour,
 mm
 is the minutes and
 ss.sss
 is the seconds and milliseconds. It is
 intent(out)
 .

 3.
 Zone
 is optional and must be scalar and must be 5 characters long in order to return the complete value of the form hhmm where hh and mm are the time differences with respect to coordinated universal time in hours and minutes. It is
 intent(out)
 .

 4.
 Values
 is optional and a rank 1 array of size 8. It is
 intent(out)
 . The values returned are as shown below.
 [image: ../images/112282_4_En_BookBackmatter_Figc_HTML.gif]

 Example(s)
 :
 call date_time(d,t,z, v)

 DBLE(a)
 : Converts to double precision from integer, real, and complex
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {dp} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 d=dble(a)

 DIGITS(x)
 : Returns the number of significant digits of the argument as defined in the numeric models for integer and reals in Chap.
 5
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {i, r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 i=digits(x)

 DIM(x, y)
 : Difference of two values if positive or zero otherwise.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=dim(x, y)

 DOT_PRODUCT(vector_1,vector_2)
 : Performs the mathematical dot product of two rank 1 arrays.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {vector}_\, \text {1} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{argument{:}} \, \text {vector}_\, \text {2} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 vector_2
 is as
 vector_1.

 Note(s)
 :

 1. For integer and real
 vector_1
 result has the value
 sum(vector_1*vector_2)
 .

 2. For complex
 vector_1
 result has the value
 sum(conjg(vector_1)*vector_2)
 .

 3. For logical
 vector_1
 result has the value
 any(vector_1 .and. vector_2)
 .

 Example(s)
 :
 a=dot_product(x, y)

 DPROD(x, y)
 : Double precision product of two reals.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {dp} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 d=dprod(x, y)

 DSHIFTL(i, j, shift)
 : Combined left shift.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {i, j} &{} \qquad \mathbf{type{:}} \, \text {i or boz} \\ \mathbf{argument{:}} \, \text {shift} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {See note below.} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 Result type: Same as i if i is of type integer; otherwise, same as j. If either i or j is a boz-literal-constant, it is first converted as if by the intrinsic function int to type integer with the kind type parameter of the other. The rightmost shift bits of the result value are the same as the leftmost bits of j, and the remaining bits of the result value are the same as the rightmost bits of i. This is equal to ior(shiftl(i, shift), shiftr(j, bit size(j)-shift)). The model for the interpretation of an integer value as a sequence of bits is in Sect.
 16.​3
 of the standard.

 Example(s)
 :
 dshiftl(1, 2**30, 2)
 has the value 5 if default integer has 32 bits.
 dshiftl(i, i, shift)
 has the same result value as ishftc(i, shift).

 DSHIFTR(i, j, shift)
 : Combined right shift.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {i, j} &{} \qquad \mathbf{type{:}} \, \text {i or boz} \\ \mathbf{argument{:}} \, \text {shift} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {See note below.} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

Result: Same as i if i is of type integer; otherwise, same as j. If either i or j is a boz-literal-constant, it is first converted as if by the intrinsic function int to type integer with the kind type parameter of the other. The leftmost shift bits of the result value are the same as the rightmost bits of i, and the remaining bits of the result value are the same as the leftmost bits of j. This is equal to ior(shiftl(i, bit size(i)-shift), shiftr(j, shift)). The model for the interpretation of an integer value as a sequence of bits is in 16.3 of the standard.

 Example(s)
 :
 dshiftr(1, 16, 3)
 has the value 229 +2 if default integer has 32 bits.
 dshiftr(i, i, shift)
 has the same result value as ishftc(i,-shift).

 EOSHIFT(array, shift,
 boundary, dim
) : End of shift of a rank 1 array or rank 1 section of a higher-rank array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{argument{:}} \, \text {shift} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{argument{:}} \, \text {boundary} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {as array} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 boundary
 is as array.

 2.
 array
 must be an array,
 shift
 must be a scalar if array has rank 1, otherwise it is an array of rank
 [image: $$ n-1 $$]
 , where
 n
 is the rank of array.

 3.
 boundary
 shall be of the same type and type parameters as
 array
 . It must be scalar if array has rank 1, otherwise it must be either scalar or of rank
 [image: $$ n-1 $$]
 . See section 16.9.67 of the standard for additional information.

 4.
 dim
 must be a scalar with a value in the range
 [image: $$ 1<= dim <= n $$]
 .

 Example(s)
 :
 a=eoshift(a, shift)

 EPSILON(x)
 : Smallest difference between two reals of that kind. See Chap.
 5
 and real numeric model.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 tiny=epsilon(x)

 ERF(x)
 : Error function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = erf(1.0)
 has the value 0.843 (approximately).

 ERFC(x)
 : Complementary error function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = erfc(1.0)
 has the value 0.157 (approximately).

 ERFC_SCALED(x)
 : Scaled complementary error function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = erfc_scaled(20.0)
 has the value 0.0282 (approximately).

 EXECUTE_COMMAND_LINE(command,
 wait, exitstat, cmdstat, cmdmsg
)
 : Execute a command line.

 Note(s)
 :

 command
 shall be a default character scalar. It is an
 intent(in)
 argument. Its value is the command line to be executed. the interpretation is processor dependent.

 wait
 shall be a default logical scalar. It is an
 intent(in)
 argument. If
 wait
 is present with the value false, and the processor supports asynchronous execution of the command, the command is executed asynchronously; otherwise it is executed synchronously.

 exitstat
 shall be a default integer scalar. It is an intent(inout) argument. If the command is executed synchronously, it is assigned the value of the processor-dependent exit status. Otherwise, the value of
 exitstat
 is unchanged.

 cmdstat
 shall be a default integer scalar. It is an
 intent(out)
 argument. It is assigned the value -1 if the processor does not support command line execution, a processor-dependent positive value if an error condition occurs, or the value -2 if no error condition occurs but
 wait
 is present with the value false and the processor does not support asynchronous execution. otherwise it is assigned the value 0.

 cmdmsg
 shall be a default character scalar. It is an
 intent(inout)
 argument. If an error condition occurs, it is assigned a processor-dependent explanatory message. otherwise, it is unchanged.

 Example(s)
 :
 call execute_command_line(‘pwd’)
 will print the full pathname of the current directory under unix and an error message from windows.

 EXP(x)
 : Exponential.
 [image: $$ e ^ x $$]
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y=exp(x)

 EXPONENT(x)
 : Returns the exponent component of the argument. See Chap.
 5
 and the real numeric model.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=exponent(x)

 EXTENDS_TYPE_OF(a, mold)
 : Query dynamic type for extension.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {a, mold} &{} \qquad \mathbf{type{:}} \, \text {p*} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 a
 shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic pointer, it shall not have an undefined association status.

 mold
 shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic pointer, it shall not have an undefined association status.

 If
 mold
 is unlimited polymorphic and is either a disassociated pointer or unallocated allocatable variable, the result is true; otherwise if
 a
 is unlimited polymorphic and is either a disassociated pointer or unallocated allocatable variable, the result is false; otherwise if the dynamic type of
 a
 or
 mold
 is extensible, the result is true if and only if the dynamic type of
 a
 is an extension type of the dynamic type of
 mold
 ; otherwise the result is processor dependent.

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figd_HTML.gif]

 FINDLOC(array, value, dim,
 mask, kind, back
)
 or

 FINDLOC(array, value,
 mask, kind, back
)
 : Location(s) of a specified value.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {intrinsic type} \\ \mathbf{argument{:}} \, \text {value} &{} \qquad \mathbf{type{:}} \, \text {as array} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {kind} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {back} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 dim
 shall be an integer scalar with a value in the range
 [image: $$1<= dim <= n$$]
 , where n is the rank of array.

 2.
 mask
 shall be conformable with array.

 3.
 result characteristics
 : If
 kind
 is present, the kind type parameter is that specified by the value of
 kind
 ; otherwise the kind type parameter is that of default integer type. If
 dim
 does not appear, the result is an array of rank one and of size equal to the rank of
 array
 ; otherwise, the result is of rank
 [image: $$n-1$$]
 and shape
 [image: $$[d_1, d_2, . . . , d_{DIM - 1}, d_{DIM + 1}, . . . , d_n]$$]
 , where
 [image: $$[d_1, d_2, . . . , d_n]$$]
 is the shape of
 array
 .

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Fige_HTML.gif]

 2. If B has the value
 [image: $$ \left[\begin{array}{ccc} 1 &{} 2 &{} - 9 \\ 2 &{} 2 &{} 6 \end{array} \right] $$]

 findloc (b, value=2, dim=1)
 has the value [2, 1, 0] and
 findloc (b, value=2, dim=2)
 has the value [2, 1]. This is independent of the declared lower bounds for
 b
 .

 FLOOR(a,
 kind
)
 : Returns the greatest integer less than or equal to the argument
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 If
 kind
 is present the result has the kind type parameter kind, otherwise the result is of type default integer.

 Example(s)
 :
 i=floor(a)
 when a
 [image: $$=$$]
 5.2 i has the value 5, when a
 [image: $$=-$$]
 9.7 i has the value
 [image: $$-10$$]
 .

 FRACTION(x)
 : Returns the fractional part of the real numeric model of the argument. See Chap.
 5
 and the real numeric model.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 f=fraction(x)

 GAMMA(x)
 : Gamma function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y = gamma(1.0)
 has the value 1.000 (approximately).

 GET_COMMAND(
 command, length, status
)
 : Query program invocation command.

 GET_COMMAND_ARGUMENT(number,
 value, length, status
)
 : Query arguments from program invocation.

 GET_ENVIRONMENT_VARIABLE(name,
 value, length, status, trim name
)
 : Query environment variable.

 HUGE(x)
 : Returns the largest number for the kind type of the argument. See Chap.
 5
 and the real and integer numeric models.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {i, r} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 h=huge(x)

 HYPOT(x, y)
 : Euclidean distance function.
 [image: $$\begin{array}{ll} \mathbf{arguments{:}} \, \text {x, y} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {r} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 h = hypot(3.0, 4.0)
 has the value 5.0 (approximately).

 IACHAR(c)
 : Returns the position of the character argument in the ASCII collating sequence.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {c} &{} \qquad \mathbf{type{:}} \, \text {char} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=iachar(’a’)
 returns the value 65.

 IALL(array, dim,
 mask
)
 or

 IALL(array,
 mask
)
 : Reduce array with bitwise and operation.

 IAND(i, j)
 : Performs a logical and on the arguments.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 k=iand(i, j)

 IANY(array, dim,
 mask
)
 or

 IANY(array,
 mask
)
 : Reduce array with bitwise or operation.

 IBCLR(i, pos)
 : Clears one bit of the argument to zero.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=ibclr(i, pos)

 IBITS(i,pos, len)
 : Returns a sequence of bits.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 slice=ibits(i,pos, len)

 IBSET(i, pos)
 : Sets one bit of the argument to one.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 [image: $$ 0<= pos <= bit_size(i) $$]

 Example(s)
 :
 i=ibset(i, pos)

 ICHAR(c)
 : Returns the position of a character in the processor collating sequence associated with the kind type parameter of the argument. Normally the position in the ASCII collating sequence.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {c} &{} \qquad \mathbf{type{:}} \, \text {char} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=ichar(’a’)
 would return the value 65 for the ASCII character set.

 IEOR(i, j)
 : Performs an exclusive or on the arguments.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {Same as}\,\texttt {i} \, \text {if}\, \texttt {i} \, \text {is of type integer; otherwise, same as}\, \texttt {j}. &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=ieor(i, j)

 IMAGE_INDEX(coarray, sub)
 or

 IMAGE_INDEX(coarray, sub, team)
 or

 IMAGE_INDEX(coarray, sub, team_number)
 : Convert cosubscripts to image index.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {coarray} &{} \qquad \mathbf{type{:}} \, \text {co} \\ \mathbf{argument{:}} \, \text {sub} &{} \qquad \mathbf{type{:}} \, \text {rank-one integer array} \\ \mathbf{argument{:}} \, \text {team} &{} \qquad \mathbf{type{:}} \, \text {te} \\ \mathbf{argument{:}} \, \text {team}_\, \text {number} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 1.
 coarray
 is of any type.

 2.
 team
 is scalar.

 3.
 team_number
 is scalar.

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figf_HTML.gif]

would print 1 and 2 respectively.

 INDEX(string, substring,
 back, kind
)
 : Locates one substring in another, i.e., returns position of substring in character expression string.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{argument{:}} \, \text {substring} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{argument{:}} \, \text {back} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 If
 [image: $$ len(string) < len(substring) $$]
 the result is zero.

Otherwise, if there is an integer i in the range

 [image: $$ 1<= i <= (len(string) - len(substring) + 1) $$]

 such that
 string(i : i + len(substring) - 1)
 is equal to
 substring
 , the result has the value of the smallest such
 i
 if
 back
 is absent or present with the value false, and the greatest such
 i
 if
 back
 is present with the value true.

If the substring is not found the result is zero.

 Example(s)
 :

 where=index(’ hello world hello’,’hello’)

the result 2 is returned.

 where=index(’ hello world hello’,’hello’,.true.)

the result 14 is returned.

 INT(a,
 kind
)
 : Converts to integer from integer, real, and complex.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=int(f)

 IOR(i, j)
 : Performs an inclusive or on the arguments.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=ior(i, j)

 IPARITY(array, dim,
 mask
)
 or

 IPARITY(array,
 mask
)
 : Array reduced by
 ieor
 function. Transformational.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {as i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 dim
 integer scalar with a value in the range
 [image: $$1<= dim <= n $$]
 , where
 n
 is the rank of
 array
 .

 mask
 shall be of type logical and shall be conformable with
 array
 .

 Example(s)
 :

 iparity ([14, 13, 8])
 has the value 11.

 iparity ([14, 13, 8], mask=[.true., .false., .true])
 has the value 6.

 ISHFT(i, shift)
 : Performs a logical shift. The bits of i are shifted by shift positions.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 [image: $$ | shift | <= bit_size(i) $$]

 If
 shift
 is positive, the shift is to the left.

 If
 shift
 is negative, the shift is to the right.

 If
 shift
 is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in from the opposite end.

 Example(s)
 :
 i=ishft(i, shift).

 ISHFTC(i, shift,
 size
)
 : Performs a circular shift of the rightmost bits. The size rightmost bits of i are circularly shifted by shift positions.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 [image: $$ | shift | <= size $$]

 The result has the value obtained by shifting the
 size
 rightmost bits of
 i
 circularly by
 shift
 positions.

 If
 shift
 is positive, the shift is to the left.

 If
 shift
 is negative, the shift is to the right.

 If
 shift
 is zero, no shift is performed.

No bits are lost. The unshifted bits are unaltered.

 Example(s)
 :
 i=ishftc(i,shift, size)

 IS_CONTIGUOUS(array)
 : Test contiguity of an array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figg_HTML.gif]

would print ‘f’.

 IS_IOSTAT_END(i)
 : Test iostat value for end-of-file.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 is_iostat_end(i)
 returns value true if i is an i/o status value that corresponds to an end-of-file condition, and false otherwise.
 [image: ../images/112282_4_En_BookBackmatter_Figh_HTML.gif]

 IS_IOSTAT_EOR(i)
 : Test iostat value for end-of-record.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 is_iostat_eor(i)
 returns the value true if
 i
 is an i/o status value that corresponds to an end-of-record condition, and false otherwise.

 KIND(x)
 : Returns the kind type parameter of the argument.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 i=kind(x)

 LBOUND(array,
 dim, kind
)
 : Lower bound(s) of an array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 1.
 dim
 optional.
 [image: $$ 1<= dim <=n $$]
 where n is the rank of array. The result is scalar if
 dim
 is present otherwise the result is an array of rank 1 and size n. The result is scalar if
 dim
 is present, otherwise a rank 1 array and size n.

 2. If
 array
 is a whole array and either array is an assumed-size array of rank
 dim
 or dimension
 dim
 of array has nonzero extent,
 lbound (array, dim)
 has a value equal to the lower bound for subscript
 dim
 of
 array
 . Otherwise the result value is 1.

 Example(s)
 :
 i=lbound(array)

 LCOBOUND(coarray,
 dim, kind
])
 : Lower cobound(s) of a coarray.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {coarray} &{} \qquad \mathbf{type{:}} \, \text {co} \\ \mathbf{argument{:}} \, \text {dim (optional)} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {kind(optional)} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figi_HTML.gif]

 lcbound(a)
 is [2,7] and
 lcobound(a, dim=2)
 is 7

 LEADZ(i)
 : Number of leading zero bits.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 leadz(1)
 has the value 31 if bit size(1) has the value 32.

 LEN(string)
 : Length of a character entity.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 i=len(string)

 LEN_TRIM(string)
 : Length of character argument less the number of trailing blanks.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=len_trim(string)

 LGE(string_1, string_2)
 :

 Lexically greater than or equal to and this is default character or ASCII.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string}_\, \text {1} &{} \qquad \mathbf{type{:}} \, \text {s, ASCII} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

string_2 is of type s.

 Example(s)
 :
 l=lge(s1,s2)

 LGT(string_1, string_2)
 : Lexically greater than and this is based on the ASCII collating sequence.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string}_\, \text {1} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \end{array}$$]

 Example(s)
 :
 l=lgt(s1,s2)

 LLE(string_1, string_2)
 : Lexically less than or equal to and this is based on the ASCII collating sequence.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string}_\, \text {1} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

string_2 is of type s.

 Example(s)
 :
 l=lle(s1,s2)

 LLT(string_1, string_2)
 : Lexically less than and this is based on the ASCII collating sequence.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string}_\, \text {1} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 l=llt(s1,s2)

 LOG(x)
 : Natural logarithm.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y=log(x)

 LOG_GAMMA(x)
 : Logarithm of the absolute value of the gamma function.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {r} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 log_gamma(3.0)
 has the value 0.693 (approximately).

 LOG10(x)
 : Common logarithm, log10
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y=log10(x)

 LOGICAL(l,
 kind
)
 : Converts between different logical kind types, i.e., performs a type cast.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {l} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 l=logical(k, kind)

 MASKL(i,
 kind
)
 : Left justified mask.
 [image: $$\begin{array}{ll} \mathbf{argument:} \, \text {i} &{} \qquad \mathbf{type:} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 maskl(4)
 has the value
 shiftl(15, bit_size(0) - 4)

 MASKR(i,
 kind
)
 : Right justified mask.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e}\ \end{array}$$]

 Example(s)
 :
 maskr(4)
 has the value 15.

 MATMUL(matrix_1, matrix_2)
 : Performs mathematical matrix multiplication of the array arguments.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {matrix}_\, \text {1} &{} \qquad \mathbf{type{:}} \, \text {n, l} \\ \mathbf{argument{:}} \, \text {matrix}_\, \text {2} &{} \qquad \mathbf{type{:}} \, \text {n, l} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

matrix_2 is as matrix_1.

 Note(s)
 :

 matrix_a
 shall be a rank-one or rank-two array of numeric type or logical type.

 matrix_b
 shall be of numeric type if
 matrix_a
 is of numeric type and of logical type if
 matrix_a
 is of logical type. It shall be an array of rank one or two.

 matrix_a
 and
 matrix_b
 shall not both have rank one.

 The size of the first (or only) dimension of
 matrix_b
 shall equal the size of the last (or only) dimension of
 matrix_a
 .

 The shape of the result depends on the shapes of the arguments as follows: If
 matrix_a
 has shape [n,m] and
 matrix_b
 has shape [m, k], the result has shape [n, k]. If
 matrix_a
 has shape [m] and
 matrix_b
 has shape [m, k], the result has shape [k]. If
 matrix_a
 has shape [n, m] and
 matrix_b
 has shape [m], the result has shape [n].
 Example(s)
 :
 r=matmul(m_1,m_2)

 MAX(a1, a2,
 a3,...
)
 : Returns the largest value.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a1} &{} \qquad \mathbf{type{:}} \, \text {i,r, s} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

a2, a3,.. are as a1.

 Example(s)
 :
 a=max(a1,a2,a3,a4)

 MAXEXPONENT(x)
 : Returns the maximum exponent. See Chap.
 5
 and numeric models.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 i=maxexponent(x)

 MAXLOC(array,
 mask, kind, back
)
 or

 MAXLOC(array, dim,
 mask, kind, back
)
 : Location(s) of maximum value.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {i,r, s} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {kind} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {back} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t}\ \end{array}$$]

 Note(s)
 :

 1.
 dim
 shall be an integer scalar with a value in the range
 [image: $$1<= dim <= n$$]
 , where n is the rank of
 array
 . The corresponding actual argument shall not be an optional dummy argument.

 2.
 mask
 shall be of type logical and shall be conformable with
 array
 .

 3.
 kind
 shall be a scalar integer constant expression.

 4.
 back
 shall be scalar and of type logical.

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figj_HTML.gif]

is (4), which is the subscript of the location of the first occurrence of the maximum value in the rank 1 array.

 If
 [image: $$ A= \left(\begin{array}{ccc} 1 &{} 8 &{} 5 \\ 9 &{} 3 &{} 6 \\ 4 &{} 2 &{} 7 \end{array} \right) $$]

 i = maxloc(a, dim=1)

is (2,1,3) returning the position of the largest in each column.

 i = maxloc(a, dim=2)

is (2,1,3) returning the position of the largest in each row.

 MAXVAL(array,
 mask
)
 or

 MAXVAL(array, dim,
 mask
)
 : Maximum value(s) of
 array
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {i,r, s} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 dim
 shall be an integer scalar with a value in the range
 [image: $$1<= dim <= n$$]
 , where n is the rank of
 array
 .

 2.
 mask
 (optional) shall be of type logical and shall be conformable with
 array
 .

 Example(s)
 :
 maxval((/1,2,3/))
 returns the value 3.
 [image: ../images/112282_4_En_BookBackmatter_Figk_HTML.gif]

returns the maximum of the negative elements of c.

 For
 [image: $$ B= \left(\begin{array}{ccc} 1 &{} 3 &{} 5 \\ 2 &{} 4 &{} 6 \end{array} \right) $$]

 maxval(b, dim=1)
 returns(2,4,6)

 maxval(b, dim=2)
 returns(5,6)

 MERGE(true, false, mask)
 : Chooses alternative values according to the value of a mask.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {true} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {as true} &{} \qquad \mathbf{class{:}} \, \text {e}\ \end{array}$$]

 Example(s)
 : For
 [image: $$ true= \left(\begin{array}{ccc} 2 &{} 6 &{} 10 \\ 4 &{} 8 &{} 12 \end{array} \right) , false= \left(\begin{array}{ccc} 1 &{} 5 &{} 9 \\ 3 &{} 7 &{} 11 \end{array} \right) , and \ mask= \left(\begin{array}{ccc} T &{} F &{} T \\ F &{} T &{} F \end{array} \right) $$]

 [image: $$ result= \left(\begin{array}{ccc} 2 &{} 5 &{} 10 \\ 3 &{} 8 &{} 11 \end{array} \right) $$]

 MERGE_BITS(i, j, mask)
 : Merge of bits under mask.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i or boz} \\ \mathbf{argument{:}} \, \text {j i or boz}\\ \mathbf{argument{:}} \, \text {mask i or boz}\\ \mathbf{result{:}} \, \text {same as i if integer, otherwise same as j.}\\ \mathbf{class{:}} \, \text {e}\ \end{array}$$]

 Example(s)
 :
 merge_bits(14,18,22)
 has the value 6.

 MIN(a1, a2, a3,...)
 : Chooses the smallest value.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a1} &{} \qquad \mathbf{type{:}} \, \text {i, r, s} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 y=min(x1,x2,x3,x4,x5)

 MINEXPONENT(x)
 : Returns the minimum exponent. See Chap.
 5
 and numeric models.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 i=minexponent(x)

 MINLOC(array,
 mask,kind, back
)
 or

 MINLOC(array,dim,
 mask,kind, back
)
 : Location of minimum value.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {i,r, s} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {kind} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {back} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 dim
 shall be an integer scalar with a value in the range
 [image: $$1<= dim <= n$$]
 , where n is the rank of
 array
 . The corresponding actual argument shall not be an optional dummy argument.

 2.
 mask
 shall be of type logical and shall be conformable with
 array
 .

 3.
 kind
 shall be a scalar integer constant expression.

 4.
 back
 shall be scalar and of type logical.

 Example(s)
 :
 i=minloc(array)

 In the above example if array is a rank 2 array of shape(5,10) and the smallest value is in position(2,1) then the result is the rank 1 array i with shape(2) and i(1)
 [image: $$=$$]
 2 and i(2)
 [image: $$=$$]
 1.

 MINVAL(array,
 mask
 or

 MINVAL(array, dim, mask)
 : Minimum value(s) of
 array
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {i,r, s} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as array} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 dim
 shall be an integer scalar with a value in the range
 [image: $$1<= dim <= n$$]
 , where n is the rank of
 array
 . The corresponding actual argument shall not be an optional dummy argument.

 2.
 mask
 shall be of type logical and shall be conformable with
 array
 .

 Example(s)
 :

 minval((/1,2,3/))
 returns the value 1.

 minval(c, mask=c>0.0)
 returns the minimum of the positive elements of c.

For

 [image: $$ B = \left(\begin{array}{ccc} 1 &{} 3 &{} 5 \\ 2 &{} 4 &{} 6 \end{array} \right) $$]

 minval(b, dim=1)
 returns(1,3,5).

 minval(b, dim=2)
 returns(1,2).

 MOD(a, b)
 : Returns the remainder when first argument divided by second.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {i, r} \\ \mathbf{argument{:}} \, \text {b} &{} \qquad \mathbf{type{:}} \, \text {as a} \\ \mathbf{result{:}} \, \text {as arguments} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 b
 shall not be zero.

 The result is
 [image: $$a - int(a/b) * b$$]
 .

 Example(s)
 :
 r=mod(a, b)
 [image: ../images/112282_4_En_BookBackmatter_Figl_HTML.gif]

 MODULO(a, b)
 : Returns the modulo of the arguments.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {i, r} \\ \mathbf{argument{:}} \, \text {b} &{} \qquad \mathbf{type{:}} \, \text {as a} \\ \mathbf{result{:}} \, \text {as a} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 b
 shall not be zero.

 If
 a
 is of typr integer,
 modulo (a, b)
 has the value r such that
 [image: $$a = qb + r$$]
 , where q is an integer, the inequalities
 [image: $$0<= r < b $$]
 hold if
 [image: $$b > 0$$]
 , and
 [image: $$b< r<= 0$$]
 hold if
 [image: $$ b < 0$$]
 .

 If
 a
 is a type real
 modulo (a, b)
 has the result
 [image: $$a-floor (a / b) * b$$]
 .

 Example(s)
 :
 r=modulo(a, b)
 [image: ../images/112282_4_En_BookBackmatter_Figm_HTML.gif]

 MOVE_ALLOC (from, to [, stat, errmsg])
 : Move an allocation.

 Note(s)
 :

 1. Subroutine, pure if and only if
 from
 is not a coarray.

 2.
 from
 may be of any type, rank, and corank. It shall be allocatable and shall not be a coindexed object. It is an
 intent (inout)
 argument.

 3.
 to
 shall be type compatible with
 from
 and have the same rank and corank. It shall be allocatable and shall not be a coindexed object. It shall be polymorphic if
 from
 is polymorphic. It is an
 intent (out)
 argument.

 4.
 stat
 shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an
 intent (out)
 argument.

 5.
 errmsg
 shall be a noncoindexed default character scalar. It is an
 intent (inout)
 argument.

 6. It is expected that the implementation of allocatable objects will typically involve descriptors to locate the allocated storage;
 move_alloc
 could then be implemented by transferring the the contents of the descriptor for from to the descriptor for to and clearing the descriptor for from.

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Fign_HTML.gif]

 The old
 grid
 is deallocated because
 to
 is
 intent (out)
 , and grid then takes over the new grid allocation.

 MVBITS(from, frompos, len, to, topos)
 : Copies a sequence of bits from one data object to another.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {from} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {frompos} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {len} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {to} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {topos} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {n/a} &{} \qquad \mathbf{class{:}} \, \text {s} \end{array}$$]

All arguments are of integer type.

 Note(s)
 :

 from
 It is an
 intent(in)
 argument.

 frompos
 shall be nonnegative. It is an
 intent(in)
 argument.
 [image: $$frompos + len <= bit_size(from)$$]
 .

 len
 shall be nonnegative. It is an
 intent(in)
 argument.

 to
 shall be a variable of the same type and kind type parameter value as
 from
 and may be associated with
 from
 . It is an
 intent(inout)
 argument.

 to
 is defined by copying the sequence of bits of length
 len
 , starting at position
 frompos
 of
 from
 to position
 topos
 of
 to
 . No other bits of
 to
 are altered. On return, the
 len
 bits of
 to
 starting at
 topos
 are equal to the value that the len bits of
 from
 starting at
 frompos
 had on entry.

 topos
 shall be nonnegative. It is an
 intent(in)
 argument.
 [image: $$topos + len <= bit_size(to)$$]
 .

 Example(s)
 : If
 to
 has the initial value 6, the value of
 to
 after the statement
 call mvbits (7, 2, 2, to, 0)
 is 5.

 Example(s)
 :
 call mvbits(f,fp,l,t, tp)

 NEAREST(x, next)
 : Returns the nearest different number. See Chap.
 5
 and the real numeric model.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{argument{:}} \, \text {next} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 next
 Not equal to zero.

 The result has a value equal to the machine-representable number distinct from
 x
 and nearest to it in the direction of infinity with the same sign as
 next
 .

 Unlike other floating point manipulation functions,
 nearest
 operates on machine representable numbers rather than model numbers. On many systems there are machine representable numbers that lie between adjacent model numbers.

 Example(s)
 :
 n=nearest(x, next)

 NEW_LINE(a)
 : Returns newline character used for formatted stream output.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {char} \\ \mathbf{result{:}} \, \text {char} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 If
 a
 is default character and the character in position 10 of the ASCII collating sequence is representable in the default character set, then the result is
 achar (10)
 .

 If
 a
 is ASCII character or ISO 10646 character, then the result is
 char (10, kind (a))
 .

Otherwise, the result is a processor-dependent character that represents a newline in output to files connected for formatted stream output if there is such a character.
Otherwise, the result is the blank character.

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figo_HTML.gif]

This will write 2 lines to the file nline.txt.

 NINT(a,
 kind)
 : Yields nearest integer.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1.
 [image: $$a > 0$$]
 , the result is int(a+0.5).

 2.
 [image: $$a <= 0$$]
 , the result is int(a-0.5).

 Example(s)
 :
 i=nint(x)

 NORM2(x)
 or

 NORM2(x,
 dim
)
 : Norm of an array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} r \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {r} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 dim
 shall be an integer scalar with a value in the range
 [image: $$ 1<= dim <= n $$]
 , where n is the rank of
 x
 . The corresponding actual argument shall not be an optional dummy argument.

 2. The result of
 norm2(x)
 has a value equal to a processor-dependent approximation to the generalized l2 norm of
 x
 , which is the square root of the sum of the squares of the elements of
 x
 .

 3. If
 dim
 is present the array is reduced as for
 sum(x, dim)
 except that
 norm2
 is applied to the reduced vectors.

 Example(s)
 : See below.
 [image: ../images/112282_4_En_BookBackmatter_Figp_HTML.gif]

 NOT(i)
 : Returns the logical complement of the argument.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 i=not(i)

 NULL(
 mold)
 : Returns a disassociated pointer.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {mold} &{} \qquad \mathbf{type{:}} \, \text {p} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

If the argument mold is present the result is the same as mold. Otherwise it is determined by context.

 Example(s)
 :
 real, pointer :: p=>null()

 NUM_IMAGES()
 or

 NUM_IMAGES(team)
 or

 NUM_IMAGES(team_number)
 : Number of images.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {none} \\ \mathbf{argument{:}} \, \text {team} &{} \qquad \mathbf{type{:}} \, \text {te} \\ \mathbf{argument{:}} \, \text {team}_\, \text {number} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Notes(s)
 :

 team
 shall be a scalar of type
 team_type
 from the intrinsic module
 iso_fortran_env
 , with a value that identifies the current or an ancestor team.

 team_number
 shall be an integer scalar. It shall identify the initial team or a team whose parent is the same as that of the current team.

The result is the number of images in the specified team, or in the current team if no team is specified.

 Example(s)
 :
 print*,’ number of images = ’, num_images()

 The following code uses image 1 to read data and broadcast it to other images.
 [image: ../images/112282_4_En_BookBackmatter_Figq_HTML.gif]

 OUT_OF_RANGE (x, mold [, round])
 Whether a value cannot be converted safely.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {i,r} \\ \mathbf{argument{:}} \, \text {mold} &{} \qquad \mathbf{type{:}} \, \text {i, r scalar} \\ \mathbf{argument{:}} \, \text {round} &{} \qquad \mathbf{type{:}} \, \text {l scalar} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1.
 mold
 If it is a variable, it need not be defined.

 2.
 round
 shall be present only if
 x
 is of type real and
 mold
 is of type integer.

 Example(s)
 : If INT8 is the kind value for an 8-bit binary integer type, OUT_OF_RANGE (-128.5, 0_INT8) will have the value false and OUT_OF_RANGE (-128.5, 0_INT8, .TRUE.) will have the value true.

 PACK(array, mask,
 vector)
 : Packs an array into an array of rank 1, under the control of a mask.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {vector} &{} \qquad \mathbf{type{:}} \, \text {same type as array} \\ \mathbf{result{:}} \, \text {as array} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 array
 must be an array.

 2.
 mask
 be conformable with
 array
 .

 3.
 vector
 must have rank 1 and have at least as many elements as there are true elements in mask.

 4. If
 mask
 is scalar with the value
 true
 vector must have at least as many elements as there are in
 array
 .

5. The result is an array of rank 1.

 6. If
 vector
 is present the result size is that of
 vector
 .

 7. If
 vector
 is not present the result size is t, the number of true elements in
 mask
 , unless
 mask
 is scalar with a value true in which case the result size is the size of
 array
 .

 Example(s)
 :
 r=pack(a, m)

 The nonzero elements of an array
 m
 with the value
 [image: ../images/112282_4_En_BookBackmatter_Figr_HTML.gif]

 can be
 gathered
 by the function
 pack
 . The result of
 pack (m, mask = m/= 0)
 is
 [9, 7]
 and the result of
 pack (m, m /= 0, vector = [2, 4, 6, 8, 10, 12])
 is
 [9, 7, 6, 8, 10, 12]
 .

 PARITY(mask,
 dim
)
 : Reduce array with
 .neqv.
 operation.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \texttt {mask} &{} \qquad \mathbf{type{:}} \, \text {l array} \\ \mathbf{argument{:}} \texttt {dim} \, \text {shall be an}&{}\\ \text {integer scalar in the range}&{}\\ 1<= dim <=n \, \text {where n}&{}\\ \, \text {is rank of}\, \texttt {mask}.&{} \end{array}$$]

 Example(s)
 : If
 t
 has the value
 true
 and
 f
 has the value
 false
 parity([t,t,t, f])
 is
 true
 .

 POPCNT(i)
 : Number of one bits in the sequence of bits of
 i
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 popcnt([1, 2, 3, 4, 5, 6, 7])
 has the value [1, 1, 2, 1, 2, 2, 3].

 POPPAR(i)
 : Returns the parity of the bit count of an integer expressed as 0 or 1.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 poppar([1, 2, 3, 4, 5, 6, 7])
 has the value [1, 1, 0, 1, 0, 0, 1]

 PRECISION(x)
 : Returns the decimal precision of the argument. See Chap.
 5
 and numeric models.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 i=precision(x)

 PRESENT(a)
 : Returns whether an optional argument is present.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {l} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 a
 must be an optional argument of the procedure in which the
 present
 function reference appears.

 Example(s)
 :
 if(present(a)) then

 PRODUCT(array,
 mask
)
 or

 PRODUCT(array, dim,
 mask)

 The product of all of the elements of
 array
 along the dimension
 dim
 corresponding to the true elements of
 mask
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {as array} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 array
 must be an array.

 2.
 [image: $$ 1<= dim <= n $$]
 where n is the rank of array.

 3.
 mask
 must be conformable with array.

 Example(s)
 :

 product((/1,2,3/))
 the result is 6.

 product(c , mask = c> 0.0)
 forms the product of the positive elements of c.

 If
 [image: $$ B= \left(\begin{array}{ccc} 1 &{} 3 &{} 5 \\ 2 &{} 4 &{} 6 \end{array} \right) $$]

 product(b, dim=1)

is (2,12,30)

 product(b, dim=2)

is (15,48)

 RADIX(x)
 : Returns the base of the numeric argument. See Chap.
 5
 and numeric models.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {i, r} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 base=radix(x)

 RANDOM_INIT (repeatable, image_distinct)
 Initialize the pseudorandom number generator.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {repeatable} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {image}_\, \text {distinct} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {n/a} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1.
 repeatable
 shall be a logical scalar. It is an
 intent (in)
 argument. If it has the value
 true
 , the seed accessed by the pseudorandom number generator is set to a processor-dependent value that is the same each time
 random_init
 is called from the same image. If it has the value
 false
 , the seed is set to a processor-dependent, unpredictably different value on each call.

 2.
 image_distinct
 shall be a logical scalar. It is an
 intent (in)
 argument. If it has the value
 true
 , the seed accessed by the pseudorandom number generator is set to a processor-dependent value that is distinct from the value that would be set by a call to
 random_init
 by another image. If it has the value
 false
 , the value to which the seed is set does not depend on which image calls
 random_init
 .

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figs_HTML.gif]

 Initializes the pseudorandom number generator so that the seed is different on each call and that the sequence generated will differ from that of another image:

 RANDOM_NUMBER(harvest)
 : Returns one pseudorandom number or an array of pseudorandom numbers from the uniform distribution over the range
 [image: $$ 0<= x < 1 $$]
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {harvest} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {n/a} &{} \qquad \mathbf{class{:}} \, \text {s} \end{array}$$]

 Note(s)
 :

 harvest
 is
 intent(out)
 .

 Example(s)
 :
 call random_number(harvest=x)

 call random_number(y)

 x
 and
 y
 contain uniformly distributed random numbers.

 RANDOM_SEED(
 size,put, get
)
 : Restarts(seeds) or queries the pseudorandom generator used by
 random_number.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {size} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {n/a} &{} \qquad \mathbf{class{:}} \, \text {s} \end{array}$$]

All arguments are of integer type.

 Note(s)
 :

 1.
 size
 is
 intent(out)
 . It is set to the number n of integers that the processor uses to hold the value of the seed.

 2.
 put
 is
 intent(in)
 . It is an array of rank 1 and
 [image: $$ size >= n $$]
 It is used by the processor to set the seed value.

 3.
 get
 is
 intent(out)
 . It is an array of rank 1 and
 [image: $$ size >= n $$]
 It is set by the processor to the current value of the seed.

 Example(s)
 :
 call random_seed

 RANGE(x)
 : Returns the decimal exponent range of the real argument. See Chap.
 5
 and the numeric model representing the argument.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 i=range(n)

 RANK (a)
 : Rank of a data object.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1.
 a
 shall be a data object of any type.

2. Result Characteristics. Default integer scalar.

 Example(s)
 : If X is an assumed-rank dummy argument and its associated effective argument is an array of rank 3, RANK(X) has the value 3.

 REAL(a,
 kind
)
 : Converts to real from integer, real or complex.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {r} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 x=real(a)

 REDUCE (array, operation [, mask, identity, ordered])
 or

 REDUCE (array, operation , dim [, mask, identity, ordered])
 : General reduction of array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {ANY} \\ \mathbf{argument{:}} \, \text {operation} &{} \qquad \mathbf{type{:}} \, \text {See notes} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{argument{:}} \, \text {identity} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{argument{:}} \, \text {ordered} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{result{:}} \, \text {?} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Notes(s)
 :

 operation
 shall be a pure function with exactly two arguments; each argument shall be a scalar, nonallocatable, nonpointer, nonpolymorphic, nonoptional dummy data object with the same type and type parameters as
 array
 . If one argument has the
 asynchronous, target, value
 attribute, the other shall have that attribute. Its result shall be a nonpolymorphic scalar and have the same type and type parameters as
 array
 .
 operation
 should implement a mathematically associative operation. It need not be commutative.

 dim
 shall be an integer scalar with a value in the range
 [image: $$ 1<= dim <= n $$]
 , where n is the rank of ARRAY.

 mask
 shall be of type logical and shall be conformable with
 array
 .

 identity
 shall be scalar with the same type and type parameters as
 array
 .

 ordered
 shall be a logical scalar.

 If
 operation
 is not computationally associative,
 reduce
 without
 ordered=.true.
 with the same argument values might not always produce the same result, as the processor can apply the associative law to the evaluation.

 Example(s)
 :

 The following examples all use the function
 my_mult
 , which returns the product of its two integer arguments.

 The value of
 [image: ../images/112282_4_En_BookBackmatter_Figt_HTML.gif]

 is 6.
 [image: ../images/112282_4_En_BookBackmatter_Figu_HTML.gif]

 forms the product of the positive elements of
 c
 .

 If B is the array
 [image: ../images/112282_4_En_BookBackmatter_Figv_HTML.gif]

 [image: ../images/112282_4_En_BookBackmatter_Figw_HTML.gif]

 is [2, 12, 30] and
 [image: ../images/112282_4_En_BookBackmatter_Figx_HTML.gif]

is [15, 48].

 REPEAT(string, n_copies)
 : Concatenate several copies of a string.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {s} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Example(s)
 :
 new_s=repeat(s, 10)

 RESHAPE(source,shape
 ,pad, order
)
 : Constructs an array of a specified shape from the elements of a given array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {source} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {as source} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 source
 must be an array. If
 pad
 is absent or of size zero the size of
 source
 must be
 product(shape)
 .

 2.
 shape
 must be a rank 1 array and
 [image: $$ 0<= size < 16 $$]

 3.
 pad
 must be an array.

 4.
 order
 must have the same shape as
 shape
 and its value must be a permutation of (1,2,... , n) where n is the size of
 shape
 . If absent it is as if it were present with the value (1,2,..., n).

 5. the result is an array of shape
 shape

 Example(s)
 :

 reshape((/1,2,3,4,5,6/),(/2,3/))

 has the value
 [image: $$ \left(\begin{array}{ccc} 1 &{} 3 &{} 5 \\ 2 &{} 4 &{} 6 \end{array} \right) $$]

 reshape((/1,2,3,4,5,6/) ,(/2,4/) ,(/0,0/) ,(/2,1/))

 has the value
 [image: $$ \left(\begin{array}{cccc} 1 &{} 2 &{} 3 &{} 4 \\ 5 &{} 6 &{} 0 &{} 0 \end{array} \right) $$]

 RRSPACING(x)
 : Returns the reciprocal of the relative spacing of model numbers near the argument value. See Chap.
 5
 and the real numeric model.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=rrspacing(x)

 SAME_TYPE_AS(a, b)
 : Query dynamic types for equality. If the dynamic type of
 a
 or
 b
 is extensible, the result is true if and only if the dynamic type of
 a
 is the same as the dynamic type of
 b
 . If neither
 a
 nor
 b
 has extensible dynamic type, the result is processor dependent.

 Note(s):

 a
 an object of extensible declared type or unlimited polymorphic. If it is a pointer, it shall not have an undefined association status.

 b
 an object of extensible declared type or unlimited polymorphic. If it is a pointer, it shall not have an undefined association status.

The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type. An unlimited polymorphic entity has no declared type.

 result
 : l

 type
 : i

 SCALE(x, i)
 : Returns
 [image: $$ x b^i $$]
 where b is the base in the model representation of x. See Chap.
 5
 and the real numeric model.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=scale(x, i)

 SCAN(string, set,
 back
)
 : Scans a string for any one of the characters in a set of characters.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

1. The default is to scan from the left, and will only be from the right when back is present and has the value true.
2. Zero is returned if the scan fails.

 Example(s)
 :
 w=scan(string, set)

 SELECTED_CHAR_KIND(name)
 : Returns the kind value for the character set whose name is given by the character string name or -1 if not supported.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {name} &{} \qquad \mathbf{type{:}} \, \text {char} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 If
 name
 has the value
 default
 , then the result has a value equal to that of the kind type parameter of default character.

 If
 name
 has the value
 ASCII
 , then the result has a value equal to that of the kind type parameter of ASCII character if the processor supports such a kind; otherwise the result has the value 1.

 If
 name
 has the value
 ISO_10646
 , then the result has a value equal to that of the kind type parameter of the ISO 10646 character kind (corresponding to UCS-4 as specified in ISO/IEC 10646) if the processor supports such a kind; otherwise the result has the value 1.

 If
 name
 is a processor-defined name of some other character kind supported by the processor, then the result has a value equal to that kind type parameter value.

 If
 name
 is not the name of a supported character type, then the result has the value 1. The
 name
 is interpreted without respect to case or trailing blanks.

 SELECTED_INT_KIND(r)
 : Returns a value of the kind type parameter of an integer data type that represents all integer values n with
 [image: $$ -10^r< n < 10^r $$]
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {r} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 r
 must be scalar.

If a kind type parameter is not available then the value -1 is returned.

 Example(s)
 :
 i=selected_int_kind(2)

 SELECTED_REAL_KIND(
 p,r, radix)
 : Returns a value of the kind type parameter of a real data type with decimal precision of at least p digits and a decimal exponent range of at least r.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {p and r} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

0. at least one argument must be present.

 1.
 p
 ,
 r
 and
 radix
 must be integer scalars.

 2. The result is -1 if the processor supports a real type with radix
 radix
 and exponent range of at least
 r
 but not with precision of at least
 p
 ; -2 if the processor supports a real type with radix
 radix
 and precision of at least
 p
 but not with exponent range of at least
 r
 ; -3 if the processor supports a real type with radix
 radix
 but with neither precision of at least
 p
 nor exponent range of at least
 r
 ; -4 if the processor supports a real type with radix
 radix
 and either precision of at least
 p
 or exponent range of at least
 r
 but not both together; -5 if the processor supports no real type with radix
 radix
 .

 Example(s)
 :
 i=selected_real_kind(p, r)

 SET_EXPONENT(x, i)
 : Returns the model number whose fractional part is the fractional part of the model representation of x and whose exponent part is i.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 exp_part=set_exponent(x, i)

 SHAPE(source,
 kind
)
 : Returns the shape of the array argument or scalar.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {source} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 1.
 source
 may be array valued or scalar. It must not be a pointer that is disassociated or an allocatable array that is not allocated. It must not be an assumed-size array.

 2. the result is an array of rank 1 whose size is equal to the rank of
 source
 .

 Example(s)
 :
 s=shape(a(2:5,-1:1))
 yields s=(4,3)

 SHIFTA(i, shift)
 : Right shift with fill.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {shift} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {same as i} &{} \qquad \mathbf{class{:}} \, \text {e} \\ \end{array}$$]

 Note(s)
 :

 1.
 shift
 shall be nonnegative and less than or equal to
 bit_size(i)

 2. If
 shift
 is zero the result is
 i
 . Bits shifted out from the right are lost. The model for the interpretation of an integer value as a sequence of bits is in 16.3 of the standard.

 Example(s)
 :
 shifta (ibset (0, bit_size (0)), 2)
 is equal to
 shiftl (7, bit_size (0) 3)
 .

 SHIFTL(i, shift)
 : Shift left.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {shift} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {same as i} &{} \qquad \mathbf{class{:}} \, \text {e} \\ \end{array}$$]

 Note(s)
 :

 1. shift shall be nonnegative and less than or equal to
 bit_size(i)

 Example(s)
 :
 shiftl(4, 1) is 8

 SHIFTR(i, shift)
 : Shift right.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {shift} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {same as i} &{} \qquad \mathbf{class{:}} \, \text {e} \\ \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1. shift shall be nonnegative and less than or equal to
 bit_size(i)

 Example(s)
 :
 shiftr(4, 1)
 is 2.

 SIGN(a, b)
 : Absolute value of a times the sign of b.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {i, r} \\ \mathbf{result{:}} \, \text {as a} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1. If
 [image: $$ b > 0$$]
 , the value of the result is |
 a
 |.

 2. If
 [image: $$ b < 0$$]
 , the value of the result is
 [image: $$-|a|$$]
 .

 3. If
 b
 is of type integer and
 [image: $$b=0$$]
 , the value of the result is |
 a
 |.

 4. If
 b
 is of type real and is zero, then: if the processor cannot distinguish between positive and negative real zero, or if
 b
 is positive real zero, the value of the result is |
 a
 |; if
 b
 is negative real zero, the value of the result is
 [image: $$-|a|$$]
 .

 Example(s)
 :
 a=sign(a, b)

 SIN(x)
 : Sine.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

The argument is in radians.

 Example(s)
 :
 z=sin(x)

 SINH(x)
 : Hyperbolic sine.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 z=sinh(x)

 SIZE(array,
 dim, kind
)
 : Extent of an array along a specified dimension or the total number of elements in the array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 1.
 array
 shall be a scalar or array of any type. It shall not be an unallocated allocatable variable or a pointer that is not associated. If
 array
 is an assumed-size array,
 dim
 shall be present with a value less than the rank of
 array
 .

 2.
 dim
 (optional) shall be an integer scalar with a value in the range
 [image: $$ 1<= dim <= n $$]
 , where n is the rank of
 array
 .

 3.
 kind
 shall be a scalar integer constant expression.

 4. result is equal to the extent of dimension
 dim
 of array, or if
 dim
 is absent, the total number of elements of array.

 Example(s)
 :
 a=size(array)

 SPACING(x)
 : Returns the absolute spacing of model numbers near the argument value. See Chap.
 5
 and the real numeric model.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 s=spacing(x)

 SPREAD(source, dim, n_copies)
 : Creates an array with an additional dimension, replicating the values in the original array.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {source} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {as source} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 source
 may be array valued or scalar, with rank less than 15.

 2.
 dim
 must be scalar and in the range
 [image: $$ 1<= dim <= n+1 $$]
 where n is the rank of source.

 3.
 n_copies
 must be scalar.

 4. the result is an array of rank
 [image: $$ n+1 $$]
 .

 Example(s)
 :

 If a is the array(2,3,4) then
 spread(a, dim=1,ncopies=3)
 then the result is the array
 [image: $$ \left(\begin{array}{ccc} 2 &{} 3 &{} 4 \\ 2 &{} 3 &{} 4 \\ 2 &{} 3 &{} 4 \end{array} \right) $$]

 SQRT(x)
 : Square root.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 a=sqrt(b)

 STORAGE_SIZE(a,
 kind
)
 : Storage size in bits.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {a} &{} \qquad \mathbf{type{:}} \, \text {any type.} \\ \mathbf{argument{:}} \, \text {kind(optional)} &{} \qquad \mathbf{result{:}} \, \text {i} \\ \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 If
 a
 is polymorphic it shall not be an undefined pointer. If it is unlimited polymorphic or has any deferred type parameters, it shall not be an unallocated allocatable variable or a disassociated or undefined pointer.

 If
 kind
 is present, the kind type parameter is that specified by the value of
 kind
 ; otherwise, the kind type parameter is that of default integer type.

 The result value is the size expressed in bits for an element of an array that has the dynamic type and type parameters of
 a
 . If the type and type parameters are such that storage association applies, the result is consistent with the named constants defined in the intrinsic module
 ISO_FORTRAN_ENV
 .

An array element might take more bits to store than an isolated scalar, since any hardware-imposed alignment requirements for array elements might not apply to a simple scalar variable.
This is intended to be the size in memory that an object takes when it is stored; this might differ from the size it takes during expression handling (which might be the native register size) or when stored in a file. If an object is never stored in memory but only in a register, this function nonetheless returns the size it would take if it were stored in memory.

 Example(s)
 :
 storage_size(1.0)
 has the same value as the named constant
 numeric_storage_size
 in the intrinsic module
 iso_fortran_env
 .

 SUM(array,
 dim, mask
)
 or

 SUM(array,
 mask
)
 : Returns the sum of all elements of array along the dimension
 dim
 corresponding to the true elements of
 mask
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {n} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {mask} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {as array} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 array
 must be an array.

 2.
 [image: $$ 1<= dim <= n $$]
 where
 n
 is the rank of
 array
 .

 3.
 mask
 must be conformable with
 array
 .

 4. result is scalar if
 dim
 is absent, or
 array
 has rank 1, otherwise the result is an array of rank
 [image: $$ n-1 $$]
 .

 Example(s)
 :

 sum((/1,2,3/))

the result is 6.

 sum(c, mask=c> 0.0)

forms the arithmetic sum of the positive elements of c.

 If
 [image: $$ B= \left(\begin{array}{ccc} 1 &{} 3 &{} 5 \\ 2 &{} 4 &{} 6 \end{array} \right) $$]

 sum(b, dim=1)

is (3,7,11)

 sum(b, dim=2)

is (9,12)

 SYSTEM_CLOCK(
 count,count_rate, count_max
)
 : Returns integer data from a real time clock.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {count} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {n/a} &{} \qquad \mathbf{class{:}} \, \text {s} \end{array}$$]

 Note(s)
 :

 1.
 count
 is
 intent(out)
 and is set to a processor dependent value based on the current value of the processor clock or to
 -huge(0)
 if there is no clock. It lies in the range 0 to
 count_max
 if there is a clock.

 2.
 count_rate
 is
 intent(out)
 and it is set to the number of processor clock counts per second, or zero if there is no clock.

 3.
 count_max
 is
 intent(out)
 and is set to the maximum value that count can have or to zero if there is no clock.

 call system_clock(c,r, m)

 TAN(x)
 : Tangent.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

x must be in radians.

 Example(s)
 :
 y=tan(x)

 TANH(x)
 : Hyperbolic tangent.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r, c} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 y=tanh(x)

 THIS_IMAGE(team)
 or

 THIS_IMAGE(coarray [, team])
 or

 THIS_IMAGE(coarray, dim [, team])
 : Index of the invoking image, a single cosubscript, or a list of cosubscripts.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {team} &{} \qquad \mathbf{type{:}} \, \text {te} \\ \mathbf{argument{:}} \, \text {coarray} &{} \qquad \mathbf{type{:}} \, \text {a} \\ \mathbf{argument{:}} \, \text {dim} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

 1.
 coarray
 shall be a coarray of any type. If it is allocatable it shall be allocated. If its designator has more than one part-ref , the rightmost part-ref shall have nonzero corank. If it is of type
 team_type
 from the intrinsic module
 ISO_FORTRAN_ENV
 , the
 team
 argument shall appear.

 2.
 dim
 shall be an integer scalar. Its value shall be in the range
 [image: $$1<= dim <= n$$]
 , where n is the corank of
 coarray
 .

 3.
 team
 shall be a scalar of type
 team_type
 from the intrinsic module
 ISO_FORTRAN_ENV
 , whose value identifies the current or an ancestor team. If
 coarray
 appears, it shall be established in that team.

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figy_HTML.gif]

 then on image 5,
 this_image()
 has the value 5 and
 this_image(a)
 has the value [3,1,2].

 TINY(x)
 : Returns the smallest positive number in the model representing numbers of the same type and kind type parameter as the argument.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {x} &{} \qquad \mathbf{type{:}} \, \text {r} \\ \mathbf{result{:}} \, \text {as x} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Example(s)
 :
 t=tiny(x)

 TRAILZ(i)
 : Number of trailing zero bits. If all of the bits of i are zero, the result value is
 bit_size(i)
 . Otherwise, the result value is the position of the rightmost 1 bit in
 i
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {i} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Example(s)
 :
 [image: ../images/112282_4_En_BookBackmatter_Figz_HTML.gif]

 TRANSFER(source, mold,
 size
)
 : Returns a result with a physical representation identical to that of
 source
 , but interpreted with the type and type parameters of
 mold
 .
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {source} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {as mold} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Warning
 : A thorough understanding of the implementation specific internal representation of the data types involved is necessary for successful use of this function. Consult the documentation that accompanies the compiler that you work with before using this function.

 TRANSPOSE(matrix)
 : Transposes an array of rank 2.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {matrix} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {as argument} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 matrix
 must be of rank 2. If its shape is (
 n
 ,
 m
) then the resultant matrix has shape (
 m
 ,
 n
)

 Example(s)
 :

 transpose(a)
 [image: $$ a= \left(\begin{array}{ccc} 1 &{} 2 &{} 3 \\ 4 &{} 5 &{} 6 \\ 7 &{} 8 &{} 9 \end{array} \right) \ yields \left(\begin{array}{ccc} 1 &{} 4 &{} 7 \\ 2 &{} 5 &{} 8 \\ 3 &{} 6 &{} 9 \end{array} \right) $$]

 TRIM(string)
 : Returns the argument with trailing blanks removed.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{result{:}} \, \text {as string} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

string must be a scalar.

 Example(s)
 :
 t_s=trim(s)

 UBOUND(array,
 dim, kind
)
 : Upper bound(s).
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {array} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 Note(s)
 :

 1.
 dim
 optional. Shall be an integer scalar with a value in the range
 [image: $$1<= dim <= n$$]
 , where n is the rank of array. The corresponding actual argument shall not be an optional dummy argument.

 2. For an array section or for an array expression, other than a whole array,
 ubound(array, dim)
 has a value equal to the number of elements in the given dimension; otherwise, it has a value equal to the upper bound for subscript
 dim
 of
 array
 if dimension
 dim
 of
 array
 does not have size zero and has the value zero if dimension
 dim
 has size zero.

 Example(s)
 :
 z=ubound(a)

 UCOBOUND(coarray,
 dim, kind
)
 : Upper cobound(s) of a coarray.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {coarray} &{} \qquad \mathbf{type{:}} \, \text {co} \\ \mathbf{argument{:}} \, \text {dim (optional)} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{argument{:}} \, \text {kind(optional)} &{} \qquad \mathbf{type{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {i} \end{array}$$]

 UNPACK(vector, mask, field)
 : Unpacks an array of rank 1 into an array under the control of a mask.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {vector} &{} \qquad \mathbf{type{:}} \, \text {any} \\ \mathbf{result{:}} \, \text {as vector} &{} \qquad \mathbf{class{:}} \, \text {t} \end{array}$$]

 Note(s)
 :

 1.
 vector
 must have rank 1. Its size must be at least t, where t is the number of true elements in mask.

 2.
 mask
 must be array valued.

 3.
 field
 must be conformable with
 mask
 . Result is an array with the same shape as
 mask
 .

 Example(s)
 :

 With
 vector=(1,2,3)
 [image: $$ \ and \ mask= \left(\begin{array}{ccc} f &{} t &{} f \\ t &{} f &{} f \\ f &{} f &{} t \end{array} \right) \ and \ field \left(\begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 \end{array} \right) \ \ the \ result \ is \left(\begin{array}{ccc} 1 &{} 2 &{} 0 \\ 1 &{} 1 &{} 0 \\ 0 &{} 0 &{} 3 \end{array} \right) $$]

 VERIFY(string,set,
 back, kind
)
 : Verify that a set of characters contains all the characters in a string by identifying the position of the first character in a string of characters that does not appear in a given set of characters.
 [image: $$\begin{array}{ll} \mathbf{argument{:}} \, \text {string} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{argument{:}} \, \text {set} &{} \qquad \mathbf{type{:}} \, \text {s} \\ \mathbf{argument{:}} \, \text {back} &{} \qquad \mathbf{type{:}} \, \text {l} \\ \mathbf{result{:}} \, \text {kind} &{} \qquad \mathbf{class{:}} \, \text {i} \\ \mathbf{result{:}} \, \text {i} &{} \qquad \mathbf{class{:}} \, \text {e} \end{array}$$]

 Note(s)
 :

1. The default is to scan from the left, and will only be from the right when back is present and has the value true.

 2. The value of the result is zero if each character in
 string
 is in set, or if
 string
 has zero length.

 Example(s)
 i=verify(string, set)

D.10 Fortran Intrinsics by Standard

 We use a + character in the table to indicate that the name of the intrinsic continues on the next line. The intrinsics by standard year are in Table
 D.5
 .
 Table D.5Intrinsic functions by standard - Fortran 90 to Fortran 2018

	Fortran 90
	Fortran 95
	Fortran 2003
	Fortran 2008
	Fortran 2018

	ABS
	ABS
	ABS
	ABS
	ABS

	ACHAR
	ACHAR
	ACHAR
	ACHAR
	ACHAR

	ACOS
	ACOS
	ACOS
	ACOS
	ACOS

	 	 	 	ACOSH
	ACOSH

	ADJUSTL
	ADJUSTL
	ADJUSTL
	ADJUSTL
	ADJUSTL

	ADJUSTR
	ADJUSTR
	ADJUSTR
	ADJUSTR
	ADJUSTR

	AIMAG
	AIMAG
	AIMAG
	AIMAG
	AIMAG

	AINT
	AINT
	AINT
	AINT
	AINT

	ALL
	ALL
	ALL
	ALL
	ALL

	ALLOCATED
	ALLOCATED
	ALLOCATED
	ALLOCATED
	ALLOCATED

	ANINT
	ANINT
	ANINT
	ANINT
	ANINT

	ANY
	ANY
	ANY
	ANY
	ANY

	ASIN
	ASIN
	ASIN
	ASIN
	ASIN

	 	 	 	ASINH
	ASINH

	ASSOCIATED
	ASSOCIATED
	ASSOCIATED
	ASSOCIATED
	ASSOCIATED

	ATAN
	ATAN
	ATAN
	ATAN
	ATAN

	ATAN2
	ATAN2
	ATAN2
	ATAN2
	ATAN2

	 	 	 	ATANH
	ATANH

	 	 	 	 	ATOMIC_ADD

	 	 	 	 	ATOMIC_AND

	 	 	 	 	ATOMIC_CAS

	 	 	 	 	ATOMIC_DEFINE

	 	 	 	 	ATOMIC_FETCH+

	 	 	 	 	_ADD

	 	 	 	 	ATOMIC_FETCH+

	 	 	 	 	_AND

	 	 	 	 	ATOMIC_FETCH+

	 	 	 	 	_OR

	 	 	 	 	ATOMIC_FETCH+

	 	 	 	 	_XOR

	 	 	 	 	ATOMIC_OR

	 	 	 	 	ATOMIC_REF

	 	 	 	 	ATOMIC_XOR

	 	 	 	BESSEL_J0
	BESSEL_J0

	 	 	 	BESSEL_J1
	BESSEL_J1

	 	 	 	BESSEL_JN
	BESSEL_JN

	 	 	 	BESSEL_Y0
	BESSEL_Y0

	 	 	 	BESSEL_Y1
	BESSEL_Y1

	 	 	 	BESSEL_YN
	BESSEL_YN

	 	 	 	BGE
	BGE

	 	 	 	BGT
	BGT

	BIT_SIZE
	BIT_SIZE
	BIT_SIZE
	BIT_SIZE
	BIT_SIZE

	 	 	 	BLE
	BLE

	 	 	 	BLT
	BLT

	BTEST
	BTEST
	BTEST
	BTEST
	BTEST

	CEILING
	CEILING
	CEILING
	CEILING
	CEILING

	CHAR
	CHAR
	CHAR
	CHAR
	CHAR

	Fortran 90
	Fortran 95
	Fortran 2003
	Fortran 2008
	Fortran 2018

	CMPLX
	CMPLX
	CMPLX
	CMPLX
	CMPLX

	 	 	 	 	CO_BROADCAST

	 	 	 	CO_LBOUND
	CO_LBOUND

	 	 	 	 	CO_MAX

	 	 	 	 	CO_MIN

	 	 	 	 	CO_REDUCE

	 	 	 	 	CO_SUM

	 	 	 	CO_UBOUND
	CO_UBOUND

	 	 	COMMAND+
	COMMAND+
	COMMAND+

	 	 	_ARGUMENT+
	_ARGUMENT+
	_ARGUMENT+

	 	 	_COUNT
	_COUNT
	_COUNT

	CONJG
	CONJG
	CONJG
	CONJG
	CONJG

	COS
	COS
	COS
	COS
	COS

	COSH
	COSH
	COSH
	COSH
	COSH

	 	 	 	 	COSHAPE

	COUNT
	COUNT
	COUNT
	COUNT
	COUNT

	 	CPU_TIME
	CPU_TIME
	CPU_TIME
	CPU_TIME

	CSHIFT
	CSHIFT
	CSHIFT
	CSHIFT
	CSHIFT

	DATE_AND_TIME
	DATE_AND_TIME
	DATE_AND_TIME
	DATE_AND_TIME
	DATE_AND_TIME

	DBLE
	DBLE
	DBLE
	DBLE
	DBLE

	DIGITS
	DIGITS
	DIGITS
	DIGITS
	DIGITS

	DIM
	DIM
	DIM
	DIM
	DIM

	DOT_PRODUCT
	DOT_PRODUCT
	DOT_PRODUCT
	DOT_PRODUCT
	DOT_PRODUCT

	DPROD
	DPROD
	DPROD
	DPROD
	DPROD

	 	 	 	DSHIFTL
	DSHIFTL

	 	 	 	DSHIFTR
	DSHIFTR

	EOSHIFT
	EOSHIFT
	EOSHIFT
	EOSHIFT
	EOSHIFT

	EPSILON
	EPSILON
	EPSILON
	EPSILON
	EPSILON

	 	 	 	ERF
	ERF

	 	 	 	ERFC
	ERFC

	 	 	 	ERFC_SCALED
	ERFC_SCALED

	 	 	 	 	EVENT_QUERY

	 	 	 	EXECUTE+
	EXECUTE+

	 	 	 	_COMMAND+
	_COMMAND+

	 	 	 	_LINE
	_LINE

	EXP
	EXP
	EXP
	EXP
	EXP

	EXPONENT
	EXPONENT
	EXPONENT
	EXPONENT
	EXPONENT

	 	 	EXTENDS+
	EXTENDS+
	EXTENDS+

	 	 	_TYPE_OF
	_TYPE_OF
	_TYPE_OF

	 	 	 	 	FAILED_IMAGES

	 	 	 	 	FINDLOC

	FLOOR
	FLOOR
	FLOOR
	FLOOR
	FLOOR

	FRACTION
	FRACTION
	FRACTION
	FRACTION
	FRACTION

	 	 	 	GAMMA
	GAMMA

	 	 	GET_COMMAND
	GET_COMMAND
	GET_COMMAND

	 	 	GET_COMMAND+
	GET_COMMAND+
	GET_COMMAND+

	 	 	_ARGUMENT
	_ARGUMENT
	_ARGUMENT

	 	 	GET+
	GET+
	GET+

	 	 	_ENVIRONMENT+
	_ENVIRONMENT+
	_ENVIRONMENT+

	 	 	_VARIABLE
	_VARIABLE
	_VARIABLE

	 	 	 	 	GET_TEAM

	Fortran 90
	Fortran 95
	Fortran 2003
	Fortran 2008
	Fortran 2018

	HUGE
	HUGE
	HUGE
	HUGE
	HUGE

	 	 	 	HYPOT
	HYPOT

	IACHAR
	IACHAR
	IACHAR
	IACHAR
	IACHAR

	IAND
	IAND
	IAND
	IAND
	IALL

	IBCLR
	IBCLR
	IBCLR
	IBCLR
	IAND

	IBITS
	IBITS
	IBITS
	IBITS
	IANY

	IBSET
	IBSET
	IBSET
	IBSET
	IBCLR

	 	 	 	 	IBITS

	 	 	 	 	IBSET

	ICHAR
	ICHAR
	ICHAR
	ICHAR
	ICHAR

	IEOR
	IEOR
	IEOR
	IEOR
	IEOR

	 	 	 	IMAGE_INDEX
	IMAGE_INDEX

	 	 	 	 	IMAGE_STATUS

	INDEX
	INDEX
	INDEX
	INDEX
	INDEX

	INT
	INT
	INT
	INT
	INT

	IOR
	IOR
	IOR
	IOR
	IOR

	 	 	 	 	IPARITY

	 	 	 	IS_CONTIGUOUS
	IS_CONTIGUOUS

	 	 	IS_IOSTAT_END
	IS_IOSTAT_END
	IS_IOSTAT_END

	 	 	IS_IOSTAT_EOR
	IS_IOSTAT_EOR
	IS_IOSTAT_EOR

	ISHFT
	ISHFT
	ISHFT
	ISHFT
	ISHFT

	ISHFTC
	ISHFTC
	ISHFTC
	ISHFTC
	ISHFTC

	KIND
	KIND
	KIND
	KIND
	KIND

	LBOUND
	LBOUND
	LBOUND
	LBOUND
	LBOUND

	 	 	 	 	LCOBOUND

	 	 	 	LEADZ
	LEADZ

	LEN
	LEN
	LEN
	LEN
	LEN

	LEN_TRIM
	LEN_TRIM
	LEN_TRIM
	LEN_TRIM
	LEN_TRIM

	LGE
	LGE
	LGE
	LGE
	LGE

	LGT
	LGT
	LGT
	LGT
	LGT

	LLE
	LLE
	LLE
	LLE
	LLE

	LLT
	LLT
	LLT
	LLT
	LLT

	LOG
	LOG
	LOG
	LOG
	LOG

	 	 	 	LOG_GAMMA
	LOG_GAMMA

	LOG10
	LOG10
	LOG10
	LOG10
	LOG10

	LOGICAL
	LOGICAL
	LOGICAL
	LOGICAL
	LOGICAL

	 	 	 	MASKL
	MASKL

	 	 	 	MASKR
	MASKR

	MATMUL
	MATMUL
	MATMUL
	MATMUL
	MATMUL

	MAX
	MAX
	MAX
	MAX
	MAX

	MAXEXPONENT
	MAXEXPONENT
	MAXEXPONENT
	MAXEXPONENT
	MAXEXPONENT

	MAXLOC
	MAXLOC
	MAXLOC
	MAXLOC
	MAXLOC

	MAXVAL
	MAXVAL
	MAXVAL
	MAXVAL
	MAXVAL

	MERGE
	MERGE
	MERGE
	MERGE
	MERGE

	 	 	 	MERGE_BITS
	MERGE_BITS

	MIN
	MIN
	MIN
	MIN
	MIN

	MINEXPONENT
	MINEXPONENT
	MINEXPONENT
	MINEXPONENT
	MINEXPONENT

	MINLOC
	MINLOC
	MINLOC
	MINLOC
	MINLOC

	MINVAL
	MINVAL
	MINVAL
	MINVAL
	MINVAL

	MOD
	MOD
	MOD
	MOD
	MOD

	MODULO
	MODULO
	MODULO
	MODULO
	MODULO

	 	 	MOVE_ALLOC
	MOVE_ALLOC
	MOVE_ALLOC

	Fortran 90
	Fortran 95
	Fortran 2003
	Fortran 2008
	Fortran 2018

	MVBITS
	MVBITS
	MVBITS
	MVBITS
	MVBITS

	NEAREST
	NEAREST
	NEAREST
	NEAREST
	NEAREST

	 	 	NEW_LINE
	NEW_LINE
	NEW_LINE

	NINT
	NINT
	NINT
	NINT
	NINT

	 	 	 	NORM2
	NORM2

	NOT
	NOT
	NOT
	NOT
	NOT

	 	NULL
	NULL
	NULL
	NULL

	 	 	 	NUM_IMAGES
	NUM_IMAGES

	 	 	 	 	OUT_OF_RANGE

	PACK
	PACK
	PACK
	PACK
	PACK

	 	 	 	PARITY
	PARITY

	 	 	 	POPCNT
	POPCNT

	 	 	 	POPPAR
	POPPAR

	PRECISION
	PRECISION
	PRECISION
	PRECISION
	PRECISION

	PRESENT
	PRESENT
	PRESENT
	PRESENT
	PRESENT

	PRODUCT
	PRODUCT
	PRODUCT
	PRODUCT
	PRODUCT

	RADIX
	RADIX
	RADIX
	RADIX
	RADIX

	 	 	 	 	RANDOM_INIT

	RANDOM+
	RANDOM+
	RANDOM+
	RANDOM+
	RANDOM+

	_NUMBER
	_NUMBER
	_NUMBER
	_NUMBER
	_NUMBER

	RANDOM_SEED
	RANDOM_SEED
	RANDOM_SEED
	RANDOM_SEED
	RANDOM_SEED

	RANGE
	RANGE
	RANGE
	RANGE
	RANGE

	 	 	 	 	RANK

	REAL
	REAL
	REAL
	REAL
	REAL

	 	 	 	 	REDUCE

	REPEAT
	REPEAT
	REPEAT
	REPEAT
	REPEAT

	RESHAPE
	RESHAPE
	RESHAPE
	RESHAPE
	RESHAPE

	RRSPACING
	RRSPACING
	RRSPACING
	RRSPACING
	RRSPACING

	 	 	SAME_TYPE_AS
	SAME_TYPE_AS
	SAME_TYPE_AS

	SCALE
	SCALE
	SCALE
	SCALE
	SCALE

	SCAN
	SCAN
	SCAN
	SCAN
	SCAN

	 	 	SELECTED+
	SELECTED+
	SELECTED+

	 	 	_CHAR+
	_CHAR+
	_CHAR+

	 	 	_KIND
	_KIND
	_KIND

	SELECTED_INT+
	SELECTED_INT+
	SELECTED_INT+
	SELECTED_INT+
	SELECTED_INT+

	_KIND
	_KIND
	_KIND
	_KIND
	_KIND

	SELECTED+
	SELECTED+
	SELECTED+
	SELECTED+
	SELECTED+

	_REAL+
	_REAL+
	_REAL+
	_REAL+
	_REAL+

	_KIND
	_KIND
	_KIND
	_KIND
	_KIND

	SET_EXPONENT
	SET_EXPONENT
	SET_EXPONENT
	SET_EXPONENT
	SET_EXPONENT

	SHAPE
	SHAPE
	SHAPE
	SHAPE
	SHAPE

	 	 	 	SHIFTA
	SHIFTA

	 	 	 	SHIFTL
	SHIFTL

	 	 	 	SHIFTR
	SHIFTR

	SIGN
	SIGN
	SIGN
	SIGN
	SIGN

	SIN
	SIN
	SIN
	SIN
	SIN

	SINH
	SINH
	SINH
	SINH
	SINH

	SIZE
	SIZE
	SIZE
	SIZE
	SIZE

	SPACING
	SPACING
	SPACING
	SPACING
	SPACING

	SPREAD
	SPREAD
	SPREAD
	SPREAD
	SPREAD

	SQRT
	SQRT
	SQRT
	SQRT
	SQRT

	 	 	 	 	STOPPED_IMAGES

	 	 	 	STORAGE_SIZE
	STORAGE_SIZE

	Fortran 90
	Fortran 95
	Fortran 2003
	Fortran 2008
	Fortran 2018

	SUM
	SUM
	SUM
	SUM
	SUM

	SYSTEM_CLOCK
	SYSTEM_CLOCK
	SYSTEM_CLOCK
	SYSTEM_CLOCK
	SYSTEM_CLOCK

	TAN
	TAN
	TAN
	TAN
	TAN

	TANH
	TANH
	TANH
	TANH
	TANH

	 	 	 	 	TEAM_NUMBER

	 	 	 	 	THIS_IMAGE

	TINY
	TINY
	TINY
	TINY
	TINY

	 	 	 	TRAILZ
	TRAILZ

	TRANSFER
	TRANSFER
	TRANSFER
	TRANSFER
	TRANSFER

	TRANSPOSE
	TRANSPOSE
	TRANSPOSE
	TRANSPOSE
	TRANSPOSE

	TRIM
	TRIM
	TRIM
	TRIM
	TRIM

	UBOUND
	UBOUND
	UBOUND
	UBOUND
	UBOUND

	 	 	 	 	UCOBOUND

	UNPACK
	UNPACK
	UNPACK
	UNPACK
	UNPACK

	VERIFY
	VERIFY
	VERIFY
	VERIFY
	VERIFY

	N = 113
	N = 115
	N = 126
	N = 166
	N = 200

D.11 Standard Intrinsic Modules

 The standard defines five standard intrinsic modules:
 	a Fortran environment module

	a set of three modules to support floating-point exceptions and IEEE arithmetic

	a module to support interoperability with the C programming language

 The intrinsic modules
 	IEEE_EXCEPTIONS

	IEEE_ARITHMETIC

	IEEE_FEATURES are described in Clause 17 of the standard.

 The intrinsic module
 ISO_C_BINDING
 is described in Clause 18 of the standard.

 The intrinsic module
 ISO_FORTRAN_ENV
 provides public entities relating to the Fortran environment.

The processor shall provide the named constants, derived types, and procedures described in subclause 16.10.2. of the standard.
Here is a complete list of the public entities in this module.

 	ATOMIC_INT_KIND

	ATOMIC_LOGICAL_KIND

	CHARACTER_KINDS

	CHARACTER_STORAGE_SIZE

	COMPILER_OPTIONS ()

	COMPILER_VERSION ()

	CURRENT_TEAM

	ERROR_UNIT

	EVENT_TYPE

	FILE_STORAGE_SIZE

	INITIAL_TEAM

	INPUT_UNIT

	INT8, INT16, INT32, and INT64

	INTEGER_KINDS

	IOSTAT_END

	IOSTAT_EOR

	IOSTAT_INQUIRE_INTERNAL_UNIT

	LOCK_TYPE

	LOGICAL_KINDS

	NUMERIC_STORAGE_SIZE

	OUTPUT_UNIT

	PARENT_TEAM

	REAL_KINDS

	REAL32, REAL64, and REAL128

	STAT_FAILED_IMAGE

	STAT_LOCKED

	STAT_LOCKED_OTHER_IMAGE

	STAT_STOPPED_IMAGE

	STAT_UNLOCKED

	STAT_UNLOCKED_FAILED_IMAGE

	TEAM_TYPE

Consult the standard for more information.
Appendix E

Text extracts, English, Latin and coded

 English and Latin
 [image: ../images/112282_4_En_BookBackmatter_Figaa_HTML.gif]

 Coded
 [image: ../images/112282_4_En_BookBackmatter_Figab_HTML.gif]

Appendix F

Formal syntax

 Statement Ordering

Format statements may appear anywhere between the use statement and the contains statement.

 The following table summarises the usage of the various statements within individual scoping units.
 	Kind of scoping unit
	Main
	Module
	External
	Module
	Internal
	Interface

	 	program
	 	sub
	sub
	sub
	body

	 	 	 	program
	program
	program
	
	use
	Y
	Y
	Y
	Y
	Y
	Y

	format
	Y
	N
	Y
	Y
	Y
	N

	misc dec.
	Y
	Y
	Y
	Y
	Y
	Y

	derived type definition
	Y
	Y
	Y
	Y
	Y
	Y

	interface block
	Y
	Y
	Y
	Y
	Y
	Y

	executable statement
	Y
	N
	Y
	Y
	Y
	N

	contains
	Y
	Y
	Y
	Y
	N
	N

misc dec. (miscellaneous declaration) are parameter statements, implicit statements, type declaration statements and specification statements.

 Syntax Summary of Some Frequently Used Fortran Constructs

The following provides simple syntactical definitions of some of the more frequently used parts of Fortran.

 Main Program

program [program-name]
[specification-construct] ...
[executable-construct] ...
[contains
[internal procedure] ...]
end [program [program-name]]

 Subprogram

procedure heading
[specification-construct] ...
[executable-construct] ...
[contains
[internal procedure] ...]
procedure ending

 Module

module name
[specification-construct] ...
[contains
subprogram
[subprogram] ...]
end [module [module-name]

 Internal Procedure

procedure heading
[specification construct] ...
[executable construct] ...
procedure ending

 Procedure Heading

[recursive] [type specification] function function-name
([dummy argument list]) [result (result name)]
[recursive] subroutine subroutine name
[([dummy argument list])]

 Procedure Ending

end [function [function name]]
end [subroutine [subroutine name]]

 Specification Construct

derived type definition
interface block
specification statement

 Derived Type Definition

type [[, access specification] ::] type name
[private]
[sequence]
[type specification [[, pointer] ::] component specification list]
...
end type [type name]

 Interface Block

interface [generic specification]
[procedure heading
[specification construct] ...
procedure ending] ...
[module procedure module procedure name list] ...
end interface

 Specification Statement

allocatable [::] allocatable array list
dimension array dimension list
external external name list
format ([format specification list])
implicit implicit specification
intent (intent specification) :: dummy argument name list
intrinsic intrinsic procedure name list
optional [::] optional object list
parameter (named constant definition list)
pointer [::] pointer name list
public [[::] module entity name list]
private[[::] module entity name list]
save[[::] saved object list]
target [::] target name list
use module name [, rename list]
use module name , only : [access list]
type specification [[, attribute specification] ... :: object declaration list

 Type Specification

integer [([kind=] kind parameter)]
real[([kind=] kind parameter)]
complex[([kind=] kind parameter)]
character[([kind=] kind parameter)]
character[([kind=] kind parameter)]
[len=] length parameter)
logical[([kind=] kind parameter)]
type (type name)

 Attribute Specification

allocatable
dimension (array specification)
external
intent (intent specification)
intrinsic
optional
parameter
pointer
private
public
save
target

 Executable Construct

action statement
case construct
do construct
if construct
where construct

 Action Statement

allocate (allocation list) [, stat= scalar integer variable])
call subroutinename [([actual argument specification list])]
close (close specification list)
cycle [do construct name]
deallocate(name list) [, stat= scalar integer variable])
endfile external file unit
exit [do construct name]
goto label
if (scalar logical expression) action statement
inquire (inquire specification list) [output item list]
nullify (pointer object list)
open [and close] (connect specification list)
print format [, output item list]
read (i/o control specification list) [input item list]
read format [, output item list]
return [scalar integer expression]
rewind (position specification list)
stop [access code]
where (array logical expression) array assignment expression
write (i/o control specification list) [output item list]

 pointer variable
 [image: $$=>$$]
 target expression

variable = expression
Appendix G

Compiler Options
In this appendix we look at some of compiler options we have used during the development of the programs in the book.
Simplistically there are two kinds of compile or build.

 	A debug build - used when developing code

	A production build - used when executing or running code

We provide debug and production build options for each compiler.
There are also extracts from the help files on what the various options mean.
G.1 Cray
G.1.1 Debug

 [image: ../images/112282_4_En_BookBackmatter_Figac_HTML.gif]

G.1.2 Production
We used the default compiler options.
G.2 gfortran
G.2.1 Debug

 [image: ../images/112282_4_En_BookBackmatter_Figad_HTML.gif]

G.2.2 Production

 [image: ../images/112282_4_En_BookBackmatter_Figae_HTML.gif]

 Here are some extracts from the help files.
 [image: ../images/112282_4_En_BookBackmatter_Figaf_HTML.gif]

G.3 Intel
G.3.1 Debug

 [image: ../images/112282_4_En_BookBackmatter_Figag_HTML.gif]

 You will also need
 [image: ../images/112282_4_En_BookBackmatter_Figah_HTML.gif]

when compiling the coarray and openmp examples.

 Here is an extract from the help files.
 [image: ../images/112282_4_En_BookBackmatter_Figai_HTML.gif]

 [image: ../images/112282_4_En_BookBackmatter_Figaj_HTML.gif]

 [image: ../images/112282_4_En_BookBackmatter_Figak_HTML.gif]

G.3.2 Production

 Intel (autoparallel)
 [image: ../images/112282_4_En_BookBackmatter_Figal_HTML.gif]

 Here are some extracts from the compiler documentation.
 [image: ../images/112282_4_En_BookBackmatter_Figam_HTML.gif]

G.4 Nag
G.4.1 Debug

 [image: ../images/112282_4_En_BookBackmatter_Figan_HTML.gif]

 Here are extracts from the compiler documentation.
 [image: ../images/112282_4_En_BookBackmatter_Figao_HTML.gif]

 [image: ../images/112282_4_En_BookBackmatter_Figap_HTML.gif]

G.4.2 Production

 [image: ../images/112282_4_En_BookBackmatter_Figaq_HTML.gif]

 Here are some extracts from the compiler documentation.
 [image: ../images/112282_4_En_BookBackmatter_Figar_HTML.gif]

G.4.3 Nag Polish

 The Nag compiler has a
 polish
 option. Here are some of the options used in the reformatting of the examples in the book. The examples in the book were set with a line length of 48 to fit the printed page. The examples on the web site were set with a line length of 132.
 [image: ../images/112282_4_En_BookBackmatter_Figas_HTML.gif]

G.5 Oracle
G.5.1 Debug

 [image: ../images/112282_4_En_BookBackmatter_Figat_HTML.gif]

G.5.2 Production

 [image: ../images/112282_4_En_BookBackmatter_Figau_HTML.gif]

 maps into
 [image: ../images/112282_4_En_BookBackmatter_Figav_HTML.gif]

 Here are some extracts from the help files.
 [image: ../images/112282_4_En_BookBackmatter_Figaw_HTML.gif]

Index

A

Abs function

Absolute error

Abstract data type

Abstract interface

Abstraction, stepwise refinement and modules

Accessibility attribute

Acknowledgements

ACM Fortran Forum

Acos function

Actual argument

Ada

Additional forms of the dimension attribute and do loop statement

Addition operator

A edit descriptor

Aimag function

Algol

Algorithm
big O notation
complexity

Al-Kuwarizmi

Allocatable arrays

Allocatable attribute

Allocatable components

Allocatable dummy arrays

Allocatable function results

Allocatable variable

Allocate statement

Alternate return

Alternative form of the allocate statement

AMD

AMD64 64 bit mode

AMD64 legacy mode

Amdahl's Law

Amdahl's Law graph 1 - 8 processors or cores

Amdahl's Law graph 2 - 64 processors or cores

An abstract base class in Fortran

Analysis

An introduction to predefined functions and their use

An introduction to the scope of variables, local variables and interface checking

ANSI C

APL

Argument keyword

Argument list

Arguments

Arguments or parameters

+ arithmetic addition operator

Arithmetic assignment statement

/ arithmetic division operator

Arithmetic evaluation

** arithmetic exponentiation operator

Arithmetic expressions

* arithmetic multiplication operator

Arithmetic operators

- arithmetic subtraction operator

Arithmetic units

Array
allocatable
allocatable arrays
allocatable attribute
allocate statement
array constructors
array element ordering
assignment
attribute
dimension
bounds
by column
conformable
control structure
do loop
dimension
expressions
extent
higher dimension arrays
implied do loops
index
initialisation
rank
rank 2 array sections
reshape
order
pad
reshape example
reshape function
sections
setting the size with a parameter
shape
size
sum
two d arrays
sum intrinsic
two dimensional arrays
varying the size at run time
whole array manipulation
whole arrays

Array and linked list performance

Array arguments

Array constructor

Array element

Array element order

Array element ordering

Array element ordering in more detail

Array initialisation

Array pointer

Array section

Arrays in Fortran

Array size

Artificial language

Artificial or stylised language

Asin function

Assemblers

Assignment

Assignment statement

Associate construct

Associated intrinsic function

Association status

Assumed character length functions

Assumed-shape array

Assumed shape parameter passing

Assumed-size

* asterisks on output

Atan function

Atan2 function

Attribute
allocatable
asynchronous
bind
dimension
external
intent
intrinsic
optional
parameter
pointer
private
protected
public
save
target
value
volatile

Attribute specification

Automatic array

Automatic arrays and median calculation

B

Background technical material

Backward substitution

Bandwidth

Bandwidth and latency

Base class

Base class with private data

Base shape class

Base type

Basic

Basic array and linked list performance

Basic background

Basic coarray terminology

Basic module syntax

Better alternatives

Bibliography

Big O notation
constant
double logarithmic
exponential
factorial
fractional power
linear
linearithmic, loglinear, quasilinear
logarithmic
n log-star n
polynomial or algebraic
quadratic

Binary device

Binary representation of a real number

Binary representation of different integer kind type numbers

Binding labels for common blocks and variables

Bit data type

Bit data type and representational model

Bit integers

Bit model

Bit reals

Bit representational model

Block construct

Block do statements

Block if construct

Block if statement

Blocks of statements

Block structure

BNF

Book catalogue

Bottom up

Bounds

Brackets

Brief explanation

Brief review of the history of object oriented programming

Brief technical background

By column

C

C
ANSI C
C11
C89
C99
K&R C
structs

C Interop
binding labels for common blocks and variables
C calling a Fortran function
C++ calling a Fortran function
c_loc description
c_loc examples
derived types
Fortran calling a C function
interoperability of intrinsic types
interoperability of procedures and procedure interfaces
interoperability of scalar variables
interoperability with C pointer types
interoperation with C functions
interoperation with C global variables
iso_c_binding module
module procedures
named constants and derived types in the module
other aspects of interoperability
passing an array from C to Fortran
passing an array from C++ to Fortran
passing an array from Fortran to C
passing a rank 2 array from C to Fortran
passing a rank 2 array from Fortran to C
passing a rank 2 array from C to Fortran and taking care of array storage
passing a rank 2 array from C++ to Fortran
passing a rank 2 array from C++ to Fortran and taking care of array storage

C++
C++03
C++11
C++14
C++17
C++98
C++TR1

C++03

C++11

C++14

C++17

C++98

C++TR1

C11

C99

C#

Cache

Calendars

Calling the dislin library to display tsunami events

Calling the Nag m01caf sorting routine

Call statement

Call statement for subroutines

Cardinal numbers

Case construct

Case statement

Character arguments and assumed-length dummy arguments

Character data

Character data type

Character functions

Character input

Character interoperability

// character operator

Character operators

Character output and the a edit descriptor

Characters
* edit descriptor
// character operator
a edit descriptors
ASCII character set
character functions
character input
character operators
character variables
collating sequence
delimiters
len function
len_trim function
scan function
substrings

Characters — a format or edit descriptor

Characters and the a format or edit descriptor

Character string

Character string arguments

Character substrings

Character variables

CHARACTER* form of CHARACTER declaration

Chomsky and program language development

Choosing the decimal symbol

Circle - derived type 1

Class

Class keyword

C_loc examples on our web site

C_loc(x) description

Close a file

Close statement

Cmplx function

Coarray
broadcasting data
parallel solution for pi calculation
work sharing

Coarray allocate-object

Coarray Fortran

Coarray intrinsics

Coarray programming

Cobol

Codimension

Coindexed named objects

Collating sequence

Column information

Commercial numerical and statistical subroutine libraries

COMMON and EQUIVALENCE statements and the block data program unit

Common mistakes

Common programming error

Compare function

Compilation when using modules

Compiler documentation

Compiler options

Compilers used

Compilers used in the examples

Compiler switches

Complex and kind type

Complex arithmetic

Complex data type

Complex numbers

Component modelling

Computed GO TO statement

Computer arithmetic

Computer programming

Computer systems

Concrete data type

Concurrency

Conformable

Conjg function

Consistency models

Contains statement

Control statements

Control structure
associate construct
block construct
block if statement
blocks of statements
case statement
cycle and exit
do concurrent
do construct
do statement
executable constructs containing blocks
execution control
if construct
Logical expressions
logical operators
select case construct
select rank construct
select type construct

Control structure formal syntax

Conversion tools

Convert

Cos function

Counting vowels, consonants, etc.

Cray Archer system

Critical

Cycle and exit

Cycle control statement

Cycle statement

D

Data dependencies

Data description statements

Data entity

Data file

Data object

Data-processing statements

DATA statements among executables

Data structures

Data structuring
date data type or class
perfectly balanced tree
ragged arrays
singly linked list

Data structuring and procedural programming

Data transfer statements

Data type

Date calculation

Date class

Date data type

Date data type with USA and ISO support

Date formats

Date module

Dates, date validity and calendars

Date wrapper module

Day and month name module

DC edit descriptor

Debugging

DEC Alpha

DEC Alpha hardware

Decimal point

Declaring variables to be of a user defined type

Decremented features

Default kind

Deferred-shape array

Defined assignment statement

Defined types

Defined variable

Defining our own types

Deleted features from Fortran 2008

Deleted features from Fortran 90

Denormal

Derived data types

Derived type definition

Derived types

Derived types and constants defined in the modules

Derived types and structure constructors

Design

Detailed design

Diagonal extract of a matrix

Diff output between original module and new oo module

Diff output between original program and new oo test program

Dimension attribute

Direct access

Disassociated pointer

Dislin graphics library

Display subroutine

Do and end do statements

Do concurrent

Do construct

Do loop
implied do loop

Do loops and straight repetition

Do statement

Dot product

Dot_product function

Dot_product intrinsic

Double precision

Do while end do statement

Dp - double precision

DP edit descriptor

DST in the USA

DTR 19767 enhanced module facilities

Dummy argument

Dummy arguments or parameters and actual arguments

Dummy procedure argument

Dynamic binding

Dynamic data structures

Dynamic type

E

Easter calculation

Edit descriptor
a
b
d
dt
e
en
es
f
g
l
o
z

* edit descriptor

`(a)' edit descriptor

E edit descriptor

E formats

Eiffel

Elemental e**x function

Elemental function

Elemental function use

Elemental procedure

Elemental subroutine

Element by element

Elements of a programming language

Else block

Elsewhere block

End critical

End do statement

End-of-file

End-of-file condition

End-of-file condition and the end= specifier

End of file record

End-of-record condition and the eor= specifier

End= specifier

End statement

End type

Enhanced module facilities

Entity relationship diagrams

ENTRY statements

Environment variables

Eor= specifier

Error analysis

Error analysis and summation methods

Error condition

Error conditions and the err= specifier

Error, end of record and end of file

Error message

Error number

Err= specifier

Evaluation and testing

Evaluation of arithmetic expressions

Examination marks or results

Examples
Chapter 4
Example 1: Simple text i/o
Example 2: Simple numeric i/o and arithmetic
Chapter 5
Example 1: Simple arithmetic expressions in Fortran
Example 2: Type conversion and assignment
Example 3: Integer division and real assignment
Example 4: Time taken for light to travel from the Sun to Earth
Example 5: Relative and absolute error
Example 6: Overflow
Example 7: Underflow
Example 8: Testing what kind types are available
Example 9: Using the numeric inquiry functions with integer types
Example 10: Using the numeric inquiry functions with real types
Example 11: Literal real constants in a calculation
Example 12: Rounding problem
Example 13: Binary representation of different integer kind type numbers
Example 14: Binary representation of a real number
Example 15: Initialisation of physical constants, version 1
Example 16: Initialisation of physical constants, version 2
Example 17: Initialisation of physical constants, version 3
Chapter 6
Example 1: Monthly rainfall
Example 2: People's weights and setting the array size with a parameter
Chapter 7
Example 1: Allocatable arrays
Example 2: Two dimensional arrays and a map
Example 3: Sensible tabular output
Example 4: Average of three sets of values
Example 5: Booking arrangements in a theatre or cinema

 Example 6: Voltage from –20 to
 [image: $$+ $$]
 20 volts

 Example 7: Longitude from –180 to
 [image: $$+ $$]
 180

Example 8: Table of liquid conversion measurements
Example 9: Means and standard deviations
Chapter 8
Example 1: Rank 1 whole arrays in Fortran
Example 2: Rank 2 whole arrays in Fortran
Example 3: Rank 1 array sections
Example 4: Rank 2 array sections
Example 5: Rank 1 array initialisation — explicit values
Example 6: Rank 1 array initialisation using an implied do loop

 Example 7: Rank 1 arrays and the
 dot_product
 intrinsic

Example 8: Initialising a rank 2 array
Example 9: Rank 1 arrays and a stride of 2
Example 10: Rank 1 array and the sum intrinsic function
Example 11: Rank 2 arrays and the sum intrinsic function
Example 12: Masked array assignment and the where statement
Example 13: Array element ordering
Chapter 9
Example 1: Twelve times table
Example 2: Integer overflow and the i edit descriptor
Example 3: Imperial pints and US pints
Example 5: Narrow field widths and the f edit descriptor
Example 6: Overflow and the f edit descriptor
Example 7: Simple e edit descriptor example
Example 8: Simple g edit descriptor example
Example 9: Three ways of generating spaces
Example 10: Character output and the a edit descriptor
Example 11: Character, integer and real output in a format statement
Example 12: Open and close usage
Example 13: Timing of writing formatted files
Example 14: Timing of writing unformatted files
Example 15: Implied do loops and array sections for array output
Example 16: Repetition and whole array output
Example 17: Choosing the decimal symbol
Example 18: Alternative format specification using a string
Example 19: Alternative format specification using a character variable
Example 4: Imperial pints and litres
Chapter 10
Example 1: Reading integer data
Example 2: Reading real data
Example 3: Reading one column of data from a file
Example 4: Skipping lines in a file
Example 5: Reading from several files consecutively
Example 6: Reading using array sections
Example 7: Reading using internal files
Example 8: Timing of reading formatted files
Example 9: Timing of reading unformatted files
Chapter 11
Example 1: simple use of the read, write, open, close, unit features
Example 2: using iostat to test for errors
Example 3: use of newunit and lentrim
Examples
Chapter 12
Example 1: Simple function usage
Example 2: The abs generic function
Example 3: Elemental function use
Example 4: Simple transformational use
Example 5: Intrinsic dot_product use
Example 6: Easter
Example 7: Simple user defined function
Example 8: Recursive factorial evaluation
Example 9: Recursive version of gcd
Example 10: gcd After removing recursion
Example 11: Stirling's approximation
Chapter 13
Example 1: Quadratic roots
Example 2: Date calculation
Example 3: Simple calculator
Example 4: Counting vowels, consonants, etc.
Example 5: Sentinel usage
Example 6: The evaluation of e**x
Example 7: Wave breaking on an offshore reef
Chapter 14
Example 1: The * edit descriptor
Example 2: The a edit descriptor
Example 3: Stripping blanks from a string
Example 4: The index character function
Example 5: Using len and len_trim
Example 6: Finding out about the character set available
Example 7: Using the scan function
Chapter 15
Example 1: Use of cmplx, aimag and conjg
Example 2: Polar coordinate example
Chapter 17
Example 1: Dates
Example 2: Variant of example 1 using modules
Example 3: Address lists
Example 4: Nested user defined types
Chapter 18
Example 1: Illustrating some basic pointer concepts
Example 2: The associated intrinsic function
Example 3: Referencing pointer variables before allocation or pointer assignment
Example 4: Pointer allocation and assignment
Example 5: Simple memory leak
Example 6: More memory leaks
Example 7: Using the C loc function
Chapter 19
Example 1: Roots of a quadratic equation
Chapter 20
Example 1: Assumed shape parameter passing
Example 2: Character arguments and assumed-length dummy arguments
Example 3: Rank 2 and higher arrays as parameters
Example 4: Automatic arrays and median calculation
Example 5: Recursive subroutines – Quicksort
Example 6: Allocatable dummy arrays
Example 7: Elemental subroutines
Chapter 21
Example 1: Modules for precision specification and constant definition
Example 2: Modules for globally sharing data
Example 3: Person data type
Example 4: A module for simple timing of a program
Chapter 22
Example 1: Singly linked list: reading an unknown amount of text
Example 2: Reading in an arbitrary number of reals using a linked list and copying to an array
Example 3: Ragged arrays
Example 4: Ragged arrays and variable sized data sets
Example 5: Perfectly balanced tree
Example 6: Date class
Example 7: Date data type with USA and ISO support
Chapter 23
Example 1: Order calculations
Chapter 24
Example 1: Overloading the addition (+) operator
Chapter 25
Example 1: Sorting reals and integers
Example 2: Generic statistics module
Chapter 26
Example 1: Using linked lists for sparse matrix problems
Example 2: Solving a system of first-order ordinary differential equations using Runge–Kutta–Merson
Example 3: A subroutine to extract the diagonal elements of a matrix
Example 4: The solution of linear equations using Gaussian Elimination
Example 5: Allocatable function results
Example 6: Elemental e**x function
Example 7: absolute and relative errors involved in subtraction using 32 bit reals
Example 8: absolute and relative errors involved in subtraction using 64 bit reals
Chapter 27
Example 1: Linked list parameterised by real kind
Example 2: Ragged array parameterised by real kind type
Example 3: specifying len in a PDT
Chapter 28
Example 1: The basic shape class
Example 2: Base class with private data
Example 3: Using an interface to use the class name for the structure constructor
Example 4: Simple inheritance
Example 5: Polymorphism and dynamic binding
Chapter 29
Example 1: The base date class
Example 2: simple inheritance based on an ISO date format
Example 3: using the two date formats and showing polymorphism and dynamic binding
Chapter 30
Example 1: rewrite of the date class using submodules
Example 2: rewrite of the first order RKM ODE solver using modules
Chapter 32
Example 1: Hello World
Example 2: Hello World using send and receive
Example 3: Serial solution for pi calculation
Example 4: Parallel solution for pi calculation
Example 5: Work sharing between processes
Chapter 33
Example 1: Hello world
Example 2: Hello world using default variable data scoping
Example 3: Hello world with private thread_number variable
Example 4: Parallel solution for pi calculation
Example 5: comparing the timing of whole array syntax, simple do loops, do concurrent and an OpenMP solution
Chapter 34
Example 1: Hello world
Example 2: Broadcasting data
Example 3: Parallel solution for pi calculation
Example 4: Work sharing
Chapter 35
Example 1: Kind type support
Example 2: Fortran calling a C function
Example 3: C calling a Fortran function
Example 4: C++ calling a Fortran function
Example 5: Passing an array from Fortran to C
Example 6: Passing an array from C to Fortran
Example 7: Passing an array from C++ to Fortran
Example 8: Passing a rank 2 array from Fortran to C
Example 9: Passing a rank 2 array from C to Fortran
Example 10: Passing a rank 2 array from C++ to Fortran
Example 11: Passing a rank 2 array from C++ to Fortran and taking care of array storage
Example 12: Passing a rank 2 array from C to Fortran and taking care of array storage
Example 13: Passing a Fortran character variable to C
Example 14: Passing a Fortran character variable to C++
Chapter 36
Example 1: Testing IEEE support
Example 2: Testing what flags are supported
Example 3: Overflow
Example 4: Underflow
Example 5: Inexact summation
Example 6: NAN and other specials
Chapter 37
Example 1: basic syntax, no parameters in call
Example 2: extended syntax, passing parameters
Example 3: basic syntax with timing
Example 4: extended syntax with timing
Chapter 38
Example 1: Generic recursive quicksort example with timing details
Example 2: Non recursive Quicksort example with timing details
Example 3: Calling the Nag m01caf sorting routine
Example 4: sorting an array of a derived type
Example 5: Binary search example
Chapter 39
Example 1: Downloading and saving the files
Example 3: The program to do the statistics calculations
Example 4: Met Office Utility program
Chapter 40
Example 1: using the plusFORT tool suite from Polyhedron Software
Example 2: leaving as Fortran 77
Example 3: Simple conversion to Fortran 90
Example 4: Simple syntax conversion to modern Fortran
Example 5: date case study
Example 6: creating 64 bit integer and 128 bit real sorting subroutines from the Netlib sorting routines
Chapter 41
Example 1: using dislin to plot Amdahl's Law graph 1 - 8 processors or cores
Example 2: using dislin to plot Amdahl's Law graph 2 - 64 processors or cores
Example 3: using dislin to plot Gustafson's Law graph 1 - 64 processors or cores
Example 4: using dislin to plot tsunami events
Example 5: using dislin to plot the Met Office data
Chapter 42
Example 1: Abstract interfaces and procedure pointers

Exception handling

Executable constructs containing blocks

Execution control

Execution sequence

Execution time

Exit statement

Exp function

Explicit-coshape coarray

Explicit interface

Explicit-shape array

Exponent

Expression equivalence

Expressions

Extent

External

Extracting the diagonal elements of a matrix

F

Feasibility study and fact finding

F edit descriptor

F format

File access
direct
sequential
stream

File inquiry

File name

File=

File= options on the open statement

File positioning

Files in Fortran

Files, records, streams

Finite precision

First-order ordinary differential equations

Fixed format reading

Fixed form source

Floating point

Floating point arithmetic

Floating point formats

Flynn's taxonomy

Fmt=

FORALL construct and statement

Forall statement

Forcheck

Formal syntax

Format

Format specification using a character variable

Format specification using a string

Format statement

Formatted read timings

Formatted records

Formula translation

Fortran 2003
data manipulation enhancements
allocatable components
deferred-type parameters
enhanced complex constants
explicit type specification in array constructors
extended initialisation expressions
intent specification of pointer arguments
max and min intrinsics for character type
specified lower bounds of pointer assignment, and pointer rank remapping
volatile attribute
derived type enhancements
finalisers
improved structure constructors
mixed component accessibility (allows different components to have different accessibility)
parameterised derived types
public entities of private type
enhanced integration with the host operating system
enhanced integration with the operating system
access to command line arguments and environment variables environment variables
access to the processor's error messages (improves the ability to handle exceptional conditions)
host association
input/output enhancements
access to input/output error messages
asynchronous transfer operations (allow a program to continue to process data while an input/output transfer occurs)
named constants for preconnected units
regularisation of input/output keywords
stream access (allows access to a file without reference to any record structure)
the flush statement
user specified control of rounding during format conversions
user specified transfer operations for derived types
interoperability with the C programming language
object oriented programming support
object oriented support
dynamic type allocation
enhanced data abstraction (allows one type to extend the definition of another type)
polymorphism (allows the type of a variable to vary at run time)
select type construct (allows a choice of execution flow depending upon the type a polymorphic object currently has)
type bound procedures
procedure pointers
scoping enhancements
control of host association into interface bodies
the ability to rename defined operators (supports greater data abstraction)
support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the extent a processor's arithmetic supports the IEC standard)
support for international usage
choice of decimal or comma in numeric formatted input/output
ISO 10646
the associate construct (allows a complex expression or object to be denoted by a simple symbol)

Fortran 2008
coarrays
data declaration
allocatable components of recursive type
data statement restrictions lifted
declaring type-bound procedures
extensions to value attribute
implied-shape array
kind of a forall index
long integers
maximum rank
pointer initialization
type statement for intrinsic types
data usage
accessing real and imaginary parts
copying the properties of an object in an allocate statement
elemental dummy argument restrictions lifted
multiple allocations with source=
omitting an allocatable component in a structure constructor
pointer functions
polymorphic assignment
execution control
exit statement
stop code
the block construct
input/output
finding a unit when opening a file
g0 edit descriptor
recursive input/output
unlimited format item
intrinsic procedures and modules
additional optional argument for ieee_selected_real_kind
Bessel functions
bit processsing
compiler information
constants
error and gamma functions
Euclidean vector norms
execute command line
extensions to trigonometric and hyperbolic intrinsic functions
find location in an array
Function for C sizeof
optional argument back added to maxloc and minloc
optional argument radix added to selected real kind
parity
storage size
string comparison
performance enhancements
contiguous attribute
do concurrent
simply contiguous arrays
programs and procedures
elemental procedures that are not pure
empty contains part
entry statement becomes obsolescent
form of the end statement for an internal or module procedure
generic resolution by pointer/allocatable or data/procedure
internal procedure as an actual argument or pointer target
non-pointer actual for pointer dummy argument
null pointer or unallocated allocatable as an absent dummy argument
save attribute for module and submodule data
source form
semicolon at line start
submodules

Fortran 2008 and polymorphic intrinsic assignment

Fortran 2018
additional parallel features
change team construct
coarrays allocated in teams
collective subroutines
critical construct
detecting failed and stopped images
events
failed images and stat= specifiers
fail image statement
form team statement
image failure
image selectors
intrinsic function image index
intrinsic function move alloc
intrinsic function num images
intrinsic function this image
intrinsic functions get team and team number
lock and unlock statements
new and enhanced atomic subroutines
sync team statement
teams
additional parallel features in Fortran
arithmetic if
conformance with ISO/IEC/IEEE 60559:2011
IEEE 60559:2011 conformance
adjacent machine numbers
comparisons
conversion to integer type
decimal rounding mode
fused multiply-add
maximum and minimum values
remainder function
round away from zero
rounded conversions
subnormal values
test sign
type for floating-point modes
new obsolescences
common and equivalence
labelled do statements
specific names for intrinsic functions
the forall construct and statement
nonblock do construct
removal of deficiencies and discrepancies
advancing input with size=
connect a file to more than one unit
control of host association
d0.d, e0.d, es0.d, en0.d, g0.d and ew.d e0 edit descriptors
default accessibility for entities accessed from a module
deletions
enhancements to inquire
enhancements to stop and error stop
extension to the generic statement
formatted input error conditions
hexadecimal input/output
implicit none enhancement
intrinsic function coshape
intrinsic function sign
intrinsic functions extends type of and same type as
intrinsic subroutine random init
intrinsics that access the computing environment
kind of the do variable in implied do
kinds of arguments of intrinsic and IEEE procedures
locality clauses in do concurrent
new elemental intrinsic function out of range
new reduction intrinsic reduce
nonstandard procedure from a standard intrinsic module
recursive and non-recursive procedures
removal of anomalies regarding pure procedures
removal of the restriction on argument dim of many intrinsic functions
rules for generic procedures
simplification of calls of the intrinsic cmplx

Fortran 77

Fortran 77 Version

Fortran 90
array processing
better control structures
control of numeric precision
dynamic storage allocation
implicit none
modules
new source form
pointers
procedures
pure and elemental procedures
recursion
user defined types and operators

Fortran 90 Version

Fortran 95
automatic deallocation of allocatable arrays
forall construct
implicit initialisation of derived-type objects
initial association status for pointers
intrinsic function cpu_time returns the processor time
intrinsic function null returns disconnected pointer
nested elsewhere constructs
nested where constructs
references to some pure functions are allowed in specification statements

 sign function distinguishes between –0 and
 [image: $$+ $$]
 0

small changes to ceiling, floor, maxloc, minloc functions

Fortran and Parallel Programming

Fortran and the IEEE 754 standard

Fortran arithmetic expressions
optimisation
semantics
syntax

Fortran character set

Fortran discussion lists

Fortran expressions
mathematically equivalent expressions

Fortran intrinsic functions
atan
abs
abs function
achar
acos
adjustl
adjustr
aimag
asin
associated
atan
atan2
btest
char
cmplx
conjg
cos
cpu_time
dble
digits
dot_product
elemental
epsilon
exp
generic
huge
iachar
index
int
kind
kind query functions
len
len_trim
lge
lgt
lle
llt
log
log10
matmul
maxexponent
maxloc
maxval
minexponent
mod
null
numeric query functions
pack
precision
present
radix
range
real
repeat
reshape
scan
selected_char_kind
selected_int_kind
selected_real_kind
sin
sqrt
sum
tan
tiny
transfer
transformational
trim
verify

Fortran kind intrinsics

Fortran nonnumeric types
character and logical

Fortran numeric types
integer, real, complex

Fortran operator hierarchy

Fortran operators

Fortran representational model
bit
integer
real

Fortran representational models

Fortran's origins

Fortran sources

Fortran support for IEEE arithmetic

Free and commercial conversion tools

Function argument

Function argument name and type

Function definition

Function formal syntax

Function header

Function name

Function parameters

Function reference or use

Function results

Function return type

Function return values

Functions

Function side effect

Function statement

Further information

Further reading

G

Gaussian elimination

Gaussian elimination with partial pivoting

G edit descriptor

General comments about the standard

Generic function

Generic interface

Generic name

Generic programming
Ada
C++
C#
Eiffel
Java

Generic programming and other languages

Generic quicksort in C++

Generic quicksort in C#

Generic recursive quicksort with timing details

Generic statistics module

Gfortran

Gfortran support for Intel extended (80 bit) precision

Global data

Good programming guidelines

Goto statement

Granularity and types of parallelism

Graphics library

Gustafson's law

Gustafson's Law graph 1 - 64 processors or cores

H

Hardware
AMD
AMD64 64 bit mode
AMD64 legacy mode
DEC Alpha
Intel
Intel 64 and IA-32
Intel 80x86
Sun UltraSparc

Hardware sources

Health warning: optional reading, beginners are advised to leave until later

Hierarchy of operations

Higher-dimension arrays

High-level languages

History

HOPL

HPF

I

IBM

ICON

I edit descriptor

IEEE
denormal
derived types and constants defined in the modules
divide by zero
floating point formats
inexact
inexact summation example
infinity
integer formats
invalid
NAN
NAN and other specials example
overflow
subnormals
testing IEEE support
testing what flags are supported
underflow

IEEE 754

IEEE 754 floating point support

IEEE specifications

Ieee_arithmetic

Ieee_exceptions

Ieee_features

If construct

If statement

If then else if

Image control statements

Image index

Image numbers

Image selectors

Imaginary part of complex number

Implementation

Implicit and explicit interfaces

Implicit none

Implicit none statement

Implied do loop

Index

Index function

Inheritance

Initialisation of physical constants, version 1

Initialisation of physical constants, version 2

Initialisation of physical constants, version 3

Initialising a rank 2 array

Initialising rank 2 arrays

Initial value problems

Initial values

Inner product

Inner product of two sparse vectors

Input and output (I/O) statements

Input-item-list

Inquire statement

Integer argument

Integer arrays

Integer data

Integer data type

Integer data type and representation model

Integer declaration

Integer division

Integer division and real assignment

Integer formats

Integer function return type

Integer kind type

Integer number system model

Integer overflow and the i edit descriptor

Integer representation

Integer representational model

Integers and the i format or edit descriptor

Integer scalar

Integer variable

Intel

Intel 64 and IA-32

Intel 80x86

Intel Pentium III

Intent

Intent attribute for parameters

Intent in

Intent(in)

Intent inout

Intent out

Interface

Interface block

Interface blocks and module procedures

Interface checking

Internal file

Internal function

Internal procedure

Internal subroutines and scope

Internal user defined functions

Interoperability of array variables

Interoperability of intrinsic types

Interoperability of procedures and procedure interfaces

Interoperability of scalar variables

Interoperability with C pointer types

Interoperation with C functions

Interoperation with C global variables

Int function

Intrinsic assignment

Intrinsic assignment statement

Intrinsic data type

Intrinsic function

Intrinsic functions maxval and maxloc

Intrinsic module

Intrinsic procedure

Intrinsic subroutine

Intrinsic types

Introduction

I/O concepts

I/O concepts and statements

Iomsg= specifier

Iostat= options on the open statement

Iostat= specifier

I/O statements
backspace
close
endfile
flush
inquire
open
print
read
rewind
wait
write

ISO date module

ISO technical reports TR15580 and TR15581

ISO test program

Iso_fortran_env
character_kinds
integer_kinds
logical_kinds
real_kinds

, item separator

J

Java

K

Key points

Keyword argument

Keyword and optional arguments

Keyword and optional argument variation

Kind inquiry functions
kind
selected_char_kind
selected_int_kind
selected_real_kind

Kind parameter

Kind type

Kind type parameter

Kind types

K&R C

L

Label DO statement

Language strengths and weaknesses

LAPACK naming convention
dp - double precision
sp - quad precision
sp - single precision

LAPACK95

Lcobound

Leap year

Left to right evaluation

Len and len_trim functions

Len and len_trim usage

Len_trim function

Linked list
sparse matrix problems

Linked list parameterised by real kind

Linking unit numbers with files
unit= file=

LINPACK
SGEFA
SGESL

Lisp

List directed input

Literal real constants in a calculation

Local variables

Local variables and the save attribute

Loc function usage

Locks

Lock statement

Log function

Log10 function

Logical data type

Logical expression

Logical i/o

Logical operators

Logical record

Logical variable

Logic programming

Logo

Lower bound

M

Machine language

Magnitude of the exponent

Main program

Maintenance

Manipulating variables of our own types

Mantissa

Masked array assignment

Masked array assignment and the where statement

Matrix multiplication

Maxloc function

Maxval function

Memory access

Memory leak examples

Met Office Historic Station Data

Miscellaneous array examples

Mixed mode arithmetic

Mod function

Modula

Modula 2

Modular programming

Module
basic syntax

Module for precision selection

Module for simple timing of a program

Module procedures

Module procedures to provide interfaces

Modules
containing procedures
derived types
module usage and compilation
precision definition
the use statement

Modules containing procedures

Modules for derived data types

Modules for global data

Modules for globally sharing data

Modules for precision specification and constant definition

Module usage and compilation

Monitors

Monthly rainfall

More memory leaks

More on parameter passing

MPI
compiler and implementation combination
compiler and MPI combinations used in the book
hello world using send and receive
individual implementation
MPI memory model
parallel solution for pi calculation
work sharing between processes

MPICH2

MPI Programming

Mutual exclusion - mutex

N

Nag

Nag compiler polish tool

Nag SMP library

Named constants and derived types in the module

Narrow field widths and the f edit descriptor

Natural language

Nested user defined types

Nesting types within types

Netlib

Non recursive Quicksort with timing details

Non-standard pointer example

Notations

Note: Alternative form of the allocate statement

Note: Automatic arrays

Note: compilation when using modules

Note — Flexible design

Note — Recursive subroutine

Notes

Notes on function usage

Note: subroutine as a dummy procedure argument

Notes - version control systems

Num_images

Numerical approximations

Numeric inquiry functions
digits
epsilon
huge
maxexponent
minexponent
precision
radix
range
tiny

Numeric limits

Numeric models

O

Oberon and Oberon 2

Object file

Object modelling

Object oriented programming

Obsolescent features

Open and close usage

OpenMP
hello world using default variable data scoping
hello world with private thread_number variable
OpenMP memory model
parallel solution for pi calculation

Open MPI

OpenMP memory model

Open statement
change file and unit modes
connect to existing file
create a file and connect to a unit
create a file that is preconnected

Operating systems

Operator hierarchy

Operator overload
addition operator

Operator overloading
Ada
Algol 68
C++
C#
Eiffel

Optional argument

Options on the close statement

Options on the open statement

Options on the read statement

Options on the write statement

Oracle/Sun

Order of evaluation

Ordinary differential equations

Original Fortran 66

Other aspects of interoperability

Other calendar systems

Other languages

Other parallel options

Output
array sections
whole arrays

Output formats

Output formatting

Output-item-list

Overflow

Overflow and the f edit descriptor

Overflow and underflow

P

Pack function

Page size

Parallel computing

Parallel computing classification

Parallel programming

Parallel solution

Parameter attribute

Parameterised derived types

Parameter passing

Parameters

Parameters can be expressions

Partial pivoting

Partitioned global address space - PGAS

Pascal
records

Pass control

Passed object dummy arguments

Perfectly balanced tree

Person data type

Physical and virtual memory

Physical memory

Pi calculation

PL/1 and Algol 68

Plusfort

PlusFORT capability

Pointer allocation and assignment

Pointer assignment

Pointer association

Pointer attribute

Pointer component

Pointer initialisation

Pointer variables

Polish

Polymorphic and dynamic binding test program

Polymorphic variables

Polymorphism and dynamic binding

Portability

Positional number systems

Positive numbers

Positive values

Possible missing data

Postscript language

Postscript, TeX and LaTeX

Precedence

Precision

Predefined functions

Present function

Print *

Print * and unit 6

Print statement

Private attribute

Private data

Private, public and protected attributes

Problem definition

Problems

Problem solving
algorithm
algorithmic problem solving
artificial language
bottom-up
modular programming
natural language
notations
algebra
calculus
logic
object oriented programming
software engineering
stepwise refinement
systems analysis and design
analysis
detailed design
evaluation
evaluation and testing
feasibility study and fact finding
implementation
initial design
maintenance
problem definition
technical terminology
top-down
Unified Modelling Language (UML)

Procedure pointer

Procedures

Procedures in the module

Procedure summary

Program statement

Program unit

Program development

Program execution

Programming languages
abstraction
Ada
Algol
Algol 68
APL
B
Basic
C
ANSI C
C89
C99
C++
C++14
C++17
C11
C#
Chomsky
classes
Cobol
data structuring
dynamically bound procedure calls
early theoretical work
Eiffel
engineering
extensible data types
Fortran
1966 standard
1977 standard
Fortran 2003
Fortran 2008
Fortran 2018
Fortran 90
Fortran 95
Fortran discussion lists
Fortran's origins
ICON
instances of a class
Java
K&R C
LaTeX
Lisp
Logo
messages
methods
Modula
Modula 2
modules
Oberon
Oberon 2
object oriented programming
objects
Pascal
PL/1
Postscript
procedural programming
Prolog
Python
second generation languages
Simula
Smalltalk
Snobol
SQL
standardisation
stepwise refinement
structured programming
TeX
Turing
von Neumann

Program statement

Program unit

Proleptic Gregorian calendar

Prolog

Protected attribute

Public and private accessibility

Public and protected attribute

Public attribute

Pure constraints

Pure functions

Pure procedure

PVM

Python
Python 2
Python 3

Python 2

Python 3

Q

Qp - quad precision

Quad precision

Quadratic roots

R

Race conditions

Ragged array parameterised by real kind type

Ragged arrays

Ragged arrays and variable sized data sets

Random number

Range

Range, precision and size of numbers

Rank

Rank 1 array and the sum intrinsic function

Rank 1 array initialisation

Rank 1 array initialisation — explicit values

Rank 1 arrays

Rank 2 arrays and the sum intrinsic function

Rank 1 array sections

Rank 2 array sections

Rank 1 whole array

Rank 2 whole array

Rational Software

Read * and unit 5

Reading formatted files

Reading from files

Reading from several files

Reading in an arbitrary number of reals using a linked list and copying to an array

Reading integer data

Reading one column of data from a file

Reading real data

Reading several files

Reading unformatted files

Reading using array sections

Reading using internal files

Read integer data

Read statement

Real literal constant

Real variable

Real data type

Real data type and representational model

Real function

Real integer data

Real kind type

Real literal constant

Real number system model

Real numeric kind types

Real part of complex number

Real representational model

Reals and the e edit descriptor

Reals and the f edit descriptor

Reals and the g edit descriptor

Record at a time

Records
end of file
formatted
unformatted

Rectangle - derived type 2

Recursion and problem solving

Recursive factorial evaluation

Recursive functions

Recursive gcd function

Recursive subroutines

References

Referencing a subroutine

Referencing pointer variables before allocation or pointer assignment

Relational operator

Relative and absolute errors

Relative error

Repeat until loop

Repetition and whole array output

Result clause

Result value

Resume

Return statement

Rkm

Rounding

Rounding and truncation

Rounding error

Rounding problem

Round off

Round off error

Round off errors and computer arithmetic

Rules and restrictions

Rules and restrictions on functions

Rules for arithmetic expression evaluation

Runge kutta merson

S

Save attribute

Scalar variable

Scan function

Scan function usage

Scope of variables

Scope rules

Scope rules for variables and functions

Second-generation languages

Sections

Select case construct

Selection among courses of action

Select rank construct

Select type

Select type construct

Sentinel usage

Sequential access

Sequential, direct and stream access

Serial non recursive Quicksort

Serial recursive Quicksort

Setting the array size with a parameter

Shape

Shape wrapper module

Side effect

Significant digits

Sign of the entire number

Sign of the exponent

Simple arithmetic expressions in Fortran

Simple function usage

Simple g edit descriptor example

Simple inheritance

Simple inheritance test program

Simple memory leak

Simple user defined function

Simula

Sine function

Sin function

Single precision

Singly linked list: reading an unknown amount of text

Size

Skipping columns in a file

Skipping columns on input

Skipping lines in a file

Skipping lines on input

Smalltalk

Snobol

Software tools

Solution of linear equations using Gaussian Elimination

Solution of systems of linear simultaneous equations

Solving a system of linear simultaneous equations using Gaussian Elimination

Some more Fortran rules

Sorting

Sorting reals and integers

Sort module

Source code

Spaces

Sparse matrices

Sparse matrix problems

Sparse vectors

Specific names for intrinsic functions

Sp - single precision

SQL

Sqrt function

Standardisation

Statement functions

Status of the action carried out in the subroutine

Stepwise refinement

Stirling's approximation

Stop statement

Storage size

Stride

Stripping blanks from a string

Structure component

Structure constructor

Structure constructors and generic names

Structured programming

Submodules

Subroutine
arguments
parameter passing
intent
intent in
intent inout
intent out
parameters

Subroutine and function libraries

Subroutine as a dummy procedure argument

Subroutines
actual arguments
allocatable dummy arrays
automatic arrays
character arguments
elemental subroutines
keyword and optional arguments
local variables
save attribute
parameter passing
allocatable dummy arrays
arrays
assumed shape arrays
deferred shape arrays
scalars
rank 2 arrays as parameters
recursive subroutines
scope of variables

Subroutine statement

Subroutine subprograms

Subscript triplet

Subtraction operator

Sum function

Summary

Summary of how to select the appropriate kind type

Summation and finite precision

Sun UltraSparc

Supplying your own functions

Sync all

Synchronization

Sync images

Sync memory

Systems analysis

Systems analysis and design

T

Tables of data

Tabular output

Tan function

Target attribute

Technical terminology

Telephone directory

Templates

Terminology

Testing the numerical representation of different kind types on a system

Test program for polymorphism and dynamic binding

The basic shape class

The case statement

The date class

The Fortran rules for arithmetic

The index character function

The intent attribute

The iso_c_binding Module

The MPI memory model

The Nag Library for SMP and multicore

The remaining control and data edit descriptors

32 bit floating point real

32 bit integer 2, 147, 483, 647

This_image

Threads and processes

Threads and threading

Three-dimensional spatial problems

Three ways of generating spaces

Time taken for light to travel from the Sun to Earth

Timing formatted reads

Timing module

Timing of reading formatted files

Timing of reading unformatted files

Timing unformatted reads

Top-down

Top 500 supercomputers

Trailing blanks

Transformational functions

Triangular matrix

Truncation

Truth tables

TS 29113 Further Interoperability of Fortran with C

Two-dimensional spatial problems

Two n-bit integers

Type

Type construct

Type construction

Type conversion

Type conversion across the = sign

Type conversion and assignment

Type declaration

Type declaration statement

Type declaration statement summary

Type definition

Type integer

Type statement

Type transfer functions

U

Ucobound

Underflow

Unformatted files

Unformatted read timings

Unformatted records

Unified Modelling Language (UML)

Unit=

Unit numbering

Unit numbers

Unit numbers and files

Unit 5 keyboard association

Unit 6 screen association

UNIX

Unlock statement

Upper bound

Use association

Use module_name

Use precision_module, wp => dp

Use statement

Use statement and extensions

User-defined derived-type editing

User defined elemental functions

User defined functions

User defined pure functions

User defined types

Using an interface to use the class name for the structure constructor

Using iostat to test for errors

Using modules

Using the numeric inquiry functions with integer types

Using the numeric inquiry functions with real types

V

Variable declarations

Variable definition

Variable names

Variables — name, type and value

Variable status

Variable types

Various forms of the do statement

Varying the array size at run time

Version control systems

Virtual memory

W

Wave breaking on an offshore reef

Web-based sources

Where construct

Where statement

While loop

Whole array

Whole array manipulation

Whole array output

Why bother with subroutines?

Work arrays

Work flows

Work sharing

Write statement

Writing formatted files

Writing unformatted files

X

X edit descriptor

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figi_HTML.gif
chlOOl.out’, statu:

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Fign_HTML.gif
Subroutine set_x(this, x|
implicit noae
class (shape_type), inteat (inout)
integer, intent (in)
thisks = x

-nd subroutine set :

this

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figaj_HTML.gif
program chizUs
use mpi
implicit noae
integer :: error_umber

integer :: this_process_aumber

integer :: number_of processes

integer, dimension (mpi_status_size) status

integer, allocatable, dimension (:)
integer :: a

integer, parameter :: factor = 5
integer :: i, 3, k

integer :: start

integer :: ead

integer :: recv_start

call mpi_init (srrox_number)
call mpi_comm_size (mpi_comm_world, &
auzber_of_processes, error_aumber)
call mpi_comm_rank (mpi_comm_world, &
this_process_nusber, error_aumber)
a = number_of_processes*factor

allocate (x(1:a))
x=0
start = (factor’this_process_aumber) + 1

end = factor* (this_process_mumber+l)
print 100, this_process_mumber, start, ead
do i = start, ead

=(i) = i*factor
ead do
doi=1,a

priat 110, this_process number, i, (i)
ead do

if (this_process_number==0) then
do i = 1, number_of processes - 1
recv_start = (factor’i) + 1

call mpi_recv (x(recv_start], factor,

api_integer, i, 1, mpi_comm world,
status, error_number)
ead do
else
call mpi_send (x(start], factor, mpi_integer, &
0, 1, mpi_comm world, error_mumber)
ead if
if (this_process_numbe:

0) then
doi=1,a
print 120, i, factor, (i)
ead do
ead if
call mpi_finalize (error_number)

100 format (/ Process mumber = ¢, i3, ' start ', &
i3, ¢ end 1, i3)

110 format (1x, i4, ¢ i ', i4, / =() /, i4)

120 format (1, id, ¢ * ', i2, ¢ =, i5)

end program ch3205

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figh_HTML.gif
e (mpi_comm_wor d, &
e
TR

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Fige_HTML.gif
program chiiul
use omp_lib
implicit noae
athreads
thread_number

integer
integer

integer

athreads = omp_get_max_threads ()

Humber of threads = , athreads

priat *,
! Somp parallel do

do i =1, athreads

priat *, ¢ Hello from thread /, &
omp_get_thread_aum()

end do
! Somp end parallel do
end program ch3301

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figk_HTML.gif
year_and_day_to_datesyear = year

t=o0

if (modulo(year,4)==0) then
t=1

ead if

if (modulo(year,400) /=0 .and. &
modulo(year, 100)==0] thea
t=o0

ead if

year_and_day_to_datetday = day_in_year
if (day_in_year>59+t] thea
year_and_day_to_datetday = &
year_and_day_to_datetday + 2 - t
ead if
year_and_day_to_datetmonth = &
((year_and_day_to_datetday+31) #100) /3055
year_and_day_to_datetday = (&
year_and_day_to_datetday+9l) - &
(year_and_day_to_datesmonth*3055) /100
year_and_day_to_datetmonth = &
year_and_day_to_datetmonth - 2

if (year_and_day_to_date¥month>=1 .aad. &
year_and_day_to_datetmonth<=12) thea
retura

end if

write (uait=t, fmt=’(a,ill,a)’] ’$5year_and_ds

say_to_date: day of the year imput &

, day_in_year, ' is out of range.’

ead fuaction year_and_day_to_date

-nd module date module

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figu_HTML.gif
nodule funl moduls
implicit noae

contains
subroutine fual(t, y, £, a)

use precision_module, wp => dp
implicit noae

real (wp), iatemt (in), dimension (:)
real (wp), iateat (out), dimension (:)

real (p), imteat (in) :: t

iateger, inteat (ia] :: 2

£(1) = tan(y(3)

£(2) = -0.032WprE () /y(2) - &
0.02_up*y (2) /eos (y(3))

£(3) = -0.032_9p/ (v(2)*y(2))

ead subroutine fual

end module fual module

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figh_HTML.gif

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figk_HTML.gif
http://www.archer.ac.uk

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figaa_HTML.gif
+1a il 4.4
Calculated = 0.1000000 Absolute error 2.2351742E-08
Expected = 0.1000000 Relative error 2.2351742E-07

1 ia 100 1.01

Calculated = 9.9999905E-03 Absolute error 9.3132257E-0
Expected = 9.9999998E-03 Relative error 9.3132257E-07
1 ia 1,000 1.001

Calculated = 9.9992752E-04 aAbsolute error 7.2526745E-08
Expected = 1.0000000E-03 Relative error 7.2526745E-05
1 ia 10,000 1.0001

Calculated = 1.0001659E-04 absolute error 1.6596459E-08
Expected 9.9995957E-05 Relative error 1.6596459E-04

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figag_HTML.gif
The 1mportant 1ssue about a language
is not so much vhat features the language possesses
but the features it does possess

are sufficieat

to support the desired programming styles

in the desired application areas

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figau_HTML.gif
ttort and icc, openSusSe Linux

ifort —c ch3512.£90 -o ch3512_f.o
icc ch3512.c ch3512 f.o

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figal_HTML.gif
priat %, © priat 1so date test?

print *, ' Single parameter ,

s%priat_date ()
print *, &

day_names=false short_moath_name=false

=3priat_date (day_names:
false.)

false., &

short_moath_nam:

print *, &
‘ day_names=true short_moath_name=false

=¥priat_date (day_names=.true., &
false.)

short_month_nam:

print *, &
¢ day_names=false short_moath name=truc

=¥priat_date (day_name.

false., &

short_month_nam:

true.)
print *, &

day_names=true short.

oath_name=t rue

=¥priat_date (day_names=.true., &
short_moath_name=.true.)

print *, &
¢ digitsstrue
x%print_date (digits=.true.)

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figc_HTML.gif
program chlaUs
implicit noae
complex :: ¢ = caplx(1.0, 1.0)
r=10.9
-27

real

iateger :: i

priat *, abs (c]
priat *, abs (z]
priat *, abs (i)

end program ch1202

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figaf_HTML.gif
use shape_n

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figas_HTML.gif
LiER, AboIRACL @ URARABLE_UBJELL

REAL, DIMENSION (3)

RGB_COLOR = (/1.0,1.0,1.0/) ! White
REAL, DIMENSION(2) :: &

POSITION = (/0.0,0.0/) ! Centroid
coTaIis

PROCEDURE (REIDER_X) , &
PASS (OBJECT) , DEFERRED
END TYPE DRAWABLE_OBJECT

REIDER

ABSTRACT INTERFACE
SUBROUTINE RENDER_X (OBJECT, WINDOW)
TMPORT DRAWABLE_OBJECT, X_WINDOW
CLASS (DRAWABLE_CBJECT), INTENT (IN) :: OBJECT
CLASS (X_WINDOW) , INTENT(THOUT] :: WINDOW
END SUEROUTINE RENDER,
END INTERFACE

TYPE, EXTENDS (DRAWABLE_OBJECT)
! llot ABSTRACT

DRAWABLE_TRIANGLE

REAL, DIMENSION(2,3) :: VERTICES
! In relation to ceatroid
coTaIis

PROCEDURE, PASS (OBJECT)
REIDER=>RENDER_TRIAIGLE
END TYPE DRAWABLE TRIANGLE

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figm_HTML.gif
nagfor -c -04 dsort.f ssort.f a1sort.tf

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figj_HTML.gif
module statistics_module
implicit nons

contains
subroutine caleulate month averagss (x, A, €

n_months, sum_x, average_x, index_by_month,
month_names)

implicit nons

real, dimension (1), intent (in) :: x

intsger, intent (in) :: n

intsger, intent (in) :: n_months

real, dimension (l:n_menths), ©
intent (inout) :: sum_x

real, dimension (l:n_months), &

intent (inout) :: average x

intager, dimension (L:n), intent (in)

indss_by_month
character 9, dimension (l:n_months), &

intsnt (in) :: month_names

_months)
months)

integer, dimension (1 f_mizsing

n_actual

integer, dimension (1

intager

sum_x = 0.0
average_z = 0.0
f_mizsing = 0
f_actual = 0

dom=1,n
if (x(m)>-98.9) then

sum_s (index_by_month m)) &
= sum_s (indew_by_month (m)) + x(m)
n_actual (index_by_month (m)) &
= n_actual (index_by_month (m)) + 1
sles
n_missing (index_by_month(m)) &
n_mizsing (index_by_month(m)) + 1
end if
end do

dom =1, n_months

average_x(m) = sam_x(m)/ (n_actual (m))
nd do

orint ¥, ' Summary of actual missing’
E——— valuss valuss’
dom=1, n_months
srint 100, month_names (), n_actual(m), €
n_mizzing m)
100 format (2x, a9, 2%, i6, 2%, i6)
nd do
nd subroutine caleulats_month_averages
end module statistics module

E

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq80.png

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figi_HTML.gif
Jed

character (len=1)

S real
3c8
program ch2201

- program ch2202
15¢15

character (len=:), allocatable

string

> real, allocatable, dimensioa (i)
25¢25

< read (uwnit=1, fa

= (a)’, advance

> read (unit=
37637

read (uait=1, £mt='(a)’, advanc

. read (unit=1, fat=t,
4545

print *, i, '

characters read’

¢ aumbers read’

> priat *, i,
1848

< allocate (character(len=a) :: string)

> allocate (y(1:a))
5353

< string(i:i)

curreatsx

S y(i) = currentsx
57,58¢57, 61
priat *, string

ead program ch2201

- doi=1,1
- priat %, y()
- end do

. end program ch2202

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figl_HTML.gif
use personal_r

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figt_HTML.gif
bl
0 m)

150 1€ (3-1>=1) o to 110
if (=) go to 100
i=i-1

oo 1=+ 1

if (1==3) go to i
£ = axiny
if (@x(i)<=t) go to 160
k=i

170 ax (k+l) = dx (k)
K=k 1
i (ecax(0)) go to 170
anern) = €
9o to 160

' Sort DX and carry DY alosg

1
1
0.375a0

r=x+ 3.506250-2
slse

r=x - 0.21875a0
ena it

00k = i

! Select a ceatral slemeat of the array and save it ia location T

L4 dae(3
= axiy)

! If first slemeat of array is greater thaa T, interchange with T

i€ (@x()58) thea

ax(i3) = ax(i)
ani) = €

= aniy)

ay(i3) = ay (i)
ay(i) = by

£y = ay(i3)

na it

1=

! If last slement of array is less thaa T, interchange with T

if (@x(3)<t) thea

ax(i3) = ax(3)
any) = ¢

£ =anay)
ay(i3) = ay(3)
ay(3) = £y

£y = ay(i3)

' IE Eirst slemeat of array is greater thaa T, iaterchasge with T

i€ (@x()58) thea

ax(i3) = ax(i)
ani) = €
= axiy)
ay(i3) = ay (i)
ay(i) = by
£y = ay(i3)
na it

P

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figo_HTML.gif
program chzUU3

! program to test array subscript checking
! whea the array is passed as an argument.

implicit noae
integer, parameter :: array_size = 10
integer

integer, dimension (array_size)

do i =1, array_size
a(i) =i
ead do
call sub0l(a, array_size)
ead program ch2009
subroutine sub0l(a, array_size)
implicit noae

integer, intent (in] :: array_size

integer, intent (in], dimension (array_size] &

iateger :: i
iateger :: atotal = 0
iateger :: rtotal = 0

do i =1, array_size
rtotal = rtotal + a(i)

ead do

do i =1, array_size + 1
atotal = atotal + a(i)

ead do
print *, ' Apparent total is ', atotal
print *, ' real total is /, rtotal

end subrout ine sub0l

OEBPS/images/112282_4_En_BookBackmatter_Figag_HTML.gif
1fort
/check:all
/debug:all
/fpe:

/gea-interfaces
/standard-semant ics
/traceback

fyara:all

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figt_HTML.gif
real (wp), paramster

eps=l1l.E-15_wp

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figb_HTML.gif
read %, name

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq14.png

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figj_HTML.gif
typs (ragged(wp)),
lower diag

dimsasion

L)

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq15.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_Equ6.png
B = H,/(gmT?

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figg_HTML.gif
slope = (yl-y2) /(xl-x2)
£1 = (-b+((b*b-d%arc] +10.5))/ (2%a)
q = mass_d/2* (mass_a*veloc_a/mass_d) 12 + ¢

((mass a * veloc a) #42)/2

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_Equ5.png
A = 18abcd — 4b°d + b*c? — 4ac® — 27a°d>

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figs_HTML.gif
A _out

data . t«=t > results. t ot

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq11.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_Equ4.png
ax> +bx* +cex+d=0

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq12.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_Equ3.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_Equ2.png
1+ x/10+ X220+ X°/3! ...

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figac_HTML.gif
.80
.85
.70
.75
.67
.55
.63
.78
T

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_Equ1.png
ax* +bx+c=0

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figh_HTML.gif
praint * , (heaght (lat, long) , lonce

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ20.png
argument: x type:r
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ21.png
arguments: n type: 1

arguments: nl type: 1
arguments: n2 type: 1
arguments: x type:r

result: as x class:eort

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ22.png
argument: x type:r
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ23.png
argument: x type:r
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_Figg_HTML.gif
1nteger,target, dimension(l0):

integer,pointer, dimension (:] :: p

a(1:10:2); print*,is_contiguous (pl

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figa_HTML.gif
http:/ /www.mpi-forum. oxrg

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ24.png
arguments: n type: 1

arguments: nl type: 1
arguments: n2 type: 1
arguments: x type:r

result: as x class:eort

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ25.png
arguments: i, j type: i or boz
result: | class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ26.png
arguments: i, j type: i or boz
result: | class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ27.png
arguments: i, j type: i or boz
result: | class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ28.png
arguments: i, j type: i or boz
result: | class: e

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figs_HTML.gif
http://docs.oracle.com/cd/
£19422-01/819-3693/816-3693.pdE
https: //docs.oracle.com/en/

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ29.png
argument: 1 type:i
result: as argument class: i

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figa_HTML.gif
program chldall
implicit noae

integer, poiater :: a => mull(), b = aull()
integer, target :: c

integer

T oo

d=a+b
priat *, a, b, ¢, d
end program ch1801

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figb_HTML.gif
program chlUUl
implicit noae

integer, parameter :: apeople = 10

integer, dimension (1:apeople]

height_feet, &
height_iach, weight_stone, weight_pound

real, dimension (l:mpeople) :: weight_kg, &
height_m

integer

ch1001.txt’, statu
ch1001.0ut’, statu

old’)

aeu’)

opea (unit

opea (unit

do i =1, npecple
read (10, fmt=100) height_feet (i),
height_inch(i), weight_stone (i),

weight_pound (i)

100 format (i2, 2x, i2, 2x, i2, 2%, i2)

weight_kg (i) = (weight_stone (i) *1d+ &
weight_pound (i])/2.2

height_m(i] = (height_feet (i) *12+height_inch ¢
(i1)*2.54/100

write (unit=20, fmt=110) height_m(i), &
weight_kg (i)

110 format (1x, £5.2, 23, £4.1)

ead do
close (10
close (20)

end program chl001

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figj_HTML.gif
program chal _dislin U5

use dislia

parameter (n=00§)
dimension x(a), y(a)

open (unit=100, file='aberporth_rainfall.csv’, &

status='old")

doi=1,n
read (100, 100) x(i), v (i)
100 format (£3.0, 6x, £4.2)
ead do
! Must call initialisation routine
call disini
! Plot a border round a page
call pagera

! Bouading box

to, o 2968 , 0
1o, 2088 2963, 2099

! Position of axis systems

call axspos (450, 1800)

! axis length

call axslen (2400, 1400)

! Change symbol rectangle by default

call symbol(4, 0, 0]

! axis

call name('Months',

'Y axis

call name('Rainfall inches’, /¥')

call labdig(l, /X')
call ticks(l, 'X¥')

call titlin('Demonstration of scatterplot’, 1)
call titlin(’of rainfall by moath’, 3)

! call mylab(‘dan’,1,/%')
! call mylab('Feb’,2,/%’)
! call mylab(‘Mar’,3,/%’)
! call mylab(‘apr’,4,/%')
! call mylab(‘May’,5,/%’)
! call mylab(’dua’, s, x’)
! call mylab(’dul’,7,/%’)
! call mylab(‘Aug’,8,/%')
! call mylab(’Sep’,8,/%’)
! call mylab(’oct’, 10, %")
! call mylab(‘lov’,11,%")
! call mylab('Dec’, 12, %)

! Plot a 2 d axis system

call graf(0.0, 13.0, 1.0, 1.0, 0.0, 11.0, 0.0,
1.0

! Scatter plot

call gplsca(x, ¥, a)

! Must call terminating routine

call disfin

nd program chdl dislin 05

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq9.png
c? = a’® + b> — 2abcos(6)

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq7.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq6.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq1.png
S5!'=5%«4%x3%x2x%1

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figm_HTML.gif
call runge_kutta merson(
b=8.0 . tol=l.0E-6

Vo

Tunl

ifail

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figm_HTML.gif
STEROUELTR U308 A%, 8%, N, RELAE)
|+ BEGIII PROLOGUE DSORT

*1'BURPOSE Sort aa array and ostioaally maks the sams isterchasges ia
! a3 auxiliary array. The array may be sorted ia increasizg
‘ or decreasing order. A slightly modifisd QUICKSORT

‘ algorithn is used

LIBRARY SLATEC

1ICATEGORY 1GAZE

ooriDE DOUBLE PRECISION (SSORT-S, DSORT-D, TSORT-T)
(1 KEYVORDS STIGLETON QUICKSORT, SORI, SORTING
“IUAUTHOR Jones, R. E., (SULA)

‘ Wisaiewski, J. A., (SULA)
[+ DESCRIPTION

| DSORT sorts array DX and ostionally makes the sams isterchasges ia
| array DY. The array DX may be sorted ia increasiag order or

| decreasing order. A slightly modifisd quicksort algorithm is used

| Deseristion of Paramsters

! DX - array of values to be sorted (usually abscissas)
! DY - array to be (ostionally) carried aloag
! N - aumber of valuss ia array DX to be sorted

‘ KFLAG - costrol paramster
means sort DX ia increasing order and carry DY aloag
meass sort DX ia increasing order (igaoring DY)
meass sort DX ia decreasing order (igaoring DY)
means sort DX in decreasing order and carry DY aloag

' 'REFEREICES R. C. Singleton, Algorithm 347, Aa stficisat algorithm
‘ for sorting with minimal storags, Communications of

‘ the ACH, 12, 3 (1565), op. 185-187

[+ 'ROUTINES CALLED XERMSG

(1 REVISTON HISTORY (¥¥1MDD)

761101 DaTe WRITTEN

| 761118 Modifisd to use the Siagleton quicksort algorithm. (JAW)

| 890531 Changed all specific iatriasics to geaeric. (VEE)
| 890831 Modifisd array declarations. (VEE)

| 891005 Removed unrsfersnced statemeat labels. (VEE)

| 891024 Changed category. (VRE)

| 891021 REVISION DATE from Versioa 3.2

| 891213 Prologus convertsd to Version 4.0 formst. (EAE)

| 00315 CALle to YERROR chasged to CALLs to XERNSG. (TAJ)

| 901012 Declared all variables; chasged X, o DX,DY; chasged
‘ code to parallel SSORT. (. McClain)
| 920501 Reformatted the FEFERENCES section. (DWL, WEE)
| 620518 Clarifisd srror messages. (DWL)
| 920801 Daclarations ssction rebuilt aad cods restructursd to use
‘ TP-THEN-ELSE-ENDIF. (RiC, 7RE)
[+ YEND PROLOGUE DSORT
‘ Scalar Arguneats

INTEGER KFLAG, N

Array Argumeats

DOVBLE PRECISION DE(%), DY(*)
‘ Local Scalars

DOUBLE PRECISION R, T, TI, TT¥, TY

INTEGER I, 13, 3, K, KK, L, 1, 1
‘ Local Arrays

THTEGER TL(21), TO(21)
‘ Bateraal Subroutines
| EXTERNAL XERMSG
‘ Intriasic Fuactions

ITRINSIC ABS, TT
+1'PIRST EXECUTABLE STATEMENT DSORT

m =
‘ e am 1. 1) meEn
‘ CALL ¥ERMSG ('SLATEC’, "DSORT’,
o “The aumbsr of valuss to be sorted is aot pesitive.’,
‘ ReTUR
‘ =1

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figx_HTML.gif
httos: //en.wikioedia.org/wiki/Sed

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figg_HTML.gif
program chl3au
implicit noae

£luid

litres

integer
real

real :: pints

print *, ! Imperial Litre(s)’

priat ¥, ' piat(s)
do fluid = 1, 10
litres = £1uid/1.75
piats = £luid*1.75
print 100, piats, fluid, litres
ead do
100 format (/ ', £6.2, ' ', i3, © ', £5.2)
end program ch0904

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figh_HTML.gif
http://www. jiscmail .ac.uk/lists /COMP-FORTRAIT-90.html

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ10.png
argument: variable type: any
result: 1 class: i

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figp_HTML.gif
1931
1931
1931
1931
1931
1931
1931
1931
1931
1931
1931
1931

1
1
1

"

s
o
1
2

10.
13.
15.
17.
15.
15.
12.
10.

ER
1234567890123456789012345

s

s

10.

1

3

2

8.
37.
4.
63.
e

121,
57.
38.
59.
FEN
33.

78901234567890123456789

a

6

63.
145.
110.
167.
150.
111,
127.
122.

95.

61.

36.

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ11.png
argument: a type: r
result: as a class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ12.png
argument: mask type: 1
result: 1 class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ13.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ14.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figp_HTML.gif
tel
< include ‘ch3701_person_module.£90"

> include ‘ch3702_person_module.£90"
3,5¢3
program ch3701

use ch3701_person_module

> program ch3702
5a5

> use ch3702_persoa_module
2322

10 format (DT)

. 10 format (DT(30,3,4,2,3))
2524
< 20 format (DT |

. 20 format (DT(20,5,4,2,3))
2827
< end program ch3701

. end program ch3702

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ15.png
argument: pointer type: p
result: | class:i

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figab_HTML.gif
| type speciaification] recursis

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ16.png
argument: x type:r,
argument: y type:r
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ17.png
argument: y type:r
result: as arguments class: e

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figs_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ18.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ19.png
argument: x type:r
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_Figan_HTML.gif
nagtor
11
~c=undefined
~£2008

-9
~gline
~ieee=stop
~iafo
~mtracesverbose
_thread safe

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figv_HTML.gif
| do-coastruct-name : | do [label] [loop-control |
[execution-part-construct 1

" label] end-do

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figaq_HTML.gif
L7 Amikrl) = dnik)
K=k 1
i (e<ix00)) go to 170
Lx0er1) = &
90 to 160

! Sort If aad carry If aloag

80 m = 1
1
0.37580
L 150 if (1==3) go to 230
if (re=0.585843720) thea
r=r+ 3.506250-2
slse
r=r - 0.2187580
na it
200 &

! Select a central slemeat of the array and savs
L it ia location T

4524),)
£=axay)
£y = iy33)

| If first slemeat of array is greater thaa T,
! isterchasge with T

i€ (x(1)56) thea

12013) = ix()
1) = e
= axaa
1) = v
) = ey
£ = iy(3)
na it
1=

! If last slemeat of array is less thaa T,
! isterchasge with T

if @n(3)<t) thea

12013) = 1x03)
FEES
£ =linaa
19 = v
05 = ey

o o= dv(id)

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figk_HTML.gif

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figg_HTML.gif
program chliul
implicit noae

real :: a, b, ¢, term, a2, rootl, root2

! aband c are the cosfficieats of the terms
U arta24ptibe
! find the roots of the quadratic, rootl and
! root2

priat *, ¢ give the cosfficieats a, b and c

read *, a, b,

temm = b'b - 4.%a%c
a2 = at2.
! if term < 0, roots are complex

o
! if term = 0, roots are equal
! if term > 0

if (term<0.0) thea

, roots are real and different
priat *, ' roots are complex’
else if (term>0.0) thea

term = sqrt (term)

rootl = (-biterm) /a2
root2 = (-b-term) /a2
print *, ! roots are /, rootl, ' aad /, &
root2
else
rootl = -b/a2
print *, ! roots are equal, at ’, rootl
ead if

-nd program ch1301

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ40.png
argument: time type: r
result: n/a class: s

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figd_HTML.gif
module day_and month_name_module

implicit noae

character (9) :: day(0:6) = (/ ‘Sunday *
‘Monday !, ‘Tuesday ', 'Wednesday’, &
‘Thureday ', ‘Friday ', 'Saturday ' /)

character (9] month(1:12) = (/ 'Janvary
‘February ', ‘March ¢, 'april !, &
‘ay “guae ,raly s
‘September’, ‘october ‘, &

‘August
‘Noverber ', 'December ' /)

onth_name_module

cnd module day_and

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ41.png
argument: array type: any
result: as array class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ42.png
argument: a type: n
result: dp class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ43.png
argument: x type:i, r
result: i class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ44.png
argument: X type:i
result: as arguments class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ45.png
argument: vector_ 1 type: n
argument: vector_ 2 type: n
result: as arguments class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ46.png
argument: x type: r
result: dp class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ47.png
arguments: i, j type:i or boz
argument: shift type:i
result: See note below. class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ48.png
arguments: i, j type:i or boz
argument: shift type:i
result: See note below. class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ49.png
argument: array type: any
argument: shift type: n
argument: boundary type: n
result: as array class: t

OEBPS/images/112282_4_En_BookBackmatter_Fign_HTML.gif
real,allocatable

grid(:), tempgrid(

allocate (grid(-a:a))
! initial allocation of grid

allocate (tempgrid(-2+a:2+a))
! allocate bigger grid

tempgrid(
! distribute values to new locations

empgrid)

call move alloc (to=grid, fro:

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figd_HTML.gif
tateger, dimeasion(l:sU)

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figq_HTML.gif
Station aberporthdata.taxt 2U6 records

Station armaghdata. txt 1962 racords
Station ballysatrickdata. txt 660 racords
Station bradforddata. txt 1302 racords

Linss deleted

Brocsssing absrporthdata.txt

Swmary of actual missing
valuss valuss
Janvary 76 o
Februoary 76 o
March 76 o
Aoril 76 o
vay 76 o
June 76 o
July 75 o
August 75 o
Sestember 75 o
Octobsr 75 o
Jri—— 75 o
Decembsr 75 o

Start date 1941 1

Rainfall monthly averagss over

< 76 years mwins
Janvary 20,71 3.57
Februoary 62.75 2.47
March 59.25 2.33
Aoril 5308 2.13
vay 57.99 2.28
June 57.23 2.25
July slo1 2.4
August 73.03 2.88
Sestember 7943 3.13
Octobsr 10440 4L
Jri—— 107,61 4.24
December 10200 402
Anual rainfall

averags 010.35 35.84

Bnd date 2006 6

inee deleted

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Figd_HTML.gif
http:
gec—4.5.2/gfortran. pdf

/gce.gnu.org/onlinedocs/

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figj_HTML.gif
1t (expression) then
block 1

SPS
block 2

o ndi £

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figo_HTML.gif
dimension (firs:

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figae_HTML.gif
call 1so_date_constructorsset_day(dd)

call iso_date_constructor$set_moath (mm)

call iso_date_constructor¥set_year (yyyy)
end function iso_date_constructor
function julian_to_iso_date (julian)

implicit noae
type (iso_date)

Julian_to_iso_date
integer, intent (in)

Julian

integer :: 1, a

1= julian + 68569

a = 441/146097

1=1 - (146097%a+3) /4

call julian_to_iso_date¥set_year ((4000*(1+ &
1)/1461001))

1=1 - 1461*julian_to_iso_datelget_year () /4 &
+ 31

call julian_to_iso_date¥set_month((80*1/ &
2447))

call julian_to_iso_date¥set_day((l- &
2447*julian_to_iso_date¥get_month()/80))

oath () /11

call julian_to_iso_date¥set_month &
((julian_to_iso_datetget_month () +2-12*1))

call julian_to_iso_date¥set_year ((100* (a- &

1 = julian_to_iso_dateSget_:

49) +ulian_to_iso_datesget_year()+1))

end function julian_to_iso_date

subroutine julian_to_iso_date_and_week_and_day &
(34, d, wd, ddd)
implicit noae
integer, intent (in)

3d
type (iso date), intent (out) :
wd, ddd

integer, intent (out)

d = julian_to_iso_date(jd)
wd = date_to_weskday_number (d)
ddd = date_to_day_in_year (d)

snd subroutine &

Julian_to_iso_date_and_weck_and_day

function prist_iso_date(this, day_names, &
short_moath_name, digits)
use day_and_moath_name_module
implicit noae

class (iso_date], isteat (in) :: this

logical, optional, inteat (ia] :: day_names, &
short_moath_name, digits

character (40)

print_iso_date
integer :: pos

logical :: want_day, waat_short_month_name, &

want_digits
1, t
intrinsic len trim, preseat, trim

integer

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figaq_HTML.gif
Tpiexec —a 3 chizls

Process aumber =

Process aumber =

1

1
1
1
1
1
1
1
1
1
1
1

1

1

10
1
12

=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)

Process aumber =

0

10

12
1
14
1)

1

10

12
1
14
1

=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)

5

10

15

20

25

30

35
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)
=(i)

40

45

50

55

60

65

70

s

2
1

30

40

45
50

0

start
start

start

11 end
6 ead

1 ead

1
10

5

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figg_HTML.gif
type shape_types

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figan_HTML.gif
ttort and icc, openSusSe Linux

ifort —c ch3511.£90 -o ch3511_f.o
icc ch3511.cxx ch3511 f.o

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figv_HTML.gif
tunction summation(x, n) bind (e, &
aame=' summation’ |
use iso_c_binding
implicit none

integer (c_int), value :: n

real (c_float), dimeasion (1:a], &

intent (ia)
real (c_float)
integer

summation

summation = sum(x(1:a))
and Funetien Summak ion

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ30.png
argument: 1 type:i
result: 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ31.png
argument: a type: r
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ32.png
argument: i type:i
result: char class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ33.png
argument: x type: c
result: ¢ class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ34.png
argument: X type: 1, r, boz
argument: y type: 1, r boz
result: ¢ class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ35.png
arguments: none result: 1
class:t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ36.png
argument: z type: c
result: as z class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ37.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ38.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ39.png
argument: mask type: 1
result: i class: t

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figam_HTML.gif
format (£/7.2)

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figt_HTML.gif
nagfor -04 chislZ.f4%0 dsort.o ssort.o isort.o

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figo_HTML.gif
http://www.1iso.0xqg/

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figp_HTML.gif
image
image
image
image
image
image
image
image
image
image

coarray x oa image

15

image
image
image
image
image

5

20

coarray x oa image

10

coarray

55

coarray

50

coarray

115dix

coarray

140

coarray

165

coarray

150

30

45
 on image
55

70
 on image
50

95
 on image
105

120
 on image
130

145
 on image
155

170
 on image

180

195

10

25

35

50

50

75

85

100

110

125

135

150

150

175

185

200

=03
=(3)
=(3)
=(3)
=(3)
=(3)
=(3)
=(3)
=(3)
=(3)

=(3) =

3 is
4 is
5 is
6 is
7 s
8 is

155
180
185
190
195
20
130
135
140

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq17.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq16.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq19.png
1l <dim<=n

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figbb_HTML.gif
nodule valid date _module
implicit noae

contains
logical function leap_year (year)

implicit noae
integer, intent (in)

year
if ((year/4)* then
leap_year
if ((year/400) *40f

year) then

leap_year = .true.
else if ((year/100)*100==year) thea
leap_year = .false.
ead if
else
leap_year = .false.
ead if

ead fuaction leap_year

subroutine check_date(day, month, year, ifail)

implicit noae

integer, intent (in) :: day
integer, intent (in) :: month
integer, intent (in) year

integer, intent (inout) :: ifail

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq18.png

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figf_HTML.gif
htto:

‘'www . forcheck.nl,

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figam_HTML.gif
T e, xS, Ly dd, 1
¥(1,2)¥(2,2)¥(3,2]¥ (10, 2)

v(1.10)Y (2, 10)¥(10, 10}

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figl_HTML.gif
program chibls

use icee_arithmetic

implicit noae

integer
real
real

integer it a

logical

integer :: a

character *1

if

© 10,000
*1,000, 000,

al, allocat

computed_sum
real_sum

rray_size

aexact_happened = .false.
llocate_status

3, dimeasion (3) :: heading = (/
, 0007, * 100,000,0007, &
,000 /)

table, dimension

(ieee_support_datatype (x)) then

priat *, &
¢ IEEE s

ead if

1

ray_size =

doi=1,3

100

110

120

write (unif

heading (
format ("
allocate (

upport for default precision’

0,000,000

10000000

=+, £mt=100) array_size, &
i)
Array size = ¢, il5, 2z, al3)

=(1:array_size), stat= &

allocate_status)

if (alloca
priat *,
stop
end if
= =1.0
computed_s
call ieee
inexact
real_sum
write (uni
format (’
write (uni
format (’
if (inexac
priat *,
priat *,
priat *,
step 20
end if
deallocate

array_size

ead do

te_status/=0) then

¢ Allocate fails, program eads’
um = sum(x)
get_flag(ices_inexact, &
happensd)

array_size*l.0

+, fmt=110) computed_sum

Computed sum = ¢, e12.4)

, £mt=120) real_sum
Real sum =, el2.4)
t_happened) thea

¢ inexact arithmetic’
¢ ia the summation’

¢ program terminates’

()
array_size*10

end program ch3605

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Chapter_TeX_IEq7.png
do concurrent

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figy_HTML.gif
nodule date_moduls

implicit noae

private

type, public :: date
private
integer :: day
integer :: month

integer

year
ead type date

character (9)

day (0:6)
‘Monday !, ‘Tuesday

(/ 'sunday 7, &

, ‘Wednesday’, &

‘Thureday ', ‘Friday ', 'Saturday ' /)

character (9) :: month(1:12) = (/ ‘Janvary ', &
‘February ', ‘March L orapril &
‘May ¢ June . rouly ‘s
‘Bugust !, ‘September’, 'October ', &
‘November *, 'December ' /)

public :: calendar_to_julian, date_, &

date_to_day_in_year, date_to_weekday_number, &
get_day, get_month, get_year, &
Julian_to_date, &
julian_to_date_and_week_and_day, adays, &
print_date, year_and_day_to_date

contains

function calendar_to_julian(x] result (ival]
implicit noae
integer :: ival
type (date], iateat (ia)

ival = x¥day - 32075 + 1461% (sbyear+4800+ (x% ¢
moath-14) /12) /4 + 367* (x¥month-2-((x%month &
~14) /12)*12) /12 - 3*((x¥y=ar+4900+ (x3month &
-14) /12)/100) /4

ead fuaction caleadar_to_julian

function date_(dd, mm, yyyy) result (x)
implicit noae
type (date)
integer, inteat (ia)

dd, mm, yyyy

= date(dd, mm, yyyy)
end function date_

! functions

¢ omizlen date_to_day_in_year

! and

! "iday" date_to_weekday_nuzber

are taken from remark on
! algorithm 338, by j. douglas robertson,
! cacm 15(10) :918.

function date_to_day_in_year (x)
implicit noae
integer :: date_to_day_in_year
type (date), iateat (ia) :: x
intrinsic modulo

date_to_day_in_year = 3055*(x¥month+2) /100 - &
(s¥month+10) /1342 - 91 + (1-(modulo (xbyear &
/4)43) / 4+ (modulo (x¥year, 100) +99) /100-(&
modulo (x¥year, 400) +399) /400) * (x¥month+10) / &
13 + x3day

ead fuaction date_to_day_in_year

function date_to_weekday_number (x)
implicit noae

integer :: date_to_weekday_umber

type (date], iasteat (in) :: x

intrinsic modulo

date_to_weekday_number = modulo((13*(&
=¥month+10- (x¥moath+10) /13412) -1) / S+xtday+ &
T745% (x3year+ (ximonth-14) /12- (xbyeart &
(:x¥moath-14) /12) /1004100) /4+ (x¥year+ (x3 &
moath-14) /12) /400~ (x¥year+(x¥month- &
14)/12) /10042,)

end function date to_weskday number

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Fign_HTML.gif
program chlsls
implicit noae
integer

real

ansver = 1/3%k
print *, i
priat *, j
priat *, k
print *, ansver

end program ch0503

OEBPS/images/112282_4_En_BookBackmatter_Figw_HTML.gif
reduce dim

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq24.png
1l <=dim<=n

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figp_HTML.gif
do

if (logical espression) exit
ernd do

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq23.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq26.png
ldy, da, ..., dprvi-1, dpiv+ts - dy]

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figg_HTML.gif
use precision_module

use integer_kind_module

interface sort_data
module procedure sort_real_sp
module procedure sort_real_dp
module procedure sort_real_gp
module procedure sort_iateger_8
module procedure sort_integer_16
module procedure sort_integer_32
module procedure sort_integer_6d

ead interface sort_data

contains

subroutine sort_real sp(raw_data, how_many)
use precision_module
implicit noae
integer, intent (in) :: how_many
real (sp), iateat (inout], dimension

rau_data

call quicksort(l, how_many)

contains

recursive subroutine quicksort(l,)
implicit none
integer, inteat (in)

i3

.t

integer

real (sp)
include ‘quicksort include code.£90’
ead subroutine quicksort
end subroutine sort real cp
subroutine sort real dp(ras_data, hou_many)

use precision_module
implicit noae

integer, intent (in) :: how_many

real (dp], inteat (inout), dimension

rau_data

call quicksort (1,

contains
recursive subroutine quicksort(l,)
implicit none

integer, inteat (in)
i3
.t

integer

real (dp)

include ’quicksort_include_code. £90"

ead subroutine quicksort
ead subroutine sort_real_dp

subroutine sort_real gp(raw_data, how_many)
use precision_module
implicit noae
integer, intent (in)

how_many

real (qp), iateat (inout], dimension

rau_data

call quicksort (1,

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq25.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq20.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq22.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq21.png

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figa_HTML.gif
program chU/ul

! This program is a simple variaat of ch0602.
! The array is now allocatable

! and the user is prompted for the

auzber of people at rua time.

implicit noae
integer

aumber_of_people
total = 0.0, average = 0.0

real

integer

: persoa
real, dimension (:], allocatable

weight

priat *, ¢

How many people?’
read *, aumber_of_people
allocate (weight (1:number_of_people))
do person = 1, number_of_people
print *, ' type in the weight for persoa ', &
person
read *, weight (person)
total = total + weight (person)
ead do

average = total/auzber_of_people

print *, ' The total of the weights is ', &
total

print *, ! Average Weight is !, average

print *, ', number_of_people, &

Weights were
do person = 1, number_of_people
print *, weight (person)
ead do
end program ch0701

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq28.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Fign_HTML.gif
do
block of statements
if (logical expression) exit
ernd do

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq27.png
[d17 d27 eeey dn]

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq29.png

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figc_HTML.gif
include ‘precision
include ‘ch2701_liak_module.£90’

program ch2701
use precision_module
use Liak_module

implicit noae

integer, parameter :: wp = dp

type (link(real_kind=wp)), poister :: root, &
curreat

integer :: i =0

integer :: error = 0

integer :: io_stat_aumber = 0

real (vp), allocatable, dimension (:)

allocate (root)

priat *, ' type in some numbers’

o_stat_number) &

read (unit=*, fmt=', iostat
root%a

if (io_stat_number>0) thea
error = error + 1

else if (io_stat_numbe: thea

aullify (root¥aest)
else
Q=i+
allocate (rootdnesxt)
ead if
curreat => root
do while (associated (curreati¥next])
curreat => curreat¥aext

, iostat=io_stat_mber) &

read (uait=*, fmt
curreat¥a
if (io_stat_number>0) thea
error = error + 1
else if (io_stat_number<0) then
aullify (curreatinest)
else
Q=i+
allocate (curreat¥next)
ead if
ead do

print *, i, '

items read’

)

print *, error, ! items in error’

allocate (x(
i=1
curreat => root
do while (associated (curreati¥next])

2(i) = curreatsn

Q=i+

print *, curreatsn

curreat
ead do

priat *,

curreatsaest

end program ch2701

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figah_HTML.gif
> subroutine dsort_dpldx, dy, 2, kitlag)
> use pracision medule , uo

> imolicit none
517
< double precision dx(*), dy(*)

> xeal (wp) i dx(t), dy(t)
s6cs

< double precision x, t, te, tty, ty

> xeal @) ox b, ke, tey, by

s5c34
< x = 0.3750

- r = 0375
97, 99c36, 38

< 100 if (i==3) go to 110

< iF (r=0.3898437d0) thea

¢ =+ 35082502

3) g0 o 60
0.5858437 o) then

© = r o+ 3.90825_vp/100.0_
Lo1ein

< = - o.2187500

- 021875

200e138
< x = 03750

- r = 0375
202, 2046141, 133

< 180 if (i==3) go to 230

< iF (r=0.3898437d0) thea
¢ =+ 35082502

> 110 i€ (1==3) go to 150
> AE (r=0.5898437_v2) thea
o= r o+ 3.90625_vp/100.0_vp
206c145

< = - o.2187500

e r =1 - 0.21875

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figd_HTML.gif
character (S0)

laist, straing, line

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figar_HTML.gif
Epsilon
cray
1.92562994438723585305597794258452732E-34
gfortran
1.92592994438723585305597794258492732E-0034
Iatel
1.925929944387235853055977942584527E-0034
ag
2.4651903288156618919116517TE-32
oracle (sua)
1.9259299443872358530559779425849273E-34
Huge
cray
1.189731495357231765085759326626800702E+4 932
gfortran
1.189731495357231765085759326626800702E+4 932
Iatel
1.189731495357231765085759326628007E-+4932
ag
8.98846567431157953864652595E+307
oracle (sua)
1.18973149535723176508575932662800 7844932
Tiny
cray
3.3621031431120935062626778173217526E-4932
gfortran
3.36210314311209350626267781732175260E-4 932
Iatel
3.3621031431120935062626776173217538-4932
ag
2.00416836000897277799610805E-292
oracle (sua)
2 26210314311200350 6262 6778173217526 F—4G32

OEBPS/images/112282_4_En_BookBackmatter_Figaw_HTML.gif
“
Enable ruatime subscript range checking
o

Use default optimization level (-x03)
0>

Same as -x0<n>
~aligncommon[=<a>]
Aliga common block elements to the
specified boundary requiremeat;
<a>=(112141816|daliga)
Report noa-ANSI extensions
~autopar
Enable automatic loop parallelization
~dalign
Expands to -aligncommon=daliga

fma=<a>

Enable floating-point multiply-add
instruction; <a>={none|fused)
~£as [={yes|n0)]
Select noa-standard floating point mode
fopenmp
Equivaleat to -xopeamp=parallel
_fprecisio:

Set FP rounding precision mode;

<a>={single |double|exteaded)
_fstore

Force floating pt. values to target

precision on assigament

frrap
Select floating-point trappiag mode in
effect at startup

g

Compile for debugging

~x0<n>
Generate optimized cods; <a>={112131415)

_sarch=ca>
Specify target architecture instruction set

scach

Define cache properties for use by optimize:
chip=<a>
Specify the target processor for use by the
optimizer
~xdepead [=(yes [20)]
Analyze loops for data dependencies
ivdep

ca>]
Ignore loop-carried dependences on array
references in a loop;
<a>=11o0p | Loop_any|back [back_any |acne]
xlibmil
Inline selected libm math routines for
optimization
xlibmopt
Liak with optimized math library
sregs=cas(, <a>]
Specify the usage of cptional registers;
ca=Erameptz]

_starget=<a>

Specify target system for optimization

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq35.png
|shift| <= bit_size(i)

OEBPS/images/112282_4_En_BookFrontmatter_Figa_HTML.gif
&) Springer

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq34.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq37.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq36.png
|shift] <= size

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figv_HTML.gif
iateger @i o_iatervals

real (dp) :: interval width, x, total, pi

real (dp) :: fortran internal pi

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq31.png
0 <= pos <= bit_size(i)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq30.png
—-10

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq33.png
1 <=1i <= (len(string) — len(substring) + 1)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq32.png
len(string) < len(substring)

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figd_HTML.gif
htto: //rhyvmaevcoasulting.co.uk/fortran/coavert . £90

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figp_HTML.gif
program chlsus
implicit noae
real

light_mimute, distance, elapse
integer :: minute, second
real, parameter :: light_year = 9.46%10%12
! Light_year : Distance travelled by light
! ia one year i km
! Light_minute : Distance travelled by light
! ia one minute in km

! Distance : Distance from sua to earth is
! km

! Elapse Time takea to travel a

! distance (Distance) in mimutes

! minute integer number part of elapse
! Second integer number of secoads

! equivaleat to fractional
! part of clapse

light_minute = light_year/(365.25¢24.0%60.0)
distance = 150.04104%6

clapse = distance/light_minute
mimite = elapse

second = (elapse-minute)*60

print *, ' Light takes /, minute, ’ Minutes’
priat *, ' ', secoad, ' Secoads’

print *, ! To reach the earth from the sua’

end program ch0504

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figc_HTML.gif
leee_usual

(/ 1eee_overflow,
jeee divide by _zero, ieee invalid /]

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figf_HTML.gif

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Figc_HTML.gif
program chlsUs
implicit noae

! program to calculate frequeacy
! response of a system

! for a given omega

! and its polar form (magnitude and phase) .

real

omega, real_part, imag_part, &
magnitude, phase
comple:

frequency_response

! Isput frequency omega

print *, ‘Input frequency’
read *, cmega

1.0/cmpls (-omega cmega+ &

frequency_response
1.0, 2.0%cmega)
real_part = real(frequency_response)

imag_part = aimag (frequency_response)

! Calculate polar coordinates

(magnitude and phase)

magnitude = abs (frequency_response)
phase = atan2 (imag_part, real part)

priat *, ' at frequeacy ', omega

print *, ‘response = !, realpart, ' +i ', &
imag_part

print *, ’in polar for

print *, ' magaitude = ‘, magaitude

print *, ' phase = /, phase

end program chl1502

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figl_HTML.gif
https uk/pub/data/weather/
uk/climate/stationdata/whitbydata. txt

/fwww .metoffice.gov

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figaf_HTML.gif
program chU3ls
implicit noae

integer, parameter :: a = 10000000
integer, dimension (1:a) :: x = 0
real, dimension (l:ia) y = 0.0
integer :: i

real :: t, t1, t2, t3, t4, t5
character *30 :: commeat

opea (unit=10, file='ch0813.txt’)

call cpu_time (t]

t1=t
commeat = ¢ Program
print 120, comment,
doi=1,n

=(i) = i
ead do

call cpu_time (t]
2=t -l

comment = ¢ Integer
print 120, comment,
y = real (x)

call cpu_time (t]
3=t -tl-t2
comment = ¢ Real
priat 120,
doi=1,
(10,

comment,

write
ead do
call cpu_time (t]
4
comment = ‘
priat 120,
doi=1,
(10,

100) =(

Integer
comment,
write
ead do
call cpu_time (t]
5

110) y(

comment = ¢ Real
print 120, comment,
100 format (1x, i10)
110 format (1x, £10.0)
120 format (1x, a, 23,

end program ch0913

starts ‘
£

array initialised
2

array initialised
2

i)

Stotl-t2-t3

write !

4

i)

Stotl-t2-t3-td

write !

5

£.3)

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figc_HTML.gif
(rainfall(6) + raintall(/) + &
rainfall(8))/3

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbe_HTML.gif
call displayi(n,s|

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figag_HTML.gif
integer , dimension(

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figw_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_Figp_HTML.gif
aormz([5.0, 4.0]) 15 5.0.
If : has the value

1.0 2.0

3.0 4.0
aorm2 (x,dim=1) is [3.162, 4.472]
) is [2.236,5.0]
approximately.

aorm2 (3, dix

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figg_HTML.gif
iatertace
module subroutine set_day(this, dj
implicit none
d

class (date), inteat (inout)

integer, inteat (in)

this

ead subroutine set_day
ead interface

interface
module subroutine set_month(this, m)
implicit none

integer, inteat (ia) :: m

class (date], intent (imout) :: this

ead subroutine set_month
ead interface

interface
module subroutine set_year (this,)
implicit none

integer, inteat (in) v
class (date), inteat (inout)

ead subroutine set_year

this

ead interface

interface
module function &
year_and_day_to_date(year, day_in_year)

use day_and_month_name_module

implicit none
type (date)

year_and_day_to_date
integer, inteat (in)

day_in_year,
ead fuaction year_and_day_to_date
ead interface

public :: calendar_to_julian, &
date_to_day_in_year, &
date_to_weekday_number, get_day, &
get_moath, &
get_year, julian_to date, &
julian_to_date_and_week_and day, &
adays, print_date, &
set_day, set_month, set_year, &

year_and_day_to_date

-nd module date module interface

yeaz

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq13.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq12.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq15.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq14.png
-3.16

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq11.png
nl+i—-1

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figay_HTML.gif
program chlsls
! use the bit functions ia Fortran to vrite out
! 32 bit integer number as a sequeace of

! zeros and oaes

implicit noae

iateger :: 3

integer :: i

integer, parameter :: i8 = selected_int_kind (2
)

integer, parameter :: i1§ = selected_int_kind(
1)

integer, parameter :: 132 = selected_int_kind(
9

i1
iz

integer (i8)
integer (i16)

integer (132) :: i3
character (len=32) :: i_in bits
priat *, ’ type in an isteger '

read 4, i
il = dnt (i, kiad(2))
i2 = dnt (i, kind(4])
i3 = dnt (i, kiad(9))

iin pits
do3=0,7
if (btest(il,3)) thea
iin pits(8-3:8-3)
else

i_in bits (8-3:8-3)
end if
end do
priat *, ¢ 1 2 3
print *, ‘12345678301234567890123456789012"
priat *, il
priat *, i_in bits
do 3 =0, 15
if (btest(i2,3)) thea
i_inbits(16-3:16-3) = ‘1’
else
i_inbits(16-3:
end if
end do

print ¥, i2

print *, i_inbits
do =0, 31
if (btest(i3,3)) thea

i_in_bits(32-3:32-3) = ‘1’
else
i_in_bits(32-3:32-3) = ‘0
ead if
ead do

print ¥, i3
priat *, i_in bits
end program ch0513

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq10.png

OEBPS/images/112282_4_En_17_Chapter/112282_4_En_17_Figd_HTML.gif
‘ariablenamescomponent__name

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq60.png
size >=n

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figi_HTML.gif
program chlils
implicit noae

Simple case statemeat example

integer :: i, 3, k
character :: operator
do

priat *, ' type in two integers’

read *, i, 3

priat *, ’ type in operator’

read ‘(a)’, operator

calculator: select case (operator)
case ('+') calculator

k=i+3

priat *, Sum of aumbers is !, k
case ('-') calculator

k=i-3

print *, ' Differeace is ', k
case (/') calculator

k=1i/3

print *, ! Division is !, k
case ('*') calculator

k=43

priat *, ’ Multiplication is ', k

case default calculator
exit

ead select calculator

ead do
end program ch1303

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq62.png
0 <= size < 16

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq61.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq68.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq67.png
—|al

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq69.png
—|al

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq9.png
80 % 86

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq64.png
-10" <n < 10"

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq63.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq66.png
b<0

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figu_HTML.gif
type (shape_types)

shape_type (10, 20

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq65.png
b>0

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figq_HTML.gif
program chiblb

use precision_module
use icee_arithmetic

implicit noae

real (sp) :: %0 = 0.0
real (dp) 0.0_dp
real (qp) = 0.0 g
real (sp) =10
real (dp) 1.0_dp
real (qp) - 1o g
real (sp) :: wmaan = 1.0
real (dp) :: yaan = 1.0_dp
real (qp) :: zaan = 1.0_qp
real (sp) i: minfinite = 1.0
real (dp) :: yinfinits = 1.0_dp
real (qp) :: sinfinits = 1.0_qp
sinfinite = x1/x0
yinfinite = y1/y0
zinfinite = z1/20
snan = 50/x0
y0/y0
20/z0
if (ieee_support_datatype (x1)) thea
print *, ¢ 32 bit IEEE support’
priant *, ¢ inf ¢, ieee_support_inf (xl
print *, ¢ aan ¢, iese_support_nan (xl
priat *, ¢ 1/0 finite’, ieee_is finite(&
sinfinite)
priat 4, ¢ 0/0 nan, iess_is_nan(xaan)
end if
if (ieee_support_datatype (y1)) thea
print *, ¢ 64 bit IEEE support’
print *, ¢ inf ¢, ieee_support_inf (yL
print *, ¢ aan ¢, iese_support_nan (vl
print *, ¢ 1/0 finite’, ieee_is_finite(&
yinfinite)
priat 4, ¢ 0/0 nan, iess_is_nan(yaaa)
end if
if (icee_support_datatype (z1)) thea
priat *, ¢ 128 bit IEEE support’
priant *, ¢ iaf /, iese_cupport_inf (z1
print *, ¢ aan ¢, iese_support_nan(zl
print *, ¢ 1/0 finite’, ieee_is finite(&
zintinite)
priat 4, ¢ 0/0 nan, iess_is_nan(zaaa)
end if

end program ch3606

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq7.png

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq6.png

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbd_HTML.gif
priat_string
Hello

replace_string

After Hello Hello

concatenate_string

A fray Helle Hello Helle

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figw_HTML.gif
£ =1.0
DO CONCURRENT (1=1:10) LOCAL (X)
IF (& (I) > 0) THEN

SORT (A (1))
A (1) = (1) - x02
ED IF
B (1) =B (1) -2 (1)
EID DO
PRINT *+, ¥ ! Always priats 1.0.

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figi_HTML.gif
include ‘precision _module.L3aldt
include ’timing_module.£90"

program ch3403

use precision_module
use timing_module

implicit noae

real (dp) :: fortran internal pi
real (dp) :: partial pi

real (dp) :: coarray_pi

real (dp) :: width

real (dp) :: total_sum

real (dp) :: x

real (dp), codimeasion [*] :: partial sum
integer :: a_intervals

integer
integer

3

integer :: curreat_image

integer :: a_images
fortran internal_pi = 4.0_dp*atan(1.0_dp)
a_images = aun_images ()

curreat_image = this_image ()

if (current_image==l] then

¢ Wuzber of images =

priat *,
end if

a_images

a_iatervals = 100000

doj=1,5
if (current_imag:

) thea
call start_timing()

ead if

width = 1.0_dp/real(n_intervals, dp)

total_sum = 0.0_dp

partial_sum = 0.0_dp

do i = current_image, a_intervals, a_images
= = (real(i,dp)-0.5_dp) *width
partial_sunm = partial sum + £ (x)

ead do

partial_sum = partial_sum‘width

syac all

if (current_imag:

) thea
do i =1, n_images
total_sum = total_sum + partial sum [i
1
ead do

coarray_pi = total_sum

priat 100, n_iater

1s, time_difference()

print 110, coarray_pi, abs(coarray_pi- &
fortran_internal_pi)

ead if
a_iatervals = a_iatervals*l0
syac all

ead do

100 format (' a intervals
£6.3)

110 format (/ pi = ', £20.15, /, &
¢ difference = ', £20.16)

contains

real (dp) fumction f(x)
implicit nene
real (dp), iateat (in)

£ = 4.0 dp/ (1.0_dp+itx)

ead fuaction £

end program ch3403

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq71.png
1l <=dim<=n+1

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq70.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq73.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq72.png
n+1

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figba_HTML.gif
program chlsls
implicit noae

real, parameter :: atomic_mass_coastant = &
1.6605389214104% (-27)
real, parameter :: avogadro_comstast = &

6.02214129+104423
real, parameter

1.3806488410%* (-23)
real, parameter

: boltzmaan_coastaat = &

clectron_mass = 9.10938291% &

104+ (-31)

real, parameter :: elemeatary_charge = &
1.6021765654104% (~19)

real, parameter :: proton_mass = 1.672621777% &
104+ (-27)

real, parameter :: speed_of_light_in_vacuum
299792458

real, parameter :: &

aewtonian_constant_of_gr. 6.67384% &

104+ (-11)

print *, atomic_mass_coastant
print *, avogadro_coastant
print *, boltzmann_constaat
print *, electron_mass

print *, elementary_charge
print *, proton_mass

print *, speed_of_light_in vacuum

print *, newtonian constant_of gravitation
end program ch0515

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figd_HTML.gif
http://www.netlib.org/slatec/sxrc/

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq79.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq78.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Fige_HTML.gif
1eee_status_types

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq75.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq74.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq77.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq76.png
1l <=dim<=n

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Fign_HTML.gif
include "day_and month_name_module.L30°
include ‘date_module_interface.£90"
include ‘date_module_implemeatation.£90"

program ch3001

use date_module_interface , only
calendar_to_julian, &
date, date_to_day_in_year, &
date_to_weekday_number, get_day, get_month, &
get_year, julian_to_date, &
Julian_to_date_and_week_and_day, adays, &

print_date, year_and_day_to_date

implicit noae
dd, ddd, i, mm, ndiff, wd, yyyy
Julian

al (@)

intrinsic date_and_time

datel, date2, x, txl, tx2

integer

integer

integer

type (date]

call date_and_time (values=val)
al (1)

yyvy =
am = 10
do i =31, 26, -1

% = date(i, mm, yyyy)

if (xddate_to_weckday_number ()

) thea
priat *, ‘Tura clocks back to EST on: ', &

i, ' October ', x%get_year()
exit
ead if
ead do
call date_and_time (values=val)
yyyy = val(l)
=4

doi=1,8
% = date(i, mm, yyyy)
if (xddate_to_weckday_number ()

) then
priat *, ‘Tura clocks ahead to DST on: ', &

i, ¢ April /, =Sget_year()

axit

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq39.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq38.png
1l <=dim<=n

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figj_HTML.gif
program chibls

use icee_arithmetic

implicit noae
integer :: i
real 1.0

overflow_happened = .false.

logical

if (ieee_support_datatype (x)] thea
priat *, &

IEEE support for default precision’
ead if

doi=1, 50
if (overflow happeaed) then

print *, ' overflow occurred '
priat *, ' program terminates’
stop 20

else

print 100, i, x
100 format (', i3, ' ¢, el2.4)
ead if
2= %410.0

call iese_get_flag(ices_overflow,

over£low_happened)
ead do
end program ch3603

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figj_HTML.gif
https uk/pub/data/weather/
uk/climate/stationdata/cumystuwythdata. txt

/fwww .metoffice.gov

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figa_HTML.gif
https
fort ran—informat ion/

/fwww.fortranplus.co.uk/

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Fige_HTML.gif
do counter

start, end, 1ncremesnt

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figq_HTML.gif
Height Weight

1.85 85
1.80 76
1.85 85
1.70 B
1.75 5¢
1.67 83
1.55 64
1.63 57
1.79 68
1 78 e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq40.png
1l <=dim<=n

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figak_HTML.gif
U
0
.0
0
0

65.

€4 €

68.
10.
30.
o8

ss.
36.
65.
65.

70.
38.
61.
s0.

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq46.png
a=qb+r

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq45.png
a—int(a/b) « b

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq48.png
b>0

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_IEq16_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq47.png
O<=r<b

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figad_HTML.gif
open (uait=l, file=&

¢ /home/ian/document /fortran/ch0912.txt ‘]

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Fige_HTML.gif
nodule maths_module

use precision_module, wp => dp

implicit noae

real (wp), parameter

© = 299792458.0_up
! uaits m s

real (wp), parameter
2.7182818284590452353602874713526624977_up

real (wp), parameter 9.812420_p
9.780 356 m s-2 at sea level on the equator
! 9.812 420 m s-2 at sea level in Loadon

! 9.832 079 m s-2 at sea level at the poles

real (wp), parameter :: pi = &
3.141592653589793238462643383279502884_up

end module maths module

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq42.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq41.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq44.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq43.png
1l <=dim<=n

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_Equ2.png
q
I=s Z lkrk_l
k=1

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_Equ1.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbh_HTML.gif
http://grouper.ieese.oxrg/groups/ 754/

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq49.png
b<r<=0

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_Equ4.png
t = 2m +/length/9.81

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figo_HTML.gif
<> but (%)

initial address of receive buffer
integer count

auzber of elements in the receive buffer
datatype

data type of cach receive buffer elemeat
source - rank of source
tag - message tag
comm - commnicator
status (wpi_status_size] ,

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_Equ3.png
m

x=sb" Y fib™

k=1

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figaz_HTML.gif
Llua
Mavrth
Mercher
Tan
Guener
Sadvra

Sul

HMonday
Tuesday
Tedaesday
Thursday
Friday
Saturday
Sunday

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figu_HTML.gif
3

5.7

(rounding up from 5.666666..

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq51.png
a — floor(a/b) = b

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figaa_HTML.gif
DAY TS A COMPANTON TO CALEND; GIVEN A CALENDAR DATE, Y¥¥Y, M,
DD, IDAY IS RETURNED AS THE DAY OF THE YEAR.
EXAPLE: IDAY (1584,1,22)=113
DAY (YYYY, 1, DD) =3055* (116+2) /100~ (H4+10) /131251
. +(1- (HOD (¥¥¥¥, 1) +3) /4+ (OD (¥¥¥¥, 100) +9
y — (MOD (YYYY, 400)+399) /400) * (MM+10) /13+DD

¢

) /100

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq50.png
b<0

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq57.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq56.png
1l <=dim<=n

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figi_HTML.gif
a " b=b"a
At br*cz=a* (b*c

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq59.png
size >=n

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figf_HTML.gif
do - sStart of outer loop
do ! Start of inner loop

eaddo ! Ead of inaer leop
-nddo | End of outer loop

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figk_HTML.gif
"DECE DSORT

EXTERUAL XERMSG

IF (m .LT. 1) THEN

CALL XERMSG ('SLATEC’, /DSORT’,
+ ‘The aumber of values to be sorted is not positive.’,
11
RETURI
EDIF
IF (KK.NE.1 .AND. KK.NE.2) THEIN
CALL XERMSG ('SLATEC’, /DSORT’,
+ ‘The sort coatrol parameter, K,
2,
+ 1

RETURI
EDIF

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq58.png
O<=x<1

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq53.png
topos + len <= bit_size(to)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq52.png
frompos + len <= bit_size(from)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq55.png
a<=0

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq54.png
a>0

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figai_HTML.gif
Beo e B U e Re o deome e Be by
F, C, M, U, G ¥, P W B
3 0z

) K,

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figau_HTML.gif
nodule shape_module

type, abstract :: shape_type
integer, private -0
integer, private -0

contains

procedure, pass (this) :: get_x
procedure, pass (this) :: get_y
procedure, pass (this) :: set_:
procedure, pass (this) :: set_y

procedure (calculate_area), pass (this), &

deferred :: area

end type shape. type

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figr_HTML.gif
subroutias

cmortidx, €y, 3, ktlag)

L++1BEGIN PROLOGUE DSORT
111PURPOSE Sort aa array aad ostionally make the same interchanges ia
! a3 auxiliary array. The array may be sorted ia increasizg
' or decreasing order. A slightly modifisd QUICKSORT

' algorithn is used

|'LIBRARY SLATEC

L+11CATEGORY N6AZE

] DOUBLE PRECISION (SSORT-S, DSORT-D, TSORT-T)

*+'KEYHORDS STNGLETON QUICKSOR, SORT, SORTING

[*113UTHOR Jones, . E., (SULA)

! Wisaiewski, 3. A., (SNLA)

L+++pESCRIPTION

| DSORT sorts array DX aad ostionally makes the same interchanges ia

L ascraa:

| Descri:
' b
' IS
' u

DY. The array D may be sorted in iacreasing order or
sing order. A slightly modifisd quicksort algorithm iz used

Stion of Paramsters
= array of valuss to be sortsd (usually abscissas)
- array to be (ostionally) carried alosg

- umber of values ia array D to be sorted

' KFLAG - costrol paramster

PUTS—

= 2 means sort DX ia increasiag order aad carry DY aloag
1 means sort DX in increasing order (igaoring DY)
means sort DX ia decreasing order (igaoriag DY)

means sort DX in decreasing order and carry DY aloag

NCES . C. Siagletos, Algorithm 317, Aa efficient algorithm
for sorting vith minimal storags, Communications of
the ACH, 12, 3 (1565), sp. 185-187

*+'ROUTINES CALLED XERNSG

|+ ~FEVISI:
L 7en01
L 7e1me
L esosan
L espear
L esio0s
L esio21
L esio21
L esizna
L sooais
L soimz

L szoso1
L saos1s
L szpeny

ol HISTORY (rOmD)

DATE WRITTEN

Modifisd o use the Singleton quicksort algorithm. (JAW)

Changed all specific intrinsics to gesric. (WRE)

Modifisd array declarations. (7RE)

Femoved uarsfersaced statemeat labels. (VRE)

Chasged category. (VRE)

FEVISION DATE from Version 3.2

Prologus convertsd te Version 4.0 format. (BAR)

CALLs to ¥ERFOR changed to CALLS to XERMSG. (THJ)

Declarsd all variables; changed X,¥ to DX,DY; chaged
code to arallel SSORT. (. McClain)

Feformatted the REFEREICES section. (DWL, WRE)

Clarifisd srror messages. (DWL)

Declarations saction rebuilt and cods restructursd to uss

TP-THEN-ELSE-EWDIF. (RiC, 7RE)

+11EUD PROLOGUE DSORT

' B
iateger
doubls o
' L
doubls o
iateger
' L
iateger
' &:
' By

satrinsi
PR

calar Arguneats
Kelag, 2

rray Arguneats

recision dx ('), dy(*)

ocal Sealars

recision x, t, e, tey, 7
4043, 3,k M 1 om oaa
ocal Arrays

11021), 1w

staraal Subroutines

BRIAL XERNSG

Intriasic Functions

© abs, iat

ECUTARLE STATEWENT DEORT

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Fign_HTML.gif
nodule timing_moduls

implicit noae

integer, dimension (8), private :: dt
real, private :: h, m, s, ms, tt
real, private :: last_tt

contains

subroutine start_timing()
implicit noae

call date_and_time (values=dt)
print 100, dt(1:3), dt(5:8)
h = real(dt (5))
real (dt (6))
real (dt (7))
ms = real(dt(8))
last_tt = 60%(60*h#m) + s + ms/1000.0
100 format (1x, id, //', i2, '/, i2, 1z, i2, &
rie,d2, tir, 42, 1w, i3)

ead subroutine start_timing

subroutine ead_timing()
implicit noae

call date_and_time (values
priat 100, de(1:3), de(5:8)

100 format (1x, i4, '/', 42, /7, i2, 1x, i2, ¢
fir, 52, ver, a2, 1w, 43)

ead subroutine end_timing

t)

real function time_difference ()
implicit noae

tt = 0.0
call date_and_time (values=dt)

h = real(dt (5))

m = real (dt (6))

s = real(dt (7))

real(dt(8))

£t = 60*(50h4m + s + ms/1000.0
time_difference = tt - last_tt

Fl
"

last_tt = tt

ead fuaction time_difference

cnd module timing module

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figd_HTML.gif
program chi2ll

implicit noae

print *, ' Hello world from image ', &

this_image ()

end program ch3401

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figw_HTML.gif
https: //www.lso.org/standard/ 72320 . html

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figad_HTML.gif
Infinaty
1 0000000F4+30

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figi_HTML.gif
/meetings.mpi-forur

orqg/

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Fige_HTML.gif
program chlaU3
implicit noae
real, dimensioa (5) /1.0, 2.0, 3.0,
4.0, 5.0 /)

! elemeatal fuaction

print *, ’ sine of !, x, ' sin(zx)
! transformational function
priat *, © sum of ‘, z, / =/, sun(x)

end program ch1204

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbj_HTML.gif
program base_coaversion
implicit noae

real :: zl = 1.0
real :: :2 = 0.1

real :: x3 = 0.01
real :: x4 = 0.001

real :: =5 = 0.0001

print *, © ¢, xl
priat *, © ¢, x2
priat *, © ¢, x3
print *, © ¢, x4
print *, © ¢, x5

end program base coaversion

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figal_HTML.gif
allocate

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figy_HTML.gif

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figb_HTML.gif
1t (logical expression) then
block of statements

o ndi £

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figaa_HTML.gif
include ‘precision _module.L3aldt

include ’timing_module.£90"

program ch3204
use precision_module
use timing_module
use mpi
implicit noae

real (dp) :: fortran internal pi
real (dp) :: partial pi
real (dp) :: total pi
real (dp) :: width

real (dp) :: partial sum
real (dp) :: x

integer it a

integer :: this_process
integer :: n_processes
integer :: i

iateger :: 3

integer :: error_umber

call mpi_init (srrox_number)

call mpi_comm_size (mpi_comm_world,

a_processes, error_mumber)

call mpi_comm_rank (mpi_comm_world,
this_process, error_number)

a = 100000

fortran_internal pi = 4.0_dp*atan (1.0_dp)

if (this_process==0) then
call start_timing()
print *, ' fortran iaternal pi = ', &

fortran_interaal_pi
ead if
doj=1,5
width = 1.0 dp/a
partial_sum = 0.0_dp
do i = this_process + 1, a, a_processes
= = width* (real (i, dp] -0.5_dp)
partial_sum = partial sum + £ (x)
ead do
partial_pi = width*partial_sum
call mpi_reduce (partial pi, total pi, 1, &
mpi_double_precision, mpi_sum, 0, &
mpi_comm_world, error_number)
if (this_process==0) then
print 100, a, time_difference ()
print 110, total pi, abs(total pi- &
fortran_internal_pi)

ead if
a=atl0
ead do
call mpi_finalize (error_number)
100 format (' W intervals = ', i12, time
£6.3)
110 format (/ pi = ', £20.15, /, &
¢ difference = ', £20.16)
contains

real (dp) fumction f(x)
implicit nene
real (dp), iateat (in)

£ = 4.0 dp/ (1.0_dp+itx)
ead fuaction £

end program ch3204

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figd_HTML.gif
allocate (root)

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figl_HTML.gif
~ont alns

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figm_HTML.gif
http:/ /www.netlib.oxg/pvm3/

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figac_HTML.gif
Lo1n L
calculated

Expected

I ia 10,
calculated

Expected

1 ia 100,
calculated

Expected

1 ia 1,000,
Ccalculated

Expected

1 ia 10,000,
Calculated

Expected

Hoo, oo, ouu

000, 000,000

000, 000,000

000,000,000

000,000,000

4. guuogguod
9.999998606957660TE-10

Absolute error

.0000000000000001E-09

Relative error

1.0000000001
1.0000000827403710E-10

Absolute error

.0000000000000000E-10

Relative error

1.00000000001
1.0000000827403710E-11

Absolute error

.9999599995999994E-12

Relative error

1.000000000001
9.9986685597741508E-13

Absolute error

.9999999995999998E-13

Relative error

1.0000000000001
1.0014211682118912E-13

Absolute error

.0000000000000000E-13

Relative error

.3930423398822253E-16

.3930423398822253E-07

.2740370862658176E-18

.2740370862658176E-08

2740371059593 404518

2740371059593 408E-08

3314402258393 958E-16

.3314402258393 958204

4211682118911 691816

4711687118911 691F—073

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figq_HTML.gif
Runtime Error: chlsU5.r30, line o5:
Reference to disassociated POINTER &
Program terminated by fatal error
ch1803.£90, line 5: Error occurred in CH1803

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Fige_HTML.gif
-start shape_module_common_cods
integer function get_s(this)
implicit noae

class (shape_type), inteat (ia) :: this
get_x = thists_
end function get_t
integer function get_y(this)
implicit noae
class (shape_type), inteat (ia) :: this
get_y = thisty_
end function get_y
subroutine set_(this, x)
implicit noae
class (shape_type), inteat (imout) :: this
integer, intent (ia) :: x
thiss_ = x
end subroutine set_:
subroutine set_y(this, y)
implicit noae
class (shape_type), inteat (imout) :: this
integer, intent (ia) :: y
thisty_ = v
=nd subroutine set_y
subroutine moveto (this, news, newy)
implicit noae
class (shape_type), inteat (imout) :: this
integer, intent (in] :: news
integer, intent (in] :: newy
thist:_ = newx
thisty_ = newy
end subroutine moveto
subroutine draw(this)
implicit noae
class (shape_type), inteat (ia) :: this

v
=nd subroutine draw

thist_
thisty_

priat *,

priat *, *

lend shape_module common code

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figj_HTML.gif
4 A3 EE

2

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figu_HTML.gif
include “timing module. L300
include ’ch3702_persoa_module.£90’

program ch3704

use ch3702_person_module
use timing_module

implicit noae

iateger :: i

integer , parameter

type (persea) :: pl =&
person(’Zaphod Besblebrox’,42,1.85,70)

open (unit=10, file=’ ch3704 txt ")
call start_timing()
do i=1,a
write(10,100) plaame,plbage, pléheight, plousight
100 format (a30,2x, 12, 2, £4.2,2, £3.0)

ead do

print 200, time_difference ()
200 format (2x,£8.3)

do i=1,n
write(10, 10) pl
10 format (DT(20,5,4,2,3))
ead do
print 200, time_difference ()
close(10)

call end_timing()

end program ch3704

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figr_HTML.gif

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figae_HTML.gif
Confirmed Booking
P = Provisional Booking
E = Seat Empty

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figk_HTML.gif
Humber of images
2015/ 3/21 1:11:50 130

a intervals 100000 time =
pi = 3.1415926535981265
differeace = 0.0000000000083333
2015/ 3/21 1:11:50 135

a intervals 1000000 time =
pi = 3.1415926535898762
differeace = 0.0000000000000830
2015/ 3/21 1:11:50 135

2 intervals = 10000000 time =
pi = 3.1415926535897953
differeace 0.0000000000000022
2015/ 3/21 1:11:50 136

a intervals 100000000 time =
pi = 3.1415926535897905
differeace = 0.0000000000000027
2015/ 3/21 1:11:50 142

2 intervals = 1000000000 time =
pi = 3.1415926535897949

i f farance 0.0000000000000018

005

.000

.001

008

054

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figh_HTML.gif
https: //www.fortranplus.co.uk/

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figp_HTML.gif
print 7,
priat *,
priat ¥, &

Julian_to_date_and_week_and_day OK’

get_month OR©

get_year OK'

priat *, ' ndays OK’
print *, ' year_and_day_to_date OK'
ead if
end if

txl = date(1, 1, 1970)

julian =

txl¥calendar_to_julian()

tx2 = julian_to_date (julian)

if (txliget_day()
txl%get_moath()
txlget_year () =

priat
priat
end if

priat *,
priat *,

=t:2%get_day ()

223get_year())

date (11, 2, 1952

print_date test’
Single parameter

s%priat_date ()

priat *,

=¥priat_date (day_name.
short_moath_nam:

print *,

=3priat_date (day_names:
short_moath_nam:

print *,

=¥priat_date (day_name.

day_names=true

false.,

.false.)

short,

true.,
false.)

false.,

short_moath_name=.true.)

print *,

day_names=true

=¥priat_date (day_names=.true.,

short_month_nam:

print *,

true.)
digits=true

=3priat_date (digits=.true.)

orint *,

Test out a moath’

.and.

22%get_moath ()

Land. &

thea

julian_to_date worked’

oath_nane:

calendar_to_julian aad

day_names=false short_moath_name=false

alse

day_names=false short_moath_name=true

short_moath_name=t rue

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figk_HTML.gif
mubroutlam onbact (Eodn)
inslicit aoae

start of declarations inserted by

iateger act , leagth , achar
ad of declarations inserted by
iateger todo , done , base
comnon /egl / achar , leagth
Saramster (base=1n)
do while (todo.2e.0)
act = mod (todo, base)
Eodo = todo/bazs.
select case (act)
case (1,4,7,8,9)
call badact (act)
axit
case (2)
call cosy
leagth = length + achar
case ()
call move
case (5)
achar = ~achar
call delete
leagth = length + achar
case (6)
call orine
case default
eyele
nd selact
dos = dons + 1
call resyac
saddo
retura

.

5289

s2ag

doas

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figh_HTML.gif
nodule ragged_moduls
use precision_module
implicit noae
type ragged (real_kiad)

integer, kind :: real_kind
real (real_kind), dimeasion (:], &
allocatable :: ragged_row

ead type ragged
cnd module ragged module

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbf_HTML.gif
cptrespx

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figak_HTML.gif
gtortran
Real kinds
Integer kinds
Character kinde

1

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figm_HTML.gif
chldls.out

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figr_HTML.gif
typs, public :: date
private
integer :: day
integer :: month
integer :: year

cnd type date

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figac_HTML.gif
module date_sub

! COLLECTED AID PUT TOGETHER JANUARY 1572, H. D
! KioBLE

! ORIGIVAL REFEREICES ARE CITED I EACH ROUTINE

! Cods convertad using T0_FSO by Alaa Miller
! Date: 1999-12-22 Time: 10:23:47

! Compatible with Tnaginel F comsiler

! 2002-07-18

inslicit aoae

sublic :: iday, izlr, calead, cdate, adays, &
daysub, 34
contains

! ARITHUETIC FUNCTIONS "IZLR" AND "IDAY" ARE
! TAKEI FROM REMARE OIf

! ALGORITHI 398, BY J. DOUGLAS ROBERTSON, CACH
115010 918

fuaction iday(yyyy, mn, dd) result (ival)
! IDAY TS A COMPANTON TO CALEND; GIVEN

! CALENDAR DATE, YYYY, M0f,

! DD, IDAY IS RETURNED AS THE DAY OF THE YEAR.
| EXNeLE: TDAY(1S84, 4, 22) = 113

integer, iatent (i)
iateger :: ival

v, mn, dd

ival = 3055' (mn+2) /100 - (m+10)/13'2 - S1 + ¢
(1- (nodulo (77, 4)+3) /4+ (modulo (777, &
100)+55) /100~ (odulo (5577, &
1400)+399) /400) * (mn+10) /13 + dd

retura
ead fuaction iday

fuaction ilr(yyyy, mm, dd) result (ival)
! TZLR(YYYY, 104, DD) GIVES THE WEBKDAY NUMEER
' 0= sumar, 1 = uomar,

' = SATURDAY. EXAMPLE: IZLR(1970, 1, 1)
¢ <3 < rauRsDaY

integer, iatent (i) v, mn, dd

iateger :: ival

ival = modulo ((13* (m+10- (m+10) /13+12)-1) /5 ¢
FAAFTTHS (e (A1) /12 (e &
(mn-14) /12) /100°100) /4+ (yyyy+ (ane &
14) /12) /400~ (yyyy+ (an-14) /12) /1002, 7)

retura
e fuetiae ie1r

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figm_HTML.gif
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world

lines deleted

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world
world
world
world

Lrom
from
from
from
from

from
from
from
from
from
from
from
from

image
image
image
image
image

image
image
image
image
image
image
image
image

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figp_HTML.gif
http:/ /www.metoffice.gov.uk/

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figy_HTML.gif
SUSROUTINR CALEND (Z2=, 000, M, 430
‘ALEND WHEN GIVEN A VALTD YEAR, YYYY, AD DAY OF THE

c VEAR, DDD, RETURNS THE MONTH, MM, AID DAY OF THE
c HouTa, o

c SEE ACH ALGORITHN 398, TABLELESS DATE COWVERSION, BY
¢ DICK ST0ME, CACH 13(10) :621

TUTEGER ¥YYY,DDD, 1,00, T

TP (0D (¥¥YY, 4) .EQ.0) T=1
THE FOLLOWING STATEMENT IS NECESSARY IF YY¥¥ IS LESS TUAN
c 1500 OR GREATER THAII 2100
TP (OD (¥¥¥¥, 400) 1.0 . AID . HOD (¥¥¥¥, 100) .EQ.0) 1=0
Dp=0DD
TF (DDD.GT.55+T) DD=DD+2-T
M= ((DD431) *100) /3055
D= (DD+S1) - (00 3055) /100
fresrem
106 WILL BE CORRECT IFF DDD 1S CORRECT FOR Y¥¥Y
TF(BML.GE.1 .AUD. MM.IE.12) RETURN
WRITE(*, 1) DOD
I FORMAT(0SS5CALEND: DAY OF THE YEAR INPUT =',I11,
. * 13 our oF RANGE.”)
stop 8
Y

SUBROUTTIE CDATE (30, ¥¥¥¥, 104, D)
GIVEN A JULIAN DAY NUMBER, NN, YYYY,10,DD ARE RETURIED AS
AS THE CALENDAR DATE. JD=UNNNNNNN IS THE JULIAN DATE

c FROM A1 BPOCK TN THE VERY DISTANT DAST. SEE CACH
c 1568 11(10) :657, LETTER 10 THE EDITOR BY FLIEGEL AIID
c VAl FLANDER.

c EXAMPLE CALL CDATE (2410588, YYYY,04,DD) FETURNS 1570 1 1

¢

NTEGER JD, Y¥¥¥, 106,00, L,11
aD+58565

L/146087

(1150570 + 3) /4

¥YY¥=1000* (L+1) /1461001

LeLLi6L vy /4431

Mi=s0'L/2447

Dp=L-2447"104/80

L1

w0 + 2 - 1200

00* (1-45) + YEYY + L

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figb_HTML.gif
Parallel Parallel

Region 1 Region 2
set up cost Step ¢ Step ##
Parallel section Steps 2,3 Steps 6,7

Synchronisation cost Step @ Step @@

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figg_HTML.gif
use precision_moduls , wp

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figv_HTML.gif

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figb_HTML.gif
call sort data(x,n]

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figk_HTML.gif

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Figc_HTML.gif
call interact (p,q, r, ok}

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbj_HTML.gif
https: //www.lso.org/standard/ 72320 . html

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figy_HTML.gif
https: //www.lso.org/standard/ 72320 . html

OEBPS/images/112282_4_En_BookBackmatter_Figu_HTML.gif
reduce (c, my_mult, mas. > U, adentats

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figai_HTML.gif
program chlsll
implicit noae
real :: total = 0.0, average = 0.0
real, dimension (12] :: rainfall = (/ 3.1, 2.0 &
. 2.4, 2.1, 2.2, 2.2, 1.8, 2.2, 2.7, 2.9, &
3.1, 3.1 /)

total = sum(rainfall)
average = total/12
priat *, ' Average moathly rainfall was’
print *, average

end program ch0810

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figab_HTML.gif
matrix

reshape (source, shape)

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figbd_HTML.gif
- How have a walid month

reset in case of leap year in previous call

days_in_moath(2) = 28

if (leap_year(vear)) then
days_in_moath(2) = 28

ead if

if ((day<l) .or. (day>days_in_moath(moath))) &
thea
ifail = ifail + 4
retura

ead if

retura

ead subroutine check_date

-nd module valid date

odule

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbc_HTML.gif
type (shape_wrapper), dimension

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figk_HTML.gif
https
climate-historic/#7tal

//www .metoffice.gov.uk/public/weather/

climateHistoric

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Chapter_TeX_IEq3.png
y:

—Xxsina + ycosa

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figi_HTML.gif
Subroutine sort_integer 3Z(raw_data, how_many)
use integer_kind_module
implicit noae

integer, intent (in) :: how_many

integer (i32), intest (imout), &

dimension (rau_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l,)
implicit none

integer, inteat (in)
integer :: 4, 3
integer (i32)

include ’quicksort_include_code. £90"

ead subroutine quicksort
ead subroutine sort_integer_32

subroutine sort_iateger_§d(raw_data, how_many)
use integer_kind_module
implicit noae

integer, intent (in) :: how_many
integer (i64), inteat (imout), &

dimension (rau_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l,)
implicit none

integer, inteat (in)
integer :: 4, 3
integer (i64)

include ’quicksort_include_code. £90"

ead subroutine quicksort

ead subroutine sort_integer_64

-nd module sort data module

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figd_HTML.gif
use 1so_c_banding

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figf_HTML.gif
Eerror_number |
call mpai_anat (ol «

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Chapter_TeX_IEq2.png
x" = xcosa + ysina

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Chapter_TeX_IEq1.png
(x",¥)

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Chapter_TeX_IEq1.png
nthread

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Chapter_TeX_IEq2.png
omp_get_max_threads()

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figf_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_Figau_HTML.gif
st Yl ~tast coch/507 40

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Chapter_TeX_IEq4.png
thread_number

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figx_HTML.gif
nagtor chlsUip. 30
NAG Fortran Compiler:
(113G Fortran Compiler normal termination]

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Chapter_TeX_IEq5.png
thread_number

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Chapter_TeX_IEq6.png
thread_number variable

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figaj_HTML.gif
If first slement of array is greater than T,
iaterchange with T

i€ (@x()58) thea

ax(i3) = ax(i)
ani) = €
£ = anii
na it
nd it

Find an slemsat in the sscoad half of the
array which is smaller
thaa T

1201 =1 -1

i€ (@x(1)58) go to 120

Fiad a3 slemeat ia the first half of the array
which is greater
thaa T

10k =K+ 1

i€ (@200 <e) go to 130

Taterchange these slemeats

if (kesl) thea

e = ax)
ax(1) = axie)
an) = e
9o to 120

na it

Save upper and lover subserists of the array

yet to be sorted

i€ (125K then
i =1
e =1

3=1
FRu—
na it

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figs_HTML.gif
call sl%draw!()

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figae_HTML.gif
A_processe:
a_processes=:
do 1

a_processes=4 do
do i=:

a_processes=!

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figag_HTML.gif
#include <lostream>

tinclude <iomanip>

using namespace std;

extera "C" v

id sums (int ar,int ac,
iat %, int drsum, iat csum) ;
int maia()
t
const int ar=z;
const int ac

int x[ar](ac];
iat rsum[arl;
iat csumlacl;
iat x;
iat c;
iat i=1;
for (r=0;r<ar;r++)
for (c=0jce<ncict+)
[
=lx] [e]=i;
itt;
)

for (r=0;r<ar;r++)

rsum(r

for (c

je<nc;etd)
csum(e]=0;
cont

" Ct+ calling Fortran" << eadl;
" 2 d array as parameter\a’;

endl;

cont

cout << " Original 2 d array”

cout << eadl;

for (r k)
[
for (c=0jce<ncict+)
[
cout << setu(3) <o
)
cout << eadl;
)

cont << eadl;
sums (ax,ac, (iat#)x, rsun, csum ;

for

for (c=0jce<ncict+)
[
cout

)

cout

)

cont

for (
cout

cout << eadl;

retura(0);

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figa_HTML.gif
https: //www.lso.o0rg/standard/ 57469 . html

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figa_HTML.gif
http://www.ada-surope .org/resources/online

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figai_HTML.gif
1nclude "date modules 1nclude code., £Y07

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figf_HTML.gif
(t+h/2,y+h/8% (s2+3*s3))

call fun(t+h2, new_y 1, sd, a)
aew_y_1 =y + h2* (51-3.0_up*s3+4.0_up*sd)

' SS=F (t+h, y+h/2* (s1-3453+4%s4))

call fun(t+h, new_y_1, s5, a)

' calculate values at t+h

aew_y_1 =y + h6* (s1+4.0_up*sd+ss)

y + h2* (s1-3.0_up*s3+4.0_up*sd)

' calculate error estimate

error = abs(0.2_wp* (new_y_l-new_y_2))

1(error)

if (max_error>tol) thea

' halve step length and try again

if (abs(h2) <smallest_step] then
ifail = 2
retura
ead if
h=h2
else

accepted approwimation so overvrite
' y with y_new_l, and t with t+h

aew_y_1
t=t+n

' can next step be doubled?
if (max_error’factor<tol) thea
h = h*2.0_up
ead if

' does next step go beyond interval ead b,
' if so set h = bt

if (t4heb) then

h=b-t
ead if
qo_of_steps = no_of_steps + 1
ead if

if (t>=b) exit

' #2244 end of
' #2#4% repeat loop

ead do
ead subroutine ruage_kutta_mersoa

-nd module rkm module

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figo_HTML.gif
program chisus
use iso_c_binding
interface
function summation(x, a) biad (c, &
name=’ summat ion’)
use iso_c_binding

integer (c_int), value :: n

real (c_float), dimension (1:a], &
inteat (in)

real (c_float] :: summation
ead fuaction summation
ead interface

integer, parameter

real, dimension (l:n)

print *, ' Fortran calling c function’

priat %, * 1 d array as parameter’
priat *, summation(z, a)

end program ch3505

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figy_HTML.gif
» % = date(dd, mm, yyyy)

> if (s%date_to day_in_year()==366) then
S priat *, =iget_year(], ' is a leap year’
14c47

< print *, get_year(xl, ' is not a leap year’

S priat *, =%get_year(), ' is not a leap year’
1649
< == date_(1, 1, 1970)

> = = date(l, 1, 1970)
49,50c52, 53

if (get_year(x)/=1970 .or. get_moath(x) /=1 &
Lor. wd/=4 .or. ddd/=1) &

Lor. get_day(x)

> if (sbget_year ()/=1970 .or. x¥get_month()/=1 &
> .or. miget_day() /=1 .or. wd/=4 .or. ddd/=1) &
54,55c57, 58

print *, ‘ date, wd, ddd = ¢, get_year(x), &

get_moath (x), get_day(x), wd, ddd

- priat *, ‘ date, wd, ddd = /, xbget_year(), &
. =¥get_month(), xtget_day(), wd, ddd
58,50c61, 62

< datel = date_(22, 5, 1984)

< date? = date_(22, 5,
1983

- datel = date(22, 5, 1984
- date2 = date(22, 5, 1983
5871

if (get_month(x) /=1 .and. get_day(x)/=l] &

. if (xiget_month()/=1 .and. x%get_day()/=1) &
71,72¢74,75

print *, mma, dda = ', get_month(x), &
< get_day (x)
- print *, mma, dda = ', xbget_month(), &
. =¥get_day ()
3891, 101

= date_(11, 2, 1952)

> txl = date(1, 1, 1970)

> julian = txl%calendar_to_julian()
> tx2 = julian_to_date(julian)
> if (txliget_day()==tz2%get_day () .and. &

=2%get_month () .and. &
=t:2%get_year()) then

. tx18get_month (
. txlsget_year ()

S priat *, ' calendar_to_julian and '

- priat %, ¢

> end if

julian_to_date worked’

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq9.png

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq7.png
/5

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figt_HTML.gif
program chldlb
implicit noae

integer :: allocate_status = 0
integer, parameter :: al = 10000000
integer, parameter :: a2 = 5

integer, dimension (i), peinter

integer, dimension (1:a2), target :: v

integer :: i

do
allocate (x(1:al), stat=allocate_status)
if (allocate_status>0) then

print *, ' allocate failed. program eads.
stop

ead if

doi=1, a1
=(i) = i

ead do

doi=1, 22
priat *, x(i)

ead do
doi=1, a2

y(i) = it
ead do

doi=1, a2
priat *, y(i)
ead do
x =y ! % now points to y
doi=1, a2
priat *, (i)
ead do
! what has happened to the memory that x
! used to poiat to?
ead do
end program chl806

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Fign_HTML.gif
-LedoE+UL
.1235E4+00
1235801
1235802
1235803
1235804
1235805
1235806
1235807
1936F_08

- LedoE+UL
12355402
12355403
12355404
1235405
1235540
12355407
12355408
12355409
193EF410

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figs_HTML.gif
include ‘precision

include ’timing_module.£90"

program ch3304
use precision_module
use timing_module
use omp_lib
implicit noae

real (dp) :: fortran internal pi
real (dp) :: partial pi

real (dp) :: openmp_pi

real (dp) :: width

real (dp) :: x

integer :: athreads

integer :: i

integer

integer

integer

athreads = omp_get_max_threads ()
fortran_internal pi = 4.0_dp*ataa (1.0_dp)

priat *, *

Maximum aumber of threads is ', &
athreads
do k = 1, nthreads

call start_timing()

a = 100000
call omp_set_num_threads (k)
print *, ' lumber of threads = ', k

doj=1,5
width = 1.0 dp/a
partial pi = 0.0_dp

te(x) &

!$emp parallel do priv
!$cmp shared (width] reduction (+:partial pi)
doi=1,a
= = width* (real (i,dp] -0.5_dp)
partial pi = partial pi + £(x)
ead do
t$cmp end parallel do
opeamp_pi = width’partial_pi
print 100, a, time_difference ()
print 110, openmp_pi, abs (opeamp_pi- &
fortran_internal_pi)

a=atl0
ead do
ead do
100 format (' W intervals = *, i12, '
£6.3)
110 format (' opeamp pi = ', £20.16, /, &
‘difference = ¢, £20.16)
call end_timing()
stop
contains

real (dp) fumction f(x)
implicit nene
real (dp), iateat (in)

£ = 4.0 dp/ (1.0_dp+itx)
ead fuaction £

end program ch3304

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Fign_HTML.gif
Intel

IEEE support for default precision

array size 10000000 10,000,000
Computed sum 0.1000E+08
Real sum 0.1000E+08
Array size 100000000 100,000, 000
Computed sum 0.1000E+08
Real sum = 0.1000E+08

inexact arithmetic
in the summation
program terminates

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figy_HTML.gif
program chlslb
implicit noae

3.7854118 litres
4.545 litres

! 1 us gallon

! 1 uk gallon

integer, parameter :: a = 10

real, parameter :: us = 3.7854118

real, parameter :: uk = 4.545
integer :: i
integer, dimension (l:a) :: litre = [(i,i=l,n &

)1

real, dimension (1:a)

gallon, usgallon

galloa = litre/uk

usgallen = litre/us
priat *, ' Litres Imperial USA’
priat *, ’ Gallen Gallon’
doi=1,na
priat *, litre(i), ' ’, galloa(i), * *, &
usgallon (i)
end do

end program ch0806

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Fige_HTML.gif
1t (today

monday) then

=1seif (today == tuesday) then

=1seif (today == wednesday) then

=1seif (today == thursday) then

-1seif (today == friday) then

=1seif (today == saturday) then

-1seif (today == sunday) then
SPS
there has been an error.
the variable today has
takea on an illegal value.
o ndi £

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Figa_HTML.gif

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figaf_HTML.gif
program chlUU/
implicit noae

integer :: ibl, ib2
integer :: al, a2
character (len=22) :: buffer, buffl, buff2

! program to read a record of the form
! SmoennE | YYYYYYYYYY

! so that integers al = xx

' yYYYYYYYY
! where the number of digits varies from 1 to 1C

! use internal files
print *, ‘input micael'’s aumbers’
read (4, ‘(a)’) buffer
ibl = index(buffer, ' /)
ib2 = len_trim(buffer)
buffl = buffer(2:ibl-1)
buff2 = buffer (ibl+1:ib2)
read (buffl, ' (il0)’) al
read (buff2, ' (il0)’) a2

[t

, 2

priat *, ‘al
priat *, ‘a2

end program ch1007

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figu_HTML.gif
function date_(dd,mm,yyyy) result
implicit noae
type (date] :: x
integer, intent (in)

dd, mm,
% = date (dd,mm, yyyy)
nd function date

=)

yyyy

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figk_HTML.gif
float recaiprocal(float "x);

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figab_HTML.gif
program chlUUb
implicit noae

integer, parameter :: arow = §

integer, parameter :: acol = §

real, dimension (l:arow, lincol) :: &
exam_results = 0.0

real, dimension (l:iarow) :: pecple_average = &
0.0

real, dimension (l:ncol] :: subject_average = &
0.0

integer i x,

open (unit=100, file='chl006.txt’, status='old’)
dor =1, arow
read (unit=100, fmt=100) exam results(r, &
1:acol)
people_
acol))
ead do
close (100)
people_average = people_average/acol
doc = 1, acol

erage (1) = sun(exam_results (r,1: &

subject_average(c) = sum(exam results(l:arow §
el

ead do

subject_average = subject_average/arow

dor =1, arow

print 110, (exam results(r,c), =1, acol), &
people_
ead do

priat *, &

verage (x]

print 120, subject_average (1:acol)

100 format (1x, 6(1x, £5.1])

110 format (1x, 6(1x£5.1), ' = ', £6.2)
120 format (1x, 6(1x £5.1])

end program chl006

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figp_HTML.gif
L

do while (1<x)
tlo=y k)
i=1
j=rx
do

do while (v(i

Q=i+

ead do
do while (tley(j))
i=3-1
ead do
if (i<=3) then
t2 =y
(i) = v(3)
y(3) = t2
Q=i+
i=3-1
ead if
if (i>3) exit
ead do
if (3<k) thea
1=1
ead if
if (ke<d) thea
=3
ead if
2nd do

fFind = v (k)

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figg_HTML.gif

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figag_HTML.gif

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figac_HTML.gif
#include <stdio.h>
void reciprocal (iat ar,iat ne,
f£loat xlar] [ac],
float ylar] [acl);
int maia()
i
const int ar=2;
const int nc=5;
£loat xzlar]lacl;
£loat ylar]lacl;
int x
int e
int i=1;

for (r=0;r<ar;r++)

for (

[

je<nc;etd)

x[x] [e]=(£loat) (1);
144
)
printf (" C calling Fortran\a");
Printf (" 2 d array as parameter\a”|;
printf (" 88 vla\a);
for (r=0;rear;res)
«
for (e=0;cenc;ctd)
«
printf(" $5.2f " , x(xr]lc]);
)
priatf("\a");
)
reciprocal (ar, ac,%,y) ;
for (r=0;rear;res)
«
for (e=0;cenc;ctd)
«
printf(" 1 / $5.2f = 36.3f \a*
o zlrllel,ylxlle]);
)
priatf("\a");
)

retura(0);

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figae_HTML.gif
typs, public :: date

private
integer :: day
integer :: moath

integer :: year

integer :: date_type

cnd type date

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figb_HTML.gif
nodule sparse_vector _moduls
implicit noae

type sparse_vector

integer :: index

real value

type (sparse_vector), pointer :: next => &
aull()
ead type sparse_vector
ead module sparse_vector_module
module read data_module
implicit noae

contains

subroutine read data(filename, root_z, ifail)

use sparse_:

implicit noae
type (sparse_vector), poiater, &

intent (inout] :: root_z

character (len=!), intent (inowt] :: &

f£ilename
integer, intent (inout) :: ifail

integer :: io_status

type (sparse_vector), pointer :: curreat_z
ifail = 0

! open file for reading data and read lst
! eatry

opea (unit=1, file=filename, status='old’, &

o_status)
if (io_status/=0) then
ifail = 1
retura
ead if

allocate (root.

)

, dostat=io_status) &

read (wait=1, fmt
root_z%value, root_zhindex

if (io_status/=0) then
ifail = 2
retura

ead if

! read data from file uatil sof

curreat_z = root_z
allocate (curreat_sdnext)

do while (associated (current_s¥next))

curreat_z = current_z%next

read (unit=l, fmt=', iostat=io_status) &
curreat_c%value, curreat_s$index

0) then

allocate (current_z$nest)

if (io_status:

eycle
else if (io_status>0) thea
ifail = 3
ead if
ead do

close (unit=1)

retura
ead subroutine read_data

ead module read_data module

program ch2601

! this program reads the noa-zero elements of
! tuo sparse vectors x and y together with

! their indices, and stores them in two

! linked lists. using these linked lists it

! thea calculates and prints out the imner

! product. it also prints the values.

use sparse_vector_module
use read_data_module

implicit noae

character (len=30) :: filename

typs (sparse_vector), poiater :: root_, &

curreat_x, root_y, curreat_y

real

inner_prod = 0.0

integer :: ifail = 0

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figo_HTML.gif
Substring Characters
string (3:3) a

string (3:5) are

string (:
string (11:) endoy

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Chapter_TeX_IEq6.png

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figr_HTML.gif

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figh_HTML.gif
httoz

‘'www.oolvhedron

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figl_HTML.gif
do while (logical expression)
block of statements
e ndde

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figw_HTML.gif

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figap_HTML.gif
FPosition

Columa

Row

10

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figu_HTML.gif
https://developer.amd.con/resources,

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Fige_HTML.gif
iateger, paramster

wp = dp
type (Liak(real_kind=wp)), poiater :: root, &
Tt

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figat_HTML.gif
iaterface assignmeat

module procedure generic_shape_assiga
ard interface

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figr_HTML.gif
Lbbclds

write (print_date(1:2), (i2)) x¥day

. write (print_date(1:2), (i2]) thistday
write (print_date(4:5), (i2)’) xmonth

. write (print_date(4:5), ¢ (i2]/) thistmonth

170e202

< write (print_date(7:10), ' (i4)’) =%year

. write (print_date(7:10), ' (i4)’) thisdyear

date_to_veekday_number (x)

pos = date_to_weekday_nutber (this)

#%day
S thistday
183, 184c215,216
print_date (pos+3:pos+5) = moath(x¥moath) &
< a:3)
. print_date (pos+3:pos+5) = moath(thist &
S moath) (1:3)
187219
< print_date (pos+3:) = moath (xmonth)
. print_date (pos+3:) = month (thistmonth)
191c223
< x¥year

. thiskyear

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figg_HTML.gif

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figz_HTML.gif
sttpl553@eslogin008: 7> ./ch3003.x
2015/ 3/22 11:42: 5 50

fortran internal_pi = 3.1415026535897931
I intervals = 1000000 time = 0.00C
pi = 3.1415926535895033

differeace 0.0000000000001101

I intervals = 10000000 time = 0.023
pi = 3.1415926535896861

differeace 0.0000000000001070

I intervals = 100000000 time = 0.207
pi = 3.1415926535902168

differeace 0.0000000000004237

I intervals = 1000000000 time = 2.074
pi = 3.1415926535897682

differeace = 0.0000000000000249

2015/ 3/22 11:42: 7 356
J—

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figab_HTML.gif
program chzzUb
use date_module, only: calendar_to_julian, &
date, date_, date_to day_in_year, &

date_to_weekday_number, get_day, get_month, &

get_year, julian_to_date_and_week_and_day, &
adays, print_date, year_and_day_to_date

implicit noae
integer :: dd, ddd, i, mm, adiff, wd, yyyy
al (@)

intrinsic date_and_time

datel, date2, =

integer

type (date]

call date_and_time (values=val)
yyvy = val(l)
am = 10
do i =31, 26, -1
% = date_(i, mm, yyyy)

if (date_to_weekday_number (x)==0) then

priat *, ‘Tura clocks back to EST on: ', &

i, ' October ', get_year (x]
exit
ead if
ead do
call date_and_time (values=val)
yyyy = val(l)
=4

doi=1,8
= date_(i, mm, yyyy)

if (date_to_weekday_number (x)==0) then

priat *, ‘Tura clocks ahead to DST on: ', &
i, ¢ April ‘1, get_year (x)
exit

end if
end do
call date_and_time (values=val)
yyvy = val(l)
am = 12
ad = 31

= = date_(dd, mm, yyyy)

if (date_to_day_in_year (x)==366) then

¢ is a leap year’

priat *, get_year(x],
else

print *, get_year (s, '
ead if
= = date_(1, 1, 1970)

call julian_to_date_and_week_and_day &

is not a leap year'

(calendar_to_julian (x), x, wd, ddd)

if (get_year(x)/=1970 .or. get_moath(x)/:
.or. get_day(x)/=1 .or. wd/=4 .or. ddd
thea

priat *, &
‘julian_to date_and_week_and_day failed’

priat *, ¢ date, wd, ddd = ', get_year(x),
get_month (x), get_day(x), wd, ddd
stop
end if
datel = date_(22, 5, 1984)
date2 = date_(22, 5, 1983)
adiff = ndays (datel, date2)
yyvy = 1970

year_and_day_to_date(yyyy, ddd)

if (adiff/=366) then
print *, ‘adays failed; ndiff = /, adiff
else

if (get_month(x)
thea

Land. get_day(x)/=1)

priat *, ‘year_and_day_to_date failed’

print *, mma, dda = ', get_month(x), &
get_day (x)
else
priat *, ' caleadar_to_juliaa OK’
priat *, ! date_ OK'
print *, ' date_to_day_in_year OK'
print *, ' date_to_weekday_number OK’

print *, ' get_day OK’
print *, ! get_moath OK'
print *, ' get_year OK'
priat *, &

¢ julian_to_date_and week_and_day OK'

priat +, ¢ ndays O’
priat *, ¢ year_and_day_to_date OF’
end if

and if

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figl_HTML.gif
program chlaU/

use ged_module

implicit noae

integer :: i, j, result

priat *, ' type in two integers’
read *, i, 3
result = ged(i, 3

priat *, ‘' ged is ’, result

end program ch1207

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figu_HTML.gif
program chUsll
implicit noae

character (len=15) :: firstaame
integer :: age

real :: weight

character (len=1] :: geader

priat *,
read *, firstaame

type in your first name

priat *, ‘ type in your age in years’
read *, age

priat *, ’ type in your weight in kilos’

read *, weight

priat *, ‘ type in your geader (£/m)’
read *, gender

print *, ' your personal details are’
print *

print 100

print 110, firstname, age, weight, geader

100 format (4x, 'first name’, 4x, ‘age’, lx, &
‘ueight!, 2x, ‘gender’)

110 format (1, a, 2%, i3, 2x, £5.2, 2%, a)

end program ch0911

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figh_HTML.gif
function recaiprocal(x) bind(c, nams

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figl_HTML.gif
Humber of threads

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Halle

from
from
from
from
from
from
from
P

thread
thread
thread
thread
thread
thread
thread
thread

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figh_HTML.gif
character (o) :: farst,

third

character (10)
first=three’
second='blind’

thir

irst//second

fhir

irst//fmice

Ssecond

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figv_HTML.gif
JATESUE. FUR with sample Urivers
c COLLECTED AIlD PUT T0GETHER JAIUARY 1572, H. D. KIOBLE
c ORIGINAL REFERENCES ARE CITED IN EACH ROUTINE

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figc_HTML.gif
stringl] local _data file

(

"aberzorthdata.txt”,
"ballypatrickdata.txt”,
"brasmardata.tit”,
"canbridgedata. txt”,
"chivenordata. tit",
"dunstatfragedata. txt”,
"eastbournsdata.txt”,
"heathrovdata. txt",
"lerwickdata. txt”,
"lowestoftdata.txt",
"nairndata.txt”,
"oxforddata. txt”,
"ringvaydata.tt”,
"shavburydata. txt",
"southamstondata. txt”,
"suttonboningtondata. txt”,
"valleydata. txt”,
"uhitbydata. txt”,
"yeoviltondata. txt"

Vi

Streamiriter outsut_fils;

for (.

(

/1 ereats the web addrssses

0; i

Lsites;ith)

HttolebRequest httswrsg =

"ammaghdata. txt”,
"bradforddata. txt",
"cambornedata. txt",
"cardiffdata.txt",

" emystieythdata. txt”,
"durhandata. txt”
"eskdalemuirdata. txt”,
"hurndata txt”,
"leucharsdata. txt",
"manstondata. txt",
"newtonriggdata. txt”,
"saisleydata.txt”,
"rossomyedata.txt”,
"shefficlddata.txt”,
"stornovaydata.txt”,
"tirssdata.txt”,
"vaddingtondata. txt”,
"wickairsortdata. txt”,

(HttoebRequest)

WebRequsst.Craate (web_addrezz[i]);

1 set w3 commsction

HttoiebRessonse httswrsss =
Bt towraq. GetResonsa ()7

/1 set up input stream

Streameadsr input_stream =
Streameader

(1ttotebReszons =)

(httzwress.GetRessonseStrean() Bncoding. ASCTT) ;

7/ read the vhole fils

input_string=input_stresn.ReadToBad ();

/1 ereats the outzut file

output_fils =

Pile.CreatsTent ("befors_"+local_data_fils[il);

output_file

input_stream.Clozs();
outaut_file.Closs ()7
)
Eetura (0);
'

iteLine (input_string);

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figai_HTML.gif
include “timing module. L300

nodule character_binary_search_module

contains

function binary_search (s, a, key)
result (position)
implicit noae

! algorithm taken from Algorithms +

! Data Structures - I Wirth

! ISEN 0-13-021999-1

! Pages 57:59
integer, intent (in)

character *32, dimension (1:a), &
intent (i) :: x

character *32, inteat (ia)

integer :: position
integer :: 1, r, m
1=1

do while (1<x)

m o= (14w /2

if (x(m)<key) thea
l=m+1

else

ead if
ead do

i (e(x)
position = r

else
position = 0
ead if

ead fuaction binary_search

cnd module character binary search.

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figg_HTML.gif
10stat

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figau_HTML.gif
:\fortran\fortran book_edition3\chapter5>a
r = 2.000000000000000000

rd = 2.000000000000000000
area 12.566370964050292969
aread = 12.566370964050292969

P

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figao_HTML.gif
do 1 = start, end
2(i) = i*factor
ernd de

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figl_HTML.gif
include ‘precision _module.L3aldt
include ’ch2703_matrix_module.£90’

program ch2703
use precision_module

use pdt_matrix_module

implicit noae

real (sp) :: ses
real (dp) :: scd

integer, parameter :: ar = 2, ac = 3
integer :: i

type (pdt_matrix(sp,ar,ac)) :: as
type (pdt_matriz(dp,ar,nc)) :: ad

! single precision

doi=1, ar

print *, ‘dnput row !, i, ' of sp matrix
read *, as¥m(i, l:ac)
ead do
print *, ‘input sp scaling factor’
read *, scs
call scale_matrix(as, scs)
print *, ‘updated matrix::’
doi=1, ar
priat 100, assm(i, 1:ac)
100 format (10 (£6.2,2x))
ead do
! double precision

doi=1, ar
print *, ‘iaput row !, i,
read *, ad¥m(i, l:ac)
ead do

print *, ‘input dp scaling factor’

of dp matrix

read *, sed
call scale_matrix(ad, scd)
print *, ‘updated matrix::’
doi=1, ar
priat 110, adsm(i, 1:ac)
110 format (10(s12.5,2:))
ead do

end program ch2703

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figai_HTML.gif
program chlUUsS
implicit noae
integer, parameter :: a = 10000000

integer, dimension (l:a) :: x
real, dimension (l:ia) v
integer :: i

real :: t, t1, t2, t3
character *15 :: commeat
call cpu_time (t]

t1=t

commeat = ¢ Program starts '

print 120, comment, t1
opea (unit=10, file='ch0813.txt’, §
status='old")
doi=1,a
read (10, 100) x (i)
ead do
call cpu_time (t]
2=t -l
commeat = ¢ Integer read
print 120, comment, t2
doi=1,n
read (10, 110) y (i)
ead do
call cpu_time (t]
3=t -tl-t2
comment = ‘

Real read
print 120, comment, t3
doi=1, 10

print 130, x(i), y(i]
ead do

100 format (1x, i10)

110 format (1x, £10.0)

120 format (1x, a, 2%, £1.3)

130 format (1x, i4, 2%, £10.7)

end program chl008

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figh_HTML.gif
Sumxi=sum (x)

sumxi2=sum (x*x)

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figaa_HTML.gif
chz30l1_day_and _month_name_modu.le.L3U
ch2901_date_module. £50
~12001 £90

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figc_HTML.gif
HODULE FOIHLS

TYPE
REAL :: X, ¥
END TYPE POINT

PoTNT

INTERFACE
REAL MODULE FUNCTION POINT_DIST (&,
RESULT (DISTAINCE)
TYPE(POINT), INTENT(IN) :: A, B
! POINT is accessed by host association
REAL
END FUNCTION POINT_DIST
END INTERFACE

DISTANCE

PO MODULE POTNTS

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figz_HTML.gif
reciprocal of = 1s U.100LOOO
reciprocal of y is 0.999995¢
0.5000000 0.3333333
N 2500000 0 2000000

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figan_HTML.gif
Oracle
Real kinds
Integer kinds
Character kinde

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Fign_HTML.gif
Subroutine read person(p,unit_aumber, &
iotype, vlist,iostat,iomsg)

implicit noae

class (persen) , intent (inout)
integer L&

inteat (ia) : unit_nusber
character (len=*) , inteat (in)

integer , dimension(:) , inteat (in)

integer , inteat (out)
character (len=*) , intent (inout)
character :: person_format

write (person_format,10) (a' ,vlist (1) ,&
2%, &
vlist(2), &
2x, &
CE,vlist(3), 8
fvlistd), e
2x, &
CE,vlist(5), 8
)t

10 format (a,i2,&

a,il,

a,il,
a,il,

a,il e
a

read (unit_sumber, fut=person_format) &
phaame, pYage, ptheight , piueight

iostat=0

ead subroutine read_persoa

-nd module ch3702 person_module

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figo_HTML.gif
A0 ALt WEE. ERy RN
way = 1
o =1
-k
e

BLsE
oy = &
o =3
-1
2 = o1

m1e

o 10 70

Begia agaia oa another ortion of the uasorted array

601 = w1
TP (1 .EQ. 0) GO TO 150
T = TLan
3= an

70 TP (3-T .GE. 1) G0 10 30
TP (1 Q. 1) GO TO 20

=11
s01=101
TP (1 .E0. 3) GO 10 60
T = Dx(Tr)
P Ox() IE.) GO 10 80
K1
50 DR(EHL) = DE(E)
K= k-1
e (1 .11 DE(R) GO T0 SO
DEE) =1
o 10 80

Sort DX and carry DY aloag

100w =1
-1
a=m
R = 0.37500

110 7 (1 .EQ. 3) GO T0 150
TP (R .LE. 0.585843700) THEN
R = Re3.506250-2
BLsE
R = R-0.2187500
m1e

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figi_HTML.gif
allocate(y(l:n),stat=all_stat|

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figa_HTML.gif
dummy—argument

actual-argument

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figa_HTML.gif
https
fort ran—informat ion/

/fwww.fortranplus.co.uk/

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figf_HTML.gif
Plot of Amdahls Law

64 Processors

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Fign_HTML.gif
=ater
snter
snter
snter
Type i
snter
Type i
snter
Type i
snter
Type i
Row

1

2

3

174 &0

Aumber of stations
the number of data values for station
the number of data values for station
the number of data values for station
a the values for station 3

the number of data values for station
a the

alues for station 4
the number of data values for station
a the values for station 5

the number of data values for station

a the values for station §
u Dpata
0
0

9 144.80 112.50 77.20 130.70 §6.

66.10 141.10 149.50 134.80

& 117.80 72.80 56.70 236.20 218.

69.70 85.20 204.40

10 106.20 159.70 126.90 121.60 62.

154.30 165.00 139.00 234.40 19.70

12 83.10 38.50 §7.30 76.40 90.

83.50 177.00 180.50 §6.00 171.50
234 80

30

00

50

4c

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq5.png
t=0.0

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq6.png
t=28.0

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq3.png
h=(b-a)/100

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq4.png
t+h

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figs_HTML.gif
) I=oMa

3
31=342.
21=241
1

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figaf_HTML.gif
use module nams

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figc_HTML.gif

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figa_HTML.gif
program chisUl
use iso_c_binding
implicit none

print *, ‘integer support’

priat *, © ciat =/, c_iat

print *, © c_short = ', c_short

print *, * c_loag =/, c_long

priat *, * c_long long = /, c_long long

print *, ' c_signed_char = ', c_signed_char

print *, © c_sizet =/, c_size_t

print *, ' c_int8 t = !, c_iatd_t

print *, © c_iatlé_t = ¢, c_intle_t

print *, © c_iat32_t = ¢, c_int32_t

print *, ' c_iatfd_t = ¢, c_int6d_t

print *, ' c_ist_least8_t = ', c_int_least8_t

print *, ' c_int_leastlét = ', &
c_iat_leastls_t

print *, ' c_int_least32_t = ', &
c_iat_least32_t

print *, ' c_int_leastéd_t = ', &
c_int_least6d_t

print *, ' c_int_fast8 t = !, c_int_fast8_t

priat *, ' c_ist_fastl6_t = ', c_int_fastlé_t

print *, ' c_int_fast32_t = ', c_int_fast32_t

print *, ' c_int_fastf4_t = ', c_int_fast6d_t

print *, ' c_istmax_t = /, c_intmau_t

priat *, © c_iatptr_t c_iatptr_t

print *, ‘real support’

priat *, ' c_float = ', c_float
priat *, ' c_deuble = ’, c_double
priat *, ' c_long double = /, c_long_double

print *, ‘complex support’

print *, © c_float_complex

c_float_complex

priat *, ' ‘

c_double_cemplex = !,

_double_complex

priat *, ' c_long_double_complex = ',

_long_double_complex
print *, ‘logical support’
priat *, ' c_bool = /, c_bool
print *, ‘character support’
priat *, ' c_char =/, c_char

end program ch3501

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figab_HTML.gif
tunction get_day(x)
implicit noae
integer

get_day

type (date], iateat (ia)

get_day = xbday
snd function get_day

function get_moath(x)
implicit noae
integer

get_moath
type (date], iateat (ia)

get_moath = x%moath
snd function get_month

function get_year (x)
implicit noae

integer :: get_year

type (date], iateat (ia)

get_year = utyear
end function get_year

function julian_to date(julian) result
implicit noae
integer, intent (in)

1, a

type (date] :: x

Julian

integer

1= julian + 68569

a = 441/146097

1=1 - (146097%a+3) /4

=¥year = 4000*(1+1) /1461001

1=1 - l46lrxtyear/d + 31

#3month = 80%1/2447

#%day = 1 - 2447*x%m0ath/80

1 = x¥moath/11

= xtmonth + 2 - 1241
s¥year = 100% (a-49) + x%year + 1

-nd function julian to_date

()

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figam_HTML.gif
nodule rectangle s

use shape_module

type, extends (shape_type) :: rectangle_type
integer, private :: width_
integer, private :: height_

contains

procedure, pass (this) :: get_width
procedure, pass (this) :: set_width
procedure, pass (this) :: get_height
procedure, pass (this) :: set_height

draw

procedurs, pass (this)
drav_rectangle

ead type rectangle_type

interface rectangle_type
module procedure rectangle_type_constructor
end interface rectangle_type

contains

type (rectangle_type] fuaction &
rectangle_type_constructor(x, y, width, &
height)
implicit noae

integer, intent (ia) :: x

integer, intent (in) v
integer, intent (in) :: width
integer, intent (in) :: height

call rectangle_type_constructorset_ s (x]
call rectangle_type_constructoriset_y(y)
rectangle_type_constructortwidth_ = width
rectangle_type_constructortheight_ = height

ead fuaction rectangle_type_constructor

integer function get_width (this)
implicit noae
class (rectangle_type], inteat (in) :: this

get_width = thistwidth_
ead fuaction get_width

subroutine set_width(this, width)

implicit noae

class (rectangle_type], inteat (inout)
this

integer, intent (in) :: width
thiswidth_ = width
ead subroutine set_width

integer function get_height (this)
implicit noae
class (rectangle_type], inteat (in) :: this

get_height = thisheight_
ead fuaction get_height

subroutine set_height (this, height)
implicit noae
class (rectangle_type], inteat (inout)
this

integer, intent (in)

height

thissheight_ = height
ead subroutine set_height

subroutine draw_rectangle (this)
implicit noae

class (rectangle_type), intent (in] :: this
priat *, * x = ', thistget_x()

priat *, * y = ', thistget_y()

priat *, ' width = /, thistuidth_

priat *, ’ height = ', this$height_

ead subroutine draw_rectangle

cnd module rectangle module

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figah_HTML.gif
piexec —a b chilul.exe
2015/ 3/12 13:16:39 &71

fortran internal pi = 3.14159265358978
I intervals = 100000 time = 0.000
pi = 3.1415926535981256

differeace = 0.0000000000083324

I intervals = 1000000 time = 0.00C
pi = 3.1415926535898762

differeace = 0.0000000000000830

I intervals = 10000000 time = 0.000
pi = 3.1415926535897674

differeace = 0.0000000000000258

I intervals = 100000000 time = 0.062
pi = 3.1415926535897389

differeace = 0.0000000000000542

I intervals = 1000000000 time = 0.637
pi = 3.1415926535898402

difference 0. 0000000000000471

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figs_HTML.gif
program chldls
implicit noae

integer, poiater :: a => mull(), b = aull(]

integer, target
d

integer

allocate (a)
allocate (b)

a = 100
b = 200

priat *, a, b
e=1

c=2

b=c

d=a+b
priat *, a, b, ¢, d
end program chl1805

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figd_HTML.gif
nodule read moduls
implicit noae

contains
subroutine readia(name, x, a)
implicit noae

integer, intent (ia) :: a
real, dimension (:), iatest (out) :: x
character (len=*), inteat (ia) :: name
integer :: i

open (unit=10, file=name, status='old’)
doi=1,a
read (10, *) x(i)
ead do
close (unit=10)
ead subroutine readia

ead module read_module

program ch2002
use read_module
implicit noae

real, allocatable, dimension a
integer :: mos, i
character (len=20) :: filename

priat *, * Type in the name of the data file’

read ‘(a), filename

priat *,

Iaput the nuzber of items’
read *, nos
allocate (a(l:aos))

call readin(filename, a, nos)

priat *, ' data read in was’
do i =1, nos

priat *, © ¢, a(i)
ead do

end program ch2002

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figs_HTML.gif
Hello
Hello
Hello
Hello
Hello

from process
f£rom process
f£rom process
f£rom process
f£rom process

lines deleted

Hello
Hello
Hello
Hello
Hello

f£rom process
f£rom process
f£rom process
f£rom process
from process

43
4
45
45
47

ot
of
of
of
of

of
of
of
of
of

48 processes
48 processe;

48 processes.

48 processe;
48 processes

48 processes
48 processe.
48 processe.
48 processe.
48 processes

OEBPS/images/112282_4_En_42_Chapter/112282_4_En_42_Figc_HTML.gif
Pl

priat *, * pl = £2, calling £3
priat *, £3(pl, 2)

pl = £l

priat *, * pl = £1, calling £4
priat *, £4(pl, 2)

pl = £2

priat 4, ¢ pl = £2, calling £4°
print *, £4(pl, 2)

-nd program chd201

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figz_HTML.gif
close (unit=1)

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figz_HTML.gif

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figj_HTML.gif

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figm_HTML.gif
144.
112,
7.
130.
66.
66.
141,
149.
134,

117,
72.
56.

236.

218.
69.
85,

204.

10

106.
159.
126.
121,

62.
154.
165.
139.
234.

19.

12

83,
38.
7.
76,
0.
83,

177,

180.
66.

171,

174,

294

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq21.png
0% o0

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq22.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq20.png
1/(x—y)

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figi_HTML.gif
Scalar Arguments
INTEGER KFLAG, If
Array Arguments

DOUBLE PRECISION DX (*), DY (*)

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq23.png
x<0

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figa_HTML.gif
nodule module_nams

cnd module module name

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figa_HTML.gif
http://en.wikipedia.org/wiki/Character_encoding

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figd_HTML.gif
program chl3ats
implicit noae

integer :: big = 10
integer :: i
do i=1, 40

print 100, i, big
big = big'l0
ead do
100 format (* *, i3,
end program ch0902

12

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figp_HTML.gif
d

Number of threads

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Helle

from
from
from
from
from
from
from
P

thread
thread
thread
thread
thread
thread
thread
thread

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figf_HTML.gif
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world

lines deleted

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world
world
world
world

Lrom
from
from
from
from

from
from
from
from
from
from
from
from

image
image
image
image
image

image
image
image
image
image
image
image
image

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figc_HTML.gif
associate (xc => axsb(i,1)%c |
xeidv = xc¥dv + product (xctev(l:in)|
end Aassociate

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq10.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figaf_HTML.gif

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq11.png

OEBPS/images/112282_4_En_BookBackmatter_Figak_HTML.gif
aointerfaces
The compiler does not check interfaces of SUBROUTINES
called and FUNCTIONs iavoked in your compilation agaiast an
external set of interface blocks.

aostderrors

Warning-level messages about Fortran standards violations
are not changed to error-level messages.

aotruacated_source

Vo waraings are issued whea source exceeds the maimum
columa width in fized-format files.

aouncalled

o warnings are issued whea a statement fuaction is aot
called.

aounnsed

o warnings are issued for variables that are declared but
aever used.

usage

Warnings are issued for questionable programming practices.

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq14.png
+0

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq15.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq12.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq13.png

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figp_HTML.gif
charactexr (10} , daimension(20)

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq18.png
V1/z=1/z

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq19.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq16.png
400

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq17.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbl_HTML.gif
program expression _squivalence
! simple evaluation of xtu-y'y
! whea x and y are similar

! we will evaluate in three ways.

implicit noae
real :: x = 1.002
y = 1.001
t1, t2, 3, t4, t5

real
real

tl=x-y
t2
print ¥, t1

x4y

print ¥, t2

£3 = t1e2
t4 =2 - g2
£5 = wix - yry

print ¥, t3
print ¥, t4
print ¥, t5

cnd program expression equivalence

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figaj_HTML.gif
eshape (2, (/nc,nx/) |

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figx_HTML.gif
include ‘precision
include ’timing_module.£90"

program ch3803

use precision_module
use timing_module

implicit noae
integer, parameter :: a = 100000000
aa = 100,000,000"
report_file_name = 'ch3505.report’

character *12

character *80

real (dp), allocatable, dimension (:) :: x_dp

integer :: allocate_status = 0
integer :: ifail = 0
character *20, dimeasion (5) :: headingl = &
[32 bit real’, &
¢ 32 bit diat !, &
© 64 bit real’, &
© 64 bit dat /, &
¢ 128 bit real’]
character *20, dimeasion (3] :: heading? = &
L Allocate ', &
4 Random !, &
4 Sort 1

priat *, ‘Program starts’
priat 4, ‘0=, aa
call start_timing()

opea (unit=100, file=report_file name)

100 format (a20, 23, £8.3)
110 format (5(2x,214.6))
120 format (5(2,i10))

print *, headiagl (3)

allocate (x_dp(1:a), stat=allocate_status)
if (allocate_status/=0) then
print *, 'Allocate failed. Program terminates’
stop 30
ead if

print 100, heading2 (1), time_differeace()
call random_number (x_dp)

print 100, heading2 (2), time_differeace()
call mOlcaf (x_dp, 1, n, 'A%, ifail)

if (ifail/=0) thea
print *, ‘sort failed. Program terminates’
stop 100

ead if

print 100, heading2 (3), time_differeace()
write (unit=100, £mt='(a)’) 'First 10 64 bit reals’
write (unit=100, £at=110) x_dp(1:10)

close (200)
print *, ‘Program terminates’

call end_timing()

end program ch3803

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figr_HTML.gif
float summation(float *x, 10t n)

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figax_HTML.gif
nodule shape_module

type shape_type

integer, private =0
integer, private =0

contains
procedure, pass (this) :: get_x
procedure, pass (this) :: get_y
procedure, pass (this) :: set_:
procedure, pass (this) :: set_y
procedure, pass (this) :: moveto
procedure, pass (this) :: draw

ead type shape_type

interface shape_type
module procedure shape_type_coastructor
ead interface shape_type

interface assigament (=)
module procedure generic_shape_assiga
ead interface assigament

contains

type (shape_type) function &

shape_type_constructor (x, ¥)
implicit noae

integer, intent (ia) :: x

integer, intent (in)

shape_type_coastructor$i_ = x
shape_t ype_coastructorsy_

ead fuaction shape_type_constructor

include ’shape_module_include_code.£90°

subroutine generic_shape_assiga(lhs, rhs)
implicit noae
class (shape_type), intent (out), &
allocatable :: lhs

class (shape_type), intent (im) :: rhs

allocate (1hs, source=rhs)

ead subroutine geaeric_shape_assiga

cnd module shape module

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figk_HTML.gif
temp =b % b -2 % a”c
%1 = (- b+ (temp ** 0.5)) / (2 * a |

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figaf_HTML.gif
MPI_REDUCE(sendbut, recvbut, couat,

]
ouT

]

]

]

]
m

datatype, op, root, comm)
sendbuf address of send buffer (choice)
recvbuf address of receive buffer
(choice, significast oaly at root)
couat muzber of elements in send buffer
(non-negative integer)

datatype data type of elemeats of sead buffer
(handle)

op reduce operation (handle)

root rank of root process (integer
comm commuaicator (handle)

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figk_HTML.gif
program chlius

variables used
h1,h2,h3

used to hold the heights above sea level
h4

used to hold the average of the above
Long - used to represeat the loagitude
Lat - used to represent the latitude
both restricted to integer values.
implicit noae

integer, parameter :: a = 3

integer :: lat, loag
real, dimensioa (lia,

hl, h2, h3, h4

do lat = 1, a

read *, (hl(lat,long), lon a)
ead do
do lat = 1, a

read *, (h2(lat,long), lon a)

ead do
do lat = 1, a
read *, (h3(lat,long), loag=l, a)

ead do
do lat = 1, a
do loag = 1,
hd(lat, long) = (hl(lat,long) +h2(lat,long) &
+h3(lat,loag)) /a
ead do
ead do

do lat = 1, a
priat *, (hd(lat,loag), leag=l, a)
end do

end program ch0704

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figd_HTML.gif
https
fort ran—informat ion/

/fwww.fortranplus.co.uk/

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figd_HTML.gif
nodule inateger kind moduls

implicit
integer,
)
integer,
1)
integer,
9
integer,
15)
cnd module

parameter 1+ 48 =
parameter 1+ 15 =
parameter 1+ 432 =
parameter 1+ 451 =

integer kind module

elected_int_kind (2

selected_int_kind(

selected_int_kind(

selected_int_kind(

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figam_HTML.gif
words . twt

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figo_HTML.gif

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figg_HTML.gif
Plot of Gustafsons Law

64 Processors

o 1 20 50 i £y &
Number of processors

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figo_HTML.gif
s

IEEE support for default precision

array size 10000000 10,000,000
Computed sum = 0.1000E+08
Real sum = 0.1000E+08
Array size 100000000 100,000, 000
Computed sum = 0.1678E+08
Real sum = 0.1000E+08

inexact arithmetic

in the summation

program terminates

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figas_HTML.gif
https: //software.intel.com/en-us/articles/intel-sdm

OEBPS/images/112282_4_En_17_Chapter/112282_4_En_17_Figg_HTML.gif
nodule personal moduls

type address

character street
character distriet
character city

character post_code

ead type address

type date_of birth

integer :: day
integer :: month
integer :: year

ead type date_of_birth

type personal

character (len=20)
character (len=20)
character (len=10)
type (date_of birth)
character (len=1) :

f£irst_name
other_names

dob
gender
addr

type (address)

ead type persoaal

ead module personal_module

program ch1704

use personal_module

implicit noae

integer :: a_people
integer :: i

type (personal], dimeasion (1], &
allocatable :: p

print *, ‘input mumber of people’
read *, n_people

allocate (p(l:a_pecple])

open (unit=1, file='person.txt’,status='old)

do i =1, n_people

read (1, £mt=100) p(i)%first_name, &
p(i) other_names, p(i)¥suraame, &
p(i) tdob¥day, p(i)sdob¥month, &
p(i) tdob¥year, p(i)3gender, p(i)%addristreet,
p(i] taddridistrict, p(i)3addricity, &

p(i] taddripost_code

ead do

do i =1, n_people

write (*, fmt=110) p(i) ¥first_name,
p(i) other_names, p(i)¥suraame, &
p(i) tdob¥day, p(i)sdob¥month, &
p(i) tdob¥year, p(i)3gender, p(i)%addristreet,
p(i] taddridistrict, p(i)3addricity, &
p(i] taddripost_code

ead do
100 format (a20, /, a20, /, a40, /, i2, lx, i2, &
1z, i4, /, al, /, a60, /, as0, /, as0, /, &

a8)

110 format (a20, a20, ad0, /, i2, 1x, i2, 1x,
i4, /, al, /, a60, /, as0, /, as0, /, a8)

end program ch1704

OEBPS/images/112282_4_En_11_Chapter/112282_4_En_11_Figb_HTML.gif
program chllUs
implicit noae

integer :: io_stat_number = -1

integer :: i

do

priat *, ’input isteger

read (unif
)i

, Emt=100, iostat=io_stat_uzber &

print *, ! iostat=', io_stat_number

0) exit

if (io_stat_numbe:
ead do
print *, 'i =, i, ' read successfully’
100 format (i3)
end program ch1102

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figo_HTML.gif
https: //www.topSb00.oxrg/

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Fige_HTML.gif
CHARACTER (L]

), ILTENT (ILT)

Aot ype

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figs_HTML.gif
real , paramster
4.0%atan(1.0)
real , parameter
269792458 * 10.0 ** (-1)
real , parameter
1.602176565 * 10.0 **

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figq_HTML.gif
yyyy = 1370
dodd =1, 31
= = year_and_day_to_date(yyyy, dd)

print *, =ipriat_date (day_name.

short.
ead do

onth_name=.true.)

-nd program ch3001

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figh_HTML.gif
do mont.

total = total + rainfall (moath
e ndde

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figay_HTML.gif
iaclude “c_iaterop module.Lt3n™

orogram cn3si3

s izo_c_bisding

s c_iataro;

- module

inslicit aoae

interace

subroutine orint_string(x) biad (c, aam
uzs izo_c_bisding
character (c_char) :: x(%)

2ad subroutine oriat_striag

sriat_strizg’)

subroutine relace_string(x) biad (c, aam
uzs izo_c_bisding
character (c_char) :: x(%)

2ad subroutine reslace_string

reslace_string’)

subroutine concatenate string(x) biad (c, name=’concatenate_string’

uzs izo_c_bisding
character (c_char) :: x(%)
a0 subroutine concatenate_string

end interace

iateger , paramster :: line_leagth=so
character (lea=line_leagth) fortran_string
character (lea=line length , kiad=c_char) i@ c_strizg
fortran_string = ‘Hello’

c_string = £_to_c(fortran_string)

srist *, ¢ srist_strisg '

call oriat_string(c_striag)

fortran_string = ‘Hello’
c_string £_to_c(fortran_string)

srist *, * reslace strisg

call reslace_string(c_string)
Eortran string = e ko £(c_striag)

srist +, ¢ After +, fortraa strisg
fortran_string = ‘Hello’

c_string £_to_c(fortran_string)

srist *, coacateaats striag ’

call concatenate_string(c_striag)
fortran string = e ko £(¢ string)
sriat *, After +, fortraa strisg

cad orogram ch3sl3

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figai_HTML.gif
procedure , pass(this) :: get_radius

procedure , pass(this) :: set_radius

draw

brocedure , pass(this.
pass (this) draw_circle

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figap_HTML.gif
adatt

ndays (x (1) sdate, x(Z)%sdate)

priat *, * Uumber of days = ', ndiff
=(1) %date = date(1, 1, 1970)
=(2) %date = iso_date (1980, 1, 1)

! x(3)%date = us_date(1, 1, 1990)

do i =1, n_dates

print *, ' priat date test’

priat *, ’ Single parameter
(i) $datespriat_date ()

priat *, &

* day_names=false short_moath_name=false

, (i) 3datetprint_date (day_names
false.)

Lfalse.,

short_month_name:

priat *, &

‘ day_names=true short_moath_name=false

, (i) 3datetprint_date (day_names=.true.,

false.)

short.

onth_name

priat *, &

* day_names=false short_moath_name=true

, (i) 3datetprint_date (day_names=.false.,
short_moath_name=.true.)
priat *, &

‘ day_names=true short_moath_name=true

, (i) 3datetprint_date (day_names=.true.,
short_moath_name=.true.)

priat *, &
¢ digitsstrue
, (i) %datetprint_date (digits=.true.)

ead do

-nd program ch2903

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figah_HTML.gif
program chU3ls
implicit noae
integer, parameter :: a = 10000000

integer, dimension (1:a) :: x = 0

real, dimension (1:a)
t, 1, £2, 3, t4, t5
character *30 :: commeat

integer

real

opea (unit=10, £il

‘ch0S14.dat’, &
form='unformatted’)
call cpu_time (t]
t1=t
commeat = ¢ Program starts '
print 100, comment, t1
doi=1,n
=(i) = i
ead do
call cpu_time (t]
2=t -l
commeat = ¢ Integer assigament
print 100, comment, t2

y = real (x)
call cpu_time (t]
3=t -tl-t2

commeat = ¢ Real assigament

print 100, comment, t2
write (10) x

call cpu_time (t]
t4=t-tl-t2-t3

comment. Integer write

print 100, comment, td

write (10) v

call cpu_time (t]

€5 =t - tl-t2-t3-t4

commeat = ¢ Real write !
print 100, comment, t5

100 format (1x, a, 2%, £1.3)

end program ch0914

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figae_HTML.gif
subroutiae daysubijd, yyyy, mm, ¢, wd, dad,
GIVEN Jb, A JULIAN DAY ¢ (SEE ASF JD), THIS
FOUTTINE CALCULATES DD,
THE DAY NUMEER OF THE MONTH; M{, THE MONTH
MR, YYYY THE YEAR;
WD THE WEBKDAY WUMEER, AD DDD THE DAY
NUMBER OF THE YEAR.

frevary
‘AL DAYSUB (2440588, YYYY, 1M, DD, WD, DDD)
YIELDS 1570 11 4 1

iateger, inkent (1m) :: 34
inkeger, intent (ouk) :: yyyy
integer, iateat (out) ::mm
integer, intent (oub) :: dd
integer, intent (ouk) :: wd
integer, intent (ouk) :: ddd

call cdate(sd, vyvy, ma, dd)
wd = izle(yyyy, wm, dd)
ddd = iday(yyyy, wm, dd)

retura
2ad subroutine daysub

function 307

v, mn, dd) result (ival)

integer, iatent (13) :: yyyy
integer, iateat (i2) ::wm
integer, intent (12) ::dd
iateger :: ival

DATE FOUTINE 3 (¥Y¥Y, MM, DD) CONVERTS
ALENDER DATE 10

JULTAN DATE. SEE CACH 1968 11(10) :657,
LETTER TO THE

EDITOR BY HENRY F. FLIEGEL AND THOMAS C. VAN
FLANDER.

EXAPLE 30 (1570, 1, 1) = 2440588

ival = dd - 32075 + 1461* (yyyy+800+ (mn-11)/ ¢
12)/4 + 367" (mn-2- ((wn-14) /12)112) /12 - &

31 (77 +4500+ (an-14) /12) /100) /4

retura
end function d

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figk_HTML.gif
program chldls
implicit noae

integer, poiater :: a => mull(), b = aull()

integer, target
d

integer

priat *, a
priat *, b

e=1
c=2
b=c
d=a+b

priat *, a, b, ¢, d
end program chl1803

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq7.png
10

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq8.png
(x")/n!

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq9.png
x=13.2

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbd_HTML.gif
program chlslb
implicit noae

real, parameter :: atomic_mass_coastaat = &
1.660538921e-27

real, parameter :: avogadro_constast = &
6.02214129223

real, parameter :: boltzmana_constant = &

1.38064882-23
real, parameter
9.10938291e-31

clectron_mass

real, parameter :: elementary_charge = &
1.602176565¢-19
real, parameter :: proton_mass = &

1.672621777e-27

real, parameter
299792458

real, parameter :: &

speed_of_light_in_vacuum

aewtonian_constant_of_gr.
6.67384e-11

print *, atomic_mass_coastant
print *, avogadro_coastant
print *, boltzmann_constaat
print *, electron_mass

print *, elementary_charge
print *, proton_mass

print *, speed_of_light_in vacuum

print *, newtonian constant_of gravitation
end program ch0516

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figac_HTML.gif
date_(11, 2,

print *, ' print_date test’

print *, ! Siagle parameter ,
print_date (x)

print *, &
* day_names=false short_moath name=false
print_date(x, day_names=.false., &
short_moath_name=.false.)

print *, &

alse

day_names=true short_month_nam

print_date(x, day_names=.true., &

short_moath_name=.false.)
priat *, &

¢ day_names=false short_moath name=truc

print_date(x, day_names=.false., &

short.

onth_name=.true.)

priat *, &

‘ day_names=true short_moath name=true

print_date(x, day_names=.true., &
short_moath_name=.true.)
priat *, * digits=trve ‘s

print_date (s, digits=.true.)

¢ Test out a moath’

print *,
yyyy = 1970
dodd =1, 31
= = year_and_day_to_date(yyyy, dd)
print *, print_date(x, day_names=.false.,
short.
ead do

onth_name=.true.)

-nd program ch2206

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figa_HTML.gif
include ‘iateger_kind -
odule.£90°
include ‘sort_data_module.£90"

include 'precision,

include ’timing_module.£90"

program ch3801

use sort_data_module
use timing_module

implicit noae
integer, parameter :: a = 100000000
aa = 100,000,000"
report_file_name

character *12

character *80
‘ch3§01.report’

real (spl, allocatable, dimension

real (dp), allocatable, dimeasion
real (qp), allocatable, dimension (:]
integer (i32), allocatable, dimension

y_i32
integer (i64), allocatable, dimension
y_isd
integer :: allocate_status = 0
character *20, dimeasion (5) :: headingl = [&
¢ 32 bit real’, ' 32 bit iat /, &
64 bit real’, ' 64 bit int /, &
¢ 128 bit real’]
character *20, dimension (3) :: heading2 = [¢
4 Allocate /, ' Random ¢, &
4 Sort 1

priat *, ‘Program starts’
priat 4, ‘0=, aa

call start_timing()

opea (unit=100, file=report_file name)

print *, headiagl (1)

allocate (x_sp(1:a), stat=allocate_status)
if (allocate_status/=0) then
priat *, &
¢ Allocate failed. Program terminates’
stop 10
ead if

print 100, heading2 (1), time_differeace()
100 format (a20, 23, £8.3)
call random_number (x_sp)
print 100, heading2 (2), time_differeace()
call sort_data(:_sp, n)
print 100, heading2 (3), time_differeace()
write (unit=100, fmt='(a)’) &
¢ First 10 32 bit reals’
write (uait=100, fmt=110) x_sp(1:10)
110 format (5(2x,214.6))

print *, headiagl (2)

allocate (y_i32(1:a), sta
if (allocate_status/=0) then

llocate_status)

priat *, &
‘Allocate failed. Program terminates’

stop 20

ead if

print 100, heading2 (1), time_differeace()

y_il2 = iat (x_sp*1000000000, i32)

deallocate (x_sp)

print 100, heading2 (2), time_differeace()

call sort_data(y_i32, a)
print 100, heading2 (3), time_differeace()
write (unit=100, fmt='(a)’) &

‘First 10 32 bit iategers’
120) y_i32(1:10)

write (unit=100, fm
120 format (5(2,i10))
deallocate (y_i32)

print *, headiagl (3)

allocate (x_dp(1:a), stat=allocate_status)
if (allocate_status/=0) then
priat *, &
‘Allocate failed. Program terminates’
stop 30
and if

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figad_HTML.gif
Length of string i1s = el
String is
The important issue about a laaguage, is not so much
shat features the language possesses,
but the features it does possess, are sufficieat,
to support the desired programming styles,
in the desired application arcas.
Blanks at positions

4 14 20 26 28 38 41 45 48 53 58
67 71 80 91 95 99 108 111 116 125 128
141 144 152 156 164 176 184 187 161 166 211

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbh_HTML.gif

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figw_HTML.gif
program chlsts
implicit noae
integer, parameter :: a = 12

real :: total = 0.0, average = 0.0

real, dimension (l:n) :: rainfall
2.0, 2.4, 2.1, 2.2, 2.2, 1.8, 2.2, 2.7
3.1, 3.1 /)

iateger :: month

do moath = 1, a
total = total + raiafall (moath)
ead do
average = total/a
print *, ' Average moathly rainfall was’
print *, average
end program ch0805

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq6.png

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figv_HTML.gif
year_and day_to_date(yyyy, ddd)

if (adiff/=366) thea
print *, ‘adays failed; ndiff =

else
if (x%get_month()/=1 .and. x%get_day()/=1) &

thea
print *, ’year_and_day_to_date failed’
print *, mma, dda =, x%get_month(), &

=¥get_day ()

else
priat *, ' caleadar_to_juliaa OK’
priat *, ! date_ OK'
print *, ' date_to_day_in_year OK'
print *, ' date_to_weekday_number OK’

priat *, ' get_day OK’

priat *, ‘' get_month O’

print *, ' get_year OK’
priat *, &

¢ julian_to_date_and week_and_day OK'

priat *, ' ndays OK’
print *, ' year_and_day_to_date OK'
ead if
end if

txl = date(1, 1, 1970)
julian = tilscalendar_to_juliaa()

tx2 = julian_to_date (julian)

if (txliget_day()==tx2iget_day() .and. &
txlget_month()==tx2%get_moath() .and. &
txlget_year () ==tx2%get_year()) then

priat *, ¢ calendar_to_julian asd ’
priat *, ¢ julian_to_date worked’
end if

date (11, 2. 1952}

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq9.png

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figaa_HTML.gif
20
37.
25.
9.
8

7.
45.
56.
g

85,
65.
82.
o5

65.
8.
4s.
e

68.
10.
30.
a8

ss.
36.
65.
€5

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq3.png
i=i+1

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figj_HTML.gif
real (c_float)

reciprocal

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figaj_HTML.gif
iaterface circle types
module procedure circle_type_coastructor
ard interface

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Fige_HTML.gif

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figr_HTML.gif

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figy_HTML.gif
nodule shape_module

type shape_type

integer, private =0
integer, private =0

contains
procedure, pass (this) :: get_:
procedure, pass (this) :: get_y
procedure, pass (this) :: set_x
procedure, pass (this) :: set_y
procedure, pass (this) :: moveto
procedure, pass (this) :: draw

ead type shape_type

interface shape_type
module procedure shape_type_coastructor
ead interface shape_type
contains
type (shape_type) function &
shape_type_constructor (x, y)
implicit noae

integer, intent (ia) :: x

integer, intent (in) v
shape_type_coastructor$i_ = x
shape_type_coastructorsy_ = v

ead fuaction shape_type_constructor

include ’shape_module_include_code.£90°

cnd module shape module

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figl_HTML.gif

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figab_HTML.gif
Subroutine reciprocadl(ar, nac, %, y) bind (¢, &
aame=' reciprocal’)
use iso_c_binding
implicit none
integer (c_int),

integer (c_int),
real (c_float), dimeasion (l:ar, lic), &
intent (ia)

real (c_float], dimeasion (l:ar, lic), &

inteat (out) v

y = 1.0/x
-nd subroutine reciprocal

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figc_HTML.gif
allocate (weaight (l:numbexr_of people))

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Chapter_TeX_Equ1.png
n! = V2nn(n/e)"

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figz_HTML.gif
t8ald, 22
- interface shape_type

S module procedure shape_type_coastructor
> end interface shape_type

19a24, 33

> type (shape_type) function &

- shape_type_constructor (x, ¥)
S implicit none

. integer, inteat (ia)

. integer, inteat (ia)

S shape_type_coastructor$i_ = x
S shape_type_coastructorsy_ = v

. end function shape type constructor

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figu_HTML.gif
do 1=1,8
read (uait=10, Emt=+
ernd do

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figb_HTML.gif
character

a, straing, laine

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figab_HTML.gif
opsa (uaat=l, il
¢ c:\document \ fortran\ch0912 .t xt’ |

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbg_HTML.gif
nodule shape_module

type shape_type

integer, private =0
integer, private =0

contains
procedure, pass (this) :: get_:
procedure, pass (this) :: get_y
procedure, pass (this) :: set_x
procedure, pass (this) :: set_y
procedure, pass (this) :: moveto
procedure, pass (this) :: draw

ead type shape_type

interface shape_type
module procedure shape_type_coastructor
ead interface shape_type
contains
type (shape_type) function &
shape_type_constructor (x, y)
implicit noae

integer, intent (ia) :: x

integer, intent (in) v
shape_type_coastructor$i_ = x
shape_type_coastructorsy_ = v

ead fuaction shape_type_constructor

include ’shape_module_include_code.£90°

cnd module shape module

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq2.png
X <0

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq1.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figt_HTML.gif
Faze

50

Plot of 1/ (1+xex)

40

30

20

10

o1

03

o4 05 08

o7

o8

o5

1o

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figb_HTML.gif
program chisls
use iso_c_binding
interface
real (c_float) fuaction reciprocal(:) &
bind (¢, name='reciprocal’)

use iso_c_binding

real (c_float), value :: x
ead fuaction reciprocal
ead interface

real

2= 10.0
priat *, Fortran calling C function’
priat *, =, ' reciprocal = /, reciprocal (x

end program ch3502

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figo_HTML.gif
real, public

integer,

private

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figae_HTML.gif
program chUsus
implicit noae

integer, dimension (1:2, 1:4)

integer, dimension (1:8) ::y = (/ 1, 2, 3, 4,
5, 6, 7,8 /)

integer, dimension (1:6) :: z = (/ 1, 2, 3, 4,
5, 6 /)

integer :: x,

priat *, ' Souree array y'

priat *, y

priat *, ' Souree array z'

priat *,

print *, ’ Simple reshape sizes match’

= = reshape (v, (/2,4/))
dor=1,2

priat *, (x(r,e), e=l, 4)
ead do
priat *, &

¢ Source 2 elements smaller pad with 0
= = reshape(z, (/2,4/), (/0,0/))
dor=1,2

priat *, (x(r,e), e=l, 4)
ead do
priat *, &

¢ as pr

rious now specify order as 1427
(/2,4/), (/0,0/), (/1,2/1)

= = reshape (

dor=1,2
priat *, (x(r,e), e=l, 4)

ead do

priat *, &

¢ as pr

rious now specify order as 2417
(/2,4/), (/0,0/), (/2,1/1)

= = reshape (
dor=1,2
priat *, (x(r,e), e=l, 4)
ead do
end program ch0808

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq9.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq8.png
1l <=dim<=n

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq7.png
x| <=1

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq6.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq5.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq4.png
X%IM

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figk_HTML.gif
julian_to_date_and wesk_and_day

module function adays (datel, date2)
implicit noae

integer :: adays
class (date], intent (in] :: datel, date?
adays = calendar_to_julian(datel) - &

calendar_to_julian(date2)

ead fuaction ndays

module fuaction &
print_date(this, day_names, &
short_moath_name, digits)
implicit noae
class (date), inteat (ia) :: this

logical, optional, inteat (in]

day_names, &
short_moath_name, digits

character (40) :: print_date
integer :: pos
logical :: vant_day, &

want_short_month_name, &
want_digits

intrinsic lea_trim, preseat, trim

waat_day = .false.
want_short_month_name = .false.
want_digits = .false.
print_date = ¢
if (present (day_names)) then
want_day = day_names
ead if
if (present (short_month_name)) thea
waat_short_month_name = short_month_name
ead if

if (present (digits)) then
want_digits = digits

ead if

if (want_digits) thea

write (print_date(1:2), ‘(i2)’) thisbday

print_date(3:3) = '/’

write (print_date(4:5), (i2)7) &
thistmonth

print_date(6:6) = ' /*

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_IEq3.png
X%RE < 0

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Fign_HTML.gif
read *,

rainfall 1ns

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figk_HTML.gif
“ahpod Besblebrox “4e 1.8 0

Ford Prefect 25 1.75 65
Arthur Dent 30 1.72 68
Trillian 30 1.65 4

1234567890123456 789012345 67690123456789012345
" s 2 a

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figac_HTML.gif
tateger, dimeasion(l:b)

integer, dimension(1:3,
b= (/1,3,5,7,8,11/)
a = reshape (b, (/3,2/))

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figm_HTML.gif
nodule chiifls_person_moduls

implicit noae

type :: person

character (len=30) :: name

integer age

real height

real : weight

contains
procedure :: print_person
generic :: write(formatted) &

> print_person

procedure :: read_person
generic read (formatted) &

> read_persoan
ead type persoa
contains

subroutine priat_persoa(p,uait_number, &
iotype, vlist,iostat,iomsg)

implicit noae

class (persen) , inteat (in) sip

integer L&
inteat (ia)

uait_suzber
character (len=*) , inteat (in)
integer , dimension(:) , inteat (in)

integer " intent (out)

character (les=t) | intent(izout) :: iomag

character (les=40) :: peraon fomat

write (person_fomat, 10) " (o' vlist (1] &
e

2x, &
CE,vlist(3), 8
fvlist(d), e
2x, &
CE,vlist(5), 8
)t
10 format (a,i2,&
a,il,
a,il,
a,il,

a,il,
a

write (unit_susber, fmt=person_format) &
phaame, pYage, ptheight , phueight

iostat=0

end subroutine priat_person

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figy_HTML.gif
S /8 (r-32)
32 49 /5 *+ t

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Fige_HTML.gif
implicit noae

contains
subroutine matrix bits(a, b, ¢, at, a]
implicit noae

integer, intent (ia) :: a

real, dimension (
real, dimeasion (i,

inteat (in)
inteat (out)

at
integer

real :: temp
! matrixz multiplication c=ab
doi=1,n

doj=1, 1

temp = 0.0
dok=1,a
temp = temp +a(i, K)*b(k, 3)
ead do
cli, 3] = temp
ead do
ead do

! calculate a_t transpose of a
! set at to be transpose matrix a
doi=1,a
doj=1, a
at(i, 3 =a(j, i
ead do
ead do
ead subroutine matrix bits

ead module matrix_module

program ch2003
use matrix_module
implicit noae
real, allocatable, dimension

two, three, one_t
integer :: i, a

print *, ‘input size of matrices’
read *,

allocate (one(l:a,l:a))

allocate (two(l:a,l:a))

allocate (three(1:n,1:a))
allocate (one_t (1:,1:a))
doi=1,a

print *, ‘daput row ', i, ' of oae’
read *, one(i, 1:a)

ead do

doi=1,a
print *, ‘daput row ', i, ' of tuo’

read *, two(i, 1:a)
ead do

call matriz_bits(one, two, thres, one_t, a)

print *, ' matrixz thre
doi=1,n

print *, three(i, 1l:a)
ead do

priat *,

. ¢ matriz ome_t:
doi=1,n
priat *, one_t(i, l:a)
ead do
end program ch2003

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figae_HTML.gif
nodule module_names

cnd module name

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figax_HTML.gif
type (square_type) function &
square_type_constructor (x, v,
implicit noae
integer, intent (ia) :: x

v
side

integer, intent (in)

integer, intent (in)

side)

call square_type_constructor¥set (x)
call square_type_constructor¥set_y (y)

square_type_const ructor¥side_

= side

ead fuaction square_type_coastructor

integer function square_area(this)

implicit noae

class (square_type], iateat (in)

square_area = this$side_‘this¥side_

ead fuaction square_area

-nd module square module

this

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figk_HTML.gif
=nd type shape_typs

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Fige_HTML.gif
use mpl

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figag_HTML.gif
call year_and _day_to_iso_datewset_year (year)

t=o0

if (modulo(year,4)==0) then
t=1

ead if

if (modulo(year, 400) and. &
modulo(year, 100)==0] thea
t=o0

ead if

call year_and_day_to_iso_datetset_day &
(day_in_year)

if (day_in_year>59+t] thea
call year_and_day_to_iso_datetset_day &

(year_and_day_to_iso_datesget_day () +2-t)

ead if

call year_and_day_to_iso_datetset_month(((&
year_and_day_to_iso_datetget_day()+ &
91)+100) /3055)

call year_and_day_to_iso_datetset_day &
((year_and_day_to_iso_datetget_day(&
)491) - (vear_and_day_to_iso_datetget_month(&
)#3055) /100

call year_and_day_to_iso_datetset_month &
(year_and_day_to_iso_date¥get_month(]-2)

if (year_and_day_to_iso_date¥get_month ()
1 .and. year_and day_to_iso_datesget_moath &
(1<=12) then
retura

ead if

write (unit=*, £mt='(a,ill,a)’) ‘$$year_and_ds

say_to_date: day of the year imput &

, day_in_year, ' is out of range.’

ead fuaction year_and_day_to_iso_date

-nd module iso date module

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figh_HTML.gif
include ‘precision _module.L3aldt
include ’ch2602_rkm module. £90"
include ‘ch2602_fual_module.£90

program ch2602
use precision_module, wp => dp

use rkm_module

implicit noae
real (wp), dimension (
a, b, tol
integer :: a, ifail, all_stat

, allocatable

real (wp)

priat *, ’input no of equations’
read *, n

! allocate space for y - checking to see that it

! allocates properly

allocate (y(lin), stat=all stat)
if (all_stat/=0) thea

print *, ’ not eacugh memory’
print *, ' array y is not allocated’
stop

ead if

priat *, &
¢ input start and ead of interval over’
priat *, ' which equations to be solved’
read *, a, b
print *, ‘input initial coaditions’
read *, y(1:a)
print *, ‘input tolerance’
read +, tol
priat 100, a
100 format (‘at t= ', £5.2, &
¢ initial conditions are :')
priat 110, y(l:a)
110 format (4(£5.2,2x))
call runge_kutta merson(y, funl, ifail, n, a, &
b, tol)
if (ifail/
print *, ‘integration stopped with ifail

) then

. ifail
else
priat 120, b
120 format (‘at t= ‘, £5.2, ' solution is:’)
priat 110, y(
ead if
end program ch2602

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figo_HTML.gif
=nd function gcd

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figx_HTML.gif
float summation(float *x,1nt n);

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figak_HTML.gif
1nclude "chlll/ date modules . .f Y907

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figj_HTML.gif
http://portal.acm.oxrg/citation.cfm?1d=J286

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figap_HTML.gif
suatdl and suaCc, opeasuse Linux

sua£90 —c ch3511.£90 -o ch351l_f.o

suncc ch3512.cxx ch3511 c.o —xlan

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figx_HTML.gif
fuaction Action

1le lexically less than or equal to
lge lexically greater thaa or equal te
1gt lexically greater thaa

11t lexically less than

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Fign_HTML.gif
do 1=start,end

2(3) = i*factor
priat*,‘on image ‘,me, ‘3 = '3, w(3) = /=3
3 =341

and de

OEBPS/images/112282_4_En_17_Chapter/112282_4_En_17_Figa_HTML.gif
program chl/ul

implicit noae

type date
integer :: day = 1
integer :: month = 1
integer :: year = 2000

ead type date

type (date]

print *, diday, dimoath, diyear
print *, ' type in the date, day, moath,
read *, diday, d%moath, diyear
print *, diday, dimoath, diyear

end program ch1701

year’

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figw_HTML.gif
CNTUEAR FEEE, M, D0, 90, W0, D00, MEA, DO, NI, L
THTEGER!2 YYYY2,1m2,002

c
DAY TS A COMPANTON TO CALEND; GIVEN A CALENDAR DATE, Y¥¥Y, M,

c DD, IDAY IS FETURIED AS THE DAY OF THE YEAR.

¢ EXAPLE: IDAY (1584,1,22)=113

DAY (YYYY, 1, DD) =3055* (16+2) /100~ (H4+10) /131251
. +(1- (HOD (Y¥¥¥, 4) +3) /4+ (HOD (¥Y¥Y, 100) +55) /100
. - (HOD (¥¥¥¥, 400) +355) /400) * (H04+10) /134DD

~TZLR(YY¥Y,101,00) GIVES THE VEEFDAY NUMBER 0=SUNDAY,
c G=SATURDAY. EXAMPLE: IZLR(1570,1, 1)=4=THURSDAY
TZLR (YYYY, 1, DD) =HOD ((13* (HM+10- (H4+10) /13112) -1) /5+DD+77

. 5% (YYYYH (I-14) /12~ (FY¥¥4 (M-14) /12) /100°100) /4
. + (FYYYOBI-14) /12) /400~ (YEYEH (B-14) /12) /100°2,7)

oAy,

c Compute date this year for chaagiag clocks back to EST
c T.e., compute date for the last Suaday ia October for this year
CALL GETDAT (¥¥¥¥2,M012, DD2)
vevy=vyvvz
D0 1=31,26,-1
TP (TZLR(Y¥YY,10,T) .EQ.0) THEN
WRITE(*, %) Tura Clocks back to EST oa: ’
a1t
mu1e
= 5o
c Compute date this year for turaiag clocks ahead to DST

* October *,¥rTY

© T.e., compute date for the first Suaday ia Asril for this year

CALL GETDAT (¥¥¥¥2,M012, DD2)

vrvy=vyvv2

D0 1-1,8

TP (IZLR(YYYY,4,T) .EQ.0) THEN
WRITE(*, ") ‘Tura Clocks ahead te DST oa: /1,7 Asril ', Y¥¥Y
a1t

mu1e

= 5o

c
C Ts this a leas year? T.e. is 12/31/yyyy the 366th day of the year?
CALL GETDAT (¥¥¥¥2,M012, DD2)
GETDAT is builtia usiag most Comsilers
vrvy=vrvvz
TP (IDAY (¥¥YY,12,31) .EQ.366) THEN
WRITE(*, %) YIYY,’ is a Leap Year’
BLsE
WRITE(*, %) YIYY, is a0t a Leas Year’
—

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Fige_HTML.gif
program chal _dislin U3
use dislia
implicit noae
integer i 4, 3
! Total muzber of processors and heace data
! poiats
integer, parameter :: aprocs = 64
! lumber of percentage values from
1103 —> 908 o
195s 1
! Total 10
integer, parameter
real, dimension (aa) (/ 0.1, 0.2, 0.3, &
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 /)
real, dimension (aprocs)

v

real, dimension (aprocs)

real, dimension (sprocs, aa)

ydata
integer :: ay
character *30 cbuf

integer

do i =1, mprocs
=(i) = real(i)
ead do
! gustafson calculations. Store ia 2 d array aad
! thea
! assign to 1 d array for plottiag.
do i =1, mprocs
doj=1, m
ydata(i, 3) = i - (1-pp(3))* (i-1]
ead do
ead do
! write the data to a file for verification

purposes

opea (unit=10, £il
do i =1, mprocs
write (unit=10, fmt=100) x(i], &
ydata(i, 1:aa)
100 format (11(£7.2,2x))
ead do
close (10
call disini

qustafson_table.txt’)

call compli
call axspos (450, 1800)
call axslen (2200, 1400)
call name (‘lumber of processors’, /')
call name('speed up’, 'y')
call titlin('Plot of Gustafsons Law’, 1)
call titlin(’64 Processors’, 3]
call labdig(-1, 'x')
call ticks(10, ‘xy')
call graf(0.0, 64.0, 0.0, 10.0, 0.0, 70.0, &
0.0, 10.0)
call title
call xaxgit
call chacrv (/line’)
! Plot the curves. Copy from 2 d array to 1 d
! array
! before the call to curve.
doi=1, m
y = ydata(l:aprocs, i)
call curve(x, y, aprocs)
ead do
call legini(cbuf, 10, 3)
! Coordinates of the start of the legead
! for the curves.
ax = 500
ay = 450
call legpos (ax, ay)
call leglin(cbuf, ‘10%', 1)
call leglin(cbuf, /20%', 2)
call leglin(chuf, /30%', 3)
call leglin(chuf, ‘40%', 4)
call leglin(cbuf, /50%', 5)
call leglin(cbuf, /§0%', §)
call leglin(cbuf, /70%', 7)
call leglin(cbuf, ‘80%', 8)
call leglin(cbuf, /90%', 9)
call leglin(cbuf, ‘953, 10)
call legtit (‘legend’)
call legend (chuf, 3
call disfin
cend program chdl dislin 03

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figq_HTML.gif
nodule md_moduls
implicit noae

contains
subroutine matrix_diagonal(a, diag, a)
implicit noae
real, inteat (in), dimeasion (:, :) :: a
real, intent (out), dimension (
integer, intent (in)

real, dimension (l:size(a,1)*size(a, 1))
temp

! subroutine to extract the diagoaal
! clements of an a * a matrix A

temp = pack(a, .true.)
diag = temp(l:a*a:ntl)
ead subroutine matrix_diagonal
ead module md_module

program ch2603
! program reads the a * a matriz from a file
use md_module

implicit noae

integer :: i, a
real, allocatable, dimension a
real, allocatable, dimension adiag

character (len=20) :: filename

print *, ‘input name of data file’
read ‘(a), filename

open (uait=1, file=filename,status='old")

read (1, *) a

allocate (a(l:a,1:n), adiag(l:a))
doi=1,a
read (1, *) a(i, 1:a)
ead do
call matriz_diagenal(a, adiag, a)

priat *, ' diagonal elements of a are:’
print *, adiag

end program ch2603

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figu_HTML.gif
include "ch230l_day and month_name_module. 30"

include ’ch2901_date_module

program ch2901

use date_module
date,
date_to_weekday_number,
get_year, julian_to_dat

only

date_to_day_in_ye

Julian_to_date_and_week_and_day,

print_date, year_and_da

implicit noae

integer :: dd, ddd, i, mm
integer :: julian
integer :: val(s)
intrinsic date_and_time
type (date) :: datel, dat.
call date_and_time (values
yyvy = val(l)
am = 10
do i =31, 26, -1
% = date (i, mm, yyyy)
if (x¥date_to_weckday_m
priat *, ‘Tura clocks
i, ¢ octaber !, xig
exit
end if
end do
call date_and_time (values
yyvy = val(l)
am =4
doi=1,8
% = date (i, mm, yyyy)
if (x¥date_to_weckday_m
priat *, ‘Tura clocks
i, ¢ april , xig
exit
end if
end do

.£90°

calendar_to_julian,

get_day, get_month,
adays, &

y_to_date

, ndiff, wd, yyyy

€2, x, tml, t:2

=val)

umbex ()==0) thea

back to EST oa: '

et_year()

=val)

umbex ()==0) thea
ahead to DST oa: '

et_year()

call date_and_time (values=val)
% = date(dd, mm, yyyy)
if (xbdate_to_day_in_year()==366) then
print *, xlget_year(), ' is a leap year’
elee
print *, sbget_year(), ' is act a leap year
end if
%= date(1, 1, 1570)
call julian_to_date_and_week_and_day &
(calendar_to_julian(x), =, wd, ddd)
if (xbget_year()/=1970 .or. xbget_month()/=1
Lor. wiget_day() /=1 .or. wd/=1 .or. ddd/=1)
then
priat 4, &
‘Julian_to date_and week_and day failed’
print *, ¢ date, wd, ddd = ', xSget_year(),
sbget_month(), x¥get_day (), wd, ddd
stop
end if
datel = date(22, 5, 1884)
date2 = date(22, 5, 1883)
adiff = ndays (datel, date2)
yyvy = 1970

OEBPS/images/112282_4_En_BookBackmatter_Figy_HTML.gif
tateger, dimeasion(l0,2U), &

codimension[10,0:6,.0:%]

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figt_HTML.gif
program chUsll
! This program reads in and prints out
! your
first name
implicit noae
character (20) :: first_name
print *, ' Type in your first name.’
priat *, ' up to 20 characters’
read *, first_name
print 100, £irst_name
100 format (1x, a) end program ch0910

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq7.png

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figg_HTML.gif
integer function date_to_day_in_year (this)
implicit noae

class (date), inteat (ia) :: this

intrinsic modulo

date_to_day_in_year = 3055*(thiskmonth+2)/ &
100 - (this¥month+10) /1342 - 81 + &
(1- (modulo (thistyear, 4] +3) /4+(modulo (thist &
year, 100) +99) /100~ (modulo (thissyear, &
400) +369) /400) * (thistmonth+10) /13 + &
thissday

end function date_to_day_in_year

integer function date_to weekday_mumber (this)
implicit noae

class (date), inteat (ia) :: this

intrinsic modulo

date_to_weekday_number = modulo((13*(&
thismonth+10- (thismonth+10)/13412) -1) /5+ &
thistday+77+5* (thissyear+ (this¥month- &
14) /12~ (thistyear+ (thissmonth-14) /12) /100* &
100) /4+ (thisyear+ (thistmonth- &
14)/12) /400~ (thisyear+ (thistmonth- &
14)/12) /10042,)

=nd function date_to_weekday_number

function get_day(this)
implicit noae

get_day

class (date), intent (in)

integer

this

get_day = thistday
snd function get_day

function get_moath(this)
implicit noae
integer

get_moath

class (date), inteat (ia) :: this

get_moath = thistmonth
snd function get_month

function get_year (this)
implicit noae

integer :: get_year

class (date), inteat (ia) :: this

get_year = thistyear
-nd function get yvear

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbc_HTML.gif
Aagtor chUsla.t3u
NAG Fortran Compiler

Error: ch0514.£90, line
Integer overflow for exponentiation 104423

Errors in declarations,
a0 further processing for CHO514
[IIAG Fortran Compiler error termination, 1 error]

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq9.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq6.png
12

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Fign_HTML.gif
include "chid03_statistics_module.:3U"
includs 'ch3S03_met_offics_station_moduls.£90"

srogram ch3903

uss met_offics_station_moduls
uss statistics_meduls

implicit nons

! mst office data user definsd tyse

type (station_tye), dimension
Sllocatable :: station data

| Temporary variables ussd on the read

intager :: year
intsger :: month
real i tmax

real :: tmin
intager :: af_days
real :: rainfall
real :: sunshine

! Currently we only calculate the

! rainfall sum and averages.

! real, dimension (L:n_months)

n_months)

! real, dimension (1:n_months)
real, dimension (1:n_months)

! real, dimension (1:n_months)

sum_tmas
um_tmin
sum_at_days
um_rainfall
um_sunshine

! real, dimension (1

real, dimension (1:n_months)
real, dimension (1:n_months)
real, dimension (1:n_months)
average_af_days
real, dimension (1:n_months)
averags_rainfall
! real, dimension (1:n_months)
! averags_sunshine

averags_tmax
averags_tmin

! Table to hold the menthly rainfall averages
! for all stations.

real, dimension (1:n_months, lin_stations)
rainfall_tabls = 0

intager i n_ysars

intager

i3

call initialise station data()

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figv_HTML.gif

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figk_HTML.gif
do wvariable = start, ead, increment
block of statements
ernd do

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figg_HTML.gif
program chlals

! simple character i/o

character (80) :: line
read ' (a)’, line
priat *, line

end program chl1402

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Fige_HTML.gif
https: //wgb—fortran.oxrg/IT1851-1T1500,/17118%1 . pdf

OEBPS/images/112282_4_En_11_Chapter/112282_4_En_11_Figc_HTML.gif
program chllUs
implicit noae

character (len=20) :: station, file_name
integer :: i, io_stat_number, filestat, flea, &
integer, parameter :: amoaths = 12

integer, dimension (1:amenths)

year, month
real, dimension (1:amoaths)

sunshine

raiafall, &

real :: rain_sum
real :: rain_average
real :: sun_sum

real :: sun_average
do

priat *, ’input weather station’

priat *, ' or "end" to stop program’
read ‘(a)’, station

if (statio

‘end') exit
flea = lea_trim(station)
f£ile_name = station(

flen) // 'data.txt’
open (newunit=uno, file=file name, &
iostat=filestat, status='old’]
if (filestat/=0) thea
print *, ‘error opening file /, file_name
print *, 'Retype the file name’
eycle
ead if
doi=1,7
read (unit=uno,

do i =1, amonths
read (unit=uao, fmt=100, iostat= &
io_stat_nuwber) year(i), moath(i), &
rainfall(i], suashiae (i)

100 format (3x, id, 2x, i2, 27, £4.1, 3x, &

£5.1)
if (io_stat_number/=0) then
print *, ' error reading record !, &
i+ &
¢ so following results incorrect:’
exit
ead if
ead do

close (unit=uno]
rain_sum = sun(rainfall]/25.4

sun_sum = sum(suashine)
rain_average = rain_sum/amoaths
sun_ sun_sum/amonths
write 10) station

110 format (/, /, 'Station = ', a, /)

write (unif 20) year(l), meath(1)
120 format (2:, 'Start ', id, 2x, i2)
write (unit=" 30) year(12), meath(12)
130 format (2, 'Ead ', id, 2%, i2)
write (unit=" 10)
140 format (19x, ! Yearly Monthly’, /, 18x,

. fat

. fat

. fat

Sum Average’)

write (unit=t, fmt

150) rain_sum, &
rain_average

150 format (‘Rainfall (inches) ', £7.2, 2,
£.2)

write (unit=", fmt=160) sua_sum, sun_average
160 format (‘Sunshine ', £7.2, 2z, £7.2)
ead do
end program ch1103

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Figh_HTML.gif
https://software.intel.com/en-us/articles/

intel-software—technical-documentation/

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figi_HTML.gif
~ont alns

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq1.png
242

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figa_HTML.gif
http:/ /www. openmp.oxqg/

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figq_HTML.gif
use module nams

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figi_HTML.gif
13

a2

a3

01
a1

s

2

127

141

12

SUSTRIELAE GEALE (TR
TNTEGER TODO, DOLEE, IP, BASE
comsoN /8611, L, DOUE
PARAMETER (BASE=10)
1£(1000.£0.0) GO TO 12
10D (1000, BA9E)
T0D0=TODO/BASE

60 10(82,42, 43,62, 404,45, 62,62, 62), 1
0 10 13

caLL copy

o0 10 127

caLL Hove

0 10 141

u

caLL pELETE

o 10 127

ALL priat

0 10 141

AL BADACT (1)

o 10 12

Lo

DOUE=DONE+ 1

AL RESTNC

0 10 13

RETURY

-

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figap_HTML.gif
program chU3ls
implicit noae
integer :: t
priat *, ' ¢
priat *, ! Tuelve times table’
priat *, ' ¢
dot=1, 12
print (/0 ff, i3, 00 412 =00, 437, &,
12
ead do
end program ch0918

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq13.png
n—k+1

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq12.png
la(k, k)| = abs(a(k, k))

OEBPS/images/112282_4_En_17_Chapter/112282_4_En_17_Figf_HTML.gif
nodule address_moduls

type address

character aame
character street
character distriet
character city

character post_code
end type address

end module address module

progran chi703
use address_module
implicit none

integer :: a_of address

type (address), dimension
allocatable :: addr

integer

print *, ‘input mumber of addresses’

read *, n_of_address

allocate (addr(1:

_of_address))

open (uait=1, file='address.txt’, status='old’

do i =1, n_of_address

read (unif fmt=" (a40) /) addr (i) $name
read (unif fmt=" (a60) /) addr (i) $strest
read (unif fmt=" (a80) /) addr (i) Sdistrict
read (unif fmt=" (a80) /) addr (i) Seity
read fmt=" (a8)’) addr (i) $post_code
end do

do i =1, n_of_address

print *, addr(i)%name
print *, addr(i)¥strest
print *, addr(i)$district
print *, addr(i)scity
print *, addr(i)¥post_code

ead do

end program chl703

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq11.png
A lb=x

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_IEq10.png

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figc_HTML.gif
ctor =

ask for name of file containing v
aon-zero values and indices

priat *, ‘input file name for vector x'
read ‘(a), filename

read vector x non-zero elements and indices
iato a linked list

call read data(filename, root_x, ifail]

if (ifail==1) thea
print *, ‘error opening file ', filename

stop 10

else if (ifail==2) thea

priat *, &
‘error reading from beginning of file !, &
f£ilename

stop 20

else if (ifail==3) thea
print *, ‘error reading from file ', &
£ilename
stop 30
ead if

ask for name of file coataining vector y
aon-zero values and indices

priat *, ‘input file name for vector y'
read ‘(a), filename

read vector y non-zero elements and indices
iato a linked list

call read data(filename, root_y, ifail]
if (ifail==1) thea
print *, ‘error opening file ', filename

stop 40

else if (ifail==2) thea

priat *, &
‘error reading from beginning of file !, &
f£ilename
stop 50
else if (ifail==3) thea
print *, ‘error reading from file ', &

£ilename
stop 60
and if

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figb_HTML.gif
https: //www.1so.org/standard/ 37995 . html

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figaf_HTML.gif
https: //www.fortranplus.co.uk

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figat_HTML.gif
:\fortran\fortran book_edition3\chapter5>a
r = 2.000000000000000000

rd = 2.000000000000000000
area 12.566370964050292969
aread = 12.566370614359172464

P

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figl_HTML.gif

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figg_HTML.gif
- this routine plots a title over an axis
! system.

! the title may coatain up to four lines of text
! designated

! with titlia.

call title

! this is a call to the routine that actually
! plots each eveat.

call plotem(trial, areg)

! disfin terminates dislin and priats a message
! on the sereea.
! the level is set back to 0.

call disfin

=nd program chdl_dislin 04

subroutine datain(trial)
common /tsunam/reg0la(378), reg0lo(378), &
reglla(206), regllo(206), reg2la(dl), &
reg2lo(41), reg3la(54), regdlo(54), &
regila(s0), regdlo(s0), regSla(1540),
reg510(1540), reg6la(80), regslo(80),
reg7la(144), reg7lo(144), reg8la(245), &
reg8lo(245), reg9la(285), regdlo(285)

logical :: trial

character (80) :: filnam

if (trial) thea

print *, ‘ entering data input phase’
ead if
filaam = ‘tsunami.txt’

opea (unit=50, £il
status='old")
go to 110
100 priat *, ¢ error opening data file’

ilaam, err=100, &

priat *,

stop
110 do i = 1, 378
read (unit=50, £
ead do
100 format (1x, £7.2, 2, £7.2)
do i =1, 206
read (unit=50, fmt=120) reglla(i), regllo (i)
ead do
doi=1, 41
read (unit=50, fmt=120) reg?la(i), reg2lo (il
ead do
doi=1, 54
read (unit=50, fmt=120) reg3la(i), regdlo (i)

program terminates’

120) reg0la(i), reg0lo(i)

do i=1, 60
read (unit=50, f£mt=120) regdla(i), regilo (i)

do i =1, 1540

read (unit=50, fmt=120) regSla(i), regSle (il

£mt=120) reg6la(i), reg6lo(i)

£mt=120) reg7la(i), reg7lo(i)

£mt=120) reg8la(i), reg8lo(i)

do i=1, 285
read (unit=50, fmt=120) regSla(i), regSlo (il

if (trial) thea
doi=1, 10

priat *, reg0la(i), ' ‘, regOlo(i)
ead do
priat *, ' exiting data input phase’

read *, dummy
ead if
end subroutine datain

subroutine plotem(trial, areg)
use dislia
common /tsunam/reg0la(378), reg0lo(378), &
reglla(206), regllo(206), reg2la(dl), &
reg2lo(41), reg3la(54), regdlo(54), &
regila(s0), regdlo(s0), regSla(1540),
reg510(1540), reg6la(80), regslo(80),
reg7la(144), reg7lo(144), reg8la(245), &
req8lo(245), reqSla(285), reqSlo(285)

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figm_HTML.gif
nodule ged _moduls
contains

cnd module ged.

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figc_HTML.gif
http:/ /www. open-:

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figan_HTML.gif
start = (factor’this process_number) + 1
-nd = factor* (this process_number+l)

OEBPS/images/112282_4_En_BookBackmatter_Figk_HTML.gif

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figs_HTML.gif
tunction summation(x, n) bind (e, &
aame=' summation’ |
use iso_c_binding
implicit none

integer (c_int), value :: n

real (c_float), dimeasion (1:a], &

intent (ia)
real (c_float)
integer

summation

summation = sum(x(1:a))
and Funetien Summak ion

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figam_HTML.gif
! Save upper and lover subscripts of the array
! yet to be sorted

i€ (125K then

i =1
e =1
ik
memt1

s1se
=k
e =3
3=1
asm1

na it

90 to 210

! Begin again oa another portion of the uasortsd

20m=m-1
if (n==0) go to 270
L=l
3= sum

210 i€ (3-1>=1) go to 200
if (==1) go to 150
i=i-1

250 8= i+ 1
if (1==3) go to 230
€= axiny
£y = ay(isn)
i (@)
k=i

) g0 to 250

260 (1) = k()
aykel) = ay k)
K=k 1
i (ecax(0)) go to 260
anern) = €
ayerl) = £y

9o to 250

! Clean up
270 if (xflage=-1) thea
doi=1, ma
R
ad do
nd it
retura
cnd subroutine dsert oo

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figw_HTML.gif
://www.nag.co.uk/numeric/numerical libraries.asp

/ Jurmt . nagq. co.uk /aumeric /FL/FSdescription.asp

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figa_HTML.gif
=sin(y]

o5 (v

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figaj_HTML.gif
Program starts
Integer read
Real read
1 1.0000000
2 2.0000000

s 5.0000000
10 10 0000000

U.ule
2.964
4.072

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figab_HTML.gif
Turn clocks ahead to DST on: 5 April
2015 is not a leap year
calendar_to_julian OK

date_ oK

date_to_day_in_year OK
date_to_weekday_mumber OF

get_day OK

get_moath OK
get_year OK

Julian_to_date_and_week_and_day OK
adays OK

year_and_day_to_date OK
calendar_to_julian and

julian_to_date worked

print_date test

Single parameter 11 February 1952
day_names=false short_moath_name=false
11 February 1952

day_names=true short_moath_name=false
Moaday 11 February 1952

day_names=false short_moath_name=true
11 Feb 1952

day_names=true short_moath_namestrue
Moaday 11 Feb 1952

11/ 2/1952

<Ul3

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figc_HTML.gif

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figak_HTML.gif

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figl_HTML.gif
template <class Type>

void swap(Type array[],int i, int j)
t
Type tmp=arraylil;
array(il=array[3];
array(3]=tmp;

template <class Type>
void quicksort(Type array[l, imt 1, iat x)
t

iat i=1;

iat 3=r;
Type
for (;7)
[
while (arrayl[i] < v) i=itl;
while (v -1;
if (i<=3)

rray(int ((141)/2) 1

array (1)

{ svap(array,i,3); i=i+l ; 3=3-1;)
if (i>3) goto ended ;

)

eaded: ;

if (1<3) quicksort(array, 1,3l ;

if (i<r) quicksort(array,i,r);

template <class Type>

oid print (Type array(],iat size)

t

cout << M ["

for (int ix=0;ix<size; ++ix)

cout << array[ix]

cout <<

$include <iostream>
using namespace std;
int maia()
t
double dal] =
{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5);
int dal] = {1,10,2,9,3,8,4,7,6,5);
int size=sizeof (da]/sizeof (double] ;

cout << " Quicksort of double array is \a";

quicksort (da,0,size-1);

priat (da, size) ;

size=sizeof (ia) /sizeof (int) ;

cout << " Quicksort of iateger array is \

quicksort (ia,0,size-1);
priat (ia, size] ;
retura(0);

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Chapter_TeX_Equ1.png

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figad_HTML.gif
tunction prant_date (x,
short_month_name,

day_names, &
digits)

implicit noae

type
logical,

short_month_name,
character

integer
logical

(date),

intent (ia)

optional, inteat (in) :: day_names,
digits

o)
: pos

want_day,

print_date

want_short_month_name,

intrinsic lea_trim,

want_day
waat_short_month_name =

want_digits

pr
if

want_digits
present, trim
.false.

Lfalse.
.false.

int_date = ¢ ¢
(present (day_names)) then

want_day = day_names

ead if

if

(present (short_month_name)) thea

want_short_s

onth_name = short_month_name

ead if

if

(present (digits)) then

want_digits = digits

ead if

if

el

(vant_digits) thea
(print_date(1:2],
print_date(3:3) = '/’
(print_date(4:5],
print_date(6:6) = '/’
(print_date(7:10),

write ‘(i2)") xbday

write ‘(i2)") =¥month

write C(i4)7) myear

if (want_day) thea
pos = date_to_weekday_nutber (x]

print_date = trim(day(pos))

pos = len_trim(priat_date) + 2

else
pos = 1
print_date = *

ead if

write (print_date(pos:pos+l), ' (i2)’) &
#3day

if (want_short_month_name) thea
print_date (pos+3:pos+5) = month (x%month)

(1:3)

pos = pos + 7

else

print_date(pos+3:) = moath (:x%moath)

pos = len_trim(priat_date) + 2

ead if

write (print_date(pos:pos+3), ' (il)’) &
x¥year

d if

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figd_HTML.gif
type link(real kind)

integer, kind :: real_kind

real (kind=real_kind)

type (link(real_kind)), pointer :: next

cnd type link

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figs_HTML.gif
module site description module

type site_descristion
haractar L5

cits_nams =
sasting_L
northing L =
lat_l = 0.0

real :: long L = 0.0
intsger :: height_L = 0
charactsr *7 i: sasting 2 =

charactsr *7

charactsr *7
real

charactsr *7 :: northing 2 = ¢ '
real :: lat2 = 0.0
real :: long 2 = 0.0

intsger :: height_2 = 0
intsger i1 start_date_month_L = 0
integer :: start_date year_l = 0
intsger 1 end_dats_menth L = 0
intager :: end dats year I = 0
intsger :: start_date_month_2 = 0
integer :: start_date year 2 = 0
intsger 1 end_dats_menth_2 = 0

intager :: end dats year 2 = 0
end ty3e site descristion

cnd module site descriotion medule

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figh_HTML.gif

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figm_HTML.gif
http://www.iso.o0xrg/1iso/home/store. htm

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figaj_HTML.gif
if (ndiff/=366)

print *, ‘adays failed; ndiff =

else

year_and_day_to_iso_date(yyyy, ddd)

thea

adiff

if (x%get_month()/=1 .and. x%get_day()/=1)

thea

priat *, ‘year_and_day_to_date failed’

priat *, ¢

mma, dda = ©, xbget_month(),

=¥get_day ()

else

priat *,

priat *,
priat *,
priat *,
priat *,
priat *,
priat *,

priat *, &

priat *, ¢

priat *,
end if
ced if

calendar_to_julian OK'
date_ OK'
date_to_day_in_year OK'
date_to_weekday_sumber OF’
get_day OK’

get_moath 0K’

get_year OK'

Julian_to_date_and_week_and_day OK’

adays OK'
year_and_day_to_date OK’

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Chapter_TeX_IEq6.png

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figm_HTML.gif
L3, 20e339, 41
character (9) :: day(

) = (/ 'sunday

< ‘Monday !, ‘Tuesday ', 'Wednesday’, &

‘Thureday ', ‘Friday ', ‘Saturday ' /)

character (3) :: month(1:12] = (/ 'Jasvary

< ‘Febrvary ', 'March ', ‘April ‘, &
“may ¢, roune foraly e
‘August ¢, ‘September’, ‘Octaber !, &
‘November !, ‘December ¢ /)

> interface date

. module procedurs date_constructor

> end interface date
2243
public

calendar_to_julian, date_, &

- public
27c48, 49
< print_date, year_and_day_to_date

calendar_to_julian, &

. print_date, set_day, set_month, set_year, &
. year_and_day_to_date
31653, 54

function calendar_to_julian(x) result (ival]

> function calendar_to_juliaa(this) &
. result (ival)

34c57

< type (date], iateat (ia)

. class (date), iateat (ia) :: this

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figao_HTML.gif
loduls
use circle_module

use shape n

nse rectangle module

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figr_HTML.gif
d

Number of threads

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Helle

from
from
from
from
from
from
from
P

thread
thread
thread
thread
thread
thread
thread
thread

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figas_HTML.gif
¢ calling Fortran
> d array as parameter
99 via

12 4
7 e 10 1
12 4

7 e 10 1

12

12

18

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figb_HTML.gif
procedure , pass(this) :: calendar_to_julian

procedure , pass(this) :: date_to day_in year
procedure , pass(this) :: date_to_weekday_number
procedure , pass(this) :: get_day
procedure , pass(this) :: get_month

procedure , pass(this) :: get_year

procedure , nopass Julian_to_date

procedure , nopass
Julian_to_date_and_week_and_day

procedure , nopass adays

procedure , pass(this) :: print_date

procedure , pass(this) :: set_day

procedure , pass(this) :: set_moath

procedure , pass(this) :: set_year

brocedure , nopass

vear and dav_to_date

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Chapter_TeX_IEq7.png

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Chapter_TeX_IEq9.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figq_HTML.gif
real , paramster :: tol=l.Us-6

do

change=

if (change
ernd do

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figb_HTML.gif
nodule statistics module

implicit noae

contains
subroutine stats(x, a, mean, std_dev)
implicit noae

integer, intent (ia) :: a

real, inteat (in), dimension (:)

real, inteat (out) :: mean
real, inteat (out) :: std_dev
real :: variance

real :: sumsi, sumsi2

integer :: i

variance = 0.0
sumei = 0.0
sumei2 = 0.0
doi=1,a
sumei = sumsi 4+ x(i)
sumei2 = sumxi2 4 (1) (1)

ead do
variance = (sumi2-sumsisumsi/n)/ (a-1)
std_dev = sqrt (variance)

ead subroutine stats
ead module statistics module

program ch2001
use statistics_module
implicit noae
integer, parameter
real, dimension (l:ia)

real, dimension (-4:5)
real, dimension (10)

real, allocatable, dimension

real :: m, sd

integer

doi=1,n

(i)
ead do

call stats(x, a, m, sd)

real(i)

priat *, * x
print 100, =, sd

100 format (¢ Mean = ', £7.3,

£1.3)
y

call stats(y, a, m, sdi
priat *, ¢y

print 100, =, sd
call stats(

priat *,
priat 100, m, sd
allocate (t(a))
t=x
call stats(t, 10, =, sd)
priat 4, ¢ t’
priat 100, m, sd

end program ch2001

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figb_HTML.gif
tax

gross_wage - personal_allowance ' tax_rate

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Figb_HTML.gif
program chUals
! This program reads in three numbers and sums
! and averages them

implicit noae

real :: al, a2, n3, average = 0.0, total = 0.0

integer ::a =3
priat *, ’ type in three numbers.’
print *, ' Separated by spaces or commas’

read +, al, a2, a3
total = al + a2 + a3
average = total/a
print *, 'Total of mumbers is /, total
print *, 'Average of the numbers is ’, average
end program ch0402

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figg_HTML.gif
athreads

omp_get_max_threads()

brint *, ! Humber of threads athreads

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figao_HTML.gif
program chlsus
implicit noae
! example of the use of the

and the numeric inquiry
! for integer kind types

! 8 bit -128
127 10442
! 16 bit -32768 t
1 32767 10444
132 bit -2147483648
| 2147483647 10449
! 64 bit
| -9223372036854775808 to
! 9223372036854775807 1
iateger :: i
integer, parameter :: i8
)
integer, parameter :: il
1)
integer, parameter :: i3
9
integer, parameter :: i6
18)

i1
iz

integer (i8)
integer (i16)

integer (132) :: i3
integer (i64) :: i4
print *, ¢

priat *, ' integer kind
priat *, ' kiad

priat *, ¢

priat *, ¢, kind(i), '
priat *, ¢

priat *, ‘¢, kind(il],
priat *, ‘¢, kind(i2],
priat *, ‘¢, kind(i3],
print *, ‘¢, kind(id],
priat *, ¢

end program ch0509

e kind fuaction
functions

04418

= selected_int_kind (2

6 = selected_int_kind(

2

selected_int_kind(

4

selected_int_kind(

support’
huge’

/ huge (4)
/ huge (il)

huge (i2)
huge (i3)

+ huge (id)

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figb_HTML.gif
http://www.adaic.org/ada-resources/standards/adalZ2

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figg_HTML.gif
write (unit=20, tmt=200) height_m(1),weight_kg(1)
200 format (1x,£5.2,2%, £4.1)

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figah_HTML.gif
http:/ /www. fortran.com/fortran/market.html

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figw_HTML.gif
2, bC3, b

< integer =0
< integer =0
S integer, private

. integer, private

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbf_HTML.gif
real

al, nz, a3, average=0.0,

integer

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Fign_HTML.gif
subroutine runge_kutta_merson(y,fun,itail,n,a,b,tol)
use precision_module , wp => dp

real (wp) , intent (inout), optional :: tol

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figr_HTML.gif
include ‘precision _module.L3aldt
include ‘integer_kind module.£90"
include ’timing_module.£90"

program ch3802
use precision_module
use integer_kind_module
use timing_module
implicit noae
integer, parameter :: a = 100000000
aa = 100,000,000"
report_file_name = 'ch3502.report’

character *12

character *80
real (sp), allocatable, dimension (:]
real (dp), allocatable, dimension (:]

integer (i32), allocatable, dimension (

integer :: allocate_status
character *20, dimeasion (5) :: headingl = &
[32 bit real ', &
¢ 32 bit iat 0, &
‘64 bit real !, &
* 64 bit int 1, &
‘128 bit real ‘]
character *20, dimeasion (3] :: heading? = &

L Allocate '/, &

‘ Random /, &
‘ Sort 1
allocate_status = 0

priat *, ‘Program starts’
priat 4, ‘0=, aa
call start_timing()
open (unit=100, file=report_file name)

print *, headiagl (1)

allocate (x_sp(1:a), stat=allocate_status)
if (allocate_status/=0) then

print *, ' Allocate failed. Program terminates’
stop 10
ead if

print 100, heading2 (1), time_differeace()
100 format (a20, 23, £8.3)
call random_number (x_sp)
print 100, heading2 (2), time_differeace()
call ssort (x_sp, x_sp, 1, 1)
print 100, heading2 (3), time_differeace()
write (unit=100, fmt='(a)’) &
¢ First 10 32 bit reals’
10) =_sp(1:10)

write (unit=100, fm
110 format (5(2x,214.6))

print *, headiagl (2)
allocate (y_i32(1:n), stat=allocate_status)

) then
print *, ' Allocate failed. Program terminates’

if (allocate_status/

stop 20
ead if
print 100, heading2 (1), time_differeace()
y_il2 = iat (x_sp*1000000000, i32)
deallocate (x_sp)
print 100, heading2 (2), time_differeace()
call isort(y_i32, y_i32, a, 1)
print 100, heading2 (3), time_differeace()
write (unit=100, fmt='(a)’) &
‘First 10 32 bit integers’
write (uait=100, fmt=120) y_i32(
120 format (5(2,i10))
deallocate (v_i32)

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figv_HTML.gif
tyvpe

(date)

datel_(11,2,1952)

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figi_HTML.gif
IEEE_DIVIDE_BY_ ZERO
IEEE_DIVIDE_EY_ZERO
IEEE_DIVIDE_EY_ZERO
TEEE_INEXACT
TEEE_INEXACT
TEEE_INEXACT
TEEE_TIVALID
TEEE_IIVALID
TEEE_IIVALID
TEEE_OVERFLOW
TEEE_OVERFLOW
TEEE_OVERFLOW
TEEE_UNDERFLOW
TEEE_UNDERFLOW

IEEE, UNDERFLOW

22
64
128
32
64
128
32
64
128
32
64
128
32
64
128

bt
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

Support
support
support
support
support
support
support
support
support
support
support
support
support
support
support

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figf_HTML.gif
1L (1

<4)then
slseif (i < 1)then
SPS

o ndi £

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figq_HTML.gif
program chli/u’
implicit noae
real, dimension (-180:180)
integer

time = C

degree, strip

real alue
do degree = -180, 165, 15
lue = degree/15.
do strip = 0, 14
time (degree+strip)

ead do
ead do
do degree = -180, 180

print *, degres, ' /, time(degres)
ead do

end program ch0707

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Figa_HTML.gif
include "precision _module.30"
srogram ch230L

use precision_moduls, w3 = da
implicit nons

intsger, paramster

intager

integer, dimension (nm) :: nvaluss = [1, 10, ¢
100, looo, 10000, 100000, 1000000, 10000000,
100000000, 1000000000]

intager

charactsr *80 heading

heading = © i s o) o)

heading = trin(heading) // ¢
. Ofata) Oflog n) Ofn log n)’
srint *, heading
Srint 4, 0
doi=1, m
n = avalues (i)

srint 100, i, n, order_L(), order_a(n), €
order_n_squarsd(n), order_logn(n), &
order_n_log_n(n)

100 fommat (Lx, 12, 2%, il0, 2x, i4, 2%, il0, ¢
2, 12.4, 2x, £1.2, 22, =12.4)
end do
contains

integer function order_L()

ordsr_L = 1
nd function order_L

intager function order_n(n)
intsger, intent (in)

ordsr_n = n
nd function order_n

function order_n_squarsd (n)
uss sracision_moduls, wp = d3
integer, intent (in) :: n
real (13) :: order_n_squared

ordsr_n_squarsd = dbls(n) *dble (n)
nd function order_n_squared

real function ordsr_log a(n)
intager, intent (in) it n

ordsr_log_n = log(real(n))
nd function order_log_n

real function ordsr_n_log_n(n)
intager, intent (in) :: n

order_n_logn = n*log(real (n))
nd function order_n_log_n

cnd orogram ch2301

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figq_HTML.gif
> but (%) - 1initial address ol send buliler
integer count - nuzber of elemeats in sead buffer
datatype - data type of sach send buffer elemeat
dest - rank of destination

tag - message tag

comm - commnicator

ierror - error aumber\index|Error number)

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figc_HTML.gif
iateger, paramster :: &
sp = selected_real kind(6§, 37)
integer, parameter
dp = selected_real_kiad (15, 307)
integer, parameter

ap = selected real kind (30, 291)

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Fign_HTML.gif
R = AR RELAS
TP (KK.NE.1 .AUD. KK.NE.2) THEN
CALL ¥ERMSG (SLATEC’, 'DSORT’,

+ “The sort costrol saramster, K, is ack 2, 1 or 2.7, 2
+ 1

ReTURY
=1

Alter array DX to get decreasing order if aceded

TP (FLAG IE. -1) mHEN
o 10 1=1,m
DE(D) = -pE(D)
cournie
m1e

TP (< EQ. 2) GO TO 100

Sort DX oaly

=1
-1
a=m
R = 0.37500

TP (1 .EQ. 3) GO 10 60
TP (R .LE. 0.585843700) THEN
R = Re3.506250-2
BLsE
R = R-0.2187500
m1e

K=1

Select a central slemeat of the array asd save it ia location T

I3 =T+ I(E-T) R
T = DR

IE Eirst slemeat of array is greater thas T, isterchasge with T

T @x) er.) mEN
DE(13) = BRI

DD =1
T = (1)
m1e

L

a

If last slemeat of array is less thas thaa T, isterchasge with T

T 0x(3) 1.) mHEN
DE(13) = DR
DR =1
T = D)

IE Eirst slemeat of array is greater thaa T, iaterchasge with T

T @x) er.) mEN

DE(13) = BRI
DD =1

T = (1)
mu1e

m1e

Fiad a3 slemeat ia the second half of the array which is smaller
thaa T

L-11
TP (Ox) 6T, T 6010 40

Find an slemsat in the first half of the array vhich is greater
thaa T

= kel
T Ox@) 1.) G0 10 50

Taterchange these slemeats

TP < IE. 1) mHEN

o= Dxa
DE(L) = BEE)
DEE) = 11
o 10 40
m1e

Save uoper and lover subserists of the array yet to be sorted

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figi_HTML.gif
real ,dimension (1:10,1:10)
A0 &

£rgen

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figx_HTML.gif
Ledcel, 2
program ch2206
use date_module, onl:

date, date_, date_to day_in_year, &

- program date_program_01

> use date_module 01, only: caleadar_to_julian,

. date, date_to_day_in_year, &
5, 66,8

S get_year, julian_to_date, &
S Julian_to_date_and_week_and_day, ad:
S print_date, year_and_day_to_date
5a12

- integer
1215
< type (date) :: datel, date?, x

Julian

- type (date] :: datel, date2, x, txl,
18,19c21, 22
< = = date_(i, mm yyyy)

if (date_to weekday_sumber (x)
S = = date(i, mm, yyyy)

- if (xidate_to_weekday_number () ==0)
21c24

< i, ' October ', get_year (x]

S i, 7 october !, xiget_year()
29,30¢32, 33
< = = date_(i, mm yyyy)

if (date_to_weekday_number (x]
S = = date(i, mm, yyvy)
S if (x%date_to_weekday_number (] ==0)
32¢35
< i, ¢ April f, get_year(x)
S i, 0 april , wdget_year()
10,42¢43, 45

= date_(dd, mm, yyyy)

if (date to_day_in year(x)==366) the

priat *, get_year(xl,
2 leap year'

calendar_to_julian,

get_year, julian_to_date_and_week_and_day,

< adays, print_date, year_and_day_to_date

ays,

2

then

then

then

then

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figf_HTML.gif
real , dimeasion (-20:20)

real , dimeasion (1:41)
0.0

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figs_HTML.gif
submodule (rkm _module) rkm module_implementation

contains

module subroutine &

runge_kutta_merson(y, fua, ifail, a, a, b, tol

use precision_module, wp => dp

runge-kutta-merson method for the solution
of a system of a lst order initial value
ordinary differeatial equatioas.

the routine tries to integrate from

t=a to t=b with initial conditions ia y,
subject to the condition that the

tol. the step
length is adjusted automatically to meet

absolute error estimate

this condition.

if the routine is successful it returas with

ifail = 0, t=b and the solution ia y.

implicit noae

define argumeats

real (wp), iatent (inout], &

dimension (:) v
real (wp), iateat (in) :: a, b, tol
integer, intent (in)
integer, intent (out) :: ifail

interface
subroutine fua(t, y, £ a
use precision_module, wp => dp
implicit none

real (wp), iateat (in), &

dimension (:) ::y
real (wp), iateat (out), &
dimension (:) :: £
real (wp), iateat (in) :: t

integer, inteat (in)

ead subroutine fua
ead interface

local variables

real (wp), dimension (l:size(y))

s1, s2, 3, s4, s5, new_y_l, aew_y_2, error
real (wp) :: &

t, h, h2, h3, h6, h8, factor = l.e-2_up
real (wp) :: &

smallest_step = 1.e-6_vp, max_error
integer :: no_of_steps = 0
ifail = 0

check input parameters

if (a<=0 .or. or. tol<=0.0) then
ifail = 1
retura

ead if

initialize t to be start of interval and
h to be 1/100 of interval

t=a
h = (b-a)/100.0_wp
do

#2242 beginning of
#2#4% repeat loop

h2 = h/2.0_p
B3 = h/3.0_wp
h6 = h/6.0_up
B8 = h/8.0_vp

calculate si,s2,53,54,85 !
s1= (e, v)

call fua(t, v, sl, a)
aew_y_l =y + h3tsl

s2

£(£4h/3, y+h/34s1)

call fun(t+h3, new_y 1, s2, a)
y + he*sl + hers2

aew_y_1

S3=F (t+h/3,y+h/6%s1+h/6452)

call fun(t+h3, new_y 1, s3, a)
new v 1 = v + h8* (s243.0_wp*s3)

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figt_HTML.gif
subroutine draw(this)

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Fige_HTML.gif
nodule date module_interface

odule

use day_and_moath_name_:

implicit noae

private

type, public :: date

private

integer

integer :: month

integer

year
contains
procedurs, pass (this)

calendar_to_julian

procedure, pass (this) :: date_to_day_in_year

procedure, pass (this) :: &

date_to_weekday_sumber

procedure, pass (this) :: get_day
procedure, pass (this) :: get_moath
procedure, pass (this) :: get_year

procedure, nopass :: julian_to_date

procedure, nopass :: &

Julian_to_date_and_week_and_day

procedure, nopass :: adays

procedure, pass (this) :: print_date

procedure, pass (this) :: set_day

procedure, pass (this) :: set_moath

procedure, pass (this) :: set_year

procedure, nopass :: year_and day_to_date

ead type date

interface date
module procedure date_constructor
ead interface date

interface
module function calendar_to_julian(this) &
result (ival)

implicit none

integer :: ival

class (date), inteat (ia) :: this

ead fuaction caleadar_to_julian
ead interface
interface

type (date) module function &
date_constructor (dd, mm, yyyy)

implicit none
integer, intent (in] :: dd, mm, yyyy
ead fuaction date_constructor
ead interface

interface
integer module fuaction &
date_to_day_in_year (this)
implicit none

class (date), inteat (ia) :: this

intrinsic modulo
ead fuaction date_to_day_in_year
ead interface

interface

integer module fuaction &

date_to_weekday_mumber (this)
implicit none

class (date), inteat (ia) :: this

intrinsic modulo
ead function date_to weekday_sumber
ead interface

interface
module fuaction get_day(this)
implicit none

integer :: get_day

class (date), inteat (ia) :: this

ead fuaction get_day
ead interface

interface
module function get_month(this)
implicit none
integer :: get_moath
class (date), intent (in)

this

ead fuaction get_moath
and interface

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figj_HTML.gif
program chzUUs
use sort_data_module
implicit noae
integer, parameter :: a = 10000000
real, allocatable, dimension (:
integer, dimension (8)

timing

real :: t1, t2
character *30, dimension (4)
¢ Allocate = ‘s
¢ Random number geaeration = !, &
‘ sort = ‘s
‘ Deallocate = 1

call date_and_time (values=timing)

print *, ' Program starts’
write (unit=*, fmt=100] timing(1:3)
timing(5:7)
100 format (2, i4, 2('/',i2), ' ', 2
i2)
t1 = td()
allocate (x(a))
t2 = td()

write (uait=, £mt=110) headiag(l),
110 format (a30, £8.3)
t1=t2

! Random number generation
call random_number (x)
t2 = td()
write (uait=, £mt=110) headiag(2),
t1=t2

! Sorting
call sort_data(:, a
t2 = td()
write (uait=, £mt=110) headiag(3),
print *, ' First 10 sorted numbers
write (uait=", fmt=120) x(1:10)
120 format (2, e14.6)
t1=t2

! Deallocation
deallocate (x)
t2 = td()
write (uait=!, £mt=110) headiag(d),
call date_and_time (v

lues=timiag)

priat *, ' Program terminates’
write (unit=!, £mt=100) timing(1:3)
timing(5:7)
contains

function td()
real :: td

call date_and_time (values=t

imiag)
td = §0%timing(§) + timing(7) + &
real (timing(8))/1000.0
ead fuaction td
end program ch2005

(12,

(£2-£1)

(£2-£1)

(£2-£1)

(£2-£1)

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figo_HTML.gif
nagfor -04 chislZ.f4%0 dsort.o ssort.o isort.o

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figy_HTML.gif
aagtor chlsUip. 13l -C=all
NAG Fortran Compiler:

(113G Fortran Compiler normal termination]
Ruatime Error: chl804p.£90, line 5:
Reference to disassociated POINTER

A

Program terminated by fatal error

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figaw_HTML.gif
=l 4. Uuooud
«2 0.1000000
w1 46 G0G0&

OEBPS/images/112282_4_En_BookBackmatter_Figap_HTML.gif
address (display addresses),

all (all options except for off),
line (display file/line info if kaown),
off (disable tracing output),
on (enable tracing output),

parancia (protect memory allocator data structures
against the user programl,

size (display size in bytes) or

erbose (all options except for off and parancia).

~thread_safe
Compile code for safe execution ia a
multi-threaded eaviroament.

This must be specified when compiling
and also during the link phase.

It is incompatible with the —ge and -gline
options.

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figk_HTML.gif
call runge_kutta_merson(y,funl,ifaal,n,a,b,tol]

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Fige_HTML.gif
! (b now has the value ‘false’|

!(c has the value ‘true’)

| (¢ now has the value ’false’]

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figt_HTML.gif
real , dimension(-ls.

real , dimension(

real , dimension(

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figf_HTML.gif
1ees_signalling nan
jeee_quiet_nan
ieee_negative_inf
icee_negative_normal
ieee_negative_denormal
icee_negative_zero
icee_positive_zero
ieee_positive_denormal
ieee_positive_normal
jeee_positive_inf

icee other value

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figo_HTML.gif
faira — there 1s a site chaage 1a 1335
Location befors 1998 2869E 85681 8n amsl
after 1998 2912E 85731 23 m amsl

Estimated data is marked with a * after the

value.

Missing data (more than 2 days missing in moath)

is marked by
Suashine data taken from an automatic Kipp
Zonen sensor marked with a #, otherwise
sunshine data taken from a
Campbell Stokes recorder.
yyyy mm tmax tmia af rain
degC degC days
5. o. 1 7s.
5. o. 7 a8,
5. 1. 19 37,
10. 3 a4
13. 63.
15. e
1931 17. 121,
1931 15. 57.
1931 8 15, 38.
1931 10 12, 59.
1931 11 10, FEN
1631 12 8. e

1931
1931
1931
1931
1931
1931
10.

6
5
5
1
1

.0
6
1
4
5
s
s

hours
43.4
63.
145.
110.
167.
150.
111,
127.
122.
95.
61.
26

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figt_HTML.gif
http:
~arnold/disasters/ariane. html

fwww-users.math.umn.edu/

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figt_HTML.gif
toop-control 1s [, | de-variable =
scalar-int-expr,
scalar-int-expr
[, scalar-int-expr |
or [,] WHILE (scalar-logical-expr |
or [, 1 CONCURRENT
concurrent-header
concurrent-locality
do-variable is scalar-int-variable-name

The do-variable shall be a variable of type integer.

concurrent-header is ([integer-type-spsc

concurreat-coatrol-list

[, scalar-mask-ezpr])
concurreat-coatrol is index-name =
concurreat-limit

concurrent-limit [: comcurrent-step]

concurrent—limit is scalar—int-expr

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figy_HTML.gif
nodule etox_moduls
implicit noae

contains
clemental real fuaction etos ()

implicit noae

real, inteat (in) :: x
real :: termm

integer :: aterm

real, parameter :: tol = 1.0s-6

ctox = 1.0
term

aterm = 0
do
aterm = aterm + 1
term = (x/atexm)*term
ctox = etox + term

if (term
ead do
ead fuaction etox

ol) exit

ead module etox_module
program ch2606
use etox_module

implicit noae

integer :: i

real :: x

real, dimension (10)

2= 1.0
do i

yii) =i
end do
priat *, y
x = ctox(x)
priat ¥, x
y = ctox(y)
priat *, y

end program ch2606

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figj_HTML.gif

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Fige_HTML.gif
http:
oroducts/en/fort compfami,/

fwww-03.1bm.com/software/

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Fige_HTML.gif

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figj_HTML.gif
do 1

1, nthreads
print *, ’ Hello from thread /, &
emp_get_thread_aum()
ernd do

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figal_HTML.gif
Intel
Real kinds
Integer kinds
Character kinde

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figd_HTML.gif
opsn (uaat=l0, file=chlOUl.t=t?, statuss

ch1001.o0ut’,status:

old’)

—

open (unit=20, file:

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figy_HTML.gif
2015/ 3/12 15:14:42 110

fortran internal_pi = 3.1415926535897931
0 intervals = 1000000 time = 0.016
pi = 3.1415926535899601

differeace = 0.0000000000001670

W intervals 10000000 time = 0.016
pi = 3.1415926535897216

differeace = 0.0000000000000715

W intervals = 100000000 time = 0.281
pi = 3.1415926535500236

differeace = 0.0000000000002305

W intervals = 1000000000 time = 2.793
pi = 3.1415926535896523

differeace = 0.0000000000001408

2015/ 3/12 15:14:45 214

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Fige_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_Figab_HTML.gif
OH 1ABx HorOUL, xall DUubar Lo DBEUXLIUBEAL
BYYEOHITE GPDA FIUZNDYOLH

YABY YA SEF L B GOHTMI FULWOHDN DLWUI
YAl GFEDN LZ BH NHYOUN DOYJ,

BHX YA SEF LZ YA WSFOUN OYGIMZ EH WHYOUN
FULWOHDI. OH YA DLPUGH

LZ YOSN, YANGH NEYNHGOWI SBFG VITON ZLPHX
GLSNALV VBHYOHT, BHX GL YA

DLMMUTH L7 DEUYLTUBFANUG IWLMATE B SEF L2
YA NSFOUN YABY VEG YA
GESIl GDEMI BG YAN NSFOUN BHY

YABY DLOHDOY

i

VOYA OY FLOHY ZLU FLOHY.
MGG BYYUHYOWN YL YA GYPXJ L3 DBUYLTUEFAJ,
GPODIMXOHT TUHNUBYOLHG

DESI YL RPXTI B SEF L7 GPDA SBTHOYRXI
DPSENUGLSI, EHX, HLY VOYALPY

OUUITAUNHDN, YANJ BEBHXLHIE OY YL YA
UOTLPUG L7 GPH BHX UEOH. OH
YA VNGYNUH MNGNUYG, YBYYOUI:

ZUBTSIHYG Lz
YA SEF BUN GYOMM YL EIN

TLPHY, GAUMYINUOHT BH LDDEGOLHEM ENBGY LU
ENTTBU; OH YAN VALMH HBYOLH,

HL LYANU UIMOD OG MYZY L7 YA XOGDOFMOHI L2
UL TURFAT

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figu_HTML.gif
include “timing module. L300
include ‘precision_module.£90"

program ch3305
use timing_module
use precision_module
use omp_lib

implicit none

210000000
::1oop_count=10

integer , parameter

integer , parameter

integer , parameter :: n_types=d

integer :: i

3
athreads

integer

integer

real (dp) , allocatable , dimension(:

real (dp) , allocatable, dimeasion (:

real (dp) , allocatable , dimension(:]

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figj_HTML.gif
retura

-nd function print_date

subroutine set_day(this, d)
implicit noae

integer, intent (ia) :: d
class (date], intent (imout) :: this
thistday = d

=nd subroutine set_day

subroutine set_moath(this, m)
implicit noae
integer, intent (ia) :: m
class (date], intent (imout) :: this
thistmonth = =

snd subroutine set_moath

subroutine set_year (this, y)
implicit noae
integer, intent (ia) :: y
class (date], intent (imout) :: this

thistyear = y
-nd subroutine set_year

function year_and_day_to_date (year, &
day_in_year)
use day_and_moath_name_module
implicit noae
type (date] :: year_and_day_to_date
integer, intent (in)
t
intrinsic modulo

day_in_year,

integer

yeaz

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figan_HTML.gif
where (array logical expression)

elsevhere (array logical expression|

ernd where

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbb_HTML.gif
ineluds Ce_interep meduls. TI00
orogran chisli
use izo_c binding
use c_interon_moduls
imlicit nons
interface
subrontine Drint_string(x) bind (e, name='srint_string’)
uze izo_c binding

character (c_char)
end subroutine srint_string

x4

subroutine reslacs string (x) bind (¢, name:
uee iso_c_binding
character (c_char)
nd subroutine replacs string

replace_string’)

=)

subroutine concatenate_string (x) bind (c, name:
ues iso_c_binding
character (c_char)
nd subroutine concatsnate_string

concatenate_string’)

=)

end intsrfacs

integer , paramster :: line_lengtl

character (len=line_length) :: fortran string
character (len=line_length , kind=c_char) :: c_string
fortran_string = ‘Hello’

c_string £_to_c (fortran_string)

orint ¥, print_string '

T0 seine Sering estring)

fortran_string = ‘Hello’
c_string £_to_c (fortran_string)

srint ¥, ' reslace string

call redlace string(c_string)

fortran string = c_to_f(c_string)

srint *, ¢ After ¢, fortran_string
fortran_string = ‘Hello’

c_string £_to_c (fortran_string)

srint ¥, ' concatenats_string '

all concatenate string(o string)
fortran string = c_to_f(c_string |
srint *, ¢ After ¢, fortran_string

cnd orogram chisld

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figk_HTML.gif
dom=l, n
Lf (x(m)>-98.9) then
sum_s (index_by_month m)) &
sum_s (index_by_month (m)) + (m)
n_actual (index_by_month (m)) &
n_actual (index_by_month (m)) + 1

sles
n_missing (index_by_month(m)) &
n_mizsing (index_by_month(m)) + I
end if
cod de

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figq_HTML.gif
program chUsts
implicit noae

integer, dimension (-5:5) :: x
integer

2(-5:-1) = -1

=(0)

LA wE)

end program ch0803

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figp_HTML.gif
°3,66c35

< integer :: date_to_weekday_aumber
type (date], iasteat (in) :: x
. class (date), inteat (ia) :: this

70,73c97, 101
=¥month+10- (x¥month+10) /13412) -1) / S+xdday+
< T745% (x3year+ (ximonth-14) /12— (xbyeart &
(:x¥moath-14) /12) /1004100) /4+ (x¥year+ (x3 &
moath-14) /12) /400~ (x¥year+ (x¥month- &

. thistmonth+10- (thissmonth+10) /13*12) -1) /5+
. thissday+77+5* (thisyear+ (this¥month- &

. 14) /12~ (thisbyear+(thismonth-14) /12) /100*
S 100) /4+ (thisbyear+ (thistmonth- &

. 14)/12) /400~ (thiskyear+ (thistmoath- &
77¢105

< function get_day(x]

> function get_day(this)

30108
type (date], iasteat (in) :: x

. class (date), inteat (ia) :: this

32110

get_day = xbday

S get_day = thistday
85113

¢ function get_:

ath ()

> function get_month(this)

38116
type (date], iasteat (in) :: x

. class (date), inteat (ia) :: this

50118

get_month = x¥moath

S get_moath = thistmoath
53121

< function get_year (x)

> function get_year (this)
56124
< type (date], iateat (ia)

. class (date), iateat (ia) :: this

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figad_HTML.gif
use shape_module

type, extends (shape_type)

cirele_type
integer, private :: radius_

contains
procedurs, pass (this)

get_radius

procedure, pass (this) :: set_radius

draw

procedurs, pass (this)

drav_circle

ead type circle_type

interface circle_type
module procedure circle_type_coastructor
ead interface circle_type
contains
type (circle_type) function &
circle_type_constructor (x, y, radius)
implicit noae

v
radius

integer, intent (in)
integer, intent (in)

integer, intent (in)

call circle_type_constructor¥set (x)
call circle_type_constructor¥set_y (y)
circle_type_constructoriradins_ = radius
ead fuaction circle_type_coastructor

integer function get_radius(this)
implicit noae
class (circle_type], iateat (ia) :: this

get_radius = thistradiuvs_
ead fuaction get_radius

subroutine set_radius(this, radius)
implicit noae
class (circle_type), iateat (imout) :: this

integer, intent (in) :: radius

thissradivs_ = radius
ead subroutine set_radius

subroutine draw_circle (this)
implicit noae

class (circle_type], iateat (ia) :: this

priat *, ¢ ", thistget_x()
priat *, ¢ ", thistget_y()
priat *, ! radius = ', thisbradins_

ead subroutine draw_circle

cnd module circle module

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figp_HTML.gif
tloat summation(float "x,int
t
iat i;
float t;
L0£;
for (i=0;i<n;it+)

[i1;

retura(t);

OEBPS/images/112282_4_En_BookBackmatter_Figb_HTML.gif
5.63 &
£ 7 _g 0

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figag_HTML.gif
read(buftfl,” (210) ") nl

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figz_HTML.gif
https
nagdoc £124 /html /GENINT/smptuned. html

/fwww.nag.co.uk/numeric/£f1/

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figah_HTML.gif
subroutine sums(nr,

ond

aame=' sums’ |

g++ needs -lgfortran to link
use iso_c_binding

implicit none

integer (c_int),

integer (c_int),

dimension

integer
intent

(c_iat),
(ia) o=
integer (c_int),
(out)
(c_iat),
(out)
(c_iat),

intent

integer

intent csum

integer

t = reshape (x, (/ac,ar/) |
)
dim=2)

eubrout ine Sume

dim

rsum = sum(t,

csum = sum(t,

a:

dimension (1:

dimension (1:

dimension (1:

csum)

ar),

ac),

ind

1iac),

1iar)

ler

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figf_HTML.gif
program chU3ats
implicit noae

integer :: £luid
real :: imperial piat

real :: us_pint

priat *, ¢ US Imperial’
priat *, ¢ piat(s) piat(s)’

do fluid = 1, 10
imperial_pint = £luid*1.20095
us_piat = £luid/1.20085
print 100, imperial_pint, fluid, us_piat
100 format (‘ ‘, £5.2, © ', i3, © ', £5.2)
ead do
end program ch0903

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbi_HTML.gif
2 *

Pl

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ60.png
argument: x type: r
result: as x class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ61.png
argument: x type: r
result: as x class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ62.png
argument: x type:i, r
result: as argument class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ63.png
arguments: x, y type:r
result: r class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ64.png
argument: c type: char
result: 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ65.png
argument: i type:i
result: as arguments class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ66.png
argument: 1 type:i
result: as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ67.png
argument: 1 type:i
result: as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ68.png
argument: 1 type:i
result: as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ69.png
argument: c type: char
result: 1 class: e

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Fign_HTML.gif
program chlbls
! The program reads up to aumber_of_people
! weights into the array Weight

! Variables used

! Weight, holds the weight of the people

! Person, an index into the array

! Total, total weight

! Average, average weight of the people

! Parameters used

! lumberofPecple , 10 in this case.

! The weights are writtea out so that

! they can be checked

implicit noae

integer, parameter :: aumber_of people = 10

total = 0.0, average = 0.0

real

integer :: person

real, dimension (1:mumber_of pecple)

weight

do person = 1, number_of_people

print *, ' type in the weight for persoa ', &
person

read *, weight (person)

total = total + weight (person)
ead do

average = total/auzber_of_people

print *, ' The total of the weights is ', &
total

print *, ! Average Weight is !, average

print *, ', number_of_people, &

Weights were
do person = 1, number_of_people
print *, weight (person)
ead do
end program ch0602

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figc_HTML.gif
lalpha == 10.1)
test if alpha is greater thaa or equal to 10.l
0.0)
test if overdrawa
((today
test if today is saturday or suaday
1.0e-6)
test if actuval mimus calculated

(balance

saturday) .or. (today == sunday))

((actual - calculated)

is less than or equal to 1.0e—6

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Fign_HTML.gif
program chliub
implicit noae
real, dimension (-20:20)

: curreat

real :: resistance

integer

oltage

priat *, ’ type in the resistance’
read *, resistance
do voltage = -20, 20

curreat

oltage)

oltage/resistance
print *, voltage, ' ', curreat (voltage|
ead do
end program ch0706

OEBPS/css/sidebar.gif

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Figd_HTML.gif
1nteger , =

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figw_HTML.gif
http://www.1bm.com/
IEM home page.

http:/ /. sgi.com/

Silicon Graphics home page.

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ50.png
argument: x type:r
result: as argument class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ51.png
argument: x type: r
result: as x class: e

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figc_HTML.gif
names (1]

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ52.png
argument: x type: r
result: as x class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ53.png
argument: x type: r
result: as x class: e

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_IEq17_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ54.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ55.png
argument: x type: r
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ56.png
arguments: a, mold type: p*
result: | class:i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ57.png
argument: array
argument: value
argument: dim
argument: mask
argument: kind
argument: back
result: i

type: intrinsic type
type: as array
type: 1

type:1

type: 1

type:1

class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ58.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ59.png
argument: a type: r
result: i class: e

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figm_HTML.gif
the concatenation of a man gives

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Fige_HTML.gif

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figy_HTML.gif
program chlsls
implicit noae
©p = 0.4e-4, papprox = 0.4le-4

real

real :: abs_error, rel_error

integer

doi=1,3
ab, abs (p-pappro)
rel_error = abs (p-papprox) /abs (p)
print 100, p, papprox
100 format (‘p =, i1, /6
‘papprox = ', ell.4]
print 110, abs_error, rel_error
110 format (‘abs error:’, 12x, e11.4, /, &
‘rel error:’, 12x, ell.4, /)

p = prl.0e5
papprox = papproitl.0es
ead do
end program ch0505

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figv_HTML.gif
program chlal/
implicit noae
integer, poiater :: a => mull(), b = aull()

integer, target
integer :: d

allocate (a)
allocate (b)
a = 100
b = 200

priat *, a, b

priat *, loc(al
priat *, loc(b]
priat *, loc (e
priat *, loc(dl

b

d=a+h
priat *, a, b, ¢, d
priat *, loc(al
priat *, loc(b]
priat *, loc (e
priat *, loc(dl

end program chl1807

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figag_HTML.gif
include "chisla_date _module. L300
include ‘ch3804_generic_sort_module.£90"
include ’timing_module.£90"

program ch3804
use date_module
use geaeric_sort_module

use timing_module

implicit noae
integer :: i

integer, parameter :: a = 1000000

integer, dimension (1:a)

julian_dates
type (date), dimeasion (a) :: x
character *20 :: headiag

call start_timing()

priat *, ¢ ¢

open (unit=100, file='julian_dates.dat’,

form='unformatted’)

heading = ‘open’
print 100, heading, time_difference ()
100 format (a20, £7.3)

read (100) julian_dates
heading = ‘read’

print 100, heading, time_difference ()

doi=1,n

2(i) = julian_to_date(julian_dates(i])
ead do
heading = ‘copy’

print 100, heading, time_difference ()

call sort(x:, aJ

heading = ‘sort’
print 100, heading, time_difference ()

priat *, ¢ ¢

do i =1, a, 100000
priat *, priat_date(:(i])
end do
priat *, ¢ ¢
call ead_timing()

end program ch3804

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ80.png
argument: 1 type:i
result: 1 class: e

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figl_HTML.gif
C77TREFERENCES R. C. Singleton, Algorathm 34/, An efficisat algorithm

c for sorting with minimal storage, Communications
of
c the acM, 12, 3 (1969), pp. 185-187.

C+*4ROUTINES CALLED XERMSG
C4*4REVISION HISTORY (YYMIDD)
c 761101 DATE WRITTEN

920801 Declarations section rebuilt and code restructured to use

c 761118 Modified to use the Singleton quicksort algorithm. (JAW)
c 890531 Changed all specific intrinsics to generic. (WRB)

c 890831 Modified array declarations. (WRB]

c 891009 Removed unrefereaced statemeat labels. (WRB)

c 891024 Changed category. (WRB)

c 891024 REVISION DATE from Version 3.2

c 891214 Prologue converted to Version 4.0 format. (BAB)

C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)

c 901012 Declared all variables; chaaged X, ¥ to DX,DY; changed
c code to parallel SSORT. (M. McClain)

C 920501 Reformatted the REFERENCES section. (DWL, WRB)

c 920519 Clarified error messages. (DL

c

o

IF-THEN-FLSE-FNDIF. (RWC, WRB)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ81.png
argument: x type: any
result: i class: i

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ18.png
apXp +apx; +..+ag,x, = b

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ82.png
argument: array type: any
result: i class: i

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ19.png
ar Xy + dxyXy + ... + Ay, X, = b2

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ83.png
argument: coarray type: co
argument: dim (optional) type:i
argument: kind(optional) type:i
result: i class: i

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ16.png
yl=0y2=0.5 y3=n/5

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figav_HTML.gif
nagtor, cpeasuse linux and Windows

aagfor - ch3512.£90 -o ch3512_nag.o
nagfor ch3512.c ch3512_nag. o

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ84.png
argument: 1 type:i
result: i class: e

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ17.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ85.png
argument: string type:s
result: i class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ86.png
argument: string type:s
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ87.png
argument: string_ 1 type: s, ASCII
result: 1 class: e

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figq_HTML.gif
praint *,

slesget_x()

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figw_HTML.gif
character®ol :: filenams

open (unit=1, file=filename)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ88.png
argument: string_ 1 type:s

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figp_HTML.gif
https://j3-fortran.oxrg

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ89.png
argument: string_ 1 type:s
result: | class: e

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ10.png
y(10) = y0

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figar_HTML.gif
Pl e s fr
 vesget 0
priat 4,7 circle /, velget_x(),&

vetget_y(),’ radius = ', vedget_radius()
print *,' rectangle !, vriget_x(),&
¢ vrSget_y(),’ width = ', vriget_width(),"

height ’,vr%get height ()

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ11.png
<

Yn

|~

Jn

|'\<
S

(v1(to)

ynt(O)

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figp_HTML.gif
ns.org/mirror/amiller/

http ns.org/mirror/amiller/dat esub. £90

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figu_HTML.gif
nodule ged _moduls
implicit noae

contains
recursive integer function ged(i, j) &
result (answer)

implicit noae

integer, intent (in)

else
answer = ged(j, mod(i,jl)
ead if
ead fuaction ged
ead module ged_module

program ch1209
use ged_module
implicit noae
integer :: i, j, result

priat *, ' type in two integers’
read *, i, 3
result = ged(i, 3
priat *, ' ged is !, result

end program ch1209

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ14.png
5, = 0:032tanys 002y,
2 COs y3

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ15.png

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figam_HTML.gif
' Test out a menth”

praint 7,
yyvy = 1970
do dd = 1, 31

* = year_and_day_to_iso_date(yyyy, dd)

.false., &

print *, =iprint_date (day_names:
short.
ead do

onth_name=.true.)

-nd program ch2902

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figk_HTML.gif
TplExec
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

a8
from
from
from
from
from
from
from
from

ch3ztl
process
process
process
process
process
process
process
brocess

of
of
of
of
of
of
of
of

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ12.png
error estimate| < user de fined tolerance

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ13.png
y1 = tanys

OEBPS/images/112282_4_En_BookBackmatter_Figas_HTML.gif
aagtor =polish -alter commeats
~acblank_cmt_to_blank_line
“blank_line_after_decls -break_long_comment_voxrd

~format_start=100 -format_step=l0 -idcase
~indeat=2 -indent_continuation=2 -indent_max=16
“keep_blank_lines -keep_commeats -kucase:
~leave_formats_ia_place -margia=0

~noindeat_coment_marker
~noseparate_format_numbering -relational=F90+
~renumber -renuzber_starf

00 -reaumber_step=10
~separate_format_numbering
—terminate do with eaddo —widt]

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ70.png
argument: i type:i
result: Same as 1 if 1 is of type integer; otherwise, same as j. class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ71.png
argument: coarray
argument: sub
argument: team
argument: team_ number
result: i

type: co

type: rank-one integer array
type: te

type:i

class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ72.png
argument: string type:s
argument: substring type:s
argument: back type:1
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ73.png
argument: a type: n
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ74.png
argument: 1 type:i
result: as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ75.png
argument: array type:i
argument: dim type:i
argument: mask type: 1
result: as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ76.png
argument: 1 type:i
result: as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ77.png
argument: 1 type:i
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ78.png
argument: array type: any
result: 1 class: i

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ21.png
a,1 X1 + apXxs + ... + a,ux, = by

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figi_HTML.gif
2.0

|_wp

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ79.png
argument: 1 type:i
result: 1 class: e

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ22.png
3k 3k
3k 3k
0 ay ary,
3k
0 0 0 a,

(X1
X2

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figq_HTML.gif
150

160

170

180

150

200

Save uoper and lover subscrists of the array yet o be

TP (LT er. 9oK) mEN
way = 1
o =1
-k
e

BLsE
oy = &
T =3
-1
2 = o1

m1e

o 10 160

Begia agaia o3 another ortion of the uasorted array

=1
TP (1 .EQ. 0) GO TO 150
= 1o

3= way

TP (3T GE. 1) GO 10 120

TP (I Q. 1) GO TO 110

=11
=10

TP (I .E0. 3) GO 10 150
T = Dx(TH)

¢ = DY (T
TP (OX(D) IE. M) GO 10 170
K1

DEERL) = DEE)
DE(R$L) = DYE)

K= k-1

TP (1 .11 DE(R)) GO T0 180
DEE) = 1

DEESD) = 1%

0 10 170

Clean up

TP (FLAG IE. -1) mHEN
o 200 1=1,m
DE(D) = bR
cournie
m1e
RETURY
-

sorted

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq10.png

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figv_HTML.gif
include ‘precision _module.L3aldt
include ‘ch3002_fual_module.£90’

include ’ch3002_rkm_interface_module.£90"
include ’ch3002_rkm_implementation_module.£90"

program ch3002
use precision_module, wp => dp
use rkm_module
use fual_module
implicit noae
real (wp), dimension (

a, b, tol
integer :: a, ifail, all_stat

, allocatable

real (wp)

priat *, ’input no of equations’
read *, n

! allocate space for y - checking to see that it
! allocates properly

allocate (y(lin), stat=all stat)

if (all_stat/=0] then
print *, ’ not eacugh memory’
print *, ' array y is not allocated’
stop
ead if
print *, ’ imput start and ead of interval over’
priat *, ' which equations to be solved’

read *, a, b
print *, ‘input initial coaditions’
read *, y(1:a)
print *, ‘input tolerance’
read +, tol
priat 100, a

100 format &

(at t= ', £5.2, ¢ initial conditions are :')

priat 110, y(l:a)
110 format (4(£5.2,2x))
call &
runge_kutta_merson(y, fual, ifail, n, a, b, tol)
if (ifail/=0) thea

priat *, &

‘integration stopped with ifail = /, ifail
else
priat 120, b

120 format (‘at t= ', £5.2, ' solution is:

priat 110, y(l:a)
ead if

end program ch3002

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ20.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq11.png

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ25.png

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figd_HTML.gif
http://en.wikipedia.org/wiki/Hyper-threading

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figc_HTML.gif
real, dimension(l:lzs):: raintall

a0

eainfal

OEBPS/images/112282_4_En_BookBackmatter_Figs_HTML.gif
call random_init (repeatable=.false.,

image distinct=.false.)

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ23.png
33
~24
-8

16
- 10
—4

72
- 57
- 17

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ24.png
-359
b= 281
85

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figf_HTML.gif
nodule subl_moduls

implicit noae
contains
subroutine subl(radius, area, circumference
use precision_module, wp => dp

use maths_module

implicit noae

real (wp), iateat (in) :: radius
real (wp), iateat (out) :: area, &
circumference

area = pi*radiusiradius

circunference = 2.0_wp’pi*radius

ead subroutine subl

ead module subl_module

program ch2101

use precision_module, wp => dp
use subl_module

implicit noae

real (wp) :: 1, a, ¢

print ¥, ‘radius?’
read +, r

call swbl(x, a, <

print *, for radius = /, r
priat *, © area =, a
priat *, circumference = /, ¢

end program ch2101

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figv_HTML.gif
Location_line.txt
third lins. txt
first_data lins.tut
nd data line.txt

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figa_HTML.gif
Sequential Parallel — Step
Execution Execution

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbe_HTML.gif
https: //www.fortranplus.co.uk/

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figt_HTML.gif
program chlsus
implicit noae

integer, parameter :: arow = §

integer, parameter :: acol = §

real, dimension (l:arow, lincol) :: &
exam_results = 0.0

real, dimension (l:arow) :: pecple e =&
0.0

real, dimension (l:ncol] :: subject_: =
0.0

integer i x,

dor =1, arow
read *, exam results(r, l:iacol]

ead do

exam_results(l:arow, 3) = 2.5%

exam_results (1:arow, 3)
dor =1, arow

do c =1, acol

people_average (r) = people_average (r) + &
exam_results (x, c)

ead do
ead do
people_average = people_average/acol

doc =1, acol
do r =1, arow
subject_average(c) = subject_average (c) + &
exam_results (x, c)
ead do
ead do
subject_average = subject_average/arow

print *, ' People averages’
priat *, people_average

priat *, ' Subject

verages’
print *, subject_average
end program ch0804

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figba_HTML.gif
nodule display_moduls

contains

subroutine display(n_shapes, shape_array)
odule

use shape_wrapper.
implicit noae

integer, intent (in] :: n_shapes
type (shape_wrapper), dimension (1_shapes) &
shape_array

integer :: i
do i =1, n_shapes
call shape_array (i) $xtdraw ()
ead do
ead subroutine display

cnd module display module

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figak_HTML.gif
do mont.

total = total + rainfall (moath
e ndde

OEBPS/images/112282_4_En_BookBackmatter_Figae_HTML.gif
gtortran
_£fast-math
—fuaroll-loocps
o3

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figs_HTML.gif
character (3) :: day(U:6) =
(/ “sunday ', ‘Moaday

‘Vednesday’, ‘Thursday
‘Saturday ' /)

character (9] :: month(1:12)

(/ 'Jamary ¢, 'February

rapril !, ‘May

‘auly ¢, ‘mugust

‘october !, ‘November

‘Tuesday

‘Friday

‘March
“gune
‘September’,
' December *

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figh_HTML.gif
+a
~a+b=b-a
G tb+c=a+ (b4+c

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Fign_HTML.gif
program chizUs
use mpi
implicit noae

integer :: error_umber
integer :: this_process_aumber
integer :: number_of processes
integer :: i

integer, dimension (mpi_status_size) :: status

call mpi_init (srrox_number)
call mpi_comm_size (mpi_comm_world, &
auzber_of_processes, error_aumber)
call mpi_comm_rank (mpi_comm_world, &
this_process_nusber, error_aumber)
0) then
Hello from process ', &

if (this_process_numbe:

priat *, ¢

this_process_aumber, ' of ', &

auzber_of_processes, 'processes.’

do i = 1, number_of processes - 1
call mpi_recv (this_process_number, 1, &

api_integer, i, 1, mpi_comm world, &
status, error_number)

print *, ' Hello from process ', &
this_process_aumber, ' of ', &
auzber_of_processes, 'processes.’
ead do
else

call mpi_send (this_process_mumber, 1, &
mpi_integer, 0, 1, mpi_com
error_number)

ead if

call mpi_finalize (error_number)
end program ch3202

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figa_HTML.gif
Subroutine sort_data(raw_data, how.

implicit noae

integer, intent (in) :: how_many

real, intent (imout), dimension raw data

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figx_HTML.gif
nodule ged _moduls
implicit noae

contains
pure integer fusction ged(a, b)
implicit noae

integer, intent (in) b
integer :: temp
if (a<b) thea
temp = a
else
temp = b
ead if
do while ((mod(a,temp)/=0) .or.
temp) /=0))
temp = temp - 1
ead do
ged = temp

ead fuaction ged
ead module ged_module

program ch1212
use ged_module
implicit noae
integer :: i, j, result

priat *, ¢

type in two integers’
read *, i, 3
result = ged(i, 3)

priat *, ‘' ged is ’, result

end program chl212

(mod (b,

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figac_HTML.gif
Srnal_pa
real (dp) :: fortran_int P

real (dp) :: partial pi
real (dp) :: total pi
real (dp) :: width

real (dp) :: partial_sus
real (dp) :: x
integer :: n

integer
integer

this_process
a_processes

integer :: i
3

error mumber

integer

integer

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figab_HTML.gif
~TZLR(YY¥Y,101,00) GIVES THE VEEKDAY NUMBER 0=SUNDAY,
c G=SATURDAY. EXAMPLE: IZLR(1570,1,1)=4=THURSDAY
TZLR (YYYY, 101, DD) =HOD ((13* (M+10- (H4+10) /13112) -1) /5+DD+77
. 5% (YYYYH (I-14) /12~ (FY¥¥4 (M-14) /12) /100°100) /4
y + (YYYY+ (MM-14) /12) /400~ (YYYY+ (MM-14) /12) /100*2, 7)

oA,

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ90.png
argument: string_ 1 type:s
result: | class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ91.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ92.png
argument: x type: r
result: r class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ93.png
argument: x type:r
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ94.png
argument: | type: 1
result: 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ95.png
argument : i type : 1
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ96.png
argument: 1 type:i
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ97.png
argument: matrix_ 1 type:n, 1
argument: matrix_ 2 type:n, 1
result: as arguments class: t

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Figa_HTML.gif
nodule interact_moduls
contains
subroutine iateract(a, b, ¢, ok)
implicit noae
real, inteat (out)
real, inteat (out)
real, inteat (out)

logical, inteat (out)
integer

io_status

priat *, &

¢ type ia the cosfficieats a, b and cf

read (uait=+, £m

, iostat=io_status) a, b,

if (io_status==0) then
ok = .true.

else
ok = .false.

ead if

ead subroutine interact
ead module interact_module

nodule solve_module
contains
subroutine solve(e, £, g, rootl, root2, ifail)
implicit noae

real, inteat (ia) :: e
real, inteat (ia) :: £

real, inteat (ia) :: g

real, inteat (out) :: rootl
real, inteat (out) :: root2
integer, intent (inout) :: ifail

! local variables

real :: termm

real :: a2

term = £4F - 4.telg
a2 = e42.0
! if term < 0, roots are complex
if (term<0.0) thea
ifail = 1
else

term = sqrt (term)

rootl = (-f+term) /a2
root2 = (-f-term) /a2
ead if
ead subroutine solve

ead module solve_module

program ch1901
use interact_module
odule

implicit noae

use sol:

simple example of the use of a main program
! and two subroutines.

! one interacts with the user and the

second solves a quadratic equation,

! based on the user imput.

real . 4, T, rootl, root2
integer :: ifail = 0
logical :: ok = .true.

call interact (p, q, ¥, ok
if (ok) then
call solve(p, g, r, rootl, root2, ifail)

if (ifail==1) then
priat *, ' cemplex roots’
print *, ’ calculation abandoned’
else
print *, ' roots are !, rootl, ' !, root2
ead if
else
print *, ' error in data input program eads’

ead if
end program ch1901

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ98.png
argument: al type:ir, s
result: as arguments class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ99.png
argument: x type: r
result: i class: i

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figaa_HTML.gif
program chlalb
implicit noae
integer :: i

do i =32, 62
print *, i, char(i), i + 32, char(i+32), &
i 4 64, char(it6d)
ead do
i=63
print *, i, char(i), i + 32, char(i+32), &
i+ 64, rdel’
end program chl406

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figs_HTML.gif
include “timing module. L300
include ’ch3701_persoa_module.£90’

program ch3703

use ch3701_person_module
use timing_module

implicit noae

iateger :: i

integer , parameter

type (persea) :: pl =&
person(’Zaphod Besblebrox’,42,1.85,70)

open (unit=10, file=’ ch3703.txt ")
call start_timing()
do i=1,a
write(10,100) plaame,plbage, pléheight, plousight
100 format (a38,2x, 12, 2, £4.2,2, £3.0)

ead do

print 200, time_difference ()
200 format (2x,£8.3)

do i=1,n
write(10, 10) pl
10 format (DT)
ead do
print 200, time_difference ()
close(10)

call end_timing()

end program ch3703

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figa_HTML.gif
13
11
13
14
10
13
10

13

11

12

13

10
11

10
10

13

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figai_HTML.gif
J - JuuoouuE+00
1 0000000F—30

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figh_HTML.gif
submodule (date_module_interface) &

date_module_implemeatation

contains

module fuaction &
calendar_to_julian(this) &
1)

implicit noae

result (iv

integer :: ival
class (date), intent (in) :: this

ival = thistday - 32075 + 14614
(thistyear+ &
4800+ (thistmonth-14)/12)/4 + &
367+ (this¥month-2-((this¥month- &
14)/12)*12) /12 - e
((thiskyear+4900+ (thist &
moath-14) /12) /100) /4

ead fuaction caleadar_to_julian

type (date] module function &

date_constructor(dd, mm, &

yyyy)

implicit noae
integer, intent (in)

date_constructorsday =

date_constructor¥moath
date_constructortyear = yyyy

ead fuaction date_constructor
integer module fuaction &
date_to_day_in_year (this)

implicit noae

class (date), iateat (ia) :: this

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figg_HTML.gif
include ‘precision _module.L3aldt
include ’ch2702_ragged_module.£90’

program ch2702

use precision_module
use ragged_module

implicit none

integer, parameter :: wp = sp
integer :: i

integer, parameter

type (ragged(wp)), dimension (1) :: &
lower_diag

doi=1,n
allocate (lower_diag(i)¥ragged_row(1:i))

print *, ’ type in the values for row ‘,
read *, lower_diag(i)%ragged_row (1:i)
ead do
doi=1,a
print *, lower_diag(i)$ragged_row(1:i)
ead do

end program ch2702

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figc_HTML.gif
httoz: / /www.fortranslus.co.uk,

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figb_HTML.gif
tlag=.true.

false.

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq9.png

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figr_HTML.gif
do

»amonths
read (wait=10, fmt=100) rainfall (i
100 format (373, £5.1)

ernd do

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq7.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figaz_HTML.gif
program chlslsa
! use the bit functions ia Fortran to write out
! 32 bit integer number equivaleaced to a real
! using the transfer intrinsic as a sequence of

! zeros and oaes

implicit noae

integer i 4, 3
character (len=32) :: i_in bits = ' '
real :: x = 1.0

priat *, 1 2 3

print *, ‘12345678301234567890123456789012"
priat *, i_in bits
1= transfer(x, i)
do =0, 31
if (btest(i,3)) then

i_in_bits(32-3:32-3) = ‘1’
else
i_in_bits(32-3:32-3) = ‘0
ead if
ead do

priat *, =
priat *, i_in bits
cnd program ch0514

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figb_HTML.gif
SUBROUTINE my_write routine formatted (dtv,

uait,
iotype, v_list,

the derived-type
dtv-type-spec , TNTENT(IN) :: dtv

INTEGER, TUTENT (T11)

uait
the edit descriptor string
CHARACTER (LEW=*], IUTENT (TH)
INTEGER, INTENT (Im)
INTEGER, INTENT (OUT)
CHARACTER (LEN
—

iotype

list

iostat
), IUTENT (T00UT)

iomsg

iostat, iomsg)

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figae_HTML.gif
Jhome/1an/document/ fortran

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figas_HTML.gif
yet to be sorted

i€ (125K then
i =1
e =1

3=1
asm1
na it

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figk_HTML.gif
yyyy

1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1065

214.
25.
3.

146.

108.

115,

105.

155.

245.
2.

115,

a7

hours
38.8
33.
114.
134.
120.
140.
106.
140.
70.
134.
KEN
a7

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figm_HTML.gif
nodule swap_moduls
implicit noae

contains
elemental subroutine swap (x,)

integer, intent (inout) :: x, y
integer :: temp

temp

==y

y = temp

ead subroutine swap
ead module swap_module

program ch2007
use swap_module
implicit noae
integer, dimension (10)

integer

doi=1, 10
ali) =
b(i)

ead do
priat *, a
priat *, b
call swap(a, b)
priat *, a
priat *, b

end program ch2007

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figg_HTML.gif
+og(<.0)

% = log(abs (y))

x = log(abs (y)+z/2.0)

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figr_HTML.gif
http:/ /www. stepanovpapers.com/

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figad_HTML.gif
http:/ /www. shmu.sk/sk/?page=1

OEBPS/images/112282_4_En_BookBackmatter_Fige_HTML.gif
L.

£indloc

The

£indloc

The

£indloc

The

121

valus
1,

value of

11

1,

value of

21

1,

3,

11,

value=3)

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figb_HTML.gif
nodule link moduls
type link
character (len=1)

type (link], pointer :: next = null()
ead type liak

ead module link_module

program ch2201
use Liak_module

implicit noae

character (len=80) :: faame
integer :: io_stat_aumber = 0

type (link], pointer :: root, curreat
integer :: i =0, a

character (len=:], allocatable :: string
print *, ' Type in the file name ?

read ‘(a)’, fname

open (unit=1, file=faame, status='old’)
allocate (root)
! read first data item

‘(a)’, advance='no’, &

read (wait=1, fmi
iostat=io_stat_nuzber) root%:

if (io_stat_number/=-1) then
Q=i+
allocate (rootdnesxt)

ead if

curreat => root

! read the rest

do while (associated (curreati¥next])
curreat => curreat¥aext

read (unit=1, fmt='(a)’, advance

iostat:

o_stat_number) curreatix
if (io_stat_number/=-1) then
Q=i+
allocate (curreat¥next)
ead if
ead do

priat *, i, ' characters read’

allocate (character(lea=a)
i=o0
curreat => root

striag)

do while (associated (curreati¥next])

Q=i+
string(i:i] = curreat®x
curreat => curreat¥aext

ead do

priat *, ’data read wa:

print *, string
end program ch2201

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figaa_HTML.gif
interface shape_typs
module procedure shape_type_coastructor
ard interface

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figi_HTML.gif
- Suu
.990
.09
.010
.001
.000
.000
.000
.000
000

=.5uu
99.000

990.000

- aug
.990
098
.010
.001
.000
.000
.000
.000
000

—4.5ud

-95.00¢

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq6.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figae_HTML.gif
#include <iostream>
using namespace std;
extern "C" void reciprocal (int ar,iat ac,
f£loat *x, £loat

iat maia()
t

const int ar=z;

const int ac

£loat xzlar]lacl;
£loat ylar]lacl;
int x

int e

int i=1;

for (k)
for (c=0jce<ncict+)
[

=[x] [e]=(£loat) (i);

itt;

" Ct+ calling Fortran" << eadl;
" 2 d array as parameter\a’;

jrenr;red)

for

for (c=0jce<ncict+)
[
cout

)

cout

)

reciprocal (ar, ac, (float*) %, (float*)y);

z[x] []

<< endl;

for

zlxlle] << " =
<< ylrlle] << endl;

retura(0);

)

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq4.png

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figm_HTML.gif
#include <iostream> using namespace std;

tern { float reciprocal(float *); |
int maia()
t

f£loat x;

2=10.0£;

cout << " C++ calling a Fortan fuaction”

cout << " x =M o<< oz << "

reciprocal =
eadl;

cont

reciprocal (6x)
retura(0);

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figae_HTML.gif
P HHRRHAKKEE VYVVVVVVVVY

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figz_HTML.gif
1nteger , dimension(

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Fign_HTML.gif
=xtern

{ float recaiprocal(float *);

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figh_HTML.gif
coatains
recursive subroutine quicksort(l,)
implicit none
integer, inteat (in)
i3
real (@p) :: v, t

integer

include ’quicksort_include_code. £90"

ead subroutine quicksort
end subroutine sort_real_qp

subroutine sort_integer_8(raw_data, how_many)
use integer_kind_module
implicit noae
integer, intent (in) :: how_many
integer (i8], intent (imout), &
dimension (:)

rau_data
call quicksort(l, how_many)
contains

recursive subroutine quicksort(l,)
implicit none

integer, inteat (in)
integer :: 4, 3
integer (i8)

include ’quicksort_include_code. £90"

ead subroutine quicksort
-nd subroutine sort_integer_8

subroutine sort_integer_16(raw_data, how_many
use integer_kind_module
implicit noae

integer, intent (in) :: how_many
integer (i16), inteat (imout), &

)

dimension

rau_data
call quicksort(l, how_many)
contains

recursive subroutine quicksort(l,)
implicit none

integer, inteat (in)
integer :: 4, 3
integer (i16)

include ’quicksort_include_code. £90"

ead subroutine quicksort
-nd subroutine sort integer 16

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Fige_HTML.gif
nodule rkm_moduls
use precision_module, wp => dp
implicit noae

contains

subroutine runge_kutta merson(y, fun, ifail, &
a, a, b, tol)

! runge-kutta-merson method for the solution
! of a system of a lst order initial value

! ordinary differeatial equations.

! the routine tries to integrate from

=a to t=l

with initial coaditions in y,
! subject to the condition that the

tol. the step
! leagth is adjusted automatically to meet

! absolute error estimate

! this coadition.
! if the routine is successful it returas with
! ifail = 0, t=)

and the solution i y.

implicit noae

! define arguments

real (wp), iateat (inout], dimension
v

real (wp), iateat (in) :: a, b, tol
integer, intent (ia) :: a
integer, intent (out) :: ifail

interface

subroutine fua(t, y, £ a

use precision_module, wp => dp
implicit none

real (wp), iatent (in), dimension (:)

v
real (wp), iateat (out), &
dimension (:) :: £

real (wp), iatent (in)

integer, inteat (in)
ead subroutine fua
ead interface
! local variables

real (wp), dimension (l:size(y))

53, =4, s5, aew_y_l, new_y_2, error
t, h, h2, h3, he, he, &
factor = 1.e-2_up

real (wp)

real (wp) :: smallest_step = l.e-6_wp, &
integer :: no_of_steps = 0
ifail = 0

! check input parameters

if (a<=0 .or. or. tol<=0.0) then
ifail = 1
retura

ead if

! initialize t to be start of interval and
! htobe 1/100 of interval

t=a
h = (b-a)/100.0_wp
do

' #2242 beginning of
' #2#4% repeat loop

h2 = h/2.0_p
B3 = h/3.0_wp
h6 = h/6.0_up
B8 = h/8.0_vp

! calculate s1,s2,53,54,55
L sty

call fua(t, v, sl, a)
aew_y_l =y + h3tsl

' s2

£(£4h/3, y+h/34s1)

call fun(t+h3, new_y 1, s2, a)
aew_y_l =y + he'sl + hets2

' S3=F (t+h/3,y+h/6%s1+h/6452)

call fun(t+h3, new_y 1, s3, a)
new v 1 = v + h8* (s243.0_wp*s3)

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figaf_HTML.gif
=xtern TCT wvoid reciprocal (iat ar,ant ac,
float *x,float *v):

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figaq_HTML.gif
http:/ /www.netlib.oxg/lapack95/

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figai_HTML.gif
subroutine dsort_gpldx, dy, A, ktlag)
s pracizion_meduls, we = @
inslicit aone

| .. Scalar Argumeats
iateger kelag, a
Array Argumeats

real (w2) :: dx(h), dy(h)

! .. Local Scalars
real () ::ox, b, e, ey, by
iateger i, i3, 3, K, Kk, 1, m, a3

! .. Local Arrays
iakeger 11(21), iu(21)

| . Iatrissic Fusctions
intrinsic abs, iat

| *''FIRST EXECUTAELE STATEMENT DSORT

Kk = abs (kflag)

| Alter array DX to get decreasing order if
—

i (kflage=-1) thea
doi=1, ma
R
ad do
na it

i€ 0o==2) go to 180

! Sort DX oaly

1
1
0,375

3

100 if (i==3) go to 140

if (:<=0.5898437_m) thea
£ = r+ 3.90625_2/100.0_w

slse

r=r - 0.218750
na it
ok =i

! Select a central slemeat of the array and savs
it ia location T

154+ (3

= axiy)

| If first slemeat of array is greater thaa T,
! isterchasge with T

i€ (@x()58) thea

ax(i3) = ax(i)
ani) = €

£ = axiy)
na it

1=

| If last slemeat of array is less than than T,
! isterchasge with T

if (@x(3)<t) thea
ax(i3) = ax(3)
any) = ¢
o= (i)

OEBPS/images/112282_4_En_BookBackmatter_Figav_HTML.gif
—x03
_starget=native
s:chip=peat ium
_cache=generic
_sarch=sse3

sdepen

-aligncommon=dalign

ftrap=division, invalid,overfloy
libmil

Libmopt

“nofstore

iregs=frameptr

—y-fsimple=2

“a daliga

zall
irivdep=loop
T

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figr_HTML.gif
use god_module

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figk_HTML.gif
program chibls

use icee_arithmetic

implicit noae

integer :: i
real :: x = 1.0
logical :: uaderflow_happeasd = .false.

if (ieee_support_datatype (x)] thea
print *, ' IEEE arithmetic

priat *, &

¢ is supported for default precision’

ead if

doi=1, 50
if (underflow_happened) then

priat *, ' underflow occurred '
priat *, ' program terminates’
stop 20

else

print 100, i, x
100 format (', i3, ' ¢, el2.4)
ead if
2= /10,0

call iese_get_flag(ices_underflow,

underflow_happened)
ead do
end program ch3604

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figz_HTML.gif
> ® = date(dd, 2, 19524
52105
< print_date (x)

. =¥priat_date ()
95108

false., &

print_date(x, day_names:

false., &

. =¥priat_date (day_name.
59112

print_date(x, day_names=.true., &

. =¥priat_date (day_name.
103¢116

< print_date(x, day_names:

true., &

false., &

Lfalse., &

. =3priat_date (day_names:
107¢120

< print_date(x, day_names:

true., &

. =¥priat_date (day_names=.true., &
110e123

< print_date (s, digits=.true.)

. =3priat_date (digits=.true.)
117¢130

< print *, priat_date(x, day_name:

false., &

S print *, =Sprint_date(day_names=.false., &
121134
< end program ch2206

. end program date program 01

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figaf_HTML.gif
implicit noae

private
type, public :: date
private
integer :: day
integer :: month
integer :: year
integer :: date_type = 1

ead type date

character (3) :: day(0:6] = (/ ‘Sunday ', &

‘Monday ', ‘Tuesday , 'Wednesday’, &
‘Thursday ©, ‘Friday , ’Saturday ' /)
character (8) :: month(1:12) = (/ 'Jaavary ',
‘February ', ‘March ¢, 'april !, &
‘ay “guae ,raly s
‘August , ‘September’, 'October !, &

‘November ', ’December ‘ /)
public :: calendar_to_ julian, date_, date_iso,

date_us, date_to_day_in_year, &
date_to_weekday_number, get_day, get_moath, &
get_year, julian_to_date, &
Julian_to_date_and_week_and_day, adays, &

print_date, year_and_day_to_date
contains
function date_(dd, mm, yyyy) result (x)

implicit noae
type (date)

integer, intent (in)
integer :: dt = 1

dd, mm, yyyy

= = date(dd, mm, yyyy, dt)
ead fuaction date_

function date_iso(yyyy, mm, dd) result (x)
implicit noae
type (date)

integer, intent (in] :: dd, mm, yyyy

integer :: dt = 3

= = date(dd, mm, yyyy, dt)
ead fuaction date_iso

function date ws(mm, dd, yyyyl result (x)
implicit noae
type (date)

integer, intent (in] :: dd, mm, yyyy

integer :: dt = 2

= = date(dd, mm, yyyy, dt)
ead fuaction date_us

include ‘date_module_include_code. £90°

function priat_date(x, day_names, &
short_moath_name, digits)
implicit noae

type (date], iasteat (in) :: x

logical, optional, intent (in] :: day_names,
short_moath_name, digits

character (30) :: print_date

integer :: pos

logical :: want_day, waat_short_month_name, &

want_digits
1, t
intrinsic lea_trim, preseat, trim

integer

waat_day = .false.
want_short_month_name = .false.
want_digits = .false.
print_date = ¢
if (present (day_names)) then
want_day = day_names
ead if
if (present (short_month_name)) thea
want_short_month_name = short_month_name
ead if

if (present (digits)) then
want_digits = digits
and if

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figx_HTML.gif
write(print_date(1l:2),7 (12) ") xsday
write (priat_date (4:5) ' (i2) /) x¥month
write (prist_date (7:10) , ’(i4)’) xbyear
write (print_date (pos:pos+l) ,’(i2)’) xbday
write (print_date (po:

pos+3) , f (id)") x%yvear

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figv_HTML.gif

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figw_HTML.gif
L
= interval_width*(real(i, dp) -0.5_dp
total = total + £(x

ernd do

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figw_HTML.gif
10U B
13803552
13803600
2943080
2943084

2943080
2943080
2943080
~G4R084

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figal_HTML.gif
program chU3lb
real, dimension (10, 10)

integer :: arows = §
integer :: acols = 7
integer :: 4, 3
integer t: k= 0

do i =1, nrous
do j =1, acols
E=k+1
v, 3 =k
ead do
ead do
write (uait=*, fmt=100) y
100 format (1x, 10£10.4)
end program ch0916

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figbc_HTML.gif
iateger, paramster
integer, dimension
days_in_moath = [
31, 31, 30, 31, 3

Iaitialise ifail to

ifail = 0

Simple test for Gre
This is a warning.
details

about dates and cal,

if (year<1582) then
ifail = 1
ead if

if ((month<l) .or.
ifail = ifail + 2
retura

and if

«
31, 28, 31, 30, 31,
0, 311

0

gorian start date
See the book for more

endars.

(moath>12)) then

30,

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figq_HTML.gif
image
image
image
image

stuff deleted

coarray x

image

image

stuff deleted

image
image
image
image

stuff deleted

image
image

stuff deleted

image
image
image

stuff deleted

image
image
image

stuff deleted

image
image
image
image
image
image
image

10
55
60

550

505

450

140
310

145

155
235

= s60
1020
6585

= a2
500
980

985
590

995

1000
1120
1150
1125

Application 13271719 resources: utime “7s,

stime 52
inblocks

L31= 4 =0
13= 2 =3
33= 1 =3
33= 2 =3
22 3= 5 =3
oa image 1 is:
21 3= 1 =)
20 3= 3 =)
63= 3 =3
133= 2 =3
63= 4 =3
73= 1 x(3)
103= 2 =)
27 3= 2 =3
3= 4 =)
28 3= 2 =(3)
333= 5 x=(j)
36 3 =(3)
10 3 =(3)
40 2 =)
40 3 =)
40 1 =G)
40 5 x(3)
45 1 =G)
45 5 x(3)
45 3= 5 =03

s, Rss “4288,

22262 outblocks

~39436

20,

28

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Fige_HTML.gif
& program te ceavert FORIRAN 77 soures form te Fortraa 30 source
orn. Tt also formats the cods by iadeating the bodies of DO-looss
ad TF-blocks by ISHIFT columas. Statemeat keywords ars
Eolloved if necessary by a blask, aad blasks withia tokeas ars
are suooressed; this handling of blasks is ostioaal

I a CONTINUE statement terminates a single DO loop, it iz
reslaced by END DO

Procedurs EID statemeats have the rocedure aane added, if
Blasks ars hasdled

Stateneats like TNTEGER'2 ars cosverted to TNIEGER(2), if blasks
are handled. Depending oa the targst processor, a further global
=dit might be required (s.g. whers 2 bytes correspead to KIND=1)
Tyed fuactions axd assumed-length character specifications ars
treated similarly. The leagth specification *4 is removed for all
data types eucest CHARACTER, as is '8 for CONPLEX. This
Ereatmeat of aoa-staadard type declarations iacludes aay
aoa-standard DPLICIT statemeats

Ostionally, isterface blocks oaly may be roduced; this requires
blasks processiag to be raquested. The interface blocks are
comoatible with both the old and aew source forms

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figl_HTML.gif
character (4] :: cZ,c3

33

character (8)

j3=e2//c3
print*, 'the concatenation of ',c2,’
orint#, 44

and 3,1

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figb_HTML.gif
nodule link moduls
use precision_module
type link(real kind)

integer, kind :: real_kind

real (kind=real_kind) a

type (link(real_kind)), pointer :: next

ead type liak
cnd module liak module

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figo_HTML.gif
program chlils
implicit noae

! this program picks up the first occurreace

! of a aumber in a list.

! a seatinel is used, and the array is 1 more

! than the max size of the list.

integer, allocatable, dimension (a
integer :: mark

integer :: i, howmany

open (uait=1, file='data.txt’, status='old')

print *, ‘ What mumber are you looking for?’
read *, mark

print *, ' How many numbers to search?’

read *, howmany

allocate (a(l:howmany+l))

read (unit=1, £mt=!)(a(i), i=1, howmaay)

i=1

a(howmany+1) = mark

do while (mark/=a(i))
Q=i+

ead do

if (i==(howmany+l)) thea

print *, ’ item not ia list’
else

print *, ’ item is at position ', i
ead if

end program ch1305

OEBPS/images/112282_4_En_BookBackmatter_Figv_HTML.gif

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figt_HTML.gif
HMaximum number of threads is E

Number of threads = 1

I intervals = 100000 time = 0.004
opeamp_pi 3.1415926535981167
difference = 0.0000000000083236

I intervals = 1000000 time = 0.012
opeamp_pi 3.1415926535895033
difference = 0.0000000000001101

I intervals = 10000000 time = 0.051
opeamp_pi 3.1415926535896861
difference = 0.0000000000001070

U intervals = 100000000 time = 0.44¢
opeamp_pi 3.1415926535902168
difference = 0.0000000000004237

I intervals = 1000000000 time = 4.30¢
opeamp_pi 3.1415926535897682
difference = 0.0000000000000249

Number of threads = 2

I intervals = 100000 time = 0.000
opeamp_pi 3.1415926535981260
difference 0.0000000000083328

I intervals = 1000000 time = 0.00C
opeamp_pi 3.1415926535898624
difference 0.0000000000000693

I intervals = 10000000 time = 0.02C
opeamp_pi 3.1415926535897829
difference 0.0000000000000102

U intervals = 100000000 time = 0.21¢
opeamp_pi 3.1415926535898926
difference 0.0000000000000885

I intervals = 1000000000 time = 2.188
opeamp_pi 3.1415926535897380
difference = 0.0000000000000551

Number of threads = 4

I intervals 100000 time = 0.004
opeamp_pi 3.1415926535981287
difference 0.0000000000083356

I intervals 1000000 time = 0.004
opeamp_pi 3.1415926535898726
difference 0.0000000000000785

I intervals 10000000 time = 0.027
opeamp_pi 3.1415926535898153
difference 0.0000000000000222

I intervals 100000000 time = 0.137
opeamp_pi 3.1415926535898038
difference 0.0000000000000107

I intervals = 1000000000 time = 1.781
opeamp_pi 3.1415926535898544
difference = 0.0000000000000613

Number of threads = s

I intervals = 100000 time = 0.000
opeamp_pi = 3.1415926535981278
difference 0.0000000000083347

I intervals = 1000000 time = 0.004
opeamp_pi = 3.1415926535898784
difference 0.0000000000000853

I intervals = 10000000 time = 0.01¢
opeamp_pi = 3.1415926535897962
difference 0.0000000000000031

I intervals = 100000000 time = 0.112
opeamp_pi = 3.1415926535898162
difference 0.0000000000000231

I intervals = 1000000000 time = 1.137
opeamp_pi = 3.1415926535898824

i fferance 0. 0000000000000883

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figb_HTML.gif
http:/ /www

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figt_HTML.gif
include ‘precision _module.L3aldt
include ’maths_module.£90"
include ‘subl_module.£90"

program ch2105

use precision_module, wp => dp
use subl_module

implicit noae

real (wp) :: 1, a, ¢

print ¥, ‘radius?’
read +, r

call swbl(x, a, <

print *, for radius = /, r
priat *, © area =, a
priat *, ' circumference = ',

end program ch2105

OEBPS/images/112282_4_En_17_Chapter/112282_4_En_17_Figc_HTML.gif
type (typenames) ‘ariablename

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figaj_HTML.gif
program chisls
use character_binary_search_module
use timing_module
implicit noae

integer, parameter :: awords = 173528
character *32, dimeasion (l:iavords) :: &

dictionary
character *32

: word

character *1 :: answer

integer :: position

call start_timing()

call read words ()

write (*, 100) time_difference()
100 format (2, £7.3)

do

priat *, &
Type in the word you are looking for’
read *, word

write (*, 100) time_difference()

position = binary_search(dictionary, awords,

word)

write (*, 100) time_difference()

if (position==0) thea

* Word not found’

priat *,
else

write (*, 110) trim(vord), pesition

110 format (a, ’ found at pesition ', i6
end if
priat +, ¢ Try again (y/a) '

read *, ansver

if ((answe

y') .or. (answer=='¥')] thea

eycle

else
exit

ead if

ead do
call end_timing()
contains
subroutine read words()

implicit noae
integer :: i

character *80 :: file_name = ‘vords.tut’

open (uait=10, file=file name, status='old’)

do 1
read (10, 100) dictionary(i)
100 format (a)
ead do
close (10)

1, mwords

ead subroutine read_words

end program ch3805

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figas_HTML.gif

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figad_HTML.gif
noduls 1so_date_moduls
use day_and_moath_name module
use date module
implicit none
public
type, extends (date) :: iso_date
contains

print_date => &

procedurs, pass (this)
print_iso_date
procedure, nopass :: julian_to_iso_date

procedure, nopass
Julian_to_iso_date_and_veck_and_day

procedure, nopass :: &

year_and_day_to_iso_date
ead type iso_date
interface iso_date
module procedure iso_date_constructor
ead interface iso_date
contains

type (iso_date) function iso_date constructor(&

yyyy, mm, ddj

implicit noae

integer, inteat (in) :: dd, mm, vyvy

OEBPS/images/112282_4_En_BookFrontmatter_OnlinePDF_TeX_IEq3.png
thread_number variable

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figk_HTML.gif
nodule ged _moduls

contains

integer function ged(a, b)
implicit noae

integer, intent (in) b
integer :: temp
if (a<b) thea
temp = a
else
temp = b
ead if
do while ((mod(a,temp) /=0) .or. (mod(b, §

ged = temp
ead fuaction ged

cnd module ged module

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figau_HTML.gif
Subroutine generic_shape_assign(lhs, rhs)

implicit noae

class (shape_type), intent
allocatable :: lhs

class (shape_type), intent

allocate (1hs,source=rhs)

(out), &

(ia) :: rhs

-nd subroutine generic shape assign

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figaj_HTML.gif
program chlsus

use iso_fortran_eav

priat
priat
priat
priat

Real kinds
Integer kinds
Character kiads
Logical kinds

end program ch0508

real_kinds
integer_kinds
character_kinds
logical kinds

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figc_HTML.gif
Frocessor

AMD Phenom IT X6
Iatel Core i7 920
Iatel Core i7 2600K
AMD Opteroa Shanghai
Istanbul
Magay Cours
Magay Cours
Trtel FE_2EG7

Lores

12
19

Hyper
Threadiag

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figl_HTML.gif
subroutine runge_kutta_merson(y,fun,aifail,n,a,b,tol]

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figam_HTML.gif
gtortran and g++, opensuse Linux and Windows

gfortran - ch3511.£90 —o ch351l_f.o
g+t ch3511.cxx ch3511 f.o -lgfortran

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figu_HTML.gif
float summation(float *x,1nt n);

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figl_HTML.gif
dsort.t
—
vt £

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figax_HTML.gif
=l 4. duoouau
«2 0.1000000
w1 99 699004 63

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figi_HTML.gif
Lotitude

20.0° N

60.0° N

30,00 N

0.00

30005

50.0° 5

90.0° 5

plot of JUS% tsunami events

180.0° W 20.0° 1 0.0° 20.0° € 180.0°

Longitude

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figal_HTML.gif
Program starts U.U3d

Integer read 0.016

Real read 0.031
1 1.000000
2 2.000000

s 9.000000
10 10 000000

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figi_HTML.gif
type raggedireal_kind)

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figad_HTML.gif
e aEaao"dn[EQaY

R R L EE R

"W mEEOQ® Y EE QO

i amE MO mAYE Qe a

i amw Mo ma Y Y Ya e a

T R R R

vamamMawamwa A a

TR R R

TR R IR RV U

v v ok M kg g g g

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figar_HTML.gif
Process number U start 1 ead o
Process muzber = 1 start § ead 10
Drocess Aurher 5 atart 11 emnd 15

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figf_HTML.gif
module shape_r

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_Equ2.png
i=i+1

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Chapter_TeX_Equ1.png
circumference = 2nr

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figh_HTML.gif
program chlils
implicit noae
integer :: year, a, moath, day, t

! calculates day and month from year and
! day-within-year

! t is an offset to account for leap years.

! Note that the first criteria is division by 4
! but that ceaturies are oaly

! leap years if divisible by 400

! act 100 (4 * 25) alone.

priat *, ¢

year, followed by day within year’
read +, year, a
! checking for leap years
if ((year/4)*4==year] thea
t=1
if ((year/400) *400==year) then
t=1
else if ((year/100)*100
t=o0
ead if
else
t=o0
ead if
! accounting for February
if (2> (59+t)) thea
day =a +2-t
else

ear) thea

day = a
ead if
moath

(day+81) *100/3055
day = (day+91) - (moath*3055)/100
moath = meath - 2

print *, ' calendar date is ', day, moath, &
year

end program ch1302

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figf_HTML.gif
togical :: debug

debug=.true.
i £ (debug) then
priat *,‘lots of priatout’

o ndi £

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figf_HTML.gif
iatertace
module function get_year (this)
implicit none
integer :: get_year
class (date), inteat (ia) :: this
ead fuaction get_year
end interface

interface
module function julian_to_date(julian)
implicit none
type (date] :: julian_to_date
integer, inteat (in)

Julian
ead fuaction julian_to_date
end interface

interface

module subroutine &
julian_to_date_and week_and_day &
(3d, d, wd, ddd)

implicit none

integer, intent (in] :: jd
type (date], inteat (out] :: d
integer, intent (out) :: wd, ddd

ead subroutine &
julian_to_date_and week_and_day
end interface

interface
module function adays (datel, date2)
implicit none

integer :: adays
class (date), intent (in) :: datel, date?
ead fuaction ndays
end interface

interface

module function &

print_date (this, day_names,
short_month_name, digits)
implicit none
class (date), inteat (ia) :: this
logical, optional, inteat (in] :: &
day_names, short_moath_name, digits
0)
ead fuaction priat_date

character (le

print_date

end interface

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figa_HTML.gif
- wake up

check the date and time
if (Today = = Suaday) then

lie in bed for another two hours
sndi £

get uwp
C le hreakfast

OEBPS/images/112282_4_En_BookBackmatter_Figo_HTML.gif
open (2, tile=inline.txt’, access='stream’, lform='lformatted’)

write (2. (al’) 'hola’//new line(’a’)//’ muado’

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbd_HTML.gif
s (4 shape_type (10U, 20)
s (2) circle_type (100,200,300)

s (3) rectangle_type (1000,2000,3000, 4000}
s (4) s(1ex

s (5) s(2)%x

s(6) %x = s(3)%x

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Fige_HTML.gif
first ons ©

string='a loager one’

] ine

the quick brows fox jumps over the lazy dog’

OEBPS/images/112282_4_En_BookBackmatter_Figah_HTML.gif
/Qeoarray
/ Qopenmp

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figao_HTML.gif
program chUsls
implicit noae

integer :: 31
integer :: k1
integer :: 32
integer :: k2
integer :: sl
integer :: s2
integer :: dl
integer :: position

dl= k1 - 3141

* Row Column Position’

priat *,
do 51 = 31, k1
do 52 = 32, k2
position = 1 + (s1-31) + (s2-32) *dl
priat 100, s1, s2, pesition
100 format (3x, 2, 6%, 12, 10%, i2)
end do
end do

end program ch0813

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_Equ1.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_Equ2.png

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figah_HTML.gif

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figak_HTML.gif
tzl = 1so date(l3/0, 1, 1)
julian = txl3calendar_to_julian()

tx2 = julian_to_iso_date(julian)

if (txliget_day()==tx2iget_day() .and. &
txlget_month()==tx2%get_moath () .and. &
txlget_year () ==tx2%get_year()) then

priat *, ¢ calendar_to_julian asd
priat +, ¢ julian_to_iso_date worked’
end if

iso date(19852, 2. 11)

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figat_HTML.gif
gtortran and gec, opensuse Linux and Windows

gfortran —c ch3512.£90 -o ch3512_f.0
ee ch3512.c ch3512_f.o -lgfortran

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figq_HTML.gif
Skip MHobls
Fortraan 77

TDRY
TZIR
CaLEID
CDATE
NDRYS
DAYSUB
0

Alan Miller
Fortraa 90

iday
izlr
calend
cdate
adays
daysub
5d

Curreat implemeatation

date_to_day_in_year
date_to_veekday_nurber
year_and_day_to_date
Julian_to_date

adays
julian_to_date_and_week_and_day
calendar to_qulian

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figd_HTML.gif
program chlaUs
implicit noae

real, dimensioa (5)
4.0, 5.0 /)

/1.0, 2.0, 3.0,

print *, ! sine of !, x, . siac

end program ch1203

OEBPS/images/112282_4_En_BookBackmatter_Figao_HTML.gif
heck

Compile checking code according to
the value of check, which must be one of:

all (perform all checks except for
adefined),

array (check array bouads) ,

bits (check bit intrinsic arguments,

calls (check procedure references),

dangling (check for dangling poiaters),

do (check DO loops for zero step values),

intovf (check for integer overflow],

aone (do no checking: this is the default],

preseat (check OPTIONAL references),

pointer (check POINTER references),

recursion (check for invalid recursion) or

undefined (check for uadefined variables) .

~£2008

Specify that the base language is Fortran 2008.
This is the default.

Produce information for iateractive debugging
by the host system debugger.

~gline

Compile code to produce a traceback when a

runtime error message is generated.

ode

Set the mode of IEEE arithmetic operation
according to mode, vwhich must be one of
£ull, nonstd or stop.

£ull

enables all IEEE arithmetic
facilities iacluding
aon-stop arithmetic.

aonstd

Disables noa-stop arithmetic, terminating
execution o floating overflow, division
by zero or invalid operand. If the
hardvare supports it, this also disables
IEEE gradual underflow, produciag

zero instead of a denormalised mumber;

this can improve performance o some systems.

stop

enables all IEEE arithmetic facilities

except for non-stop arithmetic;
execution will be terminated oa

f£loating os

rflow, division by zero
or iavalid
operand.

The -icee option must be specified when

compiling the main program uait, aad its
-ffect is global.

The default mode is -iee:

top. For more

details see the
IEEE 754 Arithmetic Support section.

iafo
Request output of information messages. The
default is to suppress these messages.
mtrace=trace_opt_list
Trace memory allocation and deallocation
according to the value of trace_opt_list,

which must be a comma separated
Jist of one or more of:

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figac_HTML.gif
| recursaive | type specification

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figap_HTML.gif
reth =4 =2
i€ (x(1)56) go to 120

! Fiad a3 slemeat in the First half of the array
! which is greater

! thaa T

10k =K+ 1
i€ (200 <E) go ko 130

! Iaterchasge these slemeats

if (kesl) thea
e = a2
1x(1) = 1200
Lx00) = ke
9o to 120
na it

! Save upper asd lover subscrists of the array
! yet to be sorted

i€ (125K then

i =1
e =1
ik
memt1

s1se
=k
e =3
3=1
asm1

na it

9o to 150

! Begin again on another Sortion of the uasorted

lom=m -1
if (n==0) go to 270
1w
0 m)

3

150 i€ (3-i>=1) go to 110
if (==L) go to 100

i=i-1

6o i =i+ 1
if (1==3) go to i
€= axdny
if (n(1)et) go to 160
k=i

OEBPS/images/112282_4_En_BookBackmatter_Figh_HTML.gif
read (unit=1,Imt=", iostat=ist)y(1)
if (is_iostat_ead(ist)) thea
print*,‘ead of file!’

o ndi £

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Figb_HTML.gif
program chlsUl
implicit noae
comple:
real ::

=1, =2, =3, zhar
y, =mod

=3.0, y2=4.0

%3 = -2.0, y3 = -3.0

real

real

empli(1.0, 2.0) ! 1+i2
empli(x2, y2) ! =2+ i y2
empli(x3, y3) ! =3+ i3
=1422/23

real

' real part of

' imaginary

' part of =z
zmod = abs (2] ' modulus of =
zbar = conjg ' complex

' conjugate of
priat 100, =1, =2, =3

100 format (3(1x, £4.1,7 + 1 /,£4.1,/))
print 110, z, zmod, zbar

110 format (1x, £4.1, © 41 ', £4.1, /, 1x, &

£, /, 1k £, © 41, £4.1)

print 120, x, v

120 format (2(1lx,f4.1,/)) end program ch1501

OEBPS/images/112282_4_En_BookFrontmatter_OnlinePDF_TeX_IEq1.png

OEBPS/images/112282_4_En_BookFrontmatter_OnlinePDF_TeX_IEq2.png

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figo_HTML.gif
contains
function £ind(k)
implicit none

f£ind

integer, inteat (in)

real (dp)

integer :: 1, r, i, 3
1, €2

include ‘statistics_module_include_code.£90'

real (dp)

ead fuaction find

ead subroutine calculate_dp

subroutine calculate gp(x, n, mean, std dev, &
median)
implicit noae

integer, intent (ia) :: a

real (qp), iateat (in), dimeasion (:)

real (qp), iateat (out) :: mean
real (qp), iateat (out) :: std_dev
real (qp), iateat (out) :: median
real (qp), dimension (1:a) v
real (qp) variance

real (qp) :: sumsi, sumsi2

sumei = 0.0
sumei2 = 0.0

variance = 0.0

sumei = sum(x)

sumei2 = sum ()

variance = (sumi2-sumsisumsi/n)/ (a-1)

std_de;

sqrt (variance)
y=x
if (mod(n,2)==0] then
median = (find(n/2)+find((a/2)+1)) /2
else
median = £ind((2/2)41)
ead if
contains
function £ind(k)
implicit none

real (qp) :: find
integer, imteat (ia) :: k
integer :: 1, r, i, 3
real (qp) :: t1, t2

include ‘statistics_module_include_code. £90'
ead fuaction find

ead subroutine calculate_qp

-nd module statistics module

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figu_HTML.gif

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figf_HTML.gif
use omp_lib

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figp_HTML.gif
https: //www.nag.co.uk/

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figa_HTML.gif

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figz_HTML.gif
1f(iachar("a’)

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figan_HTML.gif
include "chadli_shape_module. £30°
include ’ch2804_circle_module.£90’
include ’ch2804_rectangle_module.£90’
program ch2804

use shape_module

use circle_module

use rectangle_module

implicit noae

type (shape_type)

type (circle_type)

type (rectangle_type)

shape_type (10, 20)
ve = circle_type (100, 200, 300)
vr = rectangle_type (1000, 2000, 3000, 4000)

print *, * get

print *, ' shape ‘, vstget (), 1, &
vstget_y()

priat *, circle /, vedget_x(, ',

vedget_y(), ‘radius = ', velget_radius()

rectangle !, vriget_x(), ' ',
¢, vrget_width(), &

priat *,
Sget_y(), ‘width
‘height ’, vriget_height ()

draw

priat *,
call vatdraw()
call vesdrau()

call vrddraw()

print *, set

call vstset_x(19)

call vs¥set_y(19)
call vetset_x(199)
call vesset_y(199)
call vesset_radius (199)

call vriset_x(1999)
call vr¥set_y(1999)

call vr¥set_width(1999)
call vr¥set_height (1999)
priat *, ¢ draw

call vstdraw()

call vesdraw()

call vrddraw()
end program ch2804

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figl_HTML.gif
tel, 4
< module date_module

> module date_module_01

> use day_and_month_name_module

5al0
7a12

10a16, 36

> coatains

. procedure, pass (this) :: calendar_to_julias
. procedure, pass (this) :: &

S date_to_day_in_year

. procedure, pass (this) :: &

. date_to_weskday_number

. procedure, pass (this)

. procedure, pass (this)

. procedure, pass (this) :: get_year

S procedure, nopass :: julian_to_date

S procedure, nopass :: &

S Julian_to_date_and_week_and_day

S procedure, ncpass :: adays

. procedure, pass (this) :: print_date

. procedure, pass (this) :: set_day

. procedure, pass (this) :: set_moath

. procedure, pass (this) :: set_year

. procedure, year_and_day_to_date

OEBPS/images/112282_4_En_BookBackmatter_Figa_HTML.gif
0.3 0
2.73 2.0
293 _2.(Q

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figai_HTML.gif
2015/ 3/21 1:11:47 841

fortran internal_pi = 3.1415026535897931
0 intervals = 1000000 time = 0.004
pi = 3.1415926535898757

differeace = 0.0000000000000826

0 intervals = 10000000 time = 0.000
pi = 3.1415926535897958

differeace = 0.0000000000000027

W intervals = 100000000 time = 0.00¢
pi = 3.141592653589790%

differeace = 0.0000000000000022

W intervals = 1000000000 time = 0.054
pi = 3.1415926535897949

i f farance 0.0000000000000018

OEBPS/images/112282_4_En_1_Chapter/112282_4_En_1_Figa_HTML.gif
https: //www.fortranplus.co.uk/

OEBPS/images/978-3-319-75502-1_CoverFigure.jpg
lan Chivers - Jane Sleightholme

I Introduction to
Programming
with Fortran

Fourth Edition

@ Springer

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figac_HTML.gif
Subroutine julian_to_date_and week_and_day(Jjd, &
2, wd, ddd)
implicit noae
integer, intent (out)

ddd, wd
integer, intent (in] :: jd

type (date], inteat (out] :: x

= = julian_to_date (jd)
wd = date_to_weskday_number (x]
ddd = date_to_day_in_year (x)

-nd subroutine julian_to_date_and week_and_day

logical fuaction less_than(xl, 2]
implicit noae

type (date], iateat (in) :: x1
type (date], inteat (in) :: x2
if (calendar_to_julian(xl)< &
calendar_to_julian(x2)) thea
less_than = .true.
else
less_than = .false.
ead if

snd function less_than

function ndays(datel, date2)
implicit noae
integer

adays
type (date], iateat (ia)

datel, date2

adays = calendar_to_julian(datel) - &
calendar_to_julian(date2)
-nd function adays

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figg_HTML.gif

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Overview

 		2. Introduction to Problem Solving

 		3. Introduction to Programming Languages

 		4. Introduction to Programming

 		5. Arithmetic

 		6. Arrays 1: Some Fundamentals

 		7. Arrays 2: Further Examples

 		8. Whole Array and Additional Array Features

 		9. Output of Results

 		10. Reading in Data

 		11. Summary of I/O Concepts

 		12. Functions

 		13. Control Structures and Execution Control

 		14. Characters

 		15. Complex

 		16. Logical

 		17. Introduction to Derived Types

 		18. An Introduction to Pointers

 		19. Introduction to Subroutines

 		20. Subroutines: 2

 		21. Modules

 		22. Data Structuring in Fortran

 		23. An Introduction to Algorithms and the Big O Notation

 		24. Operator Overloading

 		25. Generic Programming

 		26. Mathematical and Numerical Examples

 		27. Parameterised Derived Types (PDTs) in Fortran

 		28. Introduction to Object Oriented Programming

 		29. Additional Object Oriented Examples

 		30. Introduction to Submodules

 		31. Introduction to Parallel Programming

 		32. MPI - Message Passing Interface

 		33. OpenMP

 		34. Coarray Fortran

 		35. C Interop

 		36. IEEE Arithmetic

 		37. Derived Type I/O

 		38. Sorting and Searching

 		39. Handling Missing Data in Statistics Calculations

 		40. Converting from Fortran 77

 		41. Graphics Libraries - Simple Dislin Usage

 		42. Abstract Interfaces and Procedure Pointers

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figa_HTML.gif
program chUatl
implicit noae
integer :: t
priat *, ' ¢
priat *, ! Tuelve times table’
priat *, ' ¢
dot=1, 12
priat 100, t, t*12
ead do
100 format (/ ', i3, © * 12= ',
end program ch0901

i3)

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figs_HTML.gif
oo ie (i

e am 1. 1) mEn
CALL ¥ERMSG ('SLATEC’, "DSORT’,

+ “The aumbsr of valuss te be sorted is aot sositive
ReTUR

=1

i = abs (kflag)
TP (KK.NE.1 .AUD. KK.NE.2) THEN
CALL ¥ERMSG (SLATEC’, 'DSORT’,

+ “The sort costrol saramster, K, is ack 2, 1 -2
+ 1

ReTURY
m1e

Alter array DX to get decreasing order if aceded

i (kflage=-1) thea
doi=1, ma
R
ad do
na it

0.375a0

) g0 to 110

if (:<=0.5898437d0) thea
r=r+ 3.506250-2
slse
r=r - 0.21875a0
na it
110 &

Select a central element of the array asd save it ia location

154+ (3
= axiy)

IE Eirst slement of array is greater thaa 1, isterchasge with

i€ (@x()58) thea

ax(i3) = ax(i)
ani) = €
£ = axiy)
na it
1=

If last slemeat of array is less thaa thaa 1, isterchasge with

if (@x(3)<t) thea

ax(i3) = ax(3)
any) = ¢
£ =anay)

IE Eirst slemeat of array is greater thas T, isterchasge with T

i€ (@x()58) thea

ax(i3) = ax(i)
ani) = €
£ = anii
na it
nd it

Fiad a3 slemeat ia the second half of the array which is smaller
thaa T

1201 =1 -1

i€ (@x(1)58) go to 120
Find an slemsat in the first half of the array vhich is greater
thaa T

B0k -k 41
i€ (@200 <E) go to 130

Taterchange these slemeats

if (kesl) thea

e = axi)
(1) = axg)
an) = e
9o to 120

na it

Save uoper and lover subserists of the array yet to be sorted

i€ (125K then

i =1
e =1
ik
memt1

s1se
=k
e =3
3=1
asm1

na it

9o to 150

Begia agaia o3 another ortion of the uasorted array

lom=m -1

i

\ go to 270

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Fign_HTML.gif
https: //wgb—-fortran.org/fearlier.html

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Fign_HTML.gif
program chzUUS
implicit noae

integer :: a

integer :: i

real, allocatable, dimension

priat *, ’ how many values 2’

read *, n

allocate (x(1:a))
call random_number (x)
2 = %1000
opea (unit=10, file='random.txt’)
doi=1,n
write (10, 100) x(i)
ead do
100 format (£8.3)
end program ch2008

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figv_HTML.gif
2017/11/24 13:12:32 523
15.547
19.941

2017/11/24 13:13: 8 12

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figac_HTML.gif
program chlsUb
implicit noae

real 0.0
real :: b
real :: ¢
real :: d

bre/d
print *, =
= = b*(e/d)
print *, =

end program ch0506

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figp_HTML.gif
1ncrement

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figj_HTML.gif

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figd_HTML.gif
http:/ /www. openmp.org/resources/

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figi_HTML.gif
sed -1 convert.sed belore_aberporthdata.txt
. aberoorthdata . txt

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ5.png
argument: string type:s
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ6.png
argument: string type:s
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ3.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figp_HTML.gif
11l —-C=undefined -info -g -gline

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ4.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figaa_HTML.gif
implicit noae

private

type, public :: date
private
integer :: day
integer :: month
integer :: year

ead type date

character (9) (/ 'sunday 7, &

day (0:6)
‘Monday !, ‘Tuesday

, ‘Wednesday’, &

‘Thureday ', ‘Friday ', 'Saturday ' /)

character (9) :: month(1:12) = (/ ‘Janvary ', &
‘February ', ‘March L orapril &
‘May ¢ June . rouly ‘s
‘Bugust !, ‘September’, 'October ', &
‘November *, 'December ' /)

public :: calendar_to_julian, date_, &

date_to_day_in_year, date_to_weekday_number, &
get_day, get_month, get_year, &
Julian_to_date, &
julian_to_date_and_week_and_day, adays, &

print_date, year_and day_to_date, less_than

contains

function calendar_to_julian(x] result (ival]
implicit noae
integer :: ival
type (date], iateat (ia)

ival = x¥day - 32075 + 1461% (sbyear+4800+ (x% ¢
moath-14) /12) /4 + 367* (x¥month-2-((x%month &
~14) /12)*12) /12 - 3*((x¥y=ar+4900+ (x3month &
-14) /12)/100) /4

ead fuaction caleadar_to_julian

function date_(dd, mm, yyyy) result (x)
implicit noae
type (date)
integer, inteat (ia)

dd, mm, yyyy

date (dd, =, yyyy)
end function date_

function date_to_day_in_year (x)
implicit noae
integer :: date_to_day_in_year
type (date), iateat (ia) :: x
intrinsic modulo

date_to_day_in_year = 3055* (x¥month+2) /100 —
(s¥montht10) /1342 - 91 + (1-(modulo (xbyear
/4)43) / 4+ (modulo (x¥year, 100) +99) /100-(&
modulo (x¥year, 400) +399) /400) * (x¥month+10) / &
13 + x3day

ead fuaction date_to_day_in_year

function date_to_weekday_number (x)
implicit noae

integer :: date_to_weekday_umber

type (date], iasteat (in) :: x

intrinsic modulo

date_to_weekday_number = modulo((13*(&
=¥month+10- (x¥moath+10) /13412) -1) / S+xtday+ &
T745% (x3year+ (ximonth-14) /12- (xbyeart &
(:x¥moath-14) /12) /1004100) /4+ (x¥year+ (x3 &
moath-14) /12) /400~ (x¥year+(x¥month- &
14)/12) /10042,)

end function date to_weskday number

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ1.png
argument: a type: n
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ2.png
argument: i type:i
result: char class: e

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figj_HTML.gif
nodule ragged_moduls
implicit noae
type ragged
real, dimension (i), allocatable :: &
ragged_row
ead type ragged
ead module ragged_module

program ch2203
use ragged_module
implicit none
integer :: i

integer, parameter :: a

type (ragged), dimension (lower_diag
doi=1,n
allocate (lower_diag(i)¥ragged_row(1:i))

print *, ‘ type in the values for row /, i
read *, lower_diag(i)%ragged_row (1:i)

ead do

doi=1,a
print *, lower_diag(i)$ragged_row(1:i)

ead do

end program ch2203

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figp_HTML.gif
line count. txt

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ9.png
argument: mask type: 1
result: 1 class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ7.png
argument: z type: c
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ8.png
argument: a type: r
result: as a class: e

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figw_HTML.gif
L 1 scalar-variable-name

scalar-mumeric-ezpression ,
scalar-mumeric-ezpression
[, scalar-numeric-expression]

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figal_HTML.gif
subroutine draw_circ.i.e(this)
implicit none

class (circle_type), iatent(in] :: this
priat *, ¢ x = ¢, thislget_x()
priat *,° ¢, thistget_y()

priat *,¢ radius =/ , thistradius_

-nd subroutine draw circle

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figaa_HTML.gif

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figae_HTML.gif

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figc_HTML.gif
nodule link moduls
type link

character (len=1] :: ¢

aext

type (link] , poiater aull()
ead type liak

cnd module liak module

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Figc_HTML.gif
http://gecec.gnu.oxrg/wiki/GFortran\#manuals

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figi_HTML.gif
nodule sort_data moduls

implicit noae

contains

subroutine sort_data(raw_data, how_many)
implicit noae

integer, intent (in)

how_many

real, intent (imout), dimension (:)
raw_data

call quicksort(l, how_many)
contains
recursive subroutine quicksort(l,)
implicit none
integer, inteat (in)

1,
' local variables

i3

real :: v, t

integer

j=rx
v = raw_data(iat ((1+r]/2))
do
do while (raw_data(i)
Q=i+
ead do
do while
j=3-1
ead do
if (i<=3) then
t = rav_data(i)

au_data (3])

rav_data(i) = raw_data (3]
rav_data(3) =t
PR
3=3-1

end if
i (33) exit
end do
if (1<3) thea
call quicksort (1, 3)
end if
if (i<r) thea
call quicksort(i,)
end if
end subroutine quicksort
end subroutine sort_data
cnd module sort data module

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figo_HTML.gif
include "chiflUzs_person_module.f3ut

program ch3702

use ch3702_person_module

integer , parameter :: a=d

type (person) , dimension(a)

integer :: i
integer :: file stat = 0

open (uait=08 , file='ch3701_input_file.txt’ ,

status='old’ , iostat = file stat)

if (file_stat /=0) thea
priat *,¢ File aot found'
print *,°
stop

ead if

Program terminates’

do i=1,a
read(99 , 10) p(i)
10 format (DT(30,3,4,2,3))
write(*, 20) p(i)
20 format (DT(20,5,4,2,3))
end do

end program ch3702

OEBPS/images/112282_4_En_BookBackmatter_Figaa_HTML.gif
el e Ak oRUuLb GLvke Ur WHAL
HE HAS BEGUN, AND AGREE TO MAKE US OR

OUR KINGDOM SUEJECT TO THE KING OF ENGLAID
OR THE ENGLISH, WE SHOULD

EXERT OURSELVES AT OICE TO DRIVE HIM OUT AS
OUR ENEMY AND A SUBVERTER

OF HIS OWIl RIGHTS AND OURS, AND MAKE SOME
OTHER MAN WHO WAS AELE TO

DEFEND US OUR KING; FOR, AS LONG AS BUT A
HUNDRED OF US REMAIN ALIVE,

NEVER WILL WE O AN CONDITIONS BE BROUGHT
UNDER ENGLISH RULE. IT

IS IN TRUTH NOT FOR GLORY, NOR RICHES, IOR
HONOURS THAT WE ARE FIGHTING,

BUT FOR FREEDOM - FOR THAT ALONE, WHICH IO
HONEST MAI GIVES UP BUT

WITH LIFE ITSELF.

QUEM ST AB INCEPTIS
DIESISTERET, REGI ANGLORUM AUT ANGLICIS NOS
AUT

REGIUM NOSTRUM VOLENS SUBICERE, TANQUAM
INIMICUM NOSTRUM ET SUI NOSTRIQUE

JURIS SUBUERSOREM STATIM EXPELLERE IITEREMUR
ET ALIUM REGEM NOSTRUM

QUI AD DEFENSIONEM NOSTRAM SUFFICERET
FACEREMUS. QUIA QUANDIU CENTOM

EX NOBIS VIUI REMANSERINT, WNUCQUAM ANGLORUM
DOMINIO ALTQUATEIUS VOLUMUS

SUBIUGARI. 1ON ENIM PROPTER GLORIAM,
DIUICIAS AUT HONORES PUGHAMUS

SET PROPTER LIEERATEM SOLUMMODO QUAM NNEMO
BONUS NISI SIMUL CUM VITA

AMITTIT.

from'The Declaration of Arbroath’
c.1320. The Eaglish translatioa is by
Sir James Ferqusson.

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figq_HTML.gif
program chlUUs
implicit noae

character *20 :: file name = &

‘aairadata 01.txt’

integer, parameter :: amoaths = 12
real, dimension (l:mmonths) :: rainfall
real :: rain_sum

real :: rain_average

iateger :: i

opea (unit=10, £il

do i =1, amonths

ile_name)

read (unit=10, fmt=100) rainfall (i)
100 format (37x, £5.1)

ead do

close (10

sum(rainfall) /25.4
rain_average = rain_sum/amoaths
write (uait=*, fmt=110)

110 format (18x, ‘Yearly Moathly’,

“Sum average’)

10%,

write (unit=*, £mt=120) rain_sum, rain_average
120 format (‘Rainfall (inches) ', £7.2,

£.2)
end program chl003

21,

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figj_HTML.gif
http:/ /www. open-:

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figz_HTML.gif
SUERUEANR DATATBLL, T2, 2, 00, WH, A079)
GIVEN 3D, A JULIAIN DAY ¢ (SEE ASF JD), THIS ROUTTE

c CALCULATES DD, THE DAY NUMEER OF THE HOUTH; 1, THE HOUTH
c WUMBER; YYYY THE YEAR; WD THE WEEKDAY UUMEER, AUD DDD
c THE DAY NUMEER OF THE YEAR
c ARITHMETIC STATEMENT FUNCTIONS 'IZLR AND 'IDAY’ ARE TAKEN
c FROM FEMARK OI ALGORITHN 398, EY J. DOUGLAS ROBERTSON,
c ACH 15 (10) 1518
c
c EXAMPLE: CALL DAYSUB (2410588, YYYY,I0,DD, 7D, DDD) YIELDS 1570 11 4 1
¢

TNTEGER JD, ¥¥¥¥, 104, DD, WD, DDD
c

TZLR(YY¥Y,100,00) GIVES THE WEEFDAY NUMBER 0=SUNDAY, 1=MONDAY,
c G=SATURDAY. EXAMPLE: TZLR(1S70,1,1)=4=THURSDAY
¢

TZLR (YYYY, 10, DD) =HOD ((13* (4410~ (ME+10) /13112) -1) /5+DD+77

. 5% (YYYYH (I-14) /12~ (FY¥¥4 (M-14) /12) /100°100) /4

. + (FYYYOBI-14) /12) /400~ (YEYEH (B-14) /12) /100°2,7)
c

DAY TS A COMPANTON TO CALEND; GIVEN A CALENDAR DATE, YYYY, i,
c DD, IDAY IS RETURNED AS THE DAY OF THE YEAR.
c EXAPLE: IDAY (1584,4,22)=113

DAY (YYYY, 1, 0D) =3055* (16+2) /100~ (4410 /131251
. +(1- (HOD (¥¥¥¥, 1) +3) /4+ (OD (¥¥¥¥, 100) +9
. - (HOD (¥¥¥¥, 400) +355) /400) * (H04+10) /134DD

) /100

CALL CDATE (3D, ¥YYY, 01, DD)
WD=TZLR(¥¥YY, 01, DD)

DDD=IDAY (¥YYY,)01, DD)
ReTURI

=

FoNCTION 3D (¥YYY, M08, D)
THTEGER ¥YYY, 1, DD

3 DATE FOUTINE JD (YY¥Y,11,0D) CONVERTS CALENDER DATE 10
c JULTAN DATE. SEE CACH 1368 11(10):657, LETTER 10 THE
c EDITOR BY HENRY F. FLIEGEL AND THOMAS C. VAN FLANDERII
c EXNMPLE ID(1970,1,1)=2410588

JD=DD-32075+1461* (YYYY+4800+ (Mi-14) /12) /4
. 43671 (42— (0414 /12) 112) /1230
. ((FYYT+4S00+ (0-14) /12) /100) /4
ReTUR

=

FUNCTION NDAYS (M1, DD1, ¥YYY1, MM2,0D2, YYYY2)
INTEGER YYYYL 161, DDL, YYYY2,1062, 002
IDAYS IS RETURNED AS THE NUMEER OF DAYS BETWEEN i

c DATES; THAT I3 MML/DDL/YYYYL WINUS MM2/DD2/YYYY2,
c WHERE DATEI AD DATE] HAVE ELEMENTS 136, DD, YYYY

WDAYS WILL BE POSITIVE IFF DATEL IS NORE RECENT THAN DATEZ
WDAYS=3D (FYYY1, MM1, DD1) ~3D (FYYL2, W42, DD2)
RETURY
-

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figl_HTML.gif
program chlstl
implicit noae

integer, parameter :: a = 12
real, dimension (l:a) :: rainfall ins = 0.0
real, dimension (l:a) :: rainfall cms = 0.0

iateger :: month

priat *, &

¢ Input the rainfall values in inches’

read *, rainfall_ins
rainfall_cms = rainfall_ins’2.54

do moath = 1, a

priat *, ‘¢, moath, ' ', rainfall_ias(month
), ', raiafall cms (moath]
end do

end program ch0801

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq2.png
£5.

1

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq5.png
nairndata_01.txt

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq6.png
100

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figb_HTML.gif
using System;
ssing System.list;

asing System.liet.Socksts;
ssing System.10;

ssing System.Text;

clasz ch3901 [

static int Main()

(

const int n_site:

string bass_addrsss =
7Rt £3:/ /e met off ice. gov. uk /oub/ "
+"data/veather /uk/climats/stationdata/";

string [] station_name =

(

"absrporth”, "amagh”,
"ballysatrick, "bradford”,
"brasmar’, "camborne",

" cambridga", "cardifs”,
"chivanor”, "ewmystath?
"dunstatfnage”, "durhan’,
"eastbourns", "eskdalemuiz",
"heathrow”, "hura”,
"lervick”, "Leuchars",
"lowsstoft”, "manston”
"nairn”, "newtonrigg”,
"oxford”, "2aisley”,
"ringvay”, "rossonwye",
"shawbury ", "sheffield",
"seuthamston”, "stornovay”,
"suttonbonington”, "tirse’,
"valley”, "vaddington”,
"uhithy”, "wickairsort”,

"yeovilton”,
Vi

string [] web_addrsss = new stringln_sites];
string last_part="data.txt’;

string input_string

int i;

// create the web addrsss of sach file

for (i=

(
web_address[i]=
bascs_addrasststation_nams [i]+last_part;
Systam. Consols.iritsLins (veb_addrass [i]);

jicn_sites;ith)

OEBPS/images/112282_4_En_BookBackmatter_Figf_HTML.gif
iateger, codimension[U:7]:: =

integer, dimension(10,15), &
codimension[3,0:1,-1:%]

print*, image_index(x, (/0/));

print*, image index(z, (/2,0,-1/)]

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq3.png
f4.

1

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figh_HTML.gif
program chl3ats
implicit noae

integer

real :: rl
2
3

4

real
real

real

doi=1, 10
priat 100, i, 1,

100 format (* ', i3,
[I A
£l = r1/10.0
r2 = r210.0
£3 = r3/10.0
4 = r410.0
ead do

end program ch0905

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq4.png
f4.

1

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figs_HTML.gif
137, 138c223
function year_and_day_to_date(year, day) &

¢ result (x)

> subroutine set_day(this, d)
200, 201¢231, 258

< type (date] :: x

integer, inteat (in)

day, year

d

. class (date), intent (imout)

. integer, inteat (ia)

this

S thistday = d
> end subroutine set_day

> subroutine set_month(this, m)

S implicit none
. integer, inteat (ia) :: m

. class (date], intent (imout) :: this
S thistmonth = =

- end subroutine set_moath

> subroutine set_year(this, y)

S implicit none
. integer, inteat (ia) v

. class (date], intent (imout) :: this
S thistyear = y

> end subroutine set_year

> function year_and_day_to_date(year, &

> day_in_year)
S use day_and_month_name_module

S implicit none

> type (date) year_and_day_to_date

. integer, inateat (in)

day_in_vear, year

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Fign_HTML.gif
/traceback

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figg_HTML.gif
http://dl.acm.org/citation.cfm?1d=J286

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figu_HTML.gif
program chlals
implicit noae

character (len=20) :: name

integer :: name_length

priat *, ' type in your name’
read ' (a)’, name

! show len first
name_length = len(aame)
priat *, ' name leagth is /, name_length
priat *, © ', name(1:name_leagth), &
‘<-end is here’

aame_length = len_trim(aame)

priat *, ' name leagth is ', name_length

priat *, © ', name(1:name_leagth), &

ead is here’

end program chl1405

OEBPS/images/112282_4_En_BookBackmatter_Figaf_HTML.gif
debug

~fbacktrace
trace back ia the event of a rua time
error, i.e. the Fortraa runtime library
tries to output a backtrace of the error

~fcheck
Enable the generation of rua-time checks;
the argumeat shall be a comma-delimited
list of the following keywords.
all Eaable all rua-time test of —fcheck

~£fpe-trap=list
Specify a list of floating poiat exception
traps to enable

~pedantic
Issue warnings for uses of extensions to
Fortraa 95

—std
standard coaformance

“tall
Enables commonly used waraiag optioas
pertaining to usage that we
recommend avoiding and that we believe
are easy to avoid. This
curreatly includes —Waliasiag,
—Wampersand, -Weoaversion,
—Wsurprising, -We-binding-type,
—Wintrinsics-std, -Wtabs,
—Wiatrinsic-shadow, -Wline-truacation,
—Wtarget-lifetime,

—wreal-q-constant and —Wumused.

~tunderflow
Produce a warning when aumerical coastant
expressions are eacountered, which
yield an UNDERFLOW duriag compilation.
Enabled by default

“tirealloc-lhs
Warn whea the compiler might insert code
to for allocation or reallocation of
an allocatable array variable of intriasic
type ia intrinsic assigaments

production

~fcoarray

Disable coarray support; using coarray
declarations and image-
control statements will produce a
compile-time error. (Default)

single
single-image mode, i.e. "sum_images ()"
is alvays one.

1ib Library-based coarray parallelization;
suitable GNU Fortran
coarray library needs to be liaked

~fopeamp
Enable the OpeaMP extensions

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figm_HTML.gif
Humber of threads

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Halle

from
from
from
from
from
from
from
P

thread
thread
thread
thread
thread
thread
thread
thread

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Fige_HTML.gif
Plot of Amdahls Law

8 Processors

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figs_HTML.gif

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figs_HTML.gif
program chlals
implicit noae
character (80)

string, strip

integer :: ipos, i, leagth = 80
ipos = 0
priat *, ’ type in a string’

read ‘ (a)’, string
do i =1, leagth
if (string(i:i)/= ') thea
ipos = ipos + 1
strip(ipes:ipos) = string(i:i
end if
end do
priat *, striag
priat *, strip
cnd program ch1403

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq9.png

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq7.png
index

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figq_HTML.gif
At
http://developer.amd. com/pages/default .asp:
IEM

http://ws. ibm.com/products

Iatel

http://ww. iatel.com/en_UK/
oroducts/processor/index. htm

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figb_HTML.gif
integer , pointer

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figv_HTML.gif
open

data.txt’)

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figg_HTML.gif
program chzUU3
use statistics_module
implicit noae
integer :: a
integer :: i

real, allocatable, dimension

real :: m, sd, median

integer, dimension (8)

timing

a = 1000000
doi=1,3

priat *, ¢

allocate (x(1:a))

call random_number (x)

2 = %1000

call date_and_time (values=timing)

¢ iaitial ¢

priat *,
priat *, timiag(6), timiag(7], timiag(s|

call stats(x, a, m, sd, median)

priat *, ' Mean =, m
print *, ' Standard deviation = /, sd
priat *, ' Median is = ', median

call date_and_time (values=timing)
print *, timing(§), timing(7), timing(8)
a=atl0
deallocate (x)
ead do
end program ch2004

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figh_HTML.gif
CHARACTER (L]

), ILTENT (IITOUT)

l1omsqg

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figah_HTML.gif
program chlsu/
implicit noae

real 0.0
real :: b
real :: ¢
real :: d

bretd
print *, =
z = bt (ed)
print *, =

end program ch0507

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figl_HTML.gif
http:/ /www. openmp.oxqg/

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figx_HTML.gif
do 1=1,8
read (unit=100, fmt=" (a) ")
and de

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figu_HTML.gif
! Find aa slemeat in the secoad half of the array which is smaller
© thaat

201 =1 -1

i€ (@x(1)58) go to 210

! Find an slemeat in the first half of the array vhich iz graster
© thaat

220 1 =k + 1
i€ (@200 <e) go to 220

| Iaterchange these slemeats

if (kesl) thea

e = axi)
(1) = axg)
an) = e
ey = ay(1)
ay(1) = ay)
aye) = ey
9o to 210

na it

! Save upper and lover subscripts of the array yet to be sorted

i€ (125K then
1w
o)
ik
me1

s1se
i =k
0
3=1
asm1

na it

90 to 210

! Begin again on another Sortion of the wasortsd array

9o to 270

90 to 230
€= axiny
£y = ay(isn)
if (@x(i)<=t) go to 250

k=i
260 (1) = k()
aykel) = ay k)
K=k 1
i (ecax(0)) go to 260
anern) = €
ayerl) = £y
9o to 250
L cleaaws

270 if (xElage=-1) thea
doi=1, ma
R
ad do
nd it
retura
o euleoE i e

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figh_HTML.gif
asz

real , dimension(10)

togical

emega

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figa_HTML.gif
SUBROUTINE my_read_routine_tormatted (dtv,

uait, &
iotype, v_list, &
iostat, iomsg)
! the derived-type variable
dtv-type-spec , INTENT (INOUT) dev

INTEGER, TUTENT (T11)

wait ! wait aumber
the edit descriptor string
CHARACTER (LEW=*], IUTENT (TH)
INTEGER, INTENT (Im)
INTEGER, INTENT (OUT)
CHARACTER (LEN
—

iotype

list

iostat
), IUTENT (T00UT)

iomsg

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figh_HTML.gif
nodule link moduls
type link

real :: x

type (link], peinter

aext = aull (]
ead type liak
ead module link_module

program ch2202
use Liak_module
implicit noae
character (len=80) :: faame
integer :: io_stat_aumber = 0
type (link], pointer

root, curreat
integer :: i =0, a

real, allocatable, dimension

priat *, ' Type in the file name ? '

read ‘(a)’, fname

open (unit=1, file=faame, status='old’)
allocate (root)

! read first data item

read (wnit=l, fmt=', &
iostat=io_stat_nuzber) root%:

if (io_stat_number/=-1) then
Q=i+
allocate (rootdnesxt)

ead if

curreat => root

! read the rest

do while (associated (curreati¥next])
curreat => curreat¥aext

read (wait=1, fmt

iostat:

o_stat_number) curreatix
if (io_stat_number/=-1) then
Q=i+
allocate (curreat¥next)
ead if
ead do

priat *, i, ' numbers read’

allocate (y(
i=o0
curreat => root

il

do while (associated (curreati¥next])
Q=i+
y(i) = curreatsx
curreat => curreatiaext

ead do

priat *, ‘data read vas

doi=1,
priat *, y(i)
end do

end program ch2202

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figas_HTML.gif

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figi_HTML.gif
program chldls
implicit noae

integer, poiater > mull(), b = aull(]

integer, target
integer :: d

print *, associated(a)
print *, associated(b)

c=1
c=2
b= c
d=a+b

priat *, a, b, ¢, d
print *, associated(a)
print *, associated(b)

end program chl1802

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figag_HTML.gif
type , extends (shape_types)

circle_types

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figg_HTML.gif
#include <stdio.h>

float reciprocal(float *x;

int maia()
t
f£loat x;
2=10.0£;
printf (" C calling a Fortran function\a");
printf(" (1 / %f | = $f \a" ,x reciprocal (&x));

retura(0);

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figy_HTML.gif
nodule reciprocal modules

contains

real elemental fuction reciprocal(a)
implicit noae

real, inteat (in)

reciprocal = 1.0/a
ead fuaction reciprocal
ead module reciprocal_module

program ch1213
use reciprocal_module
implicit noae

real :: z = 10.0

real, dimensioa (5) y = [1.0, 2.0, 3.0, &
4.0, 5.0 1

print *, ' reciprocal of x is ', reciprocal (x

print *, ' reciprocal of y is ', reciprocal (y)

end program chl213

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figo_HTML.gif
program chU3aus
implicit noae

integer :: i
real :: rl = 1.23456
real :: r2 = 1.23456
print 100

100 format (' /, &

71234567890123456789012345678901")

print 110

110 format (¢ i3 gl2.4 g12.47)

doi=1, 10
priat 120, i, rl, 2
£l = r1/10.0
r2 = r210.0
ead do
120 format (/ ‘, i3, © ', gl2.4, ‘', gl2.4
end program ch0908

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Chapter_TeX_Equ2.png
YW ew? + 2w+ 1
x07) Jw+1)

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figu_HTML.gif
Cop

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Chapter_TeX_Equ1.png
d2y
a2

+2d—
7 +y = x(0)

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figab_HTML.gif
use mpl

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figah_HTML.gif
2016/12/ 5 16:56:24

open
read
copy
sort

1 January 1859
31 Jamvary 1887
6 June 1914

1 Hovember 1941
28 March 1969

22 Juae 1996

21 November 2023
15 March 2051

20 August 2078
28 February 2106

2016/12/ 5 16:56:24

112

540

0.023
0.004
0.031
0.344

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Chapter_TeX_Equ3.png
b +—-(b? —4ac)
+1
2a 2a

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Fign_HTML.gif
"share and esnjoy’

OEBPS/images/112282_4_En_BookBackmatter_Figx_HTML.gif
reduce

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figb_HTML.gif
real , dimensionl(

, allocatable

weight

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figm_HTML.gif
yyyy mm tmax tmin at rain sun

degC degC days hours
12 .
16 45,
2 .
28.
37.
58.
81,
28.
66.
35.
35.

1968
1968
1968
1968
1968
1968
1968 15.
1968 16.
1968 9 15.
1968 10 14.
1968 11 8.
1068 12 &

10.
10.
16.

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figb_HTML.gif

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figm_HTML.gif
program chlsls
implicit noae
real

a, b, ©
integer

1.5
2.0
a/b
a/b

priat *, a, b
priat *, ¢
priat *, i

end program ch0502

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figaq_HTML.gif
real , daimension(a
,0:4)
real , dimension(-2:2,0:1,1:

5)

integer , dimeasion(

integer , dimension(

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figan_HTML.gif
program chU3al’
implicit noae

integer :: f£luid
real :: litres
real :: pints

open (unit=1, file='ch0917.txt’)
write (uait=l, fmt=100)
do fluid = 1, 10

litres = £1uid/1.75

piats = £luid*1.75

write (unit=1, fmt=110) piats, fluid, litres
ead do

close (1)
100 format (' Pints Litres')
110 format (de, * ', £7.3, © 1, i3, /¢, £7.3)

end program ch0917

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figx_HTML.gif
16

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbf_HTML.gif
do

select type (t=>s(i) %x)
class is (shape_type)

priat *, ¢ = . tiget_=(),’ y = /,tiget_y()

class is (circle_type)

priat *, ¢ =

tiget_x(), ! y = ' tiget_y(

¢ radivs =/, t%get_radius()

priat *,
class is (rectasgle_type)

priat *,° .

x = . tget_m(),' vy = tiget_y()
print *,’ height = tiget_height ()
print *,¢ width =/, t3get_width()

class default

priat *, do nothiag’
end select

ernd do

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figd_HTML.gif
program chal _dislin Uz
use dislia
implicit noae
integer i 4, 3
! Total muzber of processors and heace data
! poiats
integer, parameter :: aprocs = 64
! lumber of percentage values from
1103 —> 908 o
195s 1
! Total 10
integer, parameter
real, dimension (aa) (/ 0.1, 0.2, 0.3, &
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 /)
real, dimension (aprocs)

v

real, dimension (aprocs)

real, dimension (sprocs, aa)

ydata
integer :: ay
character *30 cbuf

integer

do i =1, nprocs
%(3) = real(i)
end do
! Andahl calculations. Stors in 2 d array and
! thea
! assiga to 1 d array for plotting.
do i =1, nprocs
do 3 =1, m
ydata(i, 31 = 1/((1-pp (3))+pp (3) /3)
end do
end do
! Urite the data to a file for verification

purposes

opea (unit=10, £il
do i =1, mprocs
write (unit=10, fmt=100) x(i], &
ydata(i, 1:aa)
100 format (11(£7.2,2x))
ead do
close (10
call disini

andahl_table_08.txt’)

call compli
call axspos (450, 1800)
call axslen (2200, 1400)
call name (‘lumber of processors’, /')
call name('speed up’, 'y')
call titlin('Plot of Andahls Law’', 1)
call titlin('8 Processors’, 3)
call labdig(-1, 'x')
call ticks(10, ‘xy')
call graf(1.0, 8.0, 1.0, 1.0, 1.0, 7.0, 1.0, &
1.0
call title
call xaxgit
call chacrv (/line’)
! Plot the curves. Copy from 2 d array to 1 d
! array
! before the call to curve.
doi=1, m
y = ydata(l:aprocs, i)
call curve(x, y, aprocs)
ead do
call legini(cbuf, 10, 3)
! Coordinates of the start of the legead
! for the curves.
ax = 500
ay = 450
call legpos (ax, ay)
call leglin(cbuf, ‘10%', 1)
call leglin(cbuf, /20%', 2)
call leglin(chuf, /30%', 3)
call leglin(chuf, ‘40%', 4)
call leglin(cbuf, /50%', 5)
call leglin(cbuf, /§0%', §)
call leglin(cbuf, /70%', 7)
call leglin(cbuf, ‘80%', 8)
call leglin(cbuf, /90%', 9)
call leglin(cbuf, ‘953, 10)
call legtit (‘legend’)
call legend (chuf, 3
call disfin
end program chdl dislin 02

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figah_HTML.gif
else 1t (x%date_type thea

' moath day year
if (want_digits) thea

write (print_date(1:2), ' (i2)’) xbmonth
print_date(3:3) = '/’
write (print_date(4:5), ' (i2)’) xbday
print_date(6:6) = '/’
write (print_date(7:10), ' (i4)’) x%year
clse
pos = 1
if (want_short_moath name) then
print_date (pos:pos+2) = month(xbmonth) &
@
pos +4
clse
print_date (pos:) = moath (x%moath
pos = len_trim(print_date) + 2
end if
if (vant_day) then
t = date_to_veckday_number (x)
1 = lea trim(day (t))
print_date (pos:pos+l) = trim(day(t]) &

pos = len_trim(print_date) + 2

ead if
write (print_date(pos:pos+l), ' (i2)') &
#%day
pos = pos + 3
write (print_date(pos:pos+3), (il)’) &
x¥year
ead if

else if (x3date_type==3] thea
' year month day

if (want_digits) thea

write (print_date(1:4), (id)’) xbyear
print_date(5:5) = '/’
write (priat_date(§:7), (i2)7) xbmonth
print_date(8:8) = '/’
write (print_date(9:10), ’(i2)’) x%day
clse
pos = 1

write (print_date(pos:pos+3), ' (il)) &
x¥year

pos = pos + 5

if (want_short_month_name] thea

print_date (pos:pos+2) = month (x$month] &
a:3)
pos = pos + 4
else
print_date (pos:) = moath (x¥moath)

pos = len_trim(print_date) + 2
ead if
if (want_day) thea
t = date_to_weekday_nutber (x)
1 = len trim(day (t))

print_date (pos:pos+l) = trim(day(t))
pos = pos + 1+ 1
ead if
write (print_date(pos:pos+l), ' (i2)') &
#%day
ead if
ead if
retura

ead fuaction print_date

-nd module date module

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figba_HTML.gif
January
February
March
April
ay

Tune

lonawr
Chwefror
Mavrth
Ebrill
Mai
Mehefin

July
August
September
october
ovember
December

Gorffennat
Aust.

Hedi
Hydref
Tachuedd
Rhagfyr

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figak_HTML.gif
! Begin again on another Sortion of the uasorted

lom=m -1

6o i =i+ 1

if (1==3) go to i
£ = axiny
if (@n()<=t) go to 160
k=i

170 a@x (k+l) = (k)
K=k 1
i (ecax(0)) go to 170
anern) = €
9o to 160

! Sort DX aad carry DY aloag

80 m = 1
i1
3=aa

E= 0375
150 if (1==3) o to 230
if (:<=0.5898437_vm) thea
£ = r+ 3.90625_2/100.0_w
slse
r=r - 0.218750
-

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbj_HTML.gif
http:
cataloque detail ics.htm?csaumbe.

fwww.150.0rg/1so/home/store/catalogue_ics/
0372

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figj_HTML.gif
include "chifUl_person_module.f3ut

program ch3701

use ch3701_person_module

integer , parameter :: a=d

type (person) , dimeasion(a)

iateger :: i

open (uit=99, file=' ch3701_input_file.txt’)

do i=1,n

read(99 , 10 | p(i)
10 format (DT)

write(* , 20) p(i)
)

20 format (DT
ead do

end program ch3701

OEBPS/images/112282_4_En_BookBackmatter_Figat_HTML.gif
suntad
4
-scheck=all
=

_ftrap=common, overf low, underf low

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figg_HTML.gif

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figaf_HTML.gif
program chUsus
implicit noae
integer

integer, dimension (1:10)
N

integer, dimension (1:5)
21 0

integer, dimension (1:5)

(/ (i,i=1,10)

= U G

even = x(

priat *, ‘ x
priat *,

priat *, ' odd’
priat *, odd
print *, ! even’
print *, even

end program ch0809

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figac_HTML.gif
U
0
.0
0
0

65.

€4 €

68.
10.
30.
o8

ss.
36.
65.
65.

70.
38.
61.
s0.

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figo_HTML.gif

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figaz_HTML.gif
call shape_array (1) sxesdrawl|

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figq_HTML.gif
program chUaus
implicit noae
integer

doi=1,4
priat 100, i, i*i
print 110, i, i*i
priat 120, i, i*i

100 foxmat (* !, i2, ', i4)
110 foxmat (* !, i2, ', id)
120

format (lx, i2, 2x, id)
ead do
end program ch0909

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figar_HTML.gif
| If first slemeat of array i greater than T

! isterchasge with T

i€ (x(1)56) thea
12013) = ix()

1) = e
= axaa
1) = v
) = ey
£y = 1713

na it

nd it

! Fizd aa slemeat in the
! array which is smaller

! thaa T

101 =1

i€ (x(1)58) go to 210

| Fizd aa slemeat in the
! which is greater

! thaa T

20k =k

i€ (200 <E) go to 220

-1

v

second hal of the

Eirst half of the array

! Iaterchasge these slemeats

if (kesl) thea
e = a2
1x(1) = 1200
Lx00) = ee
ey = iy
) = 100
1700 = eey
9o to 210

P

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq10.png
O c>1

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq11.png
O(log log n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq12.png
O(log n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq13.png
On)0<c<l

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq14.png
O(n log™ n)

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figi_HTML.gif
1t (expression) then
block of statements
o ndi £

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq15.png
O(n log n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq16.png
O(n?)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq17.png
On)c>1

OEBPS/images/112282_4_En_BookBackmatter_Figam_HTML.gif
/QzHost

/03

/Qipo

/Qprec—div

/£p: <name>

except (-]

fast [=12]

precise

strict

consisteat

reproducible

/heap-arrays

/gparallel

generate instructions for the

highest instruction set and

processor available oa the

compilation host machine

optimize for maximum speed and

enable more aggressive

optimizations that may not

improve performance on

some programs

Interprocedural Optimization

(1P0) enable mlti-file TP

betueen files

improve precision of FP divides

(seme speed impact] /Qprec-div-

goes for speed over precision

enable <aame> floating point

model variation

- eaable/disable floating point
exception semantics

- eaables more aggressive floating
point cptimizations

- allows value-safe optimizations

- eaables intermediates in

source precision sets

/assume :protect_pareas
for Fortran

- eaables /fpiprecise /fp:except,
disables coatractions and
enables pragma stdc feav_access

- eaables consisteat,

results for differeat
optimization levels or betweea
different processors of the
same architecture

temporary arrays are allocated

in heap memory rather than on the

stack.

enable the auto-parallelizer to

generate multi-threaded code for

locps that can be safely executed

in parallel

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq18.png
O c>1

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq19.png
10°

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figad_HTML.gif
Subroutine reciprocadl(ar, nac, %, y) bind (¢, &
aame=' reciprocal’)
use iso_c_binding
implicit none
integer (c_int),

integer (c_int),
real (c_float), dimeasion (l:ar, lic), &
intent (ia)

real (c_float], dimeasion (l:ar, lic), &

inteat (out) v

y = 1.0/x
-nd subroutine reciprocal

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figl_HTML.gif
tunction reciprocal(x) bind (e,
‘ reciprocal’|
use iso_c_binding
implicit none
real (c_float], iateat (in)
real (c_float)

reciprocal

reciprocal = 1.0/x
-nd function reciprocal

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figq_HTML.gif
include ‘precision _module.L3aldt
include ’statistics_module.£90"

include ’timing_module.£90"

program ch2502

use precision_module

use statistics_module

use timing_module

implicit noae

integer

real (spl,

allocatable, dimeasion (1]

real (sp) :: =m, x_sd, = _median

real (dp), allocatable, dimeasion (:)

real (dp) y_m, y_sd, y_median

real (qp), allocatable, dimeasion (:)

real (qp) :: zm, z_sd, z_median

character *20, dimeasion (3) :: heading
© allocate ‘, ' Random [

Statistics ¢]

call start_timing()
a = 50000000

priat *, ¢

priat *, ¢

allocate (x(

priat 100,

priat 100,

ingle precision’

heading (1), time_difference()
100 format (a20, 23, £8.3)
call random_number (x)

heading(2), time_difference()

call calculate_statistics (x, a, xm, x_sd,

s_median)
priat 100,

heading(3), time_difference()

write (uait=*, fmt=110] x_m

110 format (’

write (unit=", fmt=120) x_sd

120 format (’

Mean £10.6)

Standard deviation

£10.56)

write (unit=*, fmt=130] x_median

130 format (' Median =, £10.6)
deallocate (x)
print *, ' Double precision’

allocate (y(1:a))

priat 100,

priat 100,

heading (1), time_difference()
call random_nutber (y)

heading(2), time_difference()

call calculate_statistics(y, a, y_m, y_sd,

y_median)
priat 100,

heading(3), time_difference()

write (uait=*, fmt=110) y_m
write (unit=*, £mt=120) y_sd
write (uait=*, fmt=130] y_median

deallocate (y)
priat *, ’ Quad precision’
allocate)

priat 100,

call random_number (=

priat 100,

call calculate_statistics

priat 100,

write (uait=*, fmt=110) =
write (unit=!, fmt=120) z_:
write (uait=*, fmt=130) =

deallocate

heading (1), time_difference()

heading(2), time_difference()

a, zm, z_sd,

heading(3), time_difference()

«

end program ch2502

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figr_HTML.gif
onl’

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figay_HTML.gif
include "chodla_abstract shape module.
include ’ch2904_square_module.£90’

program ch2904

use square_module

type (square_type] :: x

square_type (1, 2, 3]

print *, ' Square area = ', u%area()

end program ch2904

a0

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figj_HTML.gif
rau_data(iat ((141)/2))

do while (raw_data(i)

Q=i+

ead do

do while (v<raw_data(j))
j=3-1

ead do

if (i<=3) then

t = rawdata(i)
rav_data(i) = rar_data (3]
rav_data(3) =t
=i
3=3-1

end if

iE (13) exit
end do
if (1<3) thea

call quicksort (1, 3)
end if

if (i<r) thea

call quicksort(i, @)
o g

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figq_HTML.gif
real :: li,p1

pi=4.0%atan (1.0

pi=d+alpha/beta

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Fige_HTML.gif
1nterface
real (c_float) fuaction reciprocal () &
bind (¢, name=' reciprocal’ |
use iso_c_binding

real (c_float] , value

ead fuaction reciprocal
end interface

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figa_HTML.gif

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figf_HTML.gif
do month=l, 1z start
.. body
e ndde and

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figab_HTML.gif
19

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq20.png
O(n log(n))

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq21.png
O(n log(n))

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq22.png
O(n?)

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figac_HTML.gif
document \fortran

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq23.png
O(n?)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq24.png
O(n?)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq25.png

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbb_HTML.gif
include "chadls_shape _module. £30°
include ’ch2804_circle_module.£90’
include ’ch2804_rectangle_module.£90’
include ’ch2805_chape_wrapper_module.£90"
include ‘ch2805_display_module.£90"

program ch2805
use shape_module
use circle_module
use rectangle_module
use shape_wrapper_module
use display_module
implicit none
integer, parameter :: a = §

integer :: i

type (shape_wrapper), dimension (a)

5(1)%x = shape_type (10, 20)
5(2) %2 = circle_type (100, 200, 300)

5(3) %2 = rectangle_type (1000, 2000, 3000,

4000)

S = s (L)%
S(5) % = 5(2)%x
S(8) % = 5 (3%

priat *, ¢

calling display subroutine’
call display(a, s)

priat *, *

select type with get methods’
doi=1,n

select type (t=>s(i)%x)

class is (shape_type)
. thget_x(), !

priat *,
thget_y ()
class is (circle_type)

priat 4, ¢z =, tiget_x(), !
tiget_y ()
priat 4, ¢ radius = ¢, thget_radius ()

class is (rectangle_type)

print *, © x = ', tiget_x(),
tiget_y ()

print *, ’ height = ’, tiget_height ()

priat *, width = /, tiget_width()

class default

priat *, ¢

do nothing’
end select

ead do

print *, ' select type with set methods’

doi=1,n

select type (t=>s(i)%x)
class is (shape_type)
call thset_x(19)
call tiset_y(19)
class is (circle_type)
call thset_x(199)
call tiset_y(199)
call tiset_radius(199)
class is (rectangle_type)
call thset_x(1999)
call tiset_y(1999)
call tiset_height (1999)
call tiset_width(1999)
class default

priat *, ' do nothing’
end select

ead do

print *, ' calling display subroutine’

call display(a, s)
end program ch2805

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq26.png

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq27.png

OEBPS/images/112282_4_En_BookBackmatter_Figm_HTML.gif

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq28.png

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq29.png

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figk_HTML.gif
Demonstration of scatterplot

of rainfall by month

00 0 OIS O

0 oo

20 0 E——

R

16.0 110 12.0 13.0

70 8.0 s

o

20 30 40 S0

o

Mecdden

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbc_HTML.gif
#include <ecstring>
¢include <cstdio>

using namespace std;

extern
t
void priat_string(char *);

]

extern
t
void replace_string(char *);

]

extera "C"
t
void concatenate string(char *);

]

void priat_string(char * string)

t

printf (" ¥s\a", string) ;

oid replace_string(char * string)

strepy (string, "Hello Hello");

void concatenate string(char * striag)

t
strcat (string, " Hello Hello");

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figz_HTML.gif
close (100)

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figh_HTML.gif
Hello *77%% 7%

Hello
Hello
Hello
Hello
Hello
Hello

Type ia your name

Hello

Jane
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane

Lrom
from
from
from
from
from
from

from

from
from
from
from
from
from
from
from

image
image
image
image
image
image
image

image

image
image
image
image
image
image
image
image

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figaj_HTML.gif
sSumiraintall)

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figam_HTML.gif
program chls.
implicit a
real, dime
integer

real :: va
character

directio:

do degree

lue =
do strip
time (d
ead do
ead do
do degree
print *,
ead do
where (tim
directio:
elsevher
directio:
ead where
priat *, d
end program

12

asion (-180:180) :: time = 0
degree, strip

lue

(lea=1), dimension (-180:180)
-180, 165, 15

degree/15.
=0, 1

egreststrip)

= -180, 180

degres, © ‘, time(degres)

2>0.0)
n o= 'm

e (time<0.0)

a = W

irection
ch0812

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figc_HTML.gif
type—-spec , INTENT(IIN) :: dtw

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figi_HTML.gif
https
climate-historic/#7tal

//www .metoffice.gov.uk/public/weather/

climateHistoric

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figc_HTML.gif
.80
.85
.70
.75
.68
.55
.63
.78
T

5.
8s.
0.
69.
83,
64.
56.
65.
P

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figq_HTML.gif
tel
< module ch3701_person_module

> module ch3702_person_module
14,17c14,18

procedure :: print_person
generic write (formatted) => priat_person
procedure :: read_person
generic read (formatted) => read person

S procedure :: print_person

. generic write (formatted) &

S => priat_person

S procedure :: read_person

. generic read (formatted) &

S => read_persoa

38c40, 57

< person_format="(a,2x,i3,2x,£4.2, 25,£3.0) "

. write (person_format,10) (a’, vlist (1) ,&

. ir,vlist (2),&

S 2%, &

S CE vlist (3),&

S . vlist (4) &

S 2%, &

S CE vlist (5),&

S oy

. 10 format (a,i2,&

S a,il e

S a,il e

S a,il e

. a,il e

S a

52c81, 98

< person_format=' (a,2x,i3,2x,£4.2,2%,£3.0) |

. write (person_format,10) (a’, vlist (1) ,&

S 2%, &

S ir,vlist (2),&

S 2%, &

S CE vlist (3),&

S . vlist (4) &

S 2%, &

S CE vlist (5),&

. oy

. 10 format (a,i2,&

S a,il e

S a,il e

S a,il e

S a,il e

S a

71,72¢107

ead module ch3701_person_module

» end module ch3702_person.

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Chapter_TeX_IEq1.png
-999

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figad_HTML.gif
do 1

this process + 1, 1, 0_processes
= = width* (real (i, dp] -0.5_dp)
partial_sum = partial sum + £ (x)

and de

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figt_HTML.gif
program.exe < data.txt > results.txt

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figd_HTML.gif
logical :: answer

answer=.true.

if (answer) thea
SPS

o ndi £

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figag_HTML.gif
Program starts U.ule
Integer array initialised 0.094
Real array initialised 0.094
Integer vrite 2.262
real write 8 408

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figc_HTML.gif
http://www.netlib.oxg/

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figh_HTML.gif
1ateger

integer

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figv_HTML.gif
real , dimension(n_types,loop_count) :: &
timing_details = 0.0

real , dimension(a_types)

real , dimension(a_types)

real :: resst = 0.0
character (15) , dimension(a_types) :: &
heading_1 = &
[* Whole array ', &
* Do loop ‘e
‘Do concurreat !, &
! opeap 1

call start_timing()

priat *,
athreads = omp_get_max_threads (]
0, £1le=' ch3305.dat ")
print 10,athreads

10 format (' Nthreads = ’,i3)
allocate (x(a))

allocate (y(a))

open (uait

allocate (z(a))

call random_number (x)

call random_nutber (y)

==0.0_dp

print 20,time_difference ()

20 format (' Initialise time = ', £6.3)
write(20,30) x(1),y 1),z (1)

30 format (3 (2x,£6.3))

print *, ' '

do 3=1, loop_count.

priat 40,3
40 format (' Iteration = ’,i3)

! Whole array syatax

+y
timing_details(l,j) = time differsace()
write(20,30) x(1),y 1),z (1)

= 0.0_dp
reset = time_difference ()

! Simple traditional do loop

=(d) =5 (i) 4y (d)

ead do

timing details(2,3) = time difference()
0.0_dp

reset = time_difference ()

! do concurreat loop

do concurreat (i=lia)
=(d) =5 (i) 4y (d)

ead do
timing details(3,3) = time difference()
write(20,30) x(1),y 1),z (1)

0.0_dp
reset = time_difference ()

! OpenMP parallel loop

!$cmp parallel do
do

=(d) =5 (i) 4y (d)
ead do
t$cmp end parallel do
timing details(4,3) = time difference()
write(20,30) x(1),y 1),z (1)
0.0_dp
reset = time_difference ()

ead do
close (20)
priat 50
50 format(15%,70x,’ Sum Average’)

do i=1,n_types

t_sum(i) = &

sum(timing_details (i, 1:loop_couat])
€,

print §0,heading_1(i) , &

_average (i) = t_sum(i)/loop_couat
timing details (i, 1:loop_count) &
t_sum(i), t_average (i)

60 format (a, 10 (1x, £6.3),2 (3x,£6.3))
and de

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Fige_HTML.gif
nodule date_moduls

use day_and_moath_name_module

implicit noae

private

type, public

private

integer
integer

integer

contains

procedure,
procedure,

day

moath

year

pass
pass

date

(this) :: calendar_to_julias
(this) :: &

date_to_day_in_year

procedure,

pass

(this)

date_to_weskday_number

procedure,
procedure,
procedure,
procedure,
procedure,

pass (this) :: get_day
pass (this) :: get_moath
pass (this) :: get_year
aopass :: julian_to_date
aopass i &

Julian_to_date_and_week_and_day

procedure,
procedure,
procedure,
procedure,
procedure,
procedure,

end type date

acpass :: ndays
pass (this) :: print_date
pass (this) :: set_day

pass (this) :: set_moath

pass (this) :: set_year
acpass :: year_and_day_to_date

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbg_HTML.gif

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figal_HTML.gif
2015/ 3/10 14:56: 8 430
0.070
Type in the word you are looking for
0.000
0.000
querty found at position 122712
Try again (y/a) ?
Type in the word you are looking for
0.000
0.000
tord not found
Try again (y/a) ?
Type in the word you are looking for
0.000
0.000
albumin found at position 3309
Try again (y/a) ?
Type in the word you are looking for
0.000
0.000

transubstantiation found at position 15817C

Try again (y/a) ?
2015/ 3/10 14:56: 8 500

OEBPS/css/envelope.png

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figl_HTML.gif
program chiils
implicit noae

integer ::oa, 4, 3
integer :: me, nim, start, ead
integer, parameter :: factor =

integer, dimension (1:factor),

codimension [*] :: x

aim = mum_images ()
me = this_image ()
a = nim‘factor
0

start = factor* (me-1) + 1

end

5=1

do i = start, =ad
=G3)
print *, ‘on image ¢, me, '3

(3 =0, =3

3=3+1

end do

syac all

factortme

itfactor

if (me==1) thea

priat *, ‘coarray x on image

do i =2, nim

5

priat *, ‘coarray x on image

=) 1]

cnd program ch3404

3n

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figw_HTML.gif
program chlzll
implicit noae

real :: result, a,

priat *, ' type in n and x'

read *, a, T

! aumber of possible combinations that caa
objects are selected out of a group of a
result = stirling(n)/(stirling(r)*stirling (a-r &

)
print *, result
priat *, a, ©
contains
real function stirling(:)
real, inteat (ia) :: x
= 3.1415927,

real, parameter
e = 2.7182828

stirling = sqrt (2.%pitx)* (x/e) “x
ead fuaction stirling
end program chl211

! be formed when
at/r!(a-n)!

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Fige_HTML.gif
real, dimension(l:20)

real, dimension (1:41)
=50.0

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figa_HTML.gif

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figbe_HTML.gif
https: //www.lso.org/standard/ 72320 . html

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbi_HTML.gif
call shape_array (1) sxesdrawil|

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figw_HTML.gif
absrporth ceilog
.00 0.000
armagh 287800
.00 0.000
ballypatrick 317600
0.000 0.000
bradford 414900
0.000 0.000
brasmar 315200
315200 791500 57.006
1959 4 2005 8 2005
camborns 162700
.00 0.000
cambridgs 543500
.00 0.000
cardiff 317600
.00 0.000
chivenor 249600
.00 0.000
cumystuyth 277300
0.000 0.000
dunstaffnage 188100
.00 0.000
durhan 126700
.00 0.000
astbourns seLLO0
.00 0.000
sckdalemaic 323400
0.000 0.000
heathrow 507800
.00 0.000
nura 11700
.00 0.000
lervick 445300
.00 0.000
Leuchars 346800
.00 0.000
Lowastoft 654300
653000 293800 52.483
114 8 2007 o 2007
manston 632300
.00 0.000
nsirn 286900
200200 857300 57.593
1931 12 1997 1 1998
nevtonrigy 349300
.00 0.000
oxford 450900
.00 0.000
saisley 247800
.00 0.000
ringvay 381400
0.000 0.000
rossonwye 350800
.00 0.000
shawbury 355200
.00 0.000
sheffisld 433900
.00 0.000
outhamston 142000
441600 111200 50.898
1855 12 1969 1 1970
stornovay 146100
.00 0.000
suttonbonington 450700
0.000 0.000
tirse 9800
0.000 0.000
valley 230800
.00 0.000
vaddington 498800
.00 0.000
ehitby 1490400
489100 510400 54.481

1961 12 1999
vickairsort
0.000
yeovilton
o oo

1 2000

336500
0000
355100
o ono

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

1

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

B
1
345800
1
138600
435200
1
791400
-3.3%
& 200
10700
o
260600
1
177300
o
134400
1
274500
1
734000
6
541500
1
8300
1
02600
1
176700
1
97800
1
139700
12
720900
1
204600
1727
& 200
166100
8sea00
S3.e21
& 200
530800
1
207200
1
64200
1
384400
1
223800
12
322100
1
387200
1
12500
L.a0s
3 200
933200
325900
1
744800
1
375800
12
365300
1
si1400
“0.624
& 200
952200
1
123200
o

<. 132

19041

54

1853

55,

1961

53

1908

0.

352

181

813

a0

327

6

s0.

1978

s2.

1959

51

1977

51

1951

s2.

1959

s6.

1971

54

1880

s0.

1959

55,

1911

51

1918

s0.

1057

0.

1930

s6.

1057

0.

218

215

188

8o

358

51

768

762

£

ne

779

139

77

a0

18

s
51
1934
o

346
6
.000

23

6

54

1959

51

1853

55

1959

53,

1916

51

1930

52

1916

53,

1883

0.
3

o

58

1873

52

1959

s6.

1928

53,

1930

53,

1947

0.

&70

761

816

356

10

o1

794

381

a0

214

833

s00

252

175

00

1

&
58
1914
51
Logs

.54
6
.06
-

TRl
2016
“6.649
2016
6153
2016
L2
2016
0000

-5.327
2016
0.102
2016
3.187
2016
4147
2016
3802
2011
s5.439
2016
1.5
2016
0.285
2016
-3.206
2016
Zo.a10
2016
135
2016
1183
2016
—2.861
2016
0000

1.337
2016
0000

-2.786
2016
1262
2016
1430
2016
—2.279
2004
2584
2016
—2.663
2016
1.4s0
2016
0000

-6.318
2016
Ciaso
2016
6.880
2016
4535
2016
0522
2016
0000

-3.088
2016
2611
SotE

L33

&

156

134

339

@

26

10

82

10

25

I

169

&

32

&

&

72

131

20

15

8

12

10

E

&

36

20

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figx_HTML.gif
write(unait=1l,fmt=100) =, v

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figo_HTML.gif
Humber of threads

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Halle

from
from
from
from
from
from
from
P

thread
thread
thread
thread
thread
thread
thread
thread

OEBPS/images/112282_4_En_BookBackmatter_Figt_HTML.gif
reduce

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figc_HTML.gif
nodule precision moduls

implicit noae

integer, parameter :: sp =
)

integer, parameter :: dp =
15, 307)

integer, parameter
30, 201
cnd module precision module

selected real kind(

selected real kind(

= selected real kind(

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figa_HTML.gif
nodule mytype_moduls
type mytype
private
complex value
logical exact
end type
interface mytype
module procedure iat_to_mytype
end interface

! Operator definitions stc.

contains
type (aytype) function int_to_mytype (i
integer,intent (in) :: i

int_to_mytypetvalue = i

int_to_mytypetexact = .true.
ead fuaction

! Procedures to support operators stc.

and

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figf_HTML.gif

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figp_HTML.gif
do while (expression)
block of statements
e ndde

OEBPS/images/112282_4_En_42_Chapter/112282_4_En_42_Figa_HTML.gif
PROCEDURE (| proc—intertacs 1)
[[, proc-attr—spec]

1 proc—decl-list

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figab_HTML.gif
include ‘precision

program ch2608

use precision_module, wp => dp

implicit noae

integer :: i
integer, parameter :: a =5
real (wp), dimeasion (1) :: x1 = [

1.000000001_wp, 1.0000000001_up,
1.00000000001_wp, 1.000000000001_up,
1.0000000000001_vp]

real (wp), dimension (a)

tow2= [
1.000000002_vp, 1.0000000002_up,
1.00000000002_wp, 1.000000000002_v
1.0000000000002_vp]

real (vp), dimeasion (a) :: x3 = [
0.000000001_wp, 0.0000000001_vp,
0.00000000001_vp, 0.000000000001
0.0000000000001_wp 1

real (wp), dimeasion (1) :: rel error = 0.0_wp
real (wp), dimeasion (1) :: abs_error = 0.0_wp
real (wp) :: =
character (len=23), dimension (a) :: heading 1 &
=1 1in 1,000,000,000", &
‘1 in 10,000, 000,000,

‘1ia 100,000,000,000",
‘1in 1,000,000,000,000",
‘1 in 10,000, 000,000,000]

character *15, dimension (a] :: heading 2 = [&
£1.000000001 ’, ‘1.0000000001 ‘, &
71.00000000001 *, ‘1.000000000001 , &

71.0000000000001"]

character *15, dimension (2)

heading 3
‘Absolute error ', ‘Relative error !]

=2(1) - =)
abs_error (i) = abs(z-x3(i))
rel_error (i) = abs_error (i) /x3(i)
print *, heading_1(i], ' /, heading 2 (i)
print *, ' calculated = [

heading 3 (1), abs_error (i)
priat *, ¢

Espected foE3GE), e
, heading_3(2), rel_error (i)
end do

end program ch2608

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figad_HTML.gif
subroutlae caleadiyyyy, dec, mm, dd)
'ALEND WHEN GIVEN A VALID YEAR, YYYY, AND

DAY OF THE ¥EAR, DD,

FETURIS THE MONTH, M, AD DAY OF THE MONTH,

o

SEE ACH ALGORITHN 398, TABLELESS DATE

comverszon, BY

DICK STONE, CACH 13(10):621

integer, intent (i)
integer, intent (i)

integer, inteat (out) ::mm
integer, intent (ouk) :: dd
iakeger ¢t b

=0

1€ (modulo (yyyy, 4)==0) & = 1

~THE FOLLOWING STATEMENT 1S NECESSARY
IF Yy IS < 1500 OR > 2100
1€ (modulo (yyvv,400) /=0 .and. ¢

modulo (7777, 100)==0) € = 0
[

i (daasore) ad = dd v 2 -k
nm = ((d@4s1)*100) /3055

4d = (da+s1) - (mt3055) /100

ep——
106 WILL BE CORRECT IFF DD 1S

CORRECT FOR ¥¥¥Y

rayee 2) retura

write (wait=t, emt=' (a,ill,a)’) &
LEND: DAY OF THE YEAR INPUT

+ 15 our oF RalGE.”
stos
a0 subroutine calend

a2d. mn

aad, ¢

subroutine cdate(sd, vyyy, mm, dd)
GIVEN A JULIAN DAY NUMBER, mmmMNNN,
YYYY,106,00 ARE RETURIED AS THE

'ALEIDAR DATE. J0 = WNMNNNNI IS THE JULIAN

DATE FROM Al BPOCH

I THE VERY DISTANT DAST. SEE CACH 1568

11010) 657,

LETTER TO THE EDITOR BY FLIEGEL AD VAN

FLANDER.

EXAMPLE CALL CDATE (2440588, YYYY, W, DD)

RETURNS 1570 1 1

iateger, inkent (1m) :: 34
inkeger, intent (ouk) :: yyyy
integer, iateat (out) ::mm
integer, intent (ouk) :: dd
iateger :: 1, 2

1= 34+ esses

a = i'1/1a6057

1=1- (s0s70a43) /4

vy = 4000% (1+1) /1461001
1=1 - Ll ¢l

wn = 80°1/2447

ad = 1 - 2447'wn/E0

1= w1

mmo=m o+ 2 - 1200
vy = 100° (a-49) + vy + 1
retura

o ot e cdabe

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figak_HTML.gif
number_of processes'factor

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figi_HTML.gif
B e EEEE
19.5 49.5 79.5
g £ EQ & 8g &

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Fign_HTML.gif
dsort.o
ssort. o

: cort o

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figa_HTML.gif
function calendar_to_julian(x) result (ival)
function date_(dd, mm, yyyy) result (x)
function date_to_day_in year (x)
function date_to_weekday_mumber (x)
function get_day (x)
function get_moath(x)
function get_year (x)
function julian_to date(julian) result (x)
subroutine

julian_to_date_and_week_and_day(jd,, wd, ddd)
function ndays(datel, date2)
fuaction

print_date (x, day_names, short_month_name, digits)
function vear and day to date (vear, day) result (x)

OEBPS/images/112282_4_En_BookBackmatter_Figaj_HTML.gif
check uninit

Enables rua-time checking for wninitialized variables. If a
variable is read before it is writtea, a rua-time error
routine will be called. Oaly local scalar variables of
intrinsic type INTEGER, REAL, COMPLEX, and LOGICAL without
the SAVE attribute are checked.

To detect uainitialized arrays or array elemeats, please
see option [Qlinit or see the article titled: Detection of

Uninitialized Floating-poiat ¥

riables in Iatel Fortraa,
which is located ia

http:
ed-floating-point-

//softuare.intel.com/articles/detection-of-uninitializ

variables-in-intel-fortran
/debug:all
Generates complete debugging information. It produces
symbol table information needed for full symbolic debugging
of unoptimized code and global symbol information needed
for linking. It is the same as specifying /debug with no
keyword. If you specify /debug:full for aa application that
makes calls to C library routines and you need to debug
calls into the C library, you should also specify /dbglibs
to request that the appropriate C debug library be linked
against.
/£pe:0
Floating-point invalid, divide-by-zero, aad
overflow exceptions are enabled throughout the application
when the main program is compiled with this value.
If any such exceptions occur, execution is aborted.
This option causes denormalized floatiag-point
results to be set to zero.

/gen_interfaces

Tells the compiler to generate an interface block for each

routine in a source file.

/standard_semantics

Determines vhether the current Fortran Standard behaviour of

the compiler is fully implemeated.

/traceback
Tells the compiler to generate extra information in the
object file to provide source file traceback information
when a severs error occurs at rua time.

fwarn:all

alignmeats

Warnings are issued about data that is not naturally

aligned.

general

211 information-level and warning-level messages are
enabled.

acdeclarations

Vo warnings are issued for uadeclared names.

Warning-level messages are not changed to error-level

messages.

acignore_loc

Vo waraings are issued whea %LOC is stripped from an
arqument .

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figau_HTML.gif
isort_-<

izort_6a. £
dzort_cp. £
azort_do. £
mort oo £

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figav_HTML.gif
abstract interface

integer function calculate_area (this)

import :: shape_type
class (shape_type), intent (in)
ead fuaction calculate_area
ead interface

contains

integer function get_s(this)
implicit noae

class (shape_type), intent (in)

get_x = thists_
ead fuaction get_x

integer function get_y(this)
implicit noae

class (shape_type), intent (in)

get_y = thisty_
ead fuaction get_y

subroutine set_x(this,)
implicit noae

class (shape_type), inteat (inout)
integer, intent (in)

thisks = x
ead subroutine set_x

subroutine set_y(this,)
implicit noae

class (shape_type), inteat (inout)

integer, intent (in) v

thisty_ = v
ead subroutine set_y

-nd module shape module

this

this

this

this

this

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Chapter_TeX_Equ1.png

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figt_HTML.gif
include "chiZ02_site_description module. 30

srogram ch390d
uss sits_description_meduls
implicit nons

intsger, parameter :: n_stations = 37

! sits names

character *15, dimension (n_stations)

sits_name = (/ ’absrsorth e
*armagh ‘. "ballypatrick
“bradford *, 'brasmar
 cambozne | ‘cambridge
fcardi £F [—
[E— . ‘dunstaffnage
 durhan *, "eastbourns
‘eskdalemuir 7, ‘heathrow

“hurn ‘) lerwick
“Leuchars | lowestoft
“manston ‘) "naim
“newtonrigy | rouford
‘aisley ‘. ‘ringway

* rossomye . “shavbury
‘cheffield *, ’southampton
*stornovay *, ’suttonbonington
“tirss v, rvalley
“vaddington | whithy
‘wickairsert !, ‘'yeovilton

Brasmar, Lowestoft, llairn,
Southarston, Whithy

have 8 header lines, as the position
of the station moved.

type (site_descrintion), dimension (L:

h_stations) :: sits_dstails

intager

open (umit=l0, &
f£ile='location_line.txt’ o
status='old’)

do i n_stations

site_dstails(i)%sits_name
0, £mt=100) sits detail

read (uni

s

s

site name (i)

s

Seasting I, site_dstails (i) tnorthing L,
site_details(i)tlat_1, site details(i)% ¢

long_L, site_dstails (i)height_L
100 format (10x, 26, 2z, a7, 7x, £6.3,
22, 13)
end do

close (10)
open (umit=20,¢

£ile='third Line.txt’ o
o1dr)

statu:

! Update Brasmar

! srint %’ Brasmar’

read (mit=20, £mt=110) sits dstails(

5%,

5 e

8easting 2, site_dstails (5 tnorthing 2,
site_dstails(5)8lat 2, site details(5)3 ¢

long_2, site_details (5)%height_2

110 format (2%, a6, 2, a6, Tx, £6.3, S
22, 13)

sits_dstails(5)%end_dats_month L = 4
sits_dstails(5)%end_dats_year_I = 200!
sits_dstails(5)%start_date month_2
sits_dstails(5)Sstart_date_year_2

2
! Usdate Lowsstoft
! srint %’ Lowestoft!

read (mit=20, £mt=110) sits_dstails(

6.3,

s

s

x, £6.3,

s
[
aos

19)

s

8easting 2, site_dstails (19)Rnorthing 2,
site_dstails(L9)Blat_2, sits details(19)% ¢

long 2, site_details (19)%height 2

sits_dstails(19)%end_dats_month_L = 8
sits_dstails (19)%end_dats_year_L = 201
sits_dstails (19)8start_date_month_2
sits_dstails (19)Sstart_date_year_2

! Update lairn

! srint %’ laira’

read (mit=20, £mt=110) sits dstails(

07
o
2007

21)

s

8easting 2, site_dstails (2I)tnorthing 2,
site_dstails(21)8lat_2, sits details(21)% €

long 2, site_details (21)%height 2

sits_dstails(21)%end_date_menth_L = 1
sits_dstails (21)8end_dats_year_L = 10
sits_dstails (21)Sstart_date month_2 =
sits_dstails (21)Sstart_date_year_2

! Update Seuthampton

! srint %’ Southamston’

read (mit=20, £mt=110) sits_dstails(

2
=

1
1908

20)

s

8easting 2, site_dstails (20)northing_2,
sits_dstails(29)8lat_2, sits details(29)% €

long 2, site_details (29)%height 2

sits_dstails (29)%end_date_month_L = 1
sits_dstails (29)8end_dats_year_L = 10
sits_dstails (29)8start_date month_2 =
cite details(29)%start date vear 2

2
=

1
1970

s

s

s

s

E

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figo_HTML.gif
include ‘chadUl_shape _module. £30°

program ch2801
use shape_module
implicit noae

type (shape_type] :: sl = shape_type (10,
integer :: =l = 100

integer :: yl = 200

print *, * get

priat *, slsget_x(), ' ', sliget_y(
priat *, ¢ draw

call slsdraw()

print *, ' moveto !

call slsmoveto(xl, yl)

priat *, ¢ draw

call slsdraw()

print *, * set

call sl3set_x(99)
call sl¥set_y(99)
print *, ¢ draw’
call slsdraw()

end program ch2801

20)

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figa_HTML.gif
1nteger, dimension(—-10:15):: current

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figs_HTML.gif
- apply sams operations to b

b(k+ln) = b(ktlin) - a(k+lia, k) *b(k)
ead do

! backvard substitution

doi=n, 1, -1
sum = 0.0

doj=i+1,a
sum = sum + a(i, 3)*%(3)
ead do
=(i) = (b(i)-sum)/a(i, i)
ead do
ead subroutine gaussian_elimination
ead module ge_module

program ch2604
odule

implicit noae

use ge_s

integer :: i, a

real (vp), allocatable 5,0, B,

logical

singular

print *, ‘muzber of equations?’
read *, n

allocate (a(l:a,1:), b(l:m), x(

doi=1,a

print *, ‘input elemeats of row !, i, &
‘of ar

read *, a(i, 1)
print *, ‘input elemeat /, i, / of b’
read *, b(i]

ead do

call gaussian_elimination(a, a, b, %, &
singular)

if (singular) thea
print *, ‘matrix is singular’

else

print *, ‘solution x.
priat *, x:(lia)
ead if
end program ch2604

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figd_HTML.gif
nodule precision moduls

implicit noae

integer, parameter :: sp =
)

integer, parameter :: dp =
15, 307)

integer, parameter
30, 201
cnd module precision module

selected real kind(

selected real kind(

= selected real kind(

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figj_HTML.gif
Line number(s) in subroutines

dsort.£ ssort.f isort.f
*DECK 1 1 1
EXTERIAL 61 60 60
XERUSG

1st call 66-70 65-69 §5-69
to XERMSG

73-78 72-77 72-71

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figac_HTML.gif
include "chadli_shape_module. £30°

program ch2803
use shape_module
implicit noae
type (shape_type) :: sl
21 = 100
integer :: yl = 200

integer

51
priat *, ¢ get '
priat *, sliget_s(, ' ', sliget_y(

shape_type (10, 20)

¢ draw

priat *,
call sisdraw()

print *, ’ moveto

call slsmoveto(:l, yl)

priat *, ! draw

call slsdraw()

print *, * set
call sl3set_x(99)
call sl¥set_y(99)
priat *,
call slsdraw()

end program ch2803

draw’

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbg_HTML.gif
http://www.1iso.0xqg/

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Chapter_TeX_IEq4.png
10—307

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Chapter_TeX_IEq5.png
10+3O7

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figj_HTML.gif
a " b-arc=a?"(b-c
A/ b/ c=a/ b *ecl

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figaw_HTML.gif
allocate (lhs,source=rhs|

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figaf_HTML.gif
e
\s&’ ()
*4,-./0
123456789
+;<>?@ABCD
EFGHIJKLMIOPQ
RSTUVIXYE [\])"

abede£ghi jklmacpq
rstuvwsyz\{ [V} \"

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Chapter_TeX_IEq1.png
rll

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_BookBackmatter_Figc_HTML.gif
alues (1)

values (2)

alues (3)
alues (4)

alues (5)

alues (6)

values (7)
alues (8)

year
moath

day

time with respect to coordinated
waiversal time in minutes.

hour (24 hour clock)

mimutes

seconds

milliseconds in the range 0 — 999,

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figp_HTML.gif
Tpl datatyps

npi_integer
npi_real
npi_double_precision
npi_comples
npi_logical
wpi_character

fortran datatyps

integer
real

double precision
comples

logical
character (1)

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figar_HTML.gif
LiEh, AboIRACL wr BILE _HAHDLE

conTaIis
PROCEDURE (OPEN_FILE), DEFERRED, &
PASS (HAUDLE) PRI

e —

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Fige_HTML.gif
program chliuz
! Variables used
! Height - used to hold the heights above sea
! level
! Long - used to represeat the longitude
! Lat - used to represent the latitude
! both restricted to integer values.
! Correct - holds the correction factor
implicit noae
integer, parameter :: a = 3
integer

lat, leng

real, dimension (l:n,

) i height
real, parameter :: correct = 10.0

do lat = 1, a
do loag = 1,

priat *, ! type in value at ', lat, * ',
loag
read *, height (lat, loag)
end do
end do

do lat = 1, a
do loag = 1,
height (lat, loag) = height (lat, long) + &

correct
ead do

ead do

print *, ' Corrected data is

do lat = 1, a
do loag = 1,
print *, height (lat, long)
ead do
ead do
end program ch0702

OEBPS/images/112282_4_En_BookBackmatter_Figj_HTML.gif

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figb_HTML.gif
program chlaUl
implicit noae
real

priat *, ‘ type in an angle (in radians)’

read *+,

print *, ! Sine of !, x, . siac

end program ch1201

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figb_HTML.gif
http:/ /www.openmp.org/specifications/

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq16.png
read, *

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq17.png
print,*

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq14.png
buffl

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq15.png
buff2

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq12.png
buff2

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq13.png

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq10.png
buffl

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_IEq7_HTML.gif

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Chapter_TeX_IEq11.png

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Fige_HTML.gif
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world
world
world
world

Lrom
from
from
from
from
from
from
from

image
image
image
image
image
image
image
image

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figr_HTML.gif
http:
TEEE/754_20087product i,

fwww.techstreet .com/standards/
745167

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figm_HTML.gif
integer, intent (1n)

v
class (date], intent (imout) :: this

thistyear = y
ead subroutine set_year

module function year_and_day_to_date (year,
day_in_year)
use day_and_moath_name_module
implicit noae

type (date] :: year_and_day_to_date
integer, intent (in] :: day_in_year, year
integer :: t

intrinsic modulo

year_and_day_to_datetyear = year

t=o0

if (modulo(year,4)==0) then
t=1

ead if

if (modulo(year, 400)
modulo (vear, 100
t=o0

ead if

year_and_day_to_datetday = day_in_year

if (day_in_year>59+t] thea

year_and_day_to_datetday = &

year_and_day_to_datetday + 2 - t
ead if

year_and_day_to_datetmonth = &

((year_and_day_to_datetday+81) *100) /3055

year_and_day_to_datetday = (&
year_and_day_to_datetday+9l) - &
(year_and_day_to_datesmonth*3055) /100

year_and_day_to_datetmonth = &
year_and_day_to_datetmonth - 2

if (year_and_day_to_date$month and
year_and_day_to_date¥month<=12) thea
retura

ead if

write (unit=", fmt=’(a,ill,a)’) &

‘§syear_and_de

say_to_date: day of the year imput &

&=', day_in_year, '

is out of range.’
ead fuaction year_and_day_to_date
-nd submodule date module implementation

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figw_HTML.gif
maxloc (abs (a

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figz_HTML.gif
includs “precision module. L300
progran ch2607
use precizion module, up = sp
implicit none
integer :: i

integer, parameter :: a = 4
xl= [

real (wp), dimension (a)

1.01_wp, 1.001_wp, 1.0001_wp]
real (wp), dimeasion (1) :: 2 = [&
1.02_wp, 1.002_wp, 1.0002_vp

23

real (wp), dimension (a)

0.01_wp, 0.001_up, 0.0001 wp]
real (wp), dimeasion (1) :: rel error = 0.0_wp
real (wp), dimeasion (1) :: abs_error = 0.0_wp

real (wp) :: =

character (len=11), dimensioa (a) :: heading 1 &
=[’linl0 1, "14ia100 ‘, &
‘1 in 1,000 *, 1 ia 10,000°]
character (len=), dimension (1) :: heading 2 &
=11 v, '1.01 7, '1.001 ¢, '1.0001°]
heading_3 ¢

character (len=15), dimension (2)

['absolute error ', 'Relative error ']

doi=1,n
=2(1) - =)
abs_error (i) = abs(z-x3(i))

rel_error (i) = abs_error (i) /x3(i)

priat *, * ', heading_1(i), [
heading_2 (i)

print *, ' Calculated = .

heading_3 (1), abs_srror (i)

print *, ' Bspected ,oE3), &
© ', heading_3(2), rel_error(i)

ead do

end program ch2607

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figh_HTML.gif

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Figg_HTML.gif
http:

docview.wss 2ui

fwww-01.1bm.com/support /
wg27036673

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figb_HTML.gif
http:/ /www.mpich.oxrg/

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figao_HTML.gif
include "ch230l_day_and month_name.
include ‘ch2901_date_module.£90°
include ’ch2902_iso_date_module.£90"
include ’ch2003_date_wrapper_module.£90/

program ch2903

use date_module
use iso_date_module
use date_wrapper_module
! use us_date_module_01

implicit noae
i, ndiff
integer, parameter :: n_dates = 2

integer

type (date_wrapper), dimeasion (

=(1) %date = date(1, 1, 1970)
=(2) %date = iso_date (1980, 1, 1)
! 2(3)%date = us_date (1, 1, 1990)

do i =1, n_dates
if (x(i) $datetdate_to_day_in_year(]
thea

priat *, x(i)3datedget_year(), &
¢ is a leap year'
else
priat *, x(i)3datedget_year(), &
¢ is not a leap year’
ead if

and de

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figm_HTML.gif
using System;
public static class geaeric

t

public static void
swap< Type > (Type(] array,int i, iat 3j)
[
Type tmp
array(i]

array(3]

public static void
quicksort< Type > (Typell array, iat 1, iat z)

where Type : IComparable< Type >

Type v=arrayl (iat) ((1+r)/2)1;
for (1)
[
while (arrayl[il.CompareTo(0) i=id;
while (v.CompareTo(array[3]) < 0) 3=3-1;

if (i<=3)

{ swap(array,i,3);

=it §

if (i>3) goto ended ;
)

ended: ;

if (1<) quicksort(array,1,3l;
if (i<r) quicksort(array, i, rl;

public static void
print< Type > (Typel] array,iat size)
[

int i;

int 1;

l=array.Leagth;

for (i=0;i<ljit+)

Console .WriteLine (array [i]);

public static it Maia()
[
double[] da =
{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5);
int[] ia = {1,10,2,9,3,8,4,7,6,5);

int size;

size=da.Leagth;
Console Writeline ("Original array”);
priat (da, size) ;
quicksort (da,0, size-1);

Console Writeline ("Sorted array");
priat (da, size) ;

ia.Length;
Console Writeline ("Original array”);
priat (ia, size) ;

quicksort (ia,0,size-1);

Console Writeline ("Sorted array");
priat (ia, size) ;

retura(0);

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figv_HTML.gif
INTEGER :: A(), IHD (1)

DO CONCURRENT (I=1:1)
A(D(T)) =1

FD DO

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figac_HTML.gif
program chlal/
implicit noae

character (1024) :: striag0l
character (1) :: set = '

integer :: i

iateger :: 1

integer :: start, ead

string0l = ‘The important issue about &

a language, is not sof

string0l = trim(string01) //

&uhat features the language possesses,
sbut”

string0l = trim(string0l) // ' * // 'the &
&features it does possess, are sufficieat,
stor

string0l = trim(string01) // // *support

&sthe desired programming styles, in &
sthe’

string0l = trim(string0l) // ' ' // &
‘desired application arcas.’

1 = lea(trim(string01))

priat *,

Length of string is
print *, ' Striag is’
print *, trim(striag0l)
start = 1
ead = 1
print *, ' Blanks at positioas
do
i = scan(string0l(start:end), set)
start + i
0) exit
write (*, 100, advance
ead do
100 format (i5)
end program ch1407

start

a0') start - 1

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figm_HTML.gif
- detanlt headsr lins count

intager, dimension (lin_stations)

integer, paramster

f_months = 12

character *9, dimension (Linmonths) :: &

month_names = (/ ‘January ', 'February ’,
fuarch f, ‘apeil ¢, ‘day
‘awme v, taaly 0, ‘Rugust
‘Sestember’, 'Octobsr ', llovembsr
*December * /)

contains

subroutine initialise_station_data()
implicit nons

intager

Brasmar, Lowestoft, llairn, Southamston,
Whithy

have 8 headsr lines, as the sosition of
the station moved.

Bl(s) =8
BL(19)
B2
B1(29)
B1(35)

lext read in the current mumbsr of
Linss ver station

This changes as the data is collscted,
and vhen you

run the C# program that gsts the filss.

I generate this informstion using we on the
data files.

open (unit=100, file='line_count.tut’

status='old’)

do i =1, n_stations
read (100, 100) al(i)
100 format (i7)

BL(i) = al(i) - BL(i)
srint 110, station data fils name(i), ©
Bl (i)
110 format (Station /, a30, ' i6 o
+ records’)
end do
close (100)

nd subroutine initialize_station_data
subroutine skin header_lines (3)

implicit nons

intsger, intent (in) :: 3
intager i i
! Skis header linss
do i =1, KL(3)
read (unit=100, fme=' (a))

end do

nd subroutine ship_header_linss

end module met office station module

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figt_HTML.gif
(rounding down from 142

OEBPS/images/112282_4_En_BookBackmatter_Figq_HTML.gif
REAL :: PL7]
IF (THIS_TMAGE(
READ (6,%) P
DO I = 2, NUM_IMAGES ()
Pl1] =P
=D DO
ED IF
STe ATT

THEN

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figh_HTML.gif
tunction julian_to_date(julian)
implicit noae
type (date] :: julian_to_date
integer, intent (in)

Julian

integer

1, n

Julian + 68569

a = 441/146097

1 - (146097+n43) /4

julian_to_datetyear = (4000* (1+1) /1461001
1=1 - 1461*julian_to_datetyear/d + 31
julian_to_date¥month = (80*1/2447)
julian_to_date¥day = (1-2447julian_to_datet

moath/80)

1 = julian_to_date¥moath/1l

julian_to_date¥month = (julian_to_date¥month
42-1241)

julian_to_date¥year = (100%(a-49)+ &

Julian_to_datetyear+l)
end function julian_to_date

subroutine julian_to_date_and_veek_and_day (jd,
d, wd, ddd)
implicit noae

integer, intent (in] :: jd

type (date], inteat (out] :: d

wd, ddd

integer, intent (out)

d = julian_to_date (jd)
wd = date_to_weskday_number (d)
ddd = date_to_day_in_year (d)
-nd subroutine julian_to_date_and week_and_day

function ndays(datel, date2)
implicit noae
integer

adays
class (date], inteat (in)

datel, date2

adays = calendar_to_julian(datel) - &
calendar_to_julian(date2)
-nd function adays

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figm_HTML.gif
24
23.
24.
31,
22.
29.
26.
21.
20.
a

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Figd_HTML.gif
integer , paramster @i &
dp = selected_real_kind(15,307)

complex (dp)

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figs_HTML.gif
program chU/us
! variables used are
! mean - for the ruaning mean
! ssq - the ruaning corrected sum of squares
! - isput values for
shich

! mean and sd required
! w - local work variable
! sd - standard des

! r - another vork

implicit noae

real :: mean = W, sd, 1
integer :: i, a
priat *, ‘' enter the mumber of readings’

read *, n

print *, ‘ enter the /', a, &

alues, one per line’
doi=1,n
read +, x

r=i-1
mcan = (r'meantx) /i
ssq = ssq + whr/i
end do
sd = (ssq/r)**0.5
priat *, ‘ mean is !, mean
priat *, ‘ standard deviation is ', sd

end program ch0709

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figan_HTML.gif
subroutinae lsort_62(ix, 1y, 2, ktlag)

use isteger_kind_moduls, o => 16
inslicit aone
| .. Scalar Argumeats
iateger () :: kelag, a
! .. Array Argumeats
iateger (o) ¢ (1), (%)
! . Local Scalars
eal x
iateger () :: i, i3, 3, K, Kk, 1, m, a3,

te, tey, ty
! .. Local Arrays
iateger (o) ¢ 41(21), iu(21)
| . Iatrissic Fusctions
intrinsic abs, iat
| *''FIRST EXECUTAELE STATEMENT ISORT

Kk = abs (kflag)

| Alter array I to get decreasing order if
—

i (kflage=-1) thea
doi=1, ma
Lx01) = i)
d do
na it

! Sort Ix oaly

m=1
i1
3=
= 0.375e0

100 if (1==3) o to 110

if (:<=0.589843720) thea
r=r+ 3.506250-2
slse
r=r - 0.2187580
na it

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figax_HTML.gif
#include <stdio.h>

$include <string.h>

void priat_string(char * string)

t

printf (" ¥s\a", string) ;

oid replace_string(char * string)

strepy (string, "Hello Hello");

void concatenate string(char * striag)
t
strcat (string, " Hello Hello");

OEBPS/images/112282_4_En_BookBackmatter_Figaq_HTML.gif
nagtor
o4

~openmp
_thread safe

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figf_HTML.gif
close(10)
~lose (20}

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figk_HTML.gif
nodule data moduls
implicit noae

integer, parameter

real, dimension (l:n) :: rainfall
real, dimension (l:n) :: sorted
contains
subroutine readdata
implicit noae
integer :: i
character (len=40) :: filename
print *, ‘ What is the filename 2’

read *, filename
open (unit=100, file=filename, status='old'|
doi=1,a
read (100, *) raiafall (i)
ead do
ead subroutine readdata

subroutine sortdata
implicit noae

sorted = raiafall
call selection
contains
subroutine selection
implicit none
integer

i3k

real :: minimum
doi=1,a-1
k=1
minimum = sorted(i)
doj=i+1,a
if (sorted(j)<minimum) then

k=3
minimun = sorted(k)
end if
end do
sorted (k) sorted (i)
sorted(i) = minimum
end do

ead subroutine selection
ead subroutine sortdata

subroutine priatdata
implicit noae

integer :: i
print *, ' original data is ’
doi=1, 1

priat 100, raiafall(i)

ead do
print *, ' Sorted data is
doi=1, 1

print 100, sorted (i)
ead do
100 format (1x, £7.1)
ead subroutine printdata
ead module data_module

program ch2102
use data_module

implicit noae

call readdata
call sortdata
call printdata

end program ch2102

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figaj_HTML.gif
program chU3ls
implicit noae
integer, parameter :: arow = §

acol = 6

integer, parameter

real, dimension (l:arowtncol)
50, 47, 28, 89, 30, 45, 37, &7, 34
98, 25, 45, 26, 48, 10, 35, 89, 56
30, 65, 8, 78, 38, 75, 98, §5 /)

real, dimension (l:arow, l:acol)

exam_results = 0.0

real, dimension (l:arow) :: pecple e
0.0

real, dimension (l:ncol] :: subject_:
0.0

integer i x,

exam_results
(/0.0,0.0/), (/2,1/))

ults = (/
, 65, 68,
, 33, 45,

rage

average =

exam_results(liarow, 3) = 2.5% &
exam_results (1:arow, 3)

subject_average = sum(exam_results, dim=1)

people_average = sum(exam_results, dim=2)

people_average = people_average/acol
subject_av

rage = subject_:

erage /ar

dor =1, arow

print 100, (exam results(r,c), c=1
people_average (x]

ead do

priat *, &

print 110, subject_average (1:acol)
100 format (1,6(1x,£5.1), ' = ¢, £6.2
110 format (1x, 6(1x £5.1])
end program ch0915

, acol),

)

reshape (results, (/arow,acol/],

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figp_HTML.gif
real , dimension(number_of_ people)

weight

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figt_HTML.gif
(t+h/2,y+h/8% (s2+3*s3))

call fun(t+h2, new_y 1, sd, a)
aew_y_1 =y + h2* (51-3.0_up*s3+4.0_up*sd)

' SS=F (t+h, y+h/2* (s1-3453+4%s4))

call fun(t+h, new_y_1, s5, a)

' calculate values at t+h

aew_y_1 =y + h6* (s1+4.0_up*sd+ss)
aew_y 2 =y + h2* (51-3.0_up*s3+4.0_up*sd)

' calculate error estimate
error = abs(0.2_wp* (new_y_l-new_y_2))
max_error = maxval(error)

if (max_error>tol) thea

' halve step length and try again

if (abs(h2)
ifail = 2
retura
ead if
h=h2
else

smallest_step) thea

' accepted approwimation so overvrite
' y with y_new_l, and t with t+h

y = aev_y_1
t=t+n

' can next step be doubled?

errortfacto:

if (ma:
h = h*2.0_up
ead if

o1) thea

' does next step go beyond interval ead b,
' if so set h = bt

if (t4heb) then

h=b-t
ead if
qo_of_steps = no_of_steps + 1
ead if

if (t>=b) exit

' #2244 end of
' #2#4% repeat loop

ead do

ead subroutine ruage_kutta_mersoa

odule implement ation

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figd_HTML.gif
1eee_all = (/ 1eee_usual, ieee underflow,
jeee inexact /)

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figaq_HTML.gif
program chU3lsd
implicit noae

integer :: t
character *30 :: £mt_100 = &
P e, i3, 0 a1 = e, i3y

priat *, ¢ ¢

priat *, ! Tuelve times table’
priat *, ' ¢
dot=1, 12

write (unit=", fmt=fmt_100) t, t*12
ead do

end program ch0919

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figah_HTML.gif
include "ch230l_day and month_name_module. 30"

include ‘ch2901_date_module.£90°
include ’ch2902_iso_date_module.£90"

program ch2802

use date_module , only: caleadar_to_julian, &

date, date_to_day_in_year, &
date_to_weekday_number, get_day,
get_year, julian_to_date, &

Julian_to_date_and_week_and_day,
print_date, vear and day to_date

get_moath,

adays, &

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figf_HTML.gif

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figi_HTML.gif
priat %, ° Hello from process © , &

this_process_nuzber , " of ", &

number of processes , " processes!"

OEBPS/images/112282_4_En_42_Chapter/112282_4_En_42_Figd_HTML.gif
=

p1

p1

p1

=» tl, calling 1]

.5000000

=> £2, calling £3

.2500000

=> £1, calling £4

.5000000

=> £2, calling £4

500000

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figl_HTML.gif
program chlius
implicit noae

integer, parameter :: ar = 5
integer, parameter :: ac = 10
integer, parameter :: af = 3
iateger :: row, columa, £loor
character *1, dimension (l:ar, liac, 1:nf) :: &
seats = ¢ ¢
do floor = 1, af
do row = 1, ar
read *, (seats(row,columa, floor], colum=l &
. ac)
ead do
ead do
print *, ' Seat plan is’
do floor = 1, af
print *, * Floor = /, floor
do rou ar

print *, (seats (row, columa, floor], colums= &
1, ac)
ead do
ead do
end program ch0705

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figc_HTML.gif
program chlsul
implicit noae

! Example of a Fortran program
! to caleulate net pay
! given an employee’s gross pay

! The UK personal allowance is
! correct as of 2014

real :: gross_wage, net_vage, tax

real :: tax_rate = 0.25
integer :: personal_allowance = 10000
character (len=60) :: their_name

print *, 'Input employees name’
read *, their_name

print *, 'Input Gross wage’

read *, gross_wage

tax = (gross_wage-personal_allowance)*tax_rate

aet_wage = gross_vage - tax
print *, ‘Employee: /, their_name
print *, 'Gross Pay: ', gross_wage

, tax

print *, ‘Tam: !,

priat *, ‘liet Pay:’, aet_wage
end program ch0501

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figy_HTML.gif
program chisus
use iso_c_binding
interface
subroutine reciprocal(ar, ac, x, y) biad (c, §
name=' reciprocal’)
use iso_c_binding
integer (c_int), value

integer (c_int), value :: nc
real (c_float), dimeasion (ar, ac)

real (c_float), dimeasion (ar, ac)
ead subroutine reciprocal
ead interface

integer, parameter

integer, parameter :: ac = §
integer :: i

real, dimension (ar, nac)

real, dimension (ar, nc) :: y

real, dimension (ar‘ac) [(i,i=l,artac) &

1

iateger ::

integer

= = reshape (t, (/ar,ac/), order=(/2,1/))

priat *, ' Fortran calling C’

priat *, *

two d array as parameter’
print *, ' using C 99 VLA’
dor=1, ar
print 100, x(r, l:ac)
100 format (10 (£5.1))
ead do
call reciprocal (ar, ne, =, y)
dor=1, ar
priat 110, y(r, l:ac)
110 format (10 (£6.3))
ead do
end program ch3508

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbn_HTML.gif
Mercury
Earth
Mars
Jupiter
satura
Uranus
Meptuae
B lut e

108.
149,
227.
778.

1427,

28859,

4495,

ca00

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figaq_HTML.gif
#include <stdio.h>
void sums(int ar it ac,iat x[ar][ac],
it * rsum, iat * csum;
iat maia()
t
const int ar=z;
const int ne=§;
int x[ar](ac];
iat rsum[arl;
iat csumlacl;
iat x;
iat
iat

for (r=0;r<ar;r++)
rsum(r]=0;

for (c=0jce<ncict+)
csum(e]=0;

for (r=0;r<ar;r++)

for (c=

[

je<nc;etd)

=[xl [e]=i;
144
)
printf (" C calling Fortran\a");
Printf (" 2 d array as parameter\a”);
printf (" 89 vla\a");
for (r=0;rear;res)
«
for (c=0;c<nc;cH+)
«
printf(" 83d ", x[rlle]);
)
priatf("\a");
)
priatf ("\a");
sums (azr, ac, , rsum, csum) ;

for (r=0;r<ar;r++)

{
for (je<nc;icH+)
{
priate(" $3d ", x(x](e]);
)

printf(" %3d ", rsum(r]);
priatf("\a");

)

priatf ("\a");

for (c=0jcenc;cH+]
printf(" %3d ",csumlcl);

priatf ("\a");

retura (0 ;

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figag_HTML.gif
call date_aad _time(values=vall
vy = val()

! Ts this a leas year? I.e. is 12/3L/y
! 366tn day of the year?
ie v,12,31)

366) thea
is a Leas vear’

sriat * 45 a0t a Lea Year’
ena it
| DAYSUB SHOULD RETURIN: 1870, 1, 1, 4, 1
call daysub(34(1970,1,1), y777, mm, 4d, wd, &
ada)

or. da/=L .or. &

srist 4, ©
‘DAYSUB Failed; YYYY, M, DD, WD, DDD = ', o
vy, mn, dd, v, ddd
stos
na it

! DIFFEREICE BETWEEI TO SAME MOWTHS AlD DAYS
! OVER 1 LEAP YEAR IS 366

dife = adays(s, 22, 1984, 5, 22, 1983)
if (adie/=366) then
Sriat *, 'NDAYS FAILED; UDIFF = ', adife
e1ze
! RECOVER MONTH AND DAY EROI YEAR AlD DAY
¢ meer
call calead(yyyy, ddd, mma, dda)
i (mma/=l .axd. dda/=1) thea
Sriat *, "CALEND FAILED; MM, DDA = 7, &
nna, dda
slse

Sriat *, *** DATE MANIPULATION SUBROUTTIES o
LSDMPLE TEST OK.’
na it
nd it

stos
cad orogram test datesub

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figv_HTML.gif
nodule shape_module

type shape_type

integer, private :: x_ = 0
integer, private :: y_ = 0
contains

procedure, pass (this)
procedure, pass (this)
procedure, pass (this)
procedure, pass (this)
procedure, pass (this)

procedurs, pass (this)

ead type shape_type

contains

include ’shape.
hape_module_include_cods.£90"

cnd module shape module

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figr_HTML.gif
http:/ /www. adobe .com/products /postscript /pdfs/PLRM. pdf

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figq_HTML.gif
gtortran -c -0J -ffast-math -fuaroll-loops
deort £ ssort f isort £

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figs_HTML.gif
http:
library/512asb7t (-

/msdn.microsoft .com/en-us/

5.80) .aspx

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figd_HTML.gif
it (balance > 0.0) then

draw money out of the bank
else

. borrow money from a friend
endif

buy a round of drinks.

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figab_HTML.gif
type (shape_type) fuaction &
shape_t ype_constructor (x,y)
implicit noae

integer, intent (in)
integer, intent (in) v

shape_type_coastructor$i_ = x

shape_type_coastructorsy_ = v
cnd function shape type constructor

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figaa_HTML.gif
program chU3ls
implicit noae

integer :: f£luid
real :: litres
real :: pints

open (unit=1, file='ch0912.txt’)
write (uait=l, fmt=100)
do fluid = 1, 10

litres = £1uid/1.75

piats = £luid*1.75

write (unit=l, fmt=110) piats,
ead do

close (1)
100 format (/ Pists Litres’)
110 foxmat (* ', £7.3, '/, i3, '

end program ch0912

£luid,

£7.3)

litres

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figp_HTML.gif
subroutine ruage_kutta_merson(y,tun,itail,a,a b, toll
use precision_module , wp => dp
! code left out
real (wp) , inteat(ial , optional
real (wp) :: internal_tol = 1.0e-3_wp
if (present (tol)) thea
internal_tol=tol
priat,‘tol = !, internal tol,’ is supplied’

tol

else
print’, "tol isa’'t supplied, default tolerance = "
print *,isternal_tol,’ is used’
eadif
! code left out but all refereaces to tol
! would have to be changed to internal_tol

end subroutine runge kutta merson

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figk_HTML.gif
https: //www.fortranplus.co.uk

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figf_HTML.gif

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figf_HTML.gif
nodule ragged_moduls
use precision_module
implicit noae
type ragged (real_kiad)

integer, kind :: real_kind
real (real_kind), dimeasion (:], &
allocatable :: ragged_row

ead type ragged
cnd module ragged module

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figf_HTML.gif
program chal _dislin U4
use dislia

logical :: trial, screea
real :: long, lat
screen = .false.

trial = .false.

! read ia the tsunami data
call datain(trial)
! I now have all the tsuaami data latitude and
! longitude values read ia to the arrays in the
! tsuaam cemmon block.
iproj = 1
lat = 0.0
long = 180.0
areg = 0
! dislin initialisation routines and setting of
! some basic componeats
! of the plot. these are based oa two sample
! dislin programs.
! initialise dislia
call disini
! choose font

call psfont (' times-roman’)

! determines the position of aa axis system.
! the lover left corner of the axis system

call axspos (400, 1850)
! the size of the axis system

! are the length and height of an axis system in
! plot coordinates. the default

alues are set to 2/3 of the page leagth aad !

call axslen (2400, 1400)

! define axis title

call name(’ longitude’,

! define axis title

call name(‘latitude’,

v
! this routine plots a title over aa axis
! system.

call titlin(‘plot of 3034 tsunami events ', 3)

! determines vhich label types will be plotted
! map defines geographical labels which are
! plotted as non negative floatiag-point

! auzbers with the following characters w', !
and ‘s,

call labels(‘map’, ‘xy')

! plots a geographical axis system.

call grafmp(-180., 180., -180., 90., -%0., &
0., -90., 30.)

! the statemest call gridmp (i, j) overlays an
! auis system with a longitude
! and latitude grid where i and j are the number
! of grid lines between labels in
! the x- and y-direction.
call gridm (1, 1)
! the routine world plots coastlines and lakes.
call world
! the angle and height of the characters caa be
! changed with the routines

! angle and height.

call height (50)

height.

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figp_HTML.gif
=t B

Select a central slemeat of the array asd save it ia location T
13= 1+ mT(E-D R

T = Dx(1)

v = DY (1)

IE Eirst slemeat of array is greater thas T, isterchasge with T

T @xn) er.) mEN
DE(13) = BRI

DD =1
T = x(1)
DE(13) = pE(n)
pr(n = 1%

v = DY (1)
m1e

L=a

If last elemeat of array is less thaa 1, isterchasge with T

T 0x(3) 1.) mHEN
DE(13) = DR

DR =1
T = Dx(1)
DY(13) = DY)
pr@) = 1%
v = DY (1)

IE Eirst slemeat of array is greater thaa T, iaterchasge with T

T @x) er.) mEN

DE(13) = BRI
DD =1
T = x(1)
DE(13) = pE(n)
pr(n = 1%
v = DY (1)
m1e

m1e

Fiad a3 slemeat ia the second half of the array which is smaller
thaa T

B0L=1
TP (Ox 6T, T G0 10 130

Find an slemsat in the first half of the array vhich is greater
thaa T

130 K = kel
TP OE@) 1. T GO T0 140

Taterchange these slemeats

TP < IE. 1) mHEN

o= Dxa
DE(L) = BEE)
DEE) = 11
Y = DY)
DY) = DEE)
DrE) = 118
0 10 130

—

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figu_HTML.gif
- Update Whitby
! srint 4,7 Thitby'

read (unit=20, £mt=110) sits details(35) ¢
8easting 2, site_dstails (35)Rnorthing 2, ©
site_dstails(35)8lat_2, sits details(35)% €
long 2, site_details (35)%height 2

sits_dstails (35)8end_dats_month_L = 12
sits_dstails (35)8end_dats_vear_L = 1999
sits_dstails (35)8start_date month 2 = 1
sits_dstails (35)Sstart_date_year_2 = 2000

close (20)
! start dates
open (unit=30, &

f£ila='first_data lins.txt’, s
o1d)

statu:

do i =1, n_stations
read (30, fnt=120) site_details(i) €
Sstart_date_year_L, site dstails(i)% &
start_date_month_L
120 fommat (3%, 14, 2%, i2)
end do

close (30)
! Bnd datss

open (unit=d0, &
f£ile='end_data_line.txt’ o
status='old’)

do i =1, n_stations
select case (i)
case (5, 19, 21, 29, 35)
read (40, #nt=130) site_details(i) €
Send_date_year 2, sits details(i)? €
end_dats_month_2
cass default
read (40, fnt=130) site_details(i) €
8end_date_year_I, sits details(i)? &
end_dats_month_L
130 format (3x, i4, 2%, i2)
end sslsct
end do

close (40)

do i n_stations

orint 140, site details(i)

140 Format (al5, 2x, a7, 2x, a7, 2x, £6.3, 2x, &
£6.3, 2%, i3, 2x, a7, 2x, a7, £6.3, 2%, &
£6.3, 2%, i3, 4(2%,12,2%,i4))

end do

cnd orogram ch3904

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figat_HTML.gif
! Begin again oa another portion of the uasortsd

20m=m-1

if (n==0) go to 270
L=l
3= sum

210 i€ (3-1>=1) go to 200
if (==1) go to 150
i=i-1

250 4 =i+
if (i==3) go to 230

€= axdny
£y = iy

if (in(i)et) go to 250
k=i

260 4x(er1) = ix06)
10601 = 1300)
[R—

i (e<ix00)) go to 260
Lx0er1) = &
1701 = by

9o to 250

! clean up
270 if (rElag
doi=1, ma
Lx01) = i)
d do
nd it
retura
cod cubroutine isert 64

1) thea

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figc_HTML.gif
tloat reciprocal(tloat x|
t

retura (1.0£/x) ;

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figp_HTML.gif
1integer, public, protected

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Fign_HTML.gif
1nteger function gcocdia, b)

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figo_HTML.gif
2Ucih, 718
function date_to_day_in_year (x)

> end fuaction date_constructor
> integer function date_to_day_in_year (this)
52,53¢80

integer :: date_to_day_in_year
type (date], iasteat (in) :: x
. class (date), inteat (ia) :: this

56, 60c83, 88

date_to_day_in_year = 3055* (x¥month+2) /100 —
(s¥montht10) /1342 - 91 + (1- (modulo (x¥year
/4)43) / 4+ (modulo (x¥year, 100) +99) /100-(&
modulo (x¥year, 400) +399) /400) * (x¥month+10) / &

13 + x3day
> date_to_day_in_year = 3055*(thiskmonth+2)/ &
> 100 - (this¥month+10) /13*2 - 81 + &

> (1- (modulo (thistyear, 4] +3) /4+(modulo (thist &
> year, 100) +99) /100~ (modulo(thissyear, &

S 400) +399) /400) * (thistmonth+10) /13 + &

S thissday

5391

< function date_to_weekday_number (x]

. inteqger function date to_weekday number (this)

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figaq_HTML.gif
shape_type (1U, 20}
circle_type (100,200, 300)
rectangle_type (1000, 2000, 3000, 4000

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figd_HTML.gif
Longituds

1 2 3
Latitude
1 10.0 400 70.0
2 20,0 50.0 80.0

2 200 €00 900

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figr_HTML.gif
1nteger function get_x(this)

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figaf_HTML.gif
nodule geasric sort moduls

! use user_module , isternal_type => user_type
! less_than is a logical fuaction ia the module

use date_module, internal type => date

implicit noae

contains

subroutine sort(x, a)
integer, inteat (ia)

type (internal type), intent (inout), &

dimension (1) :: x

call quicksort(l, a)
contains
recursive subroutine quicksort(l,)
implicit none

integer, imtest (ia) :: 1, ©
' local variables

integer :: 4, 3
type (internal type) :: v, t
i=1
j=rx
= (int ((1+r)/2))
do
do while (less_than(x(i],v))
Q=i+
ead do
do while (less_than (v, (3)))
j=3-1
ead do
if (i<=3) then
t = x)
=(1) = x(3)
=(3) =t
Q=i+
j=3-1
ead if
Af (i59) exit
ead do

if (1<) then
call quicksort(l, j)
ead if
if (i<r) then
call quicksort(i, z)
ead if

ead subroutine quicksort

ead subroutine sort

cnd module generic sort module

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figd_HTML.gif

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figd_HTML.gif

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figk_HTML.gif
~uug
.100
.010
.001

.000
.000

000

4.0uu
10.000

100.000

Iafiai

F—

OEBPS/images/112282_4_En_BookBackmatter_Figd_HTML.gif
1t(extends_type_otf(a, mold)) then
print *,'dyaamic type of a is aa’
print *,’extension of dynamic type of mold’
ond if

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figd_HTML.gif
program chizUl
use mpi
implicit noae
integer :: error_umber

integer :: this_process_aumber

integer :: number_of processes

call mpi_init (srrox_number)

call mpi_comm_size (mpi_comm_world, &
auzber_of_processes, error_aumber)

call mpi_comm_rank (mpi_comm_world, &
this_process_nusber, error_aumber)

priat *,

Hello from process ', &
this_process_aumber, ' of ', &
auzber_of_processes, 'processes!’

call mpi_finalize (error_number)

end program ch3201

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figad_HTML.gif
reshape (source, shape, pad, order)

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figo_HTML.gif
real , dimension(l:number_of people)

weight

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figz_HTML.gif
3
approx to p
abs error:
rel error:

3
approx to p
abs error:
rel error:

3
approx to p
abs error:
rel errer

- 2U0UE=0U2
.4100E-04

.4000E401
L4100E401

.4000E406
L4100E406

.1000E-05
.2500E-01

.1000E+00
.2500E-01

.1000E+05
S ENOF-_01

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Fige_HTML.gif
read (10, tmt

U0) height_feet (1) ,height_anch(i), &
weight_stone (i) ,weight_pound (i)
100 format (i2,2x,1i2, 2%, i2,2x, i2)

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figl_HTML.gif
“ahpod Besblebrox
Ford Prefect
Arthur Dent
Trillian

25
30
20

1.83
1.75
1.72
1 g5

65.
58.
"

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figam_HTML.gif
Hag
Real kinds 4818
Integer kinds 12 4 8
Character kiads 12 3 4
Logical kinds 1 2 4 8

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figj_HTML.gif
module function get_year (this)
implicit noae
integer :: get_year
class (date), inteat (ia) :: this

get_year = thistyear
end function get_year

nodule function julian_to_date(julian)
implicit noae
type (date)

Julian_to_date
integer, intent (in)

Julian

integer :: 1, a

1= julian + 68569

a = 441/146097

1=1 - (146097%a+3) /4

julian_to_datetyear = (4000* (1+1)/1461001)

1=1 - 1461*julian_to_datetyear/d + 31

julian_to_date¥month = (80*1/2447)

Julian_to_datetday = &
(1-2447+julian_to_datet &
moath/80)

1 = julian_to_date¥moath/1l

Julian_to_date¥moath = &

(julian_to_datemonth &
42-1241)
julian_to_date¥year = (100%(a-49)+ &
Julian_to_datetyear+l)
end function julian_to_date
nodule subroutine &
julian_to_date_and_week_and_day(id, &
d, wd, ddd)
implicit noae
integer, intent (in] :: jd
type (date], inteat (out] :: d

integer, intent (out) :: wd, ddd

d = julian_to_date (jd)
wd = date_to_weskday_number (d)
ddd = date_to_day_in_year (d)

end subrout ine &

OEBPS/images/112282_4_En_BookBackmatter_Figad_HTML.gif
gtortran
fbacktrace

~fcheck=all

£fpe-trap=zero, overflow, undertlov
-9

o

_pedantic-errors

_std=£2008

all

trinderfl ou

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figbh_HTML.gif
https: //www.fortranplus.co.uk/fortran-information/

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figt_HTML.gif
program chllUs
implicit noae

character *20 :: file_name = ‘nairadata.txt’
integer, parameter :: amoaths = 12

real, dimension (l:amoaths) :: rainfall
real :: rain_sum

real :: rain_average

iateger :: i

opea (it
doi=1,8

read (unit=10, £
ead do
do i =1, amonths

ile_name, statu

old’)

read (unit=10, £
100 format (37x, £5.1)
ead do
close (100)

100) raiafall (i)

sum(rainfall) /25.4
rain_average = rain_sum/amoaths
write (uait=*, fmt=110)
110 format (18x, ¢ Yearly Meathly’, /, 19, &
¢ sum average’)
write (unit=, fmt=120) rain_sum, rain_average
120 format (‘Rainfall (iaches) ', £7.2, 2%, &
£.2)
end program chl004

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figx_HTML.gif
DAYSUB SHOULD RETURN: 1570, 1, 1, 4, 1
‘AL DAYSUB(JD (1570, 1, 1), ¥YYY, M, DD, WD, DDD)
TF (Y¥YY.1E.1570.0R 101, 1E . 1.OR DD IE. 1.R . ¥D .1 4.0R .DDD .IEE. 1)
 raEn
WRITE (%, %)’ DAYSUB Failed; YYYY,H,DD, WD, DD
stop 1
mu1e
DIFFERENCE BETWEEN T7O SAME MONTHS AND DAYS OVER 1 LEAP YEAR IS 366
UDTER=DAYS (5, 22, 1584, 5, 22, 1583)
TP (UDTFF .1E.366) THEN
WRITE(*, %) 'DAYS FATLED; UDIFF=',DTFF
BLSE
FECOVER MOWTH 2D DAY FROM YEAR AND DAY NUMEER.
CALL CALEND (¥¥¥Y, DDD, M2, DDA)
TF (M4A.1E. 1. 3D . DDA.1E. 1) THEN

| ¥YYY, 104,00, 7D, DD

WRITE(*, %) CALEND FATLED; MMA,DDA=',MMA, DDA
ELsE
WRITE(*, %) *** DATE MANTPULATION SUBROUTTIES STHPLE TEST OK.”
= 18
= 18
stop

-

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figg_HTML.gif
include ‘precision _module.L3aldt

program ch3601

use precision_module
use icee_arithmetic

implicit noae

real (sp)
real (dp)
real (qp)

if (iees_support_datatype (x)] then

priat *, ' 32 bit IEEE support’

ead if

if (icee_support_datatype (y)) then
priat *, ' 64 bit IEEE support’

ead if

if (iees_support_datatype (z)] then

priat *, ' 128 bit IEEE support’
ead if

end program ch3601

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figx_HTML.gif
nodule ruaning_average_module
implicit none

contains

function running_average(r, how_many) &
result (rarray)

integer, intent (in) :: how_many

real, inteat (in), allocatable, &

dimension (:) :: x

real, allocatable, dimension (:) :: rarray

integer

real

allocate (rarray(l:how_many))
do i =1, how_maay
sum = sum o+ (i)
rarray (i) = sun/i
ead do
ead fuaction ruaning average
ead module ruaning_average_module
module read data_module
implicit noae

contains
subroutine read data(file name, raw_data, &
how_many)

implicit noae

character (len=*], inteat (ia] :: file_name

integer, intent (in)

how_many

real, inteat (out), allocatable, &
dimension (:) :: raw_data

integer

allocate (raw_data(l:how_many))
open (unit=1, file=file name, status='old’)
do i =1, how_maay

read (unit=1, fmt=') raw_data(i)
ead do

ead subroutine read_data
ead module read_data module
program ch2605

use ruaning_average_module

use read_data_module
implicit noae

integer :: how_many
character (len=20) :: file name

real, allocatable, dimension rau_data
real, allocatable, dimension ra
integer :: i

print *, ' how many data items are there?’

read *, how_many

priat *, ' vhat is the file name?’

read ' (a)’, file_name

call read data(file_name, raw_data, how_many)

allocate (ra(1:how_many))

ra = running_average (raw_data, how_many)

do i =1, howmany
priat *, rav_data(i), ' ‘
end do

end program ch2605

ra(i)

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figf_HTML.gif

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figg_HTML.gif
countexr

start, end, 1ncremesent

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_IEq13_HTML.gif

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figh_HTML.gif
real (wp)

OEBPS/images/112282_4_En_BookBackmatter_Figac_HTML.gif
-G Debug level
R rum +ime checks

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figa_HTML.gif
x data fale y data rile
31 1

5 3 3
46 2
"

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figk_HTML.gif
implicit noae

contains
subroutine read data(file name, raw_data, &
how_many)

implicit noae

character (len=!), inteat (in)
integer, intent (in) :: how_many

f£ile_name

real, inteat (out), allocatable, &
dimension (:) :: raw_data
! local variables

integer :: i

allocate (raw_data(l:how_many))
open (unit=1, file=file name, status='old’)
do i =1, how_maay
read (unit=1, fmt=') raw_data(i)
ead do
ead subroutine read_data

ead module read_data module

module sort_data_module
implicit noae

contains

subroutine sort_data(raw_data, how_many)
implicit noae

integer, intent (in)

how_many

real, intent (imout), dimension (:)
rau_data

call quicksort(l, how_many)
contains

recursive subroutine quicksort(l,)
implicit none

integer, imtest (ia) :: 1, ©

' local variables

integer :: 4, 3

real

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figd_HTML.gif
unait

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figr_HTML.gif
nodule rkm_moduls

interface

module subroutine &

runge_kutta merson(y, fun, ifail, a, a, b, tol)

use precision_module, wp=> dp

implicit noae

real (wp), iateat (inout], dimension v
real (wp), iateat (in) :: a, b, tol

integer, intent (ia) :: a

integer, intent (out) :: ifail

interface

subroutine fua(t, y, £ a
use precision_module, wp => dp
implicit none
real (wp), iatent (in), dimension

real (wp), iatent (out), dimension (

real (wp), iateat (in) :: t

integer, inteat (in)

ead subroutine fua

ead interface

ead subroutine ruage_kutta_mersoa

end interface

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figa_HTML.gif

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Fign_HTML.gif
http://hpff.rice.edu/index.htm

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figs_HTML.gif
priat 100,b
100 format (1x, a)

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figv_HTML.gif
exam_results(l:

row, 3) = &

2.5 * exam results (1:arow, 3]

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figh_HTML.gif
include ‘precision _module.L3aldt

program ch3602

use precision_module
use icee_arithmetic

implicit noae

real (sp)
real (dp)

real (qp)

iateger :: i

character *20, dimension (5)
*IEEE_DIVIDE_BY_ZERO ',
‘IEEE_INEXACT 4
‘IEEE_INVALID .

*IEEE_OVERFLOW .

* IEEE_UNDERFLOT o

doi=1,5
if (iees_support_flag(ieee_all(i),x)) then
write (unit=", fat=100] flags (i)
100 format (a20, ’ 32 bit support’)
ead if
if (iees_support_flag(ieee_all(i),y)) then
write (unit=", fat=110] flags (i)
110 format (a20, ' 64 bit support’)

ead if
if (iees_support_flag(ieee_all(i),z)) then
write (unit=", fat=120] flags (i)
120 format (a20, ‘128 bit support’)
ead if
ead do

end program ch3602

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Figb_HTML.gif
1
10

100

L1000

10000
Looaoo
1000000
10000000
100000000
BT p—

ot

oln)

1
10

100

1000

L0000
100000
Loo0000
10000000
100000000
B p——

Qin"n) Ofleg

10008401
~1000e+03
~1000e+05
~1000e+07
_10002+09
~1000B+1L
~1000e+13
~10002+15
~1000e+17
TS

.o0
30
“6L
Lo1
L21
11
13
16.
1a.
S

51
82
12
i
s

Qln log n)

.0000e+00
“23038¢02
“16058+03
_6o08E+04
_92108+05
(11518407
[13828+08
[L6128 408
[1842e¢10
a7 ome 11

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figm_HTML.gif
tactor™(me-1)
Factorime

+ 4

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figi_HTML.gif
Parallel region coastruct

!Somp parallel [clause]
structured block
!Somp end parallel

Work sharing coastructs

‘semp do [clause]
do loop
{$amp end parallel
{$amp sections [clause]
[1$omp section

structured block]
{$omp end sections [movait]
{somp single [clause]
structured block

{Somp end single [aowait]

Combined parallel work
sharing constructs

!Scmp parallel do [clausel
structured block

!Somp end parallel do

!Scmp parallel sections [clausel
[1$omp section

structured block |

!Scmp end parallel sections

Syachronisation constructs

{$omp master
structured block

{Somp end master

{Somp critical [(name)]
structured block

{Somp end critical [(name)]
!Somp barrier

Somp atomic

ipression list

{Somp flush

{Somp ordered

structured block

!Somp end ordered

Data eaviroameat

| Somp threadpr

vate (/cl/,/c2/)

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figw_HTML.gif
do 1=65,30
priat?, char (i
o dde

OEBPS/images/112282_4_En_BookBackmatter_Figz_HTML.gif
trailz(2)
Lae +the value 2.

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figs_HTML.gif
program chliu/
implicit noae

hi, hr, hlow, high, half, xl

#h, s, d

real
real

tol = 1.0e-6

! problem - find hi from espression givea

real, parameter

! in function £
! F=A% (1.0-0.87EXP (-0.6%C/2)) -B

! The above is a Fortran 77

! statement fuaction.

! hi is incident wave height (c)

! hr is reformed wave height (b)

! d is water depth at terrace edge (a]

print *, ' Give reformed wave height, &
sand water depth’

read *, hr, d

! for hlow - let hlowshr
! for high - let high=hlow'2.0

! check that sigas of fuaction
! results are differeat

hlow = hr
high = hlow'2.0

=1 = £ (hlow, hr, d)
=h = £(high, hr, d)

do while ((x1*xh)>=0.0)
high = high'2.0
=h = £(high, hr, d)

ead do
do
half = (hlowthigh) *0.5
= = f£(half, hr, d)
Af ((sl%sm) <0.0) then
#h o=
high = half
else
2l =
hlow = half
ead if

if (abs(high-hlow)
ead do

exit

priat +, ¢ Tacideat Wave Height Lies Between'
priat *, hlow, ' and /, high, ' metres’
contains

real function f£(a, b, c)
implicit noae
real, inteat (in)
real, inteat (in)

real, inteat (in)

£ = a*(1.0-0.8%xp(-0.6%c/a)) - b
ead fuaction £
end program ch1307

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figba_HTML.gif
priat_string
Hello

replace_string

After Hello Hello

concatenate_string

A fray Helle Hello Helle

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figb_HTML.gif
prant 100, headingz(l), tame _ditference()
call random_number (x_dp)
print 100, heading2 (2), time_differeace()
call sort_data(:_dp, n)
print 100, heading2 (3), time_differeace()
write (unit=100, fmt='(a)’) &

‘First 10 64 bit reals’
110) x_dp(1:10)

write (unit=100, fm

print *, headiagl (4]

allocate (y_i6d(1:n), stat=allocate_status)
if (allocate_status/=0) then
priat *, &
‘Allocate failed. Program terminates’
stop 40
ead if

print 100, heading2 (1), time_differeace()
y_i64 = iat (x_dp*1000000000000000_i64, 164
deallocate (x_dp)
print 100, heading2 (2), time_differeace()
call sort_data(y_isd, a)
print 100, heading2 (3), time_differeace()
write (unit=100, fmt='(a)’) &

‘First 10 64 bit iategers’
write (unit=100, £m£=120) y_i64(1:10)
deallocate (y_isd)

print *, headiagl (5]

allocate (x_qp(1:a), stat=allocate_status)
if (allocate_status/=0) then
priat *, &
‘Allocate failed. Program terminates’
stop 50
ead if

print 100, heading2 (1), time_differeace()
call random_number (x_qp)
print 100, heading2 (2), time_differeace()
call sort_data(:_gp,)
print 100, heading2 (3), time_differeace()
write (unit=100, fmt='(a)’) &

‘First 10 128 bitreals’
110) x_gp(1:10)

write (unit=100, fm
close (200)
print *, ‘Program terminates’

call end_timing()

-nd program ch3801

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figl_HTML.gif
Tplexec
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

a8
f£rom
f£rom
f£rom
f£rom
f£rom
f£rom
f£rom
from

chizil.out
process
process
process
process
process
process
process
process

of
of
of
of
of
of
of
of

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figap_HTML.gif
typs
type
£ ype

e)

=_tVps

s p)e,t;pey

(eire S
ctangle t

(re

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figaj_HTML.gif
include ‘checoUf_date _module. L300

program ch2207
use date_module, only: calendar_to_juliaa, &
date, date_, date_iso, date_us, &
date_to_day_in_year, date_to_weekday_number, &
get_day, get_month, get_year, &
Julian_to_date_and_week_and_day, adays, &
print_date, year_and_day_to_date

implicit noae
integer :: i

integer, parameter :: a

type (date], dimeasion (1:a)

=(1) = date_(11, 2, 1952
2(2) = date_us(2, 11, 1952)
2(3) = date_iso (1952, 2, 11)

doi=1,3
print *, print_date(:(i))

ead do

end program ch2207

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbe_HTML.gif
program chlsl/
implicit noae

real, parameter :: atomic_mass_coastant = &
1.660538921410.044 (-27)
real, parameter :: avogadro_comstast = &

6.02214125%10.0423
real, parameter

1.3806486410.04% (-23)
real, parameter

boltzmaan_coastaat = &

clectron_mass = 9.10938291% &

10.04%(-31)

real, parameter :: elemeatary_charge = &
1.602176565410.044 (-19)

real, parameter :: proton_mass = 1.672621777% &
10.04* (-27)

real, parameter :: speed_of_light_in_vacuum
299792458

real, parameter :: &

aewtonian_constant_of_gr. 6.67384% &

10.04% (-11)

print *, atomic_mass_coastant
print *, avogadro_coastant
print *, boltzmann_constaat
print *, electron_mass

print *, elementary_charge
print *, proton_mass

print *, speed_of_light_in vacuum

print *, newtonian constant_of gravitation
end program ch0517

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figr_HTML.gif
http://physics.nist .gov/cuu/index. html

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbk_HTML.gif
program subtract
implicit noae

1.0002

1.0001

real
real
real

c=a-b
priat *, a
priat *, b
priat *, ¢

cnd program subtract

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figv_HTML.gif
nodule ged _moduls
implicit noae

contains
integer function ged(i,)
implicit noae
integer, intent (inout) :: i,
integer :: temp

do while (3/=0)

temp = mod (i, 3)
i=3
3 = temp

ead do

ged = i

ead fuaction ged
ead module ged_module

program ch1210
use ged_module
implicit noae
integer :: i, j, result

priat *, ¢

type in two integers’
read *, i, 3

result = ged(i, 3

priat *, ' ged is !, result

end program ch1210

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figaw_HTML.gif
nodule square_moduls

use shape_module

type, extends (shape_type) :: square_type

integer, private -0
contains
procedure, pass (this) :: area = &

square_area
ead type square_type
interface square_type

module procedure square_type_coastructor

ead interface square_type

cont aine

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figc_HTML.gif
https: //www.python.org/

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figl_HTML.gif
Homsat

Mass_a * Veloc A
0 = MassD /2 * (Moment / MassD | 2 +

(Moment *+2) / 2

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figae_HTML.gif
retura

ead fuaction print_date

function year_and_day_to_date (year, day)
result (x)
implicit noae
type (date)

integer, intent (in)
integer :: t

day, year

intrinsic modulo

x$year = year

t=o0

if (modulo(year,4)==0) then
t=1

ead if

if (modulo(year,400) /=0 .and. &
modulo(year, 100)==0] thea
t=o0

ead if

#%day = day
if (day>59+t) thea
stday = wbday + 2 - t

end if
bmoath = ((x3day+91) *100)/3055
bday = (s%day+81] - (x¥moath*3055) /100
#imonth = ximonth - 2
if (xbmonth>=l .and. =Smonth<=12) then
retura
end if
write (uait=t, fmt=’(a,ill,a)’] ’$5year_and_ds

say_to_date: day of the year imput &

, day, ’ is out of range.’
end function year_and_day_to_date

-nd module date module

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figl_HTML.gif
gtortran -W -Wall -fbounds-check -pedantic-errors
—5td=£2003 ~Wunderflow
-0 —fbacktrace -ffpe-trap=zero,
overflow, under£1low

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq5.png

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figz_HTML.gif
oid reciprocal (iat arow,int ncol,
float matrixl[arow] [acol],
float matrix2[arow] [acol])

iat i;
iat 3;
for (i=0;i<arow;it+)

for (3=0;j<ncol; j++)
matrix2 [1][3]1=1.0/matriz1[i][3];

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq6.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq3.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq4.png
4 tan~'(1)

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Figa_HTML.gif
program chUaUl
! This program reads in and prints out a name
implicit noae
character *20 :: first_name
priat *, ’ type in your first name.’
priat *, ' up to 20 characters’
read *, first_name
print *, first_name
end program ch0401

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figag_HTML.gif
-1 U+l
23,30, 31
14,45, 46
59,60, 61
89 90, 91

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figf_HTML.gif
program chlaUs
implicit noae

real, dimension (5] :: x = (/ 1.0, 2.0, 3.0,
4.0, 5.0 /)
priat *, ‘ dot product of x with x is’

priat *, © ', dot_product (x, x)
end program ch1205

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figae_HTML.gif
Aagtor chUsUe. 130
NAG Fortran Compiler

Error: ch0506.£90, line 7:

Floating-point overflow ia single-precision

nult iplication

[IIAG Fortran Compiler error termination, 1 error]

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figai_HTML.gif
use 1so_date -

implicit none

integer :: dd, ddd, i, mm, adiff, wd, yyyy
integer :: julian
integer :: val(8)

intrinsic date_and_time

type (iso_date) :: datel, date2, x, txl, t2

call date_and_time (value:
yyyy = val(l)
m = 10
do i =31, 26, -1
= = iso_date(yyyy, mm, i)

al)

if (xidate_to_weekday_number()==0] then

priat *, ‘Tura clocks back to EST on: ', &

i, ¢ October , zSget_year()
exit
end if
end do
call date_and_time (values=val)
x = iso_date(yyyy, mm, i)
if (x¥date_to_weckday_number()==0) then
priat *, ‘Tura clocks ahead to DST on: ', &
i, ¢ April ‘1, =Sget_year()
exit
end if
end do
call date_and_time (values=val)
yyvy = val(l)
m = 12

dd = 31
% = iso_date(yyyy, mm, dd)

if (sx%date_to_day_in_year()==366) then
priat *, =iget_year(], ' is a leap year’
else
priat *, =%get_year(), ' is not a leap year’
end if

% = iso_date(1970, 1, 1)
call julian_to_iso_date_and_week_and_day &
(calendar_to_julian (x), x, wd, ddd)

if (sbget_year()/=1670 .or. x¥get_month()
Lor. wd/=4 .or. ddd/

Lor. miget_day() /;
thea

priat 4, &
‘Julian_to date_and week_and day failed’
print *, ¢ date, wd, ddd = ', xSget_year(), &
sbget_month(), x¥get_day (), wd, ddd
stop
end if
datel = iso_dat=(1984, 5, 22)
date2 = iso_dat=(1983, 5, 22)
adiff = ndays (datel, date2)
sywy = 1970

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figg_HTML.gif

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figb_HTML.gif
exXpression

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq1.png
O(log n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq2.png
O(n log n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq3.png
O(log n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq4.png
O(n log n) = O(log n!)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq5.png
O(log log n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq6.png
O(n log™ n)

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq7.png
O(n?)

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Fign_HTML.gif
36, 339C93, 63

ival = x¥day - 32075 + 1461% (sbyear+4800+ (x% &
moath-14) /12) /4 + 367* (x¥month-2-((x%month &
~14) /12)*12) /12 - 3% ((x¥y=ar+4900+ (x3month &
-14) /12)/100) /4

- ival = thistday - 32075 + 1461% (thisSyear+ &
. 4800+ (thistmonth-14)/12)/4 + &

. 367+ (this¥month-2-((this¥month- &

. 14)/12)#12) /12 - 3% ((this¥year+4900+ (thist &
. moath-14) /12) /100) /4

12c66, 68

function date_(dd, mm, yyyy) result (x)

- type (date) fuaction date_constructor(dd, mm, &

g yyyy)

14d89

< type (date)
17,48¢72, 74

date(dd, =, yyyy)
end function date_

S date_constructoryday =

S date_constructor¥moath

. date constructorkvear = viyyy

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq8.png
On)0<c<l

OEBPS/images/112282_4_En_23_Chapter/112282_4_En_23_Chapter_TeX_IEq9.png
On)c>1

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figs_HTML.gif
fearly Monthly
Sum Average
Rainfall (inches) 28.13 5.1

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Chapter_TeX_IEq3.png
V(-1

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Chapter_TeX_IEq2.png
1+1i2

OEBPS/images/112282_4_En_15_Chapter/112282_4_En_15_Chapter_TeX_IEq1.png
a=x+1y

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Fige_HTML.gif
interface sort_data
module procedure sort_real_sp
module procedure sort_real_dp
module procedure sort_real_gp
module procedure sort_iateger_8
module procedure sort_integer_16
module procedure sort_integer_32
module procedure sort_integer_64

-nd interface sort data

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figar_HTML.gif
subroutine sums(nar, nc,

aame=' sums’ |

! gee requires -lgfortran
use iso_c_binding
implicit none

integer (c_int),

integer (c_int),

integer (c_int), dimension
intent (in) :: x

integer (c_int), dimension
inteat (out)

integer (c_int), dimension
intent (out) :: csum

integer (c_int), dimension

t = reshape (x, (/ac,ar/) |

rsun = sun(t, dim=1)

csum = sum(t, dim=2)

cnd subroutine sume

@

a:

csum)

ar),

e,

ind

1iac),

1iar)

ler

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figi_HTML.gif
iatrinsic modulo

date_to_day_in_year
(thismonth+2) /

3055+

100 - (thistmonth+10) /1342 - &

o1+ &

(1-(modulo (thistyear, 4] +3) /4+&

(modulo (thist &

year, 100) +99) /100~ (modulo (thissyear,
400) +399) /400) * (this¥month+10) /13 +

thissday

ead function date_to_day_in_year

integer module function

date_to_weekday_number (this)

implicit noae
class (date], intent

intrinsic modulo

date_to_weskday_number = modulo((13*(

thismonth+l0-&

(thistmonth+10) /13+12)-1)/5+ &

(ia)

this

thistday+77+5* (thissyear+ (this¥month-
14) /12~ (thistyear+&

(thismonth-14) /12) /100*
100) /4+ (thistyear+ (thismont h-

14)/12) /400~ (thistyear+ (thissmoath-

14)/12) /10042,)

end function date_to_weekday_mumber

nodule function get_day(this)

implicit noae
integer :: get_day

class (date], intent

get_day = thistday
end function get_day

nodule function get_month(this)

implicit noae

integer :: get_moath

class (date], intent

(ia)

(ia)

get_moath = thistmonth

end function get_moath

this

this

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figy_HTML.gif
write (1l,100) =,v

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figp_HTML.gif
program chlsls

This program reads in a grid of temperatures
(degrees Fahrenheit) at 25 grid references
and coaverts them to degrees Celsius

implicit noae

integer, parameter :: a =5

real, dimension (l:n, 1:a) :: fahreheit, &
celsius

integer :: long, lat

read in the temperatures

do lat = 1, a
priat *, ! For Latitude= ', lat

do loag a
print *, ' For Loagitude’, loag
read *, fahresheit (lat, loag)

ead do

ead do

Co:

celsius = 5.0/9.0% (fahrenheit-32.0)
print *, celsius
print *, fahreaheit

end program ch0802

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq9.png

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq7.png

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Chapter_TeX_IEq8.png

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figah_HTML.gif
read(buftfs,” (210) 7) nd

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figag_HTML.gif
partial pi 1s our sead buffer
total_pi is our receive buffer

1 - the muzber of elements
npi_double_precision - the type of the elements
npi_sum - the reduction operation

0 - the root process

npi_comm_world - the commiaicator

crror mumber - the error aumber

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figaf_HTML.gif
Fuactiea adays(mm-, adi, yyyyl, mmi, ad4, &
yvv2) resule (ival)

iteger, imteat (in)
integer, intent (in)
integer, intent (in)
integer, intent (in)
integer, intent (in)
integer, intent (in)
iateger :: ival

! NDAYS IS RETURNED AS THE NUMEER OF DAYS
! eemvEEN TiO

| DATES; THAT TS 1001/DD1/YYYYL MINUS

¢ e/oo2/viviz,

! WHERE DATET XD DATEJ HAVE ELENEWTS MY, DD,
¢ owwvy

! NDAYS WILL BE POSITIVE IFF DATEL IS MORE

! RECENT THAN DATEZ

ival = 3a(yyyvl, mal, ddl) - ¢
I (rvrv2, mm2, ddz)

retura
ead fuaction adays

<24 module dats_sub

orogram test_datesub

ATESUB.FOR with Sample Drivers

s dats_sub
inslicit aone

iateger i yyvy, mm, dd, ud, ddd, mma, dda, ¢
aaice, 1
integer, dimeasion (8) :: val

! Compute date this year for chasgiag clocks
! back to EST
! I.s.compute date for the last Swsday in
! October for this year
call date_and_tine (valuss=val)

vy = val()
do i =31, 26, -1
E (121 (yyvv,10,1)==0) thea
Sriat *, *Tuea Clocks back to EST oa: /, &
1, 7 Ockober 1, yyyy
axit
na it
d do

! Compute date this year for turaiag clocks
! ahsad to DST
! I.s., compute date for the first Susday in
! 3pril for this year

call date_and_tine (values=val)

vy = val)

doi=1, 8

L€ (=lr(yyyy,4,4)2=0) thea
Sriat *, 'Tura Clocks ahead to DST oa: ’, &
4,0 Boril 1, yyyy
axit
na it

.

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Fige_HTML.gif
11
12

31
32

100
100¢

10000
100000
100000
10000000
100000000
1000000000
1410065408
1215752152
727379968

-2147483648
o

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figq_HTML.gif
1nterface
function summation(x,n) bind(c,name=summation)

use iso_c_binding

integer (c_int) , value :: n
real (c_float), dimeasion(l:n] , intent(in) ::
real (c_float] :: summation

ead fuaction summation

end interface

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Figb_HTML.gif
call subroutine_name (optional actual argument list)

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figh_HTML.gif
yomp parallel do

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figai_HTML.gif
=xtern TCT

o1d sums(int ar,int ac,

int 4% int *rsum, iat *esum)

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figh_HTML.gif
program chlaUb
implicit noae

integer :: year, meteye, cemtury, errorl, &

error2, day
integer :: epact, luna, temp
! a program to calculate the date of caster

print *, ‘ input the year for which easter’
priat *, ' is to be calculated’
print *, ' enter the whole year, e.g. 1978

read *, year
! calculating the year ia the 19 year
! metonic cycle usiag

ariable meteye
meteye = mod (year, 19) + 1
if (year<=1582) then

day = (5*year) /4

epact = mod(1l*metcye—4, 30) + 1
else

! calculating the century-century
century = (year/100) + 1

! accounting for arithmetic inaccuracies

! ignores leap

years ete.

errorl = (3tcentury/d) - 12
error2 = ((8%century+5)/25) - 5
locating Suaday
day = (5*year/4) - errorl - 10

! locating the epact (full moon)
temp = ll*metcyc + 20 + error2 - errorl
epact = mod (temp, 30)
if (epact<=0) then

epact = 30 + epact
ead if
if ((epac

5 .and. meteycr1l) .or. &
4) then
epact + 1

epac

epact

ead if
ead if

! finding the full mooa

luna = 44 - epact
if (luaa<2l) thea
luna = luna + 30
ead if
! locating easter Sunday
luna = luna + 7 - (wod(day+luna,7))
! locating the correct moath
if (luaa>31) thea
luna = luna - 31

print *, ' for the year /, year

print *, ' easter falls on April /, luna
else

print *, ' for the year /, year

print *, ' easter falls on march /, luna
ead if

end program ch1206

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figb_HTML.gif
-ALL STBR_FAME (&, T, 4
SELECT CASE (RETURI_CODE)
casE (1)

@)

e

CASE DEFAULT

N ——

SRR TTREL_COLR)

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figy_HTML.gif
https:
berformance examples.asp

//www.nag.co.uk/numeric/£1/

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figu_HTML.gif

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figd_HTML.gif
SUBMODULE (POINTS | POINTS_A
conTas
REAL MODULE FUNCTION POINT_DIST (&, B) &
RESULT (DISTAICE)
TYPE(POINT), INTENT(IN) :: A, B
DISTANCE = SORT((AYX-B3X)**2 + (A¥Y-BYY)*'2 |
END FUNCTION POINT_DIST

END SUBMODULE POINTS A

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figr_HTML.gif
“ahpod Besblebrox
Ford Prefect
Arthur Dent
Trillian

25
30
20

1.83
1.75
1.72
1 g5

65.
58.
ns

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figav_HTML.gif
program chlsls
implicit noae
real
real

integer i

priat *, * =l

priat *, ! z2

doi=1, 930
wlo= ol 4 w2

ead do

priat *, ¢ xzl

end program ch0512

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figr_HTML.gif
nodule etox_moduls
implicit noae

contains

real function eto(x)
implicit noae
real :: term

real, inteat (in)
integer :: aterm

real, parameter

ctox = 1.0

term
aterm
do
aterm = aterm + 1
term = (x/atexm)*term

ctox = etox + term
if (abs(term)<=tol) exit
ead do
ead fuaction etox
ead module etox_module

program ch1306
use etox_module

implicit noae

real, parameter 1.0
real :: y
priat 4, ¢ Fortraa intriasic ',

y = etox (x)
priat *, ' User defined etox ',

end program chl1306

exp ()

v

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figl_HTML.gif
1 =4
j=rx
= rau_data(int ((1+1)/2))

do

do while (raw_data(i)
Q=i+
ead do

raw_data (i)
raw_data(i) = rav_data(3)
raw_data(j) =t

i+

3-1

3

ead if

A (i23) exit
ead do
if (1<) then

call quicksort(l, j)
ead if
if (i<r) then

call quicksort(i, z)
ead if

ead subroutine quicksort

ead subroutine sort_data

ead module sort_data module

nodule print_data_module
implicit none

contains
subroutine priat_data(raw_data, how_many)
implicit noae
integer, intent (in)
real, inteat (in), dimension (:) :: raw_data

how_many

! local variables

integer :: i
open (file='sorted.tzt’, unit=2)
do i =1, how_maay

write (unit=2, fmt=*) raw_data (i)
ead do
close (2)

ead subroutine print_data
ead module priat_data_module

program ch2006
use read_data_module
use sort_data_module
use print_data_module
implicit noae
integer :: how_many

character (len=20) :: file name
real, allocatable, dimension (:) :: raw_data

integer, dimension (8)

timing

priat *, ¢

how many data items are there?’
read *, how_maay

print *, ’ what is the file name?’

read ‘(a)’, file_name

call date_and_time (values=timing)

priat *, ' initial’
priat *, timing(§), timing(7), timing(8)
call read data(file name, raw_data, how_many)
call date_and_time (values=timing)

‘ allocate and read’

priat *,
priat *, timing(6), timiag(7), timiag(8)
call sort_data(raw_data, how_many)
call date_and_time (values=timing)
priat %, ' sort’
priat *, timing(6), timiag(7), timiag(8)

call print_data(raw_data, how_maay)

call date_and_time (v

lues=timiag)

print *, ! print’
priat *, timing(§), timing(7), timing(8)
priat *, ' ¢

print *, ' data written to file sorted.txt’

end program ch2006

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figi_HTML.gif

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figbi_HTML.gif
http:
catalogue tc/catalogue detail .htm?csaumbe:

/www.1s0.0rg/1so/1so_catalogue/

7853

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Fign_HTML.gif
http
climate-historic/#7tal

etoffice.gov.uk/public/weather/

climateHistoric

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figw_HTML.gif
priat 7,0 0

call end_timing()
-nd program ch3305

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figai_HTML.gif
Program
Integer
Real
Integer
Real

starts
assigament
assigament
write
rite

-Uls
.07
.07
.07
0131

OEBPS/images/112282_4_En_BookBackmatter_Figr_HTML.gif

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figal_HTML.gif
program chlsll
implicit noae
integer, parameter :: arow = §

acol = 6

integer, parameter
real, dimension (l:arowtncol) results = (/ &
50, 47, 28, 89, 30, 45, 37, &7, 34, §5, 68, &
98, 25, 45, 26, 48, 10, 36, 89, 56, 33, 45, &

30, 65, 68, 78, 38, 76, 98, §5 /)

real, dimension (l:arow, lincol) :: &
exam_results = 0.0

real, dimension (l:iarow) :: pecple_average
0.0

real, dimension (l:ncol] :: subject_average = &
0.0

exam_results = reshape (results, (/arow,acol/), &
(/0.0,0.0/), (/2,1/))
exam_results(l:arow, 3) = 2.5% &

exam_results (1:arow, 3)

subject sum (exam_results, dim=1)

rage

people_average = sum(exam_results, dim=2)
people_average = people_average/acol
subject_average = subject_average/arow

priat *,

People averages’
print *, people_average
print *, ' Subject averages’
print *, subject_average

end program ch0811

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figp_HTML.gif
1fort /c /fast /Qparallel dsort.f ssort.f isort.f

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figq_HTML.gif
https: //wgb-fortran.oxg/

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figj_HTML.gif

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figc_HTML.gif

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figg_HTML.gif
real , daimension (l:50)
b

arb,e,d, =

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figj_HTML.gif
program chU3alb

implicit noae

integer
real

real

priat 100, i, small, big
100 format (* ¢, i3, © ', £1.3, © ', £1.3)
small = small/10.0
big = big'l0.0
ead do
end program ch0906

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbm_HTML.gif
program chlsUip
implicit noae

real :: light_mimute, distance, elapse
integer :: minute, second
real :: light_year

! Light_year : Distance travelled by light
! ia one year i km

! Light_minute : Distance travelled by light
! ia one minute in km

! Distance : Distance from sun to carth in km
! Elapse : Time taken to travel a

! distance (Distance) in mimutes

! Minute : integer aumber part of clapse

! Second : integer ausber of seconds

! equivaleat to fractional part of clapse

light_year = 9.46%104412
light_minute = light_year/(365.25/24.0%60.0)
distance = 150.04104%6

clapse = distance/light_minute

mimute = elapse
second = (elapse-minute)*60

print *, ' Light takes ', minute, ' Minutes’
priat *, © ', secoad, ' Secoads’

priat *, ' To reach the earth from sua’

=nd program ch0504p

OEBPS/images/112282_4_En_2_Chapter/112282_4_En_2_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figl_HTML.gif

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figj_HTML.gif
real (wp), dimeasion (
51, 52, s3, =4, s5

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figaa_HTML.gif

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figt_HTML.gif
2017/11/24 13: 7:44 7950
15.613
17.286

2017/11/24 13: 8:17 685

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figv_HTML.gif
https: //software.intel.com/en-us/articles/intel-sdm

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figo_HTML.gif
call runge_kutta_merson(y,funl,ifaal, n,a,b]

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_IEq6_HTML.gif

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figr_HTML.gif
program chU/us
implicit noae

! 1 us gallon = 3.7854118 litres
! 1 uk gallon = 4.545 litres

integer :: litre

real :: gallon, usgallon
do litre = 1, 10
gallon = litre/d.545
usgallon = litre/3.7854118
priat *, litre, ' ', galloa,
ead do
end program ch0708

usgallon

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figaw_HTML.gif
suatdl and suacdd, opesasuse Linux

suaf90 —c ch3512.£90 -o ch3512_f.c
sunc89 —c ch3512.c o ch3512_c.c
sunfS0 ch3512 f.o ch3512 c.o

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figaa_HTML.gif
want_day = .ralse.

want_short_month_name = .false.
want_digits = .false.
print_date = ¢
if (present (day_names)) then
want_day = day_names
ead if
if (present (short_month_name)) thea
want_short_month_name = short_month_name
ead if

if (present (digits)) then
want_digits = digits

ead if

if (want_digits) thea

write (print_date(1:2), ' (i2)’) xbday
print_date(3:3) = /'
write (priat_date(4:5), /(i2)’) sbmonth
print_date(s:6) = '/’
write (print_date(7:10), ' (id)’) x%year
clse

if (want_day) thea

pos = date_to_weekday_nutber (x]
print_date = trim(day(pos)) // '
pos = len_trim(priat_date) + 2

else
pos = 1
print_date = *

ead if

write (print_date(pos:pos+l), ' (i2)’) &
#3day

if (want_short_month_name) thea
print_date (pos+3:pos+5) = month (ximonth) &
3

else
print_date (pos+3:) = moath (x¥month)
pos = len_trim(priat_date) + 2
ead if
write (print_date(pos:pos+3), ' (il)’) &
x¥year
ead if

retura

ead fuaction print_date

! calend - year_and_day_to_date

! see acm algorithm 398,

! tableless date coaversion, by

! dick stoae, cacm 13(10) :621.

function year_and_day_to_date (year, day) &
result (x)
implicit noae
type (date)

integer, intent (ia) :: day, year
integer :: t

intrinsic modulo

sbyear = year
t=o0
if (modulo(year,4)==0) thea
t=1
end if
if (modulo(year,400)/=0 .aad. &
modulo(year, 100)==0] thea
t=o0
end if
xiday = day
if (day>59+t) then
widay = xiday + 2 - t
end if
bmoath = ((x3day+91) *100)/3055
bday = (s%day+81] - (x¥moath*3055) /100
#imonth = ximonth - 2
if (xbmonth>=l .and. =Smonth<=12) then
retura
end if
write (uait=t, fmt=’(a,ill,a)’] ’$5year_and_ds

say_to_date: day of the year imput &

, day, ’ is out of range.’
end function year_and_day_to_date

-nd module date module

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figab_HTML.gif
=
33
34
35
36
37
38
39
10
11
12
43
a4
45
a5
47
18
a9
50
51
52
53
54
55
56
57
58
59
50
51
52
63

65
66
57
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
50
91
92
93
94
g5

GHEZOMEOOW P @

zzrox=

Guumo ™o

— e

97
8
99

100

101

102

103

104

105

106

107

108

109

110

111

12

13

114

15

116

117

118

119

120

121

122

123

124

125

126

127

HemumHTamo a0 T

HaT oo

OEBPS/images/112282_4_En_BookBackmatter_Figar_HTML.gif
B
Set the cptimisation level to N. The
optimisation
levels are:

—o0

o optimisation. This is the default,
is recommended when debugging.

—o1

Minimal quick optimisation.

-0z

Normal optimisation.

—03

Further optimisatioa.

—o4

Maximal optimisation.

and

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figt_HTML.gif
public

calendar_to_julian, &
date_, &
date_to_day_in_year, &
date_to_weekday_number, &
get_day, &
get_moath, &

get_year, &

Julian_to_date, &
Julian_to_date_and_week_and_day, &
adays, &

print_date, &

vear and day_to_date

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figd_HTML.gif
nodule shape_module

type shape_type

integer
integer

contains

procedure,
procedure,
procedure,
procedure,
procedure,
procedure,

(this)
(this)
(this)
(this)
(this)
(this)

ead type shape_type

contains

include ‘shape_module_include_code.£90"

cnd module shape module

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figp_HTML.gif
type (shape_types)

shape_type (10, 20

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figan_HTML.gif
nodule date _wrapper_module
use date_module
type date_wrapper
class (date], allocatable :: date

ead type date_wrapper

end module date wrapper module

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figl_HTML.gif
http:/ /www. fortran. com/

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ152.png
argument: 1 type:i
argument: shift type:i
result: same as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ151.png
argument: 1 type:i
argument: shift type:i
result: same as 1 class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ150.png
argument: source type: any
result: 1 class:i

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figm_HTML.gif
iateger :: ar,nc,at

parameter

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figb_HTML.gif
real

dimensionl.

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figb_HTML.gif
prant 100, t,t*12

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq17.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq16.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq19.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq18.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq13.png
A <O

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq12.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq15.png

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq14.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ145.png
argument: string type:s
result: i class: e

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figm_HTML.gif
gtortran

IEEE support for default precision

array size 10000000 10,000,000
Computed sum 0.1000E+08
Real sum 0.1000E+08
Array size 100000000 100,000, 000
Computed sum 0.1000E+08
Real sum = 0.1000E+08

inexact arithmetic
in the summation
program terminates

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ144.png
argument: x type: r
argument: 1 type:i
result: as x class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ143.png
argument: x type: r
result: as x class: e

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq11.png
A>0

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ142.png
< O
on O
N O
— N

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figr_HTML.gif
include ‘precision _module.L3aldt
nodule ge_module
use precision_module, wp => dp

implicit noae

contains

subroutine gaussian_elimination(a, na, b,
singular)

! routine to solve a system aw

! using gaussian elimination
! with partial pivoting

! the code is based on the limpack routines
! sgefa and sgesl

! and operates on columas rather thaa rows!

implicit noae

! matrixz a and vector b are over-written

! argumeats

integer, intent (ia) :: a

real (wp), iateat (inout)

real (wp), iatent (out)
logical, inteat (out)

singular

! local variables

integer

i, 3, k, pivot_rou

real (wp) :: pivot, sum, element

real (vp), parameter

eps = 1.e-13_p

! work through the matrix colum by columa

dok=1,na-1

' f£ind largest element in columa k for pivot

pivot_ror = maxval (naxloc (abs (a(k:n k)))) &
P

' test to see if a is siagular

' if so retura to main program

if (abs(a(pivot_row k)) <=eps| thea
singular = .true.
retura

else
singular = .false.

end if

' ecxchange elements in column k if largest

' a0t oa the diagoaal

if (pivot_row/=k) then

element = a(pivot_row, k|

vot_row, k) = a(k, K
elemeat

= b
b(pivot_rou)
b(k) = element

ead if

' compute multipliers
' clemeats of columa k below diagonal
' are set to these multipliers for use
' in elimination later oa

alktlin, k) = a(kHl:

LK) /alk, k)

' row elimination performed by columas for
' efficiency

doj=k+1,a
pivot = a(pivot_row, 3)
) thea

if (pivot_row

' swap if pivet row is mot k

apivet_row, 3) = a(k, 3l
alk, j) = pivet

ead if

a(ktlia, §) = a(k+la, j) - &

pivot’a(k+lia, k)
eod de

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Chapter_TeX_IEq10.png
n =20

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ149.png
argument: x type: r
argument: 1 type:i
result: as x class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ148.png
argument: p and r type:i
result: i class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ147.png
argument: r type:i
result: i class: t

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figv_HTML.gif
http:
Comparison of revision control software

/en.wikipedia.org/wiki/

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ146.png
argument: name type: char
result: i class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ141.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ140.png
argument: source type: any
result: as source class:t

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figv_HTML.gif
program chllUs
implicit noae

character *20, dimension (8) :: file name = (/ &
‘cardiffdata.tzt ‘, ‘eastbournedata.txt ! &
, ‘lerwickdata.tst 1, &
‘leucharsdata.txt ', ‘nairndata.txt ‘e
, ‘paisleydata.tzt ', &
‘rossonvyedata.tzt !, ‘valleydata.tst ‘e
N

integer, parameter :: amoaths = 12

integer, dimension (l:amoaths] :: year, moath

real, dimension (1:amoaths)

raiafall, &

sunshine

real :: rain_sum
real :: rain_average

real :: sun_sum

real :: sun_average

integer :: i, 3

character *80 :: fmtl = ' (3x,id,2x,i2,3x,4x, 45, &

4, 43, 43, 3%, £5.1, 3%, £5.1)

doj=1,8
opea (unit=100, file=file name(3j), status='old’)
doi=1,7

read (unit=100, fmt=" (a)’)
ead do
if (§==5) then

read (unit=100, (@)
ead if
do i =1, amonths

read (uwnit=100, Emt=fmtl) year(i), &
moath(i), rainfall (i), sunshine (i)

ead do

close (100)

rain_sum = sun(rainfall]/25.4

sun_sum = sum(suashine)
rain_average = rain_sum/amoaths
sun_ sun_sum/amonths

write fmt=" (//,"Station = ",a,/)) &
file_name (3)

write (uait=", fmt= &
‘(2x,70start ‘,14,22,i2)7) year(l), &
moath (1)

write (uait=", fmt= &
f(2x,7'Ead '7,14,23,12)7) year(12), &

moath (12)
write (unit=t, fmt

100)
100 format (18x, ' Yearly Meathly’, /, 18x, &

¢ sum average’)
v, g

write (unif 110) rain_sum, &
rain_average

110 format (‘Rainfall (iaches) ', £7.2, 2, &

£.2)
write (unit=", fmt=120] sua_sum, sun_average
120 format (‘Suashine v, £7.2, 23 &
£.2)
ead do

end program chl005

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figb_HTML.gif
1ess_invalid
ieee_overflow

ieee_div

de_by_zero
ieee_underflow
jeee inexact

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figl_HTML.gif
write (print_date(/:10), 7(14)7) thiswsyear
else
if (want_day) thea
pos = date_to_weekday_nutber (this)

print_date = trim(day(pos)) // '
pos = len_trim(priat_date) + 2

else
pos = 1
print_date = ¢

ead if

write (print_date(pos:pos+l), ' (i2)’) &
thissday

if (want_short_month_name) thea

print_date (pos+3:pos+5)
moath) (1:3)
pos = pos + 7

month (thiss &

else
print_date (pos+3:) = month (thismonth)
pos = len_trim(priat_date) + 2
ead if
write (print_date(pos:pos+3), ' (il)’) &
thissyear
ead if
retura

end function print_date

nodule subroutine set_day(this, d)
implicit noae
integer, intent (ia) :: d

class (date], intent (imout) :: this

thistday = d
ead subroutine set_day

nodule subroutine set_moath(this, m)
implicit noae

integer, intent (ia) :: m

class (date], intent (imout) :: this

thistmonth = =

end subroutine set_moath

nodule subroutine set_year (this, y)
jmplicit nene

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figm_HTML.gif
program chUau’
implicit noae

integer ::
rl = 1.23456
r2 = 1.23456

real

real

doi=1, 10
priat 100, i, rl, 2
£l = r1/10.0
r2 = r210.0
ead do
100 format (/ ‘, i3, © 1, el2.4, ¢ 7, el2.4
end program ch0907

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figq_HTML.gif
https: //www.roguewave .com/

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ139.png
argument: string type:s
result: s class: t

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figm_HTML.gif
real , daimension(

real . dimension(

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ134.png
argument: size type:i
result: n/a class: s

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ133.png
argument: harvest type:r
result: n/a class: s

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ132.png
argument: repeatable type:1
argument: image__ distinct type: 1
result: n/a class:e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ131.png
argument: x type:i, r
result: i class: i

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figg_HTML.gif
httoz: / /www.nag.co.uk/nag-comoiler

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ138.png
argument: array
argument: operation
argument: mask
argument: identity
argument: ordered
argument: dim
result: ?

type: ANY
type: See notes
type:1

type: n

type: n

type: n

class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ137.png
argument: a type: n
result: r class: e

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figg_HTML.gif
loduls

implicit noae

nodule fual x

contains
subroutine fual(t, y, £, a)
use precision_module, wp => dp
implicit noae
real (wp), iateat (in), dimeasion

real (wp), iateat (out), dimension

real (wp), iateat (in) :: t
integer, intent (ia) :: a
£(1) = tan(y(3))

£(2) = -0.032_wp*E(1) /v (2) - &

0.02_vp*y (2) /eos (v (3]
£(3) = ~0.032_up/ (y(2) 'y (2))
ead subroutine funl

end module fual module

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ136.png
argument: a type: n
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ135.png
argument: x type: n
result: i class: i

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figw_HTML.gif
#include <iostream>
using namespace std;
extern "C" float summation(float *,int |;
iat maia()
t

const int a=10;

f£loat *x;

iat i;
x = new float[al;
for (i=0;i<n;it+)
=[i]=1.0f;
cout << " C++ calling Fortran" << eadl;

cont endl;

eadl;

1 d array as parameter”

cout << " Sum is "

summation (x,a)
retura(0);

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figad_HTML.gif
function function_name ([dummy argument name list ||

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ130.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figt_HTML.gif
nodule factorial moduls
implicit noae

contains
recursive integer fuaction factorial(i) &
result (answer)
implicit noae

integer, intent (in)

ansver = 1

else
ansver = i*factorial (i-1)
ead if
ead fuaction factorial

ead module factorial module

program ch1208
use factorial_module
implicit noae

integer :: i, £

print *, ‘ type in the number, integer oaly’

read +, i
do while (i<0)

priat *, ' factorial only defined for '

print *, ‘ positive iateger

re-input’
read 4, i

ead do

£ = factorial (i)

priat *, ' answer is’, f

end program ch1208

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figo_HTML.gif
nodule tres _nodes_moduls
implicit noae

type tree_node

integer :: aumber
type (tree_node], pointer :: left = null(), &
right => aull()

ead type tree_node

ead module tree_node_module

nodule tree_module

implicit noae
contains
recursive fuaction tree(s) result (answer)

use tree_node_module
implicit noae

integer, intent (ia) :: a
type (tree_node], pointer

type (tree_node], pointer

aev_node

integer :: 1, 1,

thea
print *, ’ terminate tree’
aullify (answer)

else
1=a/2

priat *, 1, ¥, a
print *, ’ next item'

allocate (new_node)
aew_nodetaumber = x
print *, left branch’
aew_nodetleft => tree(l)
print *, ' right brasch’
aew_nodetright => tree(r)
answer => nev_node
ead if
print *, ' fuaction tree eads’
ead fuaction tree

ead module tree_module

nodule print_tree_module
implicit none

contains

recursive subroutine print_tree(t, h)
use tree_node_module
implicit noae

type (tree_node], pointer :: t
integer :: i

integer :: h

if (associated(t)) thea

call print_tree(tsleft, hil)
doi=1,h
write (unit=", fat=100, advanc
ead do
print *, tiaumber
call print_tree(tSright, htl)
ead if
100 format (* ')

a07)

ead subroutine print_tree

ead module priat_tree_module

program ch2205
! construction of a perfectly balanced tree
use tree_node_module

use tree_module

use print_tree_module

implicit noae

type (tree_node], pointer :: root
integer

a_of_items

print *, ‘enter aumber of items’
read *, n_of_items
root => tree(n_of_items)
call print_tree(root, 0)

end program ch2205

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figd_HTML.gif
1959
1559
1559
1559
1559
1559
1559
1559
1559
1s59
1559
1559
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1960
1961
1961
1961
1961
1961
1961
1961
1961
.

tmin at

degc days
ey 20
0o 15
E 3
3.7 1
5.8 1
8.2 o
5.5 o
0. o
5.9 o
7.9 1
3 3
25 3
06 15
03 17
2. 4
2.6 7
6.5 2
8.2 o
0.3 o
0.1 o
7.9 o
5.3 s
2.9 s
04 13
02 1
2.9 2
2.1 10
5.0 1

144,
2.

130.
&6.
&6.

L1

Lis.

s

hours
57.2
7.
aL.
107,
213,
209,
167
L6
19,
lot.
38.
1s.
30.
s0.
73.
146..
153
225,
1.
119,
120,

37.
3.
N
is.

102..
83.

1730

190..

149,

106..
g

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ129.png
argument: array type: n
argument: dim type:i
argument: mask type: 1
result: as array class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ128.png
argument: a type: any
result: | class:i

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figi_HTML.gif
tunction print_date(this, day _names, &
short_moath_name, digits)
implicit noae

class (date), inteat (ia) :: this

logical, optional, inteat (ia] :: day_names, &
short_moath_name, digits
character (40)

print_date
integer
logical

: pos

want_day, vant_short_moath_name, &
want_digits

intrinsic lea_trim, preseat, trim

waat_day = .false.

want_short_month_name = .false.

want_digits = .false.

print_date = ¢

if (present (day_names)) then
want_day = day_names

ead if

if (present (short_month_name)) thea

want_short_s
ead if
if (present (digits)) then

onth_name = short_month_name

want_digits = digits
ead if
if (want_digits) thea

write (print_date(1:2), ’(i2)’) thisbday
print_date(3:3) = '/’
write (print_date(4:5), (i2)’) thistmoath
print_date(6:6) = '/’
write (print_date(7:10), ' (id)’) thisbyear
clse

if (want_day) thea
pos = date_to_weekday_nutber (this)

print_date = trim(day(pos)) // '
pos = len_trim(priat_date) + 2

else
pos = 1
print_date = *

ead if

write (print_date(pos:pos+l), ' (i2)’) &
thissday

if (want_short_month_name) thea
print_date (pos+3:pos+5) = month(this$ &

moath) (1:3)

pos = pos + 7

else
print_date (pos+3:) = month (thismonth)
pos = len_trim(priat_date) + 2

ead if

write (print_date(pos:pos+3), ' (il)’) &

thissyear
and if

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figj_HTML.gif
Y oY_number)
call mpi_finalize(

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figak_HTML.gif
typs

(circle_type)

function &

circle_type_constructor (x,y,radius)

implicit
integer,
integer,
integer,

intent (i) :: %
inteat (in) v
intent (in) :: radius

call circle_type_constructor¥set (x)

call circle_type_constructor¥set_y (y)
circle_type_constructoriradins_=radius

end function circle type constructor

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ123.png
argument: array type: any

argument: mask type: 1

argument: vector type: same type as array
result: as array class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ122.png
argument: x type:i,r
argument: mold type:i, r scalar
argument: round type: | scalar
result: | class: e

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figa_HTML.gif
https: //wgb-fortran.oxg/

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ121.png
argument: none

argument: team type: te
argument: team_ number type:i
result: i class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ120.png
argument: mold type: p
result: as argument class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ127.png
argument: x type: 1,
result: 1 class:i

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figaf_HTML.gif
want_day = .false.

want_short_month_name = .false.
want_digits = .false.
print_iso_date = '
if (present (day_names)) then
want_day = day_names
end if
if (present (short_month_name]) then
want_short_month_name = short_month_name
end if
if (present (digits)) thea
want_digits = digits
end if
year moath day
if (vant_digits) then
write (print_iso_date(1:4), ' (id)’)

thistget_year ()
print_iso_date (5:5) = '/’
write (print_iso_date(6:7), ' (i2)')
thistget_month (]
print_iso_date (8:8)
write (print_iso_date(3:10), ' (i2)7) &
thistget_day ()
clse

pos = 1

write (print_iso_date (pos:pos+3), ' (id)’) &
thissget_year ()
pos = pos + 5
if (want_short_month_name) thea
print_iso_date (pos:pos+2] &
moath (thislget_moath()) (1:3)

pos = pos + 4

else
priat_iso_date (pos:| = month (thist &
get_month())
pos = len_trim(priat_iso date) + 2
end if

if (want_day) thea
t = date_to_weekday_number (this)
1 = len trim(day (t))
print_iso_date (pos:pos+l] = trim(day(t])
pos = pos + 1 + 1
ead if
write (print_iso_date (pos:
thissget_day ()
ead if

os+1), 1 (i2)1) &

ead fuaction print_iso_date

function year_and_day_to_iso_date(year, &
day_in_year)
use day_and_moath_name_module
implicit noae
type (iso_date)

year_and_day_to_iso_date

integer, intent (in) :: day_in_year, year
integer :: t

intrinsic modulo

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ126.png
argument: 1 type:i
result: 1 type: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ125.png
argument: 1 type:i
result: i class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ124.png
argument:mask
argument:dim shall be an
integer scalar in the range
1 <= dim <= nwheren
is rank of mask.

type: 1 array

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figx_HTML.gif
raiatall = &

real , dimension(l:n) ::
(/3.1,2.0.2.4,2.1.2.2,2.2.1.8,2.2.2.7.2.9.3.1, 3.1/

OEBPS/images/112282_4_En_27_Chapter/112282_4_En_27_Figk_HTML.gif
nodule pdt_matrix module

use precision_module
implicit noae

type pdt_matrix(k, row, col)
3

integer, lea :: row, col

real (kind=k), dimension (row, col)

integer, kiad

ead type pdt_matrix

interface scale_matrix

module procedure scale matrix

module procedure scale s
ead interface scale_matrix

contains

subroutine scale_matrix_sp(a, scale]
type (pdt_matriz(sp,*,*)), inteat (inout]

real (sp) :: scale

atm = adm + scale

ead subroutine scale_matrii_sp

subroutine scale_matri.

dp(a, scale

type (pdt_matriz(dp,*,*)), inteat (inout]

real (dp) :: scale

atm = adm + scale

ead subroutine scale_matrix_dp

cnd module pdt.

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figar_HTML.gif
1 1mperial gallon = 4.92539b6 litres
1 mile = 1 60034 kilcmetres

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figf_HTML.gif
nodule statistics module

implicit noae

contains
subroutine stats(x, a, mean, std_dev, median
implicit noae

integer, intent (ia) :: a

real, inteat (in), dimension (:)
real, intent (out)

std_dev
median

real, intent (out)
real, intent (out)

real, dimension (

sumei = 0.0
0.0
variance = 0.0

sumei2

sumei = sum(x)

sumei2 = sum ()

riance = (sumsi2-sumsi*sumsi/a)/ (a-1)
std_dev = sqrt (variance)
y=x
if (mod(n,2)==0] then
median = (find(n/2)+find((a/2)+1)) /2
else
median
ead if
contains

£ind ((2/2)+1)

real function fiad(k)
implicit none

integer, inteat (in)

integer :: 1, ¥, i, 3

real :: tl, t2
1=1
do while (1<x)
=y (k)
i=1
3=z
do
do while (y(i)<tl]
i=i41
end do
do while (t1<y(3)]
3=3-1
end do
if (i<=j) thea
€2 =y
y(i) =y
y(3) =2
i=i41
3=3-1
end if
if (i3) exit
end do
if (3<K) then
1=
end if
if (ki) then
=3
end if
end do
find = y (k]

ead fuaction find
ead subroutine stats

end module statistics module

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figc_HTML.gif
character (l0) :: a

character (16) :: string

~haracter (80) :: line

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ119.png
argument: 1 type:i
result: as 1 class: e

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figk_HTML.gif
Pyomp end parallel do

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Fign_HTML.gif
program chiils
use omp_lib
implicit noae
athreads
thread_number

integer
integer

integer

athreads = omp_get_max_threads ()

Humber of threads = , athreads

priat *,
{5emp parallel do
do i =1, athreads
thread_auaber = omp_get_thread_aun ()
priat *, ¢ Hello from thread /, &
thread_nuzber
end do

I5omp end parallel do end program ch3302

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ118.png
argument: x type:r
argument: dim type:i
result: r class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ117.png
argument: a type: r
result: i class: e

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figk_HTML.gif
close (100)

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figas_HTML.gif
program chlsll
implicit noae
integer, parameter :: dp = selected real kind(&
15, 307)
real, parameter

pi = 3.1415926535897931

real (dp), parameter :: pid = &
3.1415926535897931_dp

area, r = 2.0

aread, rd = 2.0_dp

real

real (dp)

area = pitrir
aread = pidird'rd
priat 100, r, rd

100 format (‘r =, £22.18, /, 'xd =7, &
£22.18)
priat 110, area, aread
110 format (‘area = ', £22.18, /, ‘aread = /, &
£22.18, /, 16z, ' #:i3e0)

end program ch0511

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_Figf_HTML.gif
http:

docview.wss 2ui

fwww-01.1bm.com/support /
wg27036673

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ112.png
argument: a type:i, r
argument: b type: as a
result: as arguments class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ111.png
argument: array type:ir, s
argument: mask type: 1
argument: dim type:i
result: as array class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ110.png
argument: array
argument: dim
argument: mask
argument: kind
argument: back
result: i

type:ir, s
type:i
type:1
type:i
type:1
class:t

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figx_HTML.gif
select case (case variable |
[case case selector

[executable coastruct] ... |

[case default
[executable construct 1
<nd select
do
do [label 1
[exccutable construct 1
do termination
do [label 1 [,] loop variable =
initial value , final value , [
increment]
[exccutable construct 1
do termination
do [label 1 [,] vhile
(scalar logical ezpression)
[exccutable construct 1
do termination
if
if (scalar logical expression | then
[exccutable construct
[else if (scalar logical expression
[exccutable construct 1 ... 1 ...]
[else
[exccutable construct 1 ...]
ond if

then

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ116.png
argument: a type: char
result: char class:i

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figf_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ115.png
argument: x type:r
argument: next type:r
result: as x class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ114.png
argument: from
argument: frompos
argument: len
argument: to
argument: topos
result: n/a

type:i
type:i
type:i
type:i
type:i
class:s

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ113.png
argument: a type: i, r
argument: b type: as a
result: as a class: e

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figu_HTML.gif
DO CONCURRENT (I=1:10, J=1:10, &
A(I) > 0.0 .AND. B(J) < 1.0)

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figaa_HTML.gif
oid reciprocal (1at arow, int ncodl,
float matrixl[arow][acol],
float matrix?[arow] [acol])

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figao_HTML.gif
LdE

! Select a central slemeat of the array and savs
L it ia location T

13
«

L),)
1x013)

| If first slemeat of array i greater than T
! isterchasge with T

i€ (x(1)56) thea

12013) = ix()
1) = e
= axaa)
na it
1=

| If last slemeat of array is less thaa thaa T,
! isterchasge with T

if @n(3)<t) thea
12013) = 1x03)
(i) =t
£ =linaa

| If first slemeat of array i greater than T
! isterchasge with T

i€ (x(1)56) thea

12013) = ix()
1) = e
= axaa)
na it
nd it

| Fizd an slemeat in the second half of the
! array which is smaller
! thaa T

OEBPS/images/112282_4_En_11_Chapter/112282_4_En_11_Figa_HTML.gif
program chllUl
implicit noae

integer :: filestat
real :: x
character (len=20) :: which
do
write (unit=s, fmt= &
‘("data file aame,or ead")’)
read (unif £mt="(a)) vhich
if (which=='ead’) exit

opea (unif
status='old")

if (filestat>0) thea
priat *, &

hich, iostat=filestat,

‘error opeaing file, please check’
stop
ead if

read (unif

write (unif

close (unit=1)

ead do

100 format (£6.0)
110 format (‘frem file /, a, '

. £8.2)
end program ch1101

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figi_HTML.gif
real (¢ float), i1ntenti(in)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ109.png
argument: x type: r
result: i class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ108.png
argument: al type:i, r, s
result: as arguments class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ107.png
argument: i type:i or boz
argument: j i or boz

argument: mask i or boz

result: same as 1 if integer, otherwise same as j.

class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ106.png
2
result = (

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Fign_HTML.gif
nodule statistics module

use precision_module

interface calculate_statistics
module procedure calculate_sp
module procedure calculate_dp
module procedure calculate_qp

ead interface caleulate_statistics

contains

subroutine calculate sp(x, n, mean, std dev, &
median)
implicit noae
integer, intent (in)

real (sp), iatemt (in), dimeasion (:)

real (sp), iateat (out) :: mean
std_dev
median

v

real (sp), iatent (out)

real (sp), iatent (out)
real (sp), dimension (l:a)

real (sp) variance

real (sp)

sumei, sumxi2

sumei = 0.0
sumei2 = 0.0

variance = 0.0

sumei = sum(x)

sumei2 = sum ()

variance = (sumi2-sumsisumsi/n)/ (a-1)

std_dev

sqrt

ariance)
y=x
if (mod(n,2)==0] then
median = (find(n/2)+find((a/2)+1)) /2
else
median = £ind((2/2)41)
ead if
contains

function £ind(k)
implicit none
real (sp) :: find
integer, inteat (in)

integer :: 1, ¥, i, 3
real (sp) :: t1, t2
include ‘statistics_module_include_code. £90"

ead fuaction find

ead subroutine calculate_sp

subroutine calculate dp(x, n, mean, std dev, &
median)
implicit noae
integer, intent (in)

real (dp), inteat (in), dimension (1)

std_dev
median
v

real (dp), intent (out
real (dp), intent (out

real (dp), intent (out
real (dp), dimension (1:a)

real (dp) ariance

real (dp) :: sumsi, sumsi2

sumei = 0.0
sumei2 = 0.0

variance = 0.0

sumei = sum(x)

sumei2 = sum ()

variance = (sumi2-sumsisumsi/n)/ (a-1)

std_dev

sqrt

ariance)
y=x
if (mod(n,2)==0] then

median = (find(n/2)+find((a/2)+1)) /2
else

median = £ind((2/2)41)
and if

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ101.png

OEBPS/images/112282_4_En_17_Chapter/112282_4_En_17_Figb_HTML.gif
typs typenams
data type

component _name
ete
cnd type typename

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figap_HTML.gif
1t (this_process_number==0) then
do i =1, number_of processes - 1

(factor'T) + 1

call mpi_recv (x(rec

recv_start

_start), &
factor,mpi_integer, i, 1, 7pi_comm_world, &
status ,error_number)

ead do
SPS
call mpi_send (x(start), factor, &
mpi_integer, 0, 1,mpi_com:
ond if

world, error_number!

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ100.png
argument: array
argument: dim
argument: mask
argument: kind
argument: back
result: i

type:ir, s
type:i
type:1
type:i
type:1
class:t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ105.png
11

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ104.png
argument: true type: any
result: as true class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ103.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ102.png
argument: array type:ir, s
argument: mask type: 1
argument: dim type:i
result: as argument class: t

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figl_HTML.gif
module met_oiiice station_module
implicit nons

type station_tyse

intager :: year
intsger :: month
real i: tmax

real :: tmin
intager :: af_days
real :: rainfall
real :: sunshine

end ty3e station_type
! limber of stations

intsger, parameter :: n_stations = 37

! Wamber of lines per station, read in later

intager, dimension (n_stations) :: al = 0

! Sits names

character *15, dimension (n_stations)

sits_name = (/ ’absrsorth e

*armagh Y, 'ballysatrick 7, &
“bradford *} brasmar e
 cambozne | ‘cambridge e
fcardi £F , "chivenor e
[E— . ‘dumstaffnage ‘, o
 durhan | "eastbourns e
‘eskdalemuir 7, ‘heathrow e
“hurn | lerwick e
“Leuchars | lowestoft e
“manston } "nain e
“newtonrigy | rouford e
‘aisley . ‘ringway n e
* rossomye . “shavbury n e
‘cheffield | ‘couthampton 7, &
*stornovay . “suttonbonington’, &
‘tires . rvalley Y e
*vaddington | whithy "e
‘wickairsort . ryeovilten o

! Station data fils namss

character *23, dimension (n_stations)
station data _file name = (/ €
*abersorthdata. txt .
* armaghdata. txt .
‘ballysatrickdata.txt ',
‘bradforddata. txt .

‘brasmardata.txt .

* cambornedata. txt .
* cambridgedata. txt .
s cardiffdata. txt .
* chivenordata. txt .
+ cmystiythdata. bt .
‘dunstaffragedata.txt ',
* durhandata . txt .
*castbournsdata. tit .
+ eskdalemuirdata. txt .
‘heathrovdata. txt .
“hurndata txt .
‘lerwickdata.txt .
‘leucharsdata. txt .
‘lowestoftdata.txt .
“manstondata. txt .
‘nairndata. txt .
‘newtonriggdata. txt .
s oxforddata. txt .
‘aisleydata.txt .
“ringraydata.txt .
* rossonvyedata. txt .
* shawburydata. txt .
‘shefficlddata.txt .
* southamstondata . txt .
*stornovaydata. txt .
*suttonboningtondata. txt’
‘tirssdata.tat
‘valleydata.txt
‘vaddingtondata. tit
*vhitbydata. txt
‘wickairsortdata.tut
*yeoviltondata.txt /

! cumystwyth 1959 - 2011
! ringuay 1946 - 2004
| couthamoton 1855 — 2000

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figq_HTML.gif
e

101c12
£u

- fu
102a13
103a13

105d13

12015

122d15

12415

126, 12

134c16

140617
< fu

- fu
143¢17

get_year = utyear

get_year = thistyear
s

action julian_to_date(julian) result (x)

action julian_to_date(julian)
1
type (date)
3

Julian_to_date

4
type (date] :: x 110,116c139,148
=¥year = 4000+ (1+1) /1461001
1=1 - l46lrxtyear/d + 31
#3month = 80%1/2447

s%day = 1 - 24474x%moath/80

1 = x¥moath/11

s3month = xmoath + 2 - 1241
s¥year = 100% (a-48) + x%year + 1
Julian_to_datetyear = (4000* (1+1) /1461001

1=1 - 1461*julian_to_datelyear/d + 31

julian_to_date¥month = (80*1/2447)

julian_to_date¥day = (1-2447+julian_to_dated
moath/80)

1 = julian_to_datemoath/1l

julian_to_date¥month = (julian_to_date¥month
42-1241)

julian_to_date¥year = (100%(a-49)+ &
Julian_to_datetyear+l)

2

2, wd, ddd)

d, wd, ddd)

3

integer, inteat (out)
5,156

type (date], iateat (out)

ddd, wd

type (date], inteat (out] :: d
integer, intent (out) :: wd, ddd
8c158,160

= = julian_to_date(jd)

wd = date_to_weekday_number (x)
ddd = date_to_day_in_year (x)

d = julian_to_date(jd)
wd = date_to_weskday_number (d)
ddd = date_to_day_in_year (d)

6
type (date], iateat (in) :: datel, date?
class (date], intent (ia] :: datel, date?
2

action print_date (s, day_names, &

action print_date(this, day_names, &
5
type (date], iasteat (in) :: x

class (date), iateat (ia) :: this

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figj_HTML.gif

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figao_HTML.gif
nagtor, cpeasuse liaux

aagfor - ch3511.£90 -o ch3511_nag.o

nagfor ch3511.c: ch3511 _nag.o

OEBPS/images/112282_4_En_BookBackmatter_Figi_HTML.gif
integer, codimension[:
Allocate(a[2:3,7:*])

1, allocatabl

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figq_HTML.gif
Ao 17

first=a(i) (1:1)
ernd do

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figc_HTML.gif
http:/ /www.openmp.org/resources/openmp-complilers/

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figg_HTML.gif
program chifls

implicit noae

iateger :: i
character (len=20) :: aame [*] = ‘*44ra

print 100, name, this_image ()

if (this_image(

) then

¢ Type ia your aame’

priat +,
read *, name

do i =2, num_images ()
same [i] = name
ead do
ead if
syac all

print 100, name, this_image ()

100 format (lx, * Hello ‘, a20, ' from image ', &
i3)

end program ch3402

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figm_HTML.gif
do concurrent
block of statements
e ndde

OEBPS/images/112282_4_En_BookBackmatter_Figai_HTML.gif
/check:all
cnables the following
check arg_temp_created

Enables rua-time checking oa vwhether actual arguments are
copied iato temporary storage before routine calls. If a

copy is made at run-time, an informative message is

displayed.
check assume

Enables rua-time checking oa vwhether the
scalar-Boolean-expression in the ASSUME directive is true
and that the addresses in the ASSUME_ALIGUED directive are
aligned on the specified byte boundaries. If the test is
_FALSE., a run-time error is reported and the exscution

terminates.
check bouads

Enables compile-time and rua-time checking for array
subscript and character substring expressions. Aa error is
reported if the expression is outside the dimension of the
array or the length of the string.

For array bounds, cach individual dimeasion is checked. For
arrays that are dummy arguments, oaly the lower bouad is
checked for a dimension whose pper bound is specified as *
or vhere the upper and lower bounds are both 1.

For seme intrinsics that specify a DIM= dimension argumeat,
such as LEOUND, aa error is reported if the specified
dimension is outside the declared rank of the array being
operated upon.

Oace the program is debugged, omit this option to reduce
executable program size and slightly improve rua-time
performance.

It is recommended that you do bounds checking on
unoptimized code. If you use option check bounds on
optimized code, it may produce misleading messages because
registers (ot memory locations) are used for bounds values.

check contiguous

Tells the compiler to check pointer coatiguity at
pointer-assignment time. This will help prevent programming
errors such as assigning coatiguous pointers to
aoa-contiguous objects.

check format

Issues the rua-time FORVARMIS fatal error vhea the data
type of an item being formatted for output does ot match
the format descriptor being used (for example, a REAL'
item formatted with an I edit descriptor).

With check noformat, the data item is formatted using the
specified descriptor ualess the leagth of the item canaot
accommodate the descriptor (for example, it is still an
error to pass an INTEGER*2 item to an E edit descriptor).

check output_coaversion

Issues the rua-time OUTCONERR continuable error message
when a data item is too large to fit in a designated format
descriptor ficld without loss of significant digits. Format
truacation occurs, the field is filled with asterisks (4],

and execution coatinues.
check poiaters

Enables rua-time checking for disassociated or
uninitialized Fortran pointers, unallocated allocatable
cbjects, and integer pointers that are uninitialized.

check stack

Enables checking on the stack frame. The stack is checked
for buffer overruns and buffer underruas. This option also
enforces local variables initialization and stack poiater
verification.

This option disables optimization and overrides any

opt imization level set by option O.

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figad_HTML.gif
1nteger

val (3]

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figu_HTML.gif
real , dimension(lOQ) :: walus

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figaz_HTML.gif
nodule c_iaterop moduls

use iso_c_binding

implicit noae

integer , parameter :: =80

contains

function f_to_c (fortran_striag)
implicit none

character (len=n, kind=c_char) :: £_to_c
character (len=a) :: fortran_string
integer :: £_length

f£_length = len trim(fortran_string)
if (£_leagth >= n) thea
£ leagth = 79
ead if
£ to_c = fortran_string(l:f_length
ead fuaction £_to_c

function c_to_f(c_string)
implicit none

character (len=a)

character (len=n, kind=c_char)
integer :: c_leagth

integer :: i

c_leagth = 1

ctof=' '

do i=1,n

if (e_string(izd)
c_leagth = c_length +1
ead do

c_null_char

c_leagth = c_length -1
c_to_f = c_string(l:

_length)
ead fuaction c_to_f

cnd module c_interop_module

// c_aull_char

c_to_f
e_string

) exit

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figaq_HTML.gif
://en.wikipedia.org/wiki/Calendar
://ea.wikipedia.org/wiki/List_of_calendars

//en.wikipedia.org/wiki/Date format by _country

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figh_HTML.gif
- Description of Paramsters
c DX - array of values to be sorted (usvally abscissas)

c DY - array to be (optionally) carried aloag

c U - suzber of values in array DX to be sorted

c KFLAG - control parameter

c = 2 means sort increasing order and carry DY
along.

c = 1 means sort DX in increasing order (ignoring DY)
c -1 means sort decreasing order (ignoring DY)
c = -2 means sort decreasing order and carry DY
2long.

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figr_HTML.gif
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

Lrom
from
from
from
from
from
from
from

process
process
process
process
process
process
process
brocess

of
of
of
of
of
of
of
of

processes
processe

processe

processe

processe

processe

processe

processes

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figae_HTML.gif
"

5\8&

L

bom/

012345

57891 ;<<
=>>2aABCD
EFGHIJKLM
OB QRSTUH
vz (V17 _tab
cdefghi jklma
opqrstuviyz\ |
L

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figw_HTML.gif
get_day
get_moath
qet_vear

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figav_HTML.gif
left hand_saide

right_hand_saide

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figx_HTML.gif
2015/ 3/12 13:16:55 738

fortran internal pi = 3.14159265358978
0 intervals = 1000000 time = 0.00C
pi = 3.1415926535899033

differeace = 0.0000000000001101

W intervals 10000000 time = 0.031
pi = 3.1415926535896861

differeace = 0.0000000000001070

W intervals = 100000000 time = 0.281
pi = 3.1415926535502168

differeace = 0.0000000000004237

W intervals = 1000000000 time = 2.871
pi = 3.1415926535897682

differeace = 0.000000000000024%

2015/ 3/12 13:16:58 922

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figi_HTML.gif
https: //www.linkedin.com/

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figm_HTML.gif
tnteger function get_x(this)
implicit noae

class (shape_type), inteat (ia) :: this

get_s = this¥x

-nd function get x

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figak_HTML.gif
/etc

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figr_HTML.gif
program chldals
implicit noae

integer, poiater > mull(), b = aull(]

integer, target
integer :: d

allocate (a)

a=1
c=2
b=c

d=a+b
priat *, a, b, ¢, d
deallocate (a)

end program chl1804

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq18.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq19.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq16.png
=31

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq17.png
-19

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq14.png

OEBPS/images/112282_4_En_24_Chapter/112282_4_En_24_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq15.png

OEBPS/images/112282_4_En_24_Chapter/112282_4_En_24_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figl_HTML.gif
nodule ragged_moduls
type ragged
real, allocatable, dimension (:) :: rainfall
ead type ragged
ead module ragged_module

program ch2204
use ragged_module
implicit noae
integer :: i

integer :: ar

integer, allocatable, dimeasion (:) :: ac
type (ragged), allocatable, dimension (:)
station

priat *, ¢

eater auzber of statioas’
read *, ar
allocate (station(l:ar))
allocate (ac(1:ar))
doi=1, ar
print *, ' eater the auzber of data values © &
, ‘for statioan ', i
read *, ac (i)

allocate (station(i)S$rainfall(

if (nc(i)==0) thea
eycle
ead if
priat *, ' Type in the values for station ', &

read *, station (i) ¥rainfall (l:nc(i))
ead do
* Row W Data’
doi=1, ar
print 100, i, nc(i), station(i)%rainfall(l: &
ac (i)
100 format (3, i3, 2%, i3, 23, 12(1x£6.2))
ead do
end program ch2204

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq12.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq13.png

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figq_HTML.gif
nodule ged _moduls
contains

cnd module ged.

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq10.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq11.png

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Chapter_TeX_IEq3.png
~100

OEBPS/images/112282_4_En_42_Chapter/112282_4_En_42_Figb_HTML.gif
nodule abstract function interface_module

abstract interface
real function £(i)
implicit none
integer , inteat (in)

ead fuaction £
ead interface

ead module abstract_function_interface_module

nodule £un01

implicit noae

contains

real fuaction £1(i)

implicit noae
integer, intent (in)

£1=1.0/1

ead fuaction £1

real function £2(i)

implicit noae
integer, intent (in)

£2 = 1.0/(i%)

ead fuaction £2

ead module fua0l

nodule £un02

use abstract_fuaction_interface_module

contains

real function £3(fua, i)

implicit noae
integer, intent (in)

procedure (£) :: fua

£3 = fun (i)

ead fuaction £3

real function £4(fua, i)

implicit noae

integer, intent (in)

procedure (£) :: fua

integer
real

dw0a=1,5
£t 4 fua(i)
end do
=t
end function £4
end module Fu02
progran cha201
use abstract_function interface module
use fun01
use fun02

implicit noae

procedure (£] , pointer

pl = £l

priat *, pl = £1, calling £3'
print *, £3(pl, 2)

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figg_HTML.gif
call mpi_comm_size(mpl_comm _world, &
qumber of processes , error mumber |

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Chapter_TeX_IEq1.png

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Chapter_TeX_IEq2.png

OEBPS/images/112282_4_En_20_Chapter/112282_4_En_20_Figc_HTML.gif

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figb_HTML.gif
use module nams

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figa_HTML.gif
taxable_incoms

gross_wage - personal allowance
cost = bill + vat + service

delta = deltax/deltay

area = pi * radius * radius

cube = big ** 3

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figar_HTML.gif
http://support .amd. com/en-us/search/tech-docs

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figa_HTML.gif
real , dimension(l:100)

wages
0000)

integer , dimension(

sample

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figr_HTML.gif
Processing ballypatrickdata.txt

Swmary of actual missing
valuss valuss
Janvary 28 2
Februoary 28 2
March 28 2
Aoril 28 2
vay 28 2
Juns 28 2
July 27 28
August 27 28
Sestember 27 28
Octobsr 26 2
Jri—— 28 2
Decembsr 27 28

Start date 1961 7

Rainfall monthly averagss over

< 56 years wwins
Janvary 133,76 5.2
Februoary 108.66 1.28
March 9551 3.76
Aoril 8712 3.43
vay 8126 3.20
June 87.10 3.43
July 20.06 3.55
August 10444 a1
Sestember oa.58 3.88
Octobsr 148,92 5.86
Jri—— 14629 5.76
December 146,13 5.75
Anual rainfall

averags 1327.85 s52.28

Bnd date 2006 6

Linss deleted

folloving linss truncatsd
to fit pags

absrsor ammagh ballysa bradfor

.57
a7
33
13
28
25
4
‘88
13
pn
2
Taa

.o0
L2s
27
18
o35
s
82
23
KR
‘20
“o0
s

.27
‘28
76
a3
‘20
a3
oss
o
_88
“86
76
.

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq29.png
0.25 = 107!

OEBPS/images/112282_4_En_31_Chapter/112282_4_En_31_Figh_HTML.gif
http://www.mcs .anl.gov/research/projects/mpi/

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq27.png
lp = p’l/Ipl

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq28.png
lp—p’l

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq25.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq26.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq23.png

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figw_HTML.gif
praint %, © priat_date test’

print *, ' Single parameter

s%priat_date ()

priat *, &
* day_names=false short_moath name=false
=¥priat_date (day_names=.false., &
short_moath_name=.false.)

priat *, &

day_names=true short_moath_name=false

=¥priat_date (day_names=.true., &
short_moath_name=.false.)

priat *, &

day_names=false short_moath_name=true

=¥priat_date (day_names=.false., &

short.

onth_name=.true.)

priat *, &

day_names=true short_month_name=true

true., &

=3priat_date (day_names:

short_moath_name=.true.)

priat *, * digits=trve ,

=3priat_date (digits=.true.)

¢ Test out a moath’

priat *,
yyvy = 1970
do dd = 1, 31
% = year_and_day_to_date (yyyy, dd)
priat *, xipriat_date (day_name

short.
ead do

onth_name=.true.)

-nd program ch2901

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq24.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq21.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq22.png
—-11

OEBPS/images/112282_4_En_41_Chapter/112282_4_En_41_Figc_HTML.gif
program chal _dislin Ul
use dislia
implicit noae
integer i 4, 3

! Total muzber of processors and heace data ! points
integer, parameter :: aprocs = 8

! lumber of percentage values from

' 103 —> 908 o

195s 1

! Total 10
integer, parameter
real, dimension (aa) (/ 0.1, 0.2, 0.3, &

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 /)

real, dimension (aprocs)

v

real, dimension (aprocs)

real, dimension (sprocs, aa)

ydata
integer :: ay
character *30 cbuf

integer

do i =1, nprocs
%(3) = real(i)
end do
! Andahl calculations. Stors in 2 d array and
! thea
! assiga to 1 d array for plotting.
do i =1, nprocs
do 3 =1, m
ydata(i, 31 = 1/((1-pp (3))+pp (3) /3)
end do
end do
! Urite the data to a file for verification

purposes

open (unit=10, file='andahl_table 08.txt’)
do i =1, mprocs
write (unit=10, fmt=100) x(i], &
ydata(i, 1:aa)
100 format (11(£7.2,2x))
ead do
close (10
call disini
call compli
call axspos (450, 1800)
call axslen (2200, 1400)
call name (‘lumber of processors’, /')
call name('speed up’, 'y')
call titlin('Plot of Andahls Law’', 1)
call titlin('8 Processors’, 3)
call labdig(-1, 'x')
call ticks(10, ‘xy')
call graf(1.0, 8.0, 1.0, 1.0, 1.0, 7.0, 1.0, &
1.0
call title
call xaxgit
call chacrv (/line’)
! Plot the curves. Copy from 2 d array to 1 d
! array
! before the call to curve.
doi=1, m
y = ydata(l:aprocs, i)
call curve(x, y, aprocs)
ead do
call legini(cbuf, 10, 3)
! Coordinates of the start of the legead
! for the curves.
ax = 500
ay = 450
call legpos (ax, ay)
call leglin(cbuf, ‘10%', 1)
call leglin(cbuf, /20%', 2)
call leglin(chuf, /30%', 3)
call leglin(chuf, ‘40%', 4)
call leglin(cbuf, /50%', 5)
call leglin(cbuf, /§0%', §)
call leglin(chuf, /70%', 7)
call leglin(cbuf, ‘80%', 8)
call leglin(cbuf, /90%', 9)
call leglin(cbuf, ‘953, 10)
call legtit (‘legend’)
call legend (chuf, 3
call disfin
end program chdl dislin 01

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq20.png

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ2.png
2
fall ai

1 dx
a)

an2
ani

ain

ap

ann

(X1
X2

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ1.png
y=J10.0

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ8.png

OEBPS/images/112282_4_En_21_Chapter/112282_4_En_21_Figm_HTML.gif
nodule personal moduls
implicit noae
type person
real :: weight
integer

age
character

gender
ead type persoa
ead module personal_module
nodule subs_module
use personal_module
implicit noae
contains
subroutine read data(data, so)
implicit noae

type (persen), dimeasion (

intent (out) :: data
integer, intent (out) :: 5o
integer :: i

priat *, ‘input mumber of patieats’
read +, no
allocate (data(1:mo))

doi=1, a0
print *, ‘for person ’, i
print *, ‘ueight 2
read *, data(i)Sweight
print *, ‘age 2’
read *, data(i)3age
print *, ’geader ?'
read *, data(i)gender
ead do
ead subroutine read_data
subroutine stats(data, no, m_a, f_aj
implicit noae

type (person), dimension (:), &
intent (in) :: data

real, inteat (out) :: m.a, fa
integer, intent (in] :: o
integer :: i, a0_f, ao_m
ma=0.0
fa=0.0
a0_f =0

-0
doi=1, a0

if (data(i) bgende:
data (i) $gender=="

) thea
aa a + data(i]$weight

qo_m = nom + 1

FoLor. &

clse if (data(i)%geader

data (i) $gender=="£/) then

fla=fa+data(i)sueight
q0_f = nof + 1

ead if
ead do
if (a0_m>0) thea
ead if

if (a0_£20) thea
fa=fa/mof
ead if

ead subroutine stats
ead module subs_module
program ch2103

use personal_module

use subs_module

implicit noae

type (person), dimension (:), allocatable
patieat
integer :: no_of_patieats

real

male_average, female_average

call read data(patient, no_of patients)

call stats(patieat, no_of patients, &
male_average, female_average)

print *, 'average male weight is ', &
male_average

print *, ‘average female weight is /, &
female_:

erage
end program ch2103

). allocatable,

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figd_HTML.gif
- data has now been read and stored 1n 2 linked
! lists. start at the begianing of x linked list
! and y liaked list and compare indices

! in order to perform inner product

curreat_x = root_x
curreat_y = root_y
do while (associated (current_s¥next))
do while (associated (current_y¥next) .and. &
curreat_y%index<curreat_x%index)

' move through y list

curreat_y = current_y%next
ead do

! at this poiat

! curreat_y%index >= curreat_x%index

! or 2ad list is exhausted

if (current_ydindex==curreat_s¥index) thea
inner_prod = inner_prod + current_:

value*
curreat_y%value
ead if
curreat.
ead do

curreat_x%aext

! print noa-zero values of vector x and indices

priat *, &

‘aon-zero values of vector x and indices

curreat_x = root_x
do while (associated (current_s¥next))
print *, curreat_stvalue, curreat_s%index
curreat_ =

ead do

curreat_x%aext

! print noa-zero values of vector y and indices

priat *, &

‘aen-zero values of vector y and indices:
curreat_y = root_y
do while (associated (current_y¥next))
print *, curreat_ysvalue, curreat_y¥index
curreat_y = current_y%next
ead do

! print out inner product

priat *, &

‘inner product of two sparse vectors is

inner_prod

-nd program ch2601

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ7.png
d
y2 —fz(y 1)

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figp_HTML.gif
12345678301234567330123456 /5301
i3 g12.4 g12.4

1 1.235 1.235
L1235 12.35
.1235E-01 123.5
.1235E-02 1235.
.1235E-03 12358405
.1235E-04 1235840
.1235E-05 12358407
.1235E-06 12358408
.1235E-07 12358409
193ER_08 1936F410

OEBPS/images/112282_4_En_19_Chapter/112282_4_En_19_Chapter_TeX_Equ1.png
ax* +bx+c=0

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ9.png
dy,
dt

= fn(, D)

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ4.png
S — N O AN —

I
1

on O n O O <

Il
=1

OEBPS/images/112282_4_En_16_Chapter/112282_4_En_16_Figi_HTML.gif
togical
£la
print 100, flag, .not.flag
100 format (2L3'

tlag

true.

OEBPS/images/112282_4_En_BookBackmatter_Figl_HTML.gif

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ3.png
(la(k, k)|, latk + 1, k)|, ...|a(n, k)|)

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ6.png
d
l :fl()/’t)

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Chapter_TeX_Equ5.png
X y= XiYi

~
Nagh

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figal_HTML.gif
00k = i

Select a ceatral slemeat of the array and save
it in location T

154+ (3
= axiy)
£y = ay(i3)

If first slement of array is greater thaa T,
iaterchange with T

i€ (@x()58) thea
ax(i3) = ax(i)
ani) = €
= axiy)
ay(i3) = ay (i)
ay(i) = by
£y = ay(i3)

na it

1=

IE last clemeat of array is less thas T,
iaterchange with T

if (@x(3)<t) thea
ax(i3) = ax(3)
asy) = ¢
£ = any)
ay(i3) = ay(3)
ay(3) = £y
£y = ay(i3)

If first slement of array is greater than T,
iaterchange with T

i€ (@x()58) thea
ax(i3) = ax(i)
ani) = €
= axiy)
ay(i3) = ay (i)
ay(i) = by
£y = ay(i3)

na it
nd it

Find an slemsat in the sscoad half of the
array which is smaller

! thaa T
SERYEEY
i€ (@x(1)58) go to 210

Find an slemeat in
which is greater

the £irst half of the array

! thaa T
20k =k 41
i (@200 <e) go to 220

Taterchange these slemeats

if (kesl) thea
e = axi)
(1) = axg)
an) = e
ey = ay(1)
ay(1) = ay)
aye) = ey
9o to 210

P

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figf_HTML.gif
tunction reciprocal(x) bind (e,
‘ reciprocal’|
use iso_c_binding
implicit none
real (c_float], iateat (in)
real (c_float)

reciprocal

reciprocal = 1.0/x
-nd function reciprocal

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figj_HTML.gif
.o ab.o 0.9
20,5 50.5 80.5
305 €0 5 a0 &

OEBPS/images/112282_4_En_25_Chapter/112282_4_En_25_Figk_HTML.gif
include ‘iateger_kind
include ‘precision_module.£90"
include ‘sort_data_module.£90"

program ch2501

use precision_module
use integer_kind_module
use sort_data_module

implicit none
integer, parameter :: a = 1000000
real (spl, allocatable, dimension (:)

integer (i32), allocatable, dimension (

integer :: allocate_status
allocate_status = 0
print *, ' Program starts’

allocate (x(1:a), stat=allocate_ status)

if (allocate_status/=0) then
print *, ' Allocate failed.’

priat *, ' Program terminates’
stop 10
ead if

priat *, Real allocate complete’

call random_number (x)

print *, ' Real array initialised’
call sort_data(:, a

print *, ' Real sort eaded

print *, ' First 10 reals’

write (uait=, fmt=100) x(1:10)
100 format (5(2x,214.6))

allocate (y(l:a), stat=allocate_ status)
) then
print *, ' Allocate failed.’

if (allocate_status/

priat *, ' Program terminates’
stop 10
ead if

y = iat (x*1000000)

deallocate (x)

print *, ' Integer array initialised’
call sort_data(y,)

* Sort eaded’

priat *,
priat *, ! First 10 integers’
write (uait=t, fme=110) y(1:10)

110 format (5(2x,110])
deallocate (y)

print *, ' Deallocate’

priat *, ' Program terminates’

end program ch2501

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figam_HTML.gif

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figx_HTML.gif
Error: chzolz.t3l, laine 2:
Constructor for type SHAPE_TYPE has value
for PRIVATE componeat ¥_

Errors in declarations,

a0 further processing for CH2802

[IAG Fortran Compiler error termination,

1 error]

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Figs_HTML.gif
prant 7, headingl (3)

allocate (x_dp(1:a), stat=allocate_status)

if (allocate_status/=0) then

priat *, Allocate failed. Program terminates'
stop 30
ead if

print 100, heading2 (1), time_differeace()
call random_number (x_dp)

print 100, heading2 (2), time_differeace()
call dsort (x_dp, x_dp, a, 1)

print 100, heading2 (3), time_differeace()

@’ &

write (unit=100, fm
‘First 10 64 bit reals’
write (uait=100, fmt=110) x_dp(1:10)

priat *, ' Program terminates’

call end_timing()

-nd program ch3802

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figc_HTML.gif
1nterface date
module procedure date_constructor
ard interface

OEBPS/images/112282_4_En_8_Chapter/112282_4_En_8_Figaa_HTML.gif
program chUsu’
implicit noae

integer, dimension (1:3)

integer :: result
==11, 3, 5]
y= 12 4, 61

result = dot_product (x, y)
print *, result

end program ch0807

OEBPS/images/112282_4_En_9_Chapter/112282_4_En_9_Figao_HTML.gif
FPants
1,750
3,500
5,250
7,000
8,750

10,500

12,250

14,000

15,750

17,500

10

Latres
0,571
1,143
1,714
2,286
2,857
3,420
4,000
4,571
5,143
5 714

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figu_HTML.gif
2 *

Pl

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figr_HTML.gif
character HMeaning
< read from file
. rite to file

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figh_HTML.gif
program chlUUz
implicit noae

integer, parameter :: a = 10
real, dimension (l:a) :: h
real, dimension (l:a) :: w
real, dimension (l:a) :: bmi

integer :: i
open (unit=100, file='chl001.cut’,status='old’)
doi=1,n
read (100, fmt='(1x,£5.2, 23, £4.1)7) h(i), &
w(i)
ead do
close (100)

bmi = w/ (W)
doi=1,a
write (unit=+, fmt=’ (lx, £4.1)) bmi(i)
ead do
end program chl002

OEBPS/images/112282_4_En_24_Chapter/112282_4_En_24_Figa_HTML.gif
nodule t_position
implicit noae
type position
integer t: x

integer

integer
ead type position
interface operator (+)

module procedure new_position
end interface operator (+]

contains
function new_position(a, b)
a, b

type (position), intent (in)
type (position) :: new_position

aew_positiondx = a¥x + bix
aty + biy
aevw_positiondz = a%z + bz

aew_positionty

ead function new_position
ead module t_position

program ch2401
use t_position
implicit noae
type (position) :: a, b, ¢

a%x = 10
10
10
20
20
20
c=a+b

priat *, a
priat *, b
priat *, ¢

end program ch2401

OEBPS/images/112282_4_En_33_Chapter/112282_4_En_33_Figq_HTML.gif
program chiils
use omp_lib
implicit noae

integer :: athreads
integer :: thread_number
integer :: i

athreads = omp_get_max_threads ()

priat *, * ‘

Humber of threads = , athreads
{$cmp parallel do private (thread_number)
do i =1, nthreads
thread_number = cmp_get_thread_num ()
priat *, ’ Hello from thread ', &
thread_number
ead do
t$cmp end parallel do
end program ch3303

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figap_HTML.gif
program chlsll
implicit noae
! real arithmetic

! 32 and 64 bit reals are normally available.
! The IEEE format is as described below.

! 32 bit reals 8 bit exponent, 24 bit mantissa
! 64 bit reals 11 bit exponent, 53 bit mantissa

real :: x

integer, parameter :: sp = selected real kind(&
6, 37

integer, parameter :: dp = selected real kind(&
15, 307)

integer, parameter :: qp = selected real kind(&
30, 201

real (sp) :: rsp

real (dp) :: rdp

real (qp) :: rop

priat *,

priat ¥, Real kind information’

priat ¥, ‘

priat *, ' kind mumber’

priat *, © ¢, Kiad(x), ¢ ¢, kiad(zsp), ' ', &
Kind(rdp), / /, kind(zqp)

print *, ' digits details’

priat *, © /, digits(r), ’ /, digits(rspl, &
‘¢, digits(rdp), '/, digits(rqpl

priat *, ’ epsilon details’

priat *, © ‘, epsiloa(r)

priat *, © /, epsiloa(rsp)

print *, © /, epsiloa(rdp)

print *, * /, epsiloa(rgp)

priat *, ' huge value’

priat *, © ‘. huge(r]

priat *, * ‘. huge (rsp)

priat *, * ‘. huge (rdp)

priat *, © ‘. huge (rgp)

priat *, ’ maxexpenent value’

priat *, ' !, maxexponent (]

priat *, * /, maxexponent (rspl

priat *, © /, maxexponent (rdpl

priat *, * /, maxexponent (rqpl

priat *, ' minexpenent value’

priat *, '/, minexponent (]

priat *, * /, mincxponent (rspl

priat *, © ‘, mincxponent (rdpl

priat *, © /, mincxponent (rqpl

print *, ' precision details’

priat *, © , precision(r), ' ', &

precision(rsp), ' /, precision(xdpl, ' ', &

precision (rqp)

priat *, ' radix details’

priat *, © ¢, radiz(r), ' ', radix(rspl,

, radix(rdp), ’ ', radiz(rqp)

priat *, ' range details’
priat *, ¢, range(r), ' ', range(rsp), &
¢ ¢, range(xdp), ' ', raage(rqp]

priat *, ' tiny details’

priat *, ‘. tiay(r)

priat *, ¢, tiny (rsp)

priat *, ¢, tiny (xdp)

priat *, ¢, tiny (rep)

end program ch0510

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figf_HTML.gif
program chlaUl

! simple character i/o

character (80) :: line
read *, line
priat *, line

end program ch1401

OEBPS/images/112282_4_En_37_Chapter/112282_4_En_37_Figi_HTML.gif
nodule chifll_person_moduls

implicit noae

type :: person
character aame
integer age
real height
real : weight
contains
procedure :: print_person
generic write (formatted) => priat_person
procedure :: read_person
generic read (formatted) => read_person

ead type persoa

contains

subroutine priat_persoa(p,uait_number, &
iotype, vlist,iostat,iomsg)

implicit noae

class (persen) , inteat (in) sip

integer L&
inteat (ia)

uait_suzber

character (len=*) , inteat (in)
integer , dimension(:) , inteat (in)
integer , inteat (out)
character (len=*) , inteat(inout) :: iomsg
character (len=40) :: person_format

person_format="(a,2x,i3,2x, £4.2,2%,£3.0) "

write (unit_susber, fmt=person_format) &
phaame, pYage, ptheight , phueight

iostat=0

ead subroutine print_person

subroutine read_person (p,unit_nuiber, &
iotype, vlist,iostat,iomsg)

implicit noae

class (persen) , intent (inout)

integer L&
inteat (ia)

uait_suzber

character (len=*) , inteat (in)
integer , dimension(:) , inteat (in)

integer , inteat (out)

character (lem

, intent (inout)

character (len=10)

person_format

person_format=" (a,2x,i3,2x, £4.2,2%,£3.0)

read (unit_sumber, fut=person_format) &
phaame, pYage, ptheight , piueight

iostat=0

ead subroutine read_persoa

cnd module ch3701 person module

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figak_HTML.gif
program chlUU3
implicit noae

a = 10000000

integer, dimension (1:a)

integer, parameter

real, dimension (l:ia) v
integer :: i

real :: t, t1, t2, t3
character *15 :: commeat
call cpu_time (t]

t1=t

commeat = ¢ Program starts '

print 100, comment, t1
0, file='ch09ld.dat’, &
uaformatted’, status=' old’)
read (10) x

call cpu_time (t]

2=t -l

commeat = ¢ Integer read

opea (unit

print 100, comment, t2
read (10) y

call cpu_time (t]
3=t -tl-t2

comment = ‘

Real read
print 100, comment, t3
doi=1, 10

print 110, x(i), y(i]
ead do

100 format (1x, a, 2%, £1.3)

110 format (1x, il0, 2x, £10.6)

end program chl009

OEBPS/images/112282_4_En_13_Chapter/112282_4_En_13_Figj_HTML.gif
program chlils

implicit noae

! simple counting of vowels,

! digits, blasks and the rest

integer
digits
integer
character
character

0

vowels = 0, consonants

: blank = 0, other = 0,

letter
(1en=80) :: line

read ' (a)’, line

doi=1,

a0

letter = line(i:i)

consonants,

[

! the above extracts one character

! at position i

select case (letter)
case ('a’, ‘E(, '1', ‘0', U,

Tor, rur)

vowels = vowels + 1
case ("B, ‘C7, ‘D, ‘FY, G,

e

i1

rar,

consonants =

case (117, 12, 131, 14,

g

digits

case (!

blank

(S X e 1

LW, xe,
e g me, e

Py
e

case default

other

end select

end do
priat *,
priat *,
priat *,
priat *,
priat *,

W, orar,
‘o, R, 7S
'3, br, e
e i1

Ter, o)
= digits + 1
3l

blank + 1

other + 1

Vowels = ‘, vowels
Consonants = ', consonants
Digits = ’, digits

Blanks = /, blaak

Other characters =

end program ch1304

other

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figt_HTML.gif
#include <stdio.h>

float summation (float *x, int a];

int maia()
t
const int a=10;
float x[n];

iat i;
for (i=0;i<n;it+)
2[i]=1.0;

printf (" € calling Fortras\a");
printf (" 1 d array as parameter\a");

printf (" Sum is = % \a ", summation (x, 1)) ;

retura(0);

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq58.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq59.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq56.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq57.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq54.png
10%

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figt_HTML.gif
program chlals
implicit noae

character (80) :: line
integer :: i
do

read ' (a)’, line
i = index(line, ‘Geology’)
if (i/=0) then

priat *, &

String Geology found at position !, i

priat *, ‘ in line /, line
exit
ead if
ead do

end program ch1404

OEBPS/images/112282_4_En_12_Chapter/112282_4_En_12_Figaa_HTML.gif
t[fuaction prefix] fuaction statement &
[result (result_name)]

[specification part]

lexecution_part]

linternal sub program part]

-nd [function [fuaction name]l

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq55.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq52.png
102

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq53.png
102

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figg_HTML.gif
program chlius
! Variables used
! Height - used to hold the heights above sea
! level
! Long - used to represeat the longitude
! Lat - used to represent the latitude
! both restricted to integer values.
implicit noae
integer, parameter :: a = 3
integer

lat, leng

real, dimension (l:n,

) i height
real, parameter :: correct = 10.0

do lat = 1, a
do loag = 1,
read *, height (lat, loag)
height (lat, loag) = height (lat, long) + &
correct
ead do
ead do
do lat = 1, a
priat *, (height (lat,long), leag=1, n)
ead do
end program ch0703

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq50.png

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figa_HTML.gif
http://www.metoffice.gov.uk/public/weather/
climate-historic/4?tabs

1 imateHictoric

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq51.png

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figac_HTML.gif
Test out a month
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
10 Jan 1970
11 Jan 1970
12 Jan 1970
13 Jan 1970
14 Jan 1970
15 Jan 1970
16 Jan 1970
17 Jan 1970
18 Jan 1970
19 Jan 1970
20 Jan 1970
21 Jan 1970
22 Jan 1970
23 Jan 1970
24 Jan 1970
25 Jan 1970
26 Jan 1970
27 Jan 1970
28 Jan 1970
28 Jan 1970
30 Jan 1970
31 Jam 1970

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figf_HTML.gif
intertace date
module procedure date_constructor
ead interface date

public :: calendar_to_julian, &
date_to_day_in_year, date_to_weekday_number, &
get_day, get_month, get_year, &
Julian_to_date, &
Julian_to_date_and_week_and_day, adays, &
print_date, set_day, set_month, set_year, &
year_and_day_to_date

contains

function calendar_to_julian(this) &
result (ival)
implicit noae
integer :: ival

class (date), inteat (ia) :: this

ival = thistday - 32075 + 1461% (thisSyear+ &
4800+ (thistmonth-14)/12)/4 + &
367+ (this¥month-2-((this¥month- &
14)/12)#12) /12 - 3% ((this¥year+4900+ (thist &
moath-14) /12) /100) /4

ead fuaction caleadar_to_julian

type (date] fuaction date_constructor(dd, mm, &
yyyy)

implicit noae
integer, intent (in)

dd, mm, yyyy

date_constructorsday = dd
date_constructor¥moath

date_constructorbyear = yyyy

end function date comstructor

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figah_HTML.gif
1integer , praivate

radius_

OEBPS/images/112282_4_En_34_Chapter/112282_4_En_34_Figj_HTML.gif
umber of 1mages
2011/ §/10 13:40:48 479

a intervals 100000 time =
pi = 3.1415926535981260
differeace = 0.000000000008332%
2011/ §/10 13:40:48 486

a intervals 1000000 time =
pi = 3.1415926535898802
differeace = 0.0000000000000870
2011/ §/10 13:40:48 490

2 intervals = 10000000 time =
pi = 3.1415926535897936
differeace 0.0000000000000004
2011/ §/10 13:40:48 500

a intervals 100000000 time =
pi = 3.1415926535897749
differeace = 0.0000000000000182
2011/ §/10 13:40:48 §05

2 intervals = 1000000000 time =
pi = 3.1415926535898455

i f farance 0. 0000000000000524

.004

.004

.012

T

.99

OEBPS/images/112282_4_En_10_Chapter/112282_4_En_10_Figy_HTML.gif
do 1=l,nmonths
read (uait=100, fmt =fmt 1)
year (i) ,month (i), &
rainfall (i), sunshine (i)
and de

OEBPS/images/112282_4_En_39_Chapter/112282_4_En_39_Figo_HTML.gif
- Process sach station

do 3 n_stations
srint 0 ¢

Srint ¥, ' Procsssing !, €

station_data_file_name(3)
srint 4, ¢

open (umit=100,c
tation_data_file_name(3), &

status='old’)

! =kip the headsr linss bsfors starting to
| read the data

call skiz header_Lines(3)

! the numbsr of chssrvations at sach station
! ic stored in the nl array.

allocats (station_data(l:nl(3)))
! Read in the data for sach station

doi=1, al(3)
read (unit=100, fmt=100) year, month, &
tmax, tmin, af_days, rainfall, sunshine
100 format (3x, id, 2x, i2, 2%, £5.1, 3x, &
£5.1, 3%, i5, 2, £6.1, lx, £6.1)

station data(i) = station_tyze(vear, &
month, tmax, tmin, af_days, rainfall, ¢
sunshine)

end do

close (100)

! Do the menthly average calculations
! for sach station

call caleulats_month_averagss (station_datat &
rainfall, nl(j), n_months, som_rainfall, ¢
average_rainfall, station datatmonth, &
month_names)

n_years = station_data(nl(j)) Syear - &
Station_data (l)Byear + 1

srint 4,

Srint ¥, ¢ Start dats /, station data(l)® ¢
year, ' *, station data(l)%month

srint 4,

Srint ¥, ' Rainfall monthly averages over’

Srint 110, n_years

110 Format (* "', i5, &
doi= 1, n_months
srint 120, month_names (i), ©
average_rainfall (i), (average rainfall (i ¢
)/25.4)
120 format (21, 29, 8x, £1.2, 2x, £5.2)
nd do
srint 130, sum(average_rainfall), €
(sum (average_rainfall)/25.4)
130 fommat (' Annwal rainfall’, /, ©
+ averags ‘. £8.2, 2%, £5.2)
srint 4,
Srint ¥, ' End date , station data(nl(j))% ¢
vear, ' ', station data(nl(3))tmenth

rainfall_tabls (L:n_months, 3) &
= average_rainfall

! Deallocate the arrays
deallocate (station data)
! move on to next station
end do

orint ¢

Srint 110, sits name(l:n_stations)
140 format (37 (2x,a7))

srint 4,
do i f_months
orint 150, rainfall_table(i, lin_stations)/ €
25.4
150 format (37 (2x,£7.2))
end do

cnd orogram ch3903

OEBPS/images/112282_4_En_17_Chapter/112282_4_En_17_Fige_HTML.gif
type date

integer 1
integer :: month = 1
integer :: year = 2000

ead type date

ead module date_module

program ch1702

use date_module

implicit noae
type (date]

print *, diday, dimoath, diyear
print *, ' type in the date, day, moath,
read *, diday, dimoath, diyear
print *, diday, dimoath, diyear

end program ch1702

year’

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figt_HTML.gif
cUoczba

x¥year = year

year_and_day_to_datetyear = year

214, 221271, 284

226¢289

s%day = day
if (day>59+t) thea
stday = wbday +2 - t

ead if
=¥month = ((x¥day+91)*100)/3055
=¥day = (x3day+9l) - (x%month*3055)/100

#3month = xbmoath - 2

if (x¥moath>=l .and. x%moath<=12) then

year_and_day_to_datetday = day_in_year

if (day_in_year>59+t] thea
year_and_day_to_datetday = &

year_and_day_to_datetday + 2 - t

ead if

year_and_day_to_datetmonth = &
((year_and_day_to_datetday+31) #100) /3055

year_and_day_to_datetday = (&
year_and_day_to_datetday+9l) - &
(year_and_day_to_datesmonth*3055) /100

year_and_day_to_datetmonth = &
year_and_day_to_date¥month - 2

if (year_and_day_to_datesmonth>=1 .aad. &
2) then

year_and_day_to_date¥month

day, ¢ is out of range.’

&=, day_in_year, ' is out of range.’

229¢292

ead module date_module

OEBPS/images/112282_4_En_30_Chapter/112282_4_En_30_Figo_HTML.gif
ead 1t

end do
call date_and_time (values=val)
yyvy = val(l)

m = 12
ad = 31
% = date (dd, =m, yyyy)
if (xbdate_to_day_in_year ()==366] thea

priat *, xiget_year(), ' is a leap year’
else

priat *, xiget_year(), ' is act a leap year’
end if

« = date(1, 1, 1970)

call julian_to_date_and week_and_day &
(calendar_to_julian(x), =, wd, ddd)

if (xbget_year()/=1970 .or. xbget_month()

Lor. xiget_day()
thea

Lor. wd/=4 .or.

priat *, &
‘julian_to date_and_week_and_day failed’

print *, ¢ date, wd, ddd = ', xSget_year(), &
sbget_month(), x¥get_day (), wd, ddd
stop
end if
datel = date(22, 5, 1884)
date2 = date(22, 5, 1683)
adiff = ndays (datel, date2)
yyyy = 1970

year_and_day_to_date(yyyy, ddd)

if (adiff/=366) thea
print *, ‘adays failed; ndiff =

else

if (xiget_month()/=1 .and. x%get_day()/=1) &
thea
print *, ’year_and_day_to_date failed’
print *, ' mma, dda =, xbget_month(), &

=¥get_day ()

else

priat *, ' caleadar_to_juliaa OK’

priat *, ! date_ OK'
print *, ' date_to_day_in_year OK'
print *, ' date_to_weekday_number OK’
priat *, ! get_day OK’

OEBPS/images/112282_4_En_35_Chapter/112282_4_En_35_Figal_HTML.gif
“++ calling Fortraa
> d array as parameter
original 2 d array

12 3 4 6
78 8 10 11 12
12 3 4 6

& ¢ 10 11 12

57

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq60.png
X =y =(xxx—yry)=(x—y)*(x+y)

OEBPS/images/112282_4_En_40_Chapter/112282_4_En_40_Figj_HTML.gif
SUTTRNIEANE GRACT (T
DUPLICIT NONE

cv++ START OF DECLARATIONS INSERTED BY SPAG
INTEGER ACT , LENGTH , ICHAR

c*++ END OF DECLARATIONS INSERTED BY SPAG
INTEGER TODO , DONE , BASE
coMON /BG1 / NCHAR , LENGTH , DOIE
PARAMETER (BASE=10)

100 TP (TODO.NE.0) THEN

20T = oD (1000, BASE)

000 = TODO/BASE
TP (ACT.EQ.1 .OR. ACT.EQ.4 .OR
B ACT.EQ.7 .OR. ACT.EQ.8 .OR.
. 201.80.5) THEN
CALL BapACT (30T)
oo 200
ELSEIF (ACT.EQ.2) THEN
caLL copy

LENGTH = LENGTH + ICHAR
ELSEIF (ACT.EQ.3) THEN
caLL Hove
ELSEIF (ACT.EQ.5) THEN
NCHAR = -CHAR
caLL pELETE
LENGTH = LENGTH + ICHAR
ELSEIF (ACT.EQ.6) THEN
caLL pRINT
BLsE
coto 100
mIE
DOUE = DOE + 1
AL RESTNC
ot 100
=1
200 RETURN
-

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ178.png
and mask =

rtf
tff
it

and field

1
0
0

o = O

0
0
1

the result is

O =
S = N
w O O

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ177.png
argument: vector type: any
result: as vector class:t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ176.png
argument: coarray type: co
argument: dim (optional) type:i
argument: kind(optional) type:i
result: i class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ175.png
argument: array type: any
result: i class: i

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ179.png
argument: string
argument: set
argument: back
result: kind
result: i

type:s
type:s
type:1
class: i
class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ170.png
argument: 1 type:i
result: i class: e

OEBPS/images/112282_4_En_4_Chapter/112282_4_En_4_IEq10_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ174.png
argument: string type:s
result: as string class: t

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figab_HTML.gif

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ173.png

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ172.png
argument: matrix type: any
result: as argument class: t

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq38.png
0(1073%)/0(10%)

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ171.png
argument: source type: any
result: as mold class:t

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq39.png
0(107%)

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq36.png
0(10%)

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq37.png
0(103%)/0(10%0)

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq34.png
0(1030)

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq35.png
0(10%)

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq32.png
Q

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq33.png
Q

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq30.png
Q

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq31.png
Q

OEBPS/images/112282_4_En_26_Chapter/112282_4_En_26_Figu_HTML.gif
allocate(al

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ167.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ166.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ165.png
argument: count type:i
result: n/a class: s

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ164.png

OEBPS/images/112282_4_En_6_Chapter/112282_4_En_6_Figd_HTML.gif
program chlbUl
implicit noae
real

total = 0.0, average = 0.0

real, dimension (1:12) :: rainfall
iateger :: month

priat *, ’ type in the rainfall values’
priat *, ‘ one per line’

do moath = 1, 12
read *, rainfall(moath)
ead do
do moath = 1, 12
total = total + raiafall (moath)
ead do
average = total/12

print *, ' Average moathly rainfall was’
print *, average

end program ch0601

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ169.png
argument: x type: r
result: as x class: i

OEBPS/images/112282_4_En_36_Chapter/112282_4_En_36_Figp_HTML.gif
sun/oracle

IEEE support for default precision

array size 10000000 10,000,000
Computed sum 0.1000E+08
Real sum 0.1000E+08
Array size 100000000 100,000, 000
Computed sum 0.1678E4+08
Real sum = 0.1000E+08

inexact arithmetic
in the summation
program terminates

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ168.png
argument: team type: te
argument: coarray type: a
argument: dim type:i

result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_Figal_HTML.gif
ttort
/fast
cnables
/OxHOST /03 /Qipo /Oprec-div
/ £p: fast=2
/heap-arrays
/ Qopenmp
/oparallel

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figag_HTML.gif
Start of code dependent on date_type
day moath year

if (xidate_type==1) then

if (want_digits) thea

write (print_date(1:2), ' (i2)’) xbday
print_date(3:3) = '/’
write (priat_date(4:5), ¢ (i2)’) xbmonth
print_date(6:6) = '/’
write (print_date(7:10), ’(id)’) x%year
clse

if (want_day) thea
pos = date_to_weekday_nutber (x]

print_date = trim(day(pos)) // ' '
pos = len_trim(print_date) + 2

else
pos = 1
print_date = ¢

ead if

write (print_date(pos:pos+l), ' (i2)’) &
#%day

if (want_short_month_name] thea
print_date (pos+3:pos+5) &
= month (x%month) (1:3)

pos = pos + 7

else
print_date (pos+3:) = moath (xmonth)
pos = len_trim(print_date) + 2

ead if

write (print_date(pos:pos+3), ' (id)’) &
x¥year

and if

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figbb_HTML.gif
~UoouuuoE+UU
.2066952E+18
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.8979245E+08
 0000000F+00

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ163.png
argument: array type: n
argument: dim type:i
argument: mask type: 1
result: as array class: t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ162.png
argument: a type: any type.
argument: kind(optional) result: i
class: i

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figj_HTML.gif
procedurs, pass(this) :: get_x
get y

set.

procedure, pass (this)
procedure, pass (this)

procedure
. pass (this s
) i sty

procedure, pass (this) :: moveto

orocedure, pass (this) :: draw

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ161.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq49.png
emax

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ160.png
< < <
cn N on
[\ e\l e\

OEBPS/images/112282_4_En_7_Chapter/112282_4_En_7_Figx_HTML.gif
=nd do [do-coastruct-name |
- ont e

OEBPS/images/112282_4_En_22_Chapter/112282_4_En_22_Figz_HTML.gif
function get_day(x)
implicit noae
integer :: get_day
type (date], iateat (ia)

get_day = xbday
ead fuaction get_day

function get_month (x)
implicit noae
integer :: get_moath
type (date], iateat (ia)

get_moath = x%moath
ead fuaction get_moath

function get_year (x)
implicit noae

integer :: get_year

type (date], iateat (ia)

get_year = utyear
ead fuaction get_year

cdate - julian_to_date
see cacm 1968 11(10):657,

letter to the editor by flicgel and vaa

flandera.

function julian_to_date(julian) result (x)

implicit noae

integer, intent (ia) :: julian
integer :: 1, a

type (date)

1= julian + 68569

a = 441/146097

1=1 - (146097%a+3) /4

=¥year = 4000*(1+1) /1461001
1=1 - l46lrxtyear/d + 31
#3month = 80%1/2447

#%day = 1 - 2447*x%m0ath/80
1 = x¥moath/11

s%month = xdmoath + 2 - 1241

s¥year = 100% (a-49) + x%year + 1

ead fuaction julian_to_date

subroutine julian_to date and week_and_day (jd,

=, wd, ddd)
implicit noae

integer, intent (out) :: ddd, wd

integer, intent (in)

3d
type (date], iateat (out)

= = julian_to_date (jd)
wd = date_to_weskday_number (x]
ddd = date_to_day_in_year (x)

ead subroutine julian_to_date_and_week_and_day

function ndays(datel, date2)
implicit noae
integer :: adays
type (date], iateat (ia)

adays
calendar_to_julian(date2)
ead fuaction ndays

function priat_date(x, day_names,
short_moath_name, digits)
implicit noae

type (date], iasteat (in) :: x
logical, optional, inteat (in]

short_moath_name, digits

character (40)
integer

: print_date
pos

logical
want_digits

datel,

calendar_to_julian(datel)

intrinsic len trim, preseat, trim

date2

day_names,

: want_day, want_short_moath_name,

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq47.png
1023 = (129 + (1 %28) + (1% 27) + (1 %28) + (1 % 25) + (1 % 2%) + (1 % 23) + (1 % 22) + (1 % 21) + (1 x 20)

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq48.png
€min

OEBPS/images/112282_4_En_28_Chapter/112282_4_En_28_Figay_HTML.gif
nodule shape_wrapper_moduls
use shape_module
use circle_module
use rectangle_module
type shape_vrapper

class (shape_type), allocatable

ead type shape_wrapper

cnd module shape wrapper module

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq45.png
43 = (125 + (0% 2% + (1 23) + (0% 22) + (1 % 21) + (1 % 20)

OEBPS/images/112282_4_En_29_Chapter/112282_4_En_29_Figat_HTML.gif
SUBROUTINE RENDER_TRIANGLE X (OBJECT, WINDOW)
CLASS (DRAWABLE_TRIANGLE), TNTENT (Il) :: OBJECT
CLASS (X_WINDOW) , INTENT (IOUT] :: WINDOW

END SUBROUTINE RENDER TRIANGLE.

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq46.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq43.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq44.png
43 =(1%32)+0«16)+ (1«8 + 0«4+ (1«2)+(1x=1)

OEBPS/images/112282_4_En_38_Chapter/112282_4_En_38_Fige_HTML.gif
http://www.netlib.org/slatec/src/isort.f
http:/ /. et 1ib.org/slatec/sre/ssort . £
http:/ /www.net 1ib.orqg/slatec/sre/dsort . £

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq41.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq42.png

OEBPS/images/112282_4_En_14_Chapter/112282_4_En_14_Figah_HTML.gif
is so it to in

The not the but the are the the
much what does

issue about arcas

styles

possess support desired desired
language features language features
important possesses

sufficieat

programming application

OEBPS/images/112282_4_En_32_Chapter/112282_4_En_32_Figu_HTML.gif
include ‘precision _module.L3aldt

include ’timing_module.£90"

program ch3203
use precision_module
use timing_module
implicit noae

integer :: i, 3
integer :: a_intervals

real (dp) :: isterval width, x, total, pi
real (dp) :: fortran internal pi

call start_timing()
a_iatervals = 1000000
fortran_internal pi = 4.0_dp*atan (1.0_dp)
print *, ' fortran internal pi = ', &
fortran_interaal_pi
priat *, ' ¢
do =1, 4
interval_width = 1.0_dp/a_iatervals
total = 0.0_dp

do i =1, n_intervals

= = interval width* (real(i,dp)-0.5_dp)
total + £(x)

total
ead do
pi = interval width*total

print 100, n_intervals, time differeace()

print 110, pi, abs(pi-fortran_internal pi)

a_intervals = a_iatervals*l0
ead do
100 format (' W intervals
£6.3)
110 format (' pi

, i1z, ¢ time

1, £20.16, /, &
v, £20.16)

difference
call end_timing()
stop

contains
real (dp) fuaction f(x)

implicit nene
real (dp), iateat (in)

£ = 4.0 dp/ (1.0_dp+itx)
ead fuaction £

end program ch3203

OEBPS/images/112282_4_En_3_Chapter/112282_4_En_3_Figf_HTML.gif
https: //wgb—-fortran.org/documents. html

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Chapter_TeX_IEq40.png

OEBPS/images/112282_4_En_5_Chapter/112282_4_En_5_Figo_HTML.gif
a+ b -1

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ156.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_18_Chapter/112282_4_En_18_Figo_HTML.gif
D:\document \fort ran\newbook \examples\chl8>>
ch1803

forrtl: severe (408): fort: (7):

Attempt to use pointer A when it

is not associated with a target

Image 2 Routine Line
chl803.exe 000000013F0ACS38 Uakaowa Uakaown
Uakaowa

atdll.dll 0000000077096611 Uakaowa Uakaowa

Uk omn

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ155.png
argument: x type:r,
result: as argument class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ154.png
argument: a type: i, r
result: as a class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ153.png
argument: 1 type:i
argument: shift type:i
result: same as 1 class: e
class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ159.png
argument: source type: any
result: as source class:t

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ158.png
argument: x type: r
result: as x class: e

OEBPS/images/112282_4_En_BookBackmatter_OnlinePDF_TeX_Equ157.png
argument: array type: any
result: i class: i

