

 [image: Cover image]

 John Hunt
A Beginner’s Guide to Scala, Object Orientation and Functional Programming2nd ed. 2018
[image: ../images/323629_2_En_BookFrontmatter_Figa_HTML.gif]

John HuntMidmarsh Technology Ltd, Bath, Wiltshire, UK

				ISBN 978-3-319-75770-4e-ISBN 978-3-319-75771-1
https://doi.org/10.1007/978-3-319-75771-1
Library of Congress Control Number: 2018932535
© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Printed on acid-free paper

 This Springer imprint is published by Springer Nature

 The registered company is Springer International Publishing AG

 The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 This book is dedicated to my wife Denise; you are a constant source of inspiration to me.

Contents

 1 Introduction
 1

 1.​1 Introduction
 1

 1.​2 What Is Scala?​
 1

 1.​3 Why Scala?​
 2

 1.​4 Java to Scala Quick Comparison
 3

 1.​5 Scala Versions
 5

 1.​6 Is This Book for You?​
 5

 1.​7 Approach Taken by This Book
 5

 2 Elements of Object Orientation
 7

 2.​1 Introduction
 7

 2.​2 Terminology
 7

 2.​3 Types of Hierarchy
 9

 2.​4 The Move to Object Technology
 12

 2.​5 Summary
 12

 2.​6 Exercises
 13

 2.​7 Further Reading
 13

 3 Why
 Object
 Orientation?

 15

 3.​1 Introduction
 15

 3.​2 The Procedural Approach
 15

 3.​2.​1 A Naked Data Structure
 16

 3.​2.​2 Procedures for the Data Structure
 16

 3.​2.​3 Packages
 17

 3.​3 Does Object Orientation Do Better?​
 17

 3.​3.​1 Packages Versus Classes
 17

 3.​3.​2 Inheritance
 19

 3.​4 Summary
 20

 4 Constructing an Object-Oriented System
 21

 4.​1 Introduction
 21

 4.​2 The Application:​ Windscreen Wipe Simulation
 21

 4.​3 Where Do We Start?​
 22

 4.​4 Identifying the Objects
 23

 4.​5 Identifying the Services or Methods
 24

 4.​6 Refining the Objects
 26

 4.​7 Bringing It All Together
 26

 4.​8 Where Is the Structure?​
 29

 4.​9 Summary
 31

 4.​10 Exercises
 31

 4.​11 Further Reading
 32

 References
 33

 5 Functional Programming
 35

 5.​1 Introduction
 35

 5.​2 What Is Functional Programming?​
 35

 5.​3 Advantages to Functional Programming
 37

 5.​4 Disadvantages of Functional Programming
 39

 5.​5 Scala and Functional Programming
 40

 6 Scala Background
 41

 6.​1 Introduction
 41

 6.​2 The Class Person
 41

 6.​3 Functional Programming
 43

 6.​4 A Hybrid Language
 44

 7 A Little Scala
 47

 7.​1 Introduction
 47

 7.​2 The Scala Environment
 47

 7.​3 The Scala Shell
 48

 7.​4 The Scala IDE
 49

 7.​4.​1 Creating an IntelliJ Project
 52

 7.​4.​2 Inside IntelliJ
 53

 7.​4.​3 Creating a Module
 53

 7.​5 Implementing the Object
 56

 7.​6 Running the Application
 56

 7.​6.​1 Scala Interpreter Console
 57

 7.​7 Scala Classpath
 58

 7.​8 Compiling and Executing Scala
 58

 7.​9 Memory Management
 60

 7.​9.​1 Why Have Automatic Memory Management?​
 60

 7.​9.​2 Memory Management in Scala
 61

 7.​9.​3 When Is Garbage Collection Performed?​
 61

 7.​9.​4 Checking the Available Memory
 61

 8 Scala Building Blocks
 65

 8.​1 Introduction
 65

 8.​2 Apps and Applications
 65

 8.​3 The Basics of the Language
 67

 8.​3.​1 Some Terminology
 67

 8.​3.​2 The Message Passing Mechanism
 68

 8.​3.​3 The Statement Terminator
 68

 9 Scala Classes
 69

 9.​1 Introduction
 69

 9.​2 Classes
 69

 9.​2.​1 Class Definitions
 69

 9.​2.​2 Developing a Class Definition
 70

 9.​2.​3 Classes and Messages
 72

 9.​2.​4 Instances and Instance Variables
 72

 9.​2.​5 Classes and Inheritance
 73

 9.​2.​6 Instance Creation
 76

 9.​2.​7 Constructors
 77

 9.​2.​8 Auxiliary Constructors
 79

 9.​2.​9 Class Initialisation Behaviour
 80

 9.​2.​10 Review of Classes and Constructors
 81

 9.​3 Case Classes
 82

 9.​3.​1 A Sample Class
 83

 10 Scala Methods
 87

 10.​1 Introduction
 87

 10.​2 Method Definitions
 87

 10.​2.​1 Method Parameters
 89

 10.​2.​2 Comments
 91

 10.​2.​3 The Local Variables Section
 93

 10.​2.​4 The Statements Section
 94

 10.​2.​5 The Return Operator
 94

 10.​2.​6 An Example Method
 95

 10.​2.​7 Overriding toString
 96

 10.​2.​8 Defining Property Methods
 98

 10.​3 Named Parameters
 100

 11 Packages and Encapsulation
 103

 11.​1 Introduction
 103

 11.​2 Packages
 103

 11.​2.​1 Declaring a Package
 104

 11.​2.​2 Additional Package Definitions Options
 104

 11.​2.​3 An Example Package
 109

 11.​2.​4 Accessing Package Elements
 110

 11.​2.​5 An Example of Using a Package
 111

 11.​3 Import Options
 112

 11.​4 Additional Import Features
 113

 11.​5 Package Objects
 114

 11.​6 Key Scala Packages
 115

 11.​7 Default Imports
 115

 11.​8 Encapsulation
 116

 11.​8.​1 Scala Visibility Modifiers
 116

 11.​8.​2 Private Modified
 117

 11.​8.​3 Protected Modifier
 118

 12 Building a Class
 121

 12.​1 Introduction
 121

 12.​2 Create a New Module
 121

 12.​3 Create a New Package
 123

 12.​4 Create a New Class
 124

 12.​5 Defining the Class
 125

 12.​6 Adding Behaviour
 126

 12.​7 Test Application
 126

 12.​8 Override Tostring
 128

 12.​9 Extras
 130

 13 Classes, Inheritance and Abstraction
 131

 13.​1 Introduction
 131

 13.​1.​1 What Are Classes for?​
 131

 13.​2 Inheritance Between Types
 132

 13.​3 Inheritance Between Classes
 133

 13.​3.​1 The Role of a Subclass
 134

 13.​3.​2 Capabilities of Classes
 135

 13.​3.​3 Overriding Behaviour
 136

 13.​3.​4 Protected Members
 137

 13.​4 Restricting a Subclass
 138

 13.​5 Abstract Classes
 139

 13.​6 The Super Keyword
 142

 13.​7 Scala Type Hierarchy
 143

 13.​8 Polymorphism
 144

 14 Objects and Instances
 147

 14.​1 Introduction
 147

 14.​2 Singleton Objects
 147

 14.​3 Companion Objects
 149

 14.​3.​1 Companion Object Behaviour
 151

 14.​3.​2 A Object or an Instance
 152

 15 Value Classes
 155

 15.​1 Introduction
 155

 15.​2 Value Classes
 155

 15.​3 Simple Value Type Example
 156

 15.​4 Additional Value Class Concepts
 157

 15.​5 Negating Value Classes
 158

 16 Scala Constructs
 159

 16.​1 Introduction
 159

 16.​2 Numbers and Numeric Operators
 159

 16.​2.​1 Numeric Values
 159

 16.​2.​2 Arithmetic Operators
 160

 16.​3 Characters and Strings
 161

 16.​3.​1 Characters
 161

 16.​3.​2 Strings
 161

 16.​4 Assignments
 162

 16.​5 Variables
 164

 16.​5.​1 Temporary Variables
 164

 16.​5.​2 Pseudo-Variables
 165

 16.​5.​3 Variable Scope
 165

 16.​5.​4 Option, Some and None
 165

 16.​5.​5 Boolean Values
 167

 16.​5.​6 Literals
 167

 16.​6 Messages and Message Selectors
 168

 16.​6.​1 Invoking Methods
 168

 16.​6.​2 Precedence
 168

 16.​7 Summary
 169

 17 Control and Iteration
 171

 17.​1 Introduction
 171

 17.​2 Control Structures
 171

 17.​2.​1 The if Statement
 171

 17.​2.​2 If Returns a Value
 173

 17.​3 Iteration
 174

 17.​3.​1 For Loops
 174

 17.​3.​2 For Until
 175

 17.​3.​3 For Loop with a Filter
 175

 17.​3.​4 Longhand for Loop
 176

 17.​3.​5 For-Yield Loop
 176

 17.​3.​6 While Loops
 177

 17.​3.​7 Do Loops
 178

 17.​3.​8 An Example of Loops
 179

 17.​4 Equality
 180

 17.​5 Recursion
 180

 17.​5.​1 The Match Expression
 183

 18 Traits
 187

 18.​1 Introduction
 187

 18.​2 What Are Traits?​
 187

 18.​3 Defining a Trait
 189

 18.​4 Using a Trait
 190

 18.​5 Abstract Trait Members
 193

 18.​6 Dynamic Binding of Traits
 193

 18.​7 Sealed Traits
 195

 18.​8 Marker Traits
 195

 18.​9 Trait Dependencies
 196

 18.​10 To Trait or not to Trait
 198

 19 Further Traits
 199

 19.​1 Introduction
 199

 19.​2 Stackable Modifications
 199

 19.​3 Fat Versus Thin Traits
 204

 19.​4 Universal Traits
 205

 19.​5 Traits for a Data Type
 207

 19.​6 Single Abstract Method (SAM) Traits
 208

 20 Arrays
 211

 20.​1 Introduction
 211

 20.​2 Arrays
 211

 20.​2.​1 Arrays of Objects
 213

 20.​2.​2 Ragged Arrays
 215

 20.​3 Creating Square Arrays
 217

 20.​4 Looping Through Arrays
 218

 20.​5 The Main Method Revisited
 219

 21 Tuples
 223

 21.​1 Introduction
 223

 21.​2 Tuples
 223

 21.​3 Tuple Characteristics
 224

 21.​4 Tuple Classes
 224

 21.​5 Creating a Tuple
 224

 21.​6 Working with Tuples
 225

 21.​7 Iterating Over a Tuple
 226

 21.​8 Element Extraction
 227

 22 Functional Programming in Scala
 229

 22.​1 Introduction
 229

 22.​2 Scala as a Functional Language
 229

 22.​3 Defining Scala Functions
 230

 22.​4 Class, Objects, Methods and Functions
 233

 22.​5 Lifting a Method
 235

 22.​6 Single Abstract Method Traits
 235

 22.​7 Closure
 237

 22.​8 Referential Transparency
 239

 23 Higher-Order Functions
 241

 23.​1 Introduction
 241

 23.​2 Higher-Order Function Concepts
 241

 23.​3 Scala Higher-Order Functions
 242

 23.​4 Using Higher-Order Functions
 244

 23.​5 Higher-Order Functions in Scala Collections
 245

 24 Partially Applied Functions and Currying
 247

 24.​1 Introduction
 247

 24.​2 Partially Applied Functions
 248

 24.​3 Currying
 250

 24.​3.​1 Introduction to Currying
 250

 24.​3.​2 Defining Multiple Parameter List Functions
 250

 24.​3.​3 Using Curried Functions
 251

 24.​3.​4 Building Domain-Specific Languages
 252

 25 Scala Collections Framework
 255

 25.​1 Introduction
 255

 25.​2 What Are Collections?​
 255

 25.​3 Scala Collections
 256

 25.​3.​1 Package Scala.​Collection
 258

 25.​3.​2 Common Seq Behaviour
 259

 25.​3.​3 Common Set Behaviour
 260

 25.​3.​4 Common Map Behaviour
 260

 26 Immutable Lists and Maps
 261

 26.​1 Introduction
 261

 26.​2 The Immutable List Collection
 261

 26.​2.​1 List Creation
 261

 26.​2.​2 List Concatenation
 262

 26.​2.​3 List Operations
 264

 26.​2.​4 List Processing
 265

 26.​2.​5 Further List Processing
 265

 26.​2.​6 Pattern Matching
 269

 26.​2.​7 Converting to a List
 270

 26.​2.​8 Lists of User Defined Types
 270

 26.​3 The Immutable Map Type
 272

 27 Immutable and Mutable Collection Packages
 275

 27.​1 Introduction
 275

 27.​2 Package Scala.​Collection.​Immutable
 275

 27.​2.​1 Sequences
 275

 27.​2.​2 Sets
 278

 27.​2.​3 Maps
 279

 27.​3 Package Scala.​Collection.​Mutable
 279

 27.​3.​1 ArrayBuffer
 280

 27.​3.​2 ListBuffer
 281

 27.​3.​3 LinkedList
 282

 27.​3.​4 Stack
 282

 27.​3.​5 HashMap
 283

 27.​4 Generic Collections
 284

 27.​5 Summary
 285

 28 Type Parameterisation​
 287

 28.​1 Introduction
 287

 28.​2 The Set Class
 287

 28.​3 Adding Type Parameterisation​
 288

 28.​3.​1 The MyQueue Mutable Class
 288

 28.​3.​2 The Immutable Queue Class
 290

 28.​4 Variance
 292

 28.​5 Lower and Upper Bounds
 293

 28.​6 Combining Variance and Bounds
 293

 29 Further Language Constructs
 295

 29.​1 Introduction
 295

 29.​2 Implicit Conversions
 295

 29.​3 Implicit Parameters
 297

 29.​4 Implicit Objects
 299

 29.​5 Implicit Classes
 301

 29.​6 Scala Annotations
 303

 29.​7 Type Declarations
 305

 29.​8 Enumerations
 306

 29.​9 Lazy Evaluation
 311

 30 Exception Handling
 313

 30.​1 Introduction
 313

 30.​2 What Is an Exception?​
 313

 30.​3 What Is Exception Handling?​
 315

 30.​4 Throwing an Exception
 316

 30.​5 Catching an Exception
 317

 30.​6 Try Block Returns a Value
 320

 30.​7 Defining an Exception
 321

 30.​8 A More Functional Approach
 322

 30.​9 The Try Type
 325

 31 Akka Actors
 327

 31.​1 Introduction
 327

 31.​2 The Actor Model
 327

 31.​3 Some Terminology
 328

 31.​4 Scala Threads
 329

 31.​5 Akka Scala Actor Library
 330

 31.​6 Concurrent Hello World
 332

 31.​7 Concurrent Actors
 335

 31.​8 The Akka Actor API
 336

 31.​9 Actor Lifecycle
 337

 31.​10 Akka Configuration
 339

 31.​11 Actor DSL
 343

 32 Further Akka Actors
 345

 32.​1 Introduction
 345

 32.​2 Generating a Result from an Actor
 345

 32.​3 Futures
 348

 32.​4 Dispatchers
 351

 32.​5 Actor Hierarchies
 354

 32.​6 Actor Supervision
 355

 32.​7 Good Practices
 360

 33 Scala and JDBC Database Access
 361

 33.​1 Introduction
 361

 33.​2 Why JDBC?​
 361

 33.​3 What Is JDBC?​
 362

 33.​4 Working with JDBC
 364

 33.​5 The Database Driver
 365

 33.​6 Registering Drivers
 366

 33.​7 Setting Up MySQL
 367

 33.​8 Setting Up the Database
 368

 33.​8.​1 Starting/​Stopping/​Connecting to MySQL
 368

 33.​9 Creating a Database
 369

 33.​9.​1 Adding a User
 369

 33.​9.​2 Selecting to Work with a Database
 370

 33.​9.​3 Creating a Table
 370

 33.​9.​4 Adding Data to a Table
 371

 33.​10 Opening a Connection
 372

 33.​11 Inserting into a Table
 374

 33.​12 Obtaining Data from a Database
 376

 33.​13 Update an Existing Row
 378

 33.​14 Deleting from a Table
 379

 33.​15 Creating a Table
 379

 33.​16 Stored Procedures
 381

 33.​17 JDBC Data Sources
 381

 33.​18 Connection Pooling
 384

 33.​19 JDBC Metadata
 386

 33.​19.​1 DatabaseMetaData​
 387

 33.​19.​2 ResultSetMetaDat​a
 388

 34 Scala Style Database Access
 389

 34.​1 Introduction
 389

 34.​2 Slick
 389

 34.​3 Querulus
 390

 34.​4 Squeryl
 391

 34.​5 O/​R Broker
 392

 35 Slick:​ Functional Relational Mapping for Scala
 395

 35.​1 Introduction
 395

 35.​2 Obtaining Slick
 395

 35.​3 Connecting to a Database
 397

 35.​4 Mapping Tables to Scala Types
 398

 35.​5 Table Query Interface
 400

 35.​6 Creating Tables
 401

 35.​7 Inserting Data
 401

 35.​8 Composing Database I/​O Actions
 402

 35.​9 Example Setting Up a Database
 402

 35.​10 Querying for Data
 404

 35.​11 Updating, Upserting and Deleting Data
 407

 36 Testing
 409

 36.​1 Introduction
 409

 36.​2 Types of Testing
 409

 36.​3 What Should Be Tested?​
 410

 36.​4 Types of Testing
 411

 36.​4.​1 Unit Testing
 412

 36.​4.​2 Integration Testing
 413

 36.​4.​3 System Testing
 413

 36.​4.​4 Installation Testing
 413

 36.​4.​5 Smoke Tests
 414

 36.​5 Automating Testing
 414

 37 Scala Testing
 415

 37.​1 Introduction
 415

 37.​2 Scala Runtime Test Facilities
 415

 37.​2.​1 Validation Checks
 415

 37.​2.​2 Using Require and Assert
 416

 37.​3 Test Libraries in Scala
 417

 37.​3.​1 ScalaTest
 417

 37.​3.​2 Spec
 417

 37.​3.​3 ScalaCheck
 418

 37.​4 Scalatest Testing Framework
 418

 37.​4.​1 Setting up Your Scala Project
 418

 37.​4.​2 ScalaTest and JUnit
 419

 37.​4.​3 Scala Test and Functional Test Suites
 424

 37.​5 Scalatest and Feature Tests
 425

 37.​6 Test-Driven Development
 427

 37.​6.​1 The TDD Cycle
 427

 37.​6.​2 Test Complexity
 428

 37.​6.​3 Refactoring
 429

 38 Play Framework
 431

 38.​1 Introduction
 431

 38.​2 Introduction to Play
 431

 38.​2.​1 Working with a Web Application
 432

 38.​2.​2 How Play Changes the Stack
 432

 38.​3 Starting with Play
 434

 38.​3.​1 Download and Install Play
 434

 38.​3.​2 Using a Play Starter Project
 434

 38.​3.​3 Starting the Application
 436

 38.​4 Examining the Structure of the Application
 438

 38.​5 Editing the Application
 439

 38.​5.​1 Working with Your IDE
 439

 38.​5.​2 Importing into IntelliJ
 439

 38.​5.​3 Working with the Application
 441

 38.​6 Model–View–Controller
 442

 38.​7 Exploring the Play Application
 444

 39 RESTful Services
 447

 39.​1 Introduction
 447

 39.​2 RESTful Services
 447

 39.​3 A RESTful API
 448

 39.​4 Creating the RESTful Web Application
 449

 39.​5 JavaScript and jQuery
 454

 39.​6 The jQuery Client
 455

 39.​6.​1 Obtaining jQuery
 455

 39.​6.​2 Adding jQuery to the Application
 456

 40 Scalaz
 463

 40.​1 Introduction
 463

 40.​2 Obtaining Scalaz
 463

 40.​3 Scalaz Overview
 464

 40.​4 Some Useful Typeclasses
 465

 40.​4.​1 Equals Typeclass
 465

 40.​4.​2 Order Typeclass
 465

 40.​5 Standard Class Extensions
 466

 40.​5.​1 Extensions to Option
 466

 40.​5.​2 Boolean Extensions
 468

 40.​5.​3 Extensions to List
 469

 40.​5.​4 Extensions for Map
 470

 40.​5.​5 Extensions to String
 471

 40.​6 The Other Either
 471

 40.​7 Tagging
 472

 41 GUIs in Scala Swing
 475

 41.​1 Introduction
 475

 41.​2 Windows as Objects
 475

 41.​3 Windows in Scala
 476

 41.​4 Scala Swing
 477

 41.​5 Scala Swing Packages
 478

 41.​6 Swing Scala Worked Examples
 480

 41.​6.​1 Simple Hello World UI
 480

 41.​6.​2 Panels and UI Layout
 481

 41.​6.​3 Working with a BorderPanel
 482

 41.​6.​4 Working with a BoxPanel
 484

 41.​6.​5 Displaying a Table
 485

 42 User Input in Scala Swing
 489

 42.​1 Introduction
 489

 42.​2 Handling User Input
 489

 42.​2.​1 Scala Swing Actions
 492

 42.​2.​2 Working with Menus
 494

 42.​3 A Simple GUI Example
 496

 43 Scala Build Tools
 501

 43.​1 Introduction
 501

 43.​2 Why We Need a Build Tool
 501

 43.​3 Maven
 502

 43.​3.​1 Maven Repositories
 504

 43.​3.​2 The Maven POM
 504

 43.​3.​3 Scala and Maven
 506

 43.​3.​4 Maven Lifecycle Commands
 508

 43.​4 SBT
 508

 43.​4.​1 Creating an SBT Project
 510

 43.​4.​2 SBT Lifecycle Commands
 512

 44 Scala &​ Java Interoperability​
 515

 44.​1 Introduction
 515

 44.​2 A Simple Example
 515

 44.​3 Inheritance
 517

 44.​4 Issues
 517

 44.​4.​1 Scala Objects
 518

 44.​4.​2 Companion Modules
 519

 44.​4.​3 Traits
 521

 44.​5 Functions
 524

 44.​6 Collection Classes
 528

 44.​7 Implementing a Java Interface
 530

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_1

1. Introduction

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

1.1 Introduction
This book is intended as an introduction to Scala for computer science students or those actively involved in the software industry. It assumes some familiarity with standard computing concepts, such as the idea of compiling a program and executing this compiled form, and with the basics of procedural language concepts such as variables and allocation of values to variables. However, the early chapters of the book do not assume any familiarity with Object Orientation nor functional programming. They also step through other concepts with which the reader may not be familiar (such as list processing). From this background, it provides a practical introduction to object and functional technology using Scala, one of the newest and most interesting programming languages available.
This book introduces a variety of concepts through practical experience. It also tries to take you beyond the level of the language syntax to the philosophy and practice of Object-Oriented development and functional programming.
In the remainder of this chapter, we will consider what Scala is, why you should be interested in Scala and whether this book is for you.
1.2 What Is Scala?
Scala is a new programming language developed by Martin Odersky and his team at the EPFL (Ecole Polythenique Fererale de Lausanne, Lausanne, Switzerland) and now supported by Lightbend Inc. (previously known as Typesafe).
The name Scala is derived from Sca(lable) La(nguage) and is a multi-paradigm language, incorporating Object-Oriented approaches with functional programming.
What does this mean in practice? It means that you can write applications as pure Object-Oriented solutions using Classes, Objects and Traits. You can exploit inheritance, polymorphism and abstraction and encapsulation techniques. In this respect, Scala is very much like any other Object-Oriented language (such as Java, C# or C++). However, you can also develop solutions using purely functional programming principles in a similar manner to languages such as Haskell or Clojure. In such an approach, programs are written purely in terms of functions that take inputs and generate outputs without any side effects.
Scala though is different in that it is a hybrid programming language. That is, it is possible to combine the best of both worlds when creating a software system. You can therefore exploit Object-Oriented principles to structure your solution but integrate functional aspects when appropriate. Whilst this approach is not unique (the Common Lisp Object Systems did something similar in the 1980s), it is certainly bringing functional programming to the mainstream and integrating it within an environment that can execute almost anywhere.
Of course Scala has not been developed in isolation and has been influenced by many of these and other languages. The influences on the Scala language are shown in Fig. 1.1.[image: ../images/323629_2_En_1_Chapter/323629_2_En_1_Fig1_HTML.gif]
Fig. 1.1Scala Genealogy

1.3 Why Scala?
This of course raises the question why Scala and why now? There are a number of reasons why Scala should be a language that is given serious consideration by any development project. We have already mentioned that fact that it coherently brings together two very powerful programming paradigms that combined can allow very elegant, concise and maintainable systems to be created. However, there are other reasons why Scala is of interest. The first is that Scala can be compiled to Java Byte Codes. This means that a Scala system can run on any environment that supports the Java Virtual Machine (or JVM). There are already several languages that compile to Java Byte Codes. This list includes Java but also extends to Ada, JavaScript, Python, Ruby, Tcl and Prolog. Scala is just another such language. However, this has the additional advantage that Scala can also be integrated with any existing Java code base that a project may have. It also allows Scala to exploit the huge library of Java projects available both for free and for commercial use.
Another reason to consider Scala is that one of the design goals for the Scala development team was to create:A scalable language suitable for the construction of component based software within highly concurrent environments.

This means that it has several features integrated into it that support large software developments. For example, the Actor model of concurrency greatly simplifies the development of concurrent applications. In addition, the syntax reduces the amount of code that must be written by a developer (at least compared with Java). This is because it avoids a lot of the boilerplate code that any Java developer will be familiar with.
To summarise then, the following points can be made that Scala:	Provides Object-Oriented concepts including classes, objects, inheritance and abstraction.

	Extends these (at least with reference to pre Java 8) to include Traits which represent data and behaviour that can be mixed into classes and objects.

	Includes functional concepts, such as functions as first-class entities in the language, as well as concepts such as Partially Applied functions and Currying which allow new functions to be constructed from existing functions.

	Uses statically typed variables and constants with type inference used wherever possible to avoid unnecessary repetition.

	Has interoperability (mostly) with Java.

To return the question of ‘Why now?’—now is a good time to be learning about Scala. At the time of writing Scala has been in commercial use (at least to my knowledge) for seven years and has stabilised and addressed some of the concerns that commercial development projects had about early version of Scala.
1.4 Java to Scala Quick Comparison
As a comparison, for those who are familiar with Java, the following two listings compare and contrast equivalent code defined in Java and Scala. Do not worry at this point too much about the syntax; it is more for illustration than the specifics of either Java or Scala at this point.
Here is the Java class:

 class

 Person

 {

 private

 String

 firstName;

 private

 String

 lastName;

 private

 int

 age;

 public Person(String firstName, String

 lastName,

 int

 age)

 {

 this.firstName = firstName;

 this.lastName = lastName;

 this.age = age;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName; }

 public void String getFirstName() {

 this.firstName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName; }

 public void String getLastName() {

 this.lastName;

 }

 public void setAge(int age) { this.age = age;

 }

 public void int getAge() { return this.age; }

 }

And here is the equivalent Scala class:	

 class Person(var firstName: String, var lastName: String, var age: Int)

As you can see, the Scala version is much shorter but actually captures the same concepts. The core concepts here are that:A Person has three properties
 firstName
 ,
 lastName
 and
 age
 . These properties are readable and writable. When a new
 Person
 is constructed, you must provide values for the
 firstName
 ,
 lastName
 and the age.

Both listings implement these concepts; however, in Java’s case it has no concept of a property and thus we must define how the data is held internally to a Person and how it can be accessed or updated via various getter and setter methods. In contrast, Scala has a concept of properties and thus we do not need to write the update and access style methods. Instead, we need to decide if they are read-only (known as vals) or read–write properties (as indicated by the keyword var).
1.5 Scala Versions
There have been several significant Scala versions over recent years. It is useful to be aware of these so that if you are looking at blogs or articles on the Web you can see which ones are relevant to you. Previous significant versions have been Scala 2.9, 2.10 and 2.11. This book focuses on Scala 2.12 which is the current release at the time of writing.
1.6 Is This Book for You?
This book does not assume a great deal of programming experience. However, it is not a basic introduction to programming. Instead, it is aimed at those with little programming and no functional or Object-Oriented experience. It does introduce concepts such as lists, data collections,
 for
 loops and conditional control statements. However, it assumes a basic understanding of how programs work, of what a programming stack might be, that memory must be allocated for data, etc.
It can also be used to develop some basic knowledge of programming into a more in-depth knowledge of a particular technology. It could also be used to support an introduction to programming course.
1.7 Approach Taken by This Book
In general, the book takes a very “hands-on” approach to the whole subject and assumes that you will implement the examples as you progress. It supports this through many examples that take you through how to use the Scala IDE to support what you are doing as well as providing complete code examples with indications of the expected outcomes. Unlike many books on Scala, the focus is on using Scala within an IDE and constructing simple applications rather than using the interactive Scala interpreter. In addition, all the samples used in the book are available from Springer to be downloaded and used in your own IDEs.
References
Haskell	
 http://​www.​haskell.​org/​

Clojure	
 http://​clojure.​org/​

Common Lisp Object System	Sonya E. Keene, Object-Oriented Programming in Common LISP: A Programmer’s Guide to CLOS, Pub. Addison Wesley, (Jan 1989) 0201175894.

	List of JVM Languages http://​en.​wikipedia.​org/​wiki/​List_​of_​JVM_​languages

The Scala programming language home page	see http://​www.​scala-lang.​org

The Scala mailing list	see http://​listes.​epfl.​ch/​cgi-bin/​doc_​en?​liste=​scala

The Scala wiki	see http://​scala.​sygneca.​com/​

Lightbend Inc.	
 https://​www.​lightbend.​com/​

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_2

2. Elements of Object Orientation

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

2.1 Introduction
This chapter introduces the core concepts in Object Orientation. It concisely defines the terminology used and attempts to clarify issues associated with hierarchies. It also discusses some of the perceived strengths and weaknesses of the Object-Oriented approach. It then offers some guidance on the approach to take in learning about objects.
2.2 Terminology

 Class A class

 defines

 a combination of data and procedures that operate on that data. Instances of other classes can only access that data or those procedures through specified interfaces. A class acts as a template when creating new instances. A class does not hold any data but it specifies the data that is held in the instance. The relationship between a class, its superclass and any subclasses is illustrated in Fig. 2.1.[image: ../images/323629_2_En_2_Chapter/323629_2_En_2_Fig1_HTML.gif]
Fig. 2.1Relationship between class, superclass and subclass

 Subclass A subclass

 is a class that inherits from another class. For example, in the last chapter, Student Employee is a subclass of Temporary Employee. Subclasses are, of course, classes in their own right. Any class can have any number of subclasses.

 Superclass

 A superclass

 is the parent of a class. It is the class from which the current class inherits. For example, in the last chapter, Temporary Employee is the superclass of Student Employee. In Scala, a class can have only one superclass.

 Instance

 or

 object

 An instance is an example of a class. All instances of a class possess the same data variables but contain their own data. Each instance of a class responds to the same set of requests.

 [image: ../images/323629_2_En_2_Chapter/323629_2_En_2_Figa_HTML.gif]

 Instance

 variable

 This is the special name given to the data which is held by an object. The “state” of an object at any particular moment relates to the current values held by its instance variables. (In Scala, there are also class-side variables, referred to as static variables, but these will be discussed later.) Figure 2.2 illustrates a definition for a class in pseudo-code. It includes some instance variable definitions: fuel, mileage and name.[image: ../images/323629_2_En_2_Chapter/323629_2_En_2_Fig2_HTML.gif]
Fig. 2.2A simple Scala class definition

 Method

 A method

 is a procedure defined within an object. In early versions of Smalltalk, a method was used to get an object to do something or return something. It has since become more widely used; languages such as CLOS and Scala also use the term. Two methods are defined in Fig. 2.2: one calculates the miles per gallon, while the other sets the name of the car object.

 Message

 One

 object sends a message to another object requesting some operation or data. The idea is that objects are polite, well-behaved entities which carry out functions by sending messages to each other. A message may be considered akin to a procedure call in other languages.

 Single or
 multiple inheritance

 Single

 and multiple

 inheritance refer to the number of superclasses from which a class can inherit. Scala is a single inheritance system, in which a class can only inherit from one class. C++ is a multiple inheritance system in which a class can inherit from one or more classes.
2.3 Types of Hierarchy
In most Object-Oriented systems there are two types of hierarchy

; one refers to inheritance (whether single or multiple) and the other refers to instantiation. The inheritance

 hierarchy

 (or extends hierarchy) has already been described. It is the way in which an object inherits features from a superclass.

The

 instantiation

 hierarchy

 relates to instances rather than classes and is important during the execution of the object. There are two types of instance hierarchy: one indicates a part-of relationship, while the other relates to a using relationship (It is referred to as an is-a relationship.).

The

 difference

 between an is-a relationship and a part-of relationship is often confusing for new programmers (and sometimes for those who are experienced in one language but are new to Object-Oriented programming languages, such as Scala). Figure 2.3 illustrates that a student is-a type of person, whereas an engine is part-of a car. It does not make sense to say that a student is part-of a person or that an engine is-a type of car![image: ../images/323629_2_En_2_Chapter/323629_2_En_2_Fig3_HTML.gif]
Fig. 2.3
 is-a does not equal part-of

 In Scala, extends relationships are generally implemented by the subclassing mechanism. It is possible to build up large and complex class hierarchies which express these extends relationships. These classes express the concept of inheritance, allowing one class to inherit features from another. The total set of features is then used to create an instance of a class. In contrast, part-of relationships tend to be implemented using instance variables in Scala.

However, is-a relationships and classes are not exactly the same thing. For example, if you wish to construct a semantic network consisting of explicit is-a relationships between instances you will have to construct such a network manually. The aim of such a structure is to represent knowledge and the relationships between elements of that knowledge, and not to construct instances. The construction of such a network is outside the scope of the subclassing mechanism and would therefore be inappropriate.
If John is an instance of a class Person, it would be perfectly (semantically) correct to say that John is-a Person. However, here we are obviously talking about the relationship between an instance and a class rather than a subclass and its parent class.
A further confusion can occur for those encountering Scala after becoming familiar with a strongly typed language. These people might at first assume that a subclass and a subtype are essentially the same. However, they are not the same, although they are very similar. The problem with classes, types and is-a relationships is that on the surface they appear to capture the same sorts of concept. In Fig. 2.4, the diagrams all capture some aspect of the use of the phrase is-a. However, they are all intended to capture a different relationship.[image: ../images/323629_2_En_2_Chapter/323629_2_En_2_Fig4_HTML.gif]
Fig. 2.4Satisfying four relationships

The confusion is due to the fact that in modern English we tend to overuse the term is-a. We can distinguish between the different types of relationship by being more precise about our definitions in terms of a programming language, such as Scala. Table 2.1 defines the relationships illustrated in Fig. 2.4.Table 2.1Types of is-a relationships

	Specialisation
	One thing is a special case of another

	Type
	One type can be used interchangeably with another type (substitutability relationship)

	Subclassing or inheritance
	An implementation mechanism for sharing code and representations

	Instantiation
	One thing is an example of a particular category (class) of things

To illustrate this point, consider Fig. 2.5, which illustrates the differences between the first three categories.[image: ../images/323629_2_En_2_Chapter/323629_2_En_2_Fig5_HTML.gif]
Fig. 2.5Distinguishing between relationships

The first diagram illustrates the potential relationships between a set of classes that define the behaviour of different categories of vehicle. The second diagram presents the subtype relationships between the categories. The third diagram illustrates a straight specialisation set of relationships. Notice that although estate car is a specialisation of car with hatch, its implementation (the subclassing hierarchy) indicates that it does not share any of its implementation with the car with hatch class. It is worth noting that type relationships are specifications, while classes (and subclasses) are implementations of behaviour.
2.4 The Move to Object Technology
At present you are still acclimatising to Object Orientation. It is extremely important that from now on you do your utmost to immerse yourself in Object Orientation, object technology and Scala. This is because when you first encounter a new language or paradigm, it is all too easy to say that it is not good because you cannot do what you could in some other language or paradigm. We are all subject to the “better the devil you know than the devil you don’t” syndrome. If you embrace Object Orientation, warts and all, at least for the present, you will gain most.
In addition, it is a fact of life that most of us tend to fit in learning something new around our existing schedules. This may mean, for example, that you are trying to read this book and do the exercises while still working in C, VisualBasic, Ada, etc. From personal experience, and from teaching others about Scala, I can say that you will gain most by putting aside a significant amount of time and concentrating on the subject matter involved. This is not only because Object Orientation is so different, but also because you need to get familiar not only with the concepts but also with Scala and its development environment.
So have a go, take a “leap of faith” and stick with it until the end. If, at the end, you still cannot see the point, then fair enough, but until then accept it.
2.5 Summary
In this chapter, we reviewed some of the terminology introduced in the previous chapter. We also considered the types of hierarchy which occur in Object-Oriented systems and which can at first be confusing. We then considered the pros and cons of Object-Oriented programming. You should now be ready to start to think in terms of objects. As has already been stated, this will at first seem a strange way to develop a software system, but in time it will become second nature. In the next chapter we examine how an Object-Oriented system might be developed and structured. This is done without reference to any source code as the intention is to familiarise you with objects rather than with Scala. It is all too easy to get through a book on Smalltalk, C++, Scala, etc., and understand the text but still have no idea how to start developing an Object-Oriented system.
2.6 Exercises
Research what other authors have said about single and multiple inheritance. Why do languages such as Smalltalk and Scala not include multiple inheritance?
Look for terms such as class, method, member, member function, instance variable and constructor in the books listed in the further reading section. When you have found them, read their explanation of these terms and write down your understanding of their meaning.
2.7 Further Reading
Suggested further reading for this chapter includes Coad and Yourdon (1991), Winston and Narasimhan (2001) and Meyer (1988). In addition all the books mentioned in the previous chapter are still relevant.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_3

3. Why Object Orientation?

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

3.1 Introduction

The previous chapter introduced the basic concepts behind Object Orientation, the terminology and explored some of the motivation. This chapter looks at how Object Orientation addresses some of the issues that have been raised with procedural languages. To do this it looks at how a small extract of a program might be written in a language such as C, considers the problems faced by the C developer and then looks at how the same functionality might be achieved in an Object-Oriented language such as Scala, Java or C#. Again do not worry too much about the syntax you will be presented with, it will be Scala but it should not detract from the legibility of the examples.
3.2 The Procedural Approach
As has already been stated, Object Orientation provides four things:	1.Encapsulation

	2.Abstraction

	3.Inheritance

	4.Polymorphism.

It has been claimed that these four elements combine to provide a very powerful programming paradigm, but why? What is so good about Object Orientation?
3.2.1 A Naked Data Structure
Consider the following example:

 record Date {

 int

 day;

 int

 month;

 int

 year;

 }

This defines a data structure for recording dates. There are similar structures in many procedural languages such as C, Pascal and Ada. It is naked because it has no defenses against procedures accessing and modifying its contents.
So what is wrong with a structure such as this? Nothing, apart from the issue of visibility? That is, what can see this structure and what can update the contents of the structure? For example, code could set the day to 1, the month to 13 and the year to 9999. As far as the structure is concerned the information it holds is fine (that is day = 01, month = 13, year = 9999). This is because the structure only knows it is supposed to hold an integer, it knows nothing about dates per se. This is not surprising, it is only data.
3.2.2 Procedures for the Data Structure
This data is associated with procedures

 that perform operations on it. These operations might be to test whether the date represents a date at a weekend or part of the working week. It may be to change the date (in which case the procedure may also check to see that the date is a valid one.
For example:	

 isDayOfWeek(date);

	

 inMonth(date, 2);

	

 nextDay(date);

	

 setDay(date, 9, 23, 1946);

How do we know that these procedures are related to the date structure we have just looked at? By the naming conventions of the procedures and by the fact that one of the parameters is a data (record).
The problem is that these procedures are not limited in what they can do to the data (e.g. the setDay procedure might have been implemented by a Brit who assumes that the data order is day, month and year. However, it may be used by an American who assumes that date order is month, day, year. Thus the meaning of setDay(date, 9, 23, 1946) will be interpreted very differently. The American views this as the 23rd of September 1946, while the Brit views this as the 9th of the 23rd month, 1946. In either case, there is nothing to stop the date record being updated with both versions. Obviously the setDay() procedure might check the new date to see it was legal, but then again it might not. The problem is that the data is naked and has no defense against what these procedures do to it.
Indeed, it has no defense against what any procedures that can access it, may do to it.
3.2.3 Packages
One possibility is of course to use a package construct. In languages such as Ada packages are commonplace and are used as a way of organizing code and restricting visibility. For example,

 package Dates
 is

 type Date is
 ….

 function isDayOfWeek
 (
 d: Date
)
 return BOOLEAN
 ;

 function inMonth(d: Date, m: INTEGER) return

 BOOLEAN;

 …

The package construct now provides some ring fencing of the data structure and a grouping of the data structure with the associated functions. In order to use this package a developer must import the package (e.g. using with and uses in Ada). They can then access the procedures and work with data of the specified type (in this case Date). There can even be data that is hidden from the user within a private part. This therefore increases the ability to encapsulate the data (hide the data) from unwelcome attention.
3.3 Does Object Orientation Do Better?
This is an important question “Does Object Orientation do any better” than the procedural approach described above? We will first consider packages, then inheritance …
3.3.1 Packages Versus Classes
It has been argued (to me at least) that a package is just like a class. It provides a template from which you can create executable code, it provides wall around your data with well-defined gateways, etc. However, there are a number of very significant differences between packages and classes.
Firstly, packages tend to be larger (at least conceptually) units than classes. For example, the
 TextIO
 package in Ada is essentially a library of textual IO facilities, rather than a single concept such as the class String in C#. Thus packages are not used to encapsulate a single small concept such as
 Date,
 but rather a whole set of related concepts (as indeed they are used in C# itself where they are called namespaces). Thus a class is a finer level of granularity than a package even though it provides similar levels of encapsulation.
Secondly, packages still provide a relatively loose association between the data and the procedures. A package may actually deal with very many data structures with a wide range of methods. The data and the methods are related primarily via the related set of concepts represented by the package. In contrast a class tends to closely relate data and methods in a single concept. Indeed, one of the guidelines presented later in this book relating to good class design, is that if a class represents more than one concept, split it into two classes.
Thus this close association between data and code and means that the resulting concept is more than just a data structure (it is closer to a concrete realization of an abstract data type). For example:

 class Date {

 val day: Int

 =

 1

 val month: Int 1

 val year: Int

 =

 14

 def isDayOfWeek(): Boolean

 =

 {..}

 }

Anyone using an instance of Date now gets an object which can tell you whether it is a day of the week or not and can hold the appropriate data. Note that the
 isDayOfWeek()
 method takes no parameters, it does not need to as it and the date is a part of the same thing. This means that a user of a Date object will never get their hands on the actual data holding the date (i.e. the integers day, month and year). Instead, they are forced to go via the internal methods. This may only seem a small step, but it is a significant one, nothing outside the object may access the data within the object. In contrast the data structure in the procedural version, is not only held separately to the procedures, the values for day, month or year could be modified directly without the need to use the defined procedures.
For example, compare the differences between an ADA-esque excerpt from a program to manipulate dates:

 	

 d: Date;

	

 setDay(d, 28);

	

 setMonth(d, 2);

	

 setYear(d, 1998);

	

 isDayOfWeek(d);

	

 inMonth(d, 2);

Not that it was necessary to first create the data and then to set the fields in the data structure. Here we have been good and have used the interface procedures to do this. Once we had the data set-up we could then call methods such as
 IsDayOfWeek
 and
 InMonth
 on that data.
In contrast the Scala code uses a constructor to pass in the appropriate initialization information. How this is initialized internally is hidden from the user of the class Date. We then call method such as
 isDayOfWeek()
 and
 isMonth(12)
 directly on the object date.	

 val d

 =

 new Date(12, 2, 1998)

	

 d.IsDayOfWeek()

	

 d.InMonth(12)

The thing to think about here is where would code be defined?
3.3.2 Inheritance
Inheritance is the key element that makes an Object-Oriented language more than an object-based language. An object-based language possesses the concept of object, but not of inheritance. Indeed, inheritance
 is the thing that marks an Object-Oriented language as different from a procedural language. The key concept in inheritance is that one class can inherit data and methods from another, thus increasing the amount of code reuse occurring as well as simplifying the overall system. One of the most important features of inheritance (ironically) is that it allows the developer to get inside the encapsulation bubble in limited and controlled ways. This allows the subclass to take advantage of internal data structures and methods, without compromising the encapsulation a forded to objects. For example, let use define a subclass of the class
 Date
 (extends are used to indicate inheritance in Scala):

 class Birthday extends Date {

 val

 name:

 String

 =

 "

 val

 age:

 Int

 =

 0

 def

 isBirthday():

 Boolean

 =

 {..}

 }

The method
 isBirthday()
 could check to see if the current date, matched the birthday represented by an instance of Birthday and return true if it does and false if it does not.
Note however, that the interesting thing here is that not only have I not had to define integers to represent the date, nor have I had to define methods to access such dates. These have both been inherited from the parent class
 Date
 .
In addition, I can now treat an instance of
 Birthday
 as either a Date or as a
 Birthday
 depending on what I want to do!
What would you do in languages such as C, Pascal or Ada? One possibility is that you could define a new package Birthday, but that package would not extend
 Dates
 , it would have to import Dates and add interfaces to it etc.? However, you certainly could not treat a Birthday package as a Dates package.
In languages such as Scala, because of polymorphism, you can do exactly that. You can reuse existing code that only knew about Date, for example:	

 def test(Date d): Unit

 =

 {..}

	

 t.test(birthday)

This is because Birthday is indeed a type of Date as well as being a type of Birthday.
You can also use all of the features defined for Date on Birthdays:	

 birthday.isDayOfWeek()

Indeed you do not actually know where the method is defined. This method could be defined in the class Birthday (in which it would override that defined in the class
 Date
). However, it could be defined in the class
 Date
 (if no such method is defined in
 Birthday
). However, without looking at the source code there is no way of knowing!
Of course you can also use the new methods defined in the class Birthday on instance (objects) of this class. For example:	

 birthday.isBirthday()

3.4 Summary
Classes in an Object-Oriented language provide a number of features that are not present in procedural languages. Hopefully by the end of the book you will agree that they are useful additions to the developers’ toolbox. If not, give it time, one of the problems that we all face (myself included) is a reluctance to change. To summarise, the main points to be noted from this chapter on Object Orientation are:	Classes provide for inheritance.

	Inheritance provides for reuse.

	Inheritance provides for extension of data type.

	Inheritance allows for polymorphism.

	Inheritance unique feature of Object Orientation.

	Encapsulation represents a particularly good Software Engineering feature in Object Orientation.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_4

4. Constructing an Object-Oriented System

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

4.1 Introduction

This chapter takes you through the design of a simple Object-Oriented system without considering implementation issues or the details of any particular language. Instead, this chapter illustrates how to use Object Orientation concepts to construct a software system. We first describe the application and then consider where to start looking for objects, what the objects should do and how they should do it. We conclude by discussing issues such as class inheritance and answer questions such as “where is the structure of the program?”.
4.2 The Application: Windscreen Wipe Simulation

This

 system

 aims

 to
 provide

 a diagnosis tutor for the equipment illustrated in Fig. 4.1. Rather than use the wash–wipe system from a real car, students on a car mechanics diagnosis course use this software simulation. The software system mimics the actual system, so the behaviour of the pump depends on information provided by the relay and the water bottle.[image: ../images/323629_2_En_4_Chapter/323629_2_En_4_Fig1_HTML.gif]
Fig. 4.1Windscreen wash–wipe system

The operation of the wash–wipe system is controlled by a switch which can be in one of five positions: off, intermittent, slow, fast and wash. Each of these settings places the system into a different state:	Switch setting
	System state

	Off
	The system is inactive

	Intermittent
	The blades wipe the windscreen every few seconds

	Slow
	The wiper blades wipe the windscreen continuously

	Fast
	The wiper blades wipe the windscreen continuously and quickly

	Wash
	The pump draws water from the water bottle and sprays it onto the windscreen

For the pump and the wiper motor to work correctly, the relay must function correctly. In turn, the relay must be supplied with an electrical circuit. This electrical circuit is negatively fused, and thus the fuse must be intact for the circuit to be made. Cars are negatively switched as this reduces the chances of short circuits leading to unintentional switching of circuits.
4.3 Where Do We Start?
This is often a very difficult point for those new to Object-Oriented systems. That is, they have read the basics and understand simple diagrams, but do not know where to start. It is the old chestnut, “I understand the example but do not know how to apply the concepts myself”. This is not unusual and, in the case of Object Orientation, is probably normal.
The answer to the question “where do I start?” may at first seem somewhat obscure; you should start with the data. Remember that objects are things that exchange messages with each other. The things possess the data that is held by the system and the messages request actions that relate to the data. Thus, an Object-Oriented system is fundamentally concerned with data items.
Before we go on to consider the Object-Oriented view of the system, let us stop and think for a while. Ask yourself “where would I start if I was going to develop such a system in C or Pascal or even Ada?” In most cases, the answer is “with some form of functional decomposition”. That is, you might think about the main functions of the system and break them down into subfunctions and so on. As a natural part of this exercise, you would identify the data required to support the desired functionality. Notice that the emphasis would be on the system functionality.
Let us take this further and consider the functions we might identify for the example presented above:	Function
	Description

	Wash
	Pump water from the water bottle to the windscreen

	Wipe
	Move the windscreen wipers across the windscreen

We would then identify important system variables and subfunctions to support the above functions.
Now let us go back to the Object-Oriented view of the world. In this view, we place a great deal more emphasis on the data items involved and consider the operations associated with them (effectively, the reverse of the functional decomposition view). This means that we start by attempting to identify the primary data items in the system; next, we look to see what operations are applied to, or performed on, the data items; finally, we group the data items and operations together to form objects. In identifying the operations, we may well have to consider additional data items, which may be separate objects or attributes of the current object. Identifying them is mostly a matter of skill and experience.
The Object-Oriented design approach considers the operations far less important than the data and their relationships. In the next section we examine the objects that might exist in our simulation system.
4.4 Identifying the Objects
We look at the system as a whole and ask what indicates the state of the system. We might say that the position of the switch or the status of the pump is significant. This results in the data items shown in Table 4.1.Table 4.1Data items and their associated state information

	Data item
	States

	Switch setting
	Is the switch set to off, intermittent, wipe, fast wipe or wash?

	Wiper motor
	Is the motor working or not?

	Pump state
	Is the pump working or not?

	Fuse condition
	Has the fuse blown or not?

	Water bottle level
	The current water level

	Relay status
	Is current flowing or not?

The identification of the data items is considered in greater detail later. At this point, merely notice that we have not yet mentioned the functionality of the system or how it might fit together, we have only mentioned the significant items. As this is such a simple system, we can assume that each of these elements is an object and illustrate it in a simple object diagram (Fig. 4.2).[image: ../images/323629_2_En_4_Chapter/323629_2_En_4_Fig2_HTML.gif]
Fig. 4.2Objects in simulation system

Notice that I have named each object after the element associated with the data item (e.g. the element associated with the fuse condition is the fuse itself) and that the actual data (e.g. the condition of the fuse) is an instance variable of the object. This is a very common way of naming objects and their instance variables. We now have the basic objects required for our application.
4.5 Identifying the Services or Methods
At the moment, we have a set of objects each of which can hold some data. For example, the water bottle can hold an integer indicating the current water level. Although Object-Oriented systems are structured around the data, we still need some procedural content to change the state of an object or to make the system achieve some goal. Therefore, we also need to consider the operations a user of each object might require. Notice that the emphasis here is on the user of the object and what they require of the object, rather than what operations are performed on the data.
Let us start with the switch object. The switch state can take a number of values. As we do not want other objects to have direct access to this variable, we must identify the services that the switch should offer. As a user of a switch we want to be able to move it between its various settings. As these settings are essentially an enumerated type, we can have the concept of incrementing or decrementing the switch position. A switch must therefore provide a moveUp and a moveDown interface. Exactly how this is done depends on the programming language; for now, we concentrate on specifying the required facilities.
If we examine each object in our system and identify the required services, we may end up with the Table 4.2.Table 4.2Object services

	Object
	Service
	Description

	Switch
	moveUp
	Increment switch value

	 	moveDown
	Decrement switch value

	 	state?
	Return a value indicating the current switch state

	Fuse
	working?
	Indicate if the fuse has blown or not

	Wiper motor
	working?
	Indicate whether the wipers are working or not

	Relay
	working?
	Indicate whether the relay is active or not

	Pump
	working?
	Indicate whether the pump is active or not

	Water bottle
	fill
	Fill the water bottle with water

	 	extract
	Remove some water from the water bottle

	 	empty
	Empty the water bottle

We generated this table by examining each of the objects in isolation to identify the services that might reasonably be required. We may well identify further services when we attempt to put it all together.
Each of these services should relate to a method within the object. For example, the
 moveUp
 and
 moveDown
 services should relate to methods that change the
 state
 instance variable within the object. Using a generic pseudo-code, the
 moveUp
 method, within the
 switch
 object, might contain the following code:

 define method

 moveUp

 ()

 if state == "off" then

 state = "wash"

 elseif state == "wash" then

 state = "wipe"

 endif

 end define method

This method changes the value of the
 state
 variable in
 switch
 . The new value of the instance variable depends on its previous value. You can define
 moveDown
 in a similar manner. Notice that the reference to the instance variable illustrates that it is global to the object. The
 moveUp
 method requires no parameters. In Object-Oriented systems, it is common for few parameters to be passed between methods (particularly of the same object), as it is the object that holds the data.
4.6 Refining the Objects
If we look back to Table 4.2, we can see that fuse, wiper motor, relay and pump all possess a service called
 working?
 This is a hint that these objects may have something in common. Each of them presents the same interface to the outside world. If we then consider their attributes, they all possess a common instance variable. At this point, it is too early to say whether fuse, wiper motor, relay and pump are all instances of the same class of object (e.g. a Component class) or whether they are all instances of classes which inherit from some common superclass (see Fig. 4.3). However, this is something we must bear in mind later.[image: ../images/323629_2_En_4_Chapter/323629_2_En_4_Fig3_HTML.gif]
Fig. 4.3Possible classes for components in the simulation

4.7 Bringing It All Together
So far we have identified the primary objects in our system and the basic set of services they should present. These services were based solely on the data the objects hold. We must now consider how to make our system function. To do this, we need to consider how it might be used. The system is part of a very simple diagnosis tutor; a student uses the system to learn about the effects of various faults on the operation of a real wiper system, without the need for expensive electronics. We therefore wish to allow a user of the system to carry out the following operations:	change the state of a component device

	ask the motor what its new state is.

The
 moveUp
 and
 moveDown
 operations on the switch change the switch’s state. Similar operations can be provided for the fuse, the water bottle and the relay. For the fuse and the relay, we might provide a
 changeState
 interface using the following algorithm:

 define method

 changeState

 ()

 if state == "working" then

 state = "notWorking"

 else

 state = "working"

 endif

 end define method

Discovering the state of the motor is more complicated. We have encountered a situation where one object’s state (the value of its instance variable) is dependent on information provided by other objects. If we write down procedurally how the value of other objects affects the status of the pump, we might get the following pseudo-code:

 if fuse is working then

 if switch is not off then

 if relay is working then

 pump status = "working"

 endif

 endif

 endif

This algorithm says that the pump status depends on the relay status, the switch setting and the fuse status. This is the sort of algorithm you might expect to find in a
 main()
 program. It links the subfunctions together and processes the data.
In an Object-Oriented language (such as Scala), we do not have a main program in the same way that a C program has. Instead the
 main()
 method in Scala is an initiating point for an Object-Oriented system (in Scala this is simplified further by the use of the App trait). As it is part of an object, the main method can trigger the creation of instances, but it is not itself part of those instances. This can be confusing at first; however, if you think of the
 main()
 method in Scala as initiating a program, that is the starting point for a program, then you are fairly close.
In an Object-Oriented system, well-mannered objects pass messages to one another. How then do we achieve the same effect as the above algorithm? The answer is that we must get the objects to pass messages requesting the appropriate information. One way to do that is to define a method in the pump object that gets the required information from the other objects and determines the motor’s state. However, this requires the pump to have links to all the other objects so that it can send them messages. This is a little contrived and loses the structure of the underlying system. It also loses any modularity in the system. That is, if we want to add new components, then we have to change the pump object, even if the new components only affect the switch. This approach also indicates that the developer is thinking too procedurally and not really in terms of objects.
In an Object-Oriented view of the system, the pump object only needs to know the state of the relay. It should therefore request this information from the relay. In turn, the relay must request information from the switches and the fuse.
Figure 4.4 illustrates the chain of messages initiated by the pump object:	1.pump sends a
 working?
 message to the relay

	2.relay sends a
 state?
 message to the switch
the switch replies to the relay

	3.relay sends a second
 working?
 message to the fuse
the fuse replies to the relay
the relay replies to the motor
If the pump is working, then the pump object sends the final message to the water bottle

	4.pump sends a message
 extract
 to the water bottle.

[image: ../images/323629_2_En_4_Chapter/323629_2_En_4_Fig4_HTML.gif]
Fig. 4.4Collaborations between the objects for wash operation

In step four, a parameter is passed with the message because, unlike the previous messages that merely requested state information, this message requests a change in state. The parameter indicates the rate at which the pump draws water from the water bottle.
The water bottle should not record the value of the pump’s status as it does not own this value. If it needs the motor’s status in the future, it should request it from the pump rather than using the (potentially obsolete) value passed to it previously.
In Fig. 4.4, we assumed that the pump provided the service
 working?
 which allows the process to start. For completeness, the pseudo-code of the
 working?
 Method for the pump object is:

 def

 working?

 ()

 begin

 this.status = relay.working().

 if this.status == "working" then

 water_bottle.extract(this.status)

 endif

 end

 end define method

This method is a lot simpler than the procedural program presented earlier. At no point do we change the value of any variables that are not part of the pump, although they may have been changed as a result of the messages being sent. Also, it only shows us the part of the story that is directly relevant to the pump. This means that it can be much more difficult to deduce the operation of an Object-Oriented system merely by reading the source code. Some Scala environments (such as the Scala IDE) alleviate this problem, to some extent, through the use of sophisticated browsers.
4.8 Where Is the Structure?
People new to Object Orientation may be confused because they have lost one of the key elements that they use to help them understand and structure a software system: the main program body. This is because the objects and the interactions between them are the cornerstone of the system. In many ways, Fig. 4.4 shows the Object-Oriented equivalent of a main program. This also highlights an important feature of most Object-Oriented approaches: graphical illustrations. Many aspects of object technology, for example, object structure, class inheritance and message chains, are most easily explained graphically.
Let us now consider the structure of our Object-Oriented system. It is dictated by the messages that are sent between objects. That is, an object must possess a reference to another object in order to send it a message. The resulting system structure is illustrated in Fig. 4.5.[image: ../images/323629_2_En_4_Chapter/323629_2_En_4_Fig5_HTML.gif]
Fig. 4.5Wash–wipe system structure

In Scala, this structure is achieved by making instance variables reference the appropriate objects. This is the structure which exists between the instances in the system and does not relate to the classes, which act as templates for the instances.
We now consider the classes that create the instances. We could assume that each object is an instance of an equivalent class (see Fig. 4.6a). However, as has already been noted, some of the classes bear a very strong resemblance. In particular, the fuse, the relay, the motor and the pump share a number of common features. Table 4.3 compares the features (instance variables and services) of these objects.[image: ../images/323629_2_En_4_Chapter/323629_2_En_4_Fig6_HTML.gif]
Fig. 4.6Possible class inheritance relationships

Table 4.3Comparison of components

	 	fuse
	relay
	motor
	pump

	Instance variable
	state
	state
	state
	state

	Services
	working?
	working?
	working?
	working?

From this table, the objects differ only in name. This suggests that they are all instances of a common class such as Component (see Fig. 4.6b). This class would possess an additional instance variable, to simplify object identification.
If they are all instances of a common class, they must all behave in exactly the same way. However, we want the pump to start the analysis process when it receives the message
 working?
 so it must possess a different definition of
 working?
 from fuse and relay. In other ways it is very similar to fuse and relay, so they can be instances of a class (say Component) and pump and motor can be instances of classes that inherit from Component (but redefine
 working?
). This is illustrated in Fig. 4.6c. The full class diagram is presented in Fig. 4.7.[image: ../images/323629_2_En_4_Chapter/323629_2_En_4_Fig7_HTML.gif]
Fig. 4.7Final class hierarchy and instance diagram

4.9 Summary
In this chapter, you have seen how a very simple system can be broken down into objects. These objects combine to provide the overall functionality of the system. You have seen how the data to be represented determines the objects used and that the interactions between objects determine the structure of the system. You should also have noted that objects and their classes, methods and instance variables are identified by more of an evolutionary process than in languages that are not Object Oriented.
4.10 Exercises
Take a system with which you are familiar and try to break it down into objects. Carry out a similar set of steps to those described above. Do not worry about how to implement the objects or the classes. Use whatever representation best fits your way of working to describe what the methods do (pseudo-code or a programming language, such as C or Pascal, if you prefer). You can even use a flow chart if you are most comfortable with that. It is very important that you try and do this, as it is a useful exercise in learning to think in terms of objects.
4.11 Further Reading
A good place to start further reading on building Object-Oriented systems is with the first few chapters of Blaha and Rumbaugh (2004). In addition, Wirfs-Brock and McKean (2002) is an excellent, non-language-specific introduction to structuring Object-Oriented systems. It uses a rather simplistic approach, which is ideal for learning about Object-Oriented system design but is not generally applicable. This is not a problem as what you want to do at the moment is to get the background rather than specific techniques. Another good reference for further reading is Larman (2008).
References
	Blaha MR, James R (2004) Rumbaugh, Prentice Hall. 8120330161, 2nd edn.

	Larman C (2008) Applying UML and patterns: an introduction to object-oriented analysis and design and iterative development. Dorling Kindersley Pvt Ltd.; 3rd edn. 8177589792 (1 Dec 2008)

	Wirfs-Brock R, McKean A (2002) Object design: roles, responsibilities and collaborations. Addison-Wesley Object Technologiey Series. 0201379430 (Nov, 2002)

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_5

5. Functional Programming

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

5.1 Introduction
Previous chapters have focussed on the Object-Oriented side of the Scala language. However, Scala is a hybrid Object Oriented (OO) and functional programming (FP) language. In this chapter, we will now look at functional programming and its advantages and disadvantages.
5.2 What Is Functional Programming?
Wikipedia describes Functional Programming as:… a programming paradigm, a style of building the structure and elements of computer programs, that treats computation as the evaluation of mathematical functions and avoids state and mutable data.

There are a number of points to note about this definition. The first is that it is focussed on the computational side of computer programmes. You might consider that obvious, but at least half of what we have looked at around objects and classes has been focussed on the representation of domain concepts and data within those concepts. Thus there is a difference of emphasis between the functional programming world and the Object-Oriented programming world.
Another thing to note is that the way in which the computations are represented emphasises functions that generate results based on data and computations. These functions only rely on their inputs and generate a new output. They do not rely on any side effects and do not depend on the current state of the program. Taking each of these in turn:	1.
 Functional programming aims to avoid side effects. A function should be replaceable by taking the data it receives and inlining the result generated (this is referred to as referential transparency). This means that there should be no hidden side effects of the function. Hidden side effects make it harder to understand what a program is doing and thus make comprehension, development and maintenance harder. Pure functions have the following attributes:

 	the only observable output is the return value.

	the only output dependency are the arguments.

	arguments are fully determined before any output is generated.

	2.
 Functional programming avoids concepts such as state. Lets us take these as separate issues. If some operation is dependent upon the state of the program or some element of a program, then its behaviour may differ depending upon that state. This may make it harder to comprehend, implement, test and debug. As all of these impacts on the stability and probably reliability of a system, state-based operations may result in less reliable software being developed. As functions do not (should not) rely on any given state (only upon the data they are given) they should as a result be easier to understand, implement, test and debug.

	3.
 Functional programming promotes immutable data. Functional programming also tends to avoid concepts such as mutable data. Mutable data is data that can change its state. By contrast immutability indicates that once created, data cannot be changed. In Scala Strings are immutable. Once you create a new string you cannot modify it. Any functions that apply to a string that would conceptually alter the contents of the string, result in a new String being generated. Scala takes this further by having a presumption of immutability that means that by default all data holding types are immutable. This ensures that functions cannot have hidden side effects and thus simplifies programming in general.

	4.
 Functional programming promotes declarative programming (and is in fact a subtype of declarative programming), which means that programming is oriented around expressions that describe the solution rather than focus on the imperative approach of most procedural programming languages. These languages emphasise aspects of how the solution is derived. For example, an imperative approach to looping through some container and printing out each result in turn would look like this:

 [image: $$ \begin{aligned} & {\mathsf{int}}\;{\mathsf{sizeOfContainer}} = {\mathsf{container}}.{\mathsf{length}} \\ & {\mathsf{for}}\left({{\mathsf{int}}\;{\mathsf{I}} = 1\;{\mathsf{to}}\;{\mathsf{sizeOfContainer}}} \right)\;{\mathsf{do}} \\ & \quad {\mathsf{element}} = {\mathsf{container}}.{\mathsf{get}}\left({\mathsf{i}} \right) \\ ~ & \quad {\mathsf{print}}\left({{\mathsf{element}}} \right) \\ & {\mathsf{enddo}} \\ \end{aligned} $$]

whereas a functional programming approach would look like:[image: $$ {\mathsf{container.foreach}}({\mathsf{print}})$$]

Functional programming has its roots in the lambda calculus, originally developed in the 1930s to explore computability. Many functional programming languages can thus be considered as elaborations on this lambda calculus. There have been numerous pure punctional programming languages including Common Lisp, Clojure and Haskell. Scala allows you to write in a purely functional programming style or to combine functions with objects. Care needs to be taken when doing this that the principles of functional programming, and thus the advantages of functional programming, are not undermined. However, when used judiciously functional programming can be a huge benefit for, and an enhancement to, the purely Object-Oriented world.
To summarise then:

 Imperative Programming is what is currently perceived as traditional programming. That is, it is the style of programming used in languages such as C, C++, Java and C#. In these languages a programmer tells the computer what to do, e.g. x = y + z. It is thus oriented around control statements, looping constructs and assignments.

 Functional Programming aims to describe the solution, that is, what the program needs to be doing (rather than how it should be done).
5.3 Advantages to Functional Programming
There are a number of significant advantages to functional programming compared to imperative programming. These include:	1.
 Less code. Typically a functional programming solution will require less code to write than an equivalent imperative solution. As there is less code to write, there is also less code to understand and to maintain. It is therefore possible that functional programmes are not only more elegant to read but easier to update and maintain. This can also lead to enhanced programmer productivity as they spend less time writing reams of code as well as less time reading those reams of code.

	2.
 Lack of (hidden) side effects (Referential Transparency). Programming without side effects is good as it makes it easier to reason about functions (that is a function is completely described by the data that goes in and the results that come back). This also means that it is safe to reuse these functions in different situations (as they do not do unexpected things). It should also be easier to develop, test and maintain such functions.

	3.
 Recursion is a natural control structure. Functional languages tend to emphasis recursion as a way of processing structures that would use some form of looping constructs in an imperative language.

Although you can often implement recursion in imperative languages it is often easier to do in functional languages. It is also worth noting that recursion is a very expressive and a great way for a programmer to write a solution to a problem; however it is not as efficient at run time as looping. However, any expression that can be written as a recursive routine can also be written using looping constructs. Functional programming languages often incorporate tail end recursive optimizations to convert recursive routines into iterative ones at runtime. Essentially, if the last thing a routine does before it returns is to call another routine, rather than actually invoking the routine and having to set up the context for that routine, it should be possible to reuse the current context and to treat it in an iterative manner as a loop around that routine. This means that both the programmer benefits of an expressive recursive construct and the runtime benefits of an iterative solution can be achieved using the same source code. This option is typically not available in imperative languages.

 	
 Good for prototyping solutions. Solutions can be created very quickly for algorithmic or behaviour problems in a functional language. Thus allowing ideas and concepts to be explored in a rapid application development style.

	
 Modular functionality. Functional programming is modular in terms of functionality (where Object-Oriented languages are modular in the dimension of components). They are thus well suited to situations where it is natural to want to reuse or componentise the behaviour of a system.

	
 The avoidance of state-based behaviour. As functions only rely on their inputs and outputs (and avoid accessing any other stored state) they exhibit a cleaner and simpler style of programming. This avoidance of state based behaviour makes many difficult or challenging areas of programming simpler (such as those used in concurrency applications).

	
 Additional control structures. A strong emphasis on additional control structures such as pattern matching, managing variable scope, tail recursion optimizations.

	
 Concurrency and immutable data. As functional programming systems advocate immutable data structures it is simpler to construct concurrent systems. This is because the data being exchanged and accessed is immutable. Therefore multiple executing thread or processes cannot affect each other adversely. The Akka Actor model builds on this approach to provide a very clean model for multiple interacting concurrent systems.

	
 Partial evaluation. Since functions do not have side effects, it also becomes practical to bind one or more parameters to a function at compile time and to reuse these functions with bound values as new functions that take fewer parameters.

5.4 Disadvantages of Functional Programming
If functional programming has all the advantages previously described, why isn’t it the mainstream force that imperative programming languages are? The reality is that functional programming is not without its disadvantages, including:	
 Input–output is harder in a purely functional language. Input–output flows naturally align with stream style processing, which does not neatly fit into the data in, results out, nature of functional systems.

	
 Interactive applications are harder to develop. Interactive application is constructed via request response cycles initiated by a user action. Again these do not naturally sit within the purely functional paradigm.

	
 Continuously running programs such as services or controllers may be more difficult to develop, as they are naturally based upon the idea of a continuous loop.

	
 Functional programming languages have tended to be less efficient on current hardware platforms. This is partly because current hardware platforms are not designed with functional programming in mind and also because many of the systems previously available were focussed on the academic community where out and out performance was not the primary focus. However, this has changed to a large extent with Scala and the functional language Heskell.

	
 Not data oriented. A pure functional language does not really align with the needs of the primarily data-oriented nature of many of today’s systems. Many (most) commercial systems are oriented around the need to retrieve data from a database, manipulate it in some way and store that data back into a database. Such data can be naturally represented via objects in an Object Oriented language.

	
 Programmers are less familiar with functional programming concepts and thus find it harder to pick up function-oriented languages.

	
 Functional programming idioms are often less intuitive to (traditional) programmers than imperative idioms (such as lazy evaluations) which can make debugging and maintenance harder.

	Many functional programming languages have been viewed as Ivory tower languages that are only used by academics. This has been true of some older functional languages but is increasingly changing with the advent of languages such as Scala.

5.5 Scala and Functional Programming
Scala overcomes many of the disadvantages of functional programming by providing a hybrid environment in which you can use the Object-Oriented features of the language to represent concepts, data-rich elements, etc. and use functions to express behaviour oriented aspects of a program. It thus provides a best of both worlds approach to your choice of programming language constructs.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_6

6. Scala Background

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

6.1 Introduction
I first encountered the Scala language in 2010. I was working on a graduate training programme for an international banking organisation when I was asked to give an hour talk to the graduates on Scala. At that point, I had heard the name mentioned but had no idea what it was. I therefore did some reading, installed the IDE being used and tried out some examples—and was hooked.
Since then I have trained a wide range of people in Scala, used it to develop large commercial systems and written a book on Scala and Design Patterns. I am still hooked on it and find myself discovering new aspects to the language and the environment on almost every Scala project I am involved with.
6.2 The Class Person
The following classes define a simple class
 Person
 that has a first name and a last name and an age (these examples were first considered in the introduction). A
 Person
 is constructed by providing the first and last names, and their age and setters and getters are provided for each.
Here is the Java class:

 class Person

 {

 private String firstName;

 private String lastName;

 private int

 age;

 public Person(String firstName,

 String lastName,

 int age) {

 this.firstName

 =

 firstName;

 this.lastName

 =

 lastName;

 this.age

 =

 age;

 }

 public void setFirstName(String firstName){

 this.firstName

 =

 firstName;

 }

 public void String getFirstName() {

 return this.firstName;

 }

 public void setLastName(String lastName) {

 this.lastName

 =

 lastName;

 }

 public void String getLastName() {

 return this.lastName;

 }

 public void setAge(int age) {

 this.age

 =

 age;

 }

 public void int getAge() {

 return this.age;

 }

 }

And here is the equivalent Scala class:

 class

 Person(

 var

 firstName:

 String,

 var

 lastName:

 String,

 var

 age:

 Int)

Certainly the Java class is longer than the Scala class, but look at the Java class “How many times have you written something like that?” Most of this Java class is boilerplate code. In fact, it is so common that tools such as Eclipse allow us to create the boilerplate code automatically which may mean that we do not have to type much more in the Java case than the Scala case. However, when I look back and have to read this code I may have to wade through a lot of such boilerplate code in order to find the actual functionality of interest. In the Scala case this boilerplate code is handled by the language meaning that I can focus on what the class actually does.
Actually the Object-Oriented side of Scala is both more sophisticated than that in either Java or C# and also different in nature. For example, many people have found the distinction between the static side of a class and the instance side of a class confusing. Scala does away with this distinction by not including the static concept. Instead it allows the user to define singleton objects, if these singleton objects have the same name as a class and are in the same source file as the class, then they are referred to as companion objects. Companion objects then have a special relationship with the class that allows them to access the internals of a class (private fields and methods) and can provide the Scala equivalent of static behaviour.
The class hierarchy in Scala is based on single inheritance of classes but allows multiple traits to be mixed into any given class. A Trait is a structure within the Scala language that is neither a class nor an interface (note Scala does not have interfaces even though it compiles to Java Byte Codes). It can however, be combined with classes to create new types of classes and objects. As such a Trait can contain data, behaviour, functions, type declarations, abstract members, etc. but cannot be instantiated itself.
The analogy might be that a class is like a flavour of ice cream. You can have vanilla as the basic flavour with all the characteristics of ice cream; chocolate could be a subclass of Vanilla which extends the concept to a chocolate flavour of ice cream. Separately we could have bowls containing chocolate chips, mint chips, M&Ms, sprinkles of various types. We can combine the vanilla ice cream with the mint chips to create vanilla mint chip ice cream. This provides a new type of ice cream but those mint choc chips are not in and of themselves an ice cream. Traits are like the mint chocolate chips, while classes are like the ice cream.
6.3 Functional Programming
So much for the Object-Oriented view of Scala, what about this functional programming concept? For those of you coming from a Java background this may seem a bit alien; however, functional programming languages have a long history from LISP developed in the late 1950s to more recent functional languages such as ML and Haskell.
Working with functions is not that difficult although until you become familiar with the syntax they may seem unwieldy—but the key is to hang in there and keep trying.
The following provides a simple example of a function literal in Scala that takes two numbers and adds them together:[image: $$ {\text{val}}\,{\text{add}} = \left({{\text{a}}{:}\,{\text{Int}},{\text{b}}{:}\, {\text{Int}}} \right) \,{=>}\, {\text{a}} + {\text{b}} $$]

This defines a new function that takes two integers in the parameters a and b and returns the result of adding a to b. The function can be accessed via the variable add. This is a variable of type Function. We can invoke this function as the following:[image: $$ {\text{add}}(4, 5) $$]

which should return the value 9. In Scala we can then partially apply this function. This means that we can bind one of the parameters to a value to create a new function that only takes one parameter; for example,[image: $$ {\text{val}}\,{\text{addTwo}} = \left({2, \, _{:}\,{\text{Int}}} \right) $$]

This function, addTwo, now adds 2 to whatever integer is passed to it, for example,[image: $$ {\text{addTwo}}(5) $$]

will return 7.
6.4 A Hybrid Language
If all Scala did was provide the ability to program functionally all that would do is provide yet another functional programming language. However, it is the fact that Scala mixes the two paradigms that allow us to create software solutions that are both concise and expressive.
The Object-Oriented paradigm has been such a success because it can be used to model concepts and entities within problem domains. When this is combined with the ability to treat functions as first-class entities we obtain a very powerful combination.
For example, we can now create classes that will hold data (including other objects) and define behaviours in terms of methods but which can easily and naturally be given functions that can be applied to the members of that object.

 val

 numbers

 =

 List(1,

 2,

 3,

 4,

 5)

 println(numbers)

In this case I have created a list of integers (note that this is a list of Integers as the type has been inferred by Scala) that are stored in the variable
 numbers
 .

 val

 filtered

 =

 numbers.filter((n:

 Int)

 =>

 n

 <

 3)

 println(filtered)

I have then applied a function to each of the elements of the list. This function is an anonymous function that takes an
 Int
 (and stores that
 Int
 in the variable
 n
). It then tests to see if the value of
 n
 is less than
 3
 . If it is it returns
 true
 otherwise it returns
 false
 . The method
 filter
 uses the function passed to it to determine whether the value passed it should be included in the result or not. This means that the variable
 filtered
 will hold a list of integers where each integer is less than the value
 3
 . Again note that this is again a
 List
 of
 Ints
 as once again Scala has inferred the type.
The output from these statements I shown below:	

 List(1, 2, 3, 4, 5)

	

 List(1, 2)

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_7

7. A Little Scala

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

7.1 Introduction
In the last chapter, you learned a little about the history of Scala and the Scala development environment. In this chapter, you encounter a little of the Scala language, what happens when you compile and run a Scala program, the Scala runtime (Virtual Machine) and the Scala IDE.
7.2 The Scala Environment
There are a number of things that you need in order to develop using the Scala language. First of all you need access to the Scala compiler. The compiler is called
 scalac
 , and you may use it from the command line to compile Scala code files directly or you may use it via an IDE (such as the Scala IDE) that can compile your code for you automatically. It can also be used via various application build tools such as the Simple Build Tool (SBT) for Scala.
When you compile Scala source files (ones with a
 .scala
 extension) you create byte code files. These files have a
 .class
 extension. They are not executable files directly (these are files which have a .exe. or .bin type extension and can be run natively by the operating system). Instead a byte code file is a compressed version of your Scala code that is run via a Virtual Machine. This Virtual Machine acts like a computer that executes byte code files but is actually a software application that can be ported to numerous different operating systems.

Scala can run on the Scala Virtual Machine (which is the Java Virtual Machine, or JVM allied with the Scala runtime libraries that provide for the various concepts, functionality and frameworks that Scala uses). This combination of the JVM and the Scala libraries can be referred to as the Scala runtime and can be used in either interpreter mode (in which case you can type in Scala code and immediately see the result) or batch mode in which case you can run applications as you would any other type of environment.

To summarise then, to run the Scala environment you need:	The Scala compiler

	The Scala Virtual Machine

	The Scala runtime libraries.

If you use the Scala IDE described later in this chapter then you will automatically obtain these. However, you can install Scala without the need for an IDE if you wish. This can be obtained from the main Scala website.
7.3 The Scala Shell
Scala provides an interactive interpreter or shell that you can use to try out pieces of Scala code. This interactive shell allows you to type in Scala code and for that Scala code to be immediately evaluated and the results presented to you. This shell is often referred to as REPL for ‘R’ead, ‘E’valuate, ‘P’rint ‘L’oop.
To start up the interactive shell all you need to do is to open a command window (on Windows) or a terminal (on Mac or Unix) and to type in scala (assuming that the Scala
 bin
 directory is on your path or you are in the bin directory). When you type in scala you will enter the interactive interpreter and can enter Scala expressions and immediately see the result. For example, the expression
 2

 +

 3
 is shown below.

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figa_HTML.gif]

In this example, we asked the interpreter to add 2 and 3 together. The Scala interpreter evaluated the expression and printed out the result. The result (res0) indicates that the result is an Int (integer) of the value 5. This is because we entered an expression that returned a result. We could also have entered an operation that returned nothing, such as println; this is shown in the next figure.

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figb_HTML.gif]

Here you can see that the result is that the string is printed out.
To leave the Scala interpreter shell use CTRL-D or use the command exit.
7.4 The Scala IDE
You will need a Scala environment on your local machine in order to develop, compile, test and run Scala applications. As Scala is a JVM language this also means that you must have a Java environment on your machine. In theory, you could install each of these components yourself and use whatever editor you wished (including Emacs, or TextEdit). However, the easiest way to get started with Scala is to install one of the Scala IDEs available free on the Web.
There are several to choose from with the Intellij IDEA and Eclipse-based Scala IDEs being the most popular.
We will be using the IntelliJ-based Scala IDE in the examples throughout this book.
The IntelliJ IDE provides full support for Scala (as well as Java). Support for Scala is built into the IntelliJ IDEA Ultimate version; however, an additional plugin must be installed to use Scala with the IntelliJ IDEA Community Edition (the free version).
We will step through installing the IntelliJ IDEA Community Edition and then add the Scala Plugin to it.
You can download the IntelliJ IDE from:	
 https://​www.​jetbrains.​com/​idea/​download

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figc_HTML.gif]

There are versions available for Windows, Linux and Mac systems.
Once you have installed IntelliJ you can install the Scala plugin; see the following link for more information.

 https://​www.​jetbrains.​com/​help/​idea/​discover-intellij-idea-for-scala.​html

To install the Scala plugin start up your IntelliJ IDE. If this is the first time you are running IntelliJ then it will prompt you to download featured plugins. At this point you can select the Scala plugin.
If you have already run IntelliJ then you can use the Plugins page for the installation. To find this page go to the menu bar and select IntelliJ IDEA->Preferences… This will display the ‘Preferences’ dialog. On the left-hand side, select the option in which the ‘Plugins’ are listed. Select this and the available plugins are listed on the right-hand side and select ‘Search in repositories’ as shown below:

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figd_HTML.gif]

Enter Scala into the search box and find the Scala Plugin in the list displayed, as shown below:

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fige_HTML.gif]

Now click on the ‘Install’ button on the right-hand side. Once the plugin is downloaded and installed you will need to restart IntelliJ (this is indicated by a button stating ‘Restart IntelliJ IDEA’).
You are now ready to start working with Scala and IntelliJ.
7.4.1 Creating an IntelliJ Project
IntelliJ is oriented around the idea of a project containing one or more modules. The project is associated with a directory location, and typically modules reside under that project location.
Personally I create a directory called projects, in which I place a particular project for a particular task or tool and inside this I have my modules. The project and the Scala environment to use with the project are specified when you create a new Project from the File->New->Projects … menu. This causes a dialog wizard to be displayed that will take you through the steps required to create a new Scala project as shown in below figure.

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figf_HTML.gif]

If this is the first tie that you have created a Scala project you may also need to set up the Scala SDK.
On the next screen give your project a name, and select the location of the project (an appropriate directory).
If on this screen, the Scala SDK field is blank (or does not contain the version of Scala you wish to use) click on the ‘Create…’. On the resulting dialog, Browse to the location in which you have installed the Scala SDK and select it.

My set-up is shown below:

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figg_HTML.gif]

Now click on ‘Finish’.
7.4.2 Inside IntelliJ
You will now be presented with an empty editor (see Fig. 7.1). This editor is made up of Windows providing access to the modules and source files you are working with. The current display shows the Project Window on the left. The currently blank central area is where your code will be displayed.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig1_HTML.gif]
Fig. 7.1IntelliJ IDEA IDE

7.4.3 Creating a Module
Although it is not strictly necessary to have multiple modules within an IntelliJ project, it does help to organise your work. We will therefore create an initial module to hold our first examples.
To do this select File->New->Module… Make sure that the Scala module type is selected in the left-hand list of the resulting dialog, and click Next.
You will now be presented with the New Module dialog as shown below. Enter a name for your module, for example ‘HelloWorld’. Assuming that you want the module to be located under the project directory you can accept the defaults for the remaining fields.

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figh_HTML.gif]

Now click Finish.
You will now see the module listed under your project in the IDE.
We will add a new Scala object to this module. This is done by using the right mouse menu, from the
 src
 node in the Project Window tree (i.e. click on HelloWorld–>src and bring up the right mouse menu). Select New–>Scala Class as shown in Fig. 7.2.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig2_HTML.gif]
Fig. 7.2Selecting the Scala Class Wizard

This will display the Create New Scala Class dialog. Enter the name of the Scala object to be created (e.g. ‘Hello’) and change the ‘Kind’ to Object. This is illustrated in Fig. 7.3.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig3_HTML.gif]
Fig. 7.3Scala New Object Wizard

And now click ‘OK.
This results in a new file Hello.scala being created under src, and the basic structure of a Scala object will be displayed in the central code area (see Fig. 7.4).[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig4_HTML.gif]
Fig. 7.4Hello Object in the IDE

7.5 Implementing the Object
To implement the Hello Object we created above, type in the definition for the main method as shown below.

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figi_HTML.gif]

This says that the object Hello defines a ‘main’ method. A ‘main’ method is the entry point for this application. The main method takes an array of Strings (that is the type), and the parameter that this array is placed into is called args (although you can call the parameter whatever you like). The parameter is placed in parentheses.
Following the parameters is a ‘:’ followed by the return type of ‘Unit’. This indicates that this method does not return a value (Unit indicates no returned value). This is followed by an ‘=’ and the definition of the body of the method (within the ‘{…}’ brackets).
In this case all that the body of the method does is to printout the string “Hello Scala” using the function println, which is automatically made available to all code by the Scala environment.
7.6 Running the Application
To run the application, select the file Hello.scala in the Project Window. Using the right mouse menu select the Run menu option followed by the Scala Application option. This is illustrated in Fig. 7.5.
[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig5_HTML.gif]
Fig. 7.5Menu option to run the application

This will look for a main method in the object in Hello.scala and run that method. This will result in the “Hello Scala” string being printed out in the Console window (which is the output window for running applications within Eclipse). This is illustrated in Fig. 7.6.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig6_HTML.gif]
Fig. 7.6Output from the Hello application

7.6.1 Scala Interpreter Console
The Scala Interpreter Console is also available within the IntelliJ IDEA. This allows you to use the Scala interpreter (The REPL) directly from IntelliJ IDEA IDE. It automatically picks up your project contents and allows you to run Scala code (including the code you have written in your classes and objects) in the interpreter. This can be quiet useful for trying things out.
The Scala Console can be run from the right mouse menu for a Scala file. For example, select the Hello Object in the Project Window, and the from the right mouse menu, select ‘Run Scala Console’, as shown in Fig. 7.7.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig7_HTML.gif]
Fig. 7.7Selecting the Scala Interpreter Console

The Scala interpreter is shown in Fig. 7.8. This interpreter is linked to the helloworld project and shows that you can type in an expression to the Evaluate box. This expression is evaluated, and the expression and the result are presented in the main window above the Evaluate box.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig8_HTML.gif]
Fig. 7.8Using the Scala Interpreter Console

7.7 Scala Classpath
Whatever your platform, you should be aware of the CLASSPATH environment variable. This variable tells Scala (actually the JVM) where to look for class definitions, so it should at least point to the runtime library and the current directory. It may also point to other directories in which you have defined classes. On Windows, you may change CLASSPATH in the autoexec.bat file by adding the following declaration:	

 SET CLASSPATH=

 .;c:\Scala\lib\classes.zip

Note that on a Windows machine the Classpath is a ‘;’ separated list, whereas on a Unix machine it is a ‘:’ separated list. Thus, for a Unix box you can define the CLASSPATH as:	

 setenv CLASSPATH

	

 .:/usr/local/misc/Scala/lib/classes.zip

You should also add the Scala
 bin
 directory to your path. You should now be ready to use the Scala tools.
7.8 Compiling and Executing Scala
It is useful and instructive to actually look at what happens when you compile and execute a Scala program.
If your code is compiled successfully, the compiler will generate class files representing your Scala code such as
 Hello.class
 and Hello$.class. The files are located (by default) under the out directory of your project; for example, on a Mac, the directory listing is as shown in Fig. 7.9.
[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig9_HTML.gif]
Fig. 7.9Multiple .class files generated for a scala type

The .class files represent the compiled version of the Scala object Hello.
So what has happened here—we haven’t created any form of executable, rather we have created a set of class files. The effects of compiling your Scala code are illustrated in Fig. 7.10.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig10_HTML.gif]
Fig. 7.10Relationship between the scala source files and the Virtual Machine environment

As can be seen from this figure, the compiler compiles the
 .scala
 files into.class files. These in turn run on the Virtual Machine (this is what runs when you type in scala to the command prompt). The Virtual Machine (actually the JVM plus the Scala libraries) reads the class files and then runs them. This may involve interpreting the class files, compiling the class files to native code or a combination of the two depending upon the JVM being used. If we take the original approach the JVM interprets the class files. Thus the class files run on the JVM.
The JVM can be viewed as a virtual computer (that is one that exists only in software). Thus, Scala runs on a software computer. This software computer must then execute on the underlying host machine. This means that in effect the JVM has two aspects to it: the part that interprets Scala programs and a back end that must be ported to different platforms as required. This means that although the Scala programs you write are indeed “write once, run anywhere” the JVMs they run on need to be ported to each platform on which Scala will execute.
Although your Scala programs do not need to be re-written to run on Unix, NT, Linux, etc., the JVM does. This means that different JVMs on different platforms can (and do) have different bugs in them. It is therefore essential to test your Scala programs on all platforms that they are to be used on. In reality Scala is actually “write once, run anywhere, test everywhere” that you will use your Scala programs.
Note that there are multiple languages that can be compiled to JVM byte codes (and Scala is just one example, others include Ada, C#, Python), but that the byte code language was originally designed for Scala and thus must directly support the Scala language. As Scala was not the original source language for byte codes there must be a mapping from the concepts in Scala to these byte codes. Thus one Scala concept may generate one, two or three different implementations at the byte code level. In this case our hello world object results in two-byte code elements being created called
 Hello.class
 and
 Hello$.class
 . For the most part you can ignore these details; they will typically become relevant only if you need to integrate Java into a Scala application (or Scala code into a Java application).
7.9 Memory Management
7.9.1 Why Have Automatic Memory Management?

 Any discussion of Scala needs to consider how Scala handles memory. One of the many advantages of languages such as Java, C# and Scala over languages such as C++ is that they automatically manage memory allocation and reuse.
It is not uncommon to hear C++ programmers complaining about spending many hours attempting to track down a particularly awkward bug only to find it was a problem associated with memory allocation or pointer manipulation
. Similarly, a regular problem for C++ developers is that of memory creep, which occurs when memory is allocated but is not freed up. The application either uses all available memory or runs out of space and produces a runtime error.
Most of the problems associated with memory allocation in languages such as C++ occur because programmers must concentrate not only on the (often complex) application logic but also on memory management. They must ensure that they allocate only the memory that is required and de-allocate it when it is no longer required. This may sound simple, but it is no mean feat in a large complex application.
An interesting question to ask is “why do programmers have to manage memory allocation?”. There are few programmers today who would expect to have to manage the registers being used by their programs, although 20 or 30 years ago the situation was very different. One answer to the memory management question, often cited by those who like to manage their own memory, is that “it is more efficient, you have more control, it is faster and leads to more compact code”. Of course, if you wish to take these comments to their extreme, then we should all be programming in assembler. This would enable us all to produce faster, more efficient and more compact code than that produced by Pascal or C++.
The point about high-level languages, however, is that they are more productive, introduce fewer errors, are more expressive and are efficient enough (given modern computers and compiler technology). The memory management issue is somewhat similar. If the system automatically handles the allocation and de-allocation of memory, then the programmer can concentrate on the application logic. This makes the programmer more productive, removes problems due to poor memory management and, when implemented efficiently, can still provide acceptable performance.
7.9.2 Memory Management in Scala

 Scala provides automatic memory management. Essentially, it allocates a portion of memory as and when required. When memory is short, it looks for areas that are no longer referenced. These areas of memory are then freed up (de-allocated) so that they can be reallocated. This process is often referred to as “garbage
 collection”.

The

 Virtual
 Machine
 (the JVM) uses an approach known as
 mark and sweep to identify objects that can be freed up. The garbage collection process searches from any root objects, i.e. objects from which the main method has been run, marking all the objects it finds. It then examines all the objects currently held in memory and deletes those objects that are not marked.

 A second process invoked with garbage collection is memory compaction. This involves moving all the allocated memory blocks together so that free memory is contiguous rather than fragmented.
7.9.3 When Is Garbage Collection Performed?
Thegarbage

 collection
 process runs in its own thread. That is, it runs at the same time as other processes within the JVM

. It
 is
 initiated when the ratio of free memory versus total memory passes a certain point.
You can also explicitly indicate to the JVM that you wish the garbage collector to run. This can be useful if you are about to start a process that requires a large amount of memory and you think that there may be unneeded objects in the system. You can do this using the sys object:

 sys.runtime.gc()

However, calling
 sys.runtime.gc
 is only an indication to the compiler that you would like garbage collection to happen. There is no guarantee that it will run.
7.9.4 Checking the Available Memory

 You can find out the current state of your system (with regard to memory) using the Runtime

environment

 object. This object allows you to obtain information about the current free memory, total memory, etc.:

 [image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Figj_HTML.gif]

The result of running this application is shown in Fig. 7.11.[image: ../images/323629_2_En_7_Chapter/323629_2_En_7_Fig11_HTML.gif]
Fig. 7.11Output from memory application

References

 	
 Scala

To download Scala (without the use of an IDE see www.​scala-lang.​org/​downloads)

 	
 The Scala programming language home page

see http://​www.​scala-lang.​org

 	
 The Scala mailing list

see http://​listes.​epfl.​ch/​cgi-bin/​doc_​en?​liste=​scala

 	
 The Scala wiki

see http://​scala.​sygneca.​com/​

 	
 Scala and.Net

 http://​www.​scala-lang.​org/​old/​node/​10299

 	
 Maven: Build tool for Scala and Scala

 http://​maven.​apache.​org/​

 https://​code.​google.​com/​p/​esmi/​wiki/​ScalaMavenSuppor​t

 	
 Ant: Build tool for Scala and Scala

 http://​ant.​apache.​org/​

 http://​www.​scala-lang.​org/​old/​node/​98

 	
 SBT (Simple Build Tool): Build tool for Scala and Scala

 http://​www.​scala-sbt.​org

 	
 Scala IDE for Eclipse

 http://​scala-ide.​org/​

 	
 Plugin for Existing Eclipse

If you already have an Eclipse installation and wish to add Scala to that then see the Scala plugin for Eclipse
see http://​www.​scala-lang.​org/​downloads/​eclipse/​index.​html

 	
 Scala IDE IntelliJ

 http://​www.​jetbrains.​com/​idea/​features/​scala.​html

 	
 Scala IDE for NetBeans

 http://​sourceforge.​net/​projects/​erlybird/​files/​nb-scala/​

Further Reading

 	The Scala Language Specification 2.12
See http://​scala-lang.​org/​files/​archive/​spec/​2.​12

 	The busy Scala developer’s guide to Scala: Of traits and behaviours Using Scala’s version of Java interfaces

see http://​www.​ibm.​com/​developerworks/​Scala/​library/​j-scala04298.​html

 	Scala for Java Programmers

 http://​docs.​scala-lang.​org/​tutorials/​scala-for-java-programmers.​html

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_8

8. Scala Building Blocks

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

8.1 Introduction
This chapter presents an introduction to the Scala programming language. As such, it is not intended to be a comprehensive guide. It introduces the basic elements of the Scala language, including Apps, discusses the concept of classes and instances and how they are defined, presents methods and method definitions and considers constructors and their role.
8.2 Apps and Applications
In the previous chapter we wrote a simple object that possessed a
 main
 method. This
 main
 method was the starting point or entry point for an application. That is, unless we are writing software that will be controlled by something else, such as a Web application server or a code library, every application needs a starting point. This is provided by the
 main
 method. In the last chapter this
 main
 method was defined in the object Hello as shown below:

 [image: ../images/323629_2_En_8_Chapter/323629_2_En_8_Figa_HTML.gif]

This method is called main, takes one parameter (the data passed into it) and this parameter must be of type
 Array
 of Strings. This means that a sequence of strings can be made available to the program. It returns
 Unit
 (which indicates that it does not return anything at all). Any return values must be managed via an explicit call to a special object called sys (e.g.
 sys.exit(0)
). This is because in a long-running application the value to be returned may not be available in the original
 main
 method.
However, you cannot change the definition of the
 main
 method—it must be as shown, i.e.

 def main(args: Array[String]): Unit

 =

 {…}

This is because the underlying JVM expects there to be a main method with this signature available.
However, from Scala’s point of view this is boilerplate code—that is it is always the same and in general in Scala where something can be inferred by Scala let Scala do that and we can simplify our code. In this case you must remember to provide a parameter to the method main even if you never expect to pass any data into your program! You must also remember (or learn) the syntax for array in Scala—which we will not be looking at for a while. Actually, the name of the parameter (args in this case) is not fixed but by convention is called args.
To simplify this issue Scala provides a way of avoiding the need to write the
 main
 method. If the object that will be used as the entry point to your application extends a trait called
 App
 then any code not placed into any named function or method (
 main
 is an example of a named method) will be assumed to be part of the
 main
 method. We could therefore rewrite the
 Hello
 object from above as:

 [image: ../images/323629_2_En_8_Chapter/323629_2_En_8_Figb_HTML.gif]

This is clearly simpler to write and remember than having to include the
 def main …
 element.
It should be noted that if you search Scala applications on the Web you may well find a reference to a trait called
 Application
 . This plays a similar role to
 App
 but was replaced by
 App
 in Scala 2.9 (
 App
 is more efficient as it is implemented in a different way to
 Application
).

It should also be noted that if you include the
 App
 trait (using the keyword
 extends
) you cannot also write the
 main
 method—you can choose one or other approach but not both.
You may be wondering at this point about the term trait that has been used to describe both
 App
 and
 Application
 —for the moment just treat this as some functionality that can be incorporated into or mixed into an object (or indeed a class). We will return to traits again later in the book.
8.3 The Basics of the Language
All Scala programmers make extensive use of the existing Scala libraries even when they write relatively trivial code. For example, the following version of the “Hello World
”

 program reuses existing classes rather than just using the language (for the moment do not worry too much about the syntax of the definition or use of keywords such as
 extends
 —this just allows us to mix in the
 App
 trait):

 [image: ../images/323629_2_En_8_Chapter/323629_2_En_8_Figc_HTML.gif]

In this example, I have reused the

 String

 class to represent the string “John Hunt” and to find a substring in it using the message
 endsWith()
 . Some of you may say that there is nothing unusual in this and that many languages have string handling extensions. However, in this case, it is the String contained within
 myName
 which decides how to handle the
 endsWith
 message and thus whether it contains the substring “Hunt”. That is, the data itself handles the processing of the string! What is printed to standard output (i.e. the Console) thus depends on which object receives the message. These features illustrate the extent to which existing classes are reused: you cannot help but reuse
 existing code in Scala, and you do so by the very act of programming.
As well as possessing objects and classes, Scala also possesses an inheritance mechanism. This feature separates Scala (and languages such as Java and C#) from object-based languages, such as Ada, which does not possess inheritance. For example, in the simple program above, I reuse the class Any (the root of all classes in Scala) and the class
 HelloJohn
 automatically inherits all the features of
 Any
 .
Inheritance is very important in Scala. It promotes the reuse
 of classes and enables the explicit representation of abstract concepts that can then be turned into concrete concepts.
8.3.1 Some Terminology
We now recap some of the terminology introduced so far in this book, explaining it with reference to Scala.
In Scala programs, actions or operations are performed by passing

 messages

 to and from instances. An instance (the

 sender

 of the message) uses a message to request that some behaviour (referred to in Scala as a method or indeed a
 function)

 be

 performed by another instance (the receiver of the message)

. Just

 as
 procedure calls can contain parameters, so can messages.
Scala is a strongly typed language; however, the typing relates to the class of an object (or the trait a class mixes in—we will return to this later) rather than its specific type. Thus, by saying that a method can take a parameter of a particular type, you actually mean that any instance of that class (or one of its subclasses) can be passed into that method.
8.3.2 The Message Passing Mechanism

 The Scala message passing mechanism is somewhat like a procedure call in a non-Object-Oriented language:	The point of control moves to the receiver; the object sending a message is suspended until it receives a response.

	The receiver of a message is not determined when the code is created (at compile time); it is identified when the message is sent (at runtime).

This dynamic

 (or late
)

binding
 mechanism is the feature that gives Scala its polymorphic capabilities (see Chap. 1 for a discussion of polymorphism).
8.3.3 The Statement Terminator
In Scala, although a semicolon can be used as a statement terminator, the majority of statements do not need an explicit statement termination (as this can be inferred by the compiler) and thus for the majority of your code a semicolon is not required at the end of a statement. Therefore, the following are equivalent:

 [image: ../images/323629_2_En_8_Chapter/323629_2_En_8_Figd_HTML.gif]

And

 [image: ../images/323629_2_En_8_Chapter/323629_2_En_8_Fige_HTML.gif]

Generally, in Scala, the latter style is preferred.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_9

9. Scala Classes

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

9.1 Introduction
This chapter considers the constructs in Scala used to define classes.
9.2 Classes
A class

 is one of the basic building blocks of Scala. Classes act as templates which are used to construct instances. Classes allow programmers to specify the structure of an instance (i.e. its instance variables or fields) and the behaviour of an instance (i.e. its methods and functions) separately from the instance itself. This is important, as it would be extremely time-consuming (as well as inefficient) for programmers to define each instance individually. Instead, they define classes and create instances of those classes.

9.2.1 Class Definitions

 In Scala, a class definition has the following format:

 class

 nameOfClass

 extends

 SuperClass

 /

 Trait

 {

 scope

 properties;

 scope

 methods

 scope

 functions

 }

Although you should note that you can mix the order of the definition of properties, functions and methods as required within a single class.
You need not remember this format precisely, as the meaning of the various parts of the class definition is explained later in the book. Indeed, the above is far from complete, but it illustrates the basic features. The following code is an example of a class definition:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figa_HTML.gif]

This code defines a class called Person. This class possesses two properties (or instance variables) called
 name
 and
 age
 . It has no functions nor methods defined.
Notice that the
 age
 instance variable contains a value of

 type
 Int (this is a basic data type), while the instance variable
 name
 possesses an instance of the class
 String
 . Here Scala is inferring the type of the properties based on the initial assignments made to the
 age
 and
 name
 —they are statically typed but that type is determined by the compiler at compile time (not at runtime). Both variables are initialised:
 age
 to Zero and
 name
 to the empty string “”.
Classes are not just used as templates. They have three further responsibilities: holding methods, providing facilities for inheritance and creating instances.
9.2.2 Developing a Class Definition
Let us return to the class
 Person
 and explore the definition of this class a bit further. A slightly different version of the definition for this class is presented again below:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figb_HTML.gif]

What does this class actually say? It defines a number of things:
It states that both name and age are read/write properties. This can be determined by the fact that they are vars and not vals. A var is a property (or local variable) that can be written to multiple times. A val is a property (or local variable) that can only be set once. In both cases they can be read as many times as required. Thus, in this case both name and age can be read and reset as required by the application. If we had made name a val, then it would only be possible to write to it once, after a value has been set it cannot be reset.
This definition also defines what is known as a Zero parameter constructor. These are the ‘()’ after the name of the class. Every class in Scala will have at least one constructor. A constructor is actually used to initialise values within the object created from the class. In this case that constructor does not take any parameters and merely provides a default placeholder. In Scala such definitions are typically optional and this is the case here.
In either case when we create a new instance of the
 Person
 class, we cannot provide the appropriate name and age until later. Thus a test program for this class might look like:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figc_HTML.gif]

In this case line 2 causes a new instance of the class
 Person
 to be created. Note that it is the keyword new that is being used here to create a new instance of the class and the ‘()’ which are used to indicate the constructor to execute when that new instance is created. The result of this creation is that the address of this new object is stored in the variable
 p1
 which is a variable that can hold references to (i.e. the address of) an instance of type
 Person
 . This could have been written in longhand form as:	

 val p1: Person

 =

 new Person()

Here we explicitly specify the type of the variable p1. In the earlier example (in PersonTest1) Scala inferred the type of
 p1
 for us.
Line 3 then accesses the current values of name and age for the instance referenced by p1 and prints them to the console (standard output) of your IDE. It uses string interpolation to embed the current value of the name and age fields into a string. The interpolation is indicated by the ‘s’ preceding the string itself. Scala will then look inside the string for values preceded by a ‘$’ such as $p1 or for expression surrounded by a ${..} such as ${p1.age}. It will then evaluate the variable or expression and inline the result into the string being processed.
In lines 4 and 5 we actually assign the values and we want to name and age properties of p1. After line 8 p1 now represents John who is 49. Line 9 the reprints this data out.

We can see the effect of running this program on the Console in the IDE, for example,

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figd_HTML.gif]

As can be seen from this, the effect of the first print out is that the empty string and Zero are first printed—which seems a little confusing. The second print out then shows ‘John’ and 21, which appears to make more sense.
9.2.3 Classes and Messages
When a

 message

 is sent to an instance of a class, it is not the instance which possesses the method but the class. This is for efficiency reasons: if each object possessed a copy of all the methods defined for the class, then there would be a great deal of duplication. Instead, only the class possesses the method definitions. Thus, when an object receives a message, it searches its class for a method with the name in the message. If its own class does not possess a method with the appropriate name, it goes to the superclass and searches again. This search process continues up the class hierarchy until either an appropriate method is found or the class hierarchy terminates (with the class
 Any
). If the hierarchy terminates, an error is

 raised.

If an appropriate method is found, then it executes within the context of the object, although the definition of the method resides in the class. Thus, different objects can execute the same method at the same time without conflict.
Do not confuse methods with the data held by a property. Each instance possesses its own copy of the data (as each instance possesses its own state). Following Figure illustrates this idea more clearly.
9.2.4 Instances and Instance Variables

In

 Scala, an instance is an example of a class. All instances of a class share the same responses to messages (methods or functions), but they contain different data (i.e. they possess a different “state”). For example, the instances of class
 Point
 all respond in the same way to messages inquiring about the value of the
 x
 -coordinate, but they may provide different values.

The

 class

 definition consists of variable declarations and method definitions. The state of each instance is maintained in one or more instance variables/properties (also known as fields).

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Fige_HTML.gif]

The above figure contains five instances of the class
 Person
 . Each instance contains copies of the instance variable definitions for
 name
 and
 age
 , thus enabling them to have their own values for these instance variables. In contrast, each instance references the single definition for the method
 birthday
 , which is held by the class.
9.2.5 Classes and Inheritance

It

 is

 through classes that an object inherits facilities from other types of object. That is, a

 subclass

 inherits properties from its

 superclass

. For example, the
 Person
 definition above is a subclass of
 AnyRef
 which in turn is a subclass of
 Any
 . Therefore,
 Person
 inherits all the methods and instance variables that were defined in
 AnyRef
 and
 Any
 (except those that were overwritten in
 Person
).
Subclasses are used to refine the behaviour and data structures of a superclass. It should be noted that Scala supports single inheritance (as does Java and C#) while some Object-Oriented languages (most notably C++) support multiple inheritance.
Multiple inheritance is where a subclass can inherit from more than one superclass. However, difficulties can arise when attempting to determine where methods are executed. Scala introduces the concept of
 traits

 to

overcome one of the most significant problems with single inheritance. However, the discussion of Scala traits comes later in this book.
9.2.5.1 An Example of Inheritance

 To illustrate how single inheritance works, consider the following Figure. There are several classes:
 Class1
 is a subclass of
 AnyRef
 ,
 Class2
 is a subclass of
 Class1
 and
 Class3
 is a subclass of
 Class2
 . Note that
 AnyRef
 is a direct subclass of
 Any
 . In Scala
 Any
 is the root of all types.
When an instance of
 Class3
 is created, it contains all the instance variables defined in Classes 1–3 and class
 AnyRef
 . If any instance variable has the same name as an instance variable in a higher class, then the
 Class3
 instance uses the instance variable definition from the nearest class. That is,
 Class3
 definitions take priority over
 Class2,
 and
 Class2
 definitions take priority over
 Class1
 .

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figf_HTML.gif]

We can send an instance of
 Class3
 a message requesting that a particular method is executed. Remember that methods are held by classes and not by instances. This means that the system first finds the class of the instance (in this case
 Class3
) and searches it for the required method. If the method is found, then the search stops and the method is executed. However, if the method is not found, then the system searches the superclass for
 Class3
 , in this case
 Class2
 . This process is repeated until the method is found. Eventually, the search through the super classes may reach the class
 Any
 (which is the root class in the Scala system). If the required method is not found here, then the search process terminates and the
 doesNotUnderstand
 :

 method in the class
 Any
 is executed instead. This method raises an exception stating that the message sent to the original instance is not understood.
This search process is repeated every time a message is sent to the instance of
 Class3
 . Thus, if the method that matches the original message sends a message to itself (i.e. the instance of
 Class3
), then the search for that method starts again in
 Class3
 (even if it was found in
 Class1
).
9.2.5.2 The Yo-Yo Problem
The process described above can pose a problem for a programmer trying to follow the execution of the system by tracing methods and method execution. This problem is known as the Yo-Yo problem
 (see the figure below) because, every time you encounter a message that is sent to “this” (the current object), you must start searching from your own class. This may result in jumping up and down the class hierarchy.

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figg_HTML.gif]

The problem occurs because you know that the execution search starts in the current instance’s class, even if the method which sends the message is defined in a superclass of the current class. In the above Figure, the programmer starts the search in
 Class3
 but finds the method definition in
 Class1
 ; however, this method sends a message to “this” which means that the programmer must restart the search in
 Class3
 . This time, the method definition is found in the class
 Any
 , etc. Even with the browsing tools provided, this can still be a tedious and confusing process (particularly for those new to Scala).
9.2.6 Instance Creation

 A class creates an instance in response to a request, which is handled by a constructor. The request is represented by the keyword new followed by the name of class. The constructor to be invoked once the class is created is indicated by the parameters that follow the name of the class in parentheses (with the empty parameter list often being referred to as the no parameter constructor).
A programmer requests a new instance of a Scala class using the following construct:	

 new

 ClassName()

Any parameters which need to be passed into the constructor can be placed between the parentheses. They are then passed onto an appropriate constructor. Constructors are special as every class has a primary constructor and can optionally have one or more auxiliary constructors (which must eventually invoke the primary constructor). As previously mentioned, constructors are used to initialise a new instance of the class in an appropriate manner (you do not need to know the details of the process).
The whole of this process is referred to as instantiation. An example of instantiating the class
 Person
 is presented below:

	

 new

 Person("John", 50)

The class
 Person
 receives the message
 new
 which causes the Scala to generate a new instance of the class, with its own copy of the instance variables
 age
 and
 name
 (see the following Figure). The name property of the instance is “John” and the age property is set to 50.

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figh_HTML.gif]

9.2.7 Constructors

 A constructor is not a method, but a special operation that is executed when a new instance of a class is created. Depending on the arguments passed to the class when the instance is generated, a different constructor can be called. For example, a class may need to have three fields initialised when it is instantiated. However, the programmer may allow the user of the class to provide one, two or three values. They can do this by defining auxiliary constructors that take one or two in addition to the primary three parameter constructors.
The syntax for a constructor is:

 class

 classname(..

 primary

 constructor

 parameters

 ..)

 {

 auxiliary

 constructors

 (

 …

 parameters

 …)

 {

 …

 statements

 …

 }

 }

 By default every class has a single primary constructor. It is up to the programmer to decide if this is a no parameter constructor or one that takes a set of parameters. It is defined following the class name in the class definition. An example of a primary constructor for the class Person is shown below:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figi_HTML.gif]

The above is complete as a class definition. It defines a class Person with a primary constructor that takes two parameters and defines no additional methods (beyond the defaults provided). As such no braces are needed unless you want to add any code, fields or methods to the body of the class.
The primary constructor defines two properties for name and age and also provides default values for these properties. Note that both properties are vars, and therefore both readers and writers are generated for them by Scala.
The main advantage of this version of the class
 Person
 over those defined earlier is that the
 name
 and
 age
 can be provided at the same time as the class is instantiated, rather than having to create the instance and then set the name and age separately. Thus we can now write:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figj_HTML.gif]

Now a
 Person
 type object can be created with a
 name
 and an
 age
 which seems more meaningful and understandable. The output generated from this application is illustrated below:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figk_HTML.gif]

Rather than having a null string and 0 printed out we have “John” and 21 right from the start.
However, because we have provided default values for both the name and the age, they are in fact optional. If we omit the age and only provide the name as in:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figl_HTML.gif]

Then the result is that we set the age to Zero, and thus if we run this example, we would find that the output is:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figm_HTML.gif]

Similarly, we can omit the name and the age:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Fign_HTML.gif]

Which would result in the name being set to the string “Anyone” and the age to 0.
Note that we cannot omit the name and just provide the age as Scala would try and bind an integer (e.g. 18) to the name field which is invalid. However, as we are not passing in any parameters we can omit the brackets, e.g.:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figo_HTML.gif]

9.2.8 Auxiliary Constructors
Every class in Scala has a primary constructor; however, optionally any class in Scala can also have one or more auxiliary constructors.
If we wanted to allow a Person to be instantiated with just an age, then one way to do it would be to define an auxiliary constructor. An auxiliary constructor must be called this and must call another constructor. It can either call the primary constructor or another auxiliary constructor defined within the same class (you can have any number of auxiliary constructors) as their first action. They cannot simply call the superclass’s constructor explicitly or implicitly as they can in Java. This ensures that the primary constructor is the sole point of entry to the class.
The following example defines an auxiliary constructor for the Person class that takes an integer to use for a Person’s age without the need to define the person’s name:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figp_HTML.gif]

Note that the only thing this auxiliary constructor does is to call the primary constructor providing a default name for all unnamed person. This is a very common idiom for auxiliary constructors to use.
We can now use this constructor to construct a new instance of the Person class using only an age (but who will be default be called Bob):

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figq_HTML.gif]

The result of executing this program is:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figr_HTML.gif]

As you can see the name has been set to Bob (by the auxiliary constructor) and the age to 18.
To summarise auxiliary constructors:	Any class can have any number of additional, auxiliary constructors

	The first statement within an auxiliary constructor must be a call to another auxiliary constructor, or to the primary constructor

	Thus, every object creation eventually ends up at the primary constructor

9.2.9 Class Initialisation Behaviour
It may seem somewhat strange, but you can place free-standing code anywhere within the body of the class. Here free-standing code means executable statements that are not part of a method, function or constructor but are defined within the scope of the class as a whole. Such free-standing code is executed after a new instance has been created, and after any values have been assigned to any properties defined within the primary constructor. Such code can be treated as part of the initialisation process and may be treated as the way in which you can define your own initialisation behaviour. Free-standing code is typically used for validation checks, additional processing and auditing functions, for example,

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figs_HTML.gif]

In the above example, we have a class
 Currency,
 which possesses:	A primary constructor with two parameters.

	An auxiliary constructor with one parameter and which defaults the type of the currency to “GBP”.

	A validation statement that checks that the parameter ‘a’ is greater than Zero. If it is not then an illegal argument exception is thrown (a type of error).

	A logging (
 println
) statement that indicates what has been created.

	The require statement and the
 println
 statements are free-standing statements and are therefore part of the initialisation routine of the class.

An important point to note is that the initialisation behaviour (the free-standing code) runs before the code in the auxiliary constructor. This is because it is associated with the instantiation of the class and allows behaviour to be defined for the primary construction process. The auxiliary constructor can then override this if it needs to. This is achieved by requiring the auxiliary constructor to always call another constructor (e.g. the primary constructor) as the first thing that it does.
9.2.10 Review of Classes and Constructors
The syntax of a class is	

 class ClassName(constructor parameters) {body}

The ClassName should begin with a capital letter and be in Camel Case to follow Scala conventions. The constructor is indicated by the parenthesis ‘()’ following the class name, and there must always be a constructor defined (no hidden constructors as in Java) even though it may take no parameters. Within the constructor there can be specific meanings for the parameters:	A var parameter will cause a field, getter and setter to be included.

	Setter and getter methods can be redefined inside the method.

	A val parameter will create a field and a getter, but no setter.

	A parameter with neither val nor var does not create a field or any methods, but it can be used within the body of the class—it is a local field to the class.

	However, note that if a case class is used, then parameters to the primary constructor default to val (see below).

When a new instance of a class is defined, the fields are created, the methods are defined and any “loose” code (not within a
 def
) is executed.
To make some of the terminology clearer here are some definitions:	
 Class acts as a template for defining the structure and behaviour of a type of thing.

	
 Instance is an example of a class that maintains its own state (copy of the data held within it).

	

 Instance variables

 are defined in the class, but a copy is maintained in each instance, which has its own value.

	

 Instance methods

 are defined in the class, with a single copy maintained in the class, but they are executed within the context of an object.

	
 Constructors are used to initialise properties once the instance has been constructed in memory, but before any other code has access to the instance.

	
 Auxiliary constructors can be used to extend the functionality of the base constructor but must either directly or indirectly invoke the base constructor.

9.3 Case Classes
There is another construct that can be used when defining a class, this is a
 case
 class. A
 case
 class is defined in the same way as a normal class, with an additional keyword placed in front of the class keyword. This keyword is
 case
 . For example,

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figt_HTML.gif]

The effect of this is that a number of additional features are provided for your class. The first obvious difference is that it appears that you no longer have to use the keyword new to create a new instance of a class; instead you can apparently just use the name of the class, for example,

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figu_HTML.gif]

Actually a factory facility has been created that is named after the class and hides the use of the new keyword (although logically it is still new that is being used to construct the instance). A factory is a recurring software pattern that is used to produce instances of things (in the same way that a physical car factory produces cars).
Actually, the use of the
 case
 keyword provides a number of enhancements to the basic class definition including:	1.A default factory creation facility—no need to use new.

	2.All arguments to the constructor are
 val
 by default, no need to state that they are vals (although you can override with a var).

	3.Default implementation of
 toString
 method. This method is used to convert the object into a printable string format. The normal default provides the name of the class from which the instance was created and an indication of where it resides in memory.

	4.Default value-based implementation of the
 equals
 method (used by ==). That is, equality is based on the values held in the parameters to the primary constructor.

	5.Default copy method to create a
 copy
 of an object.

	6.Default implementation of the
 hashcode
 method. This is an unique code used to represent an unique instance in memory and which is suitable for use in a hash map data structure (which relies on a key to value mapping).

The use of a case class also allows some additional comparison tests, which we will look at when we consider pattern matching in Scala.
Case classes can be used to represent data-oriented classes (although Value Types are a better option). They are also very useful when writing more function-oriented code as they avoid a lot of extra syntaxes.
Note that in older versions of Scala (pre-Scala 2–11) the number of parameters to a case class constructor was restricted to 22. Since Scala 2–11, this limitation has been removed; although if you find yourself with such large numbers of parameters, then consideration should probably be given to your design.
9.3.1 A Sample Class
Let us bring together the concepts that we have looked at so far in another version of the class
 Person
 . A new version of the class
 Person
 is shown below:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figv_HTML.gif]

This class exhibits several features we have seen already and expands a few others:	The class has two parameter constructors that take a String and an Int.

	It defines two properties a read-only name and a read/write age (i.e. a val and a var) as part of the constructor definition.

	It redefines the
 toString
 method so that the details of the person object can be used in the string representation of an instance of the class.

	It defines three methods
 birthday
 ,
 isPensioner
 and
 isToddler
 .

	The method
 isTodder
 does not include ‘()’ and thus can only be invoked without brackets.

	The method
 birthday()
 returns
 Unit
 (i.e. it does not return a value) and is comprised of three statements, two print statements and an assignment, and the method body must therefore be placed in curly brackets
 {…}
 .

	

 isPensioner
 and
 isToddler
 represent shorthand forms written in a single line.

	

 isPensioner
 returns a
 Boolean
 value (i.e. one that returns true or false).

	Scala infers the value returned by
 isToddler
 which will also be a
 boolean
 .

It also illustrates a few other ideas:	The test ‘>’ is a Boolean operator which returns a true of false value depending upon the left- and right-hand values

	The && represents another Boolean operation, this time the ‘and’ operation that will return true if and only if both the right-hand expression (age > 0) and the left-hand expression (age < 3) are true.

These Boolean operators will be explored in more detail later in the book.
An example application using this class is given below:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figw_HTML.gif]

This application creates an instance of the
 Person
 class using the values “John” and 21. It then prints out
 p1
 using
 println
 (which will automatically call the
 toString()
 method on the instances passed to it). It then accesses the values of name and age properties and prints these. Following this it calls the
 isToddler
 and
 isPensioner
 methods and prints the results returned. It then calls birthday. Finally it assigns a new value to the
 age
 property (this is allowed as it is a var). However it is not possible to reassign a value to the
 name
 field as it is defined as a val. The output from this application is given below:

 [image: ../images/323629_2_En_9_Chapter/323629_2_En_9_Figx_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_10

10. Scala Methods

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

10.1 Introduction
This chapter presents how methods and associated behaviour is defined in Scala.
10.2 Method Definitions
Methods provide a way of defining the behaviour of an object, i.e. what the object does. For example, a method may change the state of the object or it may retrieve some information. A method is the equivalent of a procedure in most other languages. A method can only be defined within the scope of an object. It has a specific structure:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figa_HTML.gif]

The access control modifier is one of the
keywords that indicate the visibility of the method. The
 returnType
 is the type of the object returned; for example, String, or Int.
 methodName
 represents the name of the method and
 args
 represents the types and names of the arguments. These arguments are accessible within the method:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figb_HTML.gif]

The above definition defines a method ‘max’ as part of an object MathUtil. The method takes two parameters both of type Int, one accessible via the parameter x and the other via the parameter y. The return type of the method is explicitly specified to be Int. Both of the methods contain an ‘if’ conditional statement which will return x if x is greater than y, otherwise it will return y.
Scala is quiet flexible in the way that methods are defined. The above could also be rewritten as:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figc_HTML.gif]

Both max and max2 do exactly the same thing and seen by Scala as exactly the same (as Scala infers much of what has been omitted).
In the following example class the different variations on defining the method greet are all valid.

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figd_HTML.gif]

The methods are discussed below:	The
 greet()
 method. This is a longhand definition of a method. It has a set of parentheses indicating that no parameters are required. It explicitly states that
 Unit
 (nothing) is the return type. And the body of the method follows the ‘=’ symbol surrounded by curly brackets.

	The
 greet2()
 method. This version defaults the return type to be Unit; this is the default if nothing is stated as the return type of
 println
 is also
 Unit
 .

	The
 greet3()
 method. This method defaults the return type and does not include {} as it is a single line definition.

	The
 greet4()
 method. This includes brackets around the statements, but defaults the return type and does not include the ‘=’—this is known as procedural style.

	The
 greet5
 method does not even include the
 ()
 as they are not needed.

Invoking methods greet to
 greet4
 can be invoked with or without ‘
 ()
 ’. However, it should be noted that
 greet5
 can only be involved without parameters, for example,

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Fige_HTML.gif]

10.2.1 Method Parameters
Methods can take parameters. Parameters are values or instances that are passed into a functional unit such as a method. If the parameters are reference types (i.e. instances) then a copy of the reference is passed in. However, as the reference is essentially the address of the underlying object in memory, this means that a parameter refers to the same instance as any values that hold that reference externally to the method.
In Scala a method can take Zero or more parameters. The
 main
 method that you have seen several times in the last chapter takes a single parameter of type
 Array[String]
 . That is, it holds a reference to an array of strings. This is shown in the following example.

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figf_HTML.gif]

In this example, as well as the main method, a second method has also been defined within the
 MethodTest
 object. This method is called max and takes two parameters. That is, there are two parameters in the parameter list for the method, in this case x and y. The anatomy of the method is explored in more detail in Fig. 10.1.
[image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Fig1_HTML.gif]
Fig. 10.1Elements of a method

The keyword def started the declaration. Here the method name is max, it has two parameters in its parameter list (of type Int) called x and y, and it returns an Int. Within the {..} is the method body which in this case considers x relative to y and returns (by default) either x or y.
Within the method all parameters are vals; that is it is not possible to assign a new value to a parameter to the method. That is, you cannot reassign a value to x or y in the above example. Thus it is not possible to write:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figg_HTML.gif]

10.2.2 Comments

 The /* comments */ section describes the operation performed by the method and any other useful information. Comments cannot be nested in Scala, which can be awkward if you wish to comment out some code for later. For example, consider the following piece of code:	/*

	val x = 12 * 4

	/* Now calculate y */

	val y = x * 23

	*/

The Scala compiler reads this as a comment, followed by the code
 y

 =

 x * 23;
 followed by the end of another comment. This causes an error. However, Scala has two other types of comment. You can instruct the Scala compiler to ignore everything until the end of the line, using the // indicator:	val x = 12 * 4

	// Now calculate y

	val y = x * 23

The final type of comment, the documentation comment, starts with /** and ends with */. Note the two asterisks at the beginning of this statement. They are picked up and processed by the documentation utility

 (scaladoc), which
 generates
 HTML pages that can be viewed in a Web browser. They can contain wiki markup and other control directives. These directives are defined as @<directive>, for example,	@constructor—used to provide documentation for the constructor

	@param—used to provide documentation for a parameter

	@return—used to provide documentation on a return type.

An example of such Scaladoc comments is shown below:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figh_HTML.gif]

In IntelliJ it is possible to run the Scaladoc command from within the tool. On the main menu bar, see the ‘Tools->Generate Scaladoc’ option:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figi_HTML.gif]

This will present you with a dialog allowing you to control what you want to apply the scaladoc command to.
The result of running the scaladoc tool against this class is shown in Fig. 10.2.
[image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Fig2_HTML.gif]
Fig. 10.2Scaladoc-generated reference material for the Person class

In fact the whole of the reference material available for Scala has been produced using Scaladoc. A more complex example of which is shown below. This presents the scaladoc for the Scala class AnyRef.

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figj_HTML.gif]

This Scaladoc is available online at	
 http://​www.​scala-lang.​org/​api/​current

10.2.3 The Local Variables Section

In
 the

 local variable definition section, you define variables which are local to the method. These variables are typed and can appear anywhere in the method definition. They are only available within the method definition itself and have no meaning elsewhere and are not visible elsewhere.

 birthday

 ()

 val

 newAge

 =

 0;

 …

The variables may be vals or vars depending on whether you want to allow reassignment to them or not. However, it is worth noting that by convention in Scala, vals are preferred and may IDEs will mark vars in red as a warning that they should not be used.
10.2.4 The Statements Section

 The statements section represents any legal set of Scala statements that implement the behaviour of the method.
10.2.5 The Return Operator

Once
 a
 method

 has executed, an answer can be returned to the sender of the message. The value returned (whether an object, a basic type or an instance of a subclass) must match the return type specified (or inferred by Scala) in the method definition. The return expression in Scala is the last expression executed in a method, although it need not be the last expression in the method.
The Scala keyword to return a value is
 return
 (just as in Java); however, it is optional as the result of the last expression will automatically be returned if the method returns something other than Unit; thus, the following are equivalent:

 if

 (x == y)

 return

 x;

 else

 return

 y;

Or

 if

 (x == y)

 x;

 else

 y;

In both these cases, the value of x or y is returned, depending upon whether x and y are equal or not.
10.2.6 An Example Method
Let us examine a simple method definition in Scala. We wish to define a procedure to take in a number, add 10 to it and return the result.

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figk_HTML.gif]

Although the format may be slightly different from code that you have been used to, it is relatively straightforward. If you have C or C++ experience you might think that it is exactly the same as what you have seen before. Be careful with that idea—things are not always what they seem!
Let us look at some of the constituent parts of the method definition. The method name is
 addTen
 . In this case, the method has one parameter, called
 aNumber
 , of the basic type
 Int
 .
 Just

, and as in any other language, the parameter variable is limited to the scope of this method (and is a val). The method also defines a temporary variable,
 result
 , also of the basic type
 Int
 and limited to the scope of this method (and this is a var).
Variable names are identifiers that contain only letters and numbers and must start with a letter (the underscore, _, and the dollar sign, $, count as letters). Some examples are:

 anObject MyCar totalNumber $total

 A capitalisation convention is used consistently throughout Java and most Scala programmers adhere to this standard:	
 Private variables and
 methods (i.e

. instance

 or temporary variables and almost all methods) start with a lower case letter.

	
 Shared constants are all in upper case.

	
 Class always start with an upper case

 letter.

Another convention is that if a variable or method name combines two or more words, then you should capitalise the first letter of each word, from the second word onwards, e.g.
 displayTotalPay
 ,
 returnStudentName
 . This is referred to as modified Camel Case.
10.2.7 Overriding toString
One of the facilities that is available for all types is the ability to convert itself to a string. This is particularly useful when printing an instance out (i.e. to help with debugging scenarios). The println functionality we have been using is written in such a way that if it is given an instance to print, it will ask that instance to convert itself to a string and then print that string. It does this by calling a method called toString on the instance. Given the following class, we can therefore print the string representation of instances to the console:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figl_HTML.gif]

This can be shown by the following test harness application:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figm_HTML.gif]

The result of running this program is shown in the console of the Eclipse IDE. However, the output might not be what you expect. The following diagram presents an example of the default output generated by
 toString
 .

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Fign_HTML.gif]

As you can see from this example, the default behaviour for an object is to convert itself into a string version based on the fully qualified class name (i.e. com.jjh.scala.person.Person), followed by an ‘@’ sign, followed by the hashcode for the object (the hexadecimal number following the ‘@’). The hashcode should be unique and allows us to distinguish between one instance of a class and another, for example,

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figo_HTML.gif]

The result of executing this application is shown in the next figure.

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figp_HTML.gif]

As you can see, the hexadecimal numbers following the ‘@’ are different. However, this is not very useful when need to distinguish between the instance representing John and the instance representing Denise.
The problem is that the default toString behaviour is defined at a more abstract level than the class Person. That is, the default behaviour does not know about the name and age properties. We can overcome this problem by redefining the way in which instances of the class Person convert themselves to a String. We do this by redefining the toString method mentioned earlier.
For example, in the following listing, we have redefined the toString to return a string constructed from the string “Person”, followed by the instances current values for name and age:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figq_HTML.gif]

Be very careful how you define this method. It must be called toString (with a capital ‘S’). Scala is very case sensitive, and the method tostring and the method toString are two completely different methods. As we are redefining the default behaviour for toString, we must make sure the spelling and capitalisation are the same. Also note that we must use the keyword override before the def keyword to indicate we are expecting to be redefining the default method (it is called override as it is actually via inheritance that we obtain the default implementation of toString, but we will return to this in the chapter that focuses on inheritance). Also, note that the toString method must return a String!
Now when we rerun our simple application the output is modified such that we now obtain a far more meaningful result:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figr_HTML.gif]

10.2.8 Defining Property Methods
In the previous section we described
 name
 and
 age
 as properties of the instance
 p1
 , but what does this mean? A Property is an item of data, held within an instance of a class, that can be accessed externally to that instance either as a read-only property or as a read/write property.
Essentially Scala creates a reader (also known as a getter) method and a writer (also known as a setter) method associated with each property. If the properties were marked as vals, then it would only create the reader methods.
Depending upon the context in which you reference the property, Scala knows whether to invoke the reader or writer. For example if you are attempting to access the value of the property then it knows to invoke the writer, whereas if you are attempting to set the value of the property it knows to use the writer method.
Scala also allows a programmer to override the default readers and writers if required; it is just that the default behaviour provided by Scala generally meets the requirements of most developers.
If you wish to define your own readers and writers (or to help understand what is being created for you) then there are a few additional things to understand. The first is that the properties you have defined are by default public—that is visible outside of your instances to anything within the Scala world. An alternative would have been to mark them as private (note you do not need to say anything for them to be made public, but you need to make a conscientious decision to make them private).
The second thing you need to be aware of is that Scala does not actually distinguish between a property, a method or a function to any great extent, and it is the way that it is defined and invoked which actually allows Scala to work out what you want. Therefore if you are defining your own readers and writers then you will need to ensure that the name of the field that will hold the data is different to the name of the methods used to access that field. Although any name could be used, by convention the field name is prefixed by an underbar (‘_’).
Thirdly to distinguish between a method that should be used on the left-hand side of an assignment and one that should be used to retrieve a value, a writer method is post fixed by an underbar (‘_’).
Given the above,
 Person2
 is a class that defines the same behaviour as
 Person1
 but we have done it longhand ourselves rather than rely on Scala to create the getters and setter methods for us:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figs_HTML.gif]

In the above code we have created two private properties _name and _age. These are accessed by two methods each; one to return the value (the getter) and one to set the value (the setter).
For example, the def age method returns the value of
 _age
 . Note it could have been written longhand as:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figt_HTML.gif]

However we are using Scala’s ability to infer much of the template from above and thus merely need to write:	def age = _age

The setter methods are a little more complex. We have had to call the methods
 age_
 and
 name_
 . They are defined to take a value (of an appropriate type which we are explicitly specifying here). And we are indicating that they do not themselves return anything (hence the
 Unit
 return type). Within the body of the methods we then indicate that the value passed in is assigned to the appropriate property. Even so this is still a shorthand for the longhand from which would be (for the age setter method):

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figu_HTML.gif]

We can now use the same test program with this class as we have previously used for the
 Person1
 class:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figv_HTML.gif]

And it produces the output shown below.

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figw_HTML.gif]

This approach may be useful if you wish to add some non-default behaviour to either the setter or getter methods.
10.3 Named Parameters
In most situations, when you invoke a constructor, a method or a function each argument is matched, in sequence with the parameters of the constructor, method or function. Thus given the method mult in the object
 Processor
 :

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figx_HTML.gif]

Then we can invoke this method as follows:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figy_HTML.gif]

In this case the value 2 is bound to the parameter ‘
 x
 ’ and the value 3 is bound to the parameter
 y
 and thus we multiply 2 by 3 to obtain 6.
However, an alternative approach is to use the names of the parameters. Named parameters allow you to pass in argument to a constructor, method or function as name–value pairs. These pairs can be in any order, and Scala will work out how to bind them. The syntax for this is based on
 name=value
 , with each parameter separated by a comma (‘,’). For example, the above invocation of
 mult
 could be rewritten as:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figz_HTML.gif]

Now we are explicitly binding the value 2 to
 x
 and the value 3 to
 y
 . The end result is that the value 6 is again printed out. However, as the order is no longer significant we could also write:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figaa_HTML.gif]

This again binds the value 2 to
 x
 and the value 3 to
 y
 and once again results in the value 6 being printed out.
Thus the order of the parameters is no longer significant. Note that you can also mix positional arguments with named arguments (in which case the positional arguments come first), for example,

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figab_HTML.gif]

Named parameters are most often used with default parameters. This allows the optional values to be used for all omitted parameters, but the named parameters to be used for those to be specified. For example,

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figac_HTML.gif]

The class
 Activity
 defines a primary constructor that takes four parameters. Each of these parameters has a default value. However, if we used position-based parameters then we could not just provide the second, third or fourth parameter when we create an
 Activity
 . However, using named parameters allows us to do exactly this. For example, to create a new
 Activity
 with the owner set to “John” but with the defaults used or the other three parameters we can write:

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figad_HTML.gif]

The result of running this code is shown below:

 Activity[Wed Dec 13 14:29:50 GMT 2017, activity, John, true]

As you can see the default values for date, title and live have been used with the owner set to “John”.
It is also common to find that the use of named parameters is used with the alternative curly bracket ‘{}’ syntax used for parentheses. This form results in a construct that looks more as if it is part of the language than a user-defined type. For example, using the alternative syntax we can create a new
 Activity
 specifying the type of activity and the owner (as “Presentation” and “Denise”, respectively).

 [image: ../images/323629_2_En_10_Chapter/323629_2_En_10_Figae_HTML.gif]

The result of running this is shown below:

 Activity[Wed Dec 13 14:31:20 GMT 2017, Presentation, Denise, true]

Note that the order of owner and title is not significant and that date and live are still defaulted. Also note that Activity now appears to be a language construct.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_11

11. Packages and Encapsulation

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

11.1 Introduction

This chapter discusses the encapsulation and packaging features of Scala. The concept of packages is discussed, along with some concrete examples. It then illustrates how the encapsulation facilities can allow quite fine-grained control over the visibility of the elements of your programs.
11.2 Packages

 You can bring a set of related classes together in a single compilation unit by defining them all within one file. By default, this creates an implicit (unnamed) package; classes can access variables and methods that are only visible in the current package. However, only one of the classes can be publicly visible (the class with the same name as the file). A much better approach is to group the classes together into an explicit, named package.
Packages are encapsulated units that can possess classes, interfaces and subpackages. Packages are extremely useful:	They allow you to associate related classes and interfaces.

	They resolve naming problems that would otherwise cause confusion.

	They allow some privacy for classes, methods and variables that should not be visible outside the package. You can provide a level of encapsulation such that only those elements that are intended to be public can be accessed from outside the package.

The Scala libraries provide a number of packages, some of which are inherited from the underlying Java runtime. In general, you use these packages as the basis of your programs.
11.2.1 Declaring a Package

 An explicit package is defined by the
 package
 keyword at the start of the file in which one or more classes (or interfaces) are defined:	

 package

 benchmarks

	

 package

 com.jjh.transport

 Package names should be unique to ensure that there are no name conflicts. Scala does not require, although it is common to find that a naming convention is adopted across projects. This naming convention is derived from the Java world in which a package name is made up of a number of components separated by a full stop. The start of such a name is often your organisations domain in reverse; this ensures uniqueness across all software systems.
The package name components actually correspond to the location of the files. Thus if the files in a particular package are in a directory called benchmarks, within a directory called tests, then the package name is given as:	

 package

 tests.benchmarks

Notice that this assumes that all files associated with a single package are in the same directory. It also assumes that files in a separate package will be in a different directory. Any number of files can become part of a package; however, any one file can only specify a single package. Also note that any number of directories can make up the package (particularly if they are arranged in different jar files).
All components in the package name are relative to the contents of the
 CLASSPATH
 variable. This environment variable tells the Scala compiler where to start looking for class definitions. Thus, if the
 CLASSPATH
 variable is set to
 C:\jjh\Scala
 , then the following path is searched for the elements of the package:	

 c:\jjh\Scala\tests\benchmarks

All the files associated with the
 tests.benchmarks
 package should be in the benchmarks directory.
11.2.2 Additional Package Definitions Options
11.2.2.1 Package Per File
The simplest way to define a package is to use a single package statement at the start of a file. It must be the first line of Scala (other than any comments in the file). It defines the whole contents of the file as being part of that package:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figa_HTML.gif]

11.2.2.2 Chain Package Definitions

A further package definition approach in Scala is what is called chaining package definitions together. This allows multiple package declarations to be specified with subsequent package declarations being chained to the earlier declaration. For example, the following defines a package com.jjh.transport containing the class Ship:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figb_HTML.gif]

The style presented here indicates how packaging chaining can be used with the package declaration at the start of a file. In terms of package chaining, it is a style that you should be familiar with as you may encounter it in examples presented on the Web. However, it is not a style that is generally used. The style of nested packages which leads to package name chaining is more common, although the most common form of package is a single one-line declaration at the start of the file.
11.2.2.3 Nested Package Definitions
Scala packages can also be nested one inside another. In this case the scope of one packaged needs to be indicated via the presence of curly braces ‘{…}’. For example,	package test {

	…

	}

Actually the curly braces can always be used with a package definition; it is just that if they are omitted it is assumed that the whole of the file represents the contents of the same package.
Curley braces are normally used to when defining one or more nested packages so that the scope of one package can be represented. For example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figc_HTML.gif]

The above dots imply that there are members defined in the package test and members defined in the package test.demo. It is also clear from this that in Scala you can therefore have more than one package in a single file. In fact you have multiple packages, for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figd_HTML.gif]

The above example would have three packages in a single file; these packages would be:	Package test

	Package test.demo

	Package test.util

Note that we could further nest packages so that package demo could have a further nested package print:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Fige_HTML.gif]

As a concrete example of this consider the following listing:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figf_HTML.gif]

This example defines the package com.jjh.transport as the top-level package (note that it is perfectly legal to name a package with multiple elements and then to provide nested packages that build on that namespace). The top-level package contains two nested packages: personal and group. The full name of these packages is:	com.jjh.transport.personal

	com.jjh.transport.group

If you were importing these packages to use in your own code, then these are the names that you would have to use.
An interesting set of questions to ask is what is the scope or visibility of the classes:	Car defined in com.jjh.transport

	Bike defined in com.jjh.transport.personal

	TaxiFleet defined in com.jjh.transport.group

The answers are that:	The Car class is directly visible in com.jjh.transport and in the nested packages: personal and group. This is why it can be directly referenced within the class TaxiFleet.

	The Bike is only visible directly within the package personal.

	The TaxiFleet is only directly visible within the nested package group.

From this we can see one of the key aspects of packages—helping to organise our code elements (and to restrict the default namespaces of such elements).
However, this approach is not without its problems and it can actually lead to namespace issues of its own. For example, consider the following listing:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figg_HTML.gif]

This example has the following packages with the following contents:	Package engine with the class Petrol1

	Package family with two nested packages: economy and engine

	Package family.economy with the class Control and a nested package engine

	Package family.economy.engine with the class Petrol2

	Package family.engine.Petrol3

All this looks fine except when you realise that currently there is no way for the commented out line	val b4 = new engine.Petrol1

to compile? Why is this? It is because in Scala when you reference a class or a package Scala always attempts to find the most local version of that class or package. For the class Control the package engine which is nearest to it in terms of namespace is the package engine defined within the package family, and as it is a nested package within family as is the package economy, there is no need for code within either package to have to mention the root package family in order to access each other (it is implied by their nested status). However, as there is an external package called engine also present this means that there is a name conflict between the two packages engine.
To get around this problem, Scala provides a special root package reference which can be used to indicate that you do not want to use the locally scoped package but to start at the root location of all package names and find a package from there. This root package reference is referred to by pre-fixing a package name with ‘_root_’, for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figh_HTML.gif]

This ensures that the search for the package engine starts at the root of all packages rather than looking locally. This approach works as root is essentially a special package that pre-fixes all packages.
11.2.3 An Example Package

 As an example, the files for the
 com.jjh.lights
 package are stored within a directory called
 lights
 , within a directory called
 jjh
 , within the
 com
 directory. The
 lights
 directory contains three classes that make up the contents of the
 lights
 package:
 Light
 ,
 WhiteLight
 and
 ColoredLight
 . The header for the
 Light.Scala
 file contains the following code:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figi_HTML.gif]

The
 WhiteLight.Scala
 and
 ColoredLight.Scala
 files are similar, for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figj_HTML.gif]

And

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figk_HTML.gif]

Note in the above example we have placed each class in a separate file; however, we could have defined all three classes in the same source file and this would have produced the same set of.class files as are described below.
The directory containing the compiled (byte code) version of the
 lights
 package is shown below:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figl_HTML.gif]

The
 CLASSPATH
 variable (set up by the IDE) includes the path
 bin
 directory of the current project, so the package specification,
 com.jjh.lights
 , completely specifies the location of the byte code files.
11.2.4 Accessing Package Elements

 There are two ways to access an element of a package. One is to name the element in the package fully; this is referred to as the fully qualified class name. For example, we can specify the
 Light
 abstract class by giving its full designation:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figm_HTML.gif]

This tells the Scala compiler exactly where to look for the definition of the class
 Light
 . However, this is laborious if we refer to the
 Light
 class a number of times.
The alternative is to import the
 Light
 class, which makes it available to the package within which we are currently working:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Fign_HTML.gif]

However, in some situations, we wish to import a large number of elements from another package. Rather than generating a long list of import statements, we can import all the elements of a package at once using the ‘
 _’
 wild card. For example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figo_HTML.gif]

This imports all the elements of the
 com.jjh.lights
 package into the current package. Notice that this can slow down the compilation time (although it has no effect on the runtime performance). Also note that this only imports the contents of the
 com.jjh.lights
 package—it has no effect on any subpackages of lights. Also note that if you are a Java programmer that the wild card here is ‘_’ and not ‘*’ as it is in Java. Also note that we do not include the (optional) ‘;’ statement terminator in Scala—you can use the ‘;’ to terminate both the package declaration and the import statements; it is just that it is considered superfluous and thus not good style.
It is also possible to import all the methods or functions defined on a type using the name of the type followed by the ‘_’ wild card, for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figp_HTML.gif]

To summarise then it is possible to	import the whole contents of a package,

	import a single type from a package,

	use an alias with a type and

	import the functionality for a given type.

11.2.5 An Example of Using a Package
The
 lights
 package described above has been used within a code outside the package. This application defined in the com.jjh.test packages uses the
 ColoredLight
 class. It therefore imports it into the current package. For example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figq_HTML.gif]

Notice that we have chosen to import the ColoredLight class explicitly rather than the whole package. Also note that we can import any number of classes, objects, traits, types, etc., as required into a single file but that these imports are only in scope for the current file.
11.3 Import Options

Scala actually has a wider set of import options than Java. In Java an import can only be specified at the top of a file after any (optional package declaration) and before any other Java declarations (such as a class or interface). In Scala an import can appear anywhere and affects the scope within which it was specified. Thus imports can appear in a:	Package

	Class

	Method or function

	Package object.

For example, the following example illustrates importing a set of functions defined on the object util.PrintAccount into a method so that they can be accessed directly within that method (but only that method):

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figr_HTML.gif]

PrintAccount is a singleton object defined in the package util, for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figs_HTML.gif]

Scala also allows you to import more than just classes, objects or traits. You can import the methods on instances of a given class. For example, in the following example the method printCar imports the methods defined on the parameter car so that it does not need to prefix model and spec with car (e.g. car.model and car.spec), thus making the code simpler:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figt_HTML.gif]

11.4 Additional Import Features
It is also possible to provide an alias as part of an import, for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figu_HTML.gif]

This indicates that the type transport.Car will be alias to (and accessible via) Audi in the current context (e.g. the current file).
It is also possible to indicate what should not be imported, for example,	import transport.{Car=>_, _}

This import indicates that everything should be imported from the package transport with the exception of Car. This is because the first part of the contents of the curly brackets ‘{…}’ indicates what not to import, e.g. Car=>_ and the second part is the wild card that indicates what should be imported (i.e. the second ‘_’).
A further way in which the types to import can be specified is via the curly bracket ‘{..}’ notation. This can be used to reduce the number of import statements when several (but not all) of the types in a particular package should be imported. This is written in the following way:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figv_HTML.gif]

Note that this statement imports the Connection, DriverManager and ResultSet types from the java.sql package.
11.5 Package Objects
A package can also (optionally) have a package object associated with it. A package object is an object that is part of the package (and has the same name as the package) that can be used to hold utility functions or methods. Any members defined in the package object are considered to be top-level members of the package and can be accessed by other members of the package directly.
As an example of a package object consider the following listing:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figw_HTML.gif]

This defines a package object for the package com.jjh.banking. Note that it is defined by a keyword for the package level above banking (com.jjh) with a package object definitions for the banking element of the package. This banking package object defines a single utility method printAccount that can be used by any other members of the com.jjh.banking package to print out bank account information. For example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figx_HTML.gif]

You can also use the printAccount method in other packages by importing it. For example, the following code is in a separate package com.jjh.test. It imports both the Account case class and the printAccount method from the com.jjh.banking package. Notice that from this you cannot see that com.jjh.banking is both a package and a package object. We can then use the Account class to create an account instance and print its details via printAccount (the utility methods defined on the package object).

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figy_HTML.gif]

11.6 Key Scala Packages
There are very many packages in Scala, but the core or central ones are:	Scala—the core types

	scala.collection provide basis of the Scala collections (data structures) frameworks.

	scala.collection.immutable provides the definitions for the immutable versions of the collection classes in Scala.

	scala.collection.mutable provides definitions for the mutable versions of the collection classes in Scala.

	scala.actors provides the actor based concurrency types.

	scala.io provides for input and output type definitions.

	scala.math provides basic mathematical functions and additional numeric types.

	scala.sys provides types for interacting with other processes and the operating system.

	scala.util.matching provides pattern matching in text using regular expressions.

	scala.xml containing types is used when parsing, manipulating and serialising XML structures.

11.7 Default Imports
There are also a set of default imports that are imported into every Scala file; these are:	The java.lang package

	The Scala package

	The Predef object.

The core java.lang package is imported as it provides some of the basic concepts that underpin the Scala (and Java) runtime such as the definition of a String.
The Scala package contains definitions for the core Scala types, and as such, it is always available in any Scala code without the need for an explicit import.
The Predef object in Scala provides type aliases for commonly used Scala types (such as the immutable collection classes), some simple functions for Console I/O (such as println), basic assertions (such as require) and some implicit conversion routines. The inclusion of the Predef object reduces the amount of explicit code that needs to be written in Scala.
11.8 Encapsulation
In Scala, you have a great deal of control over how much encapsulation is imposed on a class, a trait and an object. You achieve it by applying modifiers to classes, objects and trait properties, methods and functions. Some of these modifiers refer to the concept of a package, and others to the type itself.
11.8.1 Scala Visibility Modifiers
By default all the members of a package, a class, an object or a trait are public. Thus the following holds true:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figz_HTML.gif]

That is everything above is publically available, you only need to import the contents of the package com.jjh.sample._ or the object itself com.jjh.sample.PublicObject to be able to access everything. You do not need to use a special keyword public to make it so.
However, not all members of a type should be public; indeed in many cases you specifically do not want them to be publically available. In these cases, there are two additional keywords that can be used to control visibility; these are private and protected.
This means that you can choose whether these elements of your program are publically visible everywhere (the default), only visible to inherited types (protected) or only visible within the context they are defined (private). Thus these visibility modifiers can be used to restrict the access to (or visibility of) these members to other regions of code. In general, to use an access modifier you need to include the appropriate keyword (private or protected) in the definition of the member of a package, class or object.
However, a word of caution is advisable here. Protected and private in Scala are not the same as in Java. For example, protected in Scala means that the member is only available in the current class and subclasses—it is not available in the current package. However, this is a default; both protected and private can be modified to indicate the scope; they should be applied to. In the case of private it means that in Scala we can distinguish between private to an instance and private to a class.
11.8.2 Private Modified
A private member is (by default) only visible to the class or object that it is defined in. Thus in the following example, the method print is only available to methods defined within the class Account:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figaa_HTML.gif]

However, an issue is that it is available to all instances of the class Account. Thus John’s account can access the private method of the Denise’s account. This is the approach taken by Java, and it is the default approach taken by Scala and represents class-based privacy. If we want instance-based privacy, that is the method print can only be called from within the same instance of the class Account, then we need to qualify its scope. This can be done with a scope associated with the keyword in square brackets, for example private[this], for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figab_HTML.gif]

In this case private means private to this instance and not the whole class.
Interestingly you can also provide a package name within the square brackets so that you can indicate that a method is private to the package, for example,

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figac_HTML.gif]

In this revised version, the method print is private to the package (i.e. it is available anywhere in the current package). This equates to package visibility in Java.
In fact the qualifier can be any form of scope; thus, the form private[x] can be used where x is one of an enclosing package, class or singleton object.
Also note that the keyword private can be applied to properties, methods and functions within a class, trait or object.
11.8.3 Protected Modifier
The protected modifier indicates that a member of a class, trait or object is visible within subtypes in any package (by default). For example, given the following definition:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figad_HTML.gif]

The class Super defines a protected method print. This method is only accessible (visible) in subclass of Super. The class Sub extends Super and therefore can reference the method print directly. It happens that this class is defined in the same package as Super but it could have been defined anywhere. However, even though the class Other is defined in the same package as Super and can create an instance of Super, it cannot reference the method print on an instance of Super as it is only visible/accessible to subclasses of Super.
As with the private access modifier, the protected access modified can be qualified with a scope. For example, we can indicate that the protected member is protected up to a particular scope. Thus the previous example could be redefined such that the qualified test is added to the protected method print:

 [image: ../images/323629_2_En_11_Chapter/323629_2_En_11_Figae_HTML.gif]

In this way, we can indicate that a member should be visible up to a certainly level and after that is only accessible to subclasses. Thus the example above in which we specify protected[test] is the equivalent of Java’s version of protected as it indicates that the method print is visible in the current package and in any subclass in any package.
As with the private access modifier the protected modifier can be qualified with a range of scopes. In fact the qualifier can be any form of appropriate scope; thus, the form protected[x] can be used where x is one of an enclosing package, class or singleton object.
Also note that the keyword protected can be applied to properties, methods and functions within a class, trait or object.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_12

12. Building a Class

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

12.1 Introduction
In this chapter, we will work through the creation of a simple class to represent a Company. As we are using IntelliJ, we will step through using this IDE to create our class.
12.2 Create a New Module
Assuming you already have a Project to work in you should add a new module to that Project. If not create a new Project using the File-> New-> Project… option from the menu bar.

Next you can create a suitable module within the IntelliJ IDE to create your application. A new module can be created from the File menu under File-> New -> Module… (Fig. 12.1).[image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Fig1_HTML.gif]
Fig. 12.1Selecting the create a new ‘Scala Project’ option

This will cause the ‘New Module’ wizard to be displayed as shown below.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figa_HTML.gif]

Make sure that you have selected the Scala option in the left-hand window. Then click ‘Next’.
You can name the module anything. In this case, we will call the Project sample. Enter the Project name into the ‘Module name’ field as shown here (Fig. 12.2).[image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Fig2_HTML.gif]
Fig. 12.2Naming the project

I would also create a package to place your code in. A package is an organisational construct that helps you manage your code. It also relates to name spacing (what can be seen where) and is a good programming technique to get into.
12.3 Create a New Package
To create a new package, select your src directory under your module and from the right mouse menu select New -> Package, for example (Fig. 12.3):[image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Fig3_HTML.gif]
Fig. 12.3Selecting the new package option

This will display the new Package Wizard (note it says Java but is being reused for Scala packages in the Scala IDE). This dialog is shown here.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figb_HTML.gif]

You can use whatever name you wish although you should note that a Scala package is a series of names separated by ‘.’ which are typically prefixed by the domain of the organisation creating the code. I am using com.jjh.info

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figc_HTML.gif]

Once you have provided a package name click ‘OK’.
You will now see a new package provided for you in the Project View of the IDE. An example of the structure created under the Project heading is shown below.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figd_HTML.gif]

12.4 Create a New Class
We will now add a new class to the package we just created. This can be done using the New Scala Class Wizard. Select the package we just created in the Project View and from the right mouse menu select New -> Scala Class.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Fige_HTML.gif]

You will now be shown the ‘Create New Scala Class’ wizard:

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figf_HTML.gif]

Specify the name of the class you want to create using the Name field. In our case, we will create a new Scala class called
 Company
 as shown below.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figg_HTML.gif]

Now click ‘OK’.
You should now find that you have a new class
 Company
 , in a file called
 Company.scala
 under the
 com.jjh.info
 package. While in the middle of the IDE in the code presentation area, you should see the outline skeleton code for the class
 Company
 .

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figh_HTML.gif]

12.5 Defining the Class
The simple class you just created now needs to be expanded to represent a company. The class must have the following information:	The name of the company

	The address of the head office of the company

	The phone number of the company

	The company registration number

	The company VAT number

The address of the company could be a separate type including county, postcode/zipcode. However, we will keep things simple for the moment.
The fields of the company will all be of type
 String
 and will have some form of default value, for example the empty or null string represented by “ ”. String is referred to as a type as it represents a concept with the programming language. As such a string is Zero or more characters which respond to certain operations such as substring, length.
Update your definition of the
 Company
 class so that it resembles the following listing:

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figi_HTML.gif]

12.6 Adding Behaviour
We can also add some behaviour to this class by providing a
 print
 method that will print out the
 Company
 details in an appropriate format.
The printer method will be done first. This method will not return a value as it will be used to print information on the
 Company
 out to the Console.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figj_HTML.gif]

Note that we have used the single line form of defining a method—this is not the only option and you could experiment with other formats one you have this version working.
12.7 Test Application
You should then create a simple test application (use the App trait with a Scala object type) to create new instances of the
 Company
 class.
You can use the New Scala Class dialog to create an object as well as a class. For example, select the package again and for the right mouse menu select ‘New Scala Class’. However, when the dialog is displayed, select the drop-down box below the Class Name field.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figk_HTML.gif]

You will then see that there are actually three options available at this point; Class, Object and Trait. Select the Object option and provide a name for the Object (I am using
 CompanyTestApp
):

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figl_HTML.gif]

You should now see a new tab on in the central code editor area of the IDE as shown below.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figm_HTML.gif]

This contains the skeleton of the
 CompanyTestApp
 object. It is not yet an application. Modify the declaration of the object so that it extends the
 App
 trait. So that you now have:

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Fign_HTML.gif]

Remember as you are using the
 App
 trait, you do not need to define a main method declaration—you only need to add what the application needs to do.
In our case, we will create a new instance of the
 Company
 class and print out its details:

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figo_HTML.gif]

Recall that we do not need to define the type of the val we will hold our company reference in (this will be inferred by Scala), but that new instances are created using the keyword new.
We can now run this application either using the right mouse menu from the file CompanyTestApp in the Project View (Run).
In the Run output console, you should see output similar to that shown here.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figp_HTML.gif]

This is because the
 Company
 object does not yet have any data defined by you. We will now add that data:

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figq_HTML.gif]

In the above example, we have populated the fields that are defined within the
 Company
 instance with suitable data. If you now rerun this application, you should see more comprehensible output in the Run console.

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figr_HTML.gif]

12.8 Override Tostring
In general, we would not define a custom method such as
 print
 to print out the
 Company
 instances. Typically, we would use the
 println
 method directly with the company instance. To do this, we must override the
 toString
 method as we did in the last chapter. In this case, our
 toString
 method must include information for all of the fields. We can thus add a
 toString
 method to the
 Company
 class with the result that we can print out a
 Company
 instance directly. The
 Company
 class would now look like:

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figs_HTML.gif]

The test program could be updated to include a
 println
 for the company instance (e.g.
 println
 (
 company)
):

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figt_HTML.gif]

The output of this program is now:	

 Starting CompanyTestApp

	

 Company name John Sys at Coldharbour Street, London

	

 Company[John Sys, Coldharbour Street, London, 123456, 99999999, BB112233AABS16 1QY]

	

 123456, 99999999, BB112233AABS16 1QY]

	

 Done CompanyTestApp

12.9 Extras
You could try out different syntax options, for example:

 [image: ../images/323629_2_En_12_Chapter/323629_2_En_12_Figu_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_13

13. Classes, Inheritance and Abstraction

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

13.1 Introduction
Inheritance is one of the most powerful features of Object Orientation. It is the difference between an encapsulated language that provides an object-based model and an Object-Oriented language. Inheritance is also one of the main tools supporting reuse in an Object-Oriented language (although in Scala’s case Traits are also a major tool for reuse). You will use inheritance all the time without even realising it, indeed you have already been doing so every time you have benefited from the default implementation of
 toString
 .
Scala has single class inheritance although it does have a form of multiple inheritance via Traits.
13.1.1 What Are Classes for?

 In some Object-Oriented languages, classes are merely templates used to construct objects (or instances). In these languages, the class definition specifies the structure of the object and a separate mechanism is often used to create the object using this template.

 In some other languages (e.g. Java, C#, Smalltalk), classes are objects in their own right; this means that they can not only create objects, they can also hold data, receive messages and execute methods just like any other object. However, many programmers find this distinction confusing and Scala has adopted the Companion object approach instead (see later in this book) which means that a class is supported by a singleton object that can hold data and provide a placeholder for additional supporting behaviours.

 Thus, in Scala, classes are unique within a program and can:	defined using the keyword class,

	be used to create instances (via the keyword new),

	be inherited by subclasses (and can inherit from existing classes),

	mix in traits,

	define properties,

	define methods,

	define functions,

	define instance variables and values,

	be sent messages.

 Objects, on the other hand, are:	defined using the keyword object,

	singleton entities within the systems,

	cannot be instantiated (and do not support the new operation),

	cannot be used to create new instances,

	are accessed directly via their name rather than via any val or var.

Confusingly many Object-Oriented languages use the term object to refer to an instance of a class. In Scala an instance of a class is exactly that, an instance of a class, an object is a different concept. Instances can be	created from a class (using the keyword new),

	hold their own copy of their state (in terms of properties or instance variables),

	be sent messages,

	execute instance methods,

	execute functions,

	have many copies in the system (all with their own data).

13.2 Inheritance Between Types
To recap on the concept of inheritance, inheritance is supported between types within Scala. For example, a class and extend (subclass) another class. A trait (another type) can extend other traits, etc., and objects can extend traits or classes. All of these types support and enable inheritance.
In terms of the inheritance we say:	A subtype inherits from a super type

	A subtype obtains all code and data from the super type

	A Subtype can add new code and data

	A subtype can override inherited code and data

	A subtype can invoke inherited behaviour or access inherited data.

13.3 Inheritance Between Classes

Inheritance

 is

 achieved in Scala using the
 extends
 keyword (as was discussed in Chap. 6). Scala is a single class inheritance system, so a Scala class can only inherit from a single class (although it can mix in multiple traits, to be discussed later).
The following class definition builds on the class
 Person
 presented earlier:

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figa_HTML.gif]

This class extends the class
 Person
 by adding a new variable property,
 subject
 . As this is a var the class
 Student
 also provides reader and writer functionality for the
 subject
 property. We say that
 Student
 is a subclass of
 Person
 and that
 Person
 is the super class of
 Student
 .
Note that as the class
 Person
 defined two properties in its primary constructor, the class
 Student
 must invoke the constructor explicitly. It does this by indicating the data to pass to this constructor after the parent class name following the extends expression. For the student class we take these values in as part of its own constructor. However the parameters ‘n’ and ‘a’ are not properties; they are local fields which can be used within the definition of the class Student. We are only using them to pass the data up to the definition of the constructor in the class Person. As a result you can only instantiate the class Student by providing the subject to be studied, the student’s name and their age. For example,

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figb_HTML.gif]

The end result is that a new instance of the class
 Student
 is created that has a
 subject
 property and also a
 name
 property and an age property inherited from the class
 Person
 . In fact the instance referred to by the variables is a
 Student
 and is also a Person (in the same way that any human is also a Mammal, etc.).
Note that it is necessary to invoke a parent class’s constructor explicitly. The only exceptions to this are if the parent class only defines a Zero parameter constructor, or if the primary constructor provides default values for all of its parameters.
13.3.1 The Role of a Subclass
There are only a small number of things that a subclass should do relative to its parent or super class. If a proposed subclass does not do any of these, then your selected parent class is not the most appropriate super class to use.

 A subclass should modify the behaviour of its parent class or extend the data held by its parent class. This modification should refine the class in one or more of these ways:	Changes to the external protocol, the set of messages to which instances of the class respond.

	Changes in the implementation of the methods, i.e. the way in which the messages are handled.

	Additional behaviour that references inherited behaviour.

If a subclass does not provide one or more of the above, then it is incorrectly placed. For example, if a subclass implements a set of new methods, but does not refer to the instance variables or methods of the parent class, then the class is not really a subclass of the parent (it does not extend it).
As an example, consider the class hierarchy illustrated in Fig. 13.1. A generic root class has been defined. This class defines a
 Conveyance
 which has doors, fuel (both with default values) and a method,
 startUp
 , that starts the engine of the conveyance. Three subclasses of
 Conveyance
 have also been defined:
 Dinghy
 ,
 Car
 and
 Tank
 . Two of these subclasses are appropriate, but one should probably not inherit from
 Conveyance
 . We shall consider each in turn to determine their suitability.[image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Fig1_HTML.gif]
Fig. 13.1A class and its subclasses

The class
 Tank
 overrides the number of doors inherited, uses the
 startUp
 method within the method
 fire
 and provides a new instance variable. It therefore matches all three of our criteria.
Similarly, the class
 Car
 overrides the number of doors and uses the method
 startUp
 . It also uses the instance variable
 fuel
 within a new method
 accelerate.
 It also, therefore, matches our criteria.
The class
 Dinghy
 defines a new instance variable
 sails
 and a new method
 setSail
 . As such, it does not use any of the features inherited from
 Conveyance
 . However, we might say that it has extended
 Conveyance
 by providing this instance variable and method. We must then consider the features provided by
 Conveyance
 . We can ask ourselves whether they make sense within the context of
 Dinghy
 . If we assume that a dinghy is a small sail-powered boat, with no cabin and no engine, then nothing inherited from
 Conveyance
 is useful. In this case, it is likely that
 Conveyance
 is misnamed, as it defines some sort of a motor vehicle, and the
 Dinghy
 class should not have extended it.

The
 exceptions

 to this rule are subclasses of
 Any
 and
 AnyRef
 . This is because these classes are the root types in the Scala type hierarchy.
 AnyRef
 is the root of all reference types—that is classes in Scala. As you must create a new class by subclassing it from an existing class, you can subclass from
 AnyRef
 when there is no other appropriate class.
13.3.2 Capabilities of Classes

A

subclass

 or
 class

 should accomplish one specific purpose; it should capture only one idea. If more than one idea is encapsulated in a class, you may reduce the chances for reuse, as well as contravene the laws of encapsulation in Object-Oriented systems. For example, you may have merged two concepts together so that one can directly access the data of another. This is rarely desirable.
Breaking a class down costs little but may produce major gains in reusability and flexibility. If you find that when you try and separate one class into two or more classes, some of the code needs to be duplicated for each class, then the use of abstract classes can be very helpful. That is, you can place the common code into an abstract superclass to avoid unnecessary duplication.

The following guidelines may help you to decide whether to split the class with which you are working. Look at the comment describing the class (if there is no class comment, this is a bad sign in itself). Consider the following points:	Is the comment short and clear. If not, is this a reflection on the class? Consider how the comment can be broken down into a series of short clear comments. Base the new classes around those comments.

	If the comment is short and clear, do the class and instance variables make sense within the context of the comment? If they do not, then the class needs to be re-evaluated. It may be that the comment is inappropriate, or the class and instance variables inappropriate.

Look at the instance variable references (i.e. look at where the instance variable access methods are used). Is their use in line with the class comment? If not, then you should take appropriate action.
13.3.3 Overriding Behaviour
As was mentioned at the start of this chapter, a subtype (e.g. a subclass) can override the behaviour defined in a parent class. In fact it is possible to override both methods and fields. It should be noted that in Scala; it is also possible to override a parameterless method by a new field or property (this is actually to do with the way in which Scala internally represents data and methods) but can be useful and also confusing.
To override either a field or a method in a parent class you must use the keyword override. You have seen this already with the
 toString
 method where we had to include the keyword override in order to redefine
 toString
 to do something more useful then display the fully qualified class name and a hexadecimal number. Of course the default behaviour of
 toString
 was being inherited into our classes via the class
 AnyRef
 (which we implicitly extended).
In the following example, the class
 Base
 overrides
 toString
 so that the name and age properties of the
 Base
 class are used to create the string representation of instances of the class. It also defines a method max and a property working.

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figc_HTML.gif]

We can then subclass
 Base
 with the class
 Derived
 and override both
 max
 and
 working
 if we wish, for example,

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figd_HTML.gif]

In
 Derived
 we have redefined max to actually return the minimum value for some reason and overridden working to be true.
As another option consider the classes
 Cat
 and
 Tiger
 below	Cat has vals
 dangerous
 and
 name
 .

	Tiger overrides
 dangerous
 and
 name
 . However, the value for
 name
 is now set when the instance is created. Thus the property that is defined as part of the constructor overrides a property used with the
 Cat
 class, which was not originally part of any construction process.

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Fige_HTML.gif]

The effect of running the
 CatTest
 program is shown below.

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figf_HTML.gif]

13.3.4 Protected Members
By default, within Scala all behaviour (methods and functions) as well as data (properties) is public, that is they are visible (can be accessed) anywhere within an application. We have seen that it is possible to mark both behaviour and data as private so that they are only accessible within a single object or class. However, there is another option which has not been mentioned yet. That is, it is possible to make either behaviour or data protected.
Protected members of a class are members (methods, functions, properties) that can only be accessed in the current class and in subclasses and only in subclasses. They are not visible to other elements of an application.
For example, in the following abstract class
 Base
 the property age is public, the method
 max
 is public and the overridden method
 toString
 is public. However, the property working is only visible within
 Base
 and any subclasses of
 Base
 .

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figg_HTML.gif]

The use of protected properties or behaviour helps to explicitly specify the interface between a subtype and its super type.
13.4 Restricting a Subclass

You

 can

 restrict the ability of a subclass to change what it inherits from its superclass. Indeed, you can also stop subclasses being created from a class.

This
 is done using the keyword
 final
 . This keyword has different meanings depending on where it is used. For example in the following example, the keyword final has been applied to the whole class:

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figh_HTML.gif]

This means that no element of this class can be extended, so no subclass of
 Employee
 can be created.
The keyword final can also be applied to a public property. For example,

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figi_HTML.gif]

This indicates that the property
 maximumMemory
 cannot be overridden in a subclass. This means that the value of
 maximumMemory
 is set for this class and for all subclasses wherever they are defined by this class. Using a
 val
 instead of a
 var
 means that the value cannot merely be overridden by a subclass, it is also only set once and is thus a constant for the hierarchy below the current class:

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figj_HTML.gif]

The keyword
 final
 can also be applied to methods. This means that a method cannot be overridden in a subclass, for example,

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figk_HTML.gif]

This states that the method
 prettyPrint
 cannot be overridden in a subclass. That is, a subclass cannot redefine
 prettyPrint();
 it must use the one that it inherits.
Restricting the ability to overwrite part of, or all of, a class is a very useful feature. It is particularly important where the correct behaviour of the class and its subclasses relies on the correct functioning of particular methods, or the appropriate value of a variable, etc. A class is normally only specified as
 final
 when it does not make sense to create a subclass of it. These situations need to be analysed carefully to ensure that no unexpected scenarios are likely to occur.
13.5 Abstract Classes
An abstract class

 is
 a class from which you cannot create an object. It is missing one or more elements required to create a fully functioning instance. In contrast a non-abstract (or concrete) class leaves nothing undefined and can be used to create a working instance. You may wonder what use an abstract class is. The answer is that you can group together elements that are to be shared amongst a number of classes, without providing a complete implementation. In addition, you can force subclasses to provide specific methods ensuring that implementers of a subclass at least supply appropriately named methods. You should therefore use abstract classes when:	you wish to specify data or behaviour common to a set of classes, but insufficient for a single instance,

	you wish to force subclasses to provide specific behaviour.

In many cases, the two situations go together. Typically, the aspects of the class to be defined as abstract are specific to each class, while what has been implemented is common to all classes.
For example, consider the following class.

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figl_HTML.gif]

This is a revised version of the Person class we have seen several times before. However we are now making Person an abstract concept. This means that you do not create instances o the Person class itself, but rather you create instances of subclasses of Person such as Employee, Student, Graduate, etc. Person brings together the common features of these subclasses, but on its own it is not sufficient to warrant an instance being created. It is only the concrete classes (non-abstract classes) which actually make sense as instances:
This abstract class definition means that you cannot create an instance of
 Person
 . Within the definition of
 Person,
 we can see that the
 toString
 and birthday methods are concrete or defined methods, whereas the method
 prettyPrint
 is not defined (it has no method body). The
 prettyPrint
 method is what is known as an abstract method. Any class, which has one or more abstract methods, is necessarily abstract (and must therefore have the

keywords

 abstract class
). However, a class can be abstracted without specifying any abstract methods.
An abstract class can also define any number of concrete methods. The method birthday is a concrete method that adds one to the current age of the person.
Any subclass of
 Person
 must implement the
 prettyPrint
 method if instances are to be created from it. Each subclass can define how to pretty print itself in a different manner. The following
 Graduate
 class provides a concrete class that builds on
 Person
 :

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figm_HTML.gif]

This class extends the class
 Person
 and also provides:	The four-parameter constructor is used to passing the name and age for the
 Person
 class’s primary constructor and to provide a degree and University for the
 Graduate
 class.

	A three-parameter auxiliary constructor invokes the four-parameter primary constructor.

	A concrete version of the
 prettyPrint
 method.

We can also return to the
 Employee
 class from earlier and see that it also provides a concrete
 prettyPrint
 method and invokes the
 Person
 class’s primary constructor:

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Fign_HTML.gif]

13.6 The Super Keyword
We have already seen that it is possible to override behaviour defined in a parent class so that the version in the current class meets that needs of that class. The method
 toString
 is a typical example of this. In numerous examples we have redefined
 toString
 to create a string based on the data held by a class rather than to use the generic version. To do this we used the keyword override and ensured that the method signature (its name, parameters and return matched those defined in the parent class).
However, rather than completely override the version of the method defined in the parent class we can chose to extend its behaviour. This is done by defining a new version of a method in a subclass and then using the keyword super to invoke the version defined higher up the inheritance hierarchy.
For example, in the following example, the abstract class Base defines a method print that prints out a message “Base print”. The subclass Derived extends Base and overrides the method print. However within the body of the method it called
 super.print
 that causes it to invoke the parent class’s version of print. Note this call could be made anywhere within the body of the method print in Derived, it does not need to be the first line of the method.

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figo_HTML.gif]

The effect of the overridden print method in
 Derived
 is that it calls the parent class’s version of print. This means that in effect it extends, rather than replaces, the behaviour of the original version of print. Note that super tells Scala to start searching up the class hierarchy for a version of print defined above the current class in the hierarchy. In this case it is defined in the parent class, but it could have been defined in a parent of
 Base
 —that is it starts searching Base and will continue search up the class hierarchy until it finds another definition of print to execute.
To illustrate this idea we could create a simple application:

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figp_HTML.gif]

If we now run the above application, the output would be as shown below:

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figq_HTML.gif]

Here you can see that both the original version and the derived version of print have been executed.
13.7 Scala Type Hierarchy
The type hierarchy in Scala is complicated by the presence of traits, but the core types are divided between two types, AnyVal and AnyRef, with the class Any at the root (see Fig. 13.2).[image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Fig2_HTML.gif]
Fig. 13.2Simplified extract form Scala type hierarchy

Thus the root of everything in Scala is the abstract class Any. Any has two subclasses, the abstract AnyVal and the concrete AnyRef:	
 AnyVal this is used to represent Value like types, such as Boolean, Char, Byte, Short, Int, Long, Float, Double. Strictly speaking Scala has no primitive types—these are objects. However, they are a special type of objects that are managed by the Scala runtime efficiently.

	
 AnyRef this is used for all reference types such as classes and traits. Examples of AnyRef subtypes include the data structure (or collection) classes such as Array, List, Seq and String. It is also used as the root for all user-defined classes that do not explicitly extend any other class.

13.8 Polymorphism
Polymorphism was a concept discussed earlier in the book relating to one of the four key concepts in Object Orientation. In terms of Scala programming Polymorphism means that a val or var local variable or property can actually reference an instance of a particular type or any subtype of that type. Thus a var of type Person can actually hold a reference to a Person (assuming it is not an abstract type) or any subclass of Person (including Student, Employee and graduate, etc.).
For example, we can write:

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figr_HTML.gif]

In this test application the variable p is of type
 Person
 . It can thus reference a
 Person
 , a
 Graduate
 or an
 Employee
 . Initially we are storing a reference to a
 Graduate
 in p. We then call
 println
 on p (which causes the
 toString
 method to be invoked on the instance reference by p and then call
 prettyPrint
 on
 p
 . Both
 toString
 and
 prettyPrint
 can be guaranteed to be available in whatever instance
 p
 refers to because the functionality in the class Person guarantees it. Any methods defined only in the
 Graduate
 are not visible via
 p
 (although they are still present in the instance being referenced, they just cannot be accessed at this point).
After this we create a new instance of the
 Employee
 class and store a reference to that instance in p and then use
 toString
 to print the object out and
 prettyPrint
 again. However, the behaviour that now executes is whatever behaviour is either defined in
 Employee
 or inherited into
 Employee
 .
The output produced by this application is shown here.

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figs_HTML.gif]

The key here is that with polymorphism:	1.The type of the variable p acts as a filter—ensuring that only common behaviour is accessible

	2.But at runtime the actual definition of, for example,
 prettyPrint
 is dynamically bound. That is, the version defined the class that the instance is actually an example of what is executed.

The illustrate sees the following diagram, and scenario A indicates the situation when p references a graduate. Thus when the
 prettyPrint
 method is called on p at that point, it is the Graduate version of
 prettyPrint
 that is run. Scenario B indicates the situation when p references an employee. Thus when
 prettyPrint
 is called on this instance, it is the version in Employee that is
 run
 .

 [image: ../images/323629_2_En_13_Chapter/323629_2_En_13_Figt_HTML.gif]

To summarise then, polymorphism in Scala is similar to that in languages such as Java and C#, in that:	A variable of type X can refer to instance of X or any subclass of X

	At runtime method invocations are dynamically bound based on the type of the receiving object (not the type of the variable)

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_14

14. Objects and Instances

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

14.1 Introduction
This chapter will discuss the difference between objects in Scala and Instance of a class. This is important as many other Object-Oriented languages use these terms interchangeably. However, in Scala they are significantly different concepts, defined with different language constructs and used in different ways.
14.2 Singleton Objects
Scala provides another type that can sit alongside the class types. It is directly supported by the language construct object. A Scala object is a singleton object that is accessible to any Scala code that has visibility of that object definition. The term singleton here refers to the fact that there is a single instance of the object definition within the virtual machine executing the Scala program. This is guaranteed by the language itself and does not require any additional programmer intervention.
If you have never come across the concept of a Singleton object before it may appear an odd idea. However, it is very widely and commonly used within the Object-Oriented programming world. Examples of the singleton concept can be found in Java, C#, Smalltalk, C++, etc. and have been documented in various ways since it was first popularised in the so-called Gang of Four patterns book. The four authors of this book, Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides (collectively known as the “Gang of Four”, or GoF for short) popularised the patterns concepts and ideals.
So what are Design Patterns? They are essentially useful recurring solutions to problems within designs. For example, “I want to loosely couple a set of objects, how can I do this?”, might be a question facing a designer. The mediator Design Pattern is one solution to this. If you are familiar with Design Patterns you can use them to solve problems that occur. Typically early in the design process, the problems are more architectural/structural in nature, while later in the design process they may be more behavioural. Design Patterns actually provide different types of patterns some of which are at the architectural/structural level and some of which are more behavioural. They can thus help every stage of the design process.
The Singleton pattern describes a type that can only have one instance constructed for it. That is, unlike other types it should not be possible to obtain more than one instance within the same virtual machine. Thus the Singleton pattern ensures that only one instance of a type is created. All elements that use an instance of that type; use the same instance.
The motivation behind this pattern is that some classes, typically those classes that involve the central management of a resource, should have exactly one instance. For example, a object that managements the reuse of database connections (i.e. a connection pool) could be a singleton.
However, implementing a singleton in some language can be more complex than initially thought, as it is necessary to ensure that it is not possible to have multiple instances of the singleton concept. Scala solves this problem by making the singleton concept part of the language.
You have already seen examples of the syntax used for singletons as that is the syntax we have used for each of our application entry points (whether with an explicit
 main
 method or by using the
 App
 trait). The syntax is:

 [image: ../images/323629_2_En_14_Chapter/323629_2_En_14_Figa_HTML.gif]

Objects can	extend classes,

	mix in traits,

	define methods and functions

	as well as properties (both vals and vars).

	But they cannot define constructors.

A simple singleton object is shown below:

 [image: ../images/323629_2_En_14_Chapter/323629_2_En_14_Figb_HTML.gif]

This simplified mock connection pool object defines a count of the number of connections being managed and a method next that adds to the count. This object does not need to be instantiated to be used instead it can be referenced directly by any client code:

 [image: ../images/323629_2_En_14_Chapter/323629_2_En_14_Figc_HTML.gif]

In the above client code we are accessing the functionality in next and the data in count directly by reference to the name of the object (we did not create a new object using the keyword new nor did we run a constructor).
The result of running this simple application is shown in below figure, indicating that the same object is used throughout as the count is incremented from 1 to 2:

 [image: ../images/323629_2_En_14_Chapter/323629_2_En_14_Figd_HTML.gif]

14.3 Companion Objects
Companion objects are singleton objects’ for a class—they can be used to provide utility functions such as factory methods that will support the concept being modelled by the class. As a companion object is an object, it is a singleton instance that sits alongside the class.
To define a companion object it must:	Have the same name as the Companion Class.

	Must be defined in the same source file as the Class.

When used in this way companion objects are useful placeholders for static style behaviour (as found in languages such as Java or C#).
From the point of view of the user of the class; the companion object and the class appear to be a single concept. For example, consider the following definition of a
 Session
 class and a companion object.

 [image: ../images/323629_2_En_14_Chapter/323629_2_En_14_Fige_HTML.gif]

Notice that the object
 Session
 has a private
 counter
 (initialised to Zero) and a private method
 next
 . By default all methods and properties are public (accessible anywhere); here we are making the property counter and the method next visible only within the Object Session.
The utility method
 create
 then uses the method
 next
 to increment the counter before it creates a new
 Session
 instance. Note that we are using a ‘;’ here to separate the two statements as they are on the same line and Scala would infer that they were related. I am also surrounding them with curly brackets ‘{..}’ as this is a multiple statement method and thus need to group them.
From a client of the Session concepts point of view they can now create a new session using the
 create
 (factory) method or by using the keyword new and the class name directly:

 [image: ../images/323629_2_En_14_Chapter/323629_2_En_14_Figf_HTML.gif]

The first two session instances above are created using the Session objects Create method and the third session instance is created using the new keyword. From the client programmers point of view there is a single concept here Session which can be instantiated into two ways. The advantage of the Create method is that it handles ensuring an increment of the session ID whereas the use of new allows any Session id to be used. The out of this program is shown below.

 [image: ../images/323629_2_En_14_Chapter/323629_2_En_14_Figg_HTML.gif]

14.3.1 Companion Object Behaviour

It

 may

 at first seem unclear what should normally go in a method defined in the class as opposed to what should go in a method defined in a companion object when defining a new class. After all, they are both defined in the same file and relate to the same concept. However, it is important to remember that one defines the behaviour of which will be part of an instance and the other the behaviour of which can be shared across the whole concept being implemented.
In order to maintain clarity companion object methods, should only perform one of the following roles:	
 Application Entry Point This role is very important as it is how you can use a companion object as the root of an application. It is common to see main methods (or the App trait) which do nothing other than create a new instance the main class of an application and fire off the appropriate behaviour. For example,

 object

 Editor

 extends

 App {

 val editor

 =

 new EditorView()

 editor.startDisplay

 }

If you define such a method, but the class is not the root of the application, it is ignored. This makes it a very useful way of providing a test harness for a given class.

	
 Answering enquiries about the class This role can provide generally useful objects, frequently derived from companion object variables. For example, they may return the number of instances of this class that have been created using a factory method.

	
 Instance management In this role, companion object methods control the number of instances created. For example, a class only allows a ten instance to be created. Instance management methods may also be used to access an instance (e.g. randomly or in a given state).

	
 Examples Occasionally, companion object methods are used to provide helpful examples which explain the operation of a class.

	
 Testing companion object methods can be used to support the testing of an instance of a class. You can use them to create an instance, perform an operation and compare the result with a known value. If the values are different, the method can report an error. However, test frameworks are generally a better approach.

	
 Support for one of the above roles.

Any other tasks should be performed by a method (of function) defined in the class.
14.3.2 A Object or an Instance

In

 some

 situations, you may only need to create a single instance of a class and reference it wherever it is required. A continuing debate ponders whether it is worth creating such an instance or whether it is better to define the required behaviour in a companion object. The answer to this is not straightforward as there are several factors that should be taken into account including:	The use of an object in Scala guarantees you a singleton instance within the current JVM. This means that it also limits you to a single instance in the current JVM and over time this may be a problem.

	The creation of an instance has a very low overhead. This is a key feature in Scala and it has received extensive attention.

	You may be tempted to treat the object as a global reference. This suggests that the implementation has been poorly thought out.

In deciding whether to use a Scala object or a Scala class to hold data and/or behaviour or functionality you need to consider the context in which it will be used, how you expect to develop the concept and whether there will ever be a need for more than one instance of that concept.
References
Gang of Four Design Patterns Book	Gamma E, Helm R, Johnson R, Vlissades J (1995) Design Patterns: elements of reusable Object-Oriented software, Addison-Wesley

Quick reference list of Design Patterns	
 http://​www.​oodesign.​com/​

Introductory descriptions and examples of patterns	
 http://​sourcemaking.​com/​design_​patterns

List of patterns based sites	
 http://​hillside.​net/​patterns/​patterns-catalog

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_15

15. Value Classes

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

15.1 Introduction
This chapter introduces another type of class in Scala, Value Classes. A Value Class is a type where the actual value being represented by the type class is hold directly by a variable, rather than needing to access that value via a reference (an address in memory). Examples of Value Types include Booelan, Int and Double which can have the values true, false, 32, 45.7, etc. Such values can be held directly by a variable, rather than accessed via a reference. This can be more efficient for simple types like Int.
Value Classes inherit from AnyVal, rather than AnyRef. However, prior to Scala 2.10 AnyVal was actually a type of Trait not a Class. This meant that it was not possible to create user-defined Value Types. However in Scala 2.10 AnyVal was redefined as an abstract class. As it is normal to subclass abstract classes it is now possible to create user-defined Value Classes. Thus subclasses of AnyVal are user-defined Value Classes.
15.2 Value Classes
Value Classes are treated as special by the Scala compiler. That is, the compiler will determine if it can inline the value to be used directly. This avoids the need to allocate runtime objects and is thus more efficient and faster (as no allocation must be made and no reference must be followed).
To ensure that the compiler can treat a value in this way it is necessary for the programmer to ensure that no object allocation is performed within the type. Thus a Value Type cannot hold within itself a reference to a non-Value Type (such as an instance of the class Person). It must also ensure that the type being defined:	must extend AnyVal,

	must be immutable by nature (i.e. it should not change itself but return a new instance whenever a change in value is required),

	must have a single public val parameter for the underlying type (i.e. the built-in Value Type being wrapped),

	does not declare any additional fields within itself,

	cannot have any auxiliary constructors,

	cannot define any nested types such as classes, objects or traits,

	are not used in tests used to determine their type or in type-based pattern matching,

	must not override the equals or hashcode methods,

	cannot have any initialisation statements.

However, they can have	any methods or functions as required.

15.3 Simple Value Type Example
The following Value Type class meets the criteria defined in the last section. That is, the Value Class
 Meter
 has a single val property
 value
 of type
 Double
 (which is a built-in Value Type); it extends
 AnyVal
 directly and provides a method ‘
 +
 ’. In addition it exhibits immutability. That is, when the ‘
 +
 ’ method is invoked, it does not change value instead it returns a new instance of the
 Meter
 class representing the new value:

 [image: ../images/323629_2_En_15_Chapter/323629_2_En_15_Figa_HTML.gif]

The following simple application illustrates how this class may be used:

 [image: ../images/323629_2_En_15_Chapter/323629_2_En_15_Figb_HTML.gif]

In this example, we create two instances of the
 Meter
 Value Class and store them in the variables
 x
 and
 y
 . We then add them together and store the result in
 z
 . Note that this line looks very much as it would if
 x
 and
 y
 held Int or Doubles and we added them together. The result is then printed out. The effect of running this application is shown below.

 [image: ../images/323629_2_En_15_Chapter/323629_2_En_15_Figc_HTML.gif]

Interestingly the compiler actually replaces the references to
 Meter
 with the primitives held within the Value Class at runtime. Thus there is virtually no overhead in using
 Meter
 than in using
 Double
 directly. This raises the question “Why bother?” The answer is twofold:	

 Meter
 is more semantically meaningful than Double. That is Double is a generic way of representing 54 bit real numbers. The Value Class Meter represents the concept of a length, i.e. a meter.

	

 Meter
 also allows methods to be defined that allow semantically meaningful operations to be defined that can also indicate what is being done at a higher level of abstraction than the basic type Double would allow.

15.4 Additional Value Class Concepts
Value Classes are implicitly treated as final classes, thus ensuring that they cannot be extended by other classes. This is important as it restricts the need for polymorphism and thus allows the compiler to inline the values being represented.
Value Classes are implicitly assumed to have structural equality and hashcode. That is, their equals and hashcode methods are taken to be defined as follows (and this is why you must not redefine them):

 [image: ../images/323629_2_En_15_Chapter/323629_2_En_15_Figd_HTML.gif]

Where u equates to the underlying (Value Type) property (such as Double, or Int). In other words if the underliers have the same value, then the Value Types are equal; otherwise, they are not equal. In addition the hashcode of a Value Type is the hashcode of its underling type.
Value Classes can only mix in Universal Traits. If you try to mix in a trait which is not a Universal Trait, then the class you are defining is not a Value Class but a reference class. A Universal Trait is a special trait which extends the Any type rather than the default AnyRef type.
You can make the Value Class a case class that simplifies the syntax and means that you do not need to use the keyword new. This often makes for much more readable and semantically clear Value classes. For example, taking the Meter class defined earlier and changing it into a case class:

 [image: ../images/323629_2_En_15_Chapter/323629_2_En_15_Fige_HTML.gif]

This now means that we do not need to use the keyword new, and thus the test application looks less as if we have created instance of a class and more as if Meter was a built-in type:

 [image: ../images/323629_2_En_15_Chapter/323629_2_En_15_Figf_HTML.gif]

15.5 Negating Value Classes
It should be noted that the compiler will not treat a class as a Value Class in some situations. These are presented below:
The compiler will not treat an instance of a Value Class as a value when:	It is used in an array—it will not inline values into an Array.

	It is used in pattern matching situations such as case statements.

	When used within any polymorphic situation. For example, where the type of the variable relates to a more generic type (such as a trait).

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_16

16. Scala Constructs

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

16.1 Introduction
This chapter presents more of the Scala language. It considers the representation and use of numbers, strings and characters. It also discusses assignments, literals and variables. Finally, it considers messages, message types and their precedence.
16.2 Numbers and Numeric Operators
16.2.1 Numeric Values
Just as in most programming languages, a numeric value in Scala is a series of numbers which may or may not have a preceding sign and may contain a decimal point:

 25;

 −

 10; 1996; 12.45; 0.13451345;

 −

 3.14

Unusually for a programming language, Scala explicitly specifies the number of bytes that must be used for data types such as Short, Int, Long, Float and Double:

The Scala language designers’ purpose in specifying the number of bytes to use for each data type was to enhance the portability of Scala implementations.

 In C, the number of bytes used for
 int
 and
 long
 is at the discretion of the compiler writers. The only constraint placed upon them is that
 int
 cannot be bigger than
 long
 . This means that a program that compiles successfully on one machine may prove unreliable and have errors when recompiled on another machine. This can make porting a program from one system to another extremely frustrating (ask anyone who has ever had to port a sizeable C system!) (Tables 16.1).
Table 16.1Standard numbers of bytes for numeric data types

	Type
	Bytes
	Stores

	Byte
	1
	Integers

	Short
	2
	Integers

	Int
	4
	Integers

	Long
	8
	Integers

	Float
	4
	32-bit IEEE 754 single-precision float

	Double
	8
	64-bit IEEE 754 double-precision float

16.2.2 Arithmetic Operators
In general, the arithmetic operators
 available in Scala are the same as in any other language. There are also comparison functions and truncation functions (see Table 16.2).

 Numbers can also be represented by objects which are instances of classes such as
 Integer
 ,
 Float
 . These classes are all subclasses of the class Number and provide different facilities. However, some of the methods are fairly common (Table 16.3).Table 16.2Basic numeric operators

	+
	Addition

	−
	Subtraction

	*
	Multiplication

	/
	Division

	%
	Remainder

	==
	Equality

	<
	Less than

	>
	Greater than

	!=
	Inequality

	<=
	Less than or equal to

	>=
	Greater than or equal to

Table 16.3Methods provided by numeric classes

	

 equals()

	Equality

	

 doubleValue()

	Conversion

	

 toHexString()

	Conversion

	

 valueOf(aString)

	Conversion (class-side)

	

 toBinaryString()

	Conversion

	

 toOctalString()

	Conversion

A number of the numeric classes also provide class variables, such as
 MAX_VALUE
 and
 MIN_VALUE
 (i.e. in
 Integer
 ,
 Long
 ,
 Double
 ,
 Float
), and numbers such as
 NEGATIVE_INFINITY
 and
 POSITIVE_INFINITY
 (i.e. in
 Double
 and
 Float
).

 In addition, Scala provides a class called
 Math
 . This class, which is a subclass of
 Object
 , provides the usual range of mathematical operations (see Table 16.4).

 All these methods are class (or static) methods available from the class
 Math
 . You do not have to create an instance of the class to use them.Table 16.4Mathematical functions provided by Math

	

 max
	Maximum

	

 ceil
	Round up

	

 round
	Round to nearest

	

 abs
	Absolute value

	

 pow
	Raises one number to the power of the other

	

 min
	Minimum

	

 floor
	Round down

	

 sqrt
	Square root

	

 exp
	Exponential

	

 random
	Random number generator

It is also interesting to notice that, to enhance the portability of Scala, the language designers have stated that the definitions of many of the numeric methods must produce the same results as a set of published algorithms.
16.3 Characters and Strings
16.3.1 Characters
Characters in Scala are of type Char and are represented by 16-bit unsigned integers. In Scala, a single character is defined by surrounding it with single quotes:

 'J' 'a' '@' '1' '$'

16.3.2 Strings

 Strings
 in Scala are represented by the (Java) class String and examples of a string are instances of this class. As such, they are made up of individual elements, similar to strings in C. However, this is the only similarity between strings in C and Scala. A Scala string is not terminated by a null character and should not be treated as an array of characters. It should be treated as an object which responds to an appropriate range of messages (e.g. for manipulating or extracting substrings) (Table 16.5).Table 16.5Methods provided by the class String

	charAt(index: Int)
	

 Returns the character at position index

	compareTo (anOtherString)
	

 Compares two strings lexicographically

	equals(String aString)
	

 Compares two strings

	equalsIgnoreCase (String aString)
	

 Compares two strings, ignoring the case of the characters

	indexOf
(char aCharacter)
	

 Returns the first index of the character in the receiving string

	substring
(int start, int stop)
	

 Creates substring from start to stop (in the receiving string)

	toLowerCase()
	

 Returns the receiver in lower case letters

	toUpperCase()
	

 Returns the receiver in upper case letters

A string is defined by one or more characters placed between double quotes (rather than the single quotes used for characters):

 "John Hunt" "Tuesday" "dog"

You cannot create a string by generating an array of characters. This can be the source of much confusion and frustration when an apparently correct piece of code does not work. A string containing a single character is not equivalent to that single character:	

 'a' !

 =

 "a"

The string
 "a"
 and the character
 'a'
 are, at best, instances of different classes and, at worst, one may be an instance and one a basic type. The fact that the string contains only one character is just a coincidence.
To denote that a variable should take an instance of String, define it as being of type String:	

 val aVariable: String

 =

 "John"

Of course due to type inference in most situations Scala can infer that the type of the variable should be String.
16.4 Assignments

 A variable name can refer to different objects at different times. You can make assignments to a variable name, using the = operator. It is often read as “becomes equal to” (even though it is not preceded by a colon as in languages such as Ada).
Some examples of assignment statements follow:

 currentEmployeeIndex

 =

 1;

 newIndex

 =

 oldIndex;

 myName

 =

 "John Hunt";

Like all Scala operators, the assignment operator returns a value. The result of an assignment is the value of that assignment (thus the value of the expression
 x

 =

 2

 +

 2;
 is 4). This means that several assignments can be made in the same statement:	

 nextObject

 =

 newObject

 =

 oldObject;

The above example also illustrates a feature of Scala style—variable names that indicate their contents. This technique is often used where a more meaningful name (such as
 currentEmployeeIndex
) is not available (
 temp
 might be used in other languages).

 Although variables in Scala are strongly typed, this typing is perhaps not as strong as in languages such as Pascal and Ada. You can state that a variable is of type
 Any
 . As
 Any
 is a class, such a variable can possess instances of the class Any or one of its subclasses! This means that a variable that holds a String may then be assigned a Person or a List (a type of data structure) instance. This is quite legitimate:

 var temp: Any

 =

 new Person()

 temp

 =

 "John"

 temp

 =

 List(..)

An important point to note is that assignment is by reference when dealing with objects. This means that, in the following example,
 nextObject
 ,
 newObject
 and
 oldObject
 all refer to the same object (as illustrated in Fig. 16.1)[image: ../images/323629_2_En_16_Chapter/323629_2_En_16_Fig1_HTML.gif]
Fig. 16.1Result of a multiple assignment

 newObject

 =

 oldObject

 =

 new Person(..)

 nextObject

 =

 newObject;

As all three variables point to an instance of a class (in this case
 Person
), if an update is made to the contents of any one of the properties maintained by the person (such as the age property), it is made for all three!
16.5 Variables
16.5.1 Temporary Variables

 These variables exist only for the duration of some activity (e.g. the execution of a method). They can be defined anywhere within a method (as long as they are defined before they are used). The definition takes the form of the type (or class) of the variable and the variable name followed by any initialisation required:

 var aChar: Char;

 var anotherChar

 =

 'a';

 var anInstance: AnyRef;

 var myName

 =

 "John Hunt";

Note all of these are written as vars but they could equally have been vals. The scope of a temporary variable depends on the context in which it is defined. For example, variables declared at the top level of a method are in scope from the point at which they are declared. However, block variables only have scope for the block within which they are defined (including nested blocks). Loop variables only have scope for the loop within which they are defined. Thus the scope of each of the following variables is different:

 def

 add (a: Int, b: Int): Int

 =

 {

 val

 result

 =

 0 r

 for

 (i

 <

 - 0 to 5) { ir

 if (a

 <

 i) { ir

 var

 total

 =

 b tir

 total

 =

 total

 +

 c * i tir

 } ir

 } r

 return result r

 }

In the right-hand column,
 r
 indicates that
 result
 is in scope,
 i
 indicates the scope of the loop variable and
 t
 indicates the scope of the inner block variable,
 total
 .
16.5.2 Pseudo-Variables
A pseudo-variable is a special variable, whose value is changed by the system, but which cannot be changed by the programmer. The value of a pseudo-variable is determined by the current context and can be referenced within a method.

 this
 is a pseudo-variable that refers to the receiver of a message itself. The search for the corresponding method starts in the class of the receiver. To ensure that your source code does not become cluttered, Scala assumes you mean
 this
 object if you just issue a reference to a method. The following statements have the same effect:	

 this.myName()

	

 myName()

You can use
 this
 to pass a reference to the current object to another object:	

 otherObject.addLink(this)

16.5.3 Variable Scope

 Temporary variables are only available within the method in which they are defined. However, both class variables and instance variables are in scope (or are visible) at a number of levels. An instance variable can be defined to be visible (available) outside the class or the package, only within the package, within subclasses or only within the current class. The scope is specified by modifiers which precede the variable definition:	

 Public val myName

 =

 "John Hunt";

16.5.4 Option, Some and None
Sometimes what we need to represent is that a variable currently does not hold anything. The approach taken in Java was to represent such values as null. The idea was that the null value is an object that represents nothing or no object. It is not of any type nor it is an instance of any class (including
 Object
). It really does means nothing or no value. However, this has lead to the now much discussed NullPointerException in Java which is generally considered now to be a weakness of the language.
The approach adopted within Scala is to use a type called an Option. An Option can hold any type or can be set to None. None indicates the absence of an actual value but is not the same as Null in Java.
For example, using Option you can indicate that a variable date should hold a Date type but currently a data has not been specified, for example:

 [image: ../images/323629_2_En_16_Chapter/323629_2_En_16_Figa_HTML.gif]

This declares that the val date is holding an Option wrapper, around an instance of Data but that currently this is initialised to None.
Such values can then be used within a match statement to perform one action if a value is present or another action if there is no value (or None), for example:

 [image: ../images/323629_2_En_16_Chapter/323629_2_En_16_Figb_HTML.gif]

Although a more idiomatic Scala approach would be to use the getOrElse method on Option which indicates that you should return the value held by an option or return some default value, for example:

 [image: ../images/323629_2_En_16_Chapter/323629_2_En_16_Figc_HTML.gif]

As a more concrete example of using an option consider the following class Event. This class represents some interesting event that has occurred within some system at some point in time.

 [image: ../images/323629_2_En_16_Chapter/323629_2_En_16_Figd_HTML.gif]

When the data associated with the Event is printed via the printDate method where we either print the date or a string “No date”. Note that the companion object Event defines a utility conversion method that will take a date and convert it into an Option so that users of the class Event do not have to do this themselves. As the apply is marked as implicit, if the method is in scope, then when Scala is looking for a way to convert a Date into an option it can use this method automatically without the programmer explicitly specifying it.
A simple example of using this class is shown below:

 [image: ../images/323629_2_En_16_Chapter/323629_2_En_16_Fige_HTML.gif]

Note that the second Event created uses the implicit apply conversion method to convert the new instantiated Date into an option. The output from this application is

 No Date

 Tue Dec 19 17:19:37 GMT 2017

 Tue Dec 19 17:19:37 GMT 2017

16.5.5 Boolean Values
In Scala there is a specific type used to represent truth or falsehood. This is the Boolean type. It has two values true and false which can be written as literals and can be assigned to variables and values and used in logical operations.
16.5.6 Literals
All of the preceding types can be written in literal form. That is 23 is a literal Int, 23.0 a literal Double, ‘A’ a Char and “John” a String literal. Scala also supports literals written using:	Hexadecimal preceding the literal with Ox

	Octal preceding the literal with O5=

	Integer ending with L or l is a Long

	Character literals in ‘‘ e.g. ‘A’

	Character literal preceded by \u is a Unicode character, e.g. ‘\u0041’

	Symbol literal is ‘aSymbol

16.6 Messages and Message Selectors
16.6.1 Invoking Methods

 Invoking a method is often referred to as sending a message to the object that owns the method. The expression which invokes a method is composed of a receiving object (the receiver
), the method name and Zero or more parameters. The combination of method name and parameters is often called the message and it indicates, to the class of the receiving object, which method to execute
. Figure 16.2 illustrates the main components of a message expression.[image: ../images/323629_2_En_16_Chapter/323629_2_En_16_Fig2_HTML.gif]
Fig. 16.2Components of a message expression

The value of an expression is determined by the definition of the method it invokes. Some methods are defined as returning no value (e.g.
 Unit
) while others may return a Value Type (such as Int) or instance. In the following code, the result returned by the method
 marries
 is saved into the variable
 newStatus
 :

 newStatus

 =

 thisPerson.marries(thatPerson)

16.6.2 Precedence
The rules governing precedence in Scala are similar to those in other languages. Precedence refers to the order in which operators are evaluated in an expression. Many languages, such as C, explicitly specify the order of evaluation of expressions such as the following:	

 2

 +

 5 * 3

 −

 4 / 2;

Scala is no exception. The rules regarding precedence are summarised in Table 16.6. The above expression would be evaluated as:Table 16.6
 Operator precedence

	Operation
	Meaning
	Precedence

	x++ −−x
	Prefix increment/decrement
	16

	x++ x−−
	Postfix increment/decrement
	15

	– ! ~
	Arithmetic negation/logical not/flip
	14

	(typename)
	Cast (type conversion)
	13

	* / %
	Multiplication/division/remainder
	12

	+ −
	Addition/subtraction
	11

	≪ ≫ >>>
	Left and right bitwise operators
	10

	< > <= >=
	Relational operators
	9

	== !=
	Equality operators
	8

	&
	Bitwise and
	7

	^
	Bitwise exclusive or
	6

	|
	Bitwise or
	5

	&&
	Conditional and
	4

	||
	Conditional or
	3

	? :
	Conditional operators
	2

	=
	Assignment operator
	1

	

 (2

 +

 (5 * 3))

 −

 (4 / 2);

Notice that if operators with the same precedence are encountered they are evaluated strictly from left to right.
16.7 Summary
In this chapter and the previous, you have learnt about classes in Scala, how they are defined, how instance variables are specified and how methods are constructed. You have also encountered many of the basic Scala language structures.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_17

17. Control and Iteration

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

17.1 Introduction
This chapter introduces control and iteration in Scala. In Scala, as in many other languages, the mainstay of the control and iteration processes is the
 if
 and
 switch
 statements and the
 for
 and
 while
 loops.
17.2 Control Structures
17.2.1 The if Statement

 The basic format of an
 if
 statement in Scala is the same as that in languages such as C, Pascal and Java. A test is performed and, depending on the result of the test, a statement is performed. A set of statements to be executed can be grouped together in curly brackets { }. For example,

 if

 (a == 5)

 println("true")

 else

 println("false")

 if

 (a == 5) {

 print("a = 5")

 println("The answer is therefore true")

 }

 else

 {

 print("a != 5")

 println("The answer is therefore false")

 }

Of course, the
 if
 statement need not include the optional
 else
 construct:

 if

 (a == 5) {

 print("a = 5")

 println("The answer is therefore true")

 }

You must have a Boolean in a condition expression, so you cannot make the same equality mistake as in C. The following code always generates a compile time error:

 if

 (a = 1) {

 …

 }

Unfortunately, assigning a Boolean to a variable results in a boolean (all expressions return a result) and thus the following code is legal, but does not result in the intended behaviour (the string “Hello” is always printed on the console):

 var a

 = false

 if

 (a = true)

 println("Hello")

You can construct nested
 if
 statements, as in any other language:

 if

 (count < 100)

 if

 (index < 10)

 {…}

 else

 {…}

 else

 {…}

However, it is easy to get confused. Scala does not provide an explicit if-then-elseif-else type of structure. In some languages, you can write:

 if

 (n < 10)

 print ("less than 10");

 else if

 (n < 100)

 print ("greater than 10 but less than 100");

 else if

 (n < 1000)

 print ("greater than 100 but less then 1000");

 else

 print ("greater than 1000");

This code is intended to be read as laid out above. However if we write it in Scala, it should be laid out as below:

 if

 (n < 10)

 print ("less than 10")

 else if

 (n < 100)

 print ("greater than 10 but less than 100")

 else if

 (n < 1000)

 print ("> than 100 but < 1000")

 else

 print ("> than 1000")

This code clearly has a very different meaning (although it may have the same effect). This can lead to the infamous “dangling else” problem. Another solution is the
 switch
 statement. However, as you will see the switch statement has significant limitations.
17.2.2 If Returns a Value
Almost all statements in Scala return a result, and the if statement is no different. This means that you can use an if statement to determine the value to assign to a value (or pass to a method, etc.). For example, the following code assigns either the string “Dad” or the string “No Data” to the value role defining the current string referenced by the variable name:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figa_HTML.gif]

This is a very useful feature of the if statement which can be used effectively in many situations.
17.3 Iteration
Iteration in Scala is accomplished using the
 for
 ,
 while
 and
 do-while
 statements. Just like their counterparts in other languages, these statements repeat a sequence of instructions a given number of times.
17.3.1 For Loops

 A
 for
 loop in Scala is very similar to a
 for
 loop in other languages. It is used to step a variable through a series of values until a given test is met. Many languages have a very simple
 for
 loop, for example,

 for i = 0 to 10 do

 …

 endfor;

In this case a variable I would take the values 0, 1, 2, 3, etc., up to 10. The longhand form of this in Scala is
:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figb_HTML.gif]

Note that in the above to is a method calls on the Int (integer) type. In practice, this is a lower level implementation issue, and it would be far more common to write:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figc_HTML.gif]

This can be done as Scala can infer the brackets and the dot which has the benefit that it will look far more familiar as a language construct to those used to programming languages such as C and Pascal.
One thing to note is that the operator here includes the value 10, whereas in languages such as C and Java it would mean up to but not including 10.
Multiple indexes can be used with a for loop. For example, we could increment I from 1 to 3 and j from 5 to 7:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figd_HTML.gif]

This may not have the effect you expect. This equates to loop the value of I through 1 to 3 for each of the values of j; thus, the output is:

 Value of i: 1 / Value of j: 5

 Value of i: 1 / Value of j: 6

 Value of i: 1 / Value of j: 7

 Value of i: 2 / Value of j: 5

 Value of i: 2 / Value of j: 6

 Value of i: 2 / Value of j: 7

 Value of i: 3 / Value of j: 5

 Value of i: 3 / Value of j: 6

 Value of i: 3 / Value of j: 7

As you can see from this, the value of I remains constant for all values of j and is then incremented for a repeated for the values of j.
17.3.2 For Until
An alternative to the to operator is the until operator which indicates that a variable i should loop unto but not including the higher bound, thus:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Fige_HTML.gif]

Producers the output:	1

	2

	3

But does not include the value 4.
17.3.3 For Loop with a Filter
Another option with the for loop is to include a filter into the looping process. This can be used to filter out those elements within a loop that you do not want to process. A filter is an additional logical test added to the for loop following the iteration values already presented. For example, assuming that the variable files contain some form of list of files, we can add an extra test to check so that we only print out files where the filename ends with “.txt”:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figf_HTML.gif]

With this loop each file in the list of files is tested such that the name is first obtained (getName) and then the string method endsWith tests to see if the filename ends with “.txt”; if it does, then the file is processed by the loop—which in this case involving printing out the file. If the filename does not end with “.txt,” then the loop immediately moves onto the name file in the list.
The complete program for this example is shown below:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figg_HTML.gif]

Note that any number of if conditions can be added to provide multiple filters on a for loop. Each if condition is separated by a ‘;’, for example,

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figh_HTML.gif]

17.3.4 Longhand for Loop
Although we have looked at a number of different for loops in the preceding sections, they are all subsets of the full for loop which is made up of a generator, an optional definition and a filter. Thus you could write:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figi_HTML.gif]

With the definition being reset each time round a loop.
17.3.5 For-Yield Loop
A special for loop is a for-yield loop. It is particularly useful for collecting together a set of results from a for loop that can be processed by other code rather than performing the processing directly within the for loop.
That is, the value of the all the previous for loops (from the point of view of the expression being evaluated when the for loop executes) is Unit or nothing. However, using a yield then each time around the loop a yield expression can be evaluated and the results of the expression are collected together and made available to subsequent lines of code once the for loop has completed.
The general syntax for a for-yield loop is:

 	for (sequence) yield expression

Examples of the use of the for-yield loop are shown below:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figj_HTML.gif]

produces a sequence of values (10, 20, 30, 40, 50) held in the val data

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figk_HTML.gif]

produces a list of values
 List(on, tw, th)
 held in info.
In both cases subsequent code could process either the data variable or the info variable. This is a very powerful construct for creating a collection of data items to be further processed from some loop-based operations.
17.3.6 While Loops

 The
 while
 loop exists in almost all programming languages. In most cases, it has a basic form such as:

 while

 (test expression)

 statement

This is also true for Scala. The
 while
 expression controls the execution of one or more statements. If more than one statement is to be executed, then the statements must be enclosed in curly brackets { }:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figl_HTML.gif]

The above loop tests to see if the value of i is less than or equal to 10, and then prints the current value of i before incrementing it by one. This is repeated until the test expression returns false (i.e.
 i

 =

 11
).
You must assign i an initial value before the condition expression. If you do not provide an initial value for i, it defaults to none value, and the comparison with a numeric value raises an exception.
The behaviour of the while loop is illustrated in Fig. 17.1.[image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Fig1_HTML.gif]
Fig. 17.1Behaviour of a while loop

17.3.7 Do Loops

 In some cases, we want to execute the body of statements at least once; you can accomplish this with the
 do
 loop construct:

 do

 statement

 while

 (test expression);

This loop is guaranteed to execute at least once, as the test is only performed after the statement has been evaluated. As with the
 while
 loop, the
 do
 loop repeats until the condition is false. You can repeat more than one statement by bracketing a series of statements into a block using curly brackets { }:

 var n = 10

 do

 {

 println(n)

 n= n – 1

 }

 while

 (n > 0)

The above
 do
 loop prints the numbers from 10 down to 1 and terminates when n = 0. The logic of the while loop is illustrated in Fig. 17.2.[image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Fig2_HTML.gif]
Fig. 17.2Behaviour of a do loop

17.3.8 An Example of Loops
As a concrete example of the
 for
 and
 while
 loops, consider the following class. It possesses a method that prints numbers from 0 to the
 MaxValue
 variable:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figm_HTML.gif]

The result of running this application will be:

 ----------For--------------

 0 1 2 3 4 5 6 7 8 9 10

 ----------While------------

 0 1 2 3 4 5 6 7 8 9 10

17.4 Equality
Two instances may be considered equivalent if their contents are the same. This equivalence is defined by the equals method on a class and is used by the ‘==’ and ‘!=” operators, where:	== tests for equality

	! = tests for not equals

The equality operators are actually invoked on the left-hand operand with the right-hand operand being passed to the operator as a parameter.
You can compare two instances using == and ! = , for example,	1 == 2 // false

	1 ! = 2 // true

	1 == 1.0 // true

	List(1, 2, 3) == List(1, 2, 3) // true

	List(1, 2, 3) == ”John” // false

Note that there is also a referential equality operator in Scala. This is provided by ‘eq’ method. This method tests that the two instances being compared are literally the same instance rather than just equivalent in value.
17.5 Recursion

 Recursion is a very powerful programming idiom found in many languages. Scala is no exception. The following class illustrates how to use recursion to generate the factorial of a number:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Fign_HTML.gif]

The result of running this application is illustrated here.

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figo_HTML.gif]

One problem for recursion is that although it is elegant to program, it may not be the most efficient runtime solution. However, Scala can optimise tail-recursive methods such that it can be expressed via recursion in terms of the program but optimised into an iterative loop at runtime. Since Scala 2.8, you can now mark a method that you expect to use tail recursion with the annotation @tailrec. An annotation is a piece of metadata that the runtime can use to perform additional processing, etc. This allows you to indicate that the method should be optimisable for tail recursion by the compiler. It thus allows the compiler to provide a warning if the method does not succeed in being tail recursive. For example,

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figp_HTML.gif]

To understand why this makes a difference consider the following method:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figq_HTML.gif]

The method bang intentionally throws an Exception (causes an error to occur) when x is Zero. This allows you to see what the compiler has done with the runtime version of the code. With the +1 element of the else part of the if statement commented out this is a tail-recursive method. When we run this program, the output is as shown below:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figr_HTML.gif]

If we now uncomment the +1 at the end of the ‘if’ statement and rerun this program, we now get:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figs_HTML.gif]

What you can see is that the first version has been converted into an iterative loop which does not need to keep calling itself (which is inefficient at runtime).
However, with the second example we have called the same bang method multiple times which has resulted in the need to handle each call separated (set-up the call stack for each method invocation) which is far less efficient.
Thus knowing whether the recursive method is tail recursive or not is an important consideration.
17.5.1 The Match Expression
Scala’s match expression allows for a selection to be made between a number of alternative tests and as such is similar in nature to the case statement in Pascal and C or the switch statement in Java. However, compared to the switch statement in Java allows much wider pattern matching capability in the case clause of the expression this provides for a far more powerful and flexible construct. Also note that the match expression is an expression (and not just a statement), thus it returns a value and can be used as part of an assignment clause.
The pattern element of the match expression is much more flexible than in languages such as C and Java and can be any one of the following:	a literal,

	a wild card (to match anything),

	a type,

	a variable which will be populated,

	of different types,

	tuple patterns, etc.

As an example, consider the following simple literal match test:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figt_HTML.gif]

This example compares the arg varl with the String literals “John”, “Denise”, “Phoebe” and “Adam”. If it is one of these values, it returns the string associated with that literal. Thus if arg holds the string “John”, then the match expression will return the String “Dad”. The result of the match expression is then saved into the relationship val and printed out. If the value held in arg is not one of the strings explicitly mentioned then it will use the default (wild card) case test. Thus any other string in arg will result in “WhoAreYou?” being returned by the match expression. Note in match expression “_” is being used as a wild card that will match any string not mentioned above in the case tests.
However, unlike many other languages the literals used in the individual case tests do not need to be of the same type. For example, the following uses four different types of literal from an Int, to a Boolean, to a string and an empty list (Nil):

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figu_HTML.gif]

The type of the parameter x is Any which is the root of everything in Scala, and thus x can indeed hold any type of value. We can now use the method describe to produce a printed string for any type of value in Scala—although unless it is the value 5, true, “hello” or Nil, it will print the description as “something else”.
A variable on the last example allows us to use a variable in the case test of the wild card to obtain the actual value passed in and to use that in the expression being evaluated:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figv_HTML.gif]

Now when something other than the value 5, true, “hello” or Nil is passed in, then the result will be that the string “something else: “concatenated with that thing in string format will be returned by the described method.
We can also match by type rather than by specific value. For example, in the following example if the type of data passed in is a String, then the first case test will pass and the string will be bound to the variables and thus available for processing in the resultant operation associated with that test. In turn if the instance passed into getSize is a List, then it will pass the second test and be bound to the variable l and be available to the operation following this test. If the instance passed to getSize is actually a Map, then it will meet the criteria specified by the third case test. The result in each case is that an appropriate method is called to determine the size of the instance passed to getSize. If the instance is not a String, a List or a Map, then −1 is returned by default:

 [image: ../images/323629_2_En_17_Chapter/323629_2_En_17_Figw_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_18

18. Traits

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

18.1 Introduction
In the previous chapters there have already been several references to these things called Traits. For example, we have encountered the App trait numerous times. However, we have avoided the question “What are traits?”
In this chapter we will look at the core concepts behind traits and attempt to explain how and why you might want to use them. The next chapter will then explore some more advanced uses and concepts within the area of Traits.
18.2 What Are Traits?
Let us start of with what Traits are not:	They are not Classes or Objects.

	They are not Abstract Classes.

	They are not (Java and C#) Interfaces.

	They cannot be instantiated directly.

However, Traits are part of the type system in Scala. That is a Trait defines a type just as a class defines a type. Thus vals and vars, properties parameters, return types, etc., can all be of a type defined by a Trait and can reference instances (or indeed objects) that mix in a Trait.
They are also a fundamental unit of reuse within the Scala language. If you use Traits appropriately, you will find that they allow you to reuse code very elegantly and in a much cleaner way than is possible with Java (or C#) interfaces and abstract classes.
Traits allow you to define methods, functions and properties. They also allow you to define abstract methods, functions and properties. They allow type declarations and can use a self-reference to indicate the types that they expect to be used with. When you define a method, a function or a property they can be made available to the type (Class or Object) that the Trait is used with.
Adding a Trait to a class or object is referred to as mixing in a Trait to that type. In fact a class or object can mix in any number of traits allowing for a great deal of flexibility and reuse of Traits. This idea is illustrated in Fig. 18.1. In this diagram the class WeatherDataGenerator extends the class AnyRef (the default super class) and mixes in the Trait Service. Thus the WeatherDataGenerator is a reference type and a Service.[image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Fig1_HTML.gif]
Fig. 18.1Mixing a Trait into a class

You will find many texts refer to a class or object as inheriting form a Trait (partly due to the syntax used with Traits); however, I will restrict this terminology to the relationship between one Trait and a subTrait that directly inherits the features of that Trait. Thus inheritance is possible between Traits, and we can use terms such as Super Trait, Trait and SubTrait to refer to the inheritance relationships between traits. This idea is illustrated in Fig. 18.2.[image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Fig2_HTML.gif]
Fig. 18.2Trait inheritance hierarchy

Note that in Fig. 18.2 the root of the Trait hierarchy is shown as extending AnyRef. Prior to Scala 2.10 this was the only option—all traits extended AnyRef; however, since Scala 2.10 you can also make a Trait extend AnyVal that is used for Universal Traits that are discussed later in the chapter.
Also note that a trait can extend one Trait but can mix in any additional traits required using with. This Traits support multiple inheritance rather than single inheritance. It is thus legal to write:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figa_HTML.gif]

In summary, a Trait is a reusable type that can be combined with Classes and Objects to provide a very significant form of code reuse in Scala.
18.3 Defining a Trait
A trait is defined by the keyword trait, this is followed by the name of the Trait with the body of the trait defined between curly brackets ‘{..}’.	

 access-modifier trait <name> extends <super trait> {..}

Trait definitions can have any number or combination of concrete methods, functions, properties, field, type definitions. It can also have any number or combination of abstract methods, functions and properties. However, Traits do not have constructors (either primary or auxiliary) and may or may not have the extends keyword to indicate inheritance.
A simple example of a trait definition is presented below.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figb_HTML.gif]

This trait, called Model, defines	a method printValue() that returns Unit,

	an abstract property value which can hold Any type of element but currently is not initialised (and is thus abstract),

	an abstract method printer() which returns Unit.

Note that this is not an abstract class (a concept which Scala also supports); it is a Trait that can optionally have concrete (fully defined) methods, functions and properties or abstract methods functions and properties. Any abstract member of the trait will have to be defined either in a subTrait of this trait, or in a class or object with which this trait is mixed.
Note that in this example all the members (that is the property value and the two methods) are public as this is the default in Scala. However, any member can have either of the encapsulation modifiers applied to them. Thus the methods or the property could be private or protected (and may be qualified).
18.4 Using a Trait
How do you use the trait presented in the last section? You cannot instantiate it directly, you cannot invoke the behaviour defined in it directly; you must mix it into a class or an object.
That is, classes and objects mix in traits such as Model. Any class or object that does this obtains the method printValue and must implement the abstract members value and printer. The keyword used to do this differs depending on whether the class or object being used currently extends a named class or not.
If the class or object does not extend a named class, then the keyword extends is used to indicate the first trait to mix in. If extends is already being used to extend a named class, then the keyword with is used to indicate the first trait to mix in. Any subsequent traits are always indicated via the keyword with.
Thus the generic syntax is actually:	Class <class-name> extends <class or if no class a Trait> with <Trait> with <Trait> …

	Object <object-name> extends <class or if no class a Trait> with <Trait> with <Trait> …

The following list illustrates several different combinations:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figc_HTML.gif]

Note that we have used classes above, but the same can be done with Objects. For example,

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figd_HTML.gif]

As a concrete example of this consider the following listing:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Fige_HTML.gif]

This object mixes in the Model trait (even though it uses the extends keyword) and implements the abstract value property and the abstract printer method. It therefore meets the contract of the Model trait (which required the two abstract members to be implemented by a concrete class or object).

It is now possible to treat the Course object as either a Course or as a Model, for example,

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figf_HTML.gif]

This simple test application assigns the Course object to the val ‘c’ and then invokes the printValue method on ‘c’ (of course we could also have invoked it directly on the Course object). We then assign c to the val ‘m’ that is of type Model (we have explicitly stated that in the declaration of m). This is perfectly legal because in terms of the Scala type system, a Course is also a Model.
Of course we are not limited to do this with objects; we could also use a class declaration, for example,

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figg_HTML.gif]

This class mixes in the Model trait into the class Degree and as before this means that it must implement the value property and the printer method (otherwise we would be defining an abstract class which would require us to prefix the class keyword with the keyword abstract and would mean that we could not instantiate the class).
The following listing shows how you can instantiate the Degree class and treat it as a Degree type or a Model type (or indeed an AnyRef or Any type):

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figh_HTML.gif]

18.5 Abstract Trait Members
The members of a trait (i.e. the properties, types, methods and functions defined within a trait) can be abstracted (as illustrated in the Model trait). The following Sample trait illustrates an abstract type T, an abstract method transform and two abstract properties; a read only (val) initial and a read-write (var) current.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figi_HTML.gif]

The implementing class (or object) must provide implementations for all the abstract members:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figj_HTML.gif]

This class defines a concrete-type String for the type T (which can then be used within the rest of the trait). It also provides an implementation for the transform method that takes a parameter of type T (String) and concatenates it to itself. It also sets initial to the string “first” and current to the value set in initial.
18.6 Dynamic Binding of Traits
There is another way in which you can combine a trait with a class. It is possible to mix in a trait at the point that an instance of a given class is created. For example, given the class Person that contains a name property and an override of the toString method defined as follows:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figk_HTML.gif]

We can also define a trait Logger that defines a single method log that prints out a “Created” string and runs the Log method whenever anything it is mixed with is instantiated (the invocation of the Log method):

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figl_HTML.gif]

The trait Logger can be mixed into an instance of the class Person dynamically when that instance is created by combining the call to new with an additional reference to the trait via the with keyword. The syntax for this is:	

 new <classname> (<params>) with <traitname>

For example,

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figm_HTML.gif]

As you can see form this we are creating a new instance of Person and mixing in Logger at the same time. Thus the instance referenced by the val ‘p’ is both a Person type and a Logger type. It combines the behaviour and data in these types together. The result of running this application is shown below:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Fign_HTML.gif]

From this you can see that when we created the new instance, the log method was run as part of the free-standing code executed when the instance was created. This resulted in the String “Created” being printed out. When the method println was invoked on the contents of ‘p’ the resulting version of toString (invoked by println) was that defined in the Person class and hence Person[John] was printed out. Thus we have indeed combined the two together at the point of instantiation.
18.7 Sealed Traits
A sealed trait is a trait that can only be used within the file that it is defined within. That is only the classes and objects within the same file as the sealed trait can mix in that trait. It can also only be extended by traits in the same file. For example,

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figo_HTML.gif]

Note that the trait Answer can be used as the type of a variable or a value within other packages, but it cannot be extended or mixed in elsewhere. Therefore in a package com.jjh.scala.test you can reference the type and use it as the type for vars or vals to hold the singleton instances of Yes and No. For example,

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figp_HTML.gif]

18.8 Marker Traits
A marker trait is a trait that declares no methods, functions, types or properties. Instead it is used to indicate additional semantics of a type (class, object or further traits). For example see the scala.Mutable and scala.Immutable traits; these are marker traits indicating the semantics of mutability and immutability.
Marker traits can be used where:	it is useful to semantically indicate a role or concept that other entities may play with the application. However, these entities may be of varying types (from classes, to objects to further traits) and may inherit behaviour from various different places in the type hierarchy.

	semantically there is a common concept, but there is little or no common behaviour or data representation between the concrete implementations of the generic domain concept.

	client classes may need to know something about the type of an object without actually needing to know the specific type (at least at the interface level).

Using a trait, as the basis of a marker, is particularly convenient in Scala as a type may mix in any number of traits. For example, the following code defines two marker traits, one called Decorator and one called Service.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figq_HTML.gif]

Any type can implement one or more traits; thus, any type can implement a marker trait and any other traits as required. For example,

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figr_HTML.gif]

Semantically this tells us that MyReader is a type of Decorator and that it is immutable.
18.9 Trait Dependencies
When you mix a trait into another type you may want to be able to invoke functionality form the host type. This can be done by defining a self reference. A self reference ties one type to another type which will be provided at a future point in time. This means that the this value can be used to access another types behaviour and data. That is the type it will be mixed into must be of a particular kind, and thus the trait you are defining can rely on certain data or behaviour being provided by the host type in the trait.
For example, let us assume that we have defined a class Service:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figs_HTML.gif]

We will then define a class Client that takes an Adaptor type. The method doWork invokes the method on the adapter.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figt_HTML.gif]

Let us assume that we have initially written the Adaptor type as follows:

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figu_HTML.gif]

However, we would like to use an instance of Service with the Client class. But currently the Service type does not implement an invoke method, and the Adapter trait defines an abstract invoke method.
Ideally we want to link the Adaptor to the Service types. There are various ways in which we could do this but the core issue is that currently there is no link between the Service type and the Client type. To solve this problem we will use a self reference in the Adapter type. This allows us to define a trait that can only be used with Service types (and subtypes).
This trait defines a method invoke to use the method printer (provided by the Service type). Thus we can guarantee that the trait Adapter will be used with a Service or a subtype of Service (whether that is a class or an object). Therefore the method printer will be available to wherever the Adapter trait is used.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figv_HTML.gif]

We can then mix this trait into a Service either dynamically at the point of use or statically with the Service in a new type. For example, the following example dynamically binds Adaptor into Service when an instance of the Service class is created. It then passes this to the Client class as a (compatible) parameter. We can then invoke the doWork method.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figw_HTML.gif]

Alternatively we could have defined a new subtype (AdaptedService) of the class Service that also mixes in the Adapter trait.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figx_HTML.gif]

We can now use instances of this type with the client—the only difference to the previous example is that we have statically defined a new type that combines the Service class with the Adaptor trait that can be reused in multiple situations.

 [image: ../images/323629_2_En_18_Chapter/323629_2_En_18_Figy_HTML.gif]

18.10 To Trait or not to Trait
It is worth considering when you should define a trait and when you might define a class. The general set of guidelines on when something should be a trait includes:	If behaviour or data will not be reused, then implement that behaviour or data as a concrete class.

	If behaviour or data might be reused in multiple, unrelated classes, then make it a trait.

	If efficiency is of ultimate importance, lean towards a class.

	If it is a reusable concept for a root of a class hierarchy, use an abstract class.

	If you want to use it in Java code, use an abstract class.

	If you want to model domain concepts to be implemented by different classes in different ways, then use Traits.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_19

19. Further Traits

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

19.1 Introduction
This chapter looks at some of the more advanced features associated with the use of traits. The chapter looks at the way in which Traits can be dynamically wrapped around an instance providing a form of aspect-oriented programming (AOP) known as stackable traits. We then look at the role Traits can play in developing reusable behaviour that simplifies the development of new types. Universal Traits used with Value Types are then discussed. The chapter concludes by considering the way in which traits can be used to define a restricted set of values for a given type.
19.2 Stackable Modifications
Traits can be stacked one on top of another when an instance of a class is created. Each stacked trait can override the behaviour of the trait it is stacked on top of. This allows the trait to either replace some of the behaviour of that trait, or wrap additional behaviour around that trait. This idea is illustrated in the following figure.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figa_HTML.gif]

As an example, the following code defines an abstract trait AbstractProcessor. It is abstract because it defines an abstract method update that takes an Int and returns Unit. This trait is mixed into the class BasicProcessor. This class defines the update method as setting the amount property defined on the class.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figb_HTML.gif]

The simple test harness class creates a new BasicProcessor using the initial value 0 and then updates it to 5 and prints out the result. The result of executing this program is:	
 BasicProcessor: 5

We could new define a Trait Doubling that also extends the AbstractProcessor trait. Note that the update method in this trait states that it overrides any other definitions but that it is also abstract. That is, it expects to build on something that it will be mixed into at a later date which is expected to be able to provide the remainder of the behaviour of the update method. This allows it to invoke the super.update method. Here super means the next version of update in the stack of traits wrapping the concrete instance of a class (or indeed that concrete instance).

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figc_HTML.gif]

Note if the method is not marked as abstract, it cannot invoke the super version of the update method.
This trait can be mixed into the BasicProcessor when that BasicProcessor is instantiated, which results in the Doubling trait wrapping around the BasicProcessor as shown below.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figd_HTML.gif]

The following listing illustrates how the Test application is modified to stack the Doubling trait onto the BasicProcessor:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Fige_HTML.gif]

The result of running this program is:	
 BasicProcessor: 10

As you can see from this, the value 10 is now being stored in the BasicProcessor—thus the Doubling trait version of update is being invoked which results in the integer being doubled before being passed on down the line to the update method defined on the BasicProcessor instance.
This can be taken further; we could define additional traits such as Filtering and Incrementing that either filter the value to be updated or add one to the value being updated. For example,

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figf_HTML.gif]

We can now combine these traits in various ways and in different orders. For example,

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figg_HTML.gif]

The effect of this is that the Doubling trait is stacked on top of the Incrementing trait, which is stacked on top of the BasicProcessor. This idea is illustrated in the next figure.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figh_HTML.gif]

The end result of executing the above program is shown below:	
 BasicProcessor: 11

whereas this version results in a different output:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figi_HTML.gif]

The result this time is:	
 BasicProcessor: 12

This is because in one example the value is doubled and then incremented by one and in the second example it is incremented first and then doubled. Thus you can see that the order in which the traits are added is significant (with the last trait being the one that is accessed first). Thus the above listing can be represented as shown in the next figure.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figj_HTML.gif]

Finally, we can also include the Filtering Trait to decide if anything is to be done with a value at all:[image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figk_HTML.gif]where the attempt to update the BasicProcessor instance to Zero is vetoed by the Filtering trait, and thus the output from this program is:	
 BasicProcessor: 10

Note that the AbstractProcessor could also have been an abstract class rather than a Trait; however, from a design point of view it is cleaner to have the AbstractProcessor as a Trait.
Of course we are not just limited to mixing in stackable traits when an instance of class I created. We could also have defined a new type with the base class and the stackable traits mixed together. For example,	
 class DoublingProcessor extends BasicProcessor with Doubling {..}

19.3 Fat Versus Thin Traits
There is a continual tension in software between the richness of an interface offered by a component or library and implementation and maintenance effort required for such an interface. This is because although (in theory) a rich interface is better for client applications, a simpler interface is easier to develop and maintain. Ideally, we want the best of both worlds: minimum effort for the developer of the component and maximum utility for the user of the component. Traits allow methods to be constructed based on existing implementations.
For example, the Ordered Trait defined in the scala.math package is a trait for data that has a single natural ordering. Class or traits that implement this trait inherit a range of concrete method such as <, <=, >, >= which rely on a method compare. However, the method compare is an abstract method that is expected to return an integer depending on the value being compared. This method must be provided by a concrete trait, class or object. The definition of the method is:	

 abstract def compare(that: A): Int

This method returns the result of comparing the current instance with the operand that.
The method returns a value ‘x’ where:	x < 0 when this < that

	x == 0 when this == that

	x > 0 when this > that

For example, if we wished to create a new Balance class, which supported basic Ordering and comparison type behaviour, we could do this by mixing in the Ordered trait, as shown below.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figl_HTML.gif]

The result is that although the code we have written is quite light as have obtained a rich interface. For example the range of operations available on the currency instance are shown in:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figm_HTML.gif]

Thus the Balance class has a rich interface but has a simple implementation. The majority of the comparison behaviour is mixed in from the trait (such as the <, > methods), but they build on a concrete implementation of the compare method.
19.4 Universal Traits
Scala’s rules for inheritance do not permit Value Classes to mix in traits that extend from AnyRef. Prior to Scala 2.10, all traits eventually extended AnyRef, and thus traits could not be mixed into a Value Class. However, since Scala 2.10 traits can optionally extend Any instead of AnyRef. This must be specified explicitly when the trait is defined. Such a Trait is known as a Universal Trait as it can be mixed into all types of classes from reference types to Value Classes. This permits Value Classes to extend traits (as long as they are Universal Traits).
When a Universal Trait is mixed into a Value Class, then they allow inheritance of methods for the Value Class but they do not incur the overhead of heap allocation and referencing.
The following trait Printable is a Universal Trait as it explicitly specifies the parent type as Any. It is then used with the Value Class Wrapper (which merely wraps around the underlying type Int) and extends AnyVal and mixes in Printable.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Fign_HTML.gif]

Note that if you do not explicitly specify Any as the super type of a Trait, then that trait still defaults to extending AnyRef. Thus in the next figure, the trait Model is a Trait as it (by default) extends AnyRef and the trait Printer is a Universal Trait as it explicitly extends Any.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figo_HTML.gif]

This also has some implications for further inheritance. If we have a Universal Trait Equals (which explicitly extends Any) and a subtrait Ordered that extends Equals, then the effect is that the trait Ordered by default extends the class AnyRef and mixes in the trait Equals. The end result is that this is not a Universal Trait:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figp_HTML.gif]

To turn Ordered into a Universal Trait then you must explicitly specify that Any is the super class of Ordered as follows:	
 trait Ordered extends Any with Equals {…}

The trait Ordered is now explicitly a Universal Trait.
19.5 Traits for a Data Type
Although Scala has an enumeration type, this implies a specific ordering whereas in some cases we merely want to define a set of associated values. For example, if we wished to create a set of values for traffic lights, then we might wish to create values for Red, Yellow and Green. However, there is no specific ordering, just these values. We could use a trait to help define the objects used to represent the traffic light colours. For example,

 	
 package com.jeh.scala.traits

 	
 trait TrafficLight

 	
 case object Red extends TrafficLight

	
 case object Yellow extends TrafficLight

	
 case object Green extends TrafficLight

In this case, the trait TrafficLight has been defined but contains no data elements or behaviour (other than the defaults inherited from AnyRef). It is then used to create a set of objects, Red, Yellow and Green. Note that these are case objects indicating that all the values associated with TrafficLight are defined in the same file and thus Red, Yellow and Green can be used safely within pattern matching statements with the compiler able to indicate if all conditions are being accounted for.
As an example of using these values, the following test harness creates a set of vals for each colour and can be used to print out the results and test fro equality, etc.

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figq_HTML.gif]

This is a commonly recurring idiom in Scala.
19.6 Single Abstract Method (SAM) Traits
A SAM trait is a trait with a single abstract method. SAMs are originally introduced in Java 8 (in the form of single abstract method interfaces also known as functional interfaces) as it started to support the functional programming world.
This feature has been incorporated into the Scala world (essentially since Scala 2.11.5) as it makes Java interoperability easier. Strictly speaking Scala does not need to support the concept of a SAM as it has its own (richer) set of features available. However, it can make working with functional literals easier.
There are a set of constraints that must be met by a trait that wishes to be treated as a SAM; these are:	It must define a single abstract method (SAM).

	The abstract method must take a single argument list.

The following example illustrates a SAM trait. It defines a single abstract method drive that takes a single Integer argument:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figr_HTML.gif]

This can then be used to create a concrete implementation of the trait on the fly using what is now as a functional literal or a lambda:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figs_HTML.gif]

The output from this simple application is

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figt_HTML.gif]

This means that it is not necessary to define a class or object to implement the abstract method defined in the trait. This reduced the amount of code written and compiled.
A SAM trait can define any number of concrete values and methods (as long as there is only a single abstract method). For example,

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figu_HTML.gif]

We can now use these properties and methods in our code:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figv_HTML.gif]

Note that the function we have defined that takes an Integer refers to the variable d1 that is being used to set up—this is referred to as closure. It works as the variable d1 will be set up by the time the function is executed.
The output from this is:

 [image: ../images/323629_2_En_19_Chapter/323629_2_En_19_Figw_HTML.gif]

We will return to functions later in this book.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_20

20. Arrays

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

20.1 Introduction
This chapter discusses how arrays are represented in Scala. Arrays are (logically) a continuous set of slots that can hold values or references to instances of a specific type.
20.2 Arrays

 Arrays in Scala are objects, like most other data types. Like arrays in any other language, they hold elements of data in an order specified by an index. They are Zero-based arrays, as in C, which means that an array with 10 elements is indexed from 0 to 9.
To create a new array, you must specify the type of array object and the number of elements in the array. The Array type defines array like behaviour in Scala. The type of element held in the Array is indicated within a set of square brackets after the Array. The number of elements is specified by an integer between round brackets. As an array is an instance, it is created in the usual way using the new operation:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figa_HTML.gif]

This creates an array capable of holding ten String objects. We can assign such an array instance to a variable by specifying that the variable holds an array. You do this by indicating the type of the array to be held by the variable along with the array indicator. Notice that we do not specify the number of array locations that are held by the array variable:	

 val myArray: Array[String]

	

 var names: Array[String]

Both of the above define variables which can hold a reference to an array of Strings. However, neither declaration defines how large the array object being referenced will be. This is not a problem as myArray and names will only hold a reference to (or an address of) an array. The reference is the same size whatever the length of array being pointed to.
We now create an array and assign it to our variable:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figb_HTML.gif]

We could also have used the shorter from relying on type inference for the myArray val:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figc_HTML.gif]

 There is a short cut way to create and initialise an array:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figd_HTML.gif]

This relies on both Scala to infer the type of the myArray val and for Scala to use a factory method (called apply) to construct the array. You can use the apply factory method directly if you wish, and thus the above is semantically the same as:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Fige_HTML.gif]

Both of the above create an array of four elements containing the strings “John”, “Denise”, “Phoebe” and “Adam”. We can change any of these fields by specifying the appropriate index and replacing the existing value with a new string:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figf_HTML.gif]

The above statement replaces the string “Adam” with the string “Isobel”. Merely being able to put values into an array would be of little use; we can also access the array locations in a similar manner:	

 myArray.apply(0)

This retrieves the current value held in the array referenced by myArray. Once again this is a common enough operation that a shorthand (and more commonly used variant) is available:	

 myArray(0)

This can be used to retrieve the zeroth value in the array. For example,

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figg_HTML.gif]

The above statement results in the following string being printed:	

 The name in position 1 is John

As arrays are objects, we can also obtain information from them. For example, to find out how many elements are in the array we can use the instance variable
 length:

 	

 myArray.length

 Arrays are fixed in length when they are created, whereas vectors can change their length. To obtain the size of an array, you can access instance variable,
 length
 , but you must use a method,
 size
 , to determine the current size of a vector.
Arrays can be passed into and out of methods very simply by specifying the type of the array, the name of the variable to receive the array and the array indicator.
20.2.1 Arrays of Objects
The above examples have focussed on arrays of Strings; however, you can also create arrays of any type of object but this process is a little more complicated (it is actually exactly the same for strings, but some of what is happening is hidden from you). For example, assuming we have a class Person, then we can create an array of Persons:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figh_HTML.gif]

Figure 20.1 illustrates the result of creating an array of Person instances. It is important to realise what this gives you. It provides a variable pa that can hold a reference to an array object of Persons. At present this array is empty and does not hold references to any instances of Person. For example, if you now print out the value of pa and the value of pa(0), that is,[image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Fig1_HTML.gif]
Fig. 20.1Creating an array of objects

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figi_HTML.gif]

you will get:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figj_HTML.gif]

Note that this indicates that the array is actually an array of references to the instances “held” in the array as opposed to an array of those instances. This is illustrated in the first part of Fig. 20.1. To actually make it hold instances of Person we must add each person instance to the appropriate array location. For example,

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figk_HTML.gif]

This is illustrated in the last part Figs. 20.1 and 20.2. Thus the creation of an array of objects is a three-stage process:[image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Fig2_HTML.gif]
Fig. 20.2Complete array structure

	1.Create a variable that can reference an array of the appropriate type of object.

	2.Create the array object.

	3.Fill the array object with instances of the appropriate type.

20.2.2 Ragged Arrays
As in most high-level languages multidimensional arrays can be defined in Scala. This is done in the following manner:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figl_HTML.gif]

Pictorially this can be viewed as shown in Fig. 20.3.[image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Fig3_HTML.gif]
Fig. 20.3A ragged Array

As can be seen from this example, two-dimensional arrays in Scala are actually Array objects holding references to other Array objects. Thus in this case, the first array is an array of two elements (0 and 1). The type of these elements is an Array of Strings. The first array element 0 holds a reference to another array object (one that holds Strings), etc. This means that the structure created can be ragged—that is the second dimension in this example is not the same across the two subarrays: one is of length 4, and one is of length 3.
Thus if you create these arrays and object for the Person class, then we would:	1.Define the val paa as hold a reference to an array of arrays

 	

 val paa: Array[Array[Person]]

	2.Create the multidimensional array

 val paa: Array[Array[Person]] =

 new Array[Array[Person]](2)

Note we have to specify the first dimension as it is necessary to allocate enough space for the required references. We do not have to specify the second dimension as these can be specified in the subsequent array object creation messages.

	3.Create the subarrays:	

 pa(0) = new Array[Person](4)

	

 pa(1) = new Array[Person](3)

	4.We are now ready to add instances to the two-dimensional array, for example

 	

 pa(0)(0) = new Person(“John”)

As you can see from this last example, multidimensional arrays are accessed in exactly the same way as single-dimensional arrays with one index following another (note each is within its own set of round brackets—()). That is you can access this two-dimensional array by specifying a particular position within the array using the same format:	

 println(matrix(2)(2))

Note that the way that multidimensional arrays are implemented in Scala means that you can easily implement any number of dimensions required, for example

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figm_HTML.gif]

This defines a three-dimensional array structure containing two 2-dimensional arrays. This is illustrated in Fig. 20.4.[image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Fig4_HTML.gif]
Fig. 20.4A multidimensional ragged array

20.3 Creating Square Arrays
Of course, although it is possible to create raged arrays in Scala, it is far more common to create square arrays, for example a 2 by 2 or a 3 by 3 array. To do this the Array type provides a factory method ofDim that can be used to create an array of an appropriate dimension, for example

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Fign_HTML.gif]

This creates a two-dimensional array of size 3 by 2 that can hold Int types. These following statements

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figo_HTML.gif]

produce this output	

 3

	

 2

	

 2

	

 2

Of course this populates the array of Ints with a set of Zeros. If you wish to initialise such an array with other default values, then you can use the fill factory method on the Array type:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figp_HTML.gif]

This creates a three-dimensional array with all the elements of the array populated with the double value 2.0.
20.4 Looping Through Arrays
You can use a loop to process the contents of an array. For example, given an array, myArray, containing three strings:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figq_HTML.gif]

We can loop through the elements in that array in a number of ways. For example, we can use the length of the array and an index to access each element in turn, for example

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figr_HTML.gif]

In this example the loop variable ‘I’ ranges from 0 to one less than the length of the array. This is because the array contains three strings, with indexes, Zero, one and two! This is important, if you try and access the element with the index ‘3’ (which is the fourth element in the array) you will get an index out of bounds exception generated—that is your program will generate an error!
The result of running this program is	

 Zero

	

 One

	

 Two

However, the problem with this approach is that you must remember to ensure that you loop from Zero to one less than the length of the array (otherwise you will not access the elements of the array you expect, and you will generate a runtime error). An alternative approach is to loop through each of the elements in turn applying a function to those elements. This is actually an example of functional programming and uses the foreach function defined on the Array type. For example,

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figs_HTML.gif]

With this approach the foreach function takes element in turn and binds it to the variable x above. It then executes the body of the behaviour provided (in this case println(x)). The end result is the same as before:	

 Zero

	

 One

	

 Two

However, it is a better (and simpler) abstraction of processing each of the elements in the array.
20.5 The Main Method Revisited
At this point you are ready to review the parameter passed into the main class method. As a reminder, it always has the following format:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figt_HTML.gif]

From this you can see that the parameter passed into the main method is an array of strings. This array holds any command line arguments passed into the program.
We now have enough information to write a simple program that parses the main method command line arguments:

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figu_HTML.gif]

This is a very simple program but it provides the basics for a command line parser. Do not worry if you do not understand the syntax of the whole program; we cover
 if
 statements and
 for
 loops later in the book.
Arrays in Scala are passed into methods by value. However, as parameters only hold a reference to the objects they contain, if those objects are modified internally, the array outside the method is also modified. This can be the cause of extreme frustration when trying to debug programs.

 Arrays can also be returned from methods:

 modifiers

 methodName:

 type

 (…)

 def

 returnNames: Array[Person] () {

 …

 }

As an example of an array-based application, consider the following application
 ArrayDemo
 , which calculates the average of an array of numbers. This array is created in the ArrayDemo application and is passed into the
 processArray
 method as a parameter. This method is defined on the class ArrayProcessor. Within this method, the values of the array are added together and the total is divided by the number of elements in the array (i.e. its length):

 [image: ../images/323629_2_En_20_Chapter/323629_2_En_20_Figv_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_21

21. Tuples

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

21.1 Introduction
In this chapter we introduce Scala tuples, which are useful (and very simple construct) for grouping instances together.
21.2 Tuples

 Tuples are container style objects that can hold multiple types of instances. Examples of some simple tuples are presented below:	(49, “John”) // a 2 element tuples

	(49, “John”, “Hunt”, 12.75) // a 4 element tuples

	(“John”, 76, Invoice(123)) // a 3 element tuples

As can be seen from these examples, tuples can hold different types of elements (whereas an array instance holds a set of the same type such as Strings, Ints, Doubles or Persons). The first example is tuple which presented here is:	(49, “John”)

This holds an Int and a String. The first element in the tuple is of type Int and the second is of type String. The second example is a three element tuples:	(49, “John”, “Hunt”, 12.75)

In this example, the first element is of type Int, the second of type String, the third again of type String and the fourth of type Double. In fact it is possible to define tuples with 1–22 elements in them.
21.3 Tuple Characteristics
Tuples exhibit a number of characteristics that are worth noting. Tuples	Are container style objects

	Are immutable sequences of instances

	Can contain objects of different types (unlike lists and arrays)

	Are useful if you need to return more than one object from a method

	Are not collections as they do not support the normal collection style methods

	Allow access to their contents via a dot (.) notation

	Can be simply created without the need for the new keyword

	Are backed by specific Tuple classes.

21.4 Tuple Classes
Each tuple is backed by a class named Tuple followed by the number of elements in the tuple. For example,	(42, “Denise”)—is an example of a Tuple2 instance

	(“John”)—is an example of a Tuple1 instance

	(49, “John”, “Hunt”, 12.75)—is an example of a Tuple4 instance

In actual fact there are classes named for all the different combinations of Tuple from 1 to 22, for example,[image: $$ {\text{Tuple1, Tuple2, Tuple3,}}\; \ldots {\text{Tuple21, Tuple22}} $$]

Mostly this fact is hidden from you as a programmer, but it is worth being aware of. Essentially when you create a new tuple example, an instance of the appropriate type is created with each of the elements used to infer the type to use for those positions. Thus,
(“Pete”, 21)
Tells Scala to create an instance of the Tuple2 type, with the first element set to String and the second element set to Int types.

21.5 Creating a Tuple
There are a number of different ways in which you can create a new Tuple. The longhand form is to create a Tuple of the correct type and use type parameterisation to indicate the types to use for each position. For example,

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figa_HTML.gif]

This creates a new instance of the Tuple2 type with the first element being of type Int and the second element being of type String. The actual values held by the tuple instance are then 1 and “John”.
This is a bit long winded for Scala and thus a shorter form of the above allows the types to be inferred by Scala. For example, the above can be written without the type parameterisation information as:

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figb_HTML.gif]

Now Scala infers that the first element is an Int, and the second element is a String from the values being held by the tuple (namely 1 and “John”).
However, this is still a bit repetitive for Scala. Given that we are creating a tuple and there are two elements. Scala can infer that what we are creating a Tuple2 instance. Therefore we do not need to include the name of the type being instantiated. We also do not need to include the keyword new. Thus the previous example can be reduced to:

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figc_HTML.gif]

This creates an instance of the Tuple2 class with the first value of type Int and set to 1 and the second element of type String and set to “John”.
Similarly we could write:

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figd_HTML.gif]

which creates an instance of the Tuple4 class with the types being Int, String, String and Double, respectively.
The very shorted form of the Tuple syntax is to use the ‘->’ syntax. For example,

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Fige_HTML.gif]

which again creates a Tuple2 instance containing 1 and “John” with the first element of type Int and the second element of type String.
21.6 Working with Tuples
Once you have created a tuple using one of the forms described in the previous section you can access information about the tuple as well as the information held in the tuple. For example, to access the size of the tuple you can use productArity:

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figf_HTML.gif]

The output of this program is 4.
To access the individual elements within a tuple we can use the “._<n>” notation where <n> indicates the position or element to be accessed, for example,

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figg_HTML.gif]

Note that the index used for accessing Tuples is one based (where as that used for Arrays and Lists is Zero based). As Tuples are immutable there is no way to update an element within a tuple. However we can make a copy of a tuple and while making a copy change one of the values. For example,

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figh_HTML.gif]

The output of this program is:	

 (47,John,Hunt,12.75)

	

 (47,Bob,Hunt,12.75)

21.7 Iterating Over a Tuple
If you want to iterate over a tuple, then you can obtain a product iterator built on top of your tuple. A product iterator provides a wrapper that can access each element in a tuple in turn. A function can then be applied to each element in turn. Thus we can write a simple tuple iterator that will print out the values in our tuple one at a time.

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figi_HTML.gif]

This states that we want to create an iterator over the contents of the tuple and then for each of the elements produced apply the function that takes a single parameter (x) and applies the println(x) method. A shorthand form of this can imply the parameter as it is only used to temporarily pass a given element in the tuple to the println method. We can therefore infer this in Scala and write the following (where the under bar ‘_’ represents a placeholder for the parameter x):

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figj_HTML.gif]

The output of either of the above versions of the foreach operation is:	

 47

	

 John

	

 Hunt

	

 12.75

21.8 Element Extraction
It is also possible to extract the values held in a tuple using simple matching variables. For example, given a tuple t1 containing two elements an Int and a String, we can extract them as follows:

 [image: ../images/323629_2_En_21_Chapter/323629_2_En_21_Figk_HTML.gif]

Here the val ‘a’ is of type Int and the val ‘b’ is of type String. The val ‘a’ will hold 1, and the val ‘b’ will hold a reference to the string “John”. The output of this program is thus:

 1: John

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_22

22. Functional Programming in Scala

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

22.1 Introduction
This chapter examines the functional programming features of Scala and looks at how they can be used while the next chapter will look at concepts such as Currying and Partially Applied functions.
22.2 Scala as a Functional Language
In Scala functions are first-class language constructs just as classes and objects and Value Classes are first-class language types. That is Functions are part of the type system in Scala, a variable can be defined to hold a reference to a function, and functions can be assigned to vals and vars. They can be passed into methods, constructors and other functions as parameters, etc. They are top-level entities that act as independent units or entities within the language. They can of course be evaluated in which case they are executed and will take in some data as parameters and return a result, etc.
That is, functions are like instances or values and can be:	Assigned to variables,

	Passed as parameters to functions,

	Returned as results of functions,

	Written as function literals.

In addition, they can be evaluated which results in the function being executed.
Functions should have referential integrity, and this is true of Scala functions just as much as it is true of functions in pure functional languages. Given the same set of inputs, a function should produce the same set of outputs every time. It should thus be possible to replace the function call with the result (at least in theory).
Thus a Scala function should only transform its inputs into its outputs and should have no (hidden) side effects. That is, it should not change the state of the system nor should it be involved in any state-based behaviour.
22.3 Defining Scala Functions
A function definition can be anonymous as it defines a type and this it is an entity in its own right. For example, the syntax for a function definition is:[image: $$ \left({\texttt{parameter\, list}} \right) \, \Rightarrow \, \left\{ {\texttt{func\, body}} \right\} $$]

An example of a function definition (or functional literal) is:[image: $$ \left({\texttt{x:Int}} \right)\, \Rightarrow \, \left\{ {\texttt{x*x}} \right\} $$]

This defines a function that takes an Int and returns an Int where the body of the function is defined as x * x. The signature of this function (sand thus its type) is	(Int): Int

That is, it takes a single parameter of type Int and returns an Int.
Note that this function definition matches the criteria we specified for functions—the function takes in a single Int and returns a value derived purely based on this parameter (it multiplies itself by itself). We could thus replace it by its result.
As it stands it is of limited value as the function merely defines a new function. However, we can assign this to a local variable or to a property. Once we have done this we can invoke the function via that variable or property. As a very simple example consider the following same application:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figa_HTML.gif]

The result of running this simple application is:

 4

 16

In this example within the object FunctionTest1 we have defined a function (x:Int) => {x * x} and assigned that function to mult. In essence, we have the following:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figb_HTML.gif]

This illustrates that a function is an entity within the language rather than just some code held within an object (as is the case for methods). This means we can also assign the function referenced by mult to another variable, thus we could write:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figc_HTML.gif]

We could now have:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figd_HTML.gif]

We can thus access the function via either mult or times.
In the earlier example application, we accessed the function via the val mult, for example,

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Fige_HTML.gif]

The result of this expression is that the function referenced by mult is evaluated by passing in the value 2. This value is bound to the variable x and the body of the function is executed. Which results in the expression 2 * 2 being processed resulting in 4 being returned by the function. This is then passed to the println method and printed out to the console.
Notice that we could now also have written

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figf_HTML.gif]

And the same function would have been evaluated. Although in reality mult and times reference the same function definition, the effect is that mult and times are aliases for the same functionality.
As another example, consider the following lines of code.

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figg_HTML.gif]

In this block of code a variable increase is defined that references a function. This function takes an Int and adds one to whatever value is passed into it. As the ‘+’ operator returns a result this is used as the value returned by the function. In this case a variable y has an initial value 1 assigned to it. The result generated by the function referenced by the increase variable is then assigned to y. The output is

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figh_HTML.gif]

Note that as increase is a var we can reassign to it—thus we can change the function referenced by increase, for example,

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figi_HTML.gif]

The variable increase now references a function that adds 99 to the integer passed to it. Thus if we invoke increase it now appears that its functionality has changed. Be careful of doing this indiscriminately as it can make programs harder to understand and debug.
The above samples are grouped together in the following listing as a set of worked examples:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figj_HTML.gif]

The result of executing this simple application is shown below:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figk_HTML.gif]

22.4 Class, Objects, Methods and Functions
Classes and objects can have both methods and functions defined for them. In many cases you can ignore the difference between the two, they are just parts, or members of, the class or object:	A method defines behaviour which is tied to the class or object and which can be invoked via the dotation and

	A function defines an operation held by the class or object that can be invoked via the dot notation.

For example:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figl_HTML.gif]

In the above listing we have defined a class Calculator that defines both a method max and a function increment. From the client of the class Calculator they look the same. They are both invoked via the dot natation, for example,

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figm_HTML.gif]

However, the way in which they were defined gives a hint to the differences. The method is an integral part of the definition of the class Calculator. The method is literally part of the fabric of that class. In contrast increment is a read-only val property which holds a reference to the function (x: int) => x + 1. This means that the function referenced by the property could be assigned to another variable, for example,

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Fign_HTML.gif]

When we execute these lines the result is

 5

Such assignment of functionality is not available for methods (as they are not separate entities in the way that functions are). This also means that functions can be passed as parameters into other functions or method, etc.
The above example uses a class to define the method max and the function increment. We could also have defined them within an object, for example,

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figo_HTML.gif]

Although this is now an object, everything that was said about methods and functions for classes is also true for methods and class within an object. Thus the max method is an integral part of the object Math, whereas increment is a read-only property holding a reference to a function that increments the value passed to it.
22.5 Lifting a Method

Above we said that one of the differences between a function and a method is that the method is tied to the class/object it is defined in; whereas the function is really a free-standing element that just happens to have been defined within a class or an object.
While this is true, it does not actually mean that we cannot treat a method as if it was a free-standing function. A concept known as lifting can be used to apparently convert a method into a function, for example,

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figp_HTML.gif]

In the above listing the method max on an instance of the class Calculator is assigned to a variable func of type (Int, Int) => Int; that is a function that takes two Integer parameters and returns an Integer.
What is happening here is that the method max has been lifted to a function; in practice this means that it is wrapped up in a function that will invoke the method for us.
If we look at this in the IntelliJ debugger we can see that func holds a reference to a lambda (function literal) that has been created for us by Scala and that references the method max on the instance held in the val c.

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figq_HTML.gif]

22.6 Single Abstract Method Traits
Chapter 19: Further Traits introduced the concept of a single abstract method (SAM) trait. This is a trait that contains a single abstract method that can be implemented via a functional literal (lambda).
An example of such a SAM trait was given and is reproduced here:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figr_HTML.gif]

A function literal can be used to provide a concrete implementation of the trait as shown below:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figs_HTML.gif]

The output of this sample application is

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figt_HTML.gif]

However, it is worth noting the difference between using a function literal (or lambda) to implement a SAM trait and merely creating a reference to a function literal.

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figu_HTML.gif]

In the above code the val d1 is of type Drivable, whereas the val f1 is function of type Int => Int (that is it is a function that takes an Integer and returns an Integer).
This means that the method drive can be invoked on the object referenced by d1 but it cannot (quiet obviously be invoked on f1).
In turn both the apply method and the () operator can be used with the function f1, but they have no meaning for a Drivable type.
22.7 Closure
One question that might well be on your mind now is what happens when a function references some data that is in scope where it is defined but is no longer available when it is evaluated? This question is answered by the implementation of a concept known as closure.
Within computer science (and programming languages in particular) a closure (or a lexical closure or function closure) is a function (or more strictly a reference to a function) together with a referencing environment. This referencing environment records the context within which the function was originally defined and if necessary a reference to each of the non-local variables of that function. These non-local or free variables allow the function body to reference variables that are external to the function but which are utilised by that function. This referencing environment is one of the distinguishing features between a functional language and a language that supports function pointers (such as C).

The general concept of a lexical closure was first developed during the 1960s but was first fully implemented in the language Scheme in the 1970s. It has since been used within many functional programming languages including LISP, ML and Scala.
At the conceptual level, closure allows a function to reference a variable available in the scope where the function is originally but not available by default in the scope where it is executed.
For example, in the following simple program, the variable more is defined outside the body of the function referenced by increase. This is permissible as the variable is defined within the body of the main method of the ClosuresTest object, as is the function. Thus the variable more is within scope at the point of definition.

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figv_HTML.gif]

Within the main method we then invoke the increase method by passing in the value 10. This is done twice with the variable more being reset to 50 between the two. The output from this program is shown below:

 110

 60

Note that it is the current value of more that is being used with the function executes and not the value of more present at the point that the function was defined. Hence the out is 110 and 60 that is 100 + 10 and then 50 + 10.
This might seem obvious as the variable more is still in scope within the same method as the invocations of the function referenced by increase. However, consider the following example:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figw_HTML.gif]

In the above listing a property increment holds a reference to a function. Initially the function being referenced adds 1 to whatever value has been passed to it. In the main method this function is called with the value 5 and the result returned by the function is printed. This will be the value 6.
However, after this a second method, resetFunc() is invoked. This method has a variable that is local to the method. That is, normally it would only be available within the method resetFunc. This variable is called addition and has the value 50.
The variable addition is however, used within the method body of a new function definition. This function takes an integer and adds the value of addition to that integer and returns this as the result of the function. This new function is then assigned to the property increment.
Now, when the second invocation of increment occurs, back in the main method, the resetFunc() method has terminated and normally the variable addition would no longer even be in existence. However when this program runs the value 55 is printed out from the second invocation of increment. That is the function being referenced by increment when it is called the second time in the main method is the one defined within resetFunc() and which uses the variable addition.
The actual output is shown below:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figx_HTML.gif]

So what has happened here? It should be noted that the value 50 was not copied into the second function body. Rather it is a concrete element of the use of a reference environment used with the closure concept. Scala ensures that the variable addition is available to the function, even if the invocation of the function is somewhere different to where it was defined by binding any free variables (those defined outside the scope of the function) and storing them so that they can be accessed for the functions context (in effect moving the variable from the local stack to the heap).
22.8 Referential Transparency
An important concept within the world of functional programming is that of referential transparency. An operation is said to be referentially transparent if it can be replaced with its corresponding value, without changing the programs behaviour, for a given set of parameters.
For example, let us assume that we have defined the function increment on an object MathUtils as shown below.

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figy_HTML.gif]

If we use this simple example in an application to increment the value 5:

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figz_HTML.gif]

We can say that the operation (in this case a method but it could be a function) is referentially transparent (or RT) if it always returns the same result for the same value (i.e. that increment(5) always returns 6):

 [image: ../images/323629_2_En_22_Chapter/323629_2_En_22_Figaa_HTML.gif]

Any function or method that references a value which has been captured from its surrounding context and which can be modified cannot be guaranteed to be RT. Thus some of the examples presented earlier, such as that in the
 ClosureExamplesApp
 example is therefore not guaranteed to be referentially transparent. This can have significant consequences for the maintainability of the resulting code.
A closely related idea is that of No Side Effects. That is a function should not have any side effects, it should base its operation purely on the values it receives and its only impact should be the result returned. Any hidden side effects again make software harder to maintain.
Of course within most applications there is a significant need for side effects; for example any logging function has a side effect of recording the logged information somewhere (typically in a file), any database updates have some side effect of updating the database.
However, for pure functions it is a useful consideration to follow.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_23

23. Higher-Order Functions

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

23.1 Introduction
Functions in Scala are part of the type system. That is, they are part of the system of entities that comprise the types that variables and parameters can reference. Thus just as a parameter can be of type Int, or Boolean, or Person a parameter to a method or a function can be another functions. A function that takes a function as a parameter is referred to as a higher-order function. This chapter discusses higher-order functions and how they can be used and provides some examples taken from the collection classes in Scala.
23.2 Higher-Order Function Concepts
In Scala higher-order functions are functions that do at least one of the following (and may do both):	Take as a parameter one or more functions

	Return as output a function

All other functions in Scala are first-order functions.
Many of the functions found in the collection classes such as map, foldLeft, foldRight and forEach are higher order functions. It is a common enough pattern that once you are aware of it you will recognise it in many different classes and objects.
As an abstract example, consider the following higher-order function apply. This function (written in pseudo code) takes an integer and a function. Within the body of the function being defined the function passed in as a parameter is applied to the integer parameter. The parameter function takes an integer and returns a Double. The result of the function being defined is then returned:[image: $$ \begin{array}{*{20}l} &{ {\text{define}}\;{\text{apply}}\left({{\text{x}}:{\text{Int}},{\text{func}}:\left({\text{Int}} \right) = > {\text{Double}}} \right):{\text{Double}}} \hfill \\ & {\text{begin}} \hfill \\ & { \;\;{\text{result}} = {\text{func}}\left({\text{x}} \right)} \hfill \\ & { {\text{return}}\;{\text{result}}} \hfill \\ & {\text{end}} \hfill \\ \end{array} $$]

The function apply is a higher-order function because its behaviour (and its result) will depend on the behaviour defined by another function—the one passed into it.
We could also define a function that multiplies an integer by 10.0, for example:[image: $$ \begin{aligned}& {\text{define}}\;{\text{mult}}\left({{\text{y}}:{\text{Int}}} \right):{\text{Double}} \\ & {\text{begin}} \\ & \;\;{\text{return}}\;{\text{y}}*10.0 \\ & {\text{end}} \\ \end{aligned} $$]

Now we can use the function mult with the function apply, for example,[image: $$ {\text{apply}}(5,{\text{mult}}) $$]

This would return the value 50.0.
23.3 Scala Higher-Order Functions
The key to understanding how higher-order functions are defined is to understand that a function definition defines a function type. That is a type that takes Zero or a set of parameters (of given types) and returns a result. Thus the function:[image: $$ {\texttt{(x:Int)\,=>\,x\,*\,2}} $$]

Is a one parameter function that takes an Int and returns a Int—that is its type. Thus the[image: $$ {\texttt{(Parameter\,type\,list)\,=>\,return\,type}} $$]

Defines a new Function type.
Thus a parameter that expects to be given a reference to a function that takes an Int and returns an Int can be given a reference to any function that takes an Int and returns an Int. All of the following functions meet that criteria

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figa_HTML.gif]

All of the above could be used with the following higher-order function:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figb_HTML.gif]

For example,

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figc_HTML.gif]

The output from this application is:

 100

This is actually also true for methods. For example the following is a higher-order method, where the second parameter is a function:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figd_HTML.gif]

For example:[image: $$ {\texttt{println}}({\texttt{Processor}}{\texttt{.apply}}({\texttt{10}},{\texttt{f1)}} $$]

Notice that as previously mentioned, from the invoking clients point of view there is little different between a function and a method.
The following listing provides a complete set of the earlier sample functions and how they may be used with the apply function:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Fige_HTML.gif]

The output from this program is:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figf_HTML.gif]

23.4 Using Higher-Order Functions
Looking at the previous section you may be wondering why you would want to use a higher-order function or indeed why define one. After all could you not have called one of the functions (f1 to f4) directly by passing in the integer to used? Yes we could have, for example we could have done:[image: $$ {\text{f}}4(10) $$]

And this would have exactly the same effect as calling:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figg_HTML.gif]

The first approach would seem to be both simpler and more efficient.
The key to why higher-order functions are so powerful is to consider what would happen if we know that some function should be applied to the value 10 but we do not yet know what it is. The actual function will be provided at some point in the future. Now we are creating a reusable piece of code that will be able to apply an appropriate function to the data we have when that function is known.
For example, let us assume that we have a Person class. This person class has a salary property. However, we do not know how to calculate the tax that this person must pay as it is dependent on external factors. The
 calculateTax
 method could take an appropriate function that performs that calculation and provides the appropriate tax value to be stored.
The following listing implements this approach. The class Person itself does not have a way of calculating the tax; this must be provided as a parameter to the
 calculateTax
 method. The function passed in takes a Double and returns a Double. It is used with the salary property to determine the
 taxToPay
 property.

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figh_HTML.gif]

The
 TestPerson
 object defines a new function that takes a double and multiplies it by 0.3 and then uses the
 Math.ceil
 function to round it up to a whole number. This function is stored into the
 taxCalculator
 local val variable. It then creates a new instance of the Person class specifying a salary of 45,000. The
 calculateTax
 method is called passing in the
 taxCalculator
 function. Finally it prints out the tax calculated for the person. The result of running this program is:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figi_HTML.gif]

Thus the class
 Person
 is a reusable class that can have different tax calculation strategies defined for it.
23.5 Higher-Order Functions in Scala Collections
The place that you are most likely to encounter higher-order functions in Scala, at least when learning Scala, is within the Scala collection classes. Two examples are the
 filter
 method and the
 foreach
 method. These are both higher-order functions defined on the Class
 List
 . A List is an ordered sequence of values (and will be discussed in greater detail later in this book).
The definition of the filter method is:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figj_HTML.gif]

That is, the method takes a single parameter. This parameter is a type of function that takes a single parameter and returns a Boolean. The whole method (filter) itself returns a new List. The ‘A’ in the above is a placeholder for the type held by the List to which filter will be applied (i.e. a list of Strings, or a List of Ints).
The filter method selects all elements of the list that satisfy the predicate function
 p
 . The function p is used to test all the elements in the List. Those that return true are included in the list of values returned. The result returned is a new list consisting of all elements of this list that satisfy the given predicate p. The order of the elements is preserved.
The definition of the
 foreach
 method is:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figk_HTML.gif]

The
 foreach
 method applies a function ‘f’ to all elements of the list in turn. Any result generated by the function ‘f’ is discarded.
The following listing illustrates creating a list and applying simple functions to
 filter
 and
 foreach
 . Note the examples illustrate the different ways in which the functions to be applied can be defined:

 [image: ../images/323629_2_En_23_Chapter/323629_2_En_23_Figl_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_24

24. Partially Applied Functions and Currying

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

24.1 Introduction
This chapter looks at two ways in which functions (and in fact methods) in Scala can comprise components of reuse within a software system. These two approaches are partial application of functions and Currying. The two approaches represent variations on a theme. In both cases they allow a function with one or more parameters to have one or more of those parameters bound to a specific value to create a new function with one or more fewer variables.
At an abstract level, consider having a function that takes two parameters. These two parameters, x and y, are used within the function body with the multiplying operator in the form x * y. For example, we might have:[image: $$ {\text{operation}} = \left({{\text{x}},{\text{y}}} \right) = > {\text{x}}*{\text{ y}} $$]

This operation might then be used as follows:[image: $$ {\text{total}} = {\text{operation}}\left({ 2, 5} \right) $$]

which would result in 5 being multiplied by 2 to give 10. Or it could be used:[image: $$ {\text{total}} = {\text{operation}}\left({ 1 0, 5} \right) $$]

which would result in 5 being multiplied by 10 to give 50.
If we needed to double a number we could thus reuse operation many times, for example[image: $$ \begin{aligned} & {\text{operation}}\left({ 2 , { 5}} \right) \\ & {\text{operation}}\left({ 2 , { 10}} \right) \\ & {\text{operation}}\left({ 2 , { 6}} \right) \\ & {\text{operation}}\left({ 2 , { 151}} \right) \\ \end{aligned} $$]

All of the above would double the second number. However, we have had to remember to provide the 2 so that the number can be doubled. However, the number 2 has not changed between any of the invocations of operation. What if we fixed the first parameter to always be 2, this would mean that we could create a new function that apparently only takes one parameter (the number to double). For example, let us say we could write something like:[image: $$ {\text{double}} = {\text{operation}}\left({ 2, *} \right) $$]

Such that we could now write:[image: $$ \begin{aligned} & {\text{double}}\left(5\right) \\ & {\text{double}}\left({ 1 5 1} \right) \\ \end{aligned} $$]

In essence double is an alias for operation, but an alias that provides the value 2 for the first parameter and leaves the second parameter to be filled in by the future invocation of the double function.
This is essentially what Scala provides, although it has two mechanisms through which this style of parameter binding can be implemented. The two approaches are Partially Applied functions and Currying.
Note that what is said in the rest of this chapter for functions is also true for methods. The only difference is that methods are always part of the class or object in which they are defined. However it is possible to partially apply and curry both functions and methods.
24.2 Partially Applied Functions
A Partially Applied function in Scala is a function where one or more of its parameters have been applied or bound to a value, resulting in the creation of a new function one fewer parameters than the original. For example, let us create a function operation based on the example presented above in Scala.

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figa_HTML.gif]

This operation does exactly what the previous example did. It takes two parameters and multiples them together. We can thus invoke it in the normal manner:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figb_HTML.gif]

The result of executing this statement is:

 10

However, we can bind the first parameter to 2 so that it will always double the second parameter and store the resulting function reference into a property double. For example,

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figc_HTML.gif]

Double now references a function that takes one parameter an Int. Note that the ‘_’ underbar indicates that this is a placeholder for future values and that the type that will be used with this placeholder is Int. This allows for overloading of functions and distinguishing between such overloading (overloading relates to functions with the same names but different parameter types).
To invoke this function we merely need to provide the parameter value to be double, for example

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figd_HTML.gif]

The result of executing this line is once again:

 10

It is also possible to have more than one parameter bound and more than one parameter left unbound. These parameters can be intermixed with any parameter in any position being bound or unbound as required.
The following listing shows a simple summation function that takes three integers and adds them together. It also shows a situation where the first and the third parameters are bound and the resulting function assigned to the val partialSum. The function referenced by partialSum takes a single Int and adds the value passed into the values 1 and 3.

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Fige_HTML.gif]

The result of executing this listing is:	

 6

	

 6

Partially Applied functions are very useful for creating new functions from existing functions. The other approach is Currying which is described below.
24.3 Currying
24.3.1 Introduction to Currying
An alternative approach to Partially Applied functions is to use a technique/pattern known as Currying in the Scala/Functional world. The name Currying may seem obscure but the technique is named after Haskell Curry (for whom the Haskell programming language is named).
Currying allows new language structures to be created. The language features can resemble normal function invocations or can resemble language constructs. This allows the constructs developed to be presented to client code as if they are merely an extension to Scala (which in many ways they are). For example, structures such as:	transaction {	…

	}

can be created where transaction is a function that has been curried such that it is linked to an appropriated database, etc.
A curried function is a function that is applied to multiple argument lists (in contrast a Partially Applied function has one argument list). Note that functions can have one or more parameter lists.
24.3.2 Defining Multiple Parameter List Functions
All the function examples we have seen so far have used a single argument list with multiple parameters. For example this function takes two parameters (x and y) and multiplies them together. It is used with
 println
 in this example to print out the result of multiplying 2 and 3:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figf_HTML.gif]

In Scala we can rewrite this function as a multiple argument function, on which case each argument list takes a single argument. The arguments can still be used in the body of the function (and thus we can still multiple x and y together):

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figg_HTML.gif]

Both of these functions return the value 6, and both allow you to pass in two parameters to the function. However, in effect the second version results in two function invocations back to back. It is a bit like chaining two functions together. The first function invocation takes a single Int parameter x and returns a function value for the second function. The second function takes the Int parameter Y and applies it to the first functions result.
24.3.3 Using Curried Functions
Why is this useful? It is because we can provide a value to use for the first function before we wish to provide a value for the second function. As the result of providing the value for the first function is to return a function value to use with the second, we can essentially store that functions and its subsequent invocation for later use. For example, given the following function definition in the class CurryTest:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figh_HTML.gif]

This function has multiple argument lists and could be called directly as shown above.
However we could curry the function such that we provide the first argument but not the second. Note that in comparison with Partially Applied Functions where any argument can be applied, when Currying it is only the left-hand side arguments that can be applied. Thus in this case we could not supply the second argument rather than the first. Also note that because of this Currying does not require that you specify the types of the omitted parameters.
The approach used with multiple argument lists is to provide the arguments from the left and to use ‘_’ to indicate that the remainder of the function invocation has been left out:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figi_HTML.gif]

The plusOne function is now a curried function that takes the y argument and adds it to the value 1 which was provided for the x argument when the plusOne val was defined. Note that as far as the client code of plusOne is concerned this is just a normal single parameter function.
The definition of plusOne used above is actually a shorthand form for the definition of the curried function. All of the following are also variations on the definition of the curried function:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figj_HTML.gif]

The explanation for of the variations on the plusTwo function is provided below:	The function definition plusTwoLL is the longest longhand form of the function where we specify the parameter and the return type of the newly created function as well as the binding of the first parameter to 2.

	The plusTwoL function is a longhand form which infers the return type.

	The plusTwo method allows the type of the second parameter in the second parameter list to be inferred (this is allowed in Currying—specifying the type is optional here; this was not the case for Partially Applied functions).

	The plusTwoS definition is a shorthand form where the second parameter list is replaced by the underbar (‘_’) placeholder.

	The plusTwoRS is the real shorthand form where the parameter type of the newly created function is also inferred.

24.3.4 Building Domain-Specific Languages
If you need to create a framework to be used by Scala programmers, but want to provide a flexible way to configure that framework and allow the developers to view the end results as merely part of the Scala environment, then Currying has many advantages.
For example, the use of Currying allows you to build new language structures based on multiple argument lists. For example you can then exploit the ‘{}’ syntax for a single parameter. If this parameter is itself a function, the end result is a construct that looks like a language feature:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figk_HTML.gif]

The above is a function write that has two argument lists: one that takes a file and one that takes a function. The round bracket syntax could be used for both parameters. However, by using the ‘{}’ syntax for the last parameter this looks more like a language structure! This is an alternative syntax for parameters that can be used for the last set of parameters lists.
We can create the write example presented earlier by implementing a function or a method with multiple parameters. In this example, we are using a method write:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figl_HTML.gif]

This method has two parameter lists defined: one parameter list that takes a file and one parameter list that takes a function. This function takes a PrintWriter and returns Unit.
This could then be used as follows:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figm_HTML.gif]

Note that the second parameter lists contain a function definition that takes a parameter of type PrintWriter and calls the method println on that print writing. The result is that the current Date is written into whatever writer is passed to this function. Inside the write method, the function passed a PrintWriter that is bound to the file passed in within the first parameter list.

Of course we could also exploit the ‘{}’ syntax which means that we could also write:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Fign_HTML.gif]

which makes the write function appear more of a language construct than a straight function or method call.
However, we could take this further. If we are creating a logging system in which we always want client code to write to the same log file we could use Currying to create a fileWriter function that is guaranteed to write the file we wish to specify:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figo_HTML.gif]

Client code can now invoke the fileWriter merely providing the function that will determine the actual value to write. If this is returned to client code via a factory or explicitly imported, they will merely see this as a part of the language.
In fact this can be written more concisely yet using the implicit parameter syntax in which an underbar is used to represent a parameter passed into the function and used within that function:

 [image: ../images/323629_2_En_24_Chapter/323629_2_En_24_Figp_HTML.gif]

which is very clean and simple to present to client code.
The advantages of Currying are:	It allows new language constructs to be created.

	It allows constructs to be bound at runtime to specific objects, etc. If this approach is combined with the Factory pattern, then the details can be hidden from client code.

The drawbacks of Currying include:	Partially Applied functions are more flexible in terms of which parameters are applied and which are not yet applied.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_25

25. Scala Collections Framework

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

25.1 Introduction
The collections framework is one of the main categories within the set of Scala libraries that you will work with. It provides types (Traits, Objects and Classes) that support various types of data structures (such as lists and maps) and ways to process elements within those structures. This chapter introduces the Scala collections framework.
25.2 What Are Collections?
A collection is a single object representing a group of objects (such as a list or dictionary). That is, they are a collection of other objects. Collections may also be referred to as containers (as they contain other objects). These collection classes are often used as the basis for data structures and abstract data types. In general a collection should be used wherever some significant behaviour is associated with the data in the collection (arrays can be used elsewhere). For example, a
 SortedList
 may need to support the idea of adding and removing elements from the list but also maintaining some sort order etc. Collections are thus the Scala mechanism for building data structures of various sorts; it is therefore important to become familiar with the collection API and its functionality.
Some of the collection classes, for example,
 ListBuffer
 , provide functionality similar to existing data structure classes such as Arrays, but are more flexible to use (at a small performance cost). For example,
 ListBuffers
 are growable; that is, they can grow in size as new elements are added to them, whereas Scala Arrays are of fixed size.
25.3 Scala Collections
The Scala collections framework is defined within the
 scala.collection
 package and the subpackages associated with it. This package provides a collections framework for holding references to objects, instances and values.
The collection types incorporate higher-order functions, such as the Scala List type that includes a
 foreach
 function that can be used to apply an operation to each of the elements held in a collection.
The Scala collection framework is split into mutable and immutable structures that are defined in the
 scala.collection.mutable
 and the
 scala.collection.immutable
 packages. Thus all the collections in the mutable package can be updated, added to, removed from, etc. In practice this means that you can change the contents of the mutable collection after it has been created. All immutable collections, however, once created cannot change their content. Thus when you create an immutable list then the element that comprised that list cannot be removed, added to, etc. This does not mean that these collections do not include operations that appear to add, remove or otherwise alter their contents; rather that these operations produce a copy of the original collection which reflects the changes being made.
Note that by default the contents of the
 scala.collection.immutable
 package is imported into all Scala source files and thus you need to explicitly import the collection types in the
 scala.collection.mutable
 package.
All Scala collections have type parameters which can be used to specify the type contained within the collection. For example

 [image: ../images/323629_2_En_25_Chapter/323629_2_En_25_Figa_HTML.gif]

This specifies that we wish to create a new List that will hold references to Strings and is initialised with the strings “One”, “Two” and “Three”. We can often get Scala to infer the type of the collection for us but such type parameterisation of collections is very common. The output of this application is

 	

 List(One, Two, Three)

The Scala collections framework was heavily revised in Scala 2.8 to provide a common, uniform framework for collection types. A number of key design principles underpin the framework, and these are:

 	
 Ease of Use. Most problems can be solved with just a couple of operations, which are common across the framework.

	
 Concise. Due to the presence of higher-order functions within the framework, such as the foreach function, activities that would have taken several statements in other collection frameworks can be achieved in a single statement.

	
 Safe. The presumption of immutability and the avoidance of side effects make the use of collection types much safer in Scala.

	
 Fast. The operations within the collections framework have been heavily tuned and optimised to maximise performance.

	
 Universal. A common set of operation exists across all the collection types. Thus one collection type has similar operations to another collection type that is similar in nature. This means that developers only need to learn a fairly small vocabulary to be able to use a wide range of types.

	
 Expressive. The vocabulary that is used is expressive and semantically meaningful helping developers to clearly express the intent of their code. For example, val (minors, adults) = people.partition(_.age < 18).

The packages that comprise the Scala collection framework are:

 	scala.collection. This package contains the root collection types. These root types may be mutable or immutable. For example, scala.collection.IndexedSeq is a parent of both collection.immutable.IndexedSeq and of scala.collection.mutable.IndexedSeq. In general the operations defined on the type in the scala.collection package are repeated in the immutable type and extended on in the mutable type.

	scala.collection.mutable. This package contains the mutable versions of the collection types.

	scala.collection.immutable. This package contains the immutable versions of the collection types.

	scala.collection.generic. This package provides building blocks for constructing collection types; you would not normally need to work this package.

25.3.1 Package Scala.Collection

 [image: ../images/323629_2_En_25_Chapter/323629_2_En_25_Figb_HTML.gif]

There is a relatively small set of collection types in the scala.collection package. Some of these types are presented above and described briefly below. This hierarchy was introduced in Scala 2.8 and forms the foundation of the current (including Scala 2.12) collections types (however the Scala 2.13 version is exploring a rework of the collections hierarchy if you are using this version then check the online reference material).
The major of the types are traits although some also have objects that support utility type operations such as the Map object with methods such as apply, empty.

 	
 Traversable. This trait is the root trait of all traversable collections. It is the base trait for all kinds of Scala collections. It provides the common behaviour common to all collections (such as the foreach method). Thus all collection types that mix in this trait must implement a foreach operation.

	
 Iterable. A base trait for iterable collections. An iterable collection is one that it is possible to iterate over. This means that it is possible to process each element in an iterable collection one-by-one. Implementations of this trait need to provide a concrete method with the signature def iterator: Iterator[A].

	
 Seq. This is a base trait for all sequence like collections. A sequence is a collection in which there is a specific order to the elements it holds. Sequences provide an apply method for indexing, operations such as indexOf, lastIndexOf, startsWith, endsWith and reverse.

	
 IndexedSeq. This is a base trait for indexed sequences. An indexed sequence is a sequence where each element is accessible by an index and where element access is supported in constant time (or near constant time) for elements across the collection. An IndexedSeq provides fast random access to elements and a fast length operation.

	
 LinearSeq. The base trait for linear sequences such as Lists and Streams. A LinearSeq provides fast access only to the first element, via the head, but also fast tail operation.

	
 Set. The base trait for all sets (both mutable and immutable). A Set does not allow a duplicate of en element.

	
 SortedSet. The SortedSet trait represents a Set that has been sorted.

	
 BitSet. A base trait for BitSets. BitSets are sets of nonnegative integers that can be used to represent variable-size arrays of bits packed into 64-bit words.

	
 Map. This is a trait that represents the key concepts implemented by all Maps. A map is a collection that maintains relationships between keys and values.

	
 SortedMap. A SortedMap trait is a Map whose keys are sorted.

25.3.2 Common Seq Behaviour
The following lists some of the common behaviour shared by all Seq types.

 	seq(n) Return the element n in the sequence seq. Note that Scala collections are Zero based and therefore the first element in the sequence will be the element ‘0’. This means that if the sequence holds 5 elements they will be accessed by the indexes 0–4.

	seq.length Return the length of the sequence.

	seq.lengthCompare(s2) Returns −1 if seq is shorter than s2 and +1 it is longer, with Zero indicating that they have the same length.

	seq.indexOf(x) The index of the first element in seq equal to x.

	seq.lastIndexOf(x) Return the index of the last element in seq that equals x.

	seq.indexOfSlice(s2) The first index of seq such that the successive elements starting from that index from the sequence s2.

	seq +: x A new sequence that consists of x prepended to seq.

	seq :+ x A new sequence that consists of x appended to seq.

	seq.padTo(length, x) The sequence resulting from appending the value x to seq until the length is reached.

	seq(i) = x Changes the element of seq at index I to be x.

	seq.sorted A new sequence obtained by sorting the elements of seq using the standard ordering of the element type contained within seq.

	seq.sortWith(test) A new sequence obtained by sorting the elements of seq using the ‘test’ as the comparison operation.

	seq.reverse Returns a sequence with the elements of seq in reverse order.

	seq.iterator Returns an iterator yielding each of the elements of seq in order.

	seq.reverseiterator Returns an iterator yielding each of the elements of seq in reverse order.

	seq.contains(x) Tests whether seq contains an element equal to x.

	seq.startsWith(s2) Returns true if seq starts with the sequence contained in s2.

	seq.endsWith(s2) Returns true if seq ends with the sequence contained in s2.

	seq.intersect(s2) The multi-set intersection of sequences seq and s2 that preserves the order of the elements in seq.

	seq.diff(s2) The multi-set difference of sequences seq and s2 that preserves the order of the elements in seq.

25.3.3 Common Set Behaviour
The following lists some of the common behaviour shared by all Set types.

 	set.contains(x) Tests whether set contains an element equal to x.

	set(x) Same as set.contains(x).

	set.subsetOf(s2) Tests whether set is a subset of s2.

	set + x Returns the set containing all the elements of set plus x.

	set ++ s2 A set containing the union of all the elements of set and s2.

	set − x A set containing all the elements of set except x.

	set − s2 A set containing all the elements of set except those elements also in s2.

	set.empty Test to see if the set is empty.

	Set interest s2 The set intersection of set and s2.

	Set diff s2 The set difference between set and s2.

25.3.4 Common Map Behaviour
The following lists some of the common behaviour shared by all Map types.

 	m.contains(k) Tests whether m contains a mapping for key k.

	m.get(k) Retrieves the value associated with the key k as an Option or None if there is no mapping.

	m(k) Retrieves the value associated with the key k or an exception if not mapping is present.

	m.getOrElse(k, d) Retrieves the value associated with the key k or the default value d if no key is found.

	m + (k –> v) Add the mapping k –> v to the map.

	M − k Remove the key k (and its associated value) from the map m.

	m.keys Return an iterable containing each of the keys in the map m.

	m.keySet Return a set containing all the keys in the map m.

	m.keyIterator Return an iterator for each of the keys in the map m.

	m.values An iterable containing each of the values in the map m.

	m.valuesIterator An iterator over the values in the map m.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_26

26. Immutable Lists and Maps

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

26.1 Introduction
This chapter focuses on the List and Map types from the
 scala.collection.immutable
 package.
26.2 The Immutable List Collection
As a common approach is applied across all the collection classes in Scala we will first use the
 scala.collection.immutable.List
 class as a detailed case study to look at the facilities it provides and the operations that can be performed on it.
A
 List
 is an immutable (fixed) sequence of elements that provides for constant time access to the first element and to the tail (remaining) elements. Many other operations take linear time. Lists are a very widely used collection as they provide all the core sequence like behaviours.
26.2.1 List Creation
The following listing illustrates some of the list creation options available:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figa_HTML.gif]

The first option illustrated by
 myList0
 creates a list containing strings initialized to “One”, “Two” and “Three”. This is saved into a val
 myList0
 which is specified to be of type
 List[String]
 . The second example illustrates how Scala can infer the type of the val
 myList1
 for us, and the third indicates that Scala can determine the type of the contents of the list so that it is not necessary to explicitly state that the list will contain Strings.
26.2.2 List Concatenation
We can concatenate strings together using the ‘
 :::
 ’ operator. This creates a new list based on two existing lists, for example,

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figb_HTML.gif]

This results in
 longList
 now containing the list:

 List(One,

 Two,

 Three,

 One,

 Two,

 Three)

Note that in the older versions of Scala the ‘
 :::
 ’ operator was available instead of the ‘
 ++
 ’. However, the effect will be the same whichever operation you select to use.
It is also possible to use the cons operator (‘
 ::
 ’) to prepend an element to the front of a list (which takes constant time), for example,

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figc_HTML.gif]

Note that this of course produces a new list referenced by
 newList
 as Lists are immutable. The contents of
 newList
 is:

 List(Zero,

 One,

 Two,

 Three)

The cons operator can also be used to construct a list from a set of existing values. For example,

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figd_HTML.gif]

This example may look a little strange. This is because the value
 Nil
 at the end of the statement represents an empty list. It is thus to this list that the strings “One”, “Two” and “Three” are being added. This raises the question, why is Nil at the end of the statement and not at the start? This is because any method or operation that ends with a ‘:’ is right associative. Thus the expression:[image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Fige_HTML.gif]

must be read from the right to the left (and not from the more traditional left to right). Thus the String “Three” is being prepended to the empty list represented by
 Nil
 . This expression then returns the new list containing the String “Three”. The String “Two” is then prepended to that list by the next ‘::’ cons operation. This result sin a new List containing “Two” and “Three”. The string “One is then prepended to that List to create the final list containing “One”, “Two” and “Three”. As prepending is done in constant time is the preferred way to add an element to the List. The result is

 List(One,

 Two,

 Three)

There is also the ‘+:’ operator which again prepends an element to the front of the list return a new copy of the list.
We could also append an element to the contents of the existing list using the ‘
 :+
 ’ operator. However, this is rarely used as the time it takes to append to the list grows linearly as the size of the list grows:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figf_HTML.gif]

The val
 endList
 would now hold a reference to the following list:

 List(One,

 Two,

 Three,

 End)

26.2.3 List Operations
Other operations of interest on the List class are illustrated in the following listing and discussed below:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figg_HTML.gif]

The method
 length
 returns the length of the list while the method
 reverse
 returns the list in reverse order. The
 head
 of the list returns the first element in the list and the method
 last
 returns the last element in the list. The method
 tail
 returns all the elements in the list bar the first element. The method
 isEmpty
 returns a Boolean
 true
 of
 false
 depending upon whether the list is empty or not and the .
 mkString
 method converts the contents of the list into a string with each element in the list separated by the string passed into the method. The result of executing
 Test2
 is shown below:

 List(1,

 2,

 3,

 4,

 5)

 length

 of

 the

 list:

 5

 Reversed:

 List(5,

 4,

 3,

 2,

 1)

 Drop

 first

 two

 objects:

 List(3,

 4,

 5)

 The

 first

 element:

 1

 The

 last

 Element:

 5

 The

 tailed

 list:

 List(2,

 3,

 4,

 5)

 The

 init

 part

 of

 the

 list:

 List(1,

 2,

 3,

 4)

 Is

 the

 list

 Empty:

 false

 String

 format

 of

 list:

 1,2,3,4,5

26.2.4 List Processing
You can also process all the elements in the list. This can be done in a number of ways. For example, lists are iterable collections and thus you can iterate over the elements in the list as follows:
However, many of the collection classes also provide the
 foreach
 higher-order function that can take a function to apply to each of the elements in the List in turn. Therefore you can also write:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figh_HTML.gif]

Of course in Scala this can be written in a number of different (and shorter) ways, including:[image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figi_HTML.gif]where we gradually rely in Scala to infer more and more of what is being defined.
26.2.5 Further List Processing
As well as the
 foreach
 operation, there is a whole range of higher order functions that you can use with Lists. These include
 filter
 ,
 map
 ,
 foldLeft
 and
 foldRight
 ,
 flatMap
 .
For example, if you wish to select only certain elements in a list, that meet a specific criterion, you can do that using the filter higher order function. For example,

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figj_HTML.gif]

This would result in the following output:

 List(1,

 2,

 3,

 4,

 5)

 Filtered:

 List(1,

 2)

As you can see from this example, the result of applying the function literal passed into the filter is that only elements less than three have been included in the filter list ‘f’.
We can also apply a function to each of the elements in a list and create a new list of the same size, based on the result returned by the function we applied. For example,

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figk_HTML.gif]

The output from this is

 Modified

 list:

 List(11,

 12,

 13,

 14,

 15)

Thus the modified list has five elements, and these elements are each 10 greater than the elements in the original list. Thus the function:

 n

 =>

 N

 +

 10

has added 10 to each of the elements and collated the results into a new list referenced by ‘m’.
We could have written this in a short from as:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figl_HTML.gif]

Which would also result in a list being created containing five elements, where each element is 10 greater than that in the original list:

 Modified

 List

 (alternative

 form):

 List(11,

 12,

 13,

 14,

 15)

We can also apply a function to all the elements in the list and gather up the results into a single value. This can be done using either the
 foldLeft
 or the
 foldRight
 methods. The
 foldLeft
 operation takes an initial value (or state) and propagates that state from one element to the next, with the result of one evaluation being passed as input to the next. It starts from the left most element and processes right towards the end of the list. For example, given our list of numbers we could add them all up using the
 foldLeft
 operation:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figm_HTML.gif]

The result of this is:

 Sum

 of

 List

 15

Note that
 foldLeft
 is a multi-argument list operation, thus the first argument takes the initial value to use (in this case Zero) and the second argument list takes the function to apply. This function is a two parameter function, one which takes the total already calculated and one parameter that is the current element to process. The result return from this function is then passed to the next invocation of the function. Note due to the alternative syntax available for single parameter lists the above could also be written as the following with the second parameter list being represented by the curly braces ‘{…}’:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Fign_HTML.gif]

There is also a
 foldRight
 operation which starts at the end of the list with the last element and processes towards the start of the list. For example,

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figo_HTML.gif]

The result (in this case) is exactly the same,
 alternativeSum
 contains the value 15:

 Alternative

 Sum

 of

 List

 15

However, there are some issues with
 foldRight
 when it comes to processing very large lists and thus it is often better to reverse a list and then call
 foldLeft
 , for example,

 myList.reverse.foldLeft(0){(t,

 e)

 =>

 t

 +

 e}

Another operation
 flatten
 can be used to flatten a list. That is, given a list of lists it can return a single list constructed from the contents of the original sublists. For example,

 scala

 >

 val

 nested

 =

 List(List(1,

 2,

 3),

 List(4,

 5))

 nested:

 List[List[Int]]

 =

 List(List(1,

 2,

 3),

 List(4,

 5))

 scala

 >

 nested

 flatten

 res0:

 List[Int]

 =

 List(1,

 2,

 3,

 4,

 5)

In the above example, the first sublist containing 1, 2 and 3, and the second sublist containing 4 and 5 have been flattened into a single list containing 1, 2, 3, 4 and 5.
The operation
 flatMap
 is essentially map plus
 flattern
 combined together. The function given to the
 flatMap
 is expected to return a list of values. The resultant list of lists is then flattened into a single list. For example, given a val ‘contents’ containing a list of Arrays of Integers. In the following example, we use
 flatMap
 to convert the array to a list and then to flattern the two lists into a single list:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figp_HTML.gif]

The output from this program is:

 List(1,

 2,

 3,

 4,

 5,

 6)

26.2.6 Pattern Matching
It is possible to extract the contents of a list into a set of variables as follows:

 val myList

 =

 List("a",

 "b",

 "c")

 val List(x,

 y,

 z)

 =

 myList

with the result that
 x
 ,
 y
 and
 z
 are variables containing the contents of the
 myList
 (rather than being the members of a new list):

 x:

 java.lang.String

 =

 a

 y:

 java.lang.String

 =

 b

 z:

 java.lang.String

 =

 c

However, this has limited utility unless you know the number of elements in the list. A generally more useful approach is to extract the head and the tail of a list in this way:

 val hd :: tl

 =

 myList

which results in two vals being created one called
 hd
 and containing the string “a” and one called
 tl
 containing the list of strings (“b” and “c”):

 hd:

 java.lang.String

 =

 a

 tl:

 List[java.lang.String]

 =

 List(b,

 c)

26.2.7 Converting to a List
There are numerous ways in which you can convert other sequence like constructs into lists. For example, you can convert an array to a list:

 scala

 >

 Array(1,

 2,

 3,

 4)

 toList

 List[Int]

 =

 List(1,

 2,

 3,

 4)

Or a string to a list (which results in a list of characters);

 scala

 >

 "abc"

 toList

 List[Char]

 =

 List(a,

 b,

 c)

Or a generated sequence into a list

 var

 shortList

 =

 1

 to

 10

 toList

And indeed other collection types into a list, such as a Set or a Map:

 scala

 >

 Set("abc",

 123)

 toList

 List[Any]

 =

 List(abc,

 123)

 scala

 >

 Map("apple"

 -

 >

 "red",

 "banana"

 -

 >

 "yellow")

 toList

 List((apple,red),

 (banana,yellow))

Of course the reverse is also true. That is it is possible to convert a list to a range of sequence like structures using various to <Type> methods, such as
 toArray
 ,
 toString
 ,
 toSet
 ,
 toMap
 .
26.2.8 Lists of User Defined Types
All of the examples we have looked at so far with Lists have used strings or Integers. We can of course also make lists of user-defined types. For example, given the class
 Person
 as can create lists which hold
 Person
 types:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figq_HTML.gif]

This defines four vals holding references to four istances of a class Person. These four vals are then used to initialise a List of Persons referenced by the val
 family
 . We have explicitly stated the type of the contents of the List as
 Person
 in this case, but that is of course optional, and we could also have written:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figr_HTML.gif]

In the above example, Scala will infer that this is a list of Person types.
We can now apply the operations discussed earlier in this section with this list of persons. Of course we can now access the properties and methods defined on the class
 Person
 within the functions we apply to the elements of the list. Thus assuming the class
 Person
 is defined as follows:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figs_HTML.gif]

We can write:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figt_HTML.gif]

The examples illustrate the use of
 foreach
 ,
 filter
 and
 map
 . The
 foreach
 example prints out each member of the family with a prefix of “Family member:”. The second filters the family members to find those over 21 using the age property. The final example uses the map function to obtain a list containing the ages of each of the members of the family which is then used to calculate the average of all the ages. The output of this program is:

 Family

 Member:

 Person(John,49)

 Family

 Member:

 Person(Denise,46)

 Family

 Member:

 Person(Adam,14)

 Family

 Member:

 Person(Phoebe,16)

 List(Person(John,49),

 Person(Denise,46))

 List(49,

 46,

 14,

 16)

 Average

 age:

 31

26.3 The Immutable Map Type
A
 Map
 is a set of associations, each representing a key-value pair. The elements in a
 Map may be
 unordered, but each has a definite name or key. Although the values may be duplicated, keys cannot. In turn a key can map to at most one value. Some Map implementations, like
 TreeMap
 and
 ArrayMap
 , make specific guarantees as to their order; others, like
 HashMap
 , do not. The
 Map
 protocol allows either the keys to be viewed, the values to be viewed or for the keys to be used to access the values.
A Concrete implementation of the
 Map
 trait is the
 scala.collection.immutable.HashMap
 class. It provides an immutable implementation of a Map based on the use of a hashing trie. A hash trie is a standard way to implement immutable sets and maps efficiently within Scala. To find a given key in a map, the code first takes the hash code of the key and based on information held in the hash find the appropriate bucket into which the key value pair will have been placed. The advantage of hash tries are that they strike a balance between reasonably fast lookup and reasonably efficient inserts and deletions.
The following listing illustrates some of the operations available on the
 Map
 trait that is implemented by the
 HashMap
 class.

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figu_HTML.gif]

The result of executing this program is shown below:

 4

 Set(USA,

 Spain,

 UK,

 FRANCE)

 MapLike(Wasington.

 DC,

 Madrid,

 London,

 Paris)

 false

 Some(London)

 London

 true

 Not

 known

 Dublin

The points to note about this listing include that a map contains key to value pairs. Thus the size of the map is four elements just after it is instantiated. Also note that you can obtain the keys and values in the map separately should you need to do so. The keys are returned as a
 Set
 as they will be unique. The Values are returned as a type of sequence as there may be duplicates amongst them. You can also test a map to see if it is empty. The method
 get
 and the access (nth) are often treated as synonymous, but they actually have different return types, for example,

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figv_HTML.gif]

The difference being that get will return None if the key does not exist in the
 HashMap
 were as the accessor will throw an exception if the key is not present.
An alternative is to use the
 getOrElse
 method:

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figw_HTML.gif]

This will return the value associated with the specified key (in this case Ireland) or if the key is not present it will return the value passed to the method as the second parameter.
Finally note that act of adding a new key-value pair to the map results in a new map being created containing the same set of key-value pairs as the original map with the addition of the new key-value pair (the original map is unaffected):

 [image: ../images/323629_2_En_26_Chapter/323629_2_En_26_Figx_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_27

27. Immutable and Mutable Collection Packages

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

27.1 Introduction
This chapter discusses the contents of the Scala collection framework packages for immutable and mutable collections.
27.2 Package Scala.Collection.Immutable
The key classes and traits in the
 scala.collection.immutable
 package are shown in Fig. 27.1 and described in the rest of this section.[image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Fig1_HTML.gif]
Fig. 27.1Key classes and traits in the scala.collection.immutable package

27.2.1 Sequences
There are a number of different types of Sequences including:

 	
 Vector. This is a general-purpose immutable indexed sequence. As a general rule you might choose to use a
 Vector
 over a
 List
 as it provides faster access. An example of using the
 Vector
 class is given below:

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figa_HTML.gif]

The result of running this program is shown below:

 Vector(3, 2, 1)

 3

 3

 Vector(4, 3, 2, 1)

	
 List. The List class has been discussed extensively earlier in this chapter. However, it is worth noting that it is probably the most widely used type in the
 scala.collection.immutable
 package.

	
 Queue. A Queue is a first-in first-out (FIFO) type of collection. That is elements can be added to a queue and removed from the queue in the same order. The primary methods on a Queue are the
 enqueue
 method for adding an element to the
 queue
 ,
 dequeue
 for removing an object from the queue. This type might at first seem a strange choice for the immutable a package. After all once you create an immutable Queue you cannot modify it. This is true, but there operations such as
 enqueue
 and
 dequeue
 that return a copy of the original queue with a new element added or an element removed, respectively. This is particularly useful in concurrent processing environments where this avoids the need to worry about multiple processes updating a common data structure such as a
 Queue.
 An example of using the
 Queue
 class is shown below:[image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figb_HTML.gif]

The result of executing this program is:

 Queue(1)

 Queue(1, 2, 3)

 1

 Queue(2, 3)

Points to note about this example are that each of the operations to add or remove elements from the
 queue
 generated a new Queue instance. Also note that
 dequeue
 returned both the result of removing the first element from the queue and the newly generated queue instance containing all the elements of ‘q3’ minus the value removed. Finally, also note that we had to import the
 Queue
 type.

	
 Stack. This class was deprecated in 2.12. A
 Stack
 provides a last-in first-out behaviour (LIFO). As with the
 Queue
 any operations that add elements to the stack or remove elements from the stack actually result in a new
 Stack
 instance being created. A simple example is shown below:[image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figc_HTML.gif]

The result of executing this program is given below:

 Stack(1)

 Stack(2, 1)

 2

 Stack(1)

Note that we have again imported the
 scala.collection.immutable.Stack
 class. Also note that the top method returns the value at the top of the stack but does not remove it. Pop on the other hand removes the top value and returns a copy of the original stack without the top element.
From Scala 2.12 onwards a list should be used with a var, along with the +: and head methods.

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figd_HTML.gif]

27.2.2 Sets
There are a number of different types of Sets including:	
 HashSet is an immutable
 Set
 implementation based on a hashing function. A Set only allows a single instance of an element in the Set—the
 equals
 method is used to determine equality. For example,

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Fige_HTML.gif]

This results in the following output:

 HashSet(Liverpool, West Ham, Newcastle, Everton)

Note that there is only one occurrence of the String “West Ham” in this set.

	
 TreeSet. This class implements the
 Set
 concept based on a tree structure. Specifically on a Red-Black Tree structure. Red-Black Trees are a form of balanced binary tree where some nodes are designed red and some nodes are designated black. With any balanced tree structure the operations applied to the tree complete in time logarithmic to the size of the tree.

	
 ListSet. A
 ListSet
 is an immutable set using a list-based structure internally. It can be viewed as a List that restricts the occurrences of some element to one within the list. For example,

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figf_HTML.gif]

which results in the following output:

 ListSet(Everton, Newcastle, West Ham, Liverpool)

27.2.3 Maps
There are a number of different types of Maps including	
 ListMap. A
 ListMap
 is a map that uses a linked list-based structure to internally represent the key-value pairs in the Map. Operations on a list map take linear time relative to the size of the map. Due to this there is little benefit in using a ListMap and a
 HashMap
 is almost always a better choice.

	
 HashMap. It represents a collection of associated keys and values that are organized based on the hash code of the key.

	
 TreeMap. This class implements the Map as a tree structure.

27.3 Package Scala.Collection.Mutable
The key types in the
 scala.collection.mutable
 package are shown in Fig. 27.2. You will notice that many of the names are the same as those in the immutable collection described earlier. This can make it very confusing for someone working with the collection classes to understand the impact of the operations being performed. For example, an operation on an immutable collection may generate a new instance of that collection containing the new element, whereas the mutable version will merely add that element to the collection (and both collections are called
 HashMap
 !). Therefore ensuring that you know which type of collection you are working with is an important issue.[image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Fig2_HTML.gif]
Fig. 27.2Key types in the scala.collection.mutable package

The actual set of mutable collection classes available is continually growing; for example, in Scala 2.11 additional mutable types, LongMap and AnyRefMap were added to provide improved performance when using Long or AnyRef keys. In turn, Scala 2.12 added a mutable TreeMap collection class.
In this section we will look at the
 ArrayBuffer, ListBuffer, Stack
 and
 HashMap
 classes.
27.3.1 ArrayBuffer
An
 ArrayBuffer
 is a growable collection that is backed by an array and has a current size (it is similar in nature to the ArrayList class in Java). The majority of operations on an array buffer have the same speed as for an array as the operations simply access and modify the underlying array, ArrayBuffers can therefore be used for efficiently building up a large collection whenever new items are added to the end of the array (e.g. as a result of reasoning data from a file or a database). The following example illustrates how they are used (remember elements in a collection such as
 ArrayBuffer
 are indexed from Zero not one):

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figg_HTML.gif]

The result of executing this program is shown below:

 ArrayBuffer(1)

 ArrayBuffer(1, 5, 6)

 6

 [I@3d5b5376

As you can see from this example it is the
 ArrayBuffer
 data which is updated when we add an element using the ‘+=’ operator. Thus we can see that data is a mutable collection as opposed to the immutable collections we looked at earlier. We have also included how an
 ArrayBuffer
 can be converted into an Array using the
 toArray
 (other options include
 toList
 and
 toSet
).
27.3.2 ListBuffer
A
 ListBuffer
 is like an
 ArrayBuffer
 except that it uses a linked list as its underlying structure (rather than an array). This means that insertion may be faster than for an
 ArrayBuffer
 . Also if you intend to convert your structure to a List once you have added all the elements to the buffer, then a
 ListBuffer
 is a more efficient option. Here is an example of working with a
 ListBuffer
 :

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figh_HTML.gif]

The output from this program is given below:

 ListBuffer(1)

 ListBuffer(1, 5, 6)

 6

 List(1, 5, 6)

27.3.3 LinkedList
Linked lists are mutable sequences that consist of nodes that are linked together via pointers. That is, the first node has a reference to the second node, the second node has a reference to the third, etc., with next pointers.
27.3.4 Stack
The mutable
 Stack
 provides similar functionality to the immutable Stack with the primary difference being that when an element is added to the stack or removed from the stack it affects that stack (rather than creating a copy of the stack modified as appropriate). The following listing illustrates typical mutable stack behaviour:

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figi_HTML.gif]

The result of running this program is:

 Stack(3, 2, 1)

 top: 3

 pop: 3

 pop: 2

 Stack(1)

Note that the push operation updates the stack directly as the pop option. Note that for the mutable stack pop returns the item popped whereas for the immutable version it returned the state of the stack after the pop.
27.3.5 HashMap
The mutable
 HashMap
 class is very similar to the immutable
 HashMap
 except that modifications are made to the receiver of the operation rather than to a copy. The following listing illustrates
 HashMap
 usage:

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figj_HTML.gif]

The result of executing this program is given below:

 Map(FRANCE -

 >

 Paris, UK -

 >

 London, Spain -

 >

 Madrid, USA -

 >

 Wasington. DC)

 4

 Set(FRANCE, UK, Spain, USA)

 HashMap(Paris, London, Madrid, Wasington. DC)

 false

 Some(London)

 London

 true

 Not known

27.4 Generic Collections
One interesting area is to look at what happens if you create one of the
 scala.collection
 core collections such as
 Set
 or
 Map
 . The following program uses the Map type from the
 scala.collection
 .

 [image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figk_HTML.gif]

Now consider the output from this program:

 class scala.collection.immutable.Map$EmptyMap$

 class scala.collection.immutable.Map$Map1

 class scala.collection.immutable.Map$Map2

 class scala.collection.immutable.Map$Map3

 Map(121 - > Miami, 231 - > Dublin, 456 - > Paris)

 Dublin

There is something strange happening here. The class name retrieved from the
 getClass
 method appears to be different!
This is because by default the core
 Map
 type uses the immutable
 Map
 from the
 scala.collection.immutable
 package. However, because our program then adds a series of key-value pairs to that map it must create new instances of the
 Map
 class to represent the new map and bind those to the variable flights. It does this as flights actually reference a wrapper around an immutable Map and it is this inner map that is replaced.
If we add an import to this program to import the
 scala.collection.mutable.Map
 , for example:[image: ../images/323629_2_En_27_Chapter/323629_2_En_27_Figl_HTML.gif]

we can now use the same immutable
 HashMap
 throughout the application:

 class scala.collection.mutable.HashMap

 class scala.collection.mutable.HashMap

 class scala.collection.mutable.HashMap

 class scala.collection.mutable.HashMap

 Map(456 -

 >

 Paris, 121 -

 >

 Miami, 231 -

 >

 Dublin)

 Dublin

27.5 Summary
It is likely that, just as in C# and Java, these classes will become the most used classes in Scala. The various collection API interfaces and classes will form the basis of the data structures you build and will be the cornerstone of most of your implementations. Stick with them, try them out, implement some simple programs using them, and you will soon find that they are easy to use and extremely useful. You will very quickly come to wonder why every language doesn’t have the same facilities!

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_28

28. Type Parameterisation

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

28.1 Introduction

This chapter introduces and discusses type parameterisation. We have already seen examples of type parameterisation in the collection types where a List can be parameterised to hold only Strings, Person objects or integers. In this chapter, we will look at how you can create your own parameterised types and the options available for controlling the types that can be used with those parameterisations.
28.2 The Set Class
As a concrete example of type parameterisation, we will explore the Set class. The Set class allows the type of element that it will hold to be specified between square brackets ‘[..]’ after the name of the class and before any parameters passed to the Set constructor. For example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figa_HTML.gif]

In the above listing, the Set class is being parameterised to only hold items of type String (hence the Set[String]). If we wanted it to be limited to only holding integers then we would use Set[Int] and to only hold Person types then we would use Set[Person]. The type parameterisation is the application of [String] or [Int] to the type Set. Of course, this is Scala, so Scala is quite capable of inferring this from the contents of the Set, thus

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figb_HTML.gif]

s2 also references a Set that has been parameterised to only hold Strings.
In both cases the class Set is referred to as a generic class. If you look at the definition of Set in the Scaladoc then you will see that it is defined as being:

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figc_HTML.gif]

Which indicates that Sets can hold elements of a type T where T is a placeholder for the type to be defined. Thus in Set[String] and Set[Int] the placeholder T has been replaced by String and Int, respectively. The result of applying a type to a Set is a parameterized Set.
28.3 Adding Type Parameterisation
28.3.1 The MyQueue Mutable Class
You can create your own types that are generic type and that can be parameterised by concrete type. For example, the mutable collection class MyQueue, presented in the following listing, is a programmer defined generic type. It defines a placeholder T that will be used to represent various concrete types. Note by convention the letter T is used to indicate a type to specify (but we could use any letter or sequence of letters; thus if the types for a key and a value were being specified we might use K and V).

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figd_HTML.gif]

The class
 MyQueue
 uses T as if it were an actual type in the body of the class. Thus the type of element held by the ListBuffer is T, the type of element that can be enqueued using the enqueue method is T and the result returned by the dequeue method is T. The type of the head element is also T.
This class is used in exactly the same way as one of the built-in collection classes as shown below:

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Fige_HTML.gif]

In this example, the type String is used to parameterise
 MyQueue
 such that it now holds Strings. The effect is that the latter T is replaced by the type String throughout the instance of the MyQueue class referenced by the variable ‘q’. This effect is that the type of head is String, the type used as a parameter to enqueue is String and the type returned by dequeue is String. Thus it is the same as writing:

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figf_HTML.gif]

However, we can also create a MyQueue of Ints, for example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figg_HTML.gif]

This is now the equivalent of writing:

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figh_HTML.gif]

As well as String and Int any type can be used as the concrete type including Double, Boolean as well as user-defined types such as the class Person or the Trait Model.
Thus generic class and type parameterisation provide a powerful construct for creating type safe, reusable code.
Note that you can create generic Classes and Traits as both can be instantiated with a concrete type. You cannot create generic Objects as you do not instantiate an Object (this is handled for you by the Scala runtime).
The output from the Queue test program is shown below:

 [John| Denise| Phoebe| Adam]

 John

 John

 Denise

 Denise

 [Denise| Phoebe| Adam| Paul]

28.3.2 The Immutable Queue Class
We can also create generic types that are immutable and that take parameters into the primary constructor. Note that the types used in the primary constructor can also refer to the type T. Thus the head passed into the Queue is of type T and the tail is a List of type T. Also note that as this is an immutable Queue when you add something to this queue a new copy of the queue is created containing the existing data plus the new element. Of course, the type of the push method is T.

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figi_HTML.gif]

The Queue class creates a new Queue when a value is added to the Queue, returns a new Queue class (with the current head removed) in response to a dequeue and provides a peek operation to see what is currently at the head of the queue.
To use this class we can specify the concrete type such as String when we create an instance. For example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figj_HTML.gif]

This is used in the following program listing to create a Queue which is then processed using peek and dequeue.

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figk_HTML.gif]

Again the result is that the placeholder ‘T’ has been replaced within the instance of the Queue class by the concrete type String. Thus the type of the head property is String, the type of the tail is List[String] and the type of the parameter ‘x’ in the enqueue method is String as is the type returned by the dequeue method.
Note that Scala could have inferred the type being used with the myQueue class; thus we could also have written:

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figl_HTML.gif]

This would also have been a Queue instance parameterised by the type String.
We can actually create a Queue parameterised by Int, Boolean, Double or any user-defined type such as Person. For example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figm_HTML.gif]

28.4 Variance
An important question to consider when looking at generic types is how are subtypes (such as sub classes or sub traits) treated with respect to classes that have been parameterised by a parent type. For example, if we have a Set that can hold Persons, should it be able to hold references to instances of the class Employee if it is a subtype of Person? This subject is referred to as variance and within a type system in a programming language a type rule is	Covariant if it preserves the ordering of types from more specific ones to more generic ones.

	Contravariant if it reverses the ordering.

	Invariant if neither of these applies.

In Scala, the default for generic types is invariance—that is given a type Person and a subtype Employee MyQueue[Employee] is not a subtype of MyQueue[Employee] and thus it is not possible to assign a reference to a variable of type MyQueue[Employee] to a variable of type MyQueue[Person]. For example, the following listing illustrates an attempt to do just that. However, the compiler will indicate that there is a compilation problem at line 12 when we try and assign s2–s1. This would still be true if we used a built-in type such as ListBuffer or ArrayBuffer.

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Fign_HTML.gif]

However, you can override this limitation with what are known as variance annotations. When we define our generic types we can indicate whether we would like them to be covariant or contravariant using either a ‘+’ or a ‘−‘before the type placeholder. For example,	Queue[+ T](…){…} indicates covariant where Queue[String] is considered a subtype of Queue[AnyRef]

	Queue[−T](…){…} indicates contravariance where Queue[AnyRef] would be considered a super type of Queue[String].

Using these we can control whether we wish MyQueue[Employee] to be a subtype of MyQueue[Person] or not.
28.5 Lower and Upper Bounds
If you want to limit the types that can be used for T or any supertype of T then you can use a lower bound on the type specification. For example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figo_HTML.gif]

In this case if we try to enqueue an item then the type of this item must be of type T or a super type of T. Thus if we have a queue of Employees this would allow us to enqueue a Person to the Queue (although the resulting Queue only guarantee that it holds references to Person objects (or subtypes of Person).
If you want to limit the types that can be used with T or any subclass of T then you can use an upper bound. For example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figp_HTML.gif]

28.6 Combining Variance and Bounds
We can combine variable and bounds together to create flexible containers, for example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figq_HTML.gif]

This class, the FlexiQueue class indicates that the type T will be treated covariantly and that the methods enqueue and dequeue have lower bounds indicating that the type T and its super types may be used with these methods. Thus if we create a FlexiQueue of Employees and then subsequently enqueue a Person this will return a FlexiQueue of Person types. This scenario is represented by the following listing:

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figr_HTML.gif]

The interesting thing to note is that type inferred by Scala for q1 and q2:	q1 holds a reference to a FlexiQueue[Employee] type of instance.

	q2 holds a reference to a FlexiQueue[Person] type of instance.

This of course makes sense because when we first created the FlexiQueue we could guarantee that all the elements in the queue were Employees. However once we added a Person to the FlexiQueue, the only thing we could now guarantee is that the contents of the queue were now at least Person instance (although others may be Employee instances).
You can also combine lower or upper bounds with specific types and covariance or contravariance. For example, if you wish to indicate that the type to be used should be a Person or a subtype of Person then you can do so using the Upper bound limit and the type Person with a covariant annotation, for example

 [image: ../images/323629_2_En_28_Chapter/323629_2_En_28_Figs_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_29

29. Further Language Constructs

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

29.1 Introduction
This chapter introduces a number of new concepts. The first is the use of implicit. Implicit facilities are a range of language facilities that provide implicit conversions between one type and another (typically in order to access some functionality or to provide compatibility between types). This chapter then introduces Scala annotations (a form of meta data for types), Enumerations and lazy evaluation.
29.2 Implicit Conversions
Explicit conversions are achieved programmatically using conversion methods and functions. An example of an explicit conversion is the way in which a string can be converted to an Int using the toInt function. For example:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figa_HTML.gif]

The val s holds a reference to a String containing the characters ‘3’ and ‘2’. Using the toInt operation we can convert it into the integer 32, which is stored in the val ‘i’ (which we have explicitly declared as an Int although this is not actually necessary as Scala can infer the type of i). The result of this program is that the integer 32 is printed out.
Implicit conversions, by contrast, are conversions from one type to another type that happens automatically. Scala supports the idea of implicit conversions by looking for any available, appropriate conversion functions when it finds that the type made available does not match the type required. For example, if a function or method required an integer and the programmer provided a string, Scala would look to see if there was an appropriate conversion method available (within scope) that could be used to convert a string into an integer.
For a method or function to be used in this way it must be marked with the keyword implicit. This means that only those methods marked by the developer as being suitable to be used with an implicit conversion can be used in this way.
Implicit conversion methods and functions are a very useful way of extending the types that a library of code can work with. For example, you cannot extend the class Integer, but in Scala you can extend the concept of an Integer, for example, what if you want to be able to use a ‘square’ operator to square any integer value. There is no support in the current Integer class for this, but we can add it. This can be done by creating a new class, the IntOperations class, and providing an implicit converter that converts from a standard Integer into an IntOperations class. For example:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figb_HTML.gif]

The key here is that the intToIntOperations method is marked as being implicit and thus can be used when an implicit conversion is required.
At one level we have defined a new class that builds on an Integer and allows that Integer to be squared. It also provides a method that allows a string to be converted into an IntOperations instance. This code could be used as shown below:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figc_HTML.gif]

This would result in the following output:

 25

However, this does not meet the proposed aim described earlier. We have not extended the concept of an Integer. However, the following example appears to suggest that we have done exactly that:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figd_HTML.gif]

In this case the Integer “5” does not have an operation ‘square’ defined for it. However, Scala looks to see if there is an implicit method available that can convert an Integer into a type that does support the ‘square’ operation. If the intToIntOperations method is in scope (e.g. because it has been imported), then Scala can use that method to convert the Integer ‘5’ into a IntOperations instance and then invoke the ‘*’ operator on it. As the return type of the ‘*’ method is a String the val result holds a String. Thus it appears that Strings now support the ‘*’ operator. The result of printing out result is again:

 25

Implicit conversions can be very powerful; however, you should be careful how and when you use implicit conversions as there can be unintended consequences. It is therefore important to manage the visibility of your implicit conversion methods appropriately.
29.3 Implicit Parameters
An implicit parameter is a parameter to a method, function or constructor that is marked as implicit. Such a parameter does not need to have been provided by the caller. Instead, if an implicit parameter is missing when the method is invoked, Scala will attempt to provide an appropriate value. It does this by looking at the set of variables currently in scope and attempts to find one that has been marked as implicit and is of the right type (or that can be implicitly converted to the right type).
Note that this is not the same as providing a default value for a parameter, rather it provides a way for Scala to find suitable parameters from those that are currently in scope. That is, the compiler will search for an implicit value defined within the current scope (according to the resolution rules). Implicit parameters are very good for simplifying an API by providing values that can be imported and used when the programmer does not want (or need) to provide them.
To explore implicit parameters, we will use the following sample code:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Fige_HTML.gif]

The printer method defines two parameter lists with the second parameter list containing a single implicit parameter ‘i’:
The printer method can now be called within 1 or 2 arguments (as long as an implicit variable is available to provide the second parameter). Thus we can call the printer function in the following ways:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figf_HTML.gif]

The first invocation of printer passes in the string “John” and the integer 4. The output of this is

 JohnJohnJohnJohn

The second invocation again passes in the string “John”, but Scala looks for an implicit argument to provide for the second parameter list. If none is available, a compilation error will be generated. In this case a definition of an implicit val integer ‘v’ is in scope:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figg_HTML.gif]

Thus Scala uses the value in ‘v’ as the value to use for the second parameter which means that the second invocation of printer is the same as writing (printer(“John”)(2)), with the result that the output generated is:

 JohnJohn

Defining a val or var (or indeed a method that will supply an appropriate value) as implicit means that the value held will be considered during any implicit resolution. However, you should note that an explicit invocation would always override an implicit value.
There are some restrictions on implicit parameters, including:	There can only be a single implicit keyword per method

	The implicit parameter must be at the start of a parameter list (although there can be multiple parameter lists)

	When the implicit keyword is used with a parameter list, then it makes all values of that parameter list implicit

	If there are multiple parameter lists, then only the last one may be implicit.

29.4 Implicit Objects
It is also possible to have a companion object that contains appropriate implicit values or implicit conversion method. Scala will search companion objects for implicit values or conversion methods/functions. This is a very useful feature and can be used for building implicit adapters that convert one type to another.
For example, in the following listing a trait LabelMaker has a companion object LabelMaker. This companion object defines two things. The first is an AddressLabelMaker inner object. This AddressLabelMaker is a subtype of the LabelMaker trait. It defines a method output that takes an Address instance and returns a string representing the Address as a Label. It is also marked as an implicit object and thus can be used whenever an implicit value is required.

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figh_HTML.gif]

The other method defined by the companion object LabelMaker is label. This method is a generic method which defines the generic type ‘T’ as the parameter type for the single parameter in the first parameter list. It then specifies an implicit parameter in the second parameter list. This second parameter requires an instance of r object that is a type of LabelMaker. This label maker is used to convert the parameter ‘t’ into a label. Any client of the LabelMaker can either call the printLabel using the two parameter lists, for example:

 label(address)(myLabelMaker)

or they can call it with a single parameter list, for example:

 label(address)

In this latter case, Scala will look within the current context to see if there is an implicit value that can be used for the required second parameter. If there is, it will use it; if there is not, then the code will not compile.
In the test application presented below, we are importing the LabelMaker definitions into the Test object. Note that we have used the import statement within the body of the Test object. This means that the properties, methods and functions defined on the LabelMaker concept will only be directly accessible within Test. Also note that the LabelMaker concept is comprised of the LabelMaker Trait and the LabelMaker companion object, and thus, the contents of both are imported at this point. The Test object creates an Address to use and then calls the println function passing in the result returned from the label method. Note that it is the single parameter list version that is being invoked here, and thus, Scala looks for an implicit value to use for the second parameter list for the LabelMaker. As the LabelMaker object has been imported it finds an implicit object AddressLabelMaker that it can use and thus the second parameter is bound to the AddressLabelMaker.

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figi_HTML.gif]

The result of executing this program is shown in Fig. 29.1.[image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Fig1_HTML.gif]
Fig. 29.1Output from the LabelMaker test application

29.5 Implicit Classes
Implicit classes (which were introduced in Scala 2.10) can be used to automatically provide a factory conversion function that will convert a given type into the implicit class type. That is, using the implicit keyword in front of the class definition causes Scala to create a factory method that will convert another type of object into an instance of the implicit class.
Classes annotated with the implicit keyword are referred to as implicit classes. There are a set of restrictions on implicit class that must be met, and these are:	1.All implicit classes must have a primary constructor with exactly one argument in its first parameter list (although it can have additional parameter lists that may include additional implicit parameters).

	2.Implicit class cannot be top-level classes, and they must be contained within another type (but may be defined within an object, a trait or another class).

	3.There cannot be any method, member or object in scope with the same name as the implicit class.

For example, in the following listing the implicit inner class RandomString makes its primary constructor available for implicit conversions. Thus if we need to convert a string into a RandomString in order to invoke the random method, then the RandomString will be invoked by creating a new instance of the RandomString based on the original string (which is passed in the value required by the single parameter constructor).

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figj_HTML.gif]

The compiler effectively converts this into the following:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figk_HTML.gif]

The above has the same behaviour as the implicit class—although the implicit class is both more concise and simpler to understand.
This Util class and its implicit inner class RandomString can be used in the following way:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figl_HTML.gif]

Note that again although the Util object is imported at the top of the file the RandomString implicit class is only imported (without qualification) within the RamdomStringApp object. This means that the string “The_Great_Big_Scala_World” is implicitly converted into a RandomString using the RandomString constructor so that the random method can be invoked on that instance.
In this case the integer 6 is passed into the random method and a random string is generated from the contents of the original string. The end result is that the String “The_Great_Big_Scala_World” is used to generate a random string such as the string “dS_WS_” below, as illustrated in Fig. 29.2.[image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Fig2_HTML.gif]
Fig. 29.2Using the implicit class

29.6 Scala Annotations
Annotations are meta data about program code; that is, they provide additional information about a class, object, trait, method, function, parameter, etc., to the compiler and to the runtime environment within which the code executes. Scala is not the only programming language to have annotations (or annotation like constructs). Both Java and C# support annotation style constructs.
In general annotations are used to provide:

 	Directives to the compiler

	Generating additional material—Scaladoc

	Pretty printing

	Checking for common errors

	Information to third-party frameworks.

In Scala annotations can be applied to:	vals, vars, defs, classes, objects, traits, types and expressions

Basic Scala annotations have the format:

 @<annotation-name>

For example:

 @deprecated

 class Author {…}

Annotations with parameters have round brackets ‘(..)’ and can take a comma separated list of expressions, for example:

 @SerialVersionUID(1L)

Currently there is a range of annotations that can be used as shown in Table 29.1.Table 29.1Annotations in Scala

	Annotation
	Meaning

	scala.SerialVersionUID
	It indicates serial version UID value. A serial version unique ID is used to determine whether a serialised instance is compatible with the class that will used when the instance is deserialised. If the number associated with the class is the same as that stored with the instance, then they are compatible. If they are not the same, then a serialisation exception is thrown

	scala.serializable
	This annotation designates the class to which it is applied as serializable

	scala.cloneable
	It indicates that the instance of the associated type can be cloned (copied)

	scala.deprecated
	It indicates that the associated type or construct is deprecated. This means that the type or construct should no longer be used and (typically) alternatives have been provided

	scala.inline
	It indicates that compiler should try to inline annotated method

	scala.native
	Type checking is present, but implementation will be native

	scala.remote
	It indicates can be accessed remotely

	scala.throws
	It indicates that a method throws a checked exception

	scala.transient
	It indicates field is transient

	scala.reflect.BeanProperty
	It adds setter and getter methods to a field

	scala.volatile
	This annotation allows programmers to use mutable state in concurrent programs

	scala.unchecked
	This annotation gets applied to a selector in a match expression. If present, exhaustiveness warnings for that expression will be suppressed

The following listing illustrates a single class which has a number of annotations applied to it. Note that more than one annotation can be applied to a particular program element. In this case the class Person has two annotations applied, @SerialVersionUID and @deprecated. In addition the method toString has been marked with the @inline annotation.

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figm_HTML.gif]

29.7 Type Declarations
A type declaration can be used to create a new type or provide an alias to an existing type. It can also be used as a way of defining an abstract type that must be provided at a later date. It is particularly useful as a way of proving a more semantically meaningful name for a generic type. Types are defined using the keyword type; for example, a type can be defined based on an existing type as follows:

 type T:=String

Alternatively a type declaration can be based on a function signature:

 type F=Int=>String

which is a very useful way of specifying a meaningful name for such a signature.
A type can also be an abstract declaration:

 type T//actual type to be supplied in sub type

in which case the concrete type used with T must be provided in a subtype (for classes) or in the class (or object) that the trait is being mixed into.
An abstract type may also have a bound that is used to restrict the range of concrete types that can be used with it. For example:

 type T<: Transport

Thus the abstract type ‘T’ has an upper bound of Transport. This means that the concrete type used in a class or object must either be of type Transport or a subtype of Transport.
Examples of the above are shown in the following listing:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Fign_HTML.gif]

29.8 Enumerations
There is a type Enumeration in Scala. This type is a trait that defines the core concepts of an Enumeration. An enumeration is a collection of entities that represent a complete, ordered set of all of the entities in that set. For example, the days of the week could be represented by an Enumeration as there is a finite set of days in the (working) week.
In Scala an enumerated set is an object that mixes in the trait Enumeration and defines the vals that will form the set of values that comprise that enumeration. For example, the days of the (working) week enumeration could be defined as follows:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figo_HTML.gif]

Note that each of the val in the enumeration is of type Value and is represented by a Value instance. Because all of the values in the enumeration are of the same type, a shorthand form can be used to define them, as follows:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figp_HTML.gif]

Here both Saturday and Sunday are values of the enumeration Weekend and both are represented by instances of Value.
The Value of an enumeration entry is actually an inner class of the Enumeration trait. The Value inner class:	has an id—the value for this element of the enumeration. Note that enumerations are Zero based by default and thus the first element in an enumeration has the value 1.

	provides numerous methods +, <, equals, etc.

	defines a number of implicit methods.

Each call to a Value method adds a new unique value to the enumeration set where the id (or value) is incremented by one. Thus in the above example, Monday has id0, Tuesday the id1, Wednesday the id2, etc.
Once we have defined the enumeration it can be imported into other code using the import statement. Once it is imported then it can be used to provide values for variables, etc. For example:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figq_HTML.gif]

In the above code the DaysOfWeek enumeration has been imported and the enumeration element Monday has been used for the value of the val today. We then compare the value of today to see if it less than the value for Friday. As an enumeration is an ordered set there is an ordering to the element in the set and thus we can perform such comparisons. The result of executing this program is shown in Fig. 29.3. As you can see the value of today is printed as Monday, the string representation of an element of an enumeration is the name of the element (and not the underlying id).[image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Fig3_HTML.gif]
Fig. 29.3Output from enumeration

In Scala is it also possible to import the values defined within an enumeration so that they can be used directly (without the need to prefix them with the name of the Enumeration). This can be done by directly importing the contents of the enumeration. For example:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figr_HTML.gif]

It is now possible to use the Enumeration values directly, for example:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figs_HTML.gif]

Note that we have imported the enumeration inside the definition of SampleApp, and thus, the enumerated values are only directly visible within the scope of SampleApp.
It is also possible to obtain all of the values in an Enumeration using the values property of the enumeration. For example, to print out all of the values in the DaysOfWeek enumeration we can:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figt_HTML.gif]

This results in the output shown in Fig. 29.4.[image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Fig4_HTML.gif]
Fig. 29.4Output from the Test2 program

If you wish you can of course get hold of the underlying id of each of the values in an Enumeration. This is done by accessing the readonly id property of any value within the enumeration. For example, to obtain the id of Monday we can:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figu_HTML.gif]

This also means that it is possible to access a specific value of an enumeration using the id. Referencing the Enumeration and specifying the index to use as a parameter to a factory function that returns the appropriate value do this. For example:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figv_HTML.gif]

In the above code, we access the value Saturday using the index ‘0’.
It is also possible to define your own ids for the value in the enumeration (i.e. they do not need to start Zero and be incremented by one). For example, in the following listing the Direction enumeration contains four values for North, South, East and West with the degrees used to represent these compass points used as the value of each element in the enumeration. Note that the value to use as the id is used with the factory constructor for the Value inner class.

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figw_HTML.gif]

As before it is possible to access the id of the value as well as the value itself:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figx_HTML.gif]

The result of running this program is shown in Fig. 29.5. In this figure you can see that the result of printing the enumerated value is East but the id of this value is now 90.[image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Fig5_HTML.gif]
Fig. 29.5Using a custom value

Note that you can access the custom values in exactly the same way as you can access the default index values. You can therefore specify the enumerated element using values such as 0, 90, 180 and 270:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figy_HTML.gif]

However, values are not restricted to integers as indexes. It is also possible to define values based on Strings. These are referred to as named values. In the following example the strings “n”, “e”, “s” and “e” are used to uniquely name (or identify) the individual members of the Enumeration.

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figz_HTML.gif]

As before we can access the members of the enumeration using North, East, West and South or using their names such as “n”. However to do this we use an accessor function on the enumeration called withName. For example:

 [image: ../images/323629_2_En_29_Chapter/323629_2_En_29_Figaa_HTML.gif]

One issue with the examples we have looked at so far is that the type of the members of the enumeration is Value. Thus if we wish to create properties or functions that work with the values of the enumeration the specified type will be Value. For example, the type of the parameter today is Value:

 	

 val today

 =

 DaysOfWeek.Monday

	

 println(today)

Thus if we wrote a method to take this value and print it we would write:

 def printDay(d: Value)

 =

 println(d)

While this is legal Scala it is not very meaningful to a human reader of the code. There is some semantic meaning that has been lost from the Enumeration to the inner Value. It is thus common to find that a recurring idiom is present within an Enumeration. This idiom defines a new type with a more meaningful alias for Value that can be used with clients of the enumeration. This type is defined within the scope of the Enumeration and thus does not pollute the namespace of a system. For example within the Enumeration DaysOfWorkingWeek we have defined a new type called Day that is an alias for Value. Monday, Tuesday, Wednesday, etc., are still instances of the inner class Value. However, we can refer to this type either through the name Value or the name Day.
Thus given the definition of the Enumeration DaysOfWorkingWeek:

 	

 object DaysOfWorkingWeek extends Enumeration {

	

 type Day

 =

 Value

	

 val Monday, Tuesday, Wednesday, Thursday, Friday

 =

 Value

	

 }

We can now import the contents of the Enumeration and directly refer to the type Day as well as the values Monday, Tuesday, Wednesday, etc. Thus the parameter to the function printDay can now be Day (rather than Value):

 	

 import DaysOfWorkingWeek._

	

 def printDay(d: Day)

 =

 println(d)

29.9 Lazy Evaluation
Scala possesses the ability to mark a val or var as lazy; for example, the following standard definition of val is evaluated immediately:

 val x

 =

 15

However, you can use the prefix lazy to indicate that the val should only be evaluated the first time it is accessed:

 lazy val x

 =

 15

This can be used to improve the performance of a system where some resource is expensive to create (either in terms of time and/or resources) but is only infrequently required.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_30

30. Exception Handling

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

30.1 Introduction
This chapter considers exception handling and how it is implemented in Scala. You are introduced to the object model of exception handling, to the throwing and catching of exceptions, and how to define new exceptions and exception-specific constructs.
30.2 What Is an Exception?

 In Scala, everything is an instance of a class, although we have Value Classes and Reference Classes. Exceptions and exception handling relate to reference (Table 30.1).
Table 30.1Terms used in exception handling

	Exception
	An error that is generated at runtime

	Raising an exception
	Generating a new exception

	Throwing an exception
	Triggering a generated exception

	Handling an exception
	Processing code that deals with the error

	Handler
	The code that deals with the error (referred to as the
 catch
 block)

	Signal
	A particular type of exception (such as out of bounds or divide by Zero)

All exceptions in Scala must extend the (Java) class
 Throwable
 or one of its subclasses, which allows an exception to be thrown or raised. Figure 30.1 presents the Exception class hierarchy.[image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Fig1_HTML.gif]
Fig. 30.1Part of the Exception class hierarchy

 The
 Throwable
 class has two subclasses:
 Error
 and
 Exception
 . Errors are exceptions generated at runtime from which it is unlikely that a program can recover (such as out of memory errors), whereas Exceptions are issues that your program should be able to deal with (such as attempting to read from the wrong file).
Unlike Java which has

two types of
 Exception
 subclass (one for checked or managed exceptions and one for unchecked or runtime exceptions) Scala only has one type of Exception. These are in Java terminology unchecked exceptions—meaning that you can handle them if you wish but the compiler will not check to see that you have handled them.

 An exception can be thrown explicitly by your code or implicitly by the operations you perform. In either case, an exception is an object, and you must instantiate it before you do anything with it. You do this by using the
 throw
 operator. This is used to throw an instance of the appropriate exception. For example, to raise (and then throw) an
 ArithmeticException
 for a divide by Zero error, we write:

 throw new ArithmeticException(“Division By Zero”)

The exception is caught by the first handler (
 try
 block) that is defined on the
 ArithmeticException
 (or one of its parent exception types).
We can also define new exceptions based on existing Exception classes. For example,

 class RottenEggException extends Exception

 …

 throw new RottenEggException

The class
 RottenEggException
 directly extends the
 java.lang.Exception
 class. It thus inherits all the behaviour of an exception and can be instantiated using the keyword new and thrown using the keyword throw in exactly the same way as any built-in exception class.
30.3 What Is Exception Handling?

 An exception moves the flow of control from one place to another. In most situations, this is because a problem occurs which cannot be handled locally, but can be handled in another part of the system. The problem is usually some sort of error (such as dividing by Zero), although it can be any problem (e.g. identifying that the postcode specified with an address does not match). The purpose of an exception, therefore, is to handle an error condition when it happens at runtime.
It is worth considering why you should wish to handle an exception; after all, the system does not allow an error to go unnoticed. For example, if we try to divide by Zero, then the system generates an error. This may mean that the user has entered an incorrect value, and we do not want users to be presented with a dialog suggesting that they enter the system debugger. We can use exceptions to force the user to correct the mistake and rerun the calculation.
Different types of error produce different types of exception. For example, if the error is caused by dividing an integer by Zero, then the exception is a divide by Zero exception. The type of exception is identified by objects called signals which possess exception handlers. Each handler can deal with exceptions associated with its class of signal (and its subclasses).
An exception is initiated when it is thrown. The system searches back up the execution stack until it finds a handler which can deal with the exception (i.e. it searches for a
 try
 block of the appropriate type). The associated handler then processes the exception. This may involve performing some remedial action or terminating the current execution in a controlled manner. In some cases, it may be possible to restart executing the code.
As a handler can only deal with an exception of a specified class (or subclass), an exception may pass through a number of other blocks before it finds one that can process it.
Figure 30.2 illustrates a situation in which a divide by Zero exception is raised. This exception is passed up the execution stack where it encounters an exception handler defined for an End of File exception. This handler cannot handle the divide by Zero exception and so it is passed further up the execution stack. It then encounters a handler for an out of memory exception. Again, it cannot deal with a divide by Zero exception and the exception is passed further up the execution stack until it finds a handler defined for the divide by Zero exception. This handler then processes the exception.[image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Fig2_HTML.gif]
Fig. 30.2Searching through the execution stack

30.4 Throwing an Exception
Unlike Java, Scala methods and functions do not need to specify whether they throw exceptions or not. Thus any type of operation could throw an exception if a problem occurs. When an exception is thrown there are three things that can be done:	Let the exception propagate back/pass back up the call chain.

	Catch the exception and handle it within the method.

	Catch the exception and map it onto your own exceptions by throwing a new exception.

Passing the exception back up the execution stack is acceptable as long as you know that it will be dealt with sensibly at some point. Scala does not force you either to handle the exception locally or to pass it back up the execution stack explicitly. Instead you must decide how to handle an exception and document which methods throw which exceptions. In general you must consider carefully whether to throw or handle the exception and such handling of exceptions should be part of the design of your software and not an afterthought.
30.5 Catching an Exception

 You can catch an exception by implementing the try-catch-finally construct. This construct is broken into three parts:	Try block
The
 try
 block indicates the code that is to be monitored for the exceptions listed in the
 catch
 expressions.

	Catch expressions
You can use an optional
 catch
 expression to indicate what to do when certain classes of exception occur (e.g. resolve the problem or generate a warning message).

	Finally block
The optional
 finally
 block runs after the
 try
 block exits (whether or not this is due to an exception being raised). You can use it to clean up any resources, close files, etc.

This construct may at first seem confusing; however, once you have worked with it for a while you will find it less daunting. Typically, you use the same incantation of the construct; concentrate on the details of the code within the
 try
 block and do not worry about the exception handling mechanism.
The basic construct is illustrated below:

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figa_HTML.gif]

In the above we try and make an Omlet. The first thing we do when we enter the try block is print out the message “Start Cooking”. We then invoke the
 makeAnOmlet
 method. However if something goes wrong while invoking the
 makeAnOmlet
 method then we will move straight to the catch block (and do not execute the rest of the
 makeAnOmlet
 method and the second
 println
 statement). If no problem occurs then we will print out the “Omlette Made” string. In both cases once processing of the try (and optionally catch) blocks finishes we execute the finally block (which is always run) and print out the “Finished Cooking” string.
If a problem does occur in the main try block and processing moves to the catch block, we then use pattern matching to compare the type of exception raised with the types listed in the order they are defined in. Thus the first comparison is with the
 RottenEggException
 type. If what we have is a type of
 RottenEggException
 (or a subclass of
 RottenEggException
), then the behaviour associated with that check is performed. Note that the actual exception is available in the variable ex (although you can call this variable any name you like). If the type of exception is not a
 RottenEggException,
 then we move onto the next test and check to see if what we have is an
 Exception
 or a subclass of
 Exception
 . If it is, then we process the associated behaviour. Due to the fact that consideration is given to subclass of the type of exception listed, more specific Exceptions need to come before more generic exceptions.
The following example uses the try-catch-finally construct to read data from a file and process it. The
 try
 block incorporates the file access code, and the code in the
 catch
 block states what should happen if a
 FileNotFoundException
 is raised. In this case, it prints a message. The message in the
 finally
 block is always printed. It brings together many of the aspects of the Scala language. It includes a
 ListBuffer
 , a
 match
 statement, the use of the
 Option
 wrapper and
 for
 loops. It also uses a Scala
 Source
 to read information from a file.

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figb_HTML.gif]

The Grades application reads data from a file called
 input.data
 that has the following format:	

 Bob 45

	

 Paul 32

	

 Peter 76

	

 Mike 29

	

 John 56

The
 loadData
 method uses the
 scala.io.Source
 object to access the file indicated by the filename parameter. A factory style method (
 fromFile
) is used to create an appropriate source instance. This instance is then used to obtain the contents of the file (using getLines) and then a
 foreach
 loop is used to process each line read in turn. This is processed within the function specified in the body of the
 foreach
 where each line is added to the
 ListBuffer
 marks.
This code is wrapped up in a
 try
 block. If this code raises a
 FileNotFoundException
 , the message “Whoops we have a problem” is printed. Once the
 try
 block is processed, the
 finally
 block prints out “Finished Reading Data”. It then checks to see if the source has been set or not. If it has been set, then it closes the source. If it was not set, then it prints out a message stating that there was a problem with the source.
The
 calculateGrades
 method loads in the data file (using
 loadData
) and prints out the data in the marks
 ListBuffer
 . Figure 30.3 shows the result of executing the Grades application.
[image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Fig3_HTML.gif]
Fig. 30.3Output from the file processing application

30.6 Try Block Returns a Value
In Scala most statements are actually expressions that return a value. The
 try-catch-finally
 expression is no different. You can assign the value returned by the try block (or the catch block if an error occurs) to a val or var. For example, the following listing reads the contents of a file into the val content or throws an appropriate exception. If an exception is thrown, then the value assigned is determined by which exception it is. If the
 FileNotFoundException
 is thrown, then the string “No file” is returned by the try-catch construct. If it is the
 IOException
 which is thrown, then it is the string “General IO issue” which is returned. In all cases the string returned is assigned to the val
 contents
 and is then printed out:

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figc_HTML.gif]

Note that the
 FileNotFoundException
 is a subtype of the
 IOException
 and thus must come before the
 FileNotFoundException
 . Also note that the
 mkString
 method converts an array of strings into a single string (and in this case uses ‘\n’ or carriage return) to separate the lines within the String.
30.7 Defining an Exception
As mentioned earlier in this chapter,

 you can define your own exceptions, which can give you more control over what happens in particular circumstances. To define an exception, you create a subclass of the
 Exception
 class or one of its subclasses. For example, to define a
 DivideByZeroException
 , we can extend the
 Exception
 class and generate an appropriate message:

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figd_HTML.gif]

This class explicitly handles divide by Zero exceptions. We could have made it a subclass of
 ArithmeticException
 , however we have decided to extend Exception here to illustrate that it is the programmer’s choice which exception should be extended.
The following code is an example of how we might use
 DivideByZeroException:

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Fige_HTML.gif]

In this example, we check to see if the divisor is Zero. If it is, we create a new instance of the
 DivideByZeroException
 class and throw it. The
 test
 method delegates responsibility for this exception to the calling method (in this case, the main method). The
 main
 method catches the exception and prints a message.
30.8 A More Functional Approach
For those of you who are familiar with exception handling in other languages such as Java, C# you will see that Scala’s try-catch-finally construct is very similar. However, it is not without its drawbacks. The need to work with some resources (such as source, database connections or connections to a file) in multiple places can result in some awkward programming solutions. In general there are two key problems with this approach:	The syntax results in scoping issues leading to unnecessarily complicated constructs as well as the need to nest try-catch block within either the try, catch or finally part of the top-level construct!

	Multi-threaded code can be difficult to deal with using the try-catch-finally construct. For example, how should you react to an =exception which occurs in a separate thread but which impacts the data being accessed? In fact the try-catch-finally construct primarily assumes that the exception is handled in the current thread (i.e the exception is completely handled within the thread in which it occurred). This is not ideal for a concurrent program and seems at odds with the Actor model implemented by Akka.

It can also be argued that the try-catch-finally approach is not particularly functional and is more procedural in nature. As Scala is a hybrid language this is not necessarily an issue in its own right, but it does highlight that alternative approaches can be developed based on the functional programming model.
An alternative approach is based on the	

 scala.util.control.Exception
 singleton object and associated Catch class.

This singleton object provides the catching method for handling exceptions that does not require the use of the try-catch-finally construct. In addition the associated
 Catch
 class provides the
 withApply
 method and the
 apply
 method. To see how the methods associated with
 scala.util.control.Exception
 can be used let us consider a simple try-catch-finally example:

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figf_HTML.gif]

The above example reads the contents of the file text.txt into the val
 contents
 (or stores the string “No file” or “General IO issue” into content if an exception is thrown).
We could rewrite this using the
 scala.util.control.Exception
 object method
 catching
 as follows:

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figg_HTML.gif]

The
 catching
 method returns an instance of the
 Catch
 class (the Catch class is a ‘nested’ member class of the
 scala.util.control
). Every object of this class captures the exception handling logic usually represented by the catch (and the optional finally) parts of the try-catch-finally construct. The
 fileCatch
 val is of type Catch and can be used to execute behaviour which we want to wrap in try-catch style processing. In the above example, the
 fileCatch
 val is used to execute the process of reading the contents of the file test.txt. The strings in the val
 content
 are either the string lines in the file test.txt or the string “File Problem” if a
 FileNotFoundException
 or a IOException is thrown. In either case the string(s) in
 conent
 are printed out.
Note that we can import the catching method directly from the Exception object by importing:

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figh_HTML.gif]

which means that in the main body of the application we would not need to repeat
 Exception.catching
 ; instead we only need to use catching, for example,

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figi_HTML.gif]

Another variation on the processing of the Catch instance is to use the
 opt
 method. This method takes a code block as parameter and executes the code as we have seen before. However, the result is an
 Option
 wrapper that either wraps a value or returns
 None
 . This may be more appropriate where we do not want to provide a default value in the catching specification. We can the use standard
 Option
 functionality to obtain the value or retrieve a default value, etc. For example,

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figj_HTML.gif]

30.9 The Try Type
Scala 2.10 added a new type to the facilities available for processing exception. This is the
 scala.util.Try
 type. The
 Try
 type is intended to further enhance the handling of exceptions in a functional style in Scala. The
 Try
 type is a container that has one of two possible values: one of type
 Success
 and one of type
 Failure
 . The
 Failure
 instance holds the
 Throwable
 instance (the exception) that caused the code that was run to fail.
For example,

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figk_HTML.gif]

This example attempts to convert a string to an integer for the val i and the val j. The string used for i can be converted to an Int (the Int 123), but the string used for j cannot be converted into an integer. Thus the first expression should succeed, but the second should fail. The output of this program is:

 Success(123)

 Failure(java.lang.NumberFormatException: For input string: ”John”)

As you can see from this the value held in ‘i’ is a Success type but the value held in ‘j’ is a Failure type. The Failure also contains information about the problem that occurred and the value associated with it. To obtain the actual value from the Success wrapper you can use the method get, for example,

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figl_HTML.gif]

which would print the Int 123.
There are a number of useful features associated with the Try type. One of the most useful is the recover method. The recover method allows us to include logic to identify and recover from the exception that caused the
 failure
 of the
 Try
 behaviour. For example,

 [image: ../images/323629_2_En_30_Chapter/323629_2_En_30_Figm_HTML.gif]

In this case we are mimicking the try-catch behaviour where the catch behaviour provides an alternative value to use. Thus in this case if the string to be converted to an
 Int
 cannot be represented as an
 Int
 we will default to the value Zero.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_31

31. Akka Actors

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

31.1 Introduction
This chapter introduces the concept of an Actor as an approach to the development of concurrent programs. In particular we focus on the Scala Akka implementation of the Actor model based on release 2.5.x (the current release at the time of writing). Note that older versions of Scala also had their own scala.actor implementation of the Actor model—however this is now deprecated and the recommendation is to use the Akka implementation.
31.2 The Actor Model
The Actor model of concurrency (which dates from 1973) is based on the idea of having independent concurrent Actors that receive and send asynchronous messages and that perform some behaviour based on these message requests. These actors can hold their own state and behaviour. However, ideally only immutable data is exchanged between them. Therefore each actor is independent of all other actors and only performs some computation or processing based on a message sent to it. This is illustrated in Fig. 31.1.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig1_HTML.gif]
Fig. 31.1Actors communicating via asynchronous messages

The key idea underpinning the Actor model is that most of the problems with concurrency, from deadlocks to data corruption, result from having shared state. Thus in the Actor world there is no shared state (such as a concurrent producer–consumer queue). Instead, messages are sent between actors and these messages are queued in an inbox in a similar manner to email messages. The actors then respond to the messages as they get to them.
The Actor model has been used as the basis of a number of implementations including those in Erlang, the scala.actor framework and the Scala and Java Akka libraries. It is also used with the education system scratch.
The actor model consists of a few key principles:	No shared state.

	Lightweight processes.

	Asynchronous message passing.

	Buffering for incoming messages via an a inbox in which it receives messages.

	Message processing with pattern matching with each message being processed one at a time.

	No shared mutable data.

	No blocking operations.

	Any process can send a message to an actor.

	An actor does not do anything unless/until it receives a message.

Thus an actor is an independent flow of control running in its own thread or process. In many ways you can think of an actor as a thread of execution with extra features.
The fact that Actors do not share state means that you implement an actor as if it was a simple sequential process. This avoids a large number of the problems that result from shared state. It should be noted that in most Actor implementations it is actually possible to share state; it is just a very bad idea!
Within Scala there are actually two distinct implementations of the Actor model, these are the scala.actor framework and the akka.actor framework. In the rest of this chapter we will look at the latter of these two.
31.3 Some Terminology
The world of concurrent programming is full of terminology that you may not be familiar with. Some of those terms and concepts are outlined below:	
 Asynchronous versus synchronous invocations. Most of the method, function or procedure invocations you will have seen in programming represent synchronous invocations. A synchronous method or function call is one which blocks the calling code from executing until it returns. Such calls are typically within a single thread of execution. Asynchronous calls are ones where the flow of control immediately returns to the callee and the caller is able to execute in its own thread of execution, allowing both the caller and the call to continue processing.

	
 Non-blocking versus blocking code. Blocking code is a term used to describe the code running in one thread of execution, waiting for some activity to complete which causes one of more separate threads of execution to also be delayed. For example, if one thread is the producer of some data and other threads are the consumers of that data, then the consumer treads cannot continue until the producer generates the data for them to consume. In contrast, non-blocking means that no thread is able to indefinitely delay others.

	
 Concurrent versus parallel code. Concurrent code and parallel code are similar, but different in one significant aspect. Concurrency indicates that two or more activities are both making progress even though they might not be executing at the same point in time. This is typically achieved by continuously swapping competing processes between execution and non-execution. This process is repeated until at least one of the threads of execution (Threads) has completed their task. This may occur because two threads are sharing the same physical processor with each is being given a short time period in which to progress before the other gets a short time period to progress. The two threads are said to be sharing the processing time using a technique known as time slicing. Parallelism on the other hand implies that there are multiple processors available allowing each thread to execute on their own processor simultaneously.

31.4 Scala Threads
Underpining the Akka Actor model is the notation of a Thread. A Scala Thread is a pre-emptive lightweight process. Every thread (process) has an associated priority, and a Scala thread runs to completion unless a higher priority process attempts to gain control. Scala does not necessarily share the processor time amongst processes of the same priority (as this is the responsibility of the underlying JVM). Threads with a higher priority are executed before threads with a lower priority. A thread with a higher priority may interrupt a thread with a lower priority. By default, a process inherits the same priority as the process that spawned it.
A thread is a “lightweight” process because it does not possess its own address space and it may not be treated as a separate entity by the host operating system. Instead, it typically exists within a single virtual machine process using the same address space.
It is useful to get a clear idea of the difference between a thread (running within a single virtual machine process) and a multi-process system. The thread that is currently executing is termed the active thread. A thread can also be suspended (i.e. waiting to use the processor) or stopped (waiting for some resource).
You will find when reading about Akka Actors this term thread is used when considering how an Actor manages the requests it receives. For example, an Actor utilizes a single thread thus allowing it to process a single request at a time, to completion, before processing the next request. Alternatively, multiple Actors may use a pool of threads, so that they can process multiple requests via the multiple underling threads managed in the pool.
31.5 Akka Scala Actor Library
The Akka Actor library is an implementation of the Actor model. Note that there is both a version of this library for Java and for Scala. You therefore need to be careful if you are researching this library on the Web that you are looking at material for the Scala version.
At the time of writing the current version of this library is the Akka 2.2.3 release. Note that the 2.2 family of distributions are significantly different to those that predate them and you therefore also need to be careful that you are not looking at documentation related, for example, to the 2.1 release of the Akka library.
The Akka library is open source and is available under the Apache 2 licence. You can obtain it from the Akka home page (http://​akka.​io). If you wish to download the Akka library then you can do so from the Download page, which is available from the site shown in Fig. 31.2.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig2_HTML.gif]
Fig. 31.2Obtaining the Scala Akka library

Note that there are two downloads available: one is the LightBend (aka Typesafe) akka-quickstart-scala.zip distribution which includes the Akka library as well as other resources and templates.

Many projects will access the Akka libraries using a dependency management system such as Maven or Ivy. The examples in this chapter were written with Akka 2.5.4, and so this dependency can be added to your project:

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-actor_2.12</artifactId>

 <version>2.5.4</version>

 </dependency>

The Akka library is actually a very modular library. This is because it is comprised of different library jar files representing different features of the Akka system. If you are not using those features then you do not need to incorporate those library files. Some of the modules you might decide to use are presented below:	akka-actor—Classic Actors, Typed Actors, IO Actor, etc.

	config—used to handle configuration type tasks within the framework.

	akka-cluster—cluster membership management, elastic routers.

	akka-mailboxes-common—common infrastructure for implementing durable mailboxes.

The two parts of the library that we will be working with are the akka-actor and the config jars. It is these two jars that you need to find and add to your projects. Note that the names of the files are derived from the release of Scala that is targeted and the release number of Akka; for example in Fig. 31.3 the akka-actor file is actually called akka-actor_2.12-2.5.4.jar, that is it applies to Scala 2.12 and is release 2.5.4 of Akka.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig3_HTML.gif]
Fig. 31.3Akka library jar files

The library itself can also be downloaded from the Maven repository if required. If you do this directly then you will need to add the jars to your build path of your project within the Scala IDE as shown in Fig. 31.4.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig4_HTML.gif]
Fig. 31.4Setting the classpath properties for an Akka project in the Scala IDE

31.6 Concurrent Hello World
In this section we will look at two simple Akka-based programs. The first of these programs creates a simple Actor that can be sent messages. If the message sent is the string “Hello” then it will print out the message “Hello World”; if anything else (of any type) is sent to the actor then it will print out the string “Hello Whoever”.
To implement an Actor you must mix in the
 Actor
 trait. This trait requires that a single method
 receive
 is implemented. This method will be called when a message is available to be processed in the actor’s inbox. Locally the inbox is queue in which messages are added to the back of the queue and taken from the front of the queue. Each message is processed to completion before the next message is taken. This is shown in Fig. 31.5.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig5_HTML.gif]
Fig. 31.5Actor with an inbox and a receive method

The import statements for the example being discussed here are:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figa_HTML.gif]

It is important to take note of the package names as there is also an Actor type in the
 scala.actor
 package. If you import that type you will get compilation problems as it is not compatible with the Akka library.
The following listing illustrates how a simple actor called
 Greeter
 can be implemented:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figb_HTML.gif]

In this case, when the string “hello”: is received it will print out “Hello World”, while anything else (as indicated by the wild card ‘_’) will print out “Hello Whoever”. Notice that the
 receive
 method is implemented using case pattern matching, and thus, the Actor can handle different messages, different message types, etc., in different ways. If you want to be able to handle unknown messages then you need to have a default case as in the example above.
The test application that uses this
 Greeter
 actor is shown below:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figc_HTML.gif]

This test application goes through three steps in order to obtain a reference to the actor held in the val [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figd_HTML.gif]. The steps are:	1.
 Create a Props instance.
 Props
 is a configuration class used to specify the options to be used to create an actor. In this case it is specifying the class that defines the Actor (i.e. the
 Greeter
 class). This Props type can also be used to pass data to any constructor defined on the class (we will see this later).

	2.
 Access the ActorSystem. The Actor system is the element within the Akka framework that is responsible for creating top-level actors. These actors can create child actors, can respond to messages and can be stopped, restarted, etc. The
 ActorSystem
 is given a name so that multiple such systems can be created if required. However, note that the
 ActorSystem
 is a heavyweight object and you should try to only create one per application unless absolutely necessary.

	3.
 Create a new actor using actorOf. Using the actor system reference obtained in the previous step, the application creates a new actor based on the properties in props. The
 actorOf
 method is a factory method that creates new actors of the type specified by the props object. The type returned by the
 actorOf
 method is an
 ActorRef
 .

Once it has successfully created a new actor a series of message are sent to the actor. These mix strings, within an
 Int
 and a
 Boolean
 . They are handled by the
 receive
 method in turn. The method decides what to do with each message based on the pattern-matching case statements defined within it.
It should be noted that actor1 does not hold a reference to the actual actor instance. Instead it holds a reference to the Actor Incarnation. This is a wrapper around the current Actor Instance. For the most part this is transparent to the programmer. This structure is used to allow an actor that has exited its own underlying thread (or process) to resume processing. This is done within the Akka library by creating a new Actor instance and restarting it. However, as this is hidden inside the Actor Incarnation the programmer is not affected by this (Fig. 31.6).
[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig6_HTML.gif]
Fig. 31.6Role of the actor reference

The output generated by running the HelloworldAkkaTest is shown in Fig. 31.7.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig7_HTML.gif]
Fig. 31.7Output form the HelloworldAkkaTest application

31.7 Concurrent Actors
The example discussed in the previous section illustrates how an Akka Actor can be defined and how messages can be sent to an actor. However, it does not really capture the concurrency inherent in Actors. To illustrates this idea see the following listing presenting the
 Printer
 Actor. This Actor prints out different strings depending upon the messages it receives. However, it does each string 500 times. This means that if we have multiple instances of the
 Printer
 running concurrently, we should be able to observe a mixture of A, B, C and _ being printed out.

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fige_HTML.gif]

The sample program that uses this
 Printer
 Actor is shown below:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figf_HTML.gif]

In this program we again obtain a
 Props
 instance but this time for the class
 Printer
 . We then obtain the
 ActorSystem
 and then use this to crate the actors. In this case we create four actors. Each actor is an independent instance of the
 Printer
 Actor.
As you can see the version of
 actorOf
 used here takes the Props instance and a name string. The name parameter is optional. However as the name is used with log messages it may be helpful during debugging. Note if a given name is already in use then an exception will be thrown.
Once we have created the four actors each is sent a message. As the main application will run concurrently to the actors themselves, all four messages should be sent before the first actor has a chance to complete the printout 500 strings. We should therefore see a mixture of different strings being output. This is shown in Fig. 31.8.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig8_HTML.gif]
Fig. 31.8Output from multiple concurrent Akka Actors

From this we can see that the four Actors run concurrently, sharing the available processor, with output coming from Actors 1, 2 and 3 clearly marked by the “A’s, “B’s” and “C’s”. The output from actor 4 is indicated by the “_”s.
31.8 The Akka Actor API
The
 Actor
 trait we looked at in the last couple of sections only defines a single abstract method,
 receive
 , which must be implemented to define the behaviour of the Actor. However, several other facilities are provided by the trait which are presented below:	
 Self—a reference to the
 ActorRef
 of the actor.

	
 Sender—a reference to the sender of the message currently being processed by the Actor. Useful for returning results.

	
 Context—a reference to the actors execution context. This allows access to various facilities including the ability to create child actors (actors that execute under the control of the parent actor) and lifecycle operations.

	
 supervisorStrategy—this is used to allow a strategy to be defined that will control what should happen to child actors when various situations occur. This is discussed in the next chapter.

31.9 Actor Lifecycle
Each Actor can go through a number of states during its lifetime. This is illustrated in Fig. 31.9.[image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Fig9_HTML.gif]
Fig. 31.9Lifecycle of an Actor

An actor goes through the following states during its lifetime:	Does not exist—initially an actor does not exist.

	Actor is incarnated. When the
 actorOf
 method is called it assigns an incarnation of the actor described by the Props to a given path. A Path represents a route from the top-level location, via any parents, to the actor being created. If the actor is being created by the
 ActorSystem
 then it is a top-level actor. If it is being created by another actor then it is a child of that actor and its path is relative to the parent. An actor incarnation has a unique ID (a UID) and holds a reference to the current Actor Instance. Once the Actor Instance has been created from the actor incarnation then the
 prestart
 method is called on the actor instance. Note the fact that the Actor incarnation wraps the actor instance allows different actor instances to be used without the external references being aware of this.

	The lifecycle of the Actor incarnation ends when the actor is stopped. This can be done by called the
 stop
 method on the context. At that point the
 postStop
 method is called on the actor instance allowing for any clean-up operations to be performed. Once the actor has been stopped the name of the actor can be reused.

	If an actor throws an exception it can be restarted if the exception scenario can be handled. The restart involves creating a new Actor instance to run the concurrent behaviour wrapped inside the same Actor incarnation. The lifecycle methods
 preRestart
 and
 postRestart
 are available to handle suitable processing of this scenario. However, you should note that
 preRestart
 is called on the old actor instance and the
 postRestart
 is called on the new actor instance.

	Resume is an alternative to Restart. That is, whereas Restart is used to restart a clean internal actor instance, Resume can be used to continue with the internal Actor Instance (as long as the internal state of the actor is stable).

To illustrate some of these ideas the following simple
 LifecycleGreeter
 actor defines overrides for the
 preStart
 and
 postStop
 lifecycle methods. These methods merely print out a string in this example.
The Actor’s
 receive
 method is defined such that it will print out a message “Hello World” when it is sent the message “hello”. It will also print out “Hello Whoever” if sent any other string the “stop”. However, if sent the message string “stop”, it will use the context property of the actor to stop itself.
The associated
 LifecycleTest1
 application then sends three messages to the actor, “hello”, “Welcome” and “stop”:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figg_HTML.gif]

The output from this program is shown below:

 preStart

 Hello World

 Hello Whoever

 postStop

As you can see from this the
 prestart
 method is called before the actor starts processing the messages sent to it. It then processes each of the messages in turn. The final message causes the actor to stop, and thus, the
 postStop
 method is called.
31.10 Akka Configuration
The Akka system is configured via the
 ActorSystem
 . That is, all configuration information is provided to the
 ActorSystem
 object. This can be done by specifying a
 Config
 object or by relying on the default locations used by Akka. If you wish to use the default configuration files, then you have a choice of the following files:	application.conf

	application.json

	application.properties

These files are found in the root of the classpath. The Actor system merges information from these locations together to determine the default configuration information.
An example of a custom
 application.conf
 file is shown below. This example configures the information to be used by a TockTock actor.

 TickTock {

 howlong = 2

 Ticker {

 message : "Ping"

 }

 Tocker {

 message : "Pong"

 }

 }

This file can be loaded via the
 com.typesafe.config.ConfigFactory.load
 method. This method returns a
 Config
 object initialised using the default application files (e.g. application.config).
Alternatively you can explicitly create a
 Config
 instance. This is very flexible and allows you to load or specify any configuration information in any form. There are numerous factory methods that allow you to create
 config
 objects in different ways defined on the
 ConfigFactory
 object. For example, you can use the
 parseString
 method to create a
 config
 object based on the content of a string, for example:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figh_HTML.gif]

In the following example, the Actor System is configured using the
 ConfigFactory.load
 method. The system then provides access to this configuration information via the
 settings.config
 object. The
 config
 object has numerous methods available on it that allow the values held in the configuration to be retrieved. For example
 getInt
 can be used to retrieve an integer representing how long an application should run.

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figi_HTML.gif]
 When the actors are created the ticker message or the tocker message are retrieved as strings from the
 config
 object and used to initialise the
 TickActor
 or
 TockActor
 respectively.

The actual actor classes themselves are given below:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figj_HTML.gif]

Both these actors take a
 msg
 constructor parameter to be displayed when they receive a message they also send message between each other using the sender pseudo variable.
The output from this simple application is given below:

 Config(SimpleConfigObject({"TickTock":{"Ticker":

 {"message":"Ping"},"Tocker":{"message":"Pong"},"howlong":2},"akka…))

 Running for 2 seconds

 [INFO] […] [akka://mysystem/user/Tocker] Creating Tock Actor with msg:

 $msg

 [INFO] […] [akka://mysystem/user/Ticker] Creating TickActor with msg: Ping

 [INFO] […] [akka://mysystem/user/Ticker] Starting… Tick (Ping)

 [INFO] […] [akka://mysystem/user/Tocker] Pong

 [INFO] […] [akka://mysystem/user/Ticker] Ping

 [INFO] […] [akka://mysystem/user/Tocker] Pong

 [INFO] […] [akka://mysystem/user/Ticker] Ping

 [INFO] […] [akka://mysystem/user/Tocker] Message

It is possible to see from this the configuration information as well as its use in the application. Note that the
 config
 object also contains an extensive set of default values used by the Akka runtime.
31.11 Actor DSL
To make it easier to create simple Actors, the Akka library provides a domain-specific language (or DSL) specifically for their creation. For example, one off workers can be created very concisely using the
 Act
 trait. The
 Act
 trait is defined by the
 akka.actor.ActorDSL._
 type and includes supporting objects.
The implicit actor system serves as the
 ActorRefFactory
 required by the
 actor
 function when using the
 Act
 trait to create the actor. The
 actor
 function essentially uses the
 ActorOf
 functionality of the
 ActorSystem
 (or
 ActorContent
 if used inside an Actor) to create the new actor based on the
 Act
 trait. This is done by overriding the default behaviour of the
 Act
 traits
 become
 method. The overridden version of
 become
 essentially swaps the created Actors’
 receive
 method with that defined in the
 Act
 trait at runtime.
The following listing provides a simple example of creating a worker Actor:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figk_HTML.gif]

In this example the new
 Act
 instance defines the behaviour which will be used for the resulting actors
 receive
 method in the
 become
 function. Here if the string “A” is received, the actor will print out the string “hello”. After defining this actor the message “A” is sent to the reference held to that actor.
The output from this program is:

 Hello

The DSL also supports defining lifecycle behaviours. This is done using the
 whenStarting
 ,
 whenStopping
 ,
 whenFailing
 and
 whenRestarted
 functions, as shown below:

 [image: ../images/323629_2_En_31_Chapter/323629_2_En_31_Figl_HTML.gif]

The output from this program is:

 starting

 hello World

 Hello Whoever

 stopping

This is because the starting and stopping behaviours have been invoked but the failing and restarted ones have not.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_32

32. Further Akka Actors

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

32.1 Introduction
The previous chapter introduced the basic Akka Actor concepts and constructs. This chapter takes these concepts further looking at how a result can be returned by (obtained from) an Actor. It also looks at Actor hierarchies and Actor supervision.
32.2 Generating a Result from an Actor
So far all our examples have received a message and then performed some operation. This operation has not returned a result and thus this has not been an issue. However, there are many situations where we do require a result. If you look at the specification for
 receive
 you will see that it is actually a
 PartialFunction
 which returns
 Unit
 . Thus the
 receive
 method cannot return a value.
To return a result from an actor when it has finished processing a message, you can use the
 sender
 property to send a result back to the requesting actor. Note this assumes that the requester is also an Actor itself; however, the next section on Futures will look at how we can retrieve a result when the sender is not an actor.
In this example we are using a companion object to act as a factory for the generation of the
 Props
 object associated with the Actors. Thus the
 Calculator
 Actor has a
 Calculator
 companion object with a method
 props
 that returns the
 Props
 instance configured as appropriate for the actor. The calculator actor is listed below:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figa_HTML.gif]

The key element of interest here is the
 receive
 method. This has a case pattern matcher that will handle Ints. Within the body of the associated behaviour a calculation is performed based on the integer received. Once this calculation is completed the result is sent back to the Actor that installed the request using the
 sender
 which is always bound to the actor that issued the request (if the message sender was indeed an Actor). Thus:

 sender ! result

causes in a new message to be sent from the calculator actor to whatever actor issued the initial request.
The invoking actor, the
 Controller
 Actor, also has a companion object with a
 props
 factory method. In this case a string is passed in as a parameter to the constructor on the
 Controller
 . Thus the
 Props
 construction process requires a different syntax. This syntax allows information to be passed to the actors constructor. To do this we use an alternative
 Props
 factory method. This version of the Props factory takes the type of class to configure (the actor class) and the parameters to pass into the constructor of that class. Note any number of parameters can be passed here, as this is a variable length parameter list.

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figb_HTML.gif]

The
 Controller
 actor itself has two case statements in its
 receive
 method. One matches the string “start” which obtains a reference to the Calculator actor and sends it a message containing the integer ‘4’. The other case condition matches an
 Int
 which is assumed to be the result of the calculator’s calculations and is printed out. In this case, once it has done that it stops itself (and as the
 Calculator
 was created by the
 Controller
 as a child of the controller) it also stops the Calculator actor.
The simple application that exercises these actors is shown below:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figc_HTML.gif]

This program obtains a reference to the
 Controller
 actor from the
 ActorSystem
 and sends it the message string “start”.
Note that the three imports for these three elements are the usual:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figd_HTML.gif]

The output of this program is:

 Starting ReplyTest application

 End of ReplyTest body

 Controller: starting calculator

 Controller: message set

 Calculator received: 4

 Calculator processing completed, returning result

 Controller received: 96

Notice that the two Strings printed by the main application body are at the start of the output. Thus the main program completes before the controller and the calculator start their message processing. This clearly indicates that the
 Controller
 and the
 Calculator
 are executing in their own threads of execution.
32.3 Futures
The previous example illustrates how one actor can return a result to another actor. However, what happens if the sending code is not part of an actor? One answer is to use a
 scala.concurrent.Future
 . A
 Future
 is a object which offers to return the result of some process or calculation, at a point in the future, allowing the current code to continue processing. Futures can be used in many different situations, such as reading data from a database, executing some long-running process, requesting data from a remote service.
The key to a
 scala.concurrent.Future
 is that it can take an actor, and the message to send to the actor, and wrap the resulting response message in a form that the requesting code can access. As in the last section a simple
 Calculator
 Actor will be used. This Actor again has a companion object to generate the properties for the
 Calculator
 and again the
 receive
 message handles Integers and returns a result by sending that result back to the
 sender
 .

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Fige_HTML.gif]

The code that invokes the above behaviour however uses a Future:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figf_HTML.gif]

There are a number of elements to note about this listing including:	1.An implicit declaration is used to provide an execution context for the future processing. This is required as Actors run within an execution context and thus the Future must also have an execution context. This implicit statement provides a suitable execution context that can be implicitly made available to the Future invocation. This is implemented as:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figg_HTML.gif]

	2.The
 ask
 function for the
 akka.pattern
 package is used to create the Future which will send the message containing the integer ‘4’ to the
 calc
 Actor. It is a multiple parameter list function and thus the first parameter list takes the actor and the message and the second parameter list takes a timeout. This could also have been declared implicitly.

	3.The
 ask
 function generates a
 Future
 which returns
 Any
 type of elements, whereas we know that the
 Calculator
 returns an Integer as a result and thus the
 Future
 returned by the
 ask
 function is then mapped to one that will work with an integer result using (
 mapTo[Int]
).

	4.The resulting Future is then stored in the val ‘
 future’
 . The main program then continues on and prints out a message. It then defines the behaviour to be invoked once a result is generated—note it does not wait for that result to be made available before continuing on.

	5.The main programme then prints out the final string saying it has finished.

	6.Once the calculation performed by the calculator has completed, the future
 onComplete
 behaviour is executed. Pattern matching is then used to determine whether the Actor completed successfully or whether in fact there was a failure generated. If the actor completed successfully then the future will contain the value to be retrieved in the Success object; if instead it failed (e.g. because an exception was thrown) then it will contain a Failure object.

The result of executing this program is shown below:	

 FutureTest -> Starting ReplyTest application

	

 Calculator2 -> received: 4

	

 Calculator2 -> processing completed, returning result

	

 FutureTest -> Obtained: Future(<not completed>)

	

 FutureTest -> Finished

	

 FutureTest -> Result from future: 96

32.4 Dispatchers
In Akka it is a dispatcher (specifically a Message Dispatcher) that provides the foundation for an Akka Actor. That is a Message Dispatcher handles how any request received by the actor is processed.
Notice that the dispatcher triggers an execution as well as determining how the request (or message) will be processed. This is because an implementation of the
 MessageDispatcher
 is also an
 ExecutionContext
 . This means that it can execute arbitrary code such as that used to define the behaviour of the actor or to trigger a future.
In many (most) cases the default dispatcher will be more than adequate; however, it is possible to change an actors’ dispatcher. To do this you need to have an alternative dispatcher available. This can be provided by defining an appropriate dispatcher in one of the Akka configuration files. There are two executors available with the default dispatcher. These are the fork-join-executor and the thread-pool-executor. The first executor forks a separate thread for each request to the Actor and then waits to rejoin that thread before continuing. The thread pool executor uses a pool of threads to process multiple requests in parallel across multiple instances of an Actor.
For example, the following dispatcher configuration defines a new thread-pool-based executor called jeh-pool-dispatcher.

 akka

 {

 actor {

 jeh

 -pool-dispatcher {

 # Dispatcher is the name of the

 # event-based dispatcher

 type = Dispatcher

 # What kind of ExecutionService to use

 executor = "thread-pool-executor"

 # Configuration for the thread pool

 thread-pool-executor {

 # minimum number of threads to cap

 # factor-based core number to

 core-pool-size-

 min

 = 3

 # maximum number of threads to cap

 # factor-based number to

 core-pool-size-max = 3

 }

 # Throughput defines the maximum number

 # of messages to be processed per actor

 # before the thread jumps to the next actor.

 throughput = 5

 }

 }

 }

The above specification states that the thread pool has an initial size of 3, with a maximum of 3 threads. Note that there are numerous properties available including a property to specify how long to keep alive a thread when it is not being used (default 60 s).
A thread pool is a set of underlying threads that can be used by instances of an actor to process messages. When a message is received, the Actor will attempt to obtain a new thread from the thread pool. If one is available (not being used) then that thread will be returned from the pool and processing of a message can start. If no threads are available then the request will wait until one thread is returned to the pool and is thus available to service a request. Note that it is not uncommon for a thread pool to have a minimum and a maximum size—thus when demand is low threads can be removed and at busy times the number of threads in the pool can grow (to some predefined maximum). This provides some control over the number of concurrent requests that can be processed at any one time. However, care needs to be taken when configuring such pools to ensure that a suitable set of defaults can be used otherwise the performance of the system can suffer due to the lack of threads (or thread starvation).
Also note some general rules of thumb regarding throughput:	If you have a case where the number of threads is equal to the number of actors using the dispatcher, set the throughput number extremely high, like 1000.

	If your actors perform tasks that will take some time to complete and you need fairness to avoid starvation of other actors sharing the pool, set the throughput to 1.

	For general usage, start with the default value of 5 and tune this value for each dispatcher so that you get reasonable performance characteristics without the risk of making actors wait too long to handle messages in their mailboxes.

A significant point of confusion relating to threads and thread pools is that a specific instance of an Actor is always a singled threaded process. That is, every Actor instance, when it receives a request, will process that request from start to finish before moving onto the next request in its in box. However, multiple instances of an actor can be created and can be sent requests in parallel. The underlying dispatcher determines whether these are queued up for processing (the default behaviour) or whether the instances of an actor can run concurrently. The following simple application creates four instances of the
 LongProcessor
 actor and sends 4 messages to the actors. However, the
 ActorSystem
 uses the earlier configuration file and thus only allows three threads to be used at any one time by a single type of Actor. Thus the first three actors obtain a thread for execution, while the fourth will have to wait until a thread becomes free:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figh_HTML.gif]

Notice that the path to the dispatcher configuration is formed from the elements wrapping that definition. Thus the format in the configuration file wraps akka around actor, which is around the jeh-pool-dispatcher, and thus the path is
 akka.actor.jeh-pool-dispatcher
 . Also note that the
 withDispatcher
 method on the Props type is used to load the configuration information associated without custom pool-based dispatcher.
The output from this application is a mix of the output from the instances of the
 LongProcessor
 actor handling the “A”, “B” and “C” strings. The instance handling the “D” string has to wait until a thread becomes free and thus does not start to run until after the instance processing the “C” string completed.

 Sending messages

 Messages sent

 CCCCC

 BBBBB

 AAAAA

 CCCCBBAABC

 BB

 DDDDD

 AAA

 DDDDD

32.5 Actor Hierarchies
A number of times in this chapter we have seen the term ‘child’ actor. However, we have not really defined what a child actor is. Within the Actor model there can be relationships between one Actor and another. If one Actor is created from within the context of another actor, then this Actor is a child of the originating Actor, while the originating Actor is referred to as a parent of the child actor. In addition any actor can create child actors. Thus there can be a hierarchy of actors where any particular actor can have a parent Actor and any number of child actors. This is illustrated in Fig. 32.1.[image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Fig1_HTML.gif]
Fig. 32.1Parent–Child relationships for an actor

In addition any Actor can also have grandchildren and great grandchildren depending on the level of the hierarchy.
As an example, the following listing illustrates an Actor that creates two child actors and then sends messages to both the children. Note that these child actors are created using the Actors own context rather than the top-level ActorSystem:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figi_HTML.gif]

In this case the
 prestart
 lifecycle method is being used to create the children. Child actors are created whenever the Actors
 context
 is used to create the actor using the
 actorOf
 method, rather than the
 ActorSystem
 . As this context is available in the
 receive
 ,
 prestart
 ,
 preRestart
 , etc., method, children can be created wherever appropriate within the Actor.
32.6 Actor Supervision
Other than an interesting concept, why is it significant that an Actor be considered a child of another actor? The answer relates to supervision of Actors. Within the Actor model supervision describes a dependency relationship between actors: the supervisor or parent of an actor delegates tasks to its subordinates and therefore must respond to their failures or errors. When a subordinate or child detects a failure (i.e. it throws an exception) it suspends itself and any of its subordinates (or children) and sends a message to its supervisor, indicating the failure (i.e. the exception).
At this point the supervisor can determine what action to take, which includes:	1.
 Resume the subordinate keeping the current state of that subordinate.

	2.
 Restart the subordinate that clears out the current state by creating a new Actor instance within the Actor incarnation.

	3.
 Stop the subordinate permanently.

	4.
 Escalate the failure to its parent.

Note that each of these is an object defined within the
 SupervisorStrategy
 type. The Supervisor strategy uses the object to determine what action is being requested by the programme.
This hierarchy of supervision extends right up to the top of the Actor framework. Thus an actor can receive failures which were generated by its children, grand children or great grand children. At the root of this hierarchy is the Root Guardian. The Root Guardian has two children; the User Guardian and the System Guardian (see Fig. 32.2). All user created actors are the responsibility of the User Guardian. In practice you would normally handle the errors yourself to ensure a clean and stable system rather than allowing them to propagate up to the User Guardian.[image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Fig2_HTML.gif]
Fig. 32.2Root of Guardianship hierarchy for all actors

The Supervisor actor class presented in the previous section can now be modified to specify how it will deal with certain types of failure. This is achieved by specifying a Supervision Strategy and is implemented by overriding the default Supervision Strategy. Thus the Supervisor actor can now be defined as:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figj_HTML.gif]

Note that a
 OneForOneStrategy
 is being used here. There are actually two classes of Supervision Strategy available in Akka:	
 OneForOneStrategy—which only applies the following action to the failed child. In our case this means that only the failed child is restarted.

	
 AllForOneSrategy—which applies the action it defines to all children.

These are defined in the
 akka.actor
 package along with other Supervision Strategy types such as the Restart action. Both the strategies presented above take information on the number of times a child can be restarted in a particular time period. In this example, the child can be restarted three times within 1 min. After this the child will be stopped. Both strategies also use pattern matching to determine what action to take when an exception is thrown. In our case whenever a
 RuntimeException
 is thrown by one of the children it will be handled by restarting that child.
There is nothing special about the actors that will become child actors other than the fact that they can throw a
 RuntimeException
 if the message “error” is sent to them:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figk_HTML.gif]

The imports for this program are:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figl_HTML.gif]

The sample program which uses the Supervisor looks like any other Actor program with nothing to indicate that the Supervisor is monitoring the child actors (or indeed that there are child actors involved):

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Figm_HTML.gif]

The output from executing these classes is presented below:

 Supervisor run

 child1 preStart

 child1 received msg

 child2 preStart

 child2 received msg

 Supervisor error

 Supervisor run

 Supervisor Restarting

 Supervisor Restarting

 child2 postStop

 child2 preRestart

 child1 postStop

 child1 preRestart

 child2 postRestart

 child1 postRestart

 child2 preStart

 child1 preStart

 child1 received msg

 child2 received msg

Note you can see the
 preRestart
 and
 postRestart
 methods producing output as well as the
 preStart
 and
 postStop
 methods’ output in this example. This is because the supervisor is restarting the ChildActors following an exception being thrown by the children.
32.7 Good Practices
This section provides some guidelines on good practices when developing Akka Actor applications:	1.
 Actors should not block while processing a message. Such blocking will cause performance issues and may lead to deadlock between communicating Actors.

	2.
 Communicate with actors only via messages. Do not try to define additional methods through which you will invoke actor functionality.

	3.
 Do not share state. Scala Akka does not prevent actors from sharing state, so it is (unfortunately) very easy to do. Any shared mutable object represents state including objects in messages.

	4.
 Prefer immutable messages. Ensure that all the data within your messages is immutable. Mutable data in a message is shared state.

	5.
 Make messages self-contained. When you get a response from an actor, it may not be obvious what is being responded to. If the request is immutable, it is very inexpensive to include the original request as part of the response. The use of case classes often makes messages more readable.

	6.
 Factory methods. Provide a factory method for the Actors property configuration:

 [image: ../images/323629_2_En_32_Chapter/323629_2_En_32_Fign_HTML.gif]

Online References

 	Introduction to Actor Model—http://​en.​wikipedia.​org/​wiki/​Actor_​model

	Akka Actor homepage—http://​akka.​io/​

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_33

33. Scala and JDBC Database Access

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

33.1 Introduction
In this chapter we will primarily look at how Scala can use a database connectivity API referred to as JDBC. Strictly speaking this is available to Scala when run on a JVM due to its relationship to the byte code environment of the JVM. Officially JDBC

 is not an acronym; however, to all intents and purposes it stands for Java DataBase Connectivity. This is the mechanism by which relational databases are accessed in Java. As Scala runs in the same environment, Java Scala programs also have access to JDBC. At the time of writing it is the simplest and most stable approach to database access in Scala; however, it is not the only approach and we will look at some of the more Scalaesque approaches in the next chapter.
33.2 Why JDBC?
Java is an (almost) pure Object-Oriented language; however, although there are some Object-Oriented databases available, many database systems presently in commercial use are relational (although NoSQL databases are gaining in interest it is still the case that relational database systems are the most prevalent). It is therefore necessary for any Object-Oriented language that is to be used for commercial development to provide an interface to such databases.
For many technologies, each database vendor provides their own proprietary (and different) API that can be used to access their (and only their own) database system. These libraries are commonly used by other languages such as Pascal and C. In many cases they are little more than variations on a theme; however, they tend to be incompatible. This means that if you were to write a program that was designed to interface with one database system, it is unlikely that it would automatically work with another.
Of course one of the philosophies of Java (and by implication Scala) is “write once, run anywhere”. This means we do not want to have to re-write our Scala code just because it is using a different database on a different platform (or even the same platform). JDBC was Sun’s (and now Oracle’s) attempt to provide a vendor independent interface to any relational database system. That is, a single interface (JDBC) is provided to any relational database. A programmer therefore only needs to program to the JDBC interface, while behind the scenes the differences between database systems is managed by JDBC. This is illustrated in Fig. 33.1.[image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fig1_HTML.gif]
Fig. 33.1The relationship between Scala, JDBC and relational database systems

This is possible as most vendors implement most (if not all) of the standard SQL, thus allowing a common denominator. SQL stands for Standard Query Language and is used for obtaining information from relational databases. SQL is a large topic in its own right and is beyond the scope of this book.
One potential problem with such an approach is that although the developers interface is the same, different implementations of the framework would be needed to link to different databases. In the JDBC this is overcome by providing different back-end drivers. The developer is now insulated from the details of the various relational database systems that they may be using and have a greater chance of producing portable code.
33.3 What Is JDBC?
The JDBC allows a Java or Scala developer to connect to a database, to interact with that database via SQL, and of course to use those results within a Scala application. The combination of Scala and JDBC allows information held in databases to be easily and quickly accessed. It also provides a bridge that supports the Open Database Connectivity
 (ODBC) standard. The first version of the JDBC was released in the summer of 1996, and since then it has been enhanced with numerous additions. It is an important addition to Scala’s armoury, as the JDBC provides programmers with a language and environment that is platform and database vendor independent.
ODBC is a database access standard developed by Microsoft. This standard has been widely adopted not only by the vendors of Windows-based databases but by others as well. For example, a number of databases more normally associated with Unix-based systems or IBM mainframes now offer an ODBC interface. Essentially, ODBC is a basic SQL interface to a database system that assumes only “standard” SQL features. Thus specialist facilities provided by different database vendors cannot be accessed. In many ways JDBC has similar aims to ODBC. However, one major difference is that JDBC allows different database drivers (interfaces) to be used, one of which is the ODBC
 driver.
The JDBC is able to connect to any database by using different (back-end) drivers. These act as the interfaces between the JDBC and databases such as Oracle, Sybase, Microsoft Access and open source systems such as MySQL.
The idea is that the front end presented to the developer is the same whatever the database system, while the appropriate back-end is loaded as required. The JDBC then passes the programmer’s SQL to the database via the back end. JDBC is not the first system to adopt this approach; however, a novel feature of the JDBC is that more than one driver can be loaded at a time. The system will then try each driver until one is found that is compatible with the database system being used. Thus multiple drivers can be provided and at runtime the appropriate one is identified and used. This is illustrated in Fig. 33.2.
Figure 33.2 illustrates some of the most commonly used methods provided by the JDBC along with two database drivers (namely the MySQL driver and the ODBC driver; not that any number could have been provided). Such a set-up would allow a Java program to connect to a MySQL database via the MySQL driver and to any database that supports the ODBC standard through the ODBC driver. The
 getConnection()
 ,
 executeQuery()
 and
 executeUpdate()
 methods will be looked at in more detail later in this article.[image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fig2_HTML.gif]
Fig. 33.2The structure of the JDBC

There are a number of database drivers available for JDBC. At present databases such as Oracle, Sybase and Ingres all have their own drivers. This allows features of those databases to be exploited. However, even databases that are not directly supported can be accessed via the ODBC driver, thus making a huge range of databases available to the Java developer.
To summarise JDBC (Java DataBase Connectivity):

 	It is available to all JVM languages including Java and Scala.

	It provides common front end for different databases.

	It relies on database-specific drivers for the back-end connection to the actual database.

	It provides an ODBC bridge (which is essentially a default back-end driver).

	It is implemented within the java.sql and javax.sql packages as it is a core part of the Java libraries on which Scala builds.

33.4 Working with JDBC
There is a very definite series of steps that must be performed by any JDBC program. These involve loading an appropriate driver, connecting to a database, executing SQL statements and closing the connection made. These are discussed in more detail later in this chapter. However, for reference they are illustrated graphically in Fig. 33.3. This illustrates the key elements that comprise the JDBC API (Application Programmers Interface):[image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fig3_HTML.gif]
Fig. 33.3Working with JDBC

In Fig. 33.3 you can see that the Driver Manager can have multiple drivers associated with it. Currently this runtime has three drivers; the Oracle driver, the DB2 driver and the MySQL driver. When the program asks the Driver Manager for a Connection, each driver is prompted in turn for a connection. In this case it is the MySQL driver that returns a connection instance from the
 getConnection
 request.
Using the connection, the program can get metadata about the database it is connected to use the
 getMetaData
 method. This returns a
 DatabaseMetaData
 instance.
Also using the connection instance the program can obtain a statement instance using the
 createStatement
 method. This returns an instance that can be used to execute a query or execute an update against the database. In this case, we are using an
 executeQuery
 method with some SQL (such as
 SELECT * from <table name>
). This method returns a
 ResultSet
 instance. A
 ResultSet
 instance can provide meta data about the data held in the result set via the
 getMetaData
 method. This returns a
 ResultSetMetaData
 instance (containing the number of columns and their names).
It is also possible to loop through each of the rows in the
 ResultSet
 using the next method that moves the cursor on a row at a time (note it starts before the first row). Once the cursor (a pointer to the current row in the result set) is referencing a row various get methods can be used to retrieve the data. For example,
 getString
 (name) will return the value associated with the column called name as a string. Alternatively you can use
 getString
 (2) which will return the value held in the second column as a String. There are appropriate get methods for all of the fundamental types in Scala.
Note if something goes wrong in connecting to the database, running some SQL, retrieving a value, etc., then an
 SQLException
 is thrown.
33.5 The Database Driver
What actually is a driver

 ? In practice it provides the concrete implementation for a number of interfaces defined in the SQL package. In particular it defines implementations for the types (such as
 Driver
 ,
 Connection
 ,
 Statement
 and
 ResultSet
) which form a major part of the
 sql
 API. Each of these will be considered in more detail later. However, essentially they comprise the way to connect to a database, to pass SQL statements to be executed to that database and to examine the results returned. Note that, unlike some object to relational database interfaces, JDBC does not try to objectify the results of querying a relational database. Instead the results are returned in a table-like format within a results set. It is then up to the developer to decide how to handle the information retrieved.
33.6 Registering Drivers
As part of the JDBC API a JDBC Driver Manager is provided. This is the part of the JDBC that handles the drivers currently available to a JDBC application. It is therefore necessary to “register” a driver with the Driver Manager. There are a number of ways of doing this, however for the moment we will focus on doing this programmatically. A JDBC driver can be loaded by referencing the class that is the root of the Driver’s implementation. JDBC requires a JDBC driver to register itself with a central DriverManager when it is loaded. Within Scala there is a feature that allows a class to be loaded without an instance of it being created. These features use a construct called classOf. Thus to load a JDBC Driver programmatically all you have to do is to mention the drivers root class via a classOf statement, for example:

 // Load the driver
 classOf[com.mysql.jdbc.Driver]

This will cause the associated class (in this case the MySQL JDBC Driver) to be loaded into the running application.
As was mentioned

 earlier you can install more than one driver in your JDBC program. For example you could write:

 // Load the driver
 classOf[com.mysql.jdbc.Driver]
 classOf[sun.jdbc.odbc.JdbcOdbcDriver]

When a request is made to make a connection to a database each one will be tried in turn until one accepts that request. However, using more than one driver will slow down both system start-up (as each must be loaded) and your runtime (as each may need to be tried in turn). For this reason, it may be best to select the most appropriate driver and stick with that one.
The JDBC

 ODBC driver is provided as part of the underlying (Java-derived) runtime used with Scala. However, other drivers can be obtained and used with the JDBC.
33.7 Setting Up MySQL
To download the MySQL driver got to the MySQL home (there are versions of the driver for numerous different languages) and select the Connector/J (which indicates that it is used by JVM languages such as Java and Scala). The URL is currently https://​dev.​mysql.​com/​downloads/​connector/​j/​:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figa_HTML.gif]

Download the drive and install in an appropriate directory.
As a general approach, this allows vendors to supply their own proprietary database drivers that developers can then utilize in their own applications.
If you are going to use this library with IntelliJ you now need to tell IntelliJ about it. To do this select the Module you are going to use for your database examples and from the right mouse menu select the ‘Open Module Settings’ option. This will display the Project Structure dialog. On the left-hand side of the dialog select the ‘Libraries’ option.
When the right side of the dialog changes to show the list of libraries, select the ‘+’ symbol at the top of the display. This pops up a little ‘New Project Library’ dialog asking what the type of the library is, select ‘Java’ (even though we are using Scala). Use the file selection dialog to find the location in which you saved the MySQL connector driver. In this directory/folder select the my-sql-connector-java.jar file (it may have a version number as part of its name but make sure you select the .jar file).

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figb_HTML.gif]

You can then choose other modules to add the library to. Finally close the Project Structure dialog by clicking OK.
33.8 Setting Up the Database
33.8.1 Starting/Stopping/Connecting to MySQL
You should use the information provided by MySQL with regard to your platform and the best way of running MySQL for a Windows machine, a Mac or a Linux box. For example, if you are on a Windows machine then open a command window and CD into the bin directory of the location you installed MySQL in. You can then enter the command

 mysqld –console

This will start MySQL if it is not already running. However, if you are on a Mac then you will need to issue a command such as

 sudo /Library/StartupItems/MySQLCOM/MySQLCOM start

The same is true for setting MySQL down. For example, on a windows box you can use
mysqld –stop
Where as on a Mac you can use
sudo/usr/local/mysql/support-files/mysql.server stop
33.9 Creating a Database
To access MySQL you may wish to use the command line client (mysql) or a tool such as Toad or MySQLWorkbench. In the following we will assume that we have started the command line client for MySQL. On Windows this can be done by changing into the bin directory of MySQL within a command window and issuing the following command (assuming the root user has no password):

 mysql –u root

While on a Mac you will need to open a terminal and issue the command:

 /usr/local/mysql/bin/mysql -u root

You can now create any databases that you will need to work with. For example, to create the database employees from the lecture notes, issue the following command:
CREATE DATABASE employees;
If this is successful you will see a prompt back from MySQL confirming the creation:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figc_HTML.gif]

33.9.1 Adding a User
You can now add a user to the DMBS who will be allowed to access and work with the employees’ database:

 GRANT ALL on employees.* to ’user’@’localhost’ IDENTIFIED by ’user123’;

Again if you are successful you should see a confirmatory message from MySQL:

 Query OK, 0 rows affected (0.00 sec)

You can also confirm that the user has appropriate rights using the command

 SHOW GRANTS FOR ’user’@’localhost’;

This should display the information related to the user:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figd_HTML.gif]

33.9.2 Selecting to Work with a Database
In MySQL you can move into a database so that all commands you issue are by default associated with that database. You do that by issuing the command

 use

 <

 database name>

For example

 use employees

You should get a confirmatory ‘Database changed’ message from MySQL.
33.9.3 Creating a Table
The easiest way to create and manage tables is to use an appropriate tool such as Toad (see http://​www.​quest.​com/​toad-for-mysql/​); however, you can do the same thing from the MySQL command line prompt.
To create a table such as that presented in the lectures you can issue a create command such as:

 CREATE TABLE employee (id INT UNSIGNED NOT NULL, PRIMARY KEY (id), name VARCHAR(30) NOT NULL);

If this is successful you will obtain a confirmatory message from MySQL.
However, you can also check that the table is as expected using the describe table command:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fige_HTML.gif]

Alternatively, you can enter a show tables command:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figf_HTML.gif]

33.9.4 Adding Data to a Table
Again using a tool such as Toad will make this much easier, but you can still issue SQL insert and update statements from the MySQL command line. For example, given the employee table in the employees’ database we could issue:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figg_HTML.gif]

As usual MySQL provides a confirmatory response. However you could check that the data you expected has been added by running a SELECT statement against it:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figh_HTML.gif]

The examples in this chapter use a database called employees with a table employee.
Exactly how you create your database is up to you. I use the MySQLWorkbench which can be downloaded from https://​www.​mysql.​com/​products/​workbench.
The actual SQL commands used to create the schema (database) and the tables in that database are summarised below:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figi_HTML.gif]

33.10 Opening a Connection
Listing 1 presents a simple class that uses the MySQL driver to connect to a MySQL database. We must first make the JDBC API available, and this is done by importing the SQL package. Next the application loads the JDBC MySQL driver and then requests that the
 DriverManager
 makes a connection with the database
 employee
 . Note that to make this connection a string (called
 url
) is passed to the Driver Manager along with the user id and the password.

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figj_HTML.gif]

If you have the MySQL database running, containing an employees’ database then when this application is run you will get the output shown below:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figk_HTML.gif]

The string specifying the database to connect to is formed from a JDBC

 URL. This is a URL that is comprised of three parts:	1.The JDBC protocol indicator (
 jdbc
 :)

	2.The appropriate sub-protocol such as
 mysql
 :

	3.The driver-specific components (in this case server, followed by port and then database information and user name).

URLs are used as the program accessing the database may be running as a stand-alone application or may be running in an application server (such as WebLogic, WebSphere or Tomcat) and may need to connect to the database via the Internet. Note that different database drivers will require different driver-specific components.
Once a connection has successfully been made to the database, the program then does nothing other than to close that connection. This is important as some database drivers require the program to close the connection while others leave it as optional. If you are using multiple drivers, it is best to close the connection.
Note that the attempt to load the driver and make the connection was placed within a
 try {} catch{}
 block. This is because both operations can raise exceptions and these must be caught and handled (as they are not runtime exceptions). The
 classOf[…]
 operation raises the
 ClassNotFoundException
 if it cannot find the class which represents the specified driver. In turn the
 getConnection()
 method of the DriverManager raises the
 SQLException
 if the specified database cannot be found.
The
 try {} catch {}
 block works by trapping any exceptions raised in the try part within the catch part (assuming the exception raised is an instance of the specified class of exception or one of its subclasses).
Another thing to note about this application is that we are using the Scala option wrapper to hold the Connection. A variable of type Option can either hold a value within the Option or can have the value None. None can be used to indicate that the value is currently empty (but is not abstract). This is important for a Connection as when we try and make a connection it may fail and thus no connection will exist. However as the code that creates the connection is within one block scope (the try block) and the code which is guaranteed to run even if a problem occurs is within the finally block scope we cannot be sure if a connection was made or not. Thus, the finally block must protect against situations whether the connection failed to be made by testing to see if the connection currently holds a value (i.e. there is Something there or whether it is None. As we are only interested in the situation where there is a value present we do not test for None.

 conn match {

 case Some(c) => c.close

 }

This will only try and close the connection if conn matches the situation where there is something present that can be bound to the variable c.
33.11 Inserting into a Table
In addition to querying an existing table for values, it is also possible within JDBC to insert new rows into tables. This is done using the
 executeUpdate
 method. Essentially the same process is adopted as that shown in the previous section. However, the values to be inserted must be provided via an SQL INSERT statement. This could be constructed using String manipulation; however, it is common to use a Prepared statement for this.
A prepared statement is again obtained from a connection instance (and is actually a sub type of the more generic statement). However, it is oriented around multiple executions. Thus it is created with SQL that is sent to DBMS immediately to be compiled. The statement instance can then be used with parameters in SQL, indicated via ‘?’. For example,

 INSERT INTO employee (id, name) VALUES(?, ?)

Use the setXXX(pos, value) methods to set values for the insert

 st.setString(1, “Phoebe”)

 st.setString(2, “B50”)

Note if you wish to make a set of insertions together as a database transaction (i.e. all the changes are treated as one or are not made) then you can indicate this to the driver managed by setting autocommit to false on the connection, for example:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figl_HTML.gif]

And then when you wish the changes to be made as a group setAutoCommit to true:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figm_HTML.gif]or alternatively call the commit method on the connection:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fign_HTML.gif]

The difference is that commit allows you to restart building up a set of changes until the next commit where as setAutoCommit(true) reverts to immediately updating the database.
If for some reason you decide not to commit (record) the changes then you can call rollback on the connection instance:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figo_HTML.gif]

The following is an example of a series of changes made as part of a single database transaction:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figp_HTML.gif]

An example of a simple but complete insert program in Scala is shown below. This program inserts a new row for Jocelyn into the employee table.

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figq_HTML.gif]

33.12 Obtaining Data from a Database
Having made a connection with a database we are now in a position to obtain information from it. The following listing builds on the application in listing 1 by querying the database for some information. This is done by obtaining a
 Statement
 object from the
 Connection
 object. SQL statements without parameters are normally

 executed using
 Statement
 objects. However, if the same SQL statement is executed many times, it is more efficient to use a
 PreparedStatement
 . In this example, we will stick with the
 Statement
 object.

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figr_HTML.gif]

Having obtained the statement object, we are now ready to pass it some SQL. This is done as a string within which the actual SQL statements are specified. In this case the SQL statement is:

 SELECT * FROM employee

This is pure SQL
. The SELECT statement allows data to be obtained from the tables in the database. In this case the SQL states that all columns from the table employee should be retrieved for all rows in the table.
This string is passed to the
 statement
 object via the
 executeQuery()
 method. This method also generates an
 SQLException
 if a problem occurs. The method passes the SQL to the driver previously selected by the Driver Manager. The driver in turn passes the SQL onto the database system. The result is then returned to the driver that in turn returns it to the users program as an instance of
 ResultsSet
 . A results set is a table of data within which each row contains the data that matched the SQL statement. Within the row, the columns contain the fields specified by the SQL. A
 ResultSet
 maintains a cursor pointing to its current row of data. Initially the cursor is positioned before the first row. The
 next()
 method moves the cursor to the next row.
The

 ResultsSet

 class defines a variety of get methods to obtain information out of the
 ResultsSet
 table, for example,
 getBoolean()
 ,
 getByte()
 ,
 getString()
 ,
 getDate()
 . These methods are provided by the JDBC driver and attempt to convert the underlying data to the specified Java or Scala type and return a suitable Scala value. In listing 2, we merely print out each information for each employee in turn using the
 next()
 method to move the table cursor on.
Finally, the
 statement
 and the
 connection
 are closed. In many cases it is desirable to immediately release a
 statement's
 database and JDBC resources instead of waiting for this to happen when it is automatically closed; the
 close
 method provides this immediate release.
Given the insert statements presented in the previous section, the output of the TestDbQuery application is given below:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figs_HTML.gif]

33.13 Update an Existing Row
Updates are performed in a similar manner to inserts. In the following example, rather than using a prepared statement, we are using the generic statement and passing the UPDATE SQL statement and the values to use with it to the executeUpdate method:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figt_HTML.gif]

The output from this is:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figu_HTML.gif]

Illustrating that 1 row in the table was updated.
33.14 Deleting from a Table
Completing the set is the ability to delete a row (or rows) of data from a database. Again, this uses the executeUpdate method but now with an SQL DELETE statement. For example,

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figv_HTML.gif]

33.15 Creating a Table
So far we have assumed that the database already existed for our Scala application. The database could be created by something else; for example, it could be generated by a legacy system, by a Tool Such as Toad or MySQLWorkbench.
However, in many situations it is necessary for the tables in the database to be updated (if not created) by a JDBC program. The following listing shows how a statement object can be used to create a table and how information can be inserted into that table.
Again the strings passed to the statement are pure SQL; however, this time we have used the
 executeUpdate()
 method of the
 Statement
 class.

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figw_HTML.gif]

The
 executeUpdate
 () is intended for SQL statements which will change the state of the database, such as INSERT, DELETE and CREATE. It does not return a result set, rather it returns an integer indicating the row count of the executed SQL. You can either use this value or ignore it (as in listing 3).
33.16 Stored Procedures
Stored procedures in a database are procedural code written in database-specific languages that run within the database. They can be invoked from Scala via JDBC. This is done obtaining a statement instance from a connection and then executing an appropriate invocation. For example,[image: $$ \begin{aligned} & {\mathsf{val}}\;{\mathsf{storedProc}} = \hbox{``} \ldots \hbox{''} \\ & {\mathsf{val}}\;{\mathsf{st}} = {\mathsf{con}}.{\mathsf{createStatement}} \\ & {\mathsf{st}} . {\mathsf{executeUpdate}}\left({\mathsf{storedProc}} \right) \\ & {\mathsf{val}}\;{\mathsf{cst}} = \\ & \quad \quad \quad \quad {\mathsf{con}} . {\mathsf{prepareCall}}\left({\hbox{``}\left\{ {{\mathsf{call}}\, \ldots } \right\}\hbox{''}} \right) \\ & {\mathsf{val}}\;{\mathsf{rs}} = {\mathsf{cst}} . {\mathsf{executeQuery}} \\ \end{aligned} $$]

The result of the call to execute the stored procedure will be depending on what the stored procedure actually does.
33.17 JDBC Data Sources
Although all the examples so far in this chapter have used a DriverManager as the basis for obtaining a connection to a database, DriverManagers are not without their own limitations. For example, a DriverManager requires the Driver classes to be available on all JVMs in which the driver will be used. Thus it will need to be available to all clients of the database. Then to use the Driver with the DriverManager you must:	1.Load the Driver class

	2.Connect to the database using a URL like string

This URL might contain driver protocol, machine name, port number, etc. All of which can easily become difficult to maintain even with the use of properties files, etc.
However with JDBC 2.0 DataSources were introduced. This allows JNDI (The Java Naming and Directory Interface) to be used to map a logical name to the actual data source. Thus in client (to the database) program the logical name can map to whatever data source is held in a naming service accessed via JNDI. This is easier to maintain as the client program does not need to be changed if something changes with the location or port used to access the database. Instead a separate program that is used to configure the data source will need to be modified.
Thus the process of providing a connection between a database and the program accessing the database is broken down into two steps:	1.Set up a data source with an appropriate driver and register with a naming service via JNDI.

	2.In the client application program access the data source from the naming service again via JNDI.

	3.The client application program can then obtain a connection from the DataSource object.

	4.The DataSource object in turn acts as a factory for connection objects.

	5.The connection obtained from the data source is then used in exactly the same way as a connection obtained from a DriverManager. The following code snippet illustrates this idea:

[image: $$ \begin{aligned} & {\mathsf{val}}\;{\mathsf{ctx}} = {\mathsf{new}}\;{\mathsf{InitialContext}}() \\ & {\mathsf{val}}\;{\mathsf{ds}} = \left({\mathsf{DataSource}} \right){\mathsf{ctx}} . {\mathsf{lookup}}\left({ ` ` {\mathsf{jdbc}}/{\mathsf{Personnel}}} \hbox{''}\right) \\ & {\mathsf{val}}\;{\mathsf{con}} = {\mathsf{ds}} . {\mathsf{getConnection}}() \\ \end{aligned} $$]

This code snippet connects up to the current naming service (defined by the properties in a file called jdbc.properties). It will then look in this naming service for a DataSource object bound to the name “jdbc/Personnel”.
These steps are illustrated graphically in Fig. 33.4.[image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fig4_HTML.gif]
Fig. 33.4The steps taken to use a DataSource

In many situations step 1 will be performed by some form of application server such as JBOSS or WebSphere. However it is by no means the only way in which a DataSource could be registered with a naming service. For example, a separate set-up program could be written to create a data source object and register it, for example:[image: $$ \begin{aligned} & {\mathsf{DataSource}}\;{\mathsf{ds}} = {\mathsf{newOracleDataSource}}() \\ & {\mathsf{ds}} . {\mathsf{setServerName}}\left({ \hbox{` `} {\mathsf{thor}}}\hbox{''} \right) \\ & {\mathsf{ds}} . {\mathsf{setDatabaseName}}\left({ \hbox{` `} {\mathsf{employees}}}\hbox{''} \right) \\ & {\mathsf{Contactctx}} = {\mathsf{new}}\;{\mathsf{InitialContext}}() \\ & {\mathsf{ctx}} . {\mathsf{bind}}\left({ \hbox{` `} {\mathsf{jdbc}}/{\mathsf{Personnel}} \hbox{''},{\mathsf{ds}}} \right) \\ \end{aligned} $$]

The above snippet creates an OracleDataSource object that will provide connections to a database called employees, running on the server there. It can be accessed from the naming service being used via the name jdbc/Personnel.
It is interesting to note that originally it was expected that the use of DataSources would replace the use of DriverManagers. However what seems to have happened is that for simple single or two-tier applications the DriverManager approach is still being used. However for EJB-based applications the DataSource approach is used.
The methods defined by the DataSource interface are presented below:

 [image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Figx_HTML.gif]

The example code illustrated in Fig. 33.5 defines a test harness client illustrating how a client may access a data source and obtain a connection in Scala.[image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fig5_HTML.gif]
Fig. 33.5Testing a DataSource

33.18 Connection Pooling
The basic idea behind connection pooling is that a “pool” of connections is maintained and shared amongst several users. Why would this be a useful strategy? The answer is to do with both the overheads of creating a connection in the first place and the limit on the number of connections allowed by a database. We shall start with the first issue.
Although in many cases it may not be apparent, but the creation of objects is both time-consuming and expensive in terms of memory, which may need to be garbage collected at a later date. In the case of connections this is exacerbated by the need to make an external connection to the database, to authenticate the user and verify their password in addition to the allocation of memory by the JVM for the connection. It is not uncommon for this operation alone to take one, two or more seconds in heavily used applications. When we take into account that what we are looking at are server applications that service many clients (possibly thousands of clients) we can see that this overhead is very expensive for the system.
An additional concern is that in many cases there is some limit on the number of connections that are either allowed on a database system or that are in some way optimal. If we are considering a Web application being accessed worldwide we may be taking about thousands of concurrent user. However in most cases most users are not using the connection all the time; rather, they will perform some task and then need to read, consider and digest the information they receive. Thus one connection could be shared amongst several users, each getting a slice of the connection while the others are busy doing other things. In this way fewer connections can support a large number of concurrent users.
The two points discussed above are the basis for the need for connection pooling. In connection pooling a pool of connections is maintained. When a client needs to connect to the database they obtain a connection (temporarily) from the pool. They perform whatever operations they require and then return the connection back to the pool. When they need to perform further database operations they will return to the connection pool and obtain another connection. If no connections are available (there is usually a limit on the number of connections held in the pool) then they are queued until such time as a connection is free.
There are some constraints on connection pooling. Firstly users who access the database must do so either through a single account or through a small set of common accounts. This is necessary as each connection is instantiated for a particular account. Thus it is not possible for each user to access the database with a separate account. If they do this then connection pooling is not appropriate. This is not as strict a restriction as it may seem. For example, Internet search engines do not require a user to login, if they use a database a common account can be used to perform the search. Secondly although users may log into an application via their own user id this does not mean that they have to access the database behind the application with that id. Rather the application can perform some authentication operation and once logged in the users can be allocated to an appropriate (but shared) database account.
The second constraint is that the application does not need to hold on to the connections for long periods of time. That is, the application can perform some operation and release the connection. If a permanent connection to the database is required, then connection pooling will not work. However again the application can be designed around this. For example, in the next section two types of RowSet are described a JdbcRowSet and a CachedRowSet. The JdbcRowSet requires a permanent connection to the database whereas the CachedRowSet does not. Thus by choosing an appropriate RowSet we can work around the need for permanent database connections.
The javax.sql package provides for connection pooling in such a way as to hide the details of this from the application programmer. That is the application server (such as JBOSS or WebSphere) and the database Driver handle the connection pooling behaviour internally. This however will only work if we use DataSource objects. In most cases it is necessary to configure the application server so that it will use connection pooling; however, this is in general done externally to any Scala (or indeed Java) program. This means that from the developers’ point of view, their programs do not need to change to use connection pooling and the hard work is done by the application server. This means that we can modify the diagram in Fig. 33.4 to show the use of a connection pool. This modified diagram is illustrated in Fig. 33.6. The changes from the earlier diagram are highlighted in bold.[image: ../images/323629_2_En_33_Chapter/323629_2_En_33_Fig6_HTML.gif]
Fig. 33.6Using PooledConnections with a DataSource

Exactly how the application server is configured will differ from one server to another (e.g. from WebLogic to Websphere to JBOSS). However in general they will need to specify:

 	The class implementing the javax.sql.ConnectionPoolDataSource interface

	The class implementing the java.sql.Driver interface

	The size of the connection pool (usually minimum and maximum size)

	The timeout period for a connection

	Authentication for the database.

33.19 JDBC Metadata
MetaData is data about data, with respect to databases that means that it is data about the database or results obtained from the database. For example, the tables in a database, rows and columns in a table or results set. This can be very useful information if you need additional flexibility in your application or if you need to dynamically adjust to the contents of a database or results set. For example, MetaData can be used to create a Database-aware JTable. Such a table could be given a database to connect to, login details and a select statement to be used to populate itself. It could then configure itself as appropriate given the results obtained (e.g. the number of columns and their titles, the type of each column). Note it is up to the database driver to implement the metadata objects. However not all drivers will provide all the information indicates via the various metadata interfaces.
33.19.1 DatabaseMetaData
The DatabaseMetaData object can provide information about the structure of a particular database. This metadata object is obtained from the connection to that database. For example,

 con.getMetaData()

The DatabaseMetaData object is very comprehensive and provides over 130 methods. These are organised (loosely) into four categories:	Methods that return a String

	Methods that return an Int

	Methods that return a Boolean

	Methods that return a ResultSet

String returning methods provide information about the database such as the user name, product name, version, driver name. They also provide Information about database specifics such as:	terms used for schema, procedure

	that actual Database product name

The string returning methods can also provide information on the SQL understood by the database and the escape character used.
The int returning methods usually provide information on limits such as the maximum length allowed for a column name. They are generally of the form getMaxXXX, for example getMaxColumnNameLength() or getMaxColumnsInTable().
The methods that return a Boolean are the largest category (with well over 70 methods in all) and allow you to test for compliance with standards or for support for various features. They are usually of the form supportsXXX such as supportsANSI92FullSQL, supportsFullOuterJoins(), supportsSelectForUpdate().
The final categories are methods that themselves return a ResultSet. This is the most complex category of methods and need careful examination of the methods to determine how to use them. For example, it is possible to obtain a description of the stored procedures in a database using the getProcedures method:[image: $$ \begin{aligned} & {\mathsf{getProcedures}}({\mathsf{catalog}}{:}\,{\mathsf{String}}, \\ & \quad\;\quad\quad\quad\quad\quad{\mathsf{schemaPattern}}{:}\,{\mathsf{String}}, \\ & \quad\quad\quad\quad\quad\quad\;{\mathsf{procedureNamePattern}}{:}\,{\mathsf{String}}) \\ \end{aligned} $$]

However the ResultSets retrieved by these methods may themselves be large and need analysis and processing in their own right.
33.19.2 ResultSetMetaData
It is possible to obtain a MetaData object from a ResultSet (or RowSet). This is obtained from a ResultSet using the getMetaData() method. For example,

 val md = resultsSet.getMetaData()

Thus the ResultSetMetaData object contains information about the ResultSet form which it was derived.
As an example of using the metadata object look at the following code snippet:[image: $$ \begin{aligned} & {\mathsf{val}}\;{\mathsf{md}} = {\mathsf{rs}} . {\mathsf{getMetaData}} \\ & {\mathsf{int}}\;{\mathsf{cols}} = {\mathsf{md}} . {\mathsf{getColumnCount}} \\ & {\mathsf{for}}\left({{\mathsf{i}} < {-} 1\;{\mathsf{to}}\;{\mathsf{cols}}} \right) \\ & \quad {\mathsf{println}}\left({{\mathsf{md}} . {\mathsf{getColumnName}}\left({\mathsf{i}} \right)} \right); \\ & //{\mathsf{Note}}\;{\mathsf{from}}\;1\;{\mathsf{to}}\;{\mathsf{cols}}\;{\mathsf{not}}\;0\;{\mathsf{to}}\;{\mathsf{cols}}\; {-} 1 \\ \end{aligned} $$]

In this example we obtain the metadata for a result set and then print out the name of each of the columns in that result set using the getColumnCount() method and the getColumnName() method. Note that the columns are number from 1 rather than 0.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_34

34. Scala Style Database Access

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

34.1 Introduction
The last chapter introduced how Scala can use JDBC to access a database. However, there are a number of different Scala-based approaches being developed to explore more Scala-like ways of interacting with a database than JDBC. Although JDBC works very well it is far more Java like than Scala like and actually provides a very low level of abstraction (witness the many Object Relational Mapping, or ORM, tools within the Java world such as Hibernate).
The list of possible approaches includes	SLICK (previously Scalaquery)

	Querulous

	Squeryl

	O/R Broker

We will look at each of these briefly in the remainder of this chapter.
34.2 Slick
Scala language-integrated connection kit (SLICK) provides database query and access facilities for Scala. It attempts to treat data stored in the database as if it was just another Scala collection. This means that using Slick can be (almost) as easy as working with standard Scala collections.
The aim of SLICK is that it abstracts (hides) the lower level JDBC or SQL calls. Thus an object of a specific type can extend the concept of a table (and indicate the name of the table in the underlying database). Methods on this object can then be used to add rows to the table, search the table, etc.
The following simple code snippet illustrates these ideas:

 object Coffees extends Table[(String, Int, Double)]("COFFEES") {
 def name = column[String]("COF_NAME", O.PrimaryKey)
 def supID = column[Int]("SUP_ID")
 def price = column[Double]("PRICE")
 }

The object Coffee relates to a table called COFFEES in a database. This table has three columns (COF_NAME, SUP_ID and PRICE). Based on these columns four methods are provided called name, supID and price which act as accessors. This object can now be used to insert new rows:

 Coffees.insertAll(
 ("Colombian", 101, 7.99),
 ("Colombian_Decaf", 101, 8.99),
 ("French_Roast_Decaf", 49, 9.99)
)

And to query for values currently held by the table

 val q = for {
 c <- Coffees if c.supID === 101
 } yield (c.name, c.price)

34.3 Querulus
Querulus is a open-source Scala project from Twitter. Querulus still provides direct access to SQL but avoids a number of the basic frustrations of using JDBC. For example, the basic usage of Querulus is very simple. Having imported the core QueryEvaluator class from Querulus you can write:	

 val queryEvaluator

 =

 QueryEvaluator(“host”, “username”, “password”)

Once you have a queryEvaluator you can then use this to run a select statement:

 val users = queryEvaluator.select("SELECT * FROM employee")

 { row => new User(row.getInt("id"),

 row.getString("name")) }

or to insert or update values in the database:

 queryEvaluator.execute("INSERT INTO users VALUES (?, ?)", 1, "Jacques")

You can also group database operations into transactional units:

 queryEvaluator.transaction { transaction =>

 transaction.select("SELECT … FOR UPDATE", …)

 transaction.execute(

 "INSERT INTO users VALUES (?, ?)", 1, "John")

 transaction.execute(

 "INSERT INTO users VALUES (?, ?)", 2, "Denise") }

34.4 Squeryl
Style-wise, Squeryl sits midway between SLICK, which hides SQL behind Scala comprehensions as much as possible, and Querulous which uses SQL strings directly.
Squeryl provides an SQL-like domain-specific language (DSL), which gives you type safety and aims to ensure that if a statement will compile then it will not fail at runtime.
To illustrate the core concepts let us look at another example. Here we have two classes Author and Book that map to information in tables in the database. For the class Book an annotation @Column is being used to map AUTHOR_ID to the field authorId.

 import org.squeryl.PrimitiveTypeMode._

 class Author(var id: Long,

 var firstName: String,

 var lastName: String)

 class Book(var id: Long,

 var title: String,

 @Column("AUTHOR_ID") var authorId: Long,

 var coAuthorId: Option[Long]) {

 def this() = this(0,"",0,Some(0L))

 }

The object Library maps these classes to the appropriate database tables. In this case the Author class is being mapped to the table Authors and the Book class is mapped to a table called Book (note if the names are the same they do not need to be repeated).

 object Library extends Schema {

 //When the table name doesn't match the class name, it

 is specified here :

 val authors = table[Authors]("AUTHORS")

 val books = table[Book]

 }

The following provides a basic example of the use of Squeryl to insert some values into the books table. All interaction is via a session instance with a
 using
 block. The authors are added to the books table. A query is then run to retrieve all authors called hunt.

 classOf["org.postgresql.Driver")]

 val conn =

 java.sql.DriverManager.getConnection("jdbc:postgresql:/

 /localhost:5432/squeryl", "squeryl", "squeryl")

 val session = Session.create(conn, new PostgreSqlAdapter)

 //Squeryl database interaction is within a 'using' block :

 import Library._

 using(session) {

 books.insert(new Author(1, "Michel","Folco"))

 val a = from(authors)(a=> where(a.lastName === "Hunt") select(a))

 }

34.5 O/R Broker
The final approach we will look at is called O/R Broker. It is not an Object Relational mapping tool (although the name might imply this). Instead it is a JDBC library for Scala that aims to hide most of the JDBC API and wrap it up into a more Scala-like interface.
Extractors are used to extract information from the database. Extractors are declarative, written in Scala. They can be reused in other queries that fit the expectation of the extractor. A very simple extractor is shown below:

 object CustomerExtractor extends RowExtractor[Customer] {

 // Construct object from row.

 def extract(row: Row) = {

 val id = row.integer("ID").get

 val name = row.string("NAME").get

 new Customer(id, name)

 }

 }

This is then connected to a query by declaring a named Token:

 val SelectCustomer =

 Token('selectCustomer, CustomerExtractor)

This can then be executed via the broker:

 val customer = broker.readOnly() { session =>

 session.selectOne(SelectCustomer, "custID"->1234)

 }

References

 	SLICK, from typesafe

	
 http://​slick.​typesafe.​com/​

 	Squeryl

	
 http://​squeryl.​org/​

 	Querulous

	
 https://​github.​com/​twitter/​querulous

 	O/R broker

	
 http://​code.​google.​com/​p/​orbroker/​

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_35

35. Slick: Functional Relational Mapping for Scala

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

35.1 Introduction
In this chapter, we will look at Slick. Slick (or in full Scala Language-integrated Connection Kit) is a library that provides access to relational databases from a Scala application. It is heavily based on the functional programming paradigm and as such is much more aligned with the Scala way or programming than the rather procedural approach of JDBC.
The approach is often referred to now as Functional Relational Mapping (or FRM for short). Slick’s aim is to provide a solution to database access that allows regular operations over collections to be performed against a database (with of course a strong emphasis on type safety).
It should be noted that at the time of writing Slick is still a relatively young library and although the changes from one version to another have become less onerous (the changes from version 2.x to 3.x where quite extensive) backwards compatibility may still be an issue.
35.2 Obtaining Slick
Information on Slick can be found at www.​slick.​lightbend.​com.

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figa_HTML.gif]

Slick can be obtained in several ways from http://​slick.​lightbend.​com/​download. The easiest way is to follow the download link and download the slick <version>.jar file and then add it to IntelliJ as a library for your project.
However, in my case I have used Maven to set up a Scala project within IntelliJ to use Slick. The advantage of this is that the transitive dependencies (such as the libraries that Slick depends upon) are handled by Maven.
My Maven POM file has the following dependencies:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figb_HTML.gif]

Note that in this chapter we are also using MySQL as the database we will be connecting to. We therefore also need to add the MySQL libraries to the list of Maven dependencies:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figc_HTML.gif]

We are now ready to get started.
35.3 Connecting to a Database
You can use Slick to create tables and populate data within a database (schema). To do this it is first necessary to create the database itself. This can be done in several ways, in our case I used MySQL Workbench and created the schema interactively. The schema/database is called company and can be created using	CREATE DATABASE ‘company’

We can now set up the Slick database link. This can be done in several ways:

 Database URL. A database URL is a JDBC style URL of the format jdbc:<protocol>:<protocol-specific-arguments>. This is supported by Database.forURL. The driver to use can also be specified using this method.

 Via a Datasource. A DataSource object can be used to provide the database link. This is useful if an application framework is being used that configures the data source externally to your application. This is supported by Database.forDataSource.

 Using a Config file. Another approach is to use a configuration file (called application.conf) that can be loaded from the classpath. This file can contain driver and data source information. This is supported via the Database.forConfig(config-name-string) method. For example, given the application.conf file:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figd_HTML.gif]

This file could be loaded using	val db = Database.forConfig("mydb")

In the following example we use the Database.forURL approach in which we specify the database URL and the database driver in a similar manner to that used with JDBC:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Fige_HTML.gif]

Note that the Database object manages a connection pool used to connect to the database and a thread pool to execute operations. It is therefore very important that it is shut down/closed appropriately when it is no longer needed. This can be done using

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figf_HTML.gif]

35.4 Mapping Tables to Scala Types
In many cases the management of the tables within a database may occur outside of the Scala application. However, if not then Slick can automatically create the table structure for you.
The first thing required to create type-safe queries is a definition of a Table class that will represent the tables in your database. This class defines the structure of the table (its columns and the types of those columns) and how they map into the types within your application.
In the following example a case class User is mapped to a table USERS via a class Users (which extends the Table type):

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figg_HTML.gif]

The case class User is the domain model used within the Scala application to represent Users. In the relational database there is a table called USERs that contains an ID (which is the primary key of type Integer) and a column NAME which is a varchar.
The class Users maps the relational table to the case class User.
The Users class extends the Table class specifying the type to use with the Table (in this case User).
All columns are defined through the column method. Each column has a Scala type and a column name for the database (usually in upper case). The following primitive types are supported out of the box for JDBC-based databases in JdbcProfile (with certain limitations imposed by the individual database profiles):

 	Numeric types: Byte, Short, Int, Long, BigDecimal, Float, Double

	LOB types: java.sql.Blob, java.sql.Clob, Array[Byte]

	Date types: java.sql.Date, java.sql.Time, java.sql.Timestamp

	Boolean

	String

	Unit

	java.util.UUID

Nullable columns are represented by Option[T] where T is one of the supported primitive types.
After the column name, you can add optional column options to a column definition. The applicable options are available through the table’s O object. The following ones are defined for JdbcProfile:

 	PrimaryKey: Mark the column as a (non-compound) primary key when creating the DDL statements.

	Default[T](defaultValue: T): Specify a default value for inserting data into the table without this column. This information is only used for creating DDL statements so that the database can fill in the missing information.

	SqlType(typeName: String): Use a non-standard database-specific type for the DDL statements (e.g. SqlType("VARCHAR(20)") for a String column).

	AutoInc: Mark the column as an auto-incrementing key when creating the DDL statements. Unlike the other column options, this one also has a meaning outside of DDL creation: Many databases do not allow non-AutoInc columns to be returned when inserting data (often silently ignoring other columns), so Slick will check if the return column is properly marked as AutoInc where needed.

If you look back at the definition of the Users class you may note that there is an odd looking method defined at the end of the class:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figh_HTML.gif]

Every table class must supply a ‘*’ method containing a default projection. That is, this method defines how to convert a row returned from the database into the domain instances used within the application. Or to put it another way this method converts rows into Users in this case.
The above example uses a custom type for its * projection by adding a bidirectional mapping with the <> operator. This approach is optimised for case classes (with a simple apply method and an unapply method that wraps its result in an Option) but it can also be used with arbitrary mapping functions.
Interestingly, it is also possible to get Slick to auto-generate classes to handle the mapping from an existing database structure to a set of Scala classes. This is done using the click.codegen library (see online documentation for more information on how to do this https://​github.​com/​slick/​slick-codegen-example).
35.5 Table Query Interface
As well as the table to Scala type mapping class, it is also necessary to create a TableQuery object that will represent the actual database table.
This can be done very easily using the TableQuery[T] type. The simple TableQuery[T] is actually a macro which expands to a proper TableQuery instance that calls the table class’s constructor (in our case that would be newTableQUery(new Users()).
This is can be used as follows:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figi_HTML.gif]

It is also possible to create an object to allow additional functionality to be associated with a table:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figj_HTML.gif]

35.6 Creating Tables
We can get Slick to create tables within our database (by generating the underlying Data Definition Language (DDL) statements). This can be done using the TableQuery’s schema method. The object returned by this method supports actions such as create, drop and truncate.
For example, to create the users table we can use

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figk_HTML.gif]

For debugging purposes, you can get hold of the statements generated by these operations using:

 	

 schema.create.statements.foreach(println)

35.7 Inserting Data
Rows can be inserted into the database using the TableQuery object and the mappings supported by the Table type. In this case it means that we can add instances of the User case class to the TableQUery object users. The act of adding these instances to the TableQuery type results in a row being added to the table, for example

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figl_HTML.gif]

This will add the user “John” with the Id 101 to the tables users, where users was defined as:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figm_HTML.gif]

By default, += gives you a count of the number of affected rows (which will usually be 1). When using the ++= batch insert operation, Slick makes use of the JDBC batch API. The underlying JDBC driver will decide how to transmit the batch (via SQL) to the database server.
35.8 Composing Database I/O Actions
All actions on a database in Slick are instances of a DBIOAction, parameterised by the result type it will produce when you execute it.
DBIOActions can be combined together using several different combinators accessible from the DBIO utility. The simplest of these is the DBIO.seq combinatory which takes a varargs list of actions to run in sequence, discarding their return value.
As an example, if we want to combine together a sequence of actions that will create a table and populate it with some initial data we can use the DBIO.seq combinatory as follows:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Fign_HTML.gif]

It is possible to pick up a return value as that via the andThen operator. This can be used to combine together a series of actions and keep the result of that last one, for example

 	

 val ins1: DBIO[Int] = users += User(101, "John")

	

 val ins2: DBIO[Int] = users += User(49, "Denise"),

 	

 val a1: DBIO[Int] = ins1 andThen ins2

35.9 Example Setting Up a Database
The following listing brings all of the aspects presented earlier in this chapter together. It connects up to a company database and creates a new table USERS. It then adds several users to that table and then waits for the action to complete before terminating.

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figo_HTML.gif]
 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figz_HTML.gif]

The output generated when this application is run is illustrated below:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figp_HTML.gif]

35.10 Querying for Data
This is where the power (and simplicity) of Slick really comes to the fore. Using Slick querying a database for data looks very much as it would like if a simple collection was being used as the source of the data.
Of course the source of the data is now a database and the query that underpins the retrieval of that data is still an SQL statement, but the programmers API hides all of this. The one aspect that is different is that the execution of the query is handled asynchronously and thus a Future is returned from the Database run method. This future will return a result at some point in the future (hence the name).
For example

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figq_HTML.gif]

The above code appears to use a for comprehension on the users object (of course this actually runs a SQL query and then applies the for comprehension to the results. Strictly speaking (and working backwards) the db.run method takes a DBIOAction and returns a Future that will allow the results of the query to be accessed. Execution of the action starts in the background when the run method is called. Thus the call method is not blocked. This example therefore uses the Await.result method to wait until the result is returned from the Future. When the Future completes the onComplete method will be invoked which in this cases will print the result returned. The result is a collection of User objects.
Another approach is to stream results. In this case the actual collection type is ignored and elements are streamed directly from the result set through a Reactive Stream Publisher, which can be processed and consumed by an Akka Stream.
Execution of the DBIOAction does not start until a Subscriber is attached to the stream. If multiple Subscribers subscribe to the same Publisher, each one triggers an independent execution of the actions.
Stream elements are signalled as soon as they become available in the streaming part of the DBIOAction. The end of the stream is signalled only after the entire action has completed. For example, when streaming inside a transaction and all elements have been delivered successfully, the stream can still fail afterwards if the transaction cannot be committed. The Subscriber is notified of this failure.
The previous query can be rewritten to use streams as follows:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figr_HTML.gif]

It is also possible to sort and filter results. The Database.sortBy method can be used to sort the results of a query, for example

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figs_HTML.gif]

In turn the database filter method can be used to filter a query, for example

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figt_HTML.gif]

In this case the result is a collection of User instances where the id of the user is above 100.
Of course it is not necessary to always generate a collection of User objects, and if all we are interested in are the names of the users we could select those values from the query:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figu_HTML.gif]

Note how this is done using the map function chained to the result of the filter function. Of course in reality the SQL query generated from this combines both the filter and the map so that only the names are returned from the database.
It is also possible to use the filter function to select just a single row from the database:

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figv_HTML.gif]

Note the use of the ‘===’ comparison operator. In fact you also have to use =!= instead of != for inequality. This is necessary because these operators are already defined (with unsuitable types and semantics) on the base type Any, so they cannot be replaced by extension methods.

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figw_HTML.gif]

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figx_HTML.gif]

35.11 Updating, Upserting and Deleting Data
Updates are performed by writing a query that selects the data to update and then replacing it with new data. The query must only return raw columns (no computed values) selected from a single table.	

 val q = for {c <- coffees if c.name === "Espresso"} yield c.price

	

 val updateAction = q.update(10.49)

Deleting works very similarly to updating. You write a query which selects the rows to delete and then get an Action by calling the delete method on it:	

 val q = users.filter(_.Id === 15)

	

 val action = q.delete

It is also possible to upsert—that is either insert or update (depending on whether the row already exists in the database or not):	

 val updated = users.insertOrUpdate(User(1, "Bob))

	

 // returns: number of rows updated

 [image: ../images/323629_2_En_35_Chapter/323629_2_En_35_Figy_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_36

36. Testing

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

36.1 Introduction
This chapter considers the different types of tests that you might want to perform with the systems you develop in Scala. It also introduces test-driven development.
36.2 Types of Testing
There are at least two ways of thinking about testing:	1.It is the process of executing a program with the intent of finding errors/bugs (see Glenford Myers, The Art of Software Testing).

	2.It is a process used to establish that software components fulfil the requirements identified for them; that is that they do what they are supposed to do.

These two aspects of testing tend to been emphasised at different points in the software lifecycle. Error testing is an intrinsic part of the development process, and an increasing emphasis is being placed on making unit testing a central part of software development.
It should be noted that it is extremely difficult—and in many cases impossible—to prove that software “works” and is error free. The fact that a set of tests finds no defects does not prove that the software is error free. ‘Absence of evidence is not evidence of absence!’. This was discussed in the late 1960s and early 1970s by Dijkstra and can be summarised as:Testing shows the presence, not the absence of bugs

Testing to establish that software components fulfil their contract involves checking operations against their requirements. Although this does happen at development time, it forms a major part of QA and user acceptance testing. It should be noted that with the advent of test-driven development, the emphasis on testing against requirements during development has become significantly higher.
There are of course many other aspects to testing; for example, performance testing helps identify how a systems will perform as various factors that affect that system change. For example, as the number of concurrent requests increase, as the number of processors used by the underlying hardware changes, as the size of the database grows.
However you view testing, the more testing applied to a system the higher the level of confidence that the system will work as required, and therefore the lower the risk of building a business around that system.
36.3 What Should Be Tested?
What aspects of your software system should be subject to testing? In general anything that is repeatable should be subject to formal (and ideally automated) testing. This includes (but is not limited to):	The build process for all technologies involved.

	The deployment process to all platforms under consideration.

	The installation process for all runtime environments.

	The upgrade process for all supported versions (if appropriate).

	The performance of the system/servers as loads increase.

	The stability for systems that must run for any period of time (e.g. 24 x 7 systems).

	The backup process.

	The security of the system.

	The recovery ability of the system on failure.

	The functionality of the system.

	The integrity of the system.

Notice that only the last two of the above list might be what is commonly considered areas that would be subject to testing. However, to ensure the quality of the system under consideration, all of the above are relevant. In fact, testing should cover all aspects of the software development lifecycle and not just the QA phase. During requirements gathering testing is the process of looking for missing or ambiguous requirements. During this phase consideration should also be made with regard to how the overall requirements will be tested, in final software system. Test planning should also look at all aspects of the software to test for functionality, usability, legal compliance, conformance to regulatory constraints, security, performance, availability, resilience, etc. Testing should be driven by the need to identify and reduce risk.
36.4 Types of Testing
As indicated in Fig. 36.1 there are a number of different types of testing that are commonly used within industry. These types are:[image: ../images/323629_2_En_36_Chapter/323629_2_En_36_Fig1_HTML.gif]
Fig. 36.1Types of testing

	
 Unit Testing which is used to verify the behaviour of individual components.

	
 Integration Testing that tests that when individual components are combined together to provide higher-level functional units that the combination of the units operates appropriately.

	
 Regression Testing. When new components are added to a system, or existing components are changed, it is necessary to verify that the new functionality does not break any existing functionality. Such testing is known as regression testing.

	
 Performance Testing is used to ensure that the systems’ performance is as required and, within the design requirements, is able to scale as utilization increases.

	
 Security Testing ensures that access to the system is controlled appropriately given the requirements. For example, for an online shopping system there may be different security requirements depending upon whether you are browsing the store, purchasing some products or maintaining the product catalogue.

	
 Usability Testing which may be performed by a specialist usability group and may involved filming of users while they use the system.

	
 User Acceptance Testing validates that the system actually meets the user requirements and conforms to required application integrity.

Key testing approaches are discussed in the remainder of this section.
36.4.1 Unit Testing
A unit can be as small as a single function or as large as a subsystem but typically is a class, object, self-contained library (API) or Web page.
By looking at a small self-contained component an extensive set of tests can be developed to exercise the defined requirements and functionality of the unit.
Unit testing typically follows a white box approach, (also called Glass Box or Structural testing), where the testing utilises knowledge and understanding of the code and its structure, rather than just its interface (which is known as the black box approach).
In white box testing, test coverage is measured by the number of code paths that have been tested. The goal in unit testing is to provide 100% coverage: to exercise every instruction, all sides of each logical branch, all called objects, handling of all data structures and files, (including the absence of a file) normal and abnormal termination of all loops, etc. Of course this may not always be possible, but it is a goal that should be aimed for. Many automated test tools will include a code coverage measure so that you are aware of how much of your code has been exercised by any given set of tests.
Unit testing is almost always automated—there are many tools to help with this, perhaps the best known being JUnit for Java and ScalaTest for Scala (with similar tools being available for other languages). Developers write test and stubs, allowing us to:	focus on testing the unit

	simulate data or results from calling another unit (representative good and bad results.)

	try to create data-driven tests for maximum flexibility and repeatability.

	Often rely on mock objects that represent elements outside the unit that it must interact with.

Having the tests automated means they can be run frequently, at the very least after initial development and after each change that affects the unit.
Once confidence is established in the correct functioning of one unit, developers can then use it to help test other units with which it interfaces, forming larger units that can also be unit tested or, as the scale gets larger, put through integration testing.
36.4.2 Integration Testing
Integration testing is where several units (or modules) are brought together to be tested as an entity in their own right. Typically integration testing aims to ensure that modules interact correctly and the individual unit developers have interpreted the requirements in a consistent manner.
An integrated set of modules can be treated as a unit and unit tested in much the same way as the constituent modules but usually working at a “higher” level of functionality. Integration testing is the intermediate stage between unit testing and full system testing.
Therefore integration testing focuses on the interaction between two or more units to make sure that those units work together successfully and appropriately. Such testing is typically conducted from the bottom up but may also be conducted top down using mocks or stubs to represented called or calling functions. An important point to note is that you should not aim to test everything together at one (so-called Big Bang testing) as it is more difficult to isolate bugs so that they can be rectified. This is why it is more common to find that integration testing has been performed in a bottom-up style.
36.4.3 System Testing
System testing aims to validate that the combination of all the modules, units, data, installation, configuration, etc. operates appropriately and meets the requirements specified for the whole system. Testing the system has a whole typically involves testing the top most functionality or behaviours of the system. Such behaviour-based testing often involves end users and other stake holders who are less technical. To support such tests a range of technologies have evolved that allows a more English style for test descriptions. Cucumber is one example of a behaviour-driven development system, and ScalaTest has a behavioural aspect to its testing styles.
36.4.4 Installation Testing
Installation testing is the testing of full, partial or upgrade install processes. It also validates that the installation and transition software needed to move to the new release for the product is functioning properly. Typically, it	verifies that the software may be completely uninstalled through its back-out process

	determines what files are added, changed or deleted on the hardware on which the program was installed

	determines whether any other programs on the hardware are affected by the new software that has been installed

	determines whether the software installs and operates properly on all hardware platforms and operating systems that it is supposed to work on.

36.4.5 Smoke Tests
A smoke test is a test or suite of tests designed to verify that the fundamentals of the system work. Smoke tests may be run against a new deployment or a patched deployment in order to verify that the installation performs well enough to justify further testing. Failure to pass a smoke test would halt any further testing until the smoke tests pass. The name derives from the early days of electronics: If a device began to smoke after it was powered on, testers knew that there was no point in testing it further. For software technologies, the advantages of performing smoke tests include:	Smoke tests are often automated and standardised from one build to another.

	Because smoke tests test things that one expects to work, when they fail, one might suspect that the program may have been built with a wrong file, or that the new build introduced a new bug.

	If a system is built daily, it should be smoke tested daily.

	It will be necessary to periodically add to the smoke tests as new functionality is added to the system.

36.5 Automating Testing
The actual way in which tests are written and executed needs careful consideration. In general, we wish to automate as much of the testing process as is possible as this makes it easy to run the tests and also ensures not only that all tests are run but that they are run in the same way each time. In addition, once an automated test is set up it will typically be quicker to re-run that automated test than to manually repeat a series of tests. However, not all of the features of a system can be easily tested via an automated test tool and in some cases the physically environment may make it harder to automated tests.
Typically, most unit testing is automated and most acceptance testing is manual. You will also need to decide which forms of testing must take place. Most software projects should have unit testing, functional testing and acceptance testing as a necessary requirement. Not all projects will implement performance or regression testing, but you should be careful about omitting any stage of testing and be sure it is not applicable.

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_37

37. Scala Testing

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

37.1 Introduction
This chapter examines the various facilities available within Scala to perform a range of tests.
37.2 Scala Runtime Test Facilities
37.2.1 Validation Checks
Scala provides three language facilities that can be used for validation. These are:	
 Assert—this operation is used to validate the sate of some property and throws a java.lang.AssertionError if the condition it defines is not met.

	
 Require—this is intended as a pre-condition for a class, method or function. It can be used to validate parameters and throws an IllegalArgumentException if the condition specified is not met.

	
 Assume—this is essentially an alias for assert—it can therefore be used to validate the state of an instance of an object and also throws the AssertionError if the condition specified is not met. However, static analysis tools could decide to treat assume as being different. For example, it could be that assume is used to represent a concept which has already been verified and thus it can be assumed to be correct.

None of the above operations use the Java framework assertion and are always evaluated unless turned off at compile time. In fact, if you examine the
 Predef.scala
 source file you will find that the three validation type assertions are all very similar and differ only in the exceptions that they throw. An example illustrating the definitions of the assert, assume and require methods is shown below:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figa_HTML.gif]

37.2.2 Using Require and Assert
The following simple listing illustrates how the require and the assert operations can be used:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figb_HTML.gif]

Note that the operations, require, assert and assume can all take a condition that returns true or false and an operation to perform if the condition is not met. Thus:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figc_HTML.gif]

validates that count is currently set to Zero, while

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figd_HTML.gif]also validates that count is Zero but evaluated the behaviour passed in as the second parameter if the Boolean test fails. In this case we merely print a message out to the console. The same is true for the assert example above.
37.3 Test Libraries in Scala
There are several libraries in Scala which extend the basic facilities available within the language itself to provide a richer way to represent and express tests. At the time of writing the three leading libraries are:	ScalaTest

	Spec

	ScalaCheck

Each of these is briefly described below, while ScalaTest will be discussed in more detail in the next section.
37.3.1 ScalaTest
ScalaTest (see http://​www.​scalatest.​org) provides a number of different testing options from Unit Tests, through functional testing to behaviour-based testing.
37.3.2 Spec
Spec is a Behaviour-Driven Development testing framework for Scala (see http://​code.​google.​com/​p/​specs).
37.3.3 ScalaCheck
ScalaCheck (see http://​www.​scalacheck.​org) is a testing framework developed from the Haskell library QuickCheck but has now extended beyond this. It is a property-based testing framework which means that each test is associated with a property that you wish to ensure for the elements being tested and how that property is verified. For example,

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Fige_HTML.gif]

37.4 Scalatest Testing Framework
The most established Scala test framework in use is ScalaTest. This framework actually allows several different testing styles to be adopted. The simplest of which is the unit testing approach based on direct integration between JUnit (originally a Java Unit Test framework) and Scala. Essentially, using ScalaTest around JUnit, a developer writes a simple Unit Test using Scala idioms that is then run through the JUnit infrastructure. This means that if a development project is using a mixture of Java and Scala code, then can write JUnit tests in either Java or Scala and run them through the same tool sets.
37.4.1 Setting up Your Scala Project
The first thing you will need to do if you are going to use ScalaTest and JUnit is to make them available to your applications. That is, to write test that will utilise the ScalaTest to JUnit bridge you will need to have both the ScalaTest library and the JUnit library on your classpath. Note that you must ensure that you are using compatible versions of JUnit and ScalaTest. If the versions are not compatible you may find that you get unexpected results.
To set up your environment in Eclipse you will need to add the JUnit jar and the ScalaTest jar to your project.
First let us obtain the ScalaTest jar. The current release at the time of writing is the ScalaTest 3.0.4 release. This can be obtained from the downloads page of the main ScalaTest website (see http://​www.​scalatest.​org/​download). You can either download the libraries, add the appropriate Maven dependencies or if you are using SBT add the SBT dependencies to your build file. For example, for Maven you can add:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figf_HTML.gif]

This adds both the Scalatest library and its sister library Scalactic to your project. Strictly speaking, Scalactic is not required; however it is recommended as it focusses on quality through types.
The jUnit framework will be used to run the Scalatest test, and so this is also required. Again this can be downloaded, or if you are using Maven then you can just add the appropriate dependency to your POM file:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figg_HTML.gif]

37.4.2 ScalaTest and JUnit
In this section, we will look at how you can write simple Unit Tests in ScalaTest. A ScalaTest test mixes in the trait
 org.scalatest.Suite
 and can mix in one or more additional traits that allow you to control the behaviour of the tests. In general, we will call our test classes <something>Test or Test<something> where something is an appropriately descriptive name. Therefore we might write a class called PersonTest (which indicates that it provides one or more test methods associated with the class Person. To illustrate the idea let us assume that we have a simple class Person as shown in the following listing:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figh_HTML.gif]

A simple test class for this Person class might thus be:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figi_HTML.gif]

There are a number of points to note about this simple test class.
37.4.2.1 The package
The first is that both the Person class and the PersonTest class are defined within the package com.jjh.scala. However, this does not mean that they are both defined in the same source location. I have created a second location that will contain all my tests. I thus have a route folder main/scala/src and a root folder test/scla/src that can both contain Scala source code. The main path indicates the main body of the system and the test path the location of test code.
This means that we can ensure that no test code is accidently included in the deployed system as the deployed system should not contain anything under the test root. However, for testing purposes we would like to allow the test class to have at least package visibility of all data and methods as this can make setting up test scenarios easier. In Scala it does not matter that Person and PersonTest are in different source locations, and the important point is that they are both part of the package com.jjh.scala. This is illustrated below.

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figj_HTML.gif]

37.4.2.2 RunWith Annotation
Secondly the class is annotated with a

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figk_HTML.gif]

This indicates that when this class is run it is not run as a standard Scala application. Instead it should be run through the JUnit framework via the JUnitRunner.
37.4.2.3 Naming Conventions
The third point to note is that the test specifications within the PersonTest class are written in a very English style. This test specification style is of the format “X should Y” or “A must B”.
Finally, within the test specification methods, having created an instance of the Person class we validate the test using an Assert.assertEquals method. In fact the Assert class of the org.junit package provides many different assertion methods. We could have used the Assert.assert.Equals, but this is quiet long winded, and Assert.assert seems a bit repetitive. To avoid this we imported the methods on the Assert class into this file using:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figl_HTML.gif]

We can now run this simple test. In IntelliJ you can just select to the run the PersonTest class and IntelliJ will work that this is a test class with multiple test specifications and run each of them in turn. It will then open the test results view at the bottom of your IDE (Fig. 37.1).[image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Fig1_HTML.gif]
Fig. 37.1JUnit runtime view in Eclipse

There is a range of options that can be applied to these tests. For example, if you wish to define some behaviour that will be run before each test, referred to as test fixtures, you can mix in the BeforeAndAfter trait. This provides the ability to define a before and after expression. The following listing illustrates a test suite for a class Stack that has two tests and a before fixture and an after fixture:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figm_HTML.gif]

The result of executing this test is that both tests pass and the console contain the output shown below:	

 Before behaviour

	

 After behaviour

	

 Before behaviour

	

 After behaviour

As you can see from this example, the before and after behaviours have been run before (and after) each test.
37.4.3 Scala Test and Functional Test Suites
The functional test suite facilities available in ScalaTest are aimed at supporting TDD style development. In a function style test each test is a named function within the test suite. A developer’s class extends the FunSuite (which stands for Function Suite) and can use BeforeAndAfter fixtures for set-up and tear down style behaviour. In the function suite tests, names can be more description as the name of tests are strings and can have spaces within them. However, at runtime they are presented as normal JUnit tests.
The following listing illustrates a Function Test Suite:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Fign_HTML.gif]

The results of running this FunctionTest within Eclipse are presented via the JUnit view as shown below.

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figo_HTML.gif]

37.5 Scalatest and Feature Tests
Another test style supported by ScalaTest is that of the feature test. A feature is typically a very high-level concept that would be meaningful to a user. As such features are primarily those things that might be tested at the user acceptance testing level. ScalaTest provides the FeatureSpec trait that can be used to represent these very high-level concepts. The aim is to provide a structure that allows developers to work along side non-programmers to define the acceptance criteria. The following listing illustrates a ScalaTest Feature Specification test:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figp_HTML.gif]

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figq_HTML.gif]

The result of running this as a Scala JUnit test in Eclipse is shown below

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figr_HTML.gif]

37.6 Test-Driven Development
Test-Driven Development (of TDD) is a development technique whereby developers write test cases before they write any implementation code. The tests thus drive or dictate the code that is developed. The implementation only provides as much functionality as is required to pass the test, and thus the tests act as a specification of what the code does (and some argue that the test are thus part of the that specification and provide documentation of what the system is capable of).
TDD has the benefit that as tests must be written first, there are always a set of tests available to perform unit, integration, regression testing, etc. This is good as developers can find that writing tests and maintaining tests are boring and of less interest than the actual code itself, and this put less emphasis into the testing regime than might be desirable. TDD encourages, and indeed requires, that developers maintain an exhaustive set of repeatable tests and that those tests are developed to the same quality and standards as the main body of code.
There are three rules of TDD as defined by Robert Martin for TDD; these are:	1.You are not allowed to write any production code unless it is to make a failing Unit Test pass.

	2.You are not allowed to write any more of a Unit Test than is sufficient to fail, and compilation failures are failures.

	3.You are not allowed to write any more production code than is sufficient to pass the one failing Unit Test.

This leads to the TDD cycle described in the next section.
37.6.1 The TDD Cycle
There is a cycle to development when working in a TDD manner. The shortest form of this cycle is the TDD mantra:

 [image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Figs_HTML.gif]

which relates to the JUnit suite of tools where it is possible to write a JUnit-based test. Within tools such as Eclipse, when you run a JUnit test a JUnit view is shown with Red indicating that a test failed, Green indicating that the test passed. Hence Red/Green, in other words write the test and let it fail, then implement the code to ensure it passes. The last part of this mantra is Refactor which indicates once you have it working make the code cleaner, better, fitter by Refactoring it. Refactoring is the process by which the behaviour of the system is not changed, but the implementation is altered to improve it.
The TDD mantra can be seen in the TDD cycle that is shown in Fig. 37.2 and described in more detail below:[image: ../images/323629_2_En_37_Chapter/323629_2_En_37_Fig2_HTML.gif]
Fig. 37.2TDD cycle

	1.Write a single test.

	2.Compile it. It should not compile because you have not written the implementation code.

	3.Implement just enough code to get the test to compile

	4.Run the test and see it fail.

	5.Implement just enough code to get the test to pass.

	6.Run the test and see it pass.

	7.
 Refactor for clarity and deal with any issue of reuse, etc.

	8.Repeat for next test.

37.6.2 Test Complexity
The aim is to strive for simplicity in all that you do within TDD. Thus you write a test that fails and then do just enough to make that test pass (but no more). Then you Refactor the implementation code (that is change the internals of the unit under test) to improve the code base. You continue to do this until all the functionality for a unit has been completed. In terms of each test, you should again strive for simplicity with each test only testing one thing with only a single assertion per test (although this is the subject of a lot of debate within the TDD world).
37.6.3 Refactoring
The emphasis on Refactoring with TDD makes it more than just testing or Test First Development. This focus on Refactoring is really a focus on (re)design and incremental improvement. The tests provide the specification of what is needed as well as the verification that existing behaviour is maintained, but Refactoring leads to better design software. Thus with Refactoring TDD is not TDD!
References

 	Astels D (2003) Test-driven development: a Practical Guide. Prentice-Hall/Pearson Education. ISBN 0-13-101649-0

	Beck K (2003) Test-driven development: by example. Addison-Wesley. ISBN 0-321-14653-0

	Dijkstra EW (1970) Notes on structured programming. Technical University of Eindhoven, The Netherlands, Department of Mathematics, Technical Report 70-WSK-03, April 1970 (see http://​www.​cs.​utexas.​edu/​users/​EWD/​ewd02xx/​EWD249.​PDF).

	Myers G, Badgett T, Sandler C (2011) The art of software testing, 3rd edn. Wiley, 1118031962

	Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley, 0201485672, published June 1999

Online References

 	Cucumber behaviour driven development, see http://​cukes.​info/​

	ScalaTest see http://​www.​scalatest.​org

	ScalaCheck see http://​www.​scalacheck.​org

	Robert C. Martin (aka Uncle Bob) http://​butunclebob.​com/​ArticleS.​UncleBob.​TheThreeRulesOfT​dd

	
 http://​www.​testdriven.​com

	testdrivendevelopment group (Yahoo):

	
 http://​groups.​yahoo.​com/​group/​testdrivendevelo​pment

	xUnit implementations:

	
 http://​www.​xprogramming.​com/​software.​htm

	
 http://​www.​junit.​org

	Refactoring.com

	
 http://​www.​refactoring.​com/​

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_38

38. Play Framework

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

38.1 Introduction
The Play framework is a lightweight, stateless, asynchronous framework for building Web applications and services. It is built on top of Scala and the Akka concurrency API and aims to provide predictable behaviour with minimal resource consumption (i.e. CPU, memory, threads) for highly scalable applications. Play is open source and can be obtained from http://​www.​playframework.​com.
38.2 Introduction to Play
Play is a framework for building a wide range of different types of Web application. These are applications that receive requests for data and functionality over HTTP(s). Play aims to make the construction of such applications simple, flexible and intuitive. It incorporates an integrated HTTP Server (so there is no need for a separate Web application server as there is with many Java Web frameworks); it also incorporates a templating framework for the creation of websites and a RESTful Web service API for the creation of a service-based implementation. It exploits Scala and the facilities within the Scala ecosystem, such as Akka, to ensure that the applications developed are scalable and perform well.
The basic installation also allows for in code changes to be reloaded and reflected in the Web application without the need for separate build and deploy steps (which greatly simplifies, and speeds up, development).
38.2.1 Working with a Web Application
Let us first look at the basic structure of a Play Web application. This is illustrated below. This indicates that a HTTP request is routed to an application (Scala) controller. The controller loads data via an element typically referred to as the Model. It then renders a HTML page that is populated with data from the model. This page is known as the View and is defined by a template. Within the template, the placeholders are replaced with the values provided by the controller and model.

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figa_HTML.gif]

38.2.2 How Play Changes the Stack
The Web application technology stack in the Java Enterprise world is built on technology that has both evolved over many years and requires multiple elements in order to work. The evolution has taken the simple Servlet technology and constructed layer upon layer on top of this to achieve the sophistication needed by today’s Web applications (see Fig. 38.1). The multiple technologies that actually comprise this stack ensure that even deploying simple applications can be troublesome and error prone as each technology needs to be successfully integrated with the next, often relying on configuration files or standard conventions. This makes for both a heavyweight infrastructure and an overly complex environment.[image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Fig1_HTML.gif]
Fig. 38.1Java EE layered architecture

By contrast the Play framework is a much simpler stack. The Play framework was designed for the current generation of Web application from the start and only requires the services of a HTTP Server (Netty) in order to operate. This means that configuration and deployment are restricted to a single infrastructure (see Fig. 38.2).[image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Fig2_HTML.gif]
Fig. 38.2The Play layered architecture

Play is comprised of a number of elements; these include:	
 The HTTP Server—This is the element of the environment which receives the HTTP request from a client (such as a browser or another software system) and returns a result based on the information provided in the request. This response may be in terms of HTML markup, XML data or JSON (JavaScript Object Notation) format—or indeed any data format you chose.

	
 Routing information—When a HTTP request is received, Play must determine where to route the request—that is what code to execute in response to the request—it therefore provides a route configuration file that is used to handle this routing information.

	
 Supporting Scala types—Various types are defined within the Play framework that can be used to implement the programmatic elements of the Web application (such as querying a database in response to a request to get the data associated with an id, etc.).

	
 A templating system—It used to take standard HTML style pages and populate them with data that is dynamically generated by the application. This essentially means that standard HTML is augmented with additional elements some of which are placeholders for data that will be provided by the Scala code.

	
 An integrated play console and build system—To simplify working with Play a suite of tools is provided that can be used to create, update and deploy a Play Web application. These tools are accessed from and managed by the play console.

	
 A persistent framework—To simplify accessing databases.

38.3 Starting with Play
38.3.1 Download and Install Play
You can download Play from the Play frameworks home page. You can choose to use the Lightbend Activator installation or the plain play installation. We will use the plain play installation as we can then focus on the just the features provided by Play. To do this download the zip containing the version of Play you wish to use. At the time of writing the current version was Play 2.6.9 (see https://​www.​playframework.​com/​documentation/​2.​6.​x/​Home).
You can download the Play framework from	
 https://​www.​playframework.​com/​download

There are several options available here, including starter projects, template projects, as well as downloads for the Play framework itself. At the time of writing the version available is Play 2.6.9 (dated December 2017).
Play is also available as a series of library in Maven; it can therefore be used in a Maven-managed project. The core Maven dependency is:

 <dependency>

 <groupId>com.typesafe.play</groupId>

 <artifactId>play_2.12</artifactId>

 <version>2.6.9</version>

 </dependency>

38.3.2 Using a Play Starter Project
Prior to Play 2.3.0 Play provided a command ‘play’ that could be used to create new applications, run tests and run the application. Since Play 2.3.0 the ‘play’ command is no longer used. Instead projects can be created from an example project or a template.
We will use the starter project provided by the online Play documentation site; this can be found at:

 https://​playframework.​com/​download#starters.

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figb_HTML.gif]

Select the ‘Play Scala Starter Example’ and download the zip file (note that Play is also available for Java, so be careful which version you download).
Once you have downloaded the zip file, unzip it into a suitable location. Once you have done that, if you look into the directory created for you should find a structure similar to that shown below:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figc_HTML.gif]

Note that when you run the sbt command later on, it will write some files into this directory structure; you should therefore make sure that you have both read and write access to wherever you have installed the Play sample project.
38.3.3 Starting the Application
Once you have downloaded and unzipped the sample project, you are ready to run it. The starter project comes with SBT already set up (if you are on Windows, there is a sbt.bat file; if you are on Unix, there is a sbt file).
Type the following command to run the starter project:

 ./sbt run

Alternatively if you type ./sbt on its own, then it will run in interactive mode, allowing you to type in run once the play console has started. In either case you should see something similar to:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figd_HTML.gif]

indicating that the Play server has started up and is listening on port 9000.
This will download all the dependencies required by the starter project for you using SBT’s dependency mechanism. Once the SBT has finished downloading all the required dependencies, you can view the running application at:	http://localhost:9000

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Fige_HTML.gif]

Of course, this is the default page and the page does not yet reflect you own output. The page is defined by the view element of the application. It was created for you by Play and uses a default template into which we will place our own message.
To shut down the server use CTRL-D, which will stop the server, and then ‘exit’ to terminate the play console.
38.4 Examining the Structure of the Application
The following expanded directory structure illustrates the organisation and contents of the starter project.

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figf_HTML.gif]

The contents of the starter project directory are explained below:	The app directory—This contains all the application source files.

	The app/controllers directory—This contains all the application controllers. These are the code elements that determine what action should be performed based on user selection.

	The app/views directory—This directory contains html template files that are used to generate the output presented to the user via a browser.

	The build.sbt file—The application build script used by the Simple Build Tool (SBT is a commonly used built tool for Scala).

	The conf directory—This contains configuration files and other non-compiled resources such as the application.conf file used for general application configuration and the routes file used to route URL requests to Scala code.

	The project directory—This contains various sbt files.

	The public directory—This holds resources used with the browser interface presented to the user such as javascript files, CSS files and images.

	The sbt-dist directory—This contains the packages SBT installation used with Play.

	The target directory—This contains everything generated by the build system. It can be useful to know what is generated here.

	The test directory—This is a source directory that can be used for unit or functional test code.

38.5 Editing the Application
38.5.1 Working with Your IDE
In order to edit the contents of the files within the Play application, you can use whatever editor you like. However, it makes it easier if you generate Eclipse configuration files, so that you can import the project into an IDE. Play provides support for working with both Eclipse and IntelliJ IDEA. Information on importing the Play project into both IDEs can be found at

 https://​www.​playframework.​com/​documentation/​2.​6.​x/​IDE

In this section we will step through importing the project into IntelliJ.
38.5.2 Importing into IntelliJ
To import the application you set up above into IntelliJ, open the Project wizard from the menu by selecting File->New->Project from Existing Sources… as shown below:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figg_HTML.gif]

In the dialog that is now displayed navigate to the location into which you unzipped the starter project and select ‘open’. On the next screen select ‘Import project from external model’ and choose ‘SBT project’:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figh_HTML.gif]

And click Next and on the final screen check the options selected and click ‘Finish’.
This will create some additional files and directories (such as .idea) within the directory structure for IntelliJ.
You should now see that the IntelliJ Editor is displaying the file structure reviewed earlier. If you select app->controllers->HomeController, you can also see the contents/definition of a simple controller, for example,

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figi_HTML.gif]

38.5.3 Working with the Application
As shown above, select the HomeController class under the app/controllers folder.
This class is the main entry point for the Web. It indicates that when this Web application runs (and the index page is requested, which is the default displayed for the Web application), the message displayed to the user is “Your new Application is ready.”. The source code for the HomeController is:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figj_HTML.gif]

For larger applications this controller would access one or more models that might invoke a persistence layer, business logic or other processing in order to generate the appropriate response.
Using your IDE change the message to be displayed by editing the String such that is says something like
 Hello Play World
 , for example,

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figk_HTML.gif]

Now return to your Web browser and refresh the page. You should now see your message displayed at the top of the page as shown below:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figl_HTML.gif]

The page has been updated because auto reload is enabled by default in Play. That is, when a file changes; Play automatically reloads it. In Scala’s case it first recompiles it and then reloads it.
Note that the use of @Inject()(cc: ControllerComponents) on the HomeController definition is an example of Dependency Injection (or DI).
If you have a component, such as a controller, and it requires some other components as dependencies, then this can be declared using the
 @Inject
 annotation. In this case the ControllerComponents instance is being made available to the controller. This instance groups together components that might be used by a controller. In this case we are not using any but the starter project provided this injection by default.
Note that the @Inject annotation must come after the class name but before the constructor parameters and must have parentheses. The
 @Inject
 annotation can also be used on fields as well as on constructors. Finally, you may have noticed that the class as a whole is annotated with @Singleton. This indicates that only a single instance of the class will be created within the framework. In standard Scala an object can be used to represent a singleton, but that would not allow the Dependency Injection framework to operate and is thus not now used when creating a Play controller.
38.6 Model–View–Controller
From the previous section, you may be wondering where the rest of the data on the web page came from. To understand this we must first talk about the Model–View–Controller framework on which Play is built.
The Model–View–Controller (MVC) architecture separates the interface objects (the views) from the objects that handle user input (the Handlers) from the application (the model). The MVC is not a new idea; it originated in Smalltalk back in the 1980s, but the concept has been used in many places and in many languages. It has become particularly popular within the Web development community.
The intention of the MVC architecture is the separation of the user display, from the control of user input, from the underlying information model as illustrated in Fig. 38.3. This is often referred to as model-driven programming (i.e. the separation of GUIs from the data they present). There are a number of reasons why this is useful:[image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Fig3_HTML.gif]
Fig. 38.3The Model–View–Controller architecture

	reusability of application and/or user interface components

	ability to develop the application and user interface separately

	ability to inherit from different parts of the class hierarchy

	ability to define control style classes which provide common features separately from how these features may be displayed

	a very clean separation of concerns.

This means that different interfaces can be used with the same application, without the application knowing about it. It also means that any part of the system can be changed without affecting the operation of the other. For example, the way that the graphical interface (the look) displays the information could be changed without modifying the actual application or how input is handled (the feel). Indeed the application need not know what type of interface is currently connected to it at all.
In Play the view is implemented using HTML, CSS, JavaScript and a templating language. The controllers are implemented as Scala objects (as you have already seen), and the Models are the data and business logic that a controller would invoke or construct. Given this introduction we can now explore how the web page presented to us was constructed.
38.7 Exploring the Play Application
First of all let us look at how the URL request entered into the browser URL resulted in our Scala code being run. The elements that we are going to look at are illustrated in Fig. 38.4.[image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Fig4_HTML.gif]
Fig. 38.4Layout of a Play application

The data entered into the URL bar causes the browser to generate a HTTP GET request to the server running on localhost and listening to port 9000. That server is the Play server. When it received the request, it looks at the contents of the conf/routes file to determine what to do with that request. The contents of this file are shown below.

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figm_HTML.gif]

The main entry of interest is the line
 GET / controllers.HomeController.index
This line essentially states then when a GET request is received, where there is nothing beyond the server name and the port number, then invoke the
 controllers.
 HomeController
 .index
 Scala method. If you change this line to read:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Fign_HTML.gif]

It is now necessary to enter a URL of the form:

 http://localhost:90000/welcome

 into the browser URL bar in order to run the index method of the Application object.
The URL is therefore routed by Play to the appropriate method on the controller class. The index property shown below sets the index message of the views.html:

 def index = Action {

 Ok(views.html.index(“Hello Play World”))

 }

An Action is actually a function that handles the request and generates a result to send back to the Web client. In this case an OK response is being generated using a template to fill in the content. The template is defined in the

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figo_HTML.gif]and compiled into a Scala function.
In fact a Controller is really only an object that holds actions. Controllers are defined as classes so that they can take advantage of Dependency Injection (currently a controller can be defined as an Object, and also future versions will not allow this).
The template defines the function signature (it takes a String and stores this in the variable
 message
) and the content of the body of the web page. These files can mix HTML, CSS, JavaScript and Scala code and represent the presentation or view aspect of the MVC framework.
The original version of this file (that comes with the Starter project) makes use of Scala and the templating language. However, to better illustrate how the template can be mixed with HTML we will change this file as listed below:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figp_HTML.gif]

In this listing we are using HTML to manage the layout of the web page and leaving the message presented within the page to be generated from the data passed into the view (from the controller).
Notice that the parameter to the page is defined at the top of the page using the Play templating language and is accessed in the body of the page by prefixing the parameter with an ‘@’ symbol. Also note that comments in the template page start @* and end with *@.
The result of re writing the view file in this way is that if we now refresh the Web application, we will see the new landing page displayed:

 [image: ../images/323629_2_En_38_Chapter/323629_2_En_38_Figq_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_39

39. RESTful Services

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

39.1 Introduction
This chapter looks at RESTful Web services as implemented using the Play framework.
39.2 RESTful Services
As well as dynamic Web applications, many developers also want to be able to create RESTful services that can be invoked by Ajax style clients.
REST stands for Representational State Transfer and was a term coined by Roy Fielding in his Ph.D. to describe the lightweight, resource-oriented architectural style that underpins the Web. Fielding, one of the principle authors of HTTP, was looking for a way of generalising the operation of HTTP and the Web. He generalised the supply of Web pages as a form of data supplied on demand to a client where the client holds the current state of an exchange. Based on this state information the client requests the next item of relevant data sending all information necessary to identify the information to be supplied with the request. Thus the requests are independent and not part of an ongoing stateful conversation (hence state transfer). If you are interested in the background to this see	
 http://​www.​ics.​uci.​edu/​~fielding/​pubs/​dissertation/​top.​htm

It should be noted that although Fielding was aiming to create a way of describing the pattern of behaviour within the Web, he also had an eye on producing lighter weight Web-based services (than those using either proprietary Enterprise Integration frameworks or SOAP-based services). These lighter weight HTTP-based Web services have become very popular and are now widely used in many areas. Systems which follow these principles are termed RESTful services.
A key aspect of a RESTful service is that all interactions between a client (whether some JavaScript running in a browser or a standalone application) are done using simple HTTP-based operations. HTTP supports four operations: HTTP GET, HTTP POST, HTTP PUT and HTTP DELETE. These can be used as verbs to indicate the type of action being requested. Typically these are used as follows:	retrieve information (HTTP GET)

	create information (HTTP POST)

	update information (HTTP PUT)

	delete information (HTTP DELETE).

It should be noted that REST is not a standard in the way that HTML is a standard. Rather it is a Design Pattern that can be used to create Web applications that can be invoked over HTTP and that give meaning to the use of GET, POST, PUT and DELETE HTTP operations with respect to a specific resource (or type of data).
The advantage of using RESTful services as a technology, compared to some other approaches (such as SOAP-based services which can also be invoked over HTTP) is that	the implementations tend to be simpler,

	the maintenance easier.

	They run over standard HTTP and HTTPS protocols and

	do not require expensive infrastructures and licences to use.

This means that there is lower server and server-side costs. There is little vendor or technology dependency, and clients do not need to know anything about the implementation details or technologies being used to create the services.
39.3 A RESTful API
A RESTful API is one in which you must first determine the key concepts or resources being represented or managed. These might be books, products in a shop, room bookings in hotels, etc. In our case we will assume a bookstore-related service in which the data being held represents types of books, CDs, DVDs, etc. This data is split into resources with books as one type of resource. We will ignore the other resources such as DVDs and CDs. Based on these books we will identify suitable URLs for these RESTful services. Note that although URLs are frequently used to describe a web page—that is just one type of resource. For example, we might develop a resource such as	/bookservice/book

from this we could develop a URL based API, such as	/bookservice/book/:isbn

Where ISBN indicates a unique number to be used to identify a specific book whose details will be returned using this URL.
We also need to design the representation or formats that the service can supply. These could include plain text, JSON, XML. JSON stands for the JavaScript Object Notation and it is a concise way to describe data that is to be transferred from a service running on a server to a client running in a browser. This is the format we will use in the next section. As part of this we might identify a series of operations to be performed by our services based on the type of HTTP method used to invoke our service and the contents of the URL provided. For example, for a simple BookService this might be:	GET /book/{isbn}—used to retrieve a book for a given ISBN

	GET /book/list.xml—used to retrieve all current books in XML format

	GET /book/list.json—used to retrieve all current books in JSON format

	POST /book (XML or JSON in body of the message)—which supports creating a new book

	PUT /book (XML or JSON in body of message)—used to update the data held on an existing Book

	DELETE /book/{isbn}—used to indicate that we would like a specific book deleted from the list of books held.

Note that the parameter ISBN in the above URLs actually forms part of the URL path.
39.4 Creating the RESTful Web Application
We will create a new Play application for this. This is done in exactly the same way as before. In fact Play creates Web-based applications. These can be treated as websites or as RESTful services depending upon the type of data supplied and the way in which you expect the service to be invoked. Thus the distinction between a RESTful service and a Web page is in the eye of the beholder (or at least the client application). Indeed if you wish rather than unzipping the start project again you can choose to modify the simple application we created in the last chapter.
Given the Model–View–Controller structure described earlier we need the model for our RESTful services. This will be defined in a separate package model and comprise a Book case class and a Books object. This can be accessed by our controller as and when required. The class and object that comprise the model package are shown below:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figa_HTML.gif]

Note that the
 Books
 object defines both a property
 list
 and a method
 get
 . The
 list
 property holds the list of books currently available, and the
 get
 method returns a book given a specified ISBN.
However, we now need to determine what the HTTP requests we will support will be. Our bookstore service will be a read-only service which will provide a list of books or a single book if an ISBN is supplied. As this is an access-oriented service we only need to support the HTTP GET requests. We therefore want to provide mappings from	/book/list

	/book/:isbn

Both of these routes can be supported by the same object, the
 controllers.Bookstore
 object via methods
 list
 and
 get
 ; thus we will map:	/book/list -> controllers.BookstoreController.list

	/book/:isbn -> controllers.BookstoreController.get(isbn: Int)

Note that the routing information will be used to map the isbn information provided as part of the
 /
 book/:isbn URL to the parameter passed into the
 get
 method. We will thus update our routes file as illustrated below.

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figb_HTML.gif]

Next we need to write the
 BookstoreController
 . As with the original HomeController controller in the last chapter, our
 BookstoreController
 extends the
 Controller
 type. The initial state of the object is shown below:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figc_HTML.gif]

The
 list
 method to be added to the
 BookstoreController
 will take no parameters and implement an
 Action
 that will return a list of Books. We will use the JSON data format as it is very widely used within Web-based services. However, we need to specify how an instance of the
 Book
 class should be converted into a JSON object. We will do this using the
 toJson
 method that is designed to convert a
 Book
 instance into a JSON object by extracting the isbn, title, author and price from a book and wrapping them up within an appropriate JSON type. The Play frameworks’ JSON library is defined within
 play.api.libs.json
 and contains case classes for JSON types such as
 JsString
 ,
 JsNumber
 ,
 JsBoolean
 ,
 JsObject
 ,
 JsArray
 and
 JsNull
 .

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figd_HTML.gif]

The
 get
 method will take an ISBN. The type of the ISBN needs to be determined. We will assume that all our ISBNs are integers and thus the type of the parameter for the
 get
 method will be
 Int
 . The
 get
 method uses this ISBN number to return a book with that ISBN number or a message indicating that no book with that number was found.
Note that the
 JsObject
 constructs a JSON object comprised of key-value pairs that are used to represent the actual
 Book
 . This type is obtained from the
 play.api.libs.json
 package. The
 JsString
 and
 JsNumber
 are also defined by that package.
If we now invoke this RESTful service from a client browser, we can see the data returned. For example, if you enter into the browser:	
 http://​www.​localhost:​9000/​book/​list

you should see the result presented in Fig. 39.1. The data returned is in JSON format and indicates that the property books relates to an array of book information. Each item of book information is comprised of an isbn, a title, an author and a price.[image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Fig1_HTML.gif]
Fig. 39.1Data returned from the book service

We can also obtain information on a single book using the url/books/:isbn routing information; here the isbn number forms part of the URL—thus indicating a (dynamically generated) resource, for example, using the URL:	
 http://​www.​localhost:​9000/​book/​2

The information about the book with the ISBN 2 is returned as shown in Fig. 39.2.[image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Fig2_HTML.gif]
Fig. 39.2Retrieving a single book details from the book service

Alternatively, we could construct a client using JavaScript that would be run within a browser. This client could invoke the RESTful service we have just created asynchronously when requested to do so by the user.
39.5 JavaScript and jQuery
The Web service we have created supplies data that can be consumed by a suitable client. In many cases these clients will be implemented in JavaScript and executed within the client-side browser (such as Chrome and Firefox). Note that the server-based Scala code will execute within the confines of the server, whereas the client will run within a browser potentially anywhere in the world.
A very common approach is to create a Web page containing some JavaScript that will, in response to user actions, such as clicking a button, asynchronously invoke the remote service and populate the current Web page with the data provided. For example, if you are requesting your recent bank transactions, the request for those transactions occurs in page without the need for the whole page to be refreshed.
JavaScript itself is a programming language that can be executed within a wide range of environments. The most common environment to run JavaScript in is within a browser, where a JavaScript engine interprets it. As such JavaScript is commonly treated as a client-side programming language to be embedded in a Web page and interacts with the contents of that Web page (represented as the Document Object Model or DOM of the page).
A common library to use with such applications is jQuery. This is because it simplifies many activities that you would need to develop from scratch if you were using JavaScript on its own (such as the look and feel generation, calendars and Ajax style programming). The basic concept behind Ajax is that data can be retrieved from a server asynchronously in the background, without interfering with the display and behaviour of the existing page. The name original came from the acronym for Asynchronous JavaScript and XML programming. However, Ajax style applications are very widely used with JSON rather than XML as the data interchanges format. It should be noted that Ajax as such is not a technology; rather it is a set of technologies that are used together in a particular “Design Pattern” or implementation strategy. This approach typically utilises:	XHTML and CSS for presentation

	The Document Object Model (DOM) for dynamic display of and interaction with data

	XML, JSON or plain text for the interchange, manipulation and display of data

	Facilities in JavaScript for asynchronous communication

	JavaScript to bring these technologies together.

jQuery makes it easy to implement an Ajax style client and to use the data provided by remote services to change the current Web page.
39.6 The jQuery Client
We will create a simple jQuery-based client. This client will be loaded when an initial Web page is displayed to the user. The Web page will be created using the Play framework. This allows us to dynamically determine some of the information to display in this page and links the client to the back-end service.
39.6.1 Obtaining jQuery
jQuery can be downloaded from https://​jquery.​com/​download/​.

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Fige_HTML.gif]

jQuery is a fast, small and feature-rich JavaScript library. It makes things like HTML document traversal and manipulation, event handling, animation and Ajax much simpler with an easy-to-use API that works across a multitude of browsers.
39.6.2 Adding jQuery to the Application
We will first modify our
 HomeController
 class so that the string passed to the index view template provides the name of the bookstore. This is shown below:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figf_HTML.gif]

Next, we will rewrite the
 index.scala.html
 template file such that it uses more of the templating features of the Play framework. The implementation of our view is presented below.
The head of the template still indicates the information being provided to it. This is the string passed to the view from the
 Application
 controller. However, this string is now used within an HTML Web page. The Web page uses the string in the welcome heading presented to the user. The rest of the template is presented below:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figg_HTML.gif]

An HTML page can be divided into a header and a body. The header tells the browser information about the page, and the body provides the data to be displayed to the user.
The above Web page contains a simple HTML body that merely displays a welcome message and places a string shown in a divider and an empty divider called books within the page. Note that use of
 @message
 indicates that this is a template where the value of the message will be provided by the Application controller at runtime. However, the interesting parts are in the HTML header. This header includes:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figh_HTML.gif]

The links specify the CSS style sheet to use. This style sheet defines various colours and formats to be used with elements within the Web page. For example, the bookshop-style.css file defines the button style. This style is used within the body of the HTML page in:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figi_HTML.gif]

which indicates that the button CSS style class will be used with the text Show. Note that the location of the style sheets is relative to the Web application we are writing and thus the
 @routes.Assets.versioned()
 function is used to generate the actual path to the style sheet directory (this is also used below to access the jQuery files).
The notable aspect of the header is that it specifies two scripts to use. The first is the jQuery library itself (version 3.2.1), and the second is the file containing the custom code that implements our jQuery client.
The contents of the myscript.js file are presented below. This jQuery program does two things. It first links the hover function to the HTML element with the id “show” such that when the user moves the cursor over the button the cursor changes—which provides some useful feedback to the user. The second thing it does is specifies what should happen when the user clicks on the button.

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figj_HTML.gif]

The function defined for the user ‘click’ event on the element called show performs an asynchronous get request to the URL books/list. When the data returns, the associated second function executes. The data returned from the RESTful service will be supplied to the variable data. The second function initially removes anything that is currently being displayed by the element books. It then looks through the array of books indexed by the value books in the JSON object structure. For each book in that array it creates some HTML to format the book information and retrieves the appropriate data items from the book structure (such as title, author, price). The resulting information is then appended to the books element within the Web page.
The above files are stored under the public area of Web application project structure. This is where static assets of the project are location such as images, style sheets, JavaScript files and HTML files. In our case the style sheet is under the stylesheets directory and the jQuery and myscript.js files are under the javascript directory. This is illustrated in Fig. 39.3.[image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Fig3_HTML.gif]
Fig. 39.3Location of the assets used in the web application

As Play automatically reloads the changes you make, all you need to do to see the behaviour of your jQuery client is to change the URL in your browser such that the address is:	
 http://​www.​localhost:​9000

This will run the index (or default) page of your application that should now display the simplified Web page welcoming you to Johns Bookstore:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figk_HTML.gif]

If you move your mouse over the show button you should see it change. Now click on the show button, and the page should (in the background) request the data from the bookstore service and display each of the books within the current page. This is shown below:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figl_HTML.gif]

Interestingly if you view the source code for this page you will see that there are no books listed—this is because they were dynamically obtained from the server and added to that page by the jQuery based functions and are thus not part of the static HTML of the page. This is illustrated here:

 [image: ../images/323629_2_En_39_Chapter/323629_2_En_39_Figm_HTML.gif]

JQuery Online References

 	
 http://​www.​jquery.​com—jQuery homepage

	
 http://​docs.​jquery.​com/​Tutorials—Tutorials

	
 http://​www.​learningjquery.​com/​—jQuery tutorial blog

	
 http://​docs.​jquery.​com/​Sites_​Using_​jQuery—jQuery Success Stories

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_40

40. Scalaz

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

40.1 Introduction

If you start working with Scala you will probably quickly come across the library Scalaz. It is a very widely used set of extensions to the core language. In many cases when people talk about developing systems in Scala they actually mean a combination of Scala and Scalaz.
Scalaz is actually a very large library of extensions which could have (and do have) books dedicated just to it. Indeed, if you look at	
 http://​eed3si9n.​com/​learning-scalaz

You can find a 21-day course dedicated to Scalaz. As this book is intended as an introduction to Scala and covers much of the language, this chapter will be restricted to an introduction to Scalaz and an overview of the most useful features for you at this stage.
40.2 Obtaining Scalaz
Scalaz is not a standard part of the Scala installation. You must therefore add it yourself to your environment. At the time of writing, the current version of Scalaz is 7.2.17 for Scala 2.12.
The easiest way is to add it to your project dependencies using Maven or SBT.
To add Scalaz to your Maven project use:

 <dependency>

 <groupId>org.scalaz</groupId>

 <artifactId>scalaz-core_2.12</artifactId>

 <version>7.2.17</version>

 </dependency>

If you are using SBT, add the following line to your build file:

 libraryDependencies += "org.scalaz" %% "scalaz-core" % "7.2.17"

Alternatively, you can download Scalaz from

 	
 http://​central.​maven.​org/​maven2/​org/​scalaz/​scalaz-core_​2.​12/​7.​2.​17/​scalaz-core_​2.​12-7.​2.​17.​jar

40.3 Scalaz Overview
Scalaz is a very large and exhaustive library of extensions for Scala. Its focus is on emphasizing and supporting functional programming and type correctness. Many teams therefore adopt Scalaz either because they wish to explicit its set of typesafe extensions or because they wish to further push the use of functional program (or of course both).
A significant aspect of Scala is its support for typesafe operations. These are primarily supported by the introduction of Typeclasses in Scalaz. A Typeclass is a mechanism for ad hoc, compile time, polymorphism. Note the comment about ‘compile time’ in that sentence. In standard Scala (and languages such as Java and C#) runtime polymorphism is supported. However, Scalaz supports compile time polymorphism, while the distinction may not be of that much interest to you; it does mean that at compile time you can be notified of potential issues that might only be identified at runtime due to undesirable behaviour. An example might be:

 1 == "1"

This is legal Scala but will always return false; as an Int can never equal a String. In Scalaz the ‘
 ===
 ’ operator is used to perform a compile time check on the types. Thus

 1 == "1"

will generate a compile time error (rather than allowing the runtime environment to merely execute).
From a functional programming point of view, the extensions provided by Scalaz are inspired by Haskell and the theoretical concepts behind functional programming. This can mean that, at least initially, it can seem that Scalaz is complicated and quiet abstract (which is probably true) although some aspects of the library are very straight forward to use and very useful (and these are the focus of this chapter).
There are many tutorials available online which will explore much of the theoretical side of Scala such as Monads, Functors, Applicatives, etc., and some of these are listed at the end of this chapter.
40.4 Some Useful Typeclasses
40.4.1 Equals Typeclass
Scalaz provides a typesafe equals operator that will generate a compile error if incompatible types are compared.
For example, while
 ==
 and
 !=
 in standard Scala will allow you to compare a String and an Int but will always return false, the Scalaz operators
 ===
 and
 =/=
 operators will result in a compile time error:

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figa_HTML.gif]

As can be seen above although Scala allows the integer 1 and the string “1” to be compared, Scalaz does not.
40.4.2 Order Typeclass

Scalaz provides a very easy to use typeclass that provides for typesafe ordering. This means that instances can be compared for relative ordering but that ordering of incompatible types will now generate a runtime error:

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figb_HTML.gif]

In the above example Scala allows the integer 1 and the double 4 to be compared, whereas Scalaz does not.
The
 ?|?
 operator can also be used to compare two compatible values and returns a
 scalaz.Ordering
 object. This object is one of:	

 Ordering.LT
 —indicating that the first value is less than the second value

	

 Ordering.EQ
 —indicating that the values are equal

	

 Ordering.GT
 —indicating that the second value is greater than the first.

The output generated from this application is:

 1 < 4d: true

 1 ?|? 1: EQ

 1 ?|? 2: LT

 2 ?|? 1: GT

 Its less than

40.5 Standard Class Extensions
40.5.1 Extensions to Option
Scalaz provides a set of extensions to the
 Option
 type in Scala. These extensions make it easier to work with Options. For example, there are some convenience constructor methods that return
 Option
 types (rather than returning Some or None types). See	

 some
 —returns a Some instance but the specified type is
 Option[T]

	

 none[T]
 —returns a None value of type
 Option[T]

Scalaz also provides some alternatives to the
 getOrElse
 operation available on standard Options types. These such as the ternary operator for Options do not directly have an equivalent in the standard library.

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figc_HTML.gif]

The final operator examined here is the ‘
 ~
 ’ operator that returns the item contained in the
 Option
 (if it is defined), otherwise it returns the Zeroth value for the type specified. If the type is an
 Int,
 then it is
 0
 , if it is a
 Boolean,
 then it is false, etc.
The output from this simple application is:

 x1: 20

 x2: 10

 x3: 5

 3

 0

40.5.2 Boolean Extensions
Scalaz also adds some additional functionality to the
 Boolean
 type. For example, it provides the
 ?|
 and
 ??
 operators.

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figd_HTML.gif]

The
 ?|
 operator is a ternary operator that will return the first value following the ‘?’ if the condition is true, otherwise it returns the second value. For example,

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Fige_HTML.gif]

The ?? operator returns the given argument if the condition is true, otherwise it returns the Zeroth version of the argument, thus

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figf_HTML.gif]

40.5.3 Extensions to List
Scalaz also provides some extensions to the List type. Some of these extensions are shown below.

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figg_HTML.gif]

In the above example three extensions to the List type are shown, namely:	tailOption—this returns a list containing the tail of the list it is applied to wrapped in an Option.

	Intersperse—this adds the provided argument to the elements in the original list, between each of the values held in the list.

	Powerset—this returns a list of lists that represent all combinations of the values in the original list.

Note that none of these operations affects the original list; they all generate a new list.
The output from the example is:

 Some(List(20, 30))

 List (10, 1, 20, 1, 30)

 List (List(a, b, c), List(a, b), List(a, c), List(a), List(b, c), List(b), List(c), List())

40.5.4 Extensions for Map
Another collection type that is extended by Scalaz is
 Map
 . As an example, the following code example illustrates altering a map within a safe manner. The example creates a simple Map and then uses the Scalaz alter operation to modify the value with the key “a”. In this case a function is applied to the value in which the value 5 is applied to the existing value. It uses the
 |+|
 which is an alias for
 mappend
 (a function that appends a value and returns the result). The
 mappand
 function takes two values of the same type and returns a value of that type (which is the result of appending them). In this case the argument
 f
 to the function is of type
 Option[Int]
 .

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figh_HTML.gif]

The second example in the above code uses a method
 intersectWith
 that determines the intersection (between keys) of two maps. In this case only the key “b” is common to the maps m1 and m3. The result returned in this case is the value held in the second map. If we wanted the value held in the first map, then we would return that value from the function passed to the
 intersectWith
 method, for example,

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figi_HTML.gif]

The output from this example is:

 m1: Map(a -> 10, b -> 20)

 m2: Map(a -> 15, b -> 20)

 m3: Map(b -> 250, c -> 300)

 m1.intersectWith(m3)((m1v,m3v) => m3v): Map(b -> 250)

40.5.5 Extensions to String
Scalaz also provides some interesting extensions to the String class.
One example is its introduction of the plural operator which tries (with some mixed success) to convert words into their plural version, for example “Day” into “Days”. It is a little naïve as the approach taken is to pluralise a String by appending an "s" unless this String ends with "y" and not one of ["ay", "ey", "iy", "oy", "uy"] in which case the 'y' character is chopped and "ies" is appended. It is possible to specify an integer to plural that indicates how many of something is being specified; 1 indicates a singular value (and thus just returns the string as is).

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figj_HTML.gif]

A more useful feature of the string extensions is the set of parse operations. These will safely parse booleans, bytes, shorts, longs, floats, doubles and ints from a string without throwing an exception if the value passed to them is not a number. Instead the operations return a Success or Failure object that wraps the result or the associated exception.
The output generated by the example application is:

 s1.plural(2): Days

 Success(10.0)

 Failure(java.lang.NumberFormatException: For input string: "ten")

40.6 The Other Either
Another feature of Scalaz is its provision of what is sometimes known as the other Either. Scala provides Either as a way of capture that either a successful result has been generated or not. Scalaz version provides a set of utility methods that make it easier to work with.
The Scalaz Disjunction is defined as
 \/[A, B]
 . It is right biased (as right by convention is the success element) and provides operations such as
 map
 ,
 flatMap,
 etc., that work on the right side of the object.

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figk_HTML.gif]

The output from this simple example is:

 \/-(1234)

 -\/(java.lang.NumberFormatException: For input string: "John")

One of the easiest ways of working with Sclacz
 \/[A, B]
 is to use the
 fromTryCatchNonFatal
 method. This will try to execute an expression. If it is successful, then the result is stored in the right side of the result. If an exception is thrown, then this is stored in the left side. The side of the value is indicated by a ‘
 -
 ’; either to the right or left of the
 \/
 symbol (as shown above).
40.7 Tagging
Tags can be used to create new types based on existing types. It uses the
 @@
 symbol to tag an existing type as another type (creating a new type). This can be useful if you want to use, for example, a
 String
 to represent an ID but do not want just any old string to be used.
The following example illustrates the basic idea of using tagging to create a new type:

 [image: ../images/323629_2_En_40_Chapter/323629_2_En_40_Figl_HTML.gif]

In this example, we use the
 @@
 symbol to tag a String with the class
 MyID
 . This is used to define a type
 Id
 (which is actually an alias to
 String @@ MyId
 , which expands to
 @@[String, MyId]
 , which in turn expands to
 String with Tagged[MyId]
).
Online Scalaz Resources

 	
 http://​central.​maven.​org/​maven2/​org/​scalaz/​scalaz-core_​2.​12/​7.​2.​17/​scalaz-core_​2.​12-7.​2.​17.​jar download Scalz JAR file

	
 http://​scalaz.​github.​io/​scalaz/​#scaladoc ScalaDoc for Scalaz

	
 http://​eed3si9n.​com/​learning-scalaz 21-day online course for Scalaz

	
 http://​typelevel.​org/​blog/​2013/​10/​13/​towards-scalaz-1.​html Towards Scalaz Tutorial

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_41

41. GUIs in Scala Swing

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

41.1 Introduction
This chapter describes how to create rich client graphical displays (desktop application) using the Scala Swing windowing and graphical types.
Since Scala 2.11, the Scala wing package I is no longer considered to be a part of Scala’s standard library API and thus some tools may require an additional dependency to be set up to pick it up. This is not the case with IntelliJ’s IDE but is the case with the Simple Build Tool (SBT).
The reason for this is that Scala Swing library is now a community-maintained library and this considered to be unsupported by the core Scala maintainers. For more information, see https://​github.​com/​scala/​scala-swing.
In this chapter, we consider how Windows, buttons, tables, etc., are created, added to Windows, positioned and organised in Scala.
41.2 Windows as Objects

 In Scala, Windows and their contents are instances of appropriate classes (such as Button or FlowPanel). Thus, when you create a window, you create an object that knows how to display itself on the computer screen. You must tell it what to display, although the framework within which the associated method (paint) is called is hidden from you. You should bear the following points in mind during your reading of this chapter; they will help you understand what you are required to do:	You create a window by instantiating an object.

	You define what the window displays by adding a component to its contents, such as a type of panel or a button.

	You can send messages to the window to change its state, perform an operation and display a graphic object.

	The window, or components within the window, can send messages to other objects in response to user (or program) actions.

	Everything displayed by a window is an instance and is potentially subject to all of the above.

This approach may very well contrast with your previous experience. In many other windowing systems, you must call the appropriate functions in order to obtain a window, providing default behaviour either by using pointers to functions or by associating some event with a particular function. You also determine what is displayed in the window by calling various functions on the window.
In the Object-Oriented World, you define how a subclass of the windowing classes responds to events, for example what it does in response to a request to paint itself. All the windowing functionality and window display code are encapsulated within the window itself.
41.3 Windows in Scala
Of course the above description is a little simplistic. It ignores the issue of how a window is created, initialised and displayed, and how its contents are generated. In Scala, these are handled by the concepts of a frame, a component and a container:	

 Frames

 provide the basic structure for a window: borders, a label and some basic functionality (e.g. resizing).

	

 Components

 are graphical objects displayed in a frame. Some other languages refer to them as widgets

. Examples of components are lines, circles, boxes and text.

	

 Containers

 are special types of component that are made up of one or more components (or containers). All the components within a container (such as a panel) can be treated as a single entity.

Windows
have a component hierarchy that is used (amongst other things) to determine how and when elements of the window are drawn. The component hierarchy is rooted with the frame, within which components and containers can be added. Figure 41.1 illustrates a component hierarchy for a window with a frame, two containers (subclasses of
 Panel
 , which is itself a direct subclass of
 Container
) and a few basic components.[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig1_HTML.gif]
Fig. 41.1Component hierarchy for a sample window

When the runtime environment needs to redraw the window displayed by the above hierarchy, it starts with the highest component (the frame) and asks it to redraw itself. It then works down the hierarchy to the bottom components, asking each to redraw itself. In this way, each component draws itself before any components that it contains; this process is handled by the windowing framework. The user generally only has to redefine the
 paint
 method to change the way in which a component is drawn.
41.4 Scala Swing
Scala Swing is a Scala wrapping around the underlying Swing library of GUI classes and types. This of course raises the question ‘What is Swing?’ Swing is a generic, platform-independent, windowing system originally developed for the Java programming language. It allows you to write graphical programs that have (almost) the same look and feel, whatever the host platform. For example, the graphical applications presented within this section of the book have been written primarily on a Mac; however, they have been run on Macs, Windows machines of various flavours and Linux boxes. This is because these are the machines available to me, and depending on the time of day, I may be working on one or the other. I do not need to worry about the host environment, only about the Swing.
There are a number of concepts that are important when considering Swing. These are:	All components in Swing are 100% implemented purely in byte codes (and are referred to as lightweight). This means that the Windows (and their contents) should look the same whatever platform they are on and should be easier to maintain across different operating systems. As all graphical components are “lightweight”, their appearance is controlled purely by the runtime code (without the need for platform dependent peers—or platform dependent libraries). In Swing, a separate user interface “view” component performs the actual rendering of the component on the screen. This allows different views to be plugged in. This in turn allows the idea of installing different “look and feel”. This means that it is easier to deploy the same software on different platforms, but with interfaces that match the interface manager on that particular platform. This separation of view from the actual component is based on a modified version of the Model-View-Controller architecture (described earlier in the Play framework chapter).

	Swing also provides a rich set of facilities for graphical user interfaces, including trees, icons on buttons, dockable menus bars, menus with icons, borders and improved support for fonts and colours.

However, the Scala Swing library is more than just a wrapping around the original Swing library. It significantly simplifies the Swing API and the tasks that the programmer must perform to create a user interface. In many ways, the Scala Swing library is what the original Swing library should have been; lean, efficient and simple to work with.
Whichever UI framework you choose to use, such toolkits greatly reduce the problems that software vendors often face when attempting to deliver their system on different platforms.
41.5 Scala Swing Packages
There are two key packages within the Scala Swing library.	
 scala.swing is the package that contains the core types with which you will be working, such as Button, ComboBox, EditorPane, FileChooser, FlowPanel, MainFrame, RadioButton, ScrollPane.

	
 scala.swing.event package provides types used with the event handling mechanism that underpins how a UI can react to user inputs (such as what to do when a user clicks on a button). This package includes types such as ButtonClicked, KeyPressed, MouseMoved, WindowClosing.

However, you will primarily work with the scala.swing package as this is where the majority of the types you will need are defined. The reactor framework (discussed in the next chapter) is used to handle user input and is built on top of the lower-level event framework (inherited from Java). This framework is also defined within the scala.swing package.
The key classes within the scala.swing package are:	
 Component. This is the base class for all user interface elements that can be displayed within a Scala window. Components have properties such as whether they are enabled or not, the font used with them, foreground colours and background colours, borders and tool tips (text popped up and displayed to the user if they hover the mouse over the component). Components also publish (or fire) events that allow developers to react to these events (such as the component being selected by a user). There are a large number of subtypes for Component including various types of buttons, panels, fields, menus, tables.

	
 Container. This is a base trait for user interface elements that can act as containers of other UI elements. For example, a FlowPanel can contain a set of other elements (such as button) organised across the panel. As well as FlowPanel, BoxPanel, BorderPanel, MenuBar, ScrollPane, SplitPane, etc., are all examples of containers.

	
 MainFrame. This class defines a frame that can be used as the top-level, main application window that can contain other containers and components. When the MainFrame is closed, then the UI application is terminated.

	
 SwingApplication and SimpleSwingApplication. These classes provide a set of utility methods to handle starting up a UI application. SwingApplication is the root class, and SimpleSwingApplication is its subclass. Most UI applications will extend the SimpleSwingApplication class (e.g. instead of mixing in the App trait). The subtype extending this class must implement the top method that must return the top-level frame (e.g. MainFrame) to be used with this application. The UI framework initialisation and initiation is done by the SimpleSwingApplication. If you wish to customise the behaviour of the start-up and shutdown process, then you can override the shutdown method or extend the startup method.

	
 FlowPanel. It is a panel (i.e. container) that organises its contents horizontally, one after the other. If the contents do not fit in the current display, then the pane will introduce a break and try on the next line. It is similar in effect to a JPanel with a FlowLayout in Java Swing.

	
 BorderPanel. It is a panel (i.e. container) that organises its contents into discreet locations, such as centre, top, bottom, left and right.

	
 Button provides the basic button type display and behaviour present in most user interfaces.

	
 Menu, MenuBar and MenuItem. The components that can be used to construct a menu across the top of a UI.

	
 ScrollPane a type used to wrap up other UI elements that need to be displayed using a scrollable view. The view is controlled by a set of scroll bars.

	
 TextField and TextArea. Both are used to display textual information and may be editable or not. A TextField is a single line display, and a TextArea is a multi-line textual display. A TextArea should be displayed within a ScrollPane if it is too large to display within the available space.

	
 Table. It provides a tabular display comprising rows and columns and optionally a set of headings.

	
 ComboBox is used to allow a user to make a selection from a list of pre-defined items.

	
 ListView is used to present a (non-editable) list of items.

41.6 Swing Scala Worked Examples
This section presents a series of examples that explore a number of the concepts that underpin the Scala Swing framework and illustrate how some of the key classes presented above can be used.
41.6.1 Simple Hello World UI
The following listing provides a basic user interface containing a Button labelled “Click Me!” and with a window title “Hello World!”. The application imports the Button, MainFrame and SimpleSwingApplication types from the scala.swing package. It then defines a class SimpleFrame that is a subclass of MainFrame. It defines the title of the main frame and creates a new instance of the Button class. The button will have the text “Click Me!” displayed. The instance of the button is then used as the contents of the main display area of the frame.

 [image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Figa_HTML.gif]

The object SwingHellWorld extends the SimpleSwingApplication type and defines the top method as returning an instance of the new SimpleFrame class. When this SwingHelloWorld application runs, the main method defined by the SimpleSwingApplication executes and sets up the windowing framework and calls the top method to display the top most element of the UI. The result of executing this application is shown in Fig. 41.2.[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig2_HTML.gif]
Fig. 41.2Simple Hello World UI

41.6.2 Panels and UI Layout
The example shown in the last section works as a simple user interface example; however, the whole of the display is taken up with a single button. User interfaces are normally comprised of multiple components displayed within a single frame. This is achieved in Scala Swing using appropriate (potentially nested) containers as discussed earlier.
In this section, we will look at using a simple panel, a FlowPanel that allows multiple components and/or contains to be contained within it. The result of executing our program is shown in Fig. 41.3. The FlowPanel provides a flow-like layout with user interface components being added to the contents buffer of the FlowPanel.[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig3_HTML.gif]
Fig. 41.3Using a FlowPanel

In the following listing, we create two buttons (b1 and b2). These buttons are added to the contents of the FlowPanel when we create the panel. Notice that the FlowPanel instance is then set as the content for the main frame’s display.

 [image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Figb_HTML.gif]

Note that we could of course have created the FlowPanel and then added the buttons to the FlowPanel’s contents buffer at a later date, for example

 [image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Figc_HTML.gif]

You may be wondering at this point how the FlowPanel knew where to position the buttons—we did not give it absolute X and Y coordinates.
The actual positioning of the components is handled by an object used by the panel. This object is known as a layout manager. A layout manager is thus the object that works with a graphical application and the host platform to determine the best way to display the objects in the window. The programmer does not need to worry about what happens if a user resizes a window and works on a different platform or a different windowing system.
Layout managers help to produce portable, presentable user interfaces. There are a number of different layout managers that use different philosophies to handle the way in which they lay out components:
 FlowLayout, BorderLayout, GridLayout
 . Note that if you are familiar with Java’s Swing library, then you will note that in Scala the layout managers, that handle actually determining where components are placed, are combined with the panels rather than being separate entities. Thus, we have FlowPanel, GridPanel, BorderPanel, etc.
41.6.3 Working with a BorderPanel
FlowPanel is not the only panel type available to the Scala programmer. Another type of panel is the BorderPanel. The BorderPanel possesses a layout manager that has a concept of four outer points and a central point (labelled North, East, South, West and Centre).
The panel is thus divided up as illustrated in Fig. 41.4. Of course, you do not have to place components at all available locations. If you omit one (or more) locations, the others stretch to fill up the space (except centre which depends on the size of the window in which the BorderPanel is being used). The border panel honours the height of the components in the north and south regions (but forces them to fill the region horizontally). In turn it honours the width of the components in the East and West regions (but forces them to fill the available vertical space). The centre component is forced to fill the remaining space (thus its preferred width and height are ignored).[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig4_HTML.gif]
Fig. 41.4Using the BorderPanel in a UI

 [image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Figd_HTML.gif]

In the above program, we create five buttons that are positioned within the BorderPanel using the position constraints, Centre, North, South, Each and West.
41.6.4 Working with a BoxPanel
Yet another panel is the BoxPanel; this is similar to the FlowLayout except that it can have a Horizontal or a Vertical orientation. In which case it either lays out components across the screen or down the screen depending upon the orientation. It therefore offers greater flexibility than the FlowPanel.
The following program uses the Horizontal orientation to create a display similar in style to the FlowLayout. The display contains a button and a label and is shown in Fig. 41.5.[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig5_HTML.gif]
Fig. 41.5Using a BoxPanel

 [image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fige_HTML.gif]

Note that we change the orientation of the BoxPanel such that it has vertical orientation as shown below:

 [image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Figf_HTML.gif]

This results in the display altering as shown in Fig. 41.6. Now the button is positioned above the label rather than beside it.[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig6_HTML.gif]
Fig. 41.6An alternative orientation for the BoxPanel

41.6.5 Displaying a Table
Another common user interface component is the Table. Tabes are user to present tabular information using rows and columns. A simple example table is shown in Fig. 41.7. This table has a row containing the headings (which are ‘name’, ‘county’ and ‘town’) and four rows with the actual data. Such tables can respond to user selection, editing and ordering. However, in this example, it is a read only table that cannot be altered.[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig7_HTML.gif]
Fig. 41.7Using a Table in a UI

To create a table, we use the scala.swing.Table class. This can be constructed with an array of names and an array of arrays for the data. Strictly speaking behind the table is a table model that holds the actual data (see Fig. 41.8). There are also cell renderers that are used to determine how to display different types of data. In the following listing, we are merely using two arrays as a very simple way of initialising these models.[image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Fig8_HTML.gif]
Fig. 41.8Relationship between Table, TableModel and CellRenderers

The following listing creates a new Table using the headers and rowData arrays. The border property of the Table is set to be a LineBorder coloured in Black. This is from the javax.swing.border package which is part of the underlying Java Swing library that is being reused here. Note that the Colour Black is from the underlying java.awt package that includes the Colour type.
Once the table is created, it added the FlowPanel which is used for the main contents of the window. Note that the table is wrapped within a ScrollPane. This provides any scrollbars for the table if they are required.

 [image: ../images/323629_2_En_41_Chapter/323629_2_En_41_Figg_HTML.gif]

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_42

42. User Input in Scala Swing

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

42.1 Introduction
The last chapter looked at various different types of user interface component available within Scala Swing. This chapter now looks at how user input, via those components, can be handled.
42.2 Handling User Input
If you are familiar with the Java Swing event delegation model, then you will find the Scala approach to handling user input, a great deal simpler. It is based on the idea of using pattern matching within reactors to handle user input. Objects publish events that are listened to by a list of reactors. A
 Reactor
 is a Partial Function that is defined by the Type Reaction on the Reactions object to take an Event and return Unit.
If a reactor matches the event type and the source specified, then the associated behaviour is invoked. This framework is based on the classes that emit events mixing in the
 Publisher
 trait and classes that listen to publishers mixing in the
 Reactor
 trait.
The
 Publisher
 trait defines the
 publish
 method, the
 listeners
 property, and invokes the
 listenTo
 behaviour. The
 listeners
 property holds a list of reactors that will react to the events raised by the source component. An event is just an object containing information associated with the action that occurred. For example, a
 ButtonEvent
 indicates the source object that the user clicked on, whereas a
 MouseEvent
 may include the x and y coordinates of the mouse when it was clicked or moved. The
 publish
 method is defined as

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figa_HTML.gif]

This sends the event ‘e’ to all the members of the
 listeners
 list.
The
 Reactor
 trait defines two methods
 deafTo
 and
 listenTo
 and the property reactions. The methods are defined as:	

 def deafTo(ps: Publisher*): Unit

	Installed reaction will not receive events from the given publisher any longer.

	

 def listenTo(ps: Publisher*): Unit

	Listen to the given publisher as long as
 deafTo
 is not called for them.

For example, for an instance to listen to the event generated by a button we could write:

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figb_HTML.gif]

The reactions property is an instance of a subclass of the Reactions abstract class. It defines a set of methods which allow the reactions held in the reactions list to be processed. It also defines the += and −= methods that can be used to add or remove reactors from the list of reactors:	

 def +=(r: Reaction)
 Add a reaction.

	

 def -=(r: Reaction)
 Remove the given reaction.

An example of using the += method to add some reactors is given below:

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figc_HTML.gif]

In this example, we have added five reactors to the reactions list that handle behaviour on different buttons.
Thus to listen to user events on buttons, combo boxes, tables, menus, etc., it is necessary to mix in the Reactor trait and to register yourself with the UI components you wish to listen to. This is what the following examples do.
The first example relies on the fact that the
 MainFrame
 mixes in the
 Reactor
 trait. This means that you can define the reactions to a button within the body of the
 MainFrame
 itself. Also note that the
 MainFrame
 uses the
 listenTo
 method to register itself with the button. The user interface generated by the code is shown in Fig. 42.1.[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig1_HTML.gif]
Fig. 42.1A button in a UI

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figd_HTML.gif]

In the above code, the mainframe listens to the button for events that it is publishing. When those events are received, the reactors in the reactions list are checked in sequence to find one that will handle the event. In this case, the event is the
 ButtonClicked
 event. Thus when the user clicks the button the String Hello World should be printed out to the console. This is illustrated in Fig. 42.2.[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig2_HTML.gif]
Fig. 42.2Output from the reactor when button clicked twice

One problem with this code is that the reactor is defined by the
 MainFrame
 . While this works for a simple application is it unlikely that this approach would work in a larger application. Therefore the following listing modifies this approach and defines a separate class
 ButtonReactor
 that mixes in the
 Reactor
 trait and defines the reactions within itself. It is then instantiated and used by the
 SimpleFrame
 (
 MainFrame
). Note that the reactor must be registered with the button by having the
 listenTo
 method called on it rather than on the
 MainFrame
 :

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fige_HTML.gif]

The actual user interface and the output remain unchanged.
42.2.1 Scala Swing Actions
An action can be used to separate the behaviour associated with a button (or menu item) from the instance of the button (or menu item) concerned. This can be useful as it is common within a user interface to have several ways to access the same operation, for example from a button bar, from a toolbar or from a menu item. Using an action, this behaviour can be defined once (in the Action) and then reused with each of the UI components that will be presented to the user. Thus an Action separates the definition of some behaviour to be applied, from the UI component used to invoke that behaviour.
An action is defined using the
 Action
 type from the
 scala.swing
 package. The action can take a title and the functionality to be invoked when that action is used. Thus the following lines of code create an action with a title “Click Me” and the function to apply when the action is invoked (in this case to print a message to the console):

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figf_HTML.gif]

This action instance can now be used with a range of UI components such as buttons and menu items. In the following listing we use this action with two buttons,
 b1
 and
 b2
 . Note that the action is used to initialise the action property of the buttons. Thus both buttons will invoke the same
 println
 function when clicked, wherever they are in the UI.

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figg_HTML.gif]

The end result of using the
 myAction
 with both buttons is that there is a single definition of the action behaviour shared between the two button instances. Note that actions can also be enabled or disabled and have icons, tooltips, etc.
The display generated from the above listing is shown in Fig. 42.3. The result of clicking on either of the Click Me buttons is that the string “I was clicked” is printed to the standard output.[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig3_HTML.gif]
Fig. 42.3A UI that reuses an Action

42.2.2 Working with Menus
Many (most) applications will have some aspect of a menu bar, menus and items on those menus. In Scala such user interface components are represented by instances of the classes
 MenuBar
 ,
 Menu
 and
 MenuItem
 . The relationship between these components is illustrated in Fig. 42.4. These classes are all defined in the
 scala.swing
 package.[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig4_HTML.gif]
Fig. 42.4Relationship between Menus, MenuBars and MenuItems

As can be seen a
 MenuBar
 references (holds) one or more Menus. Menus in turn reference one or more
 MenuItems
 .
 MenuItems
 can be either simple menu items that may be selected, or menus in their own right. This is because the
 Menu
 type extends the
 MenuItem
 type and thus we can create hierarchical menus.
The following listing illustrates how a simple
 MenuBar
 , with a single Menu (file), can be created. The Menu file has a single
 MenuItem
 (Exit) that is defined using an Action. Note that the
 MenuBar
 is used to set the
 menuBar
 property of the
 MainFrame
 . The
 MenuBar
 has a contents property, which we are adding the Menu to. Also note that the Menu has a contents property to which we are adding the
 MenuItem
 (be careful not to confuse these two).

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figh_HTML.gif]

The result of executing this program is illustrated in Figs. 42.5 and 42.6. The first figure shows the basic
 MenuBar
 display with the File menu shown. The second figure illustrates what happens when the user moves their mouse over the File menu and selected the Exit Menu Item.[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig5_HTML.gif]
Fig. 42.5A UI with a Menu Bar

[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig6_HTML.gif]
Fig. 42.6Selecting the ‘Exit’ Menu Item

When the user selects the Exit option, as shown in Fig. 42.6, then the behaviour defined by the Action in the earlier listing is invoked. In this case it is to call the
 sys.exit(0)
 operation. This invokes the exit behaviour on the system with a return code of ‘0’, which typically indicates that the application terminated normally. Explicitly invoking the
 sys.exit
 operation is necessary as the main method, which is usually used to control when an application terminates and only used to initiate the display. After that, the main method terminates and the execution of the system is handed over to a UI thread (process). We must therefore be able to terminate this process in a controlled manner; this is done using the
 sys.exit
 operation.
42.3 A Simple GUI Example

 In this section we present a very simple GUI example. An instance of this class generated the window displayed in Fig. 42.7. This application performs the following functions:[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig7_HTML.gif]
Fig. 42.7A simple graphical application

	Displays the string “Hello” in a text field in response to the user clicking on the Hello button.

	Displays the string “Goodbye” in a text field in response to the user clicking on the Goodbye button.

	Exits the application in response to the user clicking on the Exit button.

It combines the layout panels and components presented in the last chapter, with the event handling mechanism described above.
The components that comprise this user interface are illustrated in Fig. 42.8. This shows that the buttons are organised (displayed by) a flow panel (which does not itself have any visible presence). The strings are displayed in a text field, and a label displays the copyright statement. These are all organised within a border panel that is the top-level contents of the
 SimpleGUI

 MainFrame
 .[image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Fig8_HTML.gif]
Fig. 42.8Structure of simple GUI application

The class
 SimpleGui
 , see the listing below, first sets the title of the frame to be “Simple GUI”. It then creates two buttons, which have a text label and a tooltip. It then creates a new
 FlowPanel
 to which it adds two buttons. The program then creates a non-editable field—note that the editable property is set to false after the text field is created—this allows this property to change its value over time. It finally creates a label, for the copyright string. This label uses a new font (the Ariel font) and introduces a buffer to give a bit of spacing around the text using the
 scala.swing.Swing
 utility type. The button panel, text field and label are added to the border panel using the constraints
 Position.North
 ,
 Position.Center
 and
 Position.South,
 respectively. Note that we have imported
 scala.swing.BorderPanel._
 so that we only need to specify
 Position.North
 rather than
 BorderPanel.Position.North
 which is easier to read. Finally the window sets a default size using a new Dimension instance.

 [image: ../images/323629_2_En_42_Chapter/323629_2_En_42_Figi_HTML.gif]

Note that the two buttons are listened to and thus we define two reactors to handle what should happen when the user clicks on a button. In this case we set the
 field.text
 property to the appropriate string. You could have a different controller for each button. In such a situation, you do not need to test to see which button generated an event (thus eliminating the
 case
 pattern matching statement that selects the actual behaviour to perform).

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_43

43. Scala Build Tools

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

43.1 Introduction
There are many ways in which a Scala application can be built. These include the REPL loop and automated compilation within an IDE such as the Eclipse-based Scala IDE. However, neither of these is suitable for centrally building large applications as might be found within many commercial organisations. The most popular build environments for Scala are Maven and SBT. In this chapter, we will briefly examine both so that you have a flavour of both tools and the potential benefits and drawbacks of each.
43.2 Why We Need a Build Tool
The first question to consider is why we need a build tool in the first place. In this book, we have been compiling our Scala applications using the IntelliJ IDE although we could have compiled them from the command line or used the Scala REPL interpreter. However, many applications are comprised of many parts, all of which need to be processed in the appropriate way and package as required. For example, many Web applications are made up of multiple components:	HTML files and image files

	PHP scripts

	Java or Scala services

	The libraries used by Scala and Java

	Configuration files

	Database scripts

	Property or metadata data files

Multiple people may develop all of these elements at different times and on different machines. In addition, the process of building a project may require several steps or involve different phases, such as compiling the code, testing, the code, packaging the system up as required by the target platform, installing it on that platform and deploying it into the target runtime environment. This is illustrated in Fig. 43.1.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig1_HTML.gif]
Fig. 43.1Build cycle for applications

These steps must be repeatable and must bring together a diverse range of elements.
As mentioned before we could, of course, use our favourite IDEs or write our own build scripts; however:	You can build your projects manually but this is tedious and error-prone.

	You can use IDEs like Scala Eclipse. This approach is easy, but not very portable to server environments, and requires each person to build their part independently of others.

	You can write scripts to automate the process using tools such as Ant. This approach does have benefits to commend it; however, a great deal of time can be spent on designing, testing and maintaining the scripts.

Another approach is to use a dedicated build tool such as Maven or SBT. Both these tools come with useful internal or default knowledge about different types of projects, how to build them (for Java and Scala) and what constitutes the normal build cycle for different types of applications.
43.3 Maven
Maven is an industry standard project build tool that understands project lifecycle as well as the steps that make up such a lifecycle (see http://​maven.​apache.​org).
Maven was originally designed for the Java programming language but is equality applicable to Scala and thus is very widely used within industry.
Maven is a convention over configuration-based system. This means that if you follow the standard conventions then you do not need to explicitly specify additional information. For example, if you are creating a Web application then as long as you follow the conventions, Maven will know where to find the elements that make up a Web application and can package them appropriately when asked to build the system. This greatly reduces the amount of project set-up and management required. However, the defaults are primarily oriented towards Java applications and thus for Scala we need to indicate that we are working with Scala and thus there are additional configurations required (although in practice these can be provided by a Maven archetype—a type of template that provides defaults for different types of projects).
The other major feature of Maven is its ability to handle the dependencies that applications have to libraries (and additionally the transitive dependencies that these libraries themselves have). Maven does this using dependency information associated with the type of the project and the specific libraries used by the developer. To access the definitions for these libraries it uses a dependency framework that can download libraries from a central repository. This idea is illustrated in Fig. 43.2. When a developer runs a Maven command, Maven checks to see if it is necessary to access a particular library. If that is required it will look in a number of predefined repository locations and access the first that it finds.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig2_HTML.gif]
Fig. 43.2Local versus remote repository structure

Maven also understands the concept of versioning of libraries and thus it can distinguish between the latest release of a library as well as previous releases of that library (such as release 1, 2 or 3) and access an appropriate version.
43.3.1 Maven Repositories
The concept of a repository is very important within Maven, and there are two flavours of repository as shown in Fig. 43.2. These are remote and local repositories:	
 Remote repository. A remote repository is accessed over a network and may be hosted internally to an organisation and/or externally on the Internet. The central Maven repository can be viewed via a browser at http://​mvnrepository.​com. In many cases an organisation will have their own version either to control the library versions used or to improve performance.

	
 Local repository. A local cache of downloaded artefacts, libraries and latest builds is maintained on each developer’s machine. Maven first checks locally before trying to download a library—thus reducing the overhead of library access.

The use of repositories and library version information is one of Maven’s biggest benefits.
43.3.2 The Maven POM
The core concept within Maven is the Project Object Model or POM (and example is shown in Fig. 43.3). The POM is actually an XML file that is used to tell Maven what type of project is being created and to provide Maven with any additional configuration information that cannot be deduced using the convention over configuration model.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig3_HTML.gif]
Fig. 43.3Simple Java POM

The POM contains detailed metadata information about the project, including	Organisational information (such as your group Id which is often your organisation’s domain in reverse) and project-specific information such as the name of the project and the version of the project being built.

	Dependencies such as libraries being used within the project. For example, ScalaTest is a common library to specify.

	The type of project being constructed such as a stand-alone application, a Web application, a service.

	Application and testing resources such as data or configuration files.

The POM file can also be used to override any of the default assumptions made by Maven but this is often not required.
The Maven conventions not specified in Fig. 43.3 include the location of the source code and the test code, the locations of the repositories containing the libraries, the steps involved in constructing a stand-alone application, etc. These are all defaulted. For example, Maven assumes that all source code is found in the following locations:	src/main/java

	src/main/test

This is why it is common to find such structures in many other (non-Maven) projects.
Of course, looking at the above directories you will note that they specify java in the path; we are working with Scala and thus this is one of the things that must be changed (or at least added) if we are to use Maven to build a Scala application. This is considered in the next section.
43.3.3 Scala and Maven
To use Maven with Scala we need to add some additional information to the project POM file. We need to indicate that we are using Scala and that location of our Scala code will not be under Java. In Fig. 43.4 we add a dependency specifying that we are using Scala and specify that the Scala source code can be found in:[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig4_HTML.gif]
Fig. 43.4A Scala configuration for a Maven POM file

	src/main/scala

	src/test/scala

Note that this does not stop us having multiple source directories under src/main and src/test, and it is not uncommon in projects that use multiple languages to have a structure such as:	src/main/java

	src/main/scala

	src/main/javascript

	src/test/java

	src/test/scala

	src/test/javascript

Thus the final default project structure for such an application may be modified to include both a Java and a Scala root directory within the main and test paths. This is illustrated in Fig. 43.5.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig5_HTML.gif]
Fig. 43.5Scala Maven project structure

The dependency entry that specifies that we are using Scala indicates the groupId for Scala (essentially the Scala organisation’s domain) and the artifactId (the name of the library) followed by the version. In the POM file the version is indicated by a Maven property scala.version, which is set at the top of the file. This means that it is easy to find and change the version of Scala being used—this is a common idiom in Maven files. The end result is that the actual dependency is as shown below:

 <dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>2.10.3</version>
 </dependency>

We must also indicate where to find the Scala libraries if they are not available within the main Maven repository. For a Scala project, Maven must be told where to find the Scala libraries. This may occur if you wish to use a non-standard or milestone version of Scala. In our case we are also adding the Scala tools repository as this provides some bridging tools between Maven and Scala:

 <repositories>
 <repository>
 <id>scala-tools.org</id>
 <name>Scala-Tools Maven2 Repository</name>
 <url>http://scala-tools.org/repo-releases</url>
 </repository>
 </repositories>

43.3.4 Maven Lifecycle Commands
The same build lifecycle commands can be used whatever the project is (as Maven understands what they mean relative to that type of project), and thus we have the following available:	
 validate—validate the project; check it complies with the rules for that type of project.

	
 compile—compile the source code into .class files.

	
 test—test the compiled source code; run the tests defined within the src/test directory.

	
 package—package in distributable format, e.g. jar

	
 install—install the package into the local repository

	
 deploy—copies the final package to the remote repository for sharing with other developers and projects.

If you are using an IDE, such as the Scala IDE, then you can use a Maven plugin that will help with creating projects, issuing Maven commands, finding dependencies, etc. For example, using the New Maven Project wizard with the Scala IDE displays a Maven archetype selection dialog. A Maven archetype is essentially a definition or template for a particular type of project. There are archetypes for Web-based applications, archetypes for particular frameworks and a Scala archetype (as shown in Fig. 43.6).[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig6_HTML.gif]
Fig. 43.6Selecting the Scala Maven archetype

The end result of creating a new project in this way is that the default Scala Maven project structure is created as shown in Fig. 43.7.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig7_HTML.gif]
Fig. 43.7A Scala Maven project in the Scala IDE

43.4 SBT
Although Maven was intended to simplify the definition and construction of applications, it can seem somewhat complex for very simple applications. As a consequence there have been initiatives to further simplify the project definition and build process. One such initiative is the Simple Build Tool, known as SBT for short.
SBT is an Open Source build system for Scala (and for Java although it was originally designed for, and is implemented in, Scala). The key features of the SBT are:	Minimal configuration for simple projects,

	Support for Scala and (many) Scala Test frameworks,

	Build tasks written in Scala DSL,

	Dependency support via Ivy. Ivy is a dependencies management system that handles the version of, and dependencies between, libraries,

	Integration with Scala interpreter.

It is used in many Scala projects including in the construction of Scala itself. It aims to simplify the build process to allow easy creation, compilation and deployment of Scala-based applications.
43.4.1 Creating an SBT Project
To create a project using SBT you need to take the following steps:	Install SBT and create a script to launch it.

	Create a project directory with source files in it.

	Create your build definition.

SBT can be downloaded from the main SBT home page (http://​www.​scala-sbt.​org)—there are a number of ways in which it is distributed but the simplest in many cases will be to download the sbt.zip file. Once you extract the SBT content into an appropriate location you will need to configure it for your environment—see the guidance on the SBT download page for your platform.
By following the SBT conventions we can get started by ensuring that:	Sources in the base directory

	Sources in src/main/scala or src/main/java

	Tests in src/test/scala or src/test/java

	Data files in src/main/resources or src/test/resources

	jars in lib directory

By default, SBT will build projects with the same version of Scala used to run SBT itself.
SBT provides an interactive mode (or console) in which you can use the SBT console to issue a series of commands and control the build process. Using the sbt command without any options allows the user to enter the interactive SBT console.
We will use SBT to create a new project via the SBT console. To do this we can use the np (new project) SBT plugin; prior to version 0.13 of SBT you could create a default project directly using SBT; however, it is now necessary to use the np plugin (see the np site for directions on how to do this). This is indicated in Fig. 43.8. When issuing the np command from within the SBT console, it is necessary to provide the information for the name of the project and your organisation, etc. The actual template structure follows that of Maven described earlier.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig8_HTML.gif]
Fig. 43.8Creating a project using SBT

Once we have created a new project, we can now place our application code under the src/main/scala directory structure and place our tests under the src/test/scala structure (as shown in Fig. 43.9). The resources directory is for data files, property files, etc., that might be used with our application.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig9_HTML.gif]
Fig. 43.9Project structure

Although the aim of SBT is that there is little or no configuration required for simple projects, there are two ways of configuring SBT. The two approaches are the light configuration and the full configuration.
The light configuration approach is more akin to Ant (another Java build tool), which is an imperative approach to the definition of a build. That is, the light approach allows you to specify what constitutes the elements that comprise the version of the system to build explicitly but using a lightweight syntax. Figure 43.10 illustrates the SBT configuration file created for our new project earlier.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig10_HTML.gif]
Fig. 43.10SBT build.sbt configuration file

The build.sbt file is also where we would place any library dependency information for our project. For example,

 // Set the project name and version
 name := "my-project"
 version := "1.0.0"
 // Add a single dependency, for tests.
 libraryDependencies += "junit" % "junit" % "4.8" % "test"
 // Add multiple dependencies.
 libraryDependencies ++= Seq(
 "net.databinder" %% "dispatch-google" % "0.7.8",
 "net.databinder" %% "dispatch-meetup" % "0.7.8")

This specifies ‘my-project’ as the name of the project; that it is version 1.0.0; and that it is dependent on the JUnit library as well as two additional libraries.
The full configuration approach is essentially a Scala program implemented using the SBT DSL for defining the build process. As such you can write almost anything in the full configuration. However, the DSL makes it easier to specify that common tasks are to be performed. An example of part of a full configuration file is shown in Fig. 43.11. As can be seen from this example, it captures similar information to the simple build.sbt file but does it in terms of Scala objects.[image: ../images/323629_2_En_43_Chapter/323629_2_En_43_Fig11_HTML.gif]
Fig. 43.11Part of a Scala definition for a full configuration file for SBT

43.4.2 SBT Lifecycle Commands
In a similar manner to Maven, SBT can be used to issue a series of build commands such as	
 clean Deletes all generated files (in the target directory).

	
 compile Compiles the main sources (in src/main/scala and src/main/java directories).

	
 test Compiles and runs all tests.

	
 console Starts the Scala interpreter with a classpath including the compiled sources and all dependencies. To return to sbt, type: quit, Ctrl+D (Unix), or Ctrl+Z (Windows).

	
 run <argument>* Runs the main class for the project in the same virtual machine as sbt.

	
 package Creates a jar file containing the files in src/main/resources and the classes compiled from src/main/scala and src/main/java.

	
 help <command> Displays detailed help for the specified command. If no command is provided, displays brief descriptions of all commands.

However, SBT can be used with Eclipse as an underlying tool. This requires the installation of the SBT plugin in a similar manner to the installation of a Maven plugin.
Online References

 	Ant home page http://​ant.​apache.​org/​

	Maven home page http://​maven.​apache.​org/​

	Maven and Scala http://​www.​scala-lang.​org/​node/​347

	Maven Repository http://​mvnrepository.​com/​

	Simple Build Tool (SBT) http://​www.​scala-sbt.​org

	SBT and Eclipse https://​confluence.​dev.​bbc.​co.​uk/​display/​linkeddata/​Cheat+sheet+for+​using+Eclipse+to​+develop+Scala+a​pplications+on+t​he+sandbox

	SBT np plugin (for new projects)—https://​github.​com/​softprops/​np

© Springer International Publishing AG 2018
John HuntA Beginner's Guide to Scala, Object Orientation and Functional Programminghttps://doi.org/10.1007/978-3-319-75771-1_44

44. Scala & Java Interoperability

John Hunt1
(1)Midmarsh Technology Ltd, Bath, Wiltshire, UK

John Hunt
Email: john.hunt10@gmail.com

44.1 Introduction
In this chapter, we will look at the interoperation of Java and Scala. Both Java and Scala are JVM byte code languages. That is, they both compile to the byte code language that is understood by the JVM. The byte code language of the JVM was originally designed to be the compiled form of Java and was what the Java Virtual Machine executed. However, things have evolved such that today the JVM is a virtual environment for executing byte code languages. In fact, there are now several languages that can be compiled to JVM byte codes including Java, Groovy, Clojure, Jruby, Jython, JavaScript, Ada, Pascal as well as Scala. A common term used for these languages is that they are all byte code languages.
As such at the byte code level, there is no difference between Java and Scala—they are just different starting points for the same destination. Therefore, at runtime it is only the byte code that executes—there is no such thing as Java or Scala. Scala can thus interoperate with other byte code languages.
44.2 A Simple Example
As a simple example, consider the Scala Person shown below:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figa_HTML.gif]

This class compiles to a
 Person.class
 file just as any other byte code language. This means that it can be used within Scala or Java. The following code sample illustrates the use of the Scala class Person within a Java application:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figb_HTML.gif]

Notice that as far as Java is concerned that this is a class
 Person
 with a constructor that takes a
 String
 and an Integer. Also notice that both the Scala class
 Person
 and the Java class JavaInteropTest1 are in the same package (com.jjh.scala). This works because from a byte code point of view, there is no difference between a Scala class
 Person
 in the package com.jjh.scala and a Java class
 Person
 in the same package—they are both byte classes in the package com.jjh.scala.
The output from this application is given blow in IntelliJ IDEA:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figc_HTML.gif]

One thing to note is that the Scala class
 Person
 defines some slightly strange (from a Java perspective) methods for the property age. It defines the age() accessor method (not getAge) and the age_$eq method for setting the new value of age (as it’s a var):

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figd_HTML.gif]

The output of these lines is:	85

	55

44.3 Inheritance
It is possible to inherit between Java and Scala classes. For example, in the following, Employee is a Java class while Person is the Scala class presented in the previous section. The rules for constructors are maintained, and the Java class can call the superclass constructor.

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Fige_HTML.gif]

44.4 Issues
There are of course some issues related to interoperating between Scala and Java. The first one of which is that Scala requires a Java 8 or newer runtime to operate within. The other is that Scala has some concepts that Java has no knowledge of such as objects, traits and functions as first-class language elements. This last may change with the future versions of Java. In turn Scala has no concept of an Interface. Therefore, if care is not taken, problems may arise.
In general, Scala to Java interoperability is relatively seamless as Scala builds on top of Java. However, Java to Scala can sometimes be problematic. The most common set of issues are:	Java has no equivalent of Traits.

	Functions are object values.

	The Scala-type system is more complex.

	Scala has no notion of static, so can’t access statics in the same way as Java code.

	Java doesn’t understand Scala’s companion module.

	Java sees Scala objects as a final class with statics.

44.4.1 Scala Objects
Of course, the underlying byte code representation also lacks many of the features of Scala presented above. Scala therefore often generates more than one byte code class or type for a single Scala concept. This is illustrated below for a simple test Scala object.
The following code generates two .class files:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figf_HTML.gif]

The two .class files are Test.class and Test$.class:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figg_HTML.gif]

This can make it difficult to decide how to treat a Scala concept from the Java side. It can be useful to examine what these class files contain in order to understanding the Java view of these structures. This can be done using the javap program. javap is the class file disassembler distributed with the standard Oracle SDK. The result of using the javap program with the Test examples is shown below:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figh_HTML.gif]

What this shows is that the Scala object Test is represented at the byte code level by a public final class Test and a second public final class Test$.
How would you then call the Scala object Test from java? From the javap de-compilation, you have a choice of the Test class with a static method
 print
 and the
 Test$
 class with a non-static method
 print
 . In fact, in this case from Java we can just treat the object
 Test
 as if it was a statically defined entity. This is because the static method on a final class means that we cannot extend the class Test, and then we can call the method without needing to instantiate the class. Thus, we can just write:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figi_HTML.gif]

Which is semantically the closest we can get in Java to the concept embodied in the Scala Object.
44.4.2 Companion Modules
Companion modules are another point of conflict in that Scala has the concept of a class and an associated companion object (which must have the same name as the class and be defined within the same file). For example,

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figj_HTML.gif]

This listing when compiles generates the classes shown below:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figk_HTML.gif]

If we use the javap de-compiler again on these classes, then we can see that the byte code Session class combines elements of both the Scala Session class and the Scala Session object. However, note that the Session is not final and thus can be extended! This is shown below where the javap program is used to de-compile both the Session and the Session$ classes.

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figl_HTML.gif]

If you need to access the Session from within Java code, then this can be done as the Session just looks like a normal Java class with a static factory method:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figm_HTML.gif]

Indeed you can even be able to extend it. For example,

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Fign_HTML.gif]

44.4.3 Traits
Scala has Traits—these are a type within the Scala-type system, and they are neither abstract classes nor are they Java interfaces. Java does not have Traits although it does have interfaces and abstract classes. There cannot therefore be a direct mapping from a Scala trait to a Java concept. However, this is also true of the underlying byte code representation—it does not have a concept of a Trait. This raises the question what happens when a trait is defined at the byte code level? For example, given the trait Model shown below, how is this represented at the byte code level:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figo_HTML.gif]

If you examine the .class files generated for this type, you will see that the single trait Model is represented by a single .class file Model.class (Fig. 44.1).[image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Fig1_HTML.gif]
Fig. 44.1Representing a trait via two class files

The file Model.class defines an interface containing a single public abstract method that takes a string and returns a string. This can be implemented by Java class who wish to implement the Trait (Fig. 44.2).[image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Fig2_HTML.gif]
Fig. 44.2Representing a simple trait in byte codes

However, what happens if the trait defines actual behaviour and data. This is the biggest area of change in terms of Java interoperability from pre-Scala 2.12 to post-Scala 2.12. Prior to Scala 2.12, a trait was represented as an interface and a class that held any concrete implementations defined in the trait.
In Java 7 and older versions of Java, interfaces were only allowed to define method signatures (abstract methods) and static final constant values.
The following listing defines a modified version of the Model trait that contains behaviour (the print method) and data (the title variable):

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figp_HTML.gif]

This is used to result in two class files being generated as shown in here:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figq_HTML.gif]

In this older version of Scala, the Model.class file contained an interface definition
 Model
 with a single public abstract method
 info
 . The Model$class.class file contained an abstract class called Model$class that extends the java.lang.Object type and defined two static methods one
 info
 and the other
 $init$
 both of which take a Model as their parameters.
This made interoperability of such traits with Java difficult!
However, Java 8 introduced new features to interfaces that allow interfaces to have concrete methods defined. This means that Scala 2.12 (and newer) is able to compile a trait to a single interface class file.
This is shown below:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figr_HTML.gif]

This means that from the Java world, a Trait appears as an interface to implement.
However, there are still a couple of things to bear in mind. The first is that the interface that has been generated has three abstract methods that must be provided by any Java class that wish to implement this Interface. The first of these is fairly obvious; the method
 info(x: String)
 is an abstract method in the Scala trait is therefore an abstract method in the Java interface.
However, the other two methods are

 String title() and

 void title_eq(String)

Neither of these methods I listed in the Scala trait—instead there is a var property called title. What has happened here is that the Scala compiler converts a
 val
 or a
 var
 into 1 or two methods (one for reading and one for writing) the value. As this is a
 var,
 there are two methods required. However, no default implementation is given and thus the subclass must provide appropriate implementations.
In this case, however, the
 var
 is initialised to the string “CS123-10”. It is therefore also necessary to provide a way to initialise such properties. This is provided by the slightly strangely named method:
public static void $init$(com.jjh.traits.Model)
This method can be invoked in the subclass (e.g. in the constructor) to initialise any properties defined in the Trait. This is done via reference to the interface name:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figs_HTML.gif]

The end result is that the class implementing the Model interface in Java looks like this:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figt_HTML.gif]

As this example illustrates, some further work is still involved, so care must be taken if a trait is meant to be implemented in Java. Briefly, if a trait does any of the following, its subclasses require synthetic code:	defining fields (val or var, but a constant is ok—final val without result type)

	calling super

	initialiser statements in the body

	extending a class

	relying on linearisation to find implementations in the right supertrait

44.5 Functions
Scala is a hybrid Object-Oriented and functional language. However, Java (at least up until Java 8) is an Object-Oriented language and thus has no concept of a Function. Scala of course treats Functions as top-level entities, or first-class elements in the language with functions making up part of the type system of the language. However, the underlying byte code representation to which Scala compiles also does not have a concept of a function thus there must be some from of mapping from the Scala world into the byte code world. This thus means that from the Java side of things that mapping can be exploited.
Functions are actually represented at the byte code level by the various Function types that model a function. The following code which defines an object called
 MyScalaTest
 containing a method which takes a single parameter of type
 Int

 =>

 String
 . This method is represented at the byte code level as being a method that takes a single parameter of type Function1 which is parameterised to use an Object and a String as the types involved.

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figu_HTML.gif]

The object MyScalaTest is represented by two .class files at the byte code level as illustrated below.

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figv_HTML.gif]

This is shown when we use javap to de-compile the compiled version of the MyScalaTest. The MyScalaTest.class contains a final class that defines a single public static method setFunc that takes a parameter of type
 scala.Function1
 . The associated
 MyScalaTest$
 class defines a non-static (instance side) method
 setFunc
 that also takes a
 scala.Function1
 parameter (Fig. 44.3).[image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Fig3_HTML.gif]
Fig. 44.3De-compiling the MyScalaTest class files

In fact, within Scala there are a range of types (actually Traits) that are used to represent functions from Function1, Function2 and Function3 through to
 Function22
 . Therefore functions can have up to 22 parameters. This appears to be an arbitrary choice and is limited only because the underlying types are only written from Function1 through to Function22. If you find yourself hitting this limit, then you probably need to rethink your design!
As an example, if we changed the function type taken by setFunc to have three input parameters and one result, as follows:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figw_HTML.gif]

Then when we de-compile the resulting .class byte codes, we would find that this is now as shown below.

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figx_HTML.gif]

To exploit this within the Java world, we can create Java code that implements the Function1 type (which appears as an Interface in the Java world). This can be done by using one of the abstract runtime classes that implement the appropriate interface. For example, if we have a single parameter function, then the interface for it in the Java world is Function1 and the abstract class that provides the basic infrastructure for that interface is AbstractFunction1 (where as for a three parameter function we would use the Function3 interface and the AbstractFunction1 class). The following listing illustrates how we can create a Scala function in Java and use it with a Scala object that expects to receive a function:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figy_HTML.gif]

In the above example, a new (anonymous) inner class is created on the fly based on the AbstractFunction1 class. It defines a method apply that takes a parameter of type Object (anything in the Java world) and returns a String. In this case, the string is constructed by prefixing whatever was passed in with the string “Hello World”.
Using this new anonymous class, a new instance is created and a reference to that instance stored in the variable ‘f’ which is of type Function1. Note that the parameters to Function1 indicate that the function being defined takes one parameter (the first type in the angle brackets ‘<>’ and the return type is String the second type in the angle brackets.
The instance referenced by f is then passed on the setFunc method of MyScalaTest, which is the Java representation of the MyScalaTest object. The end result of executing this Java program is the output:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figz_HTML.gif]

It is worth noting that Scala does not use Java’s representation of functions. This is primarily for two reasons, firstly Scala had functions before Java did and thus developed its own representation but secondly (and more importantly) Scala’s representation of functions is considerably richer than that in Java 8.
44.6 Collection Classes
Both Java and Scala have libraries of collection classes, and confusingly many of the names are similar.
As an example, there is a
 Set
 collection in both Java and Scala and there is a
 List
 in both Java and Scala. However, the Scala collections are not just wrappers around the Java collection classes and thus you cannot just assign from one to the other.
For example, you cannot assign a Java
 Set
 type to a Scala
 Set
 type. The following does not work:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figaa_HTML.gif]

If you do try this, you will find that the assignment of the jSet to the Scala Set will result in a compilation error. There is no relationship between these two types of Sets to allow a cast to occur.
You might think that you can create a new instance of the Scala set using the Java Set as a parameter to the constructor:

 val sSet: Set[String] = Set(jSet.toArray(): _*)

For an appropriate Scala set, this could work but the array type generated by Java is an Array of Objects, but we are using a Set with an array of String (which is what both types of sets hold).
It is therefore necessary to look at the Java Converter facilities provided in the scala.collections package. For example, the JavaConverters object (previously known as JavaConverters but that name is now deprecated and introduced in Scala 2.8) provides numerous conversions.
The following conversions are supported via asJava, asScala	scala.collection.Iterable <=> java.lang.Iterable

	scala.collection.Iterator <=> java.util.Iterator

	scala.collection.mutable.Buffer <=> java.util.List

	scala.collection.mutable.Set <=> java.util.Set

	scala.collection.mutable.Map <=> java.util.Map

	scala.collection.mutable.ConcurrentMap <=> java.util.concurrent.ConcurrentMap

The following conversions are supported via
 asScala
 and through specially named extension methods to convert to Java collections, as shown:	scala.collection.Iterable <=> java.util.Collection (via asJavaCollection)

	scala.collection.Iterator <=> java.util.Enumeration (via asJavaEnumeration)

	scala.collection.mutable.Map <=> java.util.Dictionary (via asJavaDictionary)

In addition, the following one-way conversions are provided via
 asJava
 :	scala.collection.Seq => java.util.List

	scala.collection.mutable.Seq => java.util.List

	scala.collection.Set => java.util.Set

	scala.collection.Map => java.util.Map

The following one-way conversion is provided via asScala:	java.util.Properties => scala.collection.mutable.Map

Thus, the earlier example should be written as follows.

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figab_HTML.gif]

However, note that the asScala returns a mutable set not an immutable set. This is because Java collections are all mutable whereas Scala has mutable and immutable collections.
It should also be noted that the JavaConverters classes use the Adapter pattern to wrap the original Java collection (the underlier) within a Scala interface that resembles the Scala collection types. Thus, both converting and accessing converted collections is a constant time (O(1)) operation introducing only a minor overhead. Due to this Design Pattern, it is also worth noting that converting Java collection to Scala and then back to Java yields the original collection, not double-wrapper.
44.7 Implementing a Java Interface
Java makes extensive use of interfaces, which are used to define abstract definitions of method signatures (and static constant values). Scala has no concept of an interface; however; it does have traits. One of viewing an interface is as a very restricted type of trait. Thus, a Scala class can implement a Java interface by treating it as a Trait which it is mixing into that class.
However, unlike Scala traits, interfaces can only have abstract methods. Thus, the class mixing in the interface must implement the method (or methods) specified by the interface.
For example, given the following Java interface:

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figac_HTML.gif]

Any Scala class must provide an implementation for the abstract method
 calc
 . Note also that the method
 calc
 takes a List, which in the Java world is an interface itself. Thus whatever is passed into the
 calc
 method will be a class or an object that implements that interface.
The following listing provides a simple Scala class that implements the Processor interface. The

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figad_HTML.gif]

The simple class MyProcessor converts the Java list into a Scala list to make it easier to work with. It then processes all the elements within the list in order to generate a total (it is assumed that all the string sin the list passed in will contain integer values allowing the toInt operation to convert the string into an integer). The result returned is a Double (which is treated as a raw value double in the Java world).
The interesting thing is that the Scala class MyProcessor could be used from the Scala world or from the Java world. Thus the following listing implemented in Java creates a new instance of the MyProcessor and stores it into a variable of type Processor. It then creates a list of strings and passes them into the MyProcessor object, etc.

 [image: ../images/323629_2_En_44_Chapter/323629_2_En_44_Figae_HTML.gif]

The output of this program is 37.0.

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figl_HTML.gif
object RamdomStringApp extends App {
import Util._

val str = "The_Great_Big_Scala_World"
val randomString = sr random 6
printin(s™SrandomString™)

}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figg_HTML.gif
package engine {
class Petrol1
b
package family {
package economy {
package engine {
class Petrol2
}
class Control {
val b1 = new engine.Petrol2
val b2 = new economy.engine.Petrol2
val b3 = new family.engine.Petrol3

//val b4 = new engine.Petrol1
val b5 = new _root_.engine Petrol1

)
}
package engine {

class Petrol3

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figf_HTML.gif
mysql> SHOW TABLES;

| Tables_in_employees |

| employee
YT

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figf_HTML.gif
val endList = myList2 :+ "Ent
println(endList)

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figf_HTML.gif
» false 7?7 List(1, 2, 3) — retums List()
e true 7?7 List(1l, 2, 3)) — returns List(1, 2, 3)

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figp_HTML.gif
object Test extends App {
var d = new Derived()
dprint

}

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figc_HTML.gif
import scala.collection.immutable.Stack

object StackTest extends App {
val sl = Stack[Int]()
val s2 = sl.push(1)
println(s2)
val s3 = s2.push(2)
println(s3)
println(s3.top)
val g4 = s3.pop
println(q4)

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig4_HTML.gif
MenuBar
Menu
l contains one or more

Menultems

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figy_HTML.gif
object MathUtils {
def increment(x: Int) = x + 1

}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figab_HTML.gif
package com jjh.banking

case class Account(name: String, number: Siring) {
private[this] def print = printin(name)
}

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figx_HTML.gif
Run [PersonTest

> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/C
Person(John, 21]

John is 21

pl.isToddler: false

pl.isPensioner: false

Happy Birthday, you were 21today you are now 22

5 |[@

Process finished with exit code

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figp_HTML.gif
val myArray = Array.fill(z, 2z, 2) (2.0
println(myArray (0) (0) (0)

produces

5 0

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figx_HTML.gif
(XX) __ interop — -bash —81x7

Johns-iMac: interop jehs Javap -cp « com.)ih. func.MyScalaTest
Compiled fron "MyScalaTest. scala’
public final class con. jjh. func.MyScalaTest {

public static void setfunc(scala. Functiond<java. lang.Object, jova.lang.Object,
{ave-amg.Cbfect, java.Lang.Serings);

Johns-iMac: interop jehs |

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figb_HTML.gif
class Person() {
var name = ""
var age = 0

3}

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figi_HTML.gif
class Supervisor extends Actor {
var children = ArrayBuffer (ActorRef] ()

override def prestart(): Unit = (
chilaren += context.actorOf (Props (classOf (ChildActor],
"childl"))
children
"childz2"))
)
dof receive = (
case "run" => {
printin(*Supervisor run’)
children.foreach(a = a ! "msg")

context .actorOf (Props (classoOf [ChildActor] ,

)

case "errort => {
Println("Supervisor error®)
children.foreach(a => a ! "error’)

)

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig7_HTML.gif
(XX] Hello World!
Name County. Town
john Glamorgan Cardiff
BANES
dam S.Glos Bristol
[Phoebe Haverfordwest Pembrokshire

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figd_HTML.gif
sample
src

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figi_HTML.gif
package com.jjh.traits

trait Sample {
type T

def transform(x: T): T
wval initial: T

var currer

}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figs_HTML.gif
Run " TallRecursionTest
IS /Library/Java/JavaVirtualMachines/jdk1. 152. jdk/Contents/Home/bin/java
Exception in thread “main" Jave. lang. Except ion: Bang

at com.jjh.scala.tail.TailRecursionTests.bang(Util.scala:23)

at con.Jjh. scale. tail, Tai WRecurs onTests. bang(Lt1L. scala: 26)

at con.Jjh-scala. il Tai Recurs ionTests. bang Ut scalai2)

at con.Jjh.scala. toil. Tai Wecurs ionTests. bang Ut L, scalai24)

at con.Jjh.scale. toil. Tai WRecurs onTests. bang Lt iL, scalai2¢)

at con. . scale. toil. Tai WRecurs onTests. rain(LtiL, scala: 19)

at con. 3 scale. il Tai WRecurs onTest main(Uti. scata)

@9 @ e

% M

Process finished with exit code 1

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figs_HTML.gif
package com.jjh.info

class Company {
var name
var address =
var telephone = “0000"
var registrationNumber

var postcode = "xxx xxx"

def print() = printin(s“Company name Sname at Saddress")
override def toString = s"Company[sname, Saddress, " +

s"Stelephone, SregistrationNumber, SvatNumber” +
s"Spostcode]”

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figf_HTML.gif
trait Incrementing extends AbstractProcessor {
abstract override def update(x: Int) {
super.update(x + 1)
}

rait Filtering extends AbstractProcessor {
abstract override def update(x: Int) {
if (x> 0) super.update(x)
}
}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figi_HTML.gif
package com.jjh.test;
import com.jjh java. Test;
public class JavaTest {

public static void main(String[] args) {
Testprint();

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figi_HTML.gif
package com jjh.scala

import org junit.runner. RunWith
import org.scalatest junit.JUnitRunner
import org.junit.Assert._

import org.scalatest. FlatSpec

@RunWith (classOffJUnitRunner))
class PersonTest extends FlatSpec {

“A new Person instance" should "have an age 0" in {
val p = new Person(*John")
assertEquals("* Age shoud be Zero" 0, p.age)

“A new Person with an age of 54" should “return set their age
appropriately” in {
val p = new Person(“John", 54)
assertEqual(" Age shoud be 54,54, p.age)
}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Fig1_HTML.gif
Start

while (condition) {
conditional code
}

condition

if condition is true
—y

Process

v
if condition is false

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figi_HTML.gif
class Person(var name: String =
var age: Int = 0)

‘Anyone*,

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figa_HTML.gif
new Arrav([(String] (10);

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figa_HTML.gif
class Person(val name: String, var age: Int)

class Student(var subject: Sring,
n: String,
a: Int)
extends Person(n, a) {

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figq_HTML.gif
class Person(val name: String, var age: Int) {
override def toString() = s"Person: $name: Sage
}

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig1_HTML.gif
Actor Instance

msg},

msg3 Actor Instance

Actor Instance

msgé N\

Actor Instance

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figu_HTML.gif
Run " TestDbUpdate

» /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
Load the driver

Set up the connection

Obtain a statenent

Execute Update

1

Process finished with exit code @

el (@

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figg_HTML.gif
Processor.apply(10, f4)

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figg_HTML.gif
import scala.util.control.Exception
import java.io.IOException

import java.io.FileNotFoundException
import scala.io.Source

object TestCatching extends App {
val fileCatch =
Exception. catching(classOf[FileNotFoundException],
classOf[I0Exception])
~withApply{
e => "File Problen"}
val content =
fileCatch(
Source. fromFile("test. txt")
.getLines.mkString(“\n")}
println(content)

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figu_HTML.gif
import scala.collection.immutable.HashMap

object HashMapTest extends App {
val capitalCitys
HashMap ("UK" -> "London",
RANCE" -> "Paris”,
> "Madrid",
=> "Wasington. DC"
println(capitalCitys.size)
println(capitalCitys.keys)
println(capitalCitys.values)
println(capitalCitys.isEmpty)
println(capitalCitys.get ("UK"))
println(capitalCitys("UK"))
println(capitalCitys.contains ("UK"))
println(capitalCitys.getOrElse("Ireland",
"Not known"))

val newCapitalCitys =
capitalCitys +("Ireland” -> "Dublin")
println(newCapitalCitys ("Ireland"))

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figu_HTML.gif
trait Drivable {
// exactly one abstract method
def drive(miles: Int): Unit
// Can define concrefe properties
val message = "Driving is good for the sole’
// Can also define concrete methods
def getDetails() = "Drivable thing"

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Figc_HTML.gif
val panel = new FlowPanel()
panel.contents += bl

panel.contents += b2

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figo_HTML.gif
package com.jjh.scala.db

import slick jdbc. MySQLProfile.api._

import scala.concurrent.ExecutionContext Implicits.global
import scala.concurrent. duration.Duration

import scala.concurrent. {Await, Future}

// The main application
object SetupDBAPp extends App {

val db = Database.forURL(

“jdbc:mysql:/llocalhost:3306/company” +

"?user=user&password=user123'
driver="com.mysal.cj jdbc.Driver")

try{
printin(*starting")

// The query interface for the Users table
val users: TableQueny[Users] = TableQuery{Users]

val setup = DBIO.seq(

// Create the USERS table
users.schema.create,

/ Insert some users

users += User(101, "John"),
users += User(49, "Denise”),
users += User(150, "Phoebe")

)

printin(*"Run db setup”)
val f = db.run(setup)

f.onComplete{ case s => printin(s"Result: $s") }
Await resultf, Duration. Inf)

printin("Database setup complete”)

}catch {
case e: Throwable => e.printStackTrace()
}inally {
db.close
}
}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Fig3_HTML.gif
Display/
View

Control of
User Input

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figo_HTML.gif
def enqueue(D >: T]

new Queue(x, head :: tail)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figj_HTML.gif
object FunctionLiteralApp extends App {

1/ Functional literals can be assigned to variables
// Note last value assigned is retumed as result of
//function - return type inferred
var increase = (x: Int) => x + 1
vary=1
printin(“Initial value of y: * + y)
increase(y)
printin(*Increased y: " + y)
7/ Can also assign to another identifier
val aaa = increase
printin(“increase using aaa: " + aaa(2))
// Because increase is a var you can re-assign it
increase = (x: Int) => x + 99
y = increase(y)
printin(“2nd Increased y: * + y)
// Can also fundamentai change what it is
1/ Note can't assign to the parameter X they are vals
increase = (x: Int) => {
printin(*\tincreasing x")
printin("\tby a fixed amount”)
x+1
}
y = increase(y)
printin("3rd Increased y: * + y)

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figi_HTML.gif
object Hello {
def main(args: Array[String]): Unit = {
printin("Hello Scala”)
}
}

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figh_HTML.gif
def head: Int = content.head

def enqueue (x: Int) = content += X

def dequeue: Int = {
content . remove (0)
}

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figr_HTML.gif
trait Drivable {
// exactly one abstract method
def drive(miles: Int): Uni

}

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Chapter_TeX_Equa.png
29

val storedProc = ...
val st = con.createStatement
st.executeUpdate (storedProc)
val cst =

con.prepareCall (“{call ...}”)
val rs = cst.executeQuery

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Chapter_TeX_Equb.png
val ctx = new InitialContext()
val ds = (DataSource) ctx.lookup (“jdbc/Personnel)
val con = ds.getConnection()

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figk_HTML.gif
® ® Create New Scala Class

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figj_HTML.gif
import scala.collection.mutable.lashMap

object HashMapTest extends App {
val map = HashMap(String,String] ()

map ("UK" -> "London")
map ("FRANCE" -> "Paris")
map += ("Spain" -> "Madrid")

map += ("USA" -> "Wasington. DC")
println(map)

println(map.size)
println(map.keys)
println(map.values)
println(map.isEmpty)
println(map.get ("UK"))
println(map ("UK"))
println(map.contains ("UK"))

println (map.getOrElse ("Ireland", "Not known"))

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figa_HTML.gif
object Calculator {

def props = Props(Calculator]
Y

class Calculator
def receive = {
case x: Tnt =
e S roceived: © ¢ %)
val resultl
(1 to x).map(i => i)
.foldLeft(x) ((total, i) => total * i)

xtends Actor {

printin(
"Calculator processing completed, " +
"returning result’)

sender ! resultl

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figc_HTML.gif
object Mathutil {
def max2(x: Int, y: Int) = if (x>y) x else y
}

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Chapter_TeX_Equc.png
DataSource ds = newOracleDataSource()
ds.setServerName (* ‘thor”)
ds.setDatabaseName (* ‘employees”)
Contactctx = new InitialContext()

ctx.bind (¢ ‘jdbc/Personnel”, ds)

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Chapter_TeX_Equd.png
getProcedures(catalog: String,
schemaPattern: String,
procedureNamePattern: String)

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Chapter_TeX_Eque.png
val md = rs.getMetaData
int cols = md.getColumnCount
for (i < —1 to cols)
printin (md.getColumnName (i)) ;
//Note from 1 to cols not 0 to cols —1

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figa_HTML.gif
trait MyReader extends Immutable with Decorator {
g

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figq_HTML.gif
object PersonTestl extends App {
ew Person(18)
${p1.name} is ${pl.age}")

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figi_HTML.gif
final var maximumMemory = 256

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig9_HTML.gif
“ build.sbt

v [resources
v [scala
v [0 test
> (1] resources
v scala
v [target
> resolution-cache
» [streams

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figq_HTML.gif
Given("a non-empty stack")
var stack = Listemptyini]

stack =
stack =
val oldSize = stack size

When("when pop style ops are invoked on the stack")
val result = stack head
stack = stack.tail

Then("the most recently pushed element should be returned")
assert(result == 21)

And("the stack should have one less item than before")
assert(stack.size === oldSize - 1)

}

scenario("pop is invoked on an empty stack”) {

Given(“an empty stack")
var emptyStack = List.empty{int]

When(“when pop is invoked on the stack")
Then(*NoSuchElementException should be thrown")
intercept{NoSuchElementException] {

emptyStack.head
}

And(“the stack should still be empty")
assert(emptyStack.isEmpty)
}
}

3

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figh_HTML.gif
package com jeh.scala.swing

import scala.swing.MainFrame
import scala. swing.SimpleSwingApplication
import scala.swing.Label

import scala. swing.MenuBar

import scala. swing.Menu

import scale. swing. Menultem

import scala. swing.Action

class SimpleFrame extends MainFrame {
title = "Hello World!"
contents = new Label {
text = "Hello"
}
menuBar = new MenuBar {
contents += new Menu("File") {
contents += new Menultem(Action("Exit") {
sys.exi(0)
»
}

b
object SampleMenuUl extends SimpleSwingApplication {

def top = new SimpleFrame()

}

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figk_HTML.gif
object Test3 extends App {
var flights = Map[Int, String] ()
println(flights.getClass ()
flights 1 -> "Miami")
println(£lights.getClass ()
flights += (231 -> "Dublin")
println(flights.getClass())
flights += (456 -> "Paris")
println(flights.getClass())
println(flights)
println(flights(231))

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figg_HTML.gif
package com jeh.scala.swing

import scala.swing.Action
import scala.swing.Bution

import scala.swing.FlowPanel

import scala.swing.MainFrame

import scala. swing.SimpleSwingApplication

class ButtonPanel extends MainFrame {

val myAction = Action("Click Me") {
printin(*l was clicked")

}
val b1 = new Button { action = myAction }
val b2 = new Button { action = myAction }

val panel = new FlowPanel {
contents += b1
contents += b2

)

contents = panel

}

object SwingHelloWorld2 extends SimpleSwingApplication |
def top = new ButtonPanel()

}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figd_HTML.gif
object MultipleForLoopTest extends App {
for (i<-1103;j<-5t07){
+i);
printin(* I Value of j: * + j);

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fig2_HTML.gif
getConnection() e
H Driver
JDBC AP
executeQuery()
——— opec
executeUpdate()) driver

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Fign_HTML.gif
import com.jjh.lights.Light

class NewLight extends Light

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figac_HTML.gif
import java.util.Date

class Activity(val date: Date = new Date(),
var title: String = "activity"
var owner: String = “anon",
var live: Boolean = true) {
override def toString(): String = {
“Activity[" +
date + ", "+
title +
owner +
live +

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figg_HTML.gif

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figk_HTML.gif
® © @ /b jquery.getISON demo x John

€ > C O localhost:9000 fr o :

slooe Johing Bonlatore

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig6_HTML.gif
Run . Hollo. L
> /Library/Java/Javavirtualhachines/jdki. 8.0_152. jdk/Contents/Hone/bin/ java ...
Hello scata

Process finished with exit code @

[Al fles are up-to-date (moments ago)

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figd_HTML.gif
object IntOperationsApp extends App {
import IntSquare._
val result = 5.square
printin(result)

}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Fign_HTML.gif
GET /welcome controllers.HomeController. index

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figv_HTML.gif
val g4 = users.fiter(_.
val a4 = g4 result
val 4 = db.run(ad)
14.onComplete{ case s => printin(s"F4 Result: $s")}
Await result(f4, Duration./nf)

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figx_HTML.gif
‘AdaptedService ‘Service with Adaptor

OEBPS/images/323629_2_En_14_Chapter/323629_2_En_14_Figf_HTML.gif
object SessionTest extends App {
val 51 = Session.create
printin(s1)
val 52 = Session.create
printin(s2)
val 53 = new Session(42)
printin(s3)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figq_HTML.gif

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figd_HTML.gif
actorl

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figp_HTML.gif
class Person (var name: S
def this(a: Int) = this
}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figb_HTML.gif
package com.jjh.java;

pe
* This is a standard Java class with a main method,
* But note that Person is a Scala class.

* This ilustrates the interop between Scala and

* Java.

/

public class JavalnteropTest1 {

public static void main(String [] args) {
System.out.printin("Hello from Java")
Person p = new Person("Granny", 85);
System.out.printin(p);

}

OEBPS/images/323629_2_En_14_Chapter/323629_2_En_14_Fige_HTML.gif
* The Companion class
X
class Session(var id: Int) {
override def toString = "Session[" + id + "]"

}

-
* Its Companion (singleton) object
K
object Session {
private var counter = 0
private def next = counter = counter + 1
def create = { next, new Session(counter) }
}

OEBPS/images/323629_2_En_15_Chapter/323629_2_En_15_Figc_HTML.gif
Run Main
> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
| Result: 7.699999999999999

Process finished with exit code 0

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figw_HTML.gif
package com.jjn.scala.db

import scala.concurrent {Await, Future}
import slick jdbc. MySQLProfile.a
import scala.concurrent.duration.Duration

import scala.concurrent ExecutionContext Implicits.global
import slick basic. DatabasePublisher

// Demonstrates various ways of reading data
object QueryDbApp extends App {

val db = Database.forURL(

“jdbe:mysql:/flocalhost:3306/company?” +
“user=user&password=user123",

driver="com.mysql.cj.jdbe.Driver")

try {

printin(“starting”)
// The query interface for the Users table
val users = TableQuery{Users]

val q1 = for (u <- users) yield u

val at = qt.result

val 1: Future[Seq[User]] = db.run(a1)
f1.0nComplete{ case s => printin(s"F1 Result: $s") }
Await result(f1, Duration.Inf)

printin"-" * 25)

val q2 = users flter(_id > 100)
val a2 = g2 resuit

val f2: Future[Seq[User]] = db.run(a2)
f2.0nComplete{ case s => printin(s"F2 Result: 3s") }
Await.result(f2, Duration./nf)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figad_HTML.gif
object SampleApp extends App {
val al = new Activity(owner = "John")
println(al)

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figb_HTML.gif
[XX) __ bin—java « scala— 82x13.

Johns-iMac:bin jens ./scala 0
Welcore o Scalo 2.12.4 (Java HotSpot(TH) 64-Bit Server W, Jova 1.8.0.72).
Type in expressions for evaluation. Or try thelp.

scolex printin(“Hello Wor
Hello World

scata> |

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig8_HTML.gif
& Console)% [2] Problems] Tasks X% GbEREE -
<terminated> AkkaLoopTest$ [Scala Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_
Sending messages to Actors

Done - sleeping
_CCCCCCCC__CCCCCCBABBBBBBBBRBBBBBCCCCCCCCCCCCCCCCCCCCCC__CCCCBBBARAAAA

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figl_HTML.gif
object Printer {
def write(fle: File)(op: PrintWriter => Unit) {
val writer = new PrintWriter(file)
try {
op(writer)
}finally {
writer.close
}
}
}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Fig2_HTML.gif
Play

HTTP Server

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figh_HTML.gif
final class Employee(n: String,
alnt,
company: String)
extends Person(n, a)

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figb_HTML.gif
object StudentTest extends App {
val s = new Student("Computer Science", "John", 18)
printin(s.name + " is studying " + s.subject)

}

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Fige_HTML.gif
object PrinterApp extends App {

def printer(content: String)(implicit izint): Unit = {
for (i <- 0 until i) print(content)

}
implicit val v=2
printer(*John")(4)

printin("\n
printer("John")

OEBPS/images/323629_2_En_36_Chapter/323629_2_En_36_Fig1_HTML.gif
Unit Testing

Testing done by developers

Integration
Testing

Regression
Testing

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fig3_HTML.gif
DB2Driver

DriverManager
Oracle Driver

getConnection(URL)

MySQL Driver
—Y—— getMetaData)

Connection | ————> DatabaseMetabata
v createStatement)
Statement
executeQuery(sal)
A\
eMeaDAZ) | ResuetMetaData
ResultSet
next()
gty | Rowsof Data

OEBPS/images/323629_2_En_4_Chapter/323629_2_En_4_Fig2_HTML.gif
Wash Wipe

S ‘Wiper Motor

Relay

Pump
Fuse

Water Bottle

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figm_HTML.gif
// Create a list of numbers

val numbers = List(l, 2, 3, 4, 5)
val sum = numbers.foldLeft (0) ((total, element) => total +

element)
println("Sum of List " + sum)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figj_HTML.gif
98 /@ s smenoimn iz x
€ C |© wnnscas-ngorgapicurnscaninyvlint

Q EwVaI

mstrsce closs AmyVal extends iy

s th ot s f v s, hchdescrse s Il 3 s e kg
e e Voo v pacad S8 Lngiog pachn st 22

e sl i Ay

S Dbl sl A, sl .0 Xl Kl S 30 A e e e e

St s B v h o sk
berguiog:

o Thesricgepesrescala e, scaaSor,and s,

© et yes s e s s 1 k3 1 300 20

© The g e re i s s Dt

i Scl 210 A e .S Sla 210, P, ol to et
oo A (e d s c a1 sk sy s comparrapety i
v dsss v s ey o mpronperarmance o st ey by s wect oo
i 374 e R R0 s S S e

[P —

o i o sl vl et theueig s repesrttion.
© ot e b nos v et s, coses o S

= Spcaly sendno e sk ot fom A

© Chmnotbe sy s o ptrn mocng.

© Iyt e el hshCode s

Jresp—

Class urappor (umt unsertying:) axtands At ¢
Pttt S A)
y

s mportret et et v s e ke s e, st
St 3o o it s i, Thee KBTS 30 A e 1 e
nne ik G Ul T

Prcaes

O
Qumst
oms
ooum
000t
00ne
000
Octmeste
Ocemate
Osetenie
Qomwte
pr—
e

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig2_HTML.gif
Local mposna’NA
Developer 1's machine

-
e o
Developer 2's machine

Local Repository on
Developer 3's machine

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figx_HTML.gif
Run " ClosureExamplesApp2
» /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
6

55

£ Pprocess finished with exit code @

=

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figo_HTML.gif
abstract class Base {
def print = printin(*Base print")

class Derived extends Base {
override def print {
super.print
printin("Derived print”)

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figo_HTML.gif
printin(array.length)

printin(array(0) length)
printin(array(1) length)
printin(array(2) length)

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figd_HTML.gif
var stack = List.empty{int]
stack.+:(52)
stack +(21)

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Fige_HTML.gif
true ? "This is true" | "This is false") - returns
“This is true"
false ? "This is true" | "This is false") - retums

“This is false")

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figa_HTML.gif
class Person {
var age = 0
var name

}

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig6_HTML.gif
® O O Swing App

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figm_HTML.gif
package com.jjh.scala.anno

@SerialVersionUID(1L)

@deprecated

class Person(name : String, var age : Int) extends Serializable |
@inline
override def toString() = s"Sname: Sage”

OEBPS/images/323629_2_En_4_Chapter/323629_2_En_4_Fig1_HTML.gif
WashWipe Wiper Motor

Fuse
Pump.

‘Water Bottle

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Fige_HTML.gif
TR < Jav Class

¥ cat X
[9) Copy. *C
 Copy Path oxc

Copy Reference xoxc

- Kotin File/Class

@ Package Object
File
& Scratch File

RN

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fige_HTML.gif
mysql> DESCRIBE employee

Field	Type	NuLL	Key	Default	Extra
44	int(18) unsigned	NO	PR	NULL	
name	varchar(30) INo	e			

2 rows in set (0.00 sec)

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Introduction

 		2. Elements of Object Orientation

 		3. Why Object Orientation?

 		4. Constructing an Object-Oriented System

 		5. Functional Programming

 		6. Scala Background

 		7. A Little Scala

 		8. Scala Building Blocks

 		9. Scala Classes

 		10. Scala Methods

 		11. Packages and Encapsulation

 		12. Building a Class

 		13. Classes, Inheritance and Abstraction

 		14. Objects and Instances

 		15. Value Classes

 		16. Scala Constructs

 		17. Control and Iteration

 		18. Traits

 		19. Further Traits

 		20. Arrays

 		21. Tuples

 		22. Functional Programming in Scala

 		23. Higher-Order Functions

 		24. Partially Applied Functions and Currying

 		25. Scala Collections Framework

 		26. Immutable Lists and Maps

 		27. Immutable and Mutable Collection Packages

 		28. Type Parameterisation

 		29. Further Language Constructs

 		30. Exception Handling

 		31. Akka Actors

 		32. Further Akka Actors

 		33. Scala and JDBC Database Access

 		34. Scala Style Database Access

 		35. Slick: Functional Relational Mapping for Scala

 		36. Testing

 		37. Scala Testing

 		38. Play Framework

 		39. RESTful Services

 		40. Scalaz

 		41. GUIs in Scala Swing

 		42. User Input in Scala Swing

 		43. Scala Build Tools

 		44. Scala & Java Interoperability

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figb_HTML.gif
mult

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figa_HTML.gif
Event) { for (1 <- listeners) 1(e) }

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figa_HTML.gif
© 0 sevamescon w0

& Slick S g st

Composable

Type Safe

Aldaabae aitis s uries
ity cdadst
e

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figa_HTML.gif
[XX} __bin—java « scala— 82x13

Johns-iMacibin jehs /s
Welcore to Scala 2.12.4 (Java HotSpot(TH) 64-8it Server WM, Jova 1.
Type in expressions for evaluation. Or try thelp.

scala 243
reso: 1ot = 5

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig9_HTML.gif
Actor
Reference

Resume

‘Actor Does Not Exist

Actor Incarne

Actor Instance

actorOf

random UID is assigned to incarnation
actor instance is created for incarmation
preStartis invoked on instance

ation

Restart

preRestart - called on old instance
new instance replaces old"
postRestart - called on new instance

Stop
context.stop

PosionPill
postStop is called on instance

Actor Does Not Exist

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figb_HTML.gif
import scala.collection.immutable.Queue

object QueueTest extends App {
val gl = Queue[Int] ()
val g2 = gl.enqueue(l)

println(g2)

val g3 = q2.enqueue (List(2, 3))
println(q3)

val (r, g4) = g3.dequeue
println(r)

println(q4)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figz_HTML.gif
object MathUtilsApp extends App {
printin(MathUtils.increment(5))
printin(MathUtils.increment(s))

}

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figj_HTML.gif
object PersonTestl extends App {
ew Person("John", 21)
${p1.name} is ${pl.age}")

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figk_HTML.gif
Run ' FunctionLiteralApp
> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk
Initial value of y: 1
Increased y: 2
increase using aaa: 3
2nd Increased y: 101
Increasing x
by a fixed amount
3rd Increased y: 162

Process finished with exit code @

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figt_HTML.gif
Run " SAMSample
» /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/!
Mustang driven 100 miles

Process finished with exit code 8

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Fign_HTML.gif
// Create a list of numbers
4, 5)

val numbers = List(l, 2, 3, 4,
val sum = numbers.foldLeft (0) { (total, element)

element}
println("Sum of List " + sum)

=> total +

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figh_HTML.gif
import scala.utll.control.Exception.catching

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figk_HTML.gif
object MethodTest {

def addTen(aNumber: Int): Int = {
var result = 0
result = aNumber + 10
return result

}

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fign_HTML.gif
connection.commit

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Fig3_HTML.gif
Run [GradesTest
'S /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk
Starting to read data
Finished Reading Data

_, Marks:
E] Bob 45
Paul 32
& peter 76
& Mike 29
John 56
o | @
=]

Process finished with exit code @

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Fige_HTML.gif
for (i <- 1 until 4) printin(i)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Fige_HTML.gif
var sum = (a: Int, bt Int, c: Int) =>a+b +c
printin(sum({, 2, 3))

val partialSum = sum(1, _: Int, 3)
printin(partialSum(2))

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figj_HTML.gif
$(function() {
$(function() {
$("divtishow").hover(function() {
$(this).addClass("hover");
), function() {
smus> removeClass("hover");

$("dlwtshow") click(
function() {
$.get('book/list’, function(data) {
$('divitbooks').empty();
$(data.books).each(
function() {
var $book = $(this);

+"</h3>";
* + $bookatr(author’)

+Soook fndprice’) text(;
html += "
ISBI
+ $book.find(ISBN).text();
html +='</div>";
$('divitbooks’).append((htmi));

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figr_HTML.gif
Run ' TestToString

> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
Person: John: 49
Person: Denise: 46

¢ Process finished with exit code @

il

@/ &

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig10_HTML.gif
| 4 > | " buildsbt) No Selection
organization := “con. jjh"

name := “helloworld"

version := "0.1.8-SNAPSHOT"

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figa_HTML.gif
ery {
println(“Start Cooking”)
makeAnOmlet
println(“Omlette Made”)

} cateh {
case e:

RottenEggException => println("#5%54@")
case ex: Exception =>
println("What went wrong?

} finally {
println("Finished Cooking")

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figq_HTML.gif
package com.jjh.scala.marker
trait Decorator

trait Sarvice

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figf_HTML.gif
PACKAge cCom.gh.ransport {

package personal {
class Bike

}
case class Car(doors: Int)

package group {
class TaxiFleet {
val ¢ = Car(4)
}

OEBPS/images/978-3-319-75771-1_CoverFigure.jpg
John Hunt

A Beginner’s
Guide to Scala,
Object Orientation
and Functional
Programming

Second Edition

@ Springer

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figl_HTML.gif
® ® Create New Scala Class

Neme: | CompanyTestApp|

Kind: ® Object

coca

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figj_HTML.gif
package com.jjh.companion

pr
* The Companion class
*/

class Session(var id: Int) {

}

p
* lts Companion (singleton) object
A

object Session {
private var counter = 0
def session() =

counter = counter + 1
new Session(counter)
i
}

OEBPS/images/323629_2_En_15_Chapter/323629_2_En_15_Figd_HTML.gif
lef equals(other: Any) = other match {
case that: C => this.u == that.u
case _ => false

y

def hashCode = u.hashCode

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figu_HTML.gif
import transport.{Car => Audi}

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Chapter_TeX_Equb.png
define mult (y : Int) : Double
begin

return y * 10.0
end

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figd_HTML.gif
mult

times

\

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Chapter_TeX_Equa.png
define apply (x : Int, func : (Int) => Double) : Double
begin
result = func (x)
return result
end

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figk_HTML.gif
import akka.actor.ActorDSL._
import akka.actor.ActorSystem

object Testilorker extends App {
implicit val system = ActorSystem("demo”)

val a = actor (new Act {
become {
case "A

)

println(*hello")
1l

a1 oan

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figp_HTML.gif
package com.jjh.scala

import org junit Assert assertEquals
port org.scalatest FeatureSpec
import org.scalatest.GivenWhenThen

port scala collection.mutable. Stack
import org.scalatest junit.JUnitRunner
import org junit.runner. RunWith

@RunWith (classOffJUnitRunner])
class FeatureTest extends FeatureSpec with GivenWhenThen {

feature(“The user can pop an element off the top of the stack") {
info("As a programmer")
info("l want to be able to pop items off the stack")
info("So that | can get them in last-in-first-out order")

scenario("pop Is invoked on a non-empty stack”) {

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Chapter_TeX_Equg.png
f4(10)

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figh_HTML.gif
object DegreeTest extends App {
val d = new Degree()
d.printer
val m: Model = d
m.printer

}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figg_HTML.gif
Edit View Navigate

= Open.
‘Open Recent
Close Project

Code _Analyze Refactor _Buil

>

Project

Project from Version Control

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Chapter_TeX_Equd.png
(x:Int) =>x*2

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Chapter_TeX_Equc.png
apply(5, mult)

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figb_HTML.gif
object Controller {
7/ string controller passed as a parameter to the
// contructor of the controller class
def props = Props(classOf [Controller], "Controller")
)

class Controller(name: String) extends Actor {
def receive = {

case "start® => {
println(name + *: starting calculator)
context.actorof (Calculator.props) ! 4
println(name + ": message set')

result: Int => (
println(name + * received: " + result)
context.stop(self)

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figc_HTML.gif
object PersonTestl extends App {
val pl = new Person()

println(s" ${pl.name} is ${pl.age}")
pl.name = "John"

pl.age = 21

println(s" ${pl.name} is ${pl.age}")

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig8_HTML.gif
Table

TableMode!

CellRenderers

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Chapter_TeX_Equf.png
println(Processor.apply(10, £1)

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Chapter_TeX_Eque.png
(Parameter type list) =>return type

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figab_HTML.gif
object SampleApp extends App {
val r4 = Processor.mult(2, y=3)
println(rd)

OEBPS/images/323629_2_En_25_Chapter/323629_2_En_25_Figa_HTML.gif
object CollectionsApp extends App {
val myList = List{String]("One", *Two", "Three")
printin(myList)

}

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figj_HTML.gif
class Employee(n: String,
aint,
company: String)
extends Person(n, a) {

final val max =10

}

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figc_HTML.gif

OEBPS/images/323629_2_En_8_Chapter/323629_2_En_8_Fige_HTML.gif
printin("Hello")
printin("World")

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figl_HTML.gif
conn.setAutoCommit(false)

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figq_HTML.gif
¥ & traits
b Model.class
b ModelSclass.class

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figh_HTML.gif
id, name) <> (User.tupled, User.unapply)

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figw_HTML.gif
package com.jjh

package object banking {

def printAccount(ace: Account) {
import acc._

printin(name +

+ number)

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig1_HTML.gif
aFrame

T

aPanel aPanel

PN VAN

aButton aTextField ascrollPane aLabel

aTextArea

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figc_HTML.gif
class Course extends Model — a class with an extenads that
indicates a trait Model to mix in.

class Course extends AnyRef with Model — a class which
explicitly extends the default AnyRef class and mixes in the
trait Model.

class Course extends Programme with Model — a Class
which extends Programme and mixes in the trait Model. Note
that without looking at Programme we can not tell whether it is
aclass or a Trait.

class Course extends Model with AwardCeremony — this is
a class with multiple traits. Both Model and AwardCeremony
are traits but the first trait is preceeded by extends where as
subsequent Traits are preceeded by with.

class Course extends Programme with Model with
awardceremony. This class extends Programme (a class) and
mixes in multiple traits Model and AwardCeremony.

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Fige_HTML.gif
000 wmcomaaruy B
& C Owmmonsic

YYour new application is ready.

Welcome to Play

Coerataions, et e s rew P plston, i oge vl you it sy | DSSDITARD
o [r—
Youtsuing Py 269 —

a0 Py cosce
Pr——
-

‘Why do you see this page?

o cont /000 e deios et s Ply o ok oot inde

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Fig1_HTML.gif
€ C | O localhost3000/ook/ist w0

{"booke" s [{*iebn"+1, "title" s "HML", "author

. Smith", "price”:10.99), ("isbn":2, Lt

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figo_HTML.gif
package com.jjh.traits

sealed trait Answer
object Yes extends Answer
object No extends Answer

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figf_HTML.gif
val tuple = (54, "John",
// Length of a tuple
printin(tuple.productArity)

"Hunt”, 12.75)

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figf_HTML.gif
object AkkaPrinterTest extends App {
val props = Props[Printer]
val system = ActorSystem(‘mysystem")
val actorl = system.actorOf (props, "actorl®)
val actor2 = system.actorOf (props, "actor2®)
val actor3 = system.actorOf (props, "actor3")
val actord = system.actorOf (props, "actord")
println("Sending messages to Actors")
actorl ! "ar

actorz ! "B"
actors ! rcr
actord ! "x*

printin("Done setup - now sleeping")
Thread. sleep(1000)
println("Terminating the ActorSystem")
system.terminate

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figj_HTML.gif
class Car extends Sample {
type T = String

def transform(x: T) = x + x
val initial = "first"

var current = initial
}

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figb_HTML.gif
package com jjh.scala.validate
object AssertionTests {
def mainargs: Array[String): Unit = {

var count = 0
1/ Try require

printin(*Require called should be 0")
)

/ Assert

printin(* Assert called is not 0")
b
}

)

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figp_HTML.gif
import transport.Car._ // import all members from Car

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figv_HTML.gif
trait Adaptor {
self: Service =
def invoke = printer
}

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig11_HTML.gif
Run " TestRuntime. L

5 /Library/Java/JavaVir tualachines/ jdkd..8.0_152. jdk/Contents/Hone/bin/ Java.
Total nenory i 192937984 and free sevory is 184869220

Requesting systen gc

Total renory is 192937984 and free serory i now 189514808

Process finished with exit code 0

-]

[l Compiition completed sucossstully in 2s Tidms (s miruts age)

@ 71 uTre: v M B Q

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figh_HTML.gif
Person

l-age: Int
-name: String

+Person(n: String, a: int)
+birthday()

<— new Person("John", 50)

:Person

[John, 50]

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figl_HTML.gif
var i=0;

while (i < 10) {
println()
i+=1

}

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig4_HTML.gif
2 e ook o))]
Srot 0 b1 @
e o o R o
S
© - aowora H
ey
et
faHetowatdint
-
s ook
Ry

bl

. scala-0ook [/Users/Shared/projects/inteli-17/scala-book] - . HelloWorl/src/Hello scala...

&a

» m 8 Q

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figi_HTML.gif
increase = (x: Int) =>x + 99
increase(y)

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figl_HTML.gif
Hello Play World

Welcome to Play Browse.

Conyansaion, e st crotd e Py sgpcaion. T g wi bl youwihtpo st TN
oo [rra—
Youts g iy 289 —

Vs a Py orson
Why do you see this page? [—

Exaroi Precs
e son/ e e sttt Py b ke st oo e

acton whareer a rowaat requetshe / URI using tho GET method

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figg_HTML.gif
aysql> INSEAT into employee(id, nsme) VALUES (1, ‘John'.
Query 0K, 4 rows affected (6.8 sec)
Eotetss 4 Gustiesesse B ereinm:

o (2, ‘Oenise’), (3,

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figq_HTML.gif
/Library/Java/JavaVirtualMachines/jdk1.8.8_152. jdk,
Base print
Derived print

Process finished with exit code @

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figy_HTML.gif
object SampleApp extends App {
val r1 = Processor.mult(2, 3)
println(rl)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figa_HTML.gif
access-control-modifier
def methodName (args: argTypes
/* comments */
local variable definitions
statements

returnType

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figs_HTML.gif
Run " TestbbQuery

>

08

%

& @@ 0

/Library/Java/JavaVirtualMachines/jdk1.8.
Load the driver

Set up the connection

Obtain a statement

Execute Query

Results:

1: Adam

Denise

3: Phoebe

Process finished with exit code @

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figc_HTML.gif
package controllers
import javax.inject Inject

import play.api.mvc.AbstractController
import play.api.mvc. ControllerComponents

class BookstoreController
@Inject()(ce: ControllerComponents)
extends AbstractController(cc) {

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig7_HTML.gif
@]%-0-a-a |0 E2D

?abject App extends Asplication {
rinting "Hello horidl® >

D Console (2. problems 3 7 Tasks | EEE]

0 ems

OEBPS/images/323629_2_En_16_Chapter/323629_2_En_16_Fig2_HTML.gif
methodname parameters

|

addressBook.addAddress(*John" Hunt", “2Q20A%)

o—
oohver —

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figab_HTML.gif
package com jeh.scala.interop
import scala.collection JavaConverters.
object SetTest1 extends App {
val jSet: java. util. Set[String] = new java.util HashSet{String]()

jSet.add("Adam")
jSet.add("Phoebe")

val sSet: scala collection.mutable. Se{String] = jSet.asScala

}

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Fig1_HTML.gif
Run " LabelMakerApp

> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
10 @ High Street

Process finished with exit code @

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figt_HTML.gif
object SampleApp2 extends App {
DaysOfWeek values foreach(printin(_))
}

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figm_HTML.gif
package com.jjh.scala.financial

object Test extends App {
val b1 = new Balance(20.0)
val b2 = new Balance(25.0)
printin(b1.<(b2))
printin(b1.<=(b2))
printin(b1.>=(b2))
printin(b1.>(62))

println(bl.compare (b2))

OEBPS/images/323629_2_En_2_Chapter/323629_2_En_2_Fig2_HTML.gif
class

|

class Car extends Vehicle {
wheels = 4
var mileage: Int <~ fields / properties
var totalFuelUsed = 0
val name: String

def mpg: Int = mileage / totalFuelUsed =~ <—— methods

def name(aName: String): Unit = name = aName

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figh_HTML.gif
Array[Person] Array[Person](4)

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figad_HTML.gif
package com jjh.interop
import java.util List

import com.jjh java Processor
class MyProcessor extends Processor {
def calc(l: List[String]): Double = {
import scala.collection. JavaConverters. _
val list = l.asScala
return list foldLeft(0)
{ (total, element) => total + element.tolnt

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figc_HTML.gif
val myArray = new Array[Siring](3)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figh_HTML.gif
package com.]jjh.scala.person

fxx
A person who uses our application.

*

* @constructor create a new person with a name and age.
* @param name the person's name
* @param age the person's age in years
*/

class Person(val name: String, var age: Int)

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figy_HTML.gif
val a7 = Direction(30)
printin(d1)

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figk_HTML.gif
Run . PersonTestt o L
> /Library/Java/JavaVirtualiachines, jdk1.8.0_152. jdk/Content;
John is 21

. Process finished with exit code @
=3
(=]
L)

@ Compilation completsd .. (moments ago) (A 101 LF: UTF-8: & (0 & O

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Fig3_HTML.gif
Run " SampleApp

» /Library/Java/JavaVirtualMachines/jdkl.8
Monday
true

Process finished with exit code @

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figad_HTML.gif
package com jjh.test

class Super {
protected def print = printin("Super")
b

class Sub extends Super {
print
b

class Other {
val s = new Super()
// s.print - error is not visible

}

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig3_HTML.gif
7. UltraEdit-32 - [C:\workspaces\maven\helloworldipom xmi]

2 <project xmlns="http://maven.apache.org/PON/4.0.0"
xmlns:xsi="htep://www.w3.org/2001/XLschema-instance”
xsi:schematocation="http://maven. apache.org/PoM/4.0.0
htep://maven.apache.org/maven-v4_0_0.xsd">

<modelversion>4.0.0</modelVersion>
<groupld>com. jjh.helloworld</groupld>
<artifactId>helloworld</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>

20 <name>helloworld</name>

11 <url>heep://maven.apache.org</url>

12 <dependencies>

13 <dependency>

4 <groupTd>junit</groupId>

s <artifactid>junit</artifactld>

16 <version>3.8.1</version>

1 <scope>test</scope>

it </dependency>

13 </dependencies>

20</project>

For e, oress 1 1n 21, Co. 1, CO

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figj_HTML.gif
object Util {
implicit class RandomString(value: String) {
val size = value.length
def random(n: Int): String = {
import scala.util Random
(1 to n).map(x => value(Random.nextint.abs %
size)).mkString

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figaa_HTML.gif
val d3 = StringDirection.withName("n™
printin(d3)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figw_HTML.gif
object ClosureExamplesApp2 {
var increment = (x: Inf) => x+ 1

def main(args: Array[Stringl): Unit = {
printin(increment(5))
resetFunc()
printin(increment(s))

def resetFunc) {
// Local variable is bound and stored on the heap
/as itis used within the function body
var addition = 50;
increment = (a: Int) => {
a+addition

}
}

}

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figr_HTML.gif
for (i <= 0 to myArray.length
println (myArray(i))

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Fige_HTML.gif
L Downioad Query [jauery X o

€ C | & Secue | hosyjauerycom/donnioad “

Downloading jQuery

Compressed and uncompressed copies of [Query files are avaiable. The
uncompressed fle i best used during development or debugging: the compressed

filo saves bandwidth and improves performance in production. You can also

download a sourcemap fis for use when debugging with a compressad fie. The

map file is not required for users to run jQuery, it just improves the developer's. | |

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Fige_HTML.gif
// Create an immutable Set
var teams =
HashSet ("Liverpool", "West Ham",
"Newcastle", "Everton", "West Ham")

println(teams)

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figj_HTML.gif
val data = for (i <- 1 to 5) yield 10 *i

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figw_HTML.gif
Run Test
> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
is 0
John is 32

@ Process finished with exit code @

=

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig6_HTML.gif
i. Hello World!

__Exit__

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Fige_HTML.gif
package test {
package demo {
package print

}
}

package util {
}

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Fig1_HTML.gif
def starts method
parameter list

method name return type.

def rr$|ax(x: Int, y: Int): Ir‘; {

if (x>y)
X
e'Se function body
y
value retorndfrom st
} exprsson becomes retun

value from method

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figu_HTML.gif
object SampleApp3 extends App {
val today = DaysOfWeek.Monday
printin(today.id)

}

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figb_HTML.gif
package com.jjh.scala.file

import scala.collection.mutable.ListBuffer
inport scala.io.Source
import java.io.FileNotFoundException

class Grades {
var marks = ListBuffer[String]()

def calculateGrades = {
loadData("input.data"
if (marks.length > 0) println(“Marks:")
for (i <- 0 until marks.size) {
println("\t " + marks(i)

}

def loadData(filename: String) = {
var source: Option[Source] = None
try {
println("starting to read data")
source = Some(Source. fronFile(filenane))
source.get.getLines. foreach {
e => marks += e

} catch {
case ex: FileNotFoundException => println(
s"Whoops we have a problem: ${ex.getMessage()}")
} finally {
println("Finished Reading Data")
source match {
case Some(x) => source.get.close()
case None => println("Problem with data source")

}
Y
}

object GradesTest extends App {
val grades = new Grades ()
grades . calculateGrades

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figb_HTML.gif
object Processor {
val apply = (n: Int, f: Int => Int) => (n)
}

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figg_HTML.gif
println("The name in position 1 is " + myArrav(0)):;

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figr_HTML.gif
object TestPolymorphism extends App {
var p: Person = new Graduate("Bill", 21, "English")
printin(
printin(*
p.prettyPrint
printin(”
p = new Employee("Adam'
printir(p)
printin(”
poprettyPrint
printin(”

-
32, "MyCo")

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fig4_HTML.gif
Agplication
Program

Naming Service

DataSource

4O comnectan

Connection

2 rgaters DtaSoura objct

DataSource Setup.
Program

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figm_HTML.gif
import scala.util.Try
object TryWithRecoverTest extends App {
val i = Try (“John".toInt) recover {
case e: NumberFormatException => 0

println(i)

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figg_HTML.gif
class Base(val name: String, var age: Int) {
def max(x: Int, y: Int): Int = if (x >) x else y
val working = false
override def toString() = s"Sname is Sage”

}

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figl_HTML.gif
amport scala.collection.mutable.Map

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figg_HTML.gif
<dependency>
<groupld>junit</groupld>
<artifactid>junit</artitactld>
<version>4.12</version>
<scopestest</scope>

</dependency>

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figo_HTML.gif
// Also an option to start from the right
// and process towards the start
val alternativeSum = numbers.foldRight (0)
{(total, element) => total + element }
println("Alternative Sum of List " + alternativeSum)

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figh_HTML.gif
object MapExampleApp extends App {

// Alter one entry in the nap
val ml = Map("a" -> 10, > 20)
pr1ntln(s"m1 sm1"

)(f => f |+| some(5))

// Find the interaction between two maps
val m3 = Map("b" -> 250, "c" -> 300)
println(s"m3: $m3")

val m4 = ml.intersectWith(m3)((mlv, m3v)
println(s"ml.intersectWith(m3) ((mlv,m3v)

m3v)

m3v):

$m4™)

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figo_HTML.gif
connection.rollback()

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figh_HTML.gif
mysql> select =
| id | name |
| 1] 3John |
| 2| Denise |
| 3| Phoeve |
| 4] Adam |
P —

.01 sec)

OEBPS/images/323629_2_En_14_Chapter/323629_2_En_14_Figd_HTML.gif
Run " SingletonTest
p /uibrary/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/(
1

2
|

S Process finished with exit code @

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figp_HTML.gif
class Calculator {

def max(x: Int, y: Int): Int = {
if (x>y) xelsey

}

]

object CalculatorApp extends App {
val ¢ = new Calculator()
val func: (Int, Int) => Int = c.max
printin(func(4, 3))

}

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figo_HTML.gif
AnyRef

Any

trait Model

trait Printer extends Any

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Fig3_HTML.gif
[~

[T

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figl_HTML.gif
clLass Person(val name: S5tring, var age: Int)

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figu_HTML.gif
printin(company name)
company print()
company print

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figc_HTML.gif
object IntOperationsApp extends App {
val res1 = (new IntOperations(5)).square
printin(res1)

}

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figh_HTML.gif
object ListProcApp extends App {
val myList = List[String] (“One”, "Two", “Three")
myList.foreach((x: String) => {println(x)})

}

OEBPS/images/323629_2_En_4_Chapter/323629_2_En_4_Fig4_HTML.gif
4. extract(pump status)

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figh_HTML.gif
Doubling trait

Incrementing trait

Basic Processor
Instance

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figx_HTML.gif
printin(*

val g3 = users filter(_id > 100).map(_.name)
val a3 = g3.result

val f3: Future[Seq[String]) = db.run(a3)
f3.onComplete{ case s => printin(s"F3 Result: $s") }
Await.result(f3, Duration. nf)

printin("-" * 25)

val g4 = users filter(_id
val a4 = g4 resut

val f4 = db.run(ad)
f4.onComplete{ case s => printin(s"F4 Result: 5s"))
Await result(f4, Duration.Inf)

101)

printin(*-" * 25)

val q = for (u <- users) yield u
val a = gresult

val p: DatabasePublisher{User] = db.stream(a)
pforeach { s => printin(s"Element: ")}

Thread.sleep(1000)
printin(*Done")

} cateh {
case : Throwable => e.printStackTrace()
}inally {

db.close
}
}

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figd_HTML.gif

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figi_HTML.gif
package com.jjh.lights

abstract class Light

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figk_HTML.gif
class ChildActor(name: String) extends Actor {
override def prestart(): Unit
{ println(name +
override def poststop(): Unit =
{ printin(name + * poststop") }
override def preRestart(reason: Throwable,
message: Option(any]): Unit
super.preRestart (reason, message)
println(name + ' preRestart")

* prestart®) }

b

override def postRestart(reason: Throwable): Unit =
println(name + * postRestart")
super . postRestart (reason)

3

def receive = {
case "error' => throw new RuntimeException(name)
case _ => printin(name + * received msg")

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figq_HTML.gif
package com.jeh.scala.tail
object TailRecursionTest {

def main(args: Array(String]): Unit = {

bang (1)
}
def bang(x: Int): Int = {

if (x 0) throw new Exception("Bang!")

else bang(x - 1) // +1
}

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figf_HTML.gif
val myAction = Action("Click Me") {
println("I was clicked")
3

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figm_HTML.gif
©00 /b jowygeusondemo x) b view-sourcetocalrost9000 x [\ ot
© | © view-sourceocahost9000 “

<htmd ang="en>
<hoad>

<nata charsot-"utf-8">

<titlerj0uery.gotISON democ/title>

“Contont-Type® content="text/htnl; chars

hoot” hrot-"
‘modia="scroan*></1ink>
tylesheot” hrof-"/asuota/atylosheots/bookshop-style.can”
toxt/cao></1inc
<acript src-'/sssots/javasoripta/iquery-1.2.1.8"></scxipt>

<acript types"text/javascript® src-"/ssseta/Javascripte/myscript.ia"></script>
</hesds’

<acript>
<lacript>
<body>

<h2>velcome Johns Bookstore</hz>

</neals

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figw_HTML.gif
Run SAMSample
’ /Library/Java/JavaVirtualMachines/jdk1.8.8_152. jdk/
Mustang driven 100 miles
Driving is good for the sole
Drivable thing
=3
4 Process finished with exit code q

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figr_HTML.gif
Run " PersonTestl
> /Library/Java/JavaVirtualMachines/jdk1.8.8_152. jdk/
Bob is 18

Process finished with exit code @

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figj_HTML.gif
Run ' SampleApp
> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk

. [Lcom. jjh.scala.arrays.Person;@3f3afe7s
null

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figk_HTML.gif
Run " TestConnect

> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
Load the driver

Set up the connection

Success

Close the connection

Process finished with exit code @

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figc_HTML.gif
for (i <- 0 to 10) print(i)

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figa_HTML.gif
package com.jjh.transport

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figr_HTML.gif
DaysOfWeek.

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Fige_HTML.gif
class Example(val x: Int, val y : Int) {
def test = {

if (y == 0)
throw new DivideByZeroException (this)
else

println(x / y)
}

object ExampleTest extends App {
val e = new Example(5, 0)
try {
e.test
} catch {
case ex: DivideByZeroException => println("0pps")
}
}

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figl_HTML.gif
// Short hand form of the above.

// That is {n=>n+10} can be rewritten as (_+10) which means
// you do not need to declare the input param

val m2 = numbers.map(_ + 10);

println("Modified List (alternative form): " + m2)

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figb_HTML.gif
class Greeter extends Actor (
def receive = (

"hello" => println("Hello World")
> println("Hello Whoever®)

OEBPS/images/323629_2_En_4_Chapter/323629_2_En_4_Fig7_HTML.gif
SimulationClass
name: "
raceMessages()

Switches Component Waterbottle
state. state level
moveUp() s empy()
moveDown() i il
site? extract()

() cean)

Motor Pump

working? working?

e
class instance inheritance. / &4

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figo_HTML.gif
object TestToString extends App {
val pl = new Person("John", 49)
println(pl)
val p2 = new Person(“Denise”, 46)
println(p2)

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figb_HTML.gif
for (i <- (0).to(10)) {
print(i)

OEBPS/images/323629_2_En_2_Chapter/323629_2_En_2_Fig4_HTML.gif
Vehicle Vehicle Vehicle
¥ ¥ 3 I
car car car Car
¥ ¥ 3 ¥
Sports Sports Sports e
Car car car
a subclassing instance

subtyping

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figm_HTML.gif
import Frinter._
val file = new File("data.txt")
write (file) (writer => writer.printin(new Date))

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figj_HTML.gif
object users extends TableQuery(new Users()) {
val findByNarme = this.findBy(_name)
}

OEBPS/images/323629_2_En_8_Chapter/323629_2_En_8_Figd_HTML.gif
printin("Hello™);
rintin("Worl

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figb_HTML.gif
package com
package jjh
package transport
class Ship {

}

OEBPS/css/envelope.png

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figc_HTML.gif
Run " JavalnteropTest

» /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
Hello from Java

. scala. Person@4dc63996

Process finished with exit code @

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figq_HTML.gif
valql =for (u <- users) yield u
val a1 = q1.result

val f1: Future[Seq[User]] = db.run(at)
f1.onComplete{ case s => printin(s"F1 Result;
Await.result(f1, Duration./nf)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figf_HTML.gif
class Basic {
def sum(x: Int, y: Int) =x +y
]

object BasicTest extends App {
val test = new Basic
printin(test.sum(2, 3))

}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figz_HTML.gif
Run " FuncTest

» |1 /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
Hello world: 10

—, Process finished with exit code @

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig2_HTML.gif
Aqkkq TRYAKKA COCUMENTATION BL0G GETINVOLYED

EB il e iliresetive, st conurtnt & e
s
concurrent, and R

 distributed applications prebebe sl
~ more easily

Resilient by Design

ka1 ookt for buling ighy concurent (ol vt~
distributed, and resilient message-driven ; e N e 00

applications for Java and Scala

High Performance

- e

Elastic & Decentralized
ST

it iy

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figd_HTML.gif
L
(5}

+ | /Lbrary/3uve/Sevavirtuathachines; 1. 8.0_152. jok/Conteata/
4+ Johnis 21

5 process finished with exit code 0

P D
Compilation completed suc... {3 minutes ago) (3 41 LF: UTF-8: o (1 & O

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figh_HTML.gif
New Module.
Modul name:

Contentroot: IUsersShredprojcts el scalsbookiMelWord

Modu fle ocation: IUsers/Sharedrojects o scalabookPMeloWord

ModuleSOK: | roject SOK (15)

S s0x: Cscansck2 24

+ oo Setinge

oreous | (0

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Fig2_HTML.gif
i condition|

Start
do(

conditional code
|)while (condition)

—

Process

is true.

<G>

if condition is false

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figi_HTML.gif
Run " TestPerson
> /Library/Java/JavaVirtualMachines/jdk1.8.6_152. jdk.
13500.0

Process finished with exit code 0

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figp_HTML.gif
Run ' TestToString
» /Library/Java/JavaVirtualMachines/jdkl..

com. jjh.scala. person. Person@3f3afe78
com. jjh.scala. person. Person@7f63425a

0_152. jdk/

Process finished with exit code @

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figk_HTML.gif
case class Person(name: String)

object SampleApp extends App {
val pa: Array[Person] = new Array[Person](4)

pa(0) = Person("John")

pa(1) = Person("Denise")
pa(2) = Person("Phoebs
pa(3) = Person("Adam"

)

printin(pa)
printin(pa(0))
}

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Fign_HTML.gif
class Employee(n: String, a: Int, company: Siring)
extends Person(n, a) {

final def prettyPrint
printin("Employee”)
printin("\tName: " + name)
printin("\tAge: " + age)
printin("\tCompany: " + company)
}

}

Unit =

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figl_HTML.gif
val 1 =
println(i.get)

tolnt)

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figq_HTML.gif
val myArray = Arrav("Zero

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figf_HTML.gif
package controllers

import javax.inject,_
import play.api.mve,_

@Singleton
class HomeController @lnject()(cc: ControllerComponents) extends
AbstractController(cc) {

def index = Action {
Ok{views.html.index("Johns Bookstore"))

}
)

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figd_HTML.gif
i Grants for uaeratocotnast

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figa_HTML.gif
object EqualsApp extends App {

println(s"1
printin(s"1 1: 1}"
// Always returns false - compiler gives warning
println(s"l == '1': §{1 == "1"}")

// won't even compile - Type mistach

7/ printin(1 ot

1: ${1 =1
1

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figs_HTML.gif
case class Person (var name: String, wvar age:Int)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figv_HTML.gif
object Test extends App {

val p = Person2()
println(s"${p.name} is ${p.age}")
p.name ohn

p.age =
DrEen(ers p.nane) is {p.age}")
v

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figv_HTML.gif
object TestDbDelete extends App {
val url = "jdbc:mysql://localhost:3306/employees?” +
“user=user&password=user123"
var conn: Option[Connection] = None
try{
printin("Load the driver”)
classOflcom.mysal jdbe.Driver]

printin(“Set up the connection”)
conn = Option(DriverManager.getConnection(url))

printin("Obtain a statement")
val statement = conn.get.createStatement()

printin("Execute update")
val rs = statement.executeUpdate(

"DELETE FROM employee WHERE id='
printin(rs)

}eateh {
case ex: Exceplion => ex printStackTrace()
}finally {
conn match {
case Some(c) => c.close

}

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figa_HTML.gif
object CollectionsApp extends App {

// List creation options

val myListo: List[String]

List[String] ("One”, "Two"

val myListl = List[String] (*One",

val myList2 = List("One", "Two", "Three")
}

“Three")
hree")

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Fig4_HTML.gif
John

A

i

Hoon,

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figv_HTML.gif
object SAMSample extends App {
val d1: Drivable = (m: Int) => printin(s"Mustang driven Sm miles
\n\ts{d1.message)")
d.drive(100)
printin(d1.getDetails())
}

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figp_HTML.gif
trait Equals extends Any { ... }

trait Ordered extends Equals{

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figl_HTML.gif
® ©® /b jquerygetssoN demo x|
€ > C @ localhost:9000 +4

elcome Johns Bookstore

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figk_HTML.gif
object Util {
class RandomsString(value: String) {
val size = value.length
def random(n: Int): String = {
import scala.util Random
(1to n).map(x => value(Random.nextint.abs % size)).mkString

}

implicit final def RandomString(value: String):
RandomString = new RandomString(value)

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figq_HTML.gif
import days.DaysOfWeek

object SampleApp extends App {
val today = DaysOfWeek.Monday
printin(today)
printin(today < DaysOfWeek.Friday)
}

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figf_HTML.gif
import scala.io.Source
import java.io.IOException
import java.io.FileNotFoundException

object TestAssignl extends App (
val content =
try (
Source. fromFile ("test.txt")
.getLines.mkString ("\r

} catch {

case ex: FileNotFoundException => "No file"
case ex: IOException => "General 10 issue"

}
println(content)

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figg_HTML.gif
object ListExampleApp extends App {

// get the tail as an option
val listl = List(10, 20, 30)
println(listl.tailoption)

//intersperse the list with additional elements
val list2 = listl.intersperse(1)
println(list2)

// from list to List[List] of all possibilities
val list3 = List('a’, 'b', 'c').powerset
println(list3)

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Fign_HTML.gif
val setup = DBIO.seq(

// Create the USERS table
users.schema.create,

// Insert some users

users += User(101, "John"),
users += User(49, "Denise"
users += User(150, "Phoebe")

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figi_HTML.gif
® O) play-scala-starter-example /Users/Shared/projects/intellj-17/playiplay-scala-starter-example] - ../applcontr...

T e e e TSI
S MRS & e
T .
e :
. - e
o " ™
st |4 e et s o it c bt s
[oreerdl [B
¢, HomeController i &Mm
e £l L ——
s o o
el T
> Wcont 16 = will be colled when the application receives o GET" request
smsetsosa | L
L D e . .
e B AT v e etntn r
= =
S z o
ey R
iz —
= i
U st st 050 R
(Yoo
o

T

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Figd_HTML.gif
package com.jjh.scala.swing

import scala.swing Button

port scala.swing. MainFrame

port scala.swing.SimpleSwingApplication
import scala.swing. BorderPanel

class WelcomeFrame extends MainFrame {
title = "Hello World!"

new Button { text
new Button { text
new Button { text
new Button { text
val b5 = new Button { text =
val panel = new BorderPanel {
add(b1, BorderPanel Position. Center)
add(b2, BorderPanel.Position. North)
add(b3, BorderPanel. Position. South)
add(b4, BorderPanel.Position. East)
add(b5, BorderPanel. Position. West)
}

contents = panel
]
object SwingHelloWoridd extends SimpleSwingApplication |

def top = new WelcomeFrame()

}

Centre" }

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Fign_HTML.gif
package com.jjh.scala.variance
import com.jjh.scala.collection.MyQueue
class Person
class Employee extends Person
object TestVariance extends App {

var s1 = new MyQueue[Person] ()

val s2 = new MyQueue[Employee] ()
s1 =s2

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figi_HTML.gif
import akka.actor.Props
import akka.actor.ActorSystem
import akka.actor.Actor

import com.typesafe.config.ConfigFactory
import akka.actor.ActorLogging

sealed abstract class Message
case class StartTicking (tocker: ActorRef)

extends Message
case object TickMessage extends Message
case object TockMessage extends Message

object Actoripp extends App {

val system = ActorSystem('mysystem",
configFactory.load)
println(system.settings.config)

val howLong =
system.settings.config.getInt (*TickTock.howlong")

val config = system.settings.config
println(s"Running for $howLong seconds")
val ticker = system.actorof (
Props (classof [TickActor],
config.getString("TickTock.Ticker.message")),
“Ticker")
val tocker = system.actorOf (

Props (classof [TockActor]
config.getString(*TickTock.Tocker.message")),

ocker”)
ticker ! StartTicking(tocker)

Thread.sleep(1000 * howLong)
system. terminate ()

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figi_HTML.gif
val plusOne = test.sum(1)_
printin(plusOne(10))

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figx_HTML.gif
object DirectionApp extends App {
val d = Direction.East
printin(d)
printin(d.id)

}

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figi_HTML.gif
W ves Window Help.
Tasks & Contexts 5

Save File as Template..
‘Generate JavaDo...
Save Project as Template...
Manage Project Templates.

Create Command-iine Launcher...
Jshell Console... |
@ Groovy Console...

Console 0%0.

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figd_HTML.gif
class Derived(n: String, a: Int) extends Base(n, a) {
override def max(x: Int, y: Int): Int =
if (x> y) y else x
override val working = true

}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figs_HTML.gif
package util
import banking. Account
object PrintAccount {

def printAccount(ace: Account) {
printinace.name + " * + acc.number)

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figs_HTML.gif
class Service {
def printer: Unit = printin("Service Hello")
}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figw_HTML.gif
package com.jjh.func
object MyScalaTest {
def setFunc(func: (Int, Int, Int) => String) {
printin(func(10, 1, 2))
}

}

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figd_HTML.gif

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figj_HTML.gif
YiStest

» @ settings

¥ (@ sala

B personscala
Y Etest
¥ (@ sala
Y@ src
v & com
v &in

¥ (@ sala

B PersonTest.scala

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figr_HTML.gif
Run ", CompanyTestapp.

> /Library/3ava/JavaVirtualMachines,/jdk..
Starting ConpanyTestApp

Company nase John Sys at Coldharbour Street, London

Done ConpanyTestipp.

Process finished with exit code @

)_152. dk/ Contents /Hone/bin/java ...

OEBPS/images/323629_2_En_8_Chapter/323629_2_En_8_Figa_HTML.gif
object Hello {
def main(args: Amay[String]): Unit = {
printin("Hello Scala”)
}
}

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figa_HTML.gif
object SetTest extends App {

val s = Set[String]("John", “Denise", "Phoebe",
“Adam")
println(s)

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Fige_HTML.gif
object Test extends App {
val p = new BasicProcessor(0) with Doubling
p.update(5)
printin(p)

}

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig1_HTML.gif

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Fige_HTML.gif

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figr_HTML.gif
port java.sql.DriverManager
import java.sal.Connection

object TestDbQuery extends App {
// Change to Your Database Config
val urf = "jdbe:mysql:/llocalhost:3306/employees?" +
“user=user&password=user123"

var conn: Option(Connection] = None

try {
printin("Load the driver”)
classOficom.mysql.jdbc.Driver]

printin(“Set up the connection”)
conn = Option(DriverManager.getConnection(urf))

printin("Obtain a statement")
val statement = conn.get.createStatement()

printin(“Execute Query")
valrs =
statement.executeQuery("SELECT * FROM employee'

// lterate Over ResultSet
printin(*Result;
while (rs.next)

printin(s"5{rs.getString("i

): ${rs.getString(“name")}")

}eateh {
case ex: Exception => ex.printStackTrace()
}finally conn match {
case Some(c) => c.close

OEBPS/images/323629_2_En_2_Chapter/323629_2_En_2_Fig1_HTML.gif
|Superciass

Class

Subclass1

[Subclass2

SubctassN

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figaa_HTML.gif
package com jjh.banking

case class Account(name: String, number: Siring) {
private def print = printin(name)
}

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figf_HTML.gif
object TraitTest extends App {
Course.printValue()
val ¢ = Course
c.printValue()
val m: Model = Course
printin(m.value)

}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figh_HTML.gif
val b5 = new _root_.engine.Petrol1

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figc_HTML.gif

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig3_HTML.gif
(ke |

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figaa_HTML.gif
package com.jeh.scala.interop
object SetTestl extends App (

val jset: java.util.Set(String) = new
java.util.HashSet(String] ()

jSet.add("adam")
jset.add("Phoebe")

val sset: scala.collection.mutable.Set(String] = jSet

OEBPS/images/323629_2_En_4_Chapter/323629_2_En_4_Fig3_HTML.gif

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Fige_HTML.gif
object TestMethods extends App {
BasicMethodTest.greet ()
BasicMethodTest.greet

BasicMethodTest.greet2()
BasicMethodTest.greet2

BasicMethodTest.greet3()
BasicMethodTest . greet3

BasicMethodTest.greet4()
BasicMethodTest.greetd

// BasicMethodTest.greet5() - invalid
BasicMethodTest.greet5

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Fig2_HTML.gif
© 0@ /[y scaa-book documentaton - x [\
€ C O fleyusersiientemplcom/itscalajperson/Person.hum *

scala-book documentation
‘om i scala person Packagee

Class Person extends AnyRef g
seala

Aperson who uses our application person

Unear supertypes Sl

Instance Constructors

new person(nane: String, sge: Int)
create.a new person with a name and age.
Value Members.

var age: Tnt

vl name: String

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig6_HTML.gif
New Maven Project

New Mave project
Sectsn e
ot |
s Vorion
Sptu-modvac it s
i mescas sy frened
S ek sows o
St mosca gy Ravse
S csatass o maen et s v st o=
e oo moven e Fmen oo s jros)
Py e e 20
Smsitoos s e sl i2
vy o g weee 102
A st — =
L ——
¥ Showtnetverion ot A oy e smprscheges | A e |

@

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figu_HTML.gif
object PersonTestl extends App {
ew Person("John", 21)
4{p1.name} is ${pl.age}")

OEBPS/images/323629_2_En_2_Chapter/323629_2_En_2_Figa_HTML.gif
Class to instance relationships

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figw_HTML.gif
object Test extends App {
val adpator = new Service() with Adaptor
val client = new Client(adpator)
client.doWork

}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figm_HTML.gif
Routes
This file defines all application routes (Higher priority routes first)

i

An example controller showing a sample home page

GET / controllers. HomeController.index

An example controller showing how to use dependency injection
GET /count controllers.CountController.count

An example controller showing how to write asynchronous # code
GET /message ~controllers.AsyncController.message

Map static resources from the /public folder to the

lassets URL path

GET /assets/*file controllers. Assets.versioned(
path="/public". file: Asset)

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figp_HTML.gif
*This template takes a single argument, a String
* containing a message to display.

@(message: String)

<html>

<head>

<title>Sample View</title>
</head>

<body>
<h2>Welcome</h2>

@message

</body>
</html>

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fige_HTML.gif
class Printer extends Actor ({
def receive = (

for (i <= 1 to 500) print("A")

for (i <- L to 500) print("B")

for (i <- 1 to 500) print("C")
for (i <- 1 prine("_")

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig8_HTML.gif
Run [Seala Consale. e L
/Library/Java/JavaVirtualWachines, ik, 8.0_152. jdk/Contents Home/bin/jova ...

Welcone <o Scala 2.12.4 (Java HotSpo(TH) 64-Bi% Server W, Java 1.8.0.152).

Type in expressions for evaluation. Or try thelp.

scato>

Ba&D=mo

T i s orevo-to-dobe (a mide) @ o1 12 uTE:

M8 Q

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figr_HTML.gif
class Person(val name: S5tring)
class Employee(_name: String) extends Person(_name)

object FlexiQueueTest extends App {

val q1 = FlexiQueue[Employee] (

new Employee("John"),

List(new Employee(“Denise"),

new Employee("Phoebe")))

println(ql)
val 2 = ql.enqueue(new Person("Adan"))
println(q2)

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figj_HTML.gif
.productlterator.foreach{ printin }

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figg_HTML.gif
val tuple
printintuple. _1)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figm_HTML.gif

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Fig1_HTML.gif
Parent Actor

Child Actor 1

ChidActor2 [~

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig5_HTML.gif
Build Module ‘Helloworld"
Recompile 'Hello.scala' 03279

3

Debug 'Hello' ~0D

¥ Run *Hello' with Coverage

OEBPS/images/323629_2_En_25_Chapter/323629_2_En_25_Figb_HTML.gif
<<Trait>>

Taversable
<>
Worable
<>
Sot
<o i
SortedSot Biser
<> <o
sea Map
s P i
IndexedSeq LinearSeq Soneavap

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figh_HTML.gif
package com.jjh.akka
import akka.actor.Props
import akka.actor.Actorsystem
import akka.actor.Actor

class LongProcessor extends Actor {
def receive = {

< String => {
for (i <- 1 to 5) print(s)
println

Thread. sleep(
for (i <- 1 to 5
println

)

2}
print(s)

3}
}

object AkkaConfigTest extends App {
val props =
Props [LongProcessor]
.withDispatcher ("akka.actor.jeh-pool-dispatcher")
val system = ActorSystem('mysystem')
val EEE6¥] = system.actorof (props, "actorl®)
val actor2 = system.actorof (props, "actor2")
val actor3 = system.actorof (props, "actor3")
val actord = system.actorof (props, "actord")
println(*Sending messages")

actori ! A"
actor2 ! "B"
actor3 ! "c*
actora ! "D*

printin("Messages sent")
system.terminate

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figo_HTML.gif
amport com.jjh.lights.

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figl_HTML.gif
s
e, Cobourodtight
< uont
& WhieLight

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figc_HTML.gif
reactions += {
case ButtonClicked('bl') => println(“Hello World")
case ButtonClicked('b2') => println("North")
case ButtonClicked('b3') => println("South")
case ButtonClicked('bd‘) => println("East")
case ButtonClicked('b5') => println(iest")

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figb_HTML.gif
trait Model {
var value: Any

def printValue() {
printin(value)

def printer(): Unit
}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figp_HTML.gif
package com.jjh.traits
trait Model (

var title

~cs123-10"

def info(

String) :String

def print = printin("Hello World")

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figt_HTML.gif
object MatchTest extends App {
val arg = "John
val relationship =
arg match {

// Default / wildcard
case _ => "WhoAreYou?"

}
printin(relationship)
}

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fig1_HTML.gif
Scala Program

Sybase

obsc

mysaL

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Fig2_HTML.gif
AnyRef

extends

<<Trait>>
Mutable

extends

<<Trait>>
Service

extends

<<Trait>>
RESTFul

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figk_HTML.gif
object OtherEitherApp extends App {
7/ An alternative to Scala's Either
val r1 = \/.fromTryCatchNonFatal{ "1234".toInt }
println(rl)
val r2 = \/.fromTryCatchNonFatal{ "John".toInt }
println(r2)

OEBPS/images/323629_2_En_14_Chapter/323629_2_En_14_Figg_HTML.gif
Run 7 SessionTest
> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/t
Session[1]
Session (2]
Session([42]

Process finished with exit code @

@

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig5_HTML.gif
msg

inbox

Actor

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fige_HTML.gif
Crscle 00 owwea -
o soTCramgeacion .

< Seh mpars gz .

- s NP

o sestom

. suokunon

Tty Seing...| ansg g

Browse Reposiories

seal
(-]

o ST g s OBk e g T

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figb_HTML.gif

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Fig1_HTML.gif
L] Edit View Navigate Code Analyze Refactor Build Run T

Project..
Project from Existing Sources...
Project from Version Control

= Open...
Open Recent >
Close Project

(@ Project Structure... ¥;
S 23

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figu_HTML.gif
val q3 = users.filter(_.id > 100).map(_.name)
val a3 = q3.result

val f3: Future[Seq[String]] = db.run(a3)
f3.onComplete{ case s => printin(s"F3 Result: $s"))
Await.result(f3, Duration./nf)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figb_HTML.gif
object MathUtil {
def max(x: Int, y: Int): Int = {
if (x> y)
return x
else
return y

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Chapter_TeX_Equb.png
total = operation (2, 5)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Chapter_TeX_Equa.png
operation = (X,y) => X * y

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figa_HTML.gif
LS
vt
s Partrm i
& Grade (kotin 051
@ e

@ 0wy
0 ceton

E Koo Mo it S 50K

oty prect

7 Cmen g [t

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figm_HTML.gif
class Counter {
var MaxValue = 10
def count() = {
vari=0
printin("--— For
for (i <- 0 to MaxValue) {

printin(" ")
PN eeeerensmmeerennennens®)

object Counter extends App {
val ¢ = new Counter()
c.count

}

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figc_HTML.gif

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figg_HTML.gif
package com.jjh.scala.db

import slick jdbc. MySQLProfile.a

case class User(id: Int, name: String)

// A Users table with columns: id, name
class Users(tag: Tag) extends Table[User](tag, "USERS") {

// This is the primary key column:
def id: Rep[Int] = column{int]("ID", O.PrimaryKey)
def name: Rep[String] = column{String]("NAME")

1/ Every table needs a * projection with the same type as the table’s type
parameter

//the * projection (e.g. select * ...) auto-transforms the tupled

// column values to / from a User

def * = (id, name) <> (User.tupled, User.unapply)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Chapter_TeX_Equf.png
double (5)
double (151)

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figg_HTML.gif
Any

Class]

Class 2

Class 3

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figp_HTML.gif
fileWriter {
printin new Date

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Chapter_TeX_Eque.png
double = operation (2,)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Chapter_TeX_Equd.png
operation (2, 5)
operation (2, 10)
operation (2, 6)
operation (2, 151)

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figl_HTML.gif
package com.jjh.scala.financial

mport scala.math.Ordered

class Balance(val amount: Double)
extends Ordered[Balance] {

def compare(that: Balance): Int = (this.amount - that.amount).tolnt

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Chapter_TeX_Equc.png
total = operation (10, 5)

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figg_HTML.gif
implicit val v=.

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figt_HTML.gif
Run " SAMSample
> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk
ustang driven 100 miles
M driven 100 mile

Process finished with exit code @

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figu_HTML.gif
object Parselnput {
def main(args: Array[String]): Unit = {
printin(args.length)
require(args length > 0)
for (i <- args) {
printin(*Argument is * + i)

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Fig1_HTML.gif
<<Trit>

e
Ly

P

Sotocser

i

Treset

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figz_HTML.gif
object SampleApp extends App {
val r2 = Processor.mult(x=2, y=3)
println(r2)

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figh_HTML.gif
import scala.collection.mutable.ListBuffer

object ListBufferTest extends App
val data = ListBuffer(Int] ()
data += 1
println(data)
data
data
println(data)
println(data(2))
val array = data.tolist
println(array)

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figb_HTML.gif
#oroutes [Bookscala €, BookstoreCortrolirscala

¥ foutes
2 This file defines oLl application routes (Higher priority routes first)

S £ exomple controller showing a sasple hose page

6w 7 controllers.HoseController. index

Ca /owust controlters.BookstoreController. List

oG Joksiisee controllers.BookstoreController. get(isbn: 1nt)

1 2 4 exomple controller showing how to use dependency injection

Boe et controlters. CountController. count
An example controller showing how 10 rite asynchronous code
G nessane controlters. AsyncController. ressage

Map static resources fron the /public folder <o the /assets URL path
s loerT Jassersputile controllers.Assets.versioned(poth="/public", file: Asset)

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figf_HTML.gif
package com.

object Test {
val name = "MyName"
def print = printin(s"Print Sname")
val func = () => printin("Printer function $name")

}

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Figg_HTML.gif
package com.jeh.scala.swing
import java.awt.Color

import scala.swing.FlowPanel
port scala.swing. MainFrame
port scala.swing.ScrollPane

import scala.swing SimpleSwingApplication
import scala.swing.Table

import javax.swing.border.LineBorder
class TableFrame extends MainFrame {

title = "Hello World!"
val headers = Array("Name", "County”, "Town")
val rowDat;
Armay(
Array[Any)("John", "Glamorgan®, "Cardiff"),
Array{Any)("Bob", "BANES", "Bath"),
ArraylAny)("Adam”, "S.Glos", "Bristol"),
Array{Any)("Phoebe", "Haverfordwest",
“Pembrokshire"))

val table = new Table(rowData, headers) {
border = new LineBorder(Color. BLACK)
}
contents = new FlowPanel {
contents += new ScrollPane(table)
}
]

object TableSample extends SimpleSwingApplication {
def top = new TableFrame()
}

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figp_HTML.gif
package com.jjh.scala.test
import com jjhtraits. {Answer, No, Yes)

object AnswerTestApp extends App {
var a: Answer = Yes
printin(a)
a=No
printin(a)
}

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figa_HTML.gif
object VectorTest extends App |{
val vl = Vector(3, 2, 1)
println(vl)
println(vi(0))
println(vl.length)
val v2 = 4 +: vl
println(v2)

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figf_HTML.gif
v [controllers
AsyncControlerscala
CountControlerscala
HomeController:scala

(2 fiters
Examplefilter.scala

Module.scala

110 services
‘ApplicationTimer.scala
Counterscala

v [views
* index.scalahtm
* mainscala htmi
* welcome.scala.ntm
build sbt

v [conf

application.conf

fogoackxmi

routes
LICENSE

» 1 project

» 1 public
README.md
sot

» [sordist

@ sotoat
> [test

<

<

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figv_HTML.gif
import java.sql.{Connection, DriverManager, ResultSet}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figf_HTML.gif
for (f <- files if f.getName.endsWith(".txt"))
printin(f)

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Fign_HTML.gif
val p3 = new Person()

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figc_HTML.gif
val mult = (x: Int) => {x * x}
val times = mult

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figk_HTML.gif
object QueueTest extends App {
val g =
new Queue[String](“John",
List("Denise", "Phoebe")
println("q =
println("q.peek = " + g.peek
vel 2 = g.dequeve
println("q2
printin("q

+ q2)
+q)

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figh_HTML.gif
® © & scala-book [Users/Shared/projects/int

o) Cx 1) o) €, Companyscaa) #

& it R
el 17 [sers Sharecrojectsfint

asamplem
e
aintel-A7mt
samplem

- 1t Extemalirrios

o

Xopenicoson = b W B

6 comparyscis

package con.jih.info
ctass Company €
»

17) - ./samplefsrc/com/jihfinfolCo...

XY

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figl_HTML.gif
import akka.actor.ActorDSL.Act
import akka.actor.ActorDSL.actor
import akka.actor.ActorSystem

object LifecycleTest2 extends App {
implicit val system = ActorSystem("demo”)

val a = actor (new Act {
become {
case "hello" => println("hello World")
case "stop" => context.stop(self)
case _ => println("Hello Whoever")
)
whenStarting { println("starting”) }
whenStopping { println("stopping”) }
whenFailing {case m@(cause, msg) =>println(*Error®)}
whenRestarted { cause =» println("whenRestarted") }

]

! *hello"
! "Goodbye"
! "stop"

[IATaT

system terminate

OEBPS/images/323629_2_En_16_Chapter/323629_2_En_16_Figc_HTML.gif
def printDate2 = printin(date getOrElse "No Date’

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figf_HTML.gif
Run " HigherOrderFunctionsApp.
< /Library/3ava/JavaVirtualachines/ jdkl. 8.
1

152.jdk

20
100

Process finished with exit code 0

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figd_HTML.gif
object BooleanApp extends App {

// Ternery operator for Scala
println(true ? "This is true"
printin(false ? "This is true

This is false")
| “This is false")

// Returns the given argument if this is “true’

// otherwise, the zero element for the type of the given
// argument

println(false ?? List(1, 2, 3))

printin(true ?? List(1, 2, 3))

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Fign_HTML.gif
)

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figi_HTML.gif
"show'"> Show </div>

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figv_HTML.gif
printin(capitalCitys.get ("UK"))
Returns
Some (London)
Where as
println(capitalCitys ("UK"))
Returns

TLondon

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figa_HTML.gif
(OO e o R (]

PRI e e—— alv0

e s s o 1 g

MySQL wsocon somions socwenmion sessczone

> i iy Download Connector/)
RN

— o conenaeomospmanats
s punoli i
[PR—— i s e
st e —

R pesety

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figs_HTML.gif
class Person2 {

private var _name
private var _age = ©

// Getters
def age = _age
def name = _name

// Setters
def age =(value: Int): Unit = _age = value
def name_=(value: String): Unit = _name = value

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Fig2_HTML.gif
€ C © localnost9000/book/2 v

{"isbn":2,"title":"Java", "author":"J. Jones","price":12.99)

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figs_HTML.gif
object SAMSample extends App {
val d: Drivable = (m: Int) => printin(s"Mustang driven Sm miles")
d1.drive(100)

}

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Fign_HTML.gif
class Transport

class Test {
type T = String
type F = Int => String
type X 1/ abstract type

type Y <: Transport // Upper Bounds
type 7 >: Transport // Lower Bounds
}

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Fig2_HTML.gif
Handiler processes exception
div-by-zero
3

Checks Handler
outof memory

Checks Handler
end of file
¥

Exception Raised
div-by-zero

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figk_HTML.gif
class Volunteer (n: String ,
a:lnt,
company: String)
extends Person(n, a) {

final def prettyPrint(): Unit =
printin("Volunteer”)
printin("\tName: " + name)
printin("\tAge: " + age)
printin("\tCompany: " + company)

}
1}

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figi_HTML.gif
val fileCatch
catching (classOf [FileNotFoundException],
classOf [TOException])
.withApply{e => "File Problem"}

OEBPS/images/323629_2_En_14_Chapter/323629_2_En_14_Figb_HTML.gif
object ConnectionPool {
var count = 0;

def next = {count = count + 1)
}

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figq_HTML.gif
object Test extends App {

printin(Red)
printin(c1 equals ¢2)
printin(c1 equals ¢3)

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figz_HTML.gif
printin("Run db setup™)
val = db.un(setup)

f.onComplete{ case s => printin(s"Result: 55"))
Await resultf, Duration. nf)

printin("Database setup complete”)

}catch {

case e: Throwable => e.printStackTrace()
}inally {

db.close

}

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figq_HTML.gif
import java.sql.DriverManager
import java.sql.Connection

object TestDbnsert extends App {

var conn: Option[Connection] = None

// Change to Your Database Config

val uri = "jdbe:mysql://localhost:3306/employees?”
"user=user&password=user123

try {
printin(*Load the driver”)
classOffcom.mysqljdbe. Driver]

printin("Set up the connect
conn = Option(DriverManager.getConnection(url))

printin(*database insert")
val prep =
conn.get prepareStatement(
“INSERT INTO employee (id, name) VALUES (2, ?) "

prep.executeUpdate
printin(*Success")

}eateh {

case ex: Exception => ex.printStackTrace()
Yinally {

printin(*Close the connection")

conn match {

case Some(c) => c.close

}

}

}

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figq_HTML.gif
val dad = new Person("John", 43)

val mum = new Person("Denise", 46)
var adam = new Person ("Adam", 14)
var phoebe = new Person("Phoebe", 16)

val family = List[Person] (dad, mum, adam, phoebe)

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figb_HTML.gif
val { = new Tuple2(1, “John"™)

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figh_HTML.gif
for (f <- files if f.getName.startsWith("Help'
f.getName.endsWith(".txt"))
printin(f)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figh_HTML.gif
package com.jjh.scala.curry

class CurryTest {
def sum(x: Int)(y: Int) = x +
}

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figk_HTML.gif
def foreach(f: (A) => Unit): Unit

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figu_HTML.gif
def age_=(value: Int): Unit = {
“age = value
}

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figk_HTML.gif
import scala.util.Try

object TestTry extends App {
val i = Try ("123".toInt
println(i)
val j = Try (“John".toInt)
println(j)

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figg_HTML.gif
@(message: String)

<html lang="en">

<head>

<meta charset="utf-8">

<title>jQuery.getJSON demos/titie>

<meta http-equiv="Content-Type" content="texthtml; charset=UTF-8">

<link rel="stylesheet" href="@routes Assets.versioned("stylesheets/main.css")
type="text/css" media="screen"><link>

<link rel="stylesheet" href="@routes.Assets.versioned("stylesheets/bookshop-
style.css")"

type="text/css"></link>

<script src="@routes Assets.versioned(‘javascripts/jquery-3.2.1.js")"></script>

<script type="textjavascript"
sro="@routes.Assets.versioned(‘javascripts/myscript js")"></script>
</head>

<body>
<h2>Welcome @message</h2>

<div class="button" id="show"> Show </div>
<div id="books"></div>

</body>
</htmi>

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Fig2_HTML.gif
stat{-john-h:bin johns ja
Conpiled fron “Model. scals
public interfoce con.jjh.traits.Hodeld

public abstract java.lang.String infoljava. Lo

staff-john-h:bin johns ||

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figd_HTML.gif
package com.jjh.scala.collection
inport scala.collection.nutable.ListBuffer
class MyQueue[T] {

private val content: ListBuffer([T] = new
ListBuffer(T]

def head: T = content.head

def size = content.size

def enqueue(x: T) = content
def dequeue: T = {
content. remove(0)

ride def toString =
+ content.mkString("|) +

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figd_HTML.gif
mydb ={

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"
properties = {

databaseName = "mydb"

user = "myuser”
password = "secret"

numThreads = 10
}

OEBPS/images/323629_2_En_8_Chapter/323629_2_En_8_Figb_HTML.gif
class Hello extends App {
printin("Hello World")
}

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figd_HTML.gif
package cor

jeh.scala.swing

import scala.swing.Bution
import scala.swing MainFrame

import scala. swing.SimpleSwingApplication
import scala.swing.event ButtonClicked

class SimpleFrame extends MainFrame {
title = "Hello World!"
val button = new Button {
text = "Click Me!"

contents = button
listenTo(button)
reactions += {
case ButtonClicked(button) =>
printin("Hello World")
b
object SwingSample1 extends SimpleSwingApplication {

def top = new SimpleFrame()

}

OEBPS/images/323629_2_En_5_Chapter/323629_2_En_5_Chapter_TeX_Equa.png
int sizeOfContainer = container.length
for (int | = 1 to sizeOfContainer) do
element = container.get (i)
print (element)
enddo

OEBPS/images/323629_2_En_5_Chapter/323629_2_En_5_Chapter_TeX_Equb.png
container.foreach(print)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Fign_HTML.gif
val alias = c.increment
printin(alias(4))

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Fig2_HTML.gif
Re-run Tests Compile

ix Compilation
Errors

RunTest, Run Test,
watch it pass watch it fail

A wiocose o

Refactor Code

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figm_HTML.gif
Run " PersonTest!

> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/
John is @

=, Process finished with exit code 0
=

=

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figa_HTML.gif
package com.jeh.scala.convert
object TestStringConversion extends App |
val s

val i:Int
println(i)

3gm
tolnt

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Fig5_HTML.gif
Run ' DirectionApp
> /Library/Java/JavavirtualMachines/jdk1.8.8_152. jdk
East
%

£ Process finished with exit code @

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figl_HTML.gif
abstract class Person(val name: String, var age: Int) {
1/ Override inherited toString
override def toString = s"Sname, Sage";

/#/Define an abstract method

def prettyPrint

def birthday = age = age + 1
}

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figl_HTML.gif
val fa = Array(Array("John", "Denise”, "Phoebe”, "Adam”),

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig5_HTML.gif
project/
Pomml - Dofin
axe
matn/
Sava/ - Contans all fava code that will go in your finel artifact.
See naven-compiler-plugini? for details
scala/ - Contains all scala codo that Will go in your final areifact.
Seo maven-scala-plugin for details
esources/ - Contains all static files that should be aveilsble on the classpath
in the final areifsct. See mave
webapp/ - Contains all content for a web application (Jops
See saven-waz-plugin: for details
Bite/ - Contains all apt or xdoc files used to create a project website.
See maven-site-plugin” for details

the project

toat/
Java/ - Contatns all Java code used for testin
Se6 maven-cospiler-plugin for dotails
scala/ - Contains all scala code used for testing.
Seo raven-scala-plugin s for dotails
esources/ - Contains all static content that should be availsble on the
Classpath during testing. See maven-resources-plugin for details

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figm_HTML.gif
package com.jjh.scala

import org.scalatest junit.JUnitRunner
import org junit.runner. RunWith
import org.scalatest.FlatSpec

import org.scalatest BeforeAndAfter
import org junit Assert._

@RunWith (classOffJUnitRunner])
class SuiteTest extends FlatSpec with BeforeAndAfter {

before {
printin(*Before behaviour")
}

after {
printin(* After behaviour")
}

“A list treated as a pre 2.12 Stack" must "pop off value added" in {
var stack = Listempty{int]

stack = stack.+:(52)

assertEquals(1, stack size)

}

“A list treated as a pre 2.12 Stack" should "return values in reverse
order” in {

var stack = Listempty{int]

stack = stack.+:(52)

stack = stack.+:(21)

val x = stack.head

assertEquals(21, X)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figf_HTML.gif
object MethodTest {
def main(args: Array[String]): Unit = {
println(max(2, 3))

def max(x: Int, y: Int): Int
if (x > y) x else y

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figb_HTML.gif
ece Project Structure.
@]

Project set

1 Classes.
11 users/Sharedprojectsfintel-17fbrares/mysal-connector-i

Project
Mdues
[bewies |
Focets
Aracts

atormsa
o
) + % -

? e | | ooy | EED

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figo_HTML.gif
package com.jjh.info

object CompanyTestApp extends App {
printin("Starting CompanyTestApp")
val company = new Company()
company.print
printin(*Done CompanyTestApp")

}

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figb_HTML.gif
// The list concatenation method that creates a new list
// based on existing lists

val longList = myListd ++ myListl

println(longList)

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figc_HTML.gif
package test {
package demo |

}

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figp_HTML.gif
object Weekend extends Enumeration {
val Saturday, Sunday = Value
}

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figb_HTML.gif
package com.jjh.scala.processor

rait AbstractProcessor {
def update(x: Int)
]

class BasicProcessor(var amount: Int)
extends AbstractProcessor {
def update(x: Int) = amount = x
override def toString = "BasicProcessor: " + amount
]

object Test extends App {
val p = new BasicProcessor(0)
p.update(5)
printin(p)

}

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figb_HTML.gif
object OrderApp extends App {

// Standard Scala ordering operators

println(s"l < 4d: ${1 < 4d}")

// printin(1 lte 4d) // won't compile type mismatch

println(s"1 7|7 1: ${1 7|7 1}")

println(s"1 7|7 2: {1 ?|? 2}

println(s"2 7|7 1: ${2 7|7 1}")

(1 7|7 2) match {
case Ordering.LT => println("Its less than")
case Ordering.EQ => println("They are Equal®)
case Ordering.GT => println("Its greater than")

}
// printin(1 ?|? 2d) // won't compile type mismatch

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figt_HTML.gif
class Client(adapter: Adaptor) {
def doWork = adapter.invoke
}

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig8_HTML.gif
SimpleGUI

(MainFrame)
/BurderPanel
;szne\\ TextField Label
b1: Bution b2: Bution ©2014: John Hunt

(Hello) (Goodbye)

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig2_HTML.gif
v I HelloWorld

€ Java Class
& Kotlin File/Class

src

fascals % Cut ®X oy
> il Externa () xy - Pt 110
Y
e Noxe | % ScratchFile o8N

B Bakaia

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figh_HTML.gif
Config config

ConfigFactory.parsestring ("something=somethingElse") ;

ActorSystem system =

ActorSystem.create ("myname"”, config):

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figm_HTML.gif
package com.jjh.companion;
public class JavaTest {

public static void main(String(] args) {
Session session = Session. session();
System.out.printin(session.id());

}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figr_HTML.gif
package banking
case class Account(name: S1ring, number: String)

class Bank {
def print(acc: Account) {
import util. PrintAccount._
printAccount(ace)

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Fige_HTML.gif
object Calculator2 {
def props = Props(classof [Calculator2])
}

class Calculator2 extends Actor (
def receive = {
case x: Int => {
println('Calculator2 -> received: " + x)
val resultl =
(1 to x).map(i => i)
.foldLeft (x) ((total, i) => total * i)
println("Calculator2 -> processing completed, * +
* returning result")
sender ! resultl 1}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figj_HTML.gif
package controllers

import javax.inject.
import play.api.mve.

* This controller creates an *Action’ to handle HTTP requests to the
* application’s home page.
Y/
@singleton
class HomeController @inject()(cc: ControllerComponents) extends
AbstractController(cc) {

~
* Create an Action to render an HTML page with a welcome message.
* The configuration in the “routes' file means that this method
* will be called when the application receives a ‘GET: request with
* a path of /.
*/
def index = Action
Ok(views.html.index("Your new application is ready."))
}

}

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Fige_HTML.gif
object Course extends Model {
var value: Any = "Hello World"

def printer(): Unit =
printin(*Hello")
}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figw_HTML.gif
object MatchTest4 {

def main(args: Array[String]): Unit = {
val name = "John"
printin(getSize(name))
val o= List(1, 2, 3)
printin(getSize(xxx)
val myMap = Map("London" -> "01
printin(getSize(myMap))
val otherMap = Map(1 -> "a", 2 > *
printin(getSize(otherMap))
val lectureMay

Map("John" -> "Scala”, "Fed" -> "PHP")

printin(getSize(lectureMap))
valinfo = (1,2, 3)
printin(getSizeinfo))

}

def getSize(x: Any) = x match {
case s: Siring => s.length()
case I: Lisi[_] => |.size
case m: Map[_,_] => m.size
case_=>-1

}

}

> 0207)

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figc_HTML.gif
Name

v

vv

[awp

» [controllers

> [fiters.

Module.scala

> [services.

> [views
buildsbt

[cont
LCENSE

" logs

- project

1 public

_ README.md
sbt

12 sbt-dist

@ sotbat

1 target

test

Date Modified.
Today at 08:53
Today at 08:46
Today at 08:46

12 Dec 2017 at 03:47
Today at 08:46
Today at 08:46

12 Dec 2017 at 03:47
Today at 08:46

12 Dec 2017 at 03:47
Today at 09:11

Today at 08:57
Today at 08:46

12 Dec 2017 at 03:47
310ct 2017 at 14:69
Today at 08:46
310ct 2017 at 14:59
Today at 09:11

Today at 08:46

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figf_HTML.gif
Method
Search

i
|
|
|

Any

AnyRef

Class 1

Class 2

Class 3

Instance

< Message

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figm_HTML.gif
object ParentChildActorTest extends App {
val props = Props(Supervisor]
val system = ActorSystem('mysystem')
val actor = system.actorof (props, "supervisor®)
actor ! "run"
Thread. sleep(100)
actor ! "error®
actor ! "run"
system terminate

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figy_HTML.gif
package com.jjh.test

import com jjh.banking printAccount
import com,jjh.banking.Account

object AccountTestApp extends App {
val acc = Account("John", "AC123")
printAccount(acc)

}

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Fige_HTML.gif
import org.scalacheck.Properties
import org.scalacheck.Prop.forall

object StringSpecification extends Properties("String”)
i
property("startswith®) = forall { (a: String, b:

string) => (a+b) .startswith(a)
)

property ("concatenate”) = forAll { (a: String, b:
string) => (a+b) .length > a.length && (a+b).length >
b.length

3

property ("substring®) = forAll { (a: String, b:

String, c: String)
a.length+b.length)

3
3

(a+btc) .substring (a.length,

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figx_HTML.gif
val newCapitalCitys = capitalCitys +("Ireland" =-> "Dublin")

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Fige_HTML.gif
Person

Fage: it
, [nameisuing
[+Person(o: Sting t in) N
[sirthday(n
7 *‘ X
Person / | Person
/ i
{dohn, 50 ! (Adam, 15)
|
d |
I
:Person] :Person
|
(Denise, 47) ! {Phoebe, 17]
i
Person

(Granny, 82)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figf_HTML.gif

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figm_HTML.gif
object Test extends App {
val p = new Person("John") with Logger
printin(p)

}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figo_HTML.gif
Process finished with exit code 0

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figd_HTML.gif
object Processor {
def apply(n: Int, : Int => Int) = f(n)

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figz_HTML.gif
package com.jjh.sample
object PublicObject {

val publicVal: Int = 32

var publicVar: Int = 0

def publicMethod = printin("Hello")
}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figp_HTML.gif
package com.jjh.scala.tail

import scala.annotation.tailrec
object Util {
def factorial(n: Int): Int = {
@tailrec
def factorialAcc(acc: Int, n: Int): Int = {
if (n <= 1) acc
else factorialAcc(n * acc, n - 1)

factorialAce(1, n)

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figb_HTML.gif
8 /) oowumes = e

€ C [secue s pimpramemorccomonosdesiarerd OELE
Play Starter Projects

New to Play? See the stater projects!

1youvenevr s iy bofor,Gonrioada saer prject Thsater prjects hav ot of commens explsning
P evory i ks 30 sk o cocumentton it Govs o

300 dourions axd i th i o blo: Yo s00th sl - i packaged versan of 1 o o
o0l tatPay uos

T he fokowing e prompt and i hsatr et

Hy0utype /bt by sl henyucan i st moce s Using e Pl Conscl for o det
ofhowrl Py an tho bt documatstion - formor abok SOT

Plsssoe the ocumoniaion hat i th commiesy - and chock ot th s for o xampls nd
bogpostt

Py 26xStatrProcs

Ply Jav Sarter Example Downios z6) Vi on it

Ply Scla Starter Example Downiond 26) Vi on Gt

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figs_HTML.gif

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figi_HTML.gif
object Test extends App {
val p = new BasicProcessor(0)
with Doubling with Incrementing
p.update(s)
printin(p)
}

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figl_HTML.gif
trait Logger {
log

def log = printin("Created")
}

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figa_HTML.gif
val operation = (x: Int, y: Int)

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figi_HTML.gif
.productlterator.foreach { x => printin(x) }

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figf_HTML.gif
<dependency>
<groupld>org scalactic</groupld>
<ariifactld>scalactic_2.12</artifactid>
<version>3.0.4</version>
</dependency>

<dependency>
<groupld>org.scalatest</groupld>
<artifactld>scalatest_2.12</artfactld>
<version>3.0.4</version>
<scopestest</scope>

</dependency>

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figl_HTML.gif
import
import

import
import
import
import
import
import
import

scala.collection.mutable.ArrayBuffer
scala.concurrent.duration. DurationInt

akka.actor.Actor
akka.actor.ActorRef
akka.actor.Actorsystem
akka.actor.OneForonestrategy
akka.actor.Props

akka.actor. SupervisorStrategy.Restart
akka.actor.actorRef2scala

OEBPS/images/323629_2_En_6_Chapter/323629_2_En_6_Chapter_TeX_Equa.png
valadd = (a:Int,b:Int) =>a+b

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figk_HTML.gif
// Create the USERS table
usars achama craate

OEBPS/images/323629_2_En_6_Chapter/323629_2_En_6_Chapter_TeX_Equb.png
add(4,5)

OEBPS/images/323629_2_En_6_Chapter/323629_2_En_6_Chapter_TeX_Equc.png
val addTwo = (2, _: Int)

OEBPS/images/323629_2_En_6_Chapter/323629_2_En_6_Chapter_TeX_Equd.png
addTwo(5)

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figt_HTML.gif
package com jjh.traits;
public class Foo implements Model {
private String _title;

public Foo() {
Model.$init$(this);

}
public String info(String x) {

return "title: " + this fitle() + with " + x;
}

public String tile() {
return this._title;

}

public void title_Seq(String s) {
System. out printin("Setting title:
this._title = s;
}

+s);

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig7_HTML.gif
Simple GUI

Hello Goodbye

(© 2018: John Hunt

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figae_HTML.gif
package com jjh.test

class Super {
protected[test] def print = printin("Super”

class Sub extends Super {
print
b

class Other {
val s = new Super()
s.print // No longer an error as it is now visible

}

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig3_HTML.gif
o
"

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig1_HTML.gif
© O O Hell

Click Me!

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figj_HTML.gif
port java.sql.DriverManager
import java.sql.Connection

object TestConnect extends App {

// Change to Your Database Config

val ur
“jdbe:mysql:/flocalhost:3306/employees?” +
“user=user&password=user123"

var conn: Option[Connection] = None

try {
printin("Load the driver")
classOficom.mysql jdbe. Driver]

printin(“Set up the connection”)
conn = Some(DriverManager.getConnection(url)

printin(*Success")
}eateh {

case ex: Exception => {
exprintStackTrace()

}
Yinally {
printin("Close the connection”)
conn match
case Some(c) => c.close
}

}
}

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figc_HTML.gif
object HigherOrderFunctionsApp extends App {

val f1 = (x: Int) => x * X
printin{Processor.apply(10, f1))

}

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Fige_HTML.gif

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figaa_HTML.gif
Run " MathUtilsApp
» /Library/Java/JavaVirtualMachines/jdk1.8
6

6

= . ;
5 Process finished with exit code @

=]

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figj_HTML.gif
Incrementing trait

Doubling trait

Basic Processor
Instance

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figt_HTML.gif
Graduate
name, age, degree,

Uni

Scenario A

Employee
& |name,age. company

Scenario B

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figw_HTML.gif
object Direction extends Enumeration {
val North = Value(0)
val East = Value(90)
val South = Value(180)
val West = Value(270)
}

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig4_HTML.gif
1= <project xmlns="http://maven.apache.org/POM/4.0..

2 xmlns :xsi="http://wmw. w3.0rg/2001/XMLSchena-instance”
3 xsi:schemalocation="http: //naven. apache. org/POM/4.0.0
4 http://maven. apache. org/naven-v4_0_0.xsd">
5 <modelVersion>4.0.8</modelVersion>
6 <groupld>com. jeh</groupld
7 <artifactld>Helloorld</artifactld>
8 <version-0.0.1-SNAPSHOT</version>
9 <inceptionYear>2008</inceptionYear>

102 <properties>

1 <scala.versions2.10.3</scala.version>

12 </properties>

13

14® <repositoriess(]

21

226 <pluginRepositories>(]

29

30= <dependencies>
316 <dependency>

32 <groupld-org. scala-lang</groupld>
3 <arti factId-scalg-1ibrary</artifactld>

34 <version-${scala.version}</version

35 </dependency>

36 </dependencies>

37

38 <builds

39 <sourceDirectory>sre/main/scala</sourcedirectory>

40 <testSourceDirectory>sre/test/ssala</testSourcebirectory>
416 <pluginss(]

78 </build

798 <reportings[]
90 </project>

OEBPS/images/323629_2_En_2_Chapter/323629_2_En_2_Fig5_HTML.gif
Motrvehicle

MoteVeticle

N

Motrvehicle

cavitnuen| [Ewsecar

[Ee——

Fro—

P [EUIETETINY [[) p— o
st [——
spe

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figae_HTML.gif
package com jjh.java;

import java. utl ArrayList;
import java.util.List;

import com jjh.interop.MyProcessor;

public class TestApp {
public static void main(String] args) {
Processor proc = new MyProcessor();
List<String> | = new ArrayList<String>();
.add("32");
l.add("5");
double x = proc.calc();
System.out.printin(x);
}
}

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Fig4_HTML.gif
Run [SampleApp2

S /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk
Monday

Tuesday

Wednesday

Thursday

Friday

Process finished with exit code @

1]
€ 0 |@ W

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Fig1_HTML.gif
Gotsarip = {
st the comveyance
)

Car

o saisai=
artsaiing
)

o acciersio = [
sartUp)
hock et ot er0

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figi_HTML.gif
for (
p <-persons ; /a generator
n=pname; /a definition

if (n startsWith "To") //a fiter
) printin(n)

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figr_HTML.gif
val family = List (dad, mum, adam, phoebe)

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figj_HTML.gif
package com.jjh.scala.file

import scala.util.control.Exception.catching
import java.io.FileNotFoundException
import scala.io.Source

object TestCatchingWithOpt extends App {

val fileCatch =
catching(classOf[FileNotFoundException])
.withApply(
e =>
throw new RuntimeException(“problem”, e))

val content =
fileCatch.opt {
Source.fromFile("test.txt")
.getLines.mkString(“\n")

println(content .getOrElse(

ile Not Found"))

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figj_HTML.gif
def filter(p: (A) => Boolean): List[A]

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figr_HTML.gif
trait Drivable {
// exactly one abstract method
def drive(miles: Int): Unit

}

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Fig1_HTML.gif
[— [—
e [—
[SET 4 ——
pre— [E—

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figa_HTML.gif
val { = new Tuple2[int,

OEBPS/images/323629_2_En_14_Chapter/323629_2_En_14_Figa_HTML.gif
object ObjectName { body }

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figv_HTML.gif
object MatchTest3 {

def main(args: Array[String]): Unit = {
printin(describe(5))
printin(describeftrue))
printin(describe(*hello"))
printin(describe(Nil))
printin(describe(List(1, 2, 3)))

}

def describe(x: Any) = x match {
case 5 => "five"
case true => "truth”
case "hello" => "welcome message”
case Nil => "The empty list"
case somethingElseVariable => "something else: " +
somethingElseVariable

}
}

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figl_HTML.gif
import org.junit.Assert.

OEBPS/images/323629_2_En_1_Chapter/323629_2_En_1_Fig1_HTML.gif
Lisp C Simula Prolog

ML Ct Smalltalk

Haskell Jala Erang

Scala

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figl_HTML.gif
(LX) _ interop — -bash —87x19

Johns-acsinterop 16hs Jouap —cp - con. . companion.Session
Compiied from “seszion,zeatar
Bubtic class conh.companion.Session ¢

BUBLLC static conjih.corponion. ession session()s

Public int 160}

Public vois 16 sealint);

PUBLC com.33h-companion.Session(int
)
Jomns-acsinterop Jehs Jousp ~cp . con.1ih.companion.Sessions
Compiied from Ssession.zeata:
pubtic final class con.j . cospanion.Sessions (

BUDLSC static. cor.55h.corponion. s ions OOULES:

bubic static G

PUBLLC Com. 3. conpanton.Session session():

Jomns-acsinterap sens |

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig4_HTML.gif

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figg_HTML.gif
Kind: &, Class. B

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figf_HTML.gif
import
import
import

import
import
import
import
import

import

object

scala.concurrent.ExecutionContext
scala.concurrent.Future
scala.concurrent.duration._

akka.actor.Actor
akka.actor.Actorsystem
akka.actor.Props
akka.pattern.ask
akka.util.Timeout

scala.util.{Success,Failure}

FutureTest extends App (

import scala.concurrent.ExecutionContext.Implicits.global
println("FutureTest -> Starting ReplyTest application")
val system = ActorSystem(*mysystem")

val calc = system.actorOf (Calculator2.props)

val future: Future[Int] =

ask(calc, 4)(Timeout (5 seconds)).mapTo[Int]

println('FutureTest -> Obtained : " + future)
future onComplete {

case Succe:

(i: Int) =>
println(s"FutureTest -> Result from future: $i")

case Failure(cx) => println(s'Failed: $ex")

3

println("FutureTest -> Finished")
system.terminate
System.exit (0)

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figy_HTML.gif
Run ™ QuenyDbADD.

> /Library/3ava/Javavirtualachines/jdkl.
Starting

52. jak/Contents /Hose/bin/ java

F1 Result: Success(Vector (User(49,Denise) , User(101,John), User(150,Phoebe)))

Success(Vector (User (101, Jonn), User (150, Phocbe)))

Success(Vector(John, Phoebe))

B
F
o

: Success(Vector (User (101, John)))
User(49, Denise)

user(101,Jonn)

User(150, Phoebe)

~ X%

Process finished with exit code @

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figh_HTML.gif
" href="@routes Assets.versioned("stylesheets/main.css")
lia="screen"></link>

<link rel="stylesheet" href="@routes. Assets.versioned("stylesheets/bockshop-
style.css")"

type="text/css"></link>

<script src="@routes. Assets.versioned(‘javascripts/jquery-
3.2.1,j8")><Iscript>

<script type="textjavascript”
src="@routes.Assets.versioned(‘javascripts/myscript js°)"></script>
</head>

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figc_HTML.gif
trait Doubling extends AbstractProcessor {
abstract override def update(x: Int) {
super.update(2 * x)
}

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figt_HTML.gif
def age():
return _age

)

OEBPS/images/323629_2_En_14_Chapter/323629_2_En_14_Figc_HTML.gif
object SingletonTest extends App {
ConnectionPool.next
printin(ConnectionPool.count)
ConnectionPool.next
printin(ConnectionPool.count)

}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figg_HTML.gif
import java.io.File
object FileLoopTest extends App {
val files = (new File("."))listFiles

for (f < files if f.getName.endsWith(" txt")
printin(f)

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figp_HTML.gif
CompanyTestApp.
/Library/Java/JavaVirtualiachines, jdk1.8.0_152. jdk
Starting ConpanyTestApp

Conpany name at

Done CompanyTestApp.

Process finished with exit code @

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Fig2_HTML.gif
<<t

T
T
P
15
o i
P aimen

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figo_HTML.gif
package days

object DaysOfWeek extends Enumeration {
val Monday = Value
val Tuesday = Value
val Wednesday = Value
val Thursday = Value
val Friday = Value

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Fig3_HTML.gif
_ interop — -bash —100x13

interop Jens Jousp ~cp . con.3ih. Tunc.HySeataTest
Compited from WyScalaTest. scala’
BSTLC fint clovs com. 330 func HyScotsTest (

Tic Thatic void setFunciscaty.Functiont<sava. Lang.OBSect, Java. \ang.Strings);

Johns-acsinterap Jehs javap <cp . com.JIh. func.MyScataTests
Compited fron "WyScalaTest. scala’
Bubtic fina clats com.JJh.funcyScatsTests

Tunc MyseataTests HOOULES;

Tic vois setFunc(scata. Functiontejovs. ang. Object, Jove. langStrings):

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figi_HTML.gif
CREATE SCHEMA “employees';

CREATE TABLE “employees." employee” (
id INT NOT NULL,
*name’ VARCHAR(45) NULL,
PRIMARY KEY (id"));

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figc_HTML.gif
object OptionApp extends App {
7/ Support to make working with Options easier

// Traditional Scala - return specific types

// Can cause problems with code expecting an Option[T]
val ol: Some[Int] = Some(10)

val 02: Option[Nothing] = None

// Scalaz Scala - both operations return Option[T]
val s1: Option[Int] = some(10!

val s2: Option[Int] = none[Int]
// Alternative for getOrElse
val x1 = some(20) | 10
println(s"xl: $x1")

val x2 = none | 10
println(s"x2: $x2")

// Ternary operator for options
val x3 = Some(10) 7 5 | 4
println(s"x3: $x3")

// ~ operator: Returns the item contained in the Option
// or its zeroth value

val someInt = some[Int](3)

println(~someInt)

val emptyOption = none[Int]

println(~emptyOption)

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figi_HTML.gif
// More Scala oriented equivalent
myList.foreach((e) => {println(e)})
myList.foreach(e => {println(e)})
myList.foreach(e => println(e))
myList.foreach(println (1))

// Shortest form of above
myList.foreach(println)

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figs_HTML.gif
Graguate BALL, 21 English |

Graduate
Nae: Bl
Age: 21
Degree: English
+ oxford

Process finished with exit code @

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figf_HTML.gif
val myArray = Array.apply(*John™, "Denise”, "Phoebe”, "Adam’
myArray(3) = "Isobel”

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figm_HTML.gif
val zaa = Array(
Array(
Array "Denise", "Phoebe", "Adam"),
Array("Paul”, "Fiona", "Andrew")),
Array (

Array("Darren®, "val")))

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fig5_HTML.gif
package com jeh.scala jdbc

import javax.sql.DataSource
import javax.naming. InitialContext

object TestDataSource extends App {
val ot = new InitialContext()
val source = ctxlookup('jdbcitestDS")
val ds: DataSource = source asinstanceOf[DataSource]

if (ds 1= null) {
val con = ds.getConnection()
val st = con.createStatement()

val 1s = stexecuteQuery("SELECT * FROM employee”)
while (rs.next) {
printin(rs.getString("id") + ": " + rs.getString("name))
}
}

}

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figv_HTML.gif
object SampleApp4 extends App {
val d = Weekend(0)
printin(d)

}

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Fig1_HTML.gif
AnyRef

extends <<Trait>>
Service

mixes

WeatherDataGenerator |

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figl_HTML.gif

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figr_HTML.gif
val q = for (u <- users) yield u
val a = qresult
val p: DatabasePublisher{User]
p.foreach { s => printin(s"

db.stream(a)

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Figf_HTML.gif
contents = new BoxPanel(Orientation. Vertical) {
contents utton
contents += label

}

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figc_HTML.gif
<dependency>
<groupld>mysql</groupld>
<artifactid>mysal-connector-java</artifactid>
<version>6.0.6</version>

</dependency>

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figg_HTML.gif
object FuncApp extends App {

var increase = (x: Inf) => x + 1
vary=1

printin(“Initial value of y: * + y)
y = increase(y)
printin("Increased y: " +)

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figi_HTML.gif
package com.jjh.info

class Company {
var name ="
var address
var telephone = "0000"
var registrationNumber = "000"
var vatNumber
var postcode

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figf_HTML.gif
L)
= dwva £
5 Anaroid

ot Plttorm Plugin

77 Maven
@ Gradio (kotin 05U)

@ Gradle

@ Groowy

 Giton

 Kotin

= Empty Project

New Project

S
== ightbend project Starter

10EA-based Scaa projct

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figs_HTML.gif
Red / Green / Refactor

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figs_HTML.gif
Model.$init$(this);

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figc_HTML.gif

OEBPS/images/323629_2_En_4_Chapter/323629_2_En_4_Fig6_HTML.gif
o Wotor Fuse. Pump Relay

b)
L o]] [

(o) (@) (o) (o)) [@
(e (o)

(©)
Sunch Component Waterbottle
=
=

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figw_HTML.gif
println(capitalCitys.getOrElse("Ireland",

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Fige_HTML.gif
package com.jjh.java;

p
* This is a Java class that extends a Scala class!

* Note the call to super for the parent class
* constructor.

i

public class Employee extends Person {

private String company;

public Employee(String name, int age, String company) {
super(name, age);
this.company = company;

}

public String toString() {
return super.toString() + ", " + company;

}
}

OEBPS/images/323629_2_En_15_Chapter/323629_2_En_15_Figf_HTML.gif
object Main extends App {
val x = Meter(3.4)
val y = Meter(4.3)
valz=x+y
Console.printin("Result: " + zvalue)

}

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figk_HTML.gif
// Create a list of numbers

val numbers = List(l, 2, 3, 4, 5)

// Bpply a function to each of the members of the list
// and create a new list of the same size

val m = numbers.map(n => n + 10)

println("Modified list: " + m)

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig4_HTML.gif
> Codo se

» s Compler

* s cor
vt Locaton
Prjcttuences
Reactoring Hstory
AunfOabug Setings
Scila Aoy Oebugger
Scala Compler
SesaFormate
Scdla rganize mpors
Toek gt

»eiaston

@

Properties for O-akka-actor-test
Java Build Path e De v

@souce Cprocts g order nd xpat

AR i oo on th i ot

B e o ..
> 55 con-1.3.0jar-0-saa-cto-tastlin

> 34.RE Systom Ly LinsSE-1.8) 0 Exterma ..
> 24 ol iary coninr (212.2)
s variase,
A Ubrry.

concel IS

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Fige_HTML.gif
object Processor {
val apply = (n: Int, . Int => Int) => ()

object HigherOrderFunctionsApp extends App {

printin(Processor.apply(10, f1))
printin(Processor.apply(10, 12))
printin(Processor.apply(10, 13))
printin(Processor.apply(10, f4))

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figt_HTML.gif
val g2 = users.filter(_.id > 100)
val a2 = q2 result

val f2: Future[Seq[User]] = db.run(a2)
f2.onComplete{ case s => printin(s"F2 Result:
Await.result(f2, Duration./nf)

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figx_HTML.gif
Connection getConnection ()
Attempt to establish a database connection.
Connection getConnection (username: String, password:
String)
Attempt to establish a database connection.
Int getLoginTimeout ()
Gets the maximum time in seconds that this data source can wait while
attempting to connect to a database.
PrintWriter getLogWriter ()
Get the log writer for this data source.
Unit setLoginTimeout (seconds: Int)
Sets the maximum time in seconds that this data source will wait while
attempting to connect to a database.
Unit setLogWriter (out: PrintWriter)
Set the log writer for this data source.

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Fig3_HTML.gif
v B public
» b images
v [javascripts
hello.js
- Jquery-3.2.1.js
. myscript.
v I stylesheets
bookshop-style.css

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figo_HTML.gif
import Printer._

val fileWriter = write(file)_
fileWriter {

writer => writer.printin(new Date)
}

OEBPS/images/323629_2_En_16_Chapter/323629_2_En_16_Figd_HTML.gif
case class Event(name: String,
date: Option[Date] = None,
state: String = "New") {
def printDate = date match {
case Some(d) => print(d)
case None => printin("No Date")
}

def printDate2 = printin(date getOrElse "No Date")
]
object Event {

implicit def apply(d: Date): Option[Date] =
Option(new Date())

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figd_HTML.gif
Preforences

i, Erocuion,Depeymert ——
s i o Bowsarepsiors. | ol g o gk

5 ==

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figk_HTML.gif
package com.jjh.lights

class WhiteLight extends Light

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figj_HTML.gif
val q =
new Queue[Strina] ("John", List("Denise",

hoebe"))

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig6_HTML.gif
Actor
Reference

Actor Incarnation

Actor Instance

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figq_HTML.gif
© 00 /p sampleView
€ > C O localhost:9000

‘Welcome
Hello Play World

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figa_HTML.gif
import akka.actor.Actor
import akka.actor.Props
import akka.actor.ActorSystem

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Fig2_HTML.gif
user Guardian

user actor hierarchy

root Guardian

system Guardian

system support actor
hierarchy

OEBPS/images/323629_2_En_16_Chapter/323629_2_En_16_Figb_HTML.gif
def printDate = date match {
case Some(d) => print(d)
case None => printin("No Dat
}

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig9_HTML.gif
» [Helloworld
v [out
v [production
v [HelloWorld
3 Hello.class
3 Hello$.class
scala-book.iml

> [sre

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Fige_HTML.gif
package com.jjh.scala.collectlion

object MyQueueTest extends App {
val g = new MyQueue[String]()
q.enqueue("John")
q.enqueue("Denise")
q.enqueue("Phoebe")
q.enqueue("Adan")
println(g.head)
val name = q.dequeue
println(name)
println(q.head)
q.enqueue("Paul")
println(q.head)
println(q)

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figd_HTML.gif
package test {
package demo |
=
package util

}

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figu_HTML.gif
object SAMSample extends App {
val d: Drivable = (m: Int) => printin(s"Mustang driven Sm miles")

d.drive(100)
// d1.apply(100)
//d1(100)

val 1= (m: Int) => printin(s"Mustang driven $m miles")

11.apply(100)

71(100)
// f1.drive(100)

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Fign_HTML.gif
package com.jjh.info
object CompanyTestApp extends App {

}

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figq_HTML.gif
ca:

se class FlexiQueue(+T](head: T, tail: List[T]) {
def enqueue[U >: T](x: U) =
new FlexiQueue(x, head :: tail)

def peek = head

def dequeue[U >: T] =
new FlexiQueue[U] (tail.head, tail.tail

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figb_HTML.gif
o o New Package
Enter new package name;

concel | THR

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figg_HTML.gif
import scala.collection.mutable.ArrayBuffer

object ArrayBufferTest extends App {
val data = ArrayBuffer(Int] ()
data += 1
println(data)
data += 5
data += 6
println(data)
println(data(2))
val array = data.toArray
println(array)

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Figa_HTML.gif
package com.jjh.scala.swing

import scala.swing Button
port scala.swing. MainFrame
import scala.swing.SimpleSwingApplication

class SimpleFrame extends MainFrame {
// set title for the window
title = "Hello World!"
// Create a button and set it as the
// contents of the window
contents = new Button {
text = "Click Me!"

]

object SwingHelloWorid extends SimpleSwingApplication |
// define the method top to return an instance of
// the SimpleFrame

def top = new SimpleFrame()
1

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figd_HTML.gif
import akka.actor.Actor
import akka.actor.Props
import akka.actor.ActorSystem

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Fign_HTML.gif
package com.jjh.scala

import org junit Assert assertEquals
import org.scalatest junit.JUnitRunner
import org junit.runner. RunWith
import org.scalatest. FunSuite

import scala.collection.mutable. Stack

@RunWith(classOffJUnitRunner])
class FunctionTest extends FunSuite

test("Check Add-and-Pop a stack") {
var stack = List.empty{int]
stack = stack.+:(52)
assertEquals(, stack.size)

}

test("Check an empty stack has no members") {
var stack = List.empty{int]
stack = stack.+:(52)
stack = stack.+:(21)
val x = stack.head
assertEquals(21, X)

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figk_HTML.gif

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figd_HTML.gif
val myList3
println(myList3)

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figl_HTML.gif
object HigherOrderFunctionTests extends App {
// Can use as function literals with various Scala
/ libraries that provide higher-order functions
var list= Lis(1, 2, 3, 4)

// Fiter is a higher order function that takes the
// function to be used to filter the contents of a list
var fist2= listfilter((x: Int) =>x >2)

printin/ist2)

1/ Short hand forms for function literals

1/ e.g. 'target typing’ this allows parameter type to be
W inferred here because it is being applied to a
/list of integers

list2 = listfilter(x) => x> 2)

printlnlist2)

// Can also write this without the parentheses
list2 = listfiter(x => x > 2)

printin/ist2)

// Place holder syntax -allows for the variable
/xtself to be implied

list2 = listfiter(_ > 2)

printinlist2)

// Place holder extreme!

listforeach(x => printin(x))

// Can replace whole parameter list and

1/ expression with underscore

listforeach(printin)

7/ But Scala can imply the underscore so can

1/ just write

listforeach(printin)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figm_HTML.gif
object TestToString extends App {
val p = new Person("John", 49)
println(p)

}

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figa_HTML.gif

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figh_HTML.gif
case class Address(street: Siring, number: Int)

// Defines a trait to convert things into labels
trait LabelMaker(T] {

def output(t: T): String
}

object LabelMaker {
1/ Adapter class that converts Address to labels
//and an instance created from it for use
// with implicit params
implicit object AddressLabelMaker
extends LabelMaker{Address] {
def output(address: Address): Sirin
address.number + " @ " + address.street
}
}
// label method that uses an implicit param
def label[T](t: T)(implicit Im: LabelMaker[]) =
Im.output(t)

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Fige_HTML.gif
class Cat {

val dangerous = false
val name: String = "Tiddles"
override def toString =

s"Sname is S{(if (dangerous) "dangerous" else " timid")}"
}

class Tiger(override val name: String) extends Cat {
override val dangerous = true

b

object CatTest extends App {
var ¢ = new Cat()
printin(c)
c=new Tiger("Tigger")
printin(c)

}

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figc_HTML.gif
import scala.lo.Source
port java.io.IOException
import java.io.FileNotFoundException

object TestAssignl extends App {
val content =
try {
Source. fromFile("test. txt"
.getLines.mkString(“\n")
} catch {
case ex: FileNotFoundException => "No file"
case ex: IOException => "General I0 issue"

}
println(content)

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figt_HTML.gif
object MalnTest {
def main(args: Array[String]): Unit = (

}

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figt_HTML.gif
case class Person (nam

Denise", var age:Int=0)

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figp_HTML.gif
val contents = List(Array(!, 2, 3), Array(4, 5,
val result = contents.flatMap(x => x.toList)
println(result)

)

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Fig1_HTML.gif
val pa: Array[Person] = new Array{Person](4)

null

pa null
it

null

°

P

et tocroate abjectsfor
oamy

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figj_HTML.gif
object StringExampleApp extends App {
val s1 = "Day"

println(s"sl.plural(2): ${sl.plural(2)}")

// Safely parse booleans, bytes, shorts, longs
// floats, double and ints

println(rseDouble)

println(*john".parseDouble)

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figq_HTML.gif
package com.jjh.info

object CompanyTestApp extends App {
printin(“Starting CompanyTestApp")
val company = new Company()

// Set up the comp
company.name = "John Sys"

company.address = "Coldharbour Street, London"
company.telephone = "123456'
company.registrationNumber = "99999999"
company.vatNumber = "BB112233AA"
company.postcode = "BS16 1QY"

ny information

company.print
printin(*Done CompanyTestApp")

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figg_HTML.gif
class Degree extends Model {
var value: Any = "B.Se."

def printer(): Unit = {
printin("Degree Award")
}

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig5_HTML.gif
© O O Swing App

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figl_HTML.gif
class Calculator {

def max(x: Int, y: Int): Int = {
if (x>y) xelsey

increment = (x: Int) => x + 1

object CalculatorApp extends App {
val ¢ = new Calculator()
val a= c.max(2, 3)
printin(a)
val b = c.increment(3)
printin(b)
}

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figb_HTML.gif
<dependency>
<groupld>com.typesafe.slick</groupld>
<artifactld>slick_2.12</artifactid>
<version>3.2.1</version>

</dependency>

<dependency>
<groupld>org.sif4j</groupld>
<artifactld>slfdj-nop</artifactid>
<version>1.6.4</version>

</dependency>

<dependency>
<groupld>com.typesafe.slick</groupld>
<artfactid>slick-hikaricp_2. 12</artifactid>
<version>3.2.1</version>

</dependency>

<dependency>
<groupld>org.scala-lang</groupld>
<artfactld>scala-library</artfactid>
<version>2.12.4</version>
</dependency>

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figb_HTML.gif

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figu_HTML.gif
object MatchTest2 {

def main(args: Armray[String]): Unit = {
printin(describe(5))
printin(describe(true))
printin(describe("hello"))
printin(describe(Nil))
printin(describe(List(1, 2, 3)))

he empty list"
something else”

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figb_HTML.gif
listenTo(button')

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figk_HTML.gif
@runwWith(classOf [JUnitRunner]))

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figk_HTML.gif
3 Session.class.
3 Sessions.ciass

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figc_HTML.gif
class Base(val name: String, var age: Int) {
def max(x: Int, y: Int): Int = if (x>) x else y
val working = false
override def toString() = s"Sname is Sage”

}

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figg_HTML.gif
import scala.concurrent.ExecutionContext.Implicits.global

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figt_HTML.gif
class Car(val model: String, val spec: String)
object CarTestApp extends App {
// Main behaviour

val ¢ = new Car("BMW 320
printCar(c)

E")

// Support method
def printCar(car: Car) {
import car._
printin(model + " " + spec)

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figv_HTML.gif
class Person(val name:5tring, var age: Int) {
def birthday(): Unit = {
print(“Happy Birthday, you were “ + age)
age = age + 1
println(“today you are now “ + age)
def isPensioner(): Boolean = age > 65
def isToddler = age > 0 && age < 3

override def toString()
“Person[" + name + "

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figh_HTML.gif
898 Import Project

v e
B b s o it

2 clpse
- Gonde
- Maven

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figr_HTML.gif
trait MyReader extends Immutable with Decorator {
def read: Int
}

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figm_HTML.gif
case class Person(name: 5tring, age: Int)

object QueueTest2 extends App {
val g = new Queue[Person](
Person("John", 54),
List(new Person(“Denise”, 51), Person("Phoebe",
21), Person(“Adan", 19)))
println(q)
}

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figj_HTML.gif
class TickActor(msg: String)
extends Actor with ActorLogging {
log.info(s"Creating Tick Actor with msg: $msg")
override def receive = {
case startTicking(tocker) =>
log.info(s"Starting... Tick ($msg)");
tocker ! TockMessage
TickMessage =>
1og.info(msg)
Thread.sleep(500); sender ! TockMessage

}
}

class TockActor (msg: String)
extends Actor with ActorLogging {
log.info("Creating Tock Actor with msg: $msg”)
override def receive = (
Tocklessage
log.info(msg)
Thread.sleep(500); sender ! TickMessage

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figj_HTML.gif
port fest._
def plusTwoLL(y:Int):Int = sum(2)(y: It

def plusTwoS(y: Int) = sum(2)_
def plusTWORS = sum(2)

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figm_HTML.gif
val users: TableQuery[Users] = TableQuery|Users]

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fige_HTML.gif
package com.jeh.scala.swing

import scala.swing.BoxPanel
import scala.swing Button

import scala.swing Label

import scala.swing. MainFrame

import scala.swing.Orientation

import scala.swing.SimpleSwingApplication

-
* Orientation example
7

object SwingHelloWorlds extends SimpleSwingApplication {
new MainFrame {

'Swing App”

contents = new BoxPanel(Orientation. Horizontal) {
Jlcontents = new BoxPanel(Orientation. Vertical) {
contents += button
contents += label

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figo_HTML.gif
val p0 = new Person

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figae_HTML.gif
Ll Cr L L A i A1

}
println(a2)

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figg_HTML.gif
Test.class Test$.class

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Fign_HTML.gif
Run

Test

/Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk
Created
Person [John]

Process finished with exit code @

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figk_HTML.gif
class Person(val name: String) {
override def toString = "Person[" + name + "
}

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig2_HTML.gif
Run " SwingSample1

> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk.
Hello World
Hello World
Hello wWorld

Process finished with exit code @

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Fig2_HTML.gif
Sesa s Cscab-sa2120

Mo stigs

B o

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Figi_HTML.gif
package com jeh.scala.sample

Import java.awt Font
import java.awt.Dimension

Import scala.swing._
import scala.swing BorderPanel._
import scala.swing.event ButtonCiicked

class SampleGui extends MainFrame {
title = "Simple GUI"

J/Set up the buttons

valb1 = new Buton {

text = "Hello"

toollp = “Glick to say hello™

"Goodbye™
tooltip = "Click to say goodbye™
)

//Set up panel for buttons (using a flow layout)
val panel = new FlowPanel {

contents += b1

contents += b2

)

7/ Create a non-editable text fleld and add that
vl field = new TextField()

feld.editable = false

// Create a label for the frame
Val label = new Label()
= "(c) 2018: John Hunt"
border = Swing. EmplyBorder(5,5,5.5)

font = new Fonl(*Ariel", Font.BOLD, 12)

)

1/ Sotup ltensing (o the bultons and reactions
listenTo(b7, b2)

reactions += {

case ButtonClicked(b1
case ButtonClicked(b2
i

contents = new BorderPanel() {
//Add the button panel o the frame
add(panel, Position.North)
7/ Add the text feld fo the centre
‘add(field, Position.Center)
1/ Add the label to the bottom of the display
add(label, Position. South)

}

1/ Resize the window
size = new Dimension(300, 150)

]

object SampleGui extends SimpleSwingApplication {
dof top = new SampleGui)
)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Fign_HTML.gif
val file = new File("data.txt")
import Printer._

val file = new File("data.txt")
wiite (fie) {

writer => writer printin(new Date)
3}

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figf_HTML.gif
) close

OEBPS/images/323629_2_En_15_Chapter/323629_2_En_15_Figa_HTML.gif
class Meter(val value: Double) extends AnyVal {
def +(m: Meter) : Meter = new Meter(value + m.value)

}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figa_HTML.gif
1. TTP Request <. Invoke action 4. Render page

N (Scala)
Routes o -{\ﬁew Template|

Route the request page rendered witr
toa controller 3. Load dat placeholders filed
by data

(Scala)
Model

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figx_HTML.gif
package com.jjh.banking
case class Account(val name: String, val number: Int)

object TestAccount extends App {
val acc = Account(*John", 1234)
PprintAccount(acc)

}

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figi_HTML.gif
// The query interface for the Users table
val users: TableQuery[Users] = TableQuery{Users]

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figi_HTML.gif
package com.jjh.scala.collection

class Queue[T](val head: T, val tail: List[T]) {
def enqueue(x: T) = new Queue(x, head :: tail)
def peek = head
def dequeue = new Queue(tail.head, tail.tail)

override def toString =
s"shead: ${(tail mkString

3}

)3

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figf_HTML.gif
[——

Kod: 6 s

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figf_HTML.gif
def hea

content.head

String

def enqueue (x: String) = content += x

def dequeue: String = {
content. remove (0)
}

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figa_HTML.gif
object FuncApp1 extends App {

val mult = (x: Int) => {x* x}

printin(mult(2))
printin(mult(4))

}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figv_HTML.gif
2 MyScalaTest.class
[@ MyScalaTests.class

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figd_HTML.gif
® 0 ® play-scala-starter-example — java -Xmx512M -XX:+CMSClassUnloadingEnabled -XX:Max..

[ornl 4 con.typesate.pla (gepencs
fHarn) (sepencs
frarn) i selected over 2.4.2
frarn] X (aepencs
[Lorn] 4 com.typesafe. akka:akko-http-core 2.12:10.0.11 () (depends.
[Larn] % con.typesate. akkaakka-actor_2.12:2.5:8 is selected over 2.4.20
[arn] e con. typesate. akka:akka-3 114 2.1 (aepends
frarn] akko-stresn_2.12:2. (gepends
fHarn) 1212760 (sepencs
[arn) rsing 2.1 (sepencs

[Da7) Run evicted" to see detailed eviction warnings

—-- (Running the application, auto-reloading is enabled)

1 puc.s.AkKkaMEtpServer ~ Listening for HTTP on /0;

(Server started, use Enter to stop and go back to the console.

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Figh_HTML.gif
val tuple = (54,
printin(tuple)
printin(tuple.copy(2 = "Bob™))

"John", "Hunt", 12.75)

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figc_HTML.gif
object HelloworldAkkaTest extends App (
val props = Props[Greeter]
val system = ActorSystem("mysystem')
val actorl = system.actorof (props)
actorl ! "hello”

actorl ! "Goodbye"
actorl ! “hello”
actorl ! 42

actorl ! true
system.terminate

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figk_HTML.gif
object Test extends App {
val p = new BasicProcessor(10)
with Doubling
with Incrementing
with Filtering
p.update(0)
printin(p)
}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figo_HTML.gif
app/views/index.scala.html file

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig7_HTML.gif
Save 'Hello'

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figy_HTML.gif
object Testz extends App {
val adpator = new AdaptedService()
val client = new Client(adpator)
client.doWork

}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Fign_HTML.gif
class Factorial {
def factorial(number: Int): Int = {
printin(number)
if (number == 1)
return 1
else
return { number + factorial(number - 1) }

}
b

object FactorialTest extends App {
val 7= new Factorial()
printin("= " + f factorial(5))

}

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figi_HTML.gif
import scala.collection.mutable.Stack

object StackTest extends App {
val stack = Stack[Int] ()

stack.push (1)
stack.push(2)
stack.push (3)
println(stack)
println("top: " + stack.top)
println
println("pop
println(stack)

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Fign_HTML.gif
object Calculator {
def props = Props(Calculator]
]

class Calculator extends Actor {
def receive = {
casq Int => {
println("Calculator received: " + x)
val resultl =
(1 to x).map(i => 1)
.foldLeft (x) ((total, i) => total * i)
println("Calculator processing completed, " +
"returning result”)
sender ! resultl

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figd_HTML.gif
require(count == 0,

printin(*Require called should be 0")

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figv_HTML.gif
class ArrayProcessor {
def processArray(myArray: Arrayint]): Unit = {
var total = 0
var average = 0
for (i <- myArray) total = total + i
average = total / myArray length
printin(*The average was: " + average)

object ArayDemo extends App {
val processor = new ArrayProcessor()
val intArray = Aray(1, 4, 7, 9)
processor.processAray(intArray)

}

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figa_HTML.gif
package model

case class Book(val isbn: Int,
val ttle: Siring,
val author: String,
val price: Double)

object Books {

val bookList
Book(2, "Java",
Book(3, "Scala”,

,"S. Smith", 10.99),
. 12.99),
'A. Adams", 11.99))

def get(isbn: Int): Book
val result = bookList flter(_.isbn =
resulthead

}
}

isbn)

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figl_HTML.gif
object TagExampleApp extends App {
class MyId

type Id = String c@ MyId
def Id(s: String) = s.asInstance0f[Id]

/7 Does not compile as typs are not the same
// val y: Id = "M123"

// Does compile as x is of type Id
val x: Id = Id("M123")
println(x)

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figf_HTML.gif
printer("John™)(4)
printin("\n--—-
printer("John™

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figs_HTML.gif
object SAMSample extends App {
val d: Drivable = (m: Int) => printin(s"Mustang driven Sm miles")
d1.drive(100)

}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figm_HTML.gif
class NewLight extends com.jjh.lights.Light {...}

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figr_HTML.gif
QUCEEIEE A2 et pased - 37
0 FosureTnt o S Library o/ moraachires 918,052, 6k Contans ome o o ..
B QTN S cess finssned with exss code 0

@ Fosture: Theu

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figj_HTML.gif
info

package com.|

class Company {
var name =
var addres:
var telephone = "0000"
var registrationNumber = "000"
var vatNumber = "xxxx"
var postcode = "Xxx Xxx"

def pr

() = printin(s"Company name Sname at Saddress")

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig3_HTML.gif
¥ (5 0-akka-actor-test
» (= .settings
> (Sbin
v Elib
@ akka-actor_2.12-2.5.4.jar
¥ config-1.3.0,jar
» s

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figo_HTML.gif
package com.jjh.traits
trait Model (

def info(x: String):String

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Fige_HTML.gif

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figg_HTML.gif
Projectname:
Projc lcation: sers/Shreprojctfoei-scla-book

o 518 Gova version 180,77 B e
Saaso [Cascansdcztze B (come.
+ ot s

Previous.

2 cancel

OEBPS/images/323629_2_En_16_Chapter/323629_2_En_16_Fige_HTML.gif
object Test extends App {
val e1 = Event("New Appointment”)
el printDate2

val o2 = Event("New Appointment",
Option(new Date())
e2.printDate2

import Event._

val e3= Evenf{"New Appointment", new Date())
e3.printDate2

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Fig3_HTML.gif
67 Project & 0k %
v 3 intell-17 [Users/Shared/projectsfinteli-17

© Java Class.

sox | Kot Fie/Class
X & scalaClass
Red IS
one & Scrachrie
B P Fle
oM Find Usages XF7 | i package-infojava

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figw_HTML.gif
port java.sql.DriverManager
port java.sql.Connection

object TestDbCreate extends App {
val uri = "jdbc:mysql://localhost:3306/employees?"” +
“user=user8password=user123"
var conn: Option[Connection] = None
try{
printin("Load the driver”)
classOflcom.mysal.jdbe.Driver]

printin(*Set up the connection”)
conn = Option(DriverManager.getConnection(urf))

printin("Obtain a statement")
val statement = conn.get createStatement()

printin(“Create the Table")
statement executeUpdate(

“CREATE TABLE ‘employees’.'employee" (‘id" INT NOT NULL,
‘name’ VARCHAR(45) NULL, PRIMARY KEY ('id’)

printin(*Now add data")

val sql = "INSERT INTO employee (i
val st = conn.get prepareStatement(sql)
stsetString(1,
stsetString(2, "Adam")
stexecuteUpdate
stsetString(1, "2")
stsetString(2, "Denise”)
stexecuteUpdate
stsetString(1,
stsetString(2, "Phoebe”)
stexecuteUpdate

name) VALUES(?, 2)"

statement.close();
) catch {

case ex: Exception => ex printStackTrace()
}finally {

conn match {

case Some(c) => c.close

}

}

}

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig11_HTML.gif
import sbt._
import Keys._

object Buildsettings {
val buildorganization =
val buildversion
val buildScalaversion = "

val buildSettings = Defaults.defaultSettings ++ Seq (

organization := buildorganization,
version buildversion,

scalaVersion := buildScalaversion,
shellPrompt = ShellPrompt.buildshellPrompt

)

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Fige_HTML.gif
val db = Database.forURL(
“jdbe:mysql:/llocalhost:3306/company?” +
“user=user&password=user123",
driver="com.mysql.cj.idbc.Driver™)

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Chapter_TeX_Equb.png
(x:Int) = {x*x}

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Chapter_TeX_Equa.png
(parameter list) = {func body}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figh_HTML.gif
(LX) _interop — -bash — 87x19.

Johns-illac: nterop Jehs Jauap —cp . con.§ . jova.Test
Compited from *Test.scals
public final class <o

oxeansts func();

Tangustring namel):

interop Jens Javap ~cp . con.ih.Jav
Compited from “Test,scata”
BUBtc final class com 3h. sova.Tests (
Bublic static con.§ih.jova.Tests NODULES:
puslic static 01

Tests

public jova. lang.Sring nase();
pustic vois print()
el

)
Jomns-hact interop sens I

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Fig1_HTML.gif
Facelets

JavaServer Faces

Serviet API

Java EE Container

Servlet / HTTP Server (e.g. Tomeat)

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Chapter_TeX_Equa.png
Tuplel, Tuple2, Tuple3, ... Tuple2l, Tuple22

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Fign_HTML.gif
package com jjh.companion;
public class ExtendedSession extends Session(

public ExtendedSession(int id) {
super(id);
H

}

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figd_HTML.gif
object BasicMethodTest {

def greet(): Unit = {
println("Hello World!

def greet2() = {

println("Hello World!")
def greet3() = println("Hello World")
def greetd() { println(“Hello World!") }

def greet5 = println("Hello World")

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figp_HTML.gif
printin("Set up the connection”)
conn = Option(DriverManager.getConnection(url))

conn.get setAutoCommit(false)

INSERT INTO employee (id, name) VALUES(?, ?)"
conn.get prepareStatement(sql)

st.setString(1,
st.setString(2, "Adam")
st.executeUpd:
st.setString(1,
st.setString(2,
st.executeUpdate
conn.get.commit
conn.get.setAutoCommit(true)

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figg_HTML.gif
object ListOpsApp extends App {

// Create a list of numbers
val numbers = List(1, 2, 3, 4, 5)
println(numbers)
// Determine the length of the list
println("length of the list: " + numbers.length)
// Reverse the list
val rv = numbers.reverse
println("Reversed: " + rv
// returns the list without its first 2 objects
println("Drop first two objects: " + numbers.drop(2))
// Returns the first element
println("The first element: " + numbers.head)
// Returns the last element
println("The last Element: " + numbers.last)
// Returns the list minus the first element
println("The tailed list: " + numbers.tail)
// Returns the list minus the last element
println("The init part of the list: " + numbers.init)
// Tests to see if the list is empty
println("Is the list Empty: " + numbers.isEmpty)
// Convert the list into a String
val s = numbers.mkString(",")
println("String format of list: " + s)

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figd_HTML.gif
BasicProcessor
instance

Doubling

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figw_HTML.gif
object PersonTest extends App {
val pl = new Person("John", 21)
println(pl)
println(s" ${pl.name} is ${pl.age}")
println(s"pl.isToddler: ${pl.isToddler}")
println(s"pl.isPensioner: ${pl.isPensioner()}")
pl.birthday()
pl.age = 18
7/ pl.name = "Bob"

OEBPS/images/323629_2_En_BookFrontmatter_Figa_HTML.gif
&) Springer

OEBPS/images/323629_2_En_8_Chapter/323629_2_En_8_Figc_HTML.gif
object HelloJohn extends App {
val myName = "John Hunt"
if (myNarme.endsWith("Hunt")) {
printin("Hello " + myName)
Yelse {
printin("Hello World")

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figl_HTML.gif
object PersonTestl extends App {
ew Person("John")
${p1.name} is ${pl.age}")

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figac_HTML.gif
package com jjh.banking

case class Account(name: String, number: String) {
private[banking] def print = printin(name)
}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Fig1_HTML.gif
= & taits
b Model.dass

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Fig1_HTML.gif
0.0 _ sichaxamgie [\sers/Shered/orojectafintel-17/skckaxampe) - —foc/lest/sosle/comitVecela/Persontest scele sécheample]
[T R TS p— e b W 8 @ Q

o R e
e S |
e e
e o,
o
e oty]
e T
et
T
e
) e theis propelately” in {
o M
B s g
e (SRR
, wir
,
= e

>@® 5T [rTee————

@ oo s/ ibrary o oatitanDnchins 61,852 J Gontent s o

Frort '
© SR s s v s ot 0

| e T

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Fig2_HTML.gif
Run " RamdomStringApp

» /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/¢
ds_ws_'
Process finished with exit code @

1=

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figac_HTML.gif
package com.jjh.java;
import java.utilList;
public interface Processor {

double calc(List<String> I);
}

OEBPS/css/sidebar.gif

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figu_HTML.gif
package com.jjh.func
object MyScalaTest {

def setFunc(func: Int => String) {
printin(func(10))
}

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figj_HTML.gif
package com.jjh.scala.memory
object TestRuntime {
def main(args: Array[String]): Unit = {
val runtime = sys.runtime

val freeMemory = runtime.freeMemory()
val totalMemory = runtime.totalMemory()

printin(*Total memory is * + totalMemory +
*and free memory is " + freeMemory)

printin("Requesting system gc'
sys.runtime.gc()

val newFreelMemory = runtime.freeMemory()
printin("Total memory is " + totalMemory +
*and free memory is now * + newFreeMemory)

OEBPS/images/323629_2_En_15_Chapter/323629_2_En_15_Figb_HTML.gif
object Main extends App {
val x = new Meter(3 4)
val y = new Meter(4.3)
valz=x+y
Console printin("Result: " + zvalue)

}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figq_HTML.gif
package com.jjh.test
import com jjh.lights. ColouredLight
object LightTest extends App {

val /= new ColouredLight()
printin()
}

OEBPS/images/323629_2_En_16_Chapter/323629_2_En_16_Fig1_HTML.gif
newObject
oldObject l nextObject

\ /

Person

name = John
age=50

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figu_HTML.gif
trait Adaptor {
def invoke: Unit
}

OEBPS/images/323629_2_En_28_Chapter/323629_2_En_28_Figp_HTML.gif
def enqeuelU <: T](x: U) =

new Queue (x, head

tail)

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Figb_HTML.gif
package com.jjh.scala.swing

import scala.swing Bution
import scala.swing.FlowPanel

import scala swing. MainFrame

import scala.swing.SimpleSwingApplication

class ButtonPanel extends MainFrame {
val b1 = new Button { text = "Click Me!" }
val b2 = new Button { text = "Click Him!" }

val panel = new FlowPanel {

contents += b1
contents += b2
}

contents = panel
]

object SwingHelloWorid2 extends SimpleSwingApplication {
def top = new ButtonPanel()
}

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Figk_HTML.gif
def index = Action {
Ok{views html.index("Hello Play World"))
}

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig3_HTML.gif
© 0 ® CreateNew Scals Class.
cancel | (KER

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figc_HTML.gif
// The cons method that prepends a new element

// to the beginning of a list - takes constant time
val newList = "Zero" :: mylist2

println(newList)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figg_HTML.gif
package com.jh.scala.curry

class CurryTest {
def sum(x: Int)(y: Inf) =x +y
]

object CurryTest extends App {
val test = new CurryTest
printintest.sum(2)(3))

}

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Figg_HTML.gif
import akka.actor.Actor
import akka.actor.Props
import akka.actor.ActorSystem

class LifecycleGreeter extends Actor {

override def prestart(): Unit =

(println("prestart”) }
override def postStop(): Unit =

 println("poststop") }

def receive = {
"hello" => printin("Hello World")
"stop" => context.stop(self)

> println(*Hello Whoever")

}

object LifecycleTestl extends App {
val props = Props[LifecycleGreeter]
val system = ActorSystem("mysystem")
val actor = system.actorOf (props)
actor ! rhello”
actor ! "Welcome"
actor to
System. terminate

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figp_HTML.gif
Run [SetupDB

>

=
£=1

/Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/!
starting

Run db setup

Database setup complete

Result: Success(())

Process finished with exit code @

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Fig2_HTML.gif
é

é

OEBPS/images/323629_2_En_31_Chapter/323629_2_En_31_Fig7_HTML.gif
) Console 52 (2] Problems] Tasks
<terminated> HelloworldAKkaTest$ [Scala Application]

Hello World
Hello Whoever
Hello World

Hello Whoever
Hello Whoever]|

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Fig2_HTML.gif
AnyValue

Any

AnyRef

Unit

List

Seq

Boolean

String

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figt_HTML.gif
val family = List(dad, mum, adam, phoebe

// Note Scala can infer the paramete
family.foreach(println ("Family Member:

// get everyone over the age of 21
val over2l = family.filter { _.age > 21 }
println (over2l)

// Extract the ages and find the average
val ages = family.map(_.age!
println(ages)

val averageAge = ages.sum / ages.size
brintln("Average age: " + averageAge!

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Fign_HTML.gif
r
* Universal Trait - does no allocation
* and extends Any.

“

rait Printable extends Any {

def print(): Unit = printin(this)

b

* Value class that wraps an Int.

“

class Wrapper(val underlying: Int)
extends AnyVal with Printable

-
* Test App
*
object Main extends App {
val p: Printable = new Wrapper(32)
p.print()

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figt_HTML.gif
object TestDbUpdate extends App {
val url = "jdbe:mysqli/localhost:3306/employees?” +
“user=user8password=user123"
var conn: Option[Connection] = None
try{
printin("Load the driver”)
classOflcom.mysql.jdbe.Driver]

printin(“Set up the connection”)
conn = Option(DriverManager.getConnection(url))

printin("Obtain a statement")
val statement = conn.get.createStatement()
printin("Execute Update”)
val 1s = statement.executeUpdate(

"UPDATE employee SET name="Sofie' WHERE id='
printin(rs)

}eateh {
case ex: Exception => ex,printStackTrace()
}finally {
conn match {
case Some(c) => c.close

}

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figc_HTML.gif
Query OK, 1 row affected (0.00 sec)

OEBPS/images/323629_2_En_40_Chapter/323629_2_En_40_Figi_HTML.gif
val m4 = ml.intersectWith(m3)((mlv, m3v)

mlv)

OEBPS/images/323629_2_En_41_Chapter/323629_2_En_41_Fig2_HTML.gif
©® O O Hello World!

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figk_HTML.gif
val info = for (n <- List("one", "two", "three'

OEBPS/images/323629_2_En_2_Chapter/323629_2_En_2_Fig3_HTML.gif
Person car
Student Engine
e partol

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figh_HTML.gif
class Person(val salary: Double) {
var taxToPay = 0.0

def calcuateTax(calculator: (Double) => Double) {
taxToPay = calculator(salary)
}
b

object TestPerson extends App {
val taxCalculator = (x: Double) => Math.cei(x * 0.3)
val p = new Person(45000.0)
p.calouateTax(taxCalculator)
printin(p.taxToPay)

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figx_HTML.gif
object Processor {
def mult(x: Int, y: Int): Int = x * y

OEBPS/images/323629_2_En_27_Chapter/323629_2_En_27_Figf_HTML.gif
var tZ = ListSet("Liverpool”, "West Ham",
"Newcastle", "Everton", "West Ham")

println(t2)

OEBPS/images/323629_2_En_23_Chapter/323629_2_En_23_Figa_HTML.gif
Int)
Int)
Int)

Int)

e

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figs_HTML.gif
object ArraylestZ extends App 1{
val myArray = Array("Zero ", "One ", "Two"
myArray. foreach(x => println(x))

}

OEBPS/images/323629_2_En_16_Chapter/323629_2_En_16_Figa_HTML.gif
ption[Date] = None

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figm_HTML.gif
class Graduate(n: String, a: Int,
degree: String,
uni: String) extends Person(n, a) {

val institution: String = uni

def this(n: String, a: Int, degree: String) =
this(n, a, degree, "Oxford")

override def toString =
s"Graduate ${super.toString} Sdegree]";

def prettyPrint
printin(*Graduate”)
printin("\tName: * + name)
printin(“\tAge: " + age)
printin("\tDegree: " + degree)
printin(*\tUniversity: * + uni)

}
}

OEBPS/images/323629_2_En_39_Chapter/323629_2_En_39_Figd_HTML.gif
package controllers
import javax inject Inject

import play.api.mve.AbstractController
import play.api.mvc.ControllerComponents

import play.api.ibs.json._

import model Books
import model Book

class BookstoreController @Inject()(cc: ControllerComponents) extends.
AbstractController(cc) {

Utility methods
private def booksAsJsonList: JsObject
JsObject("books" -> JsArray(Books.bookList.map { book => toJson(book)})
Nil)

private def toJson(book: Book) = {
JsObject(

“isbn" -> JsNumber(book.isbn) ::
“title" -> JsString(book fitle) =
“author" -> JsString(book author
“price"” > JsNumber(book.price) :: Nil)

)

1/ Request Handling mehtods

def list = Action {
Ok(booksAsJsonList)

}

def get(isbn: Int) = Action {
Ok{toJson(Books geffisbn)))

}

}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figa_HTML.gif
package comjjh.java

class Person (name: Strin:

lohn", var age:Int=47)

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figi_HTML.gif
object LabelMakerApp extends App {
import LabelMaker._

val a = Address("High Street", 10)
// method label uses Label maker to convert to labels
/ implicitly uses the object instance of

// AddressLabelMaker

printin(iabel(a))

OEBPS/images/323629_2_En_13_Chapter/323629_2_En_13_Figf_HTML.gif
Run [CatTest

> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk
Tiddles is timid
Tigger is dangerous

Process finished with exit code @

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Fig10_HTML.gif
| compiles into
L —]

runs on

Virtual
Machine

runs on

Host Machine

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figa_HTML.gif
def assert(assertion: Boolean) {

if (tassertion)

throw new java.lang. AssertionError(
*assertion failed")

b
def assume(assumption: Boolean) {

if (tassumption)

throw new java lang.AssertionError(

I
def require(requirement: Boolean) {
if (requirement)
throw new lllegalArgumentException(
“requirement failed")

*assumption failed")

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figv_HTML.gif
object ClosureExamplesApp extends App {

var more = 100
val increase = (x: Int) => x + more
printin(increase(10))

more = 50

printin(increase(10))

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fig5_HTML.gif
File

Hello

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figl_HTML.gif
users

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figk_HTML.gif
write (file) {
writer => writer.println(new Date)

}

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figc_HTML.gif
New Package
Enter new package name:

comiinta]

-

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figy_HTML.gif
package com.jjh.func;

import scala Functiont;
import scala.runtime.AbstractFunction1;

public class FuncTest {

public static void main(String[] args) {
Function1<Object, String> f =
new AbstractFunction<Object, String>() {
public String apply(Object somelnt) {
return "Hello world: " + somelnt;

i

i
MyScalaTest.setFunc(f);
}

OEBPS/images/323629_2_En_7_Chapter/323629_2_En_7_Figc_HTML.gif
ot oA

Download IntelliJ IDEA

Ultimate ‘Community

For web and onterprise For JVM and Android
doveiopment. development

OEBPS/images/323629_2_En_38_Chapter/323629_2_En_38_Fig4_HTML.gif
Play Server

HTTP GETRequest _|» Routes

Browser \ object

‘ index Application

HTTP Response

index.scala.html

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig8_HTML.gif
rojects jens bt
Tinfo) Lasing glabal plugins fron /Users/jen/.sbe/0.13/plugins
[into) Updating. {181es/Users/Jens. 5ot/ 13/plupins/}olabal-plusgins..
[info) Resolving org. usesource.sonsisjansiri s <.

2.010p.Jor (125605)

oone pesting.
Set current project to sbt-projects (in buils file:/Users/SeN/sbi-progects/)
2 neme: hellorart

Tinfol Genersted buite fite

Tinfe) Genarates source sirectories

Fprre TR iae s 5, Comtetes anoecans tactsiar \

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Fign_HTML.gif
Run ' TestToString
> /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk/!
com. jjh. scala.person. Person@3flafe7s

Process finished with exit code @

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figi_HTML.gif
object SampleApp extends App {
val pa: Array[Person] = new Array[Person](4)
printin(pa)
printin(pa(0))

}

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figaa_HTML.gif
object SampleApp extends App {
val r3 = Processor.mult(y=3, x=2)
println(r3)

OEBPS/images/323629_2_En_30_Chapter/323629_2_En_30_Figd_HTML.gif
class DivideByZeroEx
extends Exception ("

ption(val source: Any)
ivide By Zero in " + source)

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figd_HTML.gif
System.out.printin(p.age());
p-age_Seq(55);
System.out.printin(p.age());

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figs_HTML.gif
object SampleApp extends App {
import DaysOfWeek.
val today = Monday
printin(today)
printin(today < Friday)

}

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figo_HTML.gif
JUr———
oy e et oaachiges §1.8._152. v/ Cotont ome o

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figh_HTML.gif
Run " FuncApp

» /Library/Java/JavaVirtualMachines/jdk1.8.0_152. jdk
Initial value of y: 1
Increased y: 2

Process finished with exit code @

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figa_HTML.gif
"No Data"

printin(role)

OEBPS/images/323629_2_En_15_Chapter/323629_2_En_15_Fige_HTML.gif
case class Meter(val value: Double) extends AnyVal {
def +(m: Meter) : Meter = new Meter(value + m.value)

}

OEBPS/images/323629_2_En_44_Chapter/323629_2_En_44_Figr_HTML.gif
Johns-iMac: interop jehs 1avap ~cp . com.3jh.traits.Hodel
Compiled from "Model.scala
public interface con.jjh. traits.Hodel {

abstract java. lang. String title();
abstract void title_seqljava.lang.String);
abstract java. lang.String infoljava. lang.String);
static void printsicon.Jjh. traits.Hodel
void print();
Static void Sinits(con.

3. traits Model):
3
Johns-tMac: interop jens I

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figc_HTML.gif
object ReplyTest extends App {
println("starting ReplyTest application”)
val system = ActorSystem('mysystem")
val controller = system.actorOf (Controller.props)
controller ! "start”
println("End of ReplyTest body")
system terminate

OEBPS/images/323629_2_En_35_Chapter/323629_2_En_35_Figs_HTML.gif
val g3

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figm_HTML.gif
G Company.scala - © CompanyTestApp.scala

2
3

package con.jjh.info
object CompanyTestapp {

3

OEBPS/images/323629_2_En_9_Chapter/323629_2_En_9_Figs_HTML.gif
class Currency(a: Long, d: String) {

// Auxiliary Constructor
def this(a: Long) = this(a, "GBP")

// Validates the data being received

// If not met will throw a

// java.lang.IllegalArgumentException
require(a > 0)

// Runs when the object is first created
// Can't use toString as not set yet
println(“Created: " +d + " " + a)

OEBPS/images/323629_2_En_24_Chapter/323629_2_En_24_Figd_HTML.gif

OEBPS/images/323629_2_En_21_Chapter/323629_2_En_21_Fige_HTML.gif
val pair2

OEBPS/images/323629_2_En_12_Chapter/323629_2_En_12_Figt_HTML.gif
package com jjh.info

object CompanyTestApp extends App {
printin("Starting Company TestApp")
val company = new Company()

// Set up the company information
company.name = "John Sys"

company.address = "Coldharbour Street, London
company.telephone = "123456'
company.registrationNumber = "99999999"
company.vatNumber = "BB112233AA"
company.postcode = "BS16 1QY"

company.print

printin(company)

printin(*Done CompanyTestApp")
}

OEBPS/images/323629_2_En_11_Chapter/323629_2_En_11_Figj_HTML.gif
package com.jjh.lights

class ColouredLight extends Light

OEBPS/images/323629_2_En_18_Chapter/323629_2_En_18_Figd_HTML.gif
object Course extends Model — an object that mixes in a
single Trait Model.

object Course extends Programme with Model — an object
that extends Programme and mixes in Model.

object Course extends Model with AwardCeremony — @n
object mixing in Model and AwardCeremony.

object Course extends Programme with Model with
AwardCeremony — an object that extends Programme and
mixes in Model and AwardCeremony.

OEBPS/images/323629_2_En_22_Chapter/323629_2_En_22_Figo_HTML.gif
object Math {

def max(x: Int, y: Int): Int = {
if (x> y) x else y
}

val increment = (x: Int) => x + 1

]

object MathObjectApp extends App {
// Can invoke methods
printin(Math.max(2, 3))
// Can invoke functions
printin(Math.increment(3))
// Can use named parameters
printin(Math. max(
printin(Math.max(
}

OEBPS/images/323629_2_En_37_Chapter/323629_2_En_37_Figh_HTML.gif
package com.jjh.scala

class Person(val name: String, var age: Int) {
override def toString() = s"Sname is Sage”

b

OEBPS/images/323629_2_En_32_Chapter/323629_2_En_32_Figj_HTML.gif
class Supervisor extends Actor {
var children = ArrayBuffer [ActorRef] ()

// Restart the child actors child when RuntimeException is
// thrown.

// After 3 restarts within 1 minute it will be stopped.
override val supervisorStrategy =
OneForOneStrategy (maxNrOfRetries =

withinTimeRange = 1 minute) {
case _: RuntimeException =>
{ println("supervisor Restarting"); Restart})
b
override def prestart(): Unit = {
children +=

context .actorof (Props (classof [ChildActor], "childl"))
children +=

context .actorOf (Props (classof [ChildActor],
1
def receive = {
case "run' => {
println("Supervisor run")
children. foreach(a
3

case "error’ =

"child2"))

a! "msg")

«
println("Supervisor error")
children.foreach(a => a ! "error")

OEBPS/images/323629_2_En_42_Chapter/323629_2_En_42_Fige_HTML.gif
package com jeh.scala.swing

import scala.swing.Bution
import scala.swing.MainFrame

import scala. swing.SimpleSwingApplication
import scala.swing.event ButtonClicked
import scala.swing.Reactor

class SimpleFrame2 extends MainFrame {
title = "Hello World!"

val button = new Button {
text = "Click Me!"
}

val reactor = new ButtonReactor()

contents = button

reactor listenTo("button’)
b

class ButtonReactor extends Reactor {
reactions += {
case ButtonClicked(button) =>
printin(*Hello World")

b
object SwingSample2 extends SimpleSwingApplication {

def top = new SimpleFrame2()

}

OEBPS/images/323629_2_En_17_Chapter/323629_2_En_17_Figr_HTML.gif
Run " TailRecursionTest
b 4 /uibrary/Java/davalirtualachines/3dkl.8.0_152. jdk/Contents/Hone/bin/ ava
Exception in thread "main" java. lang. Exception: Bang!

: ailRecursionTests. bang (UtiL. scala;23)

at con,jh.scala, tail. TaiRecursionTests. rain(UtiL.scala: 19)

at con.jjh.scala. tail.
at con.jh.scala. tail. TailRecursionTest. nain(Util. scala)

= Process finished with exit code 1

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figb_HTML.gif
class IntOperations(originalValue: Int) {
def square = originalValue * originalValue

]

object IntSquare {
implicit def intTolntOperations (n: Int):
IntOperations = new IntOperations(n)

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Figm_HTML.gif
conn.setAutoCommit(true)

OEBPS/images/323629_2_En_26_Chapter/323629_2_En_26_Figj_HTML.gif
// Create a list of numbers
val numbers = List(l, 2, 3, 4, 5)

println (numbers)

// Apply a function used to filter the members
// of the list and create a new list

val f - numbers.filter(n => n < 3)

println("Filtered: " + f)

OEBPS/images/323629_2_En_19_Chapter/323629_2_En_19_Figg_HTML.gif
object Test extends App {
val p = new BasicProcessor(0)
with Incrementing with Doubling
p.update(5)
printin(p)
}

OEBPS/images/323629_2_En_20_Chapter/323629_2_En_20_Figb_HTML.gif

OEBPS/images/323629_2_En_4_Chapter/323629_2_En_4_Fig5_HTML.gif

OEBPS/images/323629_2_En_29_Chapter/323629_2_En_29_Figz_HTML.gif
object StringDirection extends Enumeration {
")

val West = Value("

OEBPS/images/323629_2_En_33_Chapter/323629_2_En_33_Fig6_HTML.gif
2 sagioters Ooladource olfect

Naming Service || DetaSource Setup
Program

—r——

Datasource
Client /
Applcation

ooy E—

wm‘ —

7. Commactionusos

OEBPS/images/323629_2_En_10_Chapter/323629_2_En_10_Figg_HTML.gif
det add(1: Int): Unit {
=i+1 // won't compile i is a val

OEBPS/images/323629_2_En_43_Chapter/323629_2_En_43_Fig1_HTML.gif
Compile j

System "
Test Unit Test
Installation Package

