
123

Peter Corke

Se
co

nd
 E

di
ti

on

Robotics,
 Vision
 and
 Control

FUNDAMENTAL
ALGORITHMS
IN MATLAB®

Springer Tracts in Advanced Robotics
Volume 118

Editors: Bruno Siciliano · Oussama Khatib

Peter Corke

Robotics,
Vision and Control
Fundamental Algorithms in MATLAB®

Second, completely revised, extended and updated edition

With 492 Images

Additional material is provided at www.petercorke.com/RVC

Professor Bruno Siciliano

Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione,
Università di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy,
e-mail: siciliano@unina.it

Professor Oussama Khatib

Artificial Intelligence Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305-9010, USA,
e-mail: khatib@cs.stanford.edu

Author
Peter Corke

School of Electrical Engineering and Computer Science
Queensland University of Technology (QUT), Brisbane QLD 4000, Australia
e-mail: rvc@petercorke.com

ISSN 1610-7438 ISSN 1610-742X (electronic)
Springer Tracts in Advanced Robotics

ISBN 978-3-319-54412-0 ISBN 978-3-319-54413-7 (eBook)
DOI 10.1007/978-3-319-54413-7

Library of Congress Control Number:

1st ed. 2011 © Springer-Verlag Berlin Heidelberg 2011
© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Production: Armin Stasch and Scientific Publishing Services Pvt. Ltd. Chennai, India
Typesetting and layout: Stasch · Bayreuth (stasch@stasch.com)

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 2017934638

Editorial Advisory Board

Nancy Amato, Texas A & M, USA
Oliver Brock, TU Berlin, Germany
Herman Bruyninckx, KU Leuven, Belgium
Wolfram Burgard, Univ. Freiburg, Germany
Raja Chatila, ISIR – UPMC & CNRS, France
Francois Chaumette, INRIA Rennes – Bretagne Atlantique, France
Wan Kyun Chung, POSTECH, Korea
Peter Corke, Queensland Univ. Technology, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy
Alessandro De Luca, Sapienza Univ. Roma, Italy
Rüdiger Dillmann, Univ. Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, Univ. Utah, USA
Lydia Kavraki, Rice Univ., USA
Vijay Kumar, Univ. Pennsylvania, USA
Bradley Nelson, ETH Zürich, Switzerland
Frank Park, Seoul National Univ., Korea
Tim Salcudean, Univ. British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland
Gaurav Sukhatme, Univ. Southern California, USA

More information about this series at http://www.springer.com/series/5208

To my family Phillipa, Lucy and Madeline for their indulgence and support;
my parents Margaret and David for kindling my curiosity;

and to Lou Paul who planted the seed that became this book.

Foreword

Once upon a time, a very thick document of a dissertation from a faraway land came
to me for evaluation. Visual robot control was the thesis theme and Peter Corke was
its author. Here, I am reminded of an excerpt of my comments, which reads, this is a
masterful document, a quality of thesis one would like all of one’s students to strive for,
knowing very few could attain – very well considered and executed.

The connection between robotics and vision has been, for over two decades, the
central thread of Peter Corke’s productive investigations and successful developments
and implementations. This rare experience is bearing fruit in this second edition of his
book on Robotics, Vision, and Control. In its melding of theory and application, this
second edition has considerably benefi ted from the author’s unique mix of academic
and real-world application infl uences through his many years of work in robotic min-
ing, fl ying, underwater, and fi eld robotics.

There have been numerous textbooks in robotics and vision, but few have reached
the level of integration, analysis, dissection, and practical illustrations evidenced in
this book. The discussion is thorough, the narrative is remarkably informative and
accessible, and the overall impression is of a signifi cant contribution for researchers
and future investigators in our fi eld. Most every element that could be considered as
relevant to the task seems to have been analyzed and incorporated, and the effective
use of Toolbox software echoes this thoroughness.

The reader is taken on a realistic walkthrough the fundamentals of mobile robots,
navigation, localization, manipulator-arm kinematics, dynamics, and joint-level con-
trol, as well as camera modeling, image processing, feature extraction, and multi-view
geometry. These areas are fi nally brought together through extensive discussion of
visual servo system. In the process, the author provides insights into how complex
problems can be decomposed and solved using powerful numerical tools and effec-
tive software.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics fi eld on the basis of their sig-
nifi cance and quality. Through a wide and timely dissemination of critical research
developments in robotics, our objective with this series is to promote more exchanges
and collaborations among the researchers in the community and contribute to further
advancements in this rapidly growing fi eld.

Peter Corke brings a great addition to our STAR series with an authoritative book,
reaching across fi elds, thoughtfully conceived and brilliantly accomplished.

Oussama Khatib
Stanford, California

October 2016

These are exciting times for robotics. Since the fi rst edition of this book was published
we have seen much progress: the rise of the self-driving car, the Mars science labora-
tory rover making profound discoveries on Mars, the Philae comet landing attempt,
and the DARPA Robotics Challenge. We have witnessed the drone revolution – fl ying
machines that were once the domain of the aerospace giants can now be bought for just
tens of dollars. All this has been powered by the continuous and relentless improve-
ment in computer power and tremendous advances in low-cost inertial sensors and
cameras – driven largely by consumer demand for better mobile phones and gaming
experiences. It’s getting easier for individuals to create robots – 3D printing is now
very affordable, the Robot Operating System (ROS) is both capable and widely used,
and powerful hobby technologies such as the Arduino, Raspberry Pi, Dynamixel servo
motors and Lego’s EV3 brick are available at low cost. This in turn has contributed to
the rapid growth of the global maker community – ordinary people creating at home
what would once have been done by a major corporation. We have also witnessed an
explosion of commercial interest in robotics and computer vision – many startups
and a lot of acquisitions by big players in the fi eld. Robotics even featured on the front
cover of the Economist magazine in 2014!

So how does a robot work? Robots are data-driven machines. They acquire data,
process it and take action based on it. The data comes from sensors measuring the ve-
locity of a wheel, the angle of a robot arm’s joint or the intensities of millions of pixels
that comprise an image of the world that the robot is observing. For many robotic ap-
plications the amount of data that needs to be processed, in real-time, is massive. For
a vision sensor it can be of the order of tens to hundreds of megabytes per second.

Progress in robots and machine vision has been, and continues to be, driven by
more effective ways to process data. This is achieved through new and more effi cient
algorithms, and the dramatic increase in computational power that follows Moore’s
law.� When I started in robotics and vision in the mid 1980s, see Fig. 0.1, the IBM PC
had been recently released – it had a 4.77 MHz 16-bit microprocessor and 16 kbytes
(expandable to 256 k) of memory. Over the intervening 30 years computing power has
perhaps doubled 20 times which is an increase by a factor of one million.

Over the fairly recent history of robotics and machine vision a very large body of
algorithms has been developed to effi ciently solve large-scale problems in perception,
planning, control and localization – a signifi cant, tangible, and collective achievement
of the research community. However its sheer size and complexity presents a very real
barrier to somebody new entering the fi eld. Given so many algorithms from which to
choose, a real and important question is:

 What is the right algorithm for this particular problem?

One strategy would be to try a few different algorithms and see which works best
for the problem at hand, but this is not trivial and leads to the next question:

 How can I evaluate algorithm X on my own data without spending days coding and
debugging it from the original research papers?

Preface
Tell me and I will forget.

Show me and I will remember.
Involve me and I will understand.

Chinese proverb

Simple things should be simple,
complex things should be possible.

Alan Kay

“Computers in the future may weigh no
more than 1.5 tons.” Popular Mechanics,
forecasting the relentless march of sci-
ence, 1949

xii Preface

Two developments come to our aid. The fi rst is the availability of general purpose
mathematical software which it makes it easy to prototype algorithms. There are
commercial packages such as MATLAB®, Mathematica®, Maple® and MathCad®�, as
well as open source projects include SciLab, Octave, and PyLab. All these tools deal
naturally and effortlessly with vectors and matrices, can create complex and beauti-
ful graphics, and can be used interactively or as a programming environment. The
second is the open-source movement. Many algorithms developed by researchers are
available in open-source form. They might be coded in one of the general purpose
mathematical languages just mentioned, or written in a mainstream language like C,
C++, Java or Python.

For more than twenty years I have been part of the open-source community and
maintained two open-source MATLAB Toolboxes: one for robotics and one for machine
vision�. They date back to my own Ph.D. work and have evolved since then, growing
features and tracking changes to the MATLAB language. The Robotics Toolbox has
also been translated into a number of different languages such as Python, SciLab and
LabView. More recently some of its functionality is fi nding its way into the MATLAB
Robotics System Toolbox™ published by The MathWorks.

These Toolboxes have some important virtues. Firstly, they have been around for
a long time and used by many people for many different problems so the code can be
accorded some level of trust. New algorithms, or even the same algorithms coded in
new languages or executing in new environments, can be compared against imple-
mentations in the Toolbox.

» allow the user to work with real problems,
 not just trivial examples

Secondly, they allow the user to work with real problems, not just trivial examples.
For real robots, those with more than two links, or real images with millions of pixels
the computation required is beyond unaided human ability. Thirdly, they allow us to
gain insight which can otherwise get lost in the complexity. We can rapidly and easily
experiment, play what if games, and depict the results graphically using the power-
ful 2D and 3D graphical display tools of MATLAB. Fourthly, the Toolbox code makes
many common algorithms tangible and accessible. You can read the code, you can
apply it to your own problems, and you can extend it or rewrite it. It gives you a “leg
up” as you begin your journey into robotics.

» a narrative that covers robotics and computer vision
 – both separately and together

Fig. 0.1.
Once upon a time a lot of equip-
ment was needed to do vision-
based robot control. The author
with a large rack full of real-time
image processing and robot
control equipment (1992)

Respectively the trademarks of The Math-
Works Inc., Wolfram Research, MapleSoft
and PTC.

The term machine vision is uncommon
today, but it implied the use of real-time
computer vision techniques in an indus-
trial setting for some monitoring or con-
trol purpose. For robotics the real-time
aspect is critical but today the interest-
ing challenges are in nonindustrial ap-
plications such as outdoor robotics. The
term robotic vision is gaining currency
and is perhaps a modern take on ma-
chine vision.

xiiiPreface

The genesis of the book lies in the tutorials and reference material that originally
shipped with the Toolboxes from the early 1990s, and a conference paper describing
the Robotics Toolbox that was published in 1995. After a false start in 2004, the fi rst
edition of this book was written in 2009–2010. The book takes a conversational ap-
proach, weaving text, mathematics and examples into a narrative that covers robotics
and computer vision – both separately and together. I wanted to show how complex
problems can be decomposed and solved using just a few simple lines of code. More
formally this is an inductive learning approach, going from specifi c and concrete ex-
amples to the more general.

» show how complex problems can be decomposed
 and solved

The topics covered in this book are based on my own interests but also guided by
real problems that I observed over many years as a practitioner of both robotics and
computer vision. I want to give the reader a fl avor of what robotics and vision is about
and what it can do – consider it a grand tasting menu. I hope that by the end of this
book you will share my enthusiasm for these topics.

» consider it a grand tasting menu

I was particularly motivated to present a solid introduction to computer vision
for roboticists. The treatment of vision in robotics textbooks tends to concentrate
on simple binary vision techniques. In this book we will cover a broad range of top-
ics including color vision, advanced segmentation techniques, image warping, stereo
vision, motion estimation, bundle adjustment, visual odometry and image retrieval.
We also cover nonperspective imaging using fi sheye lenses, catadioptric optics and
the emerging area of light-fi eld cameras. These topics are growing in importance for
robotics but are not commonly covered. Vision is a powerful sensor, and roboticists
should have a solid grounding in modern fundamentals. The last part of the book
shows how vision can be used as the primary sensor for robot control.

This book is unlike other text books, and deliberately so. Firstly, there are already
a number of excellent text books that cover robotics and computer vision separately
and in depth, but few that cover both in an integrated fashion. Achieving such inte-
gration is a principal goal of the book.

» software is a first-class citizen in this book

Secondly, software is a fi rst-class citizen in this book. Software is a tangible instan-
tiation of the algorithms described – it can be read and it can be pulled apart, modifi ed
and put back together again. There are a number of classic books that use software in
an illustrative fashion and have infl uenced my approach, for example LaTeX: A docu-
ment preparation system (Lamport 1994), Numerical Recipes in C (Press et al. 2007),
The Little Lisper (Friedman et al. 1987) and Structure and Interpretation of Classical
Mechanics (Sussman et al. 2001). Over 1 000 examples in this book illustrate how the
Toolbox software can be used and generally provide instant gratifi cation in just a
couple of lines of MATLAB code.

» instant gratification in just a couple of lines
 of MATLAB code

Thirdly, building the book around MATLAB and the Toolboxes means that we are
able to tackle more realistic and more complex problems than other books.

» this book provides a complementary approach

xiv Preface

The emphasis on software and examples does not mean that rigor and theory are
unimportant – they are very important, but this book provides a complementary ap-
proach. It is best read in conjunction with standard texts which do offer rigor and
theoretical nourishment. The end of each chapter has a section on further reading
and provides pointers to relevant textbooks and key papers. I try hard to use the least
amount of mathematical notation required, if you seek deep mathematical rigor this
may not be the book for you.

Writing this book provided the impetus to revise and extend the Toolboxes and
to include some great open-source software. I am grateful to the following for code
that has been either incorporated into the Toolboxes or which has been wrapped into
the Toolboxes. Robotics Toolbox contributions include: mobile robot localization
and mapping by Paul Newman; a quadrotor simulator by Paul Pounds; a Symbolic
Manipulator Toolbox by Jörn Malzahn; pose-graph SLAM code by Giorgio Grisetti
and 3D robot models from the ARTE Robotics Toolbox by Arturo Gil. Machine Vision
Toolbox contributions include: RANSAC code by Peter Kovesi; pose estimation by
Francesco Moreno-Noguer, Vincent Lepetit, and Pascal Fua; color space conversions
by Pascal Getreuer; numerical routines for geometric vision by various members of
the Visual Geometry Group at Oxford (from the web site of the Hartley and Zisserman
book; Hartley and Zisserman 2003); k-means, SIFT and MSER algorithms from the
wonderful VLFeat suite (vlfeat.org); graph-based image segmentation software by
Pedro Felzenszwalb; and the OpenSURF feature detector by Dirk-Jan Kroon. The Camera
Calibration Toolbox by Jean-Yves Bouguet is used unmodifi ed.

Along the way I became fascinated by the mathematicians, scientists and engineers
whose work, hundreds of years ago, underpins the science of robotic and computer
vision today. Some of their names have become adjectives like Coriolis, Gaussian,
Laplacian or Cartesian; nouns like Jacobian, or units like Newton and Coulomb. They
are interesting characters from a distant era when science was a hobby and their day
jobs were as doctors, alchemists, gamblers, astrologers, philosophers or mercenaries.
In order to know whose shoulders we are standing on I have included small vignettes
about the lives of some of these people – a smattering of history as a backstory.

In my own career I have had the good fortune to work with many wonderful peo-
ple who have inspired and guided me. Long ago at the University of Melbourne John
Anderson fi red my interest in control and Graham Holmes tried with mixed suc-
cess to have me “think before I code”. Early on I spent a life-direction-changing ten
months working with Richard (Lou) Paul in the GRASP laboratory at the University
of Pennsylvania in the period 1988–1989. The genesis of the Toolboxes was my Ph.D.
research (1991–1994) and my advisors Malcolm Good (University of Melbourne) and
Paul Dunn (CSIRO) asked me good questions and guided my research. Laszlo Nemes
(CSIRO) provided great wisdom about life and the ways of organizations, and encour-
aged me to publish and to open-source my software. Much of my career was spent at
CSIRO where I had the privilege and opportunity to work on a diverse range of real
robotics projects and to work with a truly talented set of colleagues and friends. Part
way through writing the fi rst edition I joined the Queensland University of Technology
which made time available to complete that work, and in 2015 sabbatical leave to com-
plete the second.

Many people have helped me in my endeavor and I thank them. I was generously
hosted for periods of productive writing at Oxford (both editions) by Paul Newman,
and at MIT (fi rst edition) by Daniela Rus. Daniela, Paul and Cédric Pradalier made
constructive suggestions and comments on early drafts of that edition. For the second
edition I was helped by comments on draft chapters by: Tim Barfoot, Dmitry Bratanov,
Duncan Campbell, Donald Dansereau, Tom Drummond, Malcolm Good, Peter Kujala,
Obadiah Lam, Jörn Malzahn, Felipe Nascimento Martins, Ajay Pandey, Cédric Pradalier,
Dan Richards, Daniela Rus, Sareh Shirazi, Surya Singh, Ryan Smith, Ben Talbot, Dorian
Tsai and Ben Upcroft; and assisted with wisdom and content by: François Chaumette,
Donald Dansereau, Kevin Lynch, Robert Mahony and Frank Park.

xv

I have tried my hardest to eliminate errors but inevitably some will remain. Please
email bug reports to me at rvc@petercorke.com as well as suggestions for improve-
ments and extensions.

Writing the second edition was fi nancially supported by EPSRC Platform Grant EP/
M019918/1, QUT Science & Engineering Faculty sabbatical grant, QUT Vice Chancellor’s
Excellence Award, QUT Robotics and Autonomous Systems discipline and the ARC
Centre of Excellence for Robotic Vision (grant CE140100016).

Over both editions I have enjoyed wonderful support from MathWorks, through
their author program, and from Springer. My editor Thomas Ditzinger has been a great
supporter of this project and Armin Stasch, with enormous patience and dedication in
layout and typesetting, has transformed my untidy ideas into a thing of beauty.

Finally, my deepest thanks are to Phillipa who has supported me and “the book”
with grace and patience for a very long time and in many different places – without
her this book could never have been written.

Peter Corke
Brisbane,

Queensland
October 2016

Note on the Second Edition

It seems only yesterday that I turned in the manuscript for the fi rst edition of this book,
but it was in fact December 2010, the end of 20 months of writing. So the oldest parts
of the book are over 6 years old – it’s time for an update!

The revision principle was to keep the good (narrative style, code as a fi rst-class citi-
zen, soft plastic cover) and eliminate the bad (errors and missing topics). I started with
the collected errata for the fi rst edition and pencilled markup from a battered copy of the
fi rst edition that I’ve carried around for years. There were more errors than I would have
liked and I thank everybody who submitted errata and suggested improvements.

The fi rst edition was written before I taught in the university classroom or created
the MOOCs, which is the inverse of the way books are normally developed. Preparing
for teaching gave me insights into better ways to present some topics, particularly
around pose representation, robot kinematics and dynamics so the presentation has
been adjusted accordingly.

New content includes matrix exponential notation; the basics of screw theory and
Lie algebra; inertial navigation; differential steer and omnidirectional mobile robots; a
deeper treatment of SLAM systems including scan matching and pose graphs; greater
use of MATLAB computer algebra; operational space control; deeper treatment of ma-
nipulator dynamics and control; visual SLAM and visual odometry; structured light;
bundle adjustment; and light-fi eld cameras.

In the fi rst edition I shied away from Lie algebra, matrix exponentials and twists
but I think it’s important to cover them. The topic is deeply mathematical and I’ve
tried to steer a middle ground between hardcore algebraic topology and the homog-
enous transformation only approach of most other texts, while also staying true to the
overall approach of this book.

All MATLAB generated fi gures have been regenerated to refl ect recent improve-
ments to MATLAB graphics and all code examples have been updated as required and
tested, and are available as MATLAB Live Scripts.

The second edition of the book is matched by new major releases of my Toolboxes:
Robotics Toolbox (release 10) and the Machine Vision Toolbox (release 4). These newer
versions of the toolboxes have some minor incompatibilities with previous releases of the
toolboxes, and therefore also with the code examples in the fi rst edition of the book.

Preface

Contents

1 Introduction . 1
1.1 Robots, Jobs and Ethics . 7
1.2 About the Book . 8

1.2.1 MATLAB Software and the Toolboxes . 9
1.2.2 Notation, Conventions and Organization . 10
1.2.3 Audience and Prerequisites . 11
1.2.4 Learning with the Book . 11
1.2.5 Teaching with the Book . 12
1.2.6 Outline . 12

 Further Reading . 14

 Part I Foundations . 15
2 Representing Position and Orientation . 17
2.1 Working in Two Dimensions (2D) . 22

2.1.1 Orientation in 2-Dimensions . 23
2.1.2 Pose in 2-Dimensions . 26

2.2 Working in Three Dimensions (3D) . 31
2.2.1 Orientation in 3-Dimensions . 32
2.2.2 Pose in 3-Dimensions . 46

2.3 Advanced Topics . 49
2.3.1 Normalization . 49
2.3.2 Understanding the Exponential Mapping . 50
2.3.3 More About Twists . 52
2.3.4 Dual Quaternions . 55
2.3.5 Confi guration Space . 55

2.4 Using the Toolbox . 56
2.5 Wrapping Up . 58

Further Reading . 60
Exercises . 61

3 Time and Motion . 63
3.1 Time-Varying Pose . 63

3.1.1 Derivative of Pose . 63
3.1.2 Transforming Spatial Velocities . 64
3.1.3 Incremental Rotation . 66
3.1.4 Incremental Rigid-Body Motion . 67

3.2 Accelerating Bodies and Reference Frames . 68
3.2.1 Dynamics of Moving Bodies . 68
3.2.2 Transforming Forces and Torques . 69
3.2.3 Inertial Reference Frame . 69

3.3 Creating Time-Varying Pose . 70
3.3.1 Smooth One-Dimensional Trajectories . 70

xviii Contents

3.3.2 Multi-Dimensional Trajectories . 73
3.3.3 Multi-Segment Trajectories . 74
3.3.4 Interpolation of Orientation in 3D . 75
3.3.5 Cartesian Motion in 3D . 77

3.4 Application: Inertial Navigation . 79
3.4.1 Gyroscopes . 79
3.4.2 Accelerometers . 81
3.4.3 Magnetometers . 85
3.4.4 Sensor Fusion . 87

3.5 Wrapping Up . 90
Further Reading . 90
Exercises . 91

 Part II Mobile Robots . 93
4 Mobile Robot Vehicles . 99
4.1 Wheeled Mobile Robots . 99

4.1.1 Car-Like Mobile Robots . 99
4.1.2 Differentially-Steered Vehicle . 109
4.1.3 Omnidirectional Vehicle . 112

4.2 Flying Robots . 114
4.3 Advanced Topics . 119

4.3.1 Nonholonomic
and Under-Actuated Systems . 119

4.4 Wrapping Up . 121
Further Reading . 122
Toolbox and MATLAB Notes . 123
Exercises . 123

5 Navigation . 125
5.1 Reactive Navigation . 126

5.1.1 Braitenberg Vehicles . 126
5.1.2 Simple Automata . 128

5.2 Map-Based Planning . 130
5.2.1 Distance Transform . 130
5.2.2 D* . 134
5.2.3 Introduction to Roadmap Methods . 136
5.2.4 Probabilistic Roadmap Method (PRM) . 137
5.2.5 Lattice Planner . 140
5.2.6 Rapidly-Exploring Random Tree (RRT) . 144

5.3 Wrapping Up . 146
Further Reading . 147
Resources . 148
MATLAB Notes . 148
Exercises . 148

6 Localization . 151
6.1 Dead Reckoning . 155

6.1.1 Modeling the Vehicle . 155
6.1.2 Estimating Pose . 157

6.2 Localizing with a Map . 160
6.3 Creating a Map . 165
6.4 Localization and Mapping . 167
6.5 Rao-Blackwellized SLAM . 169
6.6 Pose Graph SLAM . 170

xixContents

6.7 Sequential Monte-Carlo Localization . 175
6.8 Application: Scanning Laser Rangefi nder . 178

Laser Odometry . 179
Laser-Based Map Building . 181
Laser-Based Localization . 182

6.9 Wrapping Up . 182
Further Reading . 183
Toolbox and MATLAB Notes . 185
Exercises . 185

 Part III Arm-Type Robots . 189
7 Robot Arm Kinematics . 193
7.1 Forward Kinematics . 193

7.1.1 2-Dimensional (Planar) Robotic Arms . 194
7.1.2 3-Dimensional Robotic Arms . 196

7.2 Inverse Kinematics . 205
7.2.1 2-Dimensional (Planar) Robotic Arms . 205
7.2.2 3-Dimensional Robotic Arms . 207

7.3 Trajectories . 211
7.3.1 Joint-Space Motion . 211
7.3.2 Cartesian Motion . 214
7.3.3 Kinematics in Simulink . 214
7.3.4 Motion through a Singularity . 215
7.3.5 Confi guration Change . 216

7.4 Advanced Topics . 217
7.4.1 Joint Angle Offsets . 217
7.4.2 Determining Denavit-Hartenberg Parameters 217
7.4.3 Modifi ed Denavit-Hartenberg Parameters 218

7.5 Applications . 220
7.5.1 Writing on a Surface . 220
7.5.2 A Simple Walking Robot . 221

7.6 Wrapping Up . 225
Further Reading . 226
MATLAB and Toolbox Notes . 227
Exercises . 227

8 Manipulator Velocity . 229
8.1 Manipulator Jacobian . 229

8.1.1 Jacobian in the World Coordinate Frame . 229
8.1.2 Jacobian in the End-Effector Coordinate Frame 232
8.1.3 Analytical Jacobian . 232

8.2 Jacobian Condition and Manipulability . 234
8.2.1 Jacobian Singularities . 234
8.2.2 Manipulability . 235

8.3 Resolved-Rate Motion Control . 237
8.3.1 Jacobian Singularity . 240

8.4 Under- and Over-Actuated Manipulators . 240
8.4.1 Jacobian for Under-Actuated Robot . 241
8.4.2 Jacobian for Over-Actuated Robot . 242

8.5 Force Relationships . 244
8.5.1 Transforming Wrenches to Joint Space . 244
8.5.2 Force Ellipsoids . 244

8.6 Inverse Kinematics: a General Numerical Approach 245
8.6.1 Numerical Inverse Kinematics . 245

xx Contents

8.7 Advanced Topics . 247
8.7.1 Computing the Manipulator Jacobian Using Twists 247

8.8 Wrapping Up . 247
Further Reading . 248
MATLAB and Toolbox Notes . 248
Exercises . 248

9 Dynamics and Control . 251
9.1 Independent Joint Control . 251

9.1.1 Actuators . 251
9.1.2 Friction . 252
9.1.3 Effect of the Link Mass . 253
9.1.4 Gearbox . 254
9.1.5 Modeling the Robot Joint . 255
9.1.6 Velocity Control Loop . 257
9.1.7 Position Control Loop . 261
9.1.8 Independent Joint Control Summary . 262

9.2 Rigid-Body Equations of Motion . 263
9.2.1 Gravity Term . 264
9.2.2 Inertia Matrix . 266
9.2.3 Coriolis Matrix . 267
9.2.4 Friction . 268
9.2.5 Effect of Payload . 268
9.2.6 Base Force . 269
9.2.7 Dynamic Manipulability . 269

9.3 Forward Dynamics . 271
9.4 Rigid-Body Dynamics Compensation . 272

9.4.1 Feedforward Control . 273
9.4.2 Computed Torque Control . 274
9.4.3 Operational Space Control . 275

9.5 Applications . 276
9.5.1 Series-Elastic Actuator (SEA) . 276

9.6 Wrapping Up . 278
Further Reading . 278
Exercises . 280

 Part IV Computer Vision . 283
10 Light and Color . 287
10.1 Spectral Representation of Light . 287

10.1.1 Absorption . 289
10.1.2 Refl ectance . 290
10.1.3 Luminance . 290

10.2 Color . 291
10.2.1 The Human Eye . 292
10.2.2 Measuring Color . 294
10.2.3 Reproducing Colors . 295
10.2.4 Chromaticity Space . 298
10.2.5 Color Names . 300
10.2.6 Other Color and Chromaticity Spaces . 301
10.2.7 Transforming between Different Primaries 304
10.2.8 What Is White? . 306

10.3 Advanced Topics . 306
10.3.1 Color Temperature . 306
10.3.2 Color Constancy . 307

xxiContents

10.3.3 White Balancing . 308
10.3.4 Color Change Due to Absorption . 308
10.3.5 Dichromatic Refl ectance . 310
10.3.6 Gamma . 310

10.4 Application: Color Image . 312
10.4.1 Comparing Color Spaces . 312
10.4.2 Shadow Removal . 313

10.5 Wrapping Up . 315
Further Reading . 316
Data Sources . 316
Exercises . 317

11 Image Formation . 319
11.1 Perspective Camera . 319

11.1.1 Perspective Projection . 319
11.1.2 Modeling a Perspective Camera . 322
11.1.3 Discrete Image Plane . 324
11.1.4 Camera Matrix . 325
11.1.5 Projecting Points . 327
11.1.6 Lens Distortion . 330

11.2 Camera Calibration . 331
11.2.1 Homogeneous Transformation Approach . 331
11.2.2 Decomposing the Camera

Calibration Matrix . 333
11.2.3 Pose Estimation . 334
11.2.4 Camera Calibration Toolbox . 335

11.3 Wide Field-of-View Imaging . 336
11.3.1 Fisheye Lens Camera . 337
11.3.2 Catadioptric Camera . 340
11.3.3 Spherical Camera . 342

11.4 Unifi ed Imaging . 344
11.4.1 Mapping Wide-Angle Images to the Sphere 345
11.4.2 Mapping from the Sphere to a Perspective Image 347

11.5 Novel Cameras . 348
11.5.1 Multi-Camera Arrays . 348
11.5.2 Light-Field Cameras . 348

11.6 Advanced Topics . 350
11.6.1 Projecting 3D Lines and Quadrics . 350
11.6.2 Nonperspective Cameras . 352

11.7 Wrapping Up . 353
Further Reading and Resources . 354
Toolbox Notes . 355
Exercises . 356

12 Images and Image Processing . 359
12.1 Obtaining an Image . 359

12.1.1 Images from Files . 359
12.1.2 Images from an Attached Camera . 363
12.1.3 Images from a Movie File . 365
12.1.4 Images from the Web . 366
12.1.5 Images from Maps . 367
12.1.6 Images from Code . 367

12.2 Image Histograms . 369
12.3 Monadic Operations . 370

xxii Contents

12.4 Diadic Operations . 372
12.5 Spatial Operations . 376

12.5.1 Linear Spatial Filtering . 376
12.5.2 Template Matching . 387
12.5.3 Nonlinear Operations . 392

12.6 Mathematical Morphology . 393
12.6.1 Noise Removal . 396
12.6.2 Boundary Detection . 398
12.6.3 Hit or Miss Transform . 398
12.6.4 Distance Transform . 399

12.7 Shape Changing . 401
12.7.1 Cropping . 401
12.7.2 Image Resizing . 402
12.7.3 Image Pyramids . 403
12.7.4 Image Warping . 404

12.8 Wrapping Up . 407
Further Reading . 407
Sources of Image Data . 409
MATLAB Notes . 409
General Software Tools . 409
Exercises . 410

13 Image Feature Extraction . 413
13.1 Region Features . 415

13.1.1 Classifi cation . 415
13.1.2 Representation . 424
13.1.3 Description . 427
13.1.4 Summary . 437

13.2 Line Features . 438
13.2.1 Summary . 443

13.3 Point Features . 443
13.3.1 Classical Corner Detectors . 443
13.3.2 Scale-Space Corner Detectors . 449

13.4 Wrapping Up . 454
MATLAB Notes . 454
Further Reading . 455
Exercises . 457

14 Using Multiple Images . 459
14.1 Feature Correspondence . 460
14.2 Geometry of Multiple Views . 464

14.2.1 The Fundamental Matrix . 466
14.2.2 The Essential Matrix . 468
14.2.3 Estimating the Fundamental Matrix

from Real Image Data . 470
14.2.4 Planar Homography . 474

14.3 Stereo Vision . 479
14.3.1 Sparse Stereo . 479
14.3.2 Dense Stereo Matching . 483
14.3.3 Peak Refi nement . 489
14.3.4 Cleaning up and Reconstruction . 491
14.3.5 3D Texture Mapped Display . 494
14.3.6 Anaglyphs . 495
14.3.7 Image Rectifi cation . 496

14.4 Bundle Adjustment . 497

xxiiiContents

14.5 Point Clouds . 503
14.5.1 Fitting a Plane . 503
14.5.2 Matching Two Sets of Points . 505

14.6 Structured Light . 507
14.7 Applications . 509

14.7.1 Perspective Correction . 509
14.7.2 Mosaicing . 512
14.7.3 Image Matching and Retrieval . 514
14.7.4 Visual Odometry . 520

14.8 Wrapping Up . 523
MATLAB and Toolbox Notes . 524
Further Reading . 524
Resources . 528
Exercises . 529

 Part V Robotics, Vision and Control . 533
15 Vision-Based Control . 537
15.1 Position-Based Visual Servoing . 538
15.2 Image-Based Visual Servoing . 541

15.2.1 Camera and Image Motion . 542
15.2.2 Controlling Feature Motion . 547
15.2.3 Estimating Feature Depth . 551
15.2.4 Performance Issues . 554

15.3 Using Other Image Features . 556
15.3.1 Line Features . 556
15.3.2 Circle Features . 557
15.3.3 Photometric Features . 559

15.4 Wrapping Up . 560
Further Reading . 560
Exercises . 562

16 Advanced Visual Servoing . 565
16.1 XY/Z-Partitioned IBVS . 565
16.2 IBVS Using Polar Coordinates . 568
16.3 IBVS for a Spherical Camera . 570
16.4 Applications . 572

16.4.1 Arm-Type Robot . 572
16.4.2 Mobile Robot . 573
16.4.3 Aerial Robot . 576

16.5 Wrapping Up . 578
Further Reading . 578
Resources . 579
Exercises . 579

 Appendices . 581
A Installing the Toolboxes . 583
B Linear Algebra Refresher . 587
C Geometry . 595
D Lie Groups and Algebras . 611
E Linearization, Jacobians and Hessians . 617
F Solving Systems of Equations . 621
G Gaussian Random Variables . 631
H Kalman Filter . 635
I Graphs . 641
J Peak Finding . 645

xxiv Contents

 Bibliography . 649

 Index . 663
 Index of People . 663
 Index of Functions, Classes and Methods . 664
 General Index . 669

Nomenclature

The notation used in robotics and computer vision varies considerably across books and
research papers. The symbols used in this book, and their units where appropriate, are
listed below. Some symbols have multiple meanings and their context must be used to
disambiguate them.

xxvi Nomenclature

xxviiNomenclature

xxviii Nomenclature

xxixNomenclature

MATLAB® Toolbox Conventions

� A Cartesian coordinate, a point, is expressed as a column vector.
� A set of points is expressed as a matrix with columns representing the coordinates

of individual points.
� A rectangular region by two opposite corners [xmin xmax; ymin ymax].
� A robot confi guration, a set of joint angles, is expressed as a row vector.
� Time series data is expressed as a matrix with rows representing time steps.
� A MATLAB matrix has subscripts (i, j) which represent row and column respec-

tively. Image coordinates are written (u, v) so an image represented by a matrix I
is indexed as I(v, u).

� Matrices with three or more dimensions are frequently used:
 – A color image has 3 dimensions: row, column, color plane.
 – A greyscale image sequence has 3 dimensions: row, column, index.
 – A color image sequence has 4 dimensions: row, column, color plane, index.

Common Abbreviations

2D 2-dimensional
3D 3-dimensional
DOF Degrees of freedom
n-tuple A group of n numbers, it can represent a point of a vector

Chapter

1

The term robot means different things to different people. Science fi ction books and
movies have strongly infl uenced what many people expect a robot to be or what it can
do. Sadly the practice of robotics is far behind this popular conception. One thing is
certain though – robotics will be an important technology in this century. Products
such as vacuum cleaning robots have already been with us for over a decade and self-
driving cars are coming. These are the vanguard of a wave of smart machines that will
appear in our homes and workplaces in the near to medium future.

In the eighteenth century the people of Europe were fascinated by automata such as
 Vaucanson’s duck shown in Fig. 1.1a. These machines, complex by the standards of the
day, demonstrated what then seemed life-like behavior. The duck used a cam mecha-
nism to sequence its movements and Vaucanson went on to explore mechanization of
silk weaving. Jacquard extended these ideas and developed a loom, shown in Fig. 1.1b,
that was essentially a programmable weaving machine. The pattern to be woven was
encoded as a series of holes on punched cards. This machine has many hallmarks of a
modern robot: it performed a physical task and was reprogrammable.

The term robot fi rst appeared in a 1920 Czech science fi ction play “Rossum’s Universal
Robots” by Karel .apek (pronounced Chapek). The term was coined by his brother
Josef, and in the Czech language means serf labor but colloquially means hardwork
or drudgery. The robots in the play were artifi cial people or androids and as in so
many robot stories that follow this one, the robots rebel and it ends badly for human-
ity. Isaac Asimov’s robot series, comprising many books and short stories written be-
tween 1950 and 1985, explored issues of human and robot interaction and morality.
The robots in these stories are equipped with “positronic brains” in which the “Three
 laws of robotics” are encoded. These stories have infl uenced subsequent books and
movies which in turn have shaped the public perception of what robots are. The mid
twentieth century also saw the advent of the fi eld of cybernetics – an uncommon term
today but then an exciting science at the frontiers of understanding life and creating
intelligent machines.

The fi rst patent for what we would now consider a robot was fi led in 1954 by
 George C. Devol and issued in 1961. The device comprised a mechanical arm with

Introduction

Fig. 1.1.
Early programmable machines.
a Vaucanson’s duck (1739) was
an automaton that could fl ap its
wings, eat grain and defecate. It

was driven by a clockwork mech-
anism and executed a single

program; b The Jacquard loom
(1801) was a reprogrammable
machine and the program was

held on punched cards (photo-
graph by George P. Landow

from www.victorianweb.org)

2 Chapter 1 · Introduction

a gripper that was mounted on a track and the sequence of motions was encod-
ed as magnetic patterns stored on a rotating drum. The fi rst robotics company,
Unimation, was founded by Devol and Joseph Engelberger in 1956 and their fi rst
industrial robot shown in Fig. 1.2 was installed in 1961. The original vision of Devol
and Engelberger for robotic automation has become a reality and many millions of
arm-type robots such as shown in Fig. 1.3 have been built and put to work at tasks
such as welding, painting, machine loading and unloading, electronic assembly,
packaging and palletizing. The use of robots has led to increased productivity and
improved product quality. Today many products we buy have been assembled or
handled by a robot.

Fig. 1.2.
Universal automation. a A plan
view of the machine from Devol’s
patent; b the fi rst Unimation
robot working at a General
Motors factory (photo courtesy
of George C. Devol)

Unimation Inc. (1956–1982). Devol sought fi nancing to develop his unimation technology and at
a cocktail party in 1954 he met Joseph Engelberger who was then an engineer with Manning,
Maxwell and Moore. In 1956 they jointly established Unimation, the fi rst robotics company, in
Danbury Connecticut. The company was acquired by Consolidated Diesel Corp. (Condec) and
became Unimate Inc. a division of Condec. Their fi rst robot went to work in 1961 at a General
Motors die-casting plant in New Jersey. In 1968 they licensed technology to Kawasaki Heavy
Industries which produced the fi rst Japanese industrial robot. Engelberger served as chief execu-
tive until it was acquired by Westinghouse in 1982. People and technologies from this company
have gone on to be very infl uential on the whole fi eld of robotics.

George C. Devol, Jr. (1912–2011) was a prolifi c American inventor. He was born in Louisville,
Kentucky, and in 1932 founded United Cinephone Corp. which manufactured phonograph
arms and amplifi ers, registration controls for printing presses and packaging machines. In
1954, he applied for US patent 2,988,237 for Programmed Article Transfer which introduced
the concept of Universal Automation or “Unimation”. Specifi cally it described a track-mounted
polar-coordinate arm mechanism with a gripper and a programmable controller – the precur-
sor of all modern robots.

In 2011 he was inducted into the National Inventors Hall of Fame. (Photo on the right: cour-
tesy of George C. Devol)

 Joseph F. Engelberger (1925–2015) was an American engineer and entrepreneur who is often referred
to as the “Father of Robotics”. He received his B.S. and M.S. degrees in physics from Columbia
University, in 1946 and 1949, respectively. Engelberger has been a tireless promoter of robotics.
In 1966, he appeared on The Tonight Show Starring Johnny Carson with a Unimate robot which
poured a beer, putted a golf ball, and directed the band. He promoted robotics heavily in Japan,
which led to strong investment and development of robotic technology in that country.

Engelberger served as chief executive of Unimation until 1982, and in 1984 founded Transitions
Research Corporation which became HelpMate Robotics Inc., an early entrant in the hospital ser-
vice robot sector. He was elected to the National Academy of Engineering, received the Beckman
Award and the Japan Prize, and has written two books: Robotics in Practice (1980) and Robotics
in Service (1989). Each year the Robotics Industries Association presents an award in his honor
to “persons who have contributed outstandingly to the furtherance of the science and practice
of robotics.”

3

Fig. 1.3.
 Manufacturing robots, tech-
nological descendants of the

Unimate shown in Fig. 1.2.
a A modern six-axis robot de-
signed for high accuracy and
throughput (image courtesy

ABB robotics); b Baxter two-
armed robot with built in vision
capability and programmable

by demonstration, designed for
moderate throughput piece work
(image courtesy Rethink Robotics)

Rossum’s Universal Robots (RUR) . In the introductory scene Helena Glory is visiting Harry Domin
the director general of Rossum’s Universal Robots and his robotic secretary Sulla.

Domin Sulla, let Miss Glory have a look at you.
Helena (stands and offers her hand) Pleased to meet you. It must be very hard for you
 out here, cut off from the rest of the world [the factory is on an island]
Sulla I do not know the rest of the world Miss Glory. Please sit down.
Helena (sits) Where are you from?
Sulla From here, the factory
Helena Oh, you were born here.
Sulla Yes I was made here.
Helena (startled) What?
Domin (laughing) Sulla isn’t a person, Miss Glory, she’s a robot.
Helena Oh, please forgive me …

The full play can be found at http://ebooks.adelaide.edu.au/c/capek/karel/rur. (Image on the
left: Library of Congress item 96524672)

Chapter 1 · Introduction

These fi rst generation robots are fi xed in place and cannot move about the fac-
tory – they are not mobile. By contrast mobile robots as shown in Figs. 1.4 and
1.5 can move through the world using various forms of mobility. They can loco-
mote over the ground using wheels or legs, fl y through the air using fi xed wings or
multiple rotors, move through the water or sail over it. An alternative taxonomy
is based on the function that the robot performs. Manufacturing robots operate
in factories and are the technological descendents of the fi rst generation robots.
Service robots supply services to people such as cleaning, personal care, medical
rehabilitation or fetching and carrying as shown in Fig. 1.5b. Field robots, such as
those shown in Fig. 1.4, work outdoors on tasks such as environmental monitor-
ing, agriculture, mining, construction and forestry. Humanoid robots such as shown
in Fig. 1.6 have the physical form of a human being – they are both mobile robots
and service robots.�In practice the categorization of robots

is not very consistently applied.

4 Chapter 1 · Introduction

Fig. 1.4. Non-land-based mobile
robots. a Small autonomous un-
derwater vehicle (Todd Walsh
© 2013 MBARI); b Global Hawk
unmanned aerial vehicle (UAV)
(photo courtesy of NASA)

A manufacturing robot is typically an arm-type manipulator on a fi xed base such
as Fig. 1.3a that performs repetitive tasks within a local work cell. Parts are presented
to the robot in an orderly fashion which maximizes the advantage of the robot’s high
speed and precision. High-speed robots are hazardous and safety is achieved by ex-
cluding people from robotic work places, typically placing the robot inside a cage. In
contrast the Baxter robot shown in Fig. 1.3b is human safe, it operates at low speed
and stops moving if it encounters an obstruction.

Field and service robots face specifi c and signifi cant challenges. The fi rst chal-
lenge is that the robot must operate and move in a complex, cluttered and chang-
ing environment. A delivery robot in a hospital must operate despite crowds of
people and a time-varying confi guration of parked carts and trolleys. A Mars rover
as shown in Fig. 1.5a must navigate rocks and small craters despite not having an
accurate local map in advance of its travel. Robotic, or self-driving cars, such as
shown in Fig. 1.5c, must follow roads, avoid obstacles and obey traffi c signals and
the rules of the road. The second challenge for these types of robots is that they
must operate safely in the presence of people. The hospital delivery robot operates
among people, the robotic car contains people and a robotic surgical device oper-
ates inside people.

Cybernetics, artificial intelligence and robotics. Cybernetics fl our-
ished as a research fi eld from the 1930s until the 1960s and was
fueled by a heady mix of new ideas and results from neurology,
control theory and information theory. Research in neurology
had shown that the brain was an electrical network of neurons.
 Harold Black, Henrik Bode and Harry Nyquist at Bell Labs were
researching negative feedback and the stability of electrical net-
works, Claude Shannon’s information theory described digital
signals, and Alan Turing was exploring the fundamentals of
computation. Walter Pitts and Warren McCulloch proposed
an artifi cial neuron in 1943 and showed how it might perform
simple logical functions. In 1951 Marvin Minsky built SNARC
(from a B24 autopilot and comprising 3 000 vacuum tubes)
which was perhaps the first neural-network-based learning
machine as his graduate project. William Grey Walter’s ro-
botic tortoises showed life-like behavior. Maybe an electronic
brain could be built!

An important early book was Norbert Wiener’s Cybernetics
or Control and Communication in the Animal and the Machine

(Wiener 1965). A characteristic of a cybernetic system is the use
of feedback which is common in engineering and biological sys-
tems. The ideas were later applied to evolutionary biology, psy-
chology and economics.

In 1956 a watershed conference was hosted by John McCarthy
at Dartmouth College and attended by Minsky, Shannon, Herbert
Simon, Allen Newell and others. This meeting defi ned the term
artificial intelligence (AI) as we know it today with an em-
phasis on digital computers and symbolic manipulation and
led to new research in robotics, vision, natural language, se-
mantics and reasoning. McCarthy and Minsky formed the AI
group at MIT, and McCarthy left in 1962 to form the Stanford
AI Laboratory. Minsky focused on artifi cially simple “blocks
world”. Simon, and his student Newell, were infl uential in AI
research at Carnegie-Mellon University from which the Robotics
Institute was spawned in 1979. These AI groups were to be very
infl uential in the development of robotics and computer vision
in the USA. Societies and publications focusing on cybernetics
are still active today.

5

So what is a robot? There are many defi nitions and not all of them are particularly
helpful. A defi nition that will serve us well in this book is

a goal oriented machine that can sense, plan and act.

A robot senses its environment and uses that information, together with a goal, to
plan some action. The action might be to move the tool of an arm-robot to grasp an
object or it might be to drive a mobile robot to some place.

Sensing is critical to robots. Proprioceptive sensors measure the state of the robot
itself: the angle of the joints on a robot arm, the number of wheel revolutions on a mo-
bile robot or the current drawn by an electric motor. Exteroceptive sensors measure the
state of the world with respect to the robot. The sensor might be a simple bump sensor
on a robot vacuum cleaner to detect collision. It might be a GPS receiver that measures
distances to an orbiting satellite constellation, or a compass that measures the direc-
tion of the Earth’s magnetic fi eld vector relative to the robot. It might also be an active
sensor that emits acoustic, optical or radio pulses in order to measure the distance to
points in the world based on the time taken for a refl ection to return to the sensor.

A camera is a passive device that captures patterns of optical energy refl ected from the
scene. Our own experience is that eyes are a very effective sensor for recognition, navi-
gation, obstacle avoidance and manipulation so vision has long been of interest to ro-
botics researchers. An important limitation of a single camera, or a single eye, is that the
3-dimensional structure of the scene is lost in the resulting 2-dimensional image. Despite
this, humans are particularly good at inferring the 3-dimensional nature of a scene using
a number of visual cues. Robots are currently not as well developed. Figure 1.7 shows
some very early work on reconstructing a 3-dimensional wireframe model from a single

Fig. 1.5. Mobile robots. a Mars
Science Lander, Curiosity, self
portrait taken at “John Klein”.
The mast contains many cam-
eras including two stereo cam-
era pairs from which the robot
can compute the 3-dimension-
al structure of its environment
(image courtesy of NASA/JPL-
Caltech/MSSS); b Savioke Relay
delivery robot (image courtesy
Savioke); c self driving car (im-
age courtesy Dept. Informati-
on Engineering, Oxford Univ.);
d Cheetah legged robot (image
courtesy Boston Dynamics)

Chapter 1 · Introduction

6 Chapter 1 · Introduction

2-dimensional image and gives some idea of the diffi culties involved. Another approach
is stereo vision where information from two cameras is combined to estimate the 3-di-
mensional structure of the scene – this is a technique used by humans and robots, for
example, the Mars rover shown in Fig. 1.5a has a stereo camera on its mast.

In this book we focus on the use of cameras as sensors for robots. Machine vision,
discussed in Part IV, is the use of computers to process images from one or more cam-
eras and to extract numerical features. For example determining the coordinate of a
round red object in the scene, or how far a robot has moved based on how the world
appears to have moved relative to the robot.

If the robot’s environment is unchanging it can make do with an accurate map and
have little need to sense the state of the world, apart from determining where it is. Imagine
driving a car with the front window covered over and just looking at the GPS navigation
system. If you had the road to yourself you could probably drive from A to B quite suc-
cessfully albeit slowly. However if there were other cars, pedestrians, traffi c signals or
roadworks then you would be in some diffi culty. To deal with this you need to look out-
wards – to sense the world and plan your actions accordingly. For humans this is easy,
done without conscious thought, but it is not yet easy to program a machine to do the
same – this is the challenge of robotic vision.

 Telerobots are robot-like machines that are remotely controlled by a human operator.
Perhaps the earliest was a radio controlled boat demonstrated by Nikola Tesla in 1898
and which he called a teleautomaton. According to the defi nition above these are not
robots but they were an important precursor to robots and are still important today for
many tasks where people cannot work but which are too complex for a machine to per-

Fig. 1.6.
 Humanoid robots. a Honda’s
 Asimo humanoid robot (image
courtesy Honda Motor Co. Japan);
b Hubo robot that won the
DARPA Robotics Challenge in
2015 (image courtesy KAIST,
Korea)

Fig. 1.7. Early results in comput-
er vision for estimating the shape
and pose of objects, from the Ph.D.
work of L.G. Roberts at MIT Lin-
coln Lab in 1963 (Roberts 1963).
a Original picture; b gradient im-
age; c connected feature points;
d reconstructed line drawing

7

form by itself. For example the underwater robots that surveyed the wreck of the Titanic
were technically remotely operated vehicles (ROVs). A modern surgical robot as shown
in Fig. 1.8 is also teleoperated – the motion of the small tools are remotely controlled by
the surgeon and this makes it possible to use much smaller incisions than the old-fash-
ioned approach where the surgeon works inside the body with their hands.

The various Mars rovers autonomously navigate the surface of Mars but human op-
erators provide the high-level goals. That is, the operators tell the robot where to go and
the robot itself determines the details of the route. Local decision making on Mars is es-
sential given that the communications delay is several minutes. Some robots are hybrids
and the control task is shared or traded with a human operator. In traded control, the
 control function is passed back and forth between the human operator and the computer.
For example an aircraft pilot can pass control to an autopilot and take control back. In
 shared control, the control function is performed by the human operator and the computer
working together. For example an autonomous passenger car might have the computer
keeping the car safely in the lane while the human driver just controls speed.

1.1
l
Robots, Jobs and Ethics

A number of ethical issues arise from the advent of robotics. Perhaps the greatest con-
cern to the wider public is “robots taking jobs from people”. This is a complex issue
but we cannot shy away from the fact that many jobs now done by people will, in the
future, be performed by robots. Clearly there are dangerous jobs which people should
not do, for example handling hazardous substances or working in dangerous envi-
ronments. There are many low-skilled jobs where human labor is increasingly hard to

Fig. 1.8.
The working end of a surgical
robot, multiple tools working

through a single small inci-
sion (image © 2015 Intuitive

Surgical, Inc)

1.1 · Robots, Jobs and Ethics

The Manhattan Project in World War 2 (WW II) developed the fi rst nuclear weapons and this re-
quired handling of radioactive material. Remotely controlled arms were developed by Ray Goertz
at Argonne National Laboratory to exploit the manual dexterity of human operators while keeping
them away from the hazards of the material they were handling. The operators viewed the work
space through thick lead-glass windows or via a television link and manipulated the master arm
(on the left). The slave arm (on the right) followed the motion, and forces felt by the slave arm
were refl ected back to the master arm, allowing the operator to feel weight and interference force.
Telerobotics is still important today for many tasks where people cannot work but which are too
complex for a machine to perform by itself, for instance the underwater robots that surveyed the
wreck of the Titanic. (Photo on the left: Courtesy Argonne National Laboratory)

8 Chapter 1 · Introduction

source, for instance in jobs like fruit picking. In many developed countries people no
longer aspire to hard physical outdoor work in remote locations. What are the alter-
natives if people don’t want to do the work? In areas like manufacturing, particularly
car manufacturing, the adoption of robotic automation has been critical in raising
productivity which has allowed that industry to be economically viable in high-wage
countries like Europe, Japan and the USA. Without robots these industries could not
exist; they would not employ any people, not pay any taxes, and not consume prod-
ucts and services from other parts of the economy. Automated industry might employ
fewer people but it still makes an important contribution to society. Rather than taking
jobs we could argue that robotics and automation has helped to keep manufacturing
industries viable in high-labor cost countries. How do we balance the good of the so-
ciety with the good of the individual?

There are other issues besides jobs. Consider self-driving cars. We are surprisingly
accepting of manually driven cars even though they kill more than one million people
every year, yet many are uncomfortable with the idea of self-driving cars even though
they will dramatically reduce this loss of life. We worry about who to blame if a robotic
car makes a mistake while the carnage caused by human drivers continues. Similar
concerns are raised when talking about robotic healthcare and surgery – human sur-
geons are not perfect but robots are seemingly held to a much higher account. There
is a lot of talk about using robots to look after elderly people, but does this detract
from their quality of life by removing human contact, conversation and companion-
ship? Should we use robots to look after our children, and even teach them? What do
we think of armies of robots fi ghting and killing human beings?

Robotic cars, health care, elder care and child care might bring economic benefi ts
to our society but is it the right thing to do? Is it a direction that we want our society
to go? Once again how do we balance the good of the society with the good of the in-
dividual? These are deep ethical questions that cannot and should not be decided by
roboticists alone. But neither should roboticists ignore them. This is a discussion for
all of society and roboticists have a duty to be active participants in this debate.

1.2
l
About the Book

This book is about robotics and computer vision – separately, and together as robotic
vision. These are big topics and the combined coverage is necessarily broad. The in-
tent is not to be shallow but rather to give the reader a fl avor of what robotics and vi-
sion is about and what it can do – consider it a grand tasting menu.

The goals of the book are:

� to provide a broad and solid base of understanding through theory and examples;
� to make abstract concepts tangible
� to tackle more complex problems than other more specialized textbooks by virtue

of the powerful numerical tools and software that underpins it;
� to provide instant gratifi cation by solving complex problems with relatively little code;
� to complement the many excellent texts in robotics and computer vision;
� to encourage intuition through hands on numerical experimentation; and
� to limit the number of equations presented to those cases where (in my judgment)

they add value or clarity.

The approach used is to present background, theory and examples in an integrated
fashion. Code and examples are fi rst-class citizens in this book and are not relegated
to the end of the chapter or an associated web site. The examples are woven into the
discussion like this

>> p = transl(Ts);
>> plot(t, p);

9

where the MATLAB® code illuminates the topic being discussed and generally results
in a crisp numerical result or a graph in a fi gure that is then discussed. The examples
illustrate how to use the associated Toolboxes and that knowledge can then be ap-
plied to other problems. Most of the fi gures in this book have been generated by the
code examples provided and they are available from the book’s website as described
in Appendix A.

1.2.1
l

MATLAB Software and the Toolboxes

To do good work, one must fi rst have good tools.
Chinese proverb

The computational foundation of this book is MATLAB®, a software package devel-
oped by The MathWorks Inc. MATLAB is an interactive mathematical software envi-
ronment that makes linear algebra, data analysis and high-quality graphics a breeze.
MATLAB is a popular package and one that is very likely to be familiar to engineering
students as well as researchers. It also supports a programming language which allows
the creation of complex algorithms.

A strength of MATLAB is its support for Toolboxes which are collections of func-
tions targeted at particular topics. Toolboxes are available from MathWorks, third
party companies and individuals. Some Toolboxes are products to be purchased while
others are open-source and generally free to use. This book is based on two open-source
Toolboxes written by the author: the Robotics Toolbox for MATLAB and the Machine
Vision Toolbox for MATLAB. These Toolboxes, with MATLAB, turn a personal com-
puter into a powerful and convenient environment for investigating complex prob-
lems in robotics, machine vision and vision-based control. The Toolboxes are free to
use and distributed under the GNU Lesser General Public License (GNU LGPL).

The Robotics Toolbox (RTB) provides a diverse range of functions for simulating
mobile and arm-type robots. The Toolbox supports a very general method of repre-
senting the structure of serial-link manipulators using MATLAB objects and provides
functions for forward and inverse kinematics and dynamics. The Toolbox includes
functions for manipulating and converting between datatypes such as vectors, homo-
geneous transformations, 3-angle representations, twists and unit-quaternions which
are necessary to represent 3-dimensional position and orientation. The Toolbox also
includes functionality for simulating mobile robots and includes models of wheeled
vehicles and quadrotors and controllers for these vehicles. It also provides standard
algorithms for robot path planning, localization, map making and SLAM.

The Machine Vision Toolbox (MVTB) provides a rich collection of functions for
 camera modeling, image processing, image feature extraction, multi-view geometry
and vision-based control. The MVTB also contains functions for image acquisition and

The MATLAB software we use today has a long history. It starts
with the LINPACK and EISPACK projects run by the Argonne
National Laboratory in the 1970s to produce high quality, test-
ed and portable mathematical software. LINPACK is a collec-
tion of routines for linear algebra and EISPACK is a library of
numerical algorithms for computing eigenvalues and eigen-
vectors of matrices. These packages were written in Fortran
which was then the language of choice for large-scale numeri-
cal problems.

Cleve Moler, then at the University of New Mexico, contribut-
ed to both projects and wrote the fi rst version of MATLAB in the
late 1970s. It allowed interactive use of LINPACK and EISPACK
for problem solving without having to write and compile Fortran
code. MATLAB quickly spread to other universities and found a

strong audience within the applied mathematics and engineer-
ing community. In 1984 Cleve Moler and Jack Little founded
The MathWorks Inc. which exploited the newly released IBM
PC – the fi rst widely available desktop computer.

Cleve Moler received his bachelor’s degree from Caltech in
1961, and a Ph.D. from Stanford University. He was a professor
of mathematics and computer science at universities including
University of Michigan, Stanford University, and the University
of New Mexico. He has served as president of the Society for
Industrial and Applied Mathematics (SIAM) and was elected to
the National Academy of Engineering in 1997.

See also http://www.mathworks.com/company/aboutus/
founders/clevemoler.html which includes a video of Cleve Moler
and also http://history.siam.org/pdfs2/Moler_final.pdf.

1.2 · About the Book

10 Chapter 1 · Introduction

display; fi ltering; blob, point and line feature extraction; mathematical morphology;
image warping; stereo vision; homography and fundamental matrix estimation; robust
estimation; bundle adjustment; visual Jacobians; geometric camera models; camera
calibration and color space operations. For modest image sizes on a modern computer
the processing rate can be suffi ciently “real-time” to allow for closed-loop control.

If you’re starting out in robotics or vision then the Toolboxes are a signifi cant initial
base of code on which to build your project. The Toolboxes are provided in source code
form. The bulk of the code is written in the MATLAB M-language but a few functions
are written in C� or Java for increased computational effi ciency. In general the Toolbox
code is written in a straightforward manner to facilitate understanding, perhaps at the
expense of computational effi ciency. Appendix A provides details of how to obtain the
Toolboxes and pointers to online resources including discussion groups.

This book provides examples of how to use many Toolbox functions in the context
of solving specifi c problems but it is not a reference manual. Comprehensive documen-
tation of all Toolbox functions is available through the MATLAB builtin help mecha-
nism or the PDF format manual that is distributed with each Toolbox.

1.2.2
l
Notation, Conventions and Organization

The mathematical notation used in the book is summarized in the Nomenclature sec-
tion on page xxv. Since the coverage of the book is broad there are just not enough
good symbols to go around, so it is unavoidable that some symbols have different
meanings in different parts of the book.

There is a lot of MATLAB code in the book and this is indicated in blue fi xed-width
font such as

>> a = 2 + 2
a =
 4

The MATLAB command prompt is >> and what follows is the command issued to
MATLAB by the user. Subsequent lines, without the prompt, are MATLAB’s response.
All functions, classes and methods mentioned in the text or in code segments are cross-
referenced and have their own indexes at the end of the book allowing you to fi nd dif-
ferent ways that particular functions can be used.

Colored boxes are used to indicate different types of material. Orange informational
boxes highlight material that is particularly important while red and orange warning
boxes highlight points that are often traps for those starting out. Blue boxes provide
technical, historical or biographical information that augment the main text but they
are not critical to its understanding.

As an author there is a tension between completeness, clarity and conciseness. For
this reason a lot of detail has been pushed into notes� and blue boxes and on a fi rst
reading these can be skipped. Some chapters have an Advanced Topics section at the
end that can also be skipped on a fi rst reading. However if you are trying to understand
a particular algorithm and apply it to your own problem then understanding the details
and nuances can be important and the notes or advanced topics are for you.

Each chapter ends with a Wrapping Up section that summarizes the important les-
sons from the chapter, discusses some suggested further reading, and provides some
exercises. For clarity, references are cited sparingly in the text of each chapter. The
Further Reading subsection discusses prior work and references that provide more
rigor or more complete description of the algorithms. Resources provides links to rel-
evant online code and datasets. MATLAB Notes provides additional details about the
author’s toolboxes and those with similar functionality from MathWorks. Exercises
extend the concepts discussed within the chapter and are generally related to specifi c
code examples discussed in the chapter. The exercises vary in diffi culty from straight-
forward extension of the code examples to more challenging problems.

These are implemented as MEX files,
which are written in C in a very specif-
ic way that allows them to be invoked
from MATLAB just like a function written
in M-language.

They are placed as marginal notes near
the corresponding marker.

11

1.2.3
l

Audience and Prerequisites

The book is intended primarily for third or fourth year engineering undergraduate
students, Masters students and fi rst year Ph.D. students. For undergraduates the book
will serve as a companion text for a robotics or computer vision course or to support
a major project in robotics or vision. Students should study Part I and the appendices
for foundational concepts, and then the relevant part of the book: mobile robotics,
arm robots, computer vision or vision-based control. The Toolboxes provide a solid
set of tools for problem solving, and the exercises at the end of each chapter provide
additional problems beyond the worked examples in the book.

For students commencing graduate study in robotics, and who have previously stud-
ied engineering or computer science, the book will help fi ll the gaps between what you
learned as an undergraduate and what will be required to underpin your deeper study
of robotics and computer vision. The book’s working code base can help bootstrap your
research, enabling you to get started quickly and working productively on your own
problems and ideas. Since the source code is available you can reshape it to suit your
need, and when the time comes (as it usually does) to code your algorithms in some
other language then the Toolboxes can be used to cross-check your implementation.

For those who are no longer students, the researcher or industry practitioner, the
book will serve as a useful companion for your own reference to a wide range of topics
in robotics and computer vision, as well as a handbook and guide for the Toolboxes.

The book assumes undergraduate-level knowledge of linear algebra (matrices, vec-
tors, eigenvalues), basic set theory, basic graph theory, probability, dynamics (forces,
torques, inertia) and control theory. Some of these topics will likely be more familiar to
engineering students than computer science students. Computer science students may
struggle with some concepts in Chap. 4 and 9 such as the Laplace transform, transfer
functions, linear control (proportional control, proportional-derivative control, propor-
tional-integral control) and block diagram notation. This material could be skimmed
over on a fi rst reading and Albertos and Mareels (2010) may be a useful introduction to
some of these topics. The book also assumes the reader is familiar with using and pro-
gramming in MATLAB and also familiar with object-oriented programming techniques
(perhaps C++, Java or Python). Familiarity with Simulink®, the graphical block-diagram
modeling tool integrated with MATLAB will be helpful but not essential.

1.2.4
l
Learning with the Book

The best way to learn is by doing. Although the book shows the MATLAB commands
and the response there is something special about doing it for yourself. Consider the
book as an invitation to tinker. By running the commands yourself you can look at
the results in ways that you prefer, plot the results in a different way, or try the algo-
rithm on different data or with different parameters. The book is especially designed
to stay open which enables you to type in commands as you read. You can also look
at the online documentation for the Toolbox functions, discover additional features
and options, and experiment with those, or read the code to see how it really works
and perhaps modify it.

Most of the commands are quite short so typing them in to MATLAB is not too
onerous. However the book’s web site, see Appendix A, includes all the MATLAB com-
mands shown in the book (more than 1 600 lines) and these can be cut and pasted into
MATLAB or downloaded and used to create your own scripts.

In 2015 two open online courses (MOOCs) were released – based on the content
and approach of this book. Introduction to Robotics covers most of Parts I and III,
while Robotic Vision covers some of Parts IV and V. Each MOOC is six weeks long
and comprises 12 hours of video lecture material plus quizzes, assignments and an
optional project. They can be reached via http://petercorke.com/moocs.

1.2 · About the Book

12 Chapter 1 · Introduction

1.2.5
l

Teaching with the Book

The book can be used in support of courses in robotics, mechatronics and comput-
er vision. All courses should include the introduction to coordinate frames and their
composition which is discussed in Chap. 2. For a mobile robotics or image processing
course it is suffi cient to teach only the 2-dimensional case. For robotic manipulators
or multi-view geometry the 2- and 3-dimensional cases should be taught.

Most fi gures (MATLAB-generated and line drawings) in this book are available as
PDF format fi les from the book’s web site and you are free to use them with attribution
in any course material that you prepare. All the code in this book can be downloaded
from the web site and used as the basis for demonstrations in lectures or tutorials.
See Appendix A for details.

The exercises at the end of each chapter can be used as the basis of assignments, or
as examples to be worked in class or in tutorials. Most of the questions are rather open
ended in order to encourage exploration and discovery of the effects of parameters
and the limits of performance of algorithms. This exploration should be supported by
discussion and debate about performance measures and what best means. True un-
derstanding of algorithms involves an appreciation of the effects of parameters, how
algorithms fail and under what circumstances.

The teaching approach could also be inverted, by diving headfi rst into a particular
problem and then teaching the appropriate prerequisite material. Suitable problems
could be chosen from the Application sections of Chap. 7, 14 or 16, or from any of the
exercises. Particularly challenging exercises are so marked.

If you wanted to consider a fl ipped learning approach then the two MOOCs men-
tioned on page 11 could be used in conjunction with your class. Students would watch
the videos and undertake some formative assessment out of the classroom, and you
could use classroom time to work through problem sets.

For graduate level teaching the papers and textbooks mentioned in the Further
Reading could form the basis of a student’s reading list. They could also serve as can-
didate papers for a reading group or journal club.

1.2.6
l

Outline

I promised a book with instant gratifi cation but before we can get started in robot-
ics there are some fundamental concepts that we absolutely need to understand,
and understand well. Part I introduces the concepts of pose and coordinate frames
– how we represent the position and orientation of a robot, a camera or the objects
that the robot needs to work with. We discuss how motion between two poses can
be decomposed into a sequence of elementary translations and rotations, and how
elementary motions can be composed into more complex motions. Chapter 2 dis-
cusses how pose can be represented in a computer, and Chap. 3 discusses the rela-
tionship between velocity and the derivative of pose, estimating motion from sen-
sors and generating a sequence of poses that smoothly follow some path in space
and time.

With these formalities out of the way we move on to the fi rst main event – robots.
There are two important classes of robot: mobile robots and manipulator arms and
these are covered in Parts II and III respectively.�

Part II begins, in Chap. 4, with motion models for several types of wheeled vehi-
cles and a multi-rotor fl ying vehicle. Various control laws are discussed for wheeled
vehicles such as moving to a point, following a path and moving to a specifi c pose.
Chapter 5 is concerned with navigation, that is, how a robot fi nds a path between
points A and B in the world. Two important cases, with and without a map, are dis-
cussed. Most navigation techniques require knowledge of the robot’s position and
Chap. 6 discusses various approaches to this problem based on dead-reckoning, or

Although robot arms came first chronolog-
ically, mobile robotics is mostly a 2-dimen-
sional problem and easier to understand
than the 3-dimensional arm-robot case.

13

landmark observation and a map. We also show how a robot can make a map, and
even determine its location while simultaneously mapping an unknown region.

Part III is concerned with arm-type robots, or more precisely serial-link manipu-
lators. Manipulator arms are used for tasks such as assembly, welding, material han-
dling and even surgery. Chapter 7 introduces the topic of kinematics which relates the
 angles of the robot’s joints to the 3-dimensional pose of the robot’s tool. Techniques
to generate smooth paths for the tool are discussed and two examples show how an
arm-robot can draw a letter on a surface and how multiple arms (acting as legs) can
be used to create a model for a simple walking robot. Chapter 8 discusses the rela-
tionships between the rates of change of joint angles and tool pose. It introduces the
 Jacobian matrix and concepts such as singularities, manipulability, null-space mo-
tion, and resolved-rate motion control. It also discusses under- and over-actuated ro-
bots and the general numerical solution to inverse kinematics. Chapter 9 introduces
the design of joint control systems, the dynamic equations of motion for a serial-link
manipulator, and the relationship between joint forces and joint motion. It discusses
important topics such as variation in inertia, the effect of payload, fl exible transmis-
sions and independent joint versus nonlinear control strategies.

Computer vision is a large fi eld concerned with processing images in order to
enhance them for human benefi t, interpret the contents of the scene or create a
3D model corresponding to the scene. Part IV is concerned with machine vision,
a subset of computer vision, and defi ned here as the extraction of numerical fea-
tures from images to provide input for control of a robot. The discussion starts in
Chap. 10 with the fundamentals of light, illumination and color. Chapter 11 de-
scribes the geometric model of perspective image creation using lenses and dis-
cusses topics such as camera calibration and pose estimation. We introduce non-
perspective imaging using wide-angle lenses and mirror systems, camera arrays
and light-fi eld cameras. Chapter 12 discusses image processing which is a domain
of 2-dimensional signal processing that transforms one image into another image.
The discussion starts with acquiring real-world images and then covers various
arithmetic and logical operations that can be performed on images. We then intro-
duce spatial operators such as convolution, segmentation, morphological fi ltering
and fi nally image shape and size changing. These operations underpin the discus-
sion in Chap. 13 which describe how numerical features are extracted from images.
The features describe homogeneous regions (blobs), lines or distinct points in the
scene and are the basis for vision-based robot control. Chapter 14 is concerned with
estimating the underlying three-dimensional geometry of a scene using classical
methods such as structured lighting and also combining features found in different
views of the same scene to provide information about the geometry and the spatial
relationship between the camera views which is encoded in fundamental, essential
and homography matrices. This leads to the topic of bundle adjustment and struc-
ture from motion and applications including perspective correction, mosaicing,
 image retrieval and visual odometry.

Part V discusses how visual features extracted from the camera’s view can be used to
control arm-type and mobile robots – an approach known as vision-based control or
visual servoing. This part pulls together concepts introduced in the earlier parts of the
book. Chapter 15 introduces the classical approaches to visual servoing known as posi-
tion-based and image-based visual servoing and discusses their respective limitations.
Chapter 16 discusses more recent approaches that address these limitations and also
covers the use of nonperspective cameras, under-actuated robots and mobile robots.

This is a big book but any one of the parts can be read standalone, with more or
less frequent visits to the required earlier material. Chapter 2 is the only mandatory
material. Parts II, III or IV could be used respectively for an introduction to mobile
robots, arm robots or computer vision class. An alternative approach, following the
instant gratifi cation theme, is to jump straight into any chapter and start exploring
– visiting the earlier material as required.

1.2 · About the Book

14 Chapter 1 · Introduction

Further Reading

The Handbook of Robotics (Siciliano and Khatib 2016) provides encyclopedic coverage
of the fi eld of robotics today, covering theory, technology and the different types of
robot such as telerobots, service robots, fi eld robots, fl ying robots, underwater robots
and so on. The classic work by Sheridan (2003) discusses the spectrum of autonomy
from remote control, through shared and traded control to full autonomy.

A comprehensive coverage of computer vision is the book by Szeliski (2011), and a
solid introduction to artifi cial intelligence is the text by Russell and Norvig (2009).

A number of recent books discuss the future impacts of robotics and artifi cial intel-
ligence on society, for example Ford (2015), Brynjolfsson and McAfee (2014), Bostrom
(2016) and Neilson (2011). The YouTube video Grey (2014) makes some powerful
points about the future of work and is always a great discussion starter.

 Part I Foundations
 Chapter 2 Representing Position and Orientation

 Chapter 3 Time and Motion

Chapter

2 Representing Position
and Orientation

Fig. 2.1.
a The point P is described by a
coordinate vector with respect

to an absolute coordinate frame.
b The points are described with

respect to the object’s coordi-
nate frame {B} which in turn is
described by a relative pose ξB.
Axes are denoted by thick lines
with an open arrow, vectors by

thin lines with a swept arrow
head and a pose by a thick line

with a solid head

Numbers are an important part of mathematics. We use numbers for counting: there are
2 apples. We use denominate numbers, a number plus a unit, to specify distance: the

object is 2 m away. We also call this single number a scalar. We use a vector, a de-
nominate number plus a direction, to specify a location: the object is 2 m due north.
We may also want to know the orientation of the object: the object is 2 m due north
and facing west. The combination of position and orientation we call pose.

A point in space is a familiar concept from mathematics and can be described
by a coordinate vector, as shown in Fig. 2.1a. The vector represents the dis-
placement of the point with respect to some reference coordinate frame – we

call this a bound vector since it cannot be freely moved. A coordinate frame, or
Cartesian coordinate system, is a set of orthogonal axes which intersect at a point

known as the origin. A vector can be described in terms of its components, a linear
combination of unit vectors which are parallel to the axes of the coordinate frame.
Note that points and vectors are different types of mathematical objects even though
each can be described by a tuple of numbers. We can add vectors but adding points
makes no sense. The difference of two points is a vector, and we can add a vector to a
point to obtain another point.

 A point is an interesting mathematical abstraction, but a real object comprises
infi nitely many points. An object, unlike a point, also has an orientation. If we

attach a coordinate frame to an object, as shown in Fig. 2.1b, we can describe every
point within the object as a constant vector with respect to that frame.� Now we can
describe the position and orientation – the pose – of that coordinate frame with re-
spect to the reference coordinate frame. To distinguish the different frames we label
them and in this case the object coordinate frame is labeled {B} and its axes are labeled
xB and yB, adopting the frame’s label as their subscript.

To completely describe the pose of a rigid object in a 3-dimensional world we need
6 not 3 dimensions: 3 to describe its position and 3 to describe its orientation. These
dimensions behave quite differently. If we increase the value of one of the position
dimensions the object will move continuously in a straight line, but if we increase the
value of one of the orientation dimensions the object will rotate in some way and soon
get back to its original orientation – this dimension is curved. We clearly need to treat
the position and orientation dimensions quite differently.

We assume that the object is rigid, that
is, the points do not move with respect
to each other.

18 Chapter 2 · Representing Position and Orientation

In relative pose composition we can check that we have our reference frames correct by ensur-
ing that the subscript and superscript on each side of the ⊕ operator are matched. We can then
cancel out the intermediate subscripts and superscripts

leaving just the end most subscript and superscript which are shown highlighted.

Fig. 2.2.
The point P can be described by
coordinate vectors relative to ei-
ther frame {A} or {B}. The pose
of {B} relative to {A} is AξB

The pose of the coordinate frame is denoted by the symbol ξ – pronounced ksi.
Figure 2.2 shows two frames {A} and {B} and the relative pose AξB which describes {B}
with respect to {A}. The leading superscript denotes the reference coordinate frame
and the subscript denotes the frame being described. We could also think of AξB as
describing some motion – imagine picking up {A} and applying a displacement and
a rotation so that it is transformed to {B}. If the initial superscript is missing we as-
sume that the change in pose is relative to the world coordinate frame which is gen-
erally denoted {O}.

The point P in Fig. 2.2 can be described with respect to either coordinate frame by
the vectors Ap or Bp respectively. Formally they are related by

 (2.1)

where the right-hand side expresses the motion from {A} to {B} and then to P. The op-
erator i transforms the vector, resulting in a new vector that describes the same point
but with respect to a different coordinate frame.

An important characteristic of relative poses is that they can be composed or com-
pounded. Consider the case shown in Fig. 2.3. If one frame can be described in terms
of another by a relative pose then they can be applied sequentially

 Euclid of Alexandria (ca. 325 BCE–265 BCE) was a Greek mathematician,
who was born and lived in Alexandria Egypt, and is considered
the “father of geometry”. His great work Elements comprising
13 books, captured and systematized much early knowledge about
geometry and numbers. It deduces the properties of planar and
solid geometric shapes from a set of 5 axioms and 5 postulates.

Elements is probably the most successful book in the histo-
ry of mathematics. It describes plane geometry and is the ba-
sis for most people’s fi rst introduction to geometry and formal
proof, and is the basis of what we now call Euclidean geometry.
 Euclidean distance is simply the distance between two points on
a plane. Euclid also wrote Optics which describes geometric vi-
sion and perspective.

19

Fig. 2.3.
The point P can be described by

coordinate vectors relative to
either frame {A}, {B} or {C}. The

frames are described by rela-
tive poses

Chapter 2 · Representing Position and Orientation

Euclidean versus Cartesian geometry . Euclidean geometry is concerned with points and lines in
the Euclidean plane (2D) or Euclidean space (3D). It is entirely based on a set of axioms and
makes no use of arithmetic. Descartes added a coordinate system (2D or 3D) and was then
able to describe points, lines and other curves in terms of algebraic equations. The study
of such equations is called analytic geometry and is the basis of all modern geometry. The
Cartesian plane (or space) is the
Euclidean plane (or space) with all
its axioms and postulates plus the
extra facilities afforded by the ad-
ded coordinate system . The term
Euclidean geometry is often used
to mean that Euclid’s fifth postu-
late (parallel lines never intersect)
holds, which is the case for a pla-
nar surface but not for a curved
surface.

 René Descartes (1596–1650) was a French philosopher, mathematician and part-time mercenary. He
is famous for the philosophical statement “Cogito, ergo sum” or “I am thinking, therefore I exist” or
“I think, therefore I am”. He was a sickly child and developed a life-long habit of lying in bed and
thinking until late morning. A possibly apocryphal story is that during one such morning he was
watching a fl y walk across the ceiling and realized that he could describe its position in terms of
its distance from the two edges of the ceiling. This is the basis of the Cartesian coordinate system
and modern (analytic) geometry, which he described in his 1637 book La Géométrie. For the fi rst
time mathematics and geometry were connected, and modern calculus was built on this foun-
dation by Newton and Leibniz. In Sweden at the invitation of Queen Christina he was obliged to
rise at 5 a.m., breaking his lifetime habit – he caught pneumonia and died. His remains were later
moved to Paris, and are now lost apart from his skull which is in the Musée de l’Homme. After his
death, the Roman Catholic Church placed his works on the Index of Prohibited Books.

which says, in words, that the pose of {C} relative to {A} can be obtained by compound-
ing the relative poses from {A} to {B} and {B} to {C}. We use the operator ⊕ to indicate
composition of relative poses.

For this case the point P can be described by

Later in this chapter we will convert these abstract notions of ξ , i and ⊕ into stan-
dard mathematical objects and operators that we can implement in MATLAB®.

In the examples so far we have shown 2-dimensional coordinate frames. This is ap-
propriate for a large class of robotics problems, particularly for mobile robots which
operate in a planar world. For other problems we require 3-dimensional coordinate
frames to describe objects in our 3-dimensional world such as the pose of a fl ying or
underwater robot or the end of a tool carried by a robot arm.

20 Chapter 2 · Representing Position and Orientation

Figure 2.4 shows a more complex 3-dimensional example in a graphical form where
we have attached 3D coordinate frames to the various entities and indicated some
relative poses. The fi xed camera observes the object from its fi xed viewpoint and es-
timates the object’s pose FξB relative to itself. The other camera is not fi xed, it is at-
tached to the robot at some constant relative pose and estimates the object’s pose CξB
relative to itself.

An alternative representation of the spatial relationships is a directed graph (see
Appendix I) which is shown in Fig. 2.5.� Each node in the graph represents a pose
and each edge represents a relative pose. An arrow from X to Y is denoted XξY and de-
scribes the pose of Y relative to X. Recalling that we can compose relative poses using
the ⊕ operator we can write some spatial relationships

and each equation represents a loop in the graph with each side of the equation starting
and ending at the same node. Each side of the fi rst equation represents a path through
the network from {0} to {B}, a sequence of edges (arrows) written in order.

Fig. 2.5.
Spatial example of Fig. 2.4
expressed as a directed graph

Fig. 2.4.
Multiple 3-dimensional coordi-
nate frames and relative poses

It is quite possible that a pose graph can
be inconsistent, that is, two paths through
the graph give different results. In robot-
ics these poses are only ever derived from
noisy sensor data.

21

A very useful property of poses is the ability to perform algebra. The second loop
equation says, in words, that the pose of the robot is the same as composing two rela-
tive poses: from the world frame to the fi xed camera and from the fi xed camera to the
robot. We can subtract ξF from both sides of the equation� by adding the inverse of
ξF which we denote as �ξF and this gives

which is the pose of the robot relative to the fi xed camera, shown as a dashed line
in Fig. 2.5.

We can write these expressions quickly by inspection. To fi nd the pose of node X
with respect to node Y:

� fi nd a path from Y to X and write down the relative poses on the edges in a left to
right order;

� if you traverse the edge in the direction of its arrow precede it with the ⊕ operator,
otherwise use �.

So what is ξ? It can be any mathematical object that supports the algebra de-
scribed above and is suited to the problem at hand. It will depend on whether we
are considering a 2- or 3-dimensional problem. Some of the objects that we will
discuss in the rest of this chapter will be familiar to us, for example vectors, but
others will be more exotic mathematical objects such as homogeneous transfor-
mations, orthonormal rotation matrices, twists and quaternions. Fortunately all
these mathematical objects are well suited to the mathematical programming en-
vironment of MATLAB.

There are just a few algebraic rules:�

where 0 represents a zero relative pose. A pose has an inverse

which is represented graphically by an arrow from {Y} to {X}. Relative poses can
also be composed or compounded

It is important to note that the algebraic rules for poses are different to nor-
mal algebra and that composition is not commutative

with the exception being the case where ξ1 ⊕ ξ2 = 0. A relative pose can trans-
form a point expressed as a vector relative to one frame to a vector relative to
another

In mathematical terms poses constitute
a group – a set of objects that supports
an associative binary operator (composi-
tion) whose result belongs to the group,
an inverse operation and an identity ele-
ment. In this case the group is the special
Euclidean group in either 2 or 3 dimen-
sions which are commonly referred to as
SE(2) or SE(3) respectively.

Order is important here, and we add �ξF
to the left on each side of the equation.

Chapter 2 · Representing Position and Orientation

22 Chapter 2 · Representing Position and Orientation

To recap:

1. A point is described by a bound coordinate vector that represents its displacement
from the origin of a reference coordinate system.

2. Points and vectors are different things even though they are each described by a
tuple of numbers. We can add vectors but not points. The difference between two
points is a vector.

3. A set of points that represent a rigid object can be described by a single coordinate
frame, and its constituent points are described by constant vectors relative to that
coordinate frame.

4. The position and orientation of an object’s coordinate frame is referred to as its
pose.

5. A relative pose describes the pose of one coordinate frame with respect to another
and is denoted by an algebraic variable ξ .

6. A coordinate vector describing a point can be represented with respect to a dif-
ferent coordinate frame by applying the relative pose to the vector using the i op-
erator.

7. We can perform algebraic manipulation of expressions written in terms of relative
poses and the operators ⊕ and �.

The remainder of this chapter discusses concrete representations of ξ for various
common cases that we will encounter in robotics and computer vision. We start by
considering the two-dimensional case which is comparatively straightforward and
then extend those concepts to three dimensions. In each case we consider rotation
fi rst, and then add translation to create a description of pose.

2.1
l
Working in Two Dimensions (2D)

A 2-dimensional world, or plane, is familiar to us from high-school Euclidean geom-
etry. We use a right-handed� Cartesian coordinate system or coordinate frame with
orthogonal axes denoted x and y and typically drawn with the x-axis horizontal and
the y-axis vertical. The point of intersection is called the origin. Unit-vectors paral-
lel to the axes are denoted ' and (. A point is represented by its x- and y-coordinates
(x, y) or as a bound vector

 (2.2)

Figure 2.6 shows a red coordinate frame {B} that we wish to describe with respect
to the blue reference frame {A}. We can see clearly that the origin of {B} has been
displaced by the vector t = (x, y) and then rotated counter-clockwise by an angle θ .

Fig. 2.6.
Two 2D coordinate frames {A}
and {B} and a world point P.
{B} is rotated and translated
with respect to {A}

The relative orientation of the x- and
y-axes obey the right-hand rule as shown
on page 31.

23

A concrete representation of pose is therefore the 3-vector AξB ∼ (x, y, θ), and we use
the symbol ∼ to denote that the two representations are equivalent. Unfortunately
this representation is not convenient for compounding since

is a complex trigonometric function of both poses. Instead we will look for a different
way to represent rotation and pose. We will consider the problem in two parts: rota-
tion and then translation.

2.1.1
l

Orientation in 2-Dimensions

2.1.1.1
l
Orthonormal Rotation Matrix

Consider an arbitrary point P which we can express with respect to each of the coor-
dinate frames shown in Fig. 2.6. We create a new frame {V} whose axes are parallel
to those of {A} but whose origin is the same as {B}, see Fig. 2.7. According to Eq. 2.2
we can express the point P with respect to {V} in terms of the unit-vectors that defi ne
the axes of the frame

 (2.3)

which we have written as the product of a row and a column vector.
The coordinate frame {B} is completely described by its two orthogonal axes which

we represent by two unit vectors

which can be factorized into matrix form as

 (2.4)

Using Eq. 2.2 we can represent the point P with respect to {B} as

Fig. 2.7.
Rotated coordinate frames

in 2D. The point P can be con-
sidered with respect to the red

or blue coordinate frame

2.1 · Working in Two Dimensions (2D)

24 Chapter 2 · Representing Position and Orientation

and substituting Eq. 2.4 we write

 (2.5)

Now by equating the coeffi cients of the right-hand sides of Eq. 2.3 and Eq. 2.5 we write

which describes how points are transformed from frame {B} to frame {V} when the
frame is rotated. This type of matrix is known as a rotation matrix since it transforms
a point from frame {V} to {B} and is denoted VRB

 (2.6)

is a 2-dimensional rotation matrix with some special properties:

� it is orthonormal (also called orthogonal) since each of its columns is a unit
vector and the columns are orthogonal.�

� the columns are the unit vectors that defi ne the axes of the rotated frame Y
with respect to X and are by defi nition both unit-length and orthogonal.

� it belongs to the special orthogonal group of dimension 2 or R ∈ SO(2) ⊂R2×2.
This means that the product of any two matrices belongs to the group, as does
its inverse.

� its determinant is +1, which means that the length of a vector is unchanged
after transformation, that is, �Yp�= �Xp�, ∀θ .

� the inverse is the same as the transpose, that is, R−1 = RT.

We can rearrange Eq. 2.6 as

Note that inverting the matrix is the same as swapping the superscript and subscript,
which leads to the identity R(−θ) = R(θ)T.

It is interesting to observe that instead of representing an angle, which is a scalar, we
have used a 2 × 2 matrix that comprises four elements, however these elements are not
independent. Each column has a unit magnitude which provides two constraints. The
columns are orthogonal which provides another constraint. Four elements and three
constraints are effectively one independent value. The rotation matrix is an example of
a nonminimum representation and the disadvantages such as the increased memory it
requires are outweighed, as we shall see, by its advantages such as composability.

The Toolbox allows easy creation of these rotation matrices

 >> R = rot2(0.2)
R =
 0.9801 -0.1987
 0.1987 0.9801

See Appendix B which provides a re-
fresher on vectors, matrices and linear
algebra.

25

where the angle is specifi ed in radians. We can observe some of the properties such as
>> det(R)
ans =
 1

and the product of two rotation matrices is also a rotation matrix
 >> det(R*R)
ans =
 1

The Toolbox also supports symbolic mathematics� for example

>> syms theta
>> R = rot2(theta)
R =
[cos(theta), -sin(theta)]
[sin(theta), cos(theta)]
>> simplify(R*R)
ans =
[cos(2*theta), -sin(2*theta)]
[sin(2*theta), cos(2*theta)]
>> simplify(det(R))
ans =
1

2.1.1.2
l

Matrix Exponential

 Consider a pure rotation of 0.3 radians expressed as a rotation matrix
>> R = rot2(0.3)
ans =
 0.9553 -0.2955
 0.2955 0.9553

We can compute the logarithm of this matrix using the MATLAB builtin function
logm�

>> S = logm(R)
S =
 0.0000 -0.3000
 0.3000 0.0000

and the result is a simple matrix with two elements having a magnitude of 0.3, which
intriguingly is the original rotation angle. There is something deep and interesting
going on here – we are on the fringes of Lie group theory which we will encounter
throughout this chapter.

You will need to have the MATLAB Sym-
bolic Math Toolbox™ installed.

logm is different to the builtin function
log which computes the logarithm of
each element of the matrix. A logarithm
can be computed using a power series,
with a matrix rather than scalar argu-
ment. For a matrix the logarithm is not
unique and logm computes the prin-
cipal logarithm of the matrix.

In 2 dimensions the skew-symmetric matrix is

 (2.7)

which has clear structure and only one unique element ω ∈ R. A simple example of Toolbox
support for skew-symmetric matrices i s

>> skew(2)
ans =
 0 -2
 2 0

and the inverse operation is performed using the Toolbox function vex

> > vex(ans)
ans =
 2

2.1 · Working in Two Dimensions (2D)

26 Chapter 2 · Representing Position and Orientation

This matrix has a zero diagonal and is an example of a 2 × 2 skew-symmetric ma-
trix. The matrix has only one unique element and we can unpack it using the Toolbox
function vex

> > vex(S)
ans =
 0.3000

to recover the rotation angle.
The inverse of a logarithm is ex ponentiation and using the builtin MATLAB matrix

exponential function expm�

>> expm(S)
ans =
 0.9553 -0.2955
 0.2955 0.9553

the result is, as expected, our original rotation matrix. In fact the command

>> R = rot2(0.3);

is equivalent to

>> R = expm(skew(0.3));

Formally we can write

where θ is the rotation angle, and the notation [·]×: R�R
2×2 indicates a mapping from

a scalar to a skew-symmetric matrix.

2.1.2
l
Pose in 2-Dimensions

2.1.2.1
l
Homogeneous Transformation Matrix

Now we need to account for the translation between the origins of the frames shown
in Fig. 2.6. Since the axes {V} and {A} are parallel, as shown in Figs. 2.6 and 2.7, this
is simply vectorial addition

 (2.8)

 (2.9)

 (2.10)

or more compactly as

 (2.11)

where t = (x, y) is the translation of the frame and the orientation is ARB. Note that
ARB = VRB since the axes of frames {A} and {V} are parallel. The coordinate vectors for
 point P are now expressed in homogeneous form and we write

 expm i s different to the builtin function
exp w hich computes the exponential
of each element of the matrix.
expm(A) = I + A + A2/ 2! + A3/ 3! +�

27

and ATB is referred to as a homogeneous transformation. The matrix has a very
specifi c structure and belongs to the special Euclidean group of dimension 2 or
 T ∈ SE(2) ⊂R3×3.

By comparison with Eq. 2.1 it is clear that ATB represents translation and orienta-
tion or relative pose. This is often referred to as a rigid-body motion.

A concrete representation of relative pose ξ is ξ ∼ T ∈ SE(2) and T1 ⊕ T2� T1T2
which is standard matrix multiplication

One of the algebraic rules from page 21 is ξ ⊕ 0 = ξ . For matrices we know
that TI = T, where I is the identify matrix, so for pose 0� I the identity matrix.
Another rule was that ξ� ξ = 0. We know for matrices that TT −1 = I which im-
plies that �T� T −1

For a point described by p ∈ P2 then T ip� Tp which is a standard matrix-
vector product.

To make this more tangible we will show some numerical examples using MATLAB
and the Toolbox. We create a homogeneous transformation which represents a trans-
lation of (1, 2) followed by a rotation of 30°

>> T1 = transl2(1, 2) * trot2(30, 'deg')
T1 =
 0.8660 -0.5000 1.0000
 0.5000 0.8660 2.0000
 0 0 1.0000

The function transl2 creates a relative pose with a fi nite translation but zero rota-
tion, while trot2 creates a relative pose with a fi nite rotation but zero translation.�
We can plot this, relative to the world coordinate frame, by

>> plotvol([0 5 0 5]);
>> trplot2(T1, 'frame', '1', 'color', 'b')

A vector p= (x, y) is written in homogeneous form as p ∈ P2, p = (x1, x2, x3) where x = x1/ x3,
y = x2/x3 and x3 ≠ 0. The dimension has been increased by one and a point on a plane is now
represented by a 3-vector. To convert a point to homogeneous form we typically append an ele-
ment equal to one p= (x, y, 1). The tilde indicates the vector is homogeneous.

Homogeneous vectors have the important property that p is equivalent to λp for all λ ≠ 0
which we write as p� λp. That is p represents the same point in the plane irrespective of the
overall scaling factor. Homogeneous representation is important for computer vision that we
discuss in Part IV. Additional details are provided in Sect. C.2.

2.1 · Working in Two Dimensions (2D)

Many Toolbox functions have variants
that return orthonormal rotation ma-
trices or homogeneous transformations,
for example, rot2 and trot2.

28 Chapter 2 · Representing Position and Orientation

The options specify that the label for the frame is {1} and it is colored blue and this
is shown in Fig. 2.8. We create another relative pose which is a displacement of (2, 1)
and zero rotation

>> T2 = transl2(2, 1)
T2 =
 1 0 2
 0 1 1
 0 0 1

which we plot in red

>> trplot2(T2, 'frame', '2', 'color', 'r');

Now we can compose the two relative poses

>> T3 = T1*T2
T3 =
 0.8660 -0.5000 2.2321
 0.5000 0.8660 3.8660
 0 0 1.0000

and plot it, in green, as

>> trplot2(T3, 'frame', '3', 'color', 'g');

We see that the displacement of (2, 1) has been applied with respect to frame {1}. It is
important to note that our fi nal displacement is not (3, 3) because the displacement
is with respect to the rotated coordinate frame. The noncommutativity of composi-
tion is clearly demonstrated by

>> T4 = T2*T1;
>> trplot2(T4, 'frame', '4', 'color', 'c');

and we see that frame {4} is different to frame {3}.
Now we defi ne a point (3, 2) relative to the world frame

>> P = [3 ; 2];

which is a column vector and add it to the plot

>> plot_point(P, 'label', 'P', 'solid', 'ko');

To determine the coordinate of the point with respect to {1} we use Eq. 2.1 and
write down

Fig. 2.8.
Coordinate frames drawn using
the Toolbox function trplot2

29

and then rearrange as

Substituting numerical values

>> P1 = inv(T1) * [P; 1]
P1 =
 1.7321
 -1.0000
 1.0000

where we fi rst converted the Euclidean point coordinates to homogeneous form by ap-
pending a one. The result is also in homogeneous form and has a negative y-coordinate
in frame {1}. Using the Toolbox we could also have expressed this as

>> h2e(inv(T1) * e2h(P))
ans =
 1.7321
 -1.0000

where the result is in Euclidean coordinates. The helper function e2h converts Euclidean
coordinates to homogeneous and h2e performs the inverse conversion.

2.1.2.2
l

Centers of Rotation

We will explore the noncommutativity property in more depth and illustrate with the
example of a pure rotation. First we create and plot a reference coordinate frame {0}
and a target frame {X}

>> plotvol([-5 4 -1 5]);
>> T0 = eye(3,3);
>> trplot2(T0, 'frame', '0');
>> X = transl2(2, 3);
>> trplot2(X, 'frame', 'X');

and create a rotation of 2 radians (approximately 115°)

>> R = trot2(2);

and plot the effect of the two possible orders of composition

>> trplot2(R*X, 'framelabel', 'RX', 'color', 'r');
>> trplot2(X*R, 'framelabel', 'XR', 'color', 'r');

The results are shown as red coordinate frames in Fig. 2.9. We see that the frame {RX}
has been rotated about the origin, while frame {XR} has been rotated about the ori-
gin of {X}.

What if we wished to rotate a coordinate frame about an arbitrary point? First of
all we will establish a new point C and display it

>> C = [1 2]';
>> plot_point(C, 'label', ' C', 'solid', 'ko')

and then compute a transform to rotate about point C

>> RC = transl2(C) * R * transl2(-C)
RC =
 -0.4161 -0.9093 3.2347
 0.9093 -0.4161 1.9230
 0 0 1.0000

and applying this

>> trplot2(RC*X, 'framelabel', 'XC', 'color', 'r');

2.1 · Working in Two Dimensions (2D)

30 Chapter 2 · Representing Position and Orientation

we see that the frame has indeed been rotated about point C. Creating the required
transform was somewhat cumbersome and not immediately obvious. Reading from
right to left� we fi rst apply an origin shift, a translation from C to the origin of the
reference frame, apply the rotation about that origin, and then apply the inverse
origin shift, a translation from the reference frame origin back to C. A more descrip-
tive way to achieve this is using twists.

2.1.2.3
l

Twists in 2D

The corollary to what we showed in the last section is that, given any two frames we
can fi nd a rotational center that will rotate the fi rst frame into the second. For the case
of pure translational motion the rotational center will be at infi nity. This is the key
concept behind what is called a twist.

 We can create a rotational twist a bout the point specifi ed by the coordinate vec-
tor C

>> tw = Twist('R', C)
tw =
(2 -1; 1)

and the result is a Twist o bject that encodes a twist vector w ith two components: a
2-vector moment a nd a 1-vector rotation. The fi rst argument 'R' indicates a rota-
tional twist is to be computed. This particular twist is a unit t wist s ince the magnitude
of the rotation, the last element of the twist, is equal to one.

To create an SE(2) transformation for a rotation about this unit twist by 2 radians
we use the T method

>> tw.T(2)
ans =
 -0.4161 -0.9093 3.2347
 0.9093 -0.4161 1.9230
 0 0 1.0000

which is the same as that computed in the previous section, but more concisely speci-
fi ed in terms of the center of rotation. The center is also called the p ole of the trans-
formation and is encoded in the twist

>> tw.pole'
ans =
 1 2

Fig. 2.9.
The frame {X} is rotated by
2 radians about {0} to give
frame {RX}, about {X} to
give {XR}, and about point C
to give frame {XC}

RC left multiplies X, therefore the first
transform applied to X is transl(-C),
then R, then transl(C).

31

If we wish to perform translational motion i n the direction (1, 1) the relevant unit
twist is�

>> tw = Twist('T', [1 1])
tw =
(0.70711 0.70711; 0)

and for a displacement of √⎯2 in the direction defi ned by this twist the SE(2) trans-
formation is

>> tw.T(sqrt(2))
ans =
 1 0 1
 0 1 1
 0 0 1

which we see has a null rotation and a translation of 1 in the x- and y-directions.
For an arbitrary planar transform s uch as

>> T = transl2(2, 3) * trot2(0.5)
T =
 0.8776 -0.4794 2.0000
 0.4794 0.8776 3.0000
 0 0 1.0000

we can compute the twist vector
> > tw = Twist(T)
tw =
(2.7082 2.4372; 0.5)

and we note that the last element, the rotation, is not equal to one but is the required ro-
tation angle of 0.5 radians. This is a nonunit twist. Therefore when we convert this to an
SE(2) transform w e don’t need to provide a second argument since it is implicit in the twist

>> tw.T
ans =
 0.8776 -0.4794 2.0000
 0.4794 0.8776 3.0000
 0 0 1.0000

and we have regenerated our original homogeneous transformation.

2.2
l
Working in Three Dimensions (3D)

The 3-dimensional case is an extension of the 2-dimensional case discussed in the
previous section. We add an extra coordinate axis, typically denoted by z, that is or-
thogonal to both the x- and y-axes. The direction of the z-axis obeys the right-hand
rule and forms a right-handed coordinate frame . Unit vectors parallel to the axes are
denoted ', (and) such that�

 (2.12)

A point P is represented by its x-, y- and z-coordinates (x, y, z) or as a bound vector

Figure 2.10 shows a red coordinate frame {B} that we wish to describe with respect
to the blue reference frame {A}. We can see clearly that the origin of {B} has been

 Right-hand rule. A right-handed coordinate frame is defi ned by the fi rst three fi ngers of your right
hand which indicate the relative directions of the x-, y- and z-axes respectively.

In all these identities, the symbols from
left to right (across the equals sign) are a
cyclic rotation of the sequence xyz.

2.2 · Working in Three Dimensions (3D)

For a unit-translational twist the rotation
is zero and the moment is a unit vector.

32 Chapter 2 · Representing Position and Orientation

displaced by the vector t = (x, y, z) and then rotated in some complex fashion. Just
as for the 2-dimensional case the way we represent orientation is very important.

Our approach is to again consider an arbitrary point P with respect to each of the
coordinate frames and to determine the relationship between Ap and Bp. We will
again consider the problem in two parts: rotation and then translation. Rotation
is surprisingly complex for the 3-dimensional case and we devote all of the next
section to it.

2.2.1
l

Orientation in 3-Dimensions

Any two independent orthonormal coordinate frames
can be related by a sequence of rotations (not more than three)

about coordinate axes, where no two successive rotations may be about the same axis.
Euler’s rotation theorem (Kuipers 1999).

Figure 2.10 shows a pair of right-handed coordinate frames with very different orien-
tations, and we would like some way to describe the orientation of one with respect
to the other. We can imagine picking up frame {A} in our hand and rotating it until
it looked just like frame {B}. Euler’s rotation theorem states that any rotation can be
considered as a sequence of rotations about different coordinate axes.

We start by considering rotation about a single coordinate axis. Figure 2.11 shows a
right-handed coordinate frame, and that same frame after it has been rotated by vari-
ous angles about different coordinate axes.

The issue of rotation has some subtleties which are illustrated in Fig. 2.12. This
shows a sequence of two rotations applied in different orders. We see that the fi nal
orientation depends on the order in which the rotations are applied. This is a deep
and confounding characteristic of the 3-dimensional world which has intrigued math-
ematicians for a long time. There are implication for the pose algebra we have used
in this chapter:

In 3-dimensions rotation is not commutative – the order in which rotations are
applied makes a difference to the result.

Mathematicians have developed many ways to represent rotation and we will discuss
several of them in the remainder of this section: orthonormal rotation matrices, Euler
and Cardan angles, rotation axis and angle, exponential coordinates, and unit quater-
nions. All can be represented as vectors or matrices, the natural datatypes of MATLAB
or as a Toolbox defi ned class. The Toolbox provides many function to convert between
these representations and these are shown in Tables 2.1 and 2.2 (pages 57, 58).

Fig. 2.10.
Two 3D coordinate frames {A}
and {B}. {B} is rotated and trans-
lated with respect to {A}

33

Fig. 2.11.
Rotation of a 3D coordinate frame.

a The original coordinate frame,
b–f frame a after various rota-

tions as indicated

Fig. 2.12.
Example showing the noncom-

mutativity of rotation. In the top
row the coordinate frame is ro-
tated by ü about the x-axis and
then ü about the y-axis. In the
bottom row the order of rota-

tions has been reversed. The re-
sults are clearly different

Rotation about a vector. Wrap your right hand around the vector with your thumb (your x-fi nger) in
the direction of the arrow. The curl of your fi ngers indicates the direction of increasing angle.

2.2 · Working in Three Dimensions (3D)

34 Chapter 2 · Representing Position and Orientation

2.2.1.1
l
Orthonormal Rotation Matrix

Just as for the 2-dimensional case we can represent the orientation of a coordinate frame
by its unit vectors expressed in terms of the reference coordinate frame. Each unit vec-
tor has three elements and they form the columns of a 3 × 3 orthonormal matrix ARB

 (2.13)

which transforms the description of a vector defi ned with respect to frame {B} to
a vector with respect to {A}.

A 3-dimensional rotation matrix XRY has some special properties:

� it is orthonormal (also called orthogonal) since each of its columns is a unit
vector and the columns are orthogonal.�

� the columns are the unit vectors that defi ne the axes of the rotated frame Y
with respect to X and are by defi nition both unit-length and orthogonal.

� it belongs to the special orthogonal group of dimension 3 or R ∈ SO(3) ⊂R3×3.
This means that the product of any two matrices within the group also belongs
to the group, as does its inverse.

� its determinant is +1, which means that the length of a vector is unchanged
after transformation, that is, �Yp�= �Xp�, ∀θ .

� the inverse is the same as the transpose, that is, R−1 = RT.

The orthonormal rotation matrices for rotation of θ about the x-, y- and z-axes are

The Toolbox provides functions to compute these elementary rotation matrices,
for example Rx(θ) is

>> R = rotx(pi/2)
R =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

and its effect on a reference coordinate frame is shown graphically in Fig. 2.11b. The
functions roty and rotz compute Ry(θ) and Rz(θ) respectively.

If we consider that the rotation matrix represents a pose then the corresponding
coordinate frame can be displayed graphically

>> trplot(R)

which is shown in Fig. 2.13a. We can visualize a rotation more powerfully using the
Toolbox function tranimate which animates a rotation

>> tranimate(R)

See Appendix B which provides a re-
fresher on vectors, matrices and linear
algebra.

35

showing the world frame rotating into the specifi ed coordinate frame. If you have a
pair of anaglyph stereo glasses� you can see this in more realistic 3D by

>> tranimate(R, '3d')

To illustrate compounding of rotations we will rotate the frame of Fig. 2.13a again,
this time around its y-axis

>> R = rotx(pi/2) * roty(pi/2)
R =
 0.0000 0 1.0000
 1.0000 0.0000 -0.0000
 -0.0000 1.0000 0.0000
>> trplot(R)

to give the frame shown in Fig. 2.13b. In this frame the x-axis now points in the direc-
tion of the world y-axis.

The noncommutativity of rotation can be shown by reversing the order of the ro-
tations above

>> roty(pi/2)*rotx(pi/2)
ans =
 0.0000 1.0000 0.0000
 0 0.0000 -1.0000
 -1.0000 0.0000 0.0000

which has a very different value.
We recall that Euler’s rotation theorem states that any rotation can be represented

by not more than three rotations about coordinate axes. This means that in general an
arbitrary rotation between frames can be decomposed into a sequence of three rota-
tion angles and associated rotation axes – this is discussed in the next section.

The orthonormal rotation matrix has nine elements but they are not independent.
The columns have unit magnitude which provides three constraints. The columns are
orthogonal to each other which provides another three constraints.� Nine elements
and six constraints is effectively three independent values.

Reading an orthonormal rotation matrix , the columns from left to right tell us the directions of the
new frame’s axes in terms of the current coordinate frame. For example if

R =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

the new frame has its x-axis in the old x-direction (1, 0, 0), its y-axis in the old z-direction (0, 0, 1),
and the new z-axis in the old negative y-direction (0, −1, 0). In this case the x-axis was unchanged
since this is the axis around which the rotation occurred. The rows are the converse – the current
frame axes in terms of the new frame axes.

Fig. 2.13.
Coordinate frames displayed us-
ing trplot. a Reference frame

rotated by ü about the x-axis,
b frame a rotated by ü about

the y-axis

2.2 · Working in Three Dimensions (3D)

If the column vectors are ci, i ∈ 1� 3
then c1 ic2 = c2 ic3 = c3 ic1 = 0 and
�ci�= 1.

36 Chapter 2 · Representing Position and Orientation

2.2.1.2
l

Three- Angle Representations

 Euler’s rotation theorem requires successive rotation about three axes such that no
two successive rotations are about the same axis. There are two classes of rotation se-
quence: Eulerian and Cardanian, named after Euler and Cardano respectively.

The Eulerian type involves repetition, but not successive, of rotations about one
particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is character-
ized by rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX.

It is common practice to refer to all 3-angle representations as Euler angles
but this is underspecified since there are twelve different types to choose
from. The particular angle sequence is often a convention within a particular
technological field.

The ZYZ sequence

 (2.14)

is commonly used in aeronautics and mechanical dynamics, and is used in the Toolbox.
The Euler angles are the 3-vector ¡ = (φ, θ, ψ).

For example, to compute the equivalent rotation matrix for ¡ = (0.1, 0.2, 0.3) we
write

>> R = rotz(0.1) * roty(0.2) * rotz(0.3);

or more conveniently

>> R = eul2r(0.1, 0.2, 0.3)
R =
 0.9021 -0.3836 0.1977
 0.3875 0.9216 0.0198
 -0.1898 0.0587 0.9801

The inverse problem is fi nding the Euler angles that correspond to a given rota-
tion matrix

>> gamma = tr2eul(R)
gamma =
 0.1000 0.2000 0.3000

However if θ is negative

>> R = eul2r(0.1 , -0.2, 0.3)
R =
 0.9021 -0.3836 -0.1977
 0.3875 0.9216 -0.0198
 0.1898 -0.0587 0.9801

the inverse function
>> tr2eul(R)
ans =
 -3.0416 0.2000 -2.8416

returns a positive value for θ and quite different values for φ and ψ . However the cor-
responding rotation matrix

 Leonhard Euler (1707–1783) was a Swiss mathematician and physicist who dominated eighteenth
century mathematics. He was a student of Johann Bernoulli and applied new mathematical
techniques such as calculus to many problems in mechanics and optics. He also developed the
functional notation, y = f(x), that we use today. In robotics we use his rotation theorem and his
equations of motion in rotational dynamics.

He was prolifi c and his collected works fi ll 75 volumes. Almost half of this was produced dur-
ing the last seventeen years of his life when he was completely blind.

37

>> eul2r(ans)
ans =
 0.9021 -0.3836 -0.1977
 0.3875 0.9216 -0.0198
 0.1898 -0.0587 0.9801

is the same – the two different sets of Euler angles correspond to the one rotation ma-
trix. The mapping from a rotation matrix to Euler angles is not unique and the Toolbox
always returns a positive angle for θ .

For the case where θ = 0

>> R = eul2r(0.1, 0, 0.3)
R =
 0.9211 -0.3894 0
 0.3894 0.9211 0
 0 0 1.0000

the inverse function returns
>> tr2eul(R)
ans =
 0 0 0.4000

which is clearly quite different but the result is the same rotation matrix. The expla-
nation is that if θ = 0 then Ry = I and Eq. 2.14 becomes

which is a function of the sum φ + ψ . Therefore the inverse operation can do no more
than determine this sum, and by convention we choose φ = 0. The case θ = 0 is a sin-
gularity and will be discussed in more detail in the next section.

Another widely used convention are the Cardan angles: roll, pitch and yaw.
Confusingly there are two different versions in common use. Text books seem to de-
fi ne the roll-pitch-yaw sequence as ZYX or XYZ depending on whether they have a
mobile robot or robot arm focus.� When describing the attitude of vehicles such as
ships, aircraft and cars the convention is that the x-axis points in the forward direc-
tion and the z-axis points either up or down. It is intuitive to apply the rotations in
the sequence: yaw (direction of travel), pitch (elevation of the front with respect to
horizontal) and then fi nally roll (rotation about the forward axis of the vehicle). This
leads to the ZYX angle sequence

 (2.15)

Roll-pitch-yaw angles are also known as Tait-Bryan angles� or nautical angles, and
for aeronautical applications they can be called bank, attitude and heading angles re-
spectively.

2.2 · Working in Three Dimensions (3D)

 Gerolamo Cardano (1501–1576) was an Italian Renaissance mathematician, physician, astrologer,
and gambler. He was born in Pavia, Italy, the illegitimate child of a mathematically gifted law-
yer. He studied medicine at the University of Padua and later was the fi rst to describe typhoid
fever. He partly supported himself through gambling and his book about games of chance Liber
de ludo aleae contains the fi rst systematic treatment of probability as well as effective cheating
methods. His family life was problematic: his eldest son was executed for poisoning his wife,
and his daughter was a prostitute who died from syphilis (about which he wrote a treatise). He
computed and published the horoscope of Jesus, was accused of heresy, and spent time in prison
until he abjured and gave up his professorship.

He published the solutions to the cubic and quartic equations in his book Ars magna in 1545,
and also invented the combination lock, the gimbal consisting of three concentric rings allow-
ing a compass or gyroscope to rotate freely (see Fig. 2.15), and the Cardan shaft with universal
joints – the drive shaft used in motor vehicles today.

Named after Peter Tait a Scottish physi-
cist and quaternion supporter, and George
Bryan an early Welsh aerodynamicist.

Well known texts such as Siciliano
et al. (2008), Spong et al. (2006) and
Paul (1981) use the XYZ sequence. The
Toolbox supports both formats by means
of the 'xyz' and 'zyx' options.
The ZYX order is default for Release 10,
but for Release 9 the default was XYZ.

38 Chapter 2 · Representing Position and Orientation

When describing the attitude of a robot gripper, as shown in Fig. 2.16, the conven-
tion is that the z-axis points forward and the x-axis is either up or down. This leads
to the XYZ angle sequence

 (2.16)

The Toolbox defaults to the ZYX sequence but can be overridden using the 'xyz'
option. For example

>> R = rpy2r(0.1, 0.2, 0.3)
R =
 0.9363 -0.2751 0.2184
 0.2896 0.9564 -0.0370
 -0.1987 0.0978 0.9752

and the inverse is
>> gamma = tr2rpy(R)
gamma =
 0.1000 0.2000 0.3000

The roll-pitch-yaw sequence allows all angles to have arbitrary sign and it has a singularity
when θp = ±ü which is fortunately outside the range of feasible attitudes for most vehicles.

The Toolbox includes an interactive graphical tool

>> tripleangle

that allows you to experiment with Euler angles or roll-pitch-yaw angles and see their ef-
fect on the orientation of a body as shown in Fig. 2.14.

2.2.1.3
l
Singularities and Gimbal Lock

A fundamental problem with all the three-angle representations just described is singu-
larity. This is also known as gimbal lock, a term made famous in the movie Apollo 13.
This occurs when the rotational axis of the middle term in the sequence becomes paral-
lel to the rotation axis of the fi rst or third term.

A mechanical gyroscope used for spacecraft navigation is shown in Fig. 2.15. The
innermost assembly is the stable member which has three orthogonal gyroscopes that
hold it at a constant orientation with respect to the universe. It is mechanically con-
nected to the spacecraft via a gimbal mechanism which allows the spacecraft to move
around the stable platform without exerting any torque on it. The attitude of the space-
craft is determined directly by measuring the angles of the gimbal axes with respect to
the stable platform – giving a direct indication of roll-pitch-yaw angles which in this
design are a Cardanian YZX sequence.�

Fig. 2.14.
The Toolbox application
 tripleangle allows you to
experiment with Euler angles
and roll-pitch-yaw angles and
see how the attitude of a body
changes

“The LM Body coordinate system is right-
handed, with the +X axis pointing up
through the thrust axis, the +Y axis
pointing right when facing forward
which is along the +Z axis. The rotation-
al transformation matrix is constructed
by a 2-3-1 Euler sequence, that is: Pitch
about Y, then Roll about Z and, finally,
Yaw about X. Positive rotations are pitch
up, roll right, yaw left.” (Hoag 1963).

39

Consider the situation when the rotation angle of the middle gimbal (rotation about
the spacecraft’s z-axis) is 90° – the axes of the inner and outer gimbals are aligned and
they share the same rotation axis. Instead of the original three rotational axes, since
two are parallel, there are now only two effective rotational axes – we say that one de-
gree of freedom has been lost.�

In mathematical, rather than mechanical, terms this problem can be seen using the
defi nition of the Lunar module’s coordinate system where the rotation of the space-
craft’s body-fi xed frame {B} with respect to the stable platform frame {S} is

For the case when θr = ü we can apply the identity�

leading to

which is unable to represent any rotation about the y-axis. This is not a good thing
because spacecraft rotation about the y-axis would rotate the stable element and thus
ruin its precise alignment with the stars: hence the anxiety on Apollo 13.

The loss of a degree of freedom means that mathematically we cannot invert the
transformation, we can only establish a linear relationship between two of the angles.
In this case the best we can do is determine the sum of the pitch and yaw angles. We
observed a similar phenomena with the Euler angle singularity earlier.

2.2 · Working in Three Dimensions (3D)

Fig. 2.15.
Schematic of Apollo Lunar

Module (LM) inertial measure-
ment unit (IMU). The vehicle’s
coordinate system has the x-axis
pointing up through the thrust
axis, the z-axis forward, and the
y-axis pointing right. Starting
at the stable platform {S} and
working outwards toward the

spacecraft’s body frame {B} the
rotation angle sequence is YZX.
The components labeled Xg, Yg
and Zg are the x-, y- and z-axis

gyroscopes and those labeled Xa,
Ya and Za are the x-, y- and z-axis

 accelerometers (redrawn after
Apollo Operations Handbook,

LMA790-3-LM)

Operationally this was a significant limit-
ing factor with this particular gyroscope
(Hoag 1963) and could have been allevi-
ated by adding a fourth gimbal, as was
used on other spacecraft. It was omit-
ted on the Lunar Module for reasons of
weight and space.

Rotations obey the cyclic rotation rules
 Rx(ü) Ry(θ) Rx(ü)T ≡ Rz(θ)
 Ry(ü) Rz(θ) Ry(ü)T ≡ Rx(θ)
 Rz(ü) Rx(θ) Rz(ü)T ≡ Ry(θ)
and anti-cyclic rotation rules
 Ry(ü)T Rx(θ) Ry(ü) ≡ Rz(θ)
 Rz(ü)T Ry(θ) Rz(ü) ≡ Rx(θ).

40 Chapter 2 · Representing Position and Orientation

All three-angle representations of attitude, whether Eulerian or Cardanian, suf-
fer this problem of gimbal lock when two consecutive axes become aligned. For ZYZ-
Euler angles this occurs when θ = kπ , k ∈ Z and for roll-pitch-yaw angles when pitch
θp = ±(2k + 1)ü. The best that can be hoped for is that the singularity occurs for an
attitude which does not occur during normal operation of the vehicle – it requires ju-
dicious choice of angle sequence and coordinate system.

Singularities are an unfortunate consequence of using a minimal representation.
To eliminate this problem we need to adopt different representations of orientation.
Many in the Apollo LM team would have preferred a four gimbal system and the clue
to success, as we shall see shortly in Sect. 2.2.1.7, is to introduce a fourth parameter.

2.2.1.4
l

Two Vector Representation

For arm-type robots it is useful to consider a coordinate frame {E} attached to the end-effec-
tor as shown in Fig. 2.16. By convention the axis of the tool is associated with the z-axis and
is called the approach vector and denoted $ = (ax, ay, az). For some applications it is more
convenient to specify the approach vector than to specify Euler or roll-pitch-yaw angles.

However specifying the direction of the z-axis is insuffi cient to describe the coordi-
nate frame – we also need to specify the direction of the x- and y-axes. An orthogonal
vector that provides orientation, perhaps between the two fi ngers of the robot’s gripper
is called the orientation vector, & = (ox, oy, oz). These two unit vectors are suffi cient to
completely defi ne the rotation matrix

 (2.17)

since the remaining column, the normal vector, can be computed using Eq. 2.12 as
% = & × $. Consider an example where the gripper’s approach and orientation vec-
tors are parallel to the world x- and y-directions respectively. Using the Toolbox this
is implemented by

>> a = [1 0 0]';
>> o = [0 1 0]';
>> R = oa2r(o, a)
R =
 0 0 1
 0 1 0
 -1 0 0

Any two nonparallel vectors are suffi cient to defi ne a coordinate frame. Even if the
two vectors $ and & are not orthogonal they still defi ne a plane and the computed %
is normal to that plane. In this case we need to compute a new value for &′ = $ × %
which lies in the plane but is orthogonal to each of $ and %.

For a camera we might use the optical axis, by convention the z-axis, and the left
side of the camera which is by convention the x-axis. For a mobile robot we might use

Apollo 13 mission clock: 02 08 12 47

� Flight: “Go, Guidance.”
� Guido: “He’s getting close to gimbal lock there.”
� Flight: “Roger. CapCom, recommend he bring up C3, C4, B3, B4, C1 and C2 thrusters, and ad-

vise he’s getting close to gimbal lock.”
� CapCom: “Roger.”

Apollo 13, mission control communications loop (1970) (Lovell and Kluger 1994, p 131; NASA
1970).

41

the gravitational acceleration vector (measured with accelerometers) which is by con-
vention the z-axis and the heading direction (measured with an electronic compass)
which is by convention the x-axis.

2.2.1.5
l
Rotation about an Arbitrary Vector

Two coordinate frames of arbitrary orientation are related by a single rotation about
some axis in space. For the example rotation used earlier

>> R = rpy2r(0.1 , 0.2, 0.3);

we can determine such an angle and vector by

>> [theta, v] = tr2angvec(R)
th =
 0.3655
v =
 0.1886 0.5834 0.7900

where theta is the angle of rotation and v is the vector� around which the rotation occurs.
This information is encoded in the eigenvalues and eigenvectors of R. Using the built-

in MATLAB function eig
>> [x,e] = eig(R)
x =
 -0.6944 + 0.0000i -0.6944 + 0.0000i 0.1886 + 0.0000i
 0.0792 + 0.5688i 0.0792 - 0.5688i 0.5834 + 0.0000i
 0.1073 - 0.4200i 0.1073 + 0.4200i 0.7900 + 0.0000i
e =
 0.9339 + 0.3574i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.9339 - 0.3574i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

the eigenvalues are returned on the diagonal of the matrix e and the corresponding
eigenvectors are the corresponding columns of x.�

From the defi nition of eigenvalues and eigenvectors we recall that

where v is the eigenvector corresponding to the eigenvalue λ . For the case λ = 1

which implies that the corresponding eigenvector v is unchanged by the rotation. There
is only one such vector and that is the one about which the rotation occurs. In the exam-
ple the third eigenvalue is equal to one, so the rotation axis is the third column of x.

2.2 · Working in Three Dimensions (3D)

Fig. 2.16.
Robot end-effector coordinate

system defi nes the pose in terms
of an approach vector $ and an

orientation vector &, from which
% can be computed. %, & and

$ vectors correspond to the x-,
y- and z-axes respectively of the

end-effector coordinate frame.
(courtesy of Kinova Robotics)

This is not unique. A rotation of –theta
about the vector –v results in the same
orientation.

Both matrices are complex, but some
elements are real (zero imaginary part).

42 Chapter 2 · Representing Position and Orientation

An orthonormal rotation matrix will always have one real eigenvalue at λ = 1 and
in general a complex pair λ = cosθ ±i sinθ where θ is the rotation angle. The angle
of rotation� in this case is

>> theta = angle(e(1,1))
theta =
 0.3655

The inverse problem, converting from angle and vector to a rotation matrix, is
achieved using Rodrigues’ rotation formula

 (2.18)

where [v̂]× is a skew-symmetric matrix. We can use this formula to determine the ro-
tation of ü about the x-axis

>> R = angvec2r(pi/2, [1 0 0])
R =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

It is interesting to note that this representation of an arbitrary rotation is parameterized
by four numbers: three for the rotation axis, and one for the angle of rotation. This is far
fewer than the nine numbers required by a rotation matrix. However the direction can
be represented by a unit vector which has only two parameters� and the angle can be en-
coded in the length to give a 3-parameter representation such as *θ , * sin (θ/2), * tan (θ)
or the Rodrigues’ vector * tan (θ/2). While these forms are minimal and effi cient in terms
of data storage they are analytically problematic and ill-defi ned when θ = 0.

2.2.1.6
l

Matrix Exponentials

Consider an x-axis rotation expressed as a rotation matrix
> > R = rotx(0.3)
R =
 1.0000 0 0
 0 0.9553 -0.2955
 0 0.2955 0.9553

As we did for the 2-dimensional case we can compute the logarithm of this matrix
using the MATLAB builtin function logm�

>> S = logm(R)
S =
 0 0 0
 0 0.0000 -0.3000
 0 0.3000 0.0000

and the result is a sparse matrix with two elements that have a magnitude of 0.3, which
is the original rotation angle. This matrix has a zero diagonal and is another example
of a skew-symmetric matrix, in this case 3 × 3.

Applying vex t o the skew-symmetric matrix gives
>> vex(S)'
ans =
 0.3000 0 0

 Olinde Rodrigues (1795–1850) was a French banker and mathematician who wrote extensively on poli-
tics, social reform and banking. He received his doctorate in mathematics in 1816 from the University
of Paris, for work on his fi rst well known formula which is related to Legendre polynomials. His
eponymous rotation formula was published in 1840 and is perhaps the fi rst time the representation
of a rotation as a scalar and a vector was articulated. His formula is sometimes, and inappropriate-
ly, referred to as the Euler-Rodrigues formula. He is buried in the Pere-Lachaise cemetery in Paris.

Imagine a unit-sphere. All possible unit
vectors from the center can be described
by the latitude and longitude of the
point at which they touch the surface of
the sphere.

It can also be shown that the trace of a
rotation matrix tr(R) = 1 + 2cosθ from
which we can compute the magnitude
of θ but not its sign.

 logm i s different to the builtin function
log w hich computes the logarithm of
each element of the matrix. A logarithm
can be computed using a power series,
with a matrix rather than scalar argument.
For a matrix the logarithm is not unique
and logm c omputes the principal loga-
rithm of the matrix.

43

and we fi nd the original rotation angle is in the fi rst element, corresponding to the
x-axis about which the rotation occurred. For the 3-dimensional case the Toolbox
function trlog i s equivalent�

>> [th,w] = trlog(R)
th =
 0.3000
w =
 1.0000
 0
 0

The inverse of a logarithm is exponentiation and applying the builtin MATLAB
matrix exponential f unction expm�

>> expm(S)
ans =
 1.0000 0 0
 0 0.9553 -0.2955
 0 0.2955 0.9553

we have regenerated our original rotation matrix. In fact the command

>> R = rotx(0.3);

is equivalent to

>> R = expm(skew([1 0 0]) * 0.3);

where we have specifi ed the rotation in terms of a rotation angle a nd a rotation axis
(as a unit-vector). This generalizes to rotation about any axis and formally we can
write

where θ is the rotation angle, ë is a unit-vector parallel to the rotation axis, and the
notation [·]×: R3� R

3×3 indicates a mapping from a vector to a skew-symmetric
matrix. Since [ω]×θ = [ωθ]× we can treat ωθ ∈ R3 as a rotational parameter called
exponential coordinates. For the 3-dimensional case, Rodrigues’ rotation formula
(Eq. 2.18) is a computationally effi cient means of computing the matrix exponen-
tial f or the special case where the argument is a skew-symmetric matrix, and this
is used by the Toolbox function trexp w hich is equivalent to expm.

2.2 · Working in Three Dimensions (3D)

In 3-dimensions the skew-symmetric matrix h as the form

 (2.19)

which has clear structure and only three unique elements ω ∈ R3. The matrix can be used to
implement the vector cross product v1 ×v2 = [v1]×v2. A simple example of Toolbox support for
skew-symmetric matrices is

>> skew([1 2 3])
ans =
 0 -3 2
 3 0 -1
 -2 1 0

and the inverse operation is performed using the Toolbox function vex

> > vex(ans)'
ans =
 1 2 3

Both functions work for the 3D case, shown here, and the 2D case where the vector is a 1-vector.

trlog u ses a more efficient closed-
form solution as well as being able to
return the angle and axis information
separately.

 expm i s different to the builtin function
exp w hich computes the exponential
of each element of the matrix:
expm(A) = I + A + A2/ 2! + A3/ 3! +�

44 Chapter 2 · Representing Position and Orientation

2.2.1.7
l
Unit Quaternions

Quaternions came from Hamilton after his really good work had been done;
and, though beautifully ingenious, have been an unmixed evil to those

who have touched them in any way, including Clark Maxwell.
Lord Kelvin, 1892

 Quaternions were discovered by Sir William Hamilton over 150 years ago and, while
initially controversial, have great utility for robotics. The quaternion is an extension of
the complex number – a hypercomplex number – and is written as a scalar plus a vector

 (2.20)

where s ∈R, v∈R3 and the orthogonal complex numbers i, j and k are defi ned such that

 (2.21)

and we denote a quaternion as

In the Toolbox quaternions are implemented by the Quaternion class. Quaternions
support addition and subtraction, performed element-wise, multiplication by a scalar
and multiplication

which is known as the quaternion or Hamilton product.�

One early objection to quaternions was that multiplication was not commutative
but as we have seen above this is exactly what we require for rotations. Despite the
initial controversy quaternions are elegant, powerful and computationally straight-
forward and they are widely used for robotics, computer vision, computer graphics
and aerospace navigation systems.

To represent rotations we use unit-quaternions denoted by f. These are quaterni-
ons of unit magnitude; that is, those for which �q�= s2 + v1

2 + v2
2 + v3

2 = 1. They can
be considered as a rotation of θ about the unit vector * which are related to the qua-
ternion components by�

 Sir William Rowan Hamilton (1805–1865) was an Irish mathematician, physicist, and astronomer.
He was a child prodigy with a gift for languages and by age thirteen knew classical and mod-
ern European languages as well as Persian, Arabic, Hindustani, Sanskrit, and Malay. Hamilton
taught himself mathematics at age 17, and discovered an error in Laplace’s Celestial Mechanics.
He spent his life at Trinity College, Dublin, and was appointed Professor of Astronomy and Royal
Astronomer of Ireland while still an undergraduate. In addition to quaternions he contributed to
the development of optics, dynamics, and algebra. He also wrote poetry and corresponded with
Wordsworth who advised him to devote his energy to mathematics.

According to legend the key quaternion equation, Eq. 2.21, occured to Hamilton in 1843 while
walking along the Royal Canal in Dublin with his wife, and this is commemorated by a plaque
on Broome bridge:

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a fl ash of ge-
nius discovered the fundamental formula for quaternion multiplication i2 = j2 = k2 = i j k = −1
& cut it on a stone of this bridge.

His original carving is no longer visible, but the bridge is a pilgrimage site for mathemati-
cians and physicists.

As for the angle-vector representation
this is not unique. A rotation of θ about
the vector –ν results in the same orienta-
tion. This is referred to as a double map-
ping or double cover.

If we write the quaternion as a 4-vector
(s, v1, v2, v2) then multiplication can be
expressed as a matrix-vector product
where

45

 (2.22)

and has similarities to the angle-axis representation of Sect. 2.2.1.5.
In the Toolbox these are implemented by the UnitQuaternion class and the

constructor converts a passed argument such as a rotation matrix to a unit quater-
nion, for example

>> q = UnitQuaternion(rpy2tr(0.1, 0.2, 0.3))
q =
0.98335 < 0.034271, 0.10602, 0.14357 >

This class overloads a number of standard methods and functions. Quaternion mul-
tiplication� is invoked through the overloaded multiplication operator

>> q = q * q;

and inversion, the conjugate of a unit quaternion, is
>> inv(q)
ans =
0.93394 < -0.0674, -0.20851, -0.28236 >

Multiplying a quaternion by its inverse yields the identity quaternion
>> q*inv(q)
ans =
1 < 0, 0, 0 >

which represents a null rotation, or more succinctly
>> q/q
ans =
1 < 0, 0, 0 >

The quaternion can be converted to an orthonormal rotation matrix by

>> q.R
ans =
 0.7536 -0.4993 0.4275
 0.5555 0.8315 -0.0081
 -0.3514 0.2436 0.9040

and we can also plot the orientation represented by a quaternion

>> q.plot()

which produces a result similar in style to that shown in Fig. 2.13. A vector is rotated
by a quaternion using the overloaded multiplication operator

>> q*[1 0 0]'
ans =
 0.7536
 0.5555
 -0.3514

For the case of unit quaternions our generalized pose is a rotation ξ ∼ h ∈ S3 and

and

which is the quaternion conjugate. The zero rotation 0� 1 <0, 0, 0> which is
the identity quaternion. A vector v ∈R3 is rotated by

where È = 0 <v> is known as a pure quaternion.

Compounding two orthonormal rota-
tion matrices requires 27 multiplications
and 18 additions. The quaternion form
requires 16 multiplications and 12 ad-
ditions. This saving can be particularly
important for embedded systems.

2.2 · Working in Three Dimensions (3D)

46 Chapter 2 · Representing Position and Orientation

The Toolbox implementation is quite complete and the UnitQuaternion class has
many methods and properties which are described fully in the online documentation.

2.2.2
l
Pose in 3-Dimensions

We return now to representing relative pose in three dimensions – the position and
orientation change between the two coordinate frames as shown in Fig. 2.10. This is
often referred to as a rigid-body displacement or rigid-body motion.

We have discussed several different representations of orientation, and we need to com-
bine one of these with translation, to create a tangible representation of relative pose.

2.2.2.1
l
Homogeneous Transformation Matrix

The derivation for the homogeneous transformation matrix is similar to the 2D case
of Eq. 2.11 but extended to account for the z-dimension. t ∈R3 is a vector defi ning the
origin of frame {B} with respect to frame {A}, and R is the 3 × 3 orthonormal matrix
which describes the orientation of the axes of frame {B} with respect to frame {A}.

If points are represented by homogeneous coordinate vectors then

 (2.23)

and ATB is a 4 × 4 homogeneous transformation matrix. This matrix has a very specifi c struc-
ture and belongs to the special Euclidean group of dimension 3 or T ∈ SE(3) ⊂R4×4.

A concrete representation of relative pose is ξ ∼ T ∈ SE(3) and T1 ⊕ T2� T1T2
which is standard matrix multiplication.

 (2.24)

One of the rules of pose algebra from page 21 is ξ ⊕ 0 = ξ. For matrices we
know that TI = T, where I is the identify matrix, so for pose 0� I the identity
matrix. Another rule of pose algebra was that ξ� ξ = 0. We know for matrices
that TT −1 = I which implies that �T� T −1

 (2.25)

The 4 × 4 homogeneous transformation is very commonly used in robotics, com-
puter graphics and computer vision. It is supported by the Toolbox and will be used
throughout this book as a concrete representation of 3-dimensional pose.

The Toolbox has many functions to create homogeneous transformations. For ex-
ample we can demonstrate composition of transforms by

47

>> T = transl(1, 0, 0) * trotx(pi/2) * transl(0, 1, 0)
T =
 1.0000 0 0 1.0000
 0 0.0000 -1.0000 0.0000
 0 1.0000 0.0000 1.0000
 0 0 0 1.0000

The function transl creates a relative pose with a fi nite translation but no rotation,
while trotx creates a relative pose corresponding to a rotation of ü about the x-axis
with zero translation.� We can think of this expression as representing a walk along
the x-axis for 1 unit, then a rotation by 90° about the x-axis and then a walk of 1 unit
along the new y-axis which was the previous z-axis. The result, as shown in the last
column of the resulting matrix is a translation of 1 unit along the original x-axis and
1 unit along the original z-axis. The orientation of the fi nal pose shows the effect of the
rotation about the x-axis. We can plot the corresponding coordinate frame by

>> trplot(T)

The rotation matrix component of T is
>> t2r(T)
ans =
 1.0000 0 0
 0 0.0000 -1.0000
 0 1.0000 0.0000

and the translation component is a column vector
>> transl(T)'
ans =
 1.0000 0.0000 1.0000

2.2.2.2
l

Vector-Quaternion Pair

A compact and practical representation is the vector and unit quaternion pair. It rep-
resents pose using just 7 numbers, is easy to compound, and singularity free.�

For the vector-quaternion case ξ ∼ (t, h) where t ∈R3 is a vector defi ning the
frame’s origin with respect to the reference coordinate frame, and h ∈ S3 is the
frame’s orientation with respect to the reference frame.

Composition is defi ned by

and negation is

and a point coordinate vector is transformed to a coordinate frame by

 2.2.2.3
l

Twists

In Sect. 2.1.2.3 we introduced twists for the 2D case. Any rigid-body motion i n 3D space
is equivalent to a screw motion – motion about and along some line in space.� We rep-
resent a screw a s a pair of 3-vectors s = (v, ω) ∈R6.

The ω component of the twist vector i s the direction of the screw axis. The v com-
ponent is called the moment and encodes the position of the line of the twist axis i n
space and also the pitch o f the screw. The pitch is the ratio of the distance along the
screw axis t o the rotation about the screw axis.

Pure translation can be considered as ro-
tation a bout a point at infinity.

Many Toolbox functions have variants that
return orthonormal rotation matrices or
homogeneous transformations, for exam-
ple, rotx and trotx, rpy2r and
rpy2tr etc. Some Toolbox functions
accept an orthonormal rotation matrix
or a homogeneous transformation and
ignore the translational component, for
example, tr2rpy.

2.2 · Working in Three Dimensions (3D)

This representation is not implemented
in the Toolbox.

48 Chapter 2 · Representing Position and Orientation

Consider the example of a rotation of 0.3 radians about the x-axis. We fi rst specify
a unit twist� with an axis that is parallel to the x-axis and passes through the origin

>> tw = Twist('R', [1 0 0], [0 0 0])
tw =
(-0 -0 -0; 1 0 0)

which we convert, for the required rotation angle, to an SE(3)-homogeneous trans-
formation

> > tw.T(0.3)
ans =
 1.0000 0 0 0
 0 0.9553 -0.2955 0
 0 0.2955 0.9553 0
 0 0 0 1.0000

and has the same value we would obtain using trotx(0.3).
For pure translation i n the y-direction the unit twist� would be

>> tw = Twist('T', [0 1 0])
tw =
(0 1 0; 0 0 0)

which we convert, for the required translation distance, to an SE(3)-homogeneous
transformation.

 >> tw.T(2)
ans =
 1 0 0 0
 0 1 0 2
 0 0 1 0
 0 0 0 1

which is, as expected, an identity matrix rotational component (no rotation) and a
translational component of 2 in the y-direction.

To illustrate the underlying screw model w e defi ne a coordinate frame {X}

>> X = transl(3, 4, -4);

which we will rotate by a range of angles

>> angles = [0:0.3:15];

around a screw axis p arallel to the z-axis, direction (0, 0, 1), through the point (2, 3, 2)
and with a pitch of 0.5

>> tw = Twist('R', [0 0 1], [2 3 2], 0.5);

The next line packs a lot of functionality. For values of θ drawn successively from the vector
 angles we use an anonymous function to evaluate the twist for each value of θ and apply
it to the frame {X}. This sequence is animated and each frame in the sequence is retained

>> tranimate(@(theta) tw.T(theta) * X, angles, ...
 'length', 0.5, 'retain', 'rgb', 'notext');

and the result is shown in Fig. 2.17. We can clearly see the screw motion i n the successive
poses of the displaced reference frame as it is rotated about the screw axis.

The screw axis is the line

>> L = tw.line
L =
{ 3 -2 0; 0 0 1 }

which is described in terms of its Plücker coordinates which we can plot

>> L.plot('k:', 'LineWidth', 2)

Finally we can convert an arbitrary homogeneous transformation to a nonunit twist

> > T = transl(1, 2, 3) * eul2tr(0.3, 0.4, 0.5);
>> tw = Twist(T)
tw =
(1.1204 1.6446 3.1778; 0.041006 0.4087 0.78907)

A rotational unit twist has �ω�= 1.

A translational unit twist has �v�= 1
and ω = 0.

49

which has a pitch of

>> tw.pitch
ans =
 3.2256

and the rotation about the axis is
>> tw.theta
ans =
 0.8896

and a point lying on the twist axis is
>> tw.pole'
ans =
 0.0011 0.8473 -0.4389

2.3
l
Advanced Topics

2.3.1
l
Normalization

Floating-point arithmetic has fi nite precision� and consecutive operations will accu-
mulate error. A rotation matrix h as by defi nition, a determinant of one

>> R = eye(3,3);
>> det(R) - 1
ans =
 0

but if we repeatedly multiply by a valid rotation matrix the result

>> for i=1:100
 R = R * rpy2r(0.2, 0.3, 0.4);
 end
>> det(R) - 1
ans =
 4.4409e-15

indicates a small error – the determinant i s no longer equal to one and the matrix is
no longer a proper orthonormal rotation matrix. To fi x this we need to no rmalize the
matrix, a process which enforces the constraints on the columns ci of an orthonormal
matrix R = [c1, c2, c3]. We need to assume that one column has the correct direction

then the fi rst column is made orthogonal to the last two

Fig. 2.17.
A coordinate frame {X} dis-

played for different values of θ
about a screw parallel to the

z-axis and passing through the
point (2, 3, 2). The x-, y- and

z-axes are indicated by red,
green and blue lines respectively

The IEEE standard for double precision
floating point, the standard MATLAB
numeric format, has around 16 decimal
digits of precision.

2.3 · Advanced Topics

50 Chapter 2 · Representing Position and Orientation

However the last two columns may not have been orthogonal so

Finally the columns are all normalized to unit magnitude

In the Toolbox normalization is implemented by

> > R = trnorm(R);

and the determinant is now much closer to one�

 >> det(R) - 1
ans =
 -2.2204e-16

A similar issue arises for unit quaternions when the norm, or magnitude, of the unit
quaternion is no longer equal to one. However this is much easier to fi x since normal-
izing t he quaternion simply involves dividing all elements by the norm

which is implemented by the unit method

>> q = q.unit();

The UnitQuaternion c lass also supports a variant of multiplication

>> q = q .* q2;

which performs an explicit normalization a fter the multiplication.
Normalization does not need to be done after every multiplication since it is an

expensive operation. However for situations like the example above where one trans-
form is being repeatedly updated it is advisable.

2.3.2
l
Understanding the Exponential Mapping

I n this chapter we have glimpsed some connection between rotation matrices, skew-
symmetric matrices a nd matrix exponentiation. The basis for this lies in the mathemat-
ics of L ie groups w hich are covered in text books on algebraic geometry a nd algebraic
topology. These require substantial knowledge of advanced mathematics and many
people starting out in robotics will fi nd their content quite inaccessible. An introduc-
tion to the essentials of this topic is given in Appendix D. In this section we will use an
intuitive approach, based on undergraduate engineering mathematics, to shed some
light on these relationships.

Consider a point P, defi ned by a coordinate vector p, being rotated with an angular
velocity ω which is a vector whose direction defi nes the axis of rotation and whose
magnitude �ω� specifi es the rate of rotation a bout the axis which we assume passes
through the origin.� We wish to rotate the point by an angle θ about this axis and the
velocity of the point is known from mechanics to be

and we replace the cross product with a skew-symmetric matrix g iving a matrix-vec-
tor product

This error i s now at the limit of double pre-
cision arithmetic which is 2.2204 ×10−16

and given by the MATLAB function eps.

Angular velocity will be properly intro-
duced in the next chapter.

51

 (2.26)

We can fi nd the solution to this fi rst-order differential equation by analogy to the
simple scalar case

whose solution is

This implies that the solution to Eq. 2.26 is

If �ω�= 1 then after t seconds the vector will have rotated by t radians. We require
a rotation by θ so we can set t = θ to give

which describes the vector p(0) being rotated to p(θ). A matrix that rotates a vec-
tor is a rotation matrix, and this implies that our matrix exponential i s a rotation
matrix

Now consider the more general case of rotational and translational motion. We
can write

and rearranging into matrix form

and introducing homogeneous coordinates this becomes

where Σ is a 4 × 4 augmented skew-symmetric matrix. Again, by analogy with the
scalar case we can write the solution as

A matrix that rotates and translates a point in homogeneous coordinates is a ho-
mogeneous transformation matrix, and this implies that our matrix exponential is a
homogeneous transformation matrix

where [ë]×θ defi nes the magnitude and axis of rotation and vθ is the translation.

2.3 · Advanced Topics

52 Chapter 2 · Representing Position and Orientation

The exponential of a scalar can be computed using a power series, and the matrix
case is analogous and relatively straightforward to compute. The MATLAB function
 expm u ses a polynomial approximation for the general matrix case. If A is skew-sym-
metric or augmented-skew-symmetric then an effi cient closed-form solution for a
rotation matrix – the Rodrigues’ rotation formula (Eq. 2.18) – can be used and this is
implemented by the Toolbox function trexp.

 2.3.3
l

More About Twists

In this chapter we introduced and applied twists a nd here we will more formally defi ne
them. We also highlight the very close relationship between tw ists and homogeneous
transformation matrices v ia the exponential mapping.

The key concept comes from Chasle’s theorem: “any displacement of a body in space
can be accomplished by means of a rotation of the body about a unique line in space
accompanied by a translation of the body parallel to that line”. Such a line is called a
screw axis a nd is illustrated in Fig. 2.18. The mathematics of screw theory w as devel-
oped by Sir Robert Ball i n the late 19th century for the analysis of mechanisms. At the
core of screw theory are pairs of vectors: angular and linear velocity; forces a nd mo-
ments; and Plücker coordinates (see Sect. C.1.2.2).

The general displacement of a rigid body in 3D c an be represented by a twist vector

where v ∈R3 is referred to as the moment and encodes the position of the action line
in space and the pitch of the screw and ω ∈ R3 is the direction of the screw axis.

For rotational motion where the screw axis is parallel to the vector $, passes
through a point Q defi ned by its coordinate vector q, and the screw pitch p is the
ratio of the distance along the screw axis t o the rotation about the axis, the twist
elements are

and the pitch can be recovered by

For the case of pure rotation the pitch of the screw is zero and the unit twist i s

Fig. 2.18.
Conceptual depiction of a screw.
 A coordinate frame is attached
to a nut by a rigid rod and rotat-
ed around the screw thread. The
pose changes from the red frame
to the blue frame. The corollary
is that given any two frames we
can determine a screw axis to
rotate one into the other

53

For purely translational motion in the direction parallel to the vector a, the pitch
is infi nite which leads to a zero rotational component and the unit twist is

A twist is related to the rigid-body displacement i n SE(3) by the exponential map-
ping already discussed.

where the augmented skew-symmetric matrix

belongs to the Lie algebra s e(3) and is the generator of the rigid-body displacement.
The matrix exponential has an effi cient closed-form

where R(θ , ë) is computed using Rodrigues’ rotation formula (Eq. 2.18). For a nonunit
rotational twist, that is �ω� ≠ 1, then θ = �ω�.

For real numbers, if x = log X and y = log Y then

but for the matrix case this is only true if the matrices commute, and rotation
matrices do not, therefore

The bottom line is that there is no shortcut to compounding rotations, we
must compute z = log(exey) not z = x + y.

The Toolbox provides many ways to create twists a nd to convert them to rigid-body
displacements e xpressed as homogeneous transformations. Now that we understand
more about the exponential mapping we will revisit the example from page 48

>> tw = Twist('R', [1 0 0], [0 0 0])
tw =
(-0 -0 -0; 1 0 0)

Michel Chasles (1793–1880) was a French mathematician born at Épernon. He studied at the
École Polytechnique in Paris under Poisson and in 1814 was drafted to defend Paris in the War
of the Sixth Coalition. In 1837 he published a work on the origin and development of methods in
geometry, which gained him considerable fame and he was appointed as professor at the École
Polytechnique in 1841, and at the Sorbonne in 1846.

He was an avid collector and purchased over 27000 forged letters purporting to be from Newton,
Pascal and other historical fi gures – all written in French! One from Pascal claimed he had dis-
covered the laws of gravity before Newton, and in 1867 Chasles took this to the French Academy
of Science but scholars recognized the fraud. Eventually Chasles admitted he had been deceived
and revealed he had spent nearly 150 000 francs on the letters. He is buried in Cimetière du Père
Lachaise in Paris.

2.3 · Advanced Topics

54 Chapter 2 · Representing Position and Orientation

which is a unit twist that describes rotation about the x-axis in SE(3). The Twist h as
a number of properties

>> tw.S'
ans =
 0 0 0 1 0 0
>> tw.v'
ans =
 0 0 0
>> tw.w'
ans =
 1 0 0

as well as various methods. We can create the se(3) Lie algebra u sing the se m ethod
of this class

>> tw.se
ans =
 0 0 0 0
 0 0 -1 0
 0 1 0 0
 0 0 0 0

which is the augmented skew-symmetric version of S. The method T p erforms the
exponentiation� of this to create an SE(3) homogeneous transformation f or the speci-
fi ed rotation about the unit twist

 >> tw.T(0.3)
ans =
 1.0000 0 0 0
 0 0.9553 -0.2955 0
 0 0.2955 0.9553 0
 0 0 0 1.0000

The Toolbox functions trexp a nd trlog a re respectively closed-form alternatives
to expm a nd logm w hen the arguments are in so(3)/se(3) or SO(3)/SE(3).

The line m ethod returns a Plucker o bject that represents the line of the screw
in Plücker coordinates

> > tw.line
ans =
{ 0 0 0; 1 0 0 }

Finally, the overloaded multiplication operator for the Twist c lass will compound
two twists.

>> t2 = tw * tw
t2 =
(-0 -0 -0; 2 0 0)
>> tr2angvec(t2.T)
Rotation: 2.000000 rad x [1.000000 0.000000 0.000000]

and the result in this case is a nonunit twist of two units, or 2 rad, about the x-axis.

T he expm m ethod is synonomous and
both invoke the Toolbox function trexp.

A unit twist d escribes a family of motions t hat have a single parameter, either
a rotation a nd translation a bout and along some screw axis, or a pure transla-
tion i n some direction. We can visualize it as a mechanical screw in space, or
represent it as a 6-vector S = (v, ω) where �ω�= 1 for a rotational twist and
�v�= 1, ω = 0 for a translational twist.

A particular rigid-body motion i s described by a unit-twist s and a motion
parameter θ which is a scalar s pecifying the amount of rotation or translation.
The motion is described by the twist Sθ which is in general not a unit-twist. The
exponential of this in 4 × 4 matrix format is the 4 × 4 homogeneous transforma-
tion matrix describing that particular rigid-body motion in SE(3).

55

2.3.4
l
Dual Quaternions

Q uaternions were developed by William Hamilton i n 1843 and we have already seen
their utility for representing orientation, but using them to represent pose proved
more diffi cult. One early approach was Hamilton’s bi-quaternion w here the quaternion
coeffi cients were complex numbers. Somewhat later William Clifford� developed the
dual number, defi ned as an ordered pair d = (x, y) which can be written as d = x + yε
where ε 2 = 0 and for which specifi c addition and multiplication rules exist. Clifford
created a quaternion dual number with x, y ∈H which he also called a bi-quaternion
but is today called a dual quaternion

where ñ ∈H is a unit quaternion r epresenting the rotational part of the pose and
ò ∈H is a pure quaternion r epresenting translation. This type of mathematical ob-
ject has been largely eclipsed by modern matrix and vector approaches, but there
seems to be a recent resurgence of interest in alternative approaches. The dual qua-
ternion is quite compact, requiring just 8 numbers; it is easy to compound using a
special multiplication table; and it is easy to renormalize t o eliminate the effect of
imprecise arithmetic. However it has no real useful computational advantage over
matrix methods.

2.3.5
l

Configuration Space

W e have so far considered the pose o f objects in terms of the position and orientation
of a coordinate frame affi xed to them. For an arm-type robot we might affi x a coor-
dinate frame to its end-effector, while for a mobile robot we might affi x a frame to its
body – its body-fi xed frame. This is suffi cient to describe the state of the robot in the
familiar 2D or 3D Euclidean space w hich is referred to as the task space o r operational
space s ince it is where the robot performs tasks or operates.

An alternative way of thinking about this comes from classical mechanics and is
referred to as the confi guration of a system. The confi guration is the smallest set of
parameters, called generalized coordinates, that are required to fully describe the po-
sition of every particle in the system. This is not as daunting as it may appear since in
general a robot comprises one or more rigid elements, and in each of these the par-
ticles maintain a constant relative offset to each other.

If the system is a train moving along a track then all the particles comprising the
train move together and we need only a single generalized coordinate q, the distance
along the track from some datum, to describe their location. A robot arm with a
fi xed base and two rigid links, connected by two rotational joints has a confi guration
that is completely described by two generalized coordinates – the two joint angles
(q1, q2). The generalized coordinates can, as their name implies, represent displace-
ments or rotations.

Sir Robert Ball (1840–1913) w as an Irish astronomer born in Dublin. He became Professor of
Applied Mathematics at the Royal College of Science in Dublin in 1867, and in 1874 became Royal
Astronomer of Ireland and Andrews Professor of Astronomy at the University of Dublin. In 1892
he was appointed Lowndean Professor of Astronomy and Geometry at Cambridge University and
became director of the Cambridge Observatory. He was a Fellow of the Royal Society and in 1900
became the fi rst president of the Quaternion Society.

He is best known for his contributions to the science of kinematics described in his treatise
“The Theory of Screws” (1876), but he also published “A Treatise on Spherical Astronomy” (1908)
and a number of popular articles on astronomy. He is buried at the Parish of the Ascension Burial
Ground in Cambridge.

1 845–1879, an English mathematician
and geometer.

2.3 · Advanced Topics

56 Chapter 2 · Representing Position and Orientation

The number of independent� generalized coordinates N is known as the number
of degrees of freedom o f the system. Any confi guration of the system is represented
by a point in its N-dimensional confi guration space, or C-space, denoted by C and
q ∈ C. We can also say that dimC= N. For the train example C⊂R which says that
the displacement is a bounded real number. For the 2-joint robot the generalized co-
ordinates are both angles so C⊂ S1× S1.

Any point in the confi guration space can be mapped to a point in the task space
q ∈ C� τ ∈ T but the inverse is not necessarily true. This mapping depends on the
task space that we choose and this, as its name suggests, is task specifi c.

Consider again the train moving along its rail. We might be interested to describe the
train in terms of its position on a plane in which case the task space would be T⊂R2, or
in terms of its latitude and longitude, in which case the task space would be T⊂ S1× S1.
We might choose a 3-dimensional task space T⊂ SE(3) to account for height changes
as the train moves up and down hills and its orientation changes as it moves around
curves. However in all these case the dimension of the task space exceeds the dimension
of the confi guration space dimT> dimC and this means that the train cannot access
all points in the task space. While every point along the rail line can be mapped to the
task space, most points in the task space will not map to a point on the rail line. The
train is constrained by its fi xed rails to move in a subset of the task space.

The simple 2-joint robot arm can access a subset of points in a plane so a useful
task space might be T⊂R2. The dimension of the task space equals the dimension of
the confi guration space dimT= dimC and this means that the mapping between task
and confi guration spaces is bi-directional but it is not necessarily unique – for this type
of robot, in general, two different confi gurations map to a single point in task space.
Points in the task space beyond the physical reach of the robot are not mapped to the
confi guration space. If we chose a task space with more dimensions such as SE(2) or
SE(3) then dimT> dimC and the robot would only be able to access points within a
subset of that space.

Now consider a snake-robot arm, such as shown in Fig. 8.9, with 20 joints and
C⊂ S1×� × S1 and dimT< dimC. In this case an infi nite number of confi gurations
in a 20 − 6 = 14-dimensional subspace of the 20-dimensional confi guration space will
map to the same point in task space. This means that in addition to the task of position-
ing the robot’s end-effector we can simultaneously perform motion in the confi gura-
tion subspace to control the shape of the arm to avoid obstacles in the environment.
Such a robot is referred to as over-actuated o r redundant and this topic is covered in
Sect. 8.4.2.

 The body of a quadrotor, such as shown in Fig. 4.19d, i s a single rigid-body whose
confi guration is completely described by six generalized coordinates, its position and
orientation in 3D space C⊂ R3× S1× S1× S1 where the orientation is expressed in
some three-angle representation. For such a robot the most logical task space would
be SE(3) which is equivalent to the confi guration space and dimT= dimC. However
the quadrotor has only four actuators which means it cannot directly access all the
points in its confi guration space and hence its task space. Such a robot is referred to
as under-actuated a nd we will revisit this in Sect. 4.2.

2.4
l
Using the Toolbox

The Toolbox supports all the different representations discussed in this chapter as
well as conversions between many of them. The representations and possible con-
versions are shown in tabular form in Tables 2.1 and 2.2 for the 2D and 3D cases
respectively.

In this chapter we have mostly used native MATLAB matrices to represent rotations
and homogeneous transformations� and historically this has been what the Toolbox
supported – the Toolbox classic functions. From Toolbox release 10 there are classes that

Quaternions and twists are implemented
as classes not native types, but in very old
versions of the Toolbox quaternions were
1 × 4 vectors.

That is, there are no holonomic constraints
on the system.

57

Table 2.1. Toolbox supported data
types for representing 2D pose:
constructors and conversions

represent rotations and homogeneous transformations, named respectively SO2 a nd
 SE2 f or 2 dimensions and SO3 a nd SE3 f or 3 dimensions. These provide real advan-
tages in terms of code readability and type safety and can be used in an almost identical
fashion to the native matrix types. They are also polymorphic meaning they support
many of the same operations which makes it very easy to switch between using say ro-
tation matrices and quaternions or lifting a solution from 2- to 3-dimensions. A quick
illustration of the new functionality is the example from page 27 which becomes

>> T1 = SE2(1, 2, 30, 'deg');
>> about T1
T1 [SE2] : 1x1 (176 bytes)

which results in an SE2 c lass object not a 3 × 3 matrix.� If we display it however it
does look like a 3 × 3 matrix�

>> T1
 T1 =
 0.8660 -0.5000 1
 0.5000 0.8660 2
 0 0 1

The matrix is encapsulated within the object and we can extract it readily if required

>> T1.T
ans =
 0.8660 -0.5000 1.0000
 0.5000 0.8660 2.0000
 0 0 1.0000
>> about ans
ans [double] : 3x3 (72 bytes)

Returning to that earlier example we can quite simply transform the vector
>> inv(T1) * P
ans =
 1.7321
 -1.0000

and the class handles the details of converting the vector between Euclidean and ho-
mogeneous forms.

This new functionality is also covered in Tables 2.1 and 2.2, and Table 2.3 is a map
between the classic and new functionality to assist you in using the Toolbox. From here
on the book will use a mixture of classic functions and the newer classes.

2.4 · Using the Toolbox

The size of the object in bytes, shown in
parentheses, will vary between MATLAB.
versions and computer types.

If you have the cprintf package from
MATLAB File Exchange installed then the
rotation submatrix will be colored red.

58 Chapter 2 · Representing Position and Orientation

2.5
l
Wrapping Up

In this chapter we learned how to represent points and poses in 2- and 3-dimensional
worlds. Points are represented by coordinate vectors relative to a coordinate frame.
A set of points that belong to a rigid object can be described by a coordinate frame,
and its constituent points are described by constant vectors in the object’s coordinate
frame. The position and orientation of any coordinate frame can be described relative
to another coordinate frame by its relative pose ξ . We can think of a relative pose as a
motion – a rigid-body motion – and these motions can be applied sequentially (com-
posed or compounded). It is important to remember that composition is noncommu-
tative – the order in which relative poses are applied is important.

We have shown how relative poses can be expressed as a pose graph or manipulated
algebraically. We can also use a relative pose to transform a vector from one coordinate
frame to another. A simple graphical summary of key concepts is given in Fig. 2.19.

We have discussed a variety of mathematical objects to tangibly represent pose. We
have used orthonormal rotation matrices for the 2- and 3-dimensional case to repre-
sent orientation and shown how it can rotate a points’ coordinate vector from one co-
ordinate frame to another. Its extension, the homogeneous transformation matrix, can
be used to represent both orientation and translation and we have shown how it can
rotate and translate a point expressed in homogeneous coordinates from one frame

Table 2.2. Toolbox supported data
types for representing 3D pose:
constructors and conversions

59

Table 2.3. Table of subsitutions
from classic Toolbox functions
that operate on and return a ma-
trix, to the corresponding new
classes and methods

to another. Rotation in 3-dimensions has subtlety and complexity and we have looked
at various parameterizations such as Euler angles, roll-pitch-yaw angles and unit qua-
ternions. Using Lie group theory we showed that rotation matrices, from the group
SO(2) or SO(3), are the result of exponentiating skew-symmetric generator matrices.
Similarly, homogeneous transformation matrices, from the group SE(2) or SE(3), are
the result of exponentiating augmented skew-symmetric generator matrices. We have
also introduced twists as a concise way of describing relative pose in terms of rotation
around a screw axis, a notion that comes to us from screw theory and these twists are
the unique elements of the generator matrices.

There are two important lessons from this chapter. The fi rst is that there are
many mathematical objects that can be used to represent pose and these are sum-
marized in Table 2.4. There is no right or wrong – each has strengths and weak-
nesses and we typically choose the representation to suit the problem at hand.
Sometimes we wish for a vectorial representation, perhaps for interpolation, in
which case (x, y, θ) or (x, y, z, ¡) might be appropriate, but this representation can-
not be easily compounded. Sometime we may only need to describe 3D rotation
in which case Γ or h is appropriate. Converting between representations is easy as
shown in Tables 2.1 and 2.2.

The second lesson is that coordinate frames are your friend. The essential fi rst step
in many vision and robotics problems is to assign coordinate frames to all objects of
interest, indicate the relative poses as a directed graph, and write down equations for
the loops. Figure 2.20 shows you how to build a coordinate frame out of paper that
you can pick up and rotate – making these ideas more tangible. Don’t be shy, embrace
the coordinate frame.

We now have solid foundations for moving forward. The notation has been defi ned
and illustrated, and we have started our hands-on work with MATLAB. The next chap-
ter discusses motion and coordinate frames that change with time, and after that we
are ready to move on and discuss robots.

2.5 · Wrapping Up

60 Chapter 2 · Representing Position and Orientation

Further Reading

The treatment in this chapter is a hybrid mathematical and graphical approach that
covers the 2D and 3D cases by means of abstract representations and operators which
are later made tangible. The standard robotics textbooks such as Kelly (2013), Siciliano
et al. (2009), Spong et al. (2006), Craig (2005), and Paul (1981) all introduce homoge-
neous transformation matrices for the 3-dimensional case but differ in their approach.
These books also provide good discussion of the other representations such as angle-
vector and 3-angle representations. Spong et al. (2006, sect. 2.5.1) have a good discus-
sion of singularities. The book Lynch and Park (2017) covers the standard matrix ap-
proaches but also introduces twists and screws. Siegwart et al. (2011) explicitly cover
the 2D case in the context of mobile robotics.

Quaternions are discussed in Kelly (2013) and briefl y in Siciliano et al. (2009). The
book by Kuipers (1999) is a very readable and comprehensive introduction to quater-
nions. Quaternion interpolation is widely used in computer graphics and animation
and the classic paper by Shoemake (1985) is very readable introduction to this topic.
The fi rst publication about quaternions for robotics is probably Taylor (1979), and
followed up in subsequent work by Funda (1990).

You will encounter a wide variety of different notation for rotations and transfor-
mations in textbooks and research articles. This book uses ATB to denote a transform
giving the pose of frame {B} with respect to frame {A}. A common alternative notation
is TA

B or even ABT. To denote points this book uses ApB to denote a vector from the ori-
gin of frame {A} to the point B whereas others use pA

B, or even CpA
B to denote a vector

Fig. 2.19.
Everything you need to know
about pose

Table 2.4. Summary of the various
concrete representations of pose ξ
introduced in this chapter

61

from the origin of frame {A} to the point B but with respect to coordinate frame {C}.
Twists can be written as either (v, ω) as in this book, or as (ω , v).

Historical and general. Hamilton and his supporters, including Peter Tait, were vigor-
ous in defending Hamilton’s precedence in inventing quaternions, and for opposing the
concept of vectors which were then beginning to be understood and used. Rodrigues
developed his eponymous formula in 1840 although Gauss discovered it in 1819 but,
as usual, did not publish it. It was published in 1900. Quaternions had a tempestuous
beginning. The paper by Altmann (1989) is an interesting description on this tussle of
ideas, and quaternions have even been woven into fi ction (Pynchon 2006).

Exercises

1. Explore the many options associated with trplot.
2. Animate a rotating cube

a) Write a function to plot the edges of a cube centered at the origin.
b) Modify the function to accept an argument which is a homogeneous transfor-

mation which is applied to the cube vertices before plotting.
c) Animate rotation about the x-axis.
d) Animate rotation about all axes.

3. Create a vector-quaternion class to describe pose and which supports composition,
inverse and point transformation.

4. Create a 2D rotation matrix. Visualize the rotation using trplot2. Use it to trans-
form a vector. Invert it and multiply it by the original matrix; what is the result?
Reverse the order of multiplication; what is the result? What is the determinant of
the matrix and its inverse?

5. Create a 3D rotation matrix. Visualize the rotation using trplot o r tranimate.
 Use it to transform a vector. Invert it and multiply it by the original matrix; what
is the result? Reverse the order of multiplication; what is the result? What is the
determinant of the matrix and its inverse?

6. Compute the matrix exponential using the power series. How many terms are re-
quired to match the result shown to standard MATLAB precision?

7. Generate the sequence of plots shown in Fig. 2.12.
8. For the 3-dimensional rotation about the vector [2, 3, 4] by 0.5 rad compute

an SO(3) rotation matrix using: the matrix exponential functions expm a nd
 trexp, Rodrigues’ rotation formula (code this yourself), and the Toolbox function
 angvec2tr. Compute the equivalent unit quaternion.

9. Create two different rotation matrices, in 2D or 3D, representing frames {A} and {B}.
Determine the rotation matrix ARB and BRA. Express these as a rotation axis and
angle, and compare the results. Express these as a twist.

Fig. 2.20.
Build your own coordinate frame.

a Get the PDF fi le from http://
www.petercorke.com/axes.pdf;
b cut it out, fold along the dot-

ted lines and add a staple. Voila!

2.5 · Wrapping Up

62 Chapter 2 · Representing Position and Orientation

10. Create a 2D or 3D homogeneous transformation matrix. Visualize the rigid-body
displacement using tranimate. Use it to transform a vector. Invert it and multi-
ply it by the original matrix, what is the result? Reverse the order of multiplication;
what happens?

11. Create two different rotation matrices, in 2D or 3D, representing frames {A} and {B}.
Determine the rotation matrix ARB and BRA. Express these as a rotation axis and
angle and compare the results. Express these as a twist.

12. Create three symbolic variables to represent roll, pitch and yaw angles, then use these
to compute a rotation matrix using rpy2r. You may want to use the simplify
f unction on the result. Use this to transform a unit vector in the z-direction. Looking
at the elements of the rotation matrix devise an algorithm to determine the roll,
pitch and yaw angles. Hint – fi nd the pitch angle fi rst.

13. Experiment with the tripleangle a pplication in the Toolbox. Explore roll, pitch
and yaw motions about the nominal attitude and at singularities.

14. If you have an iPhone or iPad download from the App Store the free “Euler Angles”
app by École de Technologie Supérieure and experiment with it.

15. Using Eq. 2.24 show that TT −1 = I.
16. Is the inverse of a homogeneous transformation matrix equal to its transpose?
17. In Sect. 2.1.2.2 we rotated a frame about an arbitrary point. Derive the expression

for computing RC that was given.
18. Explore the effect of negative roll, pitch or yaw angles. Does transforming from

RPY angles to a rotation matrix then back to RPY angles give a different result to
the starting value as it does for Euler angles?

19. From page 53 show that ex ey ≠ ex+y for the case of matrices. Hint – expand the fi rst
few terms of the exponential series.

20. A camera has its z-axis parallel to the vector [0, 1, 0] in the world frame, and its
y-axis parallel to the vector [0, 0, −1]. What is the attitude of the camera with respect
to the world frame expressed as a rotation matrix and as a unit quaternion?

Chapter

3

In the previous chapter we learned how to describe the pose of objects in
2- or 3-dimensional space. This chapter extends those concepts to poses
that change as a function of time. Section 3.1 introduces the derivative of
 time-varying position, orientation and pose and relates that to concepts
from mechanics such as velocity and angular velocity. Discrete-time ap-
proximations to the derivatives are covered which are useful for computer
implementation of algorithms such as inertial navigation. Section 3.2 is a
brief introduction to the dynamics of objects moving under the infl uence
of forces and torques and discusses the important difference between in-
ertial and noninertial reference frames.

Section 3.3 discusses how to generate a temporal sequence of poses,
a trajectory, that smoothly changes from an initial pose to a fi nal pose.
For robots this could be the path of a robot gripper moving to grasp an
object or the fl ight path of a fl ying robot. Section 3.4 brings many of
these topics together for the important application of inertial naviga-
tion. We introduce three common types of inertial sensor and learn

how to how to use their measurements to update the estimate of pose for a moving
object such as a robot.

3.1
l
Time-Varying Pose

In this section we discuss how to describe the rate of change of pose which has both a
translational and rotational velocity component. The translational velocity is straight-
forward: it is the rate of change of the position of the origin of the coordinate frame.
Rotational velocity is a little more complex.

3.1.1
l
Derivative of Pose

There are many ways to represent the orientation of a coordinate frame but most con-
venient for present purposes is the exponential form

where the rotation is described by a rotational axis Aë(t) defi ned with respect to
frame {A} and a rotational angle θ (t), and where [·]× is a skew-symmetric matrix .

At an instant in time t we will assume that the axis has a fi xed direction and the
frame is rotating around the axis. The derivative with respect to time is

 Time and Motion
The only reason for time is

so that everything doesn’t happen at once
Albert Einstein

64 Chapter 3 · Time and Motion

which we write succinctly as

 (3.1)

where Aω = AëË is the angular velocity in frame {A}. This is a vector quantity
Aω = (ωx, ωy, ωz) that defi nes the instantaneous axis and rate of rotation . The direc-
tion of Aω is parallel to the axis about which the coordinate frame is rotating at a
particular instant of time, and the magnitude �Aω� is the rate of rotation about that
axis.� Note that the derivative of a rotation matrix is not a rotation matrix, it is a general
3×3 matrix.

Consider now that angular velocity is expressed in frame {B} and we know that

and using the identity [Av]× = A[v]×AT it follows that

 (3.2)

The derivative of a unit quaternion , the quaternion equivalent of Eq. 3.1, is defi ned as

 (3.3)

where ì is a pure quaternion formed from the angular velocity vector. These are im-
plemented by the Toolbox methods dot and dotb respectively. The derivative of a
unit-quaternion is not a unit-quaternion, it is a regular quaternion which can also be
considered as a 4-vector.

The derivative of pose can be determined by expressing pose as a homogeneous
transformation matrix

and taking the derivative with respect to time and substituting Eq. 3.1 gives

The rate of change can be described in terms of the current orientation ARB and two
velocities. The linear or translational velocity v = A´B is the velocity of the origin of
{B} with respect to {A}. The angular velocity AωB we have already introduced. We can
combine these two velocity vectors to create the spatial velocity vector

which is the instantaneous velocity of frame {B} with respect to {A}.
Every point in the body has the same angular velocity. Knowing that, plus the trans-

lational velocity vector of any point is enough to fully describe the instantaneous mo-
tion of a rigid body. It is common to place {B} at the body’s center of mass.

3.1.2
l

Transforming Spatial Velocities

The velocity of a moving body can be expressed with respect to a world reference
frame {A} or the moving body frame {B} as shown in Fig. 3.1. The spatial velocities
are linearly related by

For a tumbling object the axis of rotation
changes with time.

65

(3.4)

where AξB ∼ (ARB, AtB) and AJB(·) is a Jacobian or interaction matrix. For example, we
can defi ne a body-fi xed frame and a spatial velocity in that frame

>> TB = SE3(1, 2, 0) * SE3.Rz(pi/2);
>> vb = [0.2 0.3 0 0 0 0.5]';

and the spatial velocity in the world frame is
>> va = TB.velxform * vb;
>> va'
ans =
 0.2000 0.0000 0.3000 0 -0.5000 0.0000

For the case where frame {C} is also on the moving body the transformation becomes

and involves the adjoint matrix of the relative pose which is discussed in Appendix D.
Continuing the example above we will defi ne an additional frame {C} relative to frame {B}

>> TBC = SE3(0, 0.4, 0);

To determine velocity at the origin of this frame we fi rst compute CξB

>> TCB = inv(TBC);

and the velocity in frame {C} is
>> vc = TBC.Ad * vb;
>> vc'
ans =
 0 0.3000 0 0 0 0.5000

which has zero velocity in the xC-direction since the rotational and translational ve-
locity components cancel out.

Some texts introduce a velocity twist V which is different to the spatial velocity
introduced above.� The velocity twist of a body-fixed frame {B} is BV = (Bv, Bω)
which has a translational and rotational velocity component but Bv is the body-
frame velocity of an imaginary point rigidly attached to the body and located at
the world frame origin. The body- and world-frame velocity twists are related by
the adjoint matrix rather than Eq. 3.4. The velocity twist is the dual of the wrench
described in Sect. 3.2.2.�

Lynch and Park (2017) use the term ve-
locity twist while Murray et al. 1994 call
this a spatial velocity .

The scalar product of a velocity twist and
a wrench represents power.

Fig. 3.1.
Representing the spatial velocity
of a moving body b with respect

to various coordinate frames.
Note that ν is a 6-dimensional

vector

3.1 · Time-Varying Pose

66 Chapter 3 · Time and Motion

3.1.3
l
Incremental Rotation

The physical meaning of ½ is not intuitively obvious – it is simply the way that the
elements of R change with time. To gain some insight we consider a fi rst-order ap-
proximation to the derivative�

 (3.5)

Consider an object whose body frames {B} at two consecutive timesteps are related
by a small rotation BR∆ expressed in the body frame

We substitute Eq. 3.2 into 3.5 and rearrange to obtain

 (3.6)

which says that an infi nitesimally small rotation can be approximated by the sum of
a skew-symmetric matrix and an identity matrix .� For example

>> rotx(0.001)
ans =
 1.0000 0 0
 0 1.0000 -0.0010
 0 0.0010 1.0000

Equation 3.6 directly relates rotation between timesteps to the angular velocity.
Rearranging it allows us to compute the approximate angular velocity vector

from two consecutive rotation matrices where ∨×(·) is the inverse skew-symmetric ma-
trix operator such that if S = [v]× then v = ∨× (S). Alternatively, if the angular velocity
in the body frame is known we can approximately update the rotation matrix

 (3.7)

which is cheap to compute, involves no trigonometric operations, and is key to inertial
navigation systems which we discuss in Sect. 3.4.

Adding any nonzero matrix to a rotation matrix results in a matrix that is not a
rotation matrix.� However if the increment is sufficiently small, that is the an-
gular velocity and/or sample time is small,� the result will be close to ortho-
normal and we can straighten it up. The resulting matrix should be normalized,
as discussed in Sect. 2.3.1, to make it a proper rotation matrix. This is a com-
mon approach when implementing inertial navigation systems on low-end
computing hardware.

We can also approximate the quaternion derivative by a fi rst-order difference�

which combined with Eq. 3.3 gives us the approximation

This is the first two terms of the Rod-
rigues’ rotation formula on, Eq. 2.18,
when θ = δtω.

Similar to the case for SO(n), addition
and subtraction are not operators for the
unit-quaternion group S3 so the result
will be a quaternion q ∈H for which ad-
dition and substraction are permitted.
The Toolbox supports this with overload-
ed operators + and - and appropriate
object class conversions.

The only valid operator for the group
SO(n) is composition ⊕, so the result of
subtraction cannot belong to the group.
The result is a 3 × 3 matrix of element-
wise differences. Groups are introduced
in Appendix D.

The only valid operator for the group
SO(n) is composition ⊕, so the result of
addition cannot be within the group. The
result is a general 3 × 3 matrix.

Which is why inertial navigation sys-
tems operate at a high sample rate and
δt is small.

67

 (3.8)

which is even cheaper to compute than the rotation matrix approach. Adding a non-
zero vector to a unit-quaternion results in a nonunit quaternion but if the angular ve-
locity and/or sample time is small then the approximation is reasonable. Normalizing
the result to create a unit-quaternion is computationally cheaper than normalizing a
rotation matrix, as discussed in Sect. 2.3.1.

3.1.4
l
Incremental Rigid-Body Motion

Consider two poses ξ1 and ξ2 which differ infi nitesimally and are related by

where ξ∆ =�ξ1 ⊕ ξ2. In homogeneous transformation matrix form

where t∆ is an incremental displacement and R∆ is an incremental rotation matrix
which will be skew symmetric with only three unique elements ∨x(R∆ − I3×3) plus an
identity matrix. The incremental rigid-body motion can therefore be described by
just six parameters

where ∆ξ = (∆t, ∆R) can be considered as a spatial displacement .� A body with con-
stant spatial velocity ν for δt seconds undergoes a spatial displacement of ∆ξ = δt ν.

The inverse operator

is given by

The spatial displacement operator and its inverse are implemented by the Toolbox
functions tr2delta and delta2tr respectively. These functions assume that the
displacements are infi nitesimal and become increasingly approximate with displace-
ment magnitude.

This is useful in optimization procedures
that seek to minimize the error between
two poses: we can choose the cost func-
tion e = �∆(ξ1, ξ2)� which is equal to
zero when ξ1 ≡ ξ2. This is very approxi-
mate when the poses are significantly
different, but becomes ever more accu-
rate as ξ1 → ξ2.

 Sir Isaac Newton (1642–1727) was an English mathematician and alchemist. He was Lucasian pro-
fessor of mathematics at Cambridge, Master of the Royal Mint, and the thirteenth president of
the Royal Society. His achievements include the three laws of motion, the mathematics of gravi-
tational attraction, the motion of celestial objects and the theory of light and color (see page 287),
and building the fi rst refl ecting telescope.

Many of these results were published in 1687 in his great 3-volume work “The Philosophiae
Naturalis Principia Mathematica” (Mathematical principles of natural philosophy). In 1704 he pub-
lished “Opticks” which was a study of the nature of light and color and the phenomena of diffrac-
tion. The SI unit of force is named in his honor. He is buried in Westminster Abbey, London.

3.1 · Time-Varying Pose

68 Chapter 3 · Time and Motion

3.2
l
Accelerating Bodies and Reference Frames

So far we have considered only the fi rst derivative, the velocity of coordinate frames .
However all motion is ultimately caused by a force or a torque which leads to accel-
eration and the consideration of dynamics.

3.2.1
l
Dynamics of Moving Bodies

For translational motion Newton’s second law describes, in the inertial frame , the ac-
celeration of a particle with position x and mass m

 (3.9)

due to the applied force f.
Rotational motion in SO(3) is described by Euler’s equations of motion which re-

lates the angular acceleration of the body in the body frame

 (3.10)

to the applied torque or moment τ and a positive-defi nite rotational inertia matrix
BJ ∈ R3×3.� Nonzero angular acceleration implies that angular velocity , the axis
and/or angle of rotation , evolves over time.�

Consider the motion of a tumbling object which we can easily simulate. We defi ne
an inertia matrix�

>> J = [2 -1 0;-1 4 0;0 0 3];

and initial conditions for orientation and angular velocity

>> attitude = UnitQuaternion();
>> w = 0.2*[1 2 2]';

The simulation loop computes angular acceleration with Eq. 3.10, uses rectangu-
lar integration to obtain angular velocity and attitude, and then updates a graphical
coordinate frame

>> dt = 0.05;
>> h = attitude.plot();
>> for t=0:dt:10
 wd = -inv(J) * (cross(w, J*w));
 w = w + wd*dt; attitude = attitude .* UnitQuaternion.omega(wd*dt);
 attitude.plot('handle', h); pause(dt)
 end

The rotational inertia of a body that moves in SE(3) is represented by the 3 × 3 symmetric
matrix

The diagonal elements are the positive moments of inertia, and the off-diagonal elements are
 products of inertia. Only six of these nine elements are unique: three moments and three prod-
ucts of inertia. The products of inertia are all zero if the object’s mass distribution is symmetrical
with respect to the coordinate frame.

Notice that inertia has an associated ref-
erence frame, it is a matrix and its ele-
ments depend on the choice of the co-
ordinate frame.

In the absence of torque a body gener-
ally rotates with a time-varying angular
velocity – this is quite different to the
linear velocity case. It is angular momen-
tum h= Jω in the inertial frame that
is constant.

The matrix must be positive definite, that
is symmetric and all its eigenvalues are
positive.

69

3.2.2
l

Transforming Forces and Torques

The spatial velocity is a vector quantity that represents translational and rotational veloc-
ity . In a similar fashion we can combine translational force and rotational torque into a
6-vector that is called a wrench W = (fx, fy, fz, mx, my, mz) ∈R6. A wrench BW is defi ned
with respect to the coordinate frame {B} and applied at the origin of that frame.

The wrench CW is equivalent if it causes the same motion of the body when applied
to the origin of coordinate frame {C} and defi ned with respect to {C}. The wrenches
are related by

 (3.11)

which is similar to the spatial velocity transform of Eq. 3.4 but uses the transpose of
the adjoint of the inverse relative pose.

Continuing the MATLAB example from page 65 we defi ne a wrench with respect to
frame {B} with forces of 3 and 4 Nm in the x- and y-directions respectively

>> WB = [3 4 0 0 0 0]';

The equivalent wrench in frame {C} would be
>> WC = TBC.Ad' * WB;
>> WC'
ans =
 3.0000 4.0000 0 0 0 1.2000

which is the same forces as applied at {B} plus a torque of 1.2 Nm about the z-axis to counter
the moment due to the application of the x-axis force along a different line of action.

3.2.3
l
Inertial Reference Frame

The term inertial reference frame is frequently used in robotics and it is crisply defi ned
as “a reference frame that is not accelerating or rotating”.

Consider a particle P at rest with respect to a stationary reference frame {0}. Frame {B}
is moving with constant velocity 0vB relative to frame {0}. From the perspective of {B}
the particle would be moving at constant velocity, in fact BvP = −0vB. The particle is
not accelerating and obeys Newton’s fi rst law “that in the absence of an applied force
a particle moves at a constant velocity”. Frame {B} is therefore also an inertial refer-
ence frame.

Now imagine that frame {B} is accelerating at a constant acceleration 0aB with re-
spect to {0}. From the perspective of {B} the particle appear to be accelerating, in fact
BaP = −0aB and this violates Newton’s fi rst law. An observer in frame {B} who was
aware of Newton’s theories might invoke some magical force to explain what they ob-
serve. We call such a force a fi ctitious , apparent, pseudo, inertial or d’Alembert force
– they only exist in an accelerating or noninertial reference frame. This accelerating

 Gaspard-Gustave de Coriolis (1792–1843) was a French mathematician, mechanical engineer and
scientist. Born in Paris, in 1816 he became a tutor at the École Polytechnique where he carried
out experiments on friction and hydraulics and later became a professor at the École des Ponts
and Chaussées (School of Bridges and Roads). He extended ideas about kinetic energy and work
to rotating systems and in 1835 wrote the famous paper Sur les équations du mouvement rela-
tif des systèmes de corps (On the equations of relative motion of a system of bodies) which dealt
with the transfer of energy in rotating systems such as waterwheels. In the late 19th century his
ideas were picked up by the meteorological community to incorporate effects due to the Earth’s
rotation. He is buried in Paris’s Montparnasse Cemetery.

3.2 · Accelerating Bodies and Reference Frames

70 Chapter 3 · Time and Motion

frame {B} is not an inertial reference frame. In Newtonian mechanics, gravity is consid-
ered a real body force mg – a free object will accelerate relative to the inertial frame.�

An everyday example of a noninertial reference frame is an accelerating car or
airplane. Inside an accelerating vehicle we observe fi ctitious forces pushing objects
around in a way that is not explained by Newton’s law in an inertial reference frame.
We also experience real forces acting on our body which, in this case, are provided by
the seat and the restraint.

For a rotating reference frame things are more complex still. Imagine that you and
a friend are standing on a large rotating turntable, and throwing a ball back and forth.
You will observe that the ball follows a curved path in space.� As a Newton-aware ob-
server in this noninertial reference frame you would have to resort to invoking some
magical force that explains why fl ying objects follow curved paths.

If the reference frame {B} is rotating with angular velocity ω about its origin then
Newton’s second law Eq. 3.9 becomes

with three new acceleration terms. Centripetal acceleration always acts inward toward
the origin. If the point is moving then Coriolis acceleration will be normal to its ve-
locity. If rotational velocity is time varying then Euler acceleration will be normal to
the position vector. Frequently the centripetal term is moved to the right-hand side in
which case it becomes a fi ctitious outward centrifugal force. This complexity is symp-
tomatic of being in a noninertial reference frame, and another defi nition of an inertial
frame is one in which the “physical laws hold good in their simplest form”.�

In robotics the term inertial frame and world coordinate frame tend to be used
loosely and interchangeably to indicate a frame fi xed to some point on the Earth.
This is to distinguish it from the body-frame attached to the robot or vehicle. The
surface of the Earth is an approximation of an inertial reference frame – the effect
of the Earth’s rotation is a fi nite acceleration less than 0.04 m s−2 due to centripetal
acceleration . From the perspective of an Earth-bound observer a moving body will
experience Coriolis acceleration . Both effects are small,� dependent on latitude, and
typically ignored.

3.3
l
Creating Time-Varying Pose

In robotics we often need to generate a time-varying pose that moves smoothly in
translation and rotation. A path is a spatial construct – a locus in space that leads from
an initial pose to a fi nal pose. A trajectory is a path with specifi ed timing. For example
there is a path from A to B, but there is a trajectory from A to B in 10 s or at 2 m s−1.

An important characteristic of a trajectory is that it is smooth – position and orienta-
tion vary smoothly with time. We start by discussing how to generate smooth trajectories
in one dimension. We then extend that to the multi-dimensional case and then to piece-
wise-linear trajectories that visit a number of intermediate points without stopping.

3.3.1
l
Smooth One-Dimensional Trajectories

We start our discussion with a scalar function of time. Important characteristics of
this function are that its initial and fi nal value are specifi ed and that it is smooth.
Smoothness in this context means that its fi rst few temporal derivatives are continu-
ous. Typically velocity and acceleration are required to be continuous and sometimes
also the derivative of acceleration or jerk.

Of course if we look down onto the turn-
table from an inertial reference frame the
ball is moving in a straight line.

Einstein, “The foundation of the general
theory of relativity”.

Coriolis acceleration is significant for
weather systems and meteorological
prediction but below the sensitivity
of low-cost sensors.

Albert Einstein’s equivalence principle
is that “we assume the complete physical
equivalence of a gravitational field and a
corresponding acceleration of the refer-
ence system” – we are unable to distinguish
between gravity and being on a rocket ac-
celerating at 1 g far from the gravitational
influence of any celestial object.

71

An obvious candidate for such a function is a polynomial function of time. Poly-
nomials are simple to compute and can easily provide the required smoothness and
boundary conditions. A quintic (fi fth-order) polynomial is often used

 (3.12)

where time t ∈ [0, T]. The fi rst- and second-derivatives are also smooth polynomials

 (3.13)

 (3.14)

The trajectory has defi ned boundary conditions for position, velocity and acceleration�
and frequently the velocity and acceleration boundary conditions are all zero.

Writing Eq. 3.12 to Eq. 3.14 for the boundary conditions t = 0 and t = T gives six
equations which we can write in matrix form as

Since the matrix is square� we can solve for the coeffi cient vector (A, B, C, D, E, F) using
standard linear algebra methods such as the MATLAB \- operator. For a quintic poly-
nomial acceleration will be a smooth cubic polynomial, and jerk will be a parabola.

The Toolbox function tpoly generates a quintic polynomial trajectory as described
by Eq. 3.12. For example

>> tpoly(0, 1, 50);

generates a polynomial trajectory and plots it, along with the corresponding velocity
and acceleration, as shown in Fig. 3.2a. We can get these values into the workspace
by providing output arguments

>> [s,sd,sdd] = tpoly(0, 1, 50);

where s, sd and sdd are respectively the trajectory, velocity and acceleration – each
a 50 × 1 column vector. We observe that the initial and fi nal velocity and acceleration

This is the reason for choice of quintic
polynomial. It has six coefficients that
enable it to meet the six boundary con-
ditions on initial and final position, ve-
locity and acceleration.

Fig. 3.2. Quintic polynomial tra-
jectory. From top to bottom is
position, velocity and accelera-
tion versus time step. a With zero-
velocity boundary conditions,
b initial velocity of 0.5 and a fi -
nal velocity of 0. Note that veloc-
ity and acceleration are in units
of timestep not seconds

3.3 · Creating Time-Varying Pose

72 Chapter 3 · Time and Motion

are all zero – the default value. The initial and fi nal velocities can be set to nonzero
values

>> tpoly(0, 1, 50, 0.5, 0);

in this case, an initial velocity of 0.5 and a fi nal velocity of 0. The results shown in
Fig. 3.2b illustrate an important problem with polynomials. The nonzero initial ve-
locity causes the polynomial to overshoot the terminal value – it peaks at 5 on a tra-
jectory from 0 to 1.

Another problem with polynomials, a very practical one, can be seen in the middle
graph of Fig. 3.2a. The velocity peaks at k = 25 which means that for most of the time
the velocity is far less than the maximum. The mean velocity

>> mean(sd) / max(sd)
ans =
 0.5231

is only 52% of the peak so we are not using the motor as fully as we could. A real robot
joint has a well defi ned maximum velocity and for minimum-time motion we want to
be operating at that maximum for as much of the time as possible. We would like the
velocity curve to be fl atter on top.

A well known alternative is a hybrid trajectory which has a constant velocity seg-
ment with polynomial segments for acceleration and deceleration. Revisiting our fi rst
example the hybrid trajectory is

>> lspb(0, 1, 50);

where the arguments have the same meaning as for tpoly and the trajectory is shown
in Fig. 3.3a. The trajectory comprises a linear segment (constant velocity) with para-
bolic blends, hence the name lspb. The term blend is commonly used to refer to a
trajectory segment that smoothly joins linear segments. As with tpoly we can also
return the trajectory and its velocity and acceleration

>> [s,sd,sdd] = lspb(0, 1, 50);

This type of trajectory is also referred to as trapezoidal due to the shape of the velocity
curve versus time, and is commonly used in industrial motor drives.�

The function lspb has chosen the velocity of the linear segment to be

>> max(sd)
ans =
 0.0306

but this can be overridden by specifying it as a fourth input argument

Fig. 3.3. Linear segment with par-
abolic blend (LSPB) trajectory:
a default velocity for linear seg-
ment; b specifi ed linear segment
velocity values

The trapezoidal trajectory is smooth in
velocity, but not in acceleration.

73

>> s = lspb(0, 1, 50, 0.025);
>> s = lspb(0, 1, 50, 0.035);

The trajectories for these different cases are overlaid in Fig. 3.3b. We see that as the
velocity of the linear segment increases its duration decreases and ultimately its du-
ration would be zero. In fact the velocity cannot be chosen arbitrarily�, too high or
too low a value for the maximum velocity will result in an infeasible trajectory and
the function returns an error.

3.3.2
l
Multi-Dimensional Trajectories

Most useful robots have more than one axis of motion and it is quite straightforward
to extend the smooth scalar trajectory to the vector case. In terms of confi guration
space (Sect. 2.3.5), these axes of motion correspond to the dimensions of the robot’s
confi guration space – to its degrees of freedom. We represent the robot’s confi gura-
tion as a vector q ∈RN where N is the number of degrees of freedom. The confi gu-
ration of a 3-joint robot would be its joint angles q = (q 1, q2, q3). The confi guration
vector of wheeled mobile robot might be its position q = (x, y) or its position and head-
ing angle q = (x, y, θ). For a 3-dimensional body that had an orientation in SO(3) we
would use a confi guration vector q = (θ r, θ p, θ y) or for a pose in SE(3) we would use
q = (x, y, z, θ r, θ p, θ y)�. In all these cases we would require smooth multi-dimensional
 motion from an initial confi guration vector to a fi nal confi guration vector.

In the Toolbox this is achieved using the function mtraj and to move from con-
fi guration (0, 2) to (1, −1) in 50 steps we write

>> q = mtraj(@lspb, [0 2], [1 -1], 50);

which results in a 50 × 2 matrix q with one row per time step and one column per axis.
The fi rst argument is a handle to a function that generates a scalar trajectory, @lspb
as in this case or @tpoly. The trajectory for the @lspb case

>> plot(q)

is shown in Fig. 3.4.
If we wished to create a trajectory for 3-dimensional pose we might consider con-

verting a pose T to a 6-vector by a command like

 q = [T1.t' T1.torpy]

though as we shall see later interpolation of 3-angle representations has some limi-
tations.

The system has one design degree of
freedom. There are six degrees of free-
dom (blend time, three parabolic coef-
ficients and two linear coefficients) and
five constraints (total time, initial and fi-
nal position and velocity).

Fig. 3.4.
Multi-dimensional motion.

q1 varies from 0 → 1 and
q2 varies from 2 → −1

Or an equivalent 3-angle representation.

3.3 · Creating Time-Varying Pose

74 Chapter 3 · Time and Motion

3.3.3
l
Multi-Segment Trajectories

In robotics applications there is often a need to move smoothly along a path through one or
more intermediate or via points without stopping. This might be to avoid obstacles in the
workplace, or to perform a task that involves following a piecewise continuous trajectory
such as welding a seam or applying a bead of sealant in a manufacturing application.

To formalize the problem consider that the trajectory is defi ned by M confi gurations
qk, k ∈ [1, M] and there are M−1 motion segments. As in the previous section qk ∈RN
is a vector representation of confi guration.

The robot starts from q1 at rest and fi nishes at qM at rest, but moves through (or close
to) the intermediate confi gurations without stopping. The problem is over constrained
and in order to attain continuous velocity we surrender the ability to reach each inter-
mediate confi guration. This is easiest to understand for the 1-dimensional case shown
in Fig. 3.5. The motion comprises linear motion segments with polynomial blends, like
lspb, but here we choose quintic polynomials because they are able to match bound-
ary conditions on position, velocity and acceleration at their start and end points.

The fi rst segment of the trajectory accelerates from the initial confi guration q1 and
zero velocity, and joins the line heading toward the second confi guration q2. The blend
time is set to be a constant tacc and tacc / 2 before reaching q2 the trajectory executes
a polynomial blend, of duration tacc, onto the line from q2 to q3, and the process re-
peats. The constant velocity ¸k can be specifi ed for each segment. The average accel-
eration during the blend is

If the maximum acceleration capability of the axis is known then the minimum blend
time can be computed.�

On a particular motion segment each axis will have a different distance to travel and
traveling at its maximum speed there will be a minimum time before it can reach its
goal. The fi rst step in planning a segment is to determine which axis will be the slow-
est to complete the segment, based on the distance that each axis needs to travel for
the segment and its maximum achievable velocity. From this the duration of the seg-
ment can be computed and then the required velocity of each axis. This ensures that
all axes reach the next target qk at the same time.

The Toolbox function mstraj generates a multi-segment multi-axis trajectory
based on a matrix of via points. For example 2-axis motion via the corners of a rotat-
ed square can be generated by

>> via = SO2(30, 'deg') * [-1 1; 1 1; 1 -1; -1 -1]';
>> q0 = mstraj(via(:,[2 3 4 1])', [2,1], [], via(:,1)', 0.2, 0);

The fi rst argument is the matrix of via points, each row is the coordinates of a point. The
remaining arguments are respectively: a vector of maximum speeds per axis, a vector of

The real limit of the axis will be its peak,
rather than average, acceleration. The
peak acceleration for the blend can be
determined from Eq. 3.14 once the quin-
tic coefficients are known.

Fig. 3.5.
Notation for multi-segment tra-
jectory showing four points and
three motion segments. Blue indi-
cates constant velocity motion, red
indicates regions of acceleration

75

durations for each segment,� the initial confi guration, the sample time step, and the accel-
eration time.� The function mstraj returns a matrix with one row per time step and the
columns correspond to the axes. We can plot q2 against q1 to see the path of the robot

>> plot(q0(:,1), q0(:,2))

and is shown by the red path in Fig. 3.6a. If we increase the acceleration time

>> q2 = mstraj(via(:,[2 3 4 1])', [2,1], [], via(:,1)', 0.2, 2);

the trajectory becomes more rounded (blue path) as the polynomial blending functions
do their work. The smoother trajectory also takes more time to complete.

>> [numrows(q0) numrows(q2)]
ans =
 28 80

The confi guration variables as a function of time are shown in Fig. 3.6b. This func-
tion also accepts optional initial and fi nal velocity arguments and tacc can be a vector
specifying different acceleration times for each of the N blends.

Keep in mind that this function simply interpolates pose represented as a vector.
In this example the vector was assumed to be Cartesian coordinates, but this function
could also be applied to Euler or roll-pitch-yaw angles but this is not an ideal way to
interpolate rotation. This leads us nicely to the next section where we discuss inter-
polation of orientation.

3.3.4
l
Interpolation of Orientation in 3D

In robotics we often need to interpolate orientation, for example, we require the end-
effector of a robot to smoothly change from orientation ξ0 to ξ1 in SO(3). We require
some function ξ(s) = σ(ξ0, ξ1, s) where s ∈ [0, 1] which has the boundary conditions
σ(ξ0, ξ1, 0) = ξ0 and σ(ξ0, ξ1, 1) = ξ1 and where σ(ξ0, ξ1, s) varies smoothly for inter-
mediate values of s. How we implement this depends very much on our concrete rep-
resentation of ξ.

If pose is represented by an orthonormal rotation matrix, ξ ∼ R ∈ SO(3), we might
consider a simple linear interpolation σ(R0, R1, s) = (1 − s)R0 + sR1 but this would not,
in general, be a valid orthonormal matrix which has strict column norm and inter-
column orthogonality constraints.

A workable and commonly used approach is to consider a 3-angle representation such
as Euler or roll-pitch-yaw angles, ξ ∼ Γ ∈ S1×S1×S1 and use linear interpolation

Fig. 3.6. Multi-segment multi-axis
trajectories: a configuration of
robot (tool position) for acceler-
ation time of tacc = 0 s (red) and
tacc = 2 s (blue), the via points are
indicated by solid black markers;
b confi guration versus time with
segment transitions (tacc = 2 s) in-
dicated by dashed black lines. The
discrete-time points are indicated
by dots

Only one of the maximum axis speed or
time per segment can be specified, the oth-
er is set to MATLAB’s empty matrix [].

Acceleration time if given is rounded up
internally to a multiple of the time step.

3.3 · Creating Time-Varying Pose

76 Chapter 3 · Time and Motion

and converting the interpolated angles back to a rotation matrix always results in a
valid form. For example we defi ne two orientations

>> R0 = SO3.Rz(-1) * SO3.Ry(-1);
>> R1 = SO3.Rz(1) * SO3.Ry(1);

and fi nd the equivalent roll-pitch-yaw angles

>> rpy0 = R0.torpy(); rpy1 = R1.torpy();

and create a trajectory between them over 50 time steps

>> rpy = mtraj(@tpoly, rpy0, rpy1, 50);

which is most easily visualized as an animation�

>> SO3.rpy(rpy). animate;

For large orientation changes we see that the axis around which the coordinate frame
rotates changes along the trajectory. The motion, while smooth, sometimes looks un-
coordinated. There will also be problems if either ξ0 or ξ1 is close to a singularity in
the particular 3-angle system being used. This particular trajectory passes very close to
the singularity, at around steps 24 and 25, and a symptom of this is the very rapid rate
of change of roll-pitch-yaw angles at this point. The frame is not rotating faster at this
point – you can verify that in the animation – the rotational parameters are changing
very quickly and this is consequence of the particular representation.

 Interpolation of unit-quaternions is only a little more complex than for 3-angle
vectors and produces a change in orientation that is a rotation around a fi xed axis in
space. Using the Toolbox we fi rst fi nd the two equivalent quaternions

>> q0 = R0. UnitQuaternion; q1 = R1.UnitQuaternion;

and then interpolate them
>> q = interp(q0, q1, 50);
>> about(q)
q [UnitQuaternion] : 1x50 (1.7 kB)

which results in a vector of 50 UnitQuaternion objects which we can animate by

>> q.animate

 Quaternion interpolation is achieved using spherical linear interpolation (slerp) in
which the unit quaternions follow a great circle path on a 4-dimensional hypersphere.
The result in 3-dimensions is rotation about a fi xed axis in space.

3.3.4.1
l
Direction of Rotation

When traveling on a circle we can move clockwise or counter-clockwise to reach the goal
– the result is the same but the distance traveled may be different. On a sphere or hyper-
sphere the principle is the same but now we are traveling on a great circle �. In this example
we animate a rotation about the z-axis, from an angle of −2 radians to +2 radians

>> q0 = UnitQuaternion.Rz(-2); q1 = UnitQuaternion.Rz(2);
>> q = interp(q0, q1, 50);
>> q.animate()

but this is taking the long way around the circle, moving 4 radians when we could travel
2π − 4 ≈ 2.28 radians in the opposite direction. The 'shortest ' option requests
the rotational interpolation to select the shortest path

>> q = interp(q0, q1, 50, 'shortest');
>> q.animate()

and the animation clearly shows the difference.

rpy is a 50 × 3 matrix and the result of
SO3.rpy is a 1 × 50 vector of SO3
objects, and their animate method
is then called.

A great circle on a sphere is the intersec-
tion of the sphere and a plane that passes
through the center. On Earth the equa-
tor and all lines of longitude are great
circles. Ships and aircraft prefer to follow
great circles because they represent the
shortest path between two points on the
surface of a sphere.

77

3.3.5
l
Cartesian Motion in 3D

Another common requirement is a smooth path between two poses in SE(3) which
involves change in position as well as in orientation. In robotics this is often referred
to as Cartesian motion.

We represent the initial and fi nal poses as homogeneous transformations

>> T0 = SE3([0.4, 0.2, 0]) * SE3.rpy(0, 0, 3);
>> T1 = SE3([-0.4, -0.2, 0.3]) * SE3.rpy(-pi/4, pi/4, -pi/2);

The SE3 object has a method interp that interpolates between two poses for nor-
malized distance s ∈ [0, 1] along the path, for example the midway pose between T0
and T1 is

>> interp(T0, T1, 0.5)
ans =
 0.0975 -0.7020 0.7055 0
 0.7020 0.5510 0.4512 0
 -0.7055 0.4512 0.5465 0.15
 0 0 0

where the translational component is linearly interpolated and the rotation is spheri-
cally interpolated using the unit-quaternion interpolation method interp.

A trajectory between the two poses in 50 steps is created by

>> Ts = interp(T0, T1, 50);

where the arguments are the initial and fi nal pose and the trajectory length.� The re-
sulting trajectory Ts is a vector of SE3 objects

>> about(Ts)
Ts [SE3] : 1x50 (6.5 kB)

representing the pose at each time step. The homogeneous transformation for the
fi rst point on the path is

>> Ts(1)
ans =
 -0.9900 -0.1411 0 0.4
 0.1411 -0.9900 0 0.2
 0 0 1 0
 0 0 0 1

and once again the easiest way to visualize this is by animation

>> Ts. animate

which shows the coordinate frame moving and rotating from pose T0 to pose T1.
The translational part of this trajectory is obtained by�

>> P = Ts.transl;

which returns the Cartesian position for the trajectory in matrix form

>> about(P)
P [double] : 50x3 (1.2 kB)

which has one row per time step that is the corresponding position vector. This is
plotted

>> plot(P);

in Fig. 3.7 along with the orientation in roll-pitch-yaw format

>> rpy = Ts. torpy;
>> plot(rpy);

This could also be written as
T0.interp(T1, 50).

3.3 · Creating Time-Varying Pose

The .t property applied to a vector of
SE3 objects returns a MATLAB comma-
separated list of translation vectors. The
.transl method returns the transla-
tions in a more useful matrix form.

78 Chapter 3 · Time and Motion

We see that the position coordinates vary smoothly and linearly with time and that
orientation varies smoothly with time.�

However the motion has a velocity and acceleration discontinuity at the fi rst and last
points. While the path is smooth in space the distance s along the path is not smooth
in time. Speed along the path jumps from zero to some fi nite value and then drops to
zero at the end – there is no initial acceleration or fi nal deceleration. The scalar func-
tions tpoly and lspb discussed earlier can be used to generate s so that motion along
the path is smooth. We can pass a vector of normalized distances along the path as
the second argument to interp

>> Ts = T0. interp(T1, lspb(0, 1, 50));

The trajectory is unchanged but the coordinate frame now accelerates to a constant
speed along the path and then decelerates and this is refl ected in smoother curves
for the trajectory shown in Fig. 3.8. The Toolbox provides a convenient shorthand
 ctraj for the above

>> Ts = ctraj(T0, T1, 50);

where the arguments are the initial and fi nal pose and the number of time steps.

Fig. 3.7. Cartesian motion. a Car-
tesian position versus time, b roll-
pitch-yaw angles versus time

Fig. 3.8. Cartesian motion with
LSPB path distance profi le. a Car-
tesian position versus time, b roll-
pitch-yaw angles versus time

The roll-pitch-yaw angles do not vary lin-
early with time because they represent a
nonlinear transformation of the linearly
varying quaternion.

79

3.4
l
Application: Inertial Navigation

An inertial navigation system or INS is a “black box” that estimates its velocity, orien-
tation and position by measuring accelerations and angular velocities and integrating
them over time. Importantly it has no external inputs such as radio signals from satel-
lites. This makes it well suited to applications such as submarine, spacecraft and missile
guidance where it is not possible to communicate with radio navigation aids or which
must be immune to radio jamming. These particular applications drove development
of the technology during the cold war and space race of the 1950s and 1960s. Those
early systems were large, see Fig. 3.9a, extremely expensive and the technical details
were national secrets. Today INSs are considerably cheaper and smaller as shown in
Fig. 3.9b; the sensor chips shown in Fig. 3.9c can cost as little as a few dollars and they
are built into every smart phone.

An INS estimates its pose with respect to an inertial reference frame which is typi-
cally denoted {0} and fi xed to some point on the Earth’s surface – the world coordinate
frame .� The frame typically has its z-axis upward or downward and the x- and y-axes
establish a local tangent plane. Two common conventions have the x-, y- and z-axes
respectively parallel to north-east-down (NED) or east-north-up (ENU) directions.
The coordinate frame {B} is attached to the moving vehicle or robot and is known as
the body- or body-fi xed frame .

3.4.1
l
Gyroscopes

Any sensor that measures the rate of change of orientation is known, for historical
reasons, as a gyroscope.

3.4.1.1
l
How Gyroscopes Work

The term gyroscope conjures up an image of a childhood toy – a spinning disk in a
round frame that can balance on the end of a pencil. Gyroscopes are confounding de-
vices – you try to turn them one way but they resist and turn (precess) in a different
direction. This unruly behavior is described by a simplifi ed version of Eq. 3.10

 (3.15)

where h is the angular momentum of the gyroscope, a vector parallel to the rotor’s
axis of spin and with magnitude �h�= Jϖ , where J is the rotor’s inertia and ϖ its ro-
tational speed. It is the cross product in Eq. 3.15 that makes the gyroscope move in a
contrary way.

Fig. 3.9. a SPIRE (Space Inertial
Reference Equipment) from 1953
was 1.5 m in diameter and weighed
1200 kg. b A modern inertial navi-
gation system the LORD Micro-
Strain 3DM-GX4-25 has triaxial
gyroscopes, accelerometers and
magnetometer, a pressure alti-
meter, is only 36×24×11 mm
and weighs 16 g (image courtesy
of LORD MicroStrain); c 9 De-
grees of Freedom IMU Breakout
(LSM9DS1-SEN-13284 from Spark-
Fun Electronics), the chip itself is
only 3.5 × 3 mm

3.4 · Application: Inertial Navigation

As discussed in Sect. 3.2.3 the Earth’s sur-
face is not an inertial reference frame, but
for most robots with nonmilitary grade
sensors this is a valid assumption.

80 Chapter 3 · Time and Motion

If no torque is applied to the gyroscope its angular momentum remains constant in
the inertial reference frame which implies that the axis will maintain a constant direc-
tion in that frame. Two gyroscopes with orthogonal axes form a stable platform that will
maintain a constant orientation with respect to the inertial reference frame – fi xed with
respect to the universe. This was the principle of many early spacecraft navigation systems
such as that shown in Fig. 2.15 – the vehicle was able to rotate about the stable platform
and the spacecraft’s orientation could be measured with respect to the platform.�

Alternatively we can fi x the gyroscope to the vehicle in the strapdown confi gura-
tion as shown in Fig. 3.10. If the vehicle rotates with an angular velocity ω the attached
gyroscope will resist and exert an orthogonal torque τ which can be measured.� If the
magnitude of h is high then this kind of sensor is very sensitive – a very small angular
velocity leads to an easily measurable torque.

Over the last few decades this rotating disk technology has been eclipsed by sensors
based on optical principles such as the ring-laser gyroscope (RLG) and the fi ber-optic
gyroscope (FOG). These are high quality sensors but expensive and bulky. The low-cost
sensors used in mobile phones and drones are based on micro-electro-mechanical sys-
tems (MEMS) fabricated on silicon chips. Details of the designs vary but all contain a mass
vibrating at high frequency� in a plane, and rotation about an axis normal to the plane
causes an orthogonal displacement within the plane that is measured capacitively.

Gyroscopic angular velocity sensors measure rotation about a single axis. Typically
three gyroscopes are packaged together and arranged so that their sensitive axes are
orthogonal. The three outputs of such a triaxial gyroscope are the components of the
angular velocity vector Bω# measured in the body frame {B}, and we introduce the
superscript to explicitly indicate a sensor measurement.

Interestingly, nature has invented gyroscopic sensors. All vertebrates have angu-
lar velocity sensors as part of their vestibular system . In each inner ear we have three
semi-circular canals – fl uid fi lled organs that measure angular velocity. They are ar-
ranged orthogonally, just like a triaxial gyroscope, with two measurement axes in a
vertical plane and one diagonally across the head.

3.4.1.2
l
Estimating Orientation

If we assume that Bω is constant over a time interval δt the equivalent rotation at the
timestep k is

 (3.16)

If the orientation of the sensor frame is initially ξB then the evolution of estimated
pose can be written in discrete-time form as

 (3.17)

The challenge was to create a mechanism
that allowed the vehicle to rotate around
the stable platform without exerting any
torque on the gyroscopes. This required
exquisitely engineered low-friction gim-
bals and bearing systems.

Typically by strain gauges attached to the
bearings of the rotor shaft.

Typically over 10 kHz.

Fig. 3.10.
 Gyroscope in strapdown con-
fi guration . Angular velocity ω
induces a torque τ which can be
sensed as forces at the bearings
shown in red

81

where we use the hat notation to explicitly indicate an estimate of pose and k ∈ Z+ is
the index of the time step. In concrete terms we can compute this update using SO(3)
rotation matrices or unit-quaternions as discussed in Sect. 3.1.3 and taking care to
normalize the rotation after each step.

We will demonstrate this integration using unit quaternions and simulated angular
velocity data for a tumbling body. The script

>> ex_tumble

creates a matrix w whose columns represent consecutive body-frame angular velocity
measurements with corresponding times given by elements of the vector t. We choose
the initial pose to be the null rotation

>> attitude(1) = UnitQuaternion();

and then for each time step we update the orientation and keep the orientation his-
tory in a vector of quaternions

>> for k=1:numcols(w)-1
 attitude(k+1) = attitude(k) .* UnitQuaternion.omega(w(:,k)*dt);
 end

The omega method creates a unit-quaternion corresponding to a rotation angle and
axis given by the magnitude and direction of its argument. The .* operator performs
quaternion multiplication and normalizes the product, ensuring the result has a unit
norm.� We can animate the changing orientation of the body frame

>> attitude.animate('time', t)

or view the roll-pitch-yaw angles as a function of time

>> mplot(t, attitude.torpy())

3.4.2
l
Accelerometers

Accelerometers are sensors that measure acceleration . Even when not moving they
sense the acceleration due to gravity which defi nes the direction we know as down-
ward. Gravitational acceleration is a function of the material in the Earth beneath
us and our distance from the Earth’s center. The Earth is not a perfect sphere� and
points in the equatorial region are further from the center. Gravitational acceleration
can be approximated by

where θ is the angle of latitude and h is height above sea level. A map of gravity show-
ing the effect of latitude and topography is shown in Fig. 3.11.

The .increment method of the
UnitQuaternion class does this in a sin-
gle call.

The technical term is an oblate spheroid, it
bulges out at the equator because of cen-
trifugal acceleration due to the Earth’s ro-
tation. The equatorial diameter is around
40 km greater than the polar diameter.

3.4 · Application: Inertial Navigation

Much important development was undertaken by the MIT Instrumentation Laboratory un-
der the leadership of Charles Stark Draper. In 1953 the feasibility of inertial navigation for
aircraft was demonstrated in a series of flight tests with a system called SPIRE (Space Inertial
Reference Equipment) shown in Fig. 3.9a. It was 1.5 m in diameter and weighed 1 200 kg.
SPIRE guided a B-29 bomber on a 12 hour trip from Massachusetts to Los Angeles without
the aid of a pilot and with Draper aboard. In 1954 the first self-contained submarine navi-
gation system (SINS) was introduced to service. The Instrumentation Lab also developed
the Apollo Guidance Computer, a one-cubic-foot computer that guided the Apollo Lunar
Module to the surface of the Moon in 1969.

Today high-performance inertial navigation systems based on fi ber-optic gyroscopes are wide-
ly available and weigh around one 1 kg while low-cost systems based on MEMS technology can
weigh just a few grams and cost a few dollars.

82 Chapter 3 · Time and Motion

3.4.2.1
l
How Accelerometers Work

An accelerometer is conceptually a very simple device comprising a mass, known as
the proof mass, supported by a spring as shown in Fig. 3.12. In the inertial reference
frame Newton’s second law for the proof mass is

 (3.18)

and for a spring with natural length l0 the relationship between force and extension d is

The various displacements are related

and taking the double derivative then substituting Eq. 3.18 gives

The quantity we wish to measure is the acceleration of the accelerometer a = Àb
�

and the relative displacement of the proof mass

Fig. 3.11.
Variation in Earth’s gravitational
 acceleration, continents and
mountain ranges are visible.
The hemispheres shown are cen-
terd on the prime (left) and anti
(right) meridian respectively
(from Hirt et al. 2013)

We assume that d̈ = 0 in steady state.
Typically there would be a damping
element to increase friction and stop
the proof mass oscillating. This adds
a term −B¾m to the right-hand side
of Eq. 3.18.

 Charles Stark (Doc) Draper (1901–1987) was an American scientist and engineer, often referred to
as “the father of inertial navigation.” Born in Windsor, Missouri, he studied at the University
of Missouri then Stanford where he earned a B.A. in psychology in 1922, then at MIT an S.B. in
electro-chemical engineering and an S.M. and Sc.D. in physics in 1928 and 1938 respectively. He
started teaching while at MIT and became a full professor in aeronautical engineering in 1939.
He was the founder and director of the MIT Instrumentation Laboratory which made important
contributions to the theory and practice of inertial navigation to meet the needs of the cold war
and the space program.

Draper was named one of Time magazine’s Men of the Year in 1961 and inducted to the National
Inventors Hall of Fame in 1981. The Instrumentation lab was renamed Charles Stark Draper Laboratory
(CSDL) in his honor. (Photo courtesy of The Charles Stark Draper Laboratory Inc.)

83

is linearly related to that acceleration. In an accelerometer the displacement is mea-
sured and scaled by k/m so that the output of the sensor is

If this accelerometer is stationary then a = 0 yet the measured acceleration would
be a# = 0 + g = g in the upward direction. This is because our model has included
the Newtonian gravity force mg, as discussed in Sect. 3.2.3. Accelerometer output is
sometimes referred to as s pecifi c, inertial or proper acceleration.

The fact that a stationary accelerometer indicates an upward acceleration of
1 g is unintuitive since the accelerometer is clearly stationary and not accel-
erating. Intuition would suggest, that if anything, the acceleration should be
in the downward direction where the device would accelerate if dropped.
However the reality is that an accelerometer at rest in a gravity field reports
upward acceleration.�

Accelerometers measure acceleration along a single axis. Typically three accelerom-
eters are packaged together and arranged so that their sensitive axes are orthogonal.
The three outputs of such a triaxial accelerometer are the components of the accelera-
tion vector Ba# measured in the body frame {B}.

Nature has also invented the accelerometer. All vertebrates have acceleration sen-
sors called ampullae as part of their vestibular system. We have two in each inner ear:
the saccule which measures vertical acceleration, and the utricle which measures front-
to-back acceleration, and they help us maintain balance.� The proof mass in the am-
pullae is a collection of calcium carbonate crystals called otoliths, literally ear stones,
on a gelatinous substrate which serves as the spring and damper. Hair cells embedded
in the substrate measure the displacement of the otoliths due to acceleration.

3.4.2.2
l
Estimating Pose and Body Acceleration

 In frame {0} with its z-axis vertically upward, the gravitational acceleration vector is

Fig. 3.12.
The essential elements of an
accelerometer and notation

A number of iPhone sensor apps incor-
rectly report acceleration in the down-
ward direction when the phone is sta-
tionary.

Inconsistency between motion sensed in
our ears and motion perceived by our eyes
is the root cause of motion sickness.

3.4 · Application: Inertial Navigation

84 Chapter 3 · Time and Motion

where g is the local gravitational acceleration from Fig. 3.11. In a body-fi xed frame {B}
at an arbitrary orientation expressed in terms of ZYX roll-pitch-yaw angles�

the gravitational acceleration will be

 (3.19)

The measured acceleration vector from the sensor in frame {B} is

and equating this with Eq. 3.19 we can solve for the roll and pitch angles

 (3.20)

 (3.21)

and we use the hat notation to indicate that these are estimates of the angles.� Notice
that there is no solution for the yaw angle and in fact θy does not even appear in Eq. 3.19.
The gravity vector is parallel to the vertical axis and rotating around that axis, yaw
rotation, will not change the measured value at all.�

We have made a very strong assumption that the measured acceleration Ba# is only
due to gravity. On a robot the sensor will experience additional acceleration as the
vehicle moves and this will introduce an error in the estimated orientation.

Frequently we want to estimate the motion of the vehicle in the inertial frame, and
the total measured acceleration in {0} is due to gravity and motion

We observe acceleration in the body frame so the vehicle acceleration in the world
frame is

 (3.22)

and we assume that 0ÄB and g are both known.� Integrating that with respect to time

 (3.23)

gives the velocity of the vehicle, and integrating again

 (3.24)

gives its position. Note that we can assume vehicle acceleration is zero and estimate
attitude, or assume attitude and estimate vehicle acceleration. We cannot estimate
both since there are more unknowns than measurements.

We could use any 3-angle sequence.

These angles are sufficient to determine
whether a phone, tablet or camera is in
portrait or landscape orientation.

Another way to consider this is that we
are essentially measuring the direction
of the gravity vector with respect to the
frame {B} and a vector provides only
two unique pieces of directional infor-
mation, since one component of a unit
vector can be written in terms of the
other two.

The first assumption is a strong one and
problematic in practice. Any error in the
rotation matrix results in incorrect can-
cellation of the gravity component of a#
which leads to an error in the estimated
body acceleration.

85

3.4.3
l
Magnetometers

 The Earth is a massive but weak magnet. The poles of this geomagnet are the Earth’s
north and south magnetic poles which are constantly moving and located quite some
distance from the planet’s rotational axis.

At any point on the planet the magnetic fl ux lines can be considered a vector m
whose magnitude and direction can be accurately predicted and mapped as shown in
Fig. 3.13. We describe the vector’s direction in terms of two angles: declination and
inclination. A horizontal projection of the vector m points in the direction of mag-
netic north and the declination angle D is measured from true north� clockwise to that
projection. The inclination angle I of the vector is measured in a vertical plane down-
ward� from horizontal to m. The length of the vector, the magnetic fi eld intensity, is
measured by a magnetometer in units of Tesla (T) and for the Earth this varies from
25−65 µT� as shown in Fig. 3.13a.

3.4.3.1
l
How Magnetometers Work

The key element of most modern magnetometers is a Hall-effect sensor, a semiconduc-
tor device which produces a voltage proportional to the magnetic fi eld intensity in a
direction normal to the current fl ow. Typically three Hall-effect sensors are packaged
together and arranged so that their sensitive axes are orthogonal. The three outputs
of such a triaxial magnetometer are the components of the Earth’s magnetic fi eld in-
tensity vector Bm# measured in the body frame {B}.

Yet again nature leads, and creatures from bacteria to turtles and birds are known
to sense magnetic fi elds. The effect is particularly well known in pigeons and there is
debate about whether or not humans have this sense. The actual biological sensing
mechanism has not yet been discovered.

3.4.3.2
l
Estimating Heading

 Consider an inertial coordinate frame {0} with its z-axis vertically upward and its
x-axis pointing toward magnetic north. The magnetic fi eld intensity vector therefore
lies in the xz-plane

where B is the magnetic fi eld intensity and I the inclination angle which are both
known from Fig. 3.13. In a body-fi xed frame {B} at an arbitrary orientation expressed
in terms of roll-pitch-yaw angles�

Edwin Hall (1855–1938) was an American physicist born in Maine. His Ph.D. research in physics at
the Johns Hopkins University in 1880 discovered that a magnetic fi eld exerts a force on a current
in a conductor. He passed current through thin gold leaf and in the presence of a magnetic fi eld
normal to the leaf was able to measure a very small potential difference between the sides of the
leaf. This is now known as the Hall effect. While it was then known that a magnetic fi eld exerted
a force on a current carrying conductor it was believed the force acted on the conductor not the
current itself – electrons were yet to be discovered. He was appointed as professor of physics at
Harvard in 1895 where he worked on thermoelectric effects.

By comparison a modern MRI machine
has a magnetic field strength of 4-8 T.

The direction of the Earth’s north rota-
tional pole, where the rotational axis
intersects the surface of the northern
hemisphere.

In the Northern hemisphere inclination
is positive, that is, the vector points into
the ground.

We could use any 3-angle sequence.

3.4 · Application: Inertial Navigation

86 Chapter 3 · Time and Motion

Fig. 3.13.
A predicted model of the
Earth magnetic fi eld pa-
rameters for 2015. a Mag-
netic fi eld intensity (nT);
b magnetic declination
 (degrees); c magnetic incli-
nation (degrees). Magnetic
poles indicated by asterisk
(maps by NOAA/NGDC
and CIRES http://ngdc.
noaa.gov/geomag/WMM,
published Dec 2014)

87

the magnetic fi eld intensity will be

 (3.25)

The measured magnetic fi eld intensity vector from the sensor in frame {B} is

and equating this with Eq. 3.25 we can solve for the yaw angle

assuming that the roll and pitch angles have been determined, perhaps using measured
acceleration and Eq. 3.21.�

We defi ned yaw angle as the orientation of the frame {B} x-axis� with respect to
magnetic north. To obtain the heading angle with respect to true-north we subtract
the local declination angle

Magnetometers are great in theory but problematic in practice. Firstly, our modern
world is full of magnets and electromagnets. Buildings contain electrical wiring and robots
themselves are full of electric motors, batteries and electronics. These all add to, or over-
whelm, the local geomagnetic fi eld. Secondly, many objects in our world contain ferromag-
netic materials such as the reinforcing steel in buildings or the steel bodies of cars or ships.
These distort the geomagnetic fi eld leading to local changes in its direction. These effects
are referred to respectively as h ard- and s oft-iron distortion of the magnetic fi eld.�

3.4.4
l
Sensor Fusion

An inertial navigation system uses the devices we have just discussed to determine the
pose of a vehicle – its position and its orientation. Early inertial navigation systems, such
as shown in Fig. 2.15, used mechanical gimbals to keep the accelerometers at a constant
attitude with respect to the stars using a gyro-stabilized platform. The acceleration mea-
sured on this platform is by defi nition referred to the inertial frame and simply needs
to be integrated to obtain the velocity of the platform, and integrated again to obtain
its position. In order to achieve accurate position estimates over periods of hours or
days the gimbals and gyroscopes had to be of extremely high quality so that the stable
platform did not drift, and the acceleration sensors needed to be extremely accurate.

The modern strapdown inertial measurement confi guration uses no gimbals. The
angular velocity, acceleration and magnetic fi eld sensors are rigidly attached to the
vehicle. The collection of inertial sensors is referred to as an inertial measurement
unit or IMU. A 6-DOF IMU comprises triaxial gyroscopes and accelerometers while
a 9-DOF IMU comprises triaxial gyroscopes, accelerometers and magnetometers.� A
system that only determines attitude is called an attitude and heading reference sys-
tem or AHRS.

The sensors we use, particularly the low-cost ones in phones and drones, are far
from perfect. Consider any sensor value – gyroscope, accelerometer or magnetometer
 – the measured signal

Many triaxial Hall-effect sensor chips also
include a triaxial accelerometer for just
this purpose.

Typically in vehicle navigation the x-axis
points forward and the yaw angle is also
called the heading angle.

These can be calibrated out but the pro-
cess requires that the sensor is rotated
by 360 degrees.

Increasingly these sensor packages also
include a barometric pressure sensor to
measure changes in altitude.

3.4 · Application: Inertial Navigation

88 Chapter 3 · Time and Motion

is related� to the unknown true value x by a scale factor s, offset or bias b and random
 noise ε . s is usually specifi ed by the manufacturer to some tolerance, perhaps ±1%, and
for a particular sensor this can be determined by some calibration procedure. Bias b is
ideally equal to zero but will vary from device to device. Bias that varies over time is often
called sensor drift. Scale factor and bias are typically both a function of temperature. �

In practice bias is the biggest problem because it varies with time and temperature
and has a very deleterious effect on the estimated pose and position. Consider a posi-
tive bias on the output of a gyroscopic sensor – the output is higher than it should be.
At each time step in Eq. 3.17 the incremental rotation will be bigger than it should be,
which means that the orientation error will grow linearly with time.�

If we use Eq. 3.22 to estimate the vehicle’s acceleration then the error in attitude
means that the measured gravitation acceleration is incorrectly canceled out and will
be indistinguishable from actual vehicle acceleration. This offset in acceleration be-
comes a linear time error in velocity and a quadratic time error in position. Given that
the pose error is already linear in time we end up with a cubic time error in position,
and this is ignoring the effects of accelerometer bias. Sensor bias is problematic! A
rule of thumb is that gyroscopes with bias stability of 0.01 deg h−1 will lead to posi-
tion error growing at a rate of 1 nmi h−1 (1.85 km h−1). Military grade systems have
very impressive stability, for missiles <0.00002 deg h−1 which is in stark contrast to
consumer grade devices which are in the range 0.01−0.2 deg per second.

A simple approach to this problem is to estimate bias by leaving the IMU station-
ary for a few seconds and computing the average value of all the sensors.� This value
is then subtracted from future sensor readings. This is really only valid over a short
time period because the bias is not constant.

A more sophisticated approach is to estimate the bias online�, but to do this we need
to combine information from different sensors – an approach known as sensor fusion.
We rely on the fact that different sensors have complementary characteristics. Bias on
angular rate sensors causes the attitude estimate error to grow with time, but for ac-
celerometers it will only cause an attitude offset. However accelerometers respond to
motion of the vehicle while good gyroscopes do not. Magnetometers provide partial
information about roll, pitch and yaw, are immune to acceleration, but do respond to
stray magnetic fi elds and other distortions. There are many ways to achieve this kind
of fusion. A common approach is to use an estimation tool called an extended Kalman
fi lter described in Appendix H. Given a full nonlinear mathematical model that relates
the sensor signals and their biases to the vehicle pose and knowledge about the noise
(uncertainty) on the sensor signals, the fi lter gives an optimal estimate of the pose and
bias that best explain the sensor signals.

Here we will consider a simple but still very effective alternative called the explicit
complementary fi lter. The rotation update step is performed using Eq. 3.17 but com-
pared to Eq. 3.16 the incremental rotation is more complex

 (3.26)

The key differences are that the estimated bias + is subtracted from the sensor mea-
surement and a term based on the orientation error σR is added. The estimated bias
changes with time according to

 (3.27)

and also depends on the orientation error σR. kP > 0 and kI > 0 are both well chosen
constants.

The orientation error is derived from N vector measurements 0v#
i

We assume a linear relationship but check
the fine print in a datasheet to understand
what a sensor really does.

Some sensors also exhibit cross-sensitiv-
ity. They may give a weak response to a
signal in an orthogonal direction or from
a different mode, quite commonly low-
cost gyroscopes respond to vibration and
acceleration as well as rotation.

The effect of an attitude error is danger-
ous on something like a quadrotor. For
example, if the estimated pitch angle is
too high then the vehicle control system
will pitch down by the same amount to
keep the craft “level”, and this will cause
it to accelerate forward.

A lot of hobby drones do this just before
they take off.

Our brain has an online mechanism to
cancel out the bias in our vestibular gy-
roscopes. It uses the recent average ro-
tation as the bias, based on the reason-
able assumption that we do not undergo
prolonged rotation. If we do, then that
 angular rate becomes the new normal
so that when we stop rotating we per-
ceive rotation in the opposite direction.
We call this dizziness.

89

where 0vi is the known value of a vector signal in the inertial frame (for example gravi-
tational acceleration) and

is the value measured in the body-fi xed frame and rotated into the inertial frame by
the estimated orientation 0ûB. Any error in direction between these vectors will yield
a nonzero cross-product which is the axis around which to rotate one vector into the
other. The fi lter uses this difference – the innovation – to improve the orientation
estimate by feeding it back into Eq. 3.26. This fi lter allows an unlimited number of
vectorial measurements 0vi to be fused together; for example we could add magnetic
fi eld or any other kind of direction data such as the altitude and azimuth of visual
landmarks, stars or planets.

The script

>> ex_tumble

provides simulated “measured” gyroscope, accelerometer and magnetometer data
organized as columns of the matrices wm, gm and mm respectively and all include a
fi xed bias. Corresponding times are given by elements of the vector t. Firstly we will
repeat the example from page 81 but now with sensor bias

>> attitude(1) = UnitQuaternion();
>> for k=1:numcols(wm)-1
 attitude(k+1) = attitude(k) .* UnitQuaternion.omega(wm(:,k)*dt);
 end

To see the effect of bias on the estimated attitude we will compare it to the true at-
titude truth that was also computed by the script. As a measure of error we plot the
angle between the corresponding unit quaternions in the sequence

>> plot(t, angle(attitude, truth), 'r');

which is shown as the red line in Fig. 3.14a. We can clearly see growth in angular er-
ror over time. Now we implement the explicit complementary fi lter with just a few
extra lines of code

Fig. 3.14.
a Effect of gyroscope bias on na-

ive INS (red) and explicit com-
plementary fi lter (blue); b esti-
mated gyroscope bias from the

explicit complementary fi lter

3.4 · Application: Inertial Navigation

90 Chapter 3 · Time and Motion

>> kI = 0.2; kP = 1;
>> b = zeros(3, numcols(w));
 >> attitude_ecf(1) = UnitQuaternion(); b = [0 0 0]';
>> for k=1:numcols(wm)-1
 invq = inv(attitude_ecf(k));
 sigmaR = cross(gm(:,k), invq*g0) + cross(mm(:,k), invq*m0);
 wp = wm(:,k) - b(:,k) + kP*sigmaR;
 attitude_ecf(k+1) = attitude_ecf(k) .* UnitQuaternion.omega(wp*dt);
 b(:,k+1) = b(:,k) - kI*sigmaR*dt;
 end

and plot the angular difference between the estimated and the attitude as a blue line

>> plot(t, angle(attitude_ecf, truth), 'b');

Bringing together information from multiple sensors has checked the growth in
attitude error, despite all the sensors having a bias. The estimated gyroscope bias is
shown in Fig. 3.14b and we can see the bias estimates converging on their true value.

3.5
l
Wrapping Up

In this chapter we have considered pose that varies as a function of time from sev-
eral perspectives.

Firstly we took a calculus perspective and showed that the temporal derivative of an or-
thonormal rotation matrix or a quaternion is a function of the angular velocity of the body
– a concept from mechanics. The skew-symmetric matrix appears in the rotation matrix
case and we should no longer be surprised about this given its intimate connection to ro-
tation via Lie group theory. We then looked at fi nite time differences as an approximation
to the derivative and showed how these lead to computationally cheap methods to update
rotation matrices and quaternions given knowledge of angular velocity. We also discussed
the dynamics of moving bodies that translate and rotate under the infl uence of forces
and torques, inertial and noninertial reference frames and the notion of fi ctitious forces.

The second perspective was to create motion – a sequence of poses, a trajectory,
that a robot can follow. An important characteristic of a trajectory is that it is smooth
– the position and orientation changes smoothly with time. We started by discussing
how to generate smooth trajectories in one dimension and then extended that to the
multi-dimensional case and then to piecewise-linear trajectories that visit a number
of intermediate points. Smoothly varying rotation was achieved by interpolating roll-
pitch-yaw angles and quaternions.

With all this under our belt we were then able to tackle an application, the impor-
tant problem of inertial navigation. Given imperfect measurements from sensors on
a moving body we are able to estimate the pose of that moving body.

Further Reading

The earliest work on manipulator Cartesian trajectory generation was by Paul (1972,
1979) and Taylor (1979). The multi-segment trajectory is discussed by Paul (1979,
1981) and the concept of segment transitions or blends is discussed by Lloyd and
Hayward (1991). These early papers, and others, are included in the compilation on
Robot Motion (Brady et al. 1982). Polynomial and LSPB trajectories are described in
detail by Spong et al. (2006) and multi-segment trajectories are covered at length in
Siciliano et al. (2009) and Craig (2005).

The book Digital Apollo (Mindell 2008) is a very readable story of the development of
the inertial navigation system for the Apollo Moon landings. The article by Corke et al.
(2007) describes the principles of inertial sensors and the functionally equivalent sensors
located in the inner ear of mammals that play a key role in maintaining balance.

91

There is a lot of literature related to the theory and practice of inertial navigation
systems. The thesis of Achtelik (2014) describes a sophisticated extended Kalman fi l-
ter for estimating the pose, velocity and sensor bias for a small fl ying robot. The ex-
plicit complementary fi lter used in this chapter is described by Hua et al. (2014). The
recently revised book Groves (2013) covers inertial and terrestrial radio and satel-
lite navigation and has a good coverage of Kalman fi lter state estimation techniques.
Titterton and Weston (2005) provides a clear and concise description of the principles
underlying inertial navigation with a focus on the sensors themselves but is perhaps
a little dated with respect to modern low-cost sensors. Data sheets on many low-cost
inertial and magnetic fi eld sensing chips can be found at https://www.sparkfun.com
in the Sensors category.

Exercises

1. Express the incremental rotation BR∆ as an exponential series and verify Eq. 3.7.
2. Derive the unit-quaternion update equation Eq. 3.8.
3. Make a simulation with a particle moving at constant velocity and a rotating reference

frame. Plot the position of the particle in the inertial and the rotating reference frame
and observe how the motion changes as a function of the inertial frame velocity.

4. Redo the quaternion-based angular velocity integration on page 81 using rotation
matrices.

5. Derive the expression for fi ctitious forces in a rotating reference frame from Sect. 3.2.3.
6. At your location determine the magnitude and direction of centripetal acceleration you

would experience. If you drove at 100 km h−1 due east what is the magnitude and di-
rection of the Coriolis acceleration you would experience? What about at 100 km h−1
due north? The vertical component is called the Eötvös effect, how much lighter
does it make you?

7. For a tpoly trajectory from 0 to 1 in 50 steps explore the effects of different initial
and fi nal velocities, both positive and negative. Under what circumstances does the
quintic polynomial overshoot and why?

8. For a lspb trajectory from 0 to 1 in 50 steps explore the effects of specifying the
velocity for the constant velocity segment. What are the minimum and maximum
bounds possible?

9. For a trajectory from 0 to 1 and given a maximum possible velocity of 0.025 compare
how many time steps are required for each of the tpoly and lspb trajectories?

10. Use animate to compare rotational interpolation using quaternions, Euler angles
and roll-pitch-yaw angles. Hint: use the quaternion interp method and mtraj.

11. Repeat the example of Fig. 3.7 for the case where:
a) the interpolation does not pass through a singularity. Hint – change the start or

goal pitch angle. What happens?
b) the fi nal orientation is at a singularity. What happens?

12. Develop a method to quantitatively compare the performance of the different orien-
tation interpolation methods. Hint: plot the locus followed by) on a unit sphere.

13. For the mstraj example (page 75)
a) Repeat with different initial and fi nal velocity.
b) Investigate the effect of increasing the acceleration time. Plot total time as a func-

tion of acceleration time.
14. Modify mstraj so that acceleration limits are taken into account when determin-

ing the segment time.
15. There are a number of iOS and Android apps that display sensor data from gy-

ros, accelerometers and magnetometers. You could also use MATLAB, see http://
mathworks.com/hardware-support/iphone-sensor.html. Run one of these and
explore how the sensor signals change with orientation and movement. What
happens when you throw the phone into the air?

3.5 · Wrapping Up

92 Chapter 3 · Time and Motion

16. Consider a gyroscope with a 20 mm diameter steel rotor that is 4 mm thick and ro-
tating at 10 000 rpm. What is the magnitude of h? For an angular velocity of 5 deg s−1,
what is the generated torque?

17. Using Eq. 3.15 can you explain how a toy gyroscope is able to balance on a single
point with its spin axis horizontal? What holds it up?

18. A triaxial accelerometer has fallen off the table, ignoring air resistance what value
does it return as it falls?

19. Implement the algorithm to determine roll and pitch angles from accelerometer
measurements.
a) Devise an algorithm to determine if you are in portrait or landscape orientation?
b) Create a trajectory for the accelerometer using tpoly to generate motion in ei-

ther the x- or y-direction. What effect does the acceleration along the path have
on the estimated angle?

c) Calculate the orientation using quaternions rather than roll-pitch-yaw angles.
20. You are in an aircraft fl ying at 30 000 feet over your current location. How much

lighter are you?
21. Determine the Euler angles as a function of the measured acceleration. If you have

the Symbolic Math Toolbox™ you might like to use that.
22. Determine the magnetic fi eld strength, declination and inclination at your location.

Visit the website http://www.ngdc.noaa.gov/geomag-web.
23. Using the sensor reading app from above, orient the phone so that the magnetic

fi eld vector has only a z-axis component, where is the magnetic fi eld vector with
respect to your phone?

24. Using the sensor reading app from above log some inertial sensor data from a phone
while moving it around. Use that data to estimate the changing attitude or full pose
of the phone. Can you do this in real time?

25. Experiment with varying the parameters of the explicit complementary fi lter on
page 90. Change the bias or add Gaussian noise to the simulated sensor readings.

 Part II Mobile Robots
 Chapter 4 Mobile Robot Vehicles

 Chapter 5 Navigation

 Chapter 6 Localization

Part

II Mobile Robots

In this part we discuss mobile robots, a class of robots that are able to move through
the environment. The fi gures show an assortment of mobile robots that can move over
the ground, over the water, through the air, or through the water. This highlights the
diversity of what is referred to as the robotic platform – the robot’s physical embodi-
ment and means of locomotion as shown in Figs. II.2 through II.4.

However these mobile robots are very similar in terms of what they do and how
they do it. One of the most important functions of a mobile robot is to move to some
place. That place might be specifi ed in terms of some feature in the environment, for
instance move to the light, or in terms of some geometric coordinate or map refer-
ence. In either case the robot will take some path to reach its destination and it faces
challenges such as obstacles that might block its way or having an incomplete map,
or no map at all.

One strategy is to have very simple sensing of the world and to react to what is
sensed. For example Elsie the robotic tortoise, shown in Fig. II.1a, was built in the
1940s and reacted to her environment to seek out a light source without having any
explicit plan or knowledge of the position of the light. An alternative to the reactive
approach was embodied in the 1960s robot Shakey, shown in Fig. II.1b, which was ca-
pable of 3D perception and created a map of its environment and then reasoned about
the map to plan a path to its destination.

These two approaches exemplify opposite ends of the spectrum for mobile robot
navigation. Reactive systems can be fast and simple since sensation is connected di-
rectly to action – there is no need for resources to hold and maintain a representation
of the world nor any capability to reason about that representation. In nature such

Fig. II.1.
a Elsie the tortoise. Burden Insti-

tute Bristol (1948). Now in the
collection of the Smithsonian
Institution but not on display

(photo courtesy Reuben Hoggett
collection). b Shakey. SRI Inter-

national (1968). Now in the Com-
puter Museum in Mountain View
(photo courtesy SRI International)

96 Part II · Mobile Robots

Fig. II.3.
Some mobile air and water ro-
bots: a Yamaha RMAX heli-
copter with 3 m blade diam-
eter (photo by Sanjiv Singh).
b Fixed-wing robotic aircraft
(photo of ScanEagle courtesy
of Insitu). c DEPTHX: Deep
Phreatic Thermal Explorer, a
6-thruster under-water robot.
Stone Aerospace/CMU (2007)
(photo by David Wettergreen,
© Carnegie-Mellon University).
d Autonomous Surface Vehicle
(photo by Matthew Dunbabin)

Fig. II.2.
Some mobile ground robots:
a The Roomba robotic vacuum
cleaner, 2008 (photo courtesy
iRobot Corporation). b Boss,
Tartan racing team’s autono-
mous car that won the Darpa
Urban Grand Challenge, 2007
(Carnegie-Mellon University)

strategies are used by simple organisms such as insects. Systems that make maps
and reason about them require more resources but are capable of performing more
complex tasks. In nature such strategies are used by more complex creatures such as
mammals.

The fi rst commercial applications of mobile robots came in the 1980s when auto-
mated guided vehicles (AGVs) were developed for transporting material around fac-
tories and these have since become a mature technology. Those early free-ranging
mobile wheeled vehicles typically use fi xed infrastructure for guidance, for example,
a painted line on the fl oor, a buried cable that emits a radio-frequency signal, or wall-
mounted bar codes. The last decade has seen signifi cant achievements in mobile ro-
botics that can operate without navigational infrastructure. Figure II.2a shows a robot
vacuum cleaner which use reactive strategies to clean the fl oor, after the fashion of
Elsie. Figure II.2b shows an early self-driving vehicle developed for the DARPA series
of grand challenges for autonomous cars (Buehler et al. 2007, 2010). We see a multitude
of sensors that provide the vehicle with awareness of its surroundings. Other examples
are shown in Figs. 1.4 to 1.6. Mobile robots are not just limited to operations on the
ground. Figure II.3 shows examples of unmanned aerial vehicles (UAVs), autonomous
underwater vehicles (AUVs), and robotic boats which are known as autonomous sur-
face vehicles (ASVs). Field robotic systems such as trucks in mines, container trans-
port vehicles in shipping ports, and self-driving tractors for broad-acre agriculture are
now commercially available for various applications are shown in Fig. II.4.

97Part II · Mobile Robots

The chapters in this part of the book cover the fundamentals of mobile robotics.
Chapter 4 discusses the motion and control of two exemplar robot platforms: wheeled
 vehicles that operate on a planar surface, and fl ying robots that move in 3-dimensional
space – specifi cally quadrotor fl ying robots. Chapter 5 is concerned with navigation.
We will cover in some detail the reactive and plan-based approaches to guiding a ro-
bot through an environment that contains obstacles. Most navigation strategies re-
quire knowledge of the robot’s position and this is the topic of Chap. 6 which exam-
ines techniques such dead reckoning and the use of maps along with observations of
landmarks. We also show how a robot can make a map, and even determine its loca-
tion while simultaneously mapping an unknown region.

Fig. II.4.
a Exploration: Mars Science

Laboratory (MSL) rover, known
as Curiosity, undergoing testing
(image courtesy NASA/Frankie
Martin). b Logistics: an auto-

mated straddle carrier that moves
containers; Port of Brisbane,

2006 (photo courtesy of Port of
Brisbane Pty Ltd). c Mining: au-
tonomous haul truck (Copyright

© 2015 Rio Tinto). d Agricul-
ture: broad-acre weeding robot

(image courtesy Owen Bawden)

Chapter

4 Mobile Robot Vehicles

into important issues of under-actuation and nonholonomy.

4.1
l
Wheeled Mobile Robots

Wheeled locomotion is one of humanity’s great innovations. The wheel was invented
around 3000 bce and the two-wheeled cart around 2000 bce. Today four-wheeled
 vehicles are ubiquitous and the total automobile population of the planet is over one
billion. The effectiveness of cars, and our familiarity with them, makes them a natural
choice for robot platforms that move across the ground.

We know from our everyday experience with cars that there are limitations on how
they move. It is not possible to drive sideways, but with some practice we can learn to
follow a path that results in the vehicle being to one side of its initial position – this
is parallel parking. Neither can a car rotate on the spot, but we can follow a path that
results in the vehicle being at the same position but rotated by 180° – a three-point
turn. The necessity to perform such maneuvers is the hall mark of a system that is
nonholonomic – an important concept which is discussed further in Sect. 4.3. Despite
these minor limitations the car is the simplest and most effective means of moving in
a planar world that we have yet found. The car’s motion model and the challenges it
raises for control will be discussed in Sect. 4.1.1.

In Sect. 4.1.2 we will introduce differentially-steered vehicles which are mechani-
cally simpler than cars and do not have steered wheels. This is a common confi gura-
tion for small mobile robots and also for larger machines like bulldozers. Section 4.1.3
introduces novel types of wheels that are capable of omnidirectional motion and then
models a vehicle based on these wheels.

4.1.1
l
Car-Like Mobile Robots

Cars with steerable wheels are a very effective class of vehicle and the archetype for
most ground robots such as those shown in Fig. II.4a–c. In this section we will create
a model for a car-like vehicle and develop controllers that can drive the car to a point,
along a line, follow an arbitrary trajectory, and fi nally, drive to a specifi c pose.

This chapter discusses how a robot platform moves, that is, how its pose changes
with time as a function of its control inputs. There are many different types

of robot platform as shown on pages 95–97 but in this chapter we will con-
sider only four important exemplars. Section 4.1 covers three different
types of wheeled vehicle that operate in a 2-dimensional world. They can
be propelled forwards or backwards and their heading direction controlled
by some steering mechanism. Section 4.2 describes a quadrotor, a fl ying
vehicle, which is an example of a robot that moves in 3-dimensional space.
Quadrotors are becoming increasing popular as a robot platform since they

are low cost and can be easily modeled and controlled.
Section 4.3 revisits the concept of confi guration space and dives more deeply

100 Chapter 4 · Mobile Robot Vehicles

A commonly used model for the low-speed behavior of a four-wheeled car-like ve-
hicle is the kinematic bicycle model� shown in Fig. 4.1. The bicycle has a rear wheel
fi xed to the body and the plane of the front wheel rotates about the vertical axis to steer
the vehicle. We assume that the velocity of each wheel is in the plane of the wheel, and
that the wheel rolls without slipping sideways

The pose of the vehicle is represented by its body coordinate frame {B} shown in
Fig. 4.1, with its x-axis in the vehicle’s forward direction and its origin at the center of
the rear axle. The confi guration of the vehicle is represented by the generalized coor-
dinates q = (x, y, θ) ∈ C where C⊂R2 × S1.

The dashed lines show the direction along which the wheels cannot move, the
 lines of no motion, and these intersect at a point known as the Instantaneous Center
of Rotation (ICR). The reference point of the vehicle thus follows a circular path and
its angular velocity is

 (4.1)

and by simple geometry the turning radius is RB = L / tanγ where L is the length of
the vehicle or wheel base. As we would expect the turning circle increases with vehicle
length. The steering angle γ is typically limited mechanically and its maximum value
dictates the minimum value of RB.

Fig. 4.1.
 Bicycle model of a car. The car
is shown in light grey, and the
bicycle approximation is dark
grey. The vehicle’s body frame
is shown in red, and the world
coordinate frame in blue. The
steering wheel angle is γ and
the velocity of the back wheel,
in the x-direction, is v. The two
wheel axes are extended as
dashed lines and intersect at
the Instantaneous Center of
Rotation (ICR) and the distance
from the ICR to the back and
front wheels is RB and RF respec-
tively

Vehicle coordinate system. The coordinate system that we will use, and a common one for vehicles
of all sorts is that the x-axis is forward (longitudinal motion), the y-axis is to the left side (lateral
motion) which implies that the z-axis is upward. For aerospace and underwater applications the
z-axis is often downward and the x-axis is forward.

Often incorrectly called the Ackermann
model.

101

For a fi xed steering wheel angle the car moves along a circular arc. For this reason
curves on roads are circular arcs or clothoids� which makes life easier for the driver
since constant or smoothly varying steering wheel angle allow the car to follow the road.
Note that RF > RB which means the front wheel must follow a longer path and therefore
rotate more quickly than the back wheel. When a four-wheeled vehicle goes around a
corner the two steered wheels follow circular paths of different radii and therefore the
angles of the steered wheels γL and γR should be very slightly different. This is achieved
by the commonly used Ackermann steering mechanism which results in lower wear and
tear on the tyres. The driven wheels must rotate at different speeds on corners which is
why a differential gearbox is required between the motor and the driven wheels.

The velocity of the robot in the world frame is (vcosθ , vsinθ) and combined with
Eq. 4.1 we write the equations of motion as

 (4.2)

This model is referred to as a kinematic model since it describes the velocities of the vehicle
but not the forces or torques that cause the velocity. The rate of change of heading Ë is referred
to as turn rate, heading rate or yaw rate and can be measured by a gyroscope. It can also be
deduced from the angular velocity of the nondriven wheels on the left- and right-hand sides
of the vehicle which follow arcs of different radius, and therefore rotate at different speeds.

Equation 4.2 captures some other important characteristics of a car-like vehicle. When
v= 0 then Ë = 0; that is, it is not possible to change the vehicle’s orientation when it is
not moving. As we know from driving, we must be moving in order to turn. When the
steering angle γ = ü the front wheel is orthogonal to the back wheel, the vehicle cannot
move forward and the model enters an undefi ned region.

In the world coordinate frame we can write an expression for velocity in the vehi-
cle’s y-direction

 (4.3)

which is the called a nonholonomic constraint and will be discussed further in Sect. 4.3.1.
This equation cannot be integrated to form a relationship between x, y and θ .

The Simulink® system

>> sl_lanechange

shown in Fig. 4.2 uses the Toolbox Bicycle block which implements Eq. 4.2�. The
velocity input is a constant, and the steering wheel angle is a fi nite positive pulse fol-
lowed by a negative pulse. Running the model simulates the motion of the vehicle and
adds a new variable out to the workspace

 Rudolph Ackermann (1764–1834) was a German inventor born at Schneeberg, in Saxony. For fi nan-
cial reasons he was unable to attend university and became a saddler like his father. For a time he
worked as a saddler and coach-builder and in 1795 established a print-shop and drawing-school
in London. He published a popular magazine “The Repository of Arts, Literature, Commerce,
Manufactures, Fashion and Politics” that included an eclectic mix of articles on water pumps, gas-
lighting, and lithographic presses, along with fashion plates and furniture designs. He manufactured
paper for landscape and miniature painters, patented a method for waterproofi ng cloth and pa-
per and built a factory in Chelsea to produce it. He is buried in Kensal Green Cemetery, London.

In 1818 Ackermann took out British patent 4212 on behalf of the German inventor George
Lankensperger for a steering mechanism which ensures that the steered wheels move on circles
with a common center. The same scheme was proposed and tested by Erasmus Darwin (grand-
father of Charles) in the 1760s. Subsequent refi nement by the Frenchman Charles Jeantaud led
to the mechanism used in cars to this day which is known as Ackermann steering.

Arcs with smoothly varying radius.
Dubbins and Reeds-Shepp paths com-
prises constant radius circular arcs and
straight line segments.

4.1 · Wheeled Mobile Robots

From Sharp 1896

The model also includes a maximum ve-
locity limit, a velocity rate limiter to mod-
el finite acceleration, and a limiter on the
steering angle to model the finite range
of the steered wheel. These can be ac-
cessed by double clicking the Bicycle block
in Simulink.

102 Chapter 4 · Mobile Robot Vehicles

>> out
Simulink.SimulationOutput:
 t: [504x1 double]
 y: [504x4 double]

from which we can retrieve the simulation time and other variables

>> t = out.get('t'); q = out.get('y');

Confi guration is plotted against time

>> mplot(t, q)

in Fig. 4.3a and the result in the xy-plane

>> plot(q(:,1), q(:,2))

shown in Fig. 4.3b demonstrates a simple lane-changing trajectory.

4.1.1.1
l
Moving to a Point

Consider the problem of moving toward a goal point (x∗, y∗) in the plane. We will con-
trol the robot’s velocity to be proportional to its distance from the goal

and to steer toward the goal which is at the vehicle-relative angle� in the world frame of

Fig. 4.2.
Simulink model sl_lanechange
that results in a lane changing
maneuver. The pulse genera-
tor drives the steering angle left
then right. The vehicle has a de-
fault wheelbase L = 1

Fig. 4.3. Simple lane changing ma-
neuver. a Vehicle response as a
function of time, b motion in the
xy-plane, the vehicle moves in the
positive x-direction

This angle can be anywhere in the inter-
val [–π, π) and is computed using the
atan2 function.

103

using a proportional controller

which turns the steering wheel toward the target. Note the use of the operator � since θ ∗
and θ are angles ∈ S1 not real numbers�. A Simulink model

>> sl_drivepoint

is shown in Fig. 4.4. We specify a goal coordinate

>> xg = [5 5];

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_drivepoint');

The variable r is an object that contains the simulation results from which we extract
the confi guration as a function of time

>> q = r.fi nd('y');

The vehicle’s path in the plane is

>> plot(q(:,1), q(:,2));

To run the Simulink model called model we fi rst load it

>> model

and a new window is popped up that displays the model in block-diagram form. The simulation
can be started by pressing the play button on the toolbar of the model’s window. The model can
also be run directly from the MATLAB command line

>> sim('model')

Many Toolbox models create additional fi gures to display robot animations or graphs as they run.
All models in this chapter have the simulation data export option set to create a MATLAB

SimulationOutput object. All the unconnected output signals are concatenated, in port
number order, to form a row vector and these are stacked to form a matrix y with one row per
timestep. The corresponding time values form a vector t. These variables are packaged in a
SimulationOutput object which is written to the workspace variable out or returned if the
simulation is invoked from MATLAB

>> r = sim('model')

Displaying r or out lists the variables that it contains and their value is obtained using the fi nd
method, for example

>> t = r.fi nd('t');

Fig. 4.4. sl_drivepoint, the
Simulink model that drives the ve-
hicle to a point. Red blocks have
parameters that you can adjust to
investigate the effect on perfor-
mance

The Toolbox function angdiff com-
putes the difference between two angles
and returns a difference in the interval
[−π, π). This is also the shortest dis-
tance around the circle, as discussed in
Sect. 3.3.4.1. Also available in the Toolbox
Simulink blockset roblocks .

4.1 · Wheeled Mobile Robots

104 Chapter 4 · Mobile Robot Vehicles

which is shown in Fig. 4.5 for a number of starting poses. In each case the vehicle has
moved forward and turned onto a path toward the goal point. The fi nal part of each path
is a straight line and the fi nal orientation therefore depends on the starting point.

4.1.1.2
l
Following a Line

Another useful task for a mobile robot is to follow a line on the plane� defi ned by
ax + by + c = 0. This requires two controllers to adjust steering. One controller

turns the robot toward the line to minimize the robot’s normal distance from the
line

The second controller adjusts the heading angle, or orientation, of the vehicle to be
parallel to the line

using the proportional controller

The combined control law

turns the steering wheel so as to drive the robot toward the line and move along it.
The Simulink model

>> sl_driveline

is shown in Fig. 4.6. We specify the target line as a 3-vector (a, b, c)

>> L = [1 -2 4];

Fig. 4.5.
Simulation results for
 sl_drivepoint for different
initial poses. The goal is (5, 5)

2-dimensional lines in homogeneous
form are discussed in Sect. C.2.1.

105

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_driveline');

The vehicle’s path for a number of different starting poses is shown in Fig. 4.7.

4.1.1.3
l
Following a Trajectory

Instead of a straight line we might wish to follow a trajectory that is a timed sequence
of points on the xy-plane. This might come from a motion planner, such as discussed
in Sect. 3.3 or 5.2, or in real-time based on the robot’s sensors.

A simple and effective algorithm for trajectory following is pure pursuit in which
the goal point (x∗hti, y∗hti) moves along the trajectory, in its simplest form at constant
speed. The vehicle always heads toward the goal – think carrot and donkey.

This problem is very similar to the control problem we tackled in Sect. 4.1.1.1, mov-
ing to a point, except this time the point is moving. The robot maintains a distance d∗
behind the pursuit point and we formulate an error

Fig. 4.6. The Simulink model
 sl_driveline drives the ve-
hicle along a line. The line param-
eters (a, b, c) are set in the work-
space variable L. Red blocks have
parameters that you can adjust to
investigate the effect on perfor-
mance

Fig. 4.7.
Simulation results from different
initial poses for the line (1, −2, 4)

�

4.1 · Wheeled Mobile Robots

106 Chapter 4 · Mobile Robot Vehicles

that we regulate to zero by controlling the robot’s velocity using a proportional-inte-
gral (PI) controller

The integral term is required to provide a nonzero velocity demand v∗ when the
following error is zero. The second controller steers the robot toward the target which
is at the relative angle

and a simple proportional controller

turns the steering wheel so as to drive the robot toward the target.
The Simulink model

>> sl_pursuit

shown in Fig. 4.8 includes a target that moves at constant velocity along a piecewise
linear path defi ned by a number of waypoints. It can be simulated

>> r = sim('sl_pursuit')

and the results are shown in Fig. 4.9a. The robot starts at the origin but catches up to,
and follows, the moving goal. Figure 4.9b shows how the speed converges on a steady
state value when following at the desired distance. Note the slow down at the end of
each segment as the robot short cuts across the corner.

4.1.1.4
l
Moving to a Pose

The fi nal control problem we discuss is driving to a specifi c pose (x∗, y∗, θ ∗). The con-
troller of Fig. 4.4 could drive the robot to a goal position but the fi nal orientation de-
pended on the starting position.

Fig. 4.8. The Simulink model
 sl_pursuit drives the vehicle
along a piecewise linear trajecto-
ry. Red blocks have parameters
that you can adjust to investigate
the effect on performance

107

In order to control the fi nal orientation we fi rst rewrite Eq. 4.2 in matrix form

where the inputs to the vehicle model are the speed v and the turning rate ω which can
be achieved by applying the steering angle�

We then transform the equations into polar coordinate form using the notation shown
in Fig. 4.10 and apply a change of variables

Fig. 4.9. Simulation results from
pure pursuit. a Path of the robot
in the xy-plane. The red dashed
line is the path to be followed and
the blue line in the path followed
by the robot, which starts at the
origin. b The speed of the robot
versus time

Fig. 4.10.
Polar coordinate notation for

the bicycle model vehicle mov-
ing toward a goal pose: ρ is the

distance to the goal, β is the an-
gle of the goal vector with re-
spect to the world frame, and

α is the angle of the goal vector
with respect to the vehicle frame

We have effectively converted the Bicy-
cle kinematic model to a Unicycle model
which we discuss in Sect. 4.1.2.

4.1 · Wheeled Mobile Robots

�

108 Chapter 4 · Mobile Robot Vehicles

which results in

and assumes the goal frame {G} is in front of the vehicle. The linear control law

drives the robot to a unique equilibrium� at (ρ, α, β) = (0, 0, 0). The intuition behind
this controller is that the terms kρρ and kαα drive the robot along a line toward {G}
while the term kββ rotates the line so that β → 0. The closed-loop system

is stable so long as

The distance and bearing to the goal (ρ, α) could be measured by a camera or laser
range fi nder, and the angle β could be derived from α and vehicle orientation θ as
measured by a compass.

For the case where the goal is behind the robot, that is α ∉ (−ü, ü], we reverse the
vehicle by negating v and γ in the control law. The velocity v always has a constant
sign which depends on the initial value of α .

So far we have described a regulator that drives the vehicle to the pose (0, 0, 0). To
move the robot to an arbitrary pose (x∗, y∗, θ ∗) we perform a change of coordinates

This pose controller is implemented by the Simulink model

>> sl_drivepose

shown in Fig. 4.11 and the transformation from Bicycle to Unicycle kinematics is clearly
shown, mapping angular velocity ω to steering wheel angle γ . We specify a goal pose

The control law introduces a disconti-
nuity at ρ = 0 which satisfies Brockett’s
theorem.

Fig. 4.11. The Simulink model
 sl_drivepose drives the ve-
hicle to a pose. The initial and fi -
nal poses are set by the workspace
variable x0 and xf respectively.
Red blocks have parameters that
you can adjust to investigate the
effect on performance

109

>> xg = [5 5 pi/2];

and an initial pose

>> x0 = [9 5 0];

and then simulate the motion

>> r = sim('sl_drivepose');

As before, the simulation results are stored in r and can be plotted

>> q = r.fi nd('y');
>> plot(q(:,1), q(:,2));

to show the vehicle’s path in the plane. The vehicle’s path for a number of starting pos-
es is shown in Fig. 4.12. The vehicle moves forwards or backward and takes a smooth
path to the goal pose.�

4.1.2
l
Differentially-Steered Vehicle

Having steerable wheels as in a car-like vehicle is mechanically complex. Differential
steering does away with this and steers by independently controlling the speed of the
wheels on each side of the vehicle – if the speeds are not equal the vehicle will turn. Very
simple differential steer robots have two driven wheels and a front and back castor to
provide stability. Larger differential steer vehicles such as the one shown in Fig. 4.13
employ a pair of wheels on each side, with each pair sharing a drive motor via some
mechanical transmission. Very large differential steer vehicles such as bulldozers and
tanks sometimes employ caterpillar tracks instead of wheels. The vehicle’s velocity is
by defi nition v in the vehicle’s x-direction, and zero in the y-direction since the wheels
cannot slip sideways. In the vehicle frame {B} this is

The pose of the vehicle is represented by the body coordinate frame {B} shown in
Fig. 4.14, with its x-axis in the vehicle’s forward direction and its origin at the centroid
of the four wheels. The confi guration of the vehicle is represented by the generalized
coordinates q = (x, y, θ) ∈ C where C⊂R2 × S1.

The vehicle follows a curved path centered on the Instantaneous Center of Rotation
(ICR). The left-hand wheels move at a speed of vL along an arc with a radius of RL

Fig. 4.12.
Simulation results from differ-

ent initial poses to the fi nal pose
(5, 5, ü). Note that in some cas-
es the robot has backed into the

fi nal pose

The controller is based on the bicycle mod-
el but the Simulink model Bicycle
has additional hard nonlinearities in-
cluding steering angle limits and veloc-
ity rate limiting. If those limits are violated
the pose controller may fail.

4.1 · Wheeled Mobile Robots

110 Chapter 4 · Mobile Robot Vehicles

Fig. 4.13.
Clearpath Husky robot with dif-
ferential drive steering (photo by
Tim Barfoot)

Fig. 4.14.
Differential drive robot is shown
in light grey, and the unicycle
approximation is dark grey. The
vehicle’s body coordinate frame
is shown in red, and the world
coordinate frame in blue. The
vehicle follows a path around
the Instantaneous Center of
Rotation (ICR) and the distance
from the ICR to the left and
right wheels is RL and RR respec-
tively. We can use the alterna-
tive body frame {B′} for trajec-
tory tracking control

111

while the right-hand wheels move at a speed of vR along an arc with a radius of RR.
The angular velocity of {B} is

and since RR = RL + W we can write the turn rate

 (4.4)

in terms of the differential velocity and wheel separation W. The equations of motion
are therefore

 (4.5)

where v= ½(vR + vL) and v∆ = vR − vL are the average and differential velocities re-
spectively. For a desired speed v and turn rate Ë we can solve for vR and vL. This kine-
matic model is often called the unicycle model .

There are similarities and differences to the bicycle model of Eq. 4.2. The turn rate
for this vehicle is directly proportional to v∆ and is independent of speed – the vehicle
can turn even when not moving forward. For the 4-wheel case shown in Fig. 4.14 the
axes of the wheels do not intersect the ICR, so when the vehicle is turning the wheel
velocity vectors vL and vR are not tangential to the path – there is a component in
the lateral direction which violates the no-slip constraint. This causes skidding or
scuffi ng� which is extreme when the vehicle is turning on the spot – hence differen-
tial steering is also called skid steering . Similar to the car-like vehicle we can write
an expression for velocity in the vehicle’s y-direction expressed in the world coor-
dinate frame

 (4.6)

which is the nonholonomic constraint . It is important to note that the ability to turn
on the spot does not make the vehicle holonomic and is fundamentally different to the
ability to move in an arbitrary direction which we will discuss next.

If we move the vehicle’s reference frame to {B′} and ignore orientation we can re-
write Eq. 4.5 in matrix form as

and if a ≠ 0 this can be be inverted

 (4.7)

to give the required forward speed and turn rate to achieve an arbitrary velocity (¾, Á)
for the origin of frame {B′}.

The Toolbox Simulink block library roblocks contains a block called Unicycle
to implement this model and the coordinate frame shift a is one of its parameters. It
has the same outputs as the Bicycle model used in the last section. Equation 4.7 is
implemented in the block called Tracking Controller .

4.1 · Wheeled Mobile Robots

From Sharp 1896

For indoor applications this can destroy
carpet.

112 Chapter 4 · Mobile Robot Vehicles

4.1.3
l
Omnidirectional Vehicle

The vehicles we have discussed so far have a constraint on lateral motion, the non-
holonomic constraint, which necessitates complex maneuvers in order to achieve
some goal poses. Alternative wheel designs such as shown in Fig. 4.15 remove this
constraint and allow omnidirectional motion. Even more radical is the spherical wheel
shown in Fig. 4.16.

In this section we will discuss the mecanum or “Swedish” wheel� shown in Fig. 4.15b
and schematically in Fig. 4.17. It comprises a number of rollers set around the circum-
ference of the wheel with their axes at an angle of α relative to the axle of the wheel.
The dark roller is the one on the bottom of the wheel and currently in contact with the
ground. The rollers have a barrel shape so only one point on the roller is in contact
with the ground at any time.

As shown in Fig. 4.17 we establish a wheel coordinate frame {W} with its x-axis
pointing in the direction of wheel motion. Rotation of the wheel will cause forward
velocity of Rϖ'w where R is the wheel radius and ϖ is the wheel rotational rate.
However because the roller is free to roll in the direction indicated by the green line,
normal to the roller’s axis, there is potentially arbitrary velocity in that direction. A
desired velocity v can be resolved into two components, one parallel to the direction
of wheel motion 'w and one parallel to the rolling direction

 (4.8)

where vw is the speed due to wheel rotation and vr is the rolling speed. Expressing
v = vx'w + vy(w in component form allows us to solve for the rolling speed vr = vy/ sin α
and substituting this into the fi rst term we can solve for the required wheel velocity

 (4.9)

The required wheel rotation rate is then ϖ = vw / R. If α = 0 then vw is undefi ned
since the roller axes are parallel to the wheel axis and the wheel can provide no trac-
tion. If α = ü as in Fig. 4.15a, the wheel allows sideways rolling but not sideways driv-
ing since there is zero coupling from vw to vy.

Fig. 4.15.
Two types of omnidirectional
wheel, note the different roller
orientation. a Allows the wheel
to roll sideways (courtesy Vex
Robotics); b allows the wheel
to drive sideways (courtesy of
Nexus Robotics)

Fig. 4.16. The Rezero ballbot de-
veloped at ETH Zurich (photo by
Péter Fankhauser)

Mecanum was a Swedish company where
the wheel was invented by Bengt Ilon in
1973. It is described in US patent 3876255.

113

A single mecanum wheel does not allow any control in the rolling direction but
for three or more mecanum wheels, suitably arranged, the motion in the rolling di-
rection of any one wheel will be driven by the other wheels. A vehicle with four me-
canum wheels is shown in Fig. 4.18. Its pose is represented by the body frame {B}
with its x-axis in the vehicle’s forward direction and its origin at the centroid of the
four wheels. The confi guration of the vehicle is represented by the generalized co-
ordinates q = (x, y, θ) ∈ C where C⊂R2 × S1. The rolling axes of the wheels are or-
thogonal which means that when the wheels are not rotating the vehicle cannot roll
in any direction or rotate.

The four wheel contact points indicated by grey dots have coordinate vectors Bpi.
For a desired body velocity BvB and angular rate Bω the velocity at each wheel contact
point is

and we then apply Eq. 4.8 and 4.9 to determine wheel rotational rates ϖi, while noting
that α has the opposite sign for wheels 2 and 4 in Eq. 4.8.

Fig. 4.17.
Schematic of a mecanum wheel

in plan view. The light roll-
ers are on top of the wheel, the

dark roller is in contact with the
ground. The green arrow indi-

cates the rolling direction

Fig. 4.18. a Kuka youBot, which has
has four mecanum wheels (image
courtesy youBot Store); b schemat-
ic of a vehicle with four mecanum
wheels in the youBot confi guration

4.1 · Wheeled Mobile Robots

114 Chapter 4 · Mobile Robot Vehicles

4.2
l
Flying Robots

In order to fl y, all one must do is simply miss the ground.
Douglas Adams

Flying robots or unmanned aerial vehicles (UAV) are becoming increasingly common and
span a huge range of size and shape as shown in shown in Fig. 4.19. Applications include
military operations, surveillance, meteorological observation, robotics research, commer-
cial photography and increasingly hobbyist and personal use. A growing class of fl ying
machines are known as micro air vehicles or MAVs which are smaller than 15 cm in all di-
mensions. Fixed wing UAVs are similar in principle to passenger aircraft with wings to pro-
vide lift, a propeller or jet to provide forward thrust and control surface for maneuvering.
Rotorcraft UAVs have a variety of confi gurations that include conventional helicopter de-
sign with a main and tail rotor, a coax with counter-rotating coaxial rotors and quadrotors.
Rotorcraft UAVs have the advantage of being able to take off vertically and to hover.

Flying robots differ from ground robots in some important ways. Firstly they
have 6 degrees of freedom and their confi guration q ∈ C where C ⊂R3 × S1× S1× S1.
Secondly they are actuated by forces; that is their motion model is expressed in terms
of forces, torques and accelerations rather than velocities as was the case for the ground
vehicle models – we use a dynamic rather than a kinematic model. Underwater robots
have many similarities to fl ying robots and can be considered as vehicles that fl y through
water and there are underwater equivalents to fi xed wing aircraft and rotorcraft. The
principal differences underwater are an upward buoyancy force, drag forces that are
much more signifi cant than in air, and added mass.

In this section we will create a model for a quadrotor fl ying vehicle such as shown
in Fig. 4.19d. Quadrotors are now widely available, both as commercial products and
as open-source projects. Compared to fi xed wing aircraft they are highly maneuverable
and can be fl own safely indoors which makes them well suited for laboratory or hob-
byist use. Compared to conventional helicopters, with a large main rotor and tail rotor,
the quadrotor is easier to fl y, does not have the complex swash plate mechanism and is
easier to model and control.

Fig. 4.19.
Flying robots. a Global Hawk
unmanned aerial vehicle (UAV)
(photo courtesy of NASA), b a
micro air vehicle (MAV) (photo
courtesy of AeroVironment, Inc.),
c a 1 gram co-axial helicopter
with 70 mm rotor diameter
(photo courtesy of Petter Muren
and Proxfl yer AS), d a quadro-
tor which has four rotors and
a block of sensing and control
electronics in the middle (photo
courtesy of 3DRobotics)

115

The notation for the quadrotor model is shown in Fig. 4.20. The body coordinate
frame {B} has its z-axis downward following the aerospace convention. The quadrotor
has four rotors, labeled 1 to 4, mounted at the end of each cross arm. Hex- and octo-
rotors are also popular, with the extra rotors providing greater payload lift capability.
The approach described here can be generalized to N rotors, where N is even.

The rotors are driven by electric motors powered by electronic speed controllers.
Some low-cost quadrotors use small motors and reduction gearing to achieve suffi -
cient torque. The rotor speed is ϖ i and the thrust is an upward vector

 (4.10)

in the vehicle’s negative z-direction, where b > 0 is the lift constant that depends on
the air density, the cube of the rotor blade radius, the number of blades, and the chord
length of the blade.�

The translational dynamics of the vehicle in world coordinates is given by Newton’s
second law

 (4.11)

where v is the velocity of the vehicle’s center of mass in the world frame, g is gravita-
tional acceleration, m is the total mass of the vehicle, B is aerodynamic friction and
T = ΣTi is the total upward thrust. The fi rst term is the force of gravity which acts
downward in the world frame, the second term is the total thrust in the vehicle frame
rotated into the world coordinate frame and the third term is aerodynamic drag.

Pairwise differences in rotor thrusts cause the vehicle to rotate. The torque about
the vehicle’s x-axis, the rolling torque, is generated by the moments

The propeller blades on a rotor craft have fascinating dynamics. When fl ying into the wind the
blade tip coming forward experiences greater lift while the receding blade has less lift. This is
equivalent to a torque about an axis pointing into the wind and the rotor blades behave like a
gyroscope (see Sect. 3.4.1.1) so the net effect is that the rotor blade plane pitches up by an amount
proportional to the apparent or nett wind speed, countered by the blade’s bending stiffness and
the change in lift as a function of blade bending. The pitched blade plane causes a component of
the thrust vector to retard the vehicle’s forward motion and this velocity dependent force acts
like a friction force. This is known as blade fl apping and is an important characteristic of blades
on all types of rotorcraft.

Fig. 4.20.
Quadrotor notation showing the

four rotors, their thrust vectors
and directions of rotation. The

 body frame {B} is attached to the
vehicle and has its origin at the
vehicle’s center of mass. Rotors

1 and 3 (blue) rotate counter-
clockwise (viewed from above)

while rotors 2 and 4 (red) rotate
clockwise

4.2 · Flying Robots

Close to the ground, height <2d, the ve-
hicle experiences increased lift due to a
cushion of air beneath it – this is ground
effect.

116 Chapter 4 · Mobile Robot Vehicles

where d is the distance from the rotor axis to the center of mass. We can write this in
terms of rotor speeds by substituting Eq. 4.10

 (4.12)

and similarly for the y-axis, the pitching torque is

 (4.13)

The torque applied to each propeller by the motor is opposed by aerodynamic drag

where k depends on the same factors as b. This torque exerts a reaction torque on the
airframe which acts to rotate the airframe about the propeller shaft in the opposite
direction to its rotation. The total reaction torque about the z-axis is

 (4.14)

where the different signs are due to the different rotation directions of the rotors. A
yaw torque can be created simply by appropriate coordinated control of all four ro-
tor speeds.

The total torque applied to the airframe according to Eq. 4.12 to 4.14 is τ = (τx, τy, τz)
T

and the rotational acceleration is given by Euler’s equation of motion from Eq. 3.10

 (4.15)

where J is the 3 × 3 inertia matrix of the vehicle and ω is the angular velocity vector.
The motion of the quadrotor is obtained by integrating the forward dynamics equa-

tions Eq. 4.11 and Eq. 4.15 where the forces and moments on the airframe

 (4.16)

are functions of the rotor speeds. The matrix A is constant, and full rank if b, k, d > 0
and can be inverted

 (4.17)

to solve for the rotor speeds� required to apply a specifi ed thrust T and moment τ to
the airframe.

To control the vehicle we will employ a nested control structure which we describe
for pitch and x-translational motion. The innermost loop uses a proportional and de-
rivative controller� to compute the required pitching torque on the airframe

 (4.18)

based on the error between desired and actual pitch angle.� The gains Kτ,p and Kτ,d
are determined by classical control design approaches based on an approximate dy-

The rotational dynamics has a second-
order transfer function of Θy(s) / τy(s) =
1 / (Js2 + Bs) where J is rotational in-
ertia and B is aerodynamic damping
which is generally quite small. To regu-
late a second-order system requires a
proportional-derivative controller.

The term Ëp
* is commonly ignored.

The direction of rotation is as shown in
Fig. 4.20. Control of motor velocity is dis-
cussed in Sect. 9.1.6.

117

namic model and then tuned to achieve good performance. The actual vehicle pitch
angle θp

would be estimated by an inertial navigation system as discussed in Sect. 3.4
and Ëp

would be derived from gyroscopic sensors. The required rotor speeds are then
determined using Eq. 4.17.

Consider a coordinate frame {B′} attached to the vehicle and with the same origin
as {B} but with its x- and y-axes in the horizontal plane and parallel to the ground. The
thrust vector is parallel to the z-axis of frame {B} and pitching the nose down, rotat-
ing about the y-axis by θp, generates a force

which has a component

that accelerates the vehicle in the B′x-direction, and we have assumed that θp is small.
We can control the velocity in this direction with a proportional control law

where Kf > 0 is a gain. Combining these two equations we obtain the desired pitch angle

 (4.19)

required to achieve the desired forward velocity. Using Eq. 4.18 we compute the re-
quired pitching torque, and then using Eq. 4.17 the required rotor speeds. For a vehicle
in vertical equilibrium the total thrust equals the weight force so m / T ≈ 1 / g.

The actual vehicle velocity Bvx would be estimated by an inertial navigation system as
discussed in Sect. 3.4 or a GPS receiver. If the position of the vehicle in the xy-plane of the
world frame is p ∈R2 then the desired velocity is given by the proportional control law

 (4.20)

based on the error between the desired and actual position. The desired velocity in
the xy-plane of frame{B′} is

which is a function of the yaw angle θ y

Figure 4.21 shows a Simulink model of the complete control system for a quadro-
tor� which can be loaded and displayed by

>> sl_quadrotor

Working our way left to right and starting at the top we have the desired position
of the quadrotor in world coordinates. The position error is rotated from the world
frame to the body frame and becomes the desired velocity. The velocity controller
implements Eq. 4.19 and its equivalent for the roll axis and outputs the desired pitch
and roll angles of the quadrotor. The attitude controller is a proportional-derivative
controller that determines the appropriate pitch and roll torques to achieve these

This model is hierarchical and organized
in terms of subsystems. Click the down
arrow on a subsystem (can be seen on-
screen but not in the figure) to reveal
the detail. Double-click on the subsys-
tem box to modify its parameters.

4.2 · Flying Robots

118 Chapter 4 · Mobile Robot Vehicles

angles based on feedback of current attitude and attitude rate.� The yaw control block
determines the error in heading angle and implements a proportional-derivative con-
troller to compute the required yaw torque which is achieved by speeding up one pair
of rotors and slowing the other pair.

Altitude is controlled by a proportional-derivative controller

which determines the average rotor speed. T0 = mg is the weight of the vehicle and this
is an example of feedforward control – used here to counter the effect of gravity which
otherwise is a constant disturbance to the altitude control loop. The alternatives to
feedforward control would be to have very high gain for the altitude loop which often
leads to actuator saturation and instability, or a proportional-integral (PI) control-
ler which might require a long time for the integral term to increase to a useful value
and then lead to overshoot. We will revisit gravity compensation in Chap. 9 applied
to arm-type robots.

The control mixer block combines the three torque demands and the vertical thrust
demand and implements Eq. 4.17 to determine the appropriate rotor speeds. Rotor
speed limits are applied here. These are input to the quadrotor block� which implements
the forward dynamics integrating Eq. 4.16 to give the position, velocity, orientation and
 orientation rate. The output of this block is the state vector x = (0p, 0Γ, B¹, B¶) ∈R12.
As is common in aerospace applications we represent orientation Γ and orientation
rate ¶ in terms of roll-pitch-yaw angles. Note that position and attitude are in the
world frame while the rates are expressed in the body frame.

The parameters of a specifi c quadrotor can be loaded

>> mdl_quadrotor

which creates a structure called quadrotor in the workspace, and its elements are
the various dynamic properties of the quadrotor. The simulation can be run using the
Simulink menu or from the MATLAB command line

>> sim('sl_quadrotor');

and it displays an animation in a separate window.� The vehicle lifts off and fl ies around
a circle while spinning slowly about its own z-axis. A snapshot is shown in Fig. 4.22.
The simulation writes the results from each timestep into a matrix in the workspace

>> about result
result [double] : 2412x16 (308.7 kB)

Fig. 4.21. The Simulink® model
 sl_quadrotor which is a closed-
loop simulation of the quadrotor.
The vehicle takes off and fl ies in a cir-
cle at constant altitude. A Simulink
bus is used for the 12-element state
vector X output by the Quadrotor
block. To reduce the number of
lines in the diagram we have used
Goto and From blocks to trans-
mit and receive the state vector

Note that according to the coordinate
conventions shown in Fig. 4.20 x-direc-
tion motion requires a negative rotation
about the y-axis (pitch angle) and y-di-
rection motion requires a positive rota-
tion about the x-axis (roll angle) so the
gains have different signs for the roll and
pitch loops.

The Simullink library roblocks also
includes a block for an N-rotor vehicle.

Loading and displaying the model using
>> sl_quadrotor automatically
loads the default quadrotor model. This
is done by the PreLoadFcn callback set
from model’s properties File+Model
Properties+Model Properties+Call-
backs+PreLoadFcn.

119

which has one row per timestep, and each row contains the time followed by the state
vector (elements 2–13) and the commanded rotor speeds ω i (elements 14–17). To
plot x and y versus time is

>> plot(result(:,1), result(:,2:3));

To recap on control of the quadrotor. A position error results in a required trans-
lational velocity. To achieve this requires appropriate pitch and roll angles so that a
component of the vehicle’s thrust acts in the horizontal plane and generates a force to
accelerate the vehicle.� As it approaches its goal the airframe must be rotated in the
opposite direction so that a component of thrust decelerates the motion. To achieve
the pitch and roll angles requires differential propeller thrust to create a moment that
rotationally accelerates the airframe.

This indirection from translational motion to rotational motion is a consequence
of the vehicle being under-actuated – we have just four rotor speeds to adjust but the
vehicle’s confi guration space is 6-dimensional. In the confi guration space we cannot
move in the x- or y-direction, but we can move in the pitch- or roll-direction which
results in motion in the x- or y-direction. The cost of under actuation is once again a
maneuver. The pitch and roll angles are a means to achieve translation control and
cannot be independently set.

4.3
l
Advanced Topics

4.3.1
l
Nonholonomic and Under-Actuated Systems

We introduced the notion of confi guration space in Sect. 2.3.5 and it is useful to re-
visit it now that we have discussed several different types of mobile robot platform.
Common vehicles – as diverse as cars , hovercrafts , ships and aircraft – are all able to
move forward effectively but are unable to instantaneously move sideways. This is a
very sensible tradeoff that simplifi es design and caters to the motion we most com-
monly require of the vehicle. Sideways motion for occasional tasks such as parking a
car, docking a ship or landing an aircraft are possible, albeit with some complex ma-
neuvering but humans can learn this skill.

Consider a hovercraft which moves over a planar surface. To fully describe all its con-
stituent particles we need to specify three generalized coordinates: its position in the
xy-plane and its rotation angle. It has three degrees of freedom and its confi guration
space is C⊂R2 × S1. This hovercraft has two propellers whose axes are parallel but not

Fig. 4.22.
One frame from the quadrotor
simulation. The marker on the
ground plane is a projection of

the vehicle’s centroid

The total thrust must be increased so
that the vertical thrust component still
balances gravity.

4.3 · Advanced Topics

120 Chapter 4 · Mobile Robot Vehicles

collinear. The sum of their thrusts provide a forward force and the difference in thrusts
generates a yawing torque for steering. The number of actuators, two, is less than its
degrees of freedom dimC= 3 and we call this an under-actuated system . This imposes
signifi cant limitations on the way in which it can move. At any point in time we can
control the forward (parallel to the thrust vectors) acceleration and the rotational ac-
celeration of the hovercraft but there is zero sideways (or lateral) acceleration since it
cannot generate any lateral thrust. Nevertheless with some clever maneuvering, like
with a car, the hovercraft can follow a path that will take it to a place to one side of where
it started. In the hovercraft’s 3-dimensional confi guration space this means that at any
point there are certain directions in which acceleration is not possible. We can reach
points in those direction but not directly, only by following some circuitous path.

All fl ying and underwater vehicles have a confi guration that is completely de-
scribed by six generalized coordinates – their position and orientation in 3D space.
C⊂R3 × S1 × S1 × S1 where the orientation is expressed in some three-angle repre-
sentation – since dimC= 6 the vehicles have six degrees of freedom. A quadrotor has
four actuators, four thrust-generating propellers, and this is fewer than its degrees
of freedom making it under-actuated. Controlling the four propellers causes motion
in the up/down, roll, pitch and yaw directions of the confi guration space but not in
the forward/backward or left/right directions. To access those degrees of freedom it
is necessary to perform a maneuver : pitch down so that the thrust vector provides a
horizontal force component, accelerate forward, pitch up so that the thrust vector
provides a horizontal force component to decelerate, and then level out.

For a helicopter only four of the six degrees of freedom are practically useful: up/down,
forward/backward, left/right and yaw. Therefore a helicopter requires a minimum of
four actuators: the main rotor generates a thrust vector whose magnitude is controlled
by the collective pitch and whose direction is controlled by the lateral and longitudi-
nal cyclic pitch. The tail rotor provides a yawing moment. This leaves two degrees of
freedom unactuated, roll and pitch angles, but clever design ensures that gravity actu-
ates them and keeps them close to zero – without gravity a helicopter cannot work. A
fi xed-wing aircraft moves forward very effi ciently and also has four actuators: engine
thrust provides acceleration in the forward direction and the ailerons, elevator and
rudder exert respectively roll, pitch and yaw moments on the aircraft.� To access the
missing degrees of freedom such as up/down and left/right translation, the aircraft
must pitch or yaw while moving forward.

The advantage of under-actuation is having fewer actuators. In practice this means
real savings in terms of cost, complexity and weight. The consequence is that at any
point in its confi guration space there are certain directions in which the vehicle can-
not move. Full actuation is possible but not common, for example the DEPTHX un-
derwater robot shown on page 96 has six degrees of freedom and six actuators . These
can exert an arbitrary force and torque on the vehicle, allowing it to accelerate in any
direction or about any axis.

A 4-wheeled car has many similarities to the hovercraft discussed above. It moves
over a planar surface and its confi guration can be fully described by its generalized
coordinates: its position in the xy-plane and a rotation angle. It has three degrees of
freedom and its confi guration space is C⊂R2 × S1. A car has two actuators, one to
move forwards or backwards and one to change the heading direction. A car, like a
hovercraft , is under-actuated.

We know from our experience with cars that we cannot move directly in certain
directions and sometimes needs to perform a maneuver to reach our goal. A differ-
ential- or skid-steered vehicle, such as a tank, is also under-actuated – it has only two
actuators, one for each track. While this type of vehicle can turn on the spot it cannot
move sideways. To do that it has to turn, proceed, stop then turn – this need to ma-
neuver is the clear signature of an under-actuated system.

We might often wish for an ability to drive our car sideways but the standard wheel
provides real benefi t when cornering – lateral friction between the wheels and the

Some low-cost hobby aircraft have no
rudder and rely only on ailerons to bank
and turn the aircraft. Even cheaper hob-
by aircraft have no elevator and rely on
engine speed to control height.

121

road provides, for free, the centripetal force which would otherwise require an extra
actuator to provide. The hovercraft has many similarities to a car but we can push a
hovercraft sideways – we cannot do that with a car. This lateral friction is a distin-
guishing feature of the car.

The inability to slip sideways is a constraint, the rolling constraint, on the velocity�
of the vehicle just as under-actuation is. A vehicle with one or more velocity constraints,
due to under-actuation or a rolling constraint, is referred to as a nonholonomic system .
A key characteristic of these systems is that they cannot move directly from one con-
fi guration to another – they must perform a maneuver or sequence of motions. A car
has a velocity constraint due to its wheels and is also under-actuated.

A holonomic constraint restricts the possible confi gurations that the system can
achieve – it can be expressed as an equation written in terms of the confi guration
variables.� A nonholonomic constraint such as Eq. 4.3 and 4.6 is one that restricts the
velocity (or acceleration) of a system in confi guration space – it can only be expressed
in terms of the derivatives of the confi guration variables.� The nonholonomic con-
straint does not restrict the possible confi gurations the system can achieve but it does
preclude instantaneous velocity or acceleration in certain directions.

In control theoretic terms Brockett’s theorem (Brockett 1983) states that nonholo-
nomic systems are controllable but they cannot be stabilized to a desired state using
a differentiable, or even continuous, pure state-feedback controller. A time-varying
or nonlinear control strategy is required which means that the robot follows some
generally nonlinear path. One exception is an under-actuated system moving in 3-di-
mensional space within a force fi eld, for example a gravity fi eld – gravity acts like an
additional actuator and makes the system linearly controllable (but not holonomic),
as we showed for the quadrotor example in Sect. 4.2.

 Mobility parameters for the various robots that we have discussed here, and earlier
in Sect. 2.3.5, are tabulated in Table 4.1. We will discuss under- and over-actuation in
the context of arm robots in Chap. 8.

4.4
l
Wrapping Up

In this chapter we have created and discussed models and controllers for a number of
common, but quite different, robot platforms. We fi rst discussed wheeled robots. For
car-like vehicles we developed a kinematic model which we used to develop a number of
different controllers in order that the platform could perform useful tasks such as driv-
ing to a point, driving along a line, following a trajectory or driving to a pose. We then
discussed differentially steered vehicles on which many robots are based, and omnidi-
rectional robots based on novel wheel types. Then we we discussed a simple but common

Table 4.1.
Summary of confi guration space
characteristics for various robots.

A nonholonomic system is
under-actuated and/or has a

rolling constraint

The hovercraft , aerial and underwater
vehicles are controlled by forces so in
this case the constraints are on vehicle
acceleration in configuration space not
velocity.

The constraint cannot be integrated to a
constraint in terms of configuration vari-
ables, so such systems are also known as
nonintegrable systems .

4.4 · Wrapping Up

For example fixing the end of the 10-joint
robot arm introduces six holonomic con-
straints (position and orientation) so the
arm would have only 4 degrees of freedom.

122 Chapter 4 · Mobile Robot Vehicles

fl ying vehicle, the quadrotor, and developed a dynamic model and a hierarchical control
system that allowed the quadrotor to fl y a circuit. This hierarchical or nested control ap-
proach is described in more detail in Sect. 9.1.7 in the context of robot arms.

We also extended our earlier discussion about confi guration space to include the
velocity constraints due to under actuation and rolling constraints from wheels.

The next chapters in this Part will discuss how to plan paths for robots through
complex environments that contain obstacles and then how to determine the loca-
tion of a robot.

Further Reading

Comprehensive modeling of mobile ground robots is provided in the book by Siegwart
et al. (2011). In addition to the models covered here, it presents in-depth discussion of
a variety of wheel confi gurations with different combinations of driven wheels, steered
wheels and passive castors. The book by Kelly (2013) also covers vehicle modeling and
control. Both books also provide a good introduction to perception, localization and
 navigation which we will discuss in the coming chapters.

The paper by Martins et al. (2008) discusses kinematics, dynamics and control of
differential steer robots. The Handbook of Robotics (Siciliano and Khatib 2016, part E)
covers modeling and control of various vehicle types including aerial and underwater.
The theory of helicopters with an emphasis on robotics is provided by Mettler (2003)
but the defi nitive reference for helicopter dynamics is the very large book by Prouty
(2002). The book by Antonelli (2014) provides comprehensive coverage of modeling
and control of underwater robots.

Some of the earliest papers on quadrotor modeling and control are by Pounds,
Mahony and colleagues (Hamel et al. 2002; Pounds et al. 2004, 2006). The thesis by
Pounds (2007) presents comprehensive aerodynamic modeling of a quadrotor with
a particular focus on blade fl apping, a phenomenon well known in conventional he-
licopters but largely ignored for quadrotors. A tutorial introduction to the control of
multi-rotor fl ying robots is given by Mahony, Kumar, and Corke (2012). Quadrotors
are now commercially available from many vendors at quite low cost. There are also
a number of hardware kits and open-source software projects such as ArduCopter
and Mikrokopter.

Mobile ground robots are now a mature technology for transporting parts around
manufacturing plants. The research frontier is now for vehicles that operate autono-
mously in outdoor environments (Siciliano and Khatib 2016, part F). Research into
the automation of passenger cars has been ongoing since the 1980s and a number of
automative manufacturers are talking about commercial autonomous cars by 2020.

Historical and interesting. The Navlab project at Carnegie-Mellon University started
in 1984 and a series of autonomous vehicles, Navlabs, were built and a large body of
research has resulted. All vehicles made strong use of computer vision for navigation.
In 1995 the supervised autonomous Navlab 5 made a 3 000-mile journey, dubbed “No
Hands Across America” (Pomerleau and Jochem 1995, 1996). The vehicle steered itself
98% of the time largely by visual sensing of the white lines at the edge of the road.

In Europe, Ernst Dickmanns and his team at Universität der Bundeswehr München
demonstrated autonomous control of vehicles. In 1988 the VaMoRs system, a 5 tonne
Mercedes-Benz van, could drive itself at speeds over 90 km h−1 (Dickmanns and Graefe
1988b; Dickmanns and Zapp 1987; Dickmanns 2007). The European Prometheus Project
ran from 1987–1995 and in 1994 the robot vehicles VaMP and VITA-2 drove more
than 1 000 km on a Paris multi-lane highway in standard heavy traffi c at speeds up
to 130 km h−1. They demonstrated autonomous driving in free lanes, convoy driv-
ing, automatic tracking of other vehicles, and lane changes with autonomous passing

123

of other cars. In 1995 an autonomous S-Class Mercedes-Benz made a 1 600 km trip
from Munich to Copenhagen and back. On the German Autobahn speeds exceeded
175 km h−1 and the vehicle executed traffi c maneuvers such as overtaking. The mean
time between human interventions was 9 km and it drove up to 158 km without any
human intervention. The UK part of the project demonstrated autonomous driving
of an XJ6 Jaguar with vision (Matthews et al. 1995) and radar-based sensing for lane
keeping and collision avoidance. More recently, in the USA a series of Grand Challenges
were run for autonomous cars. The 2005 desert and 2007 urban challenges are com-
prehensively described in compilations of papers from the various teams in Buehler
et al. (2007, 2010). More recent demonstrations of self-driving vehicles are a journey
along the fabled silk road described by Bertozzi et al. (2011) and a classic road trip
through Germany by Ziegler et al. (2014).

Ackermann’s magazine can be found online at http://smithandgosling.wordpress.
com/2009/12/02/ackermanns-repository-of-arts and the carriage steering mecha-
nism is published in the March and April issues of 1818. King-Hele (2002) provides a
comprehensive discussion about the prior work on steering geometry and Darwin’s
earlier invention.

Toolbox and MATLAB Notes

In addition to the Simulink Bicycle model used in this chapter the Toolbox also
provides a MATLAB class which implements these kinematic equations and which
we will use in Chap. 6. For example we can create a vehicle model with steer angle
and speed limits

>> veh = Bicycle('speedmax', 1, 'steermax', 30*pi/180);

and evaluate Eq. 4.2 for a particular state and set of control inputs (v, γ)
>> veh.deriv([], [0 0 0], [0.3, 0.2])
ans =
 0.3000 0 0.0608

The Unicycle class is used for a differentially-steered robot and has equivalent
methods.

The Robotics System Toolbox™ from The MathWorks has support for differentially-steered
mobile robots which can be created using the function ExampleHelperRobotSimulator.
It also includes a class robotics.PurePursuit that implements pure pursuit for a
differential steer robot. An example is given in the Toolbox RST folder.

Exercises

1. For a 4-wheel vehicle with L = 2 m and width between wheel centers of 1.5 m
a) What steering wheel angle is needed for a turn rate of 10 deg s−1 at a forward

speed of 20 km h−1?
b) compute the difference in wheel steer angle for Ackermann steering around

curves of radius 10, 50 and 100 m.
c) If the vehicle is moving at 80 km h−1 compute the difference in back wheel rota-

tion rates for curves of radius 10, 50 and 100 m.
2. Write an expression for turn rate in terms of the angular rotation rate of the two

back wheels. Investigate the effect of errors in wheel radius and vehicle width.
3. Consider a car and bus with L = 4 and 12 m respectively. To follow a curve with

radius of 10, 20 and 50 m determine the respective steered wheel angles.
4. For a number of steered wheel angles in the range −45 to 45° and a velocity of

2 m s−1 overlay plots of the vehicle’s trajectory in the xy-plane.

4.4 · Wrapping Up

124 Chapter 4 · Mobile Robot Vehicles

5. Implement the � operator used in Sect. 4.1.1.1 and check against the code for
angdiff.

6. Moving to a point (page 103) plot x, y and θ against time.
7. Pure pursuit example (page 106)

a) Investigate what happens if you vary the look-ahead distance, heading gain or
proportional gain in the speed controller.

b) Investigate what happens when the integral gain in the speed controller is zero.
c) With integral set to zero, add a constant to the output of the controller. What

should the value of the constant be?
d) Add a velocity feedforward term.
e) Modify the pure pursuit example so the robot follows a slalom course.
f) Modify the pure pursuit example to follow a target moving back and forth along

a line.
8. Moving to a pose (page 107)

a) Repeat the example with a different initial orientation.
b) Implement a parallel parking maneuver. Is the resulting path practical?
c) Experiment with different control parameters.

9. Use the MATLAB GUI interface to make a simple steering wheel and velocity con-
trol, and use this to create a very simple driving simulator. Alternatively interface
a gaming steering wheel and pedal to MATLAB.

10. Adapt the various controllers in Sect. 4.1.1 to the differentially steered robot.
11. Derive Eq. 4.4 from the preceding equation.
12. For constant forward velocity, plot vL and vR as a function of ICR position along

the y-axis. Under what conditions do vL and vR have a different sign?
13. Using Simulink implement a controller using Eq. 4.7 that moves the robot in its

y-direction. How does the robot’s orientation change as it moves?
14. Sketch the design for a robot with three mecanum wheels. Ensure that it cannot

roll freely and that it can drive in any direction. Write code to convert from desired
vehicle translational and rotational velocity to wheel rotation rates.

15. For the 4-wheel omnidirectional robot of Sect. 4.1.3 write an algorithm that will al-
low it to move in a circle of radius 0.5 m around a point with its nose always pointed
toward the center of the circle.

16. Quadrotor (page 115)
a) At equilibrium, compute the speed of all the propellers.
b) Experiment with different control gains. What happens if you reduce the damp-

ing gains to zero?
c) Remove the gravity feedforward and experiment with large altitude gain or a

PI controller.
d) When the vehicle has nonzero roll and pitch angles, the magnitude of the verti-

cal thrust is reduced and the vehicle will slowly descend. Add compensation to
the vertical thrust to correct this.

e) Simulate the quadrotor fl ying inverted, that is, its z-axis is pointing upwards.
f) Program a ballistic motion. Have the quadrotor take off at 45 deg to horizontal

then remove all thrust.
g) Program a smooth landing.
h) Program a barrel roll maneuver. Have the quadrotor fl y horizontally in its

x-direction and then increase the roll angle from 0 to 2π .
i) Program a fl ip maneuver. Have the quadrotor fl y horizontally in its x-direction

and then increase the pitch angle from 0 to 2π .
j) Add another four rotors.
k) Use the function mstraj to create a trajectory through ten via points (Xi, Yi, Zi, θy)

and modify the controller of Fig. 4.21 for smooth pursuit of this trajectory.
l) Use the MATLAB GUI interface to make a simple joystick control, and use this

to create a very simple fl ying simulator. Alternatively interface a gaming joystick
to MATLAB.

Chapter

5 Navigation
the process of directing a vehicle so as to reach the intended destination

IEEE Standard 172-1983

Robot navigation is the problem of guiding a robot towards a goal.
The human approach to navigation is to make maps and erect sign-
posts, and at fi rst glance it seems obvious that robots should operate
the same way. However many robotic tasks can be achieved without
any map at all, using an approach referred to as reactive navigation.
For example, navigating by heading towards a light, following a white
line on the ground, moving through a maze by following a wall, or
vacuuming a room by following a random path. The robot is reacting
directly to its environment: the intensity of the light, the relative po-
sition of the white line or contact with a wall. Grey Walter’s tortoise
 Elsie from page 95 demonstrated “life-like” behaviors – she reacted
to her environment and could seek out a light source. Today tens of
millions of robotic vacuum cleaners are cleaning fl oors and most of
them do so without using any map of the rooms in which they work.
Instead they do the job by making random moves and sensing only
that they have made contact with an obstacle as shown in Fig. 5.1.

Human-style map-based navigation is used by more sophisticated
robots and is also known as motion planning. This approach supports
more complex tasks but is itself more complex. It imposes a number
of requirements, not the least of which is having a map of the envi-
ronment. It also requires that the robot’s position is always known.
In the next chapter we will discuss how robots can determine their
position and create maps. The remainder of this chapter discusses
the reactive and map-based approaches to robot navigation with a
focus on wheeled robots operating in a planar environment.

Fig. 5.1.
Time lapse photograph of a

Roomba robot cleaning a room
(photo by Chris Bartlett)

126 Chapter 5 · Navigation

5.1
l
Reactive Navigation

Surprisingly complex tasks can be performed by a robot even if it has no map and no
real idea about where it is. As already mentioned robotic vacuum cleaners use only
random motion and information from contact sensors to perform a complex task as
shown in Fig. 5.1. Insects such as ants and bees gather food and return it to their nest
based on input from their senses, they have far too few neurons to create any kind of
mental map of the world and plan paths through it. Even single-celled organisms such
as fl agellate protozoa exhibit goal-seeking behaviors. In this case we need to tempo-
rarily modify our earlier defi nition of a robot to

a goal oriented machine that can sense, plan and act.

Grey Walter’s robotic tortoise demonstrated that it could moves toward a light
source, a behavior known as phototaxis.� This was an important result in the then
emerging scientifi c fi eld of cybernetics.

5.1.1
l
Braitenberg Vehicles

A very simple class of goal achieving robots are known as Braitenberg vehicles and
are characterized by direct connection between sensors and motors. They have no
explicit internal representation of the environment in which they operate and nor do
they make explicit plans.�

Consider the problem of a robot moving in two dimensions that is seeking the lo-
cal maxima of a scalar fi eld – the fi eld could be light intensity or the concentration of
some chemical.� The Simulink® model

>> sl_braitenberg

shown in Fig. 5.2 achieves this using a steering signal derived directly from the sensors.�

Valentino Braitenberg (1926–2011) was an Italian-Austrian neuroscientist and cyberneticist, and
former director at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany.
His 1986 book “Vehicles: Experiments in Synthetic Psychology” (image on right is the cover of
this book, published by The MIT Press, ©MIT 1984) describes reactive goal-achieving vehicles,
and such systems are now commonly known as Braitenberg Vehicles.

A Braitenberg vehicle is an automaton which combines sensors, actuators and their direct in-
terconnection to produce goal-oriented behaviors. In the book these vehicles are described con-
ceptually as analog circuits, but more recently small robots based on a digital realization of the
same principles have been developed. Grey Walter’s tortoise predates the use of this term but
was nevertheless an example of such a vehicle.

More generally a taxis is the response of
an organism to a stimulus gradient.

This is a fine philosophical point, the plan
could be considered to be implicit in the
details of the connections between the
motors and sensors.

This is similar to the problem of moving
to a point discussed in Sect. 4.1.1.1.

This is similar to Braitenberg’s Vehicle 4a.

 William Grey Walter (1910–1977) was a neurophysiologist and pioneering cyberneticist born in
Kansas City, Missouri and studied at King’s College, Cambridge. Unable to obtain a research
fellowship at Cambridge, he worked on neurophysiological research in hospitals in London and
from 1939 at the Burden Neurological Institute in Bristol. He developed electro-encephalographic
brain topography which used multiple electrodes on the scalp and a triangulation algorithm to
determine the amplitude and location of brain activity.

Walter was infl uential in the then new fi eld of cybernetics. He built robots to study how complex
refl ex behavior could arise from neural interconnections. His tortoise Elsie (of the species Machina
Speculatrix) is shown, without its shell, on page 95. Built in 1948 Elsie was a three-wheeled robot capable
of phototaxis that could also fi nd its way to a recharging station. A second generation tortoise (from
1951) is in the collection of the Smithsonian Institution. He published popular articles in “Scientifi c
American” (1950 and 1951) and a book “The Living Brain” (1953). He was badly injured in a car acci-
dent in 1970 from which he never fully recovered. (Image courtesy Reuben Hoggett collection)

127

To ascend the gradient we need to estimate the gradient direction at the current
location and this requires at least two measurements of the fi eld.� In this example we
use two sensors, bilateral sensing, with one on each side of the robot’s body. The sen-
sors are modeled by the green sensor blocks shown in Fig. 5.2 and are parameterized
by the position of the sensor with respect to the robot’s body, and the sensing function.
In this example the sensors are at ±2 units in the vehicle’s lateral or y-direction.

The fi eld to be sensed is a simple inverse square fi eld defi ned by

1 function sensor = sensorfi eld(x, y)
2 xc = 60; yc = 90;
3 sensor = 200./((x-xc).^2 + (y-yc).^2 + 200);

which returns the sensor value s(x, y) ∈ [0, 1] which is a function of the sensor’s posi-
tion in the plane. This particular function has a peak value at the point (60, 90).

The vehicle speed is

where sR and sL are the right and left sensor readings respectively. At the goal, where
sR = sL = 1 the velocity becomes zero.

Steering angle is based on the difference between the sensor readings

so when the fi eld is equal in the left- and right-hand sensors the robot moves straight ahead.�

We start the simulation from the Simulink menu or the command line

>> sim('sl_braitenberg');

and the path of the robot is shown in Fig. 5.3. The starting pose can be changed through
the parameters of the Bicycle block. We see that the robot turns toward the goal and
slows down as it approaches, asymptotically achieving the goal position.

This particular sensor-action control law results in a specifi c robotic behavior. We
could add additional logic to the robot to detect that it had arrived near the goal and
then switch to a stopping behavior. An obstacle would block this robot since its only
behavior is to steer toward the goal, but an additional behavior could be added to han-
dle this case and drive around an obstacle. We could add another behavior to search
randomly for the source if none was visible. Grey Walter’s tortoise had four behaviors
and switching was based on light level and a touch sensor.

Multiple behaviors and the ability to switch between them leads to an approach
known as behavior-based robotics. The subsumption architecture was proposed as a

Fig. 5.2.
The Simulink® model

 sl_braitenberg drives the
vehicle toward the maxima of

a provided scalar function. The
vehicle plus controller is an ex-
ample of a Braitenberg vehicle

We can make the measurements simul-
taneously using two spatially separated
sensors or from one sensor over time as
the robot moves.

Similar strategies are used by moths
whose two antennae are exquisitely
sensitive odor detectors that are used
to steer a male moth toward a phero-
mone emitting female.

5.1 · Reactive Navigation

128 Chapter 5 · Navigation

means to formalize the interaction between different behaviors. Complex, some might
say intelligent looking, behaviors can be manifested by such systems. However as more
behaviors are added the complexity of the system grows rapidly and interactions be-
tween behaviors become more complex to express and debug. Ultimately the penalty
of not using a map becomes too great.

5.1.2
l

Simple Automata

Another class of reactive robots are known as bugs – simple automata that perform goal
seeking in the presence of nondriveable areas or obstacles. There are a large number
of bug algorithms and they share the ability to sense when they are in proximity to an
obstacle. In this respect they are similar to the Braitenberg class vehicle, but the bug
includes a state machine and other logic in between the sensor and the motors. The
automata have memory which our earlier Braitenberg vehicle lacked.� In this section
we will investigate a specifi c bug algorithm known as bug2.

We start by loading an obstacle fi eld to challenge the robot
>> load house
>> about house
house [double] : 397x596 (1.9 MB)

which defi nes a matrix variable house in the workspace. The elements are zero or
one representing free space or obstacle respectively and this is shown in Fig. 5.4. Tools
to generate such maps are discussed on page 131. This matrix is an example of an oc-
cupancy grid which will be discussed further in the next section. This command also
loads a list of named places within the house, as elements of a structure

>> place
place =
 kitchen: [320 190]
 garage: [500 150]
 br1: [50 220]
 .
 .

At this point we state some assumptions. Firstly, the robot operates in a grid world
and occupies one grid cell. Secondly, the robot is capable of omnidirectional motion
and can move to any of its eight neighboring grid cells. Thirdly, it is able to deter-
mine its position on the plane which is a nontrivial problem that will be discussed
in detail in Chap. 6. Finally, the robot can only sense its goal and whether adjacent
cells are occupied.

Fig. 5.3.
Path of the Braitenberg vehicle
moving toward the maximum of
a 2D scalar fi eld whose magni-
tude is shown color coded

Braitenberg’s book describes a series of
increasingly complex vehicles, some of
which incorporate memory. However the
term Braitenberg vehicle has become as-
sociated with the simplest vehicles he
described.

129

We create an instance of the bug2 class

>> bug = Bug2(house);

and pass in the occupancy grid. The bug2 algorithm does not use the map to plan a
path – the map is used by the simulator to provide sensory inputs to the robot. We
can display the robot’s environment by

>> bug.plot();

The simulation is run using the query method

>> bug.query(place.br3, place.kitchen, 'animate');

whose arguments are the start and goal positions of the robot within the house.
The method displays an animation of the robot moving toward the goal and the

path is shown as a series of green dots in Fig. 5.4.
The strategy of the bug2 algorithm is quite simple. It is given a straight line – the

m-line – towards its goal. If it encounters an obstacle it turns right and continues un-
til it encounters a point on the m-line that is closer to the goal than when it departed
from the m-line.�

If an output argument is specifi ed

>> p = bug.query(place.br3, place.kitchen)

it returns the path as a matrix p

>> about p
p [double] : 1299x2 (20.8 kB)

which has one row per point, and comprises 1 299 points for this example. Invoking
the function with an empty matrix

>> p = bug.query([], place.kitchen) ;

will prompt for the corresponding point to be selected by clicking on the plot.
In this example the bug2 algorithm has reached the goal but it has taken a very

suboptimal route, traversing the inside of a wardrobe, behind doors and visiting two

Fig. 5.4.
Obstacles are indicated by red

pixels. Named places are in-
dicated by hollow black stars.

Approximate scale is 4.5 cm per
cell. The start location is a solid
blue circle and the goal is a sol-
id blue star. The path taken by

the bug2 algorithm is marked by
a green line. The black dashed

line is the m-line, the direct path
from the start to the goal

It could be argued that the m-line rep-
resents an explicit plan. Thus bug algo-
rithms occupy a position somewhere
between Braitenberg vehicles and map-
based planning systems in the spectrum
of approaches to navigation.

5.1 · Reactive Navigation

130 Chapter 5 · Navigation

bathrooms. It would perhaps have been quicker in this case to turn left, rather than
right, at the fi rst obstacle but that strategy might give a worse outcome somewhere
else. Many variants of the bug algorithm have been developed, but while they improve
the performance for one type of environment they can degrade performance in others.
Fundamentally the robot is limited by not using a map. It cannot see the big picture
and therefore takes paths that are locally, rather than globally, optimal.

5.2
l
Map-Based Planning

The key to achieving the best path between points A and B, as we know from everyday
life, is to use a map. Typically best means the shortest distance but it may also include
some penalty term or cost related to traversability which is how easy the terrain is to
drive over – it might be quicker to travel further but faster over better roads. A more
sophisticated planner might also consider the size of the robot, the kinematics and
dynamics of the vehicle and avoid paths that involve turns that are tighter than the
vehicle can execute. Recalling our earlier defi nition of a robot as a

goal oriented machine that can sense, plan and act,

this section concentrates on planning.
There are many ways to represent a map and the position of the vehicle within the

map. Graphs, as discussed in Appendix I, can be used to represent places and paths
between them. Graphs can be effi ciently searched to fi nd a path that minimizes some
measure or cost, most commonly the distance traveled. A simpler and very computer-
friendly representation is the occupancy grid which is widely used in robotics.

An occupancy grid treats the world as a grid of cells and each cell is marked as oc-
cupied or unoccupied. We use zero to indicate an unoccupied cell or free space where
the robot can drive. A value of one indicates an occupied or nondriveable cell. The
size of the cell depends on the application. The memory required to hold the occu-
pancy grid increases with the spatial area represented and inversely with the cell size.
However for modern computers this representation is very feasible. For example a cell
size 1 × 1 m requires� just 125 kbyte km−2.

In the remainder of this section we use code examples to illustrate several different
planners and all are based on the occupancy grid representation. To create unifor-
mity the planners are all implemented as classes derived from the Navigation su-
perclass which is briefl y described on page 133. The bug2 class we used previously was
also an instance of this class so the remaining examples follow a familiar pattern.

Once again we state some assumptions. Firstly, the robot operates in a grid world
and occupies one grid cell. Secondly, the robot does not have any nonholonomic con-
straints and can move to any neighboring grid cell. Thirdly, it is able to determine
its position on the plane. Fourthly, the robot is able to use the map to compute the
path it will take.

In all examples we will use the house map introduced in the last section and fi nd
paths from bedroom 3 to the kitchen. These parameters can be varied, and the occu-
pancy grid changed using the tools described above.

5.2.1
l
Distance Transform

Consider a matrix of zeros with just a single nonzero element representing the goal.
The distance transform of this matrix is another matrix, of the same size, but the value
of each element is its distance� from the original nonzero pixel. For robot path plan-
ning we use the default Euclidean distance. The distance transform is actually an im-
age processing technique and will be discussed further in Chap. 12.

Considering a single bit to represent
each cell. The occupancy grid could be
compressed or could be kept on a disk
with only the local region in memory.

The distance between two points
(x1, y1) and (x2, y2) where ∆x = x2 − x1

and ∆y = y2 − y1 can be Euclidean
∆̂x

2g+g∆gy
2 or CityBlock (also known as

 Manhattan) distance |∆x| + |∆y|.

131

To use the distance transform for robot navigation we create a DXform object,
which is derived from the Navigation class

>> dx = DXform(house);

and then create a plan to reach a specifi c goal

>> dx.plan(place.kitchen)

which can be visualized

>> dx.plot()

as shown in Fig. 5.5. We see the obstacle regions in red overlaid on the distance map
whose grey level at any point indicates the distance from that point to the goal, in grid
cells, taking into account travel around obstacles.

The hard work has been done and to fi nd the shortest path from any point to the goal
we simply consult or query the plan.� For example a path from the bedroom to the goal is

>> dx.query(place.br3, 'animate');

which displays an animation of the robot moving toward the goal. The path is indi-
cated by a series of green dots as shown in Fig. 5.5.�

The plan is the distance map. Wherever the robot starts, it moves to the neighbor-
ing cell that has the smallest distance to the goal. The process is repeated until the ro-
bot reaches a cell with a distance value of zero which is the goal.

If the path method is called with an output argument the path

>> p = dx.query(place.br3);

is returned as a matrix, one row per point, which we can visualize overlaid on the oc-
cupancy grid and distance map

>> dx.plot(p)

The path comprises
>> numrows(p)
ans =
 336

points which is considerably shorter than the path found by bug2.
This navigation algorithm has exploited its global view of the world and has, through

exhaustive computation, found the shortest possible path. In contrast, bug2 without

Making a map. An occupancy grid is a matrix that corresponds to a region of 2-dimensional space.
Elements containing zeros are free space where the robot can move, and those with ones are ob-
stacles where the robot cannot move. We can use many approaches to create a map. For example
we could create a matrix fi lled with zeros (representing all free space)

>> map = zeros(100, 100);

and use MATLAB operations such as

>> map(40:50,20:80) = 1;

or the MATLAB builtin matrix editor to create obstacles but this is quite cumbersome. Instead we can
use the Toolbox map editor makemap to create more complex maps using an interactive editor

>> map = makemap(100)

that allows you to add rectangles, circles and polygons to an occupancy grid. In this example the
grid is 100 × 100. See online help for details.

The occupancy grid in Fig. 5.4 was derived from a scanned image but online buildings plans
and street maps could also be used.

Note that the occupancy grid is a matrix whose coordinates are conventionally expressed as
(row, column) and the row is the vertical dimension of a matrix. We use the Cartesian conven-
tion of a horizontal x-coordinate fi rst, followed by the y-coordinate therefore the matrix is al-
ways indexed as y,x in the code.

5.2 · Map-Based Planning

For the bug2 algorithm there was no
planning step so the query in that case
was the simulated robot querying its
proximity sensors.

By convention the plan is based on the
goal location and we query for a start lo-
cation, but we could base the plan on the
start position and then query for a goal.

132 Chapter 5 · Navigation

the global view has just bumped its way through the world. The penalty for achieving
the optimal path is computational cost. This particular implementation of the distance
transform is iterative. Each iteration has a cost of O(N 2) and the number of iterations
is at least O(N), where N is the dimension of the map.

We can visualize the iterations of the distance transform by

>> dx.plan(place.kitchen, 'animate');

which shows the distance values propagating as a wavefront outward from the goal.
The wavefront moves outward, spills through doorways into adjacent rooms and out-
side the house.� Although the plan is expensive to create, once it has been created it
can be used to plan a path from any initial point to that goal.

We have converted a fairly complex planning problem into one that can now be
handled by a Braitenberg-class robot that makes local decisions based on the distance
to the goal. Effectively the robot is rolling downhill on the distance function which we
can plot as a 3D surface

>> dx.plot3d(p)

shown in Fig. 5.6 with the robot’s path and room locations overlaid.
For large occupancy grids this approach to planning will become impractical. The

roadmap methods that we discuss later in this chapter provide an effective means to
fi nd paths in large maps at greatly reduced computational cost.

The scale associated with this occupancy grid is 4.5 cm per cell and we have as-
sumed the robot occupies a single grid cell – this is a very small robot. The planner
could therefore fi nd paths that a larger real robot would be unable to fi t through.
A common solution to this problem is to infl ate the occupancy grid – making the
obstacles bigger is equivalent to leaving the obstacles unchanged and making the
robot bigger. For example, if we infl ate the obstacles by 5 cells

>> dx = DXform(house, 'infl ate', 5);
>> dx.plan(place.kitchen);
>> p = dx.query(place.br3);
>> dx.plot(p)

the path shown in Fig. 5.7b now takes the wider corridors to reach its goal. To illustrate
how this works we can overlay this new path on the infl ated occupancy grid

>> dx.plot(p, 'infl ated');

Fig. 5.5.
The distance transform path.
Obstacles are indicated by red
cells. The background grey in-
tensity represents the cell’s dis-
tance from the goal in units of
cell size as indicated by the scale
on the right-hand side

More efficient algorithms exist such as
fast marching methods and Dijkstra’s
method, but the iterative wavefront
method used here is easy to code and
to visualize.

133

and this is shown in Fig. 5.7a. The infl ation parameter of 5 has grown the obstacles by
5 grid cells in all directions, a bit like applying a very thick layer of paint.� This is equiva-
lent to growing the robot by 5 grid cells in all directions – the robot grows from a single
grid cell to a disk with a diameter of 11 cells which is equivalent to around 50 cm.

Fig. 5.6.
The distance transform as a

3D function, where height is dis-
tance from the goal. Navigation

is simply a downhill run. Note
the discontinuity in the distance
transform where the split wave-

fronts met

Navigation superclass. The examples in this chapter are all based
on classes derived from the Navigation class which is designed
for 2D grid-based navigation. Each example consists of essen-
tially the following pattern. Firstly we create an instance of an
object derived from the Navigation class by calling the class
constructor.

 nav = MyNavClass(map)

which is passed the occupancy grid. Then a plan is computed

 nav.plan()
 nav.plan(goal)

and depending on the planner the goal may or may not be required.
A path from an initial position to the goal is computed by

 p = nav.query(start, goal)
 p = nav.query(start)

again depending on whether or not the planner requires a goal.
The optional return value p is the path, a sequence of points from
start to goal, one row per point, and each row comprises the
x- and y-coordinate. If start or goal is given as [] the user is
prompted to interactively click the point. The ‘animate’ option
causes an animation of the robot’s motion to be displayed.

The map and planning information can be visualized by

 nav.plot()

or have a path overlaid

 nav.plot(p)

5.2 · Map-Based Planning

Fig. 5.7. Distance transform path
with obstacles infl ated by 5 cells.
a Path shown with infl ated obsta-
cles; b path computed for infl at-
ed obstacles overlaid on original
obstacle map, black regions are
where no distance was computed

This is morphological dilation which is
discussed in Sect. 12.6.

�

134 Chapter 5 · Navigation

5.2.2
l
D*

A popular algorithm for robot path planning is D∗ which fi nds the best path� through
a graph, which it fi rst computes, that corresponds to the input occupancy grid. D* has
a number of features that are useful for real-world applications. Firstly, it generalizes
the occupancy grid to a cost map which represents the cost c ∈R, c > 0 of traversing
each cell in the horizontal or vertical direction. The cost of traversing the cell diago-
nally is c\2. For cells corresponding to obstacles c = ∞ (Inf in MATLAB).

Secondly, D* supports incremental replanning. This is important if, while we are mov-
ing, we discover that the world is different to our map. If we discover that a route has a
higher than expected cost or is completely blocked we can incrementally replan to fi nd a
better path. The incremental replanning has a lower computational cost than complete-
ly replanning as would be required using the distance transform method just discussed.

D∗ fi nds the path which minimizes the total cost of travel. If we are interested in the
shortest time to reach the goal then cost is the time to drive across the cell and is in-
versely related to traversability. If we are interested in minimizing damage to the vehi-
cle or maximizing passenger comfort then cost might be related to the roughness of the
terrain within the cell. The costs assigned to cells will also depend on the characteristics
of the vehicle: a large 4-wheel drive vehicle may have a fi nite cost to cross a rough area
whereas for a small car that cost might be infi nite.

To implement the D∗ planner using the Toolbox we use a similar pattern and fi rst
create a D∗ navigation object

>> ds = Dstar(house);

The D∗ planner converts the passed occupancy grid map into a cost map which we
can retrieve

>> c = ds.costmap();

where the elements of c will be 1 or ∞ representing free and occupied cells respectively.
A plan for moving to the goal is generated by

>> ds.plan(place.kitchen);

which creates a very dense directed graph (see Appendix I). Every cell is a graph vertex
and has a cost, a distance to the goal, and a link to the neighboring cell that is closest to
the goal. Each cell also has a state t ∈ {NEW, OPEN, CLOSED}. Initially every cell is in the
NEW state, the cost of the goal cell is zero and its state is OPEN. We can consider the set of
all cells in the OPEN state as a wavefront propagating outward from the goal.� The cost of

Fig. 5.8.
The D∗ planner path. Obstacles
are indicated by red cells and all
driveable cells have a cost of 1.
The background grey intensity
represents the cell’s distance
from the goal in units of cell size
as indicated by the scale on the
right-hand side

D* is an extension of the A* algorithm for
finding minimum cost paths through a
graph, see Appendix I.

The distance transform also evolves as
a wavefront outward from the goal.
However D* represents the frontier effi-
ciently as a list of cells whereas the dis-
tance transform computes the frontier
on a per-cell basis at every iteration – the
frontier is implicitly where a cell with in-
finite cost (the initial value of all cells) is
adjacent to a cell with finite cost.

135

reaching cells that are neighbors of an OPEN cell is computed and these cells in turn are
set to OPEN and the original cell is removed from the open list and becomes CLOSED. In
MATLAB this initial planning phase is quite slow� and takes over a minute and

>> ds.niter
ans =
 245184

iterations of the planning loop.
The path from an arbitrary starting point to the goal

>> ds.query(place.br3);

is shown in Fig. 5.8. The robot has again taken a short and effi cient path around the
obstacles that is almost identical to that generated by the distance transform.

The real power of D∗ comes from being able to effi ciently change the cost map dur-
ing the mission. This is actually quite a common requirement in robotics since real
sensors have a fi nite range and a robot discovers more of world as it proceeds. We
inform D∗ about changes using the modify_cost method, for example to raise the
cost of entering the kitchen via the bottom doorway

>> ds.modify_cost([300,325; 115,125], 5);

we have raised the cost to 5 for a small rectangular region across the doorway. This re-
gion is indicated by the yellow dashed rectangle in Fig. 5.9. The other driveable cells have
a default cost of 1. The plan is updated by invoking the planning algorithm again

>> ds.plan();

and this time the number of iterations is only

>> ds.niter
ans =
 169580

which is 70% of that required to create the original plan.� The new path for the robot

>> ds.query(place.br3);

is shown in Fig. 5.9. The cost change is relatively small but we notice that the increased
cost of driving within this region is indicated by a subtle brightening of those cells – in
a cost sense these cells are now further from the goal. Compared to Fig. 5.8 the robot
has taken a different route to the kitchen and avoided the bottom door. D∗ allows up-
dates to the map to be made at any time while the robot is moving. After replanning
the robot simply moves to the adjacent cell with the lowest cost which ensures conti-
nuity of motion even if the plan has changed.

Fig. 5.9.
Path from D∗ planner with mod-
ifi ed map. The higher-cost region
is indicated by the yellow dashed

rectangle and has changed the
path compared to Fig. 5.7

D* is more efficient than the distance
transform but it executes more slowly
because it is implemented entirely in
MATLAB code whereas the distance
transform is a MEX-file written in C.

The cost increases with the number of
cells modified and the effect those chang-
es have on the distance map. It is possible
that incremental replanning takes more
time than planning from scratch.

5.2 · Map-Based Planning

136 Chapter 5 · Navigation

5.2.3
l
Introduction to Roadmap Methods

In robotic path planning the analysis of the map is referred to as the planning phase.
The query phase uses the result of the planning phase to fi nd a path from A to B. The
two previous planning algorithms, distance transform and D∗, require a signifi cant
amount of computation for the planning phase, but the query phase is very cheap.
However the plan depends on the goal. If the goal changes the expensive planning
phase must be re-executed. Even though D∗ allows the path to be recomputed as the
costmap changes it does not support a changing goal.

The disparity in planning and query costs has led to the development of roadmap
methods where the query can include both the start and goal positions. The planning
phase provides analysis that supports changing starting points and changing goals.
A good analogy is making a journey by train. We fi rst fi nd a local path to the near-
est train station, travel through the train network, get off at the station closest to our
goal, and then take a local path to the goal. The train network is invariant and plan-
ning a path through the train network is straightforward. Planning paths to and from
the entry and exit stations respectively is also straightforward since they are, ideally,
short paths. The robot navigation problem then becomes one of building a network
of obstacle free paths through the environment which serve the function of the train
network. In the literature such a network is referred to as a roadmap. The roadmap
need only be computed once and can then be used like the train network to get us
from any start location to any goal location.

We will illustrate the principles by creating a roadmap from the occupancy grid’s
free space using some image processing techniques. The essential steps in creating
the roadmap are shown in Fig. 5.10. The fi rst step is to fi nd the free space in the map
which is simply the complement of the occupied space

>> free = 1 - house

and is a matrix with nonzero elements where the robot is free to move. The boundary
is also an obstacle so we mark the outermost cells as being not free

>> free(1,:) = 0; free(end,:) = 0;
>> free(:,1) = 0; free(:,end) = 0;

and this map is shown in Fig. 5.10a where free space is depicted as white.
The topological skeleton of the free space is computed by a morphological image

processing algorithm known as thinning� applied to the free space of Fig. 5.10a

>> skeleton = ithin(free);

and the result is shown in Fig. 5.10b. We see that the obstacles have grown and the
free space, the white cells, have become a thin network of connected white cells
which are equidistant from the boundaries of the original obstacles.

Figure 5.10c shows the free space network overlaid on the original map. We have
created a network of paths that span the space and which can be used for obstacle-
free travel around the map.� These paths are the edges of a generalized Voronoi

A graph is an abstract representation of a set of objects connected by links typically denoted G(V, E)
and depicted diagrammatically as shown to the right. The objects, V, are called vertices or nodes,
and the links, E, that connect some pairs of vertices are called edges or arcs. Edges can be directed
(arrows) or undirected as in this case. Edges can have an associated weight or cost associated with
moving from one of its vertices to the other. A sequence of edges from one vertex to another is a
path. Graphs can be used to represent transport or communications networks and even social rela-
tionships, and the branch of mathematics is graph theory. Minimum cost path between two nodes
in the graph can be computed using well known algorithms such as Dijstrka’s method or A∗.

The navigation classes use a simple MATLAB graph class called PGraph, see Appendix I.

Also known as skeletonization. We will
cover this topic in Sect. 12.6.3.

The junctions in the roadmap are in-
dicated by black dots. The junctions,
or triple points , are identified using the
morphological image processing func-
tion triplepoint.

137

diagram. We could obtain a similar result by computing the distance transform
of the obstacles, Fig. 5.10a, and this is shown in Fig. 5.10d. The value of each pixel
is the distance to the nearest obstacle and the ridge lines correspond to the skel-
eton of Fig. 5.10b. Thinning or skeletonization, like the distance transform, is a
computationally expensive iterative algorithm but it illustrates well the principles
of finding paths through free space. In the next section we will examine a cheap-
er alternative.

5.2.4
l
Probabilistic Roadmap Method (PRM)

The high computational cost of the distance transform and skeletonization meth-
ods makes them infeasible for large maps and has led to the development of proba-
bilistic methods. These methods sparsely sample the world map and the most well
known of these methods is the probabilistic roadmap or PRM method.

The Voronoi tessellation of a set of planar points, known as sites, is a set of Voronoi cells as shown
to the left. Each cell corresponds to a site and consists of all points that are closer to its site than
to any other site. The edges of the cells are the points that are equidistant to the two nearest sites.
A generalized Voronoi diagram comprises cells defi ned by measuring distances to objects rather
than points. In MATLAB we can generate a Voronoi diagram by

>> sites = rand(10,2)
>> voronoi(sites(:,1), sites(:,2))

Georgy Voronoi (1868–1908) was a Russian mathematician, born in what is now Ukraine. He
studied at Saint Petersburg University and was a student of Andrey Markov. One of his stu-
dents Boris Delaunay defi ned the eponymous triangulation which has dual properties with the
 Voronoi diagram.

Fig. 5.10. Steps in the creation of
a Voronoi roadmap. a Free space
is indicated by white cells; b the
skeleton of the free space is a net-
work of adjacent cells no more
than one cell thick; c the skeleton
with the obstacles overlaid in
red and road-map junction points
indicated by black dots; d the dis-
tance transform of the obstacles,
pixel values correspond to distance
to the nearest obstacle

5.2 · Map-Based Planning

138 Chapter 5 · Navigation

To use the Toolbox PRM planner for our problem we fi rst create a PRM object

>> prm = PRM(house)

and then create the plan

>> prm.plan('npoints', 150) �

with 150 roadmap nodes. Note that we do not pass the goal as an argument since the
plan is independent of the goal. Creating the path is a two phase process: planning, and

Fig. 5.11.
Probablistic roadmap (PRM)
planner and the random graphs
produced in the planning phase.
a Well connected network with
150 nodes; b poorly connected
network with 100 nodes

To replicate the following result be sure to
initialize the random number generator
first using randinit. See page 139.

139

query. The planning phase fi nds N random points, 150 in this case, that lie in free space.
Each point is connected to its nearest neighbors by a straight line path that does not cross
any obstacles, so as to create a network, or graph, with a minimal number of disjoint
components and no cycles. The advantage of PRM is that relatively few points need to
be tested to ascertain that the points and the paths between them are obstacle free. The
resulting network is stored within the PRM object and a summary can be displayed

>> prm
prm =
PRM navigation class:
 occupancy grid: 397x596
 graph size: 150
 dist thresh: 178.8
 2 dimensions
 150 vertices
 1223 edges
 14 components

which indicates the number of edges and connected components in the graph. The
graph can be visualized

>> prm.plot()

as shown in Fig. 5.11a. The dots represent the randomly selected points and the lines
are obstacle-free paths between the points. Only paths less than 178.8 cells long are
selected� which is the distance threshold parameter of the PRM class. Each edge of the
graph has an associated cost which is the distance between its two nodes. The color of
the node indicates which component it belongs to and each component is assigned a
unique color. In this case there are 14 components but the bulk of nodes belong to a
single large component.

The query phase fi nds a path from the start point to the goal. This is simply a mat-
ter of moving to the closest node in the roadmap (the start node), following a mini-
mum cost A∗ route through the roadmap, getting off at the node closest to the goal
and then traveling to the goal. For our standard problem this is

>> prm.query(place.br3, place.kitchen)
>> prm.plot()

and the path followed is shown in Fig. 5.12. The path that has been found is quite ef-
fi cient although there are two areas where the path doubles back on itself. Note that
we provide the start and the goal position to the query phase. An advantage of this
planner is that once the roadmap is created by the planning phase we can change
the goal and starting points very cheaply, only the query phase needs to be repeated.
The path taken is

>> p = prm.query(place.br3, place.kitchen);
>> about p
p [double] : 9x2 (144 bytes)

which is a list of the node coordinates that the robot passes through – via points. These
could be passed to a trajectory following controller as discussed in Sect. 4.1.1.3.

There are some important tradeoffs in achieving this computational effi ciency.
Firstly, the underlying random sampling of the free space means that a different road-
map is created every time the planner is run, resulting in different paths and path
lengths. Secondly, the planner can fail by creating a network consisting of disjoint
components. The roadmap in Fig. 5.11b, with only 100 nodes has several large discon-
nected components and the nodes in the kitchen and bedrooms belong to different
components. If the start and goal nodes are not connected by the roadmap, that is, they
are close to different components the query method will report an error. The only
solution is to rerun the planner and/or increase the number of nodes. Thirdly, long
narrow gaps between obstacles such as corridors are unlikely to be exploited since the
probability of randomly choosing points that lie along such spaces is very low.

This is derived automatically from the size
of the occupancy grid.

Random numbers. The MATLAB
 random number generator
(used for rand and randn)
generates a very long sequence
of numbers that are an excel-
lent approximation to a ran-
dom sequence. The generator
maintains an internal state
which is effectively the posi-
tion within the sequence. After
startup MATLAB always gen-
erates the following random
number sequence

>> rand
ans =
 0.8147
>> rand
ans =
 0.9058
>> rand
ans =
 0.1270

Many algorithms discussed
in this book make use of ran-
dom numbers and this means
that the results can never be
repeated. Before all such ex-
amples in this book is an invis-
ible call to randinit which
resets the random number gen-
erator to a known state

>> randinit
>> rand
ans =
 0.8147
>> rand
ans =
 0.9058

and we see that the random se-
quence has been restarted.

5.2 · Map-Based Planning

140 Chapter 5 · Navigation

5.2.5
l
Lattice Planner

The planners discussed so far have generated paths independent of the motion that
the vehicle can actually achieve, and we learned in Chap. 4 that wheeled vehicles have
signifi cant motion constraints. One common approach is to use the output of the
planners we have discussed and move a point along the paths at constant velocity
and then follow that point, using techniques such as the trajectory following control-
ler described in Sect. 4.1.1.3.

An alternative is to design a path from the outset that we know the vehicle can fol-
low. The next two planners that we introduce take into account the motion model of
the vehicle, and relax the assumption we have so far made that the robot is capable of
 omnidirectional motion.

Fig. 5.12.
Probablistic roadmap (PRM)
planner a showing the path taken
by the robot via nodes of the
roadmap which are highlighted
in yellow; b closeup view of goal
region where the short path from
the fi nal roadmap node to the
goal can be seen

141

We consider that the robot is moving between discrete points in its 3-dimensional
confi guration space. The robot is initially at the origin and can drive forward to the
three points shown in black in Fig. 5.13a.� Each path is an arc� which requires a con-
stant steering wheel setting and the arc radius is chosen so that at the end of each arc
the robot’s heading direction is some multiple of ü radians.

At the end of each branch we can add the same set of three motions suitably ro-
tated and translated, and this is shown in Fig. 5.13b. The graph now contains 13 nodes
and represents 9 paths each 2 segments long. We can create this lattice by using the
Lattice planner class

>> lp = Lattice();
>> lp.plan('iterations', 2)
13 nodes created
>> lp.plot()

which will generate a plot like Fig. 5.13b. Each node represents a confi guration (x, y, θ),
not just a position, and if we rotate the plot we can see in Fig. 5.14 that the paths lie in
the 3-dimensional confi guration space.

While the paths appear smooth and continuous the curvature is in fact discontinu-
ous – at some nodes the steering wheel angle would have to change instantaneously
from hard left to hard right for example.�

Fig. 5.13.
Lattice plan after 1, 2 and

8 iterations

Fig. 5.14.
Lattice plan after 2 iterations

shown in 3-dimensional confi gu-
ration space

The pitch of the grid is dictated by the
turning radius of the vehicle.

Sometimes called Dubins curves.

A real robot would take a finite time to
adjust its steering angle and this would in-
troduce some error in the robot path. The
steering control system could compen-
sate for this by turning harder later in the
segment so as to bring the robot to the
end point with the correct orientation.

5.2 · Map-Based Planning

142 Chapter 5 · Navigation

By increasing the number of iterations
>> lp.plan('iterations', 8)
780 nodes created
>> lp.plot()

we can fi ll in more possible paths as shown in Fig. 5.13c and the paths now extend well
beyond the area shown.

Now that we have created the lattice we can compute a path between any two nodes
using the query method

>> lp.query([1 2 pi/2], [2 -2 0]);
A* path cost 6

where the start and goal are specifi ed as confi gurations (x, y, θ) and the lowest cost
path found by an A∗ search is reported.� We can overlay this on the vertices

>> lp.plot

and is shown in Fig. 5.15a. This is a path that takes into account the fact that the ve-
hicle has an orientation and preferred directions of motion, as do most wheeled robot
platforms. We can also access the confi guration-space coordinates of the nodes

>> p = lp.query([1 2 pi/2], [2 -2 0])
A* path cost 6
>> about p
p [double] : 7x3 (168 bytes)

where each row represents the confi guration-space coordinates (x, y, θ) of a node in
the lattice along the path from start to goal confi guration.

Implicit in our search for the lowest cost path is the cost of traversing each edge of
the graph which by default gives equal cost to the three steering options: straight ahead,
turn left and turn right. We can increase the cost associated with turning

>> lp.plan('cost', [1 10 10])
>> lp.query(start, goal);
A* path cost 35
>> lp.plot()

and now we now have the path shown in Fig. 5.15b which has only 3 turns compared
to 5 previously. However the path is longer – having 8 rather than 6 segments.

Consider a more realistic scenario with obstacles in the environment. Specifi cally we
want to fi nd a path to move the robot 2 m in the lateral direction with its fi nal heading
angle the same as its initial heading angle

>> load road
>> lp = Lattice(road, 'grid', 5, 'root', [50 50 0])
>> lp.plan();

Fig. 5.15.
Paths over the lattice graph.
a With uniform cost; b with
increased penalty for turns

Every segment in the lattice has a de-
fault cost of 1 so the cost of 6 simply
reflects the total number of segments
in the path. A* search is introduced in
Appendix I.

143

where we have loaded an obstacle grid that represents a simple parallel-parking sce-
nario and planned a lattice with a grid spacing of 5 units and the root node at a cen-
tral obstacle-free confi guration. In this case the planner continues to iterate until it
can add no more nodes to the free space. We query for a path from the road to the
parking spot

>> lp.query([30 45 0], [50 20 0])

and the result is shown in Fig. 5.16.
Paths generated by the lattice planner are inherently driveable by the robot but

there are clearly problems driving along a diagonal with this simple lattice. The plan-
ner would generate a continual sequence of hard left and right turns which would
cause undue wear and tear on a real vehicle and give a very uncomfortable ride. More
sophisticated version of lattice planners are able to deal with this by using motion
primitives with hundreds of arcs, such as shown in Fig. 5.17, instead of the three shown
in these examples.

Fig. 5.16.
A simple parallel parking

scenario based on the lattice
planner with an occupancy grid

(cells are 10 cm square)

Fig. 5.17.
A more sophisticated lattice

generated by the package sbpl
with 43 paths based on the kine-

matic model of a unicycle

5.2 · Map-Based Planning

144 Chapter 5 · Navigation

5.2.6
l
Rapidly-Exploring Random Tree (RRT)

The fi nal planner that we introduce is also able to take into account the motion model
of the vehicle. Unlike the lattice planner which plans over a regular grid, the RRT uses
probabilistic methods like the PRM planner.

The underlying insight is similar to that for the lattice planner and Fig. 5.18 shows
a family of paths that the bicycle model of Eq. 4.2 would follow in confi guration
space. The paths are computed over a fi xed time interval for discrete values of ve-
locity, forward or backward, and various steering angles. This demonstrates clearly
the subset of all possible confi gurations that a nonholonomic vehicle can reach from
a given initial confi guration.

The main steps in creating an RRT are as follows, with the notation shown in the fi g-
ure to the right. A graph of robot confi gurations is maintained and each node is a con-
fi guration q ∈R2×S1 which is represented by a 3-vector q ∼ (x, y, θ). The fi rst, or root,
node in the graph is the goal confi guration of the robot. A random confi guration qrand
is chosen, and the node with the closest confi guration qnear is found – this confi guration
is near in terms of a cost function that includes distance and orientation.� A control
is computed that moves the robot from qnear toward qrand over a fi xed path simulation
time. The confi guration that it reaches is qnew and this is added to the graph.

For any desired starting confi guration we can fi nd the closest confi guration in the
graph, and working backward toward the starting confi guration we could determine
the sequence of steering angles and velocities needed to move from the start to the
goal confi guration. This has some similarities to the roadmap methods discussed
previously, but the limiting factor is the combinatoric explosion in the number of
possible poses.

We fi rst of all create a model to describe the vehicle kinematics

>> car = Bicycle('steermax', 0.5);

and here we have specifi ed a car-like vehicle with a maximum steering angle of 0.5 rad.
Following our familiar programming pattern we create an RRT object

>> rrt = RRT(car, 'npoints', 1000)

for an obstacle free environment which by default extends from –5 to +5 in the x- and
y-directions and create a plan

>> rrt.plan();
>> rrt.plot();

The distance measure must account for
a difference in position and orientation
and requires appropriate weighting of
these quantities. From a consideration
of units this is not quite proper since we
are adding meters and radians.

Fig. 5.18.
A set of possible paths that the
 bicycle model robot could follow
from an initial confi guration of
(0, 0, 0). For v = ±1, α ∈ [−1, 1]
over a 2 s period. Red lines cor-
respond to v < 0

145

The random tree is shown in Fig. 5.19 and we see that the paths have a good coverage
of the confi guration space, not just in the x- and y-directions but also in orientation,
which is why the algorithm is known as rapidly exploring.

An important part of the RRT algorithm is computing the control input that moves
the robot from an existing confi guration in the graph to qrand. From Sect. 4.1 we under-
stand the diffi culty of driving a nonholonomic vehicle to a specifi ed confi guration. Rather
than the complex nonlinear controller of Sect. 4.1.1.4 we will use something simpler that
fi ts with the randomized sampling strategy used in this class of planner. The controller
randomly chooses whether to drive forwards or backwards and randomly chooses a
steering angle within the limits�. It then simulates motion of the vehicle model for a fi xed
period of time, and computes the closest distance to qrand. This is repeated multiple times
and the control input with the best performance is chosen. The confi guration on its path
that was closest to qrand is chosen as qnear and becomes a new node in the graph.

Handling obstacles with the RRT is quite straightforward. The confi guration qrand is
discarded if it lies within an obstacle, and the point qnear will not be added to the graph
if the path from qnear toward qrand intersects an obstacle. The result is a set of paths, a
roadmap, that is collision free and driveable by this nonholonomic vehicle.�

We will repeat the parallel parking example from the last section

>> rrt = RRT(car, road, 'npoints', 1000, 'root', [50 22 0], 'simtime', 4)
>> rrt.plan();

where we have specifi ed the vehicle kinematic model, an occupancy grid, the number of
sample points, the location of the fi rst node, and that each random motion is simulated
for 4 seconds. We can query the RRT plan for a path between two confi gurations

>> p = rrt.query([40 45 0], [50 22 0]);

and the result is a continuous path

>> about p
p [double] : 520x3 (12.5 kB)

which will take the vehicle from the street to the parking slot. We can overlay the path
on the occupancy grid and RRT

>> rrt.plot(p)

Fig. 5.19.
An RRT computed for the bi-
cycle model with a velocity of

±1 m s−1, steering angle limits of
±0.5 rad, integration period of
1 s, and initial confi guration of

(0, 0, 0). Each node is indicated by
a green circle in the 3-dimension-

al space of vehicle poses (x, y, θ)

Uniformly randomly distributed between
the steering angle limits.

We have chosen the first node to be the
goal configuration, and we search from
here toward possible start configura-
tions. However we could also make
the first node the start configuration.
Alternatively we could choose the start
node to be neither the start or goal posi-
tion, the planner will find a path through
the RRT between configurations close to
the start and goal.

5.2 · Map-Based Planning

146 Chapter 5 · Navigation

and the result is shown in Fig. 5.20 with some vehicle confi gurations overlaid. We can
also animate the motion along the path

>> plot_vehicle(p, 'box', 'size', [20 30], 'fi ll', 'r', 'alpha', 0.1)

where we have specifi ed the vehicle be displayed as a red translucent shape of width 20
and length 30 units.

This example illustrates some important points about the RRT. Firstly, as for the PRM
planner, there may be some distance (and orientation) between the start and goal con-
fi guration and the nearest node. Minimizing this requires tuning RRT parameters such
as the number of nodes and path simulation time. Secondly, the path is feasible but not
quite optimal. In this case the vehicle has changed direction twice before driving into the
parking slot. This is due to the random choice of nodes – rerunning the planner and/or
increasing the number of nodes may help. Finally, we can see that the vehicle body col-
lides with the obstacle, and this is very apparent if you view the animation. This is actu-
ally not surprising since the collision check we did when adding a node only tested if the
node’s position lay in an obstacle – it should properly check if a fi nite-sized vehicle with
that confi guration intersects an obstacle. Alternatively, as discussed on page 132 we could
infl ate the obstacles by the radius of the smallest disk that contains the robot.

5.3
l
Wrapping Up

Robot navigation is the problem of guiding a robot towards a goal and we have covered
a spectrum of approaches. The simplest was the purely reactive Braitenberg-type vehicle.
Then we added limited memory to create state machine based automata such as bug2
which can deal with obstacles, however the paths that it fi nds are far from optimal.

A number of different map-based planning algorithms were then introduced. The
distance transform is a computationally intense approach that fi nds an optimal path to
the goal. D∗ also fi nds an optimal path, but supports a more nuanced travel cost – in-
dividual cells have a continuous traversability measure rather than being considered
as only free space or obstacle. D∗ also supports computationally cheap incremental re-

Fig. 5.20.
A simple parallel parking ex-
ample based on the RRT plan-
ner with an occupancy grid
(cells are 10 cm square). RRT
nodes are shown in blue, the
initial confi guration is a sol-
id circle and the goal is a solid
star. The path through the RRT
is shown in green, and a few
snapshots of the vehicle confi g-
uration are overlaid in pink

147

planning for small changes in the map. PRM reduces the computational burden sig-
nifi cantly by probabilistic sampling but at the expense of somewhat less optimal paths.
In particular it may not discover narrow routes between areas of free space. The lattice
planner takes into account the motion constraints of a real vehicle to create paths which
are feasible to drive, and can readily account for the orientation of the vehicle as well
as its position. RRT is another random sampling method that also generates kinemati-
cally feasible paths. All the map-based approaches require a map and knowledge of the
robot’s location, and these are both topics that we will cover in the next chapter.

Further Reading

Comprehensive coverage of planning for robots is provided by two text books. Choset
et al. (2005) covers geometric and probabilistic approaches to planning as well as the
application to robots with dynamics and nonholonomic constraints. LaValle (2006)
covers motion planning, planning under uncertainty, sensor-based planning, rein-
forcement learning, nonlinear systems, trajectory planning, nonholonomic planning,
and is available online for free at http://planning.cs.uiuc.edu. In particular these books
provide a much more sophisticated approach to representing obstacles in confi gura-
tion space and cover potential-fi eld planning methods which we have not discussed.
The powerful planning techniques discussed in these books can be applied beyond
robotics to very high order systems such as vehicles with trailers, robotic arms or
even the shape of molecules. LaValle (2011a) and LaValle (2011b) provide a concise
two-part tutorial introduction. More succinct coverage of planning is given by Kelly
(2013), Siegwart et al. (2011), the Robotics Handbook (Siciliano and Khatib 2016, § 7),
and also in Spong et al. (2006) and Siciliano et al. (2009).

The bug1 and bug2 algorithms were described by Lumelsky and Stepanov (1986).
More recently eleven variations of Bug algorithm were implemented and compared for
a number of different environments (Ng and Bräunl 2007). The distance transform is
well described by Borgefors (1986) and its early application to robotic navigation was
explored by Jarvis and Byrne (1988). Effi cient approaches to implementing the distance
transform include the two-pass method of Hirata (1996), fast marching methods or
reframing it as a graph search problem which can be solved using Dijkstra’s method;
the last two approaches are compared by Alton and Mitchell (2006). The A∗ algorithm
(Nilsson 1971) is an effi cient method to fi nd the shortest path through a graph, and we
can always compute a graph that corresponds to an occupancy grid map. D∗ is an exten-
sion by Stentz (1994) which allows cheap replanning when the map changes and there
have been many further extensions including, but not limited to, Field D∗ (Ferguson
and Stentz 2006) and D∗ lite (Koenig and Likhachev 2002). D∗ is used in many real-
world robot systems and many implementations exist including open source.

The ideas behind PRM started to emerge in the mid 1990s and it was fi rst described by
Kavraki et al. (1996). Geraerts and Overmars (2004) compare the effi cacy of a number of
subsequent variations that have been proposed to the basic PRM algorithm. Approaches
to planning that incorporate the vehicle’s dynamics include state-space sampling
(Howard et al. 2008), and the RRT which is described in LaValle (1998, 2006) and related
resources at http://msl.cs.uiuc.edu. More recently RRT∗ has been proposed by Karaman
et al. (2011). Lattice planners are covered in Pivtoraiko, Knepper, and Kelly (2009).

Historical and interesting. The defi ning book in cybernetics was written by Wiener in
1948 and updated in 1965 (Wiener 1965). Grey Walter published a number of popular
articles (1950, 1951) and a book (1953) based on his theories and experiments with ro-
botic tortoises.

The defi nitive reference for Braitenberg vehicles is Braitenberg’s own book (1986)
which is a whimsical, almost poetic, set of thought experiments. Vehicles of increasing
complexity (fourteen vehicle families in all) are developed, some including nonlinearities,

5.3 · Wrapping Up

148 Chapter 5 · Navigation

memory and logic to which he attributes anthropomorphic characteristics such as love,
fear, aggression and egotism. The second part of the book outlines the factual basis of these
machines in the neural structure of animals.

Early behavior-based robots included the Johns Hopkins Beast , built in the 1960s,
and Genghis (Brooks 1989) built in 1989. Behavior-based robotics are covered in the
book by Arkin (1999) and the Robotics Handbook (Siciliano and Khatib 2016, § 13).
Matariõ’s Robotics Primer (Matariõ 2007) and associated comprehensive web-based
resources is also an excellent introduction to reactive control, behavior based control
and robot navigation. A rich collection of archival material about early cybernetic ma-
chines, including Grey-Walter’s tortoise and the Johns Hopkins Beast can be found at
the Cybernetic Zoo http://cyberneticzoo.com.

Resources

A very powerful set of motion planners exist in OMPL, the Open MotionPLanning
Library (http://ompl.kavrakilab.org) written in C++. It has a Python-based app that
provides a convenient means to explore planning problems. Steve LaValle’s web site
http://msl.cs.illinois.edu/~lavalle/code.html has many code resources (C++ and Python)
related to motion planning. Lattice planners are included in the sbpl package from the
Search-Based Planning Lab (http://sbpl.net) which has MATLAB tools for generating
motion primitives and C++ code for planning over the lattice graphs.

MATLAB Notes

The Robotics System Toolbox™ from The MathWorks Inc. includes functions Binary-
OccupancyGrid and PRM to create occupancy grids and plan paths using proba-
bilistic roadmaps. Other functions support reading and writing ROS navigation and
map messages. The Image Processing Toolbox™ function bwdist is an effi cient
implementation of the distance transform.

Exercises

1. Braitenberg vehicles (page 127)
a) Experiment with different starting confi gurations and control gains.
b) Modify the signs on the steering signal to make the vehicle light-phobic.
c) Modify the sensorfi eld function so that the peak moves with time.
d) The vehicle approaches the maxima asymptotically. Add a stopping rule so that

the vehicle stops when the when either sensor detects a value greater than 0.95.
e) Create a scalar fi eld with two peaks. Can you create a starting pose where the

robot gets confused?
2. Occupancy grids. Create some different occupancy grids and test them on the dif-

ferent planners discussed.
a) Create an occupancy grid that contains a maze and test it with various planners.

See http://rosettacode.org/wiki/Maze_generation.
b) Create an occupancy grid from a downloaded fl oor plan.
c) Create an occupancy grid from a city street map, perhaps apply color segmen-

tation (Chap. 13) to segment roads from other features. Can you convert this to
a cost map for D∗ where different roads or intersections have different costs?

d) Experiment with obstacle infl ation.
e) At 1 m cell size how much memory is required to represent the surface of the Earth?

How much memory is required to represent just the land area of Earth? What cell
size is needed in order for a map of your country to fi t in 1 Gbyte of memory?

149

3. Bug algorithms (page 128)
a) Using the function makemap create a new map to challenge bug2. Try different

starting points.
b) Create an obstacle map that contains a maze. Can bug2 solve the maze?
c) Experiment with different start and goal locations.
d) Create a bug trap. Make a hollow box, and start the bug inside a box with the

goal outside. What happens?
e) Modify bug2 to change the direction it turns when it hits an obstacle.
f) Implement other bug algorithms such as bug1 and tangent bug. Do they perform

better or worse?
4. Distance transform (page 132)

a) Create an obstacle map that contains a maze and solve it using distance trans-
form.

5. D∗ planner (page 134)
a) Add a low cost region to the living room. Can you make the robot prefer to take

this route to the kitchen?
b) Block additional doorways to challenge the robot.
c) Implement D∗ as a mex-fi le to speed it up.

6. PRM planner (page 138)
a) Run the PRM planner 100 times and gather statistics on the resulting path

length.
b) Vary the value of the distance threshold parameter and observe the effect.
c) Use the output of the PRM planner as input to a pure pursuit planner as discussed

in Chap. 4.
d) Implement a nongrid based version of PRM. The robot is represented by an ar-

bitrary polygon as are the obstacles. You will need functions to determine if a
polygon intersects or is contained by another polygon (see the Toolbox Polygon
class). Test the algorithm on the piano movers problem.

7. Lattice planner (page 140)
a) How many iterations are required to completely fi ll the region of interest shown

in Fig. 5.13c?
b) How does the number of nodes and the spatial extent of the lattice increase with

the number of iterations?
c) Given a car with a wheelbase of 4.5 m and maximum steering angles of ±30 deg

what is the smallest possible grid size?
d) Redo Fig. 5.15b to achieve a path that uses only right hand turns.
e) Compute curvature as a function of path length for a path through the lattice

such as the one shown in Fig. 5.15a.
f) Design a controller in Simulink that will take a unicycle or bicycle model with

a fi nite steering angle rate (there is a block parameter to specify this) that will
drive the vehicle along the three paths shown in Fig. 5.13a.

8. RRT planner (page 144)
a) Find a path to implement a 3-point turn.
b) Experiment with RRT parameters such as the number of points, the vehicle steer-

ing angle limits, and the path integration time.
c) Additional information in the node of each graph holds the control input that

was computed to reach the node. Plot the steering angle and velocity sequence
required to move from start to goal pose.

d) Add a local planner to move from initial pose to the closest vertex, and from the
fi nal vertex to the goal pose.

e) Determine a path through the graph that minimizes the number of reversals of
direction.

f) The collision test currently only checks that the center point of the robot does not
lie in an occupied cell. Modify the collision test so that the robot is represented
by a rectangular robot body and check that the entire body is obtacle free.

5.3 · Wrapping Up

Chapter

6

In our discussion of map-based navigation we assumed that the robot had a means of
knowing its position. In this chapter we discuss some of the common techniques used
to estimate the location of a robot in the world – a process known as localization.

Today GPS makes outdoor localization so easy that we often take this capability for
granted. Unfortunately GPS is a far from perfect sensor since it relies on very weak radio
signals received from distant orbiting satellites. This means that GPS cannot work where
there is no line of sight radio reception, for instance indoors, underwater, underground,
in urban canyons or in deep mining pits. GPS signals are also extremely weak and can
be easily jammed and this is not acceptable for some applications.

GPS has only been in use since 1995 yet humankind has been navigating the plan-
et and localizing for many thousands of years. In this chapter we will introduce the

classical navigation principles such as dead reckoning and the use of landmarks on
which modern robotic navigation is founded.

 Dead reckoning is the estimation of location based on estimated speed, direction
and time of travel with respect to a previous estimate. Figure 6.1 shows how a ship’s

position is updated on a chart. Given the average compass heading over the previ-
ous hour and a distance traveled the position at 3 p.m. can be found using elementary
geometry from the position at 2 p.m. However the measurements on which the up-
date is based are subject to both systematic and random error. Modern instruments

 Localization
in order to get somewhere we need to know where we are

Measuring speed at sea. A ship’s log is an instrument that provides an estimate of the distance
traveled. The oldest method of determining the speed of a ship at sea was the Dutchman’s log – a
fl oating object was thrown into the water at the ship’s bow and the time for it to pass the stern was
measured using an hourglass. Later came the chip log, a fl at quarter-circle of wood with a lead
weight on the circular side causing it to fl oat upright and resist towing. It was tossed overboard
and a line with knots at 50 foot intervals was payed out. A special hourglass, called a log glass,
ran for 30 s, and each knot on the line over that interval corresponds to approximately 1 nmi h−1
or 1 knot. A nautical mile (nmi) is now defi ned as 1.852 km. (Image modifi ed from Text-Book of
Seamanship, Commodore S. B. Luce 1891)

Fig. 6.1.
Location estimation by dead

reckoning. The ship’s position
at 3 p.m. is based on its position
at 2 p.m., the estimated distance

traveled since, and the average
compass heading

are quite precise but 500 years ago clocks, compasses and speed measurement were
primitive. The recursive nature of the process, each estimate is based on the previous

152 Chapter 6 · Localization

one, means that errors will accumulate over time and for sea voyages of many-years
this approach was quite inadequate.

The Phoenicians were navigating at sea more than 4 000 years ago and they did not
even have a compass – that was developed 2 000 years later in China. The Phoenicians
navigated with crude dead reckoning but wherever possible they used additional infor-
mation to correct their position estimate – sightings of islands and headlands, primi-
tive maps and observations of the Sun and the Pole Star.

A landmark is a visible feature in the environment whose location is known with
respect to some coordinate frame. Figure 6.2 shows schematically a map and a num-
ber of lighthouse landmarks. We fi rst of all use a compass to align the north axis of
our map with the direction of the north pole. The direction of a single landmark con-
strains our position to lie along a line on the map. Sighting a second landmark places
our position on another constraint line, and our position must be at their intersec-
tion – a process known as resectioning.� For example lighthouse A constrains us to
lie along the blue line. Lighthouse C constrains us to lie along the red line and the in-
tersection is our true position p.

However this process is critically reliant on correctly associating the observed
landmark with the feature on the map. If we mistake one lighthouse for another, for
example we see B but think it is C on the map, then the red dashed line leads to a

Celestial navigation. The position of celestial bodies in the sky is a predictable function of the time
and the observer’s latitude and longitude. This information can be tabulated and is known as
 ephemeris (meaning daily) and such data has been published annually in Britain since 1767 as the
“The Nautical Almanac” by HM Nautical Almanac Offi ce. The elevation of a celestial body with
respect to the horizon can be measured using a sextant, a handheld optical instrument.

Time and longitude are coupled, the star fi eld one hour later is the same as the star fi eld 15° to
the east. However the northern Pole Star, Polaris or the North Star, is very close to the celestial
pole and its elevation angle is independent of longitude and time, allowing latitude to be deter-
mined very conveniently from a single sextant measurememt.

Solving the longitude problem was the greatest scientifi c challenge to European governments
in the eighteenth century since it was a signifi cant impediment to global navigation and mari-
time supremacy. The British Longitude Act of 1714 created a prize of £20 000 which spurred the
development of nautical chronometers, clocks that could maintain high accuracy onboard ships.
More than fi fty years later a suitable chronometer was developed by John Harrison, a copy of
which was used by Captain James Cook on his second voyage of 1772–1775. After a three year
journey the error in estimated longitude was just 13 km. With accurate knowledge of time, the
elevation angle of stars could be used to estimate latitude and longitude. This technological ad-
vance enabled global exploration and trade. (Image courtesy archive.org)

Fig. 6.2.
Location estimation using a
map. Lines of sight from two
light-houses, A and C, and their
corresponding locations on the
map provide an estimate p of
our location. However if we mis-
take lighthouse B for C then we
obtain an incorrect estimate q

Resectioning is the estimation of posi-
tion by measuring the bearing angles to
known landmarks. Triangulation is the
estimation of position by measuring the
bearing angles to the unknown point
from each of the landmarks.

153

signifi cant error in estimated position – we would believe we were at q instead of p.
This belief would lead us to overestimate our distance from the coastline. If we de-
cided to sail toward the coast we would run aground on rocks and be surprised since
they were not where we expected them to be. This is unfortunately a very common
error and countless ships have foundered because of this fundamental data associa-
tion error. This is why lighthouses fl ash! In the eighteenth century technological ad-
vances enabled lighthouses to emit unique fl ashing patterns so that the identity of
the particular lighthouse could be reliably determined and associated with a point
on a navigation chart.

Of course for the earliest mariners there were no maps, or lighthouses or even
compasses. They had to create maps as they navigated by incrementally adding new
nonmanmade features to their maps just beyond the boundaries of what was already
known. It is perhaps not surprising that so many early explorers came to grief� and
that maps were tightly kept state secrets.

Robots operating today in environments without GPS face exactly the same prob-
lems as ancient navigators and, perhaps surprisingly, borrow heavily from navigational
strategies that are centuries old. A robot’s estimate of distance traveled will be imper-
fect and it may have no map, or perhaps an imperfect or incomplete map. Additional
information from observed features in the world is critical to minimizing a robot’s
 localization error but the possibility of data association error remains.

We can defi ne the localization problem more formally where x is the true, but un-
known, position of the robot and ' is our best estimate of that position. We also wish
to know the uncertainty of the estimate which we can consider in statistical terms as
the standard deviation associated with the position estimate '.

It is useful to describe the robot’s estimated position in terms of a probability den-
sity function (PDF) over all possible positions of the robot.� Some example PDFs are
shown in Fig. 6.3 where the magnitude of the function at any point is the relative like-
lihood of the vehicle being at that position. Commonly a Gaussian function is used
which can be described succinctly in terms of its mean and standard deviation. The
robot is most likely to be at the location of the peak (the mean) and increasingly less
likely to be at positions further away from the peak. Figure 6.3a shows a peak with
a small standard deviation which indicates that the vehicle’s position is very well
known. There is an almost zero probability that the vehicle is at the point indicated
by the vertical black line. In contrast the peak in Fig. 6.3b has a large standard devia-
tion which means that we are less certain about the location of the vehicle. There is
a reasonable probability that the vehicle is at the point indicated by the vertical line.

Radio-based localization. One of the earliest systems was LORAN,
based on the British World War II GEE system. LORAN trans-
mitters around the world emit synchronized radio pulses and a
receiver measures the difference in arrival time between pulses
from a pair of radio transmitters. Knowing the identity of two
transmitters and the time difference (TD) constrains the receiver
to lie along a hyperbolic curve shown on navigation charts as TD
lines. Using a second pair of transmitters (which may include
one of the fi rst pair) gives another hyperbolic constraint curve,
and the receiver must lie at the intersection of the two curves.

The Global Positioning System (GPS) was proposed in 1973
but did not become fully operational until 1995. It comprises
around 30 active satellites orbiting the Earth in six planes at a
distance of 20 200 km. A GPS receiver works by measuring the
time of travel of radio signals from four or more satellites whose
orbital position is encoded in the GPS signal. With four known
points in space and four measured time delays it is possible to
compute the (x, y, z) position of the receiver and the time. If the
GPS signals are received after refl ecting off some surface the dis-

tance traveled is longer and this will introduce an error in the
position estimate. This effect is known as multi-pathing and is
a common problem in large-scale industrial facilities.

Variations in the propagation speed of radio waves through the
atmosphere is the main cause of error in the position estimate.
However these errors vary slowly with time and are approximately
constant over large areas. This allows the error to be measured at
a reference station and transmitted as an augmentation to com-
patible nearby receivers which can offset the error – this is known
as Differential GPS (DGPS). This information can be transmitted
via the internet, via coastal radio networks to ships, or by satel-
lite networks such as WAAS , EGNOS or OmniSTAR to aircraft
or other users. RTK GPS achieves much higher precision in time
measurement by using phase information from the carrier signal.
The original GPS system deliberately added error, euphemistically
termed selective availability, to reduce its utility to military op-
ponents but this feature was disabled in May 2000. Other satellite
navigation systems include the Russian GLONASS, the European
 Galileo, and the Chinese Beidou.

Magellan’s 1519 expedition started with
237 men and 5 ships but most, including
Magellan, were lost along the way. Only
18 men and 1 ship returned.

Chapter 6 · Localization

For robot pose (x, y, θ) the PDF is a 4-dimen-
sional surface.

154 Chapter 6 · Localization

Using a PDF also allows for multiple hypotheses about the robot’s position. For ex-
ample the PDF of Fig. 6.3c describes a robot that is quite certain that it is at one of
four places. This is more useful than it seems at face value. Consider an indoor ro-
bot that has observed a vending machine and there are four such machines marked
on the map. In the absence of any other information the robot must be equally like-
ly to be in the vicinity of any of the four vending machines. We will revisit this ap-
proach in Sect. 6.7.

Determining the PDF based on knowledge of how the vehicle moves and its obser-
vations of the world is a problem in estimation which we can defi ne as:

the process of inferring the value of some quantity of interest, x, by processing data
that is in some way dependent on x.

For example a ship’s navigator or a surveyor estimates location by measuring the
bearing angles to known landmarks or celestial objects, and a GPS receiver estimates
latitude and longitude by observing the time delay from moving satellites whose lo-
cations are known.

For our robot localization problem the true and estimated state are vector quan-
tities so uncertainty will be represented as a covariance matrix, see Appendix G. The
diagonal elements represent uncertainty of the corresponding states, and the off-
diagonal elements represent correlations between states.

The value of a PDF is not the probability of being at that location. Consider a
small region of the xy-plane, the volume under that region of the PDF is the
probability of being in that region.

Fig. 6.3. Notions of vehicle posi-
tion and uncertainty in the xy-
plane, where the vertical axis is
the relative likelihood of the vehi-
cle being at that position, some-
times referred to as belief or bel(x).
Contour lines are displayed on the
lower plane. a The vehicle has low
position uncertainty, σ = 1; b the
vehicle has much higher position
uncertainty, σ = 20; c the vehicle
has multiple hypotheses for its po-
sition, each σ = 1

155

6.1
l
Dead Reckoning

 Dead reckoning is the estimation of a robot’s pose based on its estimated speed, di-
rection and time of travel with respect to a previous estimate.

An odometer is a sensor that measures distance traveled and sometimes also change
in heading direction. For wheeled vehicles this can be determined by measuring the
angular rotation of the wheels. The direction of travel can be measured using an elec-
tronic compass, or the change in heading can be measured using a gyroscope or dif-
ferential odometry.� These sensors are imperfect due to systematic errors such an
incorrect wheel radius or gyroscope bias, and random errors such as slip between
wheels and the ground. Robots without wheels, such as aerial and underwater robots,
can use visual odometry – a computer vision approach based on observations of the
world moving past the robot which is discussed in Sect. 14.7.4.

6.1.1
l
Modeling the Vehicle

The fi rst step in estimating the robot’s pose is to write a function, f(·), that describes
how the vehicle’s confi guration changes from one time step to the next. A vehicle model
such as Eq. 4.2 or 4.4 describes the evolution of the robot’s confi guration as a function of
its control inputs, however for real robots we rarely have access to these control inputs.
Most robotic platforms have proprietary motion control systems that accept motion
commands from the user (speed and direction) and report odometry information.

Instead of using Eq. 4.2 or 4.4 directly we will write a discrete-time model for the
evolution of confi guration based on odometry where δ hki = (δd, δθ) is the distance trav-
eled and change in heading over the preceding interval, and k is the time step. The
initial pose is represented in SE(2) as

We make a simplifying assumption that motion over the time interval is small so
the order of applying the displacements is not signifi cant. We choose to move forward
in the vehicle x-direction by δd, and then rotate by δθ giving the new confi guration

which we can represent concisely as a 3-vector x = (x, y, θ)

 (6.1)

which gives the new confi guration in terms of the previous confi guration and the odometry.
In practice odometry is not perfect and we model the error by imagining a random

number generator that corrupts the output of a perfect odometer. The measured output
of the real odometer is the perfect, but unknown, odometry (δd, δθ) plus the output of the
random number generator (vd, vθ). Such random errors are often referred to as noise, or

Measuring the difference in angular veloc-
ity of a left- and right-hand side wheel.

6.1 · Dead Reckoning

156 Chapter 6 · Localization

more specifi cally as sensor noise. The random numbers are not known and cannot be
measured, but we assume that we know the distribution from which they are drawn.

The robot’s confi guration at the next time step, including the odometry error, is

 (6.2)

where k is the time step, δ hki= (δd, δθ)T ∈ R2×1 is the odometry measurement and
v〈k〉 = (vd, vθ)T ∈R2×1 is the random measurement noise over the preceding interval.�

In the absence of any information to the contrary we model the odometry noise as
v = (vd, vθ)T ∼ N(0, V), a zero-mean multivariate Gaussian process� with variance

This constant matrix, the covariance matrix, is diagonal which means that the errors
in distance and heading are independent.� Choosing a value for V is not always easy
but we can conduct experiments or make some reasonable engineering assumptions.
In the examples which follow, we choose σd = 2 cm and σθ = 0.5° per sample interval
which leads to a covariance matrix of

>> V = diag([0.02, 0.5*pi/180].^2);

All objects of the Toolbox Vehicle superclass provide a method f() that imple-
ments the appropriate odometry update equation. For the case of a vehicle with bicy-
cle kinematics that has the motion model of Eq. 4.2 and the odometric update Eq. 6.2,
we create a Bicycle object

>> veh= Bicycle('covar', V)
veh =
Bicycle object
 L=1
 Superclass: Vehicle
 max speed=1, max steer input=0.5, dT=0.1, nhist=0
 V=(0.0004, 7.61544e-05)
 confi guration: x=0, y=0, theta=0

which shows the default parameters such as the vehicle’s length, speed, steering limit
and the sample interval which defaults to 0.1 s. The object provides a method to sim-
ulate motion over one time step

>> odo = veh.step(1, 0.3)
odo =
 0.1108 0.0469

where we have specifi ed a speed of 1 m s−1 and a steering angle of 0.3 rad. The function
updates the robot’s true confi guration and returns a noise corrupted odometer read-
ing.� With a sample interval of 0.1 s the robot reports that is moving approximately
0.1 m each interval and changing its heading by approximately 0.03 rad. The robot’s
true (but ‘unknown’) confi guration can be seen by

>> veh.x'
ans =
 0.1000 0 0.0309

Given the reported odometry we can estimate the confi guration of the robot after
one time step using Eq. 6.2 which is implemented by

>> veh.f([0 0 0], odo)
ans =
 0.1106 0.0052 0.0469

where the discrepancy with the exact value is due to the use of a noisy odometry mea-
surement.

The odometry noise is inside the model
of our process (vehicle motion) and is re-
ferred to as process noise .

In reality this is unlikely to be the case
since odometry distance errors tend to be
worse when change of heading is high.

We simulate the odometry noise using
MATLAB generated random numbers
that have zero-mean and a covariance
given by the diagonal of V. The random
noise means that repeated calls to this
function will return different values.

A normal distribution of angles on a circle
is actually not possible since θ ∈S1∉R,
that is angles wrap around 2π. However if
the covariance for angular states is small
this problem is minimal. A normal-like
distribution of angles on a circle is the
 von Mises distribution.

157

For the scenarios that we want to investigate we require the simulated robot to drive
for a long time period within a defi ned spatial region. The RandomPath class is a
driver that steers the robot to randomly selected waypoints within a specifi ed region.
We create an instance of the driver object and connect it to the robot

>> veh.add_driver(RandomPath(10))

where the argument to the RandomPath constructor specifi es a working region that
spans ±10 m in the x- and y-directions. We can display an animation of the robot
with its driver by

>> veh.run()

which repeatedly calls the step method and maintains a history of the true state
of the vehicle over the course of the simulation within the Bicycle object.� The
RandomPath and Bicycle classes have many parameters and methods which are
described in the online documentation.

 6.1.2
l
Estimating Pose

The problem we face, just like the ship’s navigator, is how to estimate our new pose given
the previous pose and noisy odometry. We want the best estimate of where we are and
how certain we are about that. The mathematical tool that we will use is the Kalman fi l-
ter which is described more completely in Appendix H. This fi lter provides the optimal
estimate of the system state, vehicle confi guration in this case, assuming that the noise
is zero-mean and Gaussian. The fi lter is a recursive algorithm that updates, at each time
step, the optimal estimate of the unknown true confi guration and the uncertainty asso-
ciated with that estimate based on the previous estimate and noisy measurement data.
The Kalman fi lter is formulated for linear systems but our model of the vehicle’s mo-
tion Eq. 6.2 is nonlinear – the tool of choice is the extended Kalman fi lter (EKF).

For this problem the state vector is the vehicle’s confi guration

and the prediction equations�

 (6.3)

 (6.4)

describe how the state and covariance evolve with time. The term '+hk+1i indicates an
estimate of x at time k + 1 based on information up to, and including, time k. rhki is the

The number of history records is indicat-
ed by nhist= in the displayed value
of the object. The hist property is an
array of structures that hold the vehicle
state at each time step.

6.1 · Dead Reckoning

The Kalman filter, Fig. 6.6, has two steps:
prediction based on the model and up-
date based on sensor data. In this dead-
reckoning case we use only the prediction
equation.

 Reverend Thomas Bayes (1702–1761)
was a nonconformist Presbyterian
minister. He studied logic and the-
ology at the University of Edinburgh
and lived and worked in Tunbridge-
Wells in Kent. There, through his as-
sociation with the 2nd Earl Stanhope
he became interested in mathematics
and was elected to the Royal Society
in 1742. After his death his friend
 Richard Price edited and published
his work in 1763 as An Essay towards
solving a Problem in the Doctrine of

Chances which contains a statement of a special case of Bayes’ theo-
rem. Bayes is buried in Bunhill Fields Cemetery in London.

Bayes’ theorem shows the relation between a conditional proba-
bility and its inverse: the probability of a hypothesis given observed
evidence and the probability of that evidence given the hypothesis.
Consider the hypothesis that the robot is at location X and it makes
a sensor observation S of a known landmark. The posterior prob-
ability that the robot is at X given the observation S is

where P(X) is the prior probability that the robot is at X (not ac-
counting for any sensory information), P(S |X) is the likelihood of
the sensor observation S given that the robot is at X, and P(S) is the
prior probability of the observation S. The Kalman fi lter, and the
Monte-Carlo estimator we discuss later in this chapter, are essen-
tially two different approaches to solving this inverse problem.

158 Chapter 6 · Localization

input to the process, which in this case is the measured odometry, so rhki= δ hki. Ï∈R3×3
is a covariance matrix representing uncertainty in the estimated vehicle confi guration. Í is
our estimate of the covariance of the odometry noise which in reality we do not know.

Fx and Fv are Jacobian matrices – the vector version of a derivative. They are obtained
by differentiating Eq. 6.2 and evaluating the result at v = 0 giving�

 (6.5)

 (6.6)

which are functions of the current state and odometry.� Jacobians are reviewed in
Appendix E. All objects of the Vehicle superclass provide methods Fx and Fv to
compute these Jacobians, for example

>> veh.Fx([0,0,0], [0.5, 0.1])
ans =
 1.0000 0 -0.0499
 0 1.0000 0.4975
 0 0 1.0000

where the fi rst argument is the state at which the Jacobian is computed and the sec-
ond is the odometry.

To simulate the vehicle and the EKF using the Toolbox we defi ne the initial covariance
to be quite small since, we assume, we have a good idea of where we are to begin with

>> P0 = diag([0.005, 0.005, 0.001].^2);

and we pass this to the constructor for an EKF object

>> ekf = EKF(veh, V, P0);

Running the fi lter for 1 000 time steps

>> ekf.run(1000);

drives the robot as before, along a random path. At each time step the fi lter updates
the state estimate using various methods provided by the Vehicle superclass.

We can plot the true path taken by the vehicle, stored within the Vehicle super-
class object, by

>> veh.plot_xy()

and the fi lter’s estimate of the path stored within the EKF object,

Rudolf Kálmán (1930–2016) was a mathematical system theorist born in Budapest. He obtained his
bachelors and masters degrees in electrical engineering from MIT, and Ph.D. in 1957 from Columbia
University. He worked as a Research Mathematician at the Research Institute for Advanced Study, in
Baltimore, from 1958–1964 where he developed his ideas on estimation. These were met with some
skepticism among his peers and he chose a mechanical (rather than electrical) engineering journal
for his paper A new approach to linear fi ltering and prediction problems because “When you fear step-
ping on hallowed ground with entrenched interests, it is best to go sideways”. He has received many
awards including the IEEE Medal of Honor, the Kyoto Prize and the Charles Stark Draper Prize.

 Stanley F. Schmidt (1926–2015) was a research scientist who worked at NASA Ames Research Center
and was an early advocate of the Kalman fi lter. He developed the fi rst implementation as well as
the nonlinear version now known as the extended Kalman fi lter. This led to its incorporation in
the Apollo navigation computer for trajectory estimation. (Extract from Kálmán’s famous paper
(1960) on the right reprinted with permission of ASME)

The time step notation hki is dropped to
reduce clutter.

Since the noise value cannot actually be
measured we use the mean value which
is zero.

159

>> hold on
>> ekf.plot_xy('r')

These are shown in Fig. 6.4 and we see some divergence between the true and esti-
mated robot path.

The covariance at the 700th time step is

>> P700 = ekf.history(700).P
P700 =
 1.8929 -0.5575 -0.1851
 -0.5575 3.4184 0.3400
 -0.1851 0.3400 0.0533

The matrix is symmetric and the diagonal elements are the estimated variance asso-
ciated with the states, that is σx

2, σy
2 and σθ

2 respectively. The standard deviation σx of
the PDF associated with the vehicle’s x-coordinate is

>> sqrt(P700(1,1))
ans =
 1.3758

There is a 95% chance that the robot’s x-coordinate is within the ±2σ bound or ±2.75 m
in this case. We can compute uncertainty for y and θ similarly.

The off-diagonal terms are correlation coefficients and indicate that the un-
certainties between the corresponding variables are related. For example the value
P1,3 = P3,1= –0.5575 indicates that the uncertainties in x and θ are related – error
in heading angle causes error in x-position and vice versa. Conversely new infor-
mation about θ can be used to correct θ as well as x. The uncertainty in position is
described by the top-left 2 × 2 covariance submatrix of Ï. This can be interpreted
as an ellipse defi ning a confi dence bound on position. We can overlay such ellipses
on the plot by

>> ekf.plot_ellipse('g')

as shown in Fig. 6.4. These correspond to the default 95% confi dence bound and
are plotted by default every 20 time steps. The vehicle started at the origin and as
it progresses we see that the ellipses become larger as the estimated uncertainty in-
creases. The ellipses only show x- and y-position but uncertainty in θ also grows.

The total uncertainty,� position and heading, is given by]detg(gÏ̀) and is plotted
as a function of time

>> ekf.plot_P();

as shown in Fig. 6.5 and we observe that it never decreases. This is because the sec-
ond term in Eq. 6.4 is positive defi nite which means that P, the position uncertainty,
can never decrease.

Fig. 6.4.
Deadreckoning using the EKF.

The true path of the robot, blue,
and the path estimated from

odometry in red. 95% confi dence
ellipses are indicated in green.

The robot starts at the origin

6.1 · Dead Reckoning

The elements of P have different units:
m2 and rad2. The uncertainty is therefore
a mixture of spatial and angular uncer-
tainty with an implicit weighting. If the
range of the position variables x, y� π
then positional uncertainty dominates.

160 Chapter 6 · Localization

Note that we have used the odometry covariance matrix V twice. The first usage,
in the Vehicle constructor, is the covariance V of the Gaussian noise source
that is added to the true odometry to simulate odometry error in Eq. 6.2. In a
real application this noise is generated by some physical process hidden inside
the robot and we would not know its parameters. The second usage, in the EKF
constructor, is ÷ which is our best estimate of the odometry covariance and is
used in the filter’s state covariance update equation Eq. 6.4.

The relative values of V and ÷ control the rate of uncertainty growth as shown
in Fig. 6.5. If ÷ > V then P will be larger than it should be and the filter is pessi-
mistic – it overestimates uncertainty and is less certain than it should be. If ÷ < V
then P will be smaller than it should be and the filter will be overconfident of its
estimate – the actual uncertainty is greater than the estimated uncertainty. In
practice some experimentation is required to determine the appropriate value
for the estimated covariance.

6.2
l
Localizing with a Map

We have seen how uncertainty in position grows without bound using dead-reckon-
ing alone. The solution, as the Phoenicians worked out 4 000 years ago, is to bring in
additional information from observations of known features in the world. In the ex-
amples that follow we will use a map that contains N fi xed but randomly located land-
marks whose positions are known.

The Toolbox supports a LandmarkMap object

>> map = LandmarkMap(20, 10)

Fig. 6.5.
Overall uncertainty is given by

d̂egtg(gÏ) which shows mono-
tonically increasing uncertainty
(blue). The effect of changing
the magnitude of Í is to change
the rate of uncertainty growth.
Curves are shown for Í = αV
where α = 1 / 2, 1, 2

Error ellipses. We consider the PDF of the robot’s position (ignor-
ing orientation) such as shown in Fig. 6.3 to be a 2-dimensional
Gaussian probability density function

where x= (x, y)T is the position of the robot, µx = (ú,ù)T is the esti-
mated mean position and Pxy ∈R2×2 is the position covariance ma-
trix, the top left of the covariance matrix P computed by the Kalman
fi lter. A horizontal cross-section is a contour of constant probability
which is an ellipse defi ned by the points x such that

Such error ellipses are often used to represent positional uncer-
tainty as shown in Fig. 6.4. A large ellipse corresponds to a wider
PDF peak and less certainty about position. To obtain a particu-
lar confi dence contour (eg. 99%) we choose s as the inverse of the
χ2 cumulative distribution function for 2 degrees of freedom, in
MATLAB that is chi2inv(C, 2)where C ∈ [0, 1] is the confi -
dence value. Such confi dence values can be passed to several EKF
methods when specifying error ellipses.

A handy scalar measure of total position uncertainty is the
area of the ellipse π r1r2 where the radii ri = λ̂i and λi are the
 eigenvalues of Pxy. Since det (Pxy) = Πλi the ellipse area – the
scalar uncertainty – is proportional to d̂getg(gPgxgy) . See also Ap-
pendices C.1.4 and G.

161

that in this case contains N = 20 landmarks uniformly randomly spread over a region
spanning ±10 m in the x- and y-directions and this can be displayed by

>> map.plot()

The robot is equipped with a sensor that provides observations of the landmarks
with respect to the robot as described by

 (6.7)

where x = (xv, yv, θ v)T is the vehicle state, and pi = (xi, yi)
T is the known location of

the ith landmark in the world frame.
To make this tangible we will consider a common type of sensor that measures the

range and bearing angle to a landmark in the environment, for instance a radar or a
scanning-laser rangefi nder such as shown in Fig. 6.22a. The sensor is mounted on-
board the robot so the observation of the ith landmark is

 (6.8)

where z = (r, β)T and r is the range, β the bearing angle, and w = (wr, wβ)T is a zero-
mean Gaussian random variable that models errors in the sensor

The constant diagonal covariance matrix indicates that range and bearing errors are
independent.�

For this example we set the sensor uncertainty to be σr = 0.1 m and σβ = 1° giving
a sensor covariance matrix

>> W = diag([0.1, 1*pi/180].^2);

We model this type of sensor with a RangeBearingSensor object�

>> sensor = RangeBearingSensor(veh, map, 'covar', W)

which is connected to the vehicle and the map, and the sensor covariance matrix W is
specifi ed along with the maximum range and the bearing angle limits. The reading
method provides the range and bearing to a randomly selected visible� landmark along
with its identity, for example

>> [z,i] = sensor.reading()
z =
 9.0905
 1.0334
i =
 17

The identity is an integer i ∈ [1, 20] since the map was created with 20 landmarks.
We have avoided the data association problem by assuming that we know the
identity of the sensed landmark. The position of landmark 17 can be looked up
in the map

>> landmark(17)
 -4.4615
 -9.0766

Using Eq. 6.8 the robot can estimate the range and bearing angle to the landmark
based on its own estimated position and the known position of the landmark from
the map. Any difference between the observation z# and the estimated observation

It also indicates that covariance is inde-
pendent of range but in reality covari-
ance may increase with range since the
strength of the return signal, laser or ra-
dar, drops rapidly (1/r4) with distance
(r) to the target.

A subclass of Sensor .

6.2 · Localizing with a Map

The landmark is chosen randomly from
the set of visible landmarks, those that
are within the field of view and the min-
imum and maximum range limits. If no
landmark is visible i is assigned a val-
ue of 0.

162 Chapter 6 · Localization

indicates an error in the robot’s pose estimate ' – it isn’t where it thought it was.
However this difference

 (6.9)

has real value and is key to the operation of the Kalman fi lter. It is called the inno-
vation since it represents new information. The Kalman fi lter uses the innovation to
correct the state estimate and update the uncertainty estimate in an optimal way.

The predicted state computed earlier using Eq. 6.3 and Eq. 6.4 is updated by

 (6.10)

 (6.11)

which are the Kalman fi lter update equations. These take the predicted values for the
next time step denoted with the + and compute the optimal estimate by applying land-
mark measurements from time step k + 1. The innovation is added to the estimated
state after multiplying by the Kalman gain matrix K which is defi ned as

 (6.12)

 (6.13)

where Ñ is the estimated covariance of the sensor noise and Hx and Hw are Jacobians
obtained by differentiating Eq. 6.8 yielding

 (6.14)

which is a function of landmark position, vehicle pose and landmark range; and

 (6.15)

The RangeBearingSensor object above includes methods h to implement Eq. 6.8
and Hx and Hw to compute these Jacobians respectively.

The Kalman gain matrix K in Eq. 6.10 distributes the innovation from the landmark
observation, a 2-vector, to update every element of the state vector – the position and
orientation of the vehicle. Note that the second term in Eq. 6.11 is subtracted from the
estimated covariance and this provides a means for covariance to decrease which was

Fig. 6.6.
Summary of extended Kalman
fi lter algorithm showing the pre-
diction and update phases

163

not possible for the dead-reckoning case of Eq. 6.4. The EKF comprises two phases:
prediction and update, and these are summarized in Fig. 6.6.

We now have all the piece to build an estimator that uses odometry and observa-
tions of map features. The Toolbox implementation is

>> map = LandmarkMap(20);
>> veh = Bicycle('covar', V);
>> veh.add_driver(RandomPath(map.dim));
>> sensor = RangeBearingSensor(veh, map, 'covar', W, 'angle',	
 [-pi/2 pi/2], 'range', 4, 'animate');
>> ekf = EKF(veh, V, P0, sensor, W, map);

The LandmarkMap constructor has a default map dimension of ±10 m which is ac-
cessed by its dim property.

Running the simulation for 1 000 time steps

>> ekf.run(1000);

shows an animation of the robot moving and observations being made to the land-
marks. We plot the saved results

>> map.plot()
>> veh.plot_xy();
>> ekf.plot_xy('r');
>> ekf.plot_ellipse('k')

which are shown in Fig. 6.7a. The error ellipses are now much smaller and many can
hardly be seen.

Figure 6.7b shows a zoomed view of the robot’s actual and estimated path – the robot
is moving from top to bottom. We can see the error ellipses growing as the robot moves
and then shrinking, just after a jag in the estimated path. This corresponds to the obser-
vation of a landmark. New information, beyond odometry, has been used to correct the
state in the Kalman fi lter update phase.

Figure 6.8a shows that the overall uncertainty is no longer growing monotonically.
When the robot sees a landmark it is able to dramatically reduce its estimated covariance.
Figure 6.8b shows the error associated with each component of pose and the pink back-
ground is the estimated 95% confi dence bound (derived from the covariance matrix) and
we see that the error is mostly within this envelope. Below this is plotted the landmark
observations and we see that the confi dence bounds are tight (indicating low uncertainty)
while landmarks are being observed but that they start to grow once observations stop.
However as soon as an observation is made the uncertainty rapidly decreases.

This EKF framework allows data from many and varied sensors to update the state which
is why the estimation problem is also referred to as sensor fusion. For example heading an-
gle from a compass, yaw rate from a gyroscope, target bearing angle from a camera, position

Fig. 6.7. a EKF localization show-
ing the true path of the robot (blue)
and the path estimated from odom-
etry and landmarks (red). Black
stars are landmarks. 95% confi -
dence ellipses are indicated in
green. The robot starts at the ori-
gin. b Closeup of the robot’s true
and estimated path

6.2 · Localizing with a Map

164 Chapter 6 · Localization

from GPS could all be used to update the state. For each sensor we need only to provide the
observation function h(·), the Jacobians Hx and Hw and some estimate of the sensor covari-
ance W. The function h(·) can be nonlinear and even noninvertible – the EKF will do the rest.

As discussed earlier for V, we also use W twice. The first usage, in the constructor for
the RangeBearingSensor object, is the covariance W of the Gaussian noise that
is added to the computed range and bearing to simulate sensor error as in Eq. 6.8.
In a real application this noise is generated by some physical process hidden in-
side the sensor and we would not know its parameters. The second usage, ö is our
best estimate of the sensor covariance which is used by the Kalman filter Eq. 6.12.

Fig. 6.8. a Covariance magnitude
as a function of time. Overall un-
certainty is given by d̂egtg(gP) and
shows that uncertainty does not
continually increase with time.
b Top: pose estimation error with
95% confi dence bound shown in
pink; bottom: observed landmarks
the bar indicates which landmark
is seen at each time step, 0 means
no observation

Simple landmarks. For educational purposes it might be appropriate
to use artifi cial landmarks that can be cheaply sensed by a camera.
These need to be not only visually distinctive in the environment
but also encode an identity . 2-dimensional bar codes such as QR
codes or ARTags are well suited for this purpose. The Toolbox sup-
ports a variant called AprilTags , shown to the right, and

>> tags = apriltags (im);

returns a vector of AprilTag objects whose elements correspond
to tags found in the image im. The centroid of the tag (centre
property) can be used to determine relative bearing (see page 161),
and the length of the edges (from the corners property) is a

A landmark might be some easily identifiable
pattern such as this April tag (36h11) which
can be detected in an image. Its position and
size in the image encodes the bearing angle
and range. The pattern itself encodes a num-
ber between 0 and 586 which could be used
to uniquely identify the landmark in a map.

function of distance . The tag object also includes an homography
(see Sect. 14.2.4) (H property) which encodes information about
the orientation of the plane of the April tag . More details about
April tags can be found at http://april.eecs.umich.edu.

Data association . So far we have assumed that the observed landmark
reveals its identity to us, but in reality this is rarely the case. Instead
we compare our observation to the predicted position of all currently
known landmarks and make a decision as to which landmark it is
most likely to be, or whether it is a new landmark. This decision
needs to take into account the uncertainty associated with the vehi-
cle’s pose, the sensor measurement and the landmarks in the map .
This is the data association problem . Errors in this step are potential-
ly catastrophic – incorrect innovation is coupled via the Kalman fi lter
to the state of the vehicle and all the other landmarks which increases
the chance of an incorrect data association on the next cycle. In
practice, fi lters only use a landmark when there is a very high confi -
dence in its estimated identity – a process that involves Mahalanobis
distance and χ2 confi dence tests . If the situation is ambiguous it
is best not to use the landmark – it can do more harm than good.

and future observations will reinforce one hypothesis and weaken
the others. The extended Kalman fi lter uses a Gaussian probability
model, with just one peak, which limits it to holding only one hypoth-
esis about the robot’s pose. (Picture: the wreck of the Tararua, 1881)

An alternative
is to use a multi-
hypothesis esti-
mator, such as the
particle fi lter that
we will discuss in
Sect. 6.7, which can
model the pos-
sibility of observ-
ing landmark A
or landmark B,

165

6.3
l
Creating a Map

So far we have taken the existence of the map for granted, an understandable mindset given
that maps today are common and available for free via the internet. Nevertheless somebody,
or something, has to create the maps we will use. Our next example considers the problem
of a robot moving in an environment with landmarks and creating a map of their locations.

As before we have a range and bearing sensor mounted on the robot which mea-
sures, imperfectly, the position of landmarks with respect to the robot. There are a total
of N landmarks in the environment and as for the previous example we assume that the
sensor can determine the identity of each observed landmark. However for this case we
assume that the robot knows its own location perfectly – it has ideal localization. This is
unrealistic but this scenario is an important stepping stone to the next section.�

Since the vehicle pose is known perfectly we do not need to estimate it, but we do
need to estimate the coordinates of the landmarks. For this problem the state vector
comprises the estimated coordinates of the M landmarks that have been observed so far

The corresponding estimated covariance Ï will be a 2M × 2M matrix. The state vec-
tor has a variable length since we do not know in advance how many landmarks exist
in the environment. Initially M = 0 and is incremented every time a previously un-
seen landmark is observed.

The prediction equation is straightforward in this case since the landmarks are as-
sumed to be stationary

 (6.16)

 (6.17)

We introduce the function g(·) which is the inverse of h(·) and gives the coordinates of
the observed landmark based on the known vehicle pose and the sensor observation

Since ' has a variable length we need to extend the state vector and the covariance
 matrix whenever we encounter a landmark we have not previously seen. The state vec-
tor is extended by the function y(·)

 (6.18)

 (6.19)

which appends the sensor-based estimate of the new landmark’s coordinates to those
already in the map. The order of feature coordinates within ' therefore depends on
the order in which they are observed.

The covariance matrix also needs to be extended when a new landmark is observed
and this is achieved by

where Yz is the insertion Jacobian

 (6.20)

A close and realistic approximation would
be a high-end RTK GPS+INS system op-
erating in an environment with no build-
ings or hills to obscure satellites.

6.3 · Creating a Map

166 Chapter 6 · Localization

that relates the rate of change of the extended state vector to the new observation. n is
the dimension of Ï prior to it being extended and

 (6.21)

 (6.22)

Gx is zero since g(·) is independent of the map in x. An additional Jacobian for
h(·) is

 (6.23)

which describes how the landmark observation changes with respect to landmark posi-
tion for a particular robot pose, and is implemented by the method Hp.

For the mapping case the Jacobian Hx used in Eq. 6.11 describes how the landmark
observation changes with respect to the full state vector. However the observation de-
pends only on the position of that landmark so this Jacobian is mostly zeros

 (6.24)

where Hpi is at the location in the vector corresponding to the state pi. This structure
represents the fact that observing a particular landmark provides information to es-
timate the position of that landmark, but no others.

The Toolbox implementation is

>> map = LandmarkMap(20);
>> veh = Bicycle(); % error free vehicle
>> veh.add_driver(RandomPath(map.dim));
>> W = diag([0.1, 1*pi/180].^2);
>> sensor = RangeBearingSensor(veh, map, 'covar', W);
>> ekf = EKF(veh, [], [], sensor, W, []);

the empty matrices passed to EKF indicate respectively that there is no estimated
odometry covariance for the vehicle (the estimate is perfect), no initial vehicle state
covariance, and the map is unknown. We run the simulation for 1 000 time steps

>> ekf.run(1000);

Fig. 6.9. EKF mapping results. a The
estimated landmarks are indicat-
ed by black dots with 95% confi -
dence ellipses (green), the true lo-
cation (black ª-marker) and the
robot’s path (blue). The landmark
estimates have not fully converged
on their true values and the es-
timated covariance ellipses can
only be seen by zooming; b the
nonzero elements of the fi nal co-
variance matrix

167

and see an animation of the robot moving and the covariance ellipses associated with
the map features evolving over time. The estimated landmark positions

>> map.plot();
>> ekf.plot_map('g');
>> veh.plot_xy('b');

are shown in Fig. 6.9a as 95% confi dence ellipses along with the true landmark positions
and the path taken by the robot. The covariance matrix has a block diagonal structure
which is shown graphically in Fig. 6.9b. The off-diagonal elements are zero, which implies
that the landmark estimates are uncorrelated or independent. This is to be expected since
observing one landmark provides no new information about any other landmark.

Internally the EKF object maintains a table to relate the landmark’s identity, re-
turned by the RangeBearingSensor, to the position of that landmark’s coordi-
nates in the state vector. For example the landmark with identity 6

>> ekf.landmarks(:,6)
ans =
 19
 71

was seen a total of 71 times during the simulation and comprises elements 19 and 20 of '
>> ekf.x_est(19:20)'
ans =
 -6.4803 9.6233

which is its estimated location. Its estimated covariance is a submatrix within Ï

>> ekf.P_est(19:20,19:20)
ans =
 1.0e-03 *
 0.2913 0.1814
 0.1814 0.3960

6.4
l
Localization and Mapping

Finally we tackle the problem of determining our position and creating a map at the
same time. This is an old problem in marine navigation and cartography – incremen-
tally extending maps while also using the map for navigation. Figure 6.10 shows what
can be done without GPS from a moving ship with poor odometry and infrequent ce-
lestial position “fi xes”. In robotics this problem is known as simultaneous localization
and mapping (SLAM) or concurrent mapping and localization (CML). This is often

Fig. 6.10. Map of the New Holland
coast (now eastern Australia) by
Captain James Cook in 1770. The
path of the ship and the map of the
coast were determined at the same
time. Numbers indicate depth in
fathoms (1.83 m) (National Library
of Australia, MAP NK 5557 A)

considered to be a “chicken and egg” problem – we need a map to localize and
we need to localize to make the map. However based on what we have learned
in the previous sections this problem is now quite straightforward to solve.

The state vector comprises the vehicle confi guration and the coordinates of
the M landmarks that have been observed so far

The estimated covariance is a (2M + 3) × (2M + 3) matrix and has the structure

where Ïvv is the covariance of the vehicle pose, Ïmm the covariance of the map land-
mark positions, and Ïvm is the correlation between vehicle and landmark states.

The predicted vehicle state and covariance are given by Eq. 6.3 and Eq. 6.4
and the sensor-based update is given by Eq. 6.10 to 6.15. When a new feature
is observed the state vector is updated using the insertion Jacobian Yz given by
Eq. 6.20 but in this case Gx is nonzero

6.4 · Localization and Mapping

168 Chapter 6 · Localization

 (6.25)

since the estimate of the new landmark depends on the state vector which now con-
tains the vehicle’s pose.

For the SLAM case the Jacobian Hx used in Eq. 6.11 describes how the landmark
observation changes with respect to the state vector. The observation will depend on
the position of the vehicle and on the position of the observed landmark and is

 (6.26)

where Hpi is at the location corresponding to the landmark pi. This is similar to Eq. 6.24
but with an extra nonzero block Hxv given by Eq. 6.14.

The Kalman gain matrix K distributes innovation from the landmark observation,
a 2-vector, to update every element of the state vector – the pose of the vehicle and the
position of every landmark in the map.

The Toolbox implementation is by now quite familiar

>> P0 = diag([.01, .01, 0.005].^2);
>> map = LandmarkMap(20);
>> veh = Bicycle('covar', V);
>> veh.add_driver(RandomPath(map.dim));
>> sensor = RangeBearingSensor(veh, map, 'covar', W);
>> ekf = EKF(veh, V, P0, sensor, W, []);

and the empty matrix passed to EKF indicates that the map is unknown. P0 is the ini-
tial 3 × 3 covariance for the vehicle state.

We run the simulation for 1 000 time steps

>> ekf.run(1000);

and as usual an animation is shown of the vehicle moving. We also see the covariance
 ellipses associated with the map features evolving over time. We can plot the results

>> map.plot();
>> ekf.plot_map('g');
>> ekf.plot_xy('r');
>> veh.plot_xy('b');

which are shown in Fig. 6.11.
Figure 6.12a shows that uncertainty is decreasing over time. The fi nal covariance

matrix is shown graphically in Fig. 6.12b and we see a complex structure. Unlike the
mapping case af Fig. 6.9 Ïmm is not block diagonal, and the fi nite off-diagonal terms

Fig. 6.11.
Simultaneous localization and
mapping showing the true (blue)
and estimated (red) robot path
superimposed on the true map
(black ª-marker). The estimat-
ed map features are indicated by
black dots with 95% confi dence
ellipses (green)

169

represent correlation between the landmarks in the map. The landmark uncertain-
ties never increase, the position prediction model is that they do not move, but they
also never drop below the initial uncertainty of the vehicle which was set in P0. The
block Ïvm is the correlation between errors in the vehicle pose and the landmark loca-
tions. A landmark’s location estimate is a function of the vehicle’s location and errors
in the vehicle location appear as errors in the landmark location – and vice versa.

The correlations are used by the Kalman fi lter to connect the observation of any
landmark to an improvement in the estimate of every other landmark in the map as
well as the vehicle pose. Conceptually it is as if all the states were connected by springs
and the movement of any one affects all the others.

The extended Kalman fi lter introduced here has a number of drawbacks. Firstly the
size of the matrices involved increase with the number of landmarks and can lead to
memory and computational bottlenecks as well as numerical problems. The underlying
assumption of the Kalman fi lter is that all errors are Gaussian and this is far from true for
sensors like laser rangefi nders which we will discuss later in this chapter. We also need
good estimates of covariance of the noise sources which in practice is challenging.

6.5
l
Rao-Blackwellized SLAM

We will briefl y and informally introduce the underlying principle of Rao-Blackwellized
SLAM of which FastSLAM is a popular and well known instance. The approach is motivated
by the fact that the size of the covariance matrix for EKF SLAM is quadratic in the number
of landmarks, and for large-scale environments becomes computationally intractable.

If we compare the covariance matrices shown in Fig. 6.9b and 6.12b we notice a stark
difference. In both cases we were creating a map of unknown landmarks but Fig. 6.9b is
mostly zero with a fi nite block diagonal structure whereas Fig. 6.12b has no zero values
at all. The difference is that for Fig. 6.9b we assumed the robot trajectory was known
exactly and that makes the landmark estimates independent – observing one landmark
provides information about only that landmark. The landmarks are uncorrelated, hence
all the zeros in the covariance matrix. If the robot trajectory is not known, the case for
Fig. 6.12b, then the landmark estimates are correlated – error in one landmark posi-
tion is related to errors in robot pose and other landmark positions. The Kalman fi lter
uses the correlation information so that a measurement of any one landmark provides
information to improve the estimate of all the other landmarks and the robot’s pose.

In practice we don’t know the true pose of the robot but imagine a multi-hypothesis
estimator� where every hypothesis represents a robot trajectory that we assume is cor-
rect. This means that the covariance matrix will be block diagonal like Fig. 6.9b – rather
than a fi lter with a 2N × 2N covariance matrix we can have N simple fi lters which are

Fig. 6.12. Simultaneous localiza-
tion and mapping. a Covariance
versus time; b the fi nal covariance
matrix

6.5 · Rao-Blackwellized SLAM

Such as the particle filter that we will dis-
cuss in Sect. 6.7.

170 Chapter 6 · Localization

each independently estimating the position of a single landmark and have a 2 × 2 cova-
riance matrix. Independent estimation leads to a considerable saving in both memory
and computation. Importantly though, we are only able to do this because we assumed
that the robot’s estimated trajectory is correct.

Each hypothesis also holds an estimate of the robot’s trajectory to date. Those hypoth-
eses that best explain the landmark measurements are retained and propagated while
those that don’t are removed and recycled. If there are M hypotheses the overall compu-
tational burden falls from O(N2) for the EKF SLAM case to O(M log N) and in practice
works well for M in the order of tens to hundreds but can work for a value as low as M = 1.

6.6
l
Pose Graph SLAM

An alternative approach to the SLAM problem is to separate it into two components: a
front end and a back end, connected by a pose graph as shown in Fig. 6.13. The robot’s
path is considered to be a sequence of distinct poses and the task is to estimate those
poses. Constraints between the unknown poses are based on measurements from a
variety of sensors including odometry , laser scanners and cameras . The problem is
formulated as a directed graph as shown in Fig. 6.14. A node corresponds to a robot
pose or a landmark position. An edge between two nodes represents a spatial con-
straint between the nodes derived from some sensor data.

As the robot progresses it compounds an increasing number of uncertain relative
poses so that the cumulative error in the pose of the nodes will increase – the prob-
lem with dead reckoning we discussed earlier. This is shown in exaggerated fashion in
Fig. 6.14 where the robot is traveling around a square. By the time the robot reaches
node 4 the error is signifi cant. However when it makes a measurement of node 1 a con-
straint is added – the dashed edge – indicating that the nodes are closer than the esti-
mated relative pose based on the chain of relative poses from odometry: 1ξ2

⊕ 2ξ3
⊕ 3ξ4

#.
The back-end algorithm will then pull all the nodes closer to their correct pose.

The front end adds new nodes as the robot travels� as well as edges that defi ne con-
straints between poses. For example, when moving from one place to another wheel
odometry gives an estimate of distance and change in orientation which is a constraint.
In addition the robot’s exteroceptive sensors may observe the relative position of a land-
mark and this also adds a constraint. Every measurement adds a constraint – an edge
in the graph. There is no limit to the number of edges entering or leaving a node.

The back end adjusts the poses of the nodes� so that the constraints are satisfi ed as
well as possible, that is, that the sensor observations are best explained.

Figure 6.15 shows the notation associated with two poses in the graph. Coordinate
frames {i} and {j} are associated with robot poses i and j respectively and we seek to
estimate 0ξi and 0ξj in the world coordinate frame. The robot makes a measurement of
the relative pose iξ#

j which will, in general, be different to the relative pose iξj inferred
from the poses 0ξi and 0ξj . This difference, or innovation , is caused by error in the sen-
sor measurement iξ#

j and/or the node poses 0ξi and 0ξj and we use it to adjust the poses
of the nodes . However there is insuffi cient information to determine where the error
lies so naively adjusting 0ξi and 0ξj to better explain the measurement might increase

Fig. 6.13.
Pose-graph SLAM system. The
front end creates nodes as the
robot travels, and creates edges
based on sensor data. The back
end adjusts the node positions
to minimize total error

Typically a new place is declared every
meter or so of travel, or after a sharp turn.

Also the positions of landmarks as we
discuss later in this section.

171

the error in another part of the graph – we need to minimize the error consistently
over the whole graph.

The fi rst step is to express the error associated with the graph edge in terms of
the sensor measurement and our best estimates of the node poses with respect to the
world frame�

 (6.27)

which is ideally zero.
We can formulate this as a minimization problem and attempt to fi nd the poses of

all the nodes x = {ξ1, ξ2� ξN} that minimizes the error across all the edges

 (6.28)

where x is the state of the pose graph and contains the pose of every node, and Fk(x)
is a nonnegative scalar cost associated with the edge k connecting node i to node j.

We convert the edge pose error in Eq. 6.27 to a vector representation ξε ∼ (x, y, θ)
which is a function fk(x) ∈R3 of the state. The scalar cost can be obtained from a
quadratic expression

 (6.29)

where Ωk is a positive-defi nite information matrix used as a weighting term.� Although
Eq. 6.29 is written as a function of all poses x, it in fact depends only on the pose of its two
vertices ξi and ξj and the measurement iξ#

j. Solving Eq. 6.28 is a complex optimization prob-
lem which does not have a closed-form solution, but this kind of nonlinear least squares
problem can be solved numerically if we have a good initial estimate of x. Specifi cally
this is a sparse nonlinear least squares problem which is discussed in Sect. F.2.4.

Fig. 6.14.
Pose-graph SLAM example.
Places are shown as circular

nodes and have an associated
pose. Landmarks are shown as
star-shaped nodes and have an

associated position. Edges repre-
sent a measurement of a relative
pose or position with respect to
the node at the tail of the arrow

Fig. 6.15.
Pose graph notation . The light

grey robot is the estimated pose
of {j} based on the sensor mea-
surement iξj

#. The yellow ellipse
indicates uncertainty associated

with that measurement

We have used our pose notation here but
in the literature measurements are typi-
cally denoted by z, error by e and pose
or position by x.

In practice this matrix is diagonal reflect-
ing confidence in the x-, y- and θ -direc-
tions. The ”bigger” (in a matrix sense) Ω
is, the more the edge matters in the op-
timization procedure. Different sensors
have different accuracy and this must be
taken into account. Information from a
high-quality sensor should be given more
weight than information from a low-qual-
ity sensor.

6.6 · Pose Graph SLAM

172 Chapter 6 · Localization

The edge error fk(x) can be linearized about the current state x0 of the pose graph

where f0,k = fk(x0) and

is a Jacobian matrix which depends only on the pose of its two vertices ξi and ξj so it
is mostly zeros

and more details are provided in Appendix E.
There are many ways to compute the Jacobians but here will demonstrate use of

the MATLAB Symbolic Math Toolbox™
>> syms xi yi ti xj yj tj xm ym tm assume real
>> xi_e = inv(SE2(xm, ym, tm)) * inv(SE2(xi, yi, ti)) * SE2(xj, yj, tj);
>> fk = simplify(xi_e.xyt);

and the Jacobian which describes how the function fk varies with respect to ξi is

>> jacobian (fk, [xi yi ti]);
>> Ai = simplify (ans)
Ai =
[-cos(ti+tm), -sin(ti+tm), yj*cos(ti+tm)-yi*cos(ti+tm)+xi*sin(ti+tm)-xj*sin(ti+tm)]
[sin(ti+tm), -cos(ti+tm), xi*cos(ti+tm)-xj*cos(ti+tm)+yi*sin(ti+tm)-yj*sin(ti+tm)]
[0, 0, -1]

and we follow a similar procedure for Bj .
It is quite straightforward to solve this type of pose-graph problem with the Toolbox.

We load a simple pose graph, similar to Fig. 6.14, from a data fi le�

>> pg = PoseGraph('pg1.g2o')
loaded g2o format fi le: 4 nodes, 4 edges in 0.00 sec

which returns a Toolbox PoseGraph object that describes the pose graph. We can
visualize this by�

>> pg.plot()

The file format is one used by the popular
posegraph optimization package g2o which
you can find at http://openslam.org.

The nodes have an orientation which is in
the z-direction, rotate the graph to see this.

Fig. 6.16.
Pose graph optimization show-
ing the result over consecutive
iterations, the fi nal confi gura-
tion is the square shown in bold

173

The optimization reduces the error in the network while animating the changing
pose of the nodes

>> pg.optimize('animate')
solving....done in 0.075 sec. Total cost 316.88
solving....done in 0.0033 sec. Total cost 47.2186
 .
 .
solving....done in 0.0023 sec. Total cost 3.14139e-11

The displayed text indicates that the total cost is decreasing while the graphics show
the nodes moving into a confi guration that minimizes the overall error in the network.
The pose graph confi gurations are overlaid and shown in Fig. 6.16.

Now let’s look a much larger example based on real robot data

>> pg = PoseGraph('killian-small.toro');
loaded TORO/LAGO format fi le: 1941 nodes, 3995 edges in 0.68 sec

which we can plot�

>> pg.plot()

and this is shown in Fig. 6.17a. Note the mass of edges in the center of the graph, and
if you zoom in you can see these in detail. We optimize the pose graph by

>> pg.optimize()
solving....done in 0.91 sec. Total cost 1.78135e+06
 .
 .
solving....done in 1.1 sec. Total cost 5.44567

and the fi nal confi guration is shown in Fig. 6.17b. The original pose graph had severe
pose errors from accumulated odometry error which meant that two trips along the
corridor were initially very poorly aligned.

The pose graph can also include landmarks as shown in Fig. 6.18. Landmarks have
a position Pj ∈R2 not a pose, and therefore differ from the nodes discussed so far.
To accomodate this we redefi ne the state vector to be x = {ξ1, ξ2� ξN | P1, P2�PM}
which includes N robot poses and M landmark positions. The robot at pose i observes
landmark j at range and bearing z# = (r#, β #) which is converted to Cartesian form in
frame {i}

There are a lot of nodes and this takes
a few seconds.

Fig. 6.17. Pose graph with 1 941
nodes and 3 995 edges from the
MIT Killian Court dataset. a Ini-
tial confi guration; b fi nal confi gu-
ration after optimization

6.6 · Pose Graph SLAM

174 Chapter 6 · Localization

The estimated position of the landmark in frame {i} is

and the error vector is

We follow a similar approach as earlier but the Jacobian matrix is now

which again is mostly zero but the two nonzero blocks now have different widths

and the solution can be achieved as before, see Sect. F.2.3 for more details.
Pose graph optimization results in a graph that has optimal relative poses and

positions between the nodes but the absolute poses and positions are not neces-
sarily correct. To remedy this we can fix or anchor one or more nodes (poses or
landmarks) and not update them during the optimization, and this is discussed
in Sect. F.2.4.

In practice the front and back ends can operate asynchronously. The graph is
continually extended by the front end while the back end runs periodically to opti-

Fig. 6.18.
Notation for a pose graph with a
landmark indicated by the star-
shaped symbol. The measured
position of landmark j with re-
spect to robot pose i is iP j

#. The
yellow ellipse indicates uncer-
tainty associated with that mea-
surement

Monte Carlo methods are a class of computational algorithms that rely on repeated random sam-
pling to compute their results. An early example of this idea is Buffon’s needle problem posed in
the eighteenth century by Georges-Louis Leclerc (1707–1788), Comte de Buffon: Suppose we have
a fl oor made of parallel strips of wood of equal width t, and a needle of length l is dropped onto the
fl oor. What is the probability that the needle will lie across a line between the strips? If n needles
are dropped and h cross the lines, the probability can be shown to be h/n = 2l/πt and in 1901 an
Italian mathematician Mario Lazzarini performed the experiment, tossing a needle 3408 times, and
obtained the estimate π ≈ 355/113 (3.14159292).

Monte Carlo methods are often used when simulating systems with a large number of coupled de-
grees of freedom with signifi cant uncertainty in inputs. Monte Carlo methods tend to be used when it
is infeasible or impossible to compute an exact result with a deterministic algorithm. Their reliance
on repeated computation and random or pseudo-random numbers make them well suited to cal-
culation by a computer. The method was developed at Los Alamos as part of the Manhattan project
during WW II by the mathematicians John von Neumann, Stanislaw Ulam and Nicholas Metropolis.
The name Monte Carlo alludes to games of chance and was the code name for the secret project.

175

mize the pose graph. Since the graph is only ever extended in a local region it is pos-
sible to optimize just a local subset of the pose graph and less frequently optimize
the entire graph. If nodes are found to be equivalent after optimization they can be
merged. The parallel tracking and mapping system (PTAM) is a vision-based SLAM
system that has two parallel computational threads. One is the map builder which
performs the front- and back-end tasks, adding landmarks to the pose graph based
on estimated camera (vehicle) pose and performing graph optimization. The other
thread is the localizer which matches observed landmarks to the estimated map to
estimate the camera pose.

6.7
l
Sequential Monte-Carlo Localization

 The estimation examples so far have assumed that the error in sensors such as odom-
etry and landmark range and bearing have a Gaussian probability density function. In
practice we might fi nd that a sensor has a one sided distribution (like a Poisson dis-
tribution) or a multi-modal distribution with several peaks. The functions we used in
the Kalman fi lter such as Eq. 6.2 and Eq. 6.7 are strongly nonlinear which means that
sensor noise with a Gaussian distribution will not result in a Gaussian error distribu-
tion on the value of the function – this is discussed further in Appendix H. The prob-
ability density function associated with a robot’s confi guration may have multiple
peaks to refl ect several hypotheses that equally well explain the data from the sensors
as shown for example in Fig. 6.3c.

The Monte-Carlo estimator that we discuss in this section makes no assumptions
about the distribution of errors. It can also handle multiple hypotheses for the state
of the system. The basic idea is disarmingly simple. We maintain many different val-
ues of the vehicle’s confi guration or state vector. When a new measurement is avail-
able we score how well each particular value of the state explains what the sensor
just observed. We keep the best fi tting states and randomly sample from the predic-
tion distribution to form a new generation of states. Collectively these many possi-
ble states and their scores form a discrete approximation of the probability density
function of the state we are trying to estimate. There is never any assumption about
Gaussian distributions nor any need to linearize the system. While computationally
expensive it is quite feasible to use this technique with today’s standard computers.
If we plot these state vectors as points in the state space we have a cloud of particles
hence this type of estimator is often referred to as a particle fi lter.

We will apply Monte-Carlo estimation to the problem of localization using odom-
etry and a map. Estimating only three states x = (x, y, θ) is computationally tractable
to solve with straightforward MATLAB code. The estimator is initialized by creating
N particles xi, i ∈ [1, N] distributed randomly over the confi guration space of the ve-
hicle. All particles have the same initial weight or likelihood wi = 1 / N. The steps in
the main iteration of the algorithm are:

1. Apply the state update to each particle

 where rhki is the input to the system or the measured odometry rhki= δ hki. We also
add a random vector q hki which represents uncertainty in the model or the odom-
etry. Often q is drawn from a Gaussian random variable with covariance Q but any
physically meaningful distribution can be used. The state update is often simplifi ed to

 where q hki represents uncertainty in the pose of the vehicle.

6.7 · Sequential Monte-Carlo Localization

176 Chapter 6 · Localization

2. We make an observation z# of landmark j which has, according to the map, coor-
dinate pj. For each particle we compute the innovation

 which is the error between the predicted and actual landmark observation. A like-
lihood function provides a scalar measure of how well the particular particle ex-
plains this observation. In this example we choose a likelihood function

 where w is referred to as the importance or weight of the particle, L is a covariance-like
 matrix, and w0 > 0 ensures that there is a fi nite probability of a particle being retained
despite sensor error. We use a quadratic exponential function only for convenience,
the function does not need to be smooth or invertible but only to adequately describe
the likelihood of an observation.�

3. Select the particles that best explain the observation, a process known as resam-
pling� or importance sampling. A common scheme is to randomly select particles
according to their weight. Given N particles xi with corresponding weights wi we
fi rst normalize the weights w′i = wi / ΣN

i=1wi and construct a cumulative histogram
cj = Σ j

i=1w′i. We then draw a uniform random number r ∈ [0, 1] and fi nd

 where particle i is selected for the next generation. The process is repeated N times.
Particles with a large weight will correspond to a larger fraction of the vertical

span of the cumulative histogram and therefore be more likely to be chosen. The
result will have the same number of particles, some will have been copied� multi-
ple times, others not at all. Resampling is a critical component of the particle fi lter
without which the fi lter would quickly produce a degenerate set of particles where
a few have high weights and the bulk have almost zero weight.

These steps are summarized in Fig. 6.19. The Toolbox implementation is broadly
similar to the previous examples. We create a map

>> map = LandmarkMap(20);

and a robot with noisy odometry and an initial condition
>> W = diag([0.1, 1*pi/180].^2);
>> veh = Bicycle('covar', V);
>> veh.add_driver(RandomPath(10));

Step 1 of the next iteration will spread out
these copies through the addition of qhki.

Fig. 6.19.
The particle fi lter estimator
showing the prediction and up-
date phases

There are many resampling strategies
for particle filters, both the resampling
algorithm and the resampling frequency.
Here we use the simplest strategy known
variously as multinomial resampling,
simple random resampling or select with
replacement, at every time step. This is
sometimes referred to as bootstrap par-
ticle filtering or condensation.

In this bootstrap type filter the weight is
computed at each step, with no depen-
dence on previous values.

177

and then a sensor with noisy readings

>> V = diag([0.005, 0.5*pi/180].^2);
>> sensor = RangeBearingSensor(veh, map, 'covar', W);

For the particle fi lter we need to defi ne two covariance matrices. The fi rst is the covariance
of the random noise added to the particle states at each iteration to represent uncertainty
in confi guration. We choose the covariance values to be comparable with those of W

>> Q = diag([0.1, 0.1, 1*pi/180]).^2;

and the covariance of the likelihood function applied to innovation

>> L = diag([0.1 0.1]);

Finally we construct a ParticleFilter estimator

>> pf = ParticleFilter(veh, sensor, Q, L, 1000);

which is confi gured with 1 000 particles. The particles are initially uniformly distrib-
uted over the 3-dimensional confi guration space.

We run the simulation for 1 000 time steps

>> pf.run(1000);

and watch the animation, two snapshots of which are shown in Fig. 6.20. We see the
particles move about as their states are updated by odometry and random pertur-
bation. The initially randomly distributed particles begin to aggregate around those
regions of the confi guration space that best explain the sensor observations that are
made. In Darwinian fashion these particles become more highly weighted and survive
the resampling step while the lower weight particles are extinguished.

The particles approximate the probability density function of the robot’s confi g-
uration. The most likely confi guration is the expected value or mean of all the par-
ticles. A measure of uncertainty of the estimate is the spread of the particle cloud or
its standard deviation. The ParticleFilter object keeps the history of the mean
and standard deviation of the particle state at each time step, taking into account the
particle weighting�. As usual we plot the results of the simulation

>> map.plot();
>> veh.plot_xy('b');

and overlay the mean of the particle cloud

>> pf.plot_xy('r');

Fig. 6.20. Particle filter results
showing the evolution of the par-
ticle cloud (green dots) over time.
The vehicle is shown as a blue tri-
angle. The red diamond is a way-
point, or temporary goal. When
the simulation is running this is
actually a 3D plot with orientation
plotted in the z-direction, rotate
the plot to see this dimension

6.7 · Sequential Monte-Carlo Localization

Here we take statistics over all particles.
Other strategies are to estimate the ker-
nel density at every particle – the sum
of the weights of all neighbors within a
fixed radius – and take the particle with
the largest value.

178 Chapter 6 · Localization

which is shown in Fig. 6.21. The initial part of the estimated path has quite high stan-
dard deviation since the particles have not converged on the true confi guration. We
can plot the standard deviation against time

>> plot(pf.std(1:100,:))

and this is shown in Fig. 6.21b. We can see the sudden drop between timesteps 10–20 as
the particles that are distant from the true solution are eliminated. As mentioned at the
outset the particles are a sampled approximation to the PDF and we can display this as

>> pf.plot_pdf()

The problem we have just solved is known in robotics as the kidnapped robot problem
where a robot is placed in the world with no idea of its initial location. To represent
this large uncertainty we uniformly distribute the particles over the 3-dimensional
confi guration space and their sparsity can cause the particle fi lter to take a long time
to converge unless a very large number of particles is used. It is debatable whether
this is a realistic problem. Typically we have some approximate initial pose of the ro-
bot and the particles would be initialized to that part of the confi guration space. For
example, if we know the robot is in a corridor then the particles would be placed in
those areas of the map that are corridors, or if we know the robot is pointing north
then set all particles to have that orientation.

Setting the parameters of the particle fi lter requires a little experience and the best
way to learn is to experiment. For the kidnapped robot problem we set Q and the num-
ber of particles high so that the particles explore the confi guration space but once the
fi lter has converged lower values could be used. There are many variations on the par-
ticle fi lter in the shape of the likelihood function and the resampling strategy.

6.8
l
Application: Scanning Laser Rangefinder

As we have seen, robot localization is informed by measurements of range and bearing
to landmarks. Sensors that measure range can be based on many principles such as laser
rangefi nding (Fig. 6.22a, 6.22b), ultrasonic ranging (Fig. 6.22c), computer vision or radar.

A laser rangefi nder emits short pulses of infra-red laser light and measures how
long it takes for the refl ected pulse to return. Operating range can be up to 50 m with
an accuracy of the order of centimeters.

A scanning laser rangefi nder , as shown in Fig. 6.22a, contains a rotating laser range-
fi nder and typically emits a pulse every quarter, half or one degree over an angular
range of 180 or 270 degrees and returns a planar cross-section of the world in polar
coordinate form {(ri, θi), i ∈ 1� N}. Some scanning laser rangefi nders also measure

Fig. 6.21. Particle filter results.
a True (blue) and estimated (red)
robot path; b standard deviation
of the particles versus time

179

the return signal strength, remission , which is a function of the infra-red refl ectivity
of the surface. The rangefi nder is typically confi gured to scan in a plane parallel to,
and slightly above, the ground.

Laser rangefi nders have advantages and disadvantages compared to cameras and com-
puter vision which we discuss in Parts IV and V of this book. On the positive side laser
scanners provide metric data, that is, the actual range to points in the world in units of
meters, and they can work in the dark. However laser rangefi nders work less well than
cameras outdoors since the returning laser pulse is overwhelmed by infra-red light from
the sun. Other disadvantages include providing only a linear cross section of the world,
rather than an area as a camera does; inability to discern fi ne texture or color; having mov-
ing parts; as well as being bulky, power hungry and expensive compared to cameras.

Laser Odometry

A common application of scanning laser rangefi nders is laser odometry, estimating
the change in robot pose using laser scan data rather than wheel encoder data . We will
illustrate this with laser scan data from a real robot

>> pg = PoseGraph('killian.g2o', 'laser');
loaded g2o format fi le: 3873 nodes, 4987 edges in 1.78 sec
 3873 laser scans: 180 beams, fov -90 to 90 deg, max range 50

and each scan is associated with a vertex of this already optimized pose graph. The
range and bearing data for the scan at node 2 580 is

>> [r, theta] = pg.scan(2580);
>> about r theta
r [double] : 1x180 (1.4 kB)
theta [double] : 1x180 (1.4 kB)

represented by two vectors each of 180 elements. We can plot these in polar form

>> polar(theta, r)

or convert them to Cartesian coordinates and plot them

>> [x,y] = pol2cart (theta, r);
>> plot (x, y, '.')

The method scanxy is a simpler way to perform these operations. We load scans
from two closely spaced nodes

>> p2580 = pg.scanxy(2580);
>> p2581 = pg.scanxy(2581);
>> about p2580
p2580 [double] : 2x180 (2.9 kB)

which creates two matrices whose columns are Cartesian point coordinates and these
are overlaid in Fig. 6.23a.�

To determine the change in pose of the robot between the two scans we need to align
these two sets of points and this can be achieved with iterated closest- point-matching

Fig. 6.22.
Robot rangefi nders . a A scan-
ning laser rangefi nder with a

maximum range of 30 m, an an-
gular range of 270 deg in 0.25 deg

intervals at 40 scans per second
(courtesy of Hokuyo Automatic
Co. Ltd.); b a low-cost time-of-

fl ight rangefi nder with maximum
range of 20 cm at 10 measure-

ments per second (VL6180 cour-
tesy of SparkFun Electronics);
c a low-cost ultrasonic range-

fi nder with maximum range of
6.5 m at 20 measurements per
second (LV-MaxSonar-EZ1

courtesy of SparkFun Electronics)

Note that the points close to the laser, at
coordinate (0,0) in this sensor reference
frame are much more tightly clustered
and this is a characteristic of laser scan-
ners where the points are equally spaced
in angle not over an area.

6.8 · Application: Scanning Laser Rangefinder

180 Chapter 6 · Localization

or ICP. This is implemented by the Toolbox function icp � and we pass in the second
and fi rst set of points, each organized as a 2 × N matrix

>> T = icp(p2581, p2580, 'verbose' , 'T0', transl2(0.5, 0), 'distthresh', 3)
[1]: n=132/180, d= 0.466, t = (0.499 -0.006), th = (-0.0) deg
[2]: n=130/180, d= 0.429, t = (0.500 -0.009), th = (0.0) deg
 .
 .
[6]: n=130/180, d= 0.425, t = (0.503 -0.011), th = (0.0) deg

T =
 1.0000 -0.0002 0.5032
 0.0002 1.0000 -0.0113
 0 0 1.0000

and the algorithm converges after a few iterations with an estimate of T ∼ 2 580ξ2 581
∈ SE(2).� This transform maps points from the second scan so that they are as close as
possible to the points in the fi rst scan. Figure 6.23b shows the fi rst set of points trans-
formed and overlaid on the second set and we see good alignment. The translational
part of this transform is an estimate of the robot’s motion between scans – around
0.50 m in the x-direction. The nodes of the graph also hold time stamp information
and these two scans were captured

>> pg.time(2581)-pg.time(2580)
ans =
 1.7600

seconds apart which indicates that the robot is moving quite slowly – a bit under 0.3 m s−1.
At each iteration ICP assigns each point in the second set to the closest point in the

fi rst set and then computes a transform that minimizes the sum of distances between
all corresponding points. Some points may not actually be corresponding but as long
as enough are, the algorithm will converge. The 'verbose' option causes data about
each iteration to be displayed and d is the total distance between corresponding points
which is decreasing but does not reach zero. This is due to many factors. The beams
from the laser at the two different poses will not strike the walls at the same location
so ICP’s assumption about point correspondence is not actually valid.�

In practice there are additional challenges. Some laser pulses will not return to the sensor
if they fall on a surface with low refl ectivity or on an oblique polished surface that specu-
larly refl ects the pulse away from the sensor – in these cases the sensor typically reports its
maximum value. People moving through the environment change the shape of the world
and temporarily cause a shorter range to be reported. In very large spaces all the walls
may be beyond the maximum range of the sensor. Outdoors the beams can be refl ected
from rain drops, absorbed by fog or smoke and the return pulse can be overwhelmed by
ambient sunlight. Finally the laser rangefi nder, like all sensors, has measurement noise.

Fig. 6.23. Laser scan matching.
a Laser scans from location 2 580
(blue) and 2 581 (red); b location
2580 points (blue) and transformed
points from location 2 581 (red)

The ICP algorithm is described more fully
for the SE(3) case in Sect. 14.5.2.

We demonstrate the principle using ICP
but in practice more robust algorithms
are used. Here we provide an initial esti-
mate of the translation between frames,
based on odometry, so as to avoid get-
ting stuck in a local minimum. ICP works
poorly in plain corridors where the points
lie along lines – this example was delib-
erately chosen because it has wall seg-
ments in orthogonal directions.

To remove invalid correspondences
we pass the 'distthresh' op-
tion to icp(). This causes any corre-
spondences that involve a distance
more than three times the median dis-
tance between all corresponding points
to be dropped. In the icp() output
the notation 132/180 means that
132 out of 180 possible correspondences
met this test, 48 were rejected.

181

Laser-Based Map Building

If the robot pose is suffi ciently well known, through some localization process, then
we can transform all the laser scans to a global coordinate frame and build a map.
Various map representations are possible but here we will outline how to build an oc-
cupancy grid as discussed in Chap. 5.

For a robot at a given pose, each beam in the scan is a ray and tells us several things.
From the range measurement we can determine the coordinates of a cell that contains
an obstacle but we can tell nothing about cells further along the ray. It is also implicit
that all the cells between the sensor and the obtacle must be obstacle free. A maximum
distance value, 50 m in this case, is the sensor’s way of indicating that there was no re-
turning laser pulse so we ignore all such measurements. We create the occupancy grid
as a matrix and use the Bresenham algorithm to fi nd all the cells along the ray based
on the robot’s pose and the laser range and bearing measurement, then a simple voting
scheme to determine whether cells are free or occupied

>> pg.scanmap()
>> pg.plot_occgrid()

and the result is shown in Fig. 6.24. More sophisticated approaches treat the beam as a
wedge of fi nite angular width and employ a probabilistic model of sensor return versus
range. The principle can be extended to creating 3-dimensional point clouds from a
scanning laser rangefi nder on a moving vehicle as shown in Fig. 6.25.

Fig. 6.24.
a Laser scans rendered into

an occupancy grid , the area en-
closed in the green square is dis-
payed in b. White cells are free
space, black cells are occupied

and grey cells are unknown.
Grid cell size is 10 cm

Fig. 6.25.
3D point cloud created by in-
tegrating multiple scans from
a vehicle-mounted scanning
laser rangefi nder, where the

scans are in a vertical plane nor-
mal to the vehicle’s forward axis.

This is sometimes called a “2.5D”
representation since only the

front surfaces of objects are de-
scribed – note the range shad-
ows on the walls behind cars.

Note also that the density of laser
points is not constant across the
map, for example the point den-
sity on the road surface is much

greater than it is high on the walls
of buildings (image courtesy Alex

Stewart; Stewart 2014)

6.8 · Application: Scanning Laser Rangefinder

182 Chapter 6 · Localization

Laser-Based Localization

We have mentioned landmarks a number of times in this chapter but avoided concrete ex-
amples of what they are. They could be distinctive visual features as discussed in Sect. 13.3
or artifi cial markers as discussed on page 164. If we consider a laser scan such as shown in
Fig. 6.23a or 6.24b we see a fairly distinctive arrangement of points – a geometric signature
– which we can use as a landmark. In many cases the signature will be ambiguous and of
little value, for example a long corridor where all the points are collinear, but some signa-
tures will be highly unique and can serve as a useful landmark . Naively we could match
the current laser scan against all others and if the fi t is good (the ICP error is low) we could
add another constraint to the pose graph. However this strategy would be expensive with
a large number of scans so typically only scans in the vicinity of the robot’s estimated po-
sition are checked, and this once again raises the data association problem.

6.9
l
Wrapping Up

In this chapter we learned about two very different ways of estimating a robot’s posi-
tion: by dead reckoning, and by observing landmarks whose true position is known
from a map. Dead reckoning is based on the integration of odometry information, the
distance traveled and the change in heading angle. Over time errors accumulate lead-
ing to increased uncertainty about the pose of the robot.

We modeled the error in odometry by adding noise to the sensor outputs. The noise
values are drawn from some distribution that describes the errors of that particular
sensor. For our simulations we used zero-mean Gaussian noise with a specifi ed cova-
riance, but only because we had no other information about the specifi c sensor. The
most realistic noise model available should be used. We then introduced the Kalman
fi lter which provides an optimal estimate, in the least-squares sense, of the true confi g-
uration of the robot based on noisy measurements. The Kalman fi lter is however only
optimal for the case of zero–mean Gaussian noise and a linear model. The model that
describes how the robot’s confi guration evolves with time can be nonlinear in which
case we approximate it with a linear model which included some partial derivatives
expressed as Jacobian matrices – an approach known as extended Kalman fi ltering.

The Kalman fi lter also estimates uncertainty associated with the pose estimate and
we see that the magnitude can never decrease and typically grows without bound. Only
additional sources of information can reduce this growth and we looked at how obser-
vations of landmarks, with known locations, relative to the robot can be used. Once
again we use the Kalman fi lter but in this case we use both the prediction and the up-
date phases of the fi lter. We see that in this case the uncertainty can be decreased by a
landmark observation, and that over the longer term the uncertainty does not grow.
We then applied the Kalman fi lter to the problem of estimating the positions of the
landmarks given that we knew the precise position of the vehicle. In this case, the state
vector of the fi lter was the coordinates of the landmarks themselves.

Next we brought all this together and estimated the vehicle’s position, the position
of the landmarks and their uncertainties – simultaneous localization and mapping.
The state vector in this case contained the confi guration of the robot and the coordi-
nates of the landmarks.

An important problem when using landmarks is data association, being able to de-
termine which landmark has been known or observed by the sensor so that its position
can be looked up in a map or in a table of known or estimated landmark positions. If the
wrong landmark is looked up then an error will be introduced in the robot’s position.

The Kalman fi lter scales poorly with an increasing number of landmarks and we in-
troduced two alternative approaches: Rao-Blackwellized SLAM and pose-graph SLAM.
The latter involves solving a large but sparse nonlinear least squares problem, turning
the problem from one of (Kalman) fi ltering to one of optimization.

183

We fi nished our discussion of localization methods with Monte-Carlo estimation
and introduced the particle fi lter. This technique is computationally intensive but
makes no assumptions about the distribution of errors from the sensor or the lin-
earity of the vehicle model, and supports multiple hypotheses. Particles fi lters can be
considered as providing an approximate solution to the true system model, whereas
a Kalman fi lter provides an exact solution to an approximate system model.

Finally we introduced laser rangefi nders and showed how they can be applied to
robot navigation, odometry and creating detailed fl oor plan maps.

Further Reading

Localization and SLAM. The tutorials by Bailey and Durrant-Whyte (2006) and Durrant-
Whyte and Bailey (2006) are a good introduction to this topic, while the textbook
Probabilistic Robotics (Thrun et al. 2005) is a readable and comprehensive coverage
of all the material touched on in this chapter.

The book by Siegwart et al. (2011) also has a good treatment of robot localization.
FastSLAM (Montemerlo et al. 2003; Montemerlo and Thrun 2007) is a state-of-the-art
 algorithm for Rao-Blackwellized SLAM.

Particle fi lters are described by Thrun et al. (2005), Stachniss and Burgard (2014) and
the tutorial introduction by Rekleitis (2004). There are many variations such as fi xed
or adaptive number of particles and when and how to resample – and Li et al. (2015)
provide a comprehensive review of resampling strategies. Determining the most likely
pose was demonstrated by taking the weighted mean of the particles but many more
approaches have been used. The kernel density approach takes the particle with the
highest weight of neighboring particles within a fi xed-size surrounding hypersphere.

Pose graph optimization, also known as GraphSLAM, has a long history starting with
Lu and Milios (1997). There has been signifi cant recent interest with many publications
and open-source tools including g2o (Kümmerle et al. 2011), ̂ SAgMg (Dellaert and Kaess
2006), iSAM (Kaess et al. 2007) and factor graphs. Agarwal et al. (2014) provides a gentle
introduction to pose-graph SLAM and discusses the connection to land-based geodetic
survey which is centuries old. Parallel Tracking and Mapping (PTAM) was described in
Klein and Murray (2007), the code is available on github and there is also a blog.

There are many online resources related to SLAM. A collection of open-source
SLAM implementations such as gmapping and iSam is available from OpenSLAM
at http://www.openslam.org. An implementation of smoothing and mapping us-
ing factor graphs is available at https://bitbucket.org/gtborg/gtsam and has C++
and MATLAB bindings. MATLAB implementations include a 6DOF SLAM system at
http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html and the now dated
CAS Robot Navigation Toolbox for planar SLAM at http://www.cas.kth.se/toolbox.
Tim Bailey’s website http://www-personal.acfr.usyd.edu.au/tbailey has MATLAB
implementations of various SLAM and scan matching algorithms.

Many of the SLAM summer schools have websites that host excellent online re-
sources such as lecture notes and practicals. Great teaching resources available online
include Giorgio Grisetti’s site http://www.dis.uniroma1.it/~grisetti and Paul Newman’s
C4B Mobile Robots and Estimation Resources ebook at https://www.free-ebooks.net/
ebook/C4B-Mobile-Robotics.

Scan matching and map making. Many versions and variants of the ICP algorithm
exist and it is discussed further in Chap. 14. Improved convergence and accuracy can
be obtained using the normal distribution transform (NDT), originally proposed for
2D by Biber and Straßer (2003), extended to 3D by Magnusson et al. (2007) and im-
plementations are available at pointclouds.org. A comparison of ICP and NDT for a
fi eld robotic application is described by Magnusson et al. (2009). A fast and popular
approach to laser scan matching is that of Censi (2008).

6.9 · Wrapping Up

184 Chapter 6 · Localization

When attempting to match a local geometric signature in a large point cloud (2D or
3D) to determine loop closure we often wish to limit our search to a local spatial region.
An effi cient way to achieve this is to organize the data using a kd-tree which is provided
in MATLAB’s Statistics and Machine Learning Toolbox™ and various contributions on
File Exchange. FLANN (Muja and Lowe 2009) is a fast approximation which is available
on github and has a MATLAB binding, and is also included in the VLFeat package.

For creating a map from robotic laser scan data in Sect. 6.8 we used a naive approach
– a more sophisticated technique is the beam model or likelihood fi eld as described
in Thrun et al. (2005).

 Kalman filtering. There are many published and online resources for Kalman fi ltering.
Kálmán’s original paper, Kálmán (1960), over 50 years old, is quite readable. The book
by Zarchan and Musoff (2005) is a very clear and readable introduction to Kalman
fi ltering. I have always found the classic book, recently republished, Jazwinski (2007)
to be very readable. Bar-Shalom et al. (2001) provide comprehensive coverage of es-
timation theory and also the use of GPS. Groves (2013) also covers Kalman fi ltering.
Welch and Bishop’s online resources at http://www.cs.unc.edu/~welch/kalman have
pointers to papers, courses, software and links to other relevant web sites.

A signifi cant limitation of the EKF is its fi rst-order linearization, particularly for
processes with strong nonlinearity. Alternatives include the iterated EKF described
by Jazwinski (2007) or the Unscented Kalman Filter (UKF) (Julier and Uhlmann 2004)
which uses discrete sample points (sigma points) to approximate the PDF. Some of
these topics are covered in the Handbook (Siciliano and Khatib 2016, §5 and §35). The
information fi lter is an equivalent fi lter that maintains an inverse covariance matrix
which has some useful properties, and is discussed in Thrun et al. (2005) as the sparse
extended information fi lter.

Data association. SLAM techniques are critically dependent on accurate data association
between observations and mapped landmarks, and a review of data association tech-
niques is given by Neira and Tardós (2001). FastSLAM (Montemerlo and Thrun 2007) is
capable of estimating data association as well as landmark position. The April tag which
can be used as an artifi cial landmark is described in Olson (2011) and is supported by
the Toolbox function apriltags . Mobile robots can uniquely identify places based
on their visual appearance using tools such as OpenFABMAP (Glover et al. 2012).

Data association for Kalman fi ltering is covered in the Robotics Handbook (Siciliano
and Khatib 2016). Data association in the tracking context is covered in considerable
detail in, the now very old, book by Bar-Shalom and Fortmann (1988).

Sensors. The book by Kelly (2013) has a good coverage of sensors particularly laser
range fi nders. For fl ying and underwater vehicles, odometry cannot be determined from
wheel motion and an alternative, also suitable for wheeled vehicles, is visual odometry
(VO). This is introduced in the tutorials by Fraundorfer and Scaramuzza (2012) and
Scaramuzza and Fraundorfer (2011) and will be covered in Chap. 14. The Robotics
Handbook (Siciliano and Khatib 2016) has good coverage of a wide range of robotic
sensors. The principles of GPS and other radio-based localization systems are covered
in some detail in the book by Groves (2013), and a number of links to GPS technical data
are provided from this book’s web site. The SLAM problem can be formulated in terms
of bearing-only or range-only measurements. A camera is effectively a bearing-only
sensor, giving the direction to a feature in the world. A VSLAM system is one that per-
forms SLAM using bearing-only visual information, just a camera, and an introduction
to the topic is given by Neira et al. (2008) and the associated special issue. Interestingly
the robotic VSLAM problem is the same as the bundle adjustment problem known to
the computer vision community and which will be discussed in Chap. 14.

The book by Borenstein et al. (1996) although dated has an excellent discussion of
robotic sensors in general and odometry in particular. It is out of print but can be found

185

online. The book by Everett (1995) covers odometry, range and bearing sensors, as well
as radio, ultrasonic and optical localization systems. Unfortunately the discussion of
range and bearing sensors is now quite dated since this technology has evolved rapidly
over the last decade.

General interest. Bray (2014) gives a very readable account of the history of techniques to
determine our location on the planet. If you ever wondered how to navigate by the stars or use
a sextant Blewitt (2011) is a slim book that provides an easy to understand introduction.

The book Longitude (Sobel 1996) is a very readable account of the longitude prob-
lem and John Harrison’s quest to build a marine chronometer.

Toolbox and MATLAB Notes

This chapter has introduced a number of Toolbox classes to solve mapping and local-
ization problems. The principle was to decompose the problem into clear functional
subsystems and implement these as a set of cooperating classes, and this allows quite
complex problems to be expressed in very few lines of code.

The relationships between the objects and their methods and properties are shown
in Fig. 6.26. As always more documentation is available through the online help sys-
tem or comments in the code. Vehicle is a superclass and concrete subclasses in-
clude Unicycle and Bicycle.

The MATLAB Computer Vision System Toolbox™ includes a fast version of ICP called
 pcregrigid. The Robotics System Toolbox™ contains a generic particle fi lter class
ParticleFilter and a particle fi lter based localizer class MonteCarloLocalization.

Exercises

1. What is the value of the Longitude Prize in today’s currency?
2. Implement a driver object (page 157) that drives the robot around inside a circle

with specifi ed center and radius.
3. Derive an equation for heading change in terms of the rotational rate of the left and

right wheels for the car-like and differential-steer vehicle models.

Fig. 6.26.
Toolbox class relationship for

localization and mapping. Each
class is shown as a rectangle,

method calls are shown as ar-
rows from caller to callee, prop-

erties are boxed, and dashed
lines represent object references

6.9 · Wrapping Up

186 Chapter 6 · Localization

4. Dead-reckoning (page 156)
a) Experiment with different values of P0, V and Í.
b) Figure 6.4 compares the actual and estimated position. Plot the actual and esti-

mated heading angle.
c) Compare the variance associated with heading to the variance associated with

position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

d) Derive the Jacobians in Eq. 6.5 and 6.6 for the case of a differential steer robot.
5. Using a map (page 163)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and
bearing angle limits) and investigate the effect on performance

b) Vary W and Ñ and investigate what happens to estimation error and fi nal co-
variance.

c) Modify the RangeBearingSensor to create a bearing-only sensor, that is, as
a sensor that returns angle but not range. The implementation includes all the
Jacobians. Investigate performance.

d) Modify the sensor model to return occasional errors (specify the error rate) such
as incorrect range or beacon identity. What happens?

e) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

f) Figure 6.7 compares the actual and estimated position. Plot the actual and esti-
mated heading angle.

g) Compare the variance associated with heading to the variance associated with
position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

6. Making a map (page 166)
a) Vary the characteristics of the sensor (covariance, sample rate, range limits and

bearing angle limits) and investigate the effect on performance.
b) Use the bearing-only sensor from above and investigate performance relative to

using a range and bearing sensor.
c) Modify the EKF to perform data association instead of using identity returned

by the sensor.
7. Simultaneous localization and mapping (page 168)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and
bearing angle limits) and investigate the effect on performance.

b) Use the bearing-only sensor from above and investigate performance relative to
using a range and bearing sensor.

c) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

d) Figure 6.11 compares the actual and estimated position. Plot the actual and es-
timated heading angle.

e) Compare the variance associated with heading to the variance associated with
position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

8. Modify the pose-graph optimizer and test using the simple graph pg1.g2o
a) anchor one node at a particular pose.
b) add one or more landmarks. You will need to derive the relevant Jacobians

fi rst and add the landmark positions, constraints and information matrix to
the data fi le.

9. Create a simulator for Buffon’s needle problem, and estimate π for 10, 100, 1 000
and 10 000 needle throws. How does convergence change with needle length?

10. Particle fi lter (page 176)
a) Run the fi lter numerous times. Does it always converge?
b) Vary the parameters Q, L, w0 and N and understand their effect on convergence

speed and fi nal standard deviation.

187

c) Investigate variations to the kidnapped robot problem. Place the initial particles
around the initial pose. Place the particles uniformly over the xy-plane but set
their orientation to its actual value.

d) Use a different type of likelihood function, perhaps inverse distance, and com-
pare performance.

11. Experiment with April tags. Print some tags and extract them from images using
the apriltags function. Check out Sect. 12.1 on how to acquire images using
MATLAB.

12. Implement a laser odometer and test it over the entire path saved in killian.
g2o. Compare your odometer with the relative pose changes in the fi le.

13. In order to measure distance using laser rangefi nding what timing accuracy is re-
quired to achieve 1cm depth resolution?

14. Reformulate the localization, mapping and SLAM problems using a bearing-only
landmark sensor.

15. Implement a localization or SLAM system using an external simulator such as
V-REP or Gazebo. Obtain range measurements from the simulated robot, do laser
odometry and landmark recognition, and send motion commands to the robot. You
can communicate with these simulators from MATLAB using the ROS protocol if
you have the Robotics System Toolbox. Alternatively you can communicate with
V-REP using the Toolbox VREP class, see the documentation.

6.9 · Wrapping Up

 Part III Arm-Type Robots
 Chapter 7 Robot Arm Kinematics

 Chapter 8 Velocity Relationships

 Chapter 9 Dynamics and Control

Part

III Arm-Type Robots

Arm-type robots or robot manipulators are a very common and fa-
miliar type of robot. We are used to seeing pictures or video of them
at work in factories doing jobs such as assembly, welding and han-
dling tasks, or even in operating rooms doing surgery. The fi rst robot
manipulators started work nearly 60 years ago and have been enor-
mously successful in practice – many millions of robot manipulators
are working in the world today. Many products we buy have been as-
sembled, packed or handled by a robot.

Unlike the mobile robots we discussed in the previous part, robot
manipulators do not move through the world. They have a static base
and therefore operate within a limited workspace. Many different types
of robot manipulator have been created and Fig. III.1 shows some of

Fig. III.1.
a A 6DOF serial-link manipu-
lator. General purpose indus-

trial manipulator (source: ABB).
b SCARA robot which has 4DOF,

typically used for electronic as-
sembly (photo of Adept Cobra

s600 SCARA robot courtesy
of Adept Technology, Inc.).

c A gantry robot; the arm moves
along an overhead rail (image
courtesy of Güdel AG Switzer-

land | Mario Rothenbühler |
www.gudel.com). d A parallel-

link manipulator, the end-effec-
tor is driven by 6 parallel links

(source: ABB)

the diversity. The most common is the 6DOF arm-type of robot comprising a series
of rigid-links and actuated joints. The SCARA (Selective Compliance Assembly Robot
Arm) is rigid in the vertical direction and compliant in the horizontal plane which is
an advantage for planar tasks such as electronic circuit board assembly. A gantry ro-
bot has one or two degrees of freedom of motion along overhead rails which gives it

192 Part III · Arm-Type Robots

Fig. III.2.
Robot end-effectors. a A vacuum
gripper holds a sheet of glass.
b A human-like robotic hand
(© Shadow Robot Company 2008)

a very large working volume. A parallel-link manipulator has its links connected in
parallel to the tool which brings a number of advantages such as having all the mo-
tors on the base and providing a very stiff structure. The focus of this part is serial-
link arm-type robot manipulators.

These nonmobile robots allow some signifi cant simplifi cations to problems such
as perception and safety. The work environment for a factory robot can be made very
orderly so the robot can be fast and precise and assume the location of objects that it
is working with. The safety problem is simplifi ed since the robot has a limited work-
ing volume – it is straightforward to just exclude people from the robot’s work space
using safety barriers or even cages.

A robot manipulates objects using its end-effector or tool as shown in Fig. III.2. End-
effectors range in complexity from simple 2-fi nger or parallel-jaw grippers to complex
human-like hands with multiple actuated fi nger joints and an opposable thumb.

The chapters in this part cover the fundamentals of serial-link manipulators.
Chapter 7 is concerned with the kinematics of serial-link manipulators. This is the
geometric relationship between the angles of the robot’s joints and the pose of its end-
effector. We discuss the creation of smooth paths that the robot can follow and pres-
ent an example of a robot drawing a letter on a plane and a 4-legged walking robot.
Chapter 8 introduces the relationship between the rate of change of joint coordinates
and the end-effector velocity which is described by the manipulator Jacobian matrix.
It also covers alternative methods of generating paths in Cartesian space and intro-
duces the relationship between forces on the end-effector and torques at the joints.
Chapter 9 discusses independent joint control and some performance limiting factors
such as gravity load and varying inertia. This leads to a discussion of the full nonlinear
dynamics of serial-link manipulators – effects such as inertia, gyroscopic forces, fric-
tion and gravity – and more sophisticated model-based control approaches.

Chapter

7 Robot Arm Kinematics
Take to kinematics. It will repay you.

It is more fecund than geometry; it adds a fourth dimension to space.
Chebyshev to Sylvester 1873

position of each joint given the end-effector pose. Section 7.3 describes methods for
generating smooth paths for the end-effector. The remainder of the chapter covers
advanced topics and two complex applications: writing on a plane surface and a four-
legged walking robot whose legs are simple robotic arms.

7.1
l
Forward Kinematics

Forward kinematics is the mapping from joint coordinates, or robot confi guration,
to end-effector pose . We start in Sect. 7.1.1 with conceptually simple robot arms that
move in 2-dimensions in order to illustrate the principles, and in Sect. 7.1.2 extend
this to more useful robot arms that move in 3-dimensions.

Kinematics� is the branch of mechanics that studies the motion of a body, or a
system of bodies, without considering its mass or the forces acting on it.

A robot arm, more formally a serial-link manipulator, comprises a chain of
rigid links and joints. Each joint has one degree of freedom, either translational
(a sliding or prismatic joint) or rotational (a revolute joint). Motion of the joint
changes the relative pose of the links that it connects. One end of the chain, the
base, is generally fi xed and the other end is free to move in space and holds the
tool or end-effector that does the useful work.

Figure 7.1 shows two modern arm-type robots that have six and seven joints
respectively. Clearly the pose of the end-effector will be a complex function of
the state of each joint and Sect. 7.1 describes how to compute the pose of the
end-effector. Section 7.2 discusses the inverse problem, how to compute the

From the Greek word for motion.

Fig. 7.1.
a Mico 6-joint robot with 3-fi n-
gered hand (courtesy of Kinova
Robotics). b Baxter 2-armed ro-

botic coworker, each arm has
7 joints (courtesy of Rethink

Robotics)

194 Chapter 7 · Robot Arm Kinematics

7.1.1
l
2-Dimensional (Planar) Robotic Arms

Consider the simple robot arm shown in Fig. 7.2a which has a single rotational joint. We
can describe the pose of its end-effector – frame {E} – by a sequence of relative poses:
a rotation about the joint axis and then a translation by a1 along the rotated x-axis�

The Toolbox allows us to express this, for the case a1 = 1, by
>> import ETS2.*
>> a1 = 1;
>> E = Rz('q1') * Tx(a1)

which is a sequence of ETS2 class objects. The argument to Rz is a string which in-
dicates that its parameter is a joint variable whereas the argument to Tx is a constant
numeric robot dimension.

The forward kinematics for a particular value of q1 = 30 deg

>> E.fkine(30, 'deg')
ans =
 0.8660 -0.5000 0.866
 0.5000 0.8660 0.5
 0 0 1

is an SE(2) homogeneous transformation matrix representing the pose of the end-
effector – coordinate frame {E}.

An easy and intuitive way to understand how this simple robot behaves is inter-
actively

>> E.teach

which generates a graphical representation of the robot arm as shown in Fig. 7.3. The
rotational joint is indicated by a grey vertical cylinder and the link by a red horizontal
pipe. You can adjust the joint angle q1 using the slider and the arm pose and the dis-
played end-effector position and orientation will be updated. Clearly this is not a very
useful robot arm since its end-effector can only reach points that lie on a circle.

Consider now a robot arm with two joints as shown in Fig. 7.2b. The pose of the
end-effector is

 (7.1)

We can represent this using the Toolbox as

>> a1 = 1; a2 = 1;
>> E = Rz('q1') * Tx(a1) * Rz('q2') * Tx(a2)

When computing the forward kinematics the joint angles are now specifi ed by a vector

>> E.fkine([30, 40], 'deg')
ans =
 0.3420 -0.9397 1.208
 0.9397 0.3420 1.44
 0 0 1

Fig. 7.2. Some simple planar ro-
botic arms. a Planar arm with one
rotational joint; b planar arm with
two rotational joints; c planar arm
with two joints: one rotational
and one prismatic. The base {0}
and end-effector {E} coordinate
frames are shown. The joint vari-
ables, angle or prismatic exten-
sion, are generalized coordinates
and denoted by qj

We use the symbols Ò, Óx, Óy to denote
relative poses in SE(2) that are respec-
tively pure rotation and pure translation
in the x- and y-directions.

195

and the result is the end-effector pose when q1 = 30 and q2 = 40 deg. We could display
the robot interactively as in the previous example, or noninteractively by

>> E.plot([30, 40], 'deg')

The joint structure of a robot is often referred to by a shorthand comprising the
letters R (for revolute) or P (for prismatic) to indicate the number and types of its
joints. For this robot

>> E.structure
ans =
RR

indicates a revolute-revolute sequence of joints. The notation underneath the terms
in Eq. 7.1 describes them in the context of a physical robot manipulator which com-
prises a series of joints and links.

You may have noticed a few characteristics of this simple planar robot arm. Firstly,
most end-effector positions can be reached with two different joint angle vectors.
Secondly, the robot can position the end-effector at any point within its reach but we
cannot specify an arbitrary orientation. This robot has 2 degrees of freedom and its
confi guration space is C= S1 × S1. This is suffi cient to achieve positions in the task
space T⊂R2 since dimC= dimT. However if our task space includes orientation
T⊂ SE(2) then it is under-actuated since dimC< dimT and the robot can access only
a subset of the task space.

So far we have only considered revolute joints but we could use a prismatic joint
instead as shown in Fig. 7.2c. The end-effector pose is

Prismatic joints . Robot joints are commonly revolute (rotational) but can also be prismatic (linear,
sliding, telescopic, etc.). The SCARA robot of Fig. III.1b has a prismatic third joint while the gantry
robot of Fig. III.1c has three prismatic joints for motion in the x-, y- and z-directions.

The Stanford arm shown here has a prismatic third joint. It was developed at the Stanford AI Lab
in 1972 by robotics pioneer Victor Scheinman who went on to design the PUMA robot arms . This
type of arm supported a lot of important early research work in robotics and one can be seen in the
Smithsonian Museum of American History, Washington DC. (Photo courtesy Oussama Khatib)

Fig. 7.3.
Toolbox depiction of 1-joint

planar robot using the teach
method. The blue panel contains
the joint angle slider and displays

the position and orientation
(yaw angle) of the end-effector

(in degrees)

7.1 · Forward Kinematics

196 Chapter 7 · Robot Arm Kinematics

and the Toolbox representation follows a familiar pattern

>> a1 = 1;
>> E = Rz('q1') * Tx(a1) * Tz('q2')

and the arm structure is now
>> E.structure
ans =
RP

which is commonly called a polar-coordinate robot arm .
We can easily add a third joint

and use the now familiar Toolbox functionality to represent and work with this arm.
This robot has 3 degrees of freedom and is able to access all points in the task space
T⊂ SE(2), that is, achieve any pose in the plane (limited by reach).

7.1.2
l
3-Dimensional Robotic Arms

Truly useful robots have a task space T⊂ SE(3) enabling arbitrary position and orientation
of the end-effector. This requires a robot with a confi guration space dimC≥ dimT which
can be achieved by a robot with six or more joints. In this section we will use the Puma 560
as an exemplar of the class of all-revolute six-axis robot manipulators with C⊂ (S1)6.

We can extend the technique from the previous section for a robot like the Puma 560
whose dimensions are shown in Fig. 7.4. Starting with the world frame {0} we move up,
rotate about the waist axis (q1), rotate about the shoulder axis (q2), move to the left, move
up and so on. As we go, we write down the transform expression�

The marked term represents the kinematics of the robot’s wrist and should be fa-
miliar to us as a ZYZ Euler angle sequence from Sect. 2.2.1.2 – it provides an arbitrary
orientation but is subject to a singularity when the middle angle q5 = 0.

We can represent this using the 3-dimensional version of the Toolbox class we
used previously

>> import ETS3.*
>> L1 = 0; L2 = -0.2337; L3 = 0.4318; L4 = 0.0203; L5 = 0.0837; L6 = 0.4318;
>> E3 = Tz(L1) * Rz('q1') * Ry('q2') * Ty(L2) * Tz(L3) * Ry('q3')	
 * Tx(L4) * Ty(L5) * Tz(L6) * Rz('q4') * Ry('q5') * Rz('q6');

We can use the interactive teach facility or compute the forward kinematics

>> E3.fkine([0 0 0 0 0 0])
ans =
 1 0 0 0.0203
 0 1 0 -0.15
 0 0 1 0.8636
 0 0 0 1

While this notation is intuitive it does becomes cumbersome as the number of
robot joints increases. A number of approaches have been developed to more con-
cisely describe a serial-link robotic arm : Denavit-Hartenberg notation and product
of exponentials .

We use the symbols Òi, Ói, i ∈ {x, y, z}
to denote relative poses in SE(3) that are
respectively pure rotation about, or pure
translation along, the i-axis.

Fig. 7.4. Puma robot in the zero-
joint-angle confi guration show-
ing dimensions and joint axes
(indicated by blue triple arrows)
(after Corke 2007)

197

7.1.2.1
l
Denavit-Hartenberg Parameters

One systematic way of describing the geometry of a serial chain of links and joints is
 Denavit-Hartenberg notation.

For a manipulator with N joints numbered from 1 to N, there are N + 1 links,
numbered from 0 to N. Joint j connects link j − 1 to link j and moves them rela-
tive to each other. It follows that link � connects joint � to joint �+ 1. Link 0 is
the base of the robot, typically fi xed and link N, the last link of the robot, carries
the end-effector or tool.

In Denavit-Hartenberg, notation a link defi nes the spatial relationship between
two neighboring joint axes as shown in Fig. 7.5. A link is specifi ed by four param-
eters. The relationship between two link coordinate frames would ordinarily entail
six parameters, three each for translation and rotation. For Denavit-Hartenberg
notation there are only four parameters but there are also two constraints: axis
xj intersects zj−1 and axis xj is perpendicular to zj−1. One consequence of these
constraints is that sometimes the link coordinate frames are not actually located
on the physical links of the robot. Another consequence is that the robot must be
placed into a particular confi guration – the zero-angle confi guration – which is
discussed further in Sect. 7.4.1. The Denavit-Hartenberg parameters are summa-
rized in Table 7.1.

The coordinate frame {j} is attached to the far (distal) end of link j. The z-axis of
frame {j} is aligned with the axis of joint j + 1.

Table 7.1.
Denavit-Hartenberg parameters:

their physical meaning, symbol
and formal defi nition

Fig. 7.5.
Defi nition of standard Denavit

and Hartenberg link parameters.
The colors red and blue denote all
things associated with links j − 1
and j respectively. The numbers

in circles represent the order
in which the elementary trans-
forms are applied. xj is parallel

to zj−1 × zj and if those two axes
are parallel then dj can be arbi-

trarily chosen

7.1 · Forward Kinematics

198 Chapter 7 · Robot Arm Kinematics

The transformation from link coordinate frame {j − 1} to frame {j} is defi ned in
terms of elementary rotations and translations as

 (7.2)

which can be expanded in homogeneous matrix form as

 (7.3)

The parameters αj and aj are always constant. For a revolute joint, θ j is the joint
variable and dj is constant, while for a prismatic joint, dj is variable, θj is constant
and αj = 0. In many of the formulations that follow, we use generalized joint co-
ordinates qj

For an N-axis robot, the generalized joint coordinates q ∈ C where C⊂RN is called
the joint space or confi guration space.� For the common case of an all-revolute robot
C⊂ (S1)N the joint coordinates are referred to as joint angles. The joint coordinates
are also referred to as the pose of the manipulator which is different to the pose of the
end-effector which is a Cartesian pose ξ ∈ SE(3). The term confi guration is shorthand
for kinematic confi guration which will be discussed in Sect. 7.2.2.1.

Within the Toolbox a robot revolute joint and link can be created by

>> L = Revolute('a', 1)
L =
 Revolute(std): theta=q, d=0, a=1, alpha=0, offset=0

which is a revolute-joint object of type Revolute which is a subclass of the generic
Link object. The displayed value of the object shows the kinematic parameters (most
of which have defaulted to zero), the joint type and that standard Denavit-Hartenberg
convention is used (the tag std).�

This is the same concept as was intro-
duced for mobile robots in Sect. 2.3.5.

A slightly different notation, modifed
Denavit-Hartenberg notation is discussed
in Sect. 7.4.3.

Jacques Denavit (1930–2012) was born
in Paris where he studied for his Bach-
elor degree before pursuing his mas-
ters and doctoral degrees in mechan-
ical engineering at Northwestern
University, Illinois. In 1958 he joined
the Department of Mechanical En-
gineering and Astronautical Science
at Northwestern where the collabo-
ration with Hartenberg was formed.
In addition to his interest in dynam-
ics and kinematics Denavit was also

 Richard Hartenberg (1907–1997) was
born in Chicago and studied for his
degrees at the University of Wiscon-
sin, Madison. He served in the mer-
chant marine and studied aeronau-
tics for two years at the University
of Göttingen with space-fl ight pio-
neer Theodore von Kármán. He was
Professor of mechanical engineering
at Northwestern University where
he taught for 56 years. His research
in kinematics led to a revival of in-

interested in plasma physics and kinetics. After the publication of
the book he moved to Lawrence Livermore National Lab, Liver-
more, California, where he undertook research on computer anal-
ysis of plasma physics problems. He retired in 1982.

terest in this fi eld in the 1960s, and his efforts helped put kine-
matics on a scientifi c basis for use in computer applications in
the analysis and design of complex mechanisms. He also wrote
extensively on the history of mechanical engineering.

 Jacques Denavit and Richard Hartenberg introduced many of the key concepts of kinematics for serial-link manipulators in a 1955 paper
(Denavit and Hartenberg 1955) and their later classic text Kinematic Synthesis of Linkages (Hartenberg and Denavit 1964).

199

A Link object has many parameters and methods which are described in the online
documentation, but the most common ones are illustrated by the following examples.
The link transform Eq. 7.3 for q = 0.5 rad is an SE3 object

>> L.A(0.5)
ans =
 0.8776 -0.4794 0 0.8776
 0.4794 0.8776 -0 0.4794
 0 0 1 0
 0 0 0 1

representing the homogeneous transformation due to this robot link with the particu-
lar value of θ . Various link parameters can be read or altered, for example

>> L.type
ans =
 R

indicates that the link is revolute and

>> L.a
ans =
 1.0000

returns the kinematic parameter a. Finally a link can contain an offset

>> L.offset = 0.5;
>> L.A(0)
ans =
 0.8776 -0.4794 0 0.8776
 0.4794 0.8776 -0 0.4794
 0 0 1 0
 0 0 0 1

which is added to the joint variable before computing the link transform and will be
discussed in more detail in Sect. 7.4.1.

The forward kinematics is a function of the joint coordinates and is simply the
composition of the relative pose due to each link

 (7.4)

In this notation link 0 is the base of the robot and commonly for the fi rst link d1 = 0
but we could set d1 > 0 to represent the height of the fi rst joint above the world coor-
dinate frame. The fi nal link, link N, carries the tool – the parameters dN, aN and α N
provide a limited means to describe the tool-tip pose with respect to the {N} frame. By
convention the robot’s tool points in the z-direction as shown in Fig. 2.16.

More generally we add two extra transforms to the chain�

The base transform ξB puts the base of the robot arm at an arbitrary pose within
the world coordinate frame. In a manufacturing system the base is usually fi xed to
the environment but it could be mounted on a mobile ground, aerial or underwater
robot, a truck, or even a space shuttle.

The frame {N} is often defi ned as the center of the spherical wrist mechanism, and
the tool transform ξT describes the pose of the tool tip with respect to that. In prac-
tice ξT might consist of several components. Firstly, a transform to a tool-mounting
fl ange on the physical end of the robot. Secondly, a transform from the fl ange to the
end of the tool that is bolted to it, where the tool might be a gripper, screwdriver or
welding torch.

We have used W to denote the world
frame in this case since 0 designates
link 0, the base link.

7.1 · Forward Kinematics

200 Chapter 7 · Robot Arm Kinematics

In the Toolbox we connect Link class objects in series using the SerialLink class
>> robot = SerialLink([Revolute('a', 1) Revolute('a', 1)],	
 'name', 'my robot')
robot =
my robot:: 2 axis, RR, stdDH
+---+-----------+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha | offset |
+---+-----------+-----------+-----------+-----------+-----------+
| 1| q1|0 |1 |0 |0 |
| 2| q2|0 |1 |0 |0 |
+---+-----------+-----------+-----------+-----------+-----------+

We have just recreated the 2-robot robot we looked at earlier, but now it is embed-
ded in SE(3). The forward kinematics are

>> robot.fkine([30 40], 'deg')
ans =
 0.3420 -0.9397 0 1.208
 0.9397 0.3420 0 1.44
 0 0 1 0
 0 0 0 1

The Toolbox contains a large number of robot arm models defi ned in this way and
they can be listed by

>> models
ABB, IRB140, 6DOF, standard_DH (mdl_irb140)
Aldebaran, NAO, humanoid, 4DOF, standard_DH (mdl_nao)
Baxter, Rethink Robotics, 7DOF, standard_DH (mdl_baxter)
 ...

where the name of the Toolbox script to load the model is given in parentheses at the end
of each line, for example

>> mdl_irb140

The models function also supports searching by keywords and robot arm type. You can
adjust the parameters of any model using the editing method, for example

>> robot.edit

Determining the Denavit-Hartenberg parameters for a particular robot is described
in more detail in Sect. 7.4.2.

7.1.2.2
l
Product of Exponentials

In Chap. 2 we introduced twists . A twist is defi ned by a screw axis direction and pitch,
and a point that the screw axis passes through. In matrix form the twist S ∈R6

rotates the coordinate frame described by the pose T about the screw axis by an an-
gle θ .� This is exactly the case of the single-joint robot of Fig. 7.2a, where the screw
axis is the joint axis and T is the pose of the end-effector when q1 = 0. We can therefore
write the forward kinematics as

where TE(0) is the end-effector pose in the zero-angle joint confi guration: q1 = 0.
For the 2-joint robot of Fig. 7.2b we would write

For a prismatic twist, the motion is a dis-
placement of θ along the screw axis. Here
we are working in the plane so T ∈ SE(2)
and S ∈R3.

201

where S1 and S2 are the screws defi ned by the joint axes and TE(0) is the end-effector
pose in the zero-angle joint confi guration: q1 = q2 = 0. The indicated term is similar
to the single-joint robot above, and the fi rst twist rotates that joint and link about S1.
In MATLAB we defi ne the link lengths and compute TE(0)

>> a1 = 1; a2 = 1;
>> TE0 = SE2(a1+a2, 0, 0);

defi ne the two twists, in SE(2), for this example

>> S1 = Twist('R', [0 0]);
>> S2 = Twist('R', [a1 0]);

and apply them to TE(0)

>> TE = S1.T(30, 'deg') * S2.T(40, 'deg') * TE0
TE =
 0.3420 -0.9397 1.208
 0.9397 0.3420 1.44
 0 0 1

For a general robot that moves in 3-dimensions we can write the forward kinemat-
ics in product of exponential (PoE) form as

where 0TE(0) is the end-effector pose when the joint coordinates are all zero and Sj is
the twist for joint j expressed in the world frame.� This can also be written as

and ESj is the twist for joint j expressed in the end-effector frame which is related to
the twists above by ESj = Ad(Eξ0)Sj .

A serial-link manipulator can be succinctly described by a table listing the 6 screw
parameters for each joint as well as the zero-joint-coordinate end-effector pose.

7.1.2.3
l

6-Axis Industrial Robot

Truly useful robots have a task space T⊂ SE(3) enabling arbitrary position and at-
titude of the end-effector – the task space has six spatial degrees of freedom: three
translational and three rotational. This requires a robot with a confi guration space
C⊂R6 which can be achieved by a robot with six joints. In this section we will use the
Puma 560 as an example of the class of all-revolute six-axis robot manipulators. We
defi ne an instance of a Puma 560 robot using the script

>> mdl_puma560

which creates a SerialLink object, p560, in the workspace. Displaying the vari-
able shows the table of its Denavit-Hartenberg parameters

>> p560
Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE
 - viscous friction; params of 8/95;
+---+-----------+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha | offset |
+---+-----------+-----------+-----------+-----------+-----------+
| 1| q1| 0| 0| 1.571| 0|
| 2| q2| 0| 0.4318| 0| 0|
| 3| q3| 0.15| 0.0203| -1.571| 0|
| 4| q4| 0.4318| 0| 1.571| 0|
| 5| q5| 0| 0| -1.571| 0|
| 6| q6| 0| 0| 0| 0|
+---+-----------+-----------+-----------+-----------+-----------+

The tool and base transform are effec-
tively included in 0TE(0), but an explicit
base transform could be added if the
screw axes are defined with respect to
the robot’s base rather than the world
coordinate frame, or use the adjoint
matrix to transform the screw axes from
base to world coordinates.

7.1 · Forward Kinematics

202 Chapter 7 · Robot Arm Kinematics

The Puma 560 robot (Programmable Universal Manipulator for Assembly) released in 1978 was
the fi rst modern industrial robot and became enormously popular. It featured an anthropomor-
phic design, electric motors and a spherical wrist – the archetype of all that followed. It can be
seen in the Smithsonian Museum of American History, Washington DC.

The Puma 560 catalyzed robotics research in the 1980s and it was a very common laboratory
robot. Today it is obsolete and rare but in homage to its important role in robotics research we
use it here. For our purposes the advantages of this robot are that it has been well studied and its
parameters are very well known – it has been described as the “white rat” of robotics research.

Most modern 6-axis industrial robots are very similar in structure and can be accomodated
simply by changing the Denavit-Hartenberg parameters. The Toolbox has kinematic models for
a number of common industrial robots from manufacturers such as Rethink, Kinova, Motoman,
Fanuc and ABB. (Puma photo courtesy Oussama Khatib)

Fig. 7.6.
The Puma robot in 4 different
poses. a Zero angle; b ready
pose; c stretch; d nominal

203

Note that aj and dj are in SI units which means that the translational part of the for-
ward kinematics will also have SI units.

The script mdl_puma560 also creates a number of joint coordinate vectors in the
workspace which represent the robot in some canonic confi gurations:

qz (0, 0, 0, 0, 0, 0) zero angle
qr (0, ü, −ü, 0, 0, 0) ready, the arm is straight and vertical
qs (0, 0, −ü, 0, 0, 0) stretch, the arm is straight and horizontal
qn (0, ý, −π, 0, ý, 0) nominal, the arm is in a dextrous working pose�

and these are shown graphically in Fig. 7.6. These plots are generated using the plot
method, for example

>> p560.plot(qz)

which shows a skeleton of the robot with pipes that connect the link coordinate frames
as defi ned by the Denavit-Hartenberg parameters. The plot method has many options
for showing the joint axes, wrist coordinate frame, shadows and so on. More realistic-
looking plots such as shown in Fig. 7.7 can be created by the plot3d method for a
limited set of Toolbox robot models.

Forward kinematics can be computed as before

>> TE = p560.fkine(qz)
TE =
 1.0000 0 0 0.4521
 0 1.0000 0 -0.1500
 0 0 1.0000 0.4318
 0 0 0 1.0000

where the joint coordinates are given as a row vector. This returns the homogeneous
transformation corresponding to the end-effector pose. The origin of this frame, the
link-6 coordinate frame {6}, is defi ned� as the point of intersection of the axes of the
last 3 joints – physically this point is inside the robot’s wrist mechanism. We can de-
fi ne a tool transform, from the T6 frame to the actual tool tip by

>> p560.tool = SE3(0, 0, 0.2);

in this case a 200 mm extension in the T6 z-direction.� The pose of the tool tip, often
referred to as the tool center point or TCP, is now

>> p560.fkine(qz)
ans =
 1.0000 0 0 0.4521
 0 1.0000 0 -0.1500
 0 0 1.0000 0.6318
 0 0 0 1.0000

The kinematic defi nition we have used considers that the base of the robot is the in-
tersection point of the waist and shoulder axes which is a point inside the structure
of the robot. The Puma 560 robot includes a “30-inch” tall pedestal. We can shift the
origin of the robot from the point inside the robot to the base of the pedestal using a
 base transform

>> p560.base = SE3(0, 0, 30*0.0254);

Anthropomorphic means having human-like characteristics. The Puma 560 robot was designed to
have approximately the dimensions and reach of a human worker. It also had a spherical joint
at the wrist just as humans have.

Roboticists also tend to use anthropomorphic terms when describing robots. We use words
like waist, shoulder, elbow and wrist when describing serial link manipulators. For the Puma
these terms correspond respectively to joint 1, 2, 3 and 4–6.

Well away from singularities, which will
be discussed in Sect. 7.3.4.

By the Denavit-Hartenberg parameters
of the model in the mdl_puma560
script.

Alternatively we could change the kine-
matic parameter d6. The tool transform
approach is more general since the fi-
nal link kinematic parameters only allow
setting of d6, a6 and α 6 which provide
z-axis translation, x-axis translation and
x-axis rotation respectively.

7.1 · Forward Kinematics

204 Chapter 7 · Robot Arm Kinematics

where for consistency we have converted the pedestal height to SI units. Now, with
both base and tool transform, the forward kinematics are

>> p560.fkine(qz)
ans =
 1.0000 0 0 0.4521
 0 1.0000 0 -0.1500
 0 0 1.0000 1.3938
 0 0 0 1.0000

and we can see that the z-coordinate of the tool is now greater than before.
We can also do more interesting things, for example

>> p560.base = SE3(0,0,3) * SE3.Rx(pi);
>> p560.fkine(qz)
ans =
 1.0000 0 0 0.4521
 0 -1.0000 -0.0000 0.1500
 0 0.0000 -1.0000 2.3682
 0 0 0 1.0000

which positions the robot’s origin 3 m above the world origin with its coordinate frame
rotated by 180° about the x-axis. This robot is now hanging from the ceiling!

The Toolbox supports joint angle time series, or trajectories, such as

>> q
q =
 0 0 0 0 0 0
 0 0.0365 -0.0365 0 0 0
 0 0.2273 -0.2273 0 0 0
 0 0.5779 -0.5779 0 0 0
 0 0.9929 -0.9929 0 0 0
 0 1.3435 -1.3435 0 0 0
 0 1.5343 -1.5343 0 0 0
 0 1.5708 -1.5708 0 0 0

where each row represents the joint coordinates at a different timestep and the col-
umns represent the joints.� In this case the method fkine

>> T = p560.fkine(q);

returns an array of SE3 objects

>> about T
T [SE3] : 1x8 (1.0 kB)

one per timestep. The homogeneous transform corresponding to the joint coordinates
in the fourth row of q is

Fig. 7.7. These two different robot
confi gurations result in the same
end-effector pose. They are called
the left- and right-handed confi gu-
rations, respectively. These graph-
ics, produced using the plot3d
method, are available for a limited
subset of robot models

Generated by the jtraj function, which
is discussed in Sect. 7.3.1.

205

>> T(4)
ans =
 1.0000 0 0 0.382
 0 -1 0 0.15
 0 0 -1.0000 2.132
 0 0 0 1

Creating trajectories will be covered in Sect. 7.3.

7.2
l
Inverse Kinematics

We have shown how to determine the pose of the end-effector given the joint coordi-
nates and optional tool and base transforms. A problem of real practical interest is the
inverse problem: given the desired pose of the end-effector ξE what are the required
joint coordinates? For example, if we know the Cartesian pose of an object, what joint
coordinates does the robot need in order to reach it? This is the inverse kinematics
problem which is written in functional form as

 (7.5)

and in general this function is not unique, that is, several joint coordinate vectors q
will result in the same end-effector pose.

Two approaches can be used to determine the inverse kinematics. Firstly, a closed-
form or analytic solution can be determined using geometric or algebraic approaches.
However this becomes increasingly challenging as the number or robot joints increas-
es and for some serial-link manipulators no closed-form solution exists. Secondly, an
iterative numerical solution can be used. In Sect. 7.2.1 we again use the simple 2-di-
mensional case to illustrate the principles and then in Sect. 7.2.2 extend these to robot
arms that move in 3-dimensions.

7.2.1
l
2-Dimensional (Planar) Robotic Arms

We will illustrate inverse kinematics for the 2-joint robot of Fig. 7.2b in two ways: al-
gebraic closed-form and numerical.

7.2.1.1
l

Closed-Form Solution

We start by computing the forward kinematics algebraically as a function of joint
angles. We can do this easily, and in a familiar way

>> import ETS2.*
>> a1 = 1; a2 = 1;
>> E = Rz('q1') * Tx(a1) * Rz('q2') * Tx(a2)

but now using the MATLAB Symbolic Math Toolbox™ we defi ne some real-valued
symbolic variables to represent the joint angles

>> syms q1 q2 real

Spherical wrists are a key component of almost all modern arm-type robots. They have three axes
of rotation that are orthogonal and intersect at a common point. This is a gimbal-like mechanism,
and as discussed in Sect. 2.2.1.3 and will have a singularity.

The robot end-effector pose, position and an orientation, is defi ned at the center of the wrist.
Since the wrist axes intersect at a common point they cause zero translation, therefore the position
of the end-effector is a function only of the fi rst three joints. This is a critical simplifi cation that
makes it possible to fi nd closed-form inverse kinematic solutions for 6-axis industrial robots. An
arbitrary end-effector orientation is achieved independently by means of the three wrist joints.

7.2 · Inverse Kinematics

206 Chapter 7 · Robot Arm Kinematics

and then compute the forward kinematics

>> TE = E.fkine([q1, q2])
TE =
[cos(q1 + q2), -sin(q1 + q2), cos(q1 + q2) + cos(q1)]
[sin(q1 + q2), cos(q1 + q2), sin(q1 + q2) + sin(q1)]
[0, 0, 1]

which is an algebraic representation of the robot’s forward kinematics – the end-
effector pose as a function of the joint variables.

We can defi ne two more symbolic variables to represent the desired end-effector
position (x, y)

>> syms x y real

and equate them with the results of the forward kinematics�

>> e1 = x == TE.t(1)
e1 =
x == cos(q1 + q2) + cos(q1)
>> e2 = y == TE.t(2)
e2 =
y == sin(q1 + q2) + sin(q1)

which gives two scalar equations that we can solve simultaneously

>> [s1,s2] = solve([e1 e2], [q1 q2])

where the arguments are respectively the set of equations and the set of unknowns to solve
for. The outputs are the solutions for q1 and q2 respectively. We observed in Sect. 7.1.1 that
two different sets of joint angles give the same end-effector position, and this means that
the inverse kinematics does not have a unique solution. Here MATLAB has returned

>> length(s2)
ans =
 2

indicating two solutions. One solution for q2 is
>> s2(1)
ans =
-2*atan((-(x^2 + y^2)*(x^2 + y^2 - 4))^(1/2)/(x^2 + y^2))

and would be used in conjunction with the corresponding element of the solution
vector for q1 which is s1(1).

As mentioned earlier the complexity of algebraic solution increases dramatically
with the number of joints and more sophisticated symbolic solution approaches need
to be used. The SerialLink class has a method ikine_sym that generates symbolic
inverse kinematics solutions for a limited class of robot manipulators.

7.2.1.2
l
Numerical Solution

We can think of the inverse kinematics problem as one of adjusting the joint coordi-
nates until the forward kinematics matches the desired pose. More formally this is an
 optimization problem – to minimize the error between the forward kinematic solu-
tion and the desired pose ξ∗

For our simple 2-link example the error function comprises only the error in the
end-effector position, not its orientation

With the MATLAB Symbolic Math Tool-
box™ the == operator denotes equal-
ity, as opposed to = which denotes as-
signment.

207

We can solve this using the builtin MATLAB multi-variable minimization function
fminsearch

>> pstar = [0.6; 0.7];
>> q = fminsearch(@(q) norm(E.fkine(q).t - pstar), [0 0])
q =
 -0.2295 2.1833

where the fi rst argument is the error function, expressed here as a MATLAB anony-
mous function, that incorporates the desired end-effector position; and the second
argument is the initial guess at the joint coordinates. The computed joint angles in-
deed give the desired end-effector position

>> E.fkine(q).print
t = (0.6, 0.7), theta = 111.9 deg

As already discussed there are two solutions for q but the solution that is found
using this approach depends on the initial choice of q.

7.2.2
l
3-Dimensional Robotic Arms

7.2.2.1
l
Closed-Form Solution

Closed-form solutions have been developed for most common types of 6-axis industrial
robots and many are included in the Toolbox. A necessary condition for a closed-form
solution of a 6-axis robot is a spherical wrist mechanism. We will illustrate closed-form
inverse kinematics using the Denavit-Hartenberg model for the Puma robot

>> mdl_puma560

At the nominal joint coordinates shown in Fig. 7.6d
>> qn
qn =
 0 0.7854 3.1416 0 0.7854 0

the end-effector pose is

>> T = p560.fkine(qn)
T =
 -0.0000 0.0000 1.0000 0.5963
 -0.0000 1.0000 -0.0000 -0.1501
 -1.0000 -0.0000 -0.0000 -0.0144
 0 0 0 1.0000

Since the Puma 560 is a 6-axis robot arm with a spherical wrist we use the method
 ikine6s to compute the inverse kinematics using a closed-form solution.� The re-
quired joint coordinates to achieve the pose T are

>> qi = p560.ikine6s(T)
qi =
 2.6486 -3.9270 0.0940 2.5326 0.9743 0.3734

Surprisingly, these are quite different to the joint coordinates we started with. However
if we investigate a little further

>> p560.fkine(qi)
ans =
 -0.0000 0.0000 1.0000 0.5963
 0.0000 1.0000 -0.0000 -0.1500
 -1.0000 0.0000 -0.0000 -0.0144
 0 0 0 1.0000

we see that these two different sets of joint coordinates result in the same end-effector
pose and these are shown in Fig. 7.7. The shoulder of the Puma robot is horizontally
offset from the waist, so in one solution the arm is to the left of the waist, in the other

The method ikine6s checks the Dena-
vit-Hartenberg parameters to determine
if the robot meets these criteria.

7.2 · Inverse Kinematics

208 Chapter 7 · Robot Arm Kinematics

it is to the right. These are referred to as the left- and right-handed kinematic confi g-
urations respectively. In general there are eight sets of joint coordinates that give the
same end-effector pose – as mentioned earlier the inverse solution is not unique.

We can force the right-handed solution
>> qi = p560.ikine6s(T, 'ru')
qi =
 -0.0000 0.7854 3.1416 0.0000 0.7854 -0.0000

which gives the original set of joint angles by specifying a right handed confi guration
with the elbow up.

In addition to the left- and right-handed solutions, there are solutions with the el-
bow either up or down,� and with the wrist fl ipped or not fl ipped. For the Puma 560
robot the wrist joint, θ 4, has a large rotational range and can adopt one of two angles
that differ by π radians.

Some different various kinematic confi gurations are shown in Fig. 7.8. The kinemat-
ic confi guration returned by ikine6s is controlled by one or more of the options:

left or right handed 'l', 'r'
elbow up or down 'u', 'd'
wrist fl ipped or not fl ipped 'f', 'n'

Due to mechanical limits on joint angles and possible collisions between links not
all eight solutions are physically achievable. It is also possible that no solution can be
achieved. For example

>> p560.ikine6s(SE3(3, 0, 0))
Warning: point not reachable
ans =
 NaN NaN NaN NaN NaN NaN

has failed because the arm is simply not long enough to reach this pose.
A pose may also be unachievable due to singularity where the alignment of axes re-

duces the effective degrees of freedom (the gimbal lock problem again). The Puma 560
has a wrist singularity when q5 is equal to zero and the axes of joints 4 and 6 become

Fig. 7.8. Different confi gurations
of the Puma 560 robot. a Right-
up-nofl ip; b right-down-nofl ip;
c right-down-fl ip

More precisely the elbow is above or be-
low the shoulder.

209

aligned. In this case the best that ikine6s can do is to constrain q4 + q6 but their
individual values are arbitrary. For example consider the confi guration

>> q = [0 pi/4 pi 0.1 0 0.2];

for which q4 + q6 = 0.3. The inverse kinematic solution is
>> p560.ikine6s(p560.fkine(q), 'ru')
ans =
 -0.0000 0.7854 3.1416 -3.0409 0.0000 -2.9423

which has quite different values for q4 and q6 but their sum
>> q(4)+q(6)
ans =
 0.3000

remains the same.

7.2.2.2
l
Numerical Solution

 For the case of robots which do not have six joints and a spherical wrist we need to
use an iterative numerical solution. Continuing with the example of the previous sec-
tion we use the method ikine to compute the general inverse kinematic solution

>> T = p560.fkine(qn)
ans =
 -0.0000 0.0000 1.0000 0.5963
 -0.0000 1.0000 -0.0000 -0.1501
 -1.0000 -0.0000 -0.0000 -0.0144
 0 0 0 1.0000
>> qi = p560.ikine(T)
qi =
 0.0000 -0.8335 0.0940 -0.0000 -0.8312 0.0000

which is different to the original value
>> qn
qn =
 0 0.7854 3.1416 0 0.7854 0

but does result in the correct tool pose
>> p560.fkine(qi)
ans =
 -0.0000 0.0000 1.0000 0.5963
 -0.0000 1.0000 -0.0000 -0.1501
 -1.0000 -0.0000 -0.0000 -0.0144
 0 0 0 1.0000

Plotting the pose

>> p560.plot(qi)

shows clearly that ikine has found the elbow-down confi guration.
A limitation of this general numeric approach is that it does not provide explicit

control over the arm’s kinematic confi guration as did the analytic approach – the only
control is implicit via the initial value of joint coordinates (which defaults to zero). If
we specify the initial joint coordinates

>> qi = p560.ikine(T, 'q0', [0 0 3 0 0 0])
qi =
 0.0000 0.7854 3.1416 0.0000 0.7854 -0.0000

we have forced the solution to converge on the elbow-up confi guration.�

As would be expected the general numerical approach of ikine is considerably slow-
er than the analytic approach of ikine6s. However it has the great advantage of being
able to work with manipulators at singularities and manipulators with less than six or
more than six joints. Details of the principle behind ikine is provided in Sect. 8.6.

When solving for a trajectory as on p. 204
the inverse kinematic solution for one
point is used to initialize the solution for
the next point on the path.

7.2 · Inverse Kinematics

210 Chapter 7 · Robot Arm Kinematics

7.2.2.3
l
Under-Actuated Manipulator

An under-actuated manipulator is one that has fewer than six joints, and is therefore
limited in the end-effector poses that it can attain. SCARA robots such as shown on
page 191 are a common example. They typically have an x-y-z-θ task space, T⊂R3 × S1
and a confi guration space C⊂ (S1)3 ×R.

We will load a model of SCARA robot

>> mdl_cobra600
>> c600
c600 =
Cobra600 [Adept]:: 4 axis, RRPR, stdDH
+---+-----------+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha | offset |
+---+-----------+-----------+-----------+-----------+-----------+
| 1| q1| 0.387| 0.325| 0| 0|
| 2| q2| 0| 0.275| 3.142| 0|
| 3| 0| q3| 0| 0| 0|
| 4| q4| 0| 0| 0| 0|
+---+-----------+-----------+-----------+-----------+-----------+

and then defi ne a desired end-effector pose

>> T = SE3(0.4, -0.3, 0.2) * SE3.rpy(30, 40, 160, 'deg')

where the end-effector approach vector is pointing downward but is not vertically
aligned. This pose is over-constrained for the 4-joint SCARA robot – the tool physically
cannot meet the orientation requirement for an approach vector that is not vertically
aligned. Therefore we require the ikine method to not consider rotation about the
x- and y-axes when computing the end-effector pose error. We achieve this by speci-
fying a mask vector as the fourth argument

>> q = c600.ikine(T, 'mask', [1 1 1 0 0 1])
q =
 -0.1110 -1.1760 0.1870 -0.8916

The elements of the mask vector correspond respectively to the three translations and
three orientations: tx, ty, tz, rx, ry, rz in the end-effector coordinate frame. In this exam-
ple we specifi ed that rotation about the x- and y-axes are to be ignored (the zero ele-
ments). The resulting joint angles correspond to an achievable end-effector pose

>> Ta = c600.fkine(q);
>> Ta.print('xyz')
t = (0.4, -0.3, 0.2), RPY/xyz = (22.7, 0, 180) deg

which has the desired translation and yaw angle, but the roll and pitch angles are in-
correct, as we allowed them to be. They are what the robot mechanism actually per-
mits. We can also compare the desired and achievable poses graphically

>> trplot(T, 'color', 'b')
>> hold on
>> trplot(Ta, 'color', 'r')

7.2.2.4
l
Redundant Manipulator

A redundant manipulator is a robot with more than six joints. As mentioned previ-
ously, six joints is theoretically suffi cient to achieve any desired pose in a Cartesian
taskspace T⊂ SE(3). However practical issues such as joint limits and singularities
mean that not all poses within the robot’s reachable space can be achieved. Adding
additional joints is one way to overcome this problem but results in an infi nite num-
ber of joint-coordinate solutions. To fi nd a single solution we need to introduce con-
straints – a common one is the minimum-norm constraint which returns a solution
where the joint-coordinate vector elements have the smallest magnitude.

211

We will illustrate this with the Baxter robot shown in Fig. 7.1b. This is a two armed
robot, and each arm has 7 joints. We load the Toolbox model

>> mdl_baxter

which defi nes two SerialLink objects in the workspace, one for each arm. We will work
with the left arm

>> left
left =
Baxter LEFT [Rethink Robotics]:: 7 axis, RRRRRRR, stdDH
+---+-----------+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha | offset |
+---+-----------+-----------+-----------+-----------+-----------+
| 1| q1| 0.27| 0.069| -1.571| 0|
| 2| q2| 0| 0| 1.571| 1.571|
| 3| q3| 0.364| 0.069| -1.571| 0|
| 4| q4| 0| 0| 1.571| 0|
| 5| q5| 0.374| 0.01| -1.571| 0|
| 6| q6| 0| 0| 1.571| 0|
| 7| q7| 0.28| 0| 0| 0|
+---+-----------+-----------+-----------+-----------+-----------+
base: t = (0.064614,0.25858,0.119), RPY/xyz = (0, 0, 45) deg

which we can see has a base offset that refl ects where the arm is attached to Baxter’s
torso. We want the robot to move to this pose

>> TE = SE3(0.8, 0.2, -0.2) * SE3.Ry(pi);

which has its approach vector downward. The required joint angles are obtained us-
ing the numerical inverse kinematic solution and

>> q = left.ikine(TE)
q =
 0.0895 -0.0464 -0.4259 0.6980 -0.4248 1.0179 0.2998

is the joint-angle vector with the smallest norm that results in the desired end-effector
pose. We can verify this by computing the forward kinematics or plotting

>> left.fkine(q).print('xyz')
t = (0.8, 0.2, -0.2), RPY/xyz = (180, 180, 180) deg
>> left.plot(q)

7.3
l
Trajectories

One of the most common requirements in robotics is to move the end-effector smoothly
from pose A to pose B. Building on what we learned in Sect. 3.3 we will discuss two ap-
proaches to generating such trajectories: straight lines in confi guration space and straight
lines in task space. These are known respectively as joint-space and Cartesian motion.

7.3.1
l

Joint-Space Motion

Consider the end-effector moving between two Cartesian poses�

>> T1 = SE3(0.4, 0.2, 0) * SE3.Rx(pi);
>> T2 = SE3(0.4, -0.2, 0) * SE3.Rx(pi/2);

which describe points in the xy-plane with different end-effector orientations. The
joint coordinate vectors associated with these poses are

>> q1 = p560.ikine6s(T1);
>> q2 = p560.ikine6s(T2);

and we require the motion to occur over a time period of 2 seconds in 50 ms time steps

In this robot configuration, similar to
Fig. 7.6d, we specify the pose to include a
rotation so that the end-effector z-axis
is not pointing straight up in the world
z-direction. For the Puma 560 robot this
would be physically impossible to achieve
in the elbow-up configuration.

7.3 · Trajectories

212 Chapter 7 · Robot Arm Kinematics

>> t = [0:0.05:2]';

A joint-space trajectory is formed by smoothly interpolating between the joint confi gu-
rations q1 and q2. The scalar interpolation functions tpoly or lspb from Sect. 3.3.1
can be used in conjunction with the multi-axis driver function mtraj

>> q = mtraj(@tpoly, q1, q2, t);

or

>> q = mtraj(@lspb, q1, q2, t);

which each result in a 50 × 6 matrix q with one row per time step and one column per
joint. From here on we will use the equivalent jtraj convenience function

>> q = jtraj(q1, q2, t);�

For mtraj and jtraj the fi nal argument can be a time vector, as here, or an integer
specifying the number of time steps.

We can obtain the joint velocity and acceleration vectors, as a function of time,
through optional output arguments

>> [q,qd,qdd] = jtraj(q1, q2, t);

An even more concise way to achieve the above steps is provided by the jtraj meth-
od of the SerialLink class

>> q = p560.jtraj(T1, T2, t)

This is equivalent to mtraj with
tpoly interpolation but optimized
for the multi-axis case and also allowing
initial and final velocity to be set using
additional arguments.

Fig. 7.9. Joint-space motion. a Joint
coordinates versus time; b Carte-
sian position versus time; c Carte-
sian position locus in the xy-plane
d roll-pitch-yaw angles versus time

213

Fig. 7.10. Cartesian motion. a Joint
coordinates versus time; b Carte-
sian position versus time; c Carte-
sian position locus in the xy-plane;
d roll-pitch-yaw angles versus time

The trajectory is best viewed as an animation

>> p560.plot(q)

but we can also plot the joint angle, for instance q2, versus time

>> plot(t, q(:,2))

or all the angles versus time

>> qplot(t, q);

as shown in Fig. 7.9a. The joint coordinate trajectory is smooth but we do not know
how the robot’s end-effector will move in Cartesian space. However we can easily de-
termine this by applying forward kinematics to the joint coordinate trajectory

>> T = p560.fkine(q);

which results in an array of SE3 objects. The translational part of this trajectory is

>> p = T.transl;

which is in matrix form

>> about(p)
p [double] : 41x3 (984 bytes)

and has one column per time step, and each column is the end-effector position vector.
This is plotted against time in Fig. 7.9b. The path of the end-effector in the xy-plane

7.3 · Trajectories

214 Chapter 7 · Robot Arm Kinematics

>> plot(p(1,:), p(2,:))

is shown in Fig. 7.9c and it is clear that the path is not a straight line. This is to be ex-
pected since we only specifi ed the Cartesian coordinates of the end-points. As the robot
rotates about its waist joint during the motion the end-effector will naturally follow a
circular arc. In practice this could lead to collisions between the robot and nearby ob-
jects even if they do not lie on the path between poses A and B. The orientation of the
end-effector, in XYZ roll-pitch-yaw angle form, can also be plotted against time

>> plot(t, T.torpy('xyz'))

as shown in Fig. 7.9d. Note that the yaw angle� varies from 0 to ü radians as we speci-
fi ed. However while the roll and pitch angles have met their boundary conditions they
have varied along the path.

7.3.2
l

Cartesian Motion

For many applications we require straight-line motion in Cartesian space which is
known as Cartesian motion. This is implemented using the Toolbox function ctraj
which was introduced in Sect. 3.3.5. Its usage is very similar to jtraj

>> Ts = ctraj(T1, T2, length(t));

where the arguments are the initial and fi nal pose and the number of time steps and
it returns the trajectory as an array of SE3 objects.

As for the previous joint-space example we will extract and plot the translation

>> plot(t, Ts.transl);

and orientation components

>> plot(t, Ts.torpy('xyz'));

of this motion which is shown in Fig. 7.10 along with the path of the end-effector in
the xy-plane. Compared to Fig. 7.9 we note some important differences. Firstly the
end-effector follows a straight line in the xy-plane as shown in Fig. 7.10c. Secondly
the roll and pitch angles shown in Fig. 7.10d are constant at zero along the path.

The corresponding joint-space trajectory is obtained by applying the inverse kine-
matics

>> qc = p560.ikine6s(Ts);

and is shown in Fig. 7.10a. While broadly similar to Fig. 7.9a the minor differences are
what result in the straight line Cartesian motion.

7.3.3
l
Kinematics in Simulink

We can also implement this example in Simulink®

>> sl_jspace

and the block diagram model is shown in Fig. 7.11. The parameters of the jtraj
block are the initial and fi nal values for the joint coordinates and the time duration
of the motion segment. The smoothly varying joint angles are wired to a plot block
which will animate a robot in a separate window, and to an fkine block to compute
the forward kinematics. Both the plot and fkine blocks have a parameter which is
a SerialLink object, in this case p560. The Cartesian position of the end-effector
pose is extracted using the T2xyz block which is analogous to the Toolbox function
transl. The XY Graph block plots y against x.

Rotation about x-axis for a robot end-
effector from Sect. 2.2.1.2.

215

7.3.4
l

Motion through a Singularity

We have already briefl y touched on the topic of singularities (page 209) and we will
revisit it again in the next chapter. In the next example we deliberately choose a tra-
jectory that moves through a robot wrist singularity. We change the Cartesian end-
points of the previous example to

>> T1 = SE3(0.5, 0.3, 0.44) * SE3.Ry(pi/2);
>> T2 = SE3(0.5, -0.3, 0.44) * SE3.Ry(pi/2);

which results in motion in the y-direction with the end-effector z-axis pointing in the
world x-direction. The Cartesian path is

>> Ts = ctraj(T1, T2, length(t));

which we convert to joint coordinates

>> qc = p560.ikine6s(Ts)

and is shown in Fig. 7.12a. At time t ≈ 0.7 s we observe that the rate of change of the
wrist joint angles q4 and q6 has become very high.� The cause is that q5 has become
almost zero which means that the q4 and q6 rotational axes are almost aligned – an-
other gimbal lock situation or singularity.

The joint axis alignment means that the robot has lost one degree of freedom and is
now effectively a 5-axis robot. Kinematically we can only solve for the sum q4 + q6 and
there are an infi nite number of solutions for q4 and q6 that would have the same sum.
From Fig. 7.12b we observe that the generalized inverse kinematics method ikine
handles the singularity with far less unnecessary joint motion. This is a consequence
of the minimum-norm solution which has returned the smallest magnitude q4 and q6
which have the correct sum. The joint-space motion between the two poses, Fig. 7.12c,
is immune to this problem since it is does not involve inverse kinematics. However
it will not maintain the orientation of the tool in the x-direction for the whole path
– only at the two end points.

The dexterity of a manipulator, its ability to move easily in any direction, is referred
to as its manipulability. It is a scalar measure, high is good, and can be computed for
each point along the trajectory

>> m = p560.maniplty(qc);

and is plotted in Fig. 7.12d. This shows that manipulability was almost zero around
the time of the rapid wrist joint motion. Manipulability and the generalized inverse
kinematics function are based on the manipulator’s Jacobian matrix which is the topic
of the next chapter.

Fig. 7.11.
Simulink model sl_jspace

for joint-space motion

q6 has increased rapidly, while q4 has
decreased rapidly and wrapped around
from −π to π. This counter-rotational
motion of the two joints means that the
gripper does not rotate but the two mo-
tors are working hard.

7.3 · Trajectories

216 Chapter 7 · Robot Arm Kinematics

7.3.5
l

Configuration Change

Earlier (page 208) we discussed the kinematic confi guration of the manipulator arm
and how it can work in a left- or right-handed manner and with the elbow up or down.
Consider the problem of a robot that is working for a while left-handed at one work
station, then working right-handed at another. Movement from one confi guration to
another ultimately results in no change in the end-effector pose since both confi gura-
tion have the same forward kinematic solution – therefore we cannot create a trajec-
tory in Cartesian space. Instead we must use joint-space motion.

For example to move the robot arm from the right- to left-handed confi guration
we fi rst defi ne some end-effector pose

>> T = SE3(0.4, 0.2, 0) * SE3.Rx(pi);

and then determine the joint coordinates for the right- and left-handed elbow-up
confi gurations

>> qr = p560.ikine6s(T, 'ru');
>> ql = p560.ikine6s(T, 'lu');

and then create a joint-space trajectory between these two joint coordinate vectors

>> q = jtraj(qr, ql, t);

Although the initial and fi nal end-effector pose is the same, the robot makes some quite sig-
nifi cant joint space motion as shown in Fig. 7.13 – in the real world you need to be careful
the robot doesn’t hit something. Once again, the best way to visualize this is in animation

>> p560.plot(q)

Fig. 7.12. Cartesian motion through
a wrist singularity. a Joint coordi-
nates computed by inverse kine-
matics (ikine6s); b joint coor-
dinates computed by numerical
inverse kinematics (ikine); c joint
coordinates for joint-space mo-
tion; d manipulability

217

7.4
l
Advanced Topics

7.4.1
l
Joint Angle Offsets

The pose of the robot with zero joint angles is an arbitrary decision of the robot
designer and might even be a mechanically unachievable pose. For the Puma robot
the zero-angle pose is a nonobvious L- shape with the upper arm horizontal and the
lower arm vertically upward as shown in Fig. 7.6a. This is a consequence of con-
straints imposed by the Denavit-Hartenberg formalism.

The joint coordinate offset provides a mechanism to set an arbitrary confi gu-
ration for the zero joint coordinate case. The offset vector, q0, is added to the user
specifi ed joint angles before any kinematic or dynamic function is invoked,� for
example

 (7.6)

Similarly it is subtracted after an operation such as inverse kinematics

 (7.7)

The offset is set by assigning the offset property of the Link object, or giving the
'offset' option to the SerialLink constructor.

7.4.2
l
Determining Denavit-Hartenberg Parameters

The classical method of determining Denavit-Hartenberg parameters is to system-
atically assign a coordinate frame to each link. The link frames for the Puma robot
using the standard Denavit-Hartenberg formalism are shown in Fig. 7.14. However
there are strong constraints on placing each frame since joint rotation must be
about the z-axis and the link displacement must be in the x-direction. This in turn
imposes constraints on the placement of the coordinate frames for the base and the
end-effector, and ultimately dictates the zero-angle pose just discussed. Determining
the Denavit-Hartenberg parameters and link coordinate frames for a completely
new mechanism is therefore more diffi cult than it should be – even for an experi-
enced roboticist.

An alternative approach, supported by the Toolbox, is to simply describe the ma-
nipulator as a series of elementary translations and rotations from the base to the
tip of the end-effector as we discussed in Sect. 7.1.2. Some of the elementary opera-
tions are constants such as translations that represent link lengths or offsets, and

Fig. 7.13.
Joint space motions for confi gu-
ration change from right-handed

to left-handed

It is actually implemented within the
Link object.

Fig. 7.14. Puma 560 robot coor-
dinate frames. Standard Denavit-
Hartenberg link coordinate frames
for Puma in the zeroangle pose
(Corke 1996b)

7.4 · Advanced Topics

218 Chapter 7 · Robot Arm Kinematics

some are functions of the generalized joint coordinates qj. Unlike the conventional
approach we impose no constraints on the axes about which these rotations or trans-
lations can occur.

For the Puma robot shown in Fig. 7.4 we fi rst defi ne a convenient coordinate frame
at the base and then write down the sequence of translations and rotations, from “toe
to tip”, in a string�

>> s = 'Tz(L1) Rz(q1) Ry(q2) Ty(L2) Tz(L3) Ry(q3) Tx(L4) Ty(L5)
 Tz(L6) Rz(q4) Ry(q5) Rz(q6)'

Note that we have described the second joint as Ry(q2), a rotation about the y-axis,
which is not permissible using the Denavit-Hartenberg formalism.

This string is input to a symbolic algebra function�

>> dh = DHFactor(s);

which returns a DHFactor object� that holds the kinematic structure of the robot
that has been factorized into Denavit-Hartenberg parameters. We can display this in
a human-readable form

>> dh
dh =
DH(q1, L1, 0, -90).DH(q2+90, 0, -L3, 0).DH(q3-90, L2+L5, L4, 90).
DH(q4, L6, 0, -90).DH(q5, 0, 0, 90).DH(q6, 0, 0, 0)

which shows the Denavit-Hartenberg parameters for each joint in the order θ , d, a
and α. Joint angle offsets (the constants added to or subtracted from joint angle vari-
ables such as q2 and q3) are generated automatically, as are base and tool transfor-
mations. The object can generate a string that is a complete Toolbox command to cre-
ate the robot named “puma”

>> cmd = dh.command('puma')
cmd =
SerialLink([0, L1, 0, -pi/2, 0; 0, 0, -L3, 0, 0; 0, L2+L5, L4,	
pi/2, 0; 0, L6, 0, -pi/2, 0; 0, 0, 0, pi/2, 0; 0, 0, 0, 0, 0;], ...
 'name', 'puma', ...
 'base', eye(4,4), 'tool', eye(4,4), ...
 'offset', [0 pi/2 -pi/2 0 0 0])

which can be executed

>> robot = eval(cmd)

to create a workspace variable called robot that is a SerialLink object.�

7.4.3
l

Modified Denavit-Hartenberg Parameters

The Denavit-Hartenberg notation introduced in this chapter is commonly used and
described in many robotics textbooks. Craig (1986) fi rst introduced the modifi ed
Denavit-Hartenberg parameters where the link coordinate frames shown in Fig. 7.15
are attached to the near (proximal), rather than the far (distal) end of each link. This
modifi ed notation is in some ways clearer and tidier and is also now commonly used.
However its introduction has increased the scope for confusion, particularly for those
who are new to robot kinematics. The root of the problem is that the algorithms for
kinematics, Jacobians and dynamics depend on the kinematic conventions used.
According to Craig’s convention the link transform matrix is

 (7.8)

denoted in that book as j−1
jA. This has the same terms as Eq. 7.2 but in a different order

– remember rotations are not commutative – and this is the nub of the problem. aj is

All lengths must start with L and negative
signs cannot be used in the string, but
the values themselves can be negative.
You can generate this string from an ETS3
sequence (page 196) using its string
method.

Written in Java, the MATLAB® Symbolic
Math Toolbox™ is not required.

Actually a Java object.

The length parameters L1 to L6 must
be defined in the workspace first.

219

always the length of link j, but it is the displacement between the origins of frame {j}
and frame {j + 1} in one convention, and frame {j − 1} and frame {j} in the other.

If you intend to build a Toolbox robot model from a table of kinematic parame-
ters provided in a research paper it is really important to know which convention
the author of the table used. Too often this important fact is not mentioned. An
important clue lies in the column headings. If they all have the same subscript,
i.e. θ j, dj, aj and α j then this is standard Denavit-Hartenberg notation. If half the
subscripts are different, i.e. θ j, dj, aj−1 and α j−1 then you are dealing with modi-
fied Denavit-Hartenberg notation. In short, you must know which kinematic
convention your Denavit-Hartenberg parameters conform to.

You can also help the field when publishing by stating clearly which kine-
matic convention is used for your parameters.

The Toolbox can handle either form, it only needs to be specifi ed, and this is achieved
using variant classes when creating a link object

>> L1 = RevoluteMDH('d', 1)
L1 =
Revolute(mod): theta=q, d=1, a=0, alpha=0, offset=0

Everything else from here on, creating the robot object, kinematic and dynamic
functions works as previously described.

The two forms can be interchanged by considering the link transform as a string
of elementary rotations and translations as in Eq. 7.2 or Eq. 7.8. Consider the trans-
formation chain for standard Denavit-Hartenberg notation

which we can regroup as

where the terms marked as MDHj have the form of Eq. 7.8 taking into account that trans-
lation along, and rotation about the same axis is commutative, that is, Òi(θ) ⊕ Ói(d)
= Ói(d) ⊕ Òi(θ) for i ∈ {x, y, z}.

Fig. 7.15.
Defi nition of modifi ed Denavit

and Hartenberg link parameters.
The colors red and blue denote
all things associated with links

j − 1 and j respectively. The
numbers in circles represent the

order in which the elementary
transforms are applied

7.4 · Advanced Topics

220 Chapter 7 · Robot Arm Kinematics

7.5
l
Applications

7.5.1
l
Writing on a Surface [examples/drawing.m]

Our goal is to create a trajectory that will allow a robot to draw a letter. The Toolbox
comes with a preprocessed version of the Hershey font �

>> load hershey

as a cell array of character descriptors. For an upper-case ‘B’

>> B = hershey{'B'}
B =
 stroke: [2x23 double]
 width: 0.8400
 top: 0.8400
 bottom: 0

the structure describes the dimensions of the character, vertically from 0 to 0.84 and
horizontally from 0 to 0.84�. The path to be drawn is

>> B.stroke
ans =
 Columns 1 through 11
 0.1600 0.1600 NaN 0.1600 0.5200 0.6400 ...
 0.8400 0 NaN 0.8400 0.8400 0.8000 ...

where the rows are the x- and y-coordinates respectively, and a column of NaNs indi-
cates the end of a segment – the pen is lifted and placed down again at the beginning
of the next segment. We perform some processing

>> path = [0.25*B.stroke; zeros(1,numcols(B.stroke))];
>> k = fi nd(isnan(path(1,:)));
>> path(:,k) = path(:,k-1); path(3,k) = 0.2;

to scale the path by 0.25 so that the character is around 20 cm tall, append a row of
zeros (add z-coordinates to this 2-dimensional path), fi nd the columns that contain
NaNs and replace them with the preceding column but with the z-coordinate set to
0.2 in order to lift the pen off the surface.

Next we convert this to a continuous trajectory

>> traj = mstraj(path(:,2:end)', [0.5 0.5 0.5], [], path(:,1)',	
 0.02, 0.2);

where the second argument is the maximum speed in the x-, y- and z-directions, the
fourth argument is the initial coordinate followed by the sample interval and the ac-
celeration time. The number of steps in the interpolated path is

>> about(traj)
 traj [double] : 487x3 (11.7 kB)

and will take
>> numrows(traj) * 0.02
ans =
 9.7400

seconds to execute at the 20 ms sample interval. The trajectory can be plotted

>> plot3(traj(:,1), traj(:,2), traj(:,3))

as shown in Fig. 7.16.
We now have a sequence of 3-dimensional points but the robot end-effector has a

pose, not just a position, so we need to attach a coordinate frame to every point. We
assume that the robot is writing on a horizontal surface so these frames must have
their approach vector pointing downward, that is, a = [0, 0, −1], with the gripper ar-

Developed by Dr. Allen V. Hershey at
the Naval Weapons Laboratory in 1967,
data from http://paulbourke.net/data-
formats/hershey.

This is a variable-width font, and all
characters fit within a unit-height rect-
angle.

221

bitrarily oriented in the y-direction with o = [0, 1, 0]. The character is also placed at
(0.6, 0, 0) in the workspace, and all this is achieved by

>> Tp = SE3(0.6, 0, 0) * SE3(traj) * SE3.oa([0 1 0], [0 0 -1]);

Now we can apply inverse kinematics

>> q = p560.ikine6s(Tp);

to determine the joint coordinates and then animate it

>> p560.plot(q)

The Puma is drawing the letter ‘B’, and lifting its pen in between strokes! The ap-
proach is quite general and we could easily change the size of the letter, write whole
words and sentences, write on an arbitrary plane or use a robot with quite different
kinematics.�

7.5.2
l

A Simple Walking Robot [examples/walking.m]

Four legs good, two legs bad!
Snowball the pig, Animal Farm by George Orwell

Our goal is to create a four-legged walking robot. We start by creating a 3-axis robot
arm that we use as a leg, plan a trajectory for the leg that is suitable for walking, and
then instantiate four instances of the leg to create the walking robot.

Kinematics

Kinematically a robot leg is much like a robot arm. For this application a three joint
serial-link manipulator is suffi cient since the foot has point contact with the ground
and orientation is not important. Determining the Denavit-Hartenberg parameters,
even for a simple robot like this, is an involved procedure and the zero-angle offsets
need to be determined in a separate step. Therefore we will use the procedure intro-
duced in Sect. 7.4.2.

As always we start by defi ning our coordinate frame. This is shown in Fig. 7.17
along with the robot leg in its zero-angle pose. We have chosen the aerospace coor-
dinate convention which has the x-axis forward and the z-axis downward, constrain-
ing the y-axis to point to the right-hand side. The fi rst joint will be hip motion, for-
ward and backward, which is rotation about the z-axis or Rz(q1). The second joint
is hip motion up and down, which is rotation about the x-axis, Rx(q2). These form a

Fig. 7.16.
The end-effector path drawing

the letter ‘B’

7.5 · Applications

We have not considered the force that
the robot-held pen exerts on the paper,
we cover force control in Chap. 9. In a
real implementation of this example it
would be prudent to use a spring to push
the pen against the paper with sufficient
force to allow it to write.

222 Chapter 7 · Robot Arm Kinematics

spherical hip joint since the axes of rotation intersect. The knee is translated by L1
in the y-direction or Ty(L1). The third joint is knee motion, toward and away from
the body, which is Rx(q3). The foot is translated by L2 in the z-direction or Tz(L2).
The transform sequence of this robot, from hip to toe, is therefore Rz(q1)Rx(q2)Ty
(L1)Rx(q3)Tz(L2).

Using the technique of Sect. 7.4.2 we write this sequence as the string

>> s = 'Rz(q1) Rx(q2) Ty(L1) Rx(q3) Tz(L2)';

The string can be automatically manipulated into Denavit-Hartenberg factors
>> dh = DHFactor(s)
DH(q1+90, 0, 0, 90).DH(q2, 0, L1, 0).DH(q3-90, 0, -L2, 0)	
.Rz(+90).Rx(-90).Rz(-90)

The last three terms in this factorized sequence is a tool transform
 >> dh.tool
ans =
 trotz(pi/2)* trotx(-pi/2)*trotz(-pi/2)

that changes the orientation of the frame at the foot. However for this problem the
foot is simply a point that contacts the ground so we are not concerned about its ori-
entation. The method dh.command generates a string that is the Toolbox command
to create a SerialLink object

>> dh.command('leg')
ans =
SerialLink([0, 0, 0, pi/2, 0; 0, 0, L1, 0, 0; 0, 0, -L2, 0, 0;],	
 'name', 'leg', 'base', eye(4,4),	
 'tool', trotz(pi/2)*trotx(-pi/2)*trotz(-pi/2),	
 'offset', [pi/2 0 -pi/2])

which is input to the MATLAB eval command

>> L1 = 0.1; L2 = 0.1;
>> leg = eval(dh.command('leg'))
>> leg
leg =
leg:: 3 axis, RRR, stdDH, slowRNE
+---+-----------+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha | offset |
+---+-----------+-----------+-----------+-----------+-----------+
| 1| q1| 0| 0| 1.5708| 1.5708|
| 2| q2| 0| 0.1| 0| 0|
| 3| q3| 0| -0.1| 0| -1.5708|
+---+-----------+-----------+-----------+-----------+-----------+
tool: t = (0, 0, 0), RPY/zyx = (0, -90, 0) deg

after fi rst setting the length of each leg segment to 100 mm in the MATLAB work-
space.

Fig. 7.17.
The coordinate frame and axis
rotations for the simple leg. The
leg is shown in its zero angle pose

223

We perform a quick sanity check of our robot. For zero joint angles the foot is at
>> transl(leg.fkine([0,0,0]))
ans =
 0 0.1000 0.1000

as we designed it. We can visualize the zero-angle pose

>> leg.plot([0,0,0], 'nobase', 'noshadow', 'notiles')
>> set(gca, 'Zdir', 'reverse'); view(137,48);

which is shown in Fig. 7.18. Now we should test that the other joints result in the ex-
pected motion. Increasing q1

>> transl(leg.fkine([0.2,0,0]))
ans =
 -0.0199 0.0980 0.1000

results in motion in the xy-plane, and increasing q2

>> transl(leg.fkine([0,0.2,0]))
ans =
 -0.0000 0.0781 0.1179

results in motion in the yz-plane, as does increasing q3

>> transl(leg.fkine([0,0,0.2]))
ans =
 -0.0000 0.0801 0.0980

We have now created and verifi ed a simple robot leg.

Motion of One Leg

The next step is to defi ne the path that the end-effector of the leg, its foot, will follow.
The fi rst consideration is that the end-effector of all feet move backwards at the same
speed in the ground plane – propelling the robot’s body forward without its feet slip-
ping. Each leg has a limited range of movement so it cannot move backward for very
long. At some point we must reset the leg – lift the foot, move it forward and place it
on the ground again. The second consideration comes from static stability – the robot
must have at least three feet on the ground at all times so each leg must take its turn
to reset. This requires that any leg is in contact with the ground for ¾ of the cycle and
is resetting for ¼ of the cycle. A consequence of this is that the leg has to move much
faster during reset since it has a longer path and less time to do it in.

The required trajectory is defi ned by the via points

>> xf = 50; xb = -xf; y = 50; zu = 20; zd = 50;
>> path = [xf y zd; xb y zd; xb y zu; xf y zu; xf y zd] * 1e-3;

where xf and xb are the forward and backward limits of leg motion in the x-direction (in
units of mm), y is the distance of the foot from the body in the y-direction, and zu and zd

Fig. 7.18.
Robot leg in its zero angle pose.

Note that the z-axis points
downward

7.5 · Applications

224 Chapter 7 · Robot Arm Kinematics

are respectively the height of the foot motion in the z-direction for foot up and foot down.
In this case the foot moves from 50 mm forward of the hip to 50 mm behind. When the foot
is down, it is 50 mm below the hip and it is raised to 20 mm below the hip during reset. The
points in path defi ne a complete cycle: the start of the stance phase, the end of stance, top
of the leg lift, top of the leg return and the start of stance. This is shown in Fig. 7.19a.

Next we sample the multi-segment path at 100 Hz

>> p = mstraj(path, [], [0, 3, 0.25, 0.5, 0.25]', path(1,:), 0.01, 0);

In this case we have specifi ed a vector of desired segment times rather than maxi-
mum joint velocities.� The fi nal three arguments are the initial leg confi guration, the
sample interval and the acceleration time. This trajectory has a total time of 4 s and
therefore comprises 400 points.

We apply inverse kinematics to determine the joint angle trajectories required for
the foot to follow the computed Cartesian trajectory. This robot is under-actuated so
we use the generalized inverse kinematics ikine and set the mask so as to solve only
for end-effector translation

>> qcycle = leg.ikine(SE3(p), 'mask', [1 1 1 0 0 0]);

We can view the motion of the leg in animation

>> leg.plot(qcycle, 'loop')

to verify that it does what we expect: slow motion along the ground, then a rapid lift,
forward motion and foot placement. The 'loop' option displays the trajectory in an
endless loop and you need to type control-C to stop it.

Motion of Four Legs

Our robot has width and length

>> W = 0.1; L = 0.2;

We create multiple instances of the leg by cloning the leg object we created earlier, and
providing different base transforms so as to attach the legs to different points on the body

>> legs(1) = SerialLink(leg, 'name', 'leg1');
>> legs(2) = SerialLink(leg, 'name', 'leg2', 'base', SE3(-L, 0, 0));
>> legs(3) = SerialLink(leg, 'name', 'leg3', 'base', SE3(-L, -W, 0) 	
 *SE3.Rz(pi));
>> legs(4) = SerialLink(leg, 'name', 'leg4', 'base', SE3(0, -W, 0) 	
 * SE3.Rz(pi));

Fig. 7.19. a Trajectory taken by a
single foot. Recall from Fig. 7.17
that the z-axis is downward. The
red segments are the leg reset.
b The x-direction motion of each
leg (offset vertically) to show the
gait. The leg reset is the period of
high x-direction velocity

This way we can ensure that the reset
takes exactly one quarter of the cycle.

225

The result is a vector of SerialLink objects. Note that legs 3 and 4, on the left-
hand side of the body have been rotated about the z-axis so that they point away from
the body.

As mentioned earlier each leg must take its turn to reset. Since the trajectory is a
cycle, we achieve this by having each leg run the trajectory with a phase shift equal to
one quarter of the total cycle time. Since the total cycle has 400 points, each leg’s tra-
jectory is offset by 100, and we use modulo arithmetic to index into the cyclic gait for
each leg. The result is the gait pattern shown in Fig. 7.19b.

The core of the walking program is
clf; k = 1;
while 1
 legs(1).plot(gait(qcycle, k, 0, false));
 if k == 1, hold on; end
 legs(2).plot(gait(qcycle, k, 100, false));
 legs(3).plot(gait(qcycle, k, 200, true));
 legs(4).plot(gait(qcycle, k, 300, true));
 drawnow
 k = k+1;
end

where the function

 gait(q, k, ph, fl ip)

returns the k+phth element of q with modulo arithmetic that considers q as a cycle.
The argument fl ip reverses the sign of the joint 1 motion for the legs on the left-hand
side of the robot. A snapshot from the simulation is shown in Fig. 7.20. The entire im-
plementation, with some additional refi nement, is in the fi le examples/walking.m
and detailed explanation is provided by the comments.

7.6
l
Wrapping Up

In this chapter we have learned how to determine the forward and inverse kinemat-
ics of a serial-link manipulator arm. Forward kinematics involves compounding the
relative poses due to each joint and link, giving the pose of the robot’s end-effector
relative to its base. Commonly the joint and link structure is expressed in terms of
Denavit-Hartenberg parameters for each link. Inverse kinematics is the problem of
determining the joint coordinates given the end-effector pose. For simple robots, or
those with six joints and a spherical wrist we can compute the inverse kinematics us-
ing an analytic solution. This inverse is not unique and the robot may have several
joint confi gurations that result in the same end-effector pose.

Fig. 7.20.
The walking robot

7.6 · Wrapping Up

226 Chapter 7 · Robot Arm Kinematics

For robots which do not have six joints and a spherical wrist we can use an iterative
numerical approach to solving the inverse kinematics. We showed how this could
be applied to an under-actuated 4-joint SCARA robot and a redundant 7-link robot.
We also touched briefl y on the topic of singularities which are due to the alignment
of joint axes.

We also learned about creating paths to move the end-effector smoothly between
poses. Joint-space paths are simple to compute but in general do not result in straight
line paths in Cartesian space which may be problematic for some applications. Straight
line paths in Cartesian space can be generated but singularities in the workspace may
lead to very high joint rates.

Further Reading

Serial-link manipulator kinematics are covered in all the standard robotics text-
books such as the Robotics Handbook (Siciliano and Khatib 2016), Siciliano et al.
(2009), Spong et al. (2006) and Paul (1981). Craig’s text (2005) is also an excellent
introduction to robot kinematics and uses the modifi ed Denavit-Hartenberg no-
tation, and the examples in the third edition are based on an older version of the
Robotics Toolbox. Lynch and Park (2017) and Murray et al. (1994) cover the prod-
uct of exponential approach. An emerging alternative to Denavit-Hartenberg nota-
tion is URDF (unifi ed robot description format) which is described at http://wiki.
ros.org/urdf.

Siciliano et al. (2009) provide a very clear description of the process of assigning
Denavit-Hartenberg parameters to an arbitrary robot. The alternative approach de-
scribed here based on symbolic factorization was described in detail by Corke (2007).
The defi nitive values for the parameters of the Puma 560 robot are described in the
paper by Corke and Armstrong-Hélouvry (1995).

Robotic walking is a huge fi eld in its own right and the example given here is very
simplistic. Machines have been demonstrated with complex gaits such as running
and galloping that rely on dynamic rather than static balance. A good introduc-
tion to legged robots is given in the Robotics Handbook (Siciliano and Khatib 2016,
§ 17). Robotic hands, grasping and manipulation is another large topic which we
have not covered – there is a good introduction in the Robotics Handbook (Siciliano
and Khatib 2016, §37, 38).

Parallel-link manipulators were mentioned only briefl y on page 192 and have ad-
vantages such as increased actuation force and stiffness (since the actuators form a
truss-like structure). For this class of mechanism the inverse kinematics is usually
closed-form and it is the forward kinematics that requires numerical solution. Useful
starting points for this class of robots are the handbook (Siciliano and Khatib 2016,
§18), a brief section in Siciliano et al. (2009) and Merlet (2006).

Closed-form inverse kinematic solutions can be derived symbolically by writing
down a number of kinematic relationships and solving for the joint angles, as de-
scribed in Paul (1981). Software packages to automatically generate the forward and
inverse kinematics for a given robot have been developed and these include Robotica
(Nethery and Spong 1994) which is now obsolete, and SYMORO (Khalil and Creusot
1997) which is now available as open-source.

Historical. The original work by Denavit and Hartenberg was their 1955 paper
(Denavit and Hartenberg 1955) and their textbook (Hartenberg and Denavit 1964).
The book has an introduction to the field of kinematics and its history but is cur-
rently out of print, although a version can be found online. The first full descrip-
tion of the kinematics of a six-link arm with a spherical wrist was by Paul and
Zhang (1986).

227

MATLAB and Toolbox Notes

The workhorse of the Toolbox is the SerialLink class which has considerable func-
tionality and very many methods – we will use it extensively for the remainder of Part III.
The classes ETS2 and ETS3 used in the early parts of this chapter were designed to
illustrate principles as concisely as possible and have limited functionality, but the names
of their methods are the same as their equivalents in the SerialLink class.

The plot method draws a stick fi gure robot and needs only Denavit-Hartenberg
parameters. However the joints depicted are associated with the link frames and don’t
necessarily correspond to physical joints on the robot, but that is a limitation of the
Denavit-Hartenberg parameters . A small number of robots have more realistic 3-di-
mensional models defi ned by STL fi les and these can be displayed using the plot3d .
The models shipped with the Toolbox were created by Arturo Gil and are also shipped
with his ARTE Toolbox.

The numerical inverse kinematics method ikine can handle over- and under-
actuated robot arms, but does not handle joint coordinate limits which can be set in
the SerialLink object. The alternative inverse kinematic method ikcon respects
joint limits but requires the MATLAB Optimization Toolbox™.

The MATLAB Robotics System Toolbox™ provides a RigidBodyTree class to
represent a serial-link manipulator, and this also supports branched mechanisms such
as a humanoid robot. It also provides a general InverseKinematics class to solve
inverse kinematic problems and can handle joint limits.

Exercises

1. Forward kinematics for planar robot from Sect. 7.1.1.
a) For the 2-joint robot use the teach method to determine the two sets of joint

angles that will position the end-effector at (0.5, 0.5).
b) Experiment with the three different models in Fig. 7.2 using the fkine and
teach methods.

c) Vary the models: adjust the link lengths, create links with a translation in the
y-direction, or create links with a translation in the x- and y-direction.

2. Experiment with the teach method for the Puma 560 robot.
3. Inverse kinematics for the 2-link robot on page 206.

a) Compute forward and inverse kinematics with a1 and a2 as symbolic rather than
numeric values.

b) What happens to the solution when a point is out of reach?
c) Most end-effector positions can be reached by two different sets of joint angles.

What points can be reached by only one set?
4. Compare the solutions generated by ikine6s and ikine for the Puma 560

robot at different poses. Is there any difference in accuracy? How much slower
is ikine?

5. For the Puma 560 at confi guration qn demonstrate a confi guration change from
elbow up to elbow down.

6. For a Puma 560 robot investigate the errors in end-effector pose due to manufac-
turing errors.
a) Make link 2 longer by 0.5 mm. For 100 random joint confi gurations what is the

mean and maximum error in the components of end-effector pose?
b) Introduce an error of 0.1 degrees in the joint 2 angle and repeat the analysis

above.
7. Investigate the redundant robot models mdl_hyper2d and mdl_hyper3d.

Manually control them using the teach method, compute forward kinematics
and numerical inverse kinematics.

7.6 · Wrapping Up

228 Chapter 7 · Robot Arm Kinematics

8. If you have the MATLAB Optimization Toolbox™ experiment with the ikcon
method which solves inverse kinematics for the case where the joint coordinates
have limits (modeling mechanical end stops). Joint limits are set with the qlim
property of the Link class.

9. Drawing a ‘B’ (page 220)
a) Change the size of the letter.
b) Write a word or sentence.
c) Write on a vertical plane.
d) Write on an inclined plane.
e) Change the robot from a Puma 560 to the Fanuc 10L.
f) Write on a sphere. Hint: Write on a tangent plane, then project points onto the

sphere’s surface.
g) This writing task does not require 6DOF since the rotation of the pen about its

axis is not important. Remove the fi nal link from the Puma 560 robot model and
repeat the exercise.

10. Walking robot (page 221)
a) Shorten the reset trajectory by reducing the leg lift during reset.
b) Increase the stride of the legs.
c) Figure out how to steer the robot by changing the stride length on one side of

the body.
d) Change the gait so the robot moves sideways like a crab.
e) Add another pair of legs. Change the gait to reset two legs or three legs at a

time.
f) Currently in the simulation the legs move but the body does not move forward.

Modify the simulation so the body moves.
g) A robot hand comprises a number of fi ngers, each of which is a small serial-link

manipulator. Create a model of a hand with 2, 3 or 5 fi ngers and animate the
fi nger motion.

11. Create a simulation with two robot arms next to each other, whose end-effectors
are holding a basketball at diametrically opposite points in the horizontal plane.
Write code to move the robots so as to rotate the ball about the vertical axis.

12. Create STL fi les to represent your own robot and integrate them into the Toolbox.
Check out the code in SerialLink.plot3d.

Chapter

8 Manipulator Velocity

strates how the Jacobian transpose is used to transform forces from the end-effector
to the joints and between coordinate frames. Finally, in Sect. 8.6 the numeric inverse
kinematic solution, used in the previous chapter, is introduced and its dependence
on the Jacobian matrix is fully described.

8.1
l
Manipulator Jacobian

In the last chapter we discussed the relationship between joint coordinates and
end-effector pose – the manipulator kinematics . Now we investigate the relation-
ship between the rate of change of these quantities – between joint velocity and
velocity of the end-effector . This is called the velocity or differential kinematics of
the manipulator.

8.1.1
l

Jacobian in the World Coordinate Frame

We illustrate the basics with our now familiar 2-dimensional example, see Fig. 8.1, this time
defi ned using Denavit-Hartenberg notation

>> mdl_planar2_sym
>> p2
two link:: 2 axis, RR, stdDH
+---+-----------+-----------+-----------+-----------+-----------+
| j | theta | d | a | alpha | offset |
+---+-----------+-----------+-----------+-----------+-----------+
| 1| q1| 0| a1| 0| 0|
| 2| q2| 0| a2| 0| 0|
+---+-----------+-----------+-----------+-----------+-----------+

A robot’s end-effector moves in Cartesian space with a translational and rotational
velocity – a spatial velocity. However that velocity is a consequence of the velocities
of the individual robot joints. In this chapter we introduce the relationship between

the velocity of the joints and the spatial velocity of the end-effector.
The 3-dimensional end-effector pose ξE ∈ SE(3) has a rate of change which

is represented by a 6-vector known as a spatial velocity that was introduced
in Sect. 3.1. The joint rate of change and the end-effector velocity are related
by the manipulator Jacobian matrix which is a function of manipulator con-
fi guration.

Section 8.1 uses a simple planar robot to introduce the manipulator Jacobian
and then extends this concept to more general robots. Section 8.2 discusses the

numerical properties of the Jacobian matrix which are shown to provide insight
into the dexterity of the manipulator – the directions in which it can move eas-

ily and those in which it cannot. In Sect. 8.3 we use the inverse Jacobian to gener-
ate Cartesian paths without requiring inverse kinematics, and this can be applied to
over- and under-actuated robots which are discussed in Sect. 8.4. Section 8.5 demon-

230 Chapter 8 · Manipulator Velocity

A Jacobian is the matrix equiv-
alent of the derivative – the
derivative of a vector-valued
function of a vector with re-
spect to a vector. If y= f(x)
and x∈Rn and y∈Rm then
the Jacobian is the m × n ma-
trix

The Jacobian is named af-
ter Carl Jacobi, and more de-
tails are given in Appendix E.

and defi ne two real-valued symbolic variables to represent the joint angles

>> syms q1 q2 real

and then compute the forward kinematics using these

>> TE = p2.fkine([q1 q2]);

The position of the end-effector p = (x, y) ∈R2 is�

>> p = TE.t; p = p(1:2)
p =
 a2*cos(q1 + q2) + a1*cos(q1)
 a2*sin(q1 + q2) + a1*sin(q1)

and we compute the derivative of p with respect to the joints variables q. Since p and
q are both vectors the derivative

 (8.1)

will be a matrix – a Jacobian matrix
>> J = jacobian(p, [q1 q2])
J =
[- a2*sin(q1 + q2) - a1*sin(q1), -a2*sin(q1 + q2)]
[a2*cos(q1 + q2) + a1*cos(q1), a2*cos(q1 + q2)]

which is typically denoted by the symbol J and in this case is 2 × 2.
To determine the relationship between joint velocity and end-effector velocity we

rearrange Eq. 8.1 as

and divide through by dt to obtain

The Jacobian matrix maps velocity from the joint coordinate or confi guration space
to the end-effector’s Cartesian coordinate space and is itself a function of the joint
coordinates.

More generally we write the forward kinematics in functional form, Eq. 7.4, as

The Toolbox considers robot pose in
3-dimensions using SE(3). This robot op-
erates in a plane, a subset of SE(3), so we
select p = (x, y).

Fig. 8.1.
Two-link robot showing the
end-effector position p= (x, y)
and the Cartesian velocity vector
ν = dp/ dt

231

and taking the derivative we write

 (8.2)

where 0ν = (vx, vy, vz, ωx, ωy, ωz) ∈R6 is the spatial velocity, as discussed in Sect. 3.1.1,
of the end-effector in the world frame and comprises translational and rotational ve-
locity components. The matrix 0J(q) ∈R6×N is the manipulator Jacobian or the geo-
metric Jacobian. This relationship is sometimes referred to as the instantaneous for-
ward kinematics.

For a realistic 3-dimensional robot this Jacobian matrix can be numerically com-
puted by the jacob0 method of the SerialLink object, based on its Denavit-
Hartenberg parameters. For the Puma robot in the pose shown in Fig. 8.2 the
Jacobian is

>> J = p560.jacob0(qn)
J =
 0.1501 0.0144 0.3197 0 0 0
 0.5963 0.0000 0.0000 0 0 0
 0 0.5963 0.2910 0 0 0
 0 -0.0000 -0.0000 0.7071 -0.0000 -0.0000
 0 -1.0000 -1.0000 -0.0000 -1.0000 -0.0000
 1.0000 0.0000 0.0000 -0.7071 0.0000 -1.0000

and is a matrix with dimensions dim T× dim C – in this case 6 × 6�. Each row cor-
responds to a Cartesian degree of freedom. Each column corresponds to a joint –
it is the end-effector spatial velocity created by unit velocity of the corresponding
joint. In this configuration, motion of joint 1, the first column, causes motion
in the world x- and y-directions and rotation about the z-axis. Motion of joints 2
and 3 cause motion in the world x- and z-directions and negative rotation about
the y-axis.

Physical insight comes from Fig. 8.2 which shows the joint axes in space. Alternatively
you could use the teach method

>> p560.teach(qn)

and jog the various joint angles and observe the change in end-effector pose.

Fig. 8.2.
Puma robot in its nominal pose

qn. The end-effector z-axis points
in the world x-direction, and the

x-axis points downward

8.1 · Manipulator Jacobian

τ is the task space of the robot, typically
τ ⊂ SE(3), and C⊂RN is the configura-
tion or joint space of the robot where N is
the number of robot joints.

232 Chapter 8 · Manipulator Velocity

The 3 × 3 block of zeros in the top right indicates that motion of the wrist joints
have no effect on the end-effector translational motion – this is a consequence of the
spherical wrist and the default zero-length tool.

8.1.2
l

Jacobian in the End-Effector Coordinate Frame

The Jacobian computed by the method jacob0 maps joint velocity to the end-
effector spatial velocity expressed in the world coordinate frame. To obtain the
spatial velocity in the end-effector coordinate frame we introduce the velocity trans-
formation Eq. 3.4 from the world frame to the end-effector frame which is a function
of the end-effector pose

which results in a new Jacobian for end-effector velocity.�

In the Toolbox this Jacobian is computed by the method jacobe and for the Puma
robot at the pose used above is

>> p560.jacobe(qn)
ans =
 -0.0000 -0.5963 -0.2910 0 0 0
 0.5963 0.0000 0.0000 0 0 0
 0.1500 0.0144 0.3197 0 0 0
 -1.0000 0 0 0.7071 0 0
 -0.0000 -1.0000 -1.0000 -0.0000 -1.0000 0
 -0.0000 0.0000 0.0000 0.7071 0.0000 1.0000

8.1.3
l

Analytical Jacobian

In Eq. 8.2 the spatial velocity was expressed in terms of translational and angular ve-
locity vectors, however angular velocity is not a very intuitive concept. For some appli-
cations it can be more intuitive to consider the rotational velocity in terms of rates of
change of roll-pitch-yaw angles or Euler angles. Analytical Jacobians are those where
the rotational velocity is expressed in a representation other than angular velocity,
commonly in terms of triple-angle rates.

Consider the case of XYZ roll-pitch-yaw angles ¡ = (θ r, θ p, θ y) for which the rota-
tion matrix is

 Carl Gustav Jacob Jacobi (1804–1851) was a Prussian mathematician. He obtained a Doctor of Phi-
losophy degree from Berlin University in 1825. In 1827 he was appointed professor of mathe-
matics at Königsberg University and held this position until 1842 when he suffered a breakdown
from overwork.

Jacobi wrote a classic treatise on elliptic functions in 1829 and also described the derivative
of m functions of n variables which bears his name. He was elected a foreign member of the
Royal Swedish Academy of Sciences in 1836. He is buried in Cementary I of the Trinity Church
(Dreifaltigkeitskirche) in Berlin.

For historical reasons the Toolbox imple-
mentation computes the end-effector
Jacobian directly and applies a velocity
transform for the world frame Jacobian.

233

where we use the shorthand cθ and sθ to mean cosθ and sinθ respectively. With some
effort we can write the derivative ½ and recalling Eq. 3.1

we can solve for ω in terms of roll-pitch-yaw angles and their rates to obtain

which can be factored as

and written concisely as

This matrix A is itself a Jacobian that maps XYZ roll-pitch-yaw angle rates to an-
gular velocity. It can be computed by the Toolbox function

>> rpy2jac(0.1, 0.2, 0.3)
ans =
 0.1987 0 1.0000
 -0.2896 0.9553 0
 0.9363 0.2955 0

where the arguments are the roll, pitch and yaw angles. The analytical Jacobian is

provided that A is not singular. A is singular when cosφ = 0 or pitch angle φ = ±ü
and is referred to as a representational singularity. A similar approach can be taken
for Euler angles using the corresponding function eul2jac.

The analytical Jacobian can be computed by passing an extra argument to the
Jacobian function jacob0, for example

>> p560.jacob0(qn, 'eul');

to specify the Euler angle analytical form.
Another useful analytical Jacobian expresses angular rates as the rate of change of

 exponential coordinates s = *θ ∈ so(3)

where

and * and θ can be determined from the end-effector rotation matrix via the matrix
logarithm.�

Implemented by the Toolbox functions
 trlog and tr2rotvec or the SE3
method torotvec .

8.1 · Manipulator Jacobian

234 Chapter 8 · Manipulator Velocity

8.2
l
Jacobian Condition and Manipulability

We have discussed how the Jacobian matrix maps joint rates to end-effector Cartesian
velocity but the inverse problem has strong practical use – what joint velocities are
needed to achieve a required end-effector Cartesian velocity? We can invert Eq. 8.2
and write

 (8.3)

provided that J is square and nonsingular. The Jacobian is a dim T× dim C matrix so in
order to achieve a square Jacobian matrix a robot operating in the task space T⊂ SE(3),
which has 6 spatial degrees-of-freedom, requires a robot with 6 joints.

8.2.1
l

Jacobian Singularities

A robot confi guration q at which det(J(q)) = 0 is described as singular or degenerate.
Singularities occur when the robot is at maximum reach or when one or more axes become
aligned resulting in the loss of degrees of freedom – the gimbal lock problem again.

For example at the Puma’s ready pose the Jacobian

>> J = p560.jacob0(qr)
J =
 0.1500 -0.8636 -0.4318 0 0 0
 0.0203 0.0000 0.0000 0 0 0
 0 0.0203 0.0203 0 0 0
 0 0 0 0 0 0
 0 -1.0000 -1.0000 0 -1.0000 0
 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000

is singular
>> det(J)
ans =
 0

Digging a little deeper we see that the Jacobian rank is only
>> rank(J)
ans =
 5

compared to a maximum of six for a 6 × 6 matrix. The rank defi ciency of one means
that one column is equal to a linear combination of other columns. Looking at the
Jacobian it is clear that columns 4 and 6 are identical meaning that two of the wrist
joints (joints 4 and 6) are aligned. This leads to the loss of one degree of freedom since
motion of these joints results in the same Cartesian velocity, leaving motion in one
Cartesian direction unaccounted for.� The function jsingu performs this analysis
automatically, for example

>> jsingu(J)
1 linearly dependent joints:
 q6 depends on: q4

indicating velocity of q6 can be expressed completely in terms of the velocity of q4.
However if the robot is close to, but not actually at, a singularity we encounter

problems where some Cartesian end-effector velocities require very high joint rates�
– at the singularity those rates will go to infi nity. We can illustrate this by choosing a
confi guration slightly away from qr which we just showed was singular. We set q5 to
a small but nonzero value of 5 deg

>> qns = qr; qns(5) = 5 * pi/180
qns =
 0 1.5708 -1.5708 0 0.0873 0

For the Puma 560 robot arm joints 4 and 6
are the only ones that can become aligned
and lead to singularity. The offset distanc-
es, dj and aj, between links prevents oth-
er axes becoming aligned.

We observed this effect in Fig. 7.12.

235

and the Jacobian is now

>> J=p560.jacob0(qns);

To achieve relatively slow end-effector motion of 0.1 m s−1 in the z-direction requires
>> qd = inv(J)*[0 0 0.1 0 0 0]' ;
>> qd'
ans = -0.0000 -4.9261 9.8522 0.0000 -4.9261 0

very high-speed motion of the shoulder and elbow – the elbow would have to move at
9.85 rad s−1 or nearly 600 deg s−1. The reason is that although the robot is no longer
at a singularity, the determinant of the Jacobian is still very small

>> det(J)
ans =
 -1.5509e-05

 Alternatively we can say that its condition number is very high
>> cond(J)
ans =
 235.2498

and the Jacobian is poorly conditioned.
However for some motions, such as rotation in this case, the poor condition of the

Jacobian is not problematic. If we wished to rotate the tool about the y-axis then
>> qd = inv(J)*[0 0 0 0 0.2 0]';
>> qd'
ans = 0.0000 -0.0000 0 0.0000 -0.2000 0

the required joint rates are very modest.
This particular joint confi guration is therefore good for certain motions but poor

for others.

8.2.2
l
Manipulability

Consider the set of generalized joint velocities with a unit norm

which lie on the surface of a hypersphere in the N-dimensional joint velocity space.
Substituting Eq. 8.3 we can write

 (8.4)

which is the equation of points on the surface of an ellipsoid within the dim T-dimen-
sional end-effector velocity space. If this ellipsoid is close to spherical, that is, its radii are
of the same order of magnitude then all is well – the end-effector can achieve arbitrary
Cartesian velocity. However if one or more radii are very small this indicates that the end-
effector cannot achieve velocity in the directions corresponding to those small radii.

We will load the numerical, rather than symbolic model, for the planar robot arm
of Fig. 8.1

>> mdl_planar2

which allows us to plot the velocity ellipse for an arbitrary pose

>> p2.vellipse([30 40], 'deg')

We can also interactively explore how its shape changes with confi guration by

>> p2.teach('callback', @(r,q) r.vellipse(q), 'view', 'top')

which is shown in Fig. 8.3.

8.2 · Jacobian Condition and Manipulability

236 Chapter 8 · Manipulator Velocity

For a robot with a task space T⊂ SE(3) Eq. 8.4 describes a 6-dimensional ellipsoid
which is impossible to visualize. However we can extract that part of the Jacobian re-
lating to translational velocity� in the world frame

>> J = p560.jacob0(qns);
>> J = J(1:3, :);

and plot the corresponding velocity ellipsoid

>> plot_ellipse(J*J')

which is shown in Fig. 8.4a. The Toolbox provides a shorthand for this

>> p560.vellipse(qns, 'trans');

We see that the end-effector can achieve higher velocity in the y- and z-directions than
in the x-direction. Ellipses and ellipsoids are discussed in more detail in Sect. C.1.4.

The rotational velocity ellipsoid for the near singular case

>> p560.vellipse(qns, 'rot')

is shown in Fig. 8.4b and is an elliptical plate with almost zero thickness.� This indicates
an inability to rotate about the direction corresponding to the small radius, which in
this case is rotation about the x-axis. This is the degree of freedom that was lost – both
joints 4 and 6 provide rotation about the world z-axis, joint 5 provides provides rota-
tion about the world y-axis, but none allow rotation about the world x-axis.

The shape of the ellipsoid describes how well-conditioned the manipulator is for
making certain motions. Manipulability is a succinct scalar measure that describes how
spherical the ellipsoid is, for instance the ratio of the smallest to the largest radius.�
The Toolbox method maniplty computes Yoshikawa’s manipulability measure

which is proportional to the volume of the ellipsoid. For example
>> m = p560.maniplty(qr)
m =
 0

indicates a singularity. If the method is called with no output arguments it displays
the volume of the translational and rotational velocity ellipsoids

>> p560.maniplty(qr)
Manipulability: translation 0.00017794, rotation 0

Fig. 8.3.
Two-link robot with overlaid ve-
locity ellipse

Since we can only plot three dimensions.

This is much easier to see if you change
the viewpoint interactively.

The radii are the square roots of the ei-
genvalues of the J(q)J(q)T as discussed
in Sect. C.1.4.

237

which indicates very poor manipulability for translation and zero for rotation. At the
nominal pose the manipulability is higher�

>> p560.maniplty(qn)
Manipulability: translation 0.111181, rotation 2.44949

In practice we fi nd that the seemingly large workspace of a robot is greatly reduced
by joint limits, self collision, singularities and regions of reduced manipulability. The
manipulability measure discussed here is based only on the kinematics of the mecha-
nism. The fact that it is easier to move a small wrist joint than the larger waist joint
suggests that mass and inertia should be taken into account and such manipulability
measures are discussed in Sect. 9.2.7.

8.3
l
Resolved-Rate Motion Control

 Resolved-rate motion control is a simple and elegant algorithm to generate straight
line motion by exploiting Eq. 8.3

to map or resolve desired Cartesian velocity to joint velocity without explicitly requir-
ing inverse kinematics as we used earlier. For now we will assume that the Jacobian is
square (6 × 6) and nonsingular but we will relax these constraints later.

The motion control scheme is typically implemented in discrete-time form as

(8.5)

where δ t is the sample interval. The fi rst equation computes the required joint veloc-
ity as a function of the current joint confi guration and the desired end-effector veloc-
ity ν∗. The second performs forward rectangular integration to give the desired joint
angles for the next time step, q∗hk+1i.

An example of the algorithm is implemented by the Simulink® model

>> sl_rrmc

shown in Fig. 8.5. The Cartesian velocity is a constant 0.05 m s−1 in the y-direction.
The Jacobian block has as its input the current manipulator joint angles and out-
puts a 6 × 6 Jacobian matrix. This is inverted and multiplied by the desired velocity to
form the desired joint rates. The robot is modeled by a discrete-time integrator – an
ideal velocity controller.�

The manipulability measure combines
translational and rotational velocity infor-
mation which have different units. The
options 'trans' and 'rot' can
be used to compute manipulability on
just the translational or rotational velocity
respectively.

Fig. 8.4. End-effector velocity el-
lipsoids. a Translational veloci-
ty ellipsoid for the nominal pose
(m s−1); b rotational velocity el-
lipsoid for a near singular pose
(rad s−1), the ellipsoid is an ellip-
tical plate

In this model we assume that the robot
is perfect, that is, the actual joint angles
are equal to the desired joint angles q*.
The issue of tracking error is discussed
in Sect. 9.1.7.

8.3 · Resolved-Rate Motion Control

238 Chapter 8 · Manipulator Velocity

Running the simulation

>> r = sim('sl_rrmc');

we see an animation of the manipulator end-effector moving at constant velocity in
Cartesian space. Simulation results are returned in the simulation object r from which
we extract time and joint coordinates

>> t = r.fi nd('tout');
>> q = r.fi nd('yout');

We apply forward kinematics to determine the end-effector position

>> T = p560.fkine(q);
>> xyz = transl(T);

which we then plot� as a function of time

>> mplot(t, xyz(:,1:3))

which is shown in Fig. 8.6a. The Cartesian motion is 0.05 m s−1 in the y-direction as de-
manded but we observe some small and unwanted motion in the x- and z-directions.

The motion of the fi rst three joints

>> mplot(t, q(:,1:3))

is shown in Fig. 8.6b and are not linear with time – refl ecting the changing kinematic
 confi guration of the arm.

The approach just described, based purely on integration, suffers from an accu-
mulation of error which we observed as the unwanted x- and z-direction motion in
Fig. 8.6a. We can eliminate this by changing the algorithm to a closed-loop form based
on the difference between the desired and actual pose

 (8.6)

where Kp is a proportional gain, ∆(·) ∈R6 is a spatial displacement� and the desired
pose ξ∗hki is a function of time.

A Simulink example to demonstrate this for a circular path is

>> sl_rrmc2

shown in Fig. 8.7 and the tool of a Puma 560 robot traces out a circle of radius
50 mm. The x-, y- and z-coordinates as a function of time are computed and con-
verted to a homogeneous transformation by the blocks in the grey area. The differ-
ence between the desired pose and the current pose from forward kinematics us-
ing the ∆(·) operator is computed by the tr2delta block. The result is a spatial
displacement, a translation and a rotation described by a 6-vector which is used as

Fig. 8.5. The Simulink® model
 sl_rrmc for resolved-rate mo-
tion control for constant end-ef-
fector velocity

The function mplot is a Toolbox utility
that plots columns of a matrix in sepa-
rate subgraphs.

See Sect. 3.1.4 for definition.

239

the desired spatial velocity to drive the end-effector toward the desired pose. The
Jacobian matrix is computed from the current manipulator joint angles and is in-
verted so as to transform the desired spatial velocity to joint angle rates. These are
scaled by a proportional gain, to become the desired joint-space velocity that will
correct any Cartesian error.

Fig. 8.6. Resolved-rate motion con-
trol, Cartesian and joint coordinates
versus time. a Cartesian end-effec-
tor motion. Note the small, but un-
wanted motion in the x- and z-di-
rections; b joint motion

Fig. 8.7. The Simulink® model
 sl_rrmc2 for closed-loop re-
solved-rate motion control with
circular end-effector motion

8.3 · Resolved-Rate Motion Control

240 Chapter 8 · Manipulator Velocity

8.3.1
l

Jacobian Singularity

For the case of a square Jacobian where det(J(q)) = 0 we cannot solve Eq. 8.3 direct-
ly. One strategy to deal with singularity is to replace the inverse with the damped
inverse

where λ is a small constant added to the diagonal which places a fl oor under the de-
terminant. This will introduces some error in ¸, which integrated over time could lead
to a signifi cant discrepancy in tool position but the closed-loop resolved-rate motion
scheme of Eq. 8.6 would minimize this.

An alternative is to use the pseudo-inverse of the Jacobian J+ which has the property

just as the inverse does. It is defi ned as

and is readily computed using the MATLAB® builtin function pinv.� The solution

provides a least-squares solution for which �J¸ − ν� is smallest.�

Yet another approach is to delete from the Jacobian all those columns that are lin-
early dependent on other columns. This is effectively locking the joints correspond-
ing to the deleted columns and we now have an under-actuated system which we treat
as per the next section.

8.4
l
Under- and Over-Actuated Manipulators

So far we have assumed that the Jacobian is square. For the nonsquare cases it is help-
ful to consider the velocity relationship

in the diagrammatic form shown in Fig. 8.8. The Jacobian is a 6 × N matrix, the joint
velocity is an N-vector, and ν is a 6-vector.

The case of N < 6 is referred to as an under-actuated robot, and N > 6 is over-ac-
tuated or redundant. The under-actuated case cannot be solved because the system
of equations is under-constrained but the system can be squared up by deleting some
rows of ν and J – accepting that some Cartesian degrees of freedom are not controllable
given the low number of joints. For the over-actuated case the system of equations is
under-constrained and the best we can do is fi nd a least-squares solution as described
in the previous section. Alternatively we can square up the Jacobian to make it invert-
ible by deleting some columns – effectively locking the corresponding joints.

This is the left generalized- or pseudoin-
verse, see Sect. F.1.1 for more details.

A matrix expression like v = J¸ is a sys-
tem of scalar equations which we can
solve for ¸. At singularity some of the
equations are the same, leading to more
unknowns than equations, and therefore
an infinite number of solutions. The
pseudo-inverse computes a solution
that satisfies the equation and has the
minumum norm.

Fig. 8.8.
Schematic of Jacobian, ν and
¸ for different cases of N. The
hatched areas represent matrix
regions that could be deleted in
order to create a square sub-
system capable of solution

241

8.4.1
l

Jacobian for Under-Actuated Robot

An under-actuated robot has N < 6, and a Jacobian that is taller than it is wide. For
example a 2-joint manipulator at a nominal pose

>> mdl_planar2
>> qn = [1 1];

has the Jacobian
>> J = p2.jacob0(qn)
J =
 -1.7508 -0.9093
 0.1242 -0.4161
 0 0
 0 0
 0 0
 1.0000 1.0000

We cannot solve the inverse problem Eq. 8.3 using the pseudo-inverse since it will at-
tempt to satisfy motion constraints that the manipulator cannot meet. For example the
desired motion of 0.1 m s−1 in the x-direction gives the required joint velocity

>> qd = pinv(J) * [0.1 0 0 0 0 0]'
qd =
 -0.0698
 0.0431

which results in end-effector velocity
>> xd = J*qd;
>> xd'
ans =
 0.0829 -0.0266 0 0 0 -0.0266

This has the desired motion in the x-direction but undesired motion in y-axis trans-
lation and z-axis rotation. The end-effector rotation cannot be independently con-
trolled (since it is a function of q1 and q2) yet this solution has taken it into account
in the least-squares solution.

We have to confront the reality that we have only two degrees of freedom which we
will use to control just vx and vy. We rewrite Eq. 8.2 in partitioned form as

and taking the top partition, the fi rst two rows, we write

where Jxy is a 2 × 2 matrix. We invert this

which we can solve if det(Jxy) ≠ 0.
>> Jxy = J(1:2,:);
>> qd = inv(Jxy)* [0.1 0]'
qd =
 -0.0495
 -0.0148

8.4 · Under- and Over-Actuated Manipulators

242 Chapter 8 · Manipulator Velocity

which results in end-effector velocity
>> xd = J*qd;
>> xd'
ans =
 0.1000 0.0000 0 0 0 -0.0642

We have achieved the desired x-direction motion with no unwanted motion apart from
the z-axis rotation which is unavoidable – we have used the two degrees of freedom to
control x- and y-translation, not z-rotation.

8.4.2
l

Jacobian for Over-Actuated Robot

An over-actuated or redundant robot has N > 6, and a Jacobian that is wider than it
is tall. In this case we rewrite Eq. 8.3 to use the left pseudo-inverse

 (8.7)

which, of the infi nite number of solutions possible, will yield the one for which �¸� is
smallest – the minimum-norm solution.

We will demonstrate this for the left arm of the Baxter robot from Sect. 7.2.2.4 at
a nominal pose

>> mdl_baxter
>> TE = SE3(0.8, 0.2, -0.2) * SE3.Ry(pi);
>> q = left.ikine(TE)

and its Jacobian
>> J = jacob0(left, q);
>> about J
J [double] : 6x7 (336 bytes)

is a 6 × 7 matrix. Now consider that we want the end-effector to move at 0.2 m s−1 in
the x-, y- and z-directions. Using Eq. 8.7 we compute the required joint rates

>> xd = [0.2 0.2 0.2 0 0 0]';
>> qd = pinv(J) * xd;
>> qd'
ans =
 0.0895 -0.0464 -0.4259 0.6980 -0.4248 1.0179 0.2998

We see that all joints have nonzero velocity and contribute to the desired end-effector
motion.�

This Jacobian has seven columns and a rank of six
>> rank(J)
ans =
 6

and therefore a null space� whose basis has just one vector
>> N = null(J)
N =
 -0.2244
 -0.1306
 0.6018
 0.0371
 -0.7243
 0.0653
 0.2005

In the case of a Jacobian matrix any joint velocity that is a linear combination of its
null-space vectors will result in no end-effector motion. For this robot there is only one
vector and we can show that this null-space joint motion causes no end-effector motion

>> norm(J * N(:,1))
ans =
 2.6004e-16

If the robot end-effector follows a repeti-
tive path using RRMC the joint angles
may drift over time and not follow a re-
petitive path, potentially moving toward
joint limits. We can use null-space con-
trol to provide additional constraints to
prevent this.

See Appendix B.

243

This is remarkably useful because it allows Eq. 8.7 to be written as

 (8.8)

where the matrix NN+ ∈RN×N projects the desired joint motion into the null space so
that it will not affect the end-effector Cartesian motion, allowing the two motions to
be superimposed.

Null-space motion can be used for highly-redundant robots to avoid collisions be-
tween the links and obstacles (including other links), or to keep joint coordinates away
from their mechanical limit stops. Consider that in addition to the desired Cartesian
velocity xd we wish to simultaneously increase joint 5 in order to move the arm away
from some obstacle. We set a desired joint velocity

>> qd_null = [0 0 0 0 1 0 0]';

and project it into the null space
>> qp = N * pinv(N) * qd_null;
>> qp'
 0.1625 0.0946 -0.4359 -0.0269 0.5246 -0.0473 -0.1452

A scaling has been introduced but this joint velocity, or a scaled-up version of, this
will increase the joint 5 angle without changing the end-effector pose. Other joints
move as well – they provide the required compensating motion in order that the end-
effector pose is not disturbed as shown by

>> norm(J * qp)
ans =
 1.9541e-16

A highly redundant snake robot like that shown in Fig. 8.9 would have a null space
with 14 dimensions (20-6). This can be used to control the shape of the arm which is
critical when moving within confi ned spaces.

Fig. 8.9.
20-DOF snake-robot arm:

2.5 m reach, 90 mm diameter
and payload capacity of 25 kg

(image courtesy of OC Robotics)

8.4 · Under- and Over-Actuated Manipulators

244 Chapter 8 · Manipulator Velocity

8.5
l
Force Relationships

In Sect. 3.2.2 we introduced wrenches W = (fx, fy, fz, mx, my, mz) ∈R6 which are a vec-
tor of forces and moments.

8.5.1
l

Transforming Wrenches to Joint Space

The manipulator Jacobian transforms joint velocity to an end-effector spatial velocity ac-
cording to Eq. 8.2 and the Jacobian transpose transforms a wrench applied at the end-ef-
fector to torques and forces experienced at the joints�

 (8.9)

where W is a wrench in the world coordinate frame and Q is the generalized joint force
vector. The elements of Q are joint torque or force for revolute or prismatic joints re-
spectively.

The mapping for velocity, from end-effector to joints, involves the inverse Jacobian which
can potentially be singular. The mapping of forces and torques, from end-effector to joints,
is different – it involves the transpose of the Jacobian which can never be singular. We ex-
ploit this property in the next section to solve the inverse-kinematic problem numerically.

If the wrench is defi ned in the end-effector coordinate frame then we use instead

 (8.10)

For the Puma 560 robot in its nominal pose, see Fig. 8.2, a force of 20 N in the world
y-direction results in joint torques of

>> tau = p560.jacob0(qn)' * [0 20 0 0 0 0]';
>> tau'
ans =
 11.9261 0.0000 0.0000 0 0 0

The force pushes the arm sideways and only the waist joint will rotate in response –
experiencing a torque of 11.93 N m due to a lever arm effect. A force of 20 N applied
in the world x-direction results in joint torques of

>> tau = p560.jacob0(qn)' * [20 0 0 0 0 0]';
>> tau'
ans =
 3.0010 0.2871 6.3937 0 0 0

which is pulling the end-effector away from the base which results in torques being
applied to the fi rst three joints.

8.5.2
l
Force Ellipsoids

In Sect. 8.2.2 we introduced the velocity ellipse and ellipsoid which describe the direc-
tions in which the end-effector is best able to move. We can perform a similar analysis
for the forces and torques at the end-effector – the end-effector wrench. We start with
a set of generalized joint forces with a unit norm

and substituting Eq. 8.9 we can write

Derived through the principle of virtual
work, see for instance Spong et al. (2006,
sect. 4.10).

245

which is the equation of points on the surface of a 6-dimensional ellipsoid in the end-
effector wrench space. For the planar robot arm of Fig. 8.1 we can plot this ellipse

>> p2.fellipse([30 40], 'deg')

or we can interactively explore how its shape changes with confi guration by

>> p2.teach(qn, 'callback', @(r,q) r.fellipse(q), 'view', 'top')

If this ellipsoid is close to spherical, that is, its radii are of the same order of mag-
nitude then the end-effector can achieve an arbitrary wrench. However if one or more
radii are very small this indicates that the end-effector cannot exert a force along, or
a moment about, the axes corresponding to those small radii.

The force and velocity ellipsoids provide complementary information about how well
suited the confi guration of the arm is to a particular task. We know from personal experi-
ence that to throw an object quickly we have our arm outstretched and orthogonal to the
throwing direction, whereas to lift something heavy we hold our arms close in to our body.

8.6
l
Inverse Kinematics: a General Numerical Approach

In Sect. 7.2.2.1 we solved the inverse kinematic problem using an explicit solution that
required the robot to have 6 joints and a spherical wrist. For the case of robots which
do not meet this specifi cation, for example those with more or less than 6 joints, we
need to consider a numerical solution. Here we will develop an approach based on the
forward kinematics and the Jacobian transpose which we can compute for any ma-
nipulator confi guration since these functions have no singularities.

8.6.1
l
Numerical Inverse Kinematics

The principle is shown in Fig. 8.10 where the robot in its current confi guration is drawn
solidly and the desired confi guration is faint. From the overlaid pose graph the error
between actual ξE and desired pose ξE

∗ is ξ∆ which can be described by a spatial dis-
placement as discussed in Sect. 3.1.4

where the current pose is computed using forward kinematics ξE =K(q).
Imagine a special spring between the end-effector of the two poses which is pulling

(and twisting) the robot’s end-effector toward the desired pose with a wrench propor-
tional to the spatial displacement

Fig. 8.10.
Schematic of the numerical in-

verse kinematic approach, show-
ing the current ξE and the de-

sired ξE
∗ manipulator pose

8.6 · Inverse Kinematics: a General Numerical Approach

246 Chapter 8 · Manipulator Velocity

 (8.11)

which is resolved to generalized joint forces

using the Jacobian transpose Eq. 8.10. We assume that this virtual robot has no joint
motors only viscous dampers so the joint velocity will be proportional to the applied
forces

where B is the joint damping coeffi cient (assuming all dampers are the same). Putting
all this together we can write

which gives the joint velocities that will drive the forward kinematic solution toward
the desired end-effector pose. This can be solved iteratively by

 (8.12)

until the norm of the update �δ q〈k〉� is suffi ciently small and where α > 0 is a well-cho-
sen constant. Since the solution is based on the Jacobian transpose rather than inverse
the algorithm works when the Jacobian is nonsquare or singular. In practice however
this algorithm is slow to converge and very sensitive to the choice of α .

More practically we can formulate this as a least-squares problem in the world co-
ordinate frame and minimize the scalar cost

where M = diag(m) ∈R6×6 and m is the mask vector introduced in Sect. 7.2.2.3. The
update becomes

which is much faster to converge but can behave poorly near singularities. We remedy
this by introducing a damping constant λ

which ensures that the term being inverted can never be singular.
An effective way to choose λ is to test whether or not an iteration reduces the er-

ror, that is if �δq〈k〉�< �δq〈k – 1〉�. If the error is reduced we can decrease λ in order to
speed convergence. If the error has increased we revert to our previous estimate of q〈k〉
and increase λ . This adaptive damping factor scheme is the basis of the well-known
 Levenberg-Marquardt optimization algorithm.

This algorithm is implemented by the ikine method and works well in prac-
tice. As with all optimization algorithms it requires a reasonable initial estimate of
q and this can be explicitly given using the option 'q0'. A brute-force search for
an initial value can be requested by the option 'search'. The simple Jacobian-
transpose approach of Eq. 8.12 can be invoked using the option 'transpose'
along with the value of α .

247

8.7
l
Advanced Topics

8.7.1
l
Computing the Manipulator Jacobian Using Twists

In Sect. 7.1.2.2 we computed the forward kinematics as a product of exponentials based
on the screws representing the joint axes in a zero-joint angle confi guration. It is easy
to differentiate the product of exponentials with respect to motion about each screw
axis which leads to the Jacobian matrix

for velocity in the world coordinate frame. The Jacobian is very elegantly expressed
and can be easily built up column by column. Velocity in the end-effector coordinate
frame is related to joint velocity by the Jacobian matrix

where Ad (·) is the adjoint matrix introduced in Sect. 3.1.2.

However, compared to the Jacobian of Sect. 8.1, these Jacobians give the ve-
locity of the end-effector as a velocity twist , not a spatial velocity as defined
on page 65.

To obtain the Jacobian that gives spatial velocity as described in Sect. 8.1 we must ap-
ply a velocity transformation

8.8
l
Wrapping Up

Jacobians are an important concept in robotics, relating changes in one space to chang-
es in another. We previously encountered Jacobians for estimation in Chap. 6 and will
use them later for computer vision and control.

In this chapter we have learned about the manipulator Jacobian which describes
the relationship between the rate of change of joint coordinates and the spatial veloc-
ity of the end-effector expressed in either the world frame or the end-effector frame.
We showed how the inverse Jacobian can be used to resolve desired Cartesian veloc-
ity into joint velocity as an alternative means of generating Cartesian paths for un-
der- and over-actuated robots. For over-actuated robots we showed how null-space
motions can be used to move the robot’s joints without affecting the end-effector
pose. The numerical properties of the Jacobian tell us about manipulability, that is
how well the manipulator is able to move, or exert force, in different directions. At
a singularity, indicated by linear dependence between columns of the Jacobian, the
robot is unable to move in certain directions. We visualized this by means of the
velocity and force ellipsoids.

We also created Jacobians to map angular velocity to roll-pitch-yaw or Euler angle
rates, and these were used to form the analytic Jacobian matrix. The Jacobian trans-
pose is used to map wrenches applied at the end-effector to joint torques, and also to
map wrenches between coordinate frames. It is also the basis of numerical inverse ki-
nematics for arbitrary robots and singular poses.

8.8 · Wrapping Up

248 Chapter 8 · Manipulator Velocity

Further Reading

The manipulator Jacobian is covered by almost all standard robotics texts such as the
robotics handbook (Siciliano and Khatib 2016), Lynch and Park (2017), Siciliano et al.
(2008), Spong et al. (2006), Craig (2005), and Paul (1981). An excellent discussion of
manipulability and velocity ellipsoids is provided by Siciliano et al. (2009), and the most
common manipulability measure is that proposed by Yoshikawa (1984). Computing
the manipulator Jacobian based on Denavit-Hartenberg parameters, as used in this
Toolbox, was fi rst described by Paul and Shimano (1978).

The resolved-rate motion control scheme was proposed by Whitney (1969). Exten-
sions such as pseudo-inverse Jacobian-based control are reviewed by Klein and Huang
(1983) and damped least-squares methods are reviewed by Deo and Walker (1995).

MATLAB and Toolbox Notes

The MATLAB Robotics System Toolbox™ describes a serial-link manipulator using
an instance of the RigidBodyTree class. Jacobians can be computed using the class
method GeometricJacobian.

Exercises

1. For the simple 2-link example (page 230) compute the determinant symbolically
and determine when it is equal to zero. What does this mean physically?

2. For the Puma 560 robot can you devise a confi guration in which three joint axes
are parallel?

3. Derive the analytical Jacobian for Euler angles.
4. Velocity and force ellipsoids for the two link manipulator (page 236, 245). Perhaps

using the interactive teach method with the 'callback' option:
a) What confi guration gives the best manipulability?
b) What confi guration is best for throwing a ball in the positive x-direction?
c) What confi guration is best for carrying a heavy weight if gravity applies a force

in the negative y-direction?
d) Plot the velocity ellipse (x- and y-velocity) for the two-link manipulator at a grid

of end-effector positions in its workspace. Each ellipsoid should be centered on
the end-effector position.

5. Velocity and force ellipsoids for the Puma manipulator (page 237)
a) For the Puma 560 manipulator fi nd a confi guration where manipulability is

greater than at qn.
b) Use the teach method with the 'callback' option to interactively animate

the ellipsoids. You may need to use the 'workspace' option to teach to
prevent the ellipsoid being truncated.

6. Resolved-rate motion control (page 237)
a) Experiment with different Cartesian translational and rotational velocity de-

mands, and combinations.
b) Extend the Simulink system of Fig. 8.6 to also record the determinant of the

Jacobian matrix to the workspace.
c) In Fig. 8.6 the robot’s motion is simulated for 5 s. Extend the simulation time to

10 s and explain what happens.
d) Set the initial pose and direction of motion to mimic that of Sect. 7.3.4. What

happens when the robot reaches the singularity?
e) Replace the Jacobian inverse block in Fig. 8.5 with the MATLAB function pinv.
f) Replace the Jacobian inverse block in Fig. 8.5 with a damped least squares func-

tion, and investigate the effect of different values of the damping factor.

249

g) Replace the Jacobian inverse block in Fig. 8.5 with a block based on the MATLAB
function lscov.

7. The model mdl_p8 describes an 8-joint robot (PPRRRRRR) comprising an xy-base
(PP) carrying a Puma arm (RRRRRR).
a) Compute a Cartesian end-effector path and use numerical inverse kinematics

to solve for the joint coordinates. Analyze how the motion is split between the
base and the robot arm.

b) With the end-effector at a constant pose explore null-space control. Set a veloc-
ity for the mobile base and see how the arm confi guration accomodates that.

c) Develop a null-space controller that keeps the last six joints in the middle of
their working range by using the fi rst two joints to position the base of the Puma.
Modify this so as to maximize the manipulability of the P8 robot.

d) Consider now that the Puma robot is mounted on a nonholonomic robot, cre-
ate a controller that generates appropriate steering and velocity inputs to the
mobile robot (challenging).

e) For an arbitrary pose and end-point spatial velocity we will move six joints and lock
two joints. Write an algorithm to determine which two joints should be locked.

8. The model mdl_hyper3d(20) is a 20-joint robot that moves in 3-dimensional
space.
a) Explore the capabilities of this robot.
b) Compute a Cartesian end-effector trajectory that traces a circle on the ground,

and use numerical inverse kinematics to solve for the joint coordinates.
c) Add a null-space control strategy that keeps all joint angles close to zero while

it is moving.
d) Defi ne an end-effector pose on the ground that the robot must reach after passing

through two holes in vertical planes. Can you determine the joint confi guration
that allows this?

9. Write code to compute the Jacobian of a robot represented by a SerialLink ob-
ject using twists as described in Sect. 8.7.1.

10. Consider the Puma 560 robot moving in the xz-plane. Divide the plane into 2-cm
grid cells and for each cell determine if it is reachable, and if it is then determine
the manipulability for the fi rst three joints of the robot arm and place that value
in the corresponding grid cell. Display a heat map of the robot’s manipulability in
the plane.

8.8 · Wrapping Up

Chapter

9 Dynamics and Control

In this chapter we consider the dynamics and control of a serial-link manipulator arm .
The motion of the end-effector is the composition of the motion of each link, and the
links are ultimately moved by forces and torques exerted by the joints. Section 9.1 de-

scribes the key elements of a robot joint control system that enables a single joint
to follow a desired trajectory ; and the challenges involved such as friction, gravity

 load and varying inertia.
Each link in the serial-link manipulator is supported by a reaction force

and torque from the preceding link, and is subject to its own weight as well
as the reaction forces and torques from the links that it supports. Section 9.2
introduces the rigid-body equations of motion, a set of coupled dynamic
equations, that describe the joint torques necessary to achieve a particular

manipulator state. These equations can be factored into terms describing inertia, grav-
ity load and gyroscopic coupling which provide insight into how the motion of one
joint exerts a disturbance force on other joints, and how inertia and gravity load varies
with confi guration and payload. Section 9.3 introduces the forward dynamics which
describe how the manipulator moves, that is, how its confi guration evolves with time
in response to forces and torques applied by the joints and by external forces such

as gravity. Section 9.4 introduces control systems that compute the required joint
forces based on the desired trajectory as well as the rigid-body dynamic forces.
This enables improved control of the end-effector trajectory, despite changing ro-
bot confi guration, as well as compliant motion. Section 9.5 covers an important

application of what we have learned about joint control – series-elastic ac-
tuators for human-safe robots.

9.1
l
Independent Joint Control

A robot drive train comprises an actuator or motor, and a transmission to connect it to
the link. A common approach to robot joint control is to consider each joint or axis as an
independent control system that attempts to accurately follow its joint angle trajectory .
However as we shall see, this is complicated by various disturbance torques due to gravity ,
velocity and acceleration coupling, and friction that act on the joint. A very common control
structure is the nested control loop . The outer loop is responsible for maintaining position
and determines the velocity of the joint that will minimize position error . The inner loop is
responsible for maintaining the velocity of the joint as demanded by the outer loop.

9.1.1
l

Actuators

The vast majority of robots today are driven by rotary electric motors (Fig. 9.1). Large
industrial robots typically use brushless servo motors while small laboratory or hobby
robots use brushed DC motors or stepper motors . Manipulators for very large payloads
as used in mining, forestry or construction are typically hydraulically driven using elec-
trically operated hydraulic valves – electro-hydraulic actuation .

252 Chapter 9 · Dynamics and Control

Electric motors can be either current or voltage controlled.� Here we assume cur-
rent control where a motor driver or amplifi er provides current

that is linearly related to the applied control voltage u and where Ka is the transcon-
ductance of the amplifi er with units of AV−1. The torque generated by the motor is
proportional to current

where Km is the motor torque constant with units of N m A−1. The torque accelerates
the rotational inertia Jm, due to the rotating part of the motor itself, which has a rota-
tional velocity of ω . Frictional effects are modeled by Bm.

9.1.2
l
Friction

Any rotating machinery, motor or gearbox, will be affected by friction – a force or
torque that opposes motion. The net torque from the motor is

where τf is the friction torque which is function of velocity

 (9.1)

where the slope B > 0 is the viscous friction coeffi cient and the offset is Coulomb fric-
tion . The latter is frequently modeled by the nonlinear function

 (9.2)

In general the friction coeffi cients depend on the direction of rotation and this
asymmetry is more pronounced for Coulomb than for viscous friction.

The total friction torque as a function of rotational velocity is shown in Fig. 9.2.
At very low speeds, highlighted in grey, an effect known as stiction becomes evident.
The applied torque must exceed the stiction torque before rotation can occur – a
process known as breaking stiction . Once the machine is moving the stiction force
rapidly decreases and viscous friction dominates.

There are several sources of friction experienced by the motor. The fi rst compo-
nent is due to the motor itself: its bearings and, for a brushed motor, the brushes
rubbing on the commutator. The friction parameters are often provided in the
motor manufacturer’s data sheet. Other sources of friction are the gearbox and
the bearings that support the link .

Fig. 9.1.
Key components of a robot-joint
actuator . A demand voltage u con-
trols the current im fl owing into the
motor which generates a torque τm
that accelerates the rotational
inertia Jm and is opposed by fric-
tion Bm ωm. The encoder mea-
sures rotational speed and angle

Current control is implemented by an
electronic constant current source, or a
variable voltage source with feedback
of actual motor current. A variable volt-
age source is most commonly imple-
mented by a pulse-width modulated
(PWM) switching circuit. Voltage control
requires that the electrical dynamics of
the motor due to its resistance and in-
ductance, as well as back EMF, must be
taken into account when designing the
control system.

253

9.1.3
l
Effect of the Link Mass

A motor in a robot arm does not exist in isolation, it is connected to a link as shown
schematically in Fig. 9.3. The link has two obvious signifi cant effects on the motor – it
adds extra inertia and it adds a torque due to the weight of the arm and both vary with
the confi guration of the joint.

With reference to the simple 2-joint robot shown in Fig. 9.4 consider the fi rst joint
which is directly attached to the fi rst link which is colored red. If we assume the mass
of the red link is concentrated at its center of mass (CoM) the extra inertia of the link
will be m1r1

2. The motor will also experience the inertia of the blue link and this will
depend on the value of q2 – the inertia of the arm when it is straight is greater than
the inertia when it is folded.

We also see that gravity acting on the center of mass of the red link will create a
torque on the joint 1 motor which will be proportional to cos q1. Gravity acting on the
center of mass of the blue link also creates a torque on the joint 1 motor, and this is
more pronounced since it is acting at a greater distance from the motor – the lever
arm effect is greater.

These effects are clear from even a cursory examination of Fig. 9.4 but the reality is
even more complex. Jumping ahead to material we will cover in the next section, we
can use the Toolbox� to determine the torque acting on each of the joints as a func-
tion of the position, velocity and acceleration of the joints

>> mdl_twolink_sym
>> syms q1 q2 q1d q2d q1dd q2dd real
>> tau = twolink.rne([q1 q2], [q1d q2d], [q1dd q2dd]);

and the result is a symbolic 2-vector, one per joint, with surprisingly many terms
which we can summarize as:

 Charles-Augustin de Coulomb (1736–1806) was a French physicist. He was born in Angoulême to a
wealthy family and studied mathematics at the Collége des Quatre-Nations under Pierre Charles
Monnier, and later at the military school in Méziéres. He spent eight years in Martinique involved
in the construction of Fort Bourbon and there he contracted tropical fever.

Later he worked at the shipyards in Rochefort which he used as laboratories for his experi-
ments in static and dynamic friction of sliding surfaces. His paper Théorie des machines simples
won the Grand Prix from the Académie des Sciences in 1781. His later research was on electro-
magnetism and electrostatics and he is best known for the formula on electrostatic forces, named
in his honor, as is the SI unit of charge. After the revolution he was involved in determining the
new system of weights and measures.

Fig. 9.2.
Typical friction versus speed

characteristic. The dashed lines
depict a simple piecewise-linear
friction model characterized by
slope (viscous friction) and in-

tercept (Coulomb friction). The
low-speed regime is shaded and

shown in exaggerated fashion

This requires the MATLAB Symbolic Math
Toolbox™.

9.1 · Independent Joint Control

254 Chapter 9 · Dynamics and Control

 (9.3)

We have already discussed the fi rst and last terms in a qualitative way – the inertia
is dependent on q2 and the gravity torque g is dependent on q1 and q2. What is perhaps
most surprising is that the torque applied to joint 1 depends on the velocity and the ac-
celeration of q2 and this will covered in more detail in Sect. 9.2.

In summary, the effect of joint motion in a series of mechanical links is nontrivial. The
motion of any joint is affected by the motion of all the other joints and for a robot with
many joints this becomes quite complex.

9.1.4
l

Gearbox

Electric motors are compact and effi cient and can rotate at very high speed , but produce
very low torque . Therefore it is common to use a reduction gearbox to tradeoff speed for
increased torque. For a prismatic joint the gearbox might convert rotary motion to linear.
The disadvantage of a gearbox is increased cost, weight, friction, backlash, mechanical
 noise and, for harmonic gears, torque ripple. Very high-performance robots, such as those
used in high-speed electronic assembly, use expensive high-torque motors with a direct
drive or a very low gear ratio achieved using cables or thin metal bands rather than gears.

Fig. 9.3.
Robot joint actuator with at-
tached links. The center of mass
of each link is indicated by ©

Fig. 9.4. Notation for rigid-body
dynamics of two-link arm show-
ing link frames and relevant di-
mensions. The center of mass
(CoM) of each link is indicated
by ©. The CoM is a distance of
ri from the axis of joint i, and ci
from the origin of frame {i} as
defi ned in Fig. 7.5 – therefore
ri = ai + ci

255

Figure 9.5 shows the complete drive train of a typical robot joint. For a G : 1
reduction drive the torque at the link is G times the torque at the motor. For ro-
tary joints the quantities measured at the link, reference frame l, are related to
the motor referenced quantities, reference frame m, as shown in Table 9.1. The
inertia of the load is reduced by a factor of G2� and the disturbance torque by a
factor of G.

There are two components of inertia seen by the motor. The fi rst is due to the
rotating part of the motor itself, its rotor. It is denoted Jm and is a constant intrinsic
characteristic of the motor and the value is provided in the motor manufacturer’s
data sheet. The second component is the variable load inertia Jl which is the iner-
tia of the driven link and all the other links that are attached to it. For joint j this is
element Mjj of the confi guration dependent inertia matrix of Eq. 9.3.

9.1.5
l

Modeling the Robot Joint

The complete motor drive comprises the motor to generate torque, the gearbox to
amplify the torque and reduce the effects of the load, and an encoder to provide feed-
back of position and velocity. A schematic of such a device is shown in Fig. 9.6.

Collecting the various equations above we can write the torque balance on the mo-
tor shaft as

 (9.4)

where B′, τ′C and J ′ are the effective total viscous friction , Coulomb friction and inertia
due to the motor, gearbox, bearings and the load

 (9.5)

In order to analyze the dynamics of Eq. 9.4 we must fi rst linearize it, and this can
be done simply by setting all additive constants to zero

and then applying the Laplace transformation

where Ω(s) and U(s) are the Laplace transform of the time domain signals ω(t) and
u(t) respectively. This can be rearranged as a linear transfer function

Fig. 9.5. Schematic of complete ro-
bot joint including gearbox . The
effective inertia of the links is shown
as Jl and the disturbance torque due
to the link motion is τd

For example if you turned the motor
shaft by hand you would feel the inertia
of the load through the gearbox but it
would be reduced by G2.

Table 9.1. Relationship between
load and motor referenced quan-
tities for reduction gear ratio G

9.1 · Independent Joint Control

256 Chapter 9 · Dynamics and Control

relating motor speed to control input, and has a single pole� at s = −B′ / J ′.
We will use data for joint 2 – the shoulder – of the Puma 560 robot since its pa-

rameters are well known and are listed in Table 9.2. In the absence of other informa-
tion we will take B′ = Bm. The link inertia M22 experienced by the joint 2 motor as a
function of confi guration is shown in Fig. 9.16c and we see that it varies signifi cantly
– from 3.66 to 5.21 kg m2. Using the mean value of the extreme inertia values, which
is 4.43 kg m2, the effective inertia is

and we see that the inertia of the link referred to the motor side of the gearbox is com-
parable to the inertia of the motor itself.

The Toolbox can automatically generate� a dynamic model suitable for use with
the MATLAB control design tools

>> tf = p560.jointdynamics(qn);

is a vector of continuous-time linear-time-invariant (LTI) models, one per joint, com-
puted for the particular pose qn. For the shoulder joint we are considering here that
transfer function is

>> tf(2)
ans =
 1

 0.0005797 s + 0.000817
Continuous-time transfer function.

which is similar to that above except that it does not account for Km and Ka since these
are not parameters of the Link object. Once we have a model of this form we can plot
the step response and use a range of standard control system design tools.

Fig. 9.6.
Schematic of an integrated motor -
encoder -gearbox assembly
(courtesy of maxon precision
motors, inc.)

The mechanical pole.

This requires the Control Systems Tool-
box™.

257

9.1.6
l

Velocity Control Loop

A very common approach to controlling the position output of a motor is the nested
control loop. The outer loop is responsible for maintaining position and determines
the velocity of the joint that will minimize position error. The inner loop – the veloc-
ity loop – is responsible for maintaining the velocity of the joint as demanded by the
outer loop. Motor speed control is important for all types of robots, not just arms.
For example it is used to control the speed of the wheels for car-like vehicles and the
rotors of a quadrotor as discussed in Chap. 4.

The Simulink® model is shown in Fig. 9.7. The input to the motor driver is based
on the error between the demanded and actual velocity.� A delay of 1 ms is included
to model the computational time of the velocity loop control algorithm and a satura-
tor models the fi nite maximum torque that the motor that can deliver.

We fi rst consider the case of proportional control where Ki = 0 and

 (9.6)

To test this velocity controller we create a test harness

>> vloop_test

with a trapezoidal velocity demand which is shown in Fig. 9.8. Running the simulator

>> sim('vloop_test');

and with a little experimentation we fi nd that a gain of Kv = 0.6 gives satisfactory per-
formance as shown in Fig. 9.9. There is some minor overshoot at the discontinuity
but less gain leads to increased velocity error and more gain leads to oscillation – as
always control engineering is all about tradeoffs.

Table 9.2.
Motor and drive parameters for

Puma 560 shoulder joint with
respect to the motor side of the

gearbox (Corke 1996b)

The motor velocity is typically computed
by taking the difference in motor posi-
tion at each sample time, and the posi-
tion is measured by a shaft encoder. This
can be problematic at very low speeds
where the encoder tick rate is lower than
the sample rate. In this case a better strat-
egy is to measure the time between en-
coder ticks.

Fig. 9.7. Velocity control loop,
Simulink model vloop

9.1 · Independent Joint Control

258 Chapter 9 · Dynamics and Control

Fig. 9.8. Test harness for the veloc-
ity control loop, Simulink model
 vloop_test. The input tau_d
is used to simulate a disturbance
torque acting on the joint

Fig. 9.9. Velocity loop with a trape-
zoidal demand. a Response; b clo-
seup of response

We also observe a very slight steady-state error – the actual velocity is less than
the demand at all times. From a classical control system perspective the velocity loop
contains no integrator block and is classifi ed as a Type 0 system – a characteristic of
Type 0 systems is they exhibit a fi nite error for a constant input. More intuitively we
can argue that in order to move at constant speed the motor must generate a fi nite
torque to overcome friction, and since motor torque is proportional to velocity error
there must be a fi nite velocity error.

Now we will investigate the effect of inertia variation on the closed-loop response.
Using Eq. 9.5 and the data from Fig. 9.16c we fi nd that the minimum and maximum
joint inertia at the motor are 515 ×10−6 and 648 ×10−6 kg m2 respectively. Figure 9.10
shows the velocity tracking error using the control gains chosen above for various val-
ues of link inertia. We can see that the tracking error decays more slowly for larger
inertia, and is showing signs of instability for the case of zero link inertia. For a case
where the inertia variation is more extreme the gain should be chosen to achieve sat-
isfactory closed-loop performance at both extremes.

259

Figure 9.15a shows that the gravity torque on this joint varies from approximate-
ly −40 to 40 N m. We now add a disturbance torque equal to just half that maximum
amount, 20 N m applied on the load side of the gearbox. We do this by setting a non-
zero value in the tau_d block and rerunning the simulation. The results shown in
Fig. 9.11 indicate that the control performance has been badly degraded – the tracking
error has increased to more than 2 rad s−1. This has the same root cause as the very
small error we saw in Fig. 9.9 – a Type 0 system exhibits a fi nite error for a constant
input or a constant disturbance.

There are three common approaches to counter this error. The fi rst, and simplest,
is to increase the gain. This will reduce the tracking error but push the system toward
instability and increase the overshoot.

The second approach, commonly used in industrial motor drives, is to add inte-
gral action – adding an integrator changes the system to Type 1 which has zero error

Fig. 9.10.
Velocity loop response with a

trapezoidal demand for varying
inertia M22

Fig. 9.11.
Velocity loop response to a trap-

ezoidal demand with a gravity
disturbance of 20 N m

Motor limits. Electric motors are limited in both torque and speed. The maximum torque is de-
fi ned by the maximum current the drive electronics can provide. A motor also has a maximum
rated current beyond which the motor can be damaged by overheating or demagnetization of its
permanent magnets which irreversibly reduces its torque constant. As speed increases so does
friction and the maximum speed is ωmax = τmax/ B.

The product of motor torque and speed is the mechanical output power and also has an upper
bound. Motors can tolerate some overloading, peak power and peak torque, for short periods of
time but the sustained rating is signifi cantly lower than the peak.

9.1 · Independent Joint Control

260 Chapter 9 · Dynamics and Control

for a constant input or constant disturbance. We change Eq. 9.6 to a proportional-
integral controller

In the Simulink model of Fig. 9.7 this is achieved by setting Ki to a nonzero value.
With some experimentation we fi nd the gains Kv = 1 and Ki = 10 work well and the per-
formance is shown in Fig. 9.12. The integrator state evolves over time to cancel out the
disturbance term and we can see the error decaying to zero. In practice the disturbance
varies over time and the integrator’s ability to track it depends on the value of the inte-
gral gain Ki. In reality other disturbances affect the joint, for instance Coulomb friction
and torques due to velocity and acceleration coupling. The controller needs to be well
tuned so that these have minimal effect on the tracking performance.

As always in engineering there are some tradeoffs. The integral term can lead to in-
creased overshoot so increasing Ki usually requires some compensating reduction of Kv. If
the joint actuator is pushed to its performance limit, for instance the torque limit is reached,
then the tracking error will grow with time since the motor acceleration will be lower than
required. The integral of this increasing error will grow leading to a condition known as
 integral windup. When the joint fi nally reaches its destination the large accumulated inte-
gral keeps driving the motor forward until the integral decays – leading to large overshoot.
Various strategies are employed to combat this, such as limiting the maximum value of the
integrator, or only allowing integral action when the motor is close to its setpoint.

These two approaches are collectively referred to as disturbance rejection and are con-
cerned with reducing the effect of an unknown disturbance. However if we think about the
problem in its robotics context the gravity disturbance is not unknown. In Sect. 9.1.3 we
showed how to compute the torque due to gravity that acts on each joint. If we know this
torque, and the motor torque constant, we can add it to the output of the PI controller.�

The third approach is therefore to predict the disturbance and cancel it out – a strategy
known as torque feedforward control. This is shown by the red wiring in Fig. 9.7 and can
be demonstrated by setting the tau_ff block of Fig. 9.8 to the same, or approximately
the same, value as the disturbance.

 Back EMF. A spinning motor acts like a generator and produces a voltage Vb called the back EMF
which opposes the current fl owing into the motor. Back EMF is proportional to motor speed
Vb = Kmω where Km is the motor torque constant whose units can also be interpreted as V s rad−1.
When this voltage equals the maximum possible voltage from the drive electronics then no more
current can fl ow into the motor and torque falls to zero. This provides a practical upper bound
on motor speed, and torque at high speeds.

Fig. 9.12.
Velocity loop response to a trap-
ezoidal demand with a gravity
disturbance of 20 N m and pro-
portional-integral control

Even if the gravity load is known impre-
cisely this trick will reduce the magni-
tude of the disturbance.

261

9.1.7
l
Position Control Loop

The outer loop is responsible for maintaining position and we use a proportional
controller� based on the error between actual and demanded position to compute
the desired speed of the motor

 (9.7)

A Simulink model is shown in Fig. 9.13 and the position demand q∗(t) comes from
an LSPB trajectory generator that moves from 0 to 0.5 rad in 1 s with a sample rate of
1 000 Hz. Joint position is obtained by integrating joint velocity, obtained from the
motor velocity loop via the gearbox. The error between the motor and desired posi-
tion provides the velocity demand for the inner loop.

We load this control loop model

>> ploop_test

and its performance is tuned by adjusting the three gains: Kp, Kv, Ki in order to achieve
good tracking performance along the trajectory. For Kp = 40 the tracking and error
responses are shown in Fig. 9.14a. We see that the fi nal error is zero but there is some
tracking error along the path where the motor position lags behind the demand. The
error between the demand and actual curves is due to the cumulative velocity error
of the inner loop which has units of angle.

Another common approach is to use a
proportional-integral-derivative (PID)
controller for position but it can be shown
that the D gain of this controller is related
to the P gain of the inner velocity loop.

Fig. 9.13. Position control loop,
Simulink model ploop_test.
a Test harness for following an
LSPB angle trajectory. b The po-
sition loop ploop which is a pro-
portional controller around the
inner velocity loop of Fig. 9.7

9.1 · Independent Joint Control

262 Chapter 9 · Dynamics and Control

The position loop, like the velocity loop is based on classical negative feedback.
Having zero position error while tracking a ramp would mean zero demanded ve-
locity to the inner loop which is actually contradictory. More formally, we know
that a Type 1 system� exhibits a constant error to a ramp input. If we care about
reducing this tracking error there are two common remedies. We can add an inte-
grator to the position loop – making it a proportional-integral controller but this
gives us yet another parameter to tune. A simple and effective alternative is veloc-
ity feedforward control – we add the desired velocity to the output of the propor-
tional control loop, which is the input to the velocity loop. The LSPB trajectory
function computes velocity as a function of time as well as position. The time re-
sponse with velocity feedforward is shown in Fig. 9.14b and we see that tracking
error is greatly reduced.

9.1.8
l
Independent Joint Control Summary

A common structure for robot joint control is the nested control loop. The inner
loop uses a proportional or proportional-integral control law to generate a torque
so that the actual velocity closely follows the velocity demand. The outer loop uses
a proportional control law to generate the velocity demand so that the actual posi-
tion closely follows the position demand. Disturbance torques due to gravity and
other dynamic coupling effects impact the performance of the velocity loop as do
variation in the parameters of the plant being controlled, and this in turn leads to
errors in position tracking. Gearing reduces the magnitude of disturbance torques
by 1 / G and the variation in inertia and friction by 1/G2 but at the expense of cost,
weight, increased friction and mechanical noise.

The velocity loop performance can be improved by adding an integral control
term, or by feedforward of the disturbance torque which is largely predictable. The
position loop performance can also be improved by feedforward of the desired joint
velocity. In practice control systems use both feedforward and feedback control.
Feedforward is used to inject signals that we can compute, in this case the joint
velocity, and in the earlier case the gravity torque. Feedback control compensates
for all remaining sources of error including variation in inertia due to manipulator
confi guration and payload, changes in friction with time and temperature, and all
the disturbance torques due to velocity and acceleration coupling. In general the
use of feedforward allows the feedback gain to be reduced since a large part of the
demand signal now comes from the feedforward.

Fig. 9.14. Position loop following
an LSPB trajectory. a Proportional
control only b proportional con-
trol plus velocity demand feedfor-
ward

Since the model contains an integrator
after the velocity loop.

263

9.2
l
Rigid-Body Equations of Motion

Consider the motor which actuates the jth revolute joint of a serial-link manipula-
tor. From Fig. 7.5 we recall that joint j connects link j − 1 to link j. The motor exerts
a torque that causes the outward link, j, to rotationally accelerate but it also exerts a
reaction torque on the inward link j − 1. Gravity acting on the outward links j to N
exert a weight force, and rotating links also exert gyroscopic forces on each other.
The inertia that the motor experiences is a function of the confi guration of the out-
ward links.

The situation at the individual link is quite complex but for the series of links the
result can be written elegantly and concisely as a set of coupled differential equations
in matrix form

 (9.8)

where q, ¸ and » are respectively the vector of generalized joint coordinates, veloci-
ties and accelerations, M is the joint-space inertia matrix, C is the Coriolis and cen-
tripetal coupling matrix, F is the friction force, G is the gravity loading, and Q is the
vector of generalized actuator forces associated with the generalized coordinates q.
The last term gives the joint forces due to a wrench W applied at the end-effector
and J is the manipulator Jacobian. This equation describes the manipulator rigid-
body dynamics and is known as the inverse dynamics – given the pose, velocity and
acceleration it computes the required joint forces or torques.

These equations can be derived using any classical dynamics method such as
 Newton’s second law and Euler’s equation of motion, as discussed in Sect. 3.2.1,
or a Lagrangian energy-based approach. A very effi cient way for computing Eq. 9.8
is the recursive Newton-Euler algorithm which starts at the base and working out-
ward adds the velocity and acceleration of each joint in order to determine the ve-
locity and acceleration of each link. Then working from the tool back to the base, it
computes the forces and moments acting on each link and thus the joint torques.�
The recursive Newton-Euler algorithm has O(N) complexity and can be written in
functional form as

 (9.9)

In the Toolbox it is implemented by the rne method of the SerialLink object.�
Consider the Puma 560 robot

 >> mdl_puma560

at the nominal pose, and with zero joint velocity and acceleration. To achieve this state,
the required generalized joint forces, or joint torques in this case, are

>> Q = p560.rne(qn, qz, qz)
Q =
 -0.0000 31.6399 6.0351 0.0000 0.0283 0

Since the robot is not moving (we specifi ed ¸ = » = 0) these torques must be those
required to hold the robot up against gravity. We can confi rm this by computing the
torques required in the absence of gravity

>> Q = p560.rne(qn, qz, qz, 'gravity', [0 0 0])
ans =
 0 0 0 0 0 0

by overriding the object’s default gravity vector.
Like most Toolbox methods rne can operate on a trajectory

>> q = jtraj(qz, qr, 10)
>> Q = p560.rne(q, 0*q, 0*q)

The recursive form of the inverse dynam-
ics does not explicitly calculate the ma-
trices M, C and G of Eq. 9.8. However we
can use the recursive Newton-Euler al-
gorithm to calculate these matrices and
the Toolbox functions inertia and
coriolis use Walker and Orin’s (1982)
‘Method 1’. While the recursive forms are
computationally efficient for the inverse
dynamics, to compute the coefficients of
the individual dynamic terms (M, C and
G) in Eq. 9.8 is quite costly – O(N3) for an
N-axis manipulator.

Not all robot arm models in the Toolbox
have dynamic parameters, see the “dy-
namics” tag in the output of the mod-
els() command, or use models('dyn') to
list models with dynamic parameters.
The Puma 560 robot is used for the ex-
amples in this chapter since its dynamic
parameters are reliably known.

9.2 · Rigid-Body Equations of Motion

264 Chapter 9 · Dynamics and Control

which has returned

>> about(Q)
Q [double] : 10x6 (480 bytes)

a 10 × 6 matrix with each row representing the generalized force required for the cor-
responding row of q. The joint torques corresponding to the fi fth time step are

>> Q(5,:)
ans =
 0.0000 29.8883 0.2489 0 0 0

Consider now a case where the robot is moving. It is instantaneously at the nominal
pose but joint 1 is moving at 1 rad s−1 and the acceleration of all joints is zero. Then
in the absence of gravity, the required joint torques

>> p560.rne(qn, [1 0 0 0 0 0], qz, 'gravity', [0 0 0])
 30.5332 0.6280 -0.3607 -0.0003 -0.0000 0

are nonzero. The torque on joint 1 is that needed to overcome friction which always op-
poses the motion. More interesting is that torques need to be exerted on joints 2, 3 and 4.
This is to oppose the gyroscopic effects (centripetal and Coriolis forces) – referred to as
 velocity coupling torques since the rotational velocity of one joint has induced a torque
on several other joints.

The elements of the matrices M, C, F and G are complex functions of the link’s kine-
matic parameters (θ j, dj, aj, α j) and inertial parameters. Each link has ten independent
inertial parameters: the link mass mj; the center of mass (COM) rj with respect to the
link coordinate frame; and six second moments which represent the inertia of the link
about the COM but with respect to axes aligned with the link frame {j}, see Fig. 7.5. We
can view the dynamic parameters of a robot’s link by

>> p560.links(1).dyn
Revolute(std): theta=q, d=0, a=0, alpha=1.5708, offset=0
 m = 0
 r = 0 0 0
 I = | 0 0 0 |
 | 0 0.35 0 |
 | 0 0 0 |
 Jm = 0.0002
 Bm = 0.00148
 Tc = 0.395 (+) -0.435 (-)
 G = -62.61
 qlim = -2.792527 to 2.792527

which in order are: the kinematic parameters, link mass, COM position, link iner-
tia matrix, motor inertia, motor friction, Coulomb friction, reduction gear ratio and
joint angle limits.

The remainder of this section examines the various matrix components of Eq. 9.8.

9.2.1
l

Gravity Term

We start our detailed discussion with the gravity term because it is generally the
dominant term in Eq. 9.8 and is present even when the robot is stationary or mov-
ing slowly. Some robots use counterbalance weights� or even springs to reduce the
 gravity torque that needs to be provided by the motors – this allows the motors to be
smaller and thus lower in cost.

In the previous section we used the rne method to compute the gravity load by
setting the joint velocity and acceleration to zero. A more convenient approach is to
use the gravload method

Counterbalancing will however increase
the inertia associated with a joint since
it adds additional mass at the end of a
lever arm, and increase the overall mass
of the robot.

265

>> gravload = p560.gravload(qn)
gravload =
 -0.0000 31.6399 6.0351 0.0000 0.0283 0

The SerialLink object contains a default gravitational acceleration vector which
is initialized to the nominal value for Earth�

>> p560.gravity'
ans =
 0 0 9.8100

We could change gravity to the lunar value
>> p560.gravity = p560.gravity/6;

resulting in reduced joint torques
>> p560.gravload(qn)
ans =
 0.0000 5.2733 1.0059 0.0000 0.0047 0

or we could turn our lunar robot upside down
>> p560.base = SE3.Rx(pi);
>> p560.gravload(qn)
ans =
 0.0000 -5.2733 -1.0059 -0.0000 -0.0047 0

and see that the torques have changed sign. Before proceeding we bring our robot
back to Earth and right-side up

>> mdl_puma560

The torque exerted on a joint due to gravity acting on the robot depends very strongly
on the robot’s pose. Intuitively the torque on the shoulder joint is much greater when
the arm is stretched out horizontally

>> Q = p560.gravload(qs)
Q =
 -0.0000 46.0069 8.7722 0.0000 0.0283 0

than when the arm is pointing straight up
>> Q = p560.gravload(qr)
Q =
 0 -0.7752 0.2489 0 0 0

The gravity torque on the elbow is also very high in the fi rst pose since it has to sup-
port the lower arm and the wrist. We can investigate how the gravity load on joints 2
and 3 varies with joint confi guration by
1 [Q2,Q3] = meshgrid(-pi:0.1:pi, -pi:0.1:pi);
2 for i=1:numcols(Q2),
3 for j=1:numcols(Q3);
4 g = p560.gravload([0 Q2(i,j) Q3(i,j) 0 0 0]);
5 g2(i,j) = g(2);
6 g3(i,j) = g(3);
7 end
8 end
9 surfl (Q2, Q3, g2); surfl (Q2, Q3, g3);

The 'gravity' option for the
SerialLink constructor can
change this.

 Joseph-Louis Lagrange (1736–1813) was an Italian-born (Giuseppe Lodovico Lagrangia) French math-
ematician and astronomer. He made signifi cant contributions to the fi elds of analysis, number theo-
ry, classical and celestial mechanics. In 1766 he succeeded Euler as the director of mathematics at the
Prussian Academy of Sciences in Berlin, where he stayed for over twenty years, producing a large body
of work and winning several prizes of the French Academy of Sciences. His treatise on analytical me-
chanics “Mécanique Analytique” fi rst published in 1788, offered the most comprehensive treatment of
classical mechanics since Newton and formed a basis for the development of mathematical physics in
the nineteenth century. In 1787 he became a member of the French Academy, was the fi rst professor
of analysis at the École Polytechnique, helped drive the decimalization of France, was a member of the
Legion of Honour and a Count of the Empire in 1808. He is buried in the Panthéon in Paris.

9.2 · Rigid-Body Equations of Motion

266 Chapter 9 · Dynamics and Control

and the results are shown in Fig. 9.15. The gravity torque on joint 2 varies be-
tween ±40 N m and for joint 3 varies between ±10 N m. This type of analysis is
very important in robot design to determine the required torque capacity for the
motors.

9.2.2
l
Inertia Matrix

The joint-space inertia is a positive defi nite, and therefore symmetric, matrix �

>> M = p560.inertia(qn)
M =
 3.6594 -0.4044 0.1006 -0.0025 0.0000 -0.0000
 -0.4044 4.4137 0.3509 0.0000 0.0024 0.0000
 0.1006 0.3509 0.9378 0.0000 0.0015 0.0000
 -0.0025 0.0000 0.0000 0.1925 0.0000 0.0000
 0.0000 0.0024 0.0015 0.0000 0.1713 0.0000
 -0.0000 0.0000 0.0000 0.0000 0.0000 0.1941

which is a function of the manipulator confi guration. The diagonal elements Mjj de-
scribe the inertia experienced by joint j, that is, Qj = MjjÌj. Note that the fi rst two diag-
onal elements, corresponding to the robot’s waist and shoulder joints, are large since
motion of these joints involves rotation of the heavy upper- and lower-arm links. The
off-diagonal terms Mij = Mji, i ≠ j are the products of inertia and represent coupling
of acceleration from joint j to the generalized force on joint i.

We can investigate some of the elements of the inertia matrix and how they vary
with robot confi guration using the simple (but slow�) commands
1 [Q2,Q3] = meshgrid(-pi:0.1:pi, -pi:0.1:pi);
2 for i=1:numcols(Q2)
3 for j=1:numcols(Q3)
4 M = p560.inertia([0 Q2(i,j) Q3(i,j) 0 0 0]);
5 M11(i,j) = M(1,1);
6 M12(i,j) = M(1,2);
7 end
8 end
9 surfl (Q2, Q3, M11); surfl (Q2, Q3, M12);

The results are shown in Fig. 9.16 and we see signifi cant variation in the value of M11
which changes by a factor of

>> max(M11(:)) / min(M11(:))
ans =
 2.1558

Fig. 9.15. Gravity load variation
with manipulator pose. a Shoulder
gravity load, g2(q2, q3); b elbow
gravity load g3(q2, q3)

The diagonal elements of this inertia
matrix includes the motor armature in-
ertias, multiplied by G2.

Displaying the value of the robot object
>> p560 displays a tag slowRNE
or fastRNE. The former indicates all
calculations are done in MATLAB code.
Build the MEX version, provided in the
mex folder, to enable the fastRNE
mode which is around 100 times faster.

267

This is important for robot design since, for a fi xed maximum motor torque, inertia
sets the upper bound on acceleration which in turn effects path following accuracy.

The off-diagonal term M12 represents coupling between the angular acceleration
of joint 2 and the torque on joint 1. That is, if joint 2 accelerates then a torque will be
exerted on joint 1 and vice versa.

9.2.3
l

Coriolis Matrix

The Coriolis matrix C is a function of joint coordinates and joint velocity. The cen-
tripetal torques are proportional to Åj

2, while the Coriolis torques are proportional to
ÅiÅj. For example, at the nominal pose with the elbow joint moving at 1 rad s−1

>> qd = [0 0 1 0 0 0];

the Coriolis matrix is

>> C = p560.coriolis(qn, qd)
C =
 0.8992 -0.2380 -0.2380 0.0005 -0.0375 0.0000
 -0.0000 0.9106 0.9106 0 -0.0036 0
 0.0000 0.0000 -0.0000 0 -0.0799 0
 -0.0559 0.0000 0.0000 -0.0000 0.0000 -0.0000
 -0.0000 0.0799 0.0799 -0.0000 0 0
 0.0000 0 0 0.0000 0 0

Fig. 9.16. Variation of inertia ma-
trix elements as a function of ma-
nipulator pose. a Joint 1 inertia as
a function of joint 2 and 3 angles
M11(q2, q3); b product of inertia
M12(q2, q3); c joint 2 inertia as a
function of joint 3 angle M22(q3)

9.2 · Rigid-Body Equations of Motion

268 Chapter 9 · Dynamics and Control

The off-diagonal terms Ci,j represent coupling of joint j velocity to the generalized force
acting on joint i. C2,3 = 0.9106 represents signifi cant coupling from joint 3 velocity to
torque on joint 2 – rotation of the elbow exerting a torque on the shoulder. Since the
elements of this matrix represents a coupling from velocity to joint force they have the
same dimensions as viscous friction or damping, however the sign can be positive or
negative. The joint torques due to the motion of just this one joint are

>> C*qd'
ans =
 -0.2380
 0.9106
 -0.0000
 0.0000
 0.0799
 0

9.2.4
l
Friction

For most electric drive robots friction is the next most dominant joint force after
gravity.�

The Toolbox models friction within the Link object. The friction values are lumped
and motor referenced, that is, they apply to the motor side of the gearbox. Viscous
friction is a scalar that applies for positive and negative velocity.� Coulomb friction
is a 2-vector comprising (QC

+, QC
−). The dynamic parameters of the Puma robot’s fi rst

link are shown on page 264 as link parameters Bm and Tc. The online documentation
for the Link class describes how to set these parameters.

9.2.5
l
Effect of Payload

Any real robot has a specifi ed maximum payload which is dictated by two dynamic
effects. The fi rst is that a mass at the end of the robot will increase the inertia experi-
enced by the joint motors and which reduces acceleration and dynamic performance.
The second is that mass generates a weight force which all the joints need to support.
In the worst case the increased gravity torque component might exceed the rating of
one or more motors. However even if the rating is not exceeded there is less torque
available for acceleration which again reduces dynamic performance.

As an example we will add a 2.5 kg point mass to the Puma 560 which is its rated maxi-
mum payload. The center of mass of the payload cannot be at the center of the wrist coordi-
nate frame, that is inside the wrist, so we will offset it 100 mm in the z-direction of the wrist
frame. We achieve this by modifying the inertial parameters of the robot’s last link�

>> p560.payload(2.5, [0 0 0.1]);

The inertia at the nominal pose is now

>> M_loaded = p560.inertia(qn);

and the ratio with respect to the unloaded case, computed earlier, is

>> M_loaded ./ M
ans =
 1.3363 0.9872 2.1490 49.3960 80.1821 1.0000
 0.9872 1.2667 2.9191 5.9299 74.0092 1.0000
 2.1490 2.9191 1.6601 -2.1092 66.4071 1.0000
 49.3960 5.9299 -2.1092 1.0647 18.0253 1.0000
 83.4369 74.0092 66.4071 18.0253 1.1454 1.0000
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

For the Puma robot joint friction varied
from 10 to 47% of the maximum mo-
tor torque for the first three joints (Corke
1996b).

In practice some mechanisms have a ve-
locity dependent friction characteristic.

This assumes that the last link itself has
no mass which is a reasonable approxi-
mation.

269

We see that the diagonal elements have increased signifi cantly, for instance the elbow joint
inertia has increased by 66% which reduces the maximum acceleration by nearly 40%.
Reduced acceleration impairs the robot’s ability to accurately follow a high speed path. The
inertia of joint 6 is unaffected since this added mass lies on the axis of this joint’s rotation.
The off-diagonal terms have increased signifi cantly, particularly in rows and columns four
and fi ve. This indicates that motion of joints 4 and 5, the wrist joints, which are swinging
the offset mass give rise to large reaction forces that are felt by all the other robot joints.

The gravity load has also increased by some signifi cant factors
>> p560.gravload(qn) ./ gravload
ans =
 0.3737 1.5222 2.5416 18.7826 86.8056 NaN

at the elbow and wrist. Note that the values for joints 1, 4 and 6 are invalid since they
are each the quotient of numbers that are almost zero. We set the payload of the ro-
bot back to zero before proceeding

>> p560.payload(0)

9.2.6
l
Base Force

A moving robot exerts a wrench on its base – its weight as well as reaction forces and
torques as the arm moves around. This wrench is returned as an optional output ar-
gument of the rne method, for example

>> [Q,Wb] = p560.rne(qn, qz, qz);

The wrench
>> Wb'
ans =
 0 -0.0000 230.0445 -48.4024 -31.6399 -0.0000

needs to be applied to the base to keep it in equilibrium. The vertical force of 230 N is
the total weight of the robot which has a mass of

>> sum([p560.links.m])
ans =
 23.4500

There is also a moment about the x- and y-axes since the center of mass of the robot
in this confi guration is not over the origin of the base coordinate frame.

The base forces are important in situations where the robot does not have a rigid
base such as on a satellite in space, on a boat, an underwater vehicle or even on a ve-
hicle with soft suspension.

9.2.7
l
Dynamic Manipulability

In Sect. 8.2.2 we discussed a kinematic measure of manipulability, that is, how well con-
fi gured the robot is to achieve velocity in any Cartesian direction. The force ellipsoid of
Sect. 8.5.2 describes how well the manipulator is able to accelerate in different Cartesian
directions but is based on the kinematic, not dynamic, parameters of the robot arm.
Following a similar approach, we consider the set of generalized joint forces with unit norm

From Eq. 9.8 and ignoring gravity and assuming ¸ = 0 we write

Differentiating Eq. 8.2 and still assuming ¸ = 0 we write

9.2 · Rigid-Body Equations of Motion

270 Chapter 9 · Dynamics and Control

Combining these we write

or more compactly

which is the equation of a hyperellipsoid in Cartesian acceleration space. For exam-
ple, at the nominal pose

>> J = p560.jacob0(qn);
>> M = p560.inertia(qn);
>> Mx = (J * inv(M) * inv(M)' * J');

If we consider just the translational acceleration, that is the top left 3 × 3 submatrix
of Mx

>> Mx = Mx(1:3, 1:3);

this is a 3-dimensional ellipsoid

>> plot_ellipse(Mx)

which is plotted in Fig. 9.17. The major axis of this ellipsoid is the direction in which
the manipulator has maximum acceleration at this confi guration. The radii of the el-
lipse are the square roots of the eigenvalues

>> sqrt(eig(Mx))
ans =
 0.4412
 0.1039
 0.1677

and the direction of maximum acceleration is given by the fi rst eigenvector. The ratio
of the minimum to maximum radius

>> min(ans)/max(ans)
ans =
 0.2355

is a measure of the nonuniformity of end-effector acceleration.� It would be unity for
isotropic acceleration capability. In this case acceleration capability is good in the x-
and z-directions, but poor in the y-direction.

The 6-dimensional ellipsoid has dimen-
sions with different units: m s−2 and
rad s−2. This makes comparison of all
6 radii problematic.

Fig. 9.17.
Spatial acceleration ellipsoid for
Puma 560 robot in nominal pose

271

The scalar dynamic manipulability measure proposed by Asada is similar but con-
siders the ratios of the eigenvalues of

and returns a uniformity measure m ∈ [0, 1] where 1 indicates uniformity of accelera-
tion in all directions. For this example

>> p560.maniplty(qn, 'asada')
ans =
 0.2094

9.3
l
Forward Dynamics

To determine the motion of the manipulator in response to the forces and torques ap-
plied to its joints we require the forward dynamics or integral dynamics. Rearranging
the equations of motion Eq. 9.8 we obtain the joint acceleration

 (9.10)

and M is always invertible. This function is computed by the accel method of the
SerialLink class

 qdd = p560.accel(q, qd, Q)

given the joint coordinates, joint velocity and applied joint torques. This functionality
is also encapsulated in the Simulink block Robot and an example of its use is

>> sl_ztorque

which is shown in Fig. 9.18. The torque applied to the robot is zero and the initial joint
angles is set as a parameter of the Robot block, in this case to the zero-angle pose.
The simulation is run

>> r = sim('sl_ztorque');

and the joint angles as a function of time are returned in the object r

>> t = r.fi nd('tout');
>> q = r.fi nd('yout');

We can show the robot’s motion in animation

>> p560.plot(q)

and see it collapsing under gravity since there are no torques to counter gravity and
hold in upright. The shoulder falls and swings back and forth as does the elbow, while
the waist joint rotates because of Coriolis coupling. The motion will slowly decay as
the energy is dissipated by viscous friction.

Fig. 9.18.
Simulink model sl_ztorque

for the Puma 560 manipulator
with zero joint torques. This

model removes Coulomb fric-
tion in order to simplify the nu-

merical integration

9.3 · Forward Dynamics

272 Chapter 9 · Dynamics and Control

Alternatively we can plot the joint angles as a function of time

>> plot(t, q(:,1:3))

and this is shown in Fig. 9.19. The method fdyn can be used as a nongraphical alter-
native to Simulink and is described in the online documentation.

This example is rather unrealistic and in reality the joint torques would be com-
puted by some control law as a function of the actual and desired robot joint angles.
This is the topic of the next section.

Coulomb friction is a strong nonlinearity and can cause difficulty when using
numerical integration routines to solve the forward dynamics. This is usually
manifested by very long integration times. Fixed-step solvers tend to be more
tolerant, and these can be selected through the Simulink Simulation+Model
Confi guration Parameters+Solver menu item.

The default Puma 560 model, defined using mdl_puma560, has nonzero
viscous and Coulomb friction parameters for each joint. Sometimes it is useful
to zero the friction parameters for a robot and this can be achieved by

>> p560_nf = p560.nofriction();

which returns a copy of the robot object that is similar in all respects except
that the Coulomb friction is zero. Alternatively we can set Coulomb and viscous
friction coefficients to zero

>> p560_nf = p560.nofriction('all');

9.4
l
Rigid-Body Dynamics Compensation

In Sect. 9.1 we discussed some of the challenges for independent joint control and in-
troduced the concept of feedforward to compensate for the gravity disturbance torque.
Inertia variation and other dynamic coupling forces were not explicitly dealt with and
were left for the feedback controller to handle. However inertia and coupling torques
can be computed according to Eq. 9.8 given knowledge of joint angles, joint velocities
and accelerations, and the inertial parameters of the links. We can incorporate these
torques into the control law using one of two model-based approaches: feedforward
 control, and computed torque control. The structural differences are contrasted in
Fig. 9.20 and Fig. 9.21.

Fig. 9.19.
Joint angle trajectory for
Puma 560 robot with zero
Coulomb friction collapsing
under gravity from initial joint
confi guration qz

273

9.4.1
l
Feedforward Control

The torque feedforward controller shown in Fig. 9.20 is given by

(9.11)

where Kp and Kv are the position and velocity gain (or damping) matrices respectively,
and D−1(·) is the inverse dynamics function. The gain matrices are typically diagonal.
The feedforward term provides the joint forces required for the desired manipulator
state (q∗, Å∗, Ì∗) and the feedback term compensates for any errors due to uncertainty
in the inertial parameters, unmodeled forces or external disturbances.

Fig. 9.21. Robotics Toolbox ex-
ample sl_ctorque, computed
torque control

Fig. 9.20. The Simulink model
 sl_fforward for Puma 560 with
torque feedforward control. The
blocks with the staircase icons are
zero-order holds

�

�

9.4 · Rigid-Body Dynamics Compensation

274 Chapter 9 · Dynamics and Control

We can also consider that the feedforward term linearizes the nonlinear dynamics
about the operating point (q∗,¸∗,»∗). If the linearization is ideal then the dynamics of
the error e = q∗ − q# can be obtained by combining Eq. 9.8 and 9.11

 (9.12)

For well chosen Kp and Kv the error will decay to zero but the joint errors are cou-
pled� and their dynamics are dependent on the manipulator confi guration.

To test this controller using Simulink we fi rst create a SerialLink object

>> mdl_puma560

and then load the torque feedforward controller model

>> sl_fforward

The feedforward torque is computed using the RNE block and added to the feedback
torque computed from position and velocity error. The desired joint angles and
velocity are generated using a jtraj block. Since the robot confi guration changes
relatively slowly the feedforward torque can be evaluated at a greater interval, Tff, than
the error feedback loops, Tfb. In this example we use a zero-order hold block sampling
at the relatively low sample rate of 20 Hz.

We run the simulation by pushing the Simulink play button or

>> r = sim('sl_fforward');

9.4.2
l

Computed Torque Control

The computed torque controller is shown in Fig. 9.21. It belongs to a class of control-
lers known as inverse dynamic control. The principle is that the nonlinear system is
cascaded with its inverse so that the overall system has a constant unity gain. In prac-
tice the inverse is not perfect so a feedback loop is required to deal with errors.

The computed torque control is given by

(9.13)

where Kp and Kv are the position and velocity gain (or damping) matrices respectively,
and D−1(·) is the inverse dynamics function.

In this case the inverse dynamics must be evaluated at each servo interval, although
the coeffi cient matrices M, C, and G could be evaluated at a lower rate since the robot
confi guration changes relatively slowly. Assuming ideal modeling and parameteriza-
tion the error dynamics of the system are obtained by combining Eq. 9.8 and 9.13

 (9.14)

where e = q∗ − q#. Unlike Eq. 9.12 the joint errors are uncoupled and their dynamics
are therefore independent of manipulator confi guration. In the case of model error
there will be some coupling between axes, and the right-hand side of Eq. 9.14 will be
a nonzero forcing function.

Using Simulink we fi rst create a SerialLink object and then load the computed
torque controller

>> mdl_puma560
>> sl_ctorque

Due to the nondiagonal matrix M.

275

The desired joint angles and velocity are generated using a jtraj block whose pa-
rameters are the initial and fi nal joint angles. We run the simulation by pushing the
Simulink play button or

>> r = sim('sl_ctorque');

9.4.3
l

Operational Space Control

The control strategies so far have been posed in terms of the robot’s joint coordinates
– its confi guration space. Equation 9.8 describes the relationship between joint posi-
tion , velocity , acceleration and applied forces or torques . However we can also express
the dynamics of the end-effector in the Cartesian operational space where we consider
the end-effector as a rigid body with inertia that actuator and disturbance forces and
torques act on. We can reformulate Eq. 9.8 in operational space as

 (9.15)

where x ∈ R6 is the manipulator Cartesian pose and Λ is the end-effector inertia
which is subject to a gyroscopic and Coriolis force µ and gravity load p and an ap-
plied control wrench W. These operational space terms are related to those we have
already discussed by

Imagine the task of wiping a table when the table’s height is unknown and its sur-
face is only approximately horizontal. The robot’s z-axis is vertical so to achieve the
task we need to move the end-effector along a path in the xy-plane to achieve cover-
age and hold the wiper at a constant orientation about the z-axis. Simultaneously we
maintain a constant force in the z-direction to hold the wiper against the table and
a constant torque about the x- and y-axes in order to conform to the orientation of
the table top. The fi rst group of axes are position controlled, and the second group
are force controlled. Each Cartesian degree of freedom can be either position or force
controlled. The operational space control allows independent control of position and
forces along and about the axes of the operational space coordinate frame.

A Simulink model of the controller and a simplifi ed version of this scenario can
be loaded by

>> sl_opspace

and is shown in Fig. 9.22. It comprises a position-control loop and a force-control
loop whose results are summed together and used to drive the operational space ro-
bot model – details can be found by opening that block in the Simulink diagram. In
this simulation the operational space coordinate frame is parallel to the end-effector
coordinate frame. Motion is position controlled in the x- and y-directions and about
the x-, y- and z-axes of this frame – the robot moves from its initial pose to a nearby
pose using 5 out of the 6 Cartesian DOF.�

Motion is force controlled in the z-direction with a setpoint of –5 N. To achieve this
the controller moves the end-effector downward in order to decrease the force. It moves
in free space until it touches the surface at z = −0.2 which is modeled as a stiffness of
100 N m−1. Results in Fig. 9.23 show the x- and y-position moving toward the goal and
the z-position decreasing and the simulated sensed force decreasing after contact. The
controller is able to simultaneously satisfy position and force constraints.

The robot model and the compliance
specification are set by the model’s
 InitFcn callback function. The set-
points are the red user adjustable boxes
in the top-level diagram.

9.4 · Rigid-Body Dynamics Compensation

276 Chapter 9 · Dynamics and Control

9.5
l
Applications

9.5.1
l
Series-Elastic Actuator (SEA)

For high-speed robots the elasticity of the links and the joints becomes a signifi cant dy-
namic effect which will affect path following accuracy. Joint elasticity is typically caused
by elements of the transmission such as: longitudinal elasticity of a toothed belt or cable
drive, a harmonic gearbox which is inherently elastic, or torsional elasticity of a motor
shaft. In dynamic terms, as shown schematically in Fig. 9.24, the problem arises because
the force is applied to one side of an elastic element and we wish to control the position of
the other side – the actuator and sensor are not colocated. More complex still, and harder
to analyze, is the case where the elasticity of the links must be taken into account.

However there are advantages in having some fl exibility between the motor and the
load. Imagine a robot performing a task that involves the gripper picking an object off a
table whose height is uncertain.� A simple strategy to achieve this is to move down until
the gripper touches the table, close the gripper and then lift up. However at the instant of
contact a large and discontinuous force will be exerted on the robot which has the potential
to damage the object or the robot. This is particularly problematic for robots with large

Fig. 9.22. Simulink model of an
operational-space control system
for a Puma 560 robot as described
by (Khatib 1987)

Fig. 9.23.
Operational space controller re-
sults. The end-effector moves to
a desired x- and y-position while
also moving in the negative z-di-
rection until it contacts the work
piece and is able to exert the
specifi ed force of –5 N

�

Or the robot is not very accurate.

277

inertia that are moving quickly – the kinetic energy must be instantaneously dissipated.
An elastic element – a spring – between the motor and the joint would help here. At the
moment of contact the spring would start to compress and the kinetic energy is trans-
ferred to potential energy in the spring – the robot control system has time to react and
stop or reverse the motors. We have changed the problem from a damaging hard impact
to a soft impact. In addition to shock absorption, the deformation of the spring provides
a means of determining the force that the robot is exerting. This capability is particularly
useful for robots that interact closely with people since it makes the robot less dangerous
in case of collision, and a spring is simple technology that cannot fail. For robots that must
exert a force as part of their task, this is a simpler approach than the operational space
controller introduced in Sect. 9.4.3. However position control is now more challenging
because there is an elastic element between the motor and the load .

Consider the 1-dimensional case shown in Fig. 9.24 where the motor is represented by
a mass m1 to which a controllable force u is applied.� It is connected via a linear elastic
element or spring to the load mass m2. If we apply a positive force to m1 it will move to
the right and compress the spring, and this will exert a positive force on m2 which will
also move to the right. Controlling the position of m2 is not trivial since this system has
no friction and is marginally stable. It can be stabilized by feedback of position and ve-
locity of the motor and of the load – all of which are potentially measurable.

In robotics such a system, built into a robot joint, is known as a series-elastic actua-
tor or SEA . The Baxter robot of Fig. 7.1b includes SEAs in some of its joints.

A Simulink model of an SEA system can be loaded by

>> sl_sea

and is shown in Fig. 9.25. A state-feedback LQR controller has been designed using
MATLAB and requires input of motor and load position and velocity which form a vec-
tor x in the Simulink model. Fig. 9.26 shows a simulation of the model moving the load
m2 to a position x2

∗ = 1. In the fi rst case there is no obstacle and it achieves the goal with
minimal overshoot, but note the complex force profi le applied to m1. In the second case
the load mass is stopped at x2 = 0.8 and the elastic force changes to accomodate this.

Fig. 9.24.
Schematic of a series-elastic

actuator . The two masses repre-
sent the motor and the load, and
they are connected by an elastic

element or spring

Fig. 9.25. Simulink model sl_sea
of a series-elastic actuator colliding
with an obstacle

In a real robot this is a rotary system with
a torsional spring .

9.5 · Applications

278 Chapter 9 · Dynamics and Control

9.6
l
Wrapping Up

In this Chapter we discussed approaches to robot manipulator control. We started with
the simplest case of independent joint control, and explored the effect of disturbance
torques and variation in inertia, and showed how feedforward of disturbances such as
gravity could provide signifi cant improvement in performance. We then learned how
to model the forces and torques acting on the individual links of a serial-link manipu-
lator. The equations of motion or inverse dynamics compute the joint forces required
to achieve particular joint velocity and acceleration. The equations have terms corre-
sponding to inertia, gravity, velocity coupling, friction and externally applied forces.
We looked at the signifi cance of these terms and how they vary with manipulator con-
fi guration and payload. The equations of motion provide insight into important issues
such as how the velocity or acceleration of one joint exerts a disturbance force on other
joints which is important for control design. We then discussed the forward dynam-
ics which describe how the confi guration evolves with time in response to forces and
torques applied at the joints by the actuators and by external forces such as gravity.
We extended the feedforward notion to full model-based control using torque feed-
forward, computed torque and operational-space controllers. Finally we discussed
series-elastic actuators where a compliant element between the robot motor and the
link enables force control and people-safe operation.

Further Reading

The engineering design of motor control systems is covered in mechatronics textbooks
such as Bolton (2015). The dynamics of serial-link manipulators is well covered by all
the standard robotics textbooks such as Paul (1981), Spong et al. (2006), Siciliano et al.
(2009) and the Robotics Handbook (Siciliano and Khatib 2016). The effi cient recursive
 Newton-Euler method we use today is the culmination of much research in the early
1980s and described in Hollerbach (1982). The equations of motion can be derived via a
number of techniques, including Lagrangian (energy based), Newton-Euler, d’Alembert
(Fu et al. 1987; Lee et al. 1983) or Kane’s method (Kane and Levinson 1983). However the
computational cost of Lagrangian methods (Uicker 1965; Kahn 1969) is enormous, O(N4),
which made it infeasible for real-time use on computers of that era and many simplifi -
cations and approximation had to be made. Orin et al. (1979) proposed an alternative
approach based on the Newton-Euler (NE) equations of rigid-body motion applied to
each link. Armstrong (1979) then showed how recursion could be applied resulting in

Fig. 9.26. Response of the series-
elastic actuator to a unit-step de-
mand at t = 1 s, showing load posi-
tion (m), motor force (N) and spring
force (N). a Moving to x2

∗= 1 with
no collision; b moving to x2

∗ = 1
with an obstacle at x2 = 0.8 which
is reached at t ≈ 2.3

279

O(N) complexity. Luh et al. (1980) provided a recursive formulation of the Newton-
Euler equations with linear and angular velocities referred to link coordinate frames
which resulted in a thousand-fold improvement in execution time making it practical
to implement in real-time. Hollerbach (1980) showed how recursion could be applied
to the Lagrangian form, and reduced the computation to within a factor of 3 of the re-
cursive NE form, and Silver (1982) showed the equivalence of the recursive Lagrangian
and Newton-Euler forms, and that the difference in effi ciency was due to the represen-
tation of angular velocity.

The forward dynamics, Sect. 9.3, is computationally more expensive. An O(N3) meth-
od was proposed by Walker and Orin (1982) and is used in the Toolbox. Featherstone’s
(1987) articulated-body method has O(N) complexity but for N < 9 is more expensive
than Walker’s method.

Critical to any consideration of robot dynamics is knowledge of the inertial param-
eters, ten per link, as well as the motor’s parameters. Corke and Armstrong-Hélouvry
(1994, 1995) published a meta-study of Puma parameters and provide a consensus
estimate of inertial and motor parameters for the Puma 560 robot. Some of this data
was obtained by painstaking disassembly of the robot and determining the mass and
dimensions of the components. Inertia of components can be estimated from mass
and dimensions by assuming mass distribution, or it can be measured using a bifi lar
 pendulum as discussed in Armstrong et al. (1986).

Alternatively the parameters can be estimated by measuring the joint torques or
the base reaction force and moment as the robot moves. A number of early works in
this area include Mayeda et al. (1990), Izaguirre and Paul (1985), Khalil and Dombre
(2002) and a more recent summary is Siciliano and Khatib (2016, § 6). Key to success-
ful identifi cation is that the robot moves in a way that is suffi ciently exciting (Gautier
and Khalil 1992; Armstrong 1989). Friction is an important dynamic characteristic
and is well described in Armstrong’s (1988) thesis. The survey by Armstrong-Hélouvry
et al. (1994) is a very readable and thorough treatment of friction modeling and
control. Motor parameters can be obtained directly from the manufacturer’s data
sheet or determined experimentally, without having to remove the motor from the
robot, as described by Corke (1996a). The parameters used in the Toolbox Puma
model are the best estimates from Corke and Armstrong-Hélouvry (1995) and
Corke (1996a).

The discussion on control has been quite brief and has strongly emphasized the ad-
vantages of feedforward control. Robot joint control techniques are well covered by
Spong et al. (2006), Craig (2005) and Siciliano et al. (2009) and summarized in Siciliano
and Khatib (2016, § 8). Siciliano et al. have a good discussion of actuators and sensors
as does the, now quite old, book by Klafter et al. (1989). The control of fl exible joint
robots is discussed in Spong et al. (2006). Adaptive control can be used to accomodate
the time-varying inertial parameters and there is a large literature on this topic but
some good early references include the book by Craig (1987) and key papers include
Craig et al. (1987), Spong (1989), Middleton and Goodwin (1988) and Ortega and Spong
(1989). The operational-space control structure was proposed in Khatib (1987). There
has been considerable recent interest in series-elastic as well as variable stiffness ac-
tuators (VSA) whose position and stiffness can be independently controlled much like
our own muscles – a good collection of articles on this technology can be found in the
special issue by Vanderborght et al. (2008).

Dynamic manipulability is discussed in Spong et al. (2006) and Siciliano et al. (2009).
The Asada measure used in the Toolbox is described in Asada (1983).

Historical and general. Newton’s second law is described in his master work Principia
Nautralis (mathematical principles of natural philosophy), written in Latin but an
English translation is available on line at http://www.archive.org/details/newton-
spmathema00newtrich. His writing on other subjects, including transcripts of his
notebooks, can be found online at http://www.newtonproject.sussex.ac.uk.

9.6 · Wrapping Up

280 Chapter 9 · Dynamics and Control

Exercises

1. Independent joint control (page 258ff)
a) Investigate different values of Kv and Ki as well as demand signal shape and

amplitude.
b) Perform a root-locus analysis of vloop to determine the maximum permissible

gain for the proportional case. Repeat this for the PI case.
c) Consider that the motor is controlled by a voltage source instead of a current

source, and that the motor’s impedance is 1 mH and 1.6 Ω. Modify vloop ac-
cordingly. Extend the model to include the effect of back EMF.

d) Increase the required speed of motion so that the motor torque becomes sat-
urated. With integral action you will observe a phenomena known as integral
windup – examine what happens to the state of the integrator during the motion.
Various strategies are employed to combat this, such as limiting the maximum
value of the integrator, or only allowing integral action when the motor is close
to its setpoint. Experiment with some of these.

e) Create a Simulink model of the Puma robot with each joint controlled by vloop
and ploop. Parameters for the different motors in the Puma are described in
Corke and Armstrong-Hélouvry (1995).

2. The motor torque constant has units of N m A−1 and is equal to the back EMF con-
stant which has units of V s rad−1. Show that these units are equivalent.

3. Simple two-link robot arm of Fig. 9.4
a) Plot the gravity load as a function of both joint angles. Assume m1 = 0.45 kg,

m2 = 0.35 kg, r1 = 8 cm and r2 = 8 cm.
b) Plot the inertia for joint 1 as a function of q2. To compute link inertia assume

that we can model the link as a point mass located at the center of mass.
4. Run the code on page 265 to compute gravity loading on joints 2 and 3 as a func-

tion of confi guration. Add a payload and repeat.
5. Run the code on page 266 to show how the inertia of joints 1 and 2 vary with pay-

load?
6. Generate the curve of Fig. 9.16c. Add a payload and compare the results.
7. By what factor does this inertia vary over the joint angle range?
8. Why is the manipulator inertia matrix symmetric?
9. The robot exerts a wrench on the base as it moves (page 269). Consider that the robot

is sitting on a frictionless horizontal table (say on a large air puck). Create a simulation
model that includes the robot arm dynamics and the sliding dynamics on the table.
Show that moving the arm causes the robot to translate and spin. Can you devise an
arm motion that moves the robot base from one position to another and stops?

10. Overlay the dynamic manipulability ellipsoid on the display of the robot. Compare
this with the force ellipsoid from Sect. 8.5.2.

11. Model-based control (page 273ff)
a) Compute and display the joint tracking error for the torque feedforward and

computed torque cases. Experiment with different motions, control parameters
and sample rate Tfb.

b) Reduce the rate at which the feedforward torque is computed and observe its
effect on tracking error.

c) In practice the dynamic model of the robot is not exactly known, we can only
invert our best estimate of the rigid-body dynamics. In simulation we can model
this by using the perturb method, see the online documentation, which returns
a robot object with inertial parameters varied by plus and minus the specifi ed
percentage. Modify the Simulink models so that the RNE block is using a robot
model with parameters perturbed by 10%. This means that the inverse dynamics
are computed for a slightly different dynamic model to the robot under control
and shows the effect of model error on control performance. Investigate the ef-
fects on error for both the torque feedforward and computed torque cases.

281

d) Expand the operational-space control example to include a sensor that mea-
sures all the forces and torques exerted by the robot.on an inclined table surface.
Move the robot end-effector along a circular path in the xy-plane while exerting
a constant downward force – the end-effector should move up and down as it
traces out the circle. Show how the controller allows the robot tool to conform
to a surface with unknown height and surface orientation.

12. Series-elastic actuator (page 276)
a) Experiment with different values of stiffness for the elastic element and control

parameters. Try to reduce the settling time.
b) Modify the simulation so that the robot arm moves to touch an object at un-

known distance and applies a force of 5 N to it.
c) Plot the frequency response function X2(s)/X1(s) for different values of Ks, m1

and m2.
d) Simulate the effect of a collision between the load and an obstacle by adding a

step to the spring force.

9.6 · Wrapping Up

 Part IV Computer Vision
 Chapter 10 Light and Color

 Chapter 11 Image Formation

 Chapter 12 Images and Image Processing

 Chapter 13 Image Feature Extraction

 Chapter 14 Using Multiple Images

Part

IV Computer Vision
Vision is the process of discovering from images

what is present in the world and where it is.
David Marr

Almost all animal species use eyes – in fact evolution has invented the eye many times
over. Figure IV.1 shows a variety of eyes from nature: the compound eye of a fl y, the main
and secondary eyes of a spider, the refl ector-based eyes of a scallop, and the lens-based
 eye of a human. Vertebrates have two eyes, but spiders and scallops have many eyes.

Even very simple animals, bees for example, with brains comprising just 106 neu-
rons (compared to our 1011) are able to perform complex and life critical tasks such
as fi nding food and returning it to the hive using vision (Srinivasan and Venkatesh
1997). This is despite the very high biological cost of owning an eye: the complex eye
itself, muscles to move it, eyelids and tear ducts to protect it, and a large visual cortex
(relative to body size) to process its data.

Our own experience is that eyes are very effective sensors for recognition, naviga-
tion, obstacle avoidance and manipulation. Cameras mimic the function of an eye and
we wish to use cameras to create vision-based competencies for robots – to use digital
images to recognize objects and navigate within the world. Figure IV.2 shows a robot
with a number of different types of cameras.

Technological development has made it feasible for robots to use cameras as eyes.
For much of the history of computer vision, dating back to the 1960s, electronic cameras
were cumbersome and expensive and computer power was inadequate. Today CMOS
 cameras for cell phones cost just a few dollars each, and our mobile and personal com-
puters come standard with massive parallel computing power. New algorithms, cheap
sensors and plentiful computing power make vision a practical sensor today.

In Chap. 1 we defi ned a robot as

a goal oriented machine that can sense , plan and act

and this part of the book is concerned with sensing using vision, or visual percep-
tion. Whether a robot works in a factory or a fi eld it needs to sense its world in order
to plan its actions.

In this part of the book we will discuss the process of vision from start to fi nish: from
the light falling on a scene, being refl ected, gathered by a lens, turned into a digital im-
age and processed by various algorithms to extract the information required to support
the robot competencies listed above. These steps are depicted graphically in Fig. IV.3.

Development of the eye. It is believed that all animal eyes share a common ancestor in a proto-eye
that evolved 540 million years ago. However major evolutionary advances seem to have occurred
in just the last few million years. The very earliest eyes, called eyespots, were simple patches
of photoreceptor protein in single-celled animals. Multi-celled animals evolved multi-cellular
eyespots which could sense the brightness of light but not its direction. Gradually the eyespot
evolved into a shallow cup shape which gave a limited ability to discriminate directional bright-
ness according to which cells were illuminated. The pit deepened, the opening became smaller,
and the number of photoreceptor cells increased, forming a pin-hole camera that was capable
of distinguishing shapes. Next came an overgrowth of transparent cells to protect the eyespot
which led to a fi lled eye chamber and eventually the eye as we know it today. The lensed eye has
evolved independently seven different times across species. Nature has evolved ten quite distinct
eye designs including those shown above.

Fig. IV.1. a Robber fl y, Holocephala
fusca; b jumping spider, Phidippus
putnami (a and b courtesy Tho-
mas Shahan, thomasshanan.com).
c Scallop (courtesy Sönke Johnsen),
each of the small blue spheres is an
eye. d Human eye

286 Part IV · Computer Vision

In Chap. 10 we start by discussing light, and in particular color because it is such an
important characteristic of the world that we perceive. Although we learn about color at
kindergarten it is a complex topic that is often not well understood. Next, in Chap. 11,
we discuss how an image of the world is formed on a sensor and converted to a digital
image that can be processed by a computer. Fundamental image processing algorithms
are covered in Chap. 12 and provide the foundation for the feature extraction algorithms
discussed in Chap. 13. Feature extraction is a problem in data reduction, in extracting
the essence of the scene from the massive amount of pixel data. For example, how do we
determine the coordinate of the round red object in the scene, which can be described
with perhaps just 4 bytes, given the millions of bytes that comprise an image. To solve
this we must address many important subproblems such as “what is red?”, “how do we
distinguish red pixels from nonred pixels?”, “how do we describe the shape of the red
pixels?”, “what if there are more than one red object?” and so on.

As we progress through these chapters we will encounter the limitations of using
just a single camera to view the world. Once again biology shows the way – multiple
eyes are common and have great utility. This leads us to consider using multiple views
of the world, from a single moving camera or multiple cameras observing the scene
from different viewpoints. This is discussed in Chap. 14 and is particularly important
for understanding the 3-dimensional structure of the world. All of this sets the scene
for describing how vision can be used for closed-loop control of arm-type and mobile
robots which is the subject of the next and fi nal part of the book.

Fig. IV.2.
A cluster of cameras on an out-
door mobile robot: forward
looking stereo pair, side look-
ing wide angle camera, over-
head panoramic camera mirror
(CSIRO mobile robot)

Fig. IV.3.
Steps involved in image
processing

Chapter

10 Light and Color
I cannot pretend to feel impartial about colours.

I rejoice with the brilliant ones
and am genuinely sorry for the poor browns.

Winston Churchill

In ancient times it was believed that the eye radiated a cone of visual fl ux which mixed
with visible objects in the world to create a sensation in the observer – like the sense
of touch, but at a distance – this is the extromission theory. Today we consider that
light from an illuminant falls on the scene, some of which is refl ected into the eye of
the observer to create a perception about that scene. The light that reaches the eye,

or the camera, is a function of the illumination impinging on the scene and the
material property known as refl ectivity.

This chapter is about light itself and our perception of light in terms of
brightness and color. Section 10.1 describes light in terms of electro-mag-
netic radiation and mixtures of light as continuous spectra. Section 10.2
provides a brief introduction to colorimetry, the science of color perception,

human trichromatic color perception and how colors can be represented in
various color spaces. Section 10.3 covers a number of advanced topics such as col-
or constancy, gamma correction and white balancing. Section 10.4 has two worked
application examples concerned with distinguishing different colored objects in an
image and the removal of shadows in an image.

10.1
l
Spectral Representation of Light

Around 1670, Sir Isaac Newton discovered that white light was a mixture of different
colors. We now know that each of these colors is a single frequency or wavelength of
electro-magnetic radiation. We perceive the wavelengths between 400 and 700 nm as
different colors as shown in Fig. 10.1.

In general the light that we observe is a mixture of many wavelengths and can be
represented as a function E(λ) that describes intensity as a function of wavelength λ .
 Monochromatic light, such as emitted by a laser comprises a single wavelength in
which case E is an impulse.

The most common source of light is incandescence which is the emission of light
from a hot body such as the Sun or the fi lament of a traditional light bulb. In physics

Spectrum of light. During the plague years of
1665–1666 Isaac Newton developed his the-
ory of light and color. He demonstrated that
a prism could decompose white light into a
spectrum of colors, and that a lens and a sec-
ond prism could recompose the multi-colored

spectrum into white light. Importantly he
showed that the color of the light did not
change when it was refl ected from different
objects, from which he concluded that color
is an intrinsic property of light not the object.
(Newton’s sketch to the left)

Fig. 10.1.
The spectrum of visible colors
as a function of wavelength in
nanometers. The visible range

depends on viewing conditions
and the individual but is general-
ly accepted as being 400–700 nm.
Wavelengths greater than 700 nm

are termed infra-red and those
below 400 nm are ultra-violet

288 Chapter 10 · Light and Color

 Infra-red radiation was discov-
ered in 1800 by William Herschel
(1738–1822) the German-born
British astronomer. He was Court
Astronomer to George III; built
a series of large telescopes; with
his sister Caroline performed the
fi rst sky survey discovering dou-
ble stars, nebulae and the planet
Uranus; and studied the spectra
of stars. Using a prism and ther-
mometers to measure the amount

of heat in the various colors of sunlight he observed that temperature
increased from blue to red, and increased even more beyond red where
there was no visible light. (Image from Herschel 1800)

Fig. 10.2. Blackbody spectra.
a Blackbody emission spectra for
temperatures from 3 000–6 000 K.
b Blackbody emissions for the
Sun (5 778 K), a tungsten lamp
(2 600 K) and the response of the
human eye – all normalized to
unity for readability

this is modeled as a blackbody radiator or Planckian source. The emitted power as a
function of wavelength λ is given by Planck’s radiation formula

 (10.1)

where T is the absolute temperature (K) of the source, h is Planck’s constant, k is
 Boltzmann’s constant, and c the speed of light.� This is the power emitted per stera-
dian� per unit area per unit wavelength.

We can plot the emission spectra for a blackbody at different temperatures. First
we defi ne a range of wavelengths

>> lambda = [300:10:1000]*1e-9;

in this case from 300 to 1 000 nm, and then compute the blackbody spectra
>> for T=3000:1000:6000
>> plot(lambda, blackbody(lambda, T)); hold all
>> end

as shown in Fig. 10.2a. We can see that as temperature increases the maximum amount
of power increases and the wavelength at which the peak occurs decreases. The total
amount of power radiated (per unit area) is the area under the blackbody curve and
is given by the Stefan-Boltzman law

c = 2.998 × 108 m s−1

h = 6.626 × 10−34 Js
k = 1.381 × 10−23 J K−1

Solid angle is measured in steradians, a
full sphere is 4π sr.

and the wavelength corresponding to the peak of
the blackbody curve is given by Wien’s displace-
ment law

The wavelength of the peak decreases as tem-
perature increases and in familiar terms this is
what we observe when we heat an object. It starts
to glow faintly red at around 800 K and moves
through orange and yellow toward white as tem-
perature increases.�

Incipient red heat 770 – 820 K
dark red heat 920 – 1 020 K
bright red heat 1 120 – 1 220 K
yellowish red heat 1 320 – 1 420 K
incipient white heat 1 520 – 1 620 K
white heat 1 720 – 1 820 K

289

Sir Humphry Davy demonstrated the fi rst electrical in-
candescent lamp using a platinum fi lament in 1802. Sir
Joseph Swan demonstrated his fi rst light bulbs in 1850
using carbonized paper fi laments. However it was not
until advances in vacuum pumps in 1865 that such lamps
could achieve a useful lifetime. Swan patented a carbon-
ized cotton fi lament in 1878 and a carbonized cellulose
fi lament in 1881. His lamps came into use after 1880 and
the Savoy Theatre in London was completely lit by elec-

tricity in 1881. In the USA Thomas Edison did not start
research into incandescent lamps until 1878 but he pat-
ented a long-lasting carbonized bamboo fi lament the next
year and was able to mass produce them. The Swan and
Edison companies merged in 1883.

The light bulb subsequently became the dominant
source of light on the planet but is now being phased
out due to its poor energy effi ciency. (Photo by Douglas
Brackett, Inv., Edisonian.com)

The fi lament of a tungsten lamp has a temperature of 2 600 K and glows white hot.
The Sun has a surface temperature of 5 778 K. The spectra of these sources

>> lamp = blackbody(lambda, 2600);
>> sun = blackbody(lambda, 5778);
>> plot(lambda, [lamp/max(lamp) sun/max(sun)])

are compared in Fig. 10.2b. The tungsten lamp curve is much lower in magnitude,
but has been scaled up (by 56) for readability. The peak of the Sun’s emission is
around 500 nm and it emits a significant amount of power in the visible part of
the spectrum. The peak for the tungsten lamp is at a much longer wavelength
and perversely most of its power falls in the infra-red band which we perceive
as heat not light.

10.1.1
l

Absorption

The Sun’s spectrum at ground level on the Earth has been measured and tabulated

>> sun_ground = loadspectrum(lambda, 'solar');
>> plot(lambda, sun_ground)

and is shown in Fig. 10.3a. It differs markedly from that of a blackbody since some
wavelengths have been absorbed more than others by the atmosphere. Our eye’s peak
sensitivity has evolved to be closely aligned to the peak of the spectrum of atmospheri-
cally fi ltered sunlight.

Transmittance T is the inverse of absorptance, and is the fraction of light passed as
a function of wavelength and distance traveled. It is described by Beer’s law

 (10.2)

Fig. 10.3. a Modifi ed solar spectrum
at ground level (blue). The dips in
the solar spectrum correspond to
various water absorption bands.
CO2 absorbs radiation in the infra-
red region, and ozone O3 absorbs
strongly in the ultra-violet region.
The Sun’s blackbody spectrum is
shown in dashed blue and the re-
sponse of the human eye is shown
in red. b Transmission through 5 m
of water. The longer wavelengths,
reds, have been strongly attenuated

10.1 · Spectral Representation of Light

290 Chapter 10 · Light and Color

where A is the absorption coeffi cient in units of m−1 which is a function of wavelength,
and d is the optical path length. The absorption spectrum A(λ) for water is loaded
from tabulated data

>> [A, lambda] = loadspectrum([400:10:700]*1e-9, 'water');

and the transmission through 5 m of water is
>> d = 5;
>> T = 10.^(-A*d);
>> plot(lambda, T);

which is plotted in Fig. 10.3b. We see that the red light is strongly attenuated which
makes the object appear more blue. Differential absorption of wavelengths is a signifi -
cant concern when imaging underwater and we revisit this topic in Sect. 10.3.4.

10.1.2
l
Reflectance

 Surfaces refl ect incoming light. The refl ection might be specular (as from a mirror-
like surface, see page 337), or Lambertian (diffuse refl ection from a matte surface, see
page 309). The fraction of light that is refl ected R ∈ [0, 1] is the refl ectivity, refl ectance
or albedo of the surface and is a function of wavelength. White paper for example has a
refl ectance of around 70%. The refl ectance spectra of many materials have been mea-
sured and tabulated.� Consider for example the refl ectivity of a red house brick

>> [R, lambda] = loadspectrum([100:10:10000]*1e-9, 'redbrick');
>> plot(lambda, R);

which is plotted in Fig. 10.4 and shows that it refl ects red light more than blue.

10.1.3
l
Luminance

The light refl ected from a surface, its luminance, has a spectrum given by

 (10.3)

where E is the incident illumination and R is the refl ectance. The illuminance of the
Sun in the visible region is

>> lambda = [400:700]*1e-9;
>> E = loadspectrum(lambda, 'solar');

From http://speclib.jpl.nasa.gov/
weathered red brick (0412UUUBRK).

Fig. 10.4. Refl ectance of a weath-
ered red house brick (data from
ASTER, Baldridge et al. 2009).
a Full range measured from 300 nm
visible to 10 000 nm (infra-red);
b closeup of visible region

291

at ground level. The refl ectivity of the brick is

>> R = loadspectrum(lambda, 'redbrick');

and the light refl ected from the brick is

>> L = E .* R;
>> plot(lambda, L);

which is shown in Fig. 10.5. It is this spectrum that is interpreted by our eyes as the
color red.

10.2
l
Color

Color is the general name for all sensations arising from the activity of the
retina of the eye and its attached nervous mechanisms, this activity being,

in nearly every case in the normal individual, a specifi c response to radiant
energy of certain wavelengths and intensities.

T. L. Troland, Report of Optical Society of America
Committee on Colorimetry 1920–1921

We have described the spectra of light in terms of power as a function of wavelength, but
our own perception of light is in terms of subjective quantities such as brightness and color.
Light that is visible to humans lies in the range of wavelengths from 400 nm (violet) to 700 nm
(red) with the colors blue, green, yellow and orange in between, as shown in Fig. 10.1.

The brightness we associate with a particular wavelengths is given by the lumi-
nosity function with units of lumens per watt. For our daylight (photopic) vision the
luminosity as a function of wavelength has been experimentally determined, tabulated
and forms the basis of the 1931 CIE standard that represents the average human ob-
server.� The photopic luminosity function is provided by the Toolbox

>> human = luminos(lambda);
>> plot(lambda, human)

Radiometric and photometric quantities. Two quite different sets of
units are used when discussing light: radiometric and photometric.
 Radiometric units are used in Sect. 10.1 and are based on quantities
like power which are expressed in familiar SI units such as Watts.

 Photometric units are analogs of radiometric units but take
into account the visual sensation in the observer. Luminous pow-
er or luminous fl ux is the perceived power of a light source and
is measured in lumens (abbreviated to lm) rather than Watts.

A 1 W monochromatic light source at 555 nm, the peak response,
by defi nition emits a luminous fl ux of 683 lm. By contrast a 1 W
light source at 800 nm emits a luminous fl ux of 0 lm – it causes
no visual sensation at all.

A 1 W incandescent lightbulb however produces a perceived
visual sensation of less than 15 lm or a luminous effi ciency of
15 lm W−1. Fluorescent lamps achieve effi ciencies up to 100 lm W−1
and white LEDs up to 150 lm W−1.

Fig. 10.5.
Luminance of the weathered red
house brick under illumination

from the Sun at ground level,
based on data from Fig. 10.3a

and 10.4b

This is the photopic response for a light-
adapted eye using the cone photorecep-
tor cells. The dark adapted, or scotopic re-
sponse , using the eye’s monochromatic
rod photoreceptor cells is different, and
peaks at around 510 nm.

10.2 · Color

292 Chapter 10 · Light and Color

and is shown in Fig. 10.7a. Consider two light sources emitting the same power (in
watts) but one has a wavelength of 550 nm (green) and the other has a wavelength of
450 nm (blue). The perceived brightness of these two lights is quite different, in fact
the blue light appears only

>> luminos(450e-9) / luminos(550e-9)
ans =
 0.0382

or 3.8% as bright as the green one. The silicon sensors used in digital cameras have
strong sensitivity in the red and infra-red part of the spectrum.�

10.2.1
l

The Human Eye

Our eyes contain two types of light-sensitive cells as shown in Fig. 10.6. Rod cells are
much more sensitive than cone cells but respond to intensity only and are used at
night. In normal daylight conditions our cone photoreceptors are active and these are
color sensitive. Humans are trichromats and have three types of cones that respond
to different parts of the spectrum. They are referred to as long (L), medium (M) and
short (S) according to the wavelength of their peak response, or more commonly as
red, green and blue. The spectral response of rods and cones has been extensively
studied and the response of human cone cells can be loaded

>> cones = loadspectrum(lambda, 'cones');
>> plot(lambda, cones)

Opsins are the photoreceptor molecules used in the visual systems of all animals. They belong to
the class of G protein-coupled receptors (GPCRs) and comprise seven helices that pass through the
cell’s membrane. They change shape in response to particular molecules outside the cell and initi-
ate a cascade of chemical signaling events inside the cell that results in a change in cell function.
Opsins contain a chromophore, a light-sensitive molecule called retinal derived from vitamin A,
that stretches across the opsin. When retinal absorbs a photon its changes its shape which deforms
the opsin and activates the cell’s signalling pathway. The basis of all vision is a fortuitous genetic
mutation 700 million years ago that made a chemical sensing receptor light sensitive. There are
many opsin variants across the animal kingdom – our rod cells contain rhodopsin and our cone
cells contain photopsins . The American biochemist George Wald (1906–1997) received the 1967
Nobel Prize in Medicine for his discovery of retinal and characterizing the spectral absorbance of
photopsins. (Image by Dpyran from Wikipedia, the chromophore is indicated by the arrow)

The LED on an infra-red remote control
can be seen as a bright light in most digi-
tal cameras – try this with your mobile
phone camera and TV remote. Some se-
curity cameras provide infra-red scene
illumination for covert night time mon-
itoring. Note that some cameras are fit-
ted with infra-red filters to prevent the
sensor becoming saturated by ambi-
ent infra-red radiation.

Fig. 10.6.
A colored scanning electron
micrograph of rod cells (white)
and cone cells (yellow) in the
human eye. The cells diameters
are in the range 0.5–4 µm. The
cells contain different types of
light-sensitive opsin proteins.
Surprisingly the rods and cones
are not on the surface of the ret-
ina, they are behind that surface
which is a network of nerves and
blood vessels

293

where cones has three columns corresponding to the L, M and S cone responses and
each row corresponds to the wavelength in lambda. The spectral response of the cones
L(λ), M(λ) and S(λ) are shown in Fig. 10.7b.�

The retina of the human eye has a central or foveal region which is only 0.6 mm in
diameter, has a 5 degree fi eld of view and contains most of the 6 million cone cells:
65% sense red, 33% sense green and only 2% sense blue. We unconsciously scan our
high-resolution fovea over the world to build a large-scale mental image of our sur-
rounds. In addition there are 120 million rod cells, which are also motion sensitive,
distributed over the retina.

The sensor in a digital camera is analogous to the retina, but instead of rod and cone
cells there is a regular array of light-sensitive photosites (or pixels) on a silicon chip.
Each photosite is of the order 1–10 µm square and outputs a signal proportional to the
 intensity of the light falling over its area.� For a color camera the photosites are covered
by color fi lters which pass either red, green or blue light to the photosites. The spectral
response of the fi lters is the functional equivalent of the cones’ response M(λ) shown
in Fig. 10.7b. A very common arrangement of color fi lters is the Bayer pattern shown

in 1802 but made little impact. It was later championed by
Hermann von Helmholtz and James Clerk Maxwell . The fi g-

ure on left shows how beams of red, green and blue light mix.
Helmholtz (1821–1894) was a prolifi c German physician and physi-
cist. He invented the opthalmascope for examing the retina in
1851, and in 1856 he published the “Handbuch der physiologischen
Optik” (Handbook of Physiological Optics) which contained theo-
ries and experimental data relating to depth perception, color vi-
sion, and motion perception. Maxwell (1831–1879) was a Scottish
scientist best known for his electro-magnetic equations, but who
also extensively studied color perception, color-blindness, and
color theory. His 1860 paper “On the Theory of Colour Vision”
won a Rumford medal, and in 1861 he demonstrated color pho-
tography in a Royal Institution lecture.

The trichromatic theory of color
vision suggests that our eyes have
three discrete types of receptors
that when stimulated produce the
sensations of red, green and blue,
and that all color sensations are
“psychological mixes” of these
fundamental colors. It was fi rst
proposed by the English scien-
tist Thomas Young (1773–1829)

The opponent color theory holds that colors are perceived with re-
spect to two axes: red-green and blue-yellow. One clue comes from
color after-images – staring at a red square and then a white surface
gives rise to a green after-image. Another clue comes from language
– we combine color words to describe mixtures, for example redish-
blue, but we never describe a reddish-green or a blueish-yellow. The
theory was fi rst mooted by the German writer Johann Wolfgang von
Goethe (1749–1832) in his 1810 “Theory of Colours” but later had a

strong advocate in Karl Ewald Hering (1834–1918), a German physi-
ologist who also studied binocular perception and eye movements.
He advocated opponent color theory over trichromatic theory and
had acrimonious debates with Helmholtz on the topic.

In fact both theories hold. Our eyes have three types of col-
or sensing cells but the early processing in the retinal ganglion
layer appears to convert these signals into an opponent color
representation.

The different spectral characteristics
are due to the different photopsins in
the cone cell.

More correctly the output is proportional
to the total number of photons captured
by the photosite since the last time it was
read. See page 364.

Fig. 10.7. a Luminosity curve for
the standard human observer.
The peak response is 683 lm W−1

at 555 nm (green). b Spectral re-
sponse of human cones (normal-
ized)

10.2 · Color

294 Chapter 10 · Light and Color

in Fig. 10.8. It uses a regular 2 × 2 photosite pattern comprising two green fi lters, one
red and one blue.�

10.2.2
l

Measuring Color

The path taken by the light entering the eye shown in Fig. 10.9a. The spectrum of the
luminance L(λ) is a function of the light source and the refl ectance of the object as
given by Eq. 10.3. The response from each of the three cones is

 (10.4)

where Mr(λ), Mg(λ) and Mb(λ) are the spectral response of the red, green and blue
cones respectively as shown in Fig. 10.7b. The response is a 3-vector (ρ, γ , β) which
is known as a tristimulus.

For the case of the red brick the integrals correspond to the areas of the solid color
regions in Fig. 10.9b. We can compute the tristimulus by approximating the integrals
of Eq. 10.4 as a summation with dλ = 1 nm

>> sum((L*ones(1,3)) .* cones * 1e-9)
ans =
 16.3571 10.0665 2.8225

The dominant response is from the L cone, which is unsurprising since we know that
the brick is red.

An arbitrary continuous spectrum is an infi nite-dimensional vector and cannot
be uniquely represented by just 3 parameters but it is clearly suffi cient for our spe-
cies and allowed us to thrive in a variety of natural environments. A consequence
of this choice of representation is that many different spectra will produce the same

Fig. 10.8.
 Bayer fi ltering. The grey blocks
represent the array of light-
sensitive silicon photosites
over which is an array of red,
green and blue fi lters. Invented
by Bryce E. Bayer of Eastman
Kodak, U.S. Patent 3,971,065.

Each pixel therefore cannot provide in-
dependent measurements of red, green
and blue but it can be estimated. For ex-
ample, the amount of red at a blue sen-
sitive pixel is obtained by interpolation
from its red filtered neighbors. More ex-
pensive “3 CCD” cameras can make in-
dependent measurements at each pixel
since the light is split by a set of prisms,
filtered and presented to one CCD array
for each primary color. Digital camera
raw image files contain the actual out-
puts of the Bayer-filtered photosites.

3 × 3 or 4 × 4 arrays of filters allow
many interesting camera designs. Using
more than 3 different color filters leads
to a multispectral camera with better
color resolution, a range of neutral den-
sity (grey) filters leads to high dynamic
range camera, or these various filters can
be mixed to give a camera with better
dynamic range and color resolution.

Lightmeters, illuminance and luminance. A photographic lightme-
ter measures luminous fl ux which has units of lm m−2 or lux (lx).
The luminous intensity I of a point light source is the luminous
fl ux per unit solid angle measured in lm sr−1 or candelas (cd). The
 illuminance E falling normally onto a surface is

where d is the distance between source and the surface. Out-
door illuminance on a bright sunny day is approximately
10 000 lx. Offi ce lighting levels are typically around 1 000 lx
and moonlight is 0.1 lx.

The luminance or brightness of a surface is

which has units of cd m−2 or nit (nt), and where Ei is the incident
illuminance at an angle θ to the surface normal.

visual stimulus and these are
referred to as metamers. More
important is the corollary – an
arbitrary visual stimulus can be
generated by a mixture of just
three monochromatic stimuli.
These are the three primary
 colors we learned about as chil-
dren.� There is no unique set
of primaries – any three will do
so long as none of them can be
matched by a combination of
the others. The CIE has defined
a set of monochromatic prima-
ries and their wavelengths are
given in Table 10.1.

Primary colors are not a fundamental
property of light – they are a fundamen-
tal property of the observer. There are
three primary colors only because we,
as trichromats, have three types of cones.
Birds would have four primary colors and
dogs would have two.

Table 10.1. The CIE 1976 primaries
(Commission Internationale de
L’Éclairage 1987) are spectral col-
ors corresponding to the emission
lines in a mercury vapor lamp

295

10.2.3
l
Reproducing Colors

A computer or television display is able to produce a variable amount of each of three
primaries at every pixel. The primaries for a cathode ray tube (CRT) are created by
exciting phosphors on the back of the screen with a controlled electron beam. For a
 liquid crystal display (LCD) the colors are obtained by color fi ltering and attenuating
white light emitted by the backlight, and an OLED display comprises a stack of red,
green and blue LEDs at each pixel. The important problem is to determine how much
of each primary is required to match a given tristimulus.

We start by considering a monochromatic stimulus of wavelength λS which is de-
fi ned as

The response of the cones to this stimulus is given by Eq. 10.4 but because L(·) is
an impulse we can drop the integral to obtain the tristimulus

 (10.5)

Consider next three monochromatic primary light sources denoted R, G and B with
wavelengths λr, λg and λb and intensities R, G and B respectively.� The tristimulus
from these light sources is

The English scientist John Dalton
(1766–1844) confused scarlet
with green and pink with blue.
He hypothesized that the vitre-
ous humor in his eyes was tinted
blue and instructed that his eyes
be examined after his death. This
revealed that the humors were
perfectly clear but DNA recently
extracted from his preserved eye
showed that he was a deuteran-
ope. Color blindness was once
referred to as Daltonism.

Color blindness, or color defi ciency, is the inability to perceive dif-
ferences between some of the colors that others can distinguish.
Protanopia, deuteranopia, tritanopia refer to the absence of the L,
M and S cones respectively. More common conditions are prot-
anomaly, deuteranomaly and tritanomaly where the cone pig-
ments are mutated and the peak response frequency changed.
It is most commonly a genetic condition since the red and green
photopsins are coded in the X chromosome. The most common
form (occurring in 6% of males including the author) is deuter-
anomaly where the M-cone’s response is shifted toward the red
end of the spectrum resulting in reduced sensitivity to greens and
poor discrimination of hues in the red, orange, yellow and green
region of the spectrum.

Fig. 10.9.
The tristimulus pathway. a Path
of light from illuminant to the eye.
 b Within the eye three fi lters are
applied and the total output of

these fi lters, the areas shown in
solid color, are the tristimulus value

The units are chosen such that equal
quantities of the primaries appear to
be white.

10.2 · Color

296 Chapter 10 · Light and Color

(10.6)

For the perceived color of these three light sources combined to match that of the
monochromatic stimulus the two tristimuli must be equal. We equate Eq. 10.5 and
Eq. 10.6 and write compactly in matrix form as

and then solve for the required amounts of primary colors

 (10.7)

 This tristimulus has a spectrum comprising three impulses (one per primary), yet
has the same visual appearance as the original continuous spectrum – this is the basis
of trichromatic matching. The 3 × 3 matrix is constant, but depends upon the spectral
 response of the cones to the chosen primaries (λr, λg, λb).

The right-hand side of Eq. 10.7 is simply a function of λS which we can write in an
even more compact form

 (10.8)

The notion of primary colors is very old, but their number (anything from two to six) and their
color was the subject of much debate. Much of the confusion was due to there being additive
primaries (red, green and blue) that are used when mixing lights, and subtractive primaries
(cyan, magenta, yellow) used when mixing paints or inks. Whether or not black and white were
primary colors was also debated.

Fig. 10.10.
The 1931 color matching func-
tions for the standard observer,
based on the CIE 1976 standard
primaries

297

where –r(λ), –g(λ),
–
b(λ) are known as color matching functions. These functions have

been empirically determined from human test subjects and tabulated for the standard
CIE primaries listed in Table 10.1. They can be loaded using the function cmfrgb

>> lambda = [400:700]*1e-9;
>> cmf = cmfrgb(lambda);
>> plot(lambda, cmf);

and are shown graphically in Fig. 10.10. Each curve indicates how much of the
corresponding primary is required to match the monochromatic light of wave-
length λ .

For example to create the sensation of light at 500 nm (green) we would need
>> green = cmfrgb(500e-9)
green =
 -0.0714 0.0854 0.0478

Surprisingly this requires a signifi cant negative amount of the red primary and this is
problematic since a light source cannot have a negative luminance.

We reconcile this by adding some white light (R = G = B = w, see Sect. 10.2.8) so
that the tristimulus values are all positive. For instance

>> white = -min(green) * [1 1 1]
white =
 0.0714 0.0714 0.0714
>> feasible_green = green + white
feasible_green =
 0 0.1567 0.1191

If we looked at this color side-by-side with the desired 500 nm green we would say that
the generated color had the correct hue but was not as saturated.

 Saturation refers to the purity of the color. Spectral colors are fully saturated but
become less saturated (more pastel) as increasing amounts of white is added. In this
case we have mixed in a stimulus of light (7%) grey.

This leads to a very important point about color reproduction – it is not possible to
reproduce every possible color using just three primaries. This makes intuitive sense
since a color is properly represented as an infi nite-dimensional spectral function and
a 3-vector can only approximate it. To understand this more fully we need to consid-
er chromaticity spaces.

The Toolbox function cmfrgb can also compute the CIE tristimulus for an arbi-
trary spectrum. The luminance spectrum of the redbrick illuminated by sunlight at
ground level was computed on page 291 and its tristimulus is

>> RGB_brick = cmfrgb(lambda, L)
RGB_brick =
 0.0155 0.0066 0.0031

These are the respective amounts of the three CIE primaries that are perceived – by
the average human – as having the same color as the original brick under those light-
ing conditions.

Color matching experiments are performed using a light source
comprising three adjustable lamps that correspond to the prima-
ry colors and whose intensity can be individually adjusted. The
lights are mixed and diffused and compared to some test color.
In color matching notation the primaries, the lamps, are denoted
by R, G and B, and their intensities are R, G and B respectively.
The three lamp intensities are adjusted by a human subject until
they appear to match the test color. This is denoted

which is read as the visual stimulus C (the test color) is matched
by, or looks the same as, a mixture of the three primaries with

brightness R, G and B. The notation RR can be considered as the
lamp R at intensity R.

Experiments show that color matching obeys the algebraic
rules of additivity and linearity which is known as Grassmann’s
laws. For example two light stimuli C1 and C2

when mixed will match

10.2 · Color

298 Chapter 10 · Light and Color

10.2.4
l

Chromaticity Space

The tristimulus values describe color as well as brightness. Relative tristimulus values
are obtained by normalizing the tristimulus values

 (10.9)

which results in chromaticity coordinates r, g and b that are invariant to overall bright-
ness. By defi nition r + g + b = 1 so one coordinate is redundant and typically only r
and g are considered. Since the effect of intensity has been eliminated the 2-dimen-
sional quantity (r, g) represents color.

We can plot the locus of spectral colors , the colors of the rainbow, on the chroma-
ticity diagram using a variant of the color matching functions

>> [r,g] = lambda2rg([400:700]*1e-9);
>> plot(r, g)
>> rg_addticks

which results in the horseshoe-shaped curve shown in Fig. 10.11. The Toolbox func-
tion lambda2rg computes the color matching function Fig. 10.10 for the specifi ed
wavelength and then converts the tristimulus value to chromaticity coordinates us-
ing Eq. 10.9.

The CIE primaries listed in Table 10.1 can be plotted as well

>> primaries = lambda2rg(cie_primaries());
>> plot(primaries(:,1), primaries(:,2), 'o')

and are shown as circles in Fig. 10.11.

Colorimetric standards. Colorimetry is a complex topic and stan-
dards are very important. Two organizations, CIE and ITU, play
a leading role in this area.

The Commission Internationale de l’Eclairage (CIE) or Inter-
national Commission on Illumination was founded in 1913 and is
an independent nonprofi t organization that is devoted to world-
wide cooperation and the exchange of information on all matters
relating to the science and art of light and lighting, color and vi-
sion, and image technology. The CIE’s eighth session was held
at Cambridge, UK, in 1931 and established international agree-
ment on colorimetric specifi cations and formalized the XYZ color
space. The CIE is recognized by ISO as an international standard-

ization body. See http://www.cie.co.at for more information and
CIE datasets.

The International Telecommunication Union (ITU) is an agency
of the United Nations and was established to standardize and reg-
ulate international radio and telecommunications. It was founded
as the International Telegraph Union in Paris on 17 May 1865. The
International Radio Consultative Committee or CCIR (Comité
Consultatif International des Radiocommunications) became,
in 1992, the Radiocommunication Bureau of ITU or ITU-R. It
publishes standards and recommendations relevant to colorim-
etry in its BT series (broadcasting service television). See http://
www.itu.int for more detail.

Fig. 10.11.
The spectral locus on the r-g chro-
maticity plane. Monochromatic
stimuli lie on the locus and the
wavelengths (in nm) are marked.
The straight line joining the ex-
tremities is the purple boundary
and is the locus of saturated pur-
ples. All possible colors lie on, or
within, this locus. The CIE stan-
dard primary colors are marked
and the dashed line indicates the
gamut of colors that can be rep-
resented by these primaries

299

 Grassmann’s center of gravity law states that a mixture of two colors lies along a line
between those two colors on the chromaticity plane. A mixture of N colors lies within
a region bounded by those colors. Considered with respect to Fig. 10.11 this has sig-
nifi cant implications. Firstly, since all color stimuli are combinations of spectral stim-
uli all real color stimuli must lie on or inside the spectral locus. Secondly, any colors
we create from mixing the primaries can only lie within the triangle bounded by the
primaries – the color gamut. It is clear from Fig. 10.11 that the CIE primaries defi ne
only a small subset of all possible colors – within the dashed triangle. Very many real
colors cannot be created using these primaries, in particular the colors of the rainbow
which lie on the spectral locus from 460–545 nm. In fact no matter where the prima-
ries are located, not all possible colors can be produced.� In geometric terms there are
no three points within the gamut that form a triangle that includes the entire gamut.
Thirdly, we observe that much of the locus requires a negative amount of the red pri-
mary and cannot be represented.

We revisit the problem from page 297 concerned with displaying 500 nm green and
Figure 10.12 shows the chromaticity of the spectral green color

>> green_cc = lambda2rg(500e-9)
green_cc =
 -1.1558 1.3823
>> plot2(green_cc, 's')

as a star-shaped marker. White is by defi nition R = G = B = 1 and its chromaticity
>> white_cc = tristim2cc([1 1 1])
white_cc =
 0.3333 0.3333
>> plot2(white_cc, 'o')

is plotted as a hollow circle. According to Grassmann’s law the mixture of our de-
sired green and white must lie along the indicated green line. The chromaticity
of the feasible green computed earlier is indicated by a square, but is outside the
displayable gamut of the nonstandard primaries used in this example. The least
saturated displayable green lies at the intersection of the green line and the gamut
 boundary and is indicated by the triangular marker.

Earlier we said that there are no three points within the gamut that form a
triangle that includes the entire gamut. The CIE therefore proposed, in 1931, a
system of imaginary nonphysical primaries known as X, Y and Z that totally en-
close the spectral locus of Fig. 10.11. X and Z have zero luminance – the lumi-
nance is contributed entirely by Y�. All real colors can thus be matched by posi-
tive amounts of these three primaries.� The corresponding tristimulus values
are denoted (X, Y, Z).

We could increase the gamut by choos-
ing different primaries, perhaps using a
different green primary would make the
gamut larger, but there is the practical
constraint of finding a light source (LED
or phosphor) that can efficiently produce
that color.

Fig. 10.12.
Chromaticity diagram showing

the color gamut for nonstan-
dard primaries at 600, 555 and

450 nm. 500 nm green (star),
equal-energy white (circle), a
feasible green (square) and a
displayable green (triangle).

The locus of different saturated
greens in shown as a green line

The units are chosen such that equal
quantities of the primaries are required to
match the equal-energy white stimulus.

10.2 · Color

Luminance here has different meaning to
that defined in Sect. 10.1.3 and can be con-
sidered synonymous to brightness here.

300 Chapter 10 · Light and Color

The XYZ color matching functions defi ned by the CIE

>> cmf = cmfxyz(lambda);
>> plot(lambda, cmf);

are shown graphically in Fig. 10.13a. This shows the amount of each CIE XYZ prima-
ry that is required to match a spectral color and we note that these curves are never
negative. The corresponding chromaticity coordinates are

 (10.10)

and once again x + y + z = 1 so only two parameters are required – by convention
y is plotted against x in a chromaticity diagram. The spectral locus can be plotted in
a similar way as before

>> [x,y] = lambda2xy(lambda);
>> plot(x, y);

A more sophisticated plot, showing the colors within the spectral locus, can be created

>> showcolorspace('xy')

and is shown� in Fig. 10.13b. These coordinates are a standard way to represent color
for graphics, printing and other purposes. For example the chromaticity coordinates
of peak green (550 nm) is

>> lambda2xy(550e-9)
ans =
 0.3016 0.6923

and the chromaticity coordinates of a standard tungsten illuminant at 2 600 K is
>> lamp = blackbody(lambda, 2600);
>> lambda2xy(lambda, lamp)
ans =
 0.4677 0.4127

10.2.5
l

Color Names

Chromaticity coordinates provide a quantitative way to describe and compare colors,
however humans refer to colors by name. Many computer operating systems contain
a database or fi le� that maps human understood names of colors to their correspond-

Fig. 10.13. a The color matching
functions for the standard observ-
er, based on the imaginary prima-
ries X, Y (intensity) and Z are tab-
ulated by the CIE. b Colors on the
xy-chromaticity plane

The colors depicted in figures such as
Fig. 10.1 and 10.13b can only approxi-
mate the true color due to the gamut
limitation of the technology you use to
view the book: the inks used to print
the page or your computer’s display.
No display technology has a gamut large
enough to present an accurate represen-
tation of the chromaticity at every point.

The file is named /etc/rgb.txt
on most Unix-based systems.

301

ing (R, G, B) tristimulus values. The Toolbox provides a
copy of a such a fi le and an interface function color-
name. For example, we can query a color name that in-
cludes a particular substring

>> colorname('?burnt')
ans =
 'burntsienna' 'burntumber'

The RGB tristimulus value of burnt Sienna is
>> colorname('burntsienna')
ans =
 0.5412 0.2118 0.0588

with the values normalized to the interval [0, 1]. We could
also request xy-chromaticity coordinates

>> bs = colorname('burntsienna', 'xy')
bs =
 0.5568 0.3783

With reference to Fig. 10.13, we see that this point is in
the red-brown part of the colorspace and not too far from
the color of chocolate

Colors are important to hu-
man beings and there are over
4 000 color-related words in
the English language. The an-
cient Greeks only had words
for black, white, red and yel-
lowish-green. All languages
have words for black and white,
and red is the next most like-
ly color word to appear in a
language followed by yellow,

green, blue and so on. We also associate colors with emotions,
for example red is angry and blue is sad but this varies across
cultures. In Asia orange is generally a positive color where-
as in the west it is the color of road hazards and bulldozers.
Chemistry and technology has made a huge number of colors
available to us in the last 700 years yet with this choice comes
confusion about color naming – people may not necessarily
agree on the linguistic tag to assign to a particular color. (Word
cloud by tagxedo.com using data from Steinvall 2002)

>> colorname('chocolate', 'xy')
ans =
 0.5318 0.3988

We can also solve the inverse problem. Given a tristimulus value
>> colorname([0.2 0.3 0.4])
ans =
darkslateblue

we obtain the name of the closest, in Euclidean terms, color.

10.2.6
l

Other Color and Chromaticity Spaces

A color space is a 3-dimensional space that contains all possible tristimulus values – all col-
ors and all levels of brightness. If we think of this in terms of coordinate frames as discussed
in Sect. 2.2 then there are an infi nite number of choices of Cartesian frame with which to
defi ne colors. We have already discussed two different Cartesian color spaces: RGB and
 XYZ. However we could also use polar, spherical or hybrid coordinate systems.

The 2-dimensional chromaticity spaces r-g or x-y do not account for brightness – we
normalized it out in Eq. 10.9 and Eq. 10.10. Brightness, frequently referred to as lumi-
nance in this context, is denoted by Y and the defi nition from ITU Recommendation 709

 (10.11)

is a weighted sum of the RGB-tristimulus values and refl ects the eye’s high sensitivity
to green and low sensitivity to blue. Chromaticity plus luminance leads to 3-dimen-
sional color spaces such as rgY or xyY.

Humans seem to more naturally consider chromaticity in terms of two character-
istics: hue and saturation. Hue is the dominant color, the closest spectral color, and
saturation refers to the purity, or absence of mixed white. Stimuli on the spectral lo-
cus are completely saturated while those closer to its centroid are less saturated. The
concepts of hue and saturation are illustrated in geometric terms in Fig. 10.14.

The color spaces that we have discussed lack easy interpretation in terms of hue
and saturation so alternative color spaces have been proposed. The two most com-
monly known are HSV and CIE L*C*h. In color-space notation H is hue, S is satura-
tion which is also known as C or chroma. The intensity dimension is named either V
for value or L for lightness but they are computed quite differently.�

L* is a nonlinear function of relative lumi-
nance and approximates the nonlinear
response of the human eye. Value is given
by V =C (min R, G, B + max R, G, B).

10.2 · Color

302 Chapter 10 · Light and Color

The function colorspace can be used to convert between different color spac-
es. For example the hue, saturation and intensity for each of pure red, green and blue
RGB tristimulus value� is

>> colorspace('RGB->HSV', [1, 0, 0])
ans =
 0 1 1
>> colorspace('RGB->HSV', [0, 1, 0])
ans =
 120 1 1
>> colorspace('RGB->HSV', [0, 0, 1])
ans =
 240 1 1

In each case the saturation is 1, the colors are pure, and the intensity is 1. As shown in
Fig. 10.14 hue is represented as an angle in the range [0, 360)° with red at 0° increas-
ing through the spectral colors associated with decreasing wavelength (orange, yellow,
green, blue, violet). If we reduce the amount of the green primary

>> colorspace('RGB->HSV', [0, 0.5, 0])
ans =
 120.0000 1.0000 0.5000

we see that intensity drops but hue and saturation are unchanged.� For a medium
grey

>> colorspace('RGB->HSV', [0.4, 0.4, 0.4])
ans =
 240.0000 0 0.4000

the saturation is zero, it is only a mixture of white, and the hue has no meaning since
there is no color. If we add the green to the grey

>> colorspace('RGB->HSV', [0, 0.5, 0] + [0.4, 0.4, 0.4])
ans =
 120.0000 0.5556 0.9000

we have the green hue and a medium saturation value.
The colorspace function can also be applied to a color image

>> fl owers = iread('fl owers4.png', 'double');
>> about fl owers
fl owers [double] : 426x640x3 (6.5 MB)

which is shown in Fig. 10.15a and comprises several different colored fl owers and
background greenery. The image fl owers has 3 dimensions and the third is the color
plane that selects the red, green or blue pixels.

Fig. 10.14.
Hue and saturation. A line is
extended from the white point
through the chromaticity in
question to the spectral locus.
The angle of this line is hue, and
saturation is the length of the
vector normalized with respect
to distance to the locus

This function assumes that RGB values
are gamma encoded (γ = 0.45), see
Sect. 10.3.6. The particular numerical
values chosen here are invariant under
gamma encoding. The builtin MATLAB
function rgb2hsv does not assume
gamma encoded values and represents
hue in different units.

For very dark colors numerical problems
lead to imprecise hue and saturation co-
ordinates.

303

To convert the image to hue, saturation and value is simply
>> hsv = colorspace('RGB->HSV', fl owers);
>> about hsv
hsv [double] : 426x640x3 (6.5 MB)

and the result is another 3-dimensional matrix but this time the color planes represent
hue, saturation and value. We can display these planes

>> idisp(hsv(:,:,1))
>> idisp(hsv(:,:,2))
>> idisp(hsv(:,:,3))

as images which are shown in Fig. 10.15b, c and d respectively. In the hue image dark
represents red and bright white represents violet. The red fl owers appear as both a
very small hue angle (dark) and a very large angle close to 360°. The yellow fl owers and
the green background can be seen as distinct hue values. The saturation image shows
that the red and yellow fl owers are highly saturated, while the green leaves and stems
are less saturated. The white fl owers have very low saturation, since by defi nition the
color white contains a lot of white.

A limitation of many color spaces is that the perceived color difference between two
points is not directly related to their Euclidean distance. In some parts of the chroma-
ticity space two distant points might appear quite similar, whereas in another region
two close points might appear quite different. This has led to the development of per-
ceptually uniform color spaces such as the CIE L*u*v* (CIELUV) and L*a*b* spaces.

The colorspace function can convert between thirteen different color spaces
including L*a*b*, L*u*v*, YUV and YCBCR. To convert this image to L*a*b* color
space follows the same pattern

>> Lab = colorspace('RGB->Lab', fl owers);
>> about Lab
Lab [double] : 426x640x3 (6.5 MB)

which again results in an image with 3 dimensions. The chromaticity� is encoded in
the a* and b* planes.

>> idisp(Lab(:,:,2))
>> idisp(Lab(:,:,3))

and these are shown in Fig. 10.15e and f respectively. L*a*b* is an opponent color space
where a* spans colors from green (black) to red (white) while b* spans blue (black) to
yellow (white), with white at the origin where a* = b* = 0.

Fig. 10.15. Flower scene. a Orig-
inal color image; b hue image;
c saturation image. Note that the
white fl owers have low saturation
(they appear dark); d intensity or
monochrome image; e a* image
(green to red); f b* image (blue to
yellow)

10.2 · Color

Relative to a white illuminant, which this
function assumes as CIE D65 with Y = 1.
a*b* are not invariant to overall lumi-
nance.

304 Chapter 10 · Light and Color

10.2.7
l

Transforming between Different Primaries

The CIE standards were defi ned in 1931 which was well before the introduction of
color television in the 1950s. The CIE primaries in Table 10.1 are based on the emis-
sion lines of a mercury lamp which are highly repeatable and suitable for laboratory
use. Early television receivers used CRT monitors where the primary colors were gen-
erated by phosphors that emit light when bombarded by electrons. The phosphors
used, and their colors has varied over the years in pursuit of brighter displays. An
international agreement, ITU recommendation 709, defi nes the primaries for high
defi nition television (HDTV) and these are listed in Table 10.2.

This raises the problem of converting tristimulus values from one sets of pri-
maries to another. Consider for example that we wish to display an image, where
the tristimulus values are with respect to CIE primaries, on a screen that uses ITU
Rec. 709 primaries. Using the notation we introduced earlier we defi ne two sets of
primaries: P1, P2, P3 with tristimulus values (S1, S2, S3), and P′1, P′2, P′3 with tristimu-
lus values (S′1, S′2, S′3). We can always express one set of primaries as a linear com-
bination� of the other

 (10.12)

and since the two tristimuli match then

 (10.13)

Substituting Eq. 10.12, equating tristimulus values and then transposing we
obtain

 (10.14)

which is simply a linear transformation of tristimulus values.
Consider the concrete problem of transforming from CIE primaries to XYZ

 tristimulus values. We know from Table 10.2 the CIE primaries in terms of XYZ
primaries

>> C = [0.7347, 0.2653, 0; 0.2738, 0.7174, 0.0088; 0.1666,
0.0089, 0.8245]'
C =
 0.7347 0.2738 0.1666
 0.2653 0.7174 0.0089
 0 0.0088 0.8245

which is exactly the fi rst three columns of Table 10.2. The transform is therefore

Recall from page 299 that luminance is contributed entirely by the Y primary.
It is common to apply the constraint that unity R, G, B values result in unity lumi-
nance Y and a white with a specifi ed chromaticity. We will choose D65 white whose

The coefficients can be negative so the
new primaries do not have to lie within
the gamut of the old primaries.

305

chromaticity is given in Table 10.2 and which we will denote (xw, yw, zw). We can
now write

where the left-hand side has Y = 1 and we have introduced a diagonal matrix J which
scales the luminance of the primaries. We can solve for the elements of J

Substituting real values we obtain
>> J = inv(C) * [0.3127 0.3290 0.3582]' * (1/0.3290)
J =
 0.5609
 1.1703
 1.3080
>> C * diag(J)
ans =
 0.4121 0.3204 0.2179
 0.1488 0.8395 0.0116
 0 0.0103 1.0785

The middle row of this matrix leads to the luminance relationship

which is similar to Eq. 10.11. The small variation is due to the different primaries used
– CIE in this case versus Rec. 709 for Eq. 10.11.

The RGB tristimulus value of the redbrick was computed earlier and we can deter-
mine its XYZ tristimulus

>> XYZ_brick = C * diag(J) * RGB_brick';
ans =
 0.0092
 0.0079
 0.0034

which we convert to chromaticity coordinates by Eq. 10.10
>> tristim2cc(XYZ_brick')
xybrick =
 0.4483 0.3859

Referring to Fig. 10.13b we see that this xy-chromaticity lies in the red region and is
named

>> colorname(ans, 'xy')
ans =
sandybrown

which is plausible for a “weathered red brick”.

Table 10.2.
xyz-chromaticity of standard

primaries and whites. The CIE
primaries of Table 10.1 and the

more recent ITU recommen-
dation 709 primaries defi ned

for HDTV. D65 is the white of a
blackbody radiator at 6 500 K,

and E is equal-energy white

10.2 · Color

306 Chapter 10 · Light and Color

10.2.8
l

What Is White?

In the previous section we touched on the subject of white. White is both the absence of col-
or and also the sum of all colors. One defi nition of white is standard daylight which is taken
as the mid-day Sun in Western/Northern Europe which has been tabulated by the CIE as
illuminant D65. It can be closely approximated by a blackbody radiator at 6 500 K

>> d65 = blackbody(lambda, 6500);
>> lambda2xy(lambda, d65)
ans =
 0.3136 0.3243

which we see is close to the D65 chromaticity given in Table 10.2.
Another defi nition is based on white light being an equal mixture of all spectral col-

ors. This is represented by a uniform spectrum

>> ee = ones(size(lambda));

which is also known as the equal-energy stimulus and has chromaticity
>> lambda2xy(lambda, ee)
ans =
 0.3334 0.3340

which is close to the defi ned value of (D, D).

10.3
l
Advanced Topics

Color is a large and complex subject, and in this section we will briefl y introduce a few
important remaining topics. Color temperature is a common way to describe the spec-
trum of an illuminant, and the effect of illumination color on the apparent color of an
object is the color constancy problem which is very real for a robot using color cues in
an environment with natural lighting. White balancing is one way to overcome this.
Another source of color change, in media such as water, is the absorption of certain
wavelengths. Most cameras actually implement a nonlinear relationship, called gamma
correction, between actual scene luminance and the output tristimulus values. Finally
we look at a more realistic model of surface refl ection which has both specular and dif-
fuse components, each with different spectral characteristics.

10.3.1
l

Color Temperature

Photographers often refer to the color temperature of a light source – the temperature of a
black body whose spectrum according to Eq. 10.1 is most similar to that of the light source.
The color temperature of a number of common lighting conditions are listed in Table 10.3. We
describe low-color-temperature illumination as warm – it appears reddy orange to us. High-
color-temperature is more harsh – it appears as brilliant white perhaps with a tinge of blue.

Table 10.3.
Color temperatures of some
common light sources

307

10.3.2
l

Color Constancy

Studies show that human perception of what is white is adaptive and has a remarkable
ability to tune out the effect of scene illumination so that white objects always appear to
be white.� For example at night under a yellowish tungsten lamp the pages of a book still
appear white to us, but a photograph of that scene viewed later under different lighting
conditions will look yellow. All of this poses real problems for a robot that is using color to
understand the scene because the observed chromaticity varies with lighting. Outdoors a
robot has to contend with an illumination spectrum that depends on the time of day and
cloud cover as well as colored refl ections from buildings and trees. This affects the lumi-
nance and apparent color of the object. To illustrate this problem we revisit the red brick

>> lambda = [400:10:700]*1e-9;
>> R = loadspectrum(lambda, 'redbrick');

under two different illumination conditions, the Sun at ground level

>> sun = loadspectrum(lambda, 'solar');

and a tungsten lamp

>> lamp = blackbody(lambda, 2600);

and compute the xy-chromaticity for each case

>> xy_sun = lambda2xy(lambda, sun .* R)
xy_sun =
 0.4760 0.3784
>> xy_lamp = lambda2xy(lambda, lamp .* R)
xy_lamp =
 0.5724 0.3877

and we can see that the chromaticity, or apparent color, has changed signifi cantly.
These values are plotted on the chromaticity diagram in Fig. 10.16.

Scene luminance is the product of illuminance and refl ectance but refl ectance is key to scene understand-
ing since it can be used as a proxy for the type of material . Illuminance can vary in intensity and color
across the scene and this complicates image understanding. Unfortunately separating luminance into
illuminance and refl ectance is an ill-posed problem yet humans are able to do this very well as the illu-
sion to the right illustrates – the squares labeled A and B have the same grey level.

The American inventor and founder of Polaroid Corporation Edward Land (1909–1991) proposed the ret-
inex theory (retinex = retina + cortex) to explain how the human visual system factorizes refl ectance from
luminance. (Checker shadow illusion courtesy of Edward H. Adelson, http://persci.mit.edu/gallery)

We adapt our perception of color so that
the integral, or average, over the entire
scene is grey. This works well over a color
temperature range 5 000–6 500 K.

Fig. 10.16.
Chromaticity of the red-brick

under different illumination
conditions

10.3 · Advanced Topics

308 Chapter 10 · Light and Color

10.3.3
l

White Balancing

Photographers need to be aware of the illumination color temperature. An incandes-
cent lamp appears more yellow than daylight so a photographer would place a blue
fi lter on the camera to attenuate the red part of the spectrum to compensate. We can
achieve a similar function by choosing the matrix J

to adjust the gains of the color channels.� For example, boosting JB would compensate
for the lack of blue under tungsten illumination. This is the process of white balancing
– ensuring the appropriate chromaticity of objects that we know are white (or grey).

Some cameras allow the user to set the color temperature of the illumination through
a menu, typically with options for tungsten, fl uorescent, daylight and fl ash which select
different preset values of J. In manual white balancing the camera is pointed at a grey or
white object and a button is pressed. The camera adjusts its channel gains J so that equal
 tristimulus values are produced R′ = G′ = B′ which as we recall results in the desired
white chromaticity. For colors other than white these corrections introduces some color
error but this nevertheless has a satisfactory appearance to the eye. Automatic white bal-
ancing is commonly used and involves heuristics to estimate the color temperature of the
light source but it can be fooled by scenes with a predominance of a particular color.

The most practical solution is to use the tristimulus values of three objects with known
chromaticity in the scene. This allows the matrix C in Eq. 10.14 to be estimated directly,
mapping the tristimulus values from the sensor to XYZ coordinates which are an abso-
lute lighting-independent representation of surface refl ectance. From this the chroma-
ticity of the illumination can also be estimated. This approach is used for the panoramic
 camera on the Mars Rover where the calibration target shown in Fig. 10.17 can be imaged
periodically to update the white balance under changing Martian illumination.

10.3.4
l

Color Change Due to Absorption

A fi nal and extreme example of problems with color occurs underwater. For example
consider a robot trying to fi nd a docking station identifi ed by colored targets. As dis-
cussed earlier in Sect. 10.1.1 water acts as a fi lter that absorbs more red light than blue
light. For an object underwater this fi ltering affects both the illumination falling on

Typically JG = 1 and JR and JB are ad-
justed.

Fig. 10.17.
The calibration target used for the
Mars Rover’s PanCam. Regions
of known refl ectance and chro-
maticity (red, yellow, green, blue
and shades of grey) are used to
set the white balance of the cam-
era. The central stalk has a very
low refl ectance and also serves
as a sundial. In the best tradi-
tions of sundials it bears a mot-
to (photo courtesy NASA/JPL/
Cornell/Jim Bell)

309

the object and the refl ected light, the luminance, on its way to the camera. Consider
again the red brick

>> [R,lambda] = loadspectrum([400:5:700]*1e-9, 'redbrick');

which is now 1 m underwater and with a camera a further 1 m from the brick. The il-
lumination on the water’s surface is that of sunlight at ground level

>> sun = loadspectrum(lambda, 'solar');

The absorption spectrum of water is

>> A = loadspectrum(lambda, 'water');

and the total optical path length through the water is

>> d = 2;

The transmission T is given by Beer’s law Eq. 10.2.

>> T = 10 .^ (-d*A);

and the resulting luminance of the brick is

>> L = sun .* R .* T;

which is shown in Fig. 10.18. We see that the longer wavelengths, the reds, have been
strongly attenuated. The apparent color of the brick is

>> xy_water = lambda2xy(lambda, L)
xy_water =
 0.3738 0.3814

which is also plotted in the chromaticity diagram of Fig. 10.16. The brick appears much
more blue than it did before. In reality underwater imaging is more complex than this
due to the scattering of light by tiny suspended particles which refl ect ambient light
into the camera that has not been refl ected from the target.

Fig. 10.18.
Spectrum of the red brick lumi-
nance when viewed underwater.
The spectrum without the water

 absorption is shown in red

10.3 · Advanced Topics

Lambertian reflection. A non-mirror-like or matte surface is a diffuse
refl ector and the amount of light refl ected at a particular angle from the
surface normal is proportional to the cosine of the refl ection angle θ r.
This is known as Lambertian refl ection after the Swiss mathematician
and physicist Johann Heinrich Lambert (1728–1777). A consequence
is that the object has the same apparent brightness at all viewing an-
gles. A powerful example of this is the moon which appears as a disc
of uniform brightness despite it being a sphere with its surface curved
away from us. See also specular refl ection on page 337. (Moon image
courtesy of NASA)

310 Chapter 10 · Light and Color

10.3.5
l
Dichromatic Reflectance

The simple reflectance model introduced in Sect. 10.1.3 is suitable for objects
with matte surfaces (e.g. paper, unfinished wood) but if the surface is somewhat
shiny the light reflected from the object will have two components – the dichro-
matic reflection model – as shown in Fig. 10.19a. One component is the illuminant
 specularly reflected from the surface without spectral change – the interface or
Fresnel reflection . The other is light that interacts with the surface: penetrating,
scattering, undergoing selective spectral absorbance and being re-emitted in all
directions as modeled by Lambertian reflection . The relative amounts of these
two components depends on the material and the geometry of the light source,
observer and surface normal.

A good example of this can be seen in Fig. 10.19b. Both tomatoes appear red
which is due to the scattering lightpath where the light has interacted with the sur-
face of the fruit. However each fruit has an area of specular refl ection that appears
to be white, the color of the light source, not the surface of the fruit.

The real world is more complex still due to inter-reflections . For example green
light reflected from the leaves will fall on the red fruit and be scattered. Some of
that light will be reflected off the green leaves again, and so on – nearby objects
influence each other’s color in complex ways. To achieve photorealistic results in
computer graphics all these effects need to be modeled based on detailed knowl-
edge of surface reflection properties and the geometry of all surfaces. In robotics
we rarely have this information so we need to develop algorithms that are robust
to these effects.

10.3.6
l

Gamma

CRT monitors were once ubiquitous and the luminance produced at the face of the
display was nonlinearly related to the control voltage V according to

 (10.15)

where γ ≈ 2.2. To correct for this early video cameras applied the inverse nonlinearity
V = L1/γ to their output signal which resulted in a system that was linear from end to
end.� Both transformations are commonly referred to as gamma correction though

Fig. 10.19. Dichromatic refl ection.
a Some incoming light undergoes
specular refl ection from the sur-
face, while some penetrates the
surface is scattered, fi ltered and re-
emitted in all directions according
to the Lambertian refl ection model.
b Specular surface refl ection can
be seen clearly in the nonred high-
light areas on the two tomatoes,
these are refl ections of the ceil-
ing lights (courtesy of Distributed
Robot Garden project, MIT)

Some cameras have an option to choose
gamma as either 1 or 0.45 (= 1 / 2.2).

311

more properly the camera-end operation is gamma encoding and the display-end op-
eration is gamma decoding.�

LCD displays have a stronger nonlinearity than CRTs but correction tables are ap-
plied within the display to make it follow the standard γ = 2.2 behavior of the obso-
lete CRT.�

To show the effect of display gamma we create a simple test pattern

>> wedge = [0:0.1:1];
>> idisp(wedge)

that is shown in Fig. 10.20 and is like a photographer’s greyscale step wedge. If we dis-
play this on our computer screen it will appear differently to the one printed in the
book. We will most likely observe a large change in brightness between the second
and third block – the effect of the gamma decoding nonlinearity Eq. 10.15 in the dis-
play of your computer.

If we apply gamma encoding

>> idisp(wedge .^ (1/2.2))

we observe that the intensity changes appear to be more linear and closer to the one
printed in the book.

The chromaticity coordinates of Eq. 10.9 and Eq. 10.10 are computed as ratios
of tristimulus values which are linearly related to luminance in the scene. The
nonlinearity applied to the camera output must be corrected, gamma decoded,
before any colometric operations. The Toolbox function igamm performs this
operation. Gamma decoding can also be performed when an image is loaded
using the 'gamma' option to the function iread.

Today most digital cameras� encode images in sRGB format (IEC 61966-2-1 stan-
dard) which uses the ITU Rec. 709 primaries and a gamma encoding function of

which comprise a linear function for small values and a power law for larger values.
The overall gamma is approximately 2.2.

The important property of colorspaces such as HSV or xyY is that the chromatic-
ity coordinates are invariant to changes in intensity. Many digital video cameras
provide output in YUV or YCBCR format which has a luminance component Y and
two other components which are often mistaken for chromaticity coordinates
– they are not. They are in fact color difference signals such that U, CB ∝ B′ − Y′
and V, CR ∝ R′ − Y′ where R′, B′ are gamma encoded tristimulus values, and Y′ is
gamma encoded intensity. The gamma nonlinearity means that UV or CBCR will
not be a constant as overall lighting level changes.

The tristimulus values from the camera must be first converted to linear tri-
stimulus values, by applying the appropriate gamma decoding, and then com-
puting chromaticity. There is no shortcut.

Gamma encoding and decoding are of-
ten referred to as gamma compression
and gamma decompression respectively,
since the encoding operation compress-
es the range of the signal, while decod-
ing decompresses it.

Fig. 10.20.
The linear intensity wedge

Macintosh computers are an exception
and prior to MacOS 10.6 used γ = 1.8
which made colors appear brighter and
more vivid.

The JPEG file header (JFIF file format) has
a tag Color Space which is set to
either sRGB or Uncalibrated if
the gamma or color model is not known.
See page 363.

10.3 · Advanced Topics

312 Chapter 10 · Light and Color

10.4
l
Application: Color Image

10.4.1
l
Comparing Color Spaces [examples/colorspaces]

In this section we bring together many of the concepts and tools introduced in this chap-
ter. We will compare the chromaticity coordinates of the colored squares (squares 1–18)
of the Color Checker chart shown in Fig. 10.21 using the xy- and L*a*b*-color spaces.
We compute chromaticity from fi rst principles using the spectral refl ectance informa-
tion for each square which is provided with the Toolbox

>> lambda = [400:5:700]*1e-9;
>> macbeth = loadspectrum(lambda, 'macbeth');

which has 24 columns, one per square of the test chart. We load the relative power spec-
trum of the D65 standard white illuminant

>> d65 = loadspectrum(lambda, 'D65') * 3e9;

and scale it to a brightness comparable to sunlight as shown in Fig. 10.3a. Then for each
nongrey square

1 >> for i=1:18
2 L = macbeth(:,i) .* d65;
3 tristim = max(cmfrgb(lambda, L), 0);
4 RGB = igamm(tristim, 0.45);
5
6 XYZ(i,:) = colorspace('XYZ<-RGB', RGB);
7 Lab(i,:) = colorspace('Lab<-RGB', RGB);
8 end

we compute the luminance spectrum (line 2), use the CIE color matching functions to
determine the eye’s tristimulus response and impose the gamut limits (line 3) and then
apply a gamma encoding (line 4) since the colorspace function expects gamma en-
coded RGB data. This is converted to the XYZ color space (line 6), and the L*a*b* color
space (line 7). Next we convert XYZ to xy by dividing X and Y each by X + Y + Z, and
extract the a*b* columns

>> xy = XYZ(:,1:2) ./ (sum(XYZ,2)*[1 1]);
>> ab = Lab(:,2:3);

giving two matrices, each 18 × 2, with one row per colored square. Finally we plot
these points on their respective color planes

>> showcolorspace(xy', 'xy');
>> showcolorspace(ab', 'Lab');

and the results are displayed in Fig. 10.22. We see, for example, that square 15 is
closer to 9 and further from 7 in the a*b* plane. The L*a*b* color space was designed
so that the Euclidean distance between points is proportional to the color difference
perceived by humans. If we are using algorithms to distinguish objects by color then
L*a*b* would be preferred over RGB or XYZ.

Fig. 10.21.
The Gretag Macbeth Color
Checker is an array of 24 printed
color squares (numbered left to
right, top to bottom), which in-
cludes different greys and colors
as well as spectral simulations
of skin, sky, foliage etc. Spectral
data for the squares is provided
with the toolbox

313

10.4.2
l

Shadow Removal [examples/shadow]

For a robot vision system that operates outdoors shadows are a signifi cant problem as we
can see in Fig. 10.23a. Shadows cause surfaces of the same type to appear quite different and
this is problematic for a robot trying to use vision to understand the scene and plan where
to drive. Even more problematic is that this effect is not constant, it varies with the time
of day and cloud condition. The image in Fig. 10.23b has had the effects of shadowing re-
moved, and we can now see very clearly the different types of terrain – grass and gravel.

The key to removing shadows comes from the observation that the bright parts of
the scene are illuminated directly by the sun while the darker shadowed regions are il-
luminated by the sky. Both the sun and the sky can be modeled as blackbody radiators
with color temperatures as listed in Table 10.3. Shadows therefore have two defi ning
characteristics: they are dark and they have a slight blue tint.

We model the camera using Eq. 10.4 but model the spectral response of the camera’s color
sensors as Dirac functions Mx(λ) = δ(λ − λx) which allows us to eliminate the integrals

For each pixel we compute chromaticity coordinates r = R / G and b = B / G which
are invariant to change in illumination magnitude.

Fig. 10.22.
Color Checker chromaticities.

a xy-space; b xy-space zoomed;
c a*b*-space; d a*b*-space zoomed

10.4 · Application: Color Image

314 Chapter 10 · Light and Color

To simplify further we apply the Wien approximation, eliminating the −1 term,
which is a reasonable approximation for color temperatures in the range under con-
sideration, and now we can write

which is a function of color temperature T and various constants: physical constants c,
h and k; sensor response wavelength λ x and magnitude Mx(λ x), and material proper-
ties R(λ x). Taking the logarithm we obtain the very simple form

 (10.16)

and repeating the process for blue chromaticity we can write

 (10.17)

Every color pixel (R, G, B) ∈R3 can be mapped to a point (log r, log b) ∈R2 and
as the color temperature changes the points will all move along lines with a slope of
c′2 /c2. Therefore a projection onto the orthogonal direction, a line with slope c2 /c′2,
results in a 1-dimensional quantity

that is invariant to the color temperature of the illuminant. We can compute this for
every pixel in an image

>> im = iread('parks.jpg', 'gamma', 'sRGB');
>> gs = invariant(im, 0.7, 'noexp');
>> idisp(gs)

and the result is shown in Fig. 10.23b. The pixels have a greyscale value that is a com-
plex function of material refl ectance and camera sensor properties. The arguments to
the function are the color image, the slope of the line in radians and a fl ag to return
the logarithm s rather than its exponent.

Fig. 10.23. Shadows create con-
founding effects in images. a View
of a park with strong shadows;
b the shadow invariant image in
which the variation lighting has
been almost entirely removed
(Corke et al. 2013)

315

To achieve this result we have made some approximations and a number of rather
strong assumptions: the camera has a linear response from scene luminance to RGB
tristimulus values , the color channels of the camera have nonoverlapping spectral re-
sponse, and the scene is illuminated by blackbody light sources. The fi rst assumption
means that we need to use a camera with γ = 1 or apply gamma decoding to the im-
age before we proceed. The second is far from true, especially for the red and green
channels of a color camera, yet the method works well in practice. The biggest effect
is that the points move along a line with a slope different to c′2 /c2 but we can estimate
the slope empirically by looking at a set of shadowed and nonshadowed pixels corre-
sponding to the same material in the scene

>> theta = esttheta(im)

which will prompt you to select a region and returns an angle which can be passed
to invariant. The fi nal assumption means that the technique will not work for
nonincandescent light sources, or where the scene is partly illuminated by refl ec-
tions from colored surfaces. More details are provided in the MATLAB function
source code.

10.5
l
Wrapping Up

We have learned that the light we see is electro-magnetic radiation with a mixture
of wavelengths, a continuous spectrum, which is modifi ed by refl ectance and ab-
sorption. The spectrum elicits a response from the eye which we interpret as color
– for humans the response is a tristimulus, a 3-vector that represents the outputs of
the three different types of cones in our eye. A digital color camera is functionally
equivalent. The tristimulus can be considered as a 1-dimensional brightness coor-
dinate and a 2-dimensional chromaticity coordinate which allows colors to be plot-
ted on a plane. The spectral colors form a locus on this plane and all real colors lie
within this locus. Any three primary colors form a triangle on this plane which is
the gamut of those primaries. Any color within the triangle can be matched by an
appropriate mixture of those primaries. No set of primaries can defi ne a gamut that
contains all colors. An alternative set of imaginary primaries, the CIE XYZ system,
does contain all real colors and is the standard way to describe colors. Tristimulus
values can be transformed using linear transformations to account for different sets
of primaries. Nonlinear transformations can be used to describe tristimulus values
in terms of human-centric qualities such as hue and saturation. We also discussed
the defi nition of white, color temperature, color constancy, the problem of white
balancing, the nonlinear response of display devices and how this effects the com-
mon representation of images and video.

We learned that the colors and brightness we perceive is a function of the light source
and the surface properties of the object. While humans are quite able to “factor out”
illumination change this remains a signifi cant challenge for robotic vision systems. We
fi nished up by showing how to remove shadows in an outdoor color image.

 Infra-red cameras. Consumer cameras are functionally equivalent
to the human eye and are sensitive to the visible spectrum. Cam-
eras are also available that are sensitive to infra-red and a num-
ber of infra-red bands are defi ned by CIE: IR-A (700−1 400 nm),
IR-B (1 400−3 000 nm), and IR-C (3 000 nm−1 000 µm). In com-
mon usage IR-A and IR-B are known as near infra-red (NIR)
and short-wavelength infra-red (SWIR) respectively, and the
IR-C subbands are medium-wavelength (MWIR, 3 000−8 000 nm)
and long-wavelength (LWIR, 8 000−15 000 nm). LWIR cameras
are also called thermal or thermographic cameras.

 Ultraviolet cameras typically work in the near ultra-violet region
(NUV, 200−380 nm) and are used in industrial applications
such as detecting corona discharge from high-voltage electrical
systems.
 Hyperspectral cameras have more more than three classes of pho-
toreceptor, they sample the incoming spectrum at many points
typically from infra-red to ultra-violet and with tens or even hun-
dreds of spectral bands. Hyperspectral cameras are used for ap-
plications including aerial survey classifi cation of land-use and
identifi cation of the mineral composition of rocks.

10.5 · Wrapping Up

316 Chapter 10 · Light and Color

Further Reading

At face value color is a simple concept that we learn in kindergarten but as we delve in we
fi nd it is a fascinating and complex topic with a massive literature. In this chapter we have
only begun to scrape the surface of photometry and colorimetry. Photometry is the part
of the science of radiometry concerned with measurement of visible light. It is challeng-
ing for engineers and computer scientists since it makes use of uncommon units such as
lumen, steradian, nit, candela and lux. One source of complexity is that words like inten-
sity and brightness are synonyms in everyday speech but have very specifi c meanings in
photometry. Colorimetry is the science of color perception and is also a large and complex
area since human perception of color depends on the individual observer, ambient illumi-
nation and even the fi eld of view. Colorimetry is however critically important in the design
of cameras, computer displays, video equipment and printers. Comprehensive online infor-
mation about computer vision is available through CVonline at http://homepages.inf.ed.ac.
uk/rbf/CVonline, and the material in this chapter is covered by the section Image Physics.

The computer vision textbooks by Gonzalez and Woods (2008) and Forsyth and Ponce
(2011) each have a discussion on color and color spaces. The latter also has a discussion
on the effects of shading and inter-refl ections. The book by Gevers et al. (2012) is solid in-
troduction to color vision theory and covers the dichromatic refl ectance model in detail.
It also covers computer vision algorithms that deal with the challenges of color constancy.
The Retinex theory is described in Land and McCann (1971) and MATLAB implementa-
tions can be found at http://www.cs.sfu.ca/~colour/code. Other resources related to color
constancy can be found at http://colorconstancy.com.

Readable and comprehensive books on color science include Koenderink (2010), Hunt
(1987) and from a television or engineering perspective Benson (1986). A more conver-
sational approach is given by Hunter and Harold (1987), which also covers other aspects
of appearance such as gloss and luster. The CIE standard (Commission Internationale
de l’Éclairage 1987) is defi nitive but hard reading. The work of the CIE is ongoing and its
standards are periodically updated at www.cie.co.at. The color matching functions were
fi rst tabulated in 1931 and revised in 1964.

Charles Poynton has for a long time maintained excellent online tutorials about color
spaces and gamma at http://www.poynton.com. His book (Poynton 2012) is an excel-
lent and readable introduction to these topics while also discussing digital video systems
in great depth.

General interest. Crone (1999) covers the history of theories of human vision and color.
How the human visual system works, from the eye to perception, is described in two very
readable books Stone (2012) and Gregory (1997). Land and Nilsson (2002) describes the
design principles behind animal eyes and how characteristics such as acuity, fi eld of view
and low light capability are optimized for different species.

Data Sources

The Toolbox contains a number of data fi les describing various spectra which are sum-
marized in Table 10.4. Each fi le has as its fi rst column the wavelength in meters. The fi les
have different wavelength ranges and intervals but the helper function loadspectrum
interpolates the data to the user specifi ed range and sample interval.

Several internet sites contain spectral data in tabular format and this is linked from
the book’s web site. This includes refl ectivity data for over 2 000 materials provided by
NASA’s online ASTER spectral library 2.0 (Baldridge et al. 2009) at http://speclib.jpl.nasa.
gov and the Spectral Database from the University of Eastern Finland Color Research
Laboratory at http://uef.fi/en/spectral. Data on cone responses and CIE color matching
functions is available from the Colour & Vision Research Laboratory at University College
London at http://cvrl.org. CIE data is also available online at http://cie.co.at.

317

Exercises

1. You are a blackbody radiator! Plot your own blackbody emission spectrum. What
is your peak emission frequency? What part of the EM spectrum is this? What sort
of sensor would you use to detect this?

2. Consider a sensor that measures the amount of radiated power P1 and P2 at wave-
lengths λ1 and λ2 respectively. Write an equation to give the temperature T of the
blackbody in terms of these quantities.

3. Using the Stefan-Boltzman law compute the power emitted per square meter of the
Sun’s surface. Compute the total power output of the Sun.

4. Use numerical integration to compute the power emitted in the visible band
400−700 nm per square meter of the Sun’s surface.

5. Why is the peak luminosity defi ned as 683 lm W−1?
6. Given typical outdoor illuminance as per page 294 determine the luminous inten-

sity of the Sun.
7. Sunlight at ground level. Of the incoming radiant power determine, in percentage

terms, the fraction of infra-red, visible and ultra-violet light.
8. Use numerical integration to compute the power emitted in the visible band

400−700 nm per square meter for a tungsten lamp at 2 600 K. What fraction is this
of the total power emitted?

9. Plot and compare the human photopic and scotopic spectral response.
a) Compare the response curves of human cones and the RGB channels of a color

camera. Use cones.dat and bb2.dat.
10. Can you create a metamer for the red brick?
11. Prove Grassmann’s center of gravity law mentioned on page 297.
12. On the xy-chromaticity plane plot the locus of a blackbody radiator with tempera-

tures in the range 1 000–10 000 K.
13. Plot the XYZ primaries on the rg-plane.
14. For Fig. 10.12 determine the chromaticity of the feasible green.
15. Determine the tristimulus values for the red brick using the Rec. 709 primaries.
16. Take a picture of a white object using incandescent illumination. Determine the

average RGB tristimulus value and compute the xy-chromaticity. How far off white
is it? Determine the color balance matrix J to correct the chromaticity. What is the
chromaticity of the illumination?

17. What is the name of the color of the red brick when viewed underwater (page 308).
18. Image a target like Fig. 10.17 that has three colored patches of known chromaticity.

From their observed chromaticity determine the transform from observed tristim-
ulus values to Rec. 709 primaries. What is the chromaticity of the illumination?

Table 10.4.
Various spectra provided with

the Toolbox. Relative luminosity
values lie in the interval [0, 1],

and relative spectral power distri-
bution (SPD) are normalized to a
value of 1.0 at 550 nm. These fi les
can be loaded using the Toolbox

 loadspectrum function

10.5 · Wrapping Up

318 Chapter 10 · Light and Color

19. Consider an underwater application where a target d meters below the surface is
observed through m meters of water, and the water surface is illuminated by sun-
light. From the observed chromaticity can you determine the true chromaticity of
the target? How sensitive is this estimate to incorrect estimates of m and d? If you
knew the true chromaticity of the target could you determine its distance?

20. Is it possible that two different colors look the same under a particular lighting
condition? Create an example of colors and lighting that would cause this?

21. Use one of your own pictures and the approach of Sect. 10.4.1. Can you distinguish
different objects in the picture?

22. Show analytically or numerically that scaling a tristimulus value has no effect on the
chromaticity. What happens if the chromaticity is computed on gamma encoded
tristimulus values?

23. Create an interactive tool with sliders for R, G and B that vary the color of a dis-
played patch. Now modify this for sliders X, Y and Z or x, y and Y.

24. Take a color image and determine how it would appear through 1, 5 and 10 m of
water.

25. Determine the names of the colors in the Gretag-Macbeth color checker chart.
26. Plot the color-matching function components shown in Fig. 10.10 as a 3D curve.

Rotate it to see the locus as shown in Fig. 10.11.

Chapter

11 Image Formation
Everything we see is a perspective,

not the truth.
Marcus Aurelius

In this chapter we discuss how images are formed and captured, the fi rst step
in robot and human perception of the world. From images we can deduce the
size, shape and position of objects in the world as well as other characteristics
such as color and texture which ultimately lead to recognition.

It has long been known that a simple pin-hole is able to create a perfect invert-
ed image on the wall of a darkened room. Some marine mollusks, for example
the Nautilus, have pin-hole camera eyes. All vertebrates have a lens that forms
an inverted image on the retina where the light-sensitive cells rod and cone cells,
shown previously in Fig. 10.6, are arranged. A digital camera is similar in prin-

ciple – a glass or plastic lens forms an image on the surface of a semiconductor chip
with an array of light-sensitive devices to convert light to a digital image.

The process of image formation, in an eye or in a camera, involves a projection
of the 3-dimensional world onto a 2-dimensional surface. The depth information
is lost and we can no longer tell from the image whether it is of a large object in
the distance or a smaller closer object. This transformation from 3 to 2 dimensions
is known as perspective projection and is discussed in Sect. 11.1. Section 11.2 in-
troduces the topic of camera calibration, the estimation of the parameters of the
 perspective transformation. Sections 11.3 to 11.5 introduce alternative types of
cameras capable of wide-angle, panoramic or light-field imaging. Section 11.6 in-
troduces some advanced concepts such as projecting lines and conics, and non-
perspective cameras.

11.1
l
Perspective Camera

11.1.1
l
Perspective Projection

A small hole in the wall of a darkened room will cast a dim inverted image of the out-
side world on the opposite wall – a so-called pin-hole camera. The pin-hole camera
produces a very dim image since its radiant power is the scene luminance in units
of W m−2 multiplied by the area of the pin hole. Figure 11.1a shows that only a small
fraction of the light leaving the object fi nds its way to the image. A pin-hole camera
has no focus adjustments – all objects are in focus irrespective of distance.

In the 5th century bce, the philosopher Mozi in ancient China
mentioned the effect of an inverted image forming through
a pinhole. A camera obscura is a darkened room where a dim
inverted image of the world is cast on the wall by light enter-
ing through a small hole. They were popular tourist attrac-
tions in Victorian times, particularly in Britain, and many are
still operating today. (Image on the right from the Drawing
with Optical Instruments collection at http://vision.mpiwg-
berlin.mpg.de/elib)

320 Chapter 11 · Image Formation

Fig. 11.1.
Light gathering ability of
a pin-hole camera and b a lens

Fig. 11.2.
Image formation geometry for
a thin convex lens shown in
2-dimensional cross section.
A lens has two focal points at a
distance of f on each side of the
lens. By convention the camera’s
optical axis is the z-axis

Fig. 11.3.
The central-projection model.
The image plane is at a distance
f in front of the camera’s origin,
and on which a noninverted im-
age is formed. The camera’s co-
ordinate frame is right-handed
with the z-axis defi ning the cen-
ter of the fi eld of view

321

The key to brighter images is to use an objective lens, as shown in Fig. 11.1b, which
collects light from the object over a larger area and directs it to the image. A convex lens
can form an image just like a pinhole and the fundamental geometry of image formation
for a thin lens � is shown in Fig. 11.2. The positive z-axis is the camera’s optical axis.

The z-coordinate of the object and its image, with respect to the lens center, are
related by the thin lens equation

 (11.1)

where zo is the distance to the object, zi the distance to the image, and f is the focal length
of the lens.� For zo > f an inverted image is formed on the image plane at zi < −f.

In a camera the image plane is fi xed at the surface of the sensor chip so the focus ring
of the camera moves the lens along the optical axis so that it is a distance zi from the image
plane – for an object at infi nity zi = f. The downside of using a lens is the need to focus. Our
own eye has a single convex lens made from transparent crystallin proteins, and focus is
achieved by muscles which change its shape – a process known as accomodation. A high-
quality camera lens is a compound lens comprising multiple glass or plastic lenses.

In computer vision it is common to use the central perspective imaging model shown
in Fig. 11.3. The rays converge on the origin of the camera frame {C} and a noninverted
image is projected onto the image plane located at z = f. The z-axis intersects the im-
age plane at the principal point which is the origin of the 2D image coordinate frame.
Using similar triangles we can show that a point at the world coordinates P = (X, Y, Z)
is projected to the image point p = (x, y) by

 (11.2)

which is a projective transformation, or more specifi cally a perspective projection. This

Lens aperture. The f-number of
a lens, typically marked on the
rim, is a dimensionless quan-
tity F = f/d where d is the di-
ameter of the lens (often de-
noted φ on the lens rim). The
f-number is inversely related
to the light gathering abili-
ty of the lens. To reduce the
amount of light falling on the image plane the effective di-
ameter is reduced by a mechanical aperture, or iris, which in-
creases the f-number. Illuminance on the image plane is inversely
proportional to F2 since it depends on light gathering area. To
reduce illuminance by a factor of 2, the f-number must be in-
creased by a factor of \2 or “one stop”. The f-number gradua-
tions increase by \2 at each stop. An f-number is conventionally
written in the form f/1.4 for F = 1.4.

Focus and depth of field. Ideally a group of light rays from a point
in the scene meet at a point in the image. With imperfect focus
the rays instead form a fi nite sized spot called the circle of confu-
sion which is the point spread function of the optical system. By
convention, if the size of the circle is around that of a pixel then
the image is acceptably focused.

A pin-hole camera has no focus control and always creates a
focused image of objects irrespective of their distance. A lens does

not have this property – the focus ring changes the distance be-
tween the lens and the image plane and must be adjusted so that
the object of interest is acceptably focused. Photographers refer
to depth of fi eld which is the range of object distances for which
acceptably focused images are formed. Depth of fi eld is high for
small aperture settings where the lens is more like a pin-hole, but
this means less light and noisier images or longer exposure time
and motion blur. This is the photographer’s dilemma!

Real camera lenses comprise multiple lens
elements but still have focal points on each
side of the compound lens assembly.

The inverse of focal length is known as
 diopter. For thin lenses placed close to-
gether their combined diopter is close to
the sum of their individual diopters.

mapping from the 3-dimensional world to a 2-dimen-
sional image has consequences that we can see in Fig. 11.4
– parallel lines converge and circles become ellipses .

More formally we can say that the transformation,
from the world to the image plane has the following char-
acteristics:

1. It performs a mapping from 3-dimensional space to
the 2-dimensional image plane: P :R3� R

2.
2. Straight lines in the world are projected to straight

lines on the image plane.
3. Parallel lines in the world are projected to lines that

intersect at a vanishing point as shown in Fig. 11.4a.
In drawing, this effect is known as foreshortening. The
exception are fronto-parallel lines – lines lying in a
plane parallel to the image plane – which always re-
main parallel.

11.1 · Perspective Camera

322 Chapter 11 · Image Formation

4. Conics� in the world are projected to conics on the image plane. For example, a
circle is projected as a circle or an ellipse as shown in Fig. 11.4b.

5. The size (area) of a shape is not preserved and depends on distance.
6. The mapping is not one-to-one and no unique inverse exists. That is, given (x, y)

we cannot uniquely determine (X, Y, Z). All that can be said is that the world point
lies somewhere along the red projecting ray shown in Fig. 11.3. This is an impor-
tant topic that we will return to in Chap. 14.

7. The transformation is not conformal – it does not preserve shape since internal
angles are not preserved. Translation, rotation and scaling are examples of confor-
mal transformations.

11.1.2
l

Modeling a Perspective Camera

We can write the image-plane point coordinates in homogeneous form p= (x~, y~, z~) where

or in compact matrix form as

 (11.3)

where the nonhomogeneous image-plane coordinates are

These are often referred to as the retinal image-plane coordinates. For the case
where f = 1 the coordinates are referred to as the normalized, retinal or canonical
 image-plane coordinates.

If we write the world coordinate in homogeneous form as well Cn = (X, Y, Z, 1)T
then the perspective projection can be written in linear form as

Fig. 11.4. The effect of perspective
transformation. a Parallel lines con-
verge, b circles become ellipses

Conic sections, or conics , are a family of
curves obtained by the intersection of a
plane with a cone. They include circles,
ellipses, parabolas and hyperbolas.

323

 (11.4)

or

 (11.5)

where C is a 3 × 4 matrix known as the camera matrix. Note that we have written Cn
to highlight the fact that this is the coordinate of the point with respect to the camera
frame {C}. The tilde indicates homogeneous quantities and Sect. C.2 provides a re-
fresher on homogeneous coordinates. The camera matrix can be factored

where the second matrix is the projection matrix.
The Toolbox allows us to create a model of a central-perspective camera. For ex-

ample

>> cam = CentralCamera('focal', 0.015);

returns an instance of a CentralCamera object with a 15 mm lens. By default the
camera is at the origin of the world frame with its optical axis pointing in the world
z-direction as shown in Fig. 11.3. We defi ne a world point

>> P = [0.3, 0.4, 3.0]';

in units of meters and the corresponding image-plane coordinates are
>> cam.project(P)
ans =
 0.0015
 0.0020

The point on the image plane is at (1.5, 2.0) mm with respect to the principal point. This is
a very small displacement but it is commensurate with the size of a typical image sensor.

In general the camera will have an arbitrary pose ξC with respect to the world coordi-
nate frame as shown in Fig. 11.5. The position of the point with respect to the camera is

 (11.6)

Fig. 11.5.
Camera coordinate frames

11.1 · Perspective Camera

324 Chapter 11 · Image Formation

or using homogeneous coordinates

We can easily demonstrate this by moving our camera 0.5 m to the left
>> cam.project(P, 'pose', SE3(-0.5, 0, 0))
ans =
 0.0040
 0.0020

where the third argument is the pose of the camera ξ C as a homogeneous transforma-
tion. We see that the x-coordinate has increased from 1.5 mm to 4.0 mm, that is, the
image point has moved to the right.

11.1.3
l
Discrete Image Plane

In a digital camera the image plane is a W × H grid of light-sensitive elements called
photosites that correspond directly to the picture elements (or pixels) of the image as
shown in Fig. 11.6. The pixel coordinates are a 2-vector (u, v) of nonnegative integers
and by convention the origin is at the top-left hand corner of the image plane. In

Image sensor. The light-sensitive cells in a camera chip, the pho-
tosites (see page 364), are commonly square with a side length
in the range 1–10 µm. Professional cameras have large photosites
for increased light sensitivity whereas cellphone cameras have
small sensors and therefore small less-sensitive photosites. The
ratio of the number of horizontal to vertical pixels is the aspect
ratio and is commonly 4 : 3 or 16 : 9 (see page 366). The dimen-
sion of the sensor is measured diagonally across the array and is
commonly expressed in inches, e.g. D, ¼ or C inch. However the active sensing area of the chip
has a diagonal that is typically around E of the given dimension.

Fig. 11.6.
Central projection model showing
image plane and discrete pixels

325

MATLAB® the top-left pixel is (1, 1). The pixels are uniform in size and centered on
a regular grid so the pixel coordinate is related to the image-plane coordinate by

where ρ w and ρ h are the width and height of each pixel respectively, and (u0, v0) is the
 principal point – the pixel coordinate of the point where the optical axis intersects
the image plane with respect to the new origin. We can write Eq. 11.4 in terms of pixel
coordinates by prepending a camera parameter matrix K

 (11.7)

where p = (u~, v~, w~) is the homogeneous coordinate of the world point P in pixel co-
ordinates.� The nonhomogeneous image-plane pixel coordinates are

 (11.8)

For example if the pixels are 10 µm square and the pixel array is 1 280 × 1 024 pix-
els with its principal point at image-plane coordinate (640, 512) then

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6,	
 'resolution', [1280 1024], 'centre', [640 512], 'name', 'mycamera')
 cam =
 name: mycamera [central-perspective]
 focal length: 0.015
 pixel size: (1e-05, 1e-05)
 principal pt: (640, 512)
 number pixels: 1280 x 1024
 pose: t = (0,0,0), RPY/yxz = (0,0,0) deg

which displays the parameters of the camera model including the camera pose T. The
corresponding nonhomogeneous image-plane coordinates of the previously defi ned
world point are

>> cam.project(P)
ans =
 790
 712

11.1.4
l

Camera Matrix

Combining Eq. 11.6 and Eq. 11.7 we can write the camera projection in general form as

 (11.9)

where all the terms are rolled up into the camera matrix C�. This is a 3 × 4 homoge-
neous transformation which performs scaling, translation and perspective projection.
It is often also referred to as the projection matrix or the camera calibration matrix.

The matrix K is often written with a fi-
nite value at K 1,2 to represent skew. This
accounts for the fact that the u- and
v-axes are not orthogonal, which with
precise semiconductor fabrication pro-
cesses is quite unlikely.

The terms f /ρw and f /ρh are the focal
length expressed in units of pixels.

11.1 · Perspective Camera

326 Chapter 11 · Image Formation

The projection can also be written in functional form as

 (11.10)

where P is the point coordinate vector in the world frame. K is the camera parameter
matrix and comprises the intrinsic parameters which are the innate characteristics
of the camera and sensor such as f, ρw, ρ h, u0 and v0. ξC is the pose of the camera and
comprises a minimum of six parameters – the extrinsic parameters – that describe
camera translation and orientation in SE(3).

There are 5 intrinsic and 6 extrinsic parameters – a total of 11 independent pa-
rameters to describe a camera. The camera matrix has 12 elements so one degree of
freedom, the overall scale factor, is unconstrained and can be arbitrarily chosen. In
practice the camera parameters are not known and must be estimated using a camera
 calibration procedure which we will discuss in Sect. 11.2.

The camera intrinsic parameter matrix K for this camera is

>> cam.K
ans =
 1.0e+03 *
 1.5000 0 0.6400
 0 1.5000 0.5120
 0 0 0.0010

The camera matrix is implicitly created when the Toolbox camera object is con-
structed and for this example is

>> cam.C
ans =
 1.0e+03 *
 1.5000 0 0.6400 0
 0 1.5000 0.5120 0
 0 0 0.0010 0

The fi eld of view of a lens is an open rectangular pyramid, a frustum, that subtends angles θ h
and θ v in the horizontal and vertical planes respectively. A normal lens is one with a fi eld of
view around 50°, while a wide angle lens has a fi eld of view >60°. Beyond 110° it is diffi cult
to create a lens that maintains perspective projection, so nonperspective fi sheye lenses are
required.

For very wide-angle lenses it is more common to describe the fi eld of view as a solid angle
which is measured in units of steradians (or sr). This is the area of the fi eld of view projected
onto the surface of a unit sphere. A hemispherical fi eld of view is 2π sr and a full spherical
view is 4π sr. If we approximate the camera’s fi eld of view by a cone with apex angle θ the cor-
responding solid angle is 2π (1 − cos θ / 2) sr. A camera with a fi eld of view greater than a full
hemisphere is termed omnidirectional or panoramic.

We have already mentioned the fundamental ambiguity with perspective pro-
jection, that we cannot distinguish between a large distant object and a smaller
closer object. We can rewrite Eq. 11.9 as

where H is an arbitrary nonsingular 3 × 3 matrix. This implies that an infinite
number of camera C′ and world point coordinate n′ combinations will result
in the same image-plane projection p.

This illustrates the essential difficulty in determining 3-dimensional world
coordinates from 2-dimensional projected coordinates. It can only be solved if
we have information about the camera or the 3-dimensional object.

327

The fi eld of view of a camera is a function of its focal length f. A wide-angle lens has
a small focal length, a telephoto lens has a large focal length, and a zoom lens has an
adjustable focal length. The fi eld of view can be determined from the geometry of
Fig. 11.6. In the horizontal direction the half-angle of view is

where W is the number of pixels in the horizontal direction. We can then write

 (11.11)

We note that the fi eld of view is also a function of the dimensions of the camera chip which
is Wρw × Hρh. The fi eld of view is computed by the fov method of the camera object

>> cam.fov() * 180/pi
ans =
 46.2127 37.6930

in degrees in the horizontal and vertical directions respectively.

11.1.5
l
Projecting Points

The CentralCamera class is a subclass of the Camera class and inherits the ability
to project multiple points or lines. Using the Toolbox we create a 3 × 3 grid of points
in the xy-plane with overall side length 0.2 m and centered at (0, 0, 1)

>> P = mkgrid(3, 0.2, 'pose', SE3(0, 0, 1.0));

which returns a 3 × 9 matrix with one column per grid point where each column com-
prises the coordinates in X, Y, Z order. The fi rst four columns are

>> P(:,1:4)
ans =
 -0.1000 -0.1000 -0.1000 0
 -0.1000 0 0.1000 -0.1000
 1.0000 1.0000 1.0000 1.0000

Yes, R has two different meanings here.
MATLAB does not provide an RQ-de-
composition but it can be determined by
transforming the inputs to, and results of,
the builtin MATLAB QR-decomposition
function qr . There are many subtleties
in doing this though: negative scale fac-
tors in the K matrix or det R = −1, see
Hartley and Zisserman (2003), or the im-
plementation of invC for details.

The camera matrix C ⊂R3×4 has some important structure and properties:

� It can be partitioned C = (M | c4) into a nonsingular matrix M ⊂R3×3 and a
vector, where c4 = −Mc and c is the world origin in the camera frame. We
can recover this by c = −M−1c4.

� The null space of C is c.
� A pixel at coordinate p corresponds to a ray in space parallel to the vector M−1p.
� The matrix M = KR is the product of the camera intrinsics and the camera in-

verse orientation. We can perform an RQ- decomposition of M = RQ where R is
an upper-triangular matrix (which is K) and an orthogonal matrix Q (which is R).�

� The bottom row of C defi nes the principal plane, which is parallel to the im-
age plane and contains the camera origin.

� If the rows of M are vectors mi then
– m3

T is a vector normal to the principal plane and parallel to the optical axis
and Mm3

T is the principal point in homogeneous form.
– if the camera has zero skew, that is K1,2 = 0, then
 (m1 × m3) · (m2 × m3) = 0
– and, if the camera has square pixels, that is ρu = ρv then
 �m1 ×m3�= �m2 ×m3�= f / ρ

11.1 · Perspective Camera

328 Chapter 11 · Image Formation

By default mkgrid generates a grid in the xy-plane that is centered at the origin. The
optional last argument is a homogeneous transformation that is applied to the default
points and allows the plane to be arbitrarily positioned and oriented.

The image-plane coordinates of the vertices are
>> cam.project(P)
ans =
 490 490 490 640 640 640 790 790 790
 362 512 662 362 512 662 362 512 662

which can also be plotted

>> cam.plot(P)

giving the virtual camera view shown in Fig. 11.7a. The camera pose

>> Tcam = SE3(-1,0,0.5)*SE3.Ry(0.9);

results in an oblique view of the plane

>> cam.plot(P, 'pose', Tcam)

shown in Fig. 11.7b. We can clearly see the effect of perspective projection which has
distorted the shape of the square – the top and bottom edges, which are parallel lines,
have been projected to lines that converge at a vanishing point.

The vanishing point for a line can be determined from the projection of its ideal
line. The top and bottom lines of the grid are parallel to the world x-axis or the vec-
tor (1, 0, 0). The corresponding ideal line has homogeneous coordinates (1, 0, 0, 0)
and exists at infi nity due to the fi nal zero element. The vanishing point is the projec-
tion of this vector

>> cam.project([1 0 0 0]', 'pose', Tcam)
ans =
 1.0e+03 *
 1.8303
 0.5120

which is (1 803, 512) and just to the right of the visible image plane.
The plot method can optionally return the image-plane coordinates

>> p = cam.plot(P, 'pose', Tcam)

just like the project method. For the oblique viewing case the image-plane coor-
dinates

Fig. 11.7. Two views of a planar
grid of points. a Frontal view,
b oblique view

329

>> p(:,1:4)
ans =
 887.7638 887.7638 887.7638 955.2451
 364.3330 512.0000 659.6670 374.9050

have a fractional component which means that the point is not projected to the cen-
ter of the pixel. However a pixel responds to light equally� over its surface area so the
discrete pixel coordinate can be obtained by rounding.

A 3-dimensional object, a cube, can be defi ned and projected in a similar fashion. The
vertices of a cube with side length 0.2 m and centered at (0, 0, 1) can be defi ned by

>> cube = mkcube(0.2, 'pose', SE3(0, 0, 1));

which returns a 3 × 8 matrix with one column per vertex. The image-plane points can
be plotted as before by

>> cam.plot(cube);

Alternatively we can create an edge representation of the cube by

>> [X,Y,Z] = mkcube(0.2, 'pose', SE3(0, 0, 1), 'edge');

and display it

>> cam.mesh(X, Y, Z)

as shown in Fig. 11.8 along with an oblique view generated by

>> Tcam = SE3(-1,0,0.5)*SE3.Ry(0.8);
>> cam.mesh(X, Y, Z, 'pose', Tcam);

The edges are in the same 3-dimensional mesh format� as generated by MATLAB built-
in functions such as sphere, ellipsoid and cylinder.

Successive calls to plot will redraw the points or line segments and provides a
simple method of animation. The short piece of code

1 theta = [0:500]/100*2*pi;
2 [X,Y,Z] = mkcube(0.2, [], 'edges');
3 for th=theta
4 T_cube = SE3(0, 0, 1.5)*SE3.rpy(th*[1.1 1.2 1.3])
5 cam.mesh(X, Y, Z, 'objpose', T_cube); drawnow
6 end

shows a cube tumbling in space. The cube is defi ned with its center at the origin and
its vertices are transformed at each time step.

This is not strictly true for CMOS sensors
where transistors reduce the light-sen-
sitive area by the fill factor – the frac-
tion of each photosite’s area that is light
sensitive.

Fig. 11.8. Line segment represen-
tation of a cube. a Frontal view,
b oblique view

The elements of the mesh (i, j) have
coordinates (X i, j, Y i, j, Z i, j).

11.1 · Perspective Camera

330 Chapter 11 · Image Formation

11.1.6
l
Lens Distortion

No lenses are perfect and the low-cost lenses used in many webcams are far from per-
fect. Lens imperfections result in a variety of distortions including chromatic aberra-
tion (color fringing), spherical aberration or astigmatism (variation in focus across
the scene), and geometric distortions where points on the image plane are displaced
from where they should be according to Eq. 11.3.

Geometric distortion is generally the most problematic effect that we encounter for
robotic applications, and comprises two components: radial and tangential. Radial
 distortion causes image points to be translated along radial lines from the principal
point. The radial error is well approximated by a polynomial

 (11.12)

where r is the distance of the image point from the principal point. Barrel distortion
occurs when magnifi cation decreases with distance from the principal point which
causes straight lines near the edge of the image to curve outward. Pincushion distor-
tion occurs when magnifi cation increases with distance from the principal point and
causes straight lines near the edge of the image to curve inward. Tangential distor-
tion, or decentering distortion, occurs at right angles to the radii but is generally less
signifi cant than radial distortion. Examples of a distorted and undistorted image are
shown in Fig. 11.9.

The coordinate of the point (u, v) after distortion is given by

 (11.13)

where the displacement is

(11.14)

This displacement vector can be plotted for different values of (u, v) as shown in
Fig. 11.13b. The vectors indicate the displacement required to correct the distortion at
different points in the image, in fact (−δu, −δv), and shows dominant radial distortion.

In practice three coeffi cients are suffi cient to describe the radial distortion and the
distortion model is parameterized by (k1, k2, k3, p1, p2) which are considered as addi-

Fig. 11.9. Lens distortion. a Dis-
torted image, the curvature of the
top row of the squares is quite
pronounced, b undistorted image.
This is calibration image #19 from
Bouguet’s Camera Calibration Tool-
box (Bouguet 2010)

331

tional intrinsic parameters. Distortion can be modeled by the CentralCamera class
using the 'distortion' option, for example

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
 'resolution', [1280 1024], 'centre', [512 512], ...
 'distortion', [k1 k2 k3 p1 p2])

11.2
l
Camera Calibration

The camera projection model Eq. 11.9 has a number of parameters that in practice
are unknown. In general the principal point is not at the center of the photosite ar-
ray. The focal length of a lens is only accurate� to 4% of what it purports to be, and
is only correct if the lens is focused at infi nity. It is also common experience that the
intrinsic parameters change if a lens is detached and reattached, or adjusted for focus
or aperture.� The only intrinsic parameters that it may be possible to obtain are the
photosite dimensions ρw and ρ h from the sensor manufacturer’s data sheet. The ex-
trinsic parameters, the camera’s pose, raises the question of where exactly is the cen-
ter point of the camera.

 Camera calibration is the process of determining the camera’s intrinsic parameters
and the extrinsic parameters with respect to the world coordinate system. Calibration
techniques rely on sets of world points whose relative coordinates are known and whose
corresponding image-plane coordinates are also known. State-of-the-art techniques
such as Bouguet’s Calibration Toolbox for MATLAB (Bouguet 2010) simply require a
number of images of a planar chessboard target such as shown in Fig. 11.12. From this,
as discussed in Sect. 11.2.4, the intrinsic parameters (including distortion parameters)
can be estimated as well as the relative pose of the chessboard in each image. Classical
 calibration techniques require a single view of a 3-dimensional calibration target but
are unable to estimate the distortion model. These methods are however easy to un-
derstand and they start our discussion in the next section.

11.2.1
l
Homogeneous Transformation Approach

The homogeneous transform method allows direct estimation of the camera matrix C
in Eq. 11.9. The elements of this matrix are functions of the intrinsic and extrinsic
parameters. Setting p = (u, v, 1), expanding equation Eq. 11.9 and substituting into
Eq. 11.8 we can write

 According to ANSI Standard PH3.13-1958
“Focal Length Marking of Lenses”.

Changing focus shifts the lens along the
optical axis. In some designs, changing
focus rotates the lens so if it is not per-
fectly symmetric this will move the dis-
tortions with respect to the image plane.
Changing the aperture alters the parts of
the lens that light rays pass through and
hence the distortion that they incur.

11.2 · Camera Calibration

It has taken humankind a long time to understand
light, color and human vision . The Ancient greeks
had two schools of thought. The emission theory,
supported by Euclid and Ptolemy, held that sight
worked by the eye emitting rays of light that
interacted with the world somewhat like the
sense of touch. The intromission theory, sup-
ported by Aristotle and his followers, had physi-
cal forms entering the eye from the object.

 Euclid of Alexandria (325–265) arguably got the
geometry of image formation correct, but his rays
emananted from the eye, not the object. Claudius
Ptolemy (100–170) wrote Optics and discussed refl ec-
tion, refraction, and color but today there remains only
a poor Arabic translation of his work.

The Arab philosopher Hasan Ibn al-Haytham (aka
Alhazen, 965–1040) wrote a seven-volume treatise Kitab
al-Manazir (Book of Optics) around 1020. He combined
the mathematical rays of Euclid, the medical knowledge

of Galen, and the intromission theories of Aristotle.
He wrote that “from each point of every colored

body, illuminated by any light, issue light and
color along every straight line that can be drawn

from that point”. He understood refraction but
believed the eye’s lens, not the retina, received

the image – like many early thinkers he strug-
gled with the idea of an inverted image on the

retina. A Latin translation of his work was a great
infl uence on later European scholars.

It was not until 1604 that geometric optics and hu-
man vision came together when the German astrono-

mer and mathematician Johannes Kepler (1571–1630)
published Astronomiae Pars Optica (The Optical Part

of Astronomy). He was the fi rst to recognize that images
are projected inverted and reversed by the eye’s lens onto

the retina – the image being corrected later “in the hol-
lows of the brain”. (Image from Astronomiae Pars Optica,

Johannes Kepler, 1604)

332 Chapter 11 · Image Formation

 (11.15)

where (u, v) are the pixel coordinates corresponding to the world point (X, Y, Z) and
Cij are elements of the unknown camera matrix.

Calibration requires a 3-dimensional target such as shown in Fig. 11.10. The po-
sition of the center of each marker (Xi, Yi, Zi), i ∈ [1, N] with respect to the target
frame {T} must be known, but {T} itself is not known. An image is captured and
the corresponding image-plane coordinates (ui, vi) are determined. Assuming that
C34 = 1 we stack the two equations of Eq. 11.15 for each of the N markers to form
the matrix equation

 (11.16)

which can be solved for the camera matrix elements C11� C33. Equation 11.16 has 11 un-
knowns and for solution requires that N ≥ 6. Often more than 6 points will be used lead-
ing to an over-determined set of equations which is solved using least squares.

If the points are coplanar then the left-hand matrix of Eq. 11.16 becomes rank de-
fi cient. This is why the calibration target must be 3-dimensional, typically an array of
dots or squares on two or three planes as shown in Fig. 11.10.

We will illustrate this with an example. The calibration target is a cube, the markers
are its vertices and its coordinate frame {T} is parallel to the cube faces with its origin
at the center of the cube. The coordinates of the markers with respect to {T} are

>> P = mkcube(0.2);

Now the calibration target is at some “unknown pose” CξT with respect to the camera
which we choose to be

>> T_unknown = SE3(0.1, 0.2, 1.5) * SE3.rpy(0.1, 0.2, 0.3);

Next we create a perspective camera whose parameters we will attempt to estimate

>> cam = CentralCamera('focal', 0.015, ...
 'pixel', 10e-6, 'resolution', [1280 1024], 'noise', 0.05);

We have also specifi ed that zero-mean Gaussian noise with σ = 0.05 is added to the

Where is the camera’s center? A compound lens has many cardi-
nal points including focal points, nodal points, principal points
and planes, entry and exit pupils. The entrance pupil is a point
on the optical axis of a compound lens system that is its center
of perspective or its no-parallax point. We could consider it to
be the virtual pinhole. Rotating the camera and lens about this
point will not change the relative geometry of targets at differ-
ent distances in the perspective image.

Rotating about the entrance pupil is important in panoram-
ic photography to avoid parallax errors in the fi nal, stitched
panorama. A number of web pages are devoted to discussion
of techniques for determining the position of this point. Some
sites even tabulate the position of the entrance pupil for popu-
lar lenses. Much of this online literature refers to this point in-
correctly as the nodal point even though the techniques given
do identify the entrance pupil.

Depending on the lens design, the entrance pupil may be
behind, within or in front of the lens system.

(u, v) coordinates to model camera noise and errors in the
computer vision algorithms. The image-plane coordinates
of the calibration target at its “unknown” pose are

>> p = cam.project(P, 'objpose', T_unknown);

Now using just the object model P and the observed im-
age features p we estimate the camera matrix

>> C = camcald(P, p)
maxm residual 0.066733 pixels.
C =
 853.0895 -236.9378 634.2785 740.0438
 222.6439 986.6900 295.7327 712.0152
 -0.1304 0.0610 0.6495 1.0000

The maximum residual in this case is less than 0.1 pixel,
that is, the worst error between the projection of a world
point using the camera matrix C and the actual image-
plane location is very small.

333

Linear techniques such as this cannot estimate lens distortion parameters. The dis-
tortion will introduce errors into the camera matrix elements but for many situations
this might be acceptably low. Distortion parameters are often estimated using a non-
linear optimization over all parameters, typically 16 or more, with the linear solution
used as the initial parameter estimate.

11.2.2
l
Decomposing the Camera Calibration Matrix

The elements of the camera matrix are functions of the intrinsic and extrinsic parame-
ters. However given a camera matrix most of the parameter values can be recovered.

The null space of C is the world origin in the camera frame. Using data from the
example above this is

>> null(C)'
ans =
 0.0809 -0.1709 -0.8138 0.5495

which is expressed in homogeneous coordinates that we can convert to Cartesian form
>> h2e(ans)'
ans =
 0.1472 -0.3110 -1.4809

which is close to the true value
>> T_unknown.inv.t'
ans =
 0.1464 -0.3105 -1.4772

To recover orientation as well as the intrinsic parameters we can decompose the pre-
viously estimated camera matrix

>> est = invcamcal(C)
est =
name: invcamcal [central-perspective]
 focal length: 1504
 pixel size: (1, 0.9985)
 principal pt: (646.8, 504.4)
 pose: t = (0.147, -0.311, -1.48), RPY/zyx	
 = (-1.87, -12.4, -16.4) deg

which returns a CentralCamera object with its parameters set to values that result
in the same camera matrix. We note immediately that the focal length is very large
compared to the true focal length of our lens which was 0.015 m, and that the pixel

Fig. 11.10.
A 3D calibration target show-

ing its coordinate frame {T}. The
centroids of the circles are taken

as the calibration points. Note
that the calibration circles are

situated on three planes (photo
courtesy of Fabien Spindler)

11.2 · Camera Calibration

334 Chapter 11 · Image Formation

sizes are very large. From Eq. 11.9 we see that focal length and pixel dimensions al-
ways appear together as factors f / ρw and f / ρ h.� The function invcamcal has set
ρw = 1 but the ratios of the estimated parameters

>> est.f/est.rho(1)
ans =
 1.5044e+03

are very close to the ratio for the true parameters of the camera
>> cam.f/cam.rho(2)
ans =
 1.500e+03

The small error in the estimated parameter values is due to the noisy image-plane co-
ordinate values that we used in the calibration process.

The pose of the estimated camera is with respect to the calibration target {T}
and is therefore Tξ�C. The true pose of the target with respect to the camera is CξT.
If our estimation is accurate then CξT ⊕ Tξ�C will be 0. We earlier set the variable
T_unknown equal to CξT and for our example we find that

>> trprint(T_unknown*est.T)
t = (4.13e-05, -4.4e-05, -0.00386),	
 RPY/zyx = (0.296, 0.253, -0.00557) deg

which is the relative pose between the true and estimated camera pose. The camera pose
is estimated to better than 5 mm in position and a fraction of a degree in orientation.

We can plot the calibration markers as small red spheres

>> hold on; plot_sphere(P, 0.03, 'r')
>> trplot(eye(4,4), 'frame', 'T', 'color', 'b', 'length', 0.3)

as well as {T} which we have set at the world origin. The estimated pose of
the camera can be superimposed

>> est.plot_camera()

and the result is shown in Fig. 11.11.� The problem of determining the
pose of a camera with respect to a calibration object is an important
problem in photogrammetry known as the camera location determina-
tion problem.

11.2.3
l
Pose Estimation

The pose estimation problem is to determine the pose CξT of a target’s coordi-
nate frame {T} with respect to the camera. The geometry of the target is known,
that is, we know the position of a number of points (Xi, Yi, Zi), i ∈ [1, N] on the
target with respect to {T}. The camera’s intrinsic parameters are also known.
An image is captured and the corresponding image-plane coordinates (ui, vi)
are determined using computer vision algorithms.

Estimating the pose using (ui, vi), (Xi, Yi, Zi) and camera intrinsic param-
eters is known as the Perspective-n-Point problem or PnP for short. It is a
simpler problem than camera calibration and decomposition because there
are fewer parameters to estimate. To illustrate pose estimation we will create
a calibrated camera with known parameters

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
 'resolution', [1280 1024], 'centre', [640 512]);

The object whose pose we wish to determine is a cube with side lengths of
0.2 m and the coordinates of the markers with respect to {T} are

>> P = mkcube(0.2);

These quantities have units of pixels
since ρ has units of m pixel−1. It is quite
common in the literature to consider
ρ = 1 and the focal length is given in
pixels. If the pixels are not square then
different focal lengths fu and fv must be
used for the horizontal and vertical direc-
tions respectively.

The option 'frustum' shows the
camera as a rectangular pyramid, such
as shown in Fig. 11.13a, rather than a
camera icon.

Fig. 11.11. Calibration target points
and estimated camera pose with re-
spect to the target frame {T} which
is assumed to be at the origin

335

which we can consider a simple geometric model of the object. The object is at some
arbitrary but unknown pose CξT pose with respect to the camera

>> T_unknown = SE3(0.1, 0.2, 1.5) * SE3.rpy(0.1, 0.2, 0.3);
>> T_unknown.print
t = (0.1, 0.2, 1.5), RPY/zyx = (5.73, 11.5, 17.2) deg

The image-plane coordinates of the object’s points at its unknown pose are

>> p = cam.project(P, 'objpose', T_unknown);

Now using just the object model P, the observed image features p and the calibrated
camera cam we estimate the relative pose CξT of the object

>> T_est = cam.estpose(P, p).print
t = (0.1, 0.2, 1.5), RPY/zyx = (5.73, 11.5, 17.2) deg

which is the same (to four decimal places) as the unknown pose T_unknown of the
object.

In reality the image features coordinates will be imperfectly estimated by the vision
system and we would model this by adding zero-mean Gaussian noise to the image
feature coordinates as we did in the camera calibration example.

11.2.4
l

Camera Calibration Toolbox

A popular and practical tool for calibrating cameras using a planar chessboard target
is the Camera Calibration Toolbox. A number of images, typically twenty, are taken
of the target at different distances and orientations as shown in Fig. 11.12.

Fig. 11.12. Example frames from
Bouguet’s Calibration Toolbox
showing the calibration target
in many different orientations.
These are images 2, 5, 9, 18 from
the Calibration Toolbox example

11.2 · Camera Calibration

336 Chapter 11 · Image Formation

The calibration tool is launched by

>> calib_gui

and a graphical user interface (GUI) is displayed.� The fi rst step is to load the images
using the Image Names button. The second step is the Extract Grid Corners button which
prompts you to pick the corners of the calibration target in each of the images. This
is a little tedious but needs to be done carefully. The fi nal step, the Calibration button,
uses the calibration target information to estimate the camera parameter values

Focal Length: fc = [657.39071 657.74678]	
 ± [0.37195 0.39793]
Principal point: cc = [303.22367 242.74729]	
 ± [0.75632 0.69189]
Skew: alpha_c = [0.00000] ± [0.00000]	
 => angle of pixel axes = 90.00000 ± 0.00000 degrees
Distortion: kc = [-0.25541 0.12617 -0.00015 0.00006	
 0.00000] ± [0.00290 0.01154 0.00016 0.00015 0.00000]
Pixel error: err = [0.13355 0.13727]

For each parameter the uncertainty (3σ bounds) is estimated and displayed.
The camera pose relative to the target is estimated for each calibration image

and can be displayed using the Show Extrinsic button. This target-centric view is
shown in Fig. 11.13a indicates the estimated relative pose of the camera for each
input image.

The distortion vector kc contains the parameters in the order (k1, k2, p1, p2, k3) –
note that k3 is out of sequence. The distortion map can be displayed by

>> visualize_distortions

and is shown in Fig. 11.13b. This indicates the displacement from true to distorted im-
age-plane coordinates which in this case is predominately in the radial direction. This
is consistent with k1 and k2 being orders of magnitude greater than p1 and p2 which
is typical for most lenses. The Undistort Image button can be used to undistort a set of
images and a distorted and undistorted image are compared in Fig. 11.9b. The details
of this transformation using image warping will be discussed in Sect. 12.7.4.

11.3
l
 Wide Field-of-View Imaging

We have discussed perspective imaging in quite some detail since it is the model of our
own eyes and almost all cameras that we encounter. However perspective imaging con-
strains us to a fundamentally limited fi eld of view. The thin lens equation (11.1) is singular
for points with Z = f which limits the fi eld of view to at most one hemisphere – real lenses

Fig. 11.13. Calibration results
from the example in Bouguet’s
Calibration Toolbox. a The esti-
mated camera pose relative to the
target for each calibration image,
b the distortion map with vectors
showing how points in the image
will move due to distortion

The GUI is optional, and the Toolbox
functions can be called from inside your
own programs. The function calib_
gui_normal shows the mapping
from GUI button names to Calibration
Toolbox function names. Note that most
of the functions are actually scripts and
program state variables are kept in the
workspace.

337

achieve far less. As the focal length decreases radial distortion is increasingly diffi cult to
eliminate and eventually a limit is reached beyond which lenses cannot practically be built.
The only way forward is to drop the constraint of perspective imaging. In Sect. 11.3.1 we
describe the geometry of image formation with wide-angle lens systems.

An alternative to refractive optics is to use a refl ective surface to form the image such as
shown in Fig. 11.14. Newtonian telescopes are based on refl ection from concave mirrors rather
than refraction by lenses. Mirrors are free of color fringing and are easier to scale to larger
sizes than a lens. Nature has also evolved refl ective optics – the spookfi sh and some scallops
(see page 285) have eyes based on refl ectors formed from guanine crystals. In Sect. 11.3.2
we describe the geometry of image formation with a combination of lenses and mirrors.

The cost of cameras is decreasing so an alternative approach is to combine the output of
multiple cameras into a single image, and this is briefl y described in Sect. 11.5.1.

11.3.1
l
Fisheye Lens Camera

A fi sheye lens image in shown in Fig. 11.17, and we create a model using the notation
shown in Fig. 11.15 where the camera is positioned at the origin O and its optical axis
is the z-axis. The world point P is represented in spherical coordinates (R, θ , φ), where
θ is the angle outward from the optical axis and φ is the angle of rotation around the
optical axis. We can write

Specular reflection occurs with a mirror-like surface. Incoming rays are refl ect-
ed such that the angle of incidence equals the angle of refl ection or θ r = θ i .
Speculum is Latin for mirror and speculum metal (E copper, D tin) is an al-
loy that can be highly polished. It was used by Newton and Herschel for the
curved mirrors in their refl ecting telescopes. See also Lambertian refl ection
on page 309. (The 48 inch speculum mirror from Herschel’s 40 foot telescope,
completed in 1789, is now in the British Science Museum, photo by Mike Peel
(mikepeel.net) licensed under CC-BY-SA)

Fig. 11.14.
Images formation by refl ection

from a curved surface (Cloud
Gate, Chicago, Anish Kapoor,
2006). Note that straight lines

have become curves

11.3 · Wide Field-of-View Imaging

338 Chapter 11 · Image Formation

On the image plane of the camera we represent the projection p in polar coordi-
nates (r, φ) with respect to the principal point, where r = r(θ). The Cartesian image-
plane coordinates are

and the exact nature of the function r(θ) depends on the type of fi sheye lens. Some
common projection models are listed in Table 11.1 and all have a scaling parame-
ter k.

Using the Toolbox we can create a fi sheye camera
>> cam = FishEyeCamera('name', 'fi sheye', ...
 'projection', 'equiangular', ...
 'pixel', 10e-6, ...
 'resolution', [1280 1024])

which returns an instance of a FishEyeCamera object which is a subclass of the
Toolbox’s Camera object and polymorphic with the CentralCamera class dis-
cussed earlier. If k is not specifi ed, as in this example, then it is computed such that
a hemispheric fi eld of view is projected into the maximal circle on the image plane.
As is the case for perspective cameras the parameters such as principal point and
pixel dimensions are generally not known and must be estimated using a calibra-
tion procedure.

Fig. 11.15.
Image formation for a fi sheye
lens camera. The world point P
is represented in spherical coor-
dinates (R, θ , φ) with respect to
the camera’s origin

Table 11.1.
Fisheye lens projection models

339

Fig. 11.17.
Fisheye lens image. Note that
straight lines in the world are

no longer projected as straight
lines. Note also that the fi eld of
view is mapped to a circular re-

gion on the image plane

Fig. 11.16.
A cube projected using the

 FishEyeCamera class. The
straight edges of the cube are

curves on the image plane

We create an edge-based model of a cube with side length 0.2 m

>> [X,Y,Z] = mkcube(0.2, 'centre', [0.2, 0, 0.3], 'edge');

and project it to the fi sheye camera’s image plane

>> cam.mesh(X, Y, Z)

and the result is shown in Fig. 11.16. We see that straight lines in the world are no lon-
ger straight lines in the image.

Wide angle lenses are available with 180° and even 190° fi eld of view, however they
have some practical drawbacks. Firstly, the spatial resolution is lower since the cam-
era’s pixels are spread over a wider fi eld of view. We also note from Fig. 11.17 that the
fi eld of view is a circular region which means that nearly 25% of the rectangular im-
age plane is effectively wasted. Secondly, outdoors images are more likely to include
bright sky so the camera will automatically reduce its exposure which can result in
some nonsky parts of the scene being very underexposed.

11.3 · Wide Field-of-View Imaging

340 Chapter 11 · Image Formation

11.3.2
l

Catadioptric Camera

A catadioptric imaging system comprises both refl ective and refractive elements�, a
 mirror and a lens, as shown in Fig. 11.18a. An example catadioptric image is shown
in Fig. 11.18b.

The geometry shown in Fig. 11.19 is fairly complex. A ray is constructed from the
point P to the focal point of the mirror at O which is the origin of the camera system.
The ray has an elevation angle of

upward from the optical axis and intersects the mirror at the point M. The refl ected
ray makes an angle ψ with respect to the optical axis which is a function of the in-
coming ray angle, that is ψ (θ). The relationship between θ and ψ is determined by
the tangent to the mirror at the point M and is a function of the shape of the mirror.
Many different mirror shapes are used for catadioptric imaging including spherical,
parabolic, elliptical and hyberbolic. In general the function ψ (θ) is nonlinear but an
interesting class of mirror is the equiangular mirror for which

The refl ected ray enters the camera lens at angle ψ from the optical axis, and from
the lens geometry we can write

which is the distance from the principal point. The polar coordinate of the image-plane
point is p = (r, φ) and the corresponding Cartesian coordinate is

where φ is the azimuth angle

In Fig. 11.19 we have assumed that all rays pass through a single focal point or view-
point – O in this case. This is referred to as central imaging and the resulting image

Fig. 11.18.
Catadioptric imaging. a A cata-
dioptric imaging system com-
prising a conventional perspec-
tive camera is looking upward
at the mirror; b Catadioptric
image. Note the dark spot in the
center which is the support that
holds the mirror above the lens.
The fl oor is in the center of the
image and the ceiling is at the edge
(photos by Michael Milford)

From the Greek for curved mirrors (catop-
trics) and lenses (dioptrics).

341

can be correctly transformed to a perspective image. The equiangular mirror does not
meet this constraint and is therefore a noncentral imaging system – the focal point
varies with the angle of the incoming ray and lies along a short locus within the mirror
known as the caustic. Conical, spherical and equiangular mirrors are all noncentral.
In practice the variation in the viewpoint is very small compared to the world scale
and many such mirrors are well approximated by the central model.

The Toolbox provides a model for catadioptric cameras. For example we can cre-
ate an equiangular catadioptric camera

>> cam = CatadioptricCamera('name', 'panocam', ...
 'projection', 'equiangular', ...
 'maxangle', pi/4, ...
 'pixel', 10e-6, ...
 'resolution', [1280 1024])

which returns an instance of a CatadioptricCamera object which is a subclass
of the Toolbox’s Camera object and polymorphic with the CentralCamera class
discussed earlier. The option maxangle specifi es the maximum elevation angle θ
from which the parameters α and f are determined such that the maximum elevation
angle corresponds to a circle that maximally fi ts the image plane. The parameters can
be individually specifi ed using the options 'alpha' and 'focal'. Other supported
projection models include parabolic and spherical and each camera type has different
options as described in the online documentation.

We create an edge-based cube model

>> [X,Y,Z] = mkcube(1, 'centre', [1, 1, 0.8], 'edge');

which we project onto the image plane

>> cam.mesh(X, Y, Z)

and the result is shown in Fig. 11.20.

Fig. 11.19.
Catadioptric image formation.
A ray from point P at elevation

angle θ and azimuth φ toward O
is refl ected from the mirror sur-
face at M and is projected by the

lens on to the image plane at p

11.3 · Wide Field-of-View Imaging

342 Chapter 11 · Image Formation

Catadioptric cameras have the advantage that they can view 360° in azimuth but they
also have some practical drawbacks. They share many of the problems of fi sheye lenses
such as reduced spatial resolution, wasted image-plane pixels and exposure control. In
some designs there is also a blind spot due to the mirror support which is commonly
a central stalk or a number of side supports.

11.3.3
l

Spherical Camera

The fi sheye lens and catadioptric systems just discussed guide the light rays from a
large fi eld of view onto an image plane. Ultimately the 2-dimensional image plane is
a limiting factor and it is advantageous to consider instead an image sphere as shown
in Fig. 11.21.

The world point P is projected by a ray to the origin of a unit sphere. The pro-
jection is the point p where the ray intersects the surface of the sphere. If we write
p = (x, y, z) then

 (11.17)

where R = X̂2gg+gYg2g+gZ 2g is the radial distance to the world point. The surface of
the sphere is defi ned by x2 + y2 + z2 = 1 so one of the three Cartesian coordinates is
redundant. A minimal two-parameter representation for a point on the surface of a
sphere (φ , θ) comprises the angle of colatitude measured down from the North pole

 (11.18)

where r =]x2g+ggyg2, and the azimuth angle (or longitude)

 (11.19)

Conversely, the Cartesian coordinates for the point p = (φ , θ) are given by

 (11.20)

Fig. 11.20.
A cube projected with an equi-
angular catadioptric camera

343

Using the Toolbox we can create a spherical camera

>> cam = SphericalCamera('name', 'spherical')

which returns an instance of a SphericalCamera object which is a subclass of the
Tool-box’s Camera object and polymorphic with the CentralCamera class dis-
cussed earlier.

As previously we can create an edge-based cube model

>> [X,Y,Z] = mkcube(1, 'centre', [2, 3, 1], 'edge');

and project it onto the sphere

>> cam.mesh(X, Y, Z)

and this is shown in Fig. 11.22. To aid visualization the spherical image plane has been
unwrapped into a rectangle – lines of longitude and latitude are displayed as vertical
and horizontal lines respectively. The top and bottom edges correspond to the north
and south poles respectively.

It is not yet possible to buy a spherical camera although prototypes have been dem-
onstrated in several laboratories. The spherical camera is more useful as a conceptual
construct to simplify the discussion of wide-angle imaging. As we show in the next
section we can transform images from perspective, fi sheye or catadioptric camera onto
the sphere where we can treat them in a uniform manner.

Fig. 11.21.
Spherical image formation. The

world point P is mapped to p on
the surface of the unit sphere

and represented by the angles of
colatitude θ and longitude φ

Fig. 11.22.
Cube projected by a spheri-

cal camera. The spherical
image plane is represented in

Cartesian coordinates

11.3 · Wide Field-of-View Imaging

344 Chapter 11 · Image Formation

11.4
l
Unified Imaging

We have introduced a number of different imaging models in this chapter. Now we
will discuss how to transform an image captured with one type of camera to the im-
age that would have been captured with a different type of camera. For example, given
a fi sheye lens projection we will generate the corresponding projection for a spheri-
cal camera or a perspective camera. The unifi ed imaging model provides a powerful
framework to consider very different types of cameras such as standard perspective,
catadioptric and many types of fi sheye lens.

The unifi ed imaging model is a two-step process and the notation is shown in
Fig. 11.23. The fi rst step is spherical projection of the world point P to the surface of
the unit sphere p′ as discussed in the previous section and described by Eq. 11.17 to
Eq. 11.18. The view point O is the center of the sphere which is a distance m from the
image plane along its normal z-axis. The single view point implies a central camera.

In the second step the point p′ = (θ , φ) is reprojected to the image plane p using
the view point F which is at a distance ` along the z-axis above O. The polar coordi-
nates of the image-plane point are p = (r, φ) where

 (11.21)

The unifi ed imaging model has only two parameters m and ` and these are a func-
tion of the type of camera as listed in Table 11.2. For a perspective camera the two
view points O and F are coincident and the geometry becomes the same as the central
perspective model shown in Fig. 11.3.

For catadioptric cameras with mirrors that are conics the focal point F lies between the
center of the sphere and the north pole, that is, 0 < `< 1. This projection model is some-
what simpler than the catadioptric camera geometry shown in Fig. 11.19. The imaging pa-
rameters are written in terms of the conic parameters eccentricity ε and latus rectum 4p.�

The length of a chord parallel to the direc-
trix and passing through the focal point.

Fig. 11.23.
Unifi ed imaging model of Geyer
and Daniilidis (2000)

345

The projection with F at the north pole is known as stereographic projection and is
used in many fi elds to project the surface of a sphere onto a plane. Many fi sheye lenses
are extremely well approximated by F above the north pole.

11.4.1
l

Mapping Wide-Angle Images to the Sphere

We can use the unifi ed imaging model in reverse. Consider an image captured by a
wide fi eld of view camera such as the fi sheye image shown in Fig. 11.24a. If we know
the location of F then we can project each point from the image onto the sphere to cre-
ate a spherical image, even though we do not have a spherical camera.

In order to achieve this inverse mapping we need to know some parameters of the
camera that captured the image. A common feature of images captured with a fi sheye
lens or catadioptric camera is that the outer bound of the image is a circle. This circle
can be found and its center estimated quite precisely – this is the principal point. A
variation of the camera calibration procedure of Sect. 11.2.4 is applied which uses cor-
responding world and image-plane points from the planar calibration target shown
in Fig. 11.24a. This particular camera has a fi eld of view of 190 degrees and its cali-
bration parameters have been estimated to be: principal point (528.1214, 384.0784),
`= 2.7899 and m = 996.4617.

We will illustrate this using the image shown in Fig. 11.24a

>> fi sheye = iread('fi sheye_target.png', 'double', 'grey');

and we also defi ne the domain of the input image

>> [Ui,Vi] = imeshgrid(fi sheye);

We will use image warping to achieve this mapping. Warping is discussed in detail in
Sect. 12.7.4 but we will preview the approach here. The output domain covers the en-
tire sphere with longitude from −π to +π radians and colatitude from 0 to π radians
with 500 steps in each direction

>> n = 500;
>> theta_range = linspace(0, pi, n);
>> phi_range = linspace(-pi, pi, n);
>> [Phi,Theta] = meshgrid(phi_range, theta_range);

For warping we require a function that returns the coordinates of a point in the input
image given the coordinates of a point in the output spherical image. This function is
the second step of the unifi ed imaging model Eq. 11.21 which we implement as

>> r = (l+m)*sin(Theta) ./ (l-cos(Theta));

from which the corresponding Cartesian coordinates in the input image are

>> U = r.*cos(Phi) + u0;
>> V = r.*sin(Phi) + v0;

Table 11.2.
Unifi ed imaging model parame-
ters � and m according to camera

type. ε is the eccentricity of the
conic and 4p is the latus rectum

11.4 · Unified Imaging

346 Chapter 11 · Image Formation

The image warp is performed with a single MATLAB builtin function

>> spherical = interp2(Ui, Vi, fi sheye, U, V);

where the fi rst three arguments defi ne the input domain, and the last two arguments
are the coordinates for which grey-scale values will be interpolated from the input
image and returned. We display the result

>> idisp(spherical)

which is shown in Fig. 11.24b. The image appears refl ected about the equator and this
is because the mapping from a point on the image plane to the sphere is double valued
– since F is above the north pole the ray intersects the sphere twice. The top and bot-
tom row of this image corresponds to the principal point, while the dark band above
the equator corresponds to the circular outer edge of the input image.

The image is extremely distorted but this coordinate system is very convenient to
 texture map onto a sphere

>> sphere
>> h = fi ndobj('Type', 'surface');
>> set(h, 'CData', fl ipud(spherical), 'FaceColor', 'texture');
>> colormap(gray)

and this is shown in Fig. 11.25. Using the MATLAB fi gure toolbar we can rotate the
sphere and look at the image from different view points.

Any wide-angle image that can be expressed in terms of central imaging parame-
ters can be similarly projected onto a sphere. So too can multiple perspective images
obtained from a camera array such as shown in Fig. 11.27.

Fig. 11.24. Fisheye image of a pla-
nar calibration target. a Fisheye
image (image courtesy of Peter
Hansen); b Image warped to (φ , θ)
coordinates

Fig. 11.25.
Fisheye image mapped to the
unit sphere. We can clearly see
the planar grid lying on a table,
the ceiling light, a door and a
whiteboard

�

347

11.4.2
l
Mapping from the Sphere to a Perspective Image

Given a spherical image we now want to reconstruct a perspective view in a particu-
lar direction. We can think of this as looking out, from inside the sphere, at a small
surface area which is close to fl at and approximates a perspective camera view. This
is the second step of the unifi ed imaging model where F is at the center of the sphere
in which case Fig. 11.23 becomes similar to Fig. 11.3. The perspective camera’s opti-
cal axis is the negative z-axis of the sphere.

For this example we will use the spherical image created in the previous section.
We wish to create a perspective image of 1 000 × 1 000 pixels and with a fi eld-of-view
of 45°. The fi eld of view can be written in terms of the image width W and the unifi ed
imaging parameter m as

For a 45° fi eld-of-view we require
>> W = 1000;
>> m = W / 2 / tan(45/2*pi/180)
m =
 1.2071e+03

and for perspective projection we require

>> l = 0;

We also require the principal point to be in the center of the image

>> u0 = W/2; v0 = W/2;

The domain of the output image will be

>> [Uo,Vo] = meshgrid(0:W-1, 0:W-1);

The polar coordinate (r, φ) of each point in the output image is

>> [phi,r]= cart2pol(Uo-u0, Vo-v0);

and the corresponding spherical coordinates (φ , θ) are

>> Phi_o = phi;
>> Theta_o = pi - atan(r/m);

We now warp from spherical coordinates to the perspective image plane

>> perspective = interp2(Phi, Theta, spherical, Phi_o, Theta_o);

and the result

>> idisp(perspective)

is shown in Fig. 11.26a. This is the view from a perspective camera at the center
of the sphere looking down through the south pole. We see that the lines on the
chessboard calibration target are now straight as we would expect from a perspec-
tive image.

Of course we are not limited to just looking along the negative z-axis of the sphere.
In Fig. 11.25 we can see some other features of the room such as a door, a whiteboard
and some ceiling lights. We can point our virtual perspective camera in their direc-
tion by fi rst rotating the spherical image

>> spherical = sphere_rotate(spherical, SE3.Ry(0.9)*SE3.Rz(-1.5));

so that the negative z-axis now points toward the distant wall. Repeating the warp
process we obtain the result shown in Fig. 11.26b in which we can clearly see a door
and a whiteboard.�

From a single wide-angle image we can
create a perspective view in any direc-
tion without having any mechanical
pan/tilt mechanism – it’s just computa-
tion. In fact multiple users could look in
different directions simultaneously.

11.4 · Unified Imaging

348 Chapter 11 · Image Formation

The original wide-angle image contains a lot of detail though it can be hard to see
because of the distortion. After mapping the image to the sphere we can create a vir-
tual perspective camera view (where straight lines in the world are straight) along any
line of sight. This is only possible if the original image was taken with a central cam-
era that has a single viewpoint. In theory we cannot create a perspective image from a
noncentral wide-angle image but in practice if the caustic is small the parallax errors
introduced into the perspective image will be negligible.

11.5
l
Novel Cameras

11.5.1
l
Multi-Camera Arrays

The cost of cameras and computation continues to fall making it feasible to do away
with the unusual and expensive lenses and mirrors discussed so far, and instead use
computation to stitch together the images from a number of cameras onto a cylindri-
cal or spherical image plane. One such camera is shown in Fig. 11.27a and uses fi ve
cameras to capture a 360° panoramic view as shown in Fig. 11.27c. The camera in
Fig. 11.27b uses six cameras to achieve an almost spherical fi eld of view.

These camera arrays are not central cameras since light rays converge on the focal
 points of the individual cameras, not the center of the camera assembly. This can be
problematic when imaging objects at short range but in typical use the distance between
camera focal points, the caustic , is small compared to distances in the scene. The different
viewpoints do have a real advantage however when it comes to capturing the light fi eld.

11.5.2
l
Light-Field Cameras

As we discussed in the early part of this chapter a traditional perspective camera
– analog or digital – captures a representation of a scene using the two dimensions
of the fi lm or sensor. We can think of the captured image as a 2-dimensional func-
tion L(X, Y) that describes the light emitted by the 3D scene. The function is scalar
L(·) ∈R for the monochrome case and vector-valued L(·) ∈R3 for a tristimulus color
representation.�

Fig. 11.26. Perspective projection
of spherical image Fig. 11.25 with
a fi eld of view of 45°. a Note that
the lines on the chessboard are now
straight. b This view is looking to-
ward the door and whiteboard

We could add extra dimensions to repre-
sent polarization of the light.

349

The pin-hole camera of Fig. 11.1 allows only a very small number of light rays to
pass through the aperture, yet space is fi lled with innumerable light rays that pro-
vide a richer and more complete description of the world. This detailed geometric
distribution of light is called the plenoptic function .� Luminance is really a func-
tion of position and direction in 3-dimensional space, for example L(X, Y, Z, θ , φ).

The word plenoptic comes from the Latin
word plenus meaning full or complete.

Fig. 11.27. Omnidirectional cam-
era array . a Five perspective cam-
eras provide a 360° panorama
with a 72° vertical field of view
(camera by Occam Vision Group).
b Panoramic camera array uses
six perspective cameras to provide
90% of a spherical fi eld of view.
c A seamless panoramic image
(3 760 × 480 pixels) as output by
the camera a (photographs a and
c by Edward Pepperell; image b
courtesy of Point Grey Research)

11.5 · Novel Cameras

Fig. 11.28.
An 8×12 camera array as de-

scribed in Wilburn et al. (2005)
(photo courtesy of Marc Levoy,

Stanford University)

�

350 Chapter 11 · Image Formation

Unintuitively lines in 3D space have only four parameters, see Sect. C.1.2.2, so the
plenoptic function can be written as L(s, t, u, v) using the 2-plane parameterization
shown in Fig. 11.29a.� The traditional camera image is just a 2-dimensional slice of
the full plenoptic function.

Although the concepts behind the light fi eld have been around for decades, it is
only in recent years that the technology to capture light fi elds has become widely
available. Early light-fi eld cameras were arrays of regular cameras arranged in a plane,
such as shown in Fig. 11.28, or on a sphere surrounding the scene, but these tended to
be physically large, complex and expensive to construct. More recently low-cost and
compact light-fi eld cameras based on microlens arrays have come on to the market.
One selling point for consumer light-fi eld cameras has been the ability to refocus the
image after taking the picture but the light-fi eld image has many other virtues includ-
ing synthesizing novel views, 3D reconstruction, low-light imaging and seeing through
particulate obscurants.

The microlens array is a regular grid of tiny lenses, typically comprising hun-
dreds of thousands of lenses, which is placed a fraction of a millimeter above the
surface of the camera’s photosensor array . The main objective lens focuses an im-
age onto the surface of the microlens array as shown in Fig. 11.29b. The microlens
directs incoming light to one of a small, perhaps 8 × 8, patch of pixels according
to its direction. The resulting image captures information about both the origin of
the ray (the lenslet) and its direction (the particular pixel beneath the lenslet). By
contrast, in a standard perspective camera all the rays, irrespective of direction,
contribute to the value of the pixel. The light-field camera pixels are sometimes
referred to as raxels and the resolution of these cameras is typically expressed in
megarays.

The raw image from the sensor array looks like Fig. 11.30a but can be decoded into
a 4-dimensional light fi eld, as shown in Fig. 11.30b, and used to render novel views.

11.6
l
Advanced Topics

11.6.1
l
Projecting 3D Lines and Quadrics

In Sect. 11.1 we projected 3D points to the image plane, and we projected 3D line seg-
ments by simply projecting their endpoints and joining them on the image plane. How
would we project an arbitrary line in 3-dimensional space?

The fi rst issue we confront is how to represent such a line and there are many pos-
sibilities which are discussed in Sect. C.1.2.2. One useful parameterization is Plücker
coordinates – a 6-vector with many similarities to twists.

Fig. 11.29. a The light ray Φ pass-
es through the image plane at
point (u, v) and the center of the
 camera at (s, t). This is similar
to the central projection model
shown in Fig. 11.3. Any ray can
be described by two points, in
this case (u, v) and (s, t). b Path
of light rays from object through
main objective lens and lenslet
array to the pixel array (fi gures
courtesy Donald G. Dansereau)

If the scene contains obstructions then
the rays become finite-length line seg-
ments, this increases the dimensionality
of the light field from 4D to 5D. However
to record such a light field the camera
would have to be simultaneously at ev-
ery position in the scene without obscur-
ing anything, which is impossible.

351

We can easily create a Plücker line using the Toolbox. A line that passes through
(0, 0, 1) and (1, 1, 1) would be

>> L = Plucker([0 0 1], [1 1 1])
L =
{ -1 1 0; -1 -1 0 }

which returns a Plucker object that is represented as a 6-vector with two compo-
nents: a moment vector and a direction vector. Options can be used to specify a line
using a point and a direction or the intersection of two planes. The direction of the
Plücker line is the vector

>> L.w'
ans =
 -1 -1 0

The Plucker object also has methods for plotting as well as determining the
intersection with planes or other Plücker lines. There are many representations of
a Plücker line including the 6-vector used above, a minimal 4-vector, and a skew-
symmetric 4 × 4 matrix computed using the L method. The latter is used to project
the line by

where C is the camera matrix, and results in a 2-dimensional line expressed in homoge-
neous coordinates. Observing this line with the default camera

>> cam = CentralCamera('default');
>> l = cam.project(L)'
l =
 1 -1 0

results in a diagonal line across the image plane. We could plot this using plot_homline
or on the camera’s virtual image plane by

>> cam.plot(l)

Quadrics , short for quadratic surfaces , are a rich family of 3-dimensional surfaces.
There are 17 standard types including spheres, ellipsoids, hyperboloids, paraboloids,
 cylinders and cones all described by

Fig. 11.30. a Closeup of image
formed on the sensor array by the
lenslet array ; b array of images ren-
dered from the light fi eld for dif-
ferent camera view points (fi gures
courtesy Donald G. Dansereau)

11.6 · Advanced Topics

352 Chapter 11 · Image Formation

where Q ∈R4×4 is symmetric. The outline of the quadric is projected to the image plane by

where (·)∗ represents the adjugate operation, see Appendix B, and c is a matrix represent-
ing a conic section on the image plane

which can be written as

where

The determinant of the top-left submatrix indicates the type of conic: negative for
a hyperbola, 0 for a parabola and positive for an ellipse.

To demonstrate this we will defi ne a camera looking toward the origin

>> cam = CentralCamera('default', 'pose', SE3(0.2,0.1, -5)*SE3.Rx(0.2));

and defi ne a unit sphere at the origin

>> Q = diag([1 1 1 -1]);

then compute its projection to the image plane
>> Qs = inv(Q)*det(Q); % adjugate
>> cs = cam.C * Qs * cam.C';
>> c = inv(cs)*det(cs); % adjugate

which is a 3 × 3 matrix describing a conic. The determinant
>> det(c(1:2,1:2))
ans =
 2.2862e+14

is positive indicating an ellipse, and a simple way to plot this is using the Symbolic
Math Toolbox™

>> syms x y real
>> ezplot([x y 1]*c*[x y 1]', [0 1024 0 1024])
>> set(gca, 'Ydir', 'reverse')

11.6.2
l
Nonperspective Cameras

The camera matrix Eq. 11.9 represents a special subset of all possible camera matrices
– fi nite projective or Euclidean cameras – where the left-hand 3 × 3 matrix is nonsin-
gular. The camera projection matrix C from Eq. 11.9 can be written generally as

which has arbitrary scale so one element, typically C3,4 is set to one – this matrix has
11 unique elements or 11 DOF. We could think of every possible matrix as correspond-
ing to some type of camera, but most of them would produce wildly distorted images.

353

Orthographic or parallel projection is a simple perspective-free projection of
3D points onto a plane, like a “plan view”. For small objects close to the camera this
projection can be achieved using a telecentric lens. The apparent size of an object
is independent of its distance.

For the case of an aerial robot fl ying high over relatively fl at terrain the variation
of depth, the depth relief, ∆ Z is small compared to the average depth of the scene Z–,
that is ∆Z� Z–. We can use a scaled-orthographic projection which is an orthographic
projection followed by uniform scaling m = f / Z–.

These two nonperspective cameras are special cases of the more general affi ne cam-
era model which is described by a matrix of the form

that can be factorized as

It can be shown that the principal point is undefi ned for such a camera model,
simplifying the intrinsic matrix, but we have introduced a skew parameter to handle
the case of nonorthogonal sensor axes. The projection matrix is different compared
to the perspective case in Eq. 11.9 – the column of zeros has moved from column 4 to
column 3. This zero column effectively deletes the third row and column of the ex-
trinsic matrix resulting in

and has at most 8 DOF�. The independence from depth is very clear since tz does not
appear. The case where skew s = 0 and mx = my = 1 is orthographic projection and has
only 5 DOF, while the scaled-orthographic case when s = 0 and mx = my has 6 DOF.
The case where mx ≠ my is known as weak perspective projection, although this term
is sometimes also used to describe scaled-orthographic projection.

11.7
l
Wrapping Up

We have discussed the fi rst steps in the computer vision process – the formation of an im-
age of the world and its conversion to an array of pixels which comprise a digital image.
The images with which we are familiar are perspective projections of the world in which
3 dimensions are compressed into 2 dimensions. This leads to ambiguity about object
size – a large object in the distance looks the same as a small object that is close. Straight
lines and conics are unchanged by this projection but shape distortion occurs – parallel
lines can appear to converge and circles can appear as ellipses. We have modeled the per-
spective projection process and described it in terms of eleven parameters – intrinsic and
extrinsic. Geometric lens distortion adds additional lens parameters. Camera calibration
is the process of estimating these parameters and two approaches have been introduced.
We also discussed pose estimation where the pose of an object of known geometry can
be estimated from a perspective projection obtained using a calibrated camera.

The 2 × 3 submatrix of the rotation ma-
trix has 6 elements but 3 constraints –
the two rows have unit norms and are
orthogonal – and therefore has 3 DOF.

11.7 · Wrapping Up

354 Chapter 11 · Image Formation

Perspective images are limited in their fi eld of view and we discussed several wide-
angle imaging systems based on the fi sheye lens, catadioptrics and multiple cameras. We
also discussed the ideal wide-angle camera, the spherical camera, which is currently still
a theoretical construct. However it can be used as an intermediate representation in the
unifi ed imaging model which provides one model for almost all camera geometries. We
used the unifi ed imaging model to convert a fi sheye camera image to a spherical image
and then to a perspective image along a specifi ed view axis. Finally we covered some more
recent camera developments such as panoramic camera arrays and light-fi eld cameras.

In this chapter we treated imaging as a problem of pure geometry with a small num-
ber of world points or line segments. In the next chapter we will discuss the acquisition
and processing of images sourced from fi les, cameras and the web.

Further Reading and Resources

Computer vision textbooks such as Szeliski (2011), Hartley and Zisserman (2003),
Forsyth and Ponce (2011) and Gonzalez and Woods (2008) provide deeper coverage
of the topics introduced in this chapter. Many topics in geometric computer vision
have also been studied by the photogrammetric community, but different language is
used. For example camera calibration is known as camera resectioning, and pose es-
timation is known as space resectioning. The revised classic textbook by DeWitt and
Wolf (2000) is a thorough and readable introduction to photogrammetry.

Camera calibration. The homogeneous transformation calibration (Sutherland 1974)
approach of Sect. 11.2.1 is also known as the direct linear transform (DLT) in the
photogrammetric literature. The Toolbox implementation camcald requires that
the centroids of the calibration markers have already been determined which is a
nontrivial problem (Corke 1996b, § 4.2). It also cannot estimate lens distortion. Wolf
(1974) describes extensions to the linear camera calibration with models that include
up to 18 parameters and suitable nonlinear optimization estimation techniques. A
more concise description of nonlinear calibration is provided by Forsyth and Ponce
(2011). Hartley and Zisserman (2003) describe how the linear calibration model can
be obtained using features such as lines within the scene.

There are a number of good camera calibration toolboxes available on the web. The
 MATLAB Toolbox, discussed in Sect. 11.2.4, is by Jean-Yves Bouguet and available from
http://www.vision.caltech.edu/bouguetj/calib_doc. It has extensive online documen-
tation and includes example calibration images which were used in Sect. 11.2.4. Several
tools build on this and automatically fi nd the chessboard target which is otherwise te-
dious to locate in every image, for example the AMCC and RADOCC Toolboxes and the
MATLAB Camera Calibrator App included with the Computer Vision System Toolbox™.
The MATLAB Toolbox by Janne Heikkilä is available at http://www.ee.oulu.fi/~jth/calibr/
and works for planar or 3D targets with circular dot features and estimates lens distortion.

Photogrammetry is the science of understanding the geometry
of the world from images. The techniques were developed by
the French engineer Aimé Laussedat (1819–1907) working for
the Army Corps of Engineers in the 1850s. He produced the fi rst
measuring camera and developed a mathematical analysis of
photographs as perspective projections. He pioneered the use
of aerial photography as a surveying tool to map Paris – using
rooftops as well as unmanned balloons and kites.

Photogrammetry is normally concerned with making maps
from images acquired at great distance but the subfield of
close-range or terrestrial photogrammetry is concerned with
camera to object distances less than 100 m which is directly relevant to robotics. (Image from
La Métrophotographie, Aimé Laussedat, 1899)

355

Pose estimation is a classic and hard problem in computer vision and for which
there exists a very large literature. The approaches can be broadly divided into ana-
lytic and iterative solutions. Assuming that lens distortion has been corrected the
analytic solutions for three and four noncollinear points are given by Fischler and
Bolles (1981), DeMenthon and Davis (1992) and Horaud et al. (1989). Typically mul-
tiple solutions exist but for four coplanar points there is a unique solution. Six or
more points always yield unique solutions, as well as the intrinsic camera calibra-
tion parameters. Iterative solutions were described by Rosenfeld (1959) and Lowe
(1991). A more recent discussion based around the concept of bundle adjustment
is provided by Triggs et al. (2000). The pose estimation in the Toolbox is a wrapper
around an effi cient noniterative perspective n-point pose estimator described by
Lepetit et al. (2009) and available at http://cvlab.epfl.ch/EPnP. Pose estimation requires
a geometric model of the object and such computer vision approaches are known as
model-based vision. An interesting historical perspective on model-based vision is
the 1987 video by the late Joe Mundy which is available at http://www.archive.org/
details/JosephMu1987.

Wide field-of-view cameras. There is recent and growing interest in this type of cam-
era and today good quality lightweight fi sheye lenses and catadioptric camera systems
are available. Nayar (1997) provides an excellent motivation for, and introduction to,
wide-angle imaging. A very useful online resource is the catadioptric sensor design
page at http://www.math.drexel.edu/~ahicks/design and a page of links to research
groups, companies and workshops at http://www.cis.upenn.edu/~kostas/omni.html.
Equiangular mirror systems were described by Chahl and Srinivasan (1997) and Ollis
et al. (1999). Nature’s solution, the refl ector-based scallop eye, is described in Colicchia
et al. (2009). A number of workshops on Omnidirectional Vision have been held, start-
ing in 2000, and their proceedings are a useful introduction to the fi eld. The book
of Daniilidis and Klette (2006) is a collection of papers on nonperspective imaging
and Benosman and Kang (2001) is another, earlier, published collection of papers.
Some information is available through CVonline at http://homepages.inf.ed.ac.uk/
rbf/CVonline in the section Image Physics.

A MATLAB Toolbox for calibrating wide-angle cameras by Davide Scaramuzza
is available at https://sites.google.com/site/scarabotix/ocamcalib-toolbox. It is in-
spired by, and similar in usage, to Bouguet’s Toolbox for perspective cameras. Another
MATLAB Toolbox, by Juho Kannala, handles wide angle central cameras and is avail-
able at http://www.ee.oulu.fi/~jkannala/calibration.

The unifi ed imaging model was introduced by Geyer and Daniilidis (2000) in the
context of catadioptric cameras. Later it was shown (Ying and Hu 2004) that many fi sh-
eye cameras can also be described by this model. The fi sheye calibration of Sect. 11.4.1
was described by Hansen et al. (2010) who estimates ` and m rather than a polynomial
function r(θ) as does Scaramuzza’s Toolbox.

There is a huge and growing literature on light-fi eld imaging but as yet no text-
book. A great introduction to light fi elds and its application to robotics is the thesis
by Dansereau (2014). The same author has a MATLAB Toolbox available at http://
mathworks.com/matlabcentral/fileexchange/49683. An interesting description of an
early camera array is given by Wilburn et al. (2005) and the associated video demon-
strates many capabilities. Light-fi eld imaging is a subset of the larger, and growing,
fi eld of computational photography.

Toolbox Notes

The Toolbox camera classes CentralCamera, FishEyeCamera and SphericalCamera
are all derived from the abstract superclass Camera. Common methods of all classes are
shown in Table 11.3.

11.7 · Wrapping Up

356 Chapter 11 · Image Formation

The virtual camera view has similar behavior to a MATLAB fi gure. By default plot
and mesh will redraw the camera’s view. If no camera view exists one will be created. The
methods clf and hold are analogous to the MATLAB commands clf and hold.

The constructor of all camera classes accepts a number of option arguments which are
listed in Table 11.4. Specifi c camera subclasses have unique options which are described
in the online documentation. With no arguments the default CentralCamera param-
eters are for a 1 024 × 1 024 image, 8 mm focal length lens and 10 µm square pixels. If the
principal point is not set explicitly it is assumed to be in the middle of the image plane.

Exercises

1. Create a central camera and a cube target and visualize it for different camera and
cube poses. Create and visualize different 3D mesh shapes such as created by the
MATLAB functions cylinder and sphere.

2. Write a script to fl y the camera in an orbit around the cube, always facing toward
the center of the cube.

3. Write a script to fl y the camera through the cube.
4. Create a central camera with lens distortion and which is viewing a 10 × 10 pla-

nar grid of points. Vary the distortion parameters and see the effect this has on the
shape of the projected grid. Create pincushion and barrel distortion.

5. Repeat the homogeneous camera calibration exercise of Sect. 11.2.1 and the decom-
position of Sect. 11.2.2. Investigate the effect of the number of calibration points,
noise and camera distortion on the calibration residual and estimated target pose.

Table 11.4.
Common options for camera
class constructors

Table 11.3.
Common methods for all
Toolbox camera classes

357

6. Determine the solid angle for a rectangular pyramidal fi eld of view that subtends
angles θ h and θ v.

7. Do example 1 from Bouguet’s Camera Calibration Toolbox.
8. Calibrate the camera on your computer.
9. Derive Eq. 11.14.
10. For the camera calibration matrix decomposition example (Sect. 11.2.2) determine

the roll-pitch-yaw orientation error between the true and estimated camera pose.
11. Pose estimation (Sect. 11.2.3)

a) Repeat the pose estimation exercise for different object poses (closer, further
away).

b) Repeat for different levels of camera noise.
c) What happens as the number of points is reduced?
d) Does increasing the number of points counter the effects of increased noise?
e) Change the intrinsic parameters of the camera cam before invoking the est-
pose method. What is the effect of changing the focal length and the principal
point by say 5%.

12. Repeat exercises 2 and 3 for the fi sheye camera and the spherical camera.
13. With reference to Fig. 11.19 derive the function ψ(θ) for a parabolic mirror.
14. With reference to Fig. 11.19 derive the equation of the equiangular mirror z(x) in

the xz-plane.
15. Quadrics

a) Write a routine to plot a quadric given a 4 × 4 matrix. Hint use meshgrid and
 isosurface.

b) Write code to compute the quadric matrix for a sphere at arbitrary location and
of arbitrary radius.

c) Write code to compute the quadric matrix for an arbitrary circular cylinder.
d) Write numeric MATLAB code to plot the planar conic section described by a

3 × 3 matrix.
16. Project an ellipsoidal or spherical quadric to the image plane. The result will be the

implicit equation for a conic – write code to plot the implicit equation.

11.7 · Wrapping Up

Chapter

12

 Image processing is a computational process that transforms one or
more input images into an output image. Image processing is frequent-
ly used to enhance an image for human viewing or interpretation, for
example to improve contrast. Alternatively, and of more interest to ro-
botics, it is the foundation for the process of feature extraction which
will be discussed in much more detail in the next chapter.

An image is a rectangular array of picture elements (pixels) so we
will use a MATLAB® matrix to represent an image in the workspace.
This allows us to use MATLAB’s powerful and effi cient armory of ma-
trix operators and functions.

We start in Sect. 12.1 by describing how to load images into MATLAB
from sources such as fi les (images and movies), cameras and the internet.
Next, in Sect. 12.2, we introduce image histograms which provide use-
ful information about the distribution of pixel values. We then discuss
various classes of image processing algorithms. These algorithms oper-
ate pixel-wise on a single image, a pair of images, or on local groups of

pixels within an image and we refer to these as monadic, diadic, and spatial operations
respectively. Monadic and diadic operations are covered in Sect. 12.3 and 12.4. Spatial
 operators are described in Sect. 12.5 and include operations such as smoothing, edge
detection, and template matching. A closely related technique is shape-specifi c fi ltering
or mathematical morphology and this is described in Sect. 12.6. Finally in Sect. 12.7 we
discuss shape changing operations such as cropping, shrinking, expanding, as well as
more complex operations such as rotation and generalized image warping.

Robots will always gather imperfect images of the world due to noise, shadows, re-
fl ections and uneven illumination. In this chapter we discuss some fundamental tools
and “tricks of the trade” that can be applied to real-world images.

12.1
l
Obtaining an Image

Today digital images are ubiquitous since cameras are built into our digital devices and
images cost almost nothing to create and share. We each have ever growing personal col-
lections and access to massive online collections of digital images such as Google Images,
Picasa or Flickr. We also have access to live image streams from other people’s cameras
– there are tens of thousands of webcams around the world capturing images and broad-
casting them on the internet, as well images of Earth from space, the Moon and Mars.

12.1.1
l
Images from Files

We start with images stored in fi les since it is very likely that you already have lots of
images stored on your computer. In this chapter we will work with some images pro-
vided with the Toolbox, but you can easily substitute your own images. We import an
image into the MATLAB workspace using the Toolbox function iread

Images and Image Processing

360 Chapter 12 · Images and Image Processing

>> street = iread('street.png');

which returns a matrix

>> about(street)
street [uint8] : 851x1280 (1.1 MB)

that belongs to the class uint8 – the elements of the matrix are unsigned 8-bit inte-
gers in the interval [0,255]. The elements are referred to as pixel values or grey val-
ues and are the gamma-encoded� luminance of that point in the original scene. For
this 8-bit image the pixel values vary from 0 (darkest) to 255 (brightest). The image
is shown in Fig. 12.1a.

The matrix has 851 rows and 1 280 columns. We normally describe the dimensions of
an image in terms of its width × height, so this would be a 1 280 × 851 pixel image.

In Chap. 11 we wrote the coordinates of a pixel as (u, v) which are the horizon-
tal and vertical coordinates respectively. In MATLAB this is the matrix element
(v, u) – note the reversal of coordinates. Note also that the top-left pixel is (1, 1)
in MATLAB not (0, 0).

For example the pixel at image coordinate (300, 200) is
>> street(200,300)
ans =
 42

which is quite dark – the pixel corresponds to a point in the closest doorway.
There are some subtleties when working with uint8 values in MATLAB which we

can demonstrate by defi ning two uint8 values

>> a = uint8(100)
a =
 100
>> b = uint8(200)
b =
 200

Arithmetic on uint8 values obeys the rules of uint8 arithmetic

>> a+b
ans =
 255
>> a-b
ans =
 0

and values are clipped to the interval 0 to 255. For division
>> a/b
ans =
 1

the result has been rounded up to an integer value. For some image processing opera-
tions that we will consider later it is useful to consider the pixel values as fl oating-point

A very large number of image file formats have been developed and are comprehensively catalogued at
http://en.wikipedia.org/wiki/Image_file_formats. The most popular is JPEG which is used for digital
cameras and webcams. TIFF is common in many computer systems and often used for scanners. PNG
and GIF are widely used on the web. The internal format of these fi les are complex but a large amount of
good quality open-source software exists in a variety of languages to read and write such fi les. MATLAB
is able to read many of these image fi le formats.

A much simpler set of formats, widely used on Linux systems, are PBM, PGM and PPM (generically
PNM) which represent images without compression, and optionally as readable ASCII text. A host of
open-source tools such as ImageMagick provide format conversions and image manipulation under
Linux, MacOS X and Windows. (word map by tagxedo.com)

Gamma encoding and decoding is dis-
cussed in Sect. 10.3.6. Use the 'gamma'
option for iread to perform gamma
decoding and obtain pixel values pro-
portional to scene luminance.

361

numbers for which more familiar arithmetic rules apply. In this case each pixel is an
8-byte MATLAB double precision number in the range [0, 1] and we can specify this
as an option when we load the image

>> streetd = iread('street.png', 'double');
>> about streetd
streetd [double] : 851x1280 (8.7 MB)

or by applying the function idouble to the integer image.
The image was read from a fi le called street.png which is in portable network

graphics (PNG) format – a lossless compression format� widely used on the internet.
The function iread searches for the image in the current folder, and then in each
folder along your MATLAB path.� This particular image has no color, it is a greyscale
or monochromatic image.

A tool that we will use a lot in this part of the book is idisp

>> idisp(street)

which displays the matrix as an image and allows interactive inspection of pixel val-
ues as shown in Fig. 12.1. Clicking on a pixel will display the pixel coordinate and its
 grey value – integer or fl oating point – in the top right of the window. The image can
be zoomed (and unzoomed), we can display a histogram or the intensity profi le along
a line between any two selected points, or change the color map.� It has many options
and these are described in the online documentation.

We can just as easily load a color image
>> fl owers = iread('fl owers8.png');
>> about(fl owers)
fl owers [uint8] : 426x640x3 (817920 bytes)

which is a 426 × 640 × 3 matrix of uint8 values as shown in Fig. 12.1b. We can think
of this as a 426 × 640 matrix of RGB tristimulus values, each of which is a 3-vector. For
example the pixel at (318, 276)

>> pix = fl owers(276,318,:)
ans(:,:,1) =
 57
ans(:,:,2) =
 91
ans(:,:,3) =
 198

has a tristimulus value (57, 91, 198) but has been displayed by MATLAB in an unusual
and noncompact manner. This is because the pixel value is

Lossless means that the compressed im-
age, when uncompressed, will be exactly
the same as the original image.

The example images are kept within the
images folder of the Machine Vision
Toolbox distribution which is automati-
cally searched by the iread function.

The colormap controls the mapping of
pixel values to the displayed intensity or
color.

Fig. 12.1. The idisp image brows-
ing window. The top right shows
the coordinate and value of the
last pixel clicked on the image. The
buttons at the top left allow the pixel
values along a line to be plotted, a
 histogram to be displayed, or the
image to be zoomed. a Greyscale
image; b color image

12.1 · Obtaining an Image

362 Chapter 12 · Images and Image Processing

>> about(pix)
pix [uint8] : 1x1x3 (3 bytes)

a 1 × 1 × 3 matrix. The fi rst two dimensions are called singleton dimensions and we
can squeeze them out

>> squeeze(pix)'
ans =
 57 91 198

which results in a more familiar 3-vector. This pixel corresponds to one of the small
blue fl owers and has a large blue component. We can display the image and examine
it interactively using idisp and clicking on a pixel will display its tristimulus value.

The tristimulus values are of type uint8 in the range [0, 255] but the image can
be converted to double precision values in the range [0, 1] using the 'double' op-
tion to iread or by applying the function idouble to the integer color image, just
as for a greyscale image.

The image is a matrix with three dimensions and the third dimension as shown in
Fig. 12.2 is known as the color plane index. For example

>> idisp(fl owers(:,:,1))

would display the red color plane as a greyscale image that shows the red stimulus at
each pixel. The index 2 or 3 would select the green or blue plane respectively.

The option 'grey' ensures that a greyscale image is returned irrespective of
whether or not the fi le contains a color image.� The option 'gamma' performs gam-
ma decoding and returns a linear image where the greylevels, or tristimulus values,
are proportional to the luminance of the original scene.

The iread function can also accept a wildcard fi lename allowing it to load a se-
quence of fi les. For example

>> seq = iread('seq/*.png');
>> about(seq)
seq [uint8] : 512x512x9 (2.4 MB)

loads nine images in PNG format from the folder seq. The result is a H × W × N ma-
trix and the last index represents the image number within the sequence. That is
seq(:,:,k) is the kth image in the sequence and is a 512 × 512 greyscale image. In
terms of Fig. 12.2 the images in the sequence extend in the p direction. If the images were
color then the result would be a H × W × 3 × N matrix where the last index represents
the image number within the sequence, and the third index represents the color plane.

Fig. 12.2.
Color image shown as a 3-dimen-
sional structure with dimensions:
row, column, and color plane

Using ITU Rec. 709 by default. See also the
Toolbox monadic operator imono.

363

If iread is called with no arguments, a fi le browsing window pops up allowing navi-
gation through the fi le system to fi nd the image. The function also accepts a URL allow-
ing it to load an image, but not a sequence, from the web. The function can read most
common image fi le formats including JPEG, TIFF, GIF, PNG, PGM, PPM, PNM.

Many image fi le formats also contain rich metadata – data about the data in the fi le.
The JPEG fi les generated by most digital cameras are particularly comprehensive and
the metadata can be retrieved by providing a second output argument to iread

>> [im,md]=iread('church.jpg');
>> md
md = ...
 Width: 1280
 Height: 851
 Make: 'Panasonic'
 Model: 'DMC-FZ30'
 Orientation: 1
 DigitalCamera: [1x1 struct]

and the DigitalCamera substructure has additional details about the camera settings
for the particular image

>> md.DigitalCamera
ans = ...
 ExposureTime: 0.0025
 FNumber: 8
 ISOSpeedRatings: 80
 Flash: 'Flash did not fi re…'
 FocalLength: 7.4000

More details and options for iread are described in the online documentation.

12.1.2
l
Images from an Attached Camera

Most laptop computers today have a builtin camera for video conferencing. For com-
puters without a builtin camera an external camera can be easily attached via a USB
or FireWire connection. The means of accessing a camera is operating system specifi c.�
A list of all attached cameras and their resolution can be obtained by

>> VideoCamera('?')

We open a particular camera

>> cam = VideoCamera('name')

which returns an instance of a VideoCamera object that is a subclass of the
ImageSource class. If name is not provided the fi rst camera found is used. The
constructor accepts a number of additional arguments such as 'grey' which en-
sures that the returned image is greyscale irrespective of the camera type, 'gamma'

JPEG employs lossy compression to reduce the size of the fi le. Unlike
normal fi le compression (eg. zip, rar, etc.) and decompression, the
decompressed image isn’t the same as the original image and this
allows much greater levels of compression. JPEG compression ex-
ploits limitations of the human eye and discards information that
won’t be noticed such as very small color changes (which are per-
ceived less accurately than small changes in brightness) and fi ne
texture. It is very important to remember that JPEG is intended for
compressing images that will be viewed by humans. The loss of color
detail and fi ne texture may be problematic for computer algorithms
that analyze images.

JPEG was designed to work well for natural scenes but it does not
do so well on lettering and line drawings with high spatial-frequency

content. The degree of loss can be varied by adjusting the so-called
quality factor which allows a tradeoff between image quality and fi le
size. JPEG can be used for greyscale or color images.

What is commonly referred to as a JPEG fi le, often with an exten-
sion of .jpg or .jpeg, is more correctly a JPEG JFIF fi le. JFIF is
the format of the fi le that holds a JPEG-compressed image as well
as metadata. EXIF fi le format (Exchangeable Image File Format)
is a standard for camera related metadata such as camera set-
tings, time, location and so on. This metadata can be retrieved as
a second output argument to iread as a cell array, or by using
a command-line utility such as exiftool (http://www.sno.phy.
queensu.ca/~phil/exiftool). See the Independent JPEG group web
site http://www.ijg.org for more details.

The Toolbox provides a simple interface to
a camera for MacOS, Linux and Windows
but more general support requires the
Image Acquisition Toolbox.

12.1 · Obtaining an Image

364 Chapter 12 · Images and Image Processing

to apply gamma decoding, and 'framerate' which sets the number of frames cap-
tured per second.

The dimensions of the image returned by the camera are given by the size method

>> cam.size()

and an image is obtained using the grab method

>> im = cam.grab();

which waits until the next frame becomes available.� With no output arguments the
acquired image is displayed using idisp.

Since the frames are generated at a
rate of R per second as specified by the
'framerate' option, then the
worst case wait is uniformly distribut-
ed in the interval [0,1/R). Ungrabbed
images don’t accumulate, they are dis-
carded.

 focal length, lens quality and vignetting. Exposure time T has an
upper bound equal to the inverse frame rate. To avoid motion
blur a short exposure time is needed, which leads to darker and
noisier images.

The integer pixel value is

where k is a gain related to the ISO settinga of the camera. To
obtain an sRGB (see page 311) image with an average value of
118b the required exposure is

where SSOS is the ISO rating – standard output sensitivity (SOS)
– of the digital camera. Higher ISO increases image brightness
by greater amplifi cation of the measured charge but the various
noise sources are also amplifi ed leading to increased image noise
which is manifested as graininess.

In photography the camera settings that control image bright-
ness can be combined into an exposure value (EV)

and all combinations of f-number and shutter speed that have the
same EV value yield the same exposure. This allows a tradeoff be-
tween aperture (depth of fi eld) and exposure time (motion blur).
For most low-end cam-
eras the aperture is fi xed
and the camera controls
exposure using T instead
of relying on an expen-
sive, and slow, mechan-
ical aperture. A differ-
ence of 1 EV is a factor of
two change in exposure
which photographers re-
fer to as a stop. Increasing
EV results in a darker im-
age – most DSLR camer-
as allow you to manually
adjust EV relative to what
the camera’s lightmeter
has determined.

a Which is backward compatible with historical scales (ASA, DIN,
ISO) devised to refl ect the sensitivity of chemical fi lms for cameras
– a higher number refl ected a more sensitive or “faster” fi lm.

b 18% saturation, middle grey, of 8-bit pixels with gamma of 2.2.

Photons to pixel values. A lot goes on inside a camera. Over a fi xed
time interval the number of photons falling on a photosite fol-
lows a Poisson distribution. The mean number of photons and
the variance are proportional to the luminance – this variance ap-
pears as shot noise on the pixel value. A fraction of these photons
are converted to electrons – this is the quantum effi ciency of the
sensor – and they accumulate in a charge well at the photosite .
The number of photons captured is proportional to surface area
but not all of a photosite is light sensitive due to the presence of
transistors and other devices – the fraction of the photosite’s area
that is sensitive is called the fi ll factor and for CMOS sensors can
be less than 50%, but this can be improved by fabricating micro-
lenses above each photosite.

The charge well also accumulates thermally generated elec-
trons, the dark current, which is proportional to temperature
and is a source of noise – extreme low light cameras are cooled.
Another source of noise is pixel nonuniformity due to adjacent
pixels having a different gain or offset – uniform illumination
therefore leads to pixels with different values which appears as
additive noise. The charge well has a maximum capacity and with
excessive illumination surplus electrons can overfl ow into adja-
cent charge wells leading to fl aring and bleeding.

At the end of the exposure interval the accumulated charge
(thermal- and photo-electrons) is read. For low-cost CMOS sen-
sors the charge wells are connected sequentially via a switching
network to one or more on-chip analog to digital converters. This

results in a rolling shut-
ter and for high speed
relative motion this leads
to tearing or jello effect
as shown to the right.
More expensive CMOS
and CCD sensors have
a global shutter – they
make a temporary snap-
shot copy of the charge
in a buffer which is then
digitized sequentially.

The exposure on the
sensor is

where L is scene lumi-
nance (in nit), T is ex-
posure time, N is the
 f-number (inverse ap-
erture diameter) and
q ≈ 0.7 is a function of

365

12.1.3
l
Images from a Movie File

In Sect. 12.1.1 we loaded an image sequence into memory where each image came
from a separate image fi le. More commonly image sequences are stored in a movie
fi le format such as MPEG4 or AVI and it may not be practical or possible to keep the
whole sequence in memory.

The Toolbox supports reading frames from a movie fi le stored in any of the popular
formats such as AVI, MPEG and MPEG4. For example we can open a movie fi le

>> cam = Movie('traffi c_sequence.mpg');
traffi c_sequence.mpg
720 x 576 @ 30 fps; 351 frames, 11.7 sec
cur frame 1/351 (skip=1)

which returns a Movie object that is an instance of a subclass of the ImageSource
class and therefore polymorphic with the VideoCamera class just described. This
movie has 350 frames and was captured at 30 frames per second.

The size of each frame within the movie is
>> cam.size()
ans =
 720 576

and the next frame is read from the movie fi le by
>> im = cam.grab();
>> about(im)
im [uint8] : 576x720x3 (1244160 bytes)

which is a 720 × 576 color image. With these few primitives we can write a very sim-
ple movie player

1 while 1
2 im = cam.grab;
3 if isempty(im) break; end
4 image(im); drawnow
5 end

where the test at line 3 is to detect the end of fi le, in which case grab returns an emp-
ty matrix.

The methods nframes and framerate provide the total number of frames and
the number of frames per second. The methods skiptotime and skiptoframe
provide an ability to select particular frames within the movie.

The dynamic range of a sensor is the ratio of its largest value to
its smallest value. For images it is useful to express the log2 of
this ratio which makes it equivalent to the photographic con-
cepts of stops or exposure value. Each photosite contains a
 charge well in which photon-generated electrons are captured
during the exposure period (see page 364). The charge well has
a fi nite capacity before the photosite saturates and this defi nes
the maximum value. The minimum number of electrons is not
zero but a fi nite number of thermally generated electrons.

An 8-bit image has a dynamic range of around 8 stops, a high-
end 10-bit camera has a range of 10 stops, and photographic fi lm
is perhaps in the range 10–12 stops but is quite nonlinear.

At a particular state of adaptation, the human eye has a range
of 10 stops, but the total adaptation range is an impressive
20 stops. This is achieved by using the iris and slower (tens of
minutes) chemical adaptation of the sensitivity of rod cells.
Dark adaptation to low luminance is slow, whereas adaptation
from dark to bright is faster but sometimes painful.

Video file formats. Just as for im-
age fi les there are a large number
of different fi le formats for videos.
The most common formats are
MPEG and AVI. It is important to
distinguish between the format of
the fi le (the container), technically
AVI is a fi le format, and the type of
 compression (the codec) used on
the images within the fi le.

MPEG and AVI format fi les can be converted to a sequence
of frames as individual fi les using tools such as FFmpeg and
convert from the ImageMagick suite. The individual frames
can then be loaded individually into MATLAB for process-
ing using iread. The Toolbox Movie class provides a more
convenient way to read frames directly from common movie
formats without having to fi rst convert the movies to a set of
individual frames. (word map by tagxedo.com)

12.1 · Obtaining an Image

366 Chapter 12 · Images and Image Processing

12.1.4
l
Images from the Web

The term web camera has come to mean any USB or Firewire connected local cam-
era but here we use it to refer to an internet connected camera that runs a web server
that can deliver images on request. There are tens of thousands of these web cam-
eras around the world that are pointed at scenes from the mundane to the spectac-
ular. Given the URL of a webcam from Axis Communications� we can acquire an
image from a camera anywhere in the world and place it in a matrix in our MATLAB
workspace.

For example we can connect to a camera at Dartmouth College in New Hamp-
shire

>> cam = AxisWebCamera('http://wc2.dartmouth.edu');

which returns an AxisWebCamera object which is an instance of a subclass of the
ImageSource class and therefore polymorphic with the VideoCamera and Movie
classes previously described.

The image size in this case is
>> cam.size()
ans =
 480 640

and the next image is obtained by

>> im = cam.grab();

which returns a color image such as the one shown in Fig. 12.3. Webcams are confi g-
ured by their owner to take pictures periodically, anything from once per second to
once per minute. Repeated access will return the same image until the camera takes
its next picture.

 Aspect ratio is the ratio of an image’s width to its height. It varies widely across different imaging
and display technologies. For 35 mm fi lm it is 3 : 2 (1.5) which matches a 4 × 6'' (1.5) print. Other
print sizes have different aspect ratios: 5 × 7'' (1.4), and 8 × 10'' (1.25) which require cropping
the vertical edges of the image in order to fi t.

TV and early computer monitors used 4 : 3 (1.33), for example the ubiquitous 640 × 480 VGA
format. HDTV has settled on 16 : 9 (1.78). Modern digital SLR cameras typically use 1.81 which
is close to the ratio for HDTV. In movie theatres very-wide images are preferred with aspect ra-
tios of 1.85 or even 2.39. CinemaScope was developed by 20th Century Fox from the work of Henri
Chrétien in the 1920s. An anamorphic lens on the camera compresses a wide image into a stan-
dard aspect ratio in the camera, and the process is reversed at the projector.

Fig. 12.3.
An image from the Dartmouth
University webcam which looks
out over the main college green

Webcams support a variety of options
that can be embedded in the URL and
there is no standard for these. This
Toolbox function only supports web-
cams from Axis Communications.

367

12.1.5
l
Images from Maps

You can access satellite views and road maps of anywhere on the planet from inside
MATLAB. First create an instance of an EarthView object

>> ev = EarthView('key', YOUR_KEY);

where YOUR_KEY is your 86-character Google API key�. To grab a satellite image of
my university is simply

>> ev.grab(-27.475722,153.0285, 17);

which is shown in Fig. 12.4a, and the arguments are latitude, longitude and a zoom
level�. With no output arguments the result will be displayed using idisp . If the co-
ordinates are unknown we can perform a lookup by name

>> ev.grab('QUT brisbane', 17)

Instead of a satellite view we can select a road map view

>> ev.grab(-27.475722,153.0285, 15, 'map');

which shows rich mapping information such as road and place names. A simpler rep-
resentation is given by

>> ev.grab(-27.475722,153.0285, 15, 'roads');

which is shown in Fig. 12.4 as a binary image where white pixels correspond to roads
and everything else is black – we could use this occupancy grid for robot path plan-
ning as discussed in Chap. 5.

12.1.6
l
Images from Code

When debugging an algorithm it can be very helpful to start with a perfect and simple
image before moving on to more challenging real-world images. You could draw such
an image with your favorite drawing package and import it to MATLAB, or draw it
directly in MATLAB. The Toolbox function testpattern generates simple images
with a variety of patterns including lines, grids of dots or squares, intensity ramps and
intensity sinusoids. For example

>> im = testpattern('rampx', 256, 2);
>> im = testpattern('siny', 256, 2);
>> im = testpattern('squares', 256, 50, 25);
>> im = testpattern('dots', 256, 256, 100);

To obtain an API key you need to register
on the Google Developers Console and
agree to abide by Google's terms and
conditions of usage.

Zoom level is an integer and a value of
zero returns a view that covers the entire
Earth. Every increase by one doubles the
resolution in the x- and y-directions.

Fig. 12.4.
Aerial views of Brisbane,

Australia. a Color aerial image;
b binary image or occupancy

grid where white pixels are
driveable roads (images provid-

ed by Google, CNES/Astrium,
Sinclair Knight Merz & Fugro)

12.1 · Obtaining an Image

368 Chapter 12 · Images and Image Processing

are shown in Fig. 12.5a. The second argument is the size of the of the created image,
in this case they are all 256 × 256 pixels, and the remaining arguments are specifi c to
the type of pattern requested. See the online documentation for details.

We can also construct an image from simple graphical primitives.� First we create
a blank canvas containing all black pixels (pixel value of zero)

>> canvas = zeros(1000, 1000);

and then we create two squares

>> sq1 = 0.5 * ones(150, 150);
>> sq2 = 0.9 * ones(80, 80);

The fi rst has pixel values of 0.5 (medium grey) and is 40 × 40. The second is smaller (just
20 × 20) but brighter with pixel values of 0.9. Now we can paste these onto the canvas

>> canvas = ipaste(canvas, sq1, [100 100]);
>> canvas = ipaste(canvas, sq2, [300 300]);

where the last argument specifi es the canvas coordinate (u, v) where the pattern will be
pasted – the top-left corner of the pattern on the canvas. We can also create a circle

>> circle = 0.6 * kcircle(120);

of radius 30 pixels with a grey value of 0.6. The Toolbox function kcircle returns
a square matrix

>> size(circle)
ans =
 61 61

of zeros with a centered maximal disk of values set to one. We can paste that on to
the canvas as well

>> canvas = ipaste(canvas, circle, [600, 200]);

Finally, we draw a line segment onto our canvas

>> canvas = iline(canvas, [100 100], [800 800], 0.8);

which extends from (100, 100) to (800, 800) and its pixels are all set to 0.8. The result

>> idisp(canvas)

is shown in Fig. 12.5b. We can clearly see that the shapes have different brightness,
and we note that the line and the circle show the effects of quantization which results
in a steppy or jagged shape.�

Note that all these functions take coordinates expressed in (u, v) notation not
MATLAB row column notation. The top-left pixel is (1, 1) not (0, 0).

Fig. 12.5.
Images from code. a Some Tool-
box generated test patterns;
b Simple image created from
graphical primitives

An image/matrix can be edited using the
command openvar('canvas')
which brings up a spreadsheet-like in-
terface.

In computer graphics it is common to ap-
ply anti-aliasing where edge pixels and
edge-adjacent pixels are set to fractional
grey values which give the impression of
a smoother line.

369

12.2
l
Image Histograms

The distribution of pixel values provides useful information about the quality of the im-
age and the composition of the scene. We obtain the distribution by computing the his-
togram of the image which indicates the number of times each pixel value occurs. For
example the histogram of the image, shown in Fig. 12.8a, is computed and displayed by

>> church = iread('church.png', 'grey');
>> ihist(church)

and the result is shown in Fig. 12.6a. We see that the grey values (horizontal axis) span
the range from 5 to 238 which is close to the full range of possible values. If the image
was under-exposed the histogram area would be shifted to the left. If the image was
over-exposed the histogram would be shifted to the right and many pixels would have
the maximum value. A cumulative histogram is shown in Fig. 12.6b and its use will be
discussed in the next section. Histograms can also be computed for color images, in
which case the result is three histograms – one for each color channel.

In this case distribution of pixel values is far from uniform and we see that there are
three signifi cant peaks. However if we look more closely we see lots of very minor peaks.
The concept of a peak depends on the scale at which we consider the data. We can obtain
the histogram as a pair of vectors

>> [n,v] = ihist(church);

where the elements of n are the number of times pixels occur with the value of the cor-
responding element of v. The Toolbox function peak will automatically fi nd the posi-
tion of the peaks

>> [~,x] = peak(n, v)
>> about x
x [double] : 1x58 (464 bytes)

and in this case has found 58 peaks most of which are quite minor. Peaks that are sig-
nifi cant are not only greater than their immediate neighbors they are greater than all
other values nearby – the problem now is to specify what we mean by nearby. For ex-
ample the peaks that are greater than all other values within ±25 pixel values in the
horizontal direction are

>> [~,x] = peak(n, v, ‚scale', 25)
x =
 213 147 41

which are the three signifi cant peaks that we observe by eye. The critical part of fi nd-
ing the peaks is choosing the appropriate scale. Peak fi nding is a topic that we will en-
counter again later and is also discussed in Appendix J.

Fig. 12.6. Church scene. a Histo-
gram, b cumulative histogram be-
fore and after normalization

12.2 · Image Histograms

370 Chapter 12 · Images and Image Processing

The peaks in the histogram correspond to particular populations of pixels in the
image. The lowest peak corresponds to the dark pixels which generally belong to the
ground and the roof. The middle peak generally corresponds to the sky pixels, and
the highest peak generally corresponds to the white walls. However each of the scene
elements has a distribution of grey values and for most real scenes we cannot sim-
ply map grey level to a scene element. For example some sky pixels are brighter than
some wall pixels, and a very small number of ground pixels are brighter than some
sky and wall pixels.

12.3
l
Monadic Operations

Monadic image-processing operations are shown schematically in Fig. 12.7. The re-
sult is an image of the same size W × H as the input image, and each output pixel is a
function of the corresponding input pixel

One useful class of monadic functions changes the type of the pixel data. For ex-
ample to change from uint8 (integer pixels in the range [0, 255]) to double precision
values in the range [0, 1] we use the Toolbox function idouble

>> imd = idouble(church);

and vice versa

>> im = iint(imd);

A color image has 3-dimensions which we can also consider as a 2-dimensional image
where each pixel value is a 3-vector. A monadic operation can convert a color image
to a greyscale image where each output pixel value is a scalar representing the lumi-
nance of the corresponding input pixel

>> grey = imono(fl owers);

The inverse operation is

>> color = icolor(grey);

which returns a 3-dimensional color image where each color plane is equal to grey
– when displayed it still appears as a monochrome image. We can create a color im-
age where the red plane is equal to the input image by

>> color = icolor(grey, [1 0 0]);

which is a red tinted version of the original image.

Fig. 12.7.
Monadic image processing op-
erations. Each output pixel is a
function of the corresponding
input pixel (shown in red)

371

A very common monadic operation is thresholding. This is a logical monadic op-
eration which separates the pixels into two classes according to their intensity

>> bright = (church >= 180);
>> idisp(bright)

and the resulting image is shown in Fig. 12.8b where all pixels that lie in the inter-
val [180, 255] are shown as white. Such images, where the pixels have only two values are
known as binary images. Looking at the image histogram in Fig. 12.6a we see that the grey
value of 180 lies midway between the second and third peak which is a good approxima-
tion to the optimal strategy for separating pixels belonging to these two populations.

The variable bright is of type logical where the pixels have values of only true or
false. MATLAB automatically converts these to one and zero respectively when used
in arithmetic operations and the idisp function does likewise.

Fig. 12.8. Some monadic image
operations: a original, b thresh-
olding, c histogram normalized,
d gamma correction, e brightness
increase, f posterization. Inset in
each fi gure is a graph showing the
mapping from image grey level on
the horizontal axis to the output
value on the vertical axis

12.3 · Monadic Operations

372 Chapter 12 · Images and Image Processing

Many monadic operations are concerned with altering the distribution of grey lev-
els within the image. Sometimes an image does not span the full range of available
grey levels, for example the image is under- or over-exposed. We can apply a linear
mapping to the grey-scale values

>> im = istretch(church);

which ensures that pixel values span the full range� which is either [0, 1] or [0, 255]
depending on the class of the image.

A more sophisticated version is histogram normalization or histogram equalization

>> im = inormhist(church);

which is based on the cumulative distribution

>> ihist(church, 'cdf');

as shown in Fig. 12.6b. Mapping the original image via the normalized cumulative distri-
bution ensures that the cumulative distribution of the resulting image is linear – all grey
values occur an equal number of times. The result is shown in Fig. 12.8c and now details
of wall and sky texture which had a very small grey-level variation have been accentuated.

Operations such as istretch and inormhist can enhance the image from
the perspective of a human observer, but it is important to remember that no
new information has been added to the image. Subsequent image processing
steps will not be improved.

As discussed in Sect. 10.3.6 the output of a camera is generally gamma encoded so
that the pixel value is a nonlinear function Lγ of the luminance sensed at the photosite.
Such images can be gamma decoded by a nonlinear monadic operation

>> im = igamm(church, 1/0.45);

that raises each pixel to the specifi ed power as shown in Fig. 12.8d, or

>> im = igamm(church, 'sRGB');

to decode images with the sRGB standard gamma encoding.�

Another simple nonlinear monadic operation is posterization or banding. This
pop-art effect is achieved by reducing the number of grey levels

>> idisp(church/64)

as shown in Fig. 12.8f. Since integer division is used the resulting image has pixels with
values in the range [0, 3] and therefore just four different shades of grey. Finally, since
an image is represented by a matrix any MATLAB element-wise matrix function or
operator is a monadic operator, for example unary negation, scalar multiplication or
addition, or functions such abs or sqrt.

12.4
l
Diadic Operations

Diadic operations are shown schematically in Fig. 12.9. Two input images result in a
single output image, and all three images are of the same size. Each output pixel is a
function of the corresponding pixels in the two input images

Examples of useful diadic operations include binary arithmetic operators such as
addition, subtraction, element-wise multiplication, or builtin MATLAB diadic matrix
functions such as max, min, atan2.

The histogram of such an image will have
gaps. If M is the maximum possible pixel
value, and N < M is the maximum value in
the image then the stretched image will
have at most N unique pixel values, mean-
ing that M − N values cannot occur.

The gamma correction has now been ap-
plied twice: once by the igamm func-
tion and once in the display device. This
makes the resulting image appear to have
unnaturally high contrast.

373

Subtracting one uint8 image from another results in another uint8 image
even though the result is potentially negative. MATLAB quite properly clamps
values to the interval [0, 255] so subtracting a larger number from a smaller
number will result in zero not a negative value. With addition a result greater
than 255 will be set to 255. To remedy this, the images should be first converted
to signed integers using the MATLAB function cast or to floating-point values
using the Toolbox function idouble.

We will illustrate diadic operations with two examples. The fi rst example is chro-
ma-keying – a technique commonly used in television to superimpose the image of a
person over some background, for example a weather presenter superimposed over a
weather map. The subject is fi lmed against a blue or green background which makes
it quite easy, using just the pixel values, to distinguish between background and the
subject. We load an image of a subject taken in front of a green screen

>> subject = iread('greenscreen.jpg', 'double');

and this is shown in Fig. 12.10a. We compute the chromaticity coordinates Eq. 10.9

>> linear = igamm(subject, 'sRGB');
>> [r,g] = tristim2cc(linear);

after fi rst converting the gamma encoded color image to linear tristimulus values. In
this case g alone is suffi cient to distinguish the background pixels. A histogram of values

>> ihist(g)

shown in Fig. 12.10b indicates a large population of pixels around 0.55 which is the
background and another population which belongs to the subject. We can safely say
that the subject corresponds to any pixel for which g < 0.45 and create a mask image

>> mask = g < 0.45;
>> idisp(mask)

where a pixel is true (equal to one and displayed as white) if it is part of the subject
as shown in Fig. 12.10c. We need to apply this mask to all three color planes so we
replicate it

>> mask3 = icolor(idouble(mask));

The image of the subject without the background is

>> idisp(mask3 .* subject);

Next we load the desired background image

>> bg = iread('road.png', 'double');

Fig. 12.9. Diadic image processing
operations. Each output pixel is a
function of the two correspond-
ing input pixels (shown in red)

12.4 · Diadic Operations

374 Chapter 12 · Images and Image Processing

and scale and crop it to be the same size as our original image

>> bg = isamesize(bg, subject);

and display it with a cutout for the subject

>> idisp(bg .* (1-mask3))

Finally we add the subject with no background, to the background with no subject to
obtain the subject superimposed over the background

>> idisp(subject.*mask3 + bg.*(1-mask3));

which is shown in Fig. 12.10d. The technique will of course fail if the subject contains
any colors that match the color of the background.� This example could be solved more
compactly using the Toolbox per-pixel switching function ipixswitch

>> ipixswitch(mask, subject, bg);

where all arguments are images of the same width and height, and each output pixel
is selected from the corresponding pixel in the second or third image according to the
logical value of the corresponding pixel in the fi rst image.

Distinguishing foreground objects from the background is an important problem in
robot vision but the terms foreground and background are ill-defi ned and application
specifi c. In robotics we rarely have the luxury of a special background as we did for the
chroma-key example. We could instead take a picture of the scene without a foreground
object present and consider this to be the background, but that requires that we have
special knowledge about when the foreground object is not present. It also assumes that

Fig. 12.10. Chroma-keying. a The
subject against a green back-
ground; b a histogram of green
chromaticity values; c the com-
puted mask image where true is
white; d the subject masked into
a background scene (photo cour-
tesy of Fiona Corke)

In the early days of television a blue
screen was used. Today a green back-
ground is more popular because of prob-
lems that occur with blue eyes and blue
denim clothing.

375

the background does not vary over time. Variation is a signifi cant problem in real-world
scenes where ambient illumination and shadows change over quite short time intervals,
and the scene may be structurally modifi ed over very long time intervals.

In the next example we process an image sequence and estimate the background
even though there are a number of objects moving in the scene. We will use a recur-
sive algorithm that updates the estimated background image Î at each time step based
on the previous estimate and the current image

where k is the time step and c(·) is a monadic image saturation function

To demonstrate this we open a movie showing traffi c moving through an intersection
>> vid = Movie('traffi c_sequence.mpg', 'grey', 'double');
vid =
traffi c_sequence.mpg
720 x 576 @ 30 fps; 351 frames, 11.7 sec
cur frame 1/351 (skip=1)

and initialize the background to the fi rst image in the sequence
>> bg = vid.grab();

Fig. 12.11. Example of motion de-
tection for the traffi c sequence at
frame 200. a The current image;
b the estimated background image;
c the difference between the cur-
rent and estimated background im-
ages where white is zero, red and
blue are negative and positive val-
ues respectively and magnitude is
indicated by color intensity

12.4 · Diadic Operations

376 Chapter 12 · Images and Image Processing

then the main loop is
1 sigma = 0.02;
2 while 1
3 im = vid.grab;
4 if isempty(im) break; end; % end of fi le?
5 d = im-bg;
6 d = max(min(d, sigma), -sigma); % apply c(.)
7 bg = bg + d;
8 idisp(bg);
9 end

One frame from this sequence is shown in Fig. 12.11a. The estimated background im-
age shown in Fig. 12.11b reveals the static elements of the scene and the moving ve-
hicles have become a faint blur. Subtracting the scene from the estimated background
creates an image where pixels are bright where they are different to the background
as shown in Fig. 12.11c. Applying a threshold to the absolute value of this difference
image shows the area of the image where there is motion. Of course where the cars are
stationary for long enough they will become part of the background.

12.5
l
Spatial Operations

Spatial operations are shown schematically in Fig. 12.12. Each pixel in the output im-
age is a function of all pixels in a region surrounding the corresponding pixel in the
input image

where W is known as the window, typically a w × w square region with odd side length
w = 2h + 1 where h ∈ Z+ is the half-width. In Fig. 12.12 the window includes all pix-
els in the red shaded region. Spatial operations are powerful because of the variety of
possible functions f(·), linear or nonlinear, that can be applied. The remainder of this
section discusses linear spatial operators such as smoothing and edge detection, and
some nonlinear functions such as rank fi ltering and template matching. The follow-
ing section covers a large and important class of nonlinear spatial operators known
as mathematical morphology.

12.5.1
l
Linear Spatial Filtering

A very important linear spatial operator is correlation

 (12.1)

where K ∈Rw×w is the kernel and the elements are referred to as the fi lter coeffi cients .
For every output pixel the corresponding window of pixels from the input image W
is multiplied element-wise with the kernel K. The center of the window and kernel is
considered to be coordinate (0, 0) and i, j ∈ [−h, h] ⊂ Z× Z. This can be considered
as the weighted sum of pixels within the window where the weights are defi ned by the
 kernel K. Correlation is often written in operator form as

A closely related operation is convolution

(12.2)

377

where K ∈Rw×w is the convolution kernel. Note that the sign of the i and j indices has
changed in the fi rst term. Convolution is often written in operator form as

As we will see convolution is the workhorse of image processing and the kernel K can
be chosen to perform functions such as smoothing, gradient calculation or edge de-
tection.

Convolution is computationally expensive – an N × N input image with a w × w kernel
requires w2N2 multiplications and additions. In the Toolbox convolution is performed
using the function iconvolve

O = iconvolve(K, I);

If I has multiple color planes then so will the output image – each output color plane
is the convolution of the corresponding input plane with the kernel K.

12.5.1.1
l
Smoothing

Consider a convolution kernel which is a square 21 × 21 matrix containing equal el-
ements

>> K = ones(21,21) / 21^2;

and of unit volume, that is, its values sum to one. The result of convolving an im-
age with this kernel is an image where each output pixel is the mean of the pixels in

Fig. 12.12.
Spatial image processing op-

erations. The red shaded region
shows the window W that is the

set of pixels used to compute the
output pixel (show in red)

Correlation or convolution . These two terms are often used
loosely and they have similar, albeit distinct, defi nitions.
Convolution is the spatial domain equivalent of frequency
domain multiplication and the kernel is the impulse response
of a frequency domain fi lter. Convolution also has many use-
ful mathematical properties outlined in the adjacent box.
The difference in indexing between Eq. 12.1 and Eq. 12.2
is equivalent to refl ecting the kernel – fl ipping it horizon-
tally and vertically about its center point. Many kernels are
symmetric in which case correlation and convolution yield
the same result. However edge detection is always based on
nonsymmetric kernels so we must take care to apply convo-
lution. We will only use correlation for template matching
in Sect. 12.5.2.

Properties of convolution. Convolution obeys the familiar rules
of algebra, it is commutative

associative

distributive (superposition applies)

linear

and shift invariant – the spatial equivalent of time invariance
in 1D signal processing – the result of the operation is the same
everywhere in the image.

12.5 · Spatial Operations

378 Chapter 12 · Images and Image Processing

a corresponding 21 × 21 neighborhood in the input image. As you might expect this
averaging

>> mona = iread('monalisa.png', 'double', 'grey');
>> idisp(iconvolve(mona, K));

leads to smoothing, blurring or defocus� which we see in Fig. 12.13b. Looking very care-
fully we will see some faint horizontal and vertical lines – an artifact known as ringing.
A more suitable kernel for smoothing is the 2-dimensional Gaussian function

 (12.3)

which is symmetric about the origin and the volume under the curve is unity. The
spread of the Gaussian is controlled by the standard deviation parameter σ . Applying
this kernel to the image

>> K = kgauss(5);
>> idisp(iconvolve(mona, K));

produces the result shown in Fig. 12.13c. Here we have specifi ed the standard deviation
of the Gaussian to be 5 pixels. The discrete approximation to the Gaussian is

>> about(K)
K [double] : 31x31 (7688 bytes)

a 31 × 31 kernel. Smoothing can be achieved conveniently using the Toolbox func-
tion ismooth

>> idisp(ismooth(mona, 5))

Blurring is a counter-intuitive image processing operation since we typically go to a
lot of effort to obtain a clear and crisp image. To deliberately ruin it seems, at face
value, somewhat reckless. However as we will see later, Gaussian smoothing turns out
to be extremely useful.

The kernel is itself a matrix and therefore we can display it as an image

>> idisp(K);

which is shown in Fig. 12.14a. We clearly see the large value at the center of the kernel
and that it falls off smoothly in all directions. We can also display the kernel as a surface

>> surfl (-15:15, -15:15, K);

Fig. 12.13. Smoothing. a Original
image; b smoothed with a 21 × 21
averaging kernel; c smoothed with a
31×31 Gaussian G(σ = 5) kernel

Defocus involves a kernel which is a 2-di-
mensional Airy pattern or sinc function. The
Gaussian function is similar in shape, but is
always positive whereas the Airy pattern
has low amplitude negative going rings.

379

as shown in Fig. 12.14b. A crude approximation to the Gaussian is the top hat kernel
which is cylinder with vertical sides rather than a smooth and gentle fall off in ampli-
tude. The function kcircle creates a kernel which can be considered a unit height
cylinder of specifi ed radius

>> K = kcircle(8, 15);

as shown in Fig. 12.14c. The arguments specify a radius of 8 pixels within a window
of half width h = 15.

Fig. 12.14. Gallery of commonly
used convolution kernels. h = 15,
σ = 5

12.5 · Spatial Operations

380 Chapter 12 · Images and Image Processing

12.5.1.2
l
Boundary Effects

A diffi culty with all spatial operations occurs when the window is close to the edge of
the input image as shown in Fig. 12.15. In this case the output pixel is a function of a
window that contains pixels beyond the edge of the input image – these pixels have
no defi ned value. There are several common remedies to this problem. Firstly, we can
assume the pixels beyond the image have a particular value. A common choice is zero
and this is the default behavior implemented by the Toolbox function iconvolve.
We can see the effect of this in Fig. 12.13 where the borders of the smoothed image
are dark due to the infl uence of these zeros.

Another option is to consider that the result is invalid when the window crosses the
boundary of the image. Invalid output pixels are shown hatched out in Fig. 12.15. The
result is an output image of size (W − 2h) × (H − 2h) which is slightly smaller than the
input image. This option can be selected by passing the option 'valid' to iconvolve.

12.5.1.3
l
Edge Detection

Frequently we are interested in fi nding the edges of objects in a scene. Consider the image

>> castle = iread('castle.png', 'double', 'grey');

shown in Fig. 12.16a. It is informative to look at the pixel values along a 1-dimensional
profi le through the image. A horizontal profi le of the image at v = 360 is

>> p = castle(360,:);

which is a vector that we can plot

>> plot(p);

against the horizontal coordinate u in Fig. 12.16b. The clearly visible tall spikes correspond
to the white letters and other markings on the sign. Looking at one of the spikes more
closely, Fig. 12.16c, we see the intensity profi le across the vertical stem of the letter T. The
background intensity ≈0.3 and the bright intensity ≈0.9 but will depend on lighting lev-
els. However the very rapid increase over the space of just a few pixels is distinctive and a
more reliable indication of an edge than any decision based on the actual grey levels.

The fi rst-order derivative along this cross-section is

 How wide is my Gaussian? When choosing a Gaussian kernel
we need to consider the standard deviation, usually defi ned
by the task, and the dimensions of the kernel W∈Rw×w that
contains the discrete Gaussian function. Computation time
is proportional to w2 so ideally we want the window to be no
bigger than it needs to be. The Gaussian decreases monotoni-
cally in all directions but never reaches zero. Therefore we
choose the half-width h of the window such that value of the
Gaussian is less than some threshold outside the w × w con-
volution window.

At the edge of the window, a distance h from the center,
the value of the Gaussian will be e−h2/2σ 2

. For σ = 1 and h = 2
the Gaussian will be e−2 ≈ 0.14, for h = 3 it will be e−4.5 ≈ 0.01,
and for h = 4 it will be e−8 ≈ 3.4 × 10−4. If h is not specifi ed
the Toolbox chooses h = 3σ. For σ = 1 that is a 7 × 7 window
which contains all values of the Gaussian greater than 1% of
the peak value.

Properties of the Gaussian. The Gaussian function G(·) has some special
properties. The convolution of two Gaussians is another Gaussian

For the case where σ1 = σ2 = σ then

The 2-dimensional Gaussian is separable – it can be written as the
product of two 1-dimensional Gaussians

This implies that convolution with a 2-dimensional Gaussian can be
computed by convolving each row with a 1-dimensional Gaussian, and
then each column. The total number of operations is reduced to 2wN 2,
better by a factor of w. A Gaussian also has the same shape in the spatial
and frequency domains.

381

which can be computed using the MATLAB function diff

>> plot(diff(p))

and is shown in Fig. 12.16d. The signal is nominally zero with clear nonzero responses
at the edges of an object, in this case the edges of the stem of the letter T.

The derivative at point v can also be written as a symmetrical fi rst-order differ-
ence

Fig. 12.15.
For the case where the window W

falls off the edge of the input
image the output pixel at (u, v)

is not defi ned. The hatched pixels
in the output image are all those
for which the output value is not

defi ned

Fig. 12.16. Edge intensity profi le.
a Original image; b greylevel pro-
fi le along horizontal line v = 360;
c closeup view of the spike at
u ≈ 580; d derivative of c (image
from the ICDAR 2005 OCR data-
set; Lucas 2005)

12.5 · Spatial Operations

382 Chapter 12 · Images and Image Processing

which is equivalent to convolution with the 1-dimensional kernel

Convolving the image with this kernel

>> K = [0.5 0 -0.5];
>> idisp(iconvolve(castle, K), 'invsigned')

produces a result very similar to that shown in Fig. 12.17a in which vertical edges, high
horizontal gradients, are clearly seen.

Since this kernel has signed values the result of the convolution will also be
signed, that is, the gradient at a pixel can be positive or negative as shown in
Fig. 12.17a,b. idisp always displays the minimum, most negative, value as black
and the maximum, most positive, value as white. Zero would therefore appear
as middle grey. The 'signed' option to idisp uses red and blue shading
to clearly indicate sign – zero is black, negative pixels are red, positive pixels
are blue and the intensity of the color is proportional to pixel magnitude. The
'invsigned' option is similar except that zero is indicated by white.

Many convolution kernels have been proposed for computing horizontal gradient.
A popular choice is the Sobel kernel�

Fig. 12.17. Edge gradient. a u-di-
rection gradient; b v-direction
gradient; c gradient magnitude;
d gradient direction. Gradients
shown with blue as positive, red as
negative and white as zero

This kernel is commonly written with the
signs reversed which is correct for corre-
lation. For convolution the kernel must
be written as shown here.

383

>> Du = ksobel
Du =
 0.1250 0 -0.1250
 0.2500 0 -0.2500
 0.1250 0 -0.1250

and we see that each row is a scaled version of the 1-dimensional kernel K defi ned
above. The overall result is a weighted sum of the horizontal gradient for the current
row, and the rows above and below. Convolving our image with this kernel

>> idisp(iconvolve(castle, Du), 'invsigned')

generates the horizontal gradient image shown in Fig. 12.17a which highlights vertical
edges. Vertical gradient is computed using the transpose of the kernel

>> idisp(iconvolve(castle, Du'), 'invsigned')

and highlights horizontal edges� as shown in Fig. 12.17b. The notation used for gra-
dients varies considerably in the literature. Most commonly the horizontal and verti-
cal gradient are denoted respectively as ∂I/∂u, ∂I/∂v; ∇u I, ∇v I or Iu, Iv. In operator
form this is written

where D is a derivative kernel such as Sobel.
Taking the derivative of a signal accentuates high-frequency noise, and all images

have noise as discussed on page 364. At the pixel level noise is a stationary random
process – the values are not correlated between pixels. However the features that we
are interested in such as edges have correlated changes in pixel value over a larger
spatial scale as shown in Fig. 12.16c. We can reduce the effect of noise by smoothing
the image before taking the derivative

Instead of convolving the image with the Gaussian and then the derivative, we ex-
ploit the associative property of convolution to write

Filters can be designed to respond to
edges at any arbitrary angle. The Sobel
kernel itself can be considered as an im-
age and rotated using irotate. To
obtain angular precision generally re-
quires a larger kernel is required such as
that generated by kdgauss.

 Carl Friedrich Gauss (1777–1855) was a German mathematician
who made major contributions to fi elds such as number the-
ory, differential geometry, magnetism, astronomy and optics.
He was a child prodigy, born in Brunswick, Germany, the only
son of uneducated parents. At the age of three he corrected, in
his head, a fi nancial error his father had made, and made his
fi rst mathematical discoveries while in his teens. Gauss was a
perfectionist and a hard worker but not a prolifi c writer. He
refused to publish anything he did not consider complete and
above criticism. It has been suggested that mathematics could
have been advanced by fi fty years if he had published all of his
discoveries. According to legend Gauss was interrupted in the
middle of a problem and told that his wife was dying – he re-
sponded “Tell her to wait a moment until I am through”.

The normal distribution, or Gaussian function, was not one of his achievements. It was fi rst
discovered by de Moivre in 1733 and again by Laplace in 1778. The SI unit for magnetic fl ux den-
sity is named in his honor.

12.5 · Spatial Operations

384 Chapter 12 · Images and Image Processing

We convolve the image with the derivative of the Gaussian (DoG) which can be
obtained numerically by

 Gu = iconvolve(Du, kgauss(sigma) , 'full');

or analytically by taking the derivative, in the u-direction, of the Gaussian Eq. 12.3
yielding

 (12.4)

which is computed by the Toolbox function kdgauss and is shown in Fig. 12.14d.
The standard deviation σ controls the scale of the edges that are detected. For large

σ, which implies increased smoothing, edges due to fi ne texture will be attenuated leav-
ing only the edges of large features. This ability to fi nd edges at different spatial scale is
important and underpins the concept of scale space that we will discuss in Sect. 13.3.2.
Another interpretation of this operator is as a spatial bandpass fi lter since it is a cas-
cade of a low-pass fi lter (smoothing) with a high-pass fi lter (differentiation).

Computing the horizontal and vertical components of gradient at each pixel

>> Iu = iconvolve(castle, kdgauss(2));
>> Iv = iconvolve(castle, kdgauss(2)');

allows us to compute the magnitude of the gradient at each pixel

>> m = sqrt(Iu.^2 + Iv.^2);

This edge-strength image shown in Fig. 12.17c reveals the edges very distinctly. The
direction of the gradient at each pixel is

>> th = atan2(Iv, Iu);

and is best viewed as a sparse quiver plot

>> quiver(1:20:numcols(th), 1:20:numrows(th), ...
 Iu(1:20:end,1:20:end), Iv(1:20:end,1:20:end))

as shown in Fig. 12.17d. The edge direction plot is much noisier than the magnitude
plot. Where the edge gradient is strong, on the border of the sign or the edges of let-
ters, the direction is normal to the edge, but the fi ne-scale brick texture appears as
almost random edge direction. The gradient images can be computed conveniently
using the Toolbox function

>> [du,dv] = isobel(castle, kdgauss(2));

where the last argument overrides the default Sobel kernel.
A well known and very effective edge detector is the Canny edge operator. It uses the

edge magnitude and direction that we have just computed and performs two addition-
al steps. The fi rst is nonlocal maxima suppression. Consider the gradient magnitude
image of Fig. 12.17c as a 3-dimensional surface where height is proportional to bright-
ness as shown in Fig. 12.18. We see a series of hills and ridges and we wish to fi nd the

 Pierre-Simon Laplace (1749–1827) was a French mathematician and
astronomer who consolidated the theories of mathematical astron-
omy in his fi ve volume Mécanique Céleste (Celestial Mechanics).
While a teenager his mathematical ability impressed d’Alembert
who helped to procure him a professorship. When asked by
Napoleon why he hadn’t mentioned God in his book on astrono-
my he is reported to have said “Je n’avais pas besoin de cette hy-
pothèse-là” (“I have no need of that hypothesis”). He became a
count of the Empire in 1806 and later a marquis.

The Laplacian operator, a second-order differential operator,
and the Laplace transform are named after him.

385

pixels that lie along the ridge lines. By examining pixel values in a local neighborhood
normal to the edge direction, that is in the direction of the edge gradient, we can fi nd
the maximum value and set all other pixels to zero. The result is a set of nonzero pix-
els corresponding to peaks and ridge lines. The second step is hysteresis thresholding.
For each nonzero pixel that exceeds the upper threshold a chain is created of adjacent
pixels that exceed the lower threshold. Any other pixels are set to zero.

To apply the Canny operator to our example image is straightforward

>> edges = icanny(castle, 2);

and returns an image where the edges are marked by nonzero intensity values corre-
sponding to gradient magnitude at that pixel as shown in Fig. 12.19a. We observe that
the edges are much thinner than those for the magnitude of derivative of Gaussian oper-
ator which is shown in Fig. 12.19b. In this example σ = 2 for the derivative of Gaussian
operation. The hysteresis threshold parameters can be set with optional arguments.

Fig. 12.18.
Closeup of gradient magnitude
around the letter T shown as a

3-dimensional surface

Fig. 12.19.
Comparison of two edge opera-
tors: a Canny operator with de-
fault parameters; b Magnitude

of derivative of Gaussian kernel
(σ = 2). The |DoG| operator re-

quires less computation than
Canny but generates thicker

edges. For both cases results are
shown inverted, white is zero

12.5 · Spatial Operations

Difference of Gaussians. The Laplacian of Gaussian can be approximated by the difference of two
Gaussian functions

where σ1 > σ2 and commonly σ1 = 1.6σ2. This is computed by the Toolbox function kdog.
Figure 12.13e and f shows the LoG and DiffG kernels respectively.

This approximation is useful in scale-space sequences which will be discussed in Sect. 13.3.2.
Consider an image sequence Ihki where Ihk+1i= G(σ) ⊗ Ihki, that is, the images are increasing-
ly smoothed. The difference between any two images in the sequence is therefore equivalent to
DiffG(2̂gσ , σ) applied to the original image.

386 Chapter 12 · Images and Image Processing

So far we have considered an edge as a point of high gradient, and nonlocal maxima
 suppression has been used to search for the maximum value in local neighborhoods.
An alternative means to fi nd the point of maximum gradient is to compute the second
derivative and determine where this is zero. The Laplacian operator

 (12.5)

is the sum of the second spatial derivative in the horizontal and vertical directions. For
a discrete image this can be computed by convolution with the Laplacian kernel

>> L = klaplace()
L =
 0 1 0
 1 -4 1
 0 1 0

which is isotropic – it responds equally to edges in any direction. The second deriva-
tive is even more sensitive to noise than the fi rst derivative and is again commonly
used in conjunction with a Gaussian smoothed image

 (12.6)

which we combine into the Laplacian of Gaussian kernel (LoG), and L is the Laplacian
kernel given above. This can be written analytically as

Fig. 12.20. Laplacian of Gaussian.
a Laplacian of Gaussian; b close-
up of a around the letter T where
blue and red colors indicate pos-
itive and negative values respec-
tively; c a horizontal cross-section
of the LoG through the stem of
the T; d closeup of the zero-cross-
ing detector output at the letter T

387

 (12.7)

 (12.8)

which is known as the Marr-Hildreth operator or the Mexican hat kernel and is shown
in Fig. 12.14e.

We apply this kernel to our image by

>> lap = iconvolve(castle, klog(2));

and the result is shown in Fig. 12.20a and b. The maximum gradient occurs where the
second derivative is zero but a signifi cant edge is a zero crossing from a strong posi-
tive value (blue) to a strong negative value (red). Consider the closeup view of the
Laplacian of the letter T shown in Fig. 12.20b. We generate a horizontal cross-section
of the stem of the letter T at v = 360

>> p = lap(360,570:600);
>> plot(570:600, p, '-o');

which is shown in Fig. 12.20c. We see that the zero values of the second derivative lies be-
tween the pixels. A zero crossing detector selects pixels adjacent to the zero crossing points

>> zc = zcross(lap);

and this is shown in Fig. 12.20d. We see that the edges appear twice. Referring again to
Fig. 12.20c we observe a weak zero crossing in the interval u ∈ [573, 574] and a much
more defi nitive zero crossing in the interval u ∈ [578, 579].

A fundamental limitation of all edge detection approaches is that intensity
edges do not necessarily delineate the boundaries of objects. The object may
have poor contrast with the background which results in weak boundary edg-
es. Conversely the object may have a stripe on it which is not its edge. Shadows
frequently have very sharp edges but are not real objects. Object texture will
result in a strong output from an edge detector at points not just on its bound-
ary, as for example with the bricks in Fig. 12.16b.

12.5.2
l

Template Matching

In our discussion so far we have used kernels that represent mathematical functions
such as the Gaussian and its derivative and its Laplacian. We have also considered the
convolution kernel as a matrix, as an image and as a 3-dimensional surface as shown
in Fig. 12.14. In this section we will consider that the kernel is an image or a part of
an image which we refer to as a template. In template matching we wish to fi nd which
parts of the input image are most similar to the template.

Template matching is shown schematically in Fig. 12.21. Each pixel in the output
image is given by

where T is the w × w template, the pattern of pixels we are looking for, with odd side
length w = 2h + 1, and W is the w × w window centered at (u, v) in the input image.
The function s(I1, I2) is a scalar measure that describes the similarity of two equally
sized images I1 and I2.

A number of common similarity measures� are given in Table 12.1. The most intui-
tive are computed simply by computing the pixel-wise difference T −W and taking

These measures can be augmented with
a Gaussian weighting to deemphasize
the differences that occur at the edges
of the two windows.

12.5 · Spatial Operations

388 Chapter 12 · Images and Image Processing

the sum of the absolute differences (SAD) or the sum of the squared differences (SSD).
These metrics are zero if the images are identical and increase with dissimilarity. It is
not easy to say what value of the measure constitutes a poor match but a ranking of
similarity measures can be used to determine the best match.

More complex measures such as normalized cross-correlation yield a score in the
interval [−1, +1] with +1 for identical regions. In practice a value greater than 0.8 is
considered to be a good match. Normalized cross correlation is computationally more
expensive – requiring multiplication, division and square root operations. Note that
it is possible for the result to be undefi ned if the denominator is zero, which occurs if
the elements of either I1 or I2 are identical.

If I2 ≡ I1 then it is easily shown that SAD = SSD = 0 and NCC = 1 indicating a per-
fect match. To illustrate we will use the Mona Lisa’s eye as a 51 × 51 template

>> mona = iread('monalisa.png', 'double', 'grey');
>> T = mona(170:220, 245:295);

and evaluate the three common measures

>> sad(T, T)
ans =
 0
>> ssd(T, T)
ans =
 0
>> ncc(T, T)
ans =
 1

Now consider the case where the two images are of the same scene but one image is
darker than the other – the illumination or the camera exposure has changed. In this
case I2 = αI1 and now

>> sad(T, T*0.9)
ans =
 111.1376
>> ssd(T, T*0.9)
ans =
 5.6492

 David Marr (1945–1980) was a British neuroscientist and psychologist who synthesized results from
psychology, artifi cial intelligence, and neurophysiology to create the discipline of Computational
Neuroscience. He studied mathematics at Trinity College, Cambridge and his Ph.D. in physiology
was concerned with modeling the function of the cerebellum. His key results were published in
three journal papers between 1969 and 1971 and formed a theory of the function of the mamma-
lian brain much of which remains relevant today. In 1973 he was a visiting scientist in the Artifi cial
Intelligence Laboratory at MIT and later became a professor in the Department of Psychology.
His attention shifted to the study of vision and in particular the so-called early visual system.

He died of leukemia at age 35 and his book Vision: A computational investigation into the human
representation and processing of visual information (Marr 2010) was published after his death.

Fig. 12.21.
Spatial image processing op-
erations. The red shaded region
shows the window W that is the
set of pixels used to compute the
output pixel (shown in red)

389

these measure indicate a degree of dissimilarity. However the normalized cross-cor-
relation

 >> ncc(T, T*0.9)
ans =
 1

is invariant to the change in intensity.
Next consider that the pixel values have an offset� so that I2 = I1 + β and we fi nd that
>> sad(T, T+0.1)
ans =
 260.1000
>> ssd(T, T+0.1)
ans =
 26.0100
>> ncc(T, T+0.1)
ans =
 0.9974

all measures now indicate a degree of dissimilarity. The problematic offset can be dealt
with by fi rst subtracting from each of T and W their mean value

>> zsad(T, T+0.1)
ans =
 3.5670e-12
>> zssd(T, T+0.1)
ans =
 4.8935e-27
>> zncc(T, T+0.1)
ans =
 1.0000

and these measures now all indicate a perfect match. The z-prefi x denotes variants
of the similarity measures described above that are invariant to intensity offset. Only
the ZNCC measure

>> zncc(T, T*0.9+0.1)
ans =
 1.0000

is invariant to both gain and offset variation. All these methods will fail if the images
have even a small change in relative rotation or scale.

Table 12.1.
Similarity measures for two
equal sized image regions I1

and I2. The Z-prefi x indicates
that the measure accounts for the
zero-offset or the difference in
mean of the two images (Banks
and Corke 2001). –I1 and –I2 are
the mean of image regions I1
and I2 respectively. Toolbox

functions are indicated in the
last column

This could be due to an incorrect black
level setting. A camera’s black level is the
value of a pixel corresponding to no light
and is often >0.

12.5 · Spatial Operations

390 Chapter 12 · Images and Image Processing

Consider the problem from the well known children’s book “Where’s Wally” or
“Where’s Waldo” – the fun is trying to fi nd Wally’s face in a crowd

>> crowd = iread('wheres-wally.png', 'double');
>> idisp(crowd)

Fortunately we know roughly what he looks like and the template

>> wally = iread('wally.png', 'double');
>> idisp(wally)

was extracted from a different image and scaled so that the head is approximately the
same width as other heads in the crowd scene (around 21 pixel wide).

The similarity of our template wally to every possible window location is com-
puted by

>> S = isimilarity(wally, crowd, @zncc);

using the matching measure ZNCC. The result

>> idisp(S, 'colormap', 'jet', 'bar')

is shown in Fig. 12.22 and the pixel color indicates the ZNCC similarity as indicated by
the color bar. We can see a number of spots of high similarity (white) which are candi-
date positions for Wally. The peak values, with respect to a local 3 × 3 window, are

>> [mx,p] = peak2(S, 1, 'npeaks', 5);
>> mx
mx =
 0.5258 0.5230 0.5222 0.5032 0.5023

in descending order. The second argument specifi es the window half-width h = 1 and the
third argument specifi es the number of peaks to return. The largest value 0.5258 is the
similarity of the strongest match found. These matches occur at the coordinates (u, v)
given by the second return value p and we can highlight these points on the scene

>> idisp(crowd);
>> plot_circle(p, 30, 'edgecolor', 'g')
>> plot_point(p, 'sequence', 'bold', 'textsize', 24, 'textcolor', 'y')

using green circles that are numbered sequentially. The best match at (261, 377) is in
fact the correct answer – we found Wally! It is interesting to look at the other highly
ranked candidates. Numbers two and three at the bottom of the image are people also
wearing baseball caps who look quite similar.

Fig. 12.22.
Similarity image S with top fi ve
Wally candidates marked. The
color bar indicate the similarity
scale. Note the border of inde-
terminate values where the tem-
plate window falls off the edge
of the input image

391

There are some important points to note from this example. The images have quite
low resolution and the template is only 21 × 25 – it is a very crude likeness to Wally. The
match is not a strong one – only 0.5258 compared to the maximum possible value of 1.0
and there are several contributing factors. The matching measure is not invariant to scale,
that is, as the relative scale (zoom) changes the similarity score falls quite quickly. In prac-
tice perhaps a 10–20% change in scale between T and W can be tolerated. For this exam-
ple the template was only approximately scaled. Secondly, not all Wallys are the same.
Wally in the template is facing forward but the Wally we found in the image is looking to
our left. Another problem is that the square template typically includes pixels from the
background as well as the object of interest. As the object moves the background pixels
may change, leading to a lower similarity score. This is known as the mixed pixel prob-
lem and is discussed in the next section. Ideally the template should bound the object of
interest as tightly as possible. In practice another problem arises due to perspective dis-
tortion. A square pattern of pixels in the center of the image will appear keystone shaped
at the edge of the image and thus will match less well with the square template.

 A common problem with template matching is that false matches can occur. In the ex-
ample above the second candidate had a similarity score only 0.5% lower than the fi rst, the
fi fth candidate was only than 5% lower. In practice a number of rules are applied before
a match is accepted: the similarity must exceed some threshold and the fi rst candidate
must exceed the second candidate by some factor to ensure there is no ambiguity.

Another approach is to bring more information to bear on the problem such as known
motion of the camera or object. For example if we were tracking Wally from frame to
frame in an image sequence then we would pick the best Wally closest to the previous
location he was found. Alternatively we could create a motion model, typically a constant
velocity model which assume he moves approximately the same distance and direction
from frame to frame. In this way we could predict his future position and pick the Wally
closest to that predicted position, or only search in the vicinity of the predicted position
in order to reduce computation. We would also have to deal with practical diffi culties
such as Wally stopping, changing direction or being temporarily obscured.

12.5.2.1
l
Nonparameteric Local Transforms

Nonparametric similarity measures are more robust to the mixed pixel problem and
we can apply a local transform to the image and template before matching. Two com-
mon transforms from this class are the census transform and the rank transform.

The census transform maps pixel values from a local region to an integer considered
as a bit string – each bit corresponds to one pixel in the region as shown in Fig. 12.23.
If a pixel is greater than the center pixel its corresponding bit is set to one, else it is
zero. For a w × w window the string will be w2 − 1 bits long.� The two bit strings are
compared using a Hamming distance which is the number of bits that are different.

Fig. 12.23.
Example of census and rank

transform for a 3 × 3 window.
Pixels are marked red or blue
if they are less than or great-
er than or equal to the center

pixel respectively. These bool-
ean values are then packed into
a binary word, in the direction

shown, from least signifi cant bit
upwards. The census value is

101011012 or decimal 173. The
rank transform value is the total

number of one bits and is 5

For a 32-bit integer uint32 this lim-
its the window to 5 × 5 unless a sparse
mapping is adopted (Humenberger et al.
2009). A 64-bit integer uint64 sup-
ports a 7 × 7 window.

12.5 · Spatial Operations

392 Chapter 12 · Images and Image Processing

This can be computed by counting the number of set bits in the exclusive-or of the two
bit strings. Thus very few arithmetic operations are required compared to the more
conventional methods – no square roots or division – and such algorithms are ame-
nable to implementation in special purpose hardware or FPGAs. Another advantage
is that intensities are considered relative to the center pixel of the window making it
invariant to overall changes in intensity or gradual intensity gradients.

The rank transform maps the pixel values in a local region to a scalar which is the num-
ber of elements in the region that are greater than the center pixel. This measure captures
the essence of the region surrounding the center pixel, and like the census transform it is in-
variant to overall changes in intensity since it is based on local relative grey-scale values.

These transforms are typically used as a pre-processing step applied to each of the im-
ages before using a simple classical similarity measure such as SAD. The Toolbox function
 isimilarity supports these metrics using the 'census' and 'rank' options.

12.5.3
l
Nonlinear Operations

Another class of spatial operations is based on nonlinear functions of pixels within
the window. For example

>> out = iwindow(mona, ones(7,7), 'var');

computes the variance of the pixels in every 7 × 7 window. The arguments specify
the window size and the builtin MATLAB function var. The function is called with
a 49 × 1 vector argument comprising the pixels in the window arranged as a column
vector and the function’s return value becomes the corresponding output pixel value.
This operation acts as an edge detector since it has a low value for homogeneous re-
gions irrespective of their brightness. It is however computationally expensive because
the var function is called over 470 000 times. Any MATLAB function, builtin or your
own M-fi le, that accepts a vector input and returns a scalar can be used in this way.

 Rank fi lters sort the pixels within the window by value and return the specifi ed ele-
ment from the sorted list. The maximum value over a 5 × 5 window about each pixel
is the fi rst ranked pixel in the window

>> mx = irank(mona, 1, 2);

where the arguments are the rank and the window half-width h = 2. The median over
a 5 × 5 window is the twelfth in rank

>> med = irank(mona, 12, 2);

and is useful as a fi lter to remove impulse-type noise and for the Mona Lisa image this
signifi cantly reduces the fi ne surface cracking. A more powerful demonstration is to
add signifi cant impulse noise to a copy of the Lena image

>> lena = iread('lena.pgm', 'double'); spotty = lena;
>> npix = prod(size(lena));
>> spotty(round(rand(5000,1)*(npix-1)+1)) = 0;
>> spotty(round(rand(5000,1)*(npix-1)+1)) = 1.0;
>> idisp(spotty)

and this is shown in Fig. 12.24a. We have set 5 000 random pixels to be zero, and an-
other 5 000 random pixels to the maximum value. This type of noise is often referred
to as impulse noise or salt and pepper noise. We apply a 3 × 3 median fi lter

>> idisp(irank(spotty, 5, 1))

and the result shown in Fig. 12.24b is considerably improved. A similar effect could
have been obtained by smoothing but that would tend to blur the image, median fi l-
tering has the advantage of preserving edges in the scene.

393

The third argument to irank can be a matrix instead of a scalar and this allows
for some very powerful operations. For example

>> M = ones(3,3);
>> M(2,2) = 0
M =
 1 1 1
 1 0 1
 1 1 1
>> mxn = irank(lena, 1, M);

specifi es the fi rst in rank (maximum) over a subset of pixels from the window corre-
sponding to the nonzero elements of M. In this case M specifi es the eight neighboring
pixels but not the center pixel. The result mxn is the maximum of the eight neighbors
of each corresponding pixel in the input image. We can use this

>> idisp(lena > mxn)

to display all those points where the pixel value is greater than its local neighbors which
performs nonlocal maxima suppression. These correspond to local maxima, or peaks
if the image is considered as a surface. This mask matrix is very similar to a structur-
ing element which we will meet in the next section.

12.6
l
Mathematical Morphology

 Mathematical morphology is a class of nonlinear spatial operators shown schemati-
cally in Fig. 12.25. Each pixel in the output matrix is a function of a subset of pixels in
a region surrounding the corresponding pixel in the input image

 (12.9)

where S is the structuring element, an arbitrary small binary image. For implementa-
tion purposes this is embedded in a rectangular window with odd side lengths. The
structuring element is similar to the convolution kernel discussed previously except
that now it controls which pixels in the neighborhood the function f(·) is applied to – it
specifi es a subset of pixels within the window. The selected pixels are those for which
the corresponding values of the structuring element are nonzero – these are shown
in red in Fig. 12.25. Mathematical morphology, as its name implies, is concerned with
the form or shape of objects in the image.

Fig. 12.24.
Median fi lter cleanup of impulse
noise. a Noise corrupted image;

b median fi ltered result

12.6 · Mathematical Morphology

394 Chapter 12 · Images and Image Processing

The easiest way to explain the concept is with a simple example, in this case a syn-
thetic binary image created by the script

>> eg_morph1
>> idisp(im)

which is shown, repeated, down the fi rst column of Fig. 12.26. The structuring element
is shown in red at the end of each row. If we consider the top most row, the structur-
ing element is a square

>> S = ones(5,5);

and is applied to the original image using the minimum operation

>> mn = imorph(im, S, 'min');

and the result is shown in the second column. For each pixel in the input image we
take the minimum of all pixels in the 5 × 5 window. If any of those pixels are zero the
resulting pixel will be zero. We can see this in animation by

>> morphdemo(im, S, 'min')

The result is dramatic – two objects have disappeared entirely and the two squares have
become separated and smaller. The two objects that disappeared were not consistent
with the shape of the structuring element. This is where the connection to morphol-
ogy or shape comes in – only shapes that could contain the structuring element will
be present in the output image.

The structuring element could defi ne any shape: a circle, an annulus, a 5-point-
ed star, a line segment 20 pixels long at 30° to the horizontal, or the silhouette of a
duck. Mathematical morphology allows very powerful shape-based fi lters to be cre-
ated. The second row shows the results for a larger 7 × 7 structuring element which
has resulted in the complete elimination of the small square and the further reduc-
tion of the large square. The third row shows the results for a structuring element
which is a horizontal line segment 14 pixel wide, and the only remaining shapes are
long horizontal lines.

The operation we just performed is often known as erosion since large objects are
eroded and become smaller – in this case the 5 × 5 structuring element has caused
two pixels� to be shaved off all the way around the perimeter of each shape. The small
square, originally 5 × 5, is now only 1 × 1. If we repeated the operation the small square
would disappear entirely, and the large square would be reduced even further.

The inverse operation is dilation which makes objects larger. In Fig. 12.26 we ap-
ply dilation to the second column results

Fig. 12.25.
Morphological image process-
ing operations. The operation is
defi ned only for the selected ele-
ments (red) within the structur-
ing element (red outlined square)

The half width of the structuring element.

395

>> mx = imorph(mn, S, 'max');

and the results are shown in the third column. For each pixel in the input image we
take the maximum of all pixels in the 5 × 5 window. If any of those neighbors is one
the resulting pixel will be one. In this case we see that the two squares have returned
to their original size, but the large square has lost its protrusions.

Morphological operations are often written in operator form. Erosion is

where in Eq. 12.9 f(·) = min(·), and dilation is

where in Eq. 12.9 f(·) = max(·). These operations are also known as Minkowski sub-
traction and addition respectively.

Erosion and dilation are related by

where the bar denotes the logical complement of the pixel values, and the prime denotes
refl ection about the center pixel. Essentially this states that eroding the white pixels is
the same as dilating the dark pixels and vice versa. For morphological operations

which means that successive erosion or dilation with a structuring element is equiva-
lent to the application of a single larger structuring element, but the former is com-
putationally cheaper.� The shorthand functions

>> out = ierode(im, S);
>> out = idilate(im, S);

can be used instead of the low-level function imorph.
The sequence of operations, erosion then dilation, is known as opening since it

opens up gaps. In operator form it is written as

Fig. 12.26.
Mathematical morphology ex-

ample. Pixels are either 0 (grey)
or 1 (white). Each column corre-

sponds to processing using the
structuring element, shown at

the end in red. The fi rst column
is the original image, the sec-

ond column is after erosion by
the structuring element, and the
third column is after the second

column is dilated by the struc-
turing element

For example a 3 × 3 square structuring
element applied twice is equivalent to
5 × 5 square structuring element. The
former involves 2 × (3 × 3 × N2) = 18N2
operations whereas the later involves
5 × 5 × N2 = 25N2 operations.

12.6 · Mathematical Morphology

396 Chapter 12 · Images and Image Processing

Not only has the opening selected particular shapes but it has also cleaned up
the image: the squares have been separated and the protrusions on the large square
have been removed since they are not consistent with the shape of the structuring
element.

In Fig. 12.27 we perform the operations in the opposite order, dilation then
erosion. In the first row no shapes have been lost, they grew then shrank, and the
large square still has its protrusions. The hole has been filled since it is not con-
sistent with the shape of the structuring element. In the second row, the larger
structuring element has caused the two squares to join together. This sequence
of operations is referred to as closing since it closes gaps and is written in op-
erator form as

Note that in the bottom row the two line segments have remained attached to the
edge, this is due to the default behavior in handling edge pixels.

Opening and closing� are implemented by the Toolbox functions iopen and
iclose respectively. Unlike erosion and dilation repeated application of opening or
closing is futile since those operations are idempotent

These operations can also be applied to greyscale images to emphasize particular
shaped objects in the scene prior to an operation like thresholding. A circular structur-
ing element of radius R can be considered as a ball of radius R rolling on the intensity
surface. Dilation, or the maximum operation, is the surface defi ned by the center of the
ball rolling over the top of the input image intensity surface. Erosion, or the minimum
operation, is the surface defi ned by the center of the ball rolling on the underside of
the input image intensity surface.

12.6.1
l
Noise Removal

A common use of morphological opening is to remove noise in an image. The image

>> objects = iread('segmentation.png');

shown in Fig. 12.28a is a noisy binary image from the output of a rather poor object
 segmentation operation.� We wish to remove the dark pixels that do not belong to
the objects and we wish to fill in the holes in the four dark rectangular objects.

Fig. 12.27.
Mathematical morphology ex-
ample. Pixels are either 0 (grey)
or 1 (white). Each row corre-
sponds to processing using the
structuring element, shown at
the end in red. The fi rst column
is the original image, the second
column is after dilation by the
structuring element, and the
third column is after the second
column is eroded by the struc-
turing element

These names make sense when consid-
ering what happens to white objects
against a black background. For black
objects the operations perform the in-
verse function.

Image segmentation and binarization is
discussed in Sect. 13.1.1.

397

We choose a symmetric circular structuring element of radius 3
>> S = kcircle(3)
S =
 0 0 0 1 0 0 0
 0 1 1 1 1 1 0
 0 1 1 1 1 1 0
 1 1 1 1 1 1 1
 0 1 1 1 1 1 0
 0 1 1 1 1 1 0
 0 0 0 1 0 0 0

and apply a closing operation to fi ll the holes in the objects

>> closed = iclose(objects, S);

and the result is shown in Fig. 12.28b. The holes have been fi lled, but the noise pixels
have grown to be small circles and some have agglomerated. We eliminate these by
an opening operation

>> clean = iopen(closed, S);

and the result shown in Fig. 12.28c is a considerably cleaned up image. If we apply the
operations in the inverse order, opening then closing

>> opened = iopen(objects, S);
>> closed = iclose(opened, S);

the results shown in Fig. 12.28d are much poorer. Although the opening has removed the
isolated noise pixels it has removed large chunks of the targets which cannot be restored.

Dealing with edge pixels. The problem of a convolution window near
the edge of an input image was discussed on page 381. Similar prob-
lems exist for morphological spatial operations, and the Toolbox
functions imorph, irank and iwindow support the option
'valid' as does iconvolve. Other options cause the returned
image to be the same size as the input image:

� 'replicate' (default) the border pixel is replicated, that is,
the value of the closest border pixel is used.

� 'none' pixels beyond the border are not included in the set
of pixels specifi ed by the structuring element.

� 'wrap' the image is assumed to wrap around, left to right,
top to bottom.

Fig. 12.28.
Morphological cleanup. a Orig-

inal image, b original after
opening, c opening then clos-

ing, d closing then opening.
Structuring element is a circle of
radius 3. Color map is inverted,

set pixels are shown as black

12.6 · Mathematical Morphology

398 Chapter 12 · Images and Image Processing

12.6.2
l
Boundary Detection

The top-hat transform uses morphological operations to detect the edges of objects.
Continuing the example from above, and using the image clean shown in Fig. 12.28c
we compute its erosion using a circular structuring element

>> eroded = imorph(clean, kcircle(1), 'min');

The objects in this image are slightly smaller since the structuring element has caused
one pixel to be shaved off the outside of each object. Subtracting the eroded image
from the original

>> idisp(clean-eroded)

results in a layer of pixels around the edge of each object as shown in Fig. 12.29.

12.6.3
l
Hit or Miss Transform

The hit or miss transform uses a variation on the morphological structuring element.
Its values are zero, one or don’t care as shown in Fig. 12.30a. The zero and one pixels
must exactly match the underlying image pixels in order for the result to be a one, as
shown in Fig. 12.30b. If there is any mismatch of a one or zero as shown in Fig. 12.30c
then the result will be zero. The Toolbox implementation is very similar to the mor-
phological function, for example

out = hitormiss(image, S);

where the don’t care elements of the structuring element are set to the special MATLAB
value NaN.

Fig. 12.29.
Boundary detection by morpho-
logical processing. Results are
shown inverted, white is zero

Fig. 12.30.
Hit or miss transform. a The
structuring element has values of
zero (red), one (blue), or don’t
care (hatched); b an example of
a hit; c an example of a miss, the
pixel circled is inconsistent with
the structuring element

399

The hit or miss transform can be used iteratively with a sequence of structuring
elements to perform complex operations such as skeletonization and linear feature
detection. The skeleton of the objects is computed by

>> skeleton = ithin(clean);

and is shown in Fig. 12.31a. The lines are a single pixel wide and are the edges of a gen-
eralized Voronoi diagram – they delineate sets of pixels according to the shape bound-
ary they are closest to. We can then fi nd the endpoints of the skeleton

>> ends = iendpoint(skeleton);

 and also the triplepoints

>> joins = itriplepoint(skeleton);

which are points at which three lines join. These are shown in Fig. 12.31b and c re-
spectively.

12.6.4
l
Distance Transform [examples/chamfer_match.m]

We discussed the distance transform in Sect. 5.2.1 for robot path planning. Given an
occupancy grid it computed the distance of every free cell from the goal location. The
distance transform we discuss here� operates on a binary image and the output value,
corresponding to every zero pixel in the input image, is the Euclidean distance to the
nearest nonzero pixel.

Fig. 12.31. Hit or miss transform
operations. a Skeletonization;
b end-point detection; c triple-
point join detection. The images
are shown inverted with the orig-
inal binary image superimposed
in grey. The end- and triplepoints
are shown as black pixels

For path planning in Sect. 5.2.1 we used
a slow iterative wavefront approach to
compute the distance transform. For this
case a two pass algorithm can be used and
if you have the MATLAB Image Processing
Toolbox or VLFeat installed the faster func-
tions bwdist or vl_imdisttf
respectively will be used.

12.6 · Mathematical Morphology

400 Chapter 12 · Images and Image Processing

Consider the problem of fi tting a model to a shape in an image. We create the out-
line of a rotated square

>> im = testpattern('squares', 256, 256, 128);
>> im = irotate(im, -0.3);
>> edges = icanny(im) > 0;

which is shown in Fig. 12.32a and then compute the distance transform

>> dx = distancexform(edges, 'euclidean');

which is shown in Fig. 12.32b.
An initial estimate of the square is shown with a red line. The value of the distance

transform at any point on this red square indicates how far away it is from the nearest

The distance transform of a binary image has a
value at each pixel equal to the distance from
that pixel to the nearest nonzero pixel in the
input image. The distance metric is typical-
ly either Euclidean (L2 norm) or Manhattan
distance (L1 norm). It is zero for pixels that
are nonzero in the input image. This trans-
form is closely related to the signed distance
function whose value at any point is the dis-
tance of that point to the nearest boundary of
a shape, and is positive inside the shape and
negative outside the shape. The fi gure shows
the signed distance function for a unit circle,
and has a value of zero, indicated by the red plane, at the object boundary. If we consider a shape to
be defi ned by its signed distance transform then its zero contour defi nes the shape boundary.

Fig. 12.32.
Distance transform. a Input
binary image; b distance trans-
formed input image with over-
laid model square; c distance
transform as a surface

401

point on the original square. If we summed the distance transform for every point on
the red square, or even just the vertices, we obtain a total distance measure which will
only be zero when our model square overlays the original square. The total distance is
a cost function which we can minimize using an optimization routine that adjusts the
position, orientation and size of the square. Considering the distance transform as a 3-
dimensional surface in Fig. 12.32c, our problem is analogous to dropping an extensible
square hoop into the valley of the distance transform. Note that the distance transform
only needs to be computed once, and during model fi tting the cost function is simply
a lookup of the computed distance. This is an example of chamfer matching and a full
example, with optimization, is given in examples/chamfer_match.m.

12.7
l
Shape Changing

The fi nal class of image processing operations that we will discuss are those that change
the shape or size of an image.

12.7.1
l

Cropping

The simplest shape change of all is selecting a rectangular region from an image which
is the familiar cropping operation. Consider the image

>> mona = iread('monalisa.png');

shown in Fig. 12.33a from which we interactively specify a region of interest or ROI

>> [eyes,roi] = iroi(mona);
>> idisp(eyes)

by clicking and dragging a selection box over the image. In this case we selected the eyes,
and the corners of the selected region can be optionally returned and in this case was

>> roi
roi =
 239 359
 237 294

where the columns are the (u, v) coordinates for the top-left and bottom-right corners
respectively. The rows are the u- and v-span respectively. The function can be used
noninteractively by specifying a ROI

>> smile = iroi(mona, [265 342; 264 286]);

which in this case selects the Mona Lisa’s smile shown in Fig. 12.33b.

Fig. 12.33.
Example of region of interest or
image cropping. a Original im-

age, b selected region of interest

12.7 · Shape Changing

402 Chapter 12 · Images and Image Processing

12.7.2
l
Image Resizing

Often we wish to reduce the dimensions of an image, perhaps because the large num-
ber of pixels results in long processing time or requires too much memory. We dem-
onstrate this with a high-resolution image

>> roof = iread('roof.jpg', 'grey');
>> about(roof)
roof [uint8] : 1668x2009 (3351012 bytes)

which is shown in Fig. 12.34a. The simplest means to reduce image size is subsam-
pling or decimation which selects every mth pixel in the u- and v-direction, where
m ∈ Z+ is the subsampling factor. For example with m = 2 an N × N image becomes
an N / 2 × N / 2 images which has one quarter the number of pixels of the original
image.

For this example we will reduce the image size by a factor of seven in each direction

>> smaller = roof(1:7:end,1:7:end);

using standard MATLAB indexing syntax to select every seventh row and column. The
result is shown is shown in Fig. 12.34b and we observe some pronounced curved lines
on the roof which were not in the original image. These are artifacts of the sampling
process. Subsampling reduces the spatial sampling rate of the image which can lead
to spatial aliasing of high-frequency components due to texture or sharp edges. To
ensure that the Shannon-Nyquist sampling theorem is satisfi ed an anti- aliasing low-

Fig. 12.34. Image scaling example.
a Original image; b subsampled
with m = 7, note the axis scaling;
c subsampled with m = 7 after
smoothing; d image c restored to
original size by pixel replication

403

pass spatial fi lter must be applied to reduce the spatial bandwidth of the image before
it is subsampled.� This is another use for image blurring and the Gaussian kernel is
a suitable low-pass fi lter for this purpose. The combined operation of smoothing and
subsampling is implemented in the Toolbox by

>> smaller = idecimate(roof, 7);

and the results for m = 7 are shown in Fig. 12.34c. We note that the curved line arti-
facts are no longer present.

The inverse operation is pixel replication, where each input pixel is replicated as
an m × m tile in the output image

>> bigger = ireplicate(smaller, 7);

which is shown in Fig. 12.34d and appears a little blocky along the edge of the roof and
along the skyline. The decimation stage removed 98% of the pixels and restoring the
image to its original size has not added any new information. However we could make
the image easier on the eye by smoothing out the tile boundaries

>> smoother = ismooth(bigger, 4);

We can perform the same function using the Toolbox function iscale which
scales an image by an arbitrary factor m ∈R+ for example

>> smaller = iscale(lena, 0.1);
>> bigger = iscale(smaller, 10);

The second argument is the scale factor and if m < 1 the image will be reduced, and
if m > 1 it will be expanded.

12.7.3
l
Image Pyramids

An important concept in computer vision, and one that we return to in the next chap-
ter is scale space. The Toolbox function ipyramid returns a pyramidal decomposi-
tion of the input image

>> p = ipyramid(imono(mona))
p =
 Columns 1 through 11
 [700x677 double] [350x339 double] ... [2x2 double] [0.0302]

as a MATLAB cell array containing images at successively lower resolutions. Note that
the last element is the 1 × 1 resolution version – a single dark grey pixel! These images
are pasted into a composite image which is displayed in Fig. 12.35.

Any realizable low-pass filter has a finite
response above its cutoff frequency. In
practice the cutoff frequency is select-
ed to be far enough below the theoreti-
cal cutoff that the filter’s response at the
Nyquist frequency is sufficiently small.
As a rule of thumb for subsampling with
m = 2 a Gaussian with σ = 1 is used.

Fig. 12.35.
Image pyramid, a succession

of images each half (by side
length) the resolution of the

one to the left

12.7 · Shape Changing

404 Chapter 12 · Images and Image Processing

An image pyramid is the basis of many so-called coarse-to-fi ne strategies. Consider
the problem of looking for a pattern of pixel values that represent some object of inter-
est. The smallest image can be searched very quickly for the object since it comprises
only a small number of pixels. The search is then refi ned using the next larger image
but we now know which area of that larger image to search. The process is repeated
until the object is located in the highest resolution image.

12.7.4
l
Image Warping

 Image warping is a transformation of the pixel coordinates rather than the pixel val-
ues. Warping can be used to scale an image up or down in size, rotate an image or ap-
ply quite arbitrary shape changes. The coordinates of a pixel in the new view (u′, v′)
are expressed as functions

 (12.10)

of the coordinates in the original view.
Consider a simple example where the image is reduced in size by a factor of 4 in

both directions and offset so that its origin, its top-left corner, is shifted to the coor-
dinate (100, 200). We can express this concisely as

 (12.11)

First we read the image and establish a pair of coordinate matrices� that span the
domain of the input image, the set of all possible (u, v)

>> mona = iread('monalisa.png', 'double', 'grey');
>> [Ui,Vi] = imeshgrid(mona);

and another pair that span the domain of the output image, which we choose arbi-
trarily to be 400 × 400, the set of all possible (u′, v′)

>> [Up,Vp] = imeshgrid(400, 400);

Now, for every pixel in the output image the corresponding coordinate in the input image
is given by the inverse of the functions fu and fv. For our example the inverse of Eq. 12.11 is

 (12.12)

which is implemented in matrix form in MATLAB as

>> U = 4*(Up-100); V = 4*(Vp-200);

The coordinate matrices are such that
U(u,v) = u and V(u,v) = v and
are a common construct in MATLAB see
the documentation for meshgrid.

Fig. 12.36.
Warped images. a Scaled and
shifted; b rotated by 30° about
its center. Pixels displayed as
red were set to a value of NaN by
interp2 – they were not inter-
polated from any image pixels

405

We can now warp the input image using the MATLAB function interp2

>> little_mona = interp2(Ui, Vi, mona, U, V);

and the result is shown in Fig. 12.36a. Note that interp2 requires a fl oating-point
image.

Some subtle things happen under the hood. Firstly, while (u′, v′) are integer coordinates
the input image coordinates (u, v) will not necessarily be integers. The pixel values must
be interpolated� from neighboring pixels in the input image. Secondly, not all pixels in
the output image have corresponding pixels in the input image as illustrated in Fig. 12.37.
Fortunately for us interp2 handles all these issues and pixels that do not exist in the in-
put image are set to NaN in the output image which we have displayed as red. In case of
mappings that are extremely distorted it may be that many adjacent output pixels map to
the same input pixel and this leads to pixelation or blockyness in the output image.

Now let’s try something a bit more ambitious and rotate the image by 30° into an
output image of the same size as the input image

>> [Up,Vp] = imeshgrid(mona);

We want to rotate the image about its center but since the origin of the input image is the
top-left corner we must fi rst change the origin to the center, then rotate and then move
the origin back to the top-left corner.� The warp equation is therefore

 (12.13)

where (uc, vc) is the coordinate of the image center and R(ÿ) is a rotation matrix in SE(2).
This can be rearranged into the inverse form and implemented as

>> R = SO2(pi/6).R; uc = 256; vc = 256;
>> U = R(1,1)*(Up-uc) + R(2,1)*(Vp-vc) + uc;
>> V = R(1,2)*(Up-uc) + R(2,2)*(Vp-vc) + vc;
>> twisted_mona = interp2(Ui, Vi, mona, U, V);

and the result is shown in Fig. 12.36b. Note the direction of rotation – our defi nition of the
x- and y-axes (parallel to the u- and v-axes respectively) is such that the z-axis is defi ned as
being into the page making a clockwise rotation a positive angle. Also note that the corners
of the original image have been lost, they fall outside the bounds of the output image.

The function iscale uses image warping to change image scale, and the function
irotate uses warping to perform rotation. The example above could be achieved by

>> twisted_mona = irotate(mona, pi/6);

Finally we will revisit the lens distortion example from Sect. 11.2.4. The distorted im-
age from the camera is the input image and will be warped to remove the distortion. We
are in luck since the distortion model Eq. 11.13 is already in the inverse form. Recall that

where the distorted coordinates are denoted with a prime and δu and δv are functions of (u, v).

Different interpolation modes can be
selected by a trailing argument to
 interp2 but the default option is
bilinear interpolation. A pixel at coordi-
nate (u + δu, v + δv) where u, v ∈Z+
and δu, δv ∈ [0, 1) is a linear combination
of the pixels (u, v), (u + 1, v), (u, v + 1)
and (u + 1, v + 1). The interpolation
function acts as a weak anti-aliasing fil-
ter, but for very large reductions in scale
the image should be smoothed first us-
ing a Gaussian kernel.

This is the application of a twist as dis-
cussed in Chap. 2.

Fig. 12.37.
Coordinate notation for image

warping. The pixel (u′, v′) in the
output image is sourced from the

pixel at (u, v) in the input image
as indicated by the arrow. The

warped image is not necessarily
polygonal, nor entirely contained

within the output image

12.7 · Shape Changing

406 Chapter 12 · Images and Image Processing

First we load the distorted image and build the coordinate matrices for the distort-
ed and undistorted images

>> distorted = iread('Image18.tif', 'double');
>> [Ui,Vi] = imeshgrid(distorted);
>> Up = Ui; Vp = Vi;

and then load the results of the camera calibration

>> load Bouguet

For readability we unpack the required parameters from the Calibration Toolbox vari-
ables cc, fc and kc

>> k = kc([1 2 5]); p = kc([3 4]);
>> u0 = cc(1); v0 = cc(2);
>> fpix_u = fc(1); fpix_v = fc(2);

for radial and tangential distortion vectors, principal point and focal length in pixels.
Next we convert pixel coordinates to normalized image coordinates�

>> u = (Up-u0) / fpix_u;
>> v = (Vp-v0) / fpix_v;

The radial distance of the pixels from the principal point is then

>> r = sqrt(u.^2 + v.^2);

and the pixel coordinate errors due to distortion are
>> delta_u = u .* (k(1)*r.^2 + k(2)*r.^4 + k(3)*r.^6) + ...
 2*p(1)*u.*v + p(2)*(r.^2 + 2*u.^2);
>> delta_v = v .* (k(1)*r.^2 + k(2)*r.^4 + k(3)*r.^6) + ...
 p(1)*(r.^2 + 2*v.^2) + 2*p(2)*u.*v;

The distorted pixel coordinates in metric units are

>> ud = u + delta_u; vd = v + delta_v;

which we convert back to pixel coordinates

>> U = ud * fpix_u + u0;
>> V = vd * fpix_v + v0;

and fi nally apply the warp

>> undistorted = interp2(Ui, Vi, distorted, U, V);

The results are shown in Fig. 12.38. The change is quite subtle, but is most pronounced
at the edges and corners of the image where r is the greatest.

In units of meters with respect to the
camera’s principal point.

Fig. 12.38. Warping to undistort
an image. a Original distorted im-
age; b corrected image. Note that
the top edge of the target has be-
come a straight line (example from
Bouguet’s Camera Calibration Tool-
box, image number 18)

407

12.8
l
Wrapping Up

In this chapter we learned how to acquire images from a variety of sources such as im-
age fi les, movie fi les, video cameras and the internet, and load them into the MATLAB
workspace. Once there we can treat them as matrices, the principal MATLAB datatype,
and conveniently manipulate them. The elements of the image matrices can be inte-
ger, fl oating-point or logical values. Next we discussed many processing operations
and a taxonomy of these is shown in Table 12.2. Operations on a single image include:
unary arithmetic operations, type conversion, various color transformations and grey-
level stretching; nonlinear operations such as histogram normalization and gamma
encoding or decoding; and logical operations such as thresholding. We also discussed
operations on pairs of images such as green screening, background estimation and
moving object detection.

The largest and most diverse class of operations are spatial operators. We dis-
cussed convolution which can be used to smooth an image and to detect edges.
Linear operations are defi ned by a kernel matrix which can be chosen to perform
functions such as image smoothing (to reduce the effect of image noise or as a low-
pass anti- aliasing fi lter prior to decimation) or for edge detection. Nonlinear spatial
operations were used for template matching, computing rank statistics (including
the median fi lter which eliminates impulse noise) and mathematical morphology
which fi lters an image based on shape and can be used to cleanup binary images.
A variant form, the hit or miss transform, can be used iteratively to perform func-
tions such as skeletonization.

Finally we discussed shape changing operations such as regions of interest, scale
changing and the problems that can arise due to aliasing, and generalized image warp-
ing which can be used for scaling, translation, rotation or undistorting an image. All
these image processing techniques are the foundations of feature extraction algorithms
that we discuss in the next chapter.

Further Reading

Image processing is a large fi eld and this chapter has provided an introduction to
many of the most useful techniques from a robotics perspective. More comprehen-
sive coverage of the topics introduced here and others such as greyscale morphol-
ogy, image restoration, wavelet and frequency domain methods, and image com-
pression can be found in Szeliski (2011), Nixon and Aguado (2012), Forsyth and
Ponce (2011) and Gonzalez and Woods (2011). Online information about computer
vision is available through CVonline at http://homepages.inf.ed.ac.uk/rbf/CVonline,
and the material in this chapter is covered under the section Image Transformations
and Filters.

Edge detection is a subset of image processing but one with huge literature of its
own. Forsyth and Ponce (2011) have a comprehensive introduction to edge detection
and a useful discussion on the limitations of edge detection. Nixon and Aguado (2012)
also cover phase congruency approaches to edge detection and compare various edge
detectors. The Sobel kernel for edge detection was described in an unpublished 1968
publication from the Stanford AI lab by Irwin Sobel and Jerome Feldman: A 3 × 3
Isotropic Gradient Operator for Image Processing. The Canny edge detector was origi-
nally described in Canny (1983, 1987).

Nonparametric measures for image similarity became popular in the 1990s with with
a number of key papers such as Zabih and Woodfi ll (1994), Banks and Corke (2001),
Bhat and Nayar (2002). The application to real-time image processing systems using
high-speed logic such as FPGAs has been explored by several groups (Corke et al. 1999;
Woodfi ll and Von Herzen 1997).

12.8 · Wrapping Up

408 Chapter 12 · Images and Image Processing

409

Mathematical morphology is another very large topic and we have only scraped
the surface and important techniques such as greyscale morphology and watersheds
have not been covered at all. The general image processing books mentioned above
have useful discussion on this topic. Most of the specialist books in this fi eld are now
quite old but Shih (2009) is a good introduction and the book by Dougherty and Latufo
(2003) has a more hands on tutorial approach.

The approach to computer vision covered in this book is often referred to as bot-
tom-up processing. This chapter has been about low-level vision techniques which are
operations on pixels. The next chapter is about high-level vision techniques where sets
of pixels are grouped and then described so as to represent objects in the scene.

Sources of Image Data

All the images used in this part of the book are provided with the Toolbox in the im-
ages folder of the Machine Vision Toolbox.

There are thousands of online webcams as well as a number of sites that aggregate
them and provide lists categorized by location, for example Opentopia, EarthCam and
WatchThisCam. Most of these sites do not connect you directly to the web camera so
the URL of the camera has to be dug out of the HTML page source. The root part of
the URL (before the fi rst single slash) is required for the AxisWebCamera class. Some
of the content on these list pages can be rather dubious – so beware.

MATLAB Notes

Table 12.2 shows the image processing functions that have been discussed in
this chapter and the equivalent functions from several toolboxes available from
MathWorks: Image Processing Toolbox™, Image Acquisition Toolbox™ and Computer
Vision System Toolbox™. There are many additional functions from these toolboxes
that are not listed here. The RVC toolbox is open source and free, but its development
is limited and the code is written for understanding rather than performance. In con-
trast the MathWorks’ toolboxes are supported products and many have GPU support,
can be used in Simulink or be used for automatic code generation. The companion to
Gonzalez and Woods (2008) is their MATLAB based book from 2009 (Gonzalez et al.
2009) which provides a detailed coverage of image processing using MATLAB and in-
cludes functions that extend the IPT. These are provided for free as P-code format (no
source or help available) or as M-fi les for purchase but are now quite dated.

The image processing search term at MATLAB CENTRAL http://www.mathworks.
com/matlabcentral/fileexchange lists thousands of fi les.

General Software Tools

There are many high quality software tools for image and video manipulation outside the
MATLAB environment. OpenCV at http://opencv.org is a mature open-source computer
vision software project with over 2 500 algorithms, interfaces for C++, C, Python and Java
and runs on Windows, Linux, Mac OS, iOS and Android. There are now several books
about OpenCV and Kaehler and Bradski (2016) is the second edition of a popular book
that provides a good introduction to the software and to computer vision in general.

ImageMagick http://www.imagemagick.org is a cross-platform collection of librar-
ies and command-line tools for image format conversion (over 100 formats) and is use-
ful for batch operations on large sets of images. For video manipulation FFmpeg http://
www.ffmpeg.org is an excellent and comprehensive cross-platform tool. It supports
conversion between video formats as well as videos to still images and vice versa.

Table 12.2.
Summary of image processing
algorithms discussed in this
chapter

�

12.8 · Wrapping Up

410 Chapter 12 · Images and Image Processing

Exercises

1. Become familiar with idisp for greyscale and color images. Explore pixel values
in the image as well as the zoom, line and histogram buttons. Use iroi to extract
the Mona Lisa’s smile.

2. Look at the histogram of greyscale images that are under, well and over exposed.
For a color image look at the histograms of the RGB color channels for scenes with
different dominant colors. Combine real-time image capture with computation and
display of the histogram.

3. Create two copies of a greyscale image into workspace variables A and B. Write code
to time how long it takes to compute the difference of A and B using the MATLAB
shorthand A-B or using two nested for loops. Use the functions tic and toc to
perform the timing.

4. Grab some frames from the camera on your computer or from a movie fi le and dis-
play them.

5. Write a loop that grabs a frame from your camera and displays it. Add some effects
to the image before display such as “negative image”, thresholding, posterization,
false color, edge fi ltering etc.

6. Given a scene with luminance of 800 nit and a camera with ISO of 1 000, q = 0.7 and
f-number of 2.2 what exposure time is needed so that the average grey level of the
8-bit image is 150?

7. Images from space, page 367
a) Obtain a map of the roads in your neighborhood. Use this to fi nd a path between

two locations, using the robot motion planners discussed in Chap. 5.
b) For the images returned by the EarthView function write a function to convert

pixel coordinate to latitude and longitude.
c) Upload GPS track data from your phone and overlay it on a satellite image.

8. Motion detection
a) Modify the Traffi c example on page 375 and highlight the moving vehicles.
b) Write a loop that performs background estimation using frames from your cam-

era. What happens as you move objects in the scene, or let them sit there for a
while? Explore the effect of changing the parameter σ .

c) Combine concepts from motion detection and chroma-keying to put pixels from
the camera where there is motion into the desert scene.

9. Convolution
a) Compare the results of smoothing using a 21 × 21 uniform kernel and a Gaussian

kernel. Can you observe the ringing artifact in the former?
b) Why do we choose a smoothing kernel that sums to one?
c) Compare the performance of the simple horizontal gradient kernel K = (−0.5 0 0.5)

with the Sobel kernel.
d) Investigate fi ltering with the Gaussian kernel for different values of σ and ker-

nel size.
e) Create a 31 × 31 kernel to detect lines at 60 deg.
f) Derive analytically the derivative of the Gaussian in the x-direction Eq. 12.4.
g) Derive analytically the Laplacian of Gaussian Eq. 12.8.
h) Derive analytically the difference of Gaussian from page 385.
i) Show the difference between difference of Gaussian and derivative of Gaussian.

10. Show analytically the effect of an intensity scale error on the SSD and NCC similar-
ity measures.

11. Template matching using the Mona Lisa image; convert it fi rst to greyscale.
a) Use iroi to select one of Mona Lisa’s eyes as a template. The template should

have odd dimensions.
b) Use isimilarity to compute the similarity image. What is the best match

and where does it occur? What is the similarity to the other eye? Where does the
second best match occur and what is its similarity score?

411

c) Scale the intensity of the Mona Lisa image and investigate the effect on the peak
similarity.

d) Add an offset to the intensity of the Mona Lisa image and investigate the effect
on the peak similarity.

e) Repeat steps (c) and (d) for different similarity measures such as SAD, SSD, rank
and census.

f) Scale the template size by different factors (use iscale) in the range 0.5 to 2.0
in steps of 0.05 and investigate the effect on the peak similarity. Plot peak simi-
larity vs scale.

g) Repeat (f) for rotation of the template in the range −0.2 to 0.2 rad in steps
of 0.05.

12. Perform the sub-sampling example on page 402 and examine aliasing artifacts
around sharp edges and the regular texture of the roof tiles. What is the appropri-
ate smoothing kernel width for a decimation by M?

13. Write a function to create Fig. 12.35 from the output of ipyramid.
14. Create a warp function that mimics your favorite funhouse mirror.
15. Warp the image to polar coordinates (r, θ) with respect to the center of the image,

where the horizontal axis is r and the vertical axis is θ .

12.8 · Wrapping Up

Chapter

13

In the last chapter we discussed the acquisition and processing of images.
We learned that images are simply large arrays of pixel values but for ro-
botic applications images have too much data and not enough informa-
tion. We need to be able to answer pithy questions such as what is the pose
of the object? what type of object is it? how fast is it moving? how fast am I
moving? and so on. The answers to such questions are measurements ob-
tained from the image and which we call image features. Features are the
gist of the scene and the raw material that we need for robot control.

The image processing operations from the last chapter operated on
one or more input images and returned another image. In contrast fea-
ture extraction operates on an image and returns one or more image
features. Features are typically scalars (for example area or aspect ratio)
or short vectors (for example the coordinate of an object or the param-

eters of a line). Image feature extraction is a necessary fi rst step in using image data
to control a robot. It is an information concentration step that reduces the data rate
from 106−108 bytes s−1 at the output of a camera to something of the order of tens of
features per frame that can be used as input to a robot’s control system.

In this chapter we discuss features and how to extract them from images. Drawing
on image processing techniques from the last chapter we will discuss several classes of
 feature: regions, lines and interest points. Section 13.1 discusses region features which
are contiguous groups of pixels that are homogeneous with respect to some pixel prop-
erty. For example the set of pixels that represent a red object against a nonred back-
ground. Section 13.2 discusses line features which describe straight lines in the world.
Straight lines are distinct and very common in man-made environments – for exam-
ple the edges of doorways, buildings or roads. The fi nal class of features are interest
points which are discussed in Sect. 13.3. These are particularly distinctive points in a
scene which can be reliably detected in different views of the same scene.

It is important to always keep in mind that image features are a summary of the
information present in the pixels that comprise the image, and that the mapping
from the world to pixels involves significant information loss – the perspective
projection discussed in Chap. 11. We typically counter this information loss by
making assumptions based on our knowledge of the environment, but our sys-
tem will only ever be as good as the validity of our assumptions. For example,
we might use image features to describe the position and shape of a group of
red pixels that correspond to a red object. However the size feature, typically the
number of pixels, does not say anything about the size of the red object in the
world – we need extra information such as the distance between the camera
and the object, and the camera’s intrinsic parameters. We also need to assume
that the object is not partially occluded – that would make the observed size less
than the true size. Further we need to assume that the illumination is such that
the chromaticity of the light reflected from the object is considered to be red. We
might also find features in an image that do not correspond to a physical object
– decorative markings, the strong edges of a shadow, or reflections in a window.

 Image Feature Extraction

414 Chapter 13 · Image Feature Extraction

415

13.1
l
Region Features

 Image segmentation is the process of partitioning an image into application meaning-
ful regions as illustrated in Fig. 13.1. The aim is to segment or separate those pixels
that represent objects of interest from all other pixels in the scene. This is one of the
oldest approaches to scene understanding and while conceptually straightforward it
is very challenging in practice. A key requirement is robustness which is how grace-
fully the method degrades as the underlying assumptions are violated, for example
changing scene illumination or viewpoint.

Image segmentation is considered as three subproblems. The fi rst is classifi ca-
tion which is a decision process applied to each pixel that assigns the pixel to one of
C classes c ∈ {0� C − 1}. Commonly we use C = 2 which is known as binary classifi -
cation or binarization and some examples are shown in Fig. 13.1a–c. The pixels have
been classifi ed as object (c = 1) or not-object (c = 0) which are displayed as white
or black pixels respectively. The classifi cation is always application specifi c – for ex-
ample the object corresponds to pixels that are bright or yellow or red or moving.
Figure 13.1d is a multi-level classifi cation where C = 28 and the pixel’s class is refl ect-
ed in its displayed color.

The underlying assumption in the examples of Fig. 13.1 is that regions are homoge-
neous with respect to some characteristic such as brightness, color or texture. In prac-
tice we accept that this stage is imperfect and that pixels may be misclassifi ed – sub-
sequent processing steps will have to deal with this.

The second step in the segmentation process is representation where adjacent pixels
of the same class are connected to form spatial sets S1 … Sm. The sets can be represent-
ed by assigning a set label to each pixel or by a list of pixel coordinates that defi nes the
boundary of the connected set. In the third and fi nal step, the sets Si are described in
terms of compact scalar or vector-valued features such as size, position, and shape.

13.1.1
l

Classification

The pixel class is represented by an integer c ∈ {0� C − 1} where C is the number
of classes. In this section we discuss the problem of assigning each pixel to a class.
In many of the examples we will use binary classifi cation with just two classes corre-
sponding to not-object and object, or background and foreground.

13.1.1.1
l
Grey-Level Classification

A common approach to binary classifi cation of pixels is the monadic operator

where the decision is based simply on the value of the pixel I. This approach is called
 thresholding and t is referred to as the threshold.

Thresholding is very simple to implement. Consider the image

>> castle = iread('castle.png', 'double');

which is shown in Fig. 13.2a. The thresholded image

>> idisp(castle >= 0.7)

is shown in Fig. 13.2c. The pixels have been quite accurately classifi ed as corresponding
to white paint or not. This classifi cation is based on the seemingly reasonable assump-
tion that the white paint objects are brighter than everything else in the image.

Fig. 13.1.
Examples of pixel classifi cation.
The left-hand column is the in-
put image and the right-hand
column is the classifi cation. The
classifi cation is application spe-
cifi c and the pixels have been
classifi ed as either object (white)
or not-object (black). The ob-
jects of interest are a the indi-
vidual letters on the sign; b the
yellow targets; c the red toma-
toes. d is a multi-level segmen-
tation where pixels have been
assigned to 28 classes that rep-
resent locally homogeneous
groups of pixels in the scene

�

13.1 · Region Features

416 Chapter 13 · Image Feature Extraction

In the early days of computer vision, when computer power was limited, this ap-
proach was widely used – it was easier to contrive a world of white objects and dark
backgrounds than to implement more sophisticated classifi cation. Many modern in-
dustrial vision inspection systems use this simple approach since it allows the use of
modest embedded computers – it works very well if the objects are on a conveyor belt
of a suitable contrasting color or in silhouette at an inspection station. In a real world
robot environment we generally have to work a little harder in order to achieve use-
ful grey-level classifi cation. An important question, and a hard one, is where did the
threshold value of 0.7 come from? The most common approach is trial and error! The
Toolbox function ithresh

>> ithresh(castle)

displays the image and a threshold slider that can be adjusted until a satisfactory re-
sult is obtained. However on a day with different lighting condition the intensity pro-
fi le of the image would change

>> ithresh(castle*0.8)

and a different threshold would be required.
A more principled approach than trial and error is to analyze the histogram of the image

>> ihist(castle);

which is shown in Fig. 13.2b. The histogram has two clearly defi ned peaks, a bimodal dis-
tribution, which correspond to two populations of pixels. The smaller peak around 0.9
corresponds to the pixels that are bright and it has quite a small range of variation in

Fig. 13.2. Binary classification.
a Original image (image sourced
from the ICDAR collection; Lucas
2005); b histogram of greyscale
pixel values, threshold values in-
dicated, Otsu in red; c binary clas-
sifi cation with threshold of 0.7;
d binary classifi cation with Otsu
threshold

417

value. The wider and taller peak around 0.3 corresponds to pixels in the darker back-
ground of the sign and the bricks, and has a much larger variation in brightness.

To separate the two classes of pixels we choose the decision boundary, the threshold,
to lie in the valley between the peaks. In this regard the choice of t = 0.7 is a good one.
Since the valley is very wide we actually have quite a range of choice for the threshold,
for example t = 0.75 would also work well. The optimal threshold can be computed
using Otsu’s method

>> t = otsu(castle)
t =
 0.5898

which separates an image into two classes of pixels in a way that minimizes the vari-
ance of values within each class and maximizes the variance of values between the
classes – assuming that the histogram has just two peaks. Sadly, as we shall see, the
real world is rarely this facilitating.

Consider a different image of the same scene which has a highlight

>> castle = iread('castle2.png', 'double');

and is shown in Fig. 13.3a. The histogram shown in Fig. 13.3b is similar – it is still bi-
modal – but we see that the peaks are wider and the valley is less deep. The pixel grey-
level populations are now overlapping and unfortunately for us no single threshold
can separate them. Otsu’s method computes a threshold of

>> t = otsu(castle)
t =
 0.5859

Fig. 13.3. Binary segmentation ex-
ample. a Grey-scale image with
intensity highlight , b histogram,
c thresholded with Otsu’s thresh-
old at 0.59, d thresholded at 0.75

13.1 · Region Features

418 Chapter 13 · Image Feature Extraction

and the result of applying this threshold is shown in Fig. 13.3c. The pixel classifi cation
is poor and the highlight overlaps several of the characters. The result of using a higher
threshold of 0.75 is shown in Fig. 13.3d – the highlight is reduced, but not completely,
but some other characters are starting to break up.

Thresholding-based techniques are notoriously brittle – a slight change in illu-
mination of the scene means that the thresholds we chose would no longer be
appropriate. In most real scenes there is no simple mapping from pixel values
to particular objects – we cannot for example choose a threshold that would
select a motorbike or a duck. Distinguishing an object from the background re-
mains a hard computer vision problem.

One alternative is to choose a local rather than a global threshold. The Niblack
 algorithm is widely used in optical character recognition systems and computes a
local threshold

where W is a region about the point (u, v) and µ(·) and σ(·) are the mean and standard
deviation respectively. The size of the window W is a critical parameter and should
be of a similar size to the objects we are looking for. For this example we make an
assumption about the scene, that the characters are approximately 50–70 pixels tall,
to choose a window half-width of 30 pixels

>> t = niblack(castle, -0.1, 30);
>> idisp(t)

where k = −0.1. The resulting local threshold t is shown in Fig. 13.4a. We apply the
threshold pixel-wise to the original image

>> idisp(castle >= t)

resulting in the classifi cation shown in Fig. 13.4b. All the pixels belonging to the let-
ters have been correctly classifi ed but compared to Fig. 13.3c there are many false
positives – nonobject pixels classifi ed as objects. Later in this section we will discuss
techniques to eliminate these false positives. Note that the classifi cation process is no
longer a function of just the input pixel, it is now a complex function of the pixel and
its neighbors. While we no longer need to choose t we now need to choose the param-
eters k and window size, and again this is usually a trial and error process that can be
made to work well for a particular type of scene.

Fig. 13.4. Niblack thresholding.
a The local threshold displayed as
an image; b the binary segmen-
tation

419

The results shown in Fig. 13.3c and d are disappointing at fi rst glance, but we see
that every character object is correctly classifi ed at some, but not all, thresholds. In fact
each object is correctly segmented for some range of thresholds and what we would
like is the union of regions classifi ed over the range of all thresholds. The maximally
stable extremal region or MSER algorithm does exactly this. It is implemented by the
Toolbox function imser

>> [mser,nsets] = imser(castle, 'area', [100 20000]);

and for this image

>> nsets
nsets =
 95

stable sets were found.� The other return value is an image

>> idisp(mser, 'colormap', 'jet')

which is shown in Fig. 13.5 as a false color image. Each nonzero pixel corresponds to
a stable set and the value is the label assigned to that stable set which is displayed as
a unique color. All the character objects were correctly classifi ed. The boundary has
been partly misclassifi ed as background, and part of it has been joined to the brick
texture on the right hand side of the image.

13.1.1.2
l
Color Classification

Color is a powerful cue for segmentation but roboticists tend to shy away from using
it because of the problems with color constancy discussed in Sect. 10.3.2. In this sec-
tion we consider two examples that use color images. The fi rst is a rather primitive
 navigation target for an indoor UAV landing experiment

>> im_targets = iread('yellowtargets.png');

shown in Fig. 13.6a and the second from the MIT Robotic Garden project

>> im_garden = iread('tomato_124.jpg');

is shown in Fig. 13.7a. Our objective is to determine the centroids of the yellow tar-
gets and the red tomatoes respectively. The initial stages of processing are the same
for each image but we will illustrate the process in detail for the image of the yellow
targets as shown in Fig. 13.6.

Fig. 13.5.
Segmentation using maximally

stable extremal regions (MSER).
The identifi ed regions are

uniquely color coded

Although no explicit threshold has been
given imser has a number of param-
eters and in this case their default values
have given satisfactory results. See the
online documentation for details of the
parameters.

13.1 · Region Features

420 Chapter 13 · Image Feature Extraction

The Toolbox function colorkmeans fi rst maps each color pixel to a point on the
xy- or a*b*-chromaticity plane. Then the k-means algorithm is used to fi nd clusters of
points on the plane and each cluster corresponds to a group of pixels with a distinguish-
able color. A limitation of the k-means algorithm is that we must specify the number
of clusters to fi nd. We will use our knowledge that this particular scene has essentially
two differently colored elements: yellow targets and grey fl oor, metal drain cover and
shadows. The pixels are clustered into two chromaticity classes (C = 2) by

>> [cls, cab,resid] = colorkmeans(im_targets, 2, 'ab');

Fig. 13.6. Target image example.
a Original image; b pixel classifi ca-
tion (C = 2) shown in false color;
c cluster centers in the a*b*-chro-
maticity space; d all pixels of class
c = 1; e after morphological open-
ing with a circular structuring ele-
ment (radius 2)

421

We have specifi ed a*b*-chromaticity since Euclidean distance in this space, used by
k-means to determine the clusters, matches the human perception of difference be-
tween colors. The function returns the a*b*-chromaticity of the cluster centers

>> cab
cab =
 -0.8190 0.4783
 57.6140 -4.1910

as one column per cluster. We can plot these cluster centers on the a*b*-plane

>> showcolorspace(cab, 'ab');

which is shown in Fig. 13.6c. We see that cluster 1 is the closest to yellow
>> colorname(cab(:,1), 'ab')
ans =
 'gold4'

The residual
>> resid
resid =
 2.8897e+03

is the sum of the distance of every point from its assigned cluster centroid. Since the
algorithm uses a random initialization we will obtain different clusters and classifi ca-
tion on every run, and therefore different residuals.�

The function colorkmeans also returns the pixel classifi cation which we can
display as an image

>> idisp(cls, 'colormap', fl ag(2), 'bar')

in false color� as shown in Fig. 13.6b. The pixels in this image have values c = {1, 2} in-
dicating which class the corresponding input pixels has been assigned to. We see that
the yellow targets have been assigned to class c = 1 which is displayed as red.

k-means clustering is computationally expensive and therefore not very well suit-
ed to real-time applications. However we can divide the process into a training phase
and a classifi cation phase. In the training phase a number of example images would
be concatenated and passed to colorkmeans which would identify the centers of
the clusters for each class. Subsequently we can assign pixels to their closest cluster
relatively cheaply

>> cls = colorkmeans(im_targets, cab, 'ab');

The pixels belonging to class 1 can be selected

>> cls1 = (cls == 1);

which is a logical image that can be displayed

>> idisp(cls1)

as shown in Fig. 13.6d. All pixels of class 1 are displayed as white and correspond
to the yellow targets in the original image. This binary image is a good classifica-
tion but there are a few minor imperfections: some rough edges, and some tiny
holes.

A morphological opening operation as discussed in Sect. 12.6 will eliminate these.
We apply a symmetric structuring element of radius 2

>> targets_binary = iopen(cls1, kcircle(2));

and the result is shown in Fig. 13.6e. It shows a clean binary segmentation of the pix-
els into the two classes: target and not-target.

For the garden image we follow a very similar procedure. We classify the pixels into
three clusters (C = 3) based on our knowledge that the scene contains: red tomatoes,
green leaves, and dark background

One option is to run k-means a number
of times, and take the cluster centers for
which the residual is lowest.

We have specified a color map of length 2
since we know there are only 2 possible
pixel values.

13.1 · Region Features

422 Chapter 13 · Image Feature Extraction

>> [cls, cab] = colorkmeans(im_garden, 3, 'ab');
>> cab
cab =
 -16.3326 44.0622 -1.5073
 28.8824 26.7948 3.3873

The pixel classes are shown in false color in Fig. 13.7b. Pixels corresponding to the to-
mato have been assigned to class c = 2 which are displayed as white. The cluster cen-
ters are marked on the a*b*-chromaticity plane in Fig. 13.7c. The name of the color
closest to cluster 2 is

Fig. 13.7. Garden image example.
a Original image (courtesy of Dis-
tributed Robot Garden project,
MIT); b pixel classifi cation (C = 3)
shown in false color; c cluster cen-
ters in the a*b*-chromaticity space
d all pixels of class c = 2; e after
morphological closing with a circu-
lar structuring element (radius 15)

423

k-means clustering is an iterative algorithm for grouping n-dimensional points into k spatial clusters. Each cluster is defi ned by a cen-
ter point which is an n-vector ci, i ∈ [1, k]. At each iteration all points are assigned to the closest cluster center, and then each cluster
center is updated to be the mean of all the points assigned to the cluster.

The algorithm is implemented by the Toolbox function kmeans. The distance metric used is Euclidean distance. The k-means algo-
rithm requires an initial estimate of the center of each cluster and this can be provided in various ways, see the documentation. By default
kmeans randomly selects k of the provided points, and this means the algorithm will return different results at each invocation.

To demonstrate we choose 500 random 2-dimensional points

>> a = rand(2,500);

where a is a 2 × 500 matrix with one point per column. We will cluster this data
into three sets

>> [cls,centre,r] = kmeans(a, 3);

where cls is a 500-vector whose elements specify the class of the correspond-
ing column of a. center is a 2 × 3 matrix whose columns specify the center of
each 2-dimensional cluster and r is the residual – the norm of the distance of
every point from its assigned cluster centroid.

We plot the points in each cluster with different colors

>> hold on
>> for i=1:3
 plot(a(1,cls==i), a(2,cls==i), '.');
 end

and it is clear that the points have been sensibly partitioned. The centroids cen-
ter have been superimposed as black dots.

>> colorname(cab(:,2)', 'ab')
ans =
 'brown4'

The red pixels can be selected

>> cls2 = (cls == 2);

and the resulting logical image is shown in Fig. 13.7d.
This segmentation is far from perfect. Both tomatoes have holes due to specular re-

fl ection as discussed in Sect. 10.3.5. A few pixels at the bottom left have been erroneously
classifi ed as a tomato. We can improve the result by applying a morphological closing
operation with a large circular kernel which is consistent with the shape of the tomato

>> tomatoes_binary = iclose(cls2, kcircle(15));

and the result is shown in Fig. 13.7e. The closing operation has somewhat restored the
shape of the fruit but with the unwanted consequence that the group of misclassifi ed
pixels in the bottom-left corner have been enlarged. Nevertheless this image contains
a workable classifi cation of pixels into two classes: tomato and not-tomato.

The garden image illustrates two common real-world imaging artifacts: specular
refl ection and occlusion. The surface of the tomato is suffi ciently shiny and orient-
ed in such a way that the camera sees a refl ection of the room light – these pixels are
white rather than red.� The top tomato is also partly obscured by leaves and branches.
Depending on how the application works this may or may not be a problem. Since the
tomato cannot be reached from the direction the picture was taken, because of the oc-
cluding material, it might in fact be appropriate to not classify this as a tomato.

These examples have achieved a workable classifi cation of the image pixels into
object and not-object. The resulting groups of white pixels are commonly known as
blobs. It is interesting to note that we have not specifi ed any threshold or any defi ni-
tion of the object color, but we did have to specify the number of classes and determine
which of those classes corresponded to the objects of interest.� We have also had to
choose the sequence of image processing steps and the parameters for each of those
steps, for example, the radius of the structuring element. Pixel classifi cation is a dif-
fi cult problem but we can get quite good results by exploiting knowledge of the prob-
lem, having a good collection of image processing tricks, and experience.

Observe that they have the same chroma-
ticity as the black background, class 3 pix-
els, which are situated close to the white
point on the a∗b∗-plane.

This is a relatively easy problem. The
color of the object of interest is known
(we could use the colorname func-
tion to find it) so we could compute the
distance between each cluster center and
the color of interest by name and choose
the cluster that is closest.

13.1 · Region Features

424 Chapter 13 · Image Feature Extraction

13.1.2
l
Representation

In the previous section we took greyscale or color images and processed them to pro-
duce binary or blob images. Representation is the subproblem of connecting adjacent
pixels of the same class to form spatial sets S1 … Sm.

Consider the binary image

>> im = iread('multiblobs.png');

which is shown

>> idisp(im)

in Fig. 13.8a. We quickly identify a number of white and black blobs in this scene but
what defi nes a blob? It is a set of pixels of the same class that are connected to each
other. More formally we could say a blob is a spatially contiguous region of pixels
of the same class. Blobs are also known as regions or connected components.

The Toolbox can perform connected component or connectivity analysis on this
binary image

>> [label, m] = ilabel(im);

The number of sets, or components, in this image is
>> m
m =
 11

comprising fi ve white blobs and six black blobs (the background and the holes).
These blobs are labeled from 1 to 11. The returned label matrix has the same size
as the original image and each element contains the label s ∈ {1�m} of the set to
which the corresponding input pixel belongs. The label matrix can be displayed as
an image� in false color

>> idisp(label, 'colormap', jet, 'bar')

as shown in Fig. 13.8b. Each connected region has a unique label and hence unique
color. Looking at the label values in this image, or by interactively probing the dis-
played label matrix using idisp, we see that the background has been labeled as 1,
the leftmost blob is labeled 3, and its holes are labeled 5 and 7.

To obtain an image containing just a particular blob is now very easy. To select all
pixels belonging to region 3 we create a logical image

>> reg3 = (label==3);
>> idisp(reg3)

which is shown in Fig. 13.8c. The total number of pixels in this blob is given by the to-
tal number of true-valued pixels in this logical image

>> sum(reg3(:))
ans =
 171060

Specular highlights in images are refl ections of bright light sources and can complicate segmen-
tation as shown in Fig. 13.3.

As discussed in Sect. 10.3.5 the light refl ected by most real objects has two components: the
specular surface refl ectance which does not change the spectrum of the light; and the diffuse body
refl ectance which fi lters the refl ected light.

There are several ways to reduce the problem of specular highlights. Firstly, move or remove
the problematic light source, or move the camera. Secondly, use a diffuse light source near the
camera, for instance a ring illuminator that fi ts around the lens of the camera. Thirdly, attenu-
ate the specular refl ection using a polarizing fi lter since light that is specularly refl ected from a
dielectric surface will be polarized.

We have seen a label image previous-
ly. The output of the MSER function in
Fig. 13.5 is a label image.

425

Connectivity analysis can return additional output values

>> [label, m, parents, cls] = ilabel(im);

where the vector
>> parents'
ans =
 0 1 1 2 3 1 3 6 6 9 9

describes the topology or hierarchy of the regions. It indicates, for example, that the parent
of region 4 is region 2� since region 4 is completely enclosed by region 2. The parent of re-
gions 2, 3 and 5 is region 1 which is the background. Region 1 has a parent of 0 indicating
that it touches the edge of the image and is not enclosed by any region. Each connected
region contains pixel values of a single class and the pixel class for each region is given by

>> cls'
ans =
 0 1 1 0 0 1 0 0 0 1 1

which indicates that regions 2, 3, 6, 10 and 1 comprise pixels of class 1 (white) and re-
gions 1, 4, 5, 7, 8 and 9 comprise pixels of class 0 (black).�

In this example we have assumed 4-way connectivity, that is, pixels are connected
within a region only through their north, south, east and west neighbors of the same
class. The 8-way connectivity option allows connection via any of a pixel’s eight neigh-
bors of the same class.�

Returning now to the examples from the previous section. For the colored targets

>> targets_label = ilabel(targets_binary);
>> idisp(targets_label, 'colormap', 'jet');

Fig. 13.8. Image labelling exam-
ple. a Binary image; b labeled im-
age; c all pixels with the label 3

We use the variable name cls rath-
er than class since the latter is the
name of a useful function in MATLAB.

8-way connectivity can lead to surprising
results. For example a black and white
chequerboard would have just two re-
gions; all white squares are one region
and all the black squares another.

13.1 · Region Features

Element 4 of this array is equal to 2.

426 Chapter 13 · Image Feature Extraction

and the garden image

>> tomatoes_label = ilabel(tomatoes_binary);
>> idisp(tomatoes_label, 'colormap', 'jet');

the connected regions are shown in false color in Fig. 13.9. We are now starting to
know something quantitative about these scenes: there are four yellow objects and
three red objects respectively.

13.1.2.1
l

Graph-Based Segmentation

So far we have classifi ed pixels based on some homogeneous characteristic of the ob-
ject such as intensity or color. Consider now the complex scene

>> im = iread('58060.jpg');

shown in Fig. 13.10a. The Gestalt principle of emergence says that we identify objects as
a whole rather than as a collection of parts – we see a bowl of grain rather than deducing
a bowl of grain by recognizing its individual components. However when it comes to
a detailed pixel by pixel segmentation things become quite subjective – different peo-
ple would perform the segmentation differently based on judgment calls about what
is important.� For example, should the colored stripes on the cloth be segmented? If
segments represent real world objects, then the Gestalt view would be that the cloth
should be just one segment. However the stripes are real, some effort was made to cre-
ate them, so perhaps they should be segmented. This is why segmentation is a hard
problem – humans cannot agree on what is correct. No computer algorithm could, or
could be expected to, make this type of judgment.

Nevertheless more sophisticated algorithms can do a very impressive job on complex
real world scenes. The image can be represented as a graph (see Appendix I) where each
pixel is a vertex and has 8 edges connecting it to its neighboring pixels. The weight of each
edge is a nonnegative measure of the dissimilarity between the two pixels – the absolute
value of the difference in color. The algorithm starts with every vertex assigned to its own
set. At each iteration the edge weights are examined and if the vertices are in different sets
but the edge weight is below a threshold the two vertex sets are merged. The threshold is a
function of the size of the set and a global parameter k which sets the scale of the segmen-
tation – a larger value of k leads to a preference for larger connected components.

For the image discussed the graph-based segmentation is given by
>> [label, m] = igraphseg(im, 1500, 100, 0.5);
>> m
m =
 28
>> idisp(label, 'colormap', 'jet')

Fig. 13.9. Label images for the tar-
gets and garden examples in false
color. The value of each pixel is
the label of the spatially contigu-
ous set to which the correspond-
ing input pixel belongs

The Berkeley segmentation site http://
www.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds hosts these im-
ages plus a number of different human-
made segmentations.

427

where label is a matrix, shown in Fig. 13.10b, whose elements are the region label
for the corresponding input pixels. The pixel classifi cation step has been integrated
into the representation step. The arguments are a scale parameter k = 1 500, the mini-
mum component size of 100 pixels, and the standard deviation for an initial Gaussian
smoothing applied to the image.

13.1.3
l
Description

In the previous section we learned how to fi nd connected components in the image
and how to isolate particular components such as shown in Fig. 13.8c. However this
representation of the component is still just an image with logical pixel values rather
than a concise description of its size, position and shape.

13.1.3.1
l
Bounding Boxes

The simplest representation of size and shape is the bounding box – the smallest
rectangle with sides parallel to the u- and v-axes that encloses the region. We will
illustrate this with a simple binary image

>> sharks = iread('sharks.png');

which is shown in Fig. 13.11a. As described above we will label the pixels and select
all those belonging to region 2

>> [label, m] = ilabel(sharks);
>> blob = (label == 2);

and the resulting logical image is shown in Fig. 13.11b. The number of pixels in this
region is simply the sum

>> sum(blob(:))
ans =
 7728

The coordinates of all the nonzero (object) pixels are the corresponding elements
of

>> [v,u] = fi nd(blob);

where u and v are each vectors of size

>> about(u)
u [double] : 7728x1 (61.8 kB)

Fig. 13.10. Complex segmenta-
tion example. a Original color
image (image from the Berkeley
Segmentation Dataset; Martin et al.
2001); b graph-based segmentation

13.1 · Region Features

428 Chapter 13 · Image Feature Extraction

The bounds of the region� are

>> umin = min(u)
umin =
 443
>> umax = max(u)
umax =
 581
>> vmin = min(v)
vmin =
 125
>> vmax = max(v)
vmax =
 235

These bounds defi ne a rectangle which we can superimpose on the image

>> plot_box(umin, vmin, umax, vmax, 'g')

as shown in Fig. 13.11b. The bounding box fi ts snugly around the blob and its cen-
ter could be considered as the center of the blob. However the bounding box is not
aligned with the blob, that is, its sides are not parallel with the sides of the blob. This
means that as the blob rotates the size and shape of the bounding box would change
even though the size and shape of the blob does not.

13.1.3.2
l
Moments

 Moments are a rich and computationally cheap class of image features which can de-
scribe region size and location as well as shape. The moment of an image I is a scalar

 (13.1)

where (p + q) is the order of the moment. The zeroth moment p = q = 0 is

 (13.2)

and for a binary image where the background pixels are zero this is simply the num-
ber of nonzero (white) pixels – the area of the region.

Moments are calculated using the Toolbox function mpq and for the single shark
the zeroth moment is

Fig. 13.11. a Sharks image. b Re-
gion 2 with bounding box (green)

This can be obtained more simply using
the Toolbox function ibbox.

429

>> m00 = mpq(blob, 0, 0)
m00 =
 7728

which is the area of the region in units of pixels.
Moments can be given a physical interpretation by regarding the image function as

a mass distribution. Consider the region as being made out of thin plate where each
pixel has one unit of area and one unit of mass. The total mass of the region is m00 and
the center of mass or centroid of the region is

 (13.3)

where m10 and m01 are the fi rst-order moments. For our example the centroid of the
target region is

>> uc = mpq(blob, 1, 0) / m00
uc =
 503.4981
>> vc = mpq(blob, 0, 1) / m00
vc =
 184.7285

which we can display

>> hold on; plot(uc, vc, 'gx', uc, vc, 'go');

as shown in Fig. 13.11b.
The central moments µ pq are computed with respect to the centroid

 (13.4)

and are invariant to the position of the region. They are related to the moments mpq by

 (13.5)

and are computed by the Toolbox function upq.
Using the thin plate analogy again, the inertia of the region about axes parallel to

the u- and v-axes and intersecting at the centroid of the region is given by the sym-
metric matrix

 (13.6)

The central second moments µ 20, µ 02 are the moments of inertia and µ 11 is the prod-
uct of inertia. The product of inertia is nonzero if the shape is asymmetric with re-
spect to the region’s axes.

The equivalent ellipse is the ellipse that has the same inertia matrix as the region.
For our example

>> u20 = upq(blob, 2, 0); u02 = upq(blob, 0, 2); u11 = upq(blob, 1, 1);
>> J = [u20 u11; u11 u02]
J =
 1.0e+06 *
 7.8299 -2.9169
 -2.9169 4.7328

and we can superimpose the equivalent ellipse over the region
>> plot_ellipse(4*J/m00, [uc, vc], 'b');

and the result is shown in Fig. 13.12.

13.1 · Region Features

430 Chapter 13 · Image Feature Extraction

The eigenvalues and eigenvectors of J are related to the radii of the ellipse and the
orientation of its major and minor axes (see Sect. C.1.4). For this example the ei-
genvalues

>> lambda = eig(J)
lambda =
 1.0e+06 *
 2.9788
 9.5838

are the principal moments of the region. The maximum and minimum radii of the
equivalent ellipse are

 (13.7)

respectively where λ2 ≥ λ1. In MATLAB this is�

>> a = 2 * sqrt(lambda(2) / m00)
a =
 70.4313
>> b = 2 * sqrt(lambda(1) / m00)
b =
 39.2663

in units of pixels. These lengths are characteristic of this particular shape and are in-
variant to rotation. The aspect ratio of the region

>> b/a
ans =
 0.5575

is a scalar that crudely characterizes the shape and is invariant to scale and rotation.
The eigenvectors of J are the principal axes of the ellipse – the directions of its ma-

jor and minor axes. The major, or principal, axis is the eigenvector v corresponding
to the maximum eigenvalue. For our example this is

>> [x,lambda] = eig(J);
>> x
x =
 -0.5153 -0.8570
 -0.8570 0.5153

and since MATLAB returns eigenvalues in increasing order v is always the last column
of the returned eigenvector matrix

>> v = x(:,end);

Fig. 13.12. Sharks image. a Equiv-
alent ellipse (blue), centroid and
bounding box (green) for region 2
of the targets image; b zoomed
view

MATLAB returns eigenvalues in increas-
ing order: λ1 then λ2.

431

The angle of this vector with respect to the horizontal axis is

and for our example this is
>> atand(v(2)/v(1))
ans =
 -31.0185

degrees which indicates that the major axis of the equivalent ellipse is approximately
30 degrees above horizontal.�

To summarize, we have created an image containing a spatially contiguous set of
pixels corresponding to one of the objects in the scene that we segmented from the
original color image. We have determined its area, a box that entirely contains it, its
position (the location of its centroid), its orientation and its shape (aspect ratio). The
equivalent ellipse is a crude indicator of the region’s shape but it is invariant to chang-
es in position, orientation and scale. The invariance of the different blob descriptors
to camera motion is summarized in Table 13.1.

13.1.3.3
l
Blob Features

The Toolbox provides a simpler way to perform the functions described above
>> f = imoments(blob)
f =
area=7728, cent=(503.5,184.7), theta=-0.54, b/a=0.558

which returns a RegionFeature object that contains many features describing this
region including its area, its centroid, orientation and aspect ratio – the ratio of its mini-
mum to maximum radius. These values are available as object properties, for example

>> f.uc
ans =
 503.4981
>> f.theta
ans =
 -0.5414
>> f.aspect
ans =
 0.5575

along with the zeroth- and fi rst-order moments and the second-order central moments
>> f.moments.m00
ans =
 7728
>> f.moments.u11
ans =
 -2.9169e+06

Table 13.1.
Region features and their invari-
ance to camera motion: transla-
tion, rotation about the object’s

centroid and scale factor

13.1 · Region Features

With reference to Fig. C.2b the angle in-
creases clockwise from the horizontal
since the y-axis of the image is down-
ward so the z-axis is into the page.

432 Chapter 13 · Image Feature Extraction

The Toolbox provides a high-level function to compute features for every region in
the image

>> fv = iblobs(targets_binary)
fv =
(1) area=14899, cent=(298.0,181.0), theta=1.48, b/a=0.702,	
 color=1, label=1, touch=0, parent=4
(2) area=7728, cent=(503.5,184.7), theta=-0.54, b/a=0.558,	
 color=1, label=2, touch=0, parent=4
(3) area=7746, cent=(84.2,160.7), theta=0.50, b/a=0.558,	
 color=1, label=3, touch=0, parent=4
(4) area=258946, cent=(306.7,252.9), theta=0.05, b/a=0.831,	
 color=0, label=4, touch=1, parent=0
(5) area=18814, cent=(246.8,426.9), theta=-0.02, b/a=0.559,	
 color=1, label=5, touch=0, parent=4

which returns a vector fv of RegionFeature objects. The display method shows a
summary of the region’s properties and the number in parentheses indicates the index
within the vector. Each RegionFeature object contains the area, bounding box,
centroid, raw and central moments, and equivalent ellipse parameters as returned by
 imoments as well as additional properties such as the class of the pixels within the
region, the region label, the label of the parent region and whether or not the blob
touches the edge.� We can tell that region 4 is the background since it is large, com-
prises zero valued pixels and touches the edge of the image.

Some examples of the properties of this class are

>> fv(2).umin
ans =
 443
>> fv(3).class
ans =
 1
>> fv(3).parent
ans =
 4
>> fv(3).umin
ans =
 24
>> fv(3).aspect
ans =
 0.5580

The RegionFeature class also has plotting methods such as

>> fv(2). plot_box('g')

which overlays the bounding box of feature fv(2), in green, on the current plot. Other
plot methods include plot_centroid and plot_ellipse. All methods add to the
current plot and can operate on a single object or a vector of objects, for example

>> fv.plot_box('r:')

overlays the bounding box, in dotted red, for all blobs in fv.
The children property is the inverse mapping of the parent property. It is a

list of indices into the feature vector of RegionFeature objects which are children
of this feature. For example the background blob, fv(4), has as its children

>> fv(4).children
ans =
 1 2 3 5

blobs fv(1), fv(2), fv(3) and fv(5).
Importantly the function iblobs can perform fi ltering. For the tomato image

(page 423) we might know something about the minimum and/or maximum size of a
tomato so we can set bounds on the possible area

This calculation assumes that pixels
are square and this is almost always
the case with digital cameras. If not the
'aspect' option should be provid-
ed to iblobs to define a nonunity
pixel aspect ratio which is pixel height
over pixel width.

433

>> fv = iblobs(tomatoes_binary, 'area', [1000, 5000])
fv =
(1) area=1529, cent=(132.6,132.9), theta=-0.36, b/a=0.866,	
 color=1, label=2, touch=0, parent=1
(2) area=3319, cent=(95.5,210.9), theta=-0.33, b/a=0.886,	
 color=1, label=4, touch=1, parent=0

which returns only blobs with an area between 1 000 and 5 000 pixels. Other fi lter pa-
rameters include aspect ratio and edge touching, and more details are provided in
the online documentation. For the tomato image we might wish to accept only blobs
that do not touch the edge

>> fv = iblobs(tomatoes_binary, 'touch', 0)
fv =
(1) area=1529, cent=(132.6,132.9), theta=-0.36, b/a=0.866,	
 color=1, label=2, touch=0, parent=1

The fi lter rules can also be cascaded, for example

>> fv = iblobs(tomatoes_binary, 'area', [1000, 5000], 'touch',	
 0, 'class', 1)
fv =
(1) area=1529, cent=(132.6,132.9), theta=-0.36, b/a=0.866,	
 color=1, label=2, touch=0, parent=1

and a blob must pass all rules in order to be accepted.

13.1.3.4
l
Shape from Moments

In order to recognize particular objects we need some measures of shape that are in-
variant to the rotation and scale of the image and provide more detail than the simple
aspect ratio parameter.

For the case of planar objects, which are fronto-parallel to the camera, complex ratios
of moments can be used to form a vector of invariants for recognition of planar objects
irrespective of position, orientation and scale. For example the image of Fig. 13.11a has
three similarly shaped regions and one that is different

>> [fv,L] = iblobs(sharks, 'class', 1);
>> fv =
(1) area=14899, cent=(298.0,181.0), theta=1.48, b/a=0.702,	
 color=1, label=1, touch=0, parent=4
(2) area=7728, cent=(503.5,184.7), theta=-0.54, b/a=0.558,	
 color=1, label=2, touch=0, parent=4
(3) area=7746, cent=(84.2,160.7), theta=0.50, b/a=0.558,	
 color=1, label=3, touch=0, parent=4
(4) area=18814, cent=(246.8,426.9), theta=-0.02, b/a=0.559,	
 color=1, label=5, touch=0, parent=4

and from the aspect ratio parameter b/a we see that blob 1 is different to blobs 2, 3
and 4. The second output argument is the label matrix and the moment invariants for
the four white blobs can be computed by

>> for i=1:4
 H(i,:) = humoments(L == fv(i).label);
 end
>> H
H =
 0.4544 0.0238 0.0006 0.0000 0.0000 -0.0000 -0.0000
 0.2104 0.0122 0.0020 0.0006 0.0000 0.0001 0.0000
 0.2101 0.0122 0.0020 0.0006 0.0000 0.0001 0.0000
 0.2102 0.0121 0.0020 0.0006 0.0000 0.0001 0.0000

which indicate the similarity of blobs 2, 3 and 4 despite their different position, ori-
entation and scale.� It also indicates the difference in shape of blob 1. This shape de-
scriptor can be considered as a point in 7-dimensional space, and similarity to other
shapes can be defi ned in terms of Euclidean distance in this descriptor space.

In practice the discrete nature of the pix-
el data means that the invariance will
only be approximate.

13.1 · Region Features

434 Chapter 13 · Image Feature Extraction

13.1.3.5
l
Shape from Perimeter

The shape of a region is concisely described by its boundary or perimeter pixels
– sometimes called edgels. Figure 13.13 shows three common ways to represent the
perimeter of a region – each will give a slightly different estimate of the perimeter
length. A chain code is a list of the outermost pixels of the region whose center’s
are linked by short line segments. In the case of a 4-neighbor chain code the suc-
cessive pixels must be adjacent and the perimeter segments have an orientation
of k × 90°, where k ∈ {0� 3}. With an 8-neighbor chain code, or Freeman chain
code, the perimeter segments have an orientation of k × 45°, where k ∈ {0� 7}.
The crack code has its segments in the cracks between the pixels on the edge of
the region and the pixels outside the region. These have orientations of k × 90°,
where k ∈ {0� 3}.

The perimeter can be encoded as a list of pixel coordinates (ui, vi) or very com-
pactly as a bit string using just 2 or 3 bits to represent k for each segment. These
various representations are equivalent and any representation can be transformed
to another.

Note that for chain codes the boundary follows a path that is on average half
a pixel inside the true boundary and therefore underestimates the perimeter
length. The error is most significant for small regions.

To enable the extra computation to trace around the boundary of the objects using
8-neighbor chain code we must give the 'boundary' option

>> fv = iblobs(sharks, 'boundary', 'class', 1);
>> fv(1)
ans =
(1) area=14899, cent=(298.0,181.0), theta=1.48, b/a=0.702,	
 class=1, label=1, touch=0, parent=4, perim=1236.4, circ=0.136

 Moment invariants. The normalized moments

 (13.8)

are invariant to translation and scale, and are computed from
the central moments by the Toolbox function npq.

Third-order moments allow for the creation of quan-
tities that are invariant to translation, scale and orienta-
tion within a plane. One such set of moments defi ned by
Hu (1962) are

and computed by the Toolbox function humoments.

and we see that two extra parameters are now displayed:
perim and circ which are perimeter length and circu-
larity respectively. The boundary is a list of edge points
represented as a matrix with one column per edge point.
In this case there are

>> about(fv(1).edge)
 [double] : 2x1085 (17.4 kB)

1 085 edge points and the fi rst fi ve points of the boundary are
>> fv(1).edge(:,1:5)
ans =
 285 284 283 282 281
 71 72 72 72 72

The displayed perimeter length of 1236.4 has had a
heuristic correction applied to compensate for the under-
estimation due to chain coding.

The boundary can be overlaid on the current plot using
the object’s plot_boundary method

>> fv(1).plot_boundary('r')

in this case as a red line. The plotting methods can also be
invoked on a feature vector

>> idisp(sharks)
>> fv.plot_boundary('r')
>> fv.plot_centroid()

which is shown in Fig. 13.14.

435

 Circularity is another commonly used and intuitive shape feature. It is defi ned as

 (13.9)

where p is the region’s perimeter length. Circularity has a maximum value of ρ = 1
for a circle, is ρ = ý for a square and zero for an infi nitely long line. Circularity is also
invariant to translation, rotation and scale. In the results of iblobs shown above we
note that the circularity measure is the same for blobs 2, 3 and 4, and much lower for
blob 1 due to it being effectively a long line.�

Every object has one external boundary, which may include a section of the image
border if the object touches the border. An object with holes has one internal boundary
per hole but the Toolbox returns only the external boundary – the inner boundaries can
be found as the external boundaries of the holes which are its child regions. Since the
external boundary contains all the essential information about the shape of a region it
is possible, assuming that the region has no holes, to compute the moments from the
boundary using the functions mpq_poly, upq_poly and npq_poly.

One way to analyze the rich shape information encoded in the perimeter is to com-
pute the distance and angle to every perimeter point with respect to the object’s cen-
troid – this is computed by the boundary method

>> [r,th] = fv(2).boundary;
>> plot([r th])

and is shown in Fig. 13.15a. These are computed for 400 points (default) evenly spaced
along the entire perimeter of the object. Both the radius and angle signatures describe
the shape of the object. The angle signature is invariant to the scale of the object while

�
Fig. 13.13. Boundary representa-
tions with region pixels shown in
grey, perimeter segments shown
in blue and the center of bound-
ary pixels marked by a red dot.
a Chain code with 4 directions;
b Freeman chain code with 8 di-
rections; c crack code. The perim-
eter lengths for this example are
respectively 14, 12.2 and 18 pixels

Fig. 13.14.
Boundaries (red) and centroids

of four blobs

13.1 · Region Features

For small blobs, quantization effects can
lead to significant errors in circularity.

436 Chapter 13 · Image Feature Extraction

the amplitude of the radius signature scales with object size. The radius signatures of
all four blobs can be compared by

>> hold on
>> for f=fv
 [r,t] = f.boundary();
 plot(r/sum(r));
 end

and are shown in Fig. 13.15b. We have normalized by the sum in order to remove the
effect of object scale.� The signatures are a function of normalized distance along the
perimeter. They all start at the top left-most pixel on the object’s boundary. Different
objects of the same shape have identical signatures but possibly shifted horizontally and
wrapped around – the fi rst and last points in the horizontal direction are adjacent.

To compare the shape profi le of objects requires us to compare the signature for
all possible horizontal shifts. The radius signatures of all four blobs is

>> b = fv.boundary

which is a 400 × 4 matrix with the radius signatures as columns. To compare the sig-
nature of blob 2 with all the signatures

>> RegionFeature.boundmatch(b(:,2), b)
ans =
 0.6494 1.0000 0.9854 0.9927

which indicates that the shape of blob 2 closely matches the shape of itself and blobs 3
and 4, but not the shape of blob 1. The static method boundmatch computes the
1-dimensional normalized cross correlation, see Table 12.1, for every possible rotation
of one signature with respect to the other, and returns the highest value.

There are many variants to the approach described. The signature can be Fourier
transformed and described more concisely in terms of a few Fourier coeffi cients. The
boundary curvature can be computed which highlights corners, or the boundary can
be segmented into straight lines and arcs.

13.1.3.6
l

Character Recognition

A particularly important class of objects are characters. Our world is fi lled with in-
formative text in the form of signs and labels which provides information about the
names of places and directions to travel. We process much of this unconsciously but
this rich source of information is largely unavailable to robots.

If you have the Computer Vision System Toolbox™ you can access the inbuilt opti-
cal character recognition functionality. We start with the image of a sign we have used

Fig. 13.15. Radius signature match-
ing. a Radius and angle signa-
ture for blob 2 (top left shark in
Fig. 13.14), b normalized radius
signatures for all blobs (letter S
is shown dashed)

We could have normalized by the maxi-
mum value but normalizing by the sum
is more noise tolerant.

437

previously and apply OCR to a region of interest specifi ed as (u, v, w, h) where (u, v)
are the coordinates of the top-left of region

>> castle = iread('castle.png');
>> words = ocr(castle, [420 300 580 420]);

which returns a structure. The recognized words are

>> words.Text
ans =
Tourist
information
Castle

and its confi dence about those words is
>> words.WordConfi dences'
ans =
 0.8868 0.7884 0.8588

We can highlight the location of the words in the original image by

>> plot_box('matlab', words.WordBoundingBoxes, 'y')

with the result shown in Fig. 13.16. This function does require a reasonable estimate
of the region in which the text is to be found.

13.1.4
l

Summary

We have discussed how to convert an input image, grey scale or color, into concise de-
scriptors of regions within the scene. The criteria for what constitutes a region is ap-
plication specifi c. For a tomato picking robot it would be round red regions, for land-
ing a UAV it might be yellow targets on the ground.

The process outlined is the classical bottom up approach to machine vision appli-
cations and the key steps are:

1. Classifying the pixels according to the application specifi c criterion, for example,
redness, yellowness or motion. Each pixel is assigned a class c.

2. Grouping adjacent pixels of the same class into sets, and each pixel is assigned a
label S indicating the set to which it has been assigned.

3. Describing the sets in terms of features derived from their spatial extent, moments,
equivalent ellipse and boundary.

These steps are a progression from low-level to high-level. The low-level operations
consider pixels in isolation, whereas the high-level is concerned with more abstract

Fig. 13.16.
Optical character recognition.

The bounding boxes of detected
words are shown in yellow. The
manually set region of interest

within which to search for text is
shown as a dashed red box

13.1 · Region Features

438 Chapter 13 · Image Feature Extraction

concepts such as size and shape. The MSER and graphcuts algorithms are powerful be-
cause they combines steps 1 and 2 and consider regions of pixels and localized differ-
ences in order to create a segmentation.

Importantly none of these steps need be perfect. Perhaps the fi rst step has some false
positives, isolated pixels misclassifi ed as objects, that we can eliminate by morphologi-
cal operations, or reject after connectivity analysis based on their small size. The fi rst
step may also have false negatives, for example specular refl ection and occlusion may
cause some object pixels to be classifi ed incorrectly as non-object. In this case we need
to develop some heuristics, for instance morphological processing to fi ll in the gaps in
the blob. Another option is to oversegment the scene – increase the number of regions
and use some application-specifi c knowledge to merge adjacent regions. For example a
specular refl ection colored region might be merged with surrounding regions to create
a region corresponding to the whole fruit.

For some applications it might be possible to engineer the camera position and illu-
mination to obtain a high quality image but for a robot operating in the real world this
luxury does not exist. A robot needs to glean as much useful information as it can from
the image and move on.

Domain knowledge is always a powerful tool. Given that we know the scene con-
tains tomatoes and plants, the fact that we observe a large red region that is not cir-
cular, we use our domain knowledge to infer that the fruit is occluded. We therefore
might command the robot to seek the fruit that is not occluded, and then to move to
another location where the fruit might not be occluded. Object segmentation remains
one of the hardest aspects of machine vision and there is no silver bullet. It requires
knowledge of image formation, fundamental image processing algorithms, insight, a
good box of tools and patience.

13.2
l
Line Features

Lines are distinct visual features that are particularly common in man-made environ-
ments – for example the edges of roads, buildings and doorways. In Sect. 12.5.1.3 we
discussed how image intensity gradients can be used to fi nd edges within an image,
and this section will be concerned with fi tting line segments to such edges.

We will illustrate the principle using the very simple scene

>> im = iread('5points.png', 'double');

shown in Fig. 13.17a. Consider any one of these points – there are an infi nite num-
ber of lines that pass through that point. If the point could vote for these lines, then
each possible line passing through the point would receive one vote. Now consider

Fig. 13.17. Hough transform fun-
damentals. a Five points that de-
fi ne six lines; b the Hough accu-
mulator array. The horizontal axis
is an angle θ ∈ S1 so we can imag-
ine the graph wrapped around a
cylinder and the left- and right-
hand edges joined. The sign of ρ
also changes at the join so the
curve intersections on the left- and
right-hand edges are equivalent

439

another point that does the same thing, casting a vote for all the possible lines that
pass through it. One line (the line that both points lie on) will receive a vote from
each point – a total of two votes – while all the other possible lines receive either
zero or one vote.

We want to describe each line in terms of a minimum number of parameters but the
standard form v = mu + c is problematic for the case of vertical lines where m = ∞.
Instead it is common to represent lines using the (ρ, θ) parameterization shown in
Fig. 13.18

 (13.10)

where θ ∈ [−ü, ü) is the angle from the horizontal axis to the line, and ρ ∈ [−ρmin, ρmax]
is the perpendicular distance between the origin and the line. A horizontal line has
θ = 0 and a vertical line has θ = −ü. Any line can therefore be considered as a point
(θ , ρ) in the 2-dimensional space of all possible lines.

It is not practical to vote for one out of an infi nite number of lines through each
point, so we consider lines drawn from a fi nite set. The θ ρ-space is quantized and a
corresponding Nθ × Nρ array A is used to tally the votes – the accumulator array. For
a W × H input image

The array A has Nρ elements spanning the interval ρ ∈ [−ρmax, ρmax] and Nθ elements
spanning the interval θ ∈ [−ü, ü). The indices of the array are integers (i, j) ⊂ Z2
such that

An edge point (u, v) votes for all lines that satisfy Eq. 13.10 which is all (i, j) pairs
for which

 (13.11)

and the elements A[i, j] are all incremented. For every i ∈ [1, Nθ] the corresponding value
of θ is computed, then ρ is computed according to Eq. 13.11 and mapped to a correspond-
ing integer j. Every edge point adds a vote to Nθ elements of A that lie along a curve.

Fig. 13.18.
(θ , ρ) parameterization for two
line segments. Positive quanti-
ties are shown in blue, negative

in red

13.2 · Line Features

440 Chapter 13 · Image Feature Extraction

At the end of the process those elements of A with the largest number of votes
correspond to dominant lines in the scene. For the example of Fig. 13.17a the result-
ing accumulator array is shown in Fig. 13.17b. Most of the array contains zero votes
(dark blue) and the light curves are trails of single votes corresponding to each of the
fi ve input points. These curves intersect and those points correspond to lines with
more than one vote. We see four locations where two curves intersect, resulting in
cells with two votes, and these correspond to the lines joining the four outside points
of Fig. 13.17a. The horizontal axis represents angle θ ∈ S1 so the left- and right-hand
ends are joined and ρ changes sign – the curve intersection points on the left- and
right-hand sides of the array are equivalent. We also see two locations where three
curves intersect, resulting in cells with three votes, and these correspond to the di-
agonal lines that include the middle point of Fig. 13.17a. This technique is known as
the Hough� transform.

Consider the more complex example of a solid square rotated counter-clockwise
by 0.3 rad

>> im = testpattern('squares', 256, 256, 128);
>> im = irotate(im, -0.3);

We compute the edge points

>> edges = icanny(im);

which are shown in Fig. 13.19a. The Hough transform is computed by

Fig. 13.19. Hough transform for
a rotated square. a Edge image;
b Hough accumulator; c closeup
view of the Hough accumulator;
d estimated lines overlaid on the
original image

Pronounced “huff”.

441

>> h = Hough(edges)
Hough: nd=401, ntheta=400, interp=3x3, distance=1

and returns an instance of the Hough class. Its properties include the two-dimen-
sional vote accumulator array A with nd rows and ntheta columns. By default the
θ ρ-plane is quantized into 401 ×400 bins.� The accumulator array can be visualized
as an image

>> h.show();

which is shown in Fig. 13.19b. The four bright spots correspond to dominant edges
in the input image. We can see that many other possible lines have received a small
number of votes as well.

The next step is to fi nd the peaks in the accumulator array

>> lines = h.lines()
lines =
theta=0.298527, rho=224.412, strength=1
theta=0.306267, rho=96.2507, strength=0.962963
theta=-1.27224, rho=-20.1637, strength=0.874074
theta=-1.28026, rho=-150.256, strength=0.837037
theta=0.282667, rho=94.1344, strength=0.785185
theta=-1.25683, rho=-146.799, strength=0.77037
theta=0.318101, rho=226.064, strength=0.718519
theta=0.278998, rho=222.699, strength=0.703704
theta=-1.25286, rho=-17.337, strength=0.666667
theta=0.325784, rho=97.7635, strength=0.562963
theta=-1.29514, rho=-23.7157, strength=0.503704

which returns a vector of LineFeature objects corresponding to the lines with the
most votes, as well as the number of votes associated with that line normalized with
respect to the largest vote. If the function is called without output arguments the iden-
tifi ed peaks are indicated on an image of the accumulator array.

Note that although the object has only four sides there are many more than four
peaks in the accumulator array. We also note that the fourth and sixth peaks have quite
similar line parameters, and this region of the accumulator is shown in more detail
in Fig. 13.19c. We see several bright spots (high numbers of votes) that are close to-
gether and this is due to quantization effects. The concept of peak scale discussed on
pages 369 and 390 applies here and once again we apply nonlocal maxima suppres-
sion to eliminate smaller peaks in the neighborhood of the maxima

>> h = Hough(edges, 'suppress', 5)
h =
Hough: nd=401, ntheta=400, interp=3x3, distance=5

In this case distance is fi ve accumulator cells – the maxima suppresses smaller local
maxima within a fi ve cell radius. This leads to just four peaks

>> lines = h.lines()
lines =
theta=0.298527, rho=224.412, strength=1
theta=0.306267, rho=96.2507, strength=0.962963
theta=-1.27224, rho=-20.1637, strength=0.874074
theta=-1.28026, rho=-150.256, strength=0.837037

corresponding to the edges of the object.
Since the line parameters are quantized the lines method uses interpolation to

refi ne the location of the peak (see Appendix J). By default, interpolation is performed
over a 3 × 3 window centered on the local vote maxima. Once a peak has been found
all votes within the suppression distance are zeroed so as to eliminate any close max-
ima, and the process is repeated for all peaks in the voting array that exceed a speci-
fi ed fraction of the largest peak.�

ρ is symmetric about zero, so including
zero this is an odd number of elements.
θ has a range of [−ü, ü), it is asymmet-
ric about zero and has an even number
of elements.

With no argument all peaks greater than
'houghThresh' are displayed.
This defaults to 0.5 but can be set by the
'houghThresh' option to Hough .

13.2 · Line Features

442 Chapter 13 · Image Feature Extraction

The detected lines can be projected onto the original image

>> idisp(im);
>> h.plot('b')

and the result is shown in Fig. 13.19d.
A real image example is
>> im = iread('church.png', 'grey', 'double');
>> edges = icanny(im);
>> h = Hough(edges, 'suppress', 10);
>> lines = h.lines();

and the strongest ten lines

>> idisp(im, 'dark');
>> lines(1:10).plot('g');

are shown in Fig. 13.20. Many strong lines in the image have been found, and lines
corresponding to the roof edges and building-ground line are correct. However most
of the vertical lines do not correspond to lines in the image – they are the result of
disjoint sections of high gradient voting up a line that passes through them.

Another measure of the importance of an edge can be found by reprojecting the
line onto the edge image and counting the maximum number of contiguous edge pix-
els that lie along it

>> lines = lines.seglength(edges);

which returns a vector of LineFeature objects similar to that returned by the lines
method but with the property length set to the maximum edge segment length

>> lines(1)
ans =
theta=0.0237776, rho=791.008, strength=1, length=24

in this case 24 pixels. An edge segment is defi ned as an almost contiguous group of
edge pixels with no gap greater than fi ve (by default) pixels. We can then choose all
those Hough peaks corresponding to segments longer than 80 pixels

>> k = fi nd(lines.length > 80);

and then highlight those lines in blue

>> lines(k).plot('b--')

as shown in Fig. 13.20. We can see that a number of lines are converging on a perspec-
tive vanishing point to the right of the image.

Fig. 13.20.
Hough transform of a real im-
age. The green lines correspond
to the ten strongest voting
peaks. The overlaid dashed blue
lines are those with an edge seg-
ment length of at least 80 pixels.
Three lines meet both criteria

443

13.2.1
l

Summary

The Hough transform is elegant in principle and in practice it can either work well or in-
furiatingly badly. It performs poorly when the scene contains a lot of texture or the edges
are indistinct. Texture causes votes to be cast widely, but not uniformly, over the accu-
mulator array which tends to mask the true peaks. Consequently a lot of experimentation
is required for the parameters of the edge detector and the Hough peak detector.

The function Hough has many options which are described in the online documen-
tation. By default the strength of the vote cast by each edge point is the edge strength
at that point which emphasizes stronger edges. Edge strengths less than edgeThresh
times the maximum edge strength are considered as zero. The Hough object can also
be constructed from an array of edge coordinates with equal votes, or from an array
of edge coordinates and a vector of corresponding vote strength.

The Hough transform estimates the direction of the line by fi tting lines to the edge
pixels. It ignores rich information about the direction of the edge at each pixel which
was discussed on page 382. The consequence of not using all the information available is
poorer estimation. There is little added expense in using the direction at each pixel since
we have already computed the image gradients in order to evaluate edge magnitude.

13.3
l
Point Features

The fi nal class of features that we will discuss are point features. These are visually dis-
tinct points in the image that are known as interest points, salient points, keypoints
or corner points. We will fi rst introduce some classical techniques for fi nding interest
points and then discuss more recent scale-invariant techniques.

13.3.1
l

Classical Corner Detectors

We recall from Sect. 12.5.1.3 that a point on a line has a strong gradient in a direction
normal to the line. However gradient along the line is low which means that a pixel on
the line will look very much like its neighbors along the line. In contrast, an interest
point is a point that has a high image gradient in orthogonal directions. It might be
single pixel that has a signifi cantly different intensity to all of its neighbors or it might
literally be a pixel on the corner of an object. Since interest points are quite distinct
they have a much higher likelihood of being reliably detected in different views of the
same scene. They are therefore key to multi-view techniques such as stereo and mo-
tion estimation which we will discuss in the next chapter.

 The earliest corner point detector was Moravec’s interest operator, so called because
it indicated points in the scene that were interesting from a tracking perspective. It
was based on the intuition that if a small image patch W is to be unambiguously lo-
cated in another image it must be quite different to the same size patch at any adja-
cent location. Moravec defi ned the similarity between a region centered at (u, v) and
an adjacent region, displaced by (δu, δv), as

 (13.12)

where W is some local image region and typically a W × W square window. This is
the SSD similarity measure from Table 12.1 that we discussed previously. Similarity
is evaluated for displacements in eight cardinal� directions (δu, δv) ∈D and the mini-
mum value is the interest measure

 (13.13)

N, NE, E, … W, NW or i, j ∈ {–1, 0, 1}.

13.3 · Point Features

444 Chapter 13 · Image Feature Extraction

which has a large value only if all the displaced patches are different to the original
patch. The function CM(·) is evaluated for every pixel in the image and interest points
are those where CM is high. The main limitation of the Moravec detector is that it is
nonisotropic since it examines image change, essentially gradient, in a limited num-
ber of directions. Consequently the detector can give a strong output for a point on a
line, which is not desirable.

We can generalize the approach by defi ning the similarity as the weighted sum of
squared differences between the image region and the displaced region as

where W is a weighting matrix that emphasizes points closer to the center of the win-
dow W. The indicated term can be approximated by a truncated Taylor series�

where Iu and Iv are the horizontal and vertical image gradients respectively. We can
now write

which can be written compactly in quadratic form as

where

If the weighting matrix is a Gaussian kernel W = G(σI) and we replace the summa-
tion by a convolution then

 (13.14)

which is a symmetric 2 × 2 matrix referred to variously as the structure tensor, auto-
correlation matrix or second moment matrix. It captures the intensity structure of the
local neighborhood and its eigenvalues provide a rotationally invariant description of
the neighborhood. The elements of the A matrix are computed from the image gradi-
ents, squared or multiplied, and then smoothed using a weighting matrix. The latter
reduces noise and improves the stability and reliability of the detector. The gradient
images Iu and Iv are typically calculated using a derivative of Gaussian kernel method
(Sect. 12.5.1.3) with a smoothing parameter σD.

An interest point (u, v) is one for which s(·) is high for all directions of the vec-
tor (δu, δv). That is, in whatever direction we move the window it rapidly becomes
dissimilar to the original region. If we consider the original image I as a surface the
eigenvalues of A are the principal curvatures of the surface at that point. If both ei-

See Appendix E.

445

genvalues are small then the surface is fl at, that is the image region has approximately
constant local intensity. If one eigenvalue is high and the other low, then the surface
is ridge shaped which indicates an edge. If both eigenvalues are high the surface is
sharply peaked which we consider to be a corner.�

The Shi-Tomasi detector considers the strength of the corner, or cornerness, as the
minimum eigenvalue

 (13.15)

where λi are the eigenvalues of A. Points in the image for which this measure is high
are referred to as “good features to track”. The Harris detector� is based on this same
insight but defi nes corner strength as

 (13.16)

and again a large value represents a strong, distinct, corner. Since det(A) = λ1λ2 and
tr(A) = λ1 + λ2 the Harris detector responds when both eigenvalues are large and el-
egantly avoids computing the eigenvalues of A which has a somewhat higher com-
putational cost.� A commonly used value for k is 0.04. Another variant is the Noble
 detector

 (13.17)

which is arithmetically simple but potentially singular.
Typically the corner strength is computed for every pixel and results in a corner

strength image. Then nonlocal maxima suppression is applied to only retain values
that are greater than their immediate neighbors. A list of such points is created and
sorted into descending corner strength. A threshold can be applied to only accept cor-
ners above a particular strength, or above a particular fraction of the strongest corner,
or simply the N strongest corners.

The Toolbox provides a Harris corner detector which we will demonstrate using
a real image

>> b1 = iread('building2-1.png', 'grey', 'double');
>> idisp(b1)

The Harris features are computed by

>> C = icorner(b1, 'nfeat', 200);
7497 corners found (0.8%), 200 corner features saved

which returns a vector of PointFeature objects. The detector found over 7 000 cor-
ners that were local maxima of the corner strength image and these comprised 0.8% of
all pixels in the image. In this case we requested the 200 strongest corners. The vector
contains the corners sorted by decreasing corner strength, and each PointFeature
object contains the corner coordinate (u, v), the corner strength and a descriptor which
comprises the unique elements of the structure tensor in vector form (A11, A22, A12).
The descriptor can be used as a simple signature of the corner to help match corre-
sponding corners between different views.

Recall from page 363 that lossy image
compression such as JPEG removes high-
frequency detail from the image, and this
is exactly what defines a corner. Ideally
corner detectors should be applied to
images that have not been compressed
and decompressed.

Sometimes referred to in the literature
as the Plessey corner detector.

Evaluating eigenvalues for a 2 × 2 ma-
trix involves solving a quadratic equa-
tion and therefore requires a square root
operation.

Another approach to determining image curvature is to use the determinant of the Hessian (DoH).
The Hessian is the matrix of second-order gradients at a point

where Iuu = ∂2I / ∂u2, Ivv = ∂2I / ∂v2 and Iuv = ∂ 2I2/ ∂u∂v. The determinant det(H) has a large
magnitude when there is grey-level variation in two directions. However second derivatives ac-
centuate image noise even more than fi rst derivatives and the image must be smoothed fi rst.

13.3 · Point Features

446 Chapter 13 · Image Feature Extraction

The corners can be overlaid on the image as white squares

>> idisp(b1, 'dark');
>> C.plot('ws');

as shown in Fig. 13.21a. The 'dark' option to idisp reduces the brightness of the
image to make the overlaid corner markers more visible. A closeup view is shown in
Fig. 13.21b and we see the features are indeed often located on the corners of objects.

We also see that the corners tend to cluster unevenly, with a greater density in re-
gions of high contrast and texture, and for some applications this can be problematic.
To distribute corner points more evenly we can increase the distance used for nonlo-
cal maxima suppression

>> Cs = icorner(b1, 'nfeat', 200, 'suppress', 10);
7497 corners found (0.7%), 200 corner features saved

by specifying a minimum distance between corners, in this case 10 pixels.
We can apply standard MATLAB operations and syntax to vectors of PointFeature

objects, for example
>> length(C)
ans =
 200

and indexing

>> C(1:4)
ans =
(3,3), strength=2.97253e-05,	
 descrip=(0.00704357 0.00703274 0.00344741)
(600,662), strength=2.13105e-05,	
 descrip=(0.00568787 0.00448007 -0.000189851)
(24,277), strength=1.5516e-05,	
 descrip=(0.00577341 0.00361102 -0.00134506)
(54,407), strength=1.53644e-05,	
 descrip=(0.0062428 0.00301444 0.00016217)

where the display method shows the essential properties of the feature. We can also
create expressions such as

>> C(1:5).strength
ans =
 1.0e-04 *
 0.2973 0.2131 0.1552 0.1536 0.1496
>> C(1).u
ans =
 3

To plot the coordinate of every fi fth feature in the fi rst 100 features is

>> C(1:5:100).plot()

The corner strength is computed at each pixel and can be optionally returned

>> [C,strength] = icorner(b1, 'nfeat', 200);
7497 corners found (0.7%), 200 corner features saved

and displayed as an image

>> idisp(strength, 'invsigned')

which is shown in Fig. 13.22a. We observe that the corner strength function is strong-
ly positive (blue) for corner features and strongly negative (red) for linear features. A
zoomed in view is shown in Fig. 13.22b which indicates that the detected corner is at
the top of a peak of cornerness that is several pixels wide. The detected corner is a local

447

�
Fig. 13.21. Harris corner detector
applied to two views of the same
building. a View one; b zoomed
in view one; c view two; d zoomed
in view two. Notice that quite a
number of the detected corners
are attached to the same world
features in the two views

Fig. 13.22. Harris corner strength.
a Zoomed view of corner strength
displayed as an image (blue is posi-
tive, red is negative); b zoomed view
of corner strength image displayed
as a surface
�

13.3 · Point Features

448 Chapter 13 · Image Feature Extraction

maxima but we could use the surrounding values to estimate its location to subpixel
accuracy (see Appendix J). This involves additional computation but can be enabled
using the option 'interp'.

A cumulative histogram of the strength of the 200 detected corners is shown in
Fig. 13.23. The strongest corner has CH ≈ 3 × 10−5 but most are much weaker than
this, only 2% of corners exceed half this value.

Consider another image of the same building taken from a different location

>> b2 = iread('building2-2.png', 'grey', 'double');

and the detected corners

>> C2 = icorner(b2, 'nfeat', 200);
7712 corners found (0.8%), 200 corner features saved
>> idisp(b2,'dark')
>> C2.plot('ws');

are shown in Fig. 13.21c and d. For many useful applications in robotic vision – such
as tracking, mosaicing and stereo vision that we will discuss in the next chapter – it
is important that corner features are detected at the same world points irrespective
of variation in illumination or changes in rotation and scale between the two views.
From Fig. 13.21 we see that many, but not all, of the features are indeed attached to
the same world feature in both views.

The Harris detector is computed from image gradients and is therefore robust to
offsets in illumination, and the eigenvalues of the structure tensor A are invariant to
rotation. However the detector is not invariant to changes in scale. As we zoom in the
gradients around the corner points become lower – the same change in intensity is
spread over a larger number of pixels. This reduces the image curvature and hence
the corner strength. The next section discusses a remedy for this using scale-invari-
ant corner detectors.

For a color image the structure tensor is computed using the gradient images of the
individual color planes which is slightly different to fi rst converting the image to grey
scale according to Eq. 10.11. In practice the use of color defi es intuition – it makes sur-
prisingly little difference for most scenes but adds signifi cant computational cost. The
 icorner function accepts a large number of options: k, the derivative and smooth-
ing kernel sizes σD and σI, absolute and/or relative corner strength threshold and en-
forcing a minimum distance between corners. The options 'st' and 'noble' allow
computation of the corner measures Eq. 13.15 and Eq. 13.17 respectively. Details are
provided in the online documentation.

Fig. 13.23.
Cumulative histogram of corner
strengths

449

13.3.2
l

Scale-Space Corner Detectors

The Harris corner detector introduced in the previous section works very well in practice
but responds poorly to changes in scale. Unfortunately change in scale, due to changing
camera to scene distance or zoom, is common in many real applications. We also no-
tice that the Harris detector responds strongly to fi ne texture, such as the leaves of the
trees in Fig. 13.21 but we would like to be able to detect features that are associated with
larger-scale scene structure such as windows and balconies.

Figure 13.24 illustrates the fundamental principle of scale-space feature detection.
We fi rst load a synthetic image

>> im = iread('scale-space.png', 'double');

which is shown in Fig. 13.24a. The image contains four squares of different size:
5 × 5, 9 × 9, 17 × 17 and 33 × 33. The scale-space sequence is computed by applying
a Gaussian kernel with increasing σ that results in the regions becoming increasingly
blurred and smaller regions progressively disappearing from view. At each step in the
sequence the Gaussian-smoothed image is convolved with the Laplacian kernel Eq. 12.5
which results in a strong negative responses for these bright blobs.�

With the Toolbox we compute the scale-space sequence by

>> [G,L,s] = iscalespace(im, 60, 2);

where the input arguments are the number of scale steps to compute, and the σ of the
 Gaussian kernel to be applied at each successive step. The function returns two 3-di-
mensional images, each a sequence of images where the last index corresponds to the
scale. G is the image im at increasing levels of smoothing, L is the Laplacian of those
smoothed images, and s is the corresponding scale. For example the fi fth image in the
 Laplacian of Gaussian sequence (LoG) is displayed by

>> idisp(L(:,:,5), 'invsigned')

and has a scale of
>> s(5)
ans =
 4.0311

Figures 13.24b–e show the Laplacian of Gaussian at four different points in the scale-
space sequence.

Figure 13.24f shows the magnitude of the Laplacian of Gaussian response as a func-
tion of scale, taken at the points corresponding to the center of each square in the in-
put image. Each curve has a well defi ned peak, and the scale associated with the peak
is proportional to the size of the region – the characteristic scale of the region.

If we consider the 3-dimensional image L as a volume then a scale-space feature
point is any pixel that is a 3D maxima. That is, an element that is greater than its
26 neighbors in all three dimensions – its spatial neighbors at the current scale and at
the scale above and below. Such points are detected by the function iscalemax

>> f = iscalemax(L, s)
f =
 (64,64), scale=2.91548, strength=1.96449
 (128,64), scale=4.06202, strength=1.72512
 (128,128), scale=18.1246, strength=1.54391
 (64,128), scale=8.97218, strength=1.54057
 (96,128), scale=15.5081, strength=0.345028
 (97,128), scale=14.7139, strength=0.34459

which returns an array of ScalePointFeature objects which are a subclass of
 PointFeature. Each object has properties for the feature’s coordinate, strength
and scale. The features are arranged in order of decreasing strength and we see that

We actually compute the difference of
Gaussian approximation to the Laplacian
of Gaussian, as illustrated in Fig. 13.27.

13.3 · Point Features

450 Chapter 13 · Image Feature Extraction

four have signifi cant strength and correspond to the four white objects. We can su-
perimpose the detected features on the original image

>> idisp(im)
>> f(1:4).plot('g+')

and the result is shown in Fig. 13.25.

451

The scale associated with a feature can be easily visualized using circles of radius
equal to the feature scale

>> f(1:4).plot_scale('r')

and the result is also shown in Fig. 13.25. We see that the identifi ed features are located
at the center of each object and that the scale of the feature is related to the size of the
object. The region within the circle is known as the support region of the feature.

For a real image

>> im = iread('lena.pgm', 'double');

we compute the scale-space in eight large steps with σ = 8

>> [G,L] = iscalespace(im, 8, 8);

which we can fl atten and display

>> idisp(G, 'fl atten', 'wide', 'square');
>> idisp(L, 'fl atten', 'wide', 'square', 'invsigned');

as shown in Fig. 13.26. From left to right we see the eight levels of scale. The Gaussian
sequence of images becomes increasing blurry. In the Laplacian of Gaussian sequence
the dark eyes are strongly positive (blue) blobs at low scale and the light colored hat
becomes a strongly negative (red) blob at high scale.

Convolving the original image with a Gaussian kernel of increasing σ results in
the kernel size, and therefore the amount of computation, growing at each scale step.
Recalling the properties of a Gaussian from page 377, a Gaussian convolved with a

Fig. 13.24.
Scale-space example. a Syn-
thetic image I with blocks of
sizes 5 × 5, 9 × 9, 17 × 17, and
33 × 33; b–e Normalized Lapla-
cian of Gaussian σ2L ∗ G(σ) ∗ I
for increasing values of scale,
σ value indicated in lower left.
False color is used: red is nega-
tive and blue is positive; f magni-
tude of Laplacian of Gaussian at
center of each square (indicated
by ‘+’) versus σ

�

Fig. 13.25.
Synthetic image with overlaid

feature center and scale indicator

Fig. 13.26. Scale-space sequence
for σ = 2, (top) Gaussian sequence,
(bottom) Laplacian of Gaussian se-
quence
�

�

13.3 · Point Features

452 Chapter 13 · Image Feature Extraction

Gaussian is another wider Gaussian. Instead of convolving our original image with
ever wider Gaussians, we can repeatedly apply the same Gaussian to the previous re-
sult. We also recall from page 385 that the LoG kernel is approximated by the differ-
ence of two Gaussians. Using the properties of convolution we can write

where σ1 > σ2. The difference of Gaussian operator applied to the image is equivalent
to the difference of the image at two different levels of smoothing. If we perform the
smoothing by successive application of a Gaussian we have a sequence of images at
increased levels of smoothing. The difference between successive steps in the sequence
is therefore an approximation to the Laplacian of Gaussian. Figure 13.27 shows this
in diagrammatic form.

13.3.2.1
l

Scale-Space Point Feature

The scale-space concepts just discussed underpin a number of popular feature detec-
tors which fi nd salient points within an image and determines their scale and also their
orientation. The Scale-Invariant Feature Transform (SIFT) is based on the maxima in
a difference of Gaussian sequence. The Speeded Up Robust Feature (SURF) is based
on the maxima in an approximate Hessian of Gaussian sequence.

To illustrate we will compute the SURF features for the building image used previously

>> sf1 = isurf(b1, 'nfeat', 200)
2667 corners found (0.3%), 200 corner features saved
sf1 =
200 features (listing suppressed)
 Properties: image_id theta scale u v strength descriptor

which returns an array of 200 SurfPointFeature objects which are a subclass of
 ScalePointFeature. For example the fi rst feature is

>> sf1(1)
ans = (117.587,511.978), theta=0.453513, scale=2.16257,
strength=0.0244179, descrip= ..

Each object includes the feature’s coordinate (estimated to subpixel precision), scale,
orientation, and a descriptor which is a 64-element vector. Orientation is defi ned by
the dominant edge direction within the support region.

This image contains nearly 3 000 SURF features but, as we did earlier with the Harris
 corner features, we requested the 200 strongest which we plot

Fig. 13.27. Schematic for calcula-
tion of Gaussian and Laplacian of
Gaussian scale-space sequence

453

>> idisp(b1, 'dark');
>> sf1.plot_scale('g', 'clock')

and the result is shown in Fig. 13.28. The plot_scale method draws a circle around
the feature’s location with a radius that indicates its scale – the size of the support re-
gion. The option 'clock' draws a radial line which indicates the orientation of the
SURF feature.

Feature scale varies widely and a histogram

>> hist(sf1.scale, 100);

shown in Fig. 13.29 indicates that there are many small features associated with fi ne
image detail and texture. The bulk of the features have a scale less than 25 pixels but
some have scales over 40 pixels. The isurf function accepts a number of options
which are described in the online documentation.

The SURF algorithm is more than just a scale-invariant feature detector, it also
computes a very robust descriptor. The descriptor is a 64-element vector that encodes
the image gradient in subregions of the support region in a way which is invariant to
brightness, scale and rotation. This enables feature descriptors to be unambiguously
matched to a descriptor of the same world point in another image even if their scale
and orientation are quite different. The difference in position, scale and orientation
of the matched features gives some indication of the relative camera motion between
the two views. Matching features between scenes is crucial to the problems that we
will address in the next chapter.

Fig. 13.28.
SURF descriptors showing the
support region (scale) and ori-

entation as a radial line

Fig. 13.29.
Histogram of feature scales

shown with logarithmic verti-
cal scale

13.3 · Point Features

454 Chapter 13 · Image Feature Extraction

13.4
l
Wrapping Up

In this chapter we have discussed the extraction of features from an image. Instead of con-
sidering the image as millions of independent pixel values we succinctly describe regions
within the image that correspond to distinct objects in the world. For instance we can fi nd
regions that are homogeneous with respect to intensity or color and describe them in terms
of features such as a bounding box, centroid, equivalent ellipse, aspect ratio, circularity
and perimeter shape. Features have invariance properties with respect to translation, ro-
tation about the optical axis and scale which are important for object recognition. Straight
lines are common visual features in man-made environments and we showed how to fi nd
and describe distinct straight lines in an image using the Hough transform.

We also showed how to fi nd interest points that can reliably associate to particular
points in the world irrespective of the camera view. These are key to techniques such as
camera motion estimation, stereo vision, image retrieval, tracking and mosaicing that we
will discuss in the next chapter.

MATLAB Notes

The hierarchy of feature classes used in the Toolbox is shown in Fig. 13.30. A list of Toolbox
functions and MATLAB equivalents is given in Table 13.2. The latter come from the Image
Processing and the Computer Vision System Toolbox which have a large number of ad-
ditional functions, some of which support code generation or operation with Simulink.

Fig. 13.30.
Feature class hierarchy used in
the Toolbox

Table 13.2.
List of feature extraction func-
tions and equivalence with
MATLAB Image Processing
Toolbox and Computer Vision
System Toolbox functions

455

Further Reading

This chapter has presented a classical bottom up approach for feature extraction, start-
ing with pixels and working our way up to higher level concepts such as regions and
lines. Prince (2012) and Szeliski (2011) both provide a good introduction to high-level
vision using probabilistic techniques that can be applied to problems such as object rec-
ognition, for example face recognition, and image retrieval. In the last few years com-
puter vision, particularly object recognition, has undergone a revolution using deep
convolutional neural networks. These have demonstrated very high levels of accuracy
in locating and recognizing objects against complex background despite changes in
viewpoint and illumination and resources are available at http://deeplearning.net.

Region features. Region-based image segmentation and blob analysis are classical tech-
niques covered in many books and papers. Gonzalez and Woods (2008) and Szeliski
(2011) provide a thorough treatment of the methods introduced in this chapter, in par-
ticular thresholding and boundary descriptors. Otsu’s algorithm for threshold determina-
tion was introduced in Otsu (1975), and the Niblack algorithm for adaptive thresholding
was introduced in Niblack (1985). The book by Nixon and Aguado (2012) expands on
material covered in this chapter and introduces techniques such as deformable templates
and boundary descriptors. The Freeman chain code was fi rst described in Freeman
(1974). Flusser (2000) has shown that the seven moments proposed by Hu (1962), and
described on page 434, are in fact not independent since φ3 = (φ5

2 + φ7
2) / φ4

3.
In addition to region homogeneity based on intensity and color it also possible to

describe the texture of regions – a spatial pattern of pixel intensities whose statistics
can be described (Gonzalez and Woods 2008). Regions can then be segmented accord-
ing to texture, for example a smooth road versus textured grass.

 Clustering of data is an important topic in machine learning (Bishop 2006). In this chap-
ter we have used a simple implementation of k-means, which is far from state-of-the-art in
clustering, and requires the number of clusters to be known in advance. More advanced
 clustering algorithms are hierarchical and employ data structures such as kd-trees to speed
the search for neighboring points. The initialization of the cluster centers is also critical
to performance. Szeliski (2011) introduces more general clustering methods as well as
graph-based methods for computer vision. The graphcuts algorithm for segmentation was
described by Felzenszwalb and Huttenlocher (2004) and the Toolbox graph-cuts imple-
mentation is based on code by Pedro Felzenszwalb and available at http://cs.brown.edu/
~pff/segment/. The maximally stable extremal region (MSER) algorithm is described by
Matas et al. (2004) and the Toolbox implementation is based on the work of Andrea Vedaldi
and Brian Fulkerson which is available at http://vlfeat.org. The Berkeley Segmentation
Dataset at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds contains nu-
merous complex real-world images each with several human-made segmentations.

Early work on using text recognition for robotics is described by Posner et al. (2010),
while Lam et al. (2015) describe the application of OCR to parsing fl oor plans of build-
ings for robot navigation. A central challenge with OCR of real-world scenes is to de-
termine which parts of the scene contain text and should be passed to the OCR engine.
A powerful text detector is the stroke width transform described by Li et al. (2014).
The MATLAB ocr function is based on the Tesseract open-source OCR engine which
is available at https://github.com/tesseract-ocr and described by Smith (2007).

Line features. The Hough transform was fi rst fi rst described in U.S. Patent 3,069,654
“Method and Means for Recognizing Complex Patterns” by Paul Hough, and its history is
discussed in Hart (2009). The original application was automating the analysis of bubble
chamber photographs and it used the problematic slope-intercept parametrization for
lines. The currently known form with the (θ , ρ) parameterization was fi rst described in
Duda and Hart (1972) as a “generalized Hough transform” and is available at http://www.
ai.sri.com/pubs/files/tn036-duda71.pdf. The Hough transform is covered in textbooks

13.4 · Wrapping Up

456 Chapter 13 · Image Feature Extraction

such as Szeliski (2011) and Gonzalez and Woods (2008). The latter has a good discus-
sion on shape fi tting in general and estimators that are robust with respect to outlier data
points. The basic Hough transform has been extended in many ways and there is a large
literature. A useful review of the transform and its variants is presented in Leavers (1993).
The transform can be generalized to other shapes (Ballard 1981) such as circles of a fi xed
size where votes are cast for the coordinates of the circle’s center. For circles of unknown
size a three-dimensional voting array is required for the circle’s center and radius.

Point features. The literature on interest operators dates back to the early work of
Moravec (1980) and Förstner (Förstner and Gülch 1987; Förstner 1994). The Harris
 corner detector (Harris and Stephens 1988) became very popular for robotic vision
application in the late 1980s since it was able to run in real-time on computers of the
day and the features were quite stable (Tissainayagam and Suter 2004) from image to
image. The Noble detector is described in Noble (1988). The work of Shi, Tomasi, Lucas
and Kanade (Shi and Tomasi 1994; Tomasi and Kanade 1991) led to the Shi-Tomasi
detector and the Kanade-Lucas-Tomasi (KLT) tracker. Good surveys of the relative
performance of many corner detectors include those by Deriche and Giraudon (1993)
and Mikolajczyk and Schmid (2004).

Scale-space concepts have long been known in computer vision. Koenderink (1984),
Lindeberg (1993) and ter Haar Romeny (1996) are a readable introduction to the top-
ic. Scale-space was applied to classic corner detectors creating hybrid detectors such
as scale-Harris (Mikolajczyk and Schmid 2004). An important development in scale-
space feature detectors was the scale-invariant feature transform (SIFT) introduced
in the early 2000s by Lowe (2004) and was a signifi cant improvement for applications
such as tracking and object recognition. Unusually, and perhaps unfortunately, it was
patented and could not be used in this book. Nature abhors a vacuum and an effective
alternative called Speeded Up Robust Features (SURF) was developed (Bay et al. 2008).
The Toolbox function isurf wraps a MATLAB implementation by Dirk-Jan Kroon
and available at http://www.mathworks.com/matlabcentral/fileexchange/28300-
opensurf-including-image-warp, which in turn is based on the OpenSurf imple-
mentations in C++ and C# by Chris Evans which is now hosted at https://github.
com/amarburg. GPU-based parallel implementations have also been developed. The
SIFT and SURF detectors do give different results and they are compared in Bauer
et al. (2007). The Toolbox SIFT detector function isift returns a feature vector of
class SiftPointFeature and is a wrapper for the MATLAB implementation from
http://www.vlfeat.org which you will need to download and compile.

Many other interest point detectors and features have been, and continue to be
proposed. FAST by Rosten et al. (2010) has very low computational requirements
and high repeatability, and C and MATLAB software resources are available at http://
www.edwardrosten.com/work/fast.html. CenSurE by Agrawal et al. (Agrawal et al.
2008) claims higher performance than SIFT, SURF and FAST at lower cost. BRIEF by
Calonder et al. (2010) is not a feature detector but is a low cost and compact feature
descriptor, requiring just 256 bits instead of 64 fl oating-point numbers per feature.
Other feature descriptors include histogram of oriented gradients (HOG), oriented
FAST and rotated BRIEF (ORB), binary robust invariant scaleable keypoint (BRISK),
fast retina keypoint (FREAK), aggregate channel features (ACF), vector of locally ag-
gregated descriptors (VLAD), random ferns and many many more.

Local features have many advantages and are quite stable from frame to frame, but
for outdoor applications the feature locations and the descriptors vary considerably
with changes in lighting conditions, see for example Valgren and Lilienthal (2010).
Night and day are obvious examples but even over a period of a few hours the descrip-
tors change considerably. Over seasons the appearance change can be drastic: trees with
or without leaves; the ground covered by grass or snow, wet or dry. Enabling robots
to recognize places despite their changing appearance is the research fi eld of robust
place recognition which is introduced in Lowry et al. (2015).

457

Exercises

1. Grey-level classifi cation
a) Experiment with ithresh on the images castle.png and castle2.png.
b) Experiment with the Niblack algorithm and vary the value of k and window size.
c) Apply iblobs to the output of the MSER segmentation. Develop an algorithm

that uses the width and height of the bounding boxes to extract just those blobs
that are letters.

d) The function imser has many parameters: 'Delta', 'MinDiversity',
'MaxVariation', 'MinArea', 'MaxArea'. Explore the effect of adjust-
ing these.

e) Apply the function igraphcut to the castle2.png image. Understand and
adjust the parameters to improve performance.

f) Load the image adelson.png from page 307 and attempt to segment the let-
ters A and B.

2. Color classifi cation
a) Change k, the number of clusters, in the color classifi cation examples. Is there

a best value?
b) k-means with 'random' or 'spread' options performs a randomized initializa-

tion. Run k-means several times and determine how different the fi nal clusters are.
c) Write a function that determines which of the clusters represents the targets,

that is, the yellow cluster or the red cluster.
d) Apply the function igraphcut to the targets and garden image. How does it

perform? Understand and adjust the parameters to improve performance.
e) Experiment with the parameters of the morphological “cleanup” used for the

targets and garden images.
f) Write code that loops over images captured from your computer’s camera, applies

a classifi cation, and shows the result. The classifi cation could be a greyscale thresh-
old or color clustering to a pre-learned set of color clusters (see colorkmeans).

3. Blobs. Create an image of an object with several holes in it. You could draw it and
take a picture, export it from a drawing program, or write code to generate it.
a) Determine the outer, inner and total boundaries of the object.
b) Place small objects within the holes in the objects. Write code to display the to-

pological hierarchy of the blobs in the scene.
c) For the same shape at different scales plot how the circularity changes as a func-

tion of scale. Explain the shape of this curve?
d) Create a square object and plot the estimated and true perimeter as a function

of the square’s side length. What happens when the square is small?
e) Create an image of a simple scene with a number of different shaped objects. Using

the shape invariant features (aspect ratio, circularity) to create a simple shape clas-
sifi er. How well does it perform? Repeat using the Hu moment features.

f) Repeat the boundary matching example with some objects that you create. Modify
the code to create a plot of edge-segment angle (k) versus θ and repeat the bound-
ary matching example.

g) Another commonly used feature, not supported by the Toolbox, is the aligned
rectangle. This is the smallest rectangle whose sides are aligned with the axes of
the equivalent ellipse and which entirely contains the blob. The aspect ratio of
this rectangle and the ratio of the blob’s area to the rectangle’s area are each scale
and rotation invariant features. Write code to compute this rectangle, overlay
the rectangle on the image, and compute the two features.

h) Write code to trace the perimeter of a blob.
4. Experiment with the ocr function.

a) What is the effect of a larger region of interest?
b) Capture your own image and attempt to read the text in it. How does accuracy

vary with text size, contrast or orientation?

13.4 · Wrapping Up

458 Chapter 13 · Image Feature Extraction

5. Hough transform
a) Experiment with varying the size of the Hough accumulator.
b) Experiment with using the Sobel edge operator instead of Canny.
c) Experiment with varying the parameters 'suppress', 'interpSize',
'EdgeThresh', 'houghThresh'.

d) Apply the Hough transform to one of your own images.
e) Write code that loops over images captured your computer’s camera, fi nding

the two dominant lines and overlaying them on the image.
6. Corner detectors

a) Experiment with the Harris detector by changing the parameters k, σD and σI.
b) Compare the performance of the Harris, Noble and Shi-Tomasi corner detectors.
c) Implement the Moravec detector and compare to Harris detector.
d) Create a smoothed second derivative Iuu, Ivv and Iuv.

Chapter

14

In the previous chapter we learned about corner detectors
which fi nd particularly distinctive points in a scene. These
points can be reliably detected in different views of the same
scene irrespective of viewpoint or lighting conditions. Such
points are characterized by high image gradients in orthogo-
nal directions and typically occur on the corners of objects.
However the 3-dimensional coordinate of the correspond-
ing world point was lost in the perspective projection process
which we discussed in Chap. 11 – we mapped a 3-dimensional
world point to a 2-dimensional image coordinate. All we know
is that the world point lies along some ray in space correspond-
ing to the pixel coordinate, as shown in Fig. 11.6. To recover the
missing third dimension we need additional information. In
Sect. 11.2.3 the additional information was camera calibration
parameters plus a geometric object model, and this allowed us

to estimate the object’s 3-dimensional pose from 2-dimensional image data.
In this chapter we consider an alternative approach in which the additional in-

formation comes from multiple views of the same scene. As already mentioned the
pixel coordinates from a single view constrain the world point to lie along some
ray. If we can locate the same world point in another image, taken from a different
but known pose, we can determine another ray along which that world point must
lie. The world point lies at the intersection of these two rays – a process known as
 triangulation or 3D reconstruction. Even more powerfully, if we observe suffi cient
points, we can estimate the 3D motion of the camera between the views as well as the
3D structure of the world.�

The underlying challenge is to fi nd the same world point in multiple images. This
is the correspondence problem, an important but nontrivial problem that we will dis-
cuss in Sect. 14.1. In Sect. 14.2 we revisit the fundamental geometry of image forma-
tion developed in Chap. 11 for the case of a single camera. If you haven’t yet read
that chapter, or it’s been a while since you read it, it would be helpful to (re)acquaint
yourself with that material. We extend the geometry to encompass multiple image
planes and show the geometric relationship between pairs of images. Stereo vision is
an important technique for robotics where information from two images of a scene,
taken from different viewpoints, is combined to determine the 3-dimensional struc-
ture of the world. We discuss sparse and dense approaches to stereo, and recon-
struction, in some detail in Sect. 14.3. Bundle adjustment is a very general approach
to combining information from many cameras and is introduced in Sect. 14.4. The
3-dimensional information that is created is typically represented as a point cloud,
a set of 3D points, and techniques for plane fi tting and alignment of such data are
introduced in Sect. 14.5. For some applications we can use RGBD cameras which re-
turn depth as well as color information and the underlying principle of structured
light is introduced in Sect. 14.6.

We fi nish this chapter, and this part of the book, with four application examples
based on the concepts we have learned. Section 14.7.1 describes how we can transform

Using Multiple Images

Almost! We can determine the trans-
lation of the camera only up to an un-
known scale factor, that is, the transla-
tion is λt ∈R3 where the direction of
t is known but λ is not.

460 Chapter 14 · Using Multiple Images

an image with obvious perspective distortion into one without, effectively synthesizing
the view from a virtual camera at a different location. Section 14.7.2 describes mosaicing
which is the process of taking consecutive images from a moving camera and stitching
them together to form one large virtual image. Section 14.7.3 describes image retrieval
which is the problem of fi nding which image, from an existing set of images, is most
similar to some new image. This can be used by a robot to determine whether it has
visited a particular place, or seen the same object, before. Section 14.7.4 describes how
we can process a sequence of images from a moving camera to locate consistent world
points and to estimate the camera motion and 3-dimensional world structure.

14.1
l
Feature Correspondence

 Correspondence is the problem of fi nding the pixel coordinates in two different images
that correspond to the same point in the world.� Consider the pair of real images

>> im1 = iread('eiffel2-1.jpg', 'mono', 'double');
>> im2 = iread('eiffel2-2.jpg', 'mono', 'double');

shown in Fig. 14.1. They show the same scene viewed from two different positions using
two different cameras – the pixel size, focal length and number of pixels for each image
are quite different. The scenes are complex and we see immediately that determining
correspondence is not trivial. More than half the pixels in each scene correspond to blue
sky and it is impossible to match a blue pixel in one image to the corresponding blue
pixel in the other – these pixels are insuffi ciently distinct. This situation is common and
can occur with homogeneous image regions such as dark shadows, smooth sheets of
water, snow or smooth man-made objects such as walls or the bodies of cars.

The solution is to choose only those points that are distinctive. We can use the interest
 point detectors that we introduced in the last chapter to fi nd Harris corner features

>> hf = icorner(im1, 'nfeat', 200);
>> idisp(im1, 'dark'); hf.plot('gs');

or SURF features�

>> sf = isurf(im1, 'nfeat', 200);
>> idisp(im1, 'dark'); sf.plot_scale('g');

and these are shown in Fig. 14.2. We have simplifi ed the problem – instead of millions
of pixels to deal with we have just 200 distinctive points.

Consider the general case of two sets of features points: {1pi ∈ Z2, i = 1� N1} in the
fi rst image and {2pj ∈ Z2, j = 1� N2} in the second image. Since these are distinctive
image points we would expect a signifi cant number of points in image one would cor-

This is another example of the data as-
sociation problem.

The SURF detector cannot process a color
image, it converts it to greyscale. The Harris
detector computes the squared gradients
for the individual color planes separately
and then combines them. All detectors
in the Toolbox can process an image se-
quence provided as a matrix with more
than two dimensions. There is ambigu-
ity between a color image and an image
sequence of length three. If the image’s
third dimension is three it is deemed to
be a color image, not a sequence. A four-
dimensional image is unambiguous as a
sequence of color images.

Fig. 14.1. Two views of the Eiffel
tower. The images were captured
approximately simultaneously
using two different handheld digi-
tal cameras. a 7 Mpix camera with
f = 7.4 mm; b 10 Mpix camera with
f = 5.2 mm (photo by Lucy Corke).
The images have quite different
scale and the tower is 700 and
600 pixels tall in a and b respec-
tively. The camera that captured
image b is held by the person in
the bottom-right corner of a

461

respond to points found in image two. The problem is to determine which (2uj,
2vj), if

any, corresponds to each (1ui,
1vi).

We cannot use the feature coordinates to determine correspondence – the features
will have different coordinates in each image. For example in Fig. 14.1 we see that most
features are lower in the right-hand image. We cannot use the intensity or color of the
pixels either. Variations in white balance, illumination and exposure setting make it
highly unlikely that corresponding pixels will have the same value. Even if intensity
variation was eliminated there are likely to be tens of thousands of pixels in the other
image with exactly the same intensity value – it is not suffi ciently unique. We need
some richer way of describing each feature.

In practice we describe the region of pixels around the corner point which provides
a distinctive and unique description of the corner point and its immediate surrounds
– the feature descriptor. In the Toolbox the feature descriptor for a corner point is a
vector – the descriptor property of the PointFeature superclass. For the Harris
 corner feature the descriptor

>> hf(1).descriptor'
ans =
 0.0805 0.0821 0.0371

is a 3-vector that contains the unique elements of the structure tensor Eq. 13.14. This
low-dimensional descriptor is computationally cheap since the elements were already
computed in order to determine corner strength. These descriptor elements are gra-
dients which have the advantage of being robust to offsets in image intensity. The
similarity of two descriptors is based on Euclidean distance and is zero for a perfect
match. For example, the similarity of corner features one and two is

>> hf(1).distance(hf(2))
ans =
 0.0518

but it is diffi cult to know whether this value represents strong similarity or not since the
units are not very intuitive. Typically we would compare feature 1fi ∈RM with all fea-
tures in the other image {2fj ∈RM, j = 1�N2} and choose the one that is most similar.�
However a short descriptor vector like this is still insuffi ciently distinctive and prone to
incorrect matching. Feature descriptors are often referred to as feature vectors.

We can create a large descriptor vector by representing the square window around
the feature point as a vector. For example

>> hf = icorner(im1, 'nfeat', 200, 'color', 'patch', 5)

creates a 121-element descriptor vector for each corner point from the window of
specifi ed half-width around the feature point – in this case an 11 × 11 window. The
pixel values are offset by the mean value, rearranged into a vector and then normal-
ized to create a unit vector. We can use the ZNCC similarity measure from Table 12.1
in 1-dimensional form to compare these descriptor vectors

If the world point is not visible in image
two then the most similar feature will be
an incorrect match.

Fig. 14.2. Corner features com-
puted for Fig. 14.1a. a Harris cor-
ner features; b SURF corner fea-
tures showing scale

14.1 · Feature Correspondence

462 Chapter 14 · Using Multiple Images

 (14.1)

which we have factored into the dot product of the descriptor unit-vectors associated
with each image patch. Determining the similarity of two descriptors using normal-
ized cross-correlation is simply the dot product of two descriptors and the resulting
similarity measure s ∈ [−1, 1] has some meaning – perfect match is s = 1 and s ≥ 0.8
is typically considered a good match. For the example above

>> hf(1).ncc(hf(2))
ans =
 -0.0292

the correlation score indicates a poor match. This descriptor is distinctive and in-
variant to changes in image intensity but is not invariant to scale or rotation. Other
descriptors of the surrounding region that we could use include census and rank val-
ues as well as histograms of intensity or color. Histograms have the advantage of be-
ing invariant to rotation but they say nothing about the spatial relationship between
the pixels, that is, the same pixel values in a completely different spatial arrangement
have the same histogram.

The SURF algorithm computes a 64-element descriptor� vector to describe the
feature point in a way that is scale and rotationally invariant, and based on the pixels
within the feature’s support region. It is created from the image in the scale-space se-
quence corresponding to the feature’s scale and rotated according to the feature’s ori-
entation. The vector is normalized to a unit vector to increase its invariance to chang-
es in image intensity. Similarity between descriptors is based on Euclidean distance.
This descriptor is quite invariant to image intensity, scale and rotation. SURF is both
a corner detector and a descriptor, whereas the Harris operator is just a corner detec-
tor which must be used with one of a number of different descriptors.�

For the remainder of this chapter we will use SURF features. They are computation-
ally more expensive but pay for themselves in terms of the quality of matches between
widely different views of the same scene. We compute SURF features for each image

>> sf1 = isurf(im1)
sf1 =
1288 features (listing suppressed)
 Properties: theta image_id scale u v strength descriptor
>> sf2 = isurf(im2)
sf2 =
1426 features (listing suppressed)
 Properties: theta image_id scale u v strength descriptor

which results in two vectors of SurfPointFeature objects. Over a thousand cor-
ner features were found in each image.

Detectors versus descriptors. When matching world feature points, or landmarks, between differ-
ent views we must fi rst fi nd points that are distinctive. This is the job of the detector and results
in a coordinate (u, v) and perhaps a scale factor or orientation. The second task is to describe the
region around the point in a way that allows it to be matched as decisively as possible with the
region around the corresponding point in the other view. This is the descriptor which is typi-
cally a long vector formed from pixel values, histograms, gradients, histograms of gradient and
so on. There are many detectors to choose from: Harris and variants, Shi-Tomasi, FAST, AGAST,
MSER etc.; as well as many descriptors: ORB, BRISK, FREAK, CenSurE (aka STAR), HOG, ACF
etc. Some algorithms such as SIFT and SURF defi ne both a detector and a descriptor. The SIFT
descriptor is a form of HOG descriptor.

A 128-element vector can be created by
passing the option 'extended' to
isurf.

It is conceivable to use the SURF descrip-
tor with a Harris corner point.

463

Next we match the two sets of SURF features based on the distance between the
SURF descriptors

>> m = sf1.match(sf2)
m =
644 corresponding points (listing suppressed)

which results in a vector of FeatureMatch objects that represents 644 candidate-
corresponding points. The fi rst fi ve candidate correspondences� are

>> m(1:5)
ans =
(819.56, 358.557) <-> (708.008, 563.342), dist=0.002137
(1028.3, 231.748) <-> (880.14, 461.094), dist=0.004057
(1027.6, 571.118) <-> (885.147, 742.088), dist=0.004297
(927.724, 509.93) <-> (800.833, 692.564), dist=0.004371
(854.35, 401.633) <-> (737.504, 602.187), dist=0.004417

which shows the feature coordinate in the fi rst and second image, as well as the Euclidean
distance between the two feature vectors. The matches are ordered by decreasing simi-
larity, and a threshold on feature similarity has been applied.

We can overlay a subset of these matches on the original image pair

>> idisp({im1, im2}, 'dark')
>> m.subset(100).plot('w')

and the result is shown in Fig. 14.3. White lines connect the matched features in
each image and the lines show a consistent pattern. Most of these connections seem
quite sensible, but a few are quite obviously incorrect and we will deal with these
shortly. Note that we passed a cell-array of images to idisp which it displays hori-
zontally tiled as a single image. The subset method of the FeatureMatch class
returns a vector with the specifi ed number of FeatureMatch objects sampled
evenly from the original vector. If all correspondences were shown we would just
see a solid white mass.

The correspondences can be obtained via an optional return value

>> [m,corresp] = sf1.match(sf2);
>> corresp(:,1:5)
ans =
 215 389 357 1044 853
 246 418 312 1240 765

which is a matrix with one column per correspondence. The fi rst column indicates
that feature 215 in image one matches feature 246 in image two and so on. In terms of
workspace variables this is sf1(215) and sf2(246).

The Euclidean distance between the matched feature descriptors is given by the
distance property and the distribution of these, with no thresholding applied, is

>> m2 = sf1.match(sf2, 'all');
>> histogram(m2.distance, 'Normalization', 'cdf')

We refer to them as candidates because
although they are very likely to corre-
spond this has not yet been confirmed.

Fig. 14.3.
Feature matching. Subset (100
out of 1 664) of matches based
on SURF descriptor similarity.
We note that a few are clearly

incorrect

14.1 · Feature Correspondence

464 Chapter 14 · Using Multiple Images

shown in Fig. 14.4. It shows that 35% of all matches have descriptor distances below 0.05
whereas the maximum distance can be over ten times larger – such matches are less
likely to be valid. We can specify a distance threshold

>> mm = sf1.match(sf2, 'thresh', 0.05);

but choosing the threshold value is always problematic. By default the method selects
all matches whose distance is less than the median of all distances. Alternatively, we
could choose to take the N best matches

>> mm = sf1.match(sf2, 'top', N);

Feature matching is computationally expensive – it is an O(N2) problem since every
feature descriptor in one image must be compared with every feature descriptor in
the other image. More sophisticated systems store the descriptors in a data structure
like a kd-tree so that similar descriptors – nearest neighbors in feature space – can
be easily found.

Although the quality of matching shown in Fig. 14.3 looks quite good there are a
few obviously incorrect matches in this small subset. We can discern a pattern in the
lines joining the corresponding points, they are slightly converging and sloping down
to the right. This pattern is a function of the relative pose between the two camera
views, and understanding this is key to determining which of the candidate matches
are correct. That is the topic of the next section.

14.2
l
Geometry of Multiple Views

We start by studying the geometric relationships between images of a single point P
observed from two different viewpoints and this is shown in Fig. 14.5. This geome-
try could represent the case of two cameras simultaneously viewing the same scene,
or one moving camera taking a picture from two different viewpoints.� The center
of each camera, the origins of {1} and {2}, plus the world point P defi nes a plane in
space – the epipolar plane. The world point P is projected onto the image planes
of the two cameras at points 1p and 2p respectively, and these points are known as
 conjugate points.

Consider image one. The image point 1e is a function of the position of camera
two. The image point 1p is a function of the world point P. The camera center, 1e and
1p defi ne the epipolar plane and hence the epipolar line 2` in image two. By defi nition
the conjugate point 2p must lie on that line. Conversely 1p must lie along the epipolar
line in image one 1` that is defi ned by 2p in image two.

Fig. 14.4.
Cumulative distribution of
feature distance

Assuming the point does not move.

465

This is a very fundamental and important geometric relationship – given a point in
one image we know that its conjugate is constrained to lie along a line in the other im-
age. We illustrate this with a simple example that mimics the geometry of Fig. 14.5

>> T1 = SE3(-0.1, 0, 0) * SE3.Ry(0.4);
>> cam1 = CentralCamera('name', 'camera 1', 'default', ...	
 'focal', 0.002, 'pose', T1)

which returns an instance of the CentralCamera class as discussed previously in
Sect. 11.1.2. Similarly for the second camera

>> T2 = SE3(0.1, 0,0)*SE3.Ry(-0.4);
>> cam2 = CentralCamera('name', 'camera 2', 'default', ...	
 'focal', 0.002, 'pose', T2);

and the pose of the two cameras is visualized by
>> axis([-0.5 0.5 -0.5 0.5 0 1])
>> cam1.plot_camera('color', 'b', 'label')
>> cam2.plot_camera('color', 'r', 'label')

which is also shown in Fig. 14.6. We defi ne an arbitrary world point

>> P=[0.5 0.1 0.8]';

Fig. 14.5.
Epipolar geometry showing the

two cameras with associated co-
ordinate frames {1} and {2} and

image planes. The world point P
and the two camera centers form

the epipolar plane, and the in-
tersection of this plane with the
image-planes form epipolar lines

Fig. 14.6.
Simulation of two cameras and
a target point. The origins of the

two cameras are offset along
the x-axis and the cameras are

verged, that is, their optical axes
intersect

14.2 · Geometry of Multiple Views

466 Chapter 14 · Using Multiple Images

which we display as a small sphere

>> plot_sphere(P, 0.03, 'b');

which is shown in Fig. 14.6. We project this point to both cameras

>> p1 = cam1.plot(P)
p1 =
 561.6861
 532.6079
>> p2 = cam2.plot(P)
p2 =
 746.0323
 546.4186

and this is shown in Fig. 14.7. The epipoles are computed by projecting the center of
each camera to the other camera’s image plane

>> cam1.hold
>> e1 = cam1.plot(cam2.centre, 'Marker', 'd',	
 'MarkerFaceColor', 'k')
e1 =
 985.0445
 512.0000
>> cam2.hold
>> e2 = cam2.plot(cam1.centre, 'Marker', 'd',	
 'MarkerFaceColor', 'k')
e2 =
 38.9555
 512.0000

and these are shown in Fig. 14.7 as a black �-marker.

14.2.1
l

The Fundamental Matrix

The epipolar relationship shown graphically in Fig. 14.5 can be expressed concisely
and elegantly as

 (14.2)

where 1p and 2p are the image points 1p and 2p expressed in homogeneous form and
F ⊂R3×3 is known as the fundamental matrix. We can rewrite this as

 (14.3)

Fig. 14.7.
Epipolar geometry simula-
tion showing the virtual im-
age planes of two Toolbox
CentralCamera objects. The
 perspective projection of point P
is a black circle, the projection
of the other camera’s center is a
black �-marker, and the epipolar
line is shown in red

467

where

 (14.4)

is the equation of a line, the epipolar line, along which conjugate point in image two
must lie. This line is a function of the point coordinate 1p in image one and Eq. 14.3 is
a powerful test as to whether or not a point in image two is a possible conjugate.

Taking the transpose of both sides of Eq. 14.2 yields

 (14.5)

from which we can write the epipolar line for camera one

 (14.6)

in terms of a point viewed by camera two.
The fundamental matrix is a function of the camera parameters and the relative cam-

era pose between the views

 (14.7)

where K1 and K2 are the camera intrinsic matrices defi ned in Eq. 11.7�, and 2ξ1 ∼ (R, t) is the
relative pose of camera one with respect to camera two.� The fundamental matrix that re-
lates the two views is returned by the method F of the CentralCamera class, for example

>> F = cam1.F(cam2)
F =
 0 -0.0000 0.0010
 -0.0000 0 0.0019
 0.0010 0.0001 -1.0208

and for the two image points computed earlier
>> e2h(p2)' * F * e2h(p1)
ans =
 1.1102e-16

we see that Eq. 14.2 holds.
The fundamental matrix has some interesting properties. It is singular with a rank

of two
>> rank(F)
ans =
 2

and has seven degrees of freedom.� The epipoles are encoded in the null space of the
matrix. The epipole for camera one is the right null space of F

>> null(F)'
ans =
 -0.8873 -0.4612 -0.0009

2D projective geometry in brief. The projective plane P2 is the set of all points (x1, x2, x3)T, xi ∈R
and xi not all zero. Typically the 3-tuple is considered a column vector. A point p = (u, v) is rep-
resented in P2 by homogeneous coordinates p = (u, v, 1)T. Scale is unimportant for homoge-
neous quantities and we express this as p� λp where the operator � means equal up to a (pos-
sibly unknown) nonzero scale factor. A point in P2 can be represented in nonhomogeneous, or
Euclidean, form p = (x1/x3, x2/x3)T in R2. The homogeneous vector (u, v, f)T, where f is the focal
length in pixels, is a vector from the camera’s origin that points toward the world point P. More
details are given in Sect. C.2.

The Toolbox functions e2h and h2e convert between Euclidean and homogeneous coordinates
for points (a column vector) or sets of points (a matrix with one column per point).

If both images were captured with the
same camera then K1 = K2.

Note well that this is the inverse of what
you might expect: camera two with re-
spect to camera one, but the mathemat-
ics can be expressed more simply this way.
Toolbox functions always describe camera
pose with respect to the world frame.

The matrix F ⊂R3×3 has seven under-
lying parameters so its nine elements
are not independent. The overall scale is
not defined, and there exists a constraint
that det(F) = 0.

14.2 · Geometry of Multiple Views

468 Chapter 14 · Using Multiple Images

in homogeneous coordinates or
>> e1 = h2e(ans)'
e1 =
 985.0445 512.0000

in Euclidean coordinates – as shown in Fig. 14.7. The epipole for camera two is the left
null space� of the fundamental matrix

>> null(F');
>> e2 = h2e(ans)'
e2 =
 38.9555 512.0000

The Toolbox can display epipolar lines using the plot_epiline methods of the
CentralCamera class

>> cam2.plot_epiline(F, p1, 'r')

which is shown in Fig. 14.7 as a red line in the camera two image plane. We see, as
expected, that the projection of P lies on this epipolar line. The epipolar line for cam-
era one is

>> cam1.plot_epiline(F', p2, 'r');

14.2.2
l

The Essential Matrix

The epipolar geometric constraint can also be expressed in terms of normalized im-
age coordinates

 (14.8)

where E ⊂R3×3 is the essential matrix and 2x and 1x are conjugate points in homo-
geneous normalized image coordinates.� This matrix is a simple function of the rela-
tive camera pose

 (14.9)

where 2ξ1 ∼ (R, t) is the relative pose of camera one with respect to camera two. The
essential matrix is singular, has a rank of two, and has two equal nonzero singular
values� and one of zero. The essential matrix has only 5 degrees of freedom and is
completely defi ned by 3 rotational and 2 translational� parameters. For pure rotation,
when t = 0, the essential matrix is not defi ned.

We recall from Eq. 11.7 that p� Kx and substituting into Eq. 14.8 we write

 (14.10)

Equating terms with Eq. 14.2 yields a relationship between the two matrices

 (14.11)

in terms of the intrinsic parameters of the two cameras involved.� This is implemented
by the E method of the CentralCamera class

>> E = cam1.E(F)
E =
 0 -0.0779 0
 -0.0779 0 0.1842
 0 -0.1842 0.0000

where the intrinsic parameters of camera one (which is the same as camera two) are used.

This is the right null space of the matrix
transpose. The MATLAB function null
returns the right null space.

For a camera with a focal length of 1 and
the coordinate origin at the principal
point, see page 322.

See Appendix B.

A 3-dimensional translation (x, y, z) with
unknown scale can be considered as
(x’, y’, 1).

If both images were captured with the
same camera then K1 = K2.

469

Like the camera matrix in Sect. 11.2.2 the essential matrix can be decomposed to
yield the relative pose 1ξ2 in homogeneous transformation form.� The inverse is not
unique and in general there are two solutions

>> sol = cam1.invE(E)
sol(1) =
 1.0000 0 0 -0.1842
 0 -1.0000 0 0
 0 0 -1 -0.07788
 0 0 0 1

sol(2) =
 0.6967 0 -0.7174 0.1842
 0 1.0000 0 0
 0.7174 0 0.6967 0.07788
 0 0 0 1

The true relative pose from camera one to camera two is

>> inv(cam1.T) * cam2.T
ans =
 0.6967 0 -0.7174 0.1842
 0 1 0 0
 0.7174 0 0.6967 0.07788
 0 0 0 1

which indicates that, in this case, solution two is the correct one.
Unusually we have recovered the camera translation exactly but since E� λE the

translational part of the homogeneous transformation matrix has an unknown scale
factor.� In this case the scale is correct because the essential matrix was determined
directly from the relative pose between the cameras.

In the general case we do not know the pose of the two cameras, so how do we deter-
mine the correct solution in practice? One approach is to determine whether a world point
is visible. Typically we would choose a point on the optical axis in front of the fi rst camera

>> Q = [0 0 10]';

and its projection to the fi rst camera
>> cam1.project(Q)'
ans =
 429.7889 512.0000

is a reasonable value. We can test each of the possible relative poses in sol by using
them to move the fi rst camera. We can create an instance copy of the fi rst camera with
an arbitrary displacement using the move method

>> cam1.move(sol(1).T).project(Q)'
ans =
 NaN NaN

and the values of NaN indicate that the point Q is not visible from this camera pose
– in fact it is behind the camera. The second solution

>> cam1.move(sol(2).T).project(Q)'
ans =
 594.2111 512.0000

has a fi nite value and indicates that it is the valid one. We can perform this more com-
pactly by providing a test point

>> sol = cam1.invE(E, Q)
sol =
 0.6967 0 -0.7174 0.1842
 0 1.0000 0 0
 0.7174 0 0.6967 0.07788
 0 0 0 1

in which case only the valid solution is returned.

Although Eq. 14.9 is written in terms
of (R, t) ∼ 2ξ1 the Toolbox function re-
turns 1ξ2.

As observed by Hartley and Zisserman
(2003, p 259) not even the sign of t can
be determined.

14.2 · Geometry of Multiple Views

470 Chapter 14 · Using Multiple Images

In summary these 3 × 3 matrices, the fundamental and the essential matrix, encode
the parameters and relative pose of the two cameras. The fundamental matrix and a
point in one image defi nes an epipolar line in the other image along which its conju-
gate points must lie. The essential matrix encodes the relative pose of the two camera’s
centers and the pose can be extracted, with two possible values, and with translation
scaled by an unknown factor. In this example the fundamental matrix was computed
from known camera motion and intrinsic parameters. The real world isn’t like this –
camera motion is diffi cult to measure and the camera may not be calibrated. Instead
we can estimate the fundamental matrix directly from corresponding image points.

14.2.3
l
Estimating the Fundamental Matrix from Real Image Data

Assume that we have N pairs of corresponding points in two views of the same scene
(1pi,

2pi), i = 1� N. To demonstrate this we create a set of twenty random point fea-
tures (within a 2 × 2 × 2 m cube) whose center is located 3 m in front of the cameras�

>> P = SE3(-1, -1, 2)*(2 *rand(3,20));

and project these points onto the two camera image planes

>> p1 = cam1.project(P);
>> p2 = cam2.project(P);

If N ≥ 8 the fundamental matrix can be estimated from these two sets of correspond-
ing points

>> F = fmatrix(p1, p2)
maximum residual 2.645e-29
F =
 0.0000 -0.0000 0.0239
 -0.0000 -0.0000 0.0460
 0.0239 0.0018 -24.4896

where the residual is the maximum value of the left-hand side of Eq. 14.2 and is ideally zero.
The value here is not zero, but it is very small, and this is due to the accumulation of er-
rors from fi nite precision arithmetic. The estimated matrix has the required rank property

>> rank(F)
ans =
 2

For camera two we can plot the projected points

>> cam2.plot(P);

The SE3 class, a 4 × 4 matrix is applied
to a set of 3D points expressed as a
3 × 20 matrix. The ∗ operator for the
SE3 class does the right thing here, it
first converts the second matrix to ho-
mogeneous form, performs the matrix
multiplication, and then converts back
to Euclidean form.

Fig. 14.8.
A pencil of epipolar lines on the
camera two image plane. Note
how all epipolar lines pass through
the epipole which is the projec-
tion of camera one’s center

471

and overlay the epipolar lines generated by each point in image one

>> cam2.plot_epiline(F, p1, 'r')

which is shown in Fig. 14.8. We see a family or pencil of epipolar lines, and that every point
in image two lies on an epipolar line. Note how the epipolar lines all converge on the epipole
which is possible in this case� because the two cameras are verged as shown in Fig. 14.6.

To demonstrate the importance of correct point correspondence we will repeat
the example above but introduce two bad data associations by swapping two ele-
ments in p2

>> p2(:,[8 7]) = p2(:,[7 8]);

The fundamental matrix estimation

>> fmatrix(p1, p2)
maximum residual 0.000424
ans =
 0.0000 -0.0001 0.0628
 0.0000 -0.0000 0.0098
 -0.0192 0.0511 -29.7672

now has a residual that is over 20 orders of magnitude larger than previously. This means
that the point correspondence cannot be explained by the relationship Eq. 14.2.

If we knew the fundamental matrix we could test whether a pair of candidate cor-
responding points are in fact conjugates by measuring how far one is from the epipo-
lar line defi ned by the other

>> epidist(F, p1(:,1), p2(:,1))
ans =
 1.5356e-13
>> epidist(F, p1(:,7), p2(:,7))
ans =
 18.8228

which shows that point 1 is a good fi t, but point 7 (which we swapped with point 8), is
a poor fi t. However we have to fi rst estimate the fundamental matrix and that requires
that point correspondence is known. We break this deadlock with an ingenious algo-
rithm called Random Sampling and Consensus or RANSAC.

The underlying principle is delightfully simple. Estimating a fundamental matrix re-
quires eight points so we randomly choose eight candidate corresponding points (the
sample) and estimate F to create a model. This model is tested against all the other can-
didate pairs and those that fi t� vote for this model. The process is repeated a number of
times and the model that had the most supporters (the consensus) is returned. Since the
sample is small the chance that it contains all valid candidate pairs is high. The point
pairs that support the model are termed inliers and those that do not are outliers.

RANSAC is remarkably effective and effi cient at fi nding the inlier set, even in
the presence of large numbers of outliers (more than 50%), and is applicable to a
wide range of problems. Within the Toolbox we invoke RANSAC as a driver of the
 fmatrix function

>> [F,in,r] = ransac(@fmatrix, [p1; p2], 1e-6, 'verbose');
15 trials
2 outliers
2.03262e-29 fi nal residual

and we obtain an excellent fi nal residual. The set of inliers is also returned

>> in
in =
 Columns 1 through 14
 1 2 3 4 5 6 9 10 11 12 13 14 15 16
 Columns 15 through 18
 17 18 19 20

The example has been contrived so that
the epipoles lie within the images, that
is, that each camera can see the center
of the other camera. A common imag-
ing geometry is for the optical axes to
be parallel, such as shown in Fig. 14.19
in which case the epipoles are at infinity
(the third element of the homogeneous
coordinate is zero) and all the epipolar
lines are parallel.

To within a defined threshold t. The
Toolbox function epidist returns
the distance between a point and an
epipolar line.

14.2 · Geometry of Multiple Views

472 Chapter 14 · Using Multiple Images

and the two incorrect associations, points 7 and 8, are notably absent from this list. The
third parameter to ransac is the threshold t which is used to determine whether or not
a point pair supports the model. If t is chosen to be too small RANSAC requires many
more trials than its default maximum and this requires adjustment of additional param-
eters. Keep in mind also that the results of RANSAC will vary from run to run due to the
random subsampling performed. Using RANSAC involve some trial and error to choose
the correct threshold based on the fi nal residual and the number of outliers. There are
also a number of other options that are described in the online documentation.

We return now to the pair of images of the Eiffel tower shown in Fig. 14.3. When
we left off at page 464 we had found candidate correspondences based on descriptor
similarity but there were a number of clearly incorrect matches. RANSAC is available
as a method ransac that operates on a vector of FeatureMatch objects

>> F = m.ransac(@fmatrix, 1e-4, 'verbose')
1527 trials
312 outliers
0.000140437 fi nal residual
F =
 0.0000 -0.0000 0.0098
 0.0000 0.0000 -0.0148
 -0.0121 0.0129 3.6393

A small amount of trial and error was required to settle on the tolerance of 10−4. Making it
smaller requires more RANSAC trials, and therefore raising the limit on the maximum
number of trials allowed, but without any signifi cant change in the result. It is also un-
realistic to expect a very small residual since the real image data is subject to random
error such as image sensor noise and systematic error such as lens distortion.�

RANSAC identifi ed 312 outliers or incorrect data associations from the SURF fea-
ture matching stage which is nearly 50% of the candidate matches – the preliminary
matching was worse than it looked. Running RANSAC has also updated the elements
of the FeatureMatch vector

>> m.show
ans =
644 corresponding points
332 inliers (51.6%)
312 outliers (48.4%)

which now displays the total number of inliers and outliers. Compared to page 463
the elements of the vector

>> m(1:5)
ans =
(819.56, 358.557) <-> (708.008, 563.342), dist=0.002137 +
(1028.3, 231.748) <-> (880.14, 461.094), dist=0.004057 -
(1027.6, 571.118) <-> (885.147, 742.088), dist=0.004297 +
(927.724, 509.93) <-> (800.833, 692.564), dist=0.004371 +
(854.35, 401.633) <-> (737.504, 602.187), dist=0.004417 +

Example of RANSAC fi tting a line to data with a few erroneous, or outlier, points.
The blue dashed line is the least squares best fi t and is clearly biased away from the
true line by the outlier data points. Despite 40% of the points not fi tting the model
RANSAC fi nds the parameters of the consensus line, the line that the largest number
of points agree on

>> [theta,inliers] = ransac(@linefi t, [x; y], 1e-3)
theta =
 3.0000 -10.0000
inliers =
 1 3 4 5 9 10

and the indices of the data points that support that model. [examples/linefit.m]

Lens distortion causes points to be dis-
placed on the image plane and this vio-
lates the epipolar geometry. Images can
be corrected by warping as discussed in
Sect. 12.7.4 but this is computationally
expensive. A cheaper alternative is to
find the coordinates of the features in
the distorted image and correct those
using the inverse of the distortion mod-
el Eq. 11.13.

473

now have a trailing plus or minus sign to indicate whether the corresponding match
is an inlier or outlier respectively.� We can plot some of the inliers

>> idisp({im1, im2});
>> m.inlier.subset(100).plot('g')

or some of the outliers

>> idisp({im1, im2});
>> m.outlier.subset(100).plot('r')

and these are shown in Fig. 14.9.
An alternative way to create a CentralCamera object is from an image

>> cam = CentralCamera('image', im1);

The size of the pixel array is inferred from the image and the intrinsic parameters are
set to default values. As before, we can overlay the epipolar lines computed from the
corresponding points found in the second image

>> cam.plot_epiline(F', m.inlier.subset(20).p2, 'g');

and the result is shown in Fig. 14.10. The epipolar lines intersect at the epipolar point
which we can clearly see is the projection of the second camera in the fi rst image.� The
epipole at

>> h2e(null(F))
ans =
 1.0e+03 *
 1.0359
 0.6709
>> cam.plot(ans, 'bo')

is also superimposed on the plot. With two handheld cameras and a common view we have
been able to pinpoint the second camera in the fi rst image. The result is not quite perfect
– there is a horizontal offset of about 20 pixels which is likely to be due to a small pointing
error in one or both cameras which were handheld and only approximately synchronized.�

�
Fig. 14.9. Results of SURF feature
matching after RANSAC. a Sub-
set of all inlier matches; b subset
of the outlier matches, some are
quite visibly incorrect while oth-
ers are more subtly wrong

Fig. 14.10.
Image from Fig. 14.1a showing

epipolar lines converging on the
projection of the second cam-

era’s center. In this case the sec-
ond camera is clearly visible in

the bottom right of the image

The second match has been determined
to be an outlier even though it was the
second strongest candidate based on de-
scriptor similarity. Similarity alone is not
enough, the corresponding points in the
two images must be consistent with the
epipolar geometry as represented by the
consensus fundamental matrix.

We only plot a small subset of the epi-
polar lines since they are too numerous
and would obscure the image.

At the focal lengths used a 20 pix displace-
ment on the image plane corresponds to
a pointing error of less than 0.5°.

14.2 · Geometry of Multiple Views

474 Chapter 14 · Using Multiple Images

14.2.4
l
Planar Homography

In this section we will consider a camera viewing a set of world points Pi that lie on
a plane. They are viewed by two different cameras and the projection in the cameras
are 1pi and 2pi respectively which are related by

 (14.12)

where H ⊂R3×3 is a nonsingular matrix known as an homography, a planar homog-
raphy, or the homography induced by the plane.�

For example consider again the pair of cameras from page 465 now observing a
3 × 3 grid of points

>> Tgrid = SE3(0,0,1)*SE3.Rx(0.1)*SE3.Ry(0.2);
>> P = mkgrid(3, 1.0, 'pose', Tgrid);

where Tgrid is the pose of the grid coordinate frame {G} and the grid points are cen-
tered in the frame’s xy-plane. The points are projected to both cameras

>> p1 = cam1.plot(P, 'o');
>> p2 = cam2.plot(P, 'o');

and the images are shown in Fig. 14.11a and b respectively.
Just as we did for the fundamental matrix, if N ≥ 8 we can estimate the matrix H

from two sets of corresponding points

>> H = homography(p1, p2)
H =
 -0.4282 -0.0006 408.0894
 -0.7030 0.3674 320.1340
 -0.0014 -0.0000 1.0000

According to Eq. 14.12 we can predict the position of the grid points in image two from
the corresponding image one coordinates

>> p2b = homtrans(H, p1);

which we can can superimpose on image two as +-symbols

>> cam2.hold()
>> cam2.plot(p2b, '+')

This is shown in Fig. 14.11b and we see that the predicted points are perfectly aligned
with the actual projection of the world points. The inverse of the homography matrix

 (14.13)

Fig. 14.11.
Views of the oblique planar grid
of points from two different
view points. The grid points are
projected as open circles. Plus
signs in b indicate points trans-
formed from the camera one im-
age plane by the homography

An homography matrix has arbitrary scale
and therefore 8 degrees of freedom. With
respect to Eq. 14.14 the rotation, transla-
tion and normal have 3, 3 and 2 degrees
of freedom respectively, for a total of 8.
Homographies form a group : the prod-
uct of two homographies is another ho-
mography, the identity homography is
a unit matrix and an inverse operation
is defined.

475

performs the inverse mapping, from image two coordinates to image one

>> p1b = homtrans(inv(H), p2);

The fundamental matrix constrains the conjugate point to lie along a line but the ho-
mography tells us exactly where the conjugate point will be in the other image – pro-
vided that the points lie on a plane.

We can use this proviso to our advantage as a test for whether or not points lie on
a plane. We will add some extra world points� to our example

>> Q = [
 -0.2302 -0.0545 0.2537
 0.3287 0.4523 0.6024
 0.4000 0.5000 0.6000];

which we plot in 3D

>> axis([-1 1 -1 1 0 2])
>> plot_sphere(P, 0.05, 'b')
>> plot_sphere(Q, 0.05, 'r')
>> cam1.plot_camera('color', 'b', 'label')
>> cam2.plot_camera('color', 'r', 'label')

and this is shown in Fig. 14.12. The new points, shown in red, are clearly not in the
same plane as the original blue points. Viewed from camera one

These points lie along the ray from the
camera one center to an extra row of
points in the grid plane. However their
z-coordinates have been chosen to be
0.4, 0.5 and 0.6 m respectively.

Fig. 14.12.
World view of target points and
two camera poses. Blue points

lie in a planar grid, while the red
points appear to lie in the grid

from the viewpoint of camera one

Fig. 14.13.
Views of the oblique planar grid
of points from two different view

points. The grid points are pro-
jected as open circles. Plus signs

in b indicate points transformed
from the camera one image plane
by the homography. The bottom

of row of points in each case are
not coplanar with the other points

14.2 · Geometry of Multiple Views

476 Chapter 14 · Using Multiple Images

>> p1 = cam1.plot([P Q], 'o');

as shown in Fig. 14.13a, these new points appear as an extra row in the grid of points
we used above. However in the second view

>> p2 = cam2.plot([P Q], 'o');

as shown in Fig. 14.13b these out of plane points no longer form a regular grid. If we
apply the homography to the camera one image points

>> p2h = homtrans(H, p1);

we fi nd where they should be in the camera two image if they belonged to the plane
implicit in the homography

>> cam2.plot(p2h, '+')

We see that the original nine points overlap, but the three new points do not. We could
make an automated test based on the prediction error

>> colnorm(homtrans(H, p1)-p2)
ans =
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 50.5969 46.4423 45.3836

which is large for these last three points – they do not belong to the plane that induced
the homography.

In this example we estimated the homography based on two sets of corresponding
 points which were projections of known planar points. In practice we do not know in
advance which points belong to the plane so we can again use RANSAC

>> [H,in] = ransac(@homography, [p1; p2], 0.1)
resid =
 4.0990e-13
H =
 -0.4282 -0.0006 408.0894
 -0.7030 0.3674 320.1340
 -0.0014 -0.0000 1.0000
in =
 1 2 3 4 5 6 7 8 9

which fi nds the homography that best explains the relationship between the sets of
image points. It has also identifi ed those points which support the homography and
the three out of plane points, points 10–12, are not on the inlier list.

Fig. 14.14.
Geometry of homography
showing two cameras with as-
sociated coordinate frames {1}
and {2} and image planes. The
world point P belongs to a plane
with surface normal n. H is the
homography, a 3 × 3 matrix
that maps 1p to 2p

477

The geometry related to the homography is shown in Fig. 14.14. We can express
the homography in normalized image coordinates�

where HE is the Euclidean homography which is written

 (14.14)

in terms of the camera motion (R, t) ∼ 2ξ1 and the plane nTP + d = 0 with respect to
frame {1}. The Euclidean and projective homographies are related by

where K is the camera intrinsic parameter matrix.
As for the essential matrix the projective homography can be decomposed to yield

the relative pose 1ξ2 in homogeneous transformation form� as well as the normal to
the plane. We use the invH method of the CentralCamera class

>> cam1.invH(H)
solution 1
 T =0.82478 -0.01907 -0.56513 -0.01966
 0.01907 0.99980 -0.00591 -0.01917
 0.56513 -0.00591 0.82498 0.19911
 0.00000 0.00000 0.00000 1.00000
 n = 0.95519 0.00998 0.29582
solution 2
 T =0.69671 0.00000 -0.71736 0.18513
 0.00000 1.00000 0.00000 -0.00000
 0.71736 -0.00000 0.69671 0.07827
 0.00000 0.00000 0.00000 1.00000
 n = -0.19676 -0.09784 0.97556

which returns a short structure array. Again there are multiple solutions and we need
to apply additional information to determine the correct one. As usual the translational
component of the transformation matrix has an unknown scale factor. We know from
Fig. 14.12 that the camera motion is predominantly in the x-direction and that the plane
normal is approximately parallel to the camera’s optical- or z-axis and this knowledge
helps us to choose solution two. The true transformation from camera one to two is

>> inv(T1)*T2
ans =
 0.6967 0 -0.7174 0.1842
 0 1.0000 0 0
 0.7174 0 0.6967 0.0779
 0 0 0 1.0000

and supports our choice.� The pose of the grid with respect to camera one is

>> inv(T1)* Tgrid
ans =
 0.9797 -0.0389 -0.1968 -0.2973
 0.0198 0.9950 -0.0978 0
 0.1996 0.0920 0.9756 0.9600
 0 0 0 1.0000

and the third column is the grid’s normal� which matches the estimated normal as-
sociated with solution two.

We can apply this technique to a pair of real images

>> im1 = iread('walls-l.jpg', 'double', 'reduce', 2);
>> im2 = iread('walls-r.jpg', 'double', 'reduce', 2);

See Sect. 11.1.2.

Although Eq. 14.14 is written in terms
of (R, t) ∼ 2ξ1 the Toolbox function re-
turns 1ξ2.

The translation scale factor is quite close
to one in this example, but in general it
must be considered unknown.

Since the points are in the xy-plane of the
grid frame {G} the normal is the z-axis.

14.2 · Geometry of Multiple Views

478 Chapter 14 · Using Multiple Images

which we have downsized by a factor of 2 in each dimension and are shown in Fig. 14.15.
We start by fi nding the SURF features

>> sf1 = isurf(im1);
>> sf2 = isurf(im2);

and the candidate corresponding points
>> m = sf1.match(sf2, 'top', 1000)
m =
1000 corresponding points (listing suppressed)

then use RANSAC to fi nd the set of corresponding points that best fi ts a plane in the world

[H,r] = m.ransac(@homography, 4)
H =
 0.8463 0.0164 -150.4748
 0.0050 1.0067 20.3413
 -0.0000 -0.0000 1.0000
r =
 1.6799

The number of inlier and outlier points is

>> m.show
ans =
1000 corresponding points
262 inliers (26.2%)
738 outliers (73.8%)

In this case the majority of point pairs do not fi t the model, that is they do not belong
to the plane that induces the homography H. However 262 points do belong to the
plane and we can superimpose them on the fi gure

>> idisp(im1)
>> plot_point(m.inlier.p1, 'ys')

as shown in Fig. 14.15a. RANSAC has found a consensus which is the plane contain-
ing the left-hand wall. The error tolerance was set to 4 pixels to account for lens dis-
tortion and the planes being not perfectly smooth. If we remove the inlier points from
the FeatureMatch vector, that is, we keep the outliers

>> m = m.outlier

and repeat the RANSAC homography estimation step we will fi nd the next most dom-
inant plane in the scene which turns out to be the right-hand wall. Planes are very
common in man-made environments and we will revisit homographies and their de-
composition in Sect. 14.7.1.

Fig. 14.15. Two pictures of a court-
yard taken from different view-
points. Image b was taken ap-
proximately 30 cm to the right
of image a. Image a has super-
imposed features that fi t a plane.
The camera was handheld

479

14.3
l
Stereo Vision

 Stereo vision is the technique of estimating the 3-dimensional structure of the
world from two images taken from different viewpoints as for example shown in
Fig. 14.15. Human eyes are separated by 50–80 mm and the difference between these
two viewpoints is an important, but not the only, part of how we sense distance.
We will discuss two approaches known as sparse and dense stereo respectively.
 Sparse stereo is a natural extension of what we have learned about feature match-
ing and recovers the world coordinate (X, Y, Z) for each corresponding point pair.
Dense stereo attempts to recover the world coordinate (X, Y, Z) for every pixel in
the image.

14.3.1
l

Sparse Stereo

To illustrate sparse stereo we will return to the pair of images shown in Fig. 14.15. We
have already found the SURF features and established candidate correspondences be-
tween them. Now we estimate the fundamental matrix

>> [F,r] = m.ransac(@fmatrix,1e-4, 'verbose');
102 trials
238 outliers
0.000132333 fi nal residual

which captures the relative geometry of the two views. We can display the epipolar
lines for a subset of right-hand image points overlaid on the left-hand image

>> cam = CentralCamera('image', im1);
>> cam.plot_epiline(F', m.inlier.subset(40).p2, 'y');

which is shown in Fig. 14.16. In this case the epipolar lines are approximately hori-
zontal and parallel which is expected for a camera motion that is a pure translation in
the x-direction. Figure 14.17 shows the epipolar geometry for stereo vision. It is clear
that as points move away from the camera, P to P′ the conjugate points in the right-
hand image moves to the right along the epipolar line.

The points 1p and 2p each defi ne a ray in space which intersect at the world point.
However to determine these rays we need to know the two poses of the camera and
its intrinsic parameters. We can consider that the camera one frame {1} is the origin
but the pose of camera two remains unknown. However we could estimate its pose
by decomposing the essential matrix computed between the two views. We have the

14.3 · Stereo Vision

Fig. 14.16.
Image of Fig. 14.15a with epipo-
lar lines for a subset of right im-

age points superimposed

480 Chapter 14 · Using Multiple Images

fundamental matrix, but to determine the essential matrix according to Eq. 14.11 we
need the camera’s intrinsic parameters. With a little sleuthing we can fi nd them!

The focal length used when the picture was taken is stored in the metadata of the
image as we discussed on page 363 and can be examined

>> [~,md] = iread('walls-l.jpg');

where md is a structure of text strings that contains various characteristics of the im-
age – its metadata. The element DigitalCamera is a structure that describes the
camera

>> f = md.DigitalCamera.FocalLength
f =
 4.1500

from which we determine the focal length is 4.15 mm.
The dimensions of the pixels ρw × ρh are not included in the image header but some

web-based research on this model camera
>> md.Model
ans =
iPhone 5s

suggests that this camera has an image sensor with 1.5 µm pixels. We create a
CentralCamera object based on the known focal length, pixel size and image
dimension�

>> cam = CentralCamera('image', im1, 'focal', f/1000, ...	
 'pixel', 2*1.5e-6)
cam =
name: noname [central-perspective]
 focal length: 0.00415
 pixel size: (3e-06, 3e-06)
 principal pt: (816, 612)
 number pixels: 1632 x 1224
 pose: t = (0,0,0), RPY/yxz = (0,0,0) deg

In the absence of any other information the principal point is assumed to be in the
center of the image.

The essential matrix is obtained by applying the camera intrinsic parameters to
the fundamental matrix

>> E = cam.E(F)
E =
 0.0143 1.1448 0.2380
 -1.1286 -0.1483 6.0273
 -0.2826 -6.0536 -0.1461

We have doubled the pixel dimensions
to account for halving the image reso-
lution when we loaded the images. A
low-resolution image effectively has
larger pixels.

Fig. 14.17.
Epipolar geometry for stereo
vision. We can see clearly that
as the depth of the world point
increases, from P to P′, the pro-
jection moves along the epipolar
line in the second image plane

481

and we then decompose it to determine the camera motion

>> T = cam.invE(E, [0,0,10]')
T =
 0.9999 0.0115 0.0027 6.042
 -0.0115 0.9996 -0.0255 -0.3092
 -0.0030 0.0254 0.9997 1.124
 0 0 0 1

We chose a test point 1P = (0, 0, 10), a distant point along the optical axis, to determine
the correct solution for the relative camera motion. Since the camera orientation was
kept fairly constant the rotational part of the transformation is expected to be close
to the identity matrix as we observe, and the actual rotation

>> T.torpy('yxz', 'deg')
ans =
 -0.6569 1.4597 0.1561

is less than two degrees of rotation about any axis.�

The estimated translation t from {1} to {2} has an unknown scale factor. Once again
we bring in an extra piece of information – when we took the images the camera posi-
tion changed by approximately 0.3 m in the positive x-direction. The estimated trans-
lation has the correct direction, dominant x-axis motion, but the magnitude is quite
wrong. We therefore scale the translation

>> t = T.t;
>> T.t = 0.3 * t/t(1)
T =
 0.9999 0.0115 0.0027 0.3
 -0.0115 0.9996 -0.0255 -0.01535
 -0.0030 0.0254 0.9997 0.0558
 0 0 0 1

and we have an estimate of 1ξ2 – the relative pose of camera two with respect to cam-
era one represented as a homogeneous transformation.

Each point p in an image corresponds to a ray in space�

where P0 is the principal point of the camera and d ∈R3, �d�= 1 is a unit-vector in
the direction of the ray. Consider now the fi rst corresponding point pair m(1). The
ray from camera one is

>> r1 = cam.ray(m(1).p1)
r1 =
d=(0.37844, -0.0819363, 0.921992), P0=(0, 0, 0)

which is an instance of a Ray3D object with properties d and P0 representing d and P0
respectively. The corresponding ray from the second camera is

>> r2 = cam.move(T).ray(m(1).p2)
r2 =
d=(0.29936, -0.0826926, 0.95055), P0=(0.3, -0.0153494, 0.0557958)

where the move method returns an instance copy of the CentralCamera object cam
with the relative pose we have just estimated. The two rays intersect at

>> [P,e] = r1.intersect(r2);
P'
ans =
 1.2134 -0.2627 2.9563

which is a point with a z-coordinate, or depth, of almost 3 m. Due to errors in the es-
timate of camera two’s pose the two rays do not actually intersect, but their closest
point is returned. At their closest point the rays are

>> e
e =
 0.0049

14.3 · Stereo Vision

We have specified a different roll-pitch-
yaw rotation order YXZ. Given the way
we have defined our axes the camera
orientation with respect to the world
frame is a yaw about the vertical or y-
axis, followed by a pitch about the x-axis
followed by a roll about the optical axis
or z-axis.

Sometimes called a raxel. Many repre-
sentations exist including Plücker coordi-
nates which are described in Sect. C.1.2.2.
Determining a ray from a pixel coordinate is
covered on page 327.

482 Chapter 14 · Using Multiple Images

nearly 5 mm apart. Considering the lack of rigor in this exercise, two handheld cam-
era shots and only approximate knowledge of the magnitude of the camera displace-
ment, the recovered depth information is quite remarkable.�

We draw a subset of one hundred corresponding points from the inlier set

>> m2 = m.inlier.subset(100);

and then compute the rays in world space from each camera

>> r1 = cam.ray(m2.p1);
>> r2 = cam.move(T).ray(m2.p2);

which are each vectors of Ray3D objects. Their intersection points are

>> [P,e] = r1.intersect(r2);

where P is a matrix of closest points, one per column, and the last row

>> z = P(3,:);

is the depth coordinate. The columns of the vector e contains the distance between
the rays at their closest points. We can superimpose the distance to each point on the
image of the courtyard

>> idisp(im1)
>> plot_point(m2.p1, 'y+', 'textcolor', 'y', 'printf', {'%.1f', z});

which is shown in Fig. 14.18 and the feature markers are annotated with the estimated
depth.

Even small errors in the estimated rota-
tion between the camera poses will lead
to large closing errors at distances of sev-
eral meters. The closing error observed
here would be induced by a rotational
error of less than 1 deg.

Fig. 14.18.
Image of Fig. 14.15a with depth
of selected points indicated
(units of meters)

Fig. 14.19.
A small stereo camera sensor
mounted on a mobile robot and
capable of real-time depth map
generation (image courtesy of
Stereolabs Inc.)

483

This is an example of stereopsis where we have used information from two over-
lapping images to infer the 3-dimensional position of points in the world. For obvious
reasons the approach used here is referred to as sparse stereo because we only com-
pute distance at a tiny subset of pixels in the image. More commonly the relative pose
between the cameras would be known as would the camera intrinsic parameters.

14.3.2
l
Dense Stereo Matching

A stereo pair is more commonly taken simultaneously by two cameras, generally with
parallel optical axes, and separated by a known distance referred to as the camera base-
line. Figure 14.19 shows a typical stereo camera system which simultaneously captures
images from both cameras and transfers them to a host computer for processing.

To illustrate we load the left and right images comprising a stereo pair

>> L = iread('rocks2-l.png', 'reduce', 2);
>> R = iread('rocks2-r.png', 'reduce', 2);

We can interactively examine these two images together

>> stdisp(L, R)

as shown in Fig. 14.20. Clicking on a point in the left-hand image updates a pair of
cross hairs that mark the same coordinate relative to the right-hand image. Clicking
in the right-hand image sets another vertical cross hair and displays the difference
between the horizontal coordinate of the two crosshairs. The cross hairs as shown are
set to a point on the digit 5 written on one of the foreground rocks and we observe
several things. Firstly the spot has the same vertical coordinate in both images, and
this implies that the epipolar lines are horizontal. Secondly, in the right-hand image
the spot has moved to the left by 70.9 pixels. If we probed more points we would see
that disparity decreases for points that are further from the camera.

As shown in Fig. 14.17 the conjugate point in the right-hand image moves right-
ward along the epipolar line as the point depth increases. For the parallel-axis cam-
era geometry the epipolar lines are parallel and horizontal, so conjugate points have
the same v-coordinate. If the coordinates of two corresponding points are (Lu, Lv) and
(Ru, Rv) then Rv = Lv. The displacement along the horizontal epipolar line d = Lu − Ru
where d ≥ 0 is called disparity.

14.3 · Stereo Vision

Fig. 14.20. The stdisp image
browsing window. The black cross
hair in the left-hand image has
been positioned at the top right of
the digit 5 on a foreground rock.
Another black cross hair is auto-
matically positioned at the same
coordinate in the right-hand im-
age. Clicking on the correspond-
ing point in the right-hand image
sets the green cross-hair, and the
panel at the top indicates a hori-
zontal shift of 70.9 pixels to the
left. This stereo image pair is from
the Middlebury stereo database
(Scharstein and Pal 2007). The fo-
cal length f /ρ is 3 740 pixels, and
the baseline is 160 mm. The imag-
es have been cropped so that the
actual disparity should be offset
by 274 pixels

484 Chapter 14 · Using Multiple Images

The dense stereo process is illustrated in Fig. 14.21. For the pixel at (Lu, Lv) in the
left-hand image we know that its corresponding pixel is at some coordinate (Lu − d, Lv)
in the right-hand image where d ∈ [dmin, dmax]. To reliably fi nd the corresponding point
for a pixel in the left-hand image we create an N × N pixel template region T about
that pixel. As shown in Fig. 14.21 we slide the template window horizontally across
the right-hand image. The position at which the template is most similar is consid-
ered to be the corresponding point from which disparity is calculated. Compared to
the matching problem we discussed in Sect. 12.5.2, this one is much simpler because
there is no change in relative scale or orientation between the two images.

The epipolar constraint means that we only need to perform a 1-dimensional search
for the corresponding point. The template is moved in D steps of 1 pixel in the range
dmin� dmax. At each template position we perform a template matching operation,
such as we discussed in Sect. 12.5.2, and for an N × N template these have a compu-
tational cost of O(N 2). For a W × H image the total cost of dense stereo matching is
O(DWHN 2) which is high but feasible in real time.

To perform stereo matching for the image pair in Fig. 14.20 using the Toolbox is
quite straightforward

>> d = istereo(L, R, [40, 90], 3);

The result is a matrix the same size as L and the value of each element d[u, v], or
d(v,u) in MATLAB, is the disparity at that coordinate in the left image. The corre-
sponding pixel in the right image would be at (u − d[u, v], v). We can display the dis-
parity as an image – a disparity image

>> idisp(d, 'bar')

which is shown in Fig. 14.22. Disparity images have a distinctive ghostly appearance
since all surface color and texture is absent. The third argument to stereo is the
range of disparities to be searched, in this case from 40 to 90 pixel so the pixel values
in the disparity image lie in the range [40, 90]. The disparity range was determined by
examining some far and near points using stdisp.� The fourth argument to iste-
reo is the half-width of the template, in this case we are using a 7 × 7 window. By de-
fault stereo uses the ZNCC similarity measure.

In the disparity image we can clearly see that the rocks at the bottom of the pile
have a larger disparity and are closer to the camera than those at the top. There are
also some errors, such as the anomalous bright values around the edges of some rocks.
These pixels are indicated as being nearer than they really are. The similarity score
is set to NaN around the edge of the image where the similarity matching template
falls off the edge of the image and to Inf for the case where the denominator of the
ZNCC similarity metric (Table 12.1) is equal to zero.� The values NaN and Inf are
both displayed as red.

Fig. 14.21.
Stereo matching. A search win-
dow in the right image, starting at
u = Lu, is moved leftward along
the epipolar line v = Lv until it
matches the template window T
from the left image

We could chose a range such as [0, 90]
but this increases the search time: 91 dis-
parities would have to be evaluated in-
stead of 51. It also increases the possibil-
ity of matching errors.

This occurs if all the pixels in either tem-
plate have exactly the same value.

485

14.3.2.1
l
Stereo Failure Modes

The stereo function can also return the disparity space image (DSI)

>> [d,sim,DSI] = istereo(L, R, [40 90], 3);

where sim is an H × W matrix whose elements are the peak similarity score at the
corresponding pixel and DSI is an H × W × D matrix shown in Fig. 14.23

>> about(DSI)
DSI [double] : 555x638x51 (144468720 bytes)

whose elements (u, v, d) are the similarity measure between the templates centered at
(u, v) in the left image and (u − d, v) in the right image.� The disparity image we saw
earlier is simply the position of the maximum value in the d-direction evaluated at
every pixel� and the matrix sim is the value of those maxima.

Each column in the d-direction, as shown in Fig. 14.23, holds the similarity mea-
sure versus disparity for the corresponding pixel in the left image. For the pixel at
(138, 439) we can plot this

>> plot(squeeze(DSI(439,138,:)), 'o-');

which is shown in Fig. 14.24a. We are using the ZNCC measure and an almost per-
fect match occurs at a disparity of 80 pixels, since the horizontal axis is d − dmin and
dmin = 40. Such a strong and unambiguous peak is fortunately very common. However
Fig. 14.22 shows that the stereo matching process is not perfect and plots of the tem-
plate similarity metric versus disparity provide insight into the causes of error.

14.3 · Stereo Vision

Fig. 14.22.
Disparity image for the rock

pile stereo pair, where brighter
means higher disparity or short-

er range. Red indicates Inf or
NaN values in the result where

disparity could not be com-
puted. Note the quantization in

grey levels since we search for
disparity in steps of one pixel

Fig. 14.23.
The disparity space image (DSI)
is a 3-dimensional image where

element D(u, v, d) is the simi-
larity between the support re-

gions centered at (Lu, Lv) in the
left image and (Lu − d, Lv) in the

right image

This is a workable but simplistic ap-
proach. A better approach is to apply
regularization and estimate a function
g(u, v) that fits the points of maximum
similarity while maintaining smoothness
and continuity.

This is a large matrix (144 Mbyte) which
is why the images were reduced in size
when loaded.

486 Chapter 14 · Using Multiple Images

Figure 14.24b shows two peaks of almost similar amplitude and this means that
the template pattern was found twice in the search region. This occurs when there are
regular vertical features in the scene as is often the case in man-made scenes: brick
walls, rows of windows, architectural features or a picket fence. The problem, illus-
trated in Fig. 14.25, is commonly known as the picket fence effect and more properly
as spatial aliasing. There is no real cure for this problem� but we can detect its pres-
ence. The ambiguity ratio is the ratio of the height of second peak to the height of the
fi rst peak – a high-value indicate that the result is uncertain and should not be used.
The chance of detecting incorrect peaks can be reduced by ensuring that the dispar-
ity range used in istereo is as small as possible but this requires some knowledge
of the expected range of objects.

A weak match is shown in Fig. 14.24c. This typically occurs when the correspond-
ing scene point is not visible in the right-hand view due to occlusion – also known
as the missing parts problem. Occlusion is illustrated in Fig. 14.26 and it is clear that
point 3 is only visible to the left camera. The stereo matching algorithm will always
return the best match so if the point is occluded it will return disparity to the most
similar, but wrong, template. Even though the fi gure is an exaggerated depiction, real
images suffer this problem where the depth changes rapidly. In our example, this oc-
curs at the edges of the rocks which is exactly where we observe the incorrect dispari-
ties in Fig. 14.22. The problem becomes more prevalent as the baseline increases. The
problem also occurs when the corresponding point does not lie within the disparity
search range, that is, the disparity search range is too small.

Multi-camera stereo, using more than
two cameras, is a powerful method to
solve this ambiguity.

Fig. 14.24. Some typical ZNCC met-
ric versus disparity curves. a Sin-
gle strong peak; b multiple peaks;
c weak peak; d broad peak

487

The problem cannot be cured but it can be detected. The simplest method is to con-
sider the similarity score returned by the istereo function

>> idisp(sim)

as shown in Fig. 14.27a and we see that the erroneous disparity values correspond to
low similarity scores. Disparity results where similarity is low can be discarded

>> ipixswitch(sim<0.7, 'yellow', d/90);

and this is shown in Fig. 14.27b where pixels with similarity s < 0.7 are displayed as
yellow. The distribution of maximum similarity scores

>> ihist(sim(isfi nite(sim)), 'normcdf');

is shown in Fig. 14.28. We see that only 5% of pixels have a similarity score less than 0.6,
and that around 80% of pixels have a similarity score greater than 0.9.

A simple but effective way to test for occlusion is to perform the matching in two
directions – left-right consistency checking. Starting with a pixel in the left-hand im-
age the strongest match in the right-image is found. Then the strongest match to that
pixel is found in the left-hand image. If this is where we started the match is consid-
ered valid. However if the corresponding point was occluded in the right image the
fi rst match will be a weak one to a different feature, and there is a high probability that
the second match will be to a different pixel in the left image.

From Fig. 14.26 it is clear that pixels on the left-side of the left-hand image may
not overlap at all with the right-hand image – point 1 for example is outside the fi eld
of view of the right-hand camera. This is the reason for the large number of incorrect
matches on the left-hand side of the disparity image in Fig. 14.22. It is common prac-
tice to discard the dmax left-most columns (90 in this case) of the disparity image.

14.3 · Stereo Vision

Fig. 14.25.
Picket fence effect. The template

will match well at a number of
different disparities. This prob-

lem occurs in any scene with re-
peating patterns

Fig. 14.26.
Occlusion in stereo vision. The
fi eld of view of the two camer-

as are shown as colored sectors.
Points 1 and 7 fall outside the

overlapping view area and are
seen by only one camera each.

Point 5 is occluded from the left
camera and point 3 is occluded
from the right camera. The or-

der of points seen by each cam-
era is given underneath it

488 Chapter 14 · Using Multiple Images

The fi nal problem that can arise is a similarity function with a very broad peak as
shown in Fig. 14.24d. The breadth makes it diffi cult to precisely estimate the maxima.
This generally occurs when the template region has very low texture for example cor-
responding to the sky, dark shadows, sheets of water, snow, ice or smooth man-made
objects. Simply put, in a region that is all grey, a grey template matches equally well
with any number of grey candidate regions. One approach to detect this is to look at
the variability of pixel values in the template using measures such as the difference
between the maximum and minimum value or the variance of the pixel values. If the
template has too little variance it is less likely to result in a strong peak. Measures of
peak sharpness can also be used to eliminate these cases and this is discussed in the
next section.

For the various problem cases just discussed disparity cannot be determined, but the
problem can be detected. This is important since it allows those pixels to be marked as
having no known range and this allows a robot to be prudent with respect to regions
whose 3-dimensional structure cannot be reliably determined.

The design of a stereo-vision system has three degrees of freedom. The fi rst is the
baseline distance between the cameras. As it increases the disparities become larger
making it possible to estimate depth to greater precision, but the occlusion problem
becomes worse. Second, the disparity search range needs to be set carefully. If the
maximum is too large the chance of spatial aliasing increases but if too small then

�
Fig. 14.27. Stereo template sim-
ilarity. a Similarity image where
brighter means higher similarity;
b disparity image with pixels hav-
ing low similarity score marked in
yellow. Red indicates Inf or NaN
values in the result where dispar-
ity could not be computed

Fig. 14.28.
Cumulative probability of ZNCC
scores. The probability of a score
less than 0.9 is 45%

489

points close to the camera will generate incorrect and weak matches. A large dispar-
ity range also increases the computation time. Third, template size involves a tradeoff
between computation time and quality of the disparity image. A small template size
can pick up fi ne depth structure but tends to give results that are much noisier since
a small template is more susceptible to ambiguous matches. A large template gives a
smoother disparity image but requires greater computation. It also increases the chance
that the template will contain pixels belonging to objects at different depths which is
referred to as the mixed pixel problem. This tends to cause poor quality matching at
the edges of objects, and the resulting disparity map appears blurred. One solution
is to use a nonparametric local transform such as the rank or census transform prior
to performing correlation. Since these rely on the ordering of intensity values not the
values themselves they give better performance at object boundaries.

An alternative way to look at the failure modes is to use MATLAB’s volume visual-
ization functions to create horizontal slices through the disparity space image

>> slice(DSI, [], [100 200 300 400 500], [])
>> shading interp; colorbar

which is shown in Fig. 14.29. These are slices at constant v-coordinate, effectively
horizontal cross sections of the scene. Within each of the ud-planes we see a bright
path (high similarity values) that represents disparity d(u). Note the signifi cant dis-
continuities in the path for the plane at v = 100 which correspond to sudden changes
in depth. The planes at v = 200, 300, 400 show that the path also fades away in places.
In these regions the maximum similarity is low, there is no strong match in the right-
hand image, and the most likely cause is occlusion.

14.3.3
l
Peak Refinement

The disparity at each pixel is an integer value d ∈ [dmin, dmax] at which the greatest
similarity was found. Figure 14.24a shows a single unambiguous strong peak and we
can use the peak and adjacent points to refi ne the estimate of the peak’s position.�
A parabola

 (14.15)

is defi ned by three points and is fi tted to the peak value and its two neighbors. For the
 ZNCC similarity measure, a maxima corresponds to the best match which means that
the parabola is inverted and A < 0. The maximum value of the fi tted parabola occurs

14.3 · Stereo Vision

Fig. 14.29.
The disparity space image is

a 3-dimensional image where
element D(u, v, d) is the simi-
larity between the support re-

gions centered at (Lu, Lv) in the
left image and (Lu − d, Lv) in

the right image

This two-dimensional peak refinement
is discussed in Appendix J.

490 Chapter 14 · Using Multiple Images

when its derivative equals zero, from which we can obtain a more precise estimate of
the position of the peak which is the disparity

The A coeffi cient will have a large magnitude for a sharp peak, and a simple thresh-
old can be used to reject broad peaks, as we will discuss in the next section.

Disparity peak refi nement is enabled with the 'interp' option

>> [di,sim,peak] = istereo(L, R, [40 90], 3, 'interp');
>> idisp(di)

and the resulting disparity image is shown in Fig. 14.30a. We see that it is much smooth-
er than the one shown previously in Fig. 14.22. The additional optional output argu-
ment peak is a structure

>> peak
peak =
 A: [555x638 double]
 B: [555x638 double]

that contains the per-pixel values of the parabola coeffi cients. The magnitude of the
A coeffi cient is shown as an image in Fig. 14.30b.

Fig. 14.30.
a Disparity image with peak re-
fi nement; b magnitude of the d2
coeffi cient for every pixel. High
values (bright) correspond to
sharp peaks and occur where
image texture is high. Broad
peaks (dark) occur where image
texture is low

491

14.3.4
l

Cleaning up and Reconstruction

The result of stereo matching, such as shown in Fig. 14.22 or 14.30a, have a number
of imperfections for the reasons we have just described. For robotic applications such
as path planning and obstacle avoidance it is important to know the 3-dimensional
structure of the world, but it is also critically important to know what we don’t know.
Where reliable depth information from stereo vision is missing a robot should be
prudent and treat it differently to free space. We use a number of simple measures to
mark elements of the disparity image as being invalid or unreliable.

We start by creating a matrix status the same size as d and initialized to one

>> status = ones(size(d));

The elements are set to different values if they correspond to specifi c failure conditions

>> [U,V] = imeshgrid(L);
>> status(isnan(d)) = 5; % search template off the edge
>> status(U<=90) = 2; % no overlap
>> status(sim<0.8) = 3; % weak match
>> status(peak.A>=-0.1) = 4; % broad peak

We can display this matrix as an image

>> idisp(status)
>> colormap(colorname({'lightgreen', 'cyan', 'blue', 'orange', 'red'}))

which is shown in Fig. 14.31. The colormap is chosen to display the status values as light
green for a good stereo match, cyan if the disparity search range extends beyond the
left edge of the right image, blue if the peak similarity is too small, orange if the peak
is too broad, and red for NaN values where the search template would fall off the edge
of the image. The good news is that there are a lot of light green pixels! In fact

>> sum(status(:) == 1) / prod(size(status)) * 100
ans =
 57.7223

nearly 60% of disparity values pass our battery of quality tests. The blue pixels, indi-
cating weak similarity, occur around the edges of rocks and are due to occlusion. The
orange pixels, indicating a broad peak, occur in areas that are fairly smooth, either
deep shadow between rocks or the nonrock background.

Earlier we created an interpolated disparity image di and now we will invalidate
the disparity values that we have determined to be unreliable

>> di(status>1) = NaN;

14.3 · Stereo Vision

Fig. 14.31.
Stereo matching status on a per

pixel basis

492 Chapter 14 · Using Multiple Images

Fig. 14.32.
Interpolated disparity image
with unreliable estimates indi-
cated in red

The special floating-point value NaN (for
not a number) has the useful property
that the result of any arithmetic opera-
tion involving NaN is always NaN. Many
MATLAB functions such as max or min
ignore NaN values in the input matrix,
and plotting and graphics functions do
not display this value, leaving a hole in
the graph or surface.

The division by 90 is to convert the float-
ing-point disparity values in the range
[40, 90] into valid greyscale values in the
range [0, 1].

by setting them to the value NaN.� We can display this with the unreliable pixels
marked in red by

>> ipixswitch(isnan(di), 'red', di/90);

which is shown in Fig. 14.32.� This is now in useful form for a robot – it contains dispar-
ity values interpolated to better than a pixel and all unreliable values are clearly marked.

The fi nal step is to convert the disparity values in pixels to world coordinates in
meters – a process known as 3D reconstruction. In the earlier discussion on sparse ste-
reo we determined the world point from the intersection of two rays in 3-dimensional
space. For a parallel axis stereo camera rig as shown in Fig. 14.19 the geometry is much
simpler as illustrated in Fig. 14.33. For the red and blue triangles we can write

where b is the baseline and the angles of the rays correspond to the horizontal image
coordinate iu, i = {L, R}

Substituting and eliminating X gives

which shows that depth is inversely proportional to disparity d = Lu − Ru and d > 0.
We can also recover the X- and Y-coordinates so the 3D point coordinate is

 (14.16)

A good stereo system can estimate disparity with an accuracy of 0.2 pixels.
Distant points have a small disparity and the error in the estimated 3D coordinate
will be significant. A rule of thumb is that stereo systems typically have a maxi-
mum range of 50b.

493

Fig. 14.33.
Stereo geometry for parallel

camera axes. X and Z are mea-
sured with respect to camera

one, b is the baseline

Fig. 14.34.
3-dimensional reconstruction for

parallel stereo cameras. Hotter
colors indicate parts of the surface

that are further from the camera

A process known as vectorizing . Using
matrix and vector operations instead
of for loops greatly increases the
speed of MATLAB code execution. See
http://www.mathworks.com/support/
tech-notes/1100/1109.html for details.

The images shown in Fig. 14.20, from the Middlebury dataset, were taken with
a very wide camera baseline. The left edge of the left-image and the right
edge of the right-image have no overlap and have been cropped. Cropping
N pixels from the left of the left-hand image only, reduces the disparity by N.
For this stereo pair the actual disparity must be increased by 274 to account
for the cropping.

The true disparity is

>> di = di + 274;

and we compute the X-, Y- and Z-coordinate of each pixel as separate matrices to ex-
ploit MATLAB’s effi cient matrix operations�

>> [U,V] = imeshgrid(L);
>> u0 = size(L,2)/2; v0 = size(L,1)/2;
>> b = 0.160;
>> X = b*(U-u0) ./ di; Y = b*(V-v0) ./ di; Z = 3740 * b ./ di;

which can be displayed as a surface
>> surf(Z)
>> shading interp; view(-150, 75)
>> set(gca,'ZDir', 'reverse'); set(gca,'XDir', 'reverse')
>> colormap(fl ipud(hot))

as shown in Fig. 14.34. This is somewhat unimpressive in print but by using the
mouse to rotate the image using the MATLAB fi gure toolbar 3D rotate option the

14.3 · Stereo Vision

494 Chapter 14 · Using Multiple Images

3-dimensionality becomes quite clear. The axis reversals are required to have z in-
crease from our viewpoint and to maintain a right-handed coordinate frame. There
are many holes in this surface which are the NaN values we inserted to indicate un-
reliable disparity values.

14.3.5
l
3D Texture Mapped Display

For human, rather than robot, consumption it would be nice to enhance the surface
representation so that it looks less ragged. We create a median fi ltered image

>> dimf = irank(di, 41, ones(9,9));

where each output pixel is the median value over a 9 × 9 window. This has patched
many of the smaller holes but has the undesirable side effect of blurring the underly-
ing disparity image. Instead we will keep the original interpolated disparity image and
insert the median fi ltered values only where a NaN exists

>> di = ipixswitch(isnan(di), dimf, di);

We perform the reconstruction again

>> X = b*(U-u0) ./ di; Y = b*(V-v0) ./ di; Z = 3740 * b ./ di;

and plotting this as a surface we see that it looks signifi cantly less ragged.
However we can do even better. We can drape the left-hand image over the 3-di-

mensional surface using a process called texture mapping. We reload the left-hand
image, this time in color

>> Lcolor = iread('rocks2-l.png');

and render the surface with the image texture mapped
>> surface(X, Y, Z, Lcolor, 'FaceColor', 'texturemap', ...
 'EdgeColor', 'none', 'CDataMapping', 'direct')
>> xyzlabel
>> set(gca,'ZDir', 'reverse'); set(gca,'XDir', 'reverse')

which creates the image shown in Fig. 14.35. Once again it is easier to get an impres-
sion of the 3-dimensionality by using the mouse to rotate the image using the MATLAB
fi gure toolbar 3D rotate option.

Fig. 14.35.
3-dimensional reconstruction
for parallel stereo cameras with
image texture mapped onto the
surface

495

Anaglyphs. The earliest developments occurred in France. In 1858 Joseph D’Almeida projected
3D magic lantern slide shows as red-blue anaglyphs and the audience wore red and blue goggles.
Around the same time Louis Du Hauron created the fi rst printed anaglyphs. Later, around 1890
William Friese-Green created the fi rst 3D anaglyphic motion pictures using a camera with two
lenses. Anaglyphic fi lms called plasticons or plastigrams were a craze in the 1920s.

Today high-resolution panoramic anaglyphs can be found on http://gigapan.com and ana-
glyphs of Mars can be found at http://mars.nasa.gov/mars3d.

Fig. 14.36.
Anaglyphs for stereo viewing.

a Anaglyph glasses shown with
red and blue lenses, b anaglyph

rendering of the rock scene from
Fig. 14.20 with left in red and

right in cyan

14.3.6
l

Anaglyphs

Human stereo perception of depth works because each eye views the scene from a dif-
ferent viewpoint. If we look at a photograph of a 3D scene we still get a perception of
depth, albeit reduced, because our brain uses many visual cues besides stereo to infer
depth. Since the invention of photography in the 19th century people have been fasci-

nated by 3D photographs and movies, and the current popularity of 3D movies
and availability of 3D television is further evidence of this.

The key in all 3D display technologies is to take the image from two cameras,
with a similar baseline to the human eyes (approximately 8 cm) and present those im-
ages again to the corresponding eyes. Old fashioned stereograms required a binocular
viewing device or could, with diffi culty, be viewed by squinting at the stereo pair and
crossing your eyes. More modern and convenient means of viewing stereo pairs are LCD
shutter (gaming) glasses or polarized glasses which allow full-color stereo movie view-
ing, or head mounted displays.

An old but inexpensive method of viewing and distributing stereo information is
through anaglyph images in which the left and right images are overlaid in different
colors. Typically red is used for the left eye and cyan (greeny blue) for the right eye but
many other color combinations are used. The red lens allows only the red part of the
anaglyph image through to the left eye, while the cyan lens allows only the cyan parts of
the image through to the right eye. The disadvantage is that only the scene intensity, not
its color, can be portrayed. The big advantage of anaglyphs is that they can be printed
on paper or imaged onto ordinary movie fi lm and viewed with simple and cheap glasses
such as those shown in Fig. 14.36a.

The rock pile stereo pair can be displayed as an anaglyph

>> anaglyph(L, R, 'rc')

which is shown in Fig. 14.36b. The argument 'rc' indicates that left and right imag-
es are encoded in red and cyan respectively. Other color options include: blue, green,
magenta and orange.

14.3 · Stereo Vision

496 Chapter 14 · Using Multiple Images

14.3.7
l
Image Rectification

The rock pile stereo pair of Fig. 14.20 has corresponding points on the same row in the
left- and right-hand images – they are an epipolar-aligned image pair. Stereo cameras,
such as shown in Fig. 14.19, are built with precision to ensure that the optical axes of
the cameras are parallel and that the u- and v-axes of the two sensor chips are parallel.
However there are limits to the precision of mechanical alignment and lens distortion
will introduce error. Typically one or both images are warped to correct for these er-
rors – a process known as rectifi cation.

We will illustrate rectifi cation using the courtyard stereo pair from Fig. 14.15

>> L = iread('walls-l.jpg', 'mono', 'double', 'reduce', 2);
>> R = iread('walls-r.jpg', 'mono', 'double', 'reduce', 2);

which we recall are far from being epipolar aligned. We fi rst fi nd the SURF fea-
tures

>> sL = isurf(L);
>> sR = isurf(R);

and determine the candidate matches

>> m = sL.match(sR, 'top', 1000);

then determine the epipolar relationship
>> F = m.ransac(@fmatrix,1e-4, 'verbose');
96 trials
309 outliers
0.000305205 fi nal residual

The rectifi cation step requires the fundamental matrix as well as the set of correspond-
ing points which is embedded in the FeatureMatch object m

>> [Lr,Rr] = irectify(F, m, L, R);

and returns rectifi ed versions of the two input images. We display these using stdisp

>> stdisp(Lr, Rr)

which is shown in Fig. 14.37. We see that corresponding points in the scene now have
the same vertical coordinate. The function irectify works by computing unique
homographies to warp the left and right images. As we have observed previously when
 warping images not all of the output pixels are mapped to the input images which re-
sults in undefi ned pixels which are displayed here as red.

Fig. 14.37.
Rectifi ed images of the court-
yard. Red pixels have no corress-
pondance in the other image

497

We can think of these images as having come from a virtual stereo camera with paral-
lel axes and aligned pixel rows, and they can now be used for dense stereo matching

>> d = istereo(Lr, Rr, [180 530], 7, 'interp');

and the result is shown in Fig. 14.38. The disparity range parameters were deter-
mined interactively using stdisp(Lr, Rr) to check the disparity at near and
far points in the rectifi ed image pair. The window half size of 7 was arrived at with
a little trial and error, this value corresponding to a 15× 15 window and produces a
reasonably smooth result, at the expense of computation. The noisy patches at the
bottom and top right are due to occlusion – world points in one image are not visible
in the other. Nevertheless this is quite an impressive result – using only two images
taken from a handheld camera we have been able to create a dense 3-dimensional
representation of the scene.

14.4
l
Bundle Adjustment

In Sect. 14.3.1 we used triangulation to estimate the 3D coordinates of a number of
landmark points in the world, but this was an approximation based on a guesstimate
of the relative pose between the cameras. To assess the quality of our solution we can
 “back project” the estimated 3D landmark points onto the image planes based on the
estimated camera poses� and the known camera model. The back-projection error
is the image-plane distance between the back-projected landmark and its observed
position on the image plane.

For the previous example the back projection is

>> p1 = cam.project(P);
>> p2 = cam.move(T).project(P);

for the fi rst and second camera respectively. The distances between the back projec-
tions and observations across both cameras is

>> e = colnorm([p1-m2.p1 p2-m2.p2]);

with statistics

>> mean(e)
ans =
 0.9942
>> max(e)
ans =
 6.6765

14.4 · Bundle Adjustment

Fig. 14.38.
Dense stereo disparity image

for the courtyard. The walls and
ground show a clear depth gra-

dient

In this case we only estimated the rela-
tive pose 1ξ2 but we can consider the first
camera pose as the reference coordinate
frame ξ1 = 0 and ξ2 = 1ξ2.

498 Chapter 14 · Using Multiple Images

which clearly indicates the approximate nature of our solution – each back-projected
point is in error by up to 7 pixels. Unfortunately we do not know whether the error
is in the estimated camera poses, the landmark coordinates or both. However we
do know that a good estimate is one where this total back-projection error is low
– ideally zero.

 Bundle adjustment is an optimization process that simultaneously adjusts the cam-
era poses and the landmark coordinates so as to minimize the total back-projection
error. It uses 2D measurements from a set of images of the same scene to recover
information related to the 3D geometry of the imaged scene as well as the locations
and optical characteristics of the cameras. This is also called Structure from Motion
(SfM) or Structure and Motion Estimation (SaM) – structure being the 3D landmarks
in the world and motion being a sequence of camera poses. It is also called visual
SLAM (VSLAM) since it is very similar to the pose-graph SLAM problem discussed in
Sect. 6.6. That was a planar problem solved in the three dimensions of SE(2) whereas
bundle adjustment involves camera poses in SE(3) and points in R3.

To formalize the problem consider a camera with known intrinsic parameters
at N different poses ξi ∈ SE(3), i = 1� N and a set of M landmark points Pj ∈ R3,
j = 1�M. At pose {i} the camera observes Pj and the measured image-plane projec-
tion is ipj

∈R2, but not all landmarks are necessarily visible from each camera pose.
The notation is shown in Fig. 14.39 for two cameras.

The estimated value of the image-plane projection of the jth landmark in the ith im-
age plane is

and the back-projection error is iÂj − ipj
#.

Using the Toolbox we start by creating a BundleAdjust object

>> ba = BundleAdjust(cam);

which is passed an intrinsic model of the camera which we assume is known. Next we
add estimates of the two camera poses

>> c1 = ba.add_camera(SE3(), 'fi xed');
>> c2 = ba.add_camera(T);

and indicate that the fi rst camera pose is known and that we do not wish to optimize
for it. The second camera’s estimated pose is that derived earlier from the essential
 matrix. The method returns an integer handle to the particular camera pose which
we will use below.

Fig. 14.39.
Bundle adjustment notation il-
lustrated with a simple problem
comprising only two cameras
and three world points. The es-
timated camera poses and point
positions are indicated, as are
the estimated and measured im-
age-plane coordinates. The re-
projection errors are shown as
dashed grey lines. The problem is
solved when the variables are ad-
justed so that the total reprojec-
tion error is as small as possible

499

Next we add the estimated landmarks

>> for j=1:length(m2)
 lm = ba.add_landmark(P(:,j));

 ba.add_projection(c1, lm, m2(j).p1);
 ba.add_projection(c2, lm, m2(j).p2);
 end

where lm is another integer handle, in this case to the particular landmark coordinate.
Finally, we add the measurements by specifying the camera, the landmark and its projec-
tion on the image plane. The problem is now fully defi ned and a summary can be displayed

>> ba
ba =
Bundle adjustment problem:
 2 cameras
 locked cameras: 1
 100 landmarks
 200 projections
 306 dimension linear problem
 landmarks per camera: min=100.0, max=100.0, avg=100.0
 cameras per landmark: min=2.0, max=2.0, avg=2.0

In general only a subset of landmarks are visible from any camera, and this visibility
information can be represented elegantly using a graph as shown in Fig. 14.40 where
each camera pose and each landmark coordinate is a node. Edges between camera
and landmark nodes represent observations, and the value of the edge is the observed
image-plane coordinate. Such a graph, a Toolbox PGraph object, is held inside the
BundleAdjust object and can be plotted by

>> ba.plot

and an example is shown in Fig. 14.41.
To solve this optimization problem we put all the variables we wish to adjust into

a single state vector. For bundle adjustment the state vector contains camera poses
and landmark coordinates

where the SE(3) camera pose is represented in a vector format ξi ∼ (t, r) ∈R6 com-
prising translation t ∈R3 and rotation r ∈R3; and Pj ∈R3.

Possible representations of rotation include Euler angles, roll-pitch-yaw angles,
 angle-axis or exponential coordinate representations. For bundle adjustment it is com-
mon to use the vector component of a unit-quaternion which is singularity free and
has only three parameters. The double cover property of unit-quaternions means that
any unit-quaternion can be written with a nonnegative scalar component. By defi nition

14.4 · Bundle Adjustment

Fig. 14.40.
A simple visibility graph show-

ing camera nodes (red) and land-
mark nodes (blue). Lines con-

necting nodes represent a view
of that node on that camera, and
the edge value is the observed
image-plane coordinate. The

landmarks here are viewed by 1,
2 or 3 cameras

500 Chapter 14 · Using Multiple Images

the unit-quaternion has a unit norm, so the scalar component can be easily recovered
s = 1̂g−gvgx

2g−gvgy
2g−gvz

2 given the vector component.
The number of unknowns in this system is 6N + 3M: 6 unknowns for each camera

pose and 3 unknowns for the position of each landmark point. However we have up
to 2NM equations due to the measured projections of the points on the image planes.
Typically the pose of one camera is assumed to be the reference coordinate frame, and
this reduces the number of unknowns to 6(N − 1) + 3M.

In the problem we are discussing N = 2, but one camera is locked, and M = 100
so we have 6 × (2 − 1) + 3 × 100 = 306 unknowns and 2 × 2 × 100 = 400 equations
– an overdetermined set of equations for which a solution should be possible. For our
problem we can extract the state vector

>> x = ba.getstate;
>> about x
x [double] : 1x312 (2.5 kB)

which includes the pose of the fi xed camera, although that will remain constant. The
pose of camera two is stored in the second block of 6 elements

>> x(7:12)
ans =
 0.3000 -0.0153 0.0558 0.0127 0.0014 -0.0057

as translation followed by rotation, and the fi rst landmark is stored in
>> x(13:15)
ans =
 1.2134 -0.2627 2.9563

Bundle adjustment is a minimization problem that fi nds the camera poses and land-
mark positions that minimize the reprojection error across all the edges

where Fk(·) > 0 is a nonnegative scalar cost associated with the graph edge k from cam-
era i to landmark j. The reprojection error of a landmark at Pj onto the camera at pose ξi is

Fig. 14.41.
Bundle adjustment problem
shown as an embedded graph.
Blue dots represent landmark
positions, camera icons repre-
sent camera pose, and grey lines
denote observations. Camera 1
is blue and camera 2 is red

501

and the scalar cost is the squared Euclidean reprojection error

Although written as a function of the entire state vector Fk (·) only depends on two
elements of that vector: ξi and Pj . The total error, the sum of the squared back-pro-
jection error for all edges, can be computed for any value of the state vector and for
the initial conditions is

>> ba.errors(x)
ans =
 553.2853

The bundle adjustment task is to adjust the camera and landmark parameters to
reduce this value. We have framed bundle adjustment as a sparse nonlinear least
squares problem and this can be solved numerically if we have a suffi ciently good
initial estimate of x.

The fi rst step in solving this class of problem is to linearize it. The reprojection er-
ror fk(x) can be linearized about the current state x0 of the system

where f0,k = fk(x0) and

is a Jacobian matrix which depends only on the camera pose ξi and the landmark po-
sition Pj so is therefore mostly zeros

The structure of the Jacobian matrix Ai is specifi c to the chosen representation of
camera pose. The Jacobians, particularly Ai, are quite complex to derive but can be
automatically generated using the MATLAB Symbolic Math Toolbox™ and the script
vision/symbolic/bundleAdjust. Code derived from this is implemented by
the derivs method of the CentralCamera class

[p,A,B] = cam.derivs(t, r, P);

which returns the image-plane projection and the two Jacobians in a single call, and
where t and r are the camera pose and P is the landmark coordinate.� Linearization
and Jacobians are discussed in Appendix E, and solution of sparse nonlinear equa-
tions in Appendix F.

Now that everything is in place we can solve our bundle adjustment problem
>> baf = ba.optimize(x);
Initial cost 553.285
 total cost 33.5955 (solved in 0.15 sec)
 total cost 33.5459 (solved in 0.051 sec)
 total cost 33.5459 (solved in 0.04 sec)
 total cost 33.5459 (solved in 0.038 sec)
 total cost 33.5459 (solved in 0.041 sec)
 total cost 33.5459 (solved in 0.037 sec)
 * 6 iterations in 0.5 seconds
 * 0.41 pixels RMS error

and the displayed text shows how the total cost (squared reprojection error) decreases
at each iteration, reducing by over an order of magnitude. The fi nal result has an RMS
reprojection error better than half a pixel for each landmark which is impressive given

14.4 · Bundle Adjustment

Translating the camera by d and translat-
ing the point by −d have an equivalent
effect on the image. Therefore Bj is the
negative of the first three columns of Aj.

502 Chapter 14 · Using Multiple Images

that the images were captured with a phone camera and we have completely ignored
lens distortion.

The result is another BundleAdjust object but with updated camera poses and
landmark positions. We can compare the initial and fi nal pose of camera 2

>> ba.getcamera(2).print('camera')
t = (0.3, -0.0153, 0.0558), RPY/yxz = (-0.657, 1.46, 0.156) deg
>> baf.getcamera(2).print('camera')
t = (0.303, -0.0158, 0.0649), RPY/yxz = (-0.685, 1.38, 0.128) deg

and the fi nal coordinate of landmark 5 is
>> baf.getlandmark(5)'
ans =
 -0.3861 -0.0968 2.0744

We can also plot the result graphically

>> ba.plot()

and this is shown in Fig. 14.41. While the overall RMS error is low we can look at the
fi nal reprojection error in more detail

>> e = sqrt(baf.getresidual());
>> about e
e [double] : 2x100 (1.6 kB)

where element (i, j) is the reprojection error in pixels for camera i and landmark j.
The median error is

>> median(e(:))
ans =
 0.2540

around a quarter of a pixel, but there are a handful of landmarks with a fi nal reprojec-
tion error in camera one that are greater than 1 pixel

>> fi nd(e(1,:) > 1)
ans =
 90 97

and the worst error for camera 1

>> [mx,k] = max(e(1,:))
mx =
 1.2129
k =
 90

of 1.2 pixels occurs for landmark 90.
Bundle adjustment fi nds the optimal relative pose and positions – not absolute. For

example if all the cameras and landmarks moved 1 m in the x-direction the total re-
projection error would be the same. To remedy this we can fi x or anchor one or more
cameras or landmarks – in this example we fi xed the fi rst camera. The values of the
fi xed poses and positions are kept in the state vector but they are not updated during
the iterations – their Jacobians do not need to be computed and the Hessian matrix
used to solve the update at each iteration is smaller since the rows and columns cor-
responding to those fi xed parameters can be deleted.

The fundamental issue of scale ambiguity with monocular cameras has been men-
tioned a number of times and it applies here as well. A scale model of the same world
with a similarly scaled camera translation is indistinguishable from the real thing.
More formally, if the whole problem was scaled so that P ′j = λ P j , [ξ′i]t = λ[ξi]t and
λ ≠ 0 the total reprojection error would be the same. The solution we obtained above
has an arbitrary scale or value of λ – changing the initial condition for the camera
poses or landmark coordinates will lead to a solution with a different scale. We can
remedy this by anchoring the pose of at least two cameras, one camera and one land-
mark, or two landmarks.

503

The bundle adjustment technique , but not this implementation, allows for con-
straints between cameras. For example, a multi-camera rig moving through space
would use constraints to ensure the fi xed relative pose of the cameras at each time
step. Odometry from wheels or inertial sensing could be used to constrain the distance
between camera coordinate frames to enforce the correct scale, or orientation from an
IMU could be used to constrain the camera attitude. In the underlying graph repre-
sentation of the problem as shown in Fig. 14.40 this would involve adding additional
edges between the camera nodes. Constraints could also be added between landmarks
that had a known relative position, for example the corners of a window – this would
involve adding additional edges between the relevant landmark nodes.

The particular problem we studied is unusual in that every camera views every
landmark. In a more common situation the camera might be moving in a very large
environment so any one camera will only see a small subset of landmarks. In a real-
time system a limited bundle adjustment might be performed with respect to occa-
sional frames known as key frames , and a bundle adjustment over all frames, or all
keyframes, performed at a low rate in the background.

In this example we have assumed the camera intrinsic parameters are known and
constant. Theoretically bundle adjustment can solve for intrinsic as well as extrin-
sic parameters. We simply add additional parameters for each camera in the state
vector and adjust the Jacobian A accordingly. However given the coupling between
intrinsic and extrinsic parameters� this may lead to poor performance. If we chose
to estimate the elements of the camera matrix C directly then the state vector would
contain 11� rather than 6 elements for each camera. However if Ci and Pj are solu-
tions so to is CiQ

−1 and Qnj for any nonsingular matrix Q ∈R4×4. Fortunately, pro-
jection matrices for realistic cameras have well defi ned structure and properties as
described on page 327, and these provide constraints that allow us to estimate Q.
Estimating an arbitrary Ci is referred to as a projective reconstruction . This can be
upgraded to an affi ne reconstruction (using an affi ne camera model) or a metric re-
construction (using a perspective camera model) by suitable choice of Q.

14.5
l
Point Clouds

 Stereo vision results in a set of 3-dimensional world points Pi which are often referred
to as a point cloud. For a robotics application we need to extract some concise mean-
ing from the thousands or millions of points.

14.5.1
l
Fitting a Plane

Planes are common in our built world and for robotics useful planes include the
ground (for wheeled mobile robot driving or UAV landing) and walls. Given a set of
3-dimensional coordinates, a point cloud, a simple and effective approach for fi nding
the plane of best fi t is to fi t the data to an ellipsoid. The ellipsoid will have one very
small radius in the direction normal to the plane – that is, it will be an elliptical plate.
The inertia matrix of the points can be calculated by

 (14.17)

where x = Pi −
−
P are the coordinates of the points with respect to the centroid of the

points −P = 1/N Σ
N

i=1
Pi. The ellipsoid is centered at the centroid of the point cloud. The radii

of the ellipsoid are the eigenvalues of J and the eigenvector corresponding to the small-
est eigenvalue is the direction of the minimum radius which is the normal to the plane.

14.5 · Point Clouds

Changes in focal length and z-axis trans-
lation have similar image-plane effects as
do change in principal point and camera
x- and y-axis translation.

The camera matrix has an arbitrary scale
factor.

504 Chapter 14 · Using Multiple Images

To illustrate this we create a 10 × 10 grid of points in a plane
>> T = SE3(1,2,3) * SE3.rpy(0.3, 0.4, 0.5);
>> P = mkgrid(10, 1, 'pose', T);
>> P = P + 0.02*randn(size(P));

with an arbitrary orientation represented by the homogeneous transformation T, and
to which some Gaussian noise has been added with σ = 0.02 m.

The mean of the point cloud is
>> x0 = mean(P')
ans =
 0.9967 2.0009 3.0013

which we subtract from all the data points

>> P = bsxfun(@minus, P, x0');

and the inertia Eq. 14.17 is simply a matrix multiplication

>> J = P*P'
J =
 7.8769 0.3239 -4.2585
 0.3239 10.0076 0.6153
 -4.2585 0.6153 2.4271

The eigenvalues are
>> [x,lambda] = eig(J);
>> diag(lambda)'
ans =
 0.0478 10.0553 10.2085

and we see two large eigenvalues corresponding to the spread of points within the
plane, and one eigenvalue which is the thickness of the plane. The eigenvector corre-
sponding to the fi rst, and smallest, eigenvalue is

>> n = x(:,1)'
n =
 0.4789 -0.0696 0.8751

which is the estimated normal to the plane.
The true direction of the plane’s normal is given by the third column� of the rota-

tion matrix
>> T. SO3.a'

ans =
 0.4682 -0.0810 0.8799

and we see that it is very close to the estimated normal.
The equation of a plane is the set of points x such that

 (14.18)

where n is the normal and x0 is the centroid.
Outlier data points are problematic with this type of estimator since they signifi -

cantly bias the solution. A number of approaches are commonly used but a simple
one is to modify Eq. 14.17 to include a weight

which is inversely related to the distance of xi from the plane and solve iteratively.
Initially all weights wi = 1, and on subsequent iterations the weights� are set accord-
ing to the distance of Pi from the plane estimated at the previous step.

Alternatively we could apply RANSAC by taking samples of three points to solve
for Eq. 14.18. Section C.1.4 has more details about ellipses.

Since the points lie in the frame’s xy-plane,
the normal is the frame’s z-axis.

Commonly a Cauchy-Lorentz function
w = β 2 / (d 2 + β 2) is used where d is
the distance of the point from the plane
and β is the half-width. The function is
smooth for d = [0, inf) and has a value
of ½ when d = β .

505

14.5.2
l

Matching Two Sets of Points

Consider a model of some object represented by a set of points in 2- or 3-dimensions
with respect to the world frame. Now consider an example of that object with a differ-
ent pose and we observe a set of 2- or 3-dimensional points on the object. The task is
to determine the relative pose ξ that will transform the model points to the observed
data points by matching the two sets of points.�

More formally, given two sets of point coordinate vectors: the model Mi ∈ Rn,
i ∈ [1, NM] and some noisy observed data Dj ∈Rn, j ∈ [1, ND] determine the rigid-
body motion from the data coordinate frame to the model frame

At fi rst glance this looks like a problem where we need to establish correspon-
dence between the points in the two sets but we will introduce an alternative approach
called iterated closest point or ICP. For each data point Dj, the corresponding model
point Mi is assumed to be the closest one, that is Mi which minimizes �Mi − Dj�.
Correspondence is not unique and quite commonly several points in one set can be
associated with a single point in the other set, and consequently some points will be
unpaired. Often the sensor returns only a subset of points in the model, for instance a
laser scanner can see the front but not the back of an object. This approach to corre-
spondence is far from perfect but it is surprisingly good in practice and improves the
alignment of the point clouds so that in the next iteration the computed correspon-
dences will be a little more accurate.

In robotics the problem is often considered as comprising a model M of a 3-di-
mensional object which we want to fi t to the observed sensor data D. To illustrate we
will load a version of the famous Stanford bunny�

>> load bunny
>> about bunny
bunny [double] : 3x453 (10.9 kB)

which is a cloud of 453 3-dimensional points and this will be our model

>> M = bunny;

We simulate a sensor that is observing the model with respect to a different coordinate
frame by making a copy of the model and applying a transformation

>> T_unknown = SE3(0.2, 0.2, 0.1) * SE3.rpy(0.2, 0.3, 0.4);
>> D = T_unknown * M;

The fi rst step is to compute a translation that makes the centroids of the two point
clouds coincident�

from which we compute a displacement

Next we compute correspondence. For each data point Dj we fi nd the closest model
point Mi, and for this we use the Toolbox function closest

>> corresp = closest(D, M);

The dual problem is that the camera has
moved, not the object. The same tech-
nique can be applied to determine the
camera motion.

This model is well known in the comput-
er graphics community. It was created
by Greg Turk and Marc Levoy in 1994 at
Stanford University using a Cyberware
3030 MS scanner and a ceramic rab-
bit figurine. The original scan has over
30 000 points, here we use a low-reso-
lution version.

We consider the general case where the
two points clouds have different num-
bers of points, that is, ND ≠ NM.

14.5 · Point Clouds

506 Chapter 14 · Using Multiple Images

where i=corresp(j) is the column of M that corresponds to column j of D. The
next step is to compute the 3 × 3 moment matrix

which encodes the rotation between the two point sets.� The singular value decomposition is

from which the rotation matrix is determined� to be

The estimated relative pose between the two point clouds is ξ∆ ∼ (R, t) and the model
points are transformed so that they are closer to the data points

and the process repeated until it converges. The correspondences used are unlikely
to have all been correct and therefore the estimate of the relative orientation between
the sets is only an approximation.

The Toolbox provides an implementation of ICP (Fig. 14.42)

>> [T,d] = icp(M, D, 'plot');

which returns the pose DξM

>> trprint(T, 'rpy', 'radian')
t = (0.2, 0.2, 0.1), RPY/zyx = (0.2, 0.3, 0.4) rad

which is exactly the “unknown” relative pose of the data point cloud that we chose
above. The residual

>> d
d =
 1.7619e-15

is the root mean square of the errors between the transformed model points and the data.
The option 'plot' shows the model and data points at each step as well as the closest-
point correspondences. ICP is a popular algorithm because it is both fast and robust.

We can demonstrate the robustness of ICP by simulating some realistic sensor er-
rors. Firstly we will randomly remove forty points from the data

>> D(:,randi(numcols(D), 40,1)) = [];

This is the sum of a number of rank 1
matrices.

See Sect. F.1.1.

Fig. 14.42. Iterated closest point
(ICP) matching of two point clouds:
model (red) and data (blue) a be-
fore registration, b after registra-
tion; observed data points have
been transformed to the model co-
ordinate frame using the inverse
of the identifi ed transformation
(Stanford bunny model courtesy
Stanford Graphics Laboratory)

507

which are points in the model not observed by the sensor. Then we will add twenty
spurious points that are not part of the model

>> D = [D 0.1*rand(3,20)+0.1];

and fi nally we will add Gaussian noise with σ = 0.01 to the data

>> D = D + 0.01*randn(size(D));

Now we fi t this imperfect sensor data to the model

>> [T,d] = icp(M, D, 'plot', 'distthresh', 3);

using an additional option to eliminate incorrect closest-point correspondences. The
correspondences are established as described above and the median of the distances
between the corresponding points is computed. In this case the correspondence is not
made if the distance between the points is more than 3 times the median distance. The
estimated pose DξM is now

>> trprint(T, 'rpy', 'radian')
t = (0.186, 0.194, 0.108), RPY/zyx = (0.125, 0.287, 0.298) rad

which is still close to the value computed for the ideal case but the residual
>> d
d =
 0.2114

is higher since an exact fi t between the model and noise corrupted data is no longer
possible.� ICP is popular, fast and robust for modest sized point clouds but the cor-
respondence determination is an O(N 2) problem which leads to computational bot-
tlenecks for very large data sets.�

14.6
l
Structured Light

An old, yet simple and effective, method of estimating the 3D structure of a scene is struc-
tured light. It is conceptually similar to stereo vision but we replace the left camera with a
projector that emits a vertical plane of light as shown in Fig. 14.43a.� This is equivalent,
in a stereo system, to a left-hand image that is a vertical line. The image of the line pro-
jected onto the surface viewed from the right-hand camera will be a distorted version of
the line, as shown in Fig. 14.43b. The disparity between the virtual left-hand image and
the actual right-hand image is a function of the depth of points along the line.

We would expect the residual to be ap-
proximately equal to N̂σ where N is
the number of corresponding points
and σ is the standard deviation of the
additive noise.

For large-scale problems the data would
be kept in a kd-tree which reduces the
time required to find the closest point.

Laser-based line projectors, so called
“laser stripe”' or “line laser”', are avail-
able for just a few dollars. They comprise
a low-power solid-state laser and a cylin-
drical lens or diffractive optical element.

Fig. 14.43. a Geometry of struc-
tured light showing a light projec-
tor on the left and a camera on the
right; four corresponding points
are marked with dots on the left
and right images and the scene;
b a real structured light scenario
showing the light stripe falling on
a simple 3D scene. The superim-
posed dashed line represents the
stripe position for a plane at infi nity.
Disparity, left shift of the project-
ed line relative to the dashed line,
is inversely proportional to depth

14.6 · Structured Light

508 Chapter 14 · Using Multiple Images

Finding the light stripe on the scene is a relatively simple vision problem. In each
image row we search for the pixel corresponding to the projected stripe based on in-
tensity or color. If the camera coordinate frames are parallel then depth is computed
by Eq. 14.16.

To achieve depth estimates over the whole scene we need to move the light plane
horizontally across the scene and there are many ways to achieve this: mechanically
rotating the laser stripe projector, using a moving mirror to defl ect the stripe or us-
ing a data projector and software to create the stripe image. However sweeping the
light plane across the scene is slow and fundamentally limited by the rate at which
we can acquire successive images of the scene. One way to speed up the process is
to project multiple lines on the scene but then we have to solve the correspondence
 problem which is not simple if parts of some lines are occluded. Many solutions have
been proposed but generally involve coding the lines in some way – using different
colors or using a sequence of binary or grey-coded line patterns which can match 2N
lines in just N frames.

A related approach is to project a known but random pattern of dots onto the scene
as shown in Fig. 14.44a. Each dot can be identifi ed by the unique pattern of dots in
its surrounding window. The original Kinect sensor� uses this approach: its left-most
lens� projects an infra-red dot pattern using a laser with a diffractive optical element
which is viewed, see Fig. 14.44a, by an infra-red sensitive camera behind the right-most
lens from which the depth image shown in Fig. 14.44c is computed. The shape of the
dots also varies with distance, due to imperfect focus, and this provides additional cues
about the distance of a point. The middle lens is a regular color camera which provides

The Kinect for Xbox 360 and Kinect for
Windows is now known as the Kinect 1,
as well as sensors such as PrimeSense
Carmine and Asus Xtion . The newer Kinect
for Xbox One , or Kinect 2, uses per pixel
 time-of-flight measurement.

Looking at the front of the device.

Fig. 14.44. 3D imaging with the
Kinect 360 sensor . a Random dot
 pattern as seen by the Kinect’s in-
fra-red camera; b original scene
captured with the Kinect’s color
camera; c computed depth im-
age. Red pixels indicate NaN values
where depth could not be comput-
ed due to occlusion or the maxi-
mum range being exceeded, as for
example through the window on
the left side of the scene (images
courtesy William Chamberlain)

509

the view shown in Fig. 14.44b. This is an example of an RGBD camera, returning an
RGB color values as well as depth (D) at every pixel.

Structured light approaches work well for ranges of a few meters indoors, for tex-
tureless surfaces, and they also work in the dark. However outdoors the projected
pattern is overwhelmed by ambient illumination from the sun.

Some stereo systems, such as the Intel RealSense R200 , also employ a dot pattern pro-
jector, sometimes known as a speckle projector . This provides artifi cial texture which
helps the stereo vision system when it is looking at textureless surfaces where matching
is frequently weak and ambiguous as discussed in Sect. 14.3.2.1. Such a sensor has the
advantage of working on textureless surfaces which are common indoors where the sun
is not a problem, and outdoors using pure stereo where scene texture is usually rich.

14.7
l
Applications

14.7.1
l
Perspective Correction

Consider the image

>> im = iread('notre-dame.jpg', 'double');
>> idisp(im)

shown in Fig. 14.45. The shape of the building is signifi cantly distorted because the
camera’s optical axis was not normal to the plane of the building and we see evidence
of perspective foreshortening or keystone distortion. We manually pick four points,
clockwise from the bottom left, that are the corners of a large rectangle on the planar
face of the building

>> p1 = ginput(4)'
ans =
 44.1364 94.0065 537.8506 611.8247
 377.0654 152.7850 163.4019 366.4486

which has one column per point that contains the u- and v-coordinate. We mark these
on the image of the cathedral and overlay a translucent blue keystone shape

>> plot_poly(p1, 'wo', 'fi ll', 'b', 'alpha', 0.2);

We use the extrema of these points to defi ne the vertices of a rectangle in the image

>> mn = min(p1');
>> mx = max(p1');
>> p2 = [mn(1) mx(2); mn(1) mn(2); mx(1) mn(2); mx(1) mx(2)]';

Fig. 14.45.
Photograph taken from the

ground shows the effect of fore-
shortening which gives the

building a trapezoidal appear-
ance (also known as keystone

distortion). Four points on the
approximately planar face of the

building have been manually
picked as indicated by the white
�-markers (Notre Dame de Paris)

14.7 · Applications

510 Chapter 14 · Using Multiple Images

which we overlay on the image in red

>> plot_poly(p2, 'k', 'fi ll', 'r', 'alpha', 0.2)

The sets of points p1 and p2 are projections of world points that lie approximately
in a plane so we can compute an homography

>> H = homography(p1, p2)
H =
 1.4003 0.3827 -136.5900
 -0.0785 1.8049 -83.1054
 -0.0003 0.0016 1.0000

that will transform the vertices of the blue trapezoid to the vertices of the red rectangle.�

That is, the homography maps image coordinates from the distorted keystone shape
to an undistorted rectangular shape.

We can apply this homography to the coordinate of every pixel in an output im-
age in order to warp the input image. We use the Toolbox generalized image warp-
ing function

>> homwarp(H, im, 'full')

and the result shown in Fig. 14.46 is a synthetic fronto-parallel view. This is equivalent
to the view that would be seen by a camera high in the air with its optical axis normal to
the face of the cathedral. However points that are not in the plane, such as the left-hand
side of the right bell tower have been distorted. The black pixels in the output image are
due to the corresponding pixel coordinates not being present in the input image. Note
that with no output argument specifi ed the warped image is displayed using idisp.

In addition to creating this synthetic view we can decompose the homography to recover
the camera motion from the actual to the virtual viewpoint and also the surface normal of
the cathedral. As we saw in Sect. 14.2.4 we need to determine the camera calibration ma-
trix so that we can convert the projective homography into a Euclidean homography. We
obtain the focal length from the metadata in the EXIF-format fi le that holds the image

>> [~,md] = iread('notre-dame.jpg', 'double');
>> f = md.DigitalCamera.FocalLength
f =
 7.4000

An homography can also be computed
from four lines in the plane, but this is
not supported by the Toolbox.

Fig. 14.46.
A fronto-parallel view synthe-
sized from Fig. 14.45. The image
has been transformed so that the
marked points become the cor-
ners of a rectangle in the image

511

which is in units of millimeters, and the sensor is known to be 7.18 × 5.32 mm. We
create a calibrated camera

>> cam = CentralCamera('image', im, 'focal', f/1000, ...
 'sensor', [7.18e-3,5.32e-3])
name: image [central-perspective]
 focal length: 0.0074
 pixel size: (1.122e-05, 1.249e-05)
 principal pt: (320, 213)
 number pixels: 640 x 426
 pose: t = (0, 0, 0), RPY/yxz = (0, 0, 0) deg

Now we use the camera model to compute and decompose the Euclidean homography

>> sol = cam.invH(H, 'verbose');
solution 1
 T = 0.99958 -0.01394 0.02526 -0.07271
 0.01431 0.99979 -0.01453 -0.00041
 -0.02505 0.01488 0.99958 0.68149
 0.00000 0.00000 0.00000 1.00000
 n = 0.21602 -0.95261 0.21420
solution 2
 T = 0.98872 0.10353 -0.10820 0.10448
 -0.01647 0.79331 0.60859 -0.57151
 0.14885 -0.59994 0.78607 0.36357
 0.00000 0.00000 0.00000 1.00000
 n = -0.18131 0.32802 0.92711

which returns a structure array of two possible solutions for 1ξ2. The coordinate frames
for this example are sketched in Fig. 14.47 and shows the actual and virtual camera
poses. In this case the second solution is the correct one since it represents consider-
able rotation about the x-axis. The camera translation vector, which is not to scale but
has the correct sign,� is dominantly in the negative y- and positive z-direction with
respect to the frame {1}. The rotation in YXZ-angle form

>> tr2rpy(sol(2).T, 'deg', 'camera')
ans =
 -1.1893 -37.4876 -7.8375

indicates that the camera needs to be pitched downward (pitch is rotation about the
camera’s x-axis) by 37 degrees to achieve the attitude of the virtual camera. The nor-
mal to the frontal plane of the church n is defi ned with respect to {1} and is essentially
in the camera z-direction as expected.

Fig. 14.47.
Notre-Dame example show-

ing the two camera coordinate
frames. The blue frame {1} is

that of the camera that took the
image, and the red frame {2} is
the viewpoint for the synthetic

fronto-parallel view

See Malis and Vargas (2007).

14.7 · Applications

512 Chapter 14 · Using Multiple Images

14.7.2
l

Mosaicing [examples/mosaic]

 Mosaicing or image stitching is the process of creating a large-scale composite image
from a number of overlapping images. It is commonly applied to drone and satellite
images to create a seemingly continuous single picture of the Earth’s surface. It can
also be applied to images of the ocean fl oor captured from downward looking cameras
on an underwater robot. The panorama generation software supplied with, or built
into, digital cameras is another example of mosaicing.

The input to the mosaicing process is a sequence of overlapping images.� It is not
necessary to know the camera calibration parameters or the pose of the camera where
the images were taken – the camera can rotate arbitrarily between images and the scale
can change. However for the approach that we will use the scene is assumed to be planar
which is reasonable for high-altitude photography where the vertical relief� is small.

We will illustrate our discussion with a real example using the pair of images

>> im1 = iread('mosaic/aerial2-1.png', 'double', 'grey');
>> im2 = iread('mosaic/aerial2-2.png', 'double', 'grey');

which are each 1 280 × 1 024. We create an empty composite image that is 2 000 × 2 000

>> composite = zeros(2000,2000);

that will hold the mosaic. The essentials of the mosaicing process are shown in Fig. 14.48.
The fi rst image is easy and we simply paste it into the top left corner

>> composite = ipaste(composite, im1, [1 1]);

of the composite image as shown in red in Fig. 14.48. The next image, shown in blue,
is more complex and needs to be rotated, scaled and translated so that it correctly
overlays the red image.

For this problem we assume that the scene is planar. This means that we can use an
homography to relate the various camera views. The fi rst step is to identify common
feature points which are known as tie points, and we use now familiar tools

>> f1 = isurf(im1)
>> f2 = isurf(im2)
>> m = f1.match(f2);

and then RANSAC to estimate the homography

>> [H,in] = m.ransac(@homography, 0.2)

which maps 1p to 2p. Now we wish to map 2p to its corresponding coordinate in the
fi rst image

As a rule of thumb images should over-
lap by 60% of area in the forward direc-
tion and 30% sideways.

The ratio of the height of points above
the plane to the distance of the camera
from the plane.

Fig. 14.48.
The fi rst image in the sequence is
shown as red, the second as blue.
The second image is warped into
the image tile and then blended
into the composite image

513

We do this for every pixel in the new image by warping

>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', 0);

As shown in Fig. 14.48 the warped blue image falls outside the bounds of the original
blue image and the option 'full' specifi es that the returned image is the minimum
containing rectangle� of the warped image. This image is referred to as a tile and shown
with a dashed black line. The vector t is returned by homwarp and gives the offset
of the tile’s coordinate frame with respect to the original image. In general not every
pixel in the tile has a corresponding point in the input image and those pixels are set
to zero, as specifi ed by the fi fth argument.�

Now the tile has to be blended into the composite mosaic image

>> composite = ipaste(composite, tile, t, 'add');

and the result is shown in Fig. 14.49. We can clearly see several images overlaid with
good alignment. The nonmapped pixels in the warped image are set to zero so adding
them causes no change to the existing pixel values in the composite image.

Simply adding the tile into the composite image means that overlapping pixels are
necessarily brighter and a number of different strategies can be used to remedy this.
We could instead set pixels in the composite image from the tile only if the composite
image pixels have not yet been set. Conversely we could always set pixels in the com-
posite image from the nonzero pixels in the tile. Alternatively we set the composite
image pixels to the mean of the tile and the composite image. This requires that we
tag the tile pixels that are not mapped

>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', NaN);

and then blend using the 'mean' option�

>> composite = ipaste(composite, tile, t, 'mean');

If the images were taken with the same exposure then the edges of the tiles would not
be visible. If the exposures were different the two sets of overlapping pixels have to be
analyzed to determine the average intensity offset and scale factor which can be used
to correct the tile before blending – a process known as tone matching.

The bounding box of the tile is com-
puted by applying the homography to
the image corners A = (1, 1), B = (W, 1),
C = (W, H) and D = (1, H), where W and
H are the width and height respectively,
and finding the bounds in the u- and
v-directions.

The default is NaN.

Which ignores any pixels with the val-
ue NaN.

Fig. 14.49.
Example image mosaic. At the

bottom of the frame we can clear-
ly see three overlapping views of
the airport runway which shows

good alignment between the
frames

14.7 · Applications

514 Chapter 14 · Using Multiple Images

Finally, we need to consider the effect of points in the image that are not in the
ground plane such as those on a tall building. An image taken from directly overhead
will show just the roof of the building, but an image taken from further away will be
an oblique view that shows the side of the building. In a mosaic we want to create the
illusion that we are directly above every point in the image so we should not see the
sides of any building. This type of image is known as an orthophoto and unlike a per-
spective view, where rays converge on the camera’s focal point, the rays are all paral-
lel which implies a viewpoint at infi nity.� At every pixel in the composite image we
can choose a pixel from any of the overlapping tiles. To best approximate an ortho-
photo we should choose the pixel that is closest to overhead, that is, prior to warping
the pixel was closest to the principal point.

In photogrammetry this type of mosaic is referred to as an uncontrolled digital mo-
saic since it does not use explicit control points – manually identifi ed corresponding
features in the images. The full code is given by mosaic in the examples directory.
The principles illustrated here can also be applied to the problem of image stabiliza-
tion. The homography is used to map features in the new image to the location they
had in the previous image.

14.7.3
l
Image Matching and Retrieval [examples/retrieval]

Given a set of images {Ij, j = 1�N} and a new image I′ the image matching problem is
to determine j such that I′ and Ij are most similar. This is a diffi cult problem when we
consider the effect of changes in viewpoint and exposure. Pixel-level similarity mea-
sures such as SSD or ZNCC that we used previously are not suitable for this problem
since quite small changes in viewpoint will result in almost zero similarity.

Image matching is useful to a robot to determine if it has visited a particular place
before, or seen the same object before. If those previous images have some associated
semantic data such as the name of an object or the name of a place then by inference
that semantic data applies to the new image. For example if a new image matches an
existing image that has the semantic tag “lobby” then it implies the robot is seeing the
same scene and is therefore in or close to, the lobby.

The particular technique that we will introduce is commonly referred to as “bag
of words” and has been used successfully in a number of robotic applications. It
builds on techniques we have previously encountered such as SURF point features
and k-means clustering.

We start by loading a set of twenty images

>> images = iread('campus/*.jpg', 'mono');

as a 426 × 640 × 20 array and for each of these we compute the SURF features

>> sf = isurf(images, 'thresh', 0);

which returns a MATLAB cell array whose elements are vectors of SURF features that
correspond to the input images. For example

>> sf{1}
ans =
1407 features (listing suppressed)
 Properties: theta scale u v strength descriptor image_id

is a vector of 1 407 SURF feature objects corresponding to the fi rst image in the se-
quence. The set of all SURF features across all images is

>> sf = [sf{:}]
sf =
28644 features (listing suppressed)
 Properties: theta scale u v strength descriptor image_id

which is a vector of nearly 30 000 SURF features objects.

Google Earth sometimes provides an im-
perfect orthophoto. When looking at cities
we might see oblique views of buildings.

515

Consider a particular SURF feature
>> sf(259)
ans =
(207.101,300.162), theta=2.31733, scale=2.1409,	
 strength=0.00114015, image_id=1, descrip= ..

and we see the SurfPointFeature properties discussed earlier such as centroid,
scale and orientation. The property image_id indicates that this feature was extract-
ed from the fi rst image in the original image sequence. We can display that image and
superimpose the feature

>> idisp(images(:,:,1))
>> sf(259).plot('g+')
>> sf(259).plot_scale('g', 'clock')

which is shown in Fig. 14.50a. The support region for this feature

>> sf(259).support(images)

is shown in Fig. 14.50b. The support region shows bricks and the edge of a window.
The support method uses the image_id property to determine which of the passed
images contains the feature.

The key insight behind the bag of words technique is that many of these features
will describe visually similar scene elements such as leaves, corners of windows, bricks,
chimneys and so on. If we consider each SURF feature descriptor as a point in a
64-dimensional space then similar descriptors will form clusters, and this is a k-means
problem. To fi nd 2 000 feature clusters

>> bag = BagOfWords(sf, 2000)

returns a BagOfWords object that contains the original features, the center of each
cluster, and various other information.� Each cluster is referred to as a visual word
and is described by a 64-element SURF descriptor. The set of all visual words, 2 000 in
this case, is a visual vocabulary. Just as a document comprises a set of words drawn
from some vocabulary, each image comprises a collection (or bag) of visual words
drawn from the visual vocabulary.

The clustering step assigns a visual word index to every SURF feature. For the par-
ticular feature shown above

>> w = bag.words(259)
w =
 1962

we find that the k-means clustering has assigned this image feature to word 1 962
in the vocabulary – it is an instance of visual word 1 962. That particular visual
word appears

Fig. 14.50. a Image 1 with visual
word SURF feature 380 indicated
by green circle showing scale and
a radial line showing orientation
direction; b the square support re-
gion has the same area as the circle
and the horizontal axis is parallel
to the orientation direction

The BagOfWords class uses the
MEX-file k-means implementation
from http://www.vlfeat.org/. This uses
its own random number generator
and to initialize it to a known state use
vl_twister('STATE', 0.0);.

14.7 · Applications

516 Chapter 14 · Using Multiple Images

>> bag.occurrence(w)
ans =
 29

times across the set of images, and it appears at least once in each of the images
>> bag.contains(w)
ans =
 1 5 7 8 9 11 12 15 16 18

We can display some of the different instances of word 1 962 by

>> bag.exemplars(w, images)

which is shown in Fig. 14.51. These exemplars actually look quite different, but we
need to keep in mind that we are viewing them as patterns of pixels whereas the simi-
larity is in terms of the descriptor.� The exemplars do however share some dominant
horizontal and vertical structure.

Visual words occur with quite different frequencies

>> [word,f] = bag.wordfreq() ;

where word is a vector containing all unique words and f are their corresponding
frequencies. We can display these in descending order of frequency

>> bar(sort(f, 'descend'))

which is shown in Fig. 14.52. Words that occur very frequently have less meaning or
power to discriminate between images. They are analogous to English words that are
considered stop words in text document retrieval.� The visual stop words are removed
from the bag of words

>> bag.remove_stop(50)
Removing 2863 features associated with 50 most frequent words
>> bag
bag =
BagOfWords: 25781 features from 20 images
 1950 words, 50 stop words

which leaves some 26 000 SURF features behind. This method performs relabelling so
that word labels are now in the interval 1 to 1 950.

�
Fig. 14.51. Exemplars of visual
word 1962 from the various imag-
es in which it appears. The annota-
tion is of the form word/image

The descriptor comprises responses of Haar
wavelet detectors computed over multiple
windows within the support region.

Search engines ignore words such as ‘a’,
‘and’, ‘the’ and so on.

Fig. 14.52.
Histogram of the number of oc-
currences of each word (sorted).
Note the small number of words
that occur very frequently

517

Our visual vocabulary comprises K visual words and in this case K = 1 950. We ap-
ply a technique from text document retrieval and describe each image by a word fre-
quency vector. This is a K-element vector

whose elements describes the frequency of the corresponding visual words in an image.

 (14.19)

where j is the visual word label, N is the total number of images in the database, Nj is the
number of images which contain word j, ni is the number of words in image i, and nji is
the number of times word j appears in image i. The inverse document frequency (idf)
term is a weighting that reduces the signifi cance of words that are common across all
images and which are thus less discriminatory. The weighted word frequency vectors
are a property of the BagOfWords object and can be accessed by

>> M = bag.wordvector;

which is a 1 950 × 20 matrix and each column is a 1 950-element vector that concisely
describes the corresponding image.�

The similarity between two images is the cosine of the angle between their corre-
sponding word-frequency vectors

and is implemented by the similarity method. A value of one indicates maximum sim-
ilarity. To compute the mutual similarity across this set of images (bags of words) is simply

>> S = bag.similarity(bag)

which returns a 20 × 20 similarity matrix where the elements S(i,j) indicate the
similarity between the ith column and jth columns of M, or between image i and im-
age j. This matrix is symmetric and is best interpreted visually

>> idisp(S, 'bar')

which is shown in Fig. 14.53. The bright diagonal indicates, as a useful cross check,
that image i is identical to image i. We also see that there is also some nonzero simi-
larity between images 12 and 18, among others.

Fig. 14.53.
Similarity matrix for 20 images

where light colors indicate strong
similarity. Element (i, j) indicates

the similarity between image i
and image j

This might seem like a very large vector
but it contains less than 1% of the num-
ber of elements of the original image.

14.7 · Applications

518 Chapter 14 · Using Multiple Images

Consider image 11 shown in Fig. 14.54a. Its similarity to other images is given by
row, or column, 11 of the similarity matrix

>> s = S(:,11);

which we sort into descending order of similarity

>> [z,k] = sort(s, 'descend');
>> [z k]
ans =
 1.0000 11.0000
 0.3722 13.0000
 0.3394 9.0000
 0.2610 12.0000
 0.2038 5.0000
 .
 .

where each row comprises the similarity measure and the corresponding image. Image 11
is identical to image 11 as expected, and in decreasing order of similarity we have im-
ages 13, 9, 12 and so on. These are shown in Fig. 14.54 and we see that the algorithm
has recalled quite different views of the same building.

Now consider that we have some new images and we wish to determine which of
the previous images is the most similar. Perhaps the robot has taken a picture and
wishes to compare it to its database of existing images. The steps are broadly similar
to the previous case

>> images2 = iread('campus/holdout/*.jpg', 'mono');
>> sf2 = isurf(images2, 'thresh', 0)

Fig. 14.54. Image recall. Image 11
is the query, and in decreasing or-
der of match quality we have re-
called images 13, 9 and 12

519

but rather than perform clustering we want to assign the features to the existing set
of visual words, that is, to determine the closest visual word for each of the new fea-
ture descriptors

>> bag2 = BagOfWords(sf2, bag)
BagOfWords: 6530 features from 5 images
 1950 words, 50 stop words

This operation also removes any features words that were previously determined to be
stop words, and computes the word frequency vectors� according to Eq. 14.19.

Finally the similarity between the images in the two bags of words is

>> S2 = bag.similarity(bag2);

which returns a 20 × 5 matrix where the elements S2(i,j) indicates the similarity
between the existing image i and new image j. The maxima in each column corresponds
to the most similar image in the previously observed set

>> [z,k] = max(S2)
z =
 0.3435 0.6948 0.5427 0.5521 0.3627
k =
 2 11 16 18 20

New image 1 best matches image 2 in the original sequence, new image 2 matches im-
age 11 and so on. Two of the new images and their closest existing images are shown
in Fig. 14.55. The fi rst recall has a low similarity score but is a reasonable result – the
recall image includes the building from the test image at the right and another build-
ing that has many similarities.

Fig. 14.55. Image recall for new
images. The new query images
a and c recall the database images
b and d respectively

Which requires the image-word statistics
from the existing bag of words to com-
pute the idf weighting terms.

14.7 · Applications

520 Chapter 14 · Using Multiple Images

14.7.4
l

Visual Odometry [examples/vodemo]

A common problem in robotics is to estimate the distance a robot has traveled, and
this is a key input to all of the localization algorithms discussed in Chap. 6. For a
wheeled robot we can use information from the wheel encoders but these are sub-
ject to random errors (slippage) as well as systematic errors (imprecisely known
wheel radius). However for a fl ying or underwater robot the problem of odometry
is much more diffi cult. Visual odometry (VO) is the process of using information
from consecutive images to estimate the robot’s relative motion from one camera
image to the next.

We load a sequence of images taken from a car driving along a road�

>> left = iread('bridge-l/*.png', 'roi', [20 750; 20 440]);

and the option 'roi' selects a region of interest from each image to eliminate an ir-
regular black border.� These images are unusual in having 16-bit pixels

>> about(left)
left [uint16] : 421x731x251 (154.5 MB)

and the image im belongs to the class 'uint16'. Since this sequence is already near-
ly 200 Mbyte we do not convert it to double precision since this would quadruple the
amount of memory required.

The image sequence can be displayed as an animation

>> ianimate(left, 'fps', 10);

at 10 frames per second.
For each frame we compute corner features

>> c = icorner(im, 'nfeat', 200, 'patch', 7);

and for a change we have used Harris corners since they are computationally cheaper.
For this application the change in orientation and scale from frame to frame is small
and Harris corner features are well suited for this purpose. The function returns a cell
array with one element per input image, and each element is a vector of the 200 stron-
gest Harris corner features per image. The image sequence can be displayed as an ani-
mation with the features overlaid

>> ianimate(im, c, 'fps', 10);

at 10 frames per second and a single frame of this sequence is shown in Fig. 14.56.
The features are associated with regions of high gradient such as the edges of trees, as

Fig. 14.56.
Frame number 15 from the
bridge-l image sequence
with overlaid features (image
from .enpeda. project, Klette
et al. 2011)

This image sequence is bulky and not
distributed with the main toolbox, but it
can be found in the contrib2 zip file on
the Toolbox website. This sequence is da-
taset 4 of the .enpeda.. Image Sequence
Analysis Test Site (EISATS).

The black border is the result of image
rectification.

521

well as the corners of signs and cars. Watching the animation we see that the corner
features stick reliably to world points for many frames. The motion of features in the
image is known as optical fl ow and is a function of the camera’s motion through the
world and the 3-dimensional structure of the world.�

The magnitude of optical fl ow – the speed of a world point on the image plane – is
proportional to camera velocity divided by distance to the world point and therefore
has a scale ambiguity – a camera moving quickly through a world with distant points
yields the same fl ow magnitude as a slower camera moving past closer points. To
resolve this we need to use additional information. For example if we knew that the
points were on the road surface, that the road was fl at, and the height of the camera
above the road then we can resolve this unknown scale. However this assumption is
quite strict and would not apply for something like a drone moving over unknown
terrain. Instead we will use information from a different view of the world – the right
image from a stereo camera fi tted to the vehicle.

>> right = iread('bridge-r/*.png', 'roi', [20 750; 20 440]);

For each pair of left and right images we extract features, and determine corre-
spondence by robustly matching features using descriptor similarity and the epipolar
 constraint implied by a fundamental matrix. Next we compute horizontal disparity
between corresponding features, and assuming the cameras are fully calibrated we
 triangulate the image-plane coordinates to determine the world coordinates of the
landmark points with respect to the left-hand camera on the vehicle. We can match
the 3D point clouds at the current and previous time step using a technique like iter-
ated closest point (ICP) in order to determine the camera pose change. This is the so-
called 3D-3D approach to visual odometry and while the principle is sound it works
poorly in practice. Firstly, some of the 3D points may be on other moving objects and
this violates the assumption of ICP that the sensor or the object moves, but not both.
Secondly, the estimated range to distant points is quite inaccurate since errors in es-
timated disparity become signifi cant when disparity is small.

An alternative approach, 3D-2D matching, projects the 3D points at the current
time step into the previous image and fi nds the camera pose that minimizes the error
with respect to the observed feature coordinates – this is bundle adjustment . Typically
this is done for just one image and we will choose the left image. To establish corre-
spondence of features over time we fi nd correspondences between left-image features
that had a match with the right image and a match with features from the previous left
image – again enforcing an epipolar constraint. We now know the correspondence
between points in the three views of the scene as shown in Fig. 14.57.

Fig. 14.57.
Feature correspondence for vi-
sual odometry. The top row is

a stereo pair at the current time
step, and the bottom row is a ste-
reo pair at the previous time step.

Epiplolar consistent correspon-
dences between three of the im-
age images are shown in yellow

We will revisit optical flow in the next
chapter.

14.7 · Applications

522 Chapter 14 · Using Multiple Images

At each time step we set up a bundle adjustment problem that has two cameras
and a number of landmarks determined from stereo triangulation. The fi rst camera
is associated with the previous time step and is fi xed at the reference frame origin.
The second camera is associated with the current time step and would be expected to
have a translation in the positive z-axis direction. We could obtain an initial estimate
of the second camera’s pose by estimating and decomposing an essential matrix, but
we will instead set it to the origin.

The details can be found in the example script

>> visodom

which processes 100 frames and displays graphics like Fig. 14.57 for every frame. The
fi nal results for z-axis translation are shown in Fig. 14.58a and we notice a value of
around 0.5 m at each time step, but there are also some missing data points and two
incorrect looking results. The bundle adjustment process returns the fi nal squared
error and this is plotted in Fig. 14.58b for each frame. For 8% of the frames that error
was over 20 pix2 (red dashed line) and we exclude those results. The likely source of
error is incorrect point correspondences. Bundle adjustment assumes that all points
in the world are fi xed but in this sequence there are numerous moving objects. We
used the epipolar constraint between current and previous frame to ensure that only
features points consistent with a moving camera and a fi xed world are in the inliner
set. However when the script runs we see quite a lot of points on the car in front which
are being incorrectly included in the inlier set – that car is moving but because it is
a large and constant distance away those points are not inducing enough error to be
considered outliers. A more sophisticated bundle adjustment algorithm would detect
and reject such points. Finally there is a preponderance of points in the top part of the
scene which tend to be quite distant from the cameras. A more sophisticated approach
to feature detection would choose features more uniformly over the image.

The erroneous points at timesteps 29 and 71 highlight a common problem with us-
ing video data for robots. The clue is that those values are suspiciously close to exactly
twice the other values. Each image in the sequence was assigned a timestamp when it
was received by the computer and those timestamps can be loaded

>> ts = load('timestamps.dat');

Fig. 14.58.
Visual odometry results. a Esti-
mated displacement of the cam-
era its z-direction (forward);
b bundle adjustment fi nal error
per frame, shown with a logo-
rithmic vertical scale

523

and if we plot the difference between timestamps

>> plot(diff(ts))

we see that the average time between images is 44.6 ms but there are two spikes where
the interval is twice that. The computer logging the images has skipped a frame, per-
haps it was unable to write image data to memory or disk as quickly as it was arriving.
So the interval between the frames was twice as long, the vehicle traveled twice as far,
and the spikes on our estimated displacement are in fact correct. This is not an un-
common situation – in a robot system all data should be timestamped and timestamps
should be checked to detect problems like this.

The median velocity over the valid estimates is
>> median(tz(ebundle<20))
ans =
 0.5201

in units of meters which, with the camera frame interval of 44.6 ms, indicates a vehicle
speed of around 40 km h−1. The variable tz is a vector of frame-to-frame displace-
ment computed by the script, and ebundle is a vector of bundle adjustment errors
at each time step. The residuals from estimating the fundamental matrix between the
current and previous left image are saved in the vector efund.

For a vehicle or robot the estimated displacements over time are not independent
and are related by vehicle kino-dynamic model, and we can use this to smooth the
results and discount erroneous velocity estimates. If the bundle adjuster included
constraints on camera pose we could set the weighting to penalize infeasible motion
in the lateral and vertical directions as well as roll and pitch motion.

14.8
l
Wrapping Up

This chapter has covered many topics but the aim has been to demonstrate a multi-
plicity of concepts that are of use in real robotic vision systems. There have been two
common threads through this chapter. The fi rst has been the use of corner features to
fi nd distinctive points in images, and matching them to the same world point in an-
other image. The second thread has been the loss of scale in the perspective projection
process and techniques based on additional sources of information to recover scale
such as stereo vision, structured light or bundle adjustment.

We extended the geometry of single camera imaging to the case of two cameras
and showed how corresponding points in the two images are constrained by the fun-
damental matrix. We showed how the fundamental matrix can be estimated from
image data, the effect of incorrect data association, and how to overcome this using
the RANSAC algorithm. Using camera intrinsic parameters the essential matrix can
be computed and then decomposed to give the camera motion between the two view,
but the translation has an unknown scale factor. With some extra information such
as the magnitude of the translation, the camera motion can be estimated completely.
Given the camera motion, then the 3-dimensional coordinates of points in the world
can be estimated.

For the special case where world points lie on a plane they induce an homography
that is a linear mapping of image points between images. The homography can be
used to detect points that do not lie in the plane and can be decomposed to give the
camera motion between the two views (translation again has an unknown scale fac-
tor) and the normal to the plane.

If the fundamental matrix is known then a pair of overlapping images can be recti-
fi ed to create an epipolar-aligned stereo pair and dense stereo matching can be used to
recover the world coordinates for every point. Errors due to effects such as occlusion
and lack of texture were discussed as were techniques to detect these situations.

14.8 · Wrapping Up

524 Chapter 14 · Using Multiple Images

We used bundle adjustment to solve the structure and motion estimation problem
– using 2D measurements from a set of images of the scene to recover information
related to the 3D geometry of the scene as well as the locations of the cameras. Stereo
vision is a simple case where the motion is known – fi xed by the stereo baseline – and
we are interested only in structure. The visual odometry problem is complementary
and we are interested only in the motion of the camera, not the scene structure.

These multi-view techniques were then used in a number of application exam-
ples such as perspective correction, mosaic creation, image retrieval and visual
odometry.

MATLAB and Toolbox Notes

The Toolbox uses open-source code to support SIFT (VLFeat) and SURF (OpenSURF
http://www.mathworks.com/matlabcentral/fileexchange/28300) features. VLFeat
(http://www.vlfeat.org) includes a number of feature detectors and other useful func-
tions. The OpenCV library implements many feature detectors and descriptors and can
be accessed in MATLAB using mexopencv (https://kyamagu.github.io/mexopencv).

The MATLAB Computer Vision System Toolbox™ (CVST) has support for stereo
rectifi cation; stereo matching; SURF, FAST and Harris feature detectors; a range of de-
scriptors (BRISK, HOG, MSER); and point cloud processing including kd-trees, model
fi tting and visualization. Many CVST functions can be used inside Simulink and sup-
port automatic code generation for real-time hardware such as FPGAs.

Further Reading

3-dimensional reconstruction and camera pose estimation has been studied by the
 photogrammetry community since the mid nineteenth century, see page 354. 3-di-
mensional computer vision or robot vision has been studied by the computer vi-
sion and artifi cial intelligence communities since the 1960s. This book follows the
language and nomenclature associated with the computer vision literature, but the
photogrammetric literature can be comprehended with only a little extra diffi culty.
The similarity of a stereo camera to our own two eyes is very striking, and while we
do make strong use of stereo vision it is not the only technique we use to infer dis-
tance (Cutting 1997).

Signifi cant early work on multi-view geometry was conducted at laboratories such
as Stanford, SRI International, MIT AI laboratory, CMU, JPL, INRIA, Oxford and ETL
Japan in the 1980s and 1990s and led to a number of text books being published in
the early 2000s. The defi nitive references for multiple-view geometry are Hartley and
Zisserman (2003) and Ma et al. (2003). These books present quite different approaches
to the same body of material. The former takes a more geometric approach while the
latter is more mathematical. Unfortunately they use quite different notation, and each
differs from the notation used in this book – a summary of the important notational
elements is given in Table 14.1. These books all cover feature extraction (using Harris
corner features, since they were published before scale invariant feature detectors
such as SIFT and SURF corner detectors were developed); the geometry of one, two
and N views; fundamental and essential matrices; homographies; and the recovery of
3-dimensional scene structure and camera motion through offl ine batch techniques.
Both provide the key algorithms in pseudo-code and have some supporting MATLAB
code on their associated web sites. The slightly earlier book by Faugeras et al. (2001)
covers much of the same material using a fairly mathematical approach and with dif-
ferent notation again. The older book by Faugeras (1993) focuses on sparse stereo from
line features. The recent book by Szeliski (2010) provides a very readable and deeper
discussion of the topics in this chapter.

525

References related to SURF and other feature detectors were previously discussed
on page 456. The performance of feature detectors and their matching performance is
covered in Mikolajczyk and Schmid (2005) which reviews a number of different fea-
ture descriptors including spin images and local jets.� Arandjeloviõ and Zisserman
(2012) discuss some important points when matching feature vectors.

The RANSAC algorithm described by Fischler and Bolles (1981) is the workhorse of all
the feature-based methods discussed in this chapter but fails with very small inlier ratios.
A recent more robust development is vector fi eld consensus (VFC) by Ma et al. (2014). Pilu
(1997) discusses how SVD can be applied to a matrix formed from the distances between
features to determine correspondence. Dellaert et al. (2000) describe a probabilistic ap-
proach to determining structure from a group of images not necessarily in order.

The term fundamental matrix was defi ned in the thesis of Luong (1992). The book by
Xu and Zhang (1996) is a readable introduction to epipolar geometry. Epipolar geom-
etry can also be formulated for nonperspective cameras in which case the epipolar line
becomes an epipolar curve (Miãuïík and Pajdla 2003; Svoboda and Pajdla 2002). For
three views the geometry is described by the trifocal tensor T which is a 3 × 3 × 3 ten-
sor with 18 degrees of freedom that relates a point in one image to epipolar lines in two
other images (Hartley and Zisserman 2003; Ma et al. 2003). An important early paper
on epipolar geometry for an image sequence is Bolles et al. (1987).

The essential matrix was fi rst described a decade earlier in a letter to Nature (Longuet-
Higgins 1981) by the eminent theoretical chemist and cognitive scientist Christopher
Longuet-Higgins (1923–2004). The paper describes a method of estimating the essen-
tial matrix from eight corresponding point pairs. The decomposition of the essential
matrix was fi rst described in Faugeras (1993, § 7.3.1) but is also covered in the texts
Hartley and Zisserman (2003) and Ma et al. (2003). In this chapter we have estimated
camera motion by fi rst computing the essential matrix and then decomposing it. The
fi rst step requires at least eight pairs of corresponding points but algorithms such as
Nistér (2003), Li and Hartley (2006) compute the motion directly from just fi ve pairs
of points. Decomposition of an homography is described by Faugeras and Lustman
(1988), Hartley and Zisserman (2003), Ma et al. (2003), and the comprehensive tech-
nical report by Malis and Vargas (2007). The relationships between these matrices,
camera motion, and the relevant Toolbox functions are summarized in Fig. 14.59.

Stereo cameras and stereo matching software are available today from many ven-
dors and can provide high-resolution depth maps at more than 10 Hz on standard
computers. A decade ago this was diffi cult and custom hardware including FPGAs was
required to achieve real-time operation (Corke et al. 1999; Woodfi ll and Von Herzen
1997). The application of stereo vision for planetary rover navigation is discussed by
Matthies (1992). More than two cameras can be used, and multi-camera stereo was
introduced by Okutomi and Kanade (1993) and provides robustness to problems such
as the picket fence effect.

Table 14.1.
Rosetta stone. Summary of no-

tational differences between
two other popular textbooks

and this book

A jet is a vector of higher order deriv-
atives such as Iuu, Ivv, Iuv, Iuuu, Iuuv, Iuvv,
Ivvv, Iuuuu, Iuuuv, Iuuvv, Iuvvv, Ivvvv and so on
(Mikolajczyk and Schmid 2005).

14.8 · Wrapping Up

526 Chapter 14 · Using Multiple Images

Brown et al. (2003) provide a readable review of stereo vision techniques with a fo-
cus on real-time issues. An old but clearly written book on the principles of stereo vi-
sion is Shirai (1987). Scharstein and Szeliski (2002) consider the stereo process as four
steps: matching, aggregation, disparity computation and refi nement. The cost and
performance of different algorithms for each step are compared. The example in this
chapter would be described as: NCC matching, box fi lter aggregation, winner takes all,
and subpixel refi nement. The dense stereo matching algorithm presented in Sect. 14.3.2
is a very conventional correlation-based stereo algorithm. The disparity computed at
each pixel is independent of other pixels but for most real scenes adjacent pixels be-
long to the same surface and disparity will be quite similar – this is referred to as the
 smoothness constraint. Of course disparity will be discontinuous at the edges of surfaces.
Finding the shortest best-fi t path through a slice of the disparity space image as shown in
Fig. 14.29 will enforce the smoothness constraint in the horizontal direction. Ideally we
wish to also ensure vertical smoothness as well and this can be achieved using Markov
random fi elds (MRFs), total variation with regularizers (Pock 2008), or more effi cient
semi-global matching (SGM) algorithms (Hirschmüller 2008). The very popular library
for effi cient large-scale stereo matching (LIBELAS) by Geiger et al. (2010) uses an al-
ternative to global optimization that provides fast and accurate results for a variety of
indoor and outdoor scenes. Stereo vision involves a signifi cant amount of computation
but there is considerable scope for parallelization using multiple cores, MIMD instruc-
tion sets, GPUs, custom chips and FPGAs. The use of nonparametric local transforms
is described by Zabih and Woodfi ll (1994) and Banks and Corke (2001).

An emerging alternative to stereo vision are cameras based on time-of-fl ight mea-
surement which are dropping rapidly in cost. A pulse of infra-red light illuminates
the scene and every pixel records the intensity and time delay of the refl ected energy.
Time-of-fl ight sensors include the REAL3 devices by Infi neon (infineon.com) and
PhotonICs from pmdtechnologies (pmdtec.com). Complete time-of-fl ight cameras
include the Kinect for Xbox One (Kinect 2) and various from pmdtechnologies. This
type of camera works well indoors and even in complete darkness, but outdoors under
full sun the maximum range is limited just as it is for structured light.�

The ICP algorithm (Besl and McKay 1992) is used for a wide range of applications
from robotics to medical imaging. ICP is fast but determining the correspondences
via nearest neighbors is an expensive O(N 2) operation. Many variations have been de-
veloped that make the approach robust to outlier data and to improve computational
speed for large datasets. Salvi et al. (2007) provide a recent review and comparison of

Fig. 14.59.
Toolbox functions and camera
object methods, and their inter-
relationship

In fact it is worse than structured light.
The illumination energy is limited by
eye-safety considerations and structured
light concentrates that energy over a line
whereas time-of-flight cameras spread it
over an area.

527

some different algorithms. Determining the relative orientation between two sets of
points is a classical problem and the SVD approach used here is described by Arun
et al. (1987). Solutions based on quaternions and orthonormal rotation matrices have
been described by Horn (Horn et al. 1988; Horn 1987).

Structure from motion (SfM), the simultaneous recovery of world structure and
camera motion, is a classical problem in computer vision. Two useful review papers
are by Huang and Netravali (1994) which provides a taxonomy of approaches, and
Jebara et al. (1999). Broida et al. (1990) describe an early recursive SfM technique for a
monocular camera sequence using an EKF where each world point is represented by its
(X, Y, Z) coordinate. McLauchlan provides a detailed description of a variable-length
state estimator for SfM (McLauchlan 1999). Azarbayejani and Pentland (1995) present
a recursive approach where each world point is parameterized by a scalar, its depth
with respect to the fi rst image. A more recent algorithm with bounded estimation error
is described by Chiuso et al. (2002) and also discusses the problem of scale variation.
The MonoSlam system by Davison et al. (2007) is an impressive monocular SfM system
that maintains a local map that includes features even when they are not currently in
the fi eld of view. A more recent extension by Newcombe et al. (2011) performs camera
tracking and dense 3D reconstruction from a single moving RGB camera. The applica-
tion of SfM to large-scale urban mapping is becoming increasing popular and Pollefeys
et al. (2008) describe a system for offl ine processing of large image sets.

Bundle adjustment or structure from motion (SfM) is a big fi eld with a large litera-
ture that cover many variants of the problem, for example robustness to outliers, and
specifi c applications and camera types. Classical introductions include Triggs et al.
(2000) and Hartley and Zisserman (2003). Recent theses by Warren (2015), Sünderhauf
(2012) and Strasdat (2012) are comprehensive and readable. Unfortunately every ref-
erence uses different notation. Estimating the camera matrix for each view, comput-
ing a projective reconstruction, and then upgrading it to a Euclidean reconstruction
is described by Hartley and Zisserman (2003) and Ma et al. (2003).

The SfM problem can be simplifi ed by using stereo rather than monocular image
sequences (Molton and Brady 2000; Zhang et al. 1992), or by incorporating inertial data
(Strelow and Singh 2004). A readable two-part tutorial introduction to visual odom-
etry (VO) is Scaramuzza and Fraundorfer (2011) and Fraundorfer and Scaramuzza
(2012). Visual odometry is discussed by Nistér et al. (2006) using point features and
monocular or stereo vision. Maimone et al. (2007) describe experience with stereo-
camera VO on the Mars rover and Corke et al. (2004) describe monocular catadiop-
tric VO for a prototype planetary rover.

Mosaicing is a process as old as photography. In the past it was highly skilled and
labor intensive requiring photographs, scalpels and sandpaper. The surface of the
Moon and nearby planets was mosaiced manually in the 1960s using imagery sent back
by robotic spacecraft. High-quality offl ine mosaicing tools are available for creating
panoramas, for example the Hugin open source project http://hugin.sourceforge.net
and the proprietary AutoStitch.

The “bag of words” technique for image retrieval was fi rst proposed by Sivic and
Zisserman (2003) and has been used by many other researchers since. A notable exten-
sion for robotic applications is FABMAP (Cummins and Newman 2008) which explic-
itly accounts for the joint probability of feature occurrence and associates a probability
with the image match, and is available in OpenCV. An open source version (Glover et al.
2012) is available at https://github.com/arrenglover/openfabmap. Chatfi eld et al. (2011)
discussed some recent improvements to the bag-of-words image retrieval problem.

Image sequence analysis is the core of many real-time robotic vision systems. Real-
time feature tracking across frames is described by Hager and Toyama (1998), Lucas
and Kanade (1981) and is typically based on the computationally cheaper Harris de-
tectors or the pyramidal Kanade-Lucas-Tomasi (KLT) tracker. SURF detectors are still
too time consuming to use for this purpose although some C-based implementations
and GPU implementations are capable of real-time performance.

14.8 · Wrapping Up

528 Chapter 14 · Using Multiple Images

Resources

The fi eld of computer vision has progressed through the availability of standard da-
tasets. These have enabled researchers to quantitatively compare the performance of
different algorithms on the same data. One of the earliest collections of stereo image
pairs was the JISCT dataset (Bolles et al. 1993). The more recent Middlebury dataset
(Scharstein and Szeliski 2002) at http://vision.middlebury.edu/stereo provides an ex-
tensive collection of stereo images, at high resolution, taken at different exposure set-
tings and including ground truth data. Stereo images from various NASA Mars rovers
are available online as left+right pairs or encoded in anaglyphs. Motion datasets include
classic motion sequences of indoor scenes http://vasc.ri.cmu.edu//idb/html/motion,
people moving inside a building http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1,
traffi c scenes http://i21www.ira.uka.de/image_sequences, and from a moving vehicle
http://www.mi.auckland.ac.nz/EISATS.

The popular LIBELAS library (http://www.cvlibs.net/software/libelas) for large-
scale stereo matching supports parallel processing using OpenMP and has MATLAB
and ROS interfaces. Various stereo vision algorithms are compared for speed and ac-
curacy at the KITTI (www.cvlibs.net/datasets/kitti/eval_scene_flow.php) and Middlebury
(vision.middlebury.edu/stereo/eval3) benchmark sites.

An implementation of the KLT feature tracker, in C, written by Stan Birchfi eld is
available at http://www.ces.clemson.edu/~stb/klt. A GPU-based version of KLT, in C,
is available at http://cs.unc.edu/~ssinha/Research/GPU_KLT. The ViSP cross-platform
library includes tracking capability and can be found at https://visp.inria.fr. Pointers
to SIFT and SURF implementations are given on page 456. The Epipolar Geometry
Toolbox (Mariottini and Prattichizzo 2005) for MATLAB by Gian Luca Mariottini and
Domenico Prattichizzo is available at http://egt.dii.unisi.it and handles perspective and
catadioptric cameras. Andrew Davison’s monocular visual SLAM system (MonoSLAM)
for C and MATLAB is available at http://www.doc.ic.ac.uk/~ajd/software.html.

The sparse bundle adjustment software by Lourakis (users.ics.forth.gr/~lourakis/sba)
is an effi cient C implementation that is widely used and has a MATLAB and OpenCV
wrapper. One application is Bundler (www.cs.cornell.edu/~snavely/bundler) which can
perform matching of points from thousands of cameras over city scales and has enabled
reconstruction of cities such as Rome (Agarwal et al. 2014), Venice and Dubrovnik.
Some of these large-scale datasets are available from grail.cs.washington.edu/projects/
bal and www.robots.ox.ac.uk/~vgg/data/data-mview.html. A MATLAB interface to
Bundler is available at www.mathworks.com/matlabcentral/fileexchange/46341.
SFMedu, a Structure from Motion System for Education (http://vision.princeton.edu/
courses/SFMedu) has learning resources and MATLAB source code. Other open source
solvers that can be used for sparse bundle adjustment include g2o, SSBA and CERES, all
implemented in C++. g2o by Kümmerle et al. (2011) (github.com/RainerKuemmerle/
g2o) can also be used to solve SLAM problems. SSBA by Christopher Zach is avail-
able at https://github.com/chzach/SSBA. The CERES solver from Google (ceres-solver.
org) is a library for modeling and solving large complex optimization problems on
desktop and mobile platforms and also supports parallel processing using OpenMP.
A MATLAB interface is available at github.com/tikroeger/BA_Matlab.

Pointcloud library (PCL) (pointclouds.org) is a large-scale, open and standalone
package for 2D/3D image and point cloud processing with support for feature detec-
tors and descriptors, 3D registration, kd-trees, shape segmentation, surface meshing,
visualization, camera interfaces and includes g2o. The Point Data Abstraction Library
(PDAL) (www.pdal.io) is a library and set of Unix command line tools for manipulat-
ing point cloud data.

Point clouds can be stored in a number of common open formats. Point cloud data
(PCD) fi les are defi ned by Pointcloud library (PCL) (pointclouds.org) and can be im-
ported into MATLAB using www.mathworks.com/matlabcentral/fileexchange/40382.

529

Polygon fi le format (PLY) fi les are designed to describe meshes but can be used to
represent an unmeshed point cloud, and there are a number of great visualizers
such as MeshLab and potree. PCL and PDAL can read, write and convert many
point cloud fi le formats.

The fundamental matrix song can be found at http://danielwedge.com/fmatrix/.

Exercises

1. Corner features and matching (page 462). Examine the cumulative distribution of
corner strength for Harris and SURF features. What is an appropriate way to choose
strong corners for feature matching?

2. Feature matching. We could defi ne the quality of descriptor-based feature match-
ing in terms of the percentage of inliers after applying RANSAC.
a) Take any image. We will match this image against various transforms of itself to

explore the robustness of SURF and Harris features. The transforms are: (a) scale
the intensity by 70%; (b) add Gaussian noise with standard deviation of 0.05,
0.5 and 2 grey values; (c) scale the size of the image by 0.9, 0.8, 0.7, 0.6 and 0.5;
(d) rotate by 5, 10, 15, 20, 30, 40 degrees.

b) For the Harris detector compare the performance for the structure-tensor-based
feature and the patch descriptor sizes of 3 × 3, 7 × 7 and 11 × 11 and 15 × 15.

c) Try increasing the suppression radius for SURF and Harris corners. Does the
lower density of matches improve the matching performance?

d) The Harris detector can process a color image. Does this lead to improved per-
formance compared to the greyscale version of the same image.

e) Is there any correlation between outlier matches and strength of the corner fea-
tures involved?

3. Write the equation for the epipolar line in image two, given a point in image one.
4. Show that the epipoles are the null space of the fundamental matrix.
5. Can you determine the camera matrix C for camera two given the fundamental ma-

trix and the camera matrix for camera one?
6. Estimating the fundamental matrix (page 470)

a) For the synthetic data example vary the number of points and the additive Gaussian
noise and observe the effect on the residual.

b) For the Eiffel tower data observe the effect of varying the parameter to RANSAC.
Repeat this with SURF features computed with a lower strength threshold (the
default is 0.002).

c) What is the probability of drawing 8 inlier points in a random sample (without
replacement) from N inliers and M outliers?

7. Epipolar geometry
a) Create two central cameras, one at the origin and the other translated in the

x-direction. For a sparse fronto-parallel grid of world points display the family of
epipolar lines in image two that correspond to the projected points in image one.
Describe these epipolar lines? Repeat for the case where camera two is translated
in the y- and z-axes and rotated about the x-, y- and z-axes. Repeat this for com-
binations of motion such as x- and z-translation or x-translation and y-rotation.

b) The example of Fig. 14.16 has epipolar lines that slope slightly upward. What
does this indicate about the two camera views?

8. Essential matrix (page 469)
a) Create a set of corresponding points for a camera undergoing pure rotational

motion, and compute the fundamental and essential matrix. Can you recover
the rotational motion?

b) For a case of translational and rotational motion visualize both poses that result
from decomposing the essential matrix. Sketch it or use trplot.

14.8 · Wrapping Up

530 Chapter 14 · Using Multiple Images

9. Homography (page 477)
a) Compute Euclidean homographies for translation in the x-, y- and z-directions

and for rotation about the x-, y- and z-axes. Convert these to projective homog-
raphies and apply to a fronto-parallel grid of points. Is the resulting image mo-
tion what you would expect? Apply these homographies as a warp to a real im-
age such as Lena.

b) Decompose the homography of Fig. 14.15, the courtyard image, to determine the
plane of the wall with respect to the camera. You will need the camera intrinsic
parameters.

10. Load a reference image of this book’s cover from rvc2_cover.png. Next, cap-
ture an image that includes the book’s front cover, compute SIFT or SURF features,
match them and use RANSAC to estimate an homography between the two views of
the book cover. Decompose the homography to estimate rotation and translation.
Put all of this into a real-time loop and continually display the pose of the book
relative to the camera.

11. Sparse stereo (page 482)
a) The ray intersection method can return the closest distance between the rays

(which is ideally zero). Plot a histogram of the closing error and compute the
mean and maximum error.

b) The assumed camera translation magnitude was 30 cm. Repeat for 25 and 35 cm.
Are the closing error statistics changed? Can you determine what translation
magnitude minimizes this error?

12. Bundle adjustment (page 497)
a) Vary the initial condition for the second camera, for example, set it to the iden-

tity matrix.
b) Set the initial camera translation to 3 m in the x-direction, and scale the land-

mark coordinates by 10×. What is the fi nal value of the back-projection error
and the second camera pose.

c) Experiment with anchoring landmarks and cameras.
d) Derive the two Jacobians A (hard) and B.

13. Derive a relationship for depth in terms of disparity for the case of verged cameras.
That is, cameras with their optical axes intersecting similar to the cameras shown
in Fig. 14.6.

14. Stereo vision. Using the rock piles example (page 483)
a) Use idisp to zoom in on the disparity image and examine pixel values on the

boundaries of the image and around the edges of rocks.
b) Experiment with different similarity measures and window sizes. What effects

do you observe in the disparity image and computation time?
c) Experiment with changing the disparity range. Try [50,90], [30,90], [40,80]

and [40,100]. What happens to the disparity image and why?
15. Using the rock piles example (page 483) obtain the disparity space image D

a) For selected pixels (u, v) plot D(u, v, d) versus d. Look for pixels that have a
sharp peak, broad peak and weak peak. Repeat this for stereo computed using
 ZSSD similarity. For a selected row v display D(u, v, d) as an image. What does
this represent?

b) For a particular pixel plot s versus d, fi t a parabola around the maxima and over-
lay this on the plot.

c) Use raw data from the DSI, fi nd the second peak at each pixel and compute the
 ambiguity ratio

d) Display the epipolar lines on image two for selected points in image one.
16. Download an anaglyph image and convert it into a pair of greyscale images, then

compute dense stereo.
17. Variations to stereo matching

a) Try some other stereo images, either acquired with a stereo camera or from the
Middlebury dataset.

531

b) Perform stereo matching using the SAD rather than NCC metric. Use the 'metric'
option to istereo .

c) Apply the census (icensus) or rank transforms (irank) to the left and right
image prior to matching using the SAD measure and investigate the matching
quality. More details in Banks and Corke (2001).

18. Stereo vision. For a pair of identical cameras with a focal length of 8 mm,
1 000 × 1 000 pixels that are 10 µm square on an 80 mm baseline and with parallel
optical axes:
a) Sketch the fi elds of views of the camera in a plan view. If the cameras are viewing

a plane surface normal to the principal axes how wide is the horizontal overlap-
ping fi eld of view in units of pixels?

b) Assuming that disparity error is normally distributed with 2σ = 0.2 pixels compute
and plot the distribution of error in the z-coordinate of the reconstructed 3D points
which have a mean disparity of 0.5, 1, 2, 5, 10 and 20 pixels. Draw 1 000 random
values of disparity, convert these to Z and plot a histogram (distribution) of their
values.

19. Mona Lisa on your wall. Acquire an image of a room in your house and display it us-
ing MATLAB. Select four points, using ginput, to defi ne the corners of the virtual
frame on your wall. Perhaps use the corners of an existing rectangular feature in your
room such as a window, poster or picture. Estimate the appropriate homography,
warp the Mona Lisa image and insert it into the original image of your room.

20. Plane fi tting (page 504)
a) Test the robustness of the plane fi tting algorithm to additive noise and outlier

points.
b) Implement an iterative approach with weighting to minimize the effect of out-

liers.
c) Create a RANSAC-based plane fi t algorithm that takes random samples of three

points to solve for Eq. 14.18. Use the fmatrix and homography code to
guide you. You will need to create a number of functions that are invoked by
the ransac_driver.

21. ICP (page 505)
a) Run the ICP example on your computer and watch the animation.
b) Change the initial relative pose between the point clouds. Try some very large

rotations.
c) Increase the noise added to the data points.
d) For the case where there are missing and/or spurious data points experiment

with different values of the 'distthresh' option.
22. Perspective correction (page 509)

a) Create a virtual view looking downward at 45° to the front of the cathedral.
b) Create a virtual view from the original camera height but with the camera ro-

tated 20° to the left.
c) Find another real picture with perspective distortion and attempt to correct it.

23. Mosaicing (page 512)
a) Run the example fi le mosaic and watch the whole mosaic being assembled.
b) Modify the way the tile is pasted into the composite image to use pixel averag-

ing rather than addition.
c) Modify the way the tile is pasted into the composite image so that pixels closest

to the principal point are used.
d) Run the software on a set of your own overlapping images and create a panorama.

24. Image stabilization can be used to virtually stabilize an unsteady camera, perhaps
one that is handheld, on a drone or on a mobile robot traversing rough terrain.
Capture a short image sequence I1, I2� IN from an unsteady camera. For frame
i, i ≥ 2 estimate an homography with respect to frame 1, warp the image appro-
priately, and store it in an array. Display the stabilized image sequence using
ianimate.

14.8 · Wrapping Up

532 Chapter 14 · Using Multiple Images

25. Bag of words (page 514)
a) Examine the different support regions of different visual words using the ex-
emplars method.

b) Investigate the effect of changing the number of stop words.
c) Investigate the effect of changing the size of the vocabulary. Try 1 000, 1 500,

2 500, 3 000.
d) Build a bag of words from a set of your own images.
e) the RootSIFT trick described by Arandjeloviõ and Zisserman (2012).
f) SURF rather than SIFT features.
g) SURF corner detector with BRISK or FREAK features.

26. Visual odometry, page 520. Modify the example script to
a) use SIFT or SURF features instead of Harris. What happens to accuracy and ex-

ecution time?
b) ensure that features are more uniformly spread over the scene, investigate the
'suppress' option of icorner.

c) plot the fundamental matrix residuals at each time step (there are two of them).
Is there a pattern here? Adjust the RANSAC parameters so as to reduce the num-
ber of times bundle adjustment fails.

d) use a robust bundle adjuster, either fi nd one or implement one (hard).
e) use a Kalman fi lter with simple vehicle dynamics to smooth the velocity estimates.

27. Learn about kd-trees. What problems in this chapter could benefi t from kd-trees?

 Part V Robotics, Vision and Control
 Chapter 15 Vision-Based Control

 Chapter 16 Advanced Visual Servoing

Part

V

It is common to talk about a robot moving to an object, but in reality
the robot is only moving to a pose at which it expects the object to be.
This is a subtle but deep distinction. A consequence of this is that the
robot will fail to grasp the object if it is not at the expected pose. It will
also fail if imperfections in the robot mechanism or controller result in
the end-effector not actually achieving the end-effector pose that was
specifi ed. In order for this conventional approach to work successfully
we need to solve two quite diffi cult problems: determining the pose of
the object and ensuring the robot achieves that pose.

The fi rst problem, determining the pose of an object, is typically
avoided in manufacturing applications by ensuring that the object is
always precisely placed. This requires mechanical jigs and fi xtures
which are expensive, and have to be built and set up for every differ-
ent part the robot needs to interact with – somewhat negating the fl ex-
ibility of robotic automation.

The second problem, ensuring the robot can achieve a desired pose,
is also far from straightforward. As we discussed in Chap. 7 a robot end-
effector is moved to a pose by computing the required joint angles. This
assumes that the kinematic model is accurate, which in turn necessi-

tates high precision in the robot’s manufacture: link lengths must be precise and axes
must be exactly parallel or orthogonal. Further the links must be stiff so they do not
deform under dynamic loading or gravity. It also assumes that the robot has accurate
joint sensors and high-performance joint controllers that eliminate steady state errors
due to friction or gravity loading. The nonlinear controllers we discussed in Sect. 9.4
are capable of this high performance but they require an accurate dynamic model that
includes the mass, center of gravity and inertia for every link, as well as the payload.

None of these problems are insurmountable but this approach has led us along a
path toward high complexity. The result is a heavy and stiff robot that in turn needs
powerful actuators to move it, as well as high quality sensors and a sophisticated con-
troller – all this contributes to a high overall cost. However we should, whenever pos-
sible, avoid solving hard problems if we do not have to. Stepping back for a moment
and looking at this problem it is clear that

the root cause of the problem is that the robot cannot see what it is doing.

Consider if the robot could see the object and its end-effector, and could use that in-
formation to guide the end-effector toward the object. This is what humans call hand-eye
coordination and what we will call vision-based control or visual servo control – the use
of information from one or more cameras to guide a robot in order to achieve a task.

The pose of the target does not need to be known a priori; the robot moves toward
the observed target wherever it might be in the workspace. There are numerous advan-
tages of this approach: part position tolerance can be relaxed, the ability to deal with
parts that are moving comes almost for free, and any errors in the robot’s intrinsic ac-
curacy will be compensated for.

Robotics, Vision and Control

536 Part VI · Robotics, Vision and Control

A vision-based control system involves continuous measurement of the target and
the robot using vision to create a feedback signal and moves the robot arm until the
visually observed error between the robot and the target is zero. Vision-based control
is quite different to taking an image, determining where the target is and then reach-
ing for it. The advantage of continuous measurement and feedback is that it provides
great robustness with respect to any errors in the system. There are of course some
practical complexities. If the camera is on the end of the robot it might interfere with
the task, or when the robot is close to the target the camera might be unable to focus,
or the target might be obscured by the gripper.

In this part of the book we bring together much that we have learned previously:
kinematics and dynamics for robot arms and mobile robots; geometric aspects of im-
age formation; and feature extraction. The part comprises two chapters. Chapter 15
discusses the two classical approaches to visual servoing which are known as position-
based and image-based visual servoing. The image coordinates of world features are
used to move the robot toward a desired pose relative to the observed object. The fi rst
approach requires explicit estimation of object pose from image features, but because
it is performed in a closed-loop fashion any errors in pose estimation are compensated
for. The second approach involves no pose estimation and uses image-plane informa-
tion directly. Both approaches are discussed in the context of a perspective camera
which is free to move in SE(3), and their respective advantages and disadvantages are
described. The chapter also includes a discussion of the problem of determining ob-
ject depth, and the use of line and ellipse image features.

Chapter 16 extends the discussion to hybrid visual-servo algorithms which over-
come the limitations of the position- and image-based visual servoing by using the best
features of both. The discussion is then extended to nonperspective cameras such as
fi sheye lenses and catadioptric optics as well as arm robots, holonomic and nonholo-
nomic ground robots, and a fl ying robot.

This part of the book is pitched at a higher level than earlier parts. It assumes a
good level of familiarity with the rest of the book, and the increasingly complex ex-
amples are sketched out rather than described in detail. The text introduces the essen-
tial mathematical and algorithmic principles of each technique, but the full details are
to be found in the source code of the MATLAB® classes that implement the control-
lers, or in the details of the Simulink diagrams. The results are also increasingly hard
to depict in a book and are best understood by running the supporting MATLAB or
Simulink® code and plotting the results or watching the animations.

Chapter

15

The task in visual servoing is to control the pose of the robot’s end-effector,
relative to the goal, using visual features extracted from an image of the goal
object. As shown in Fig. 15.1 the camera may be carried by the robot or be fi xed
in the world. The confi guration of Fig. 15.1a has the camera mounted on the
robot’s end-effector observing the goal, and is referred to as end-point closed-
loop or eye-in-hand. The confi guration of Fig. 15.1b has the camera at a fi xed
point in the world observing both the goal and the robot’s end-effector, and is
referred to as end-point open-loop. In the remainder of this book we will dis-
cuss only the eye-in-hand confi guration.

The image of the goal is a function of the relative pose CξG. Features such as
the coordinates of points, or the parameters of lines or ellipses are extracted
from the image and these are also a function of the relative pose CξG.

There are two fundamentally different approaches to visual servo control: Position-
Based Visual Servo (PBVS) and Image-Based Visual Servo (IBVS). Position-based visual
servoing, shown in Fig. 15.2a, uses observed visual features, a calibrated camera and
a known geometric model of the goal object to determine its pose with respect to the
camera. The robot then moves toward that pose and the control is performed in task
space which is commonly SE(3). Good algorithms exist for pose estimation but it is
computationally expensive and relies critically on the accuracy of the camera calibra-
tion and the model of the object’s geometry. PBVS is discussed in Sect. 15.1.

Vision-Based Control

A servo mechanism , or servo is an automatic device that uses feedback of error between the desired and
actual position of a mechanism to drive the device to the desired position. The word servo is derived
from the Latin root servus meaning slave and the fi rst usage was by the Frenchman J. J. L. Farcot in
1868 – “Le Servomoteur” – to describe the hydraulic and steam engines used for steering ships.

Error in position is measured by a sensor then amplifi ed to drive a motor that generates a force to
move the device to reduce the error. Servo system development was spurred by WW II with the devel-
opment of electrical servo systems for fi re-control applications that used electric motors and electro-
mechanical amplidyne power amplifi ers. Later servo amplifi ers used vacuum tubes and more recently
solid state power amplifi ers (motor drives). Today servo mechanisms are ubiquitous and are used to
position the read/write heads in optical and magnetic disk drives, the lenses in autofocus cameras,
remote control toys, satellite-tracking antennas, automatic machine tools and robot joints.

“Servo” is properly a noun or adjective but has become a verb “to servo”. In the context of vi-
sion-based control we use the compound verb “visual servoing”.

Fig. 15.1. Visual servo confi gu-
rations and relevant coordinate
frames: world, end-effector {E},
camera {C} and goal {G}. a End-
point closed-loop confi guration
(eye-in-hand); b end-point open-
loop confi guration

538 Chapter 15 · Vision-Based Control

 Image-based visual servoing, shown in Fig. 15.2b, omits the pose estimation step, and
uses the image features directly. The control is performed in image coordinate space R2.
The desired camera pose with respect to the goal is defi ned implicitly by the image feature
values at the goal pose. IBVS is a challenging control problem since the image features
are a highly nonlinear function of camera pose. IBVS is discussed in Sect. 15.2.

15.1
l
Position-Based Visual Servoing

In a PBVS system the pose of the goal with respect to the camera CξG is estimated. The
pose estimation problem was discussed in Sect. 11.2.3 and requires knowledge of the
goal object’s geometry, the camera’s intrinsic parameters and the observed image fea-
tures. The relationships between the poses is shown as a pose graph in Fig. 15.3. We
specify the desired relative pose with respect to the goal C

∗ξG and wish to determine the
motion ξ∆ required to move the camera from its initial pose ξC to ξC

∗. The actual pose
of the goal ξG is not known. The indicated loop of the pose network is

where Cξ�T is the estimated pose of the goal relative to the camera. We rearrange this as

which is the camera motion required to achieve the desired relative pose. The change
in pose might be quite large so we do not attempt to make this movement in one step,
rather we move to a point closer to {C∗} by

which is a fraction λ ∈ (0, 1) of the translation and rotation required.

Fig. 15.2.
The two distinct classes of visual
servo system

539

Using the Toolbox we start by defi ning a camera with known parameters

>> cam = CentralCamera('default');

The goal comprises four points that form a square of side length 0.5 m that lies in
the xy-plane and is centered at (0, 0, 3)

>> P = mkgrid(2, 0.5, 'pose', SE3(0,0,3));

and we assume that its pose is unknown to the control system. The camera is at some
pose T_C so the image-plane projections of the world points are

>> p = cam.plot(P, 'pose', T_C)

from which the pose of the goal with respect to the camera Cξ�G is estimated

>> C_Te_G = cam. estpose(P, p);

The required motion ξ∆ is

>> T_delta = C_Te_G * inv(Cd_T_G);

and the fractional motion toward the goal is obtained by scaling this using its
interp method giving the new value of the camera pose

>> T_C = T_C .* T_delta.interp(lambda);

where we ensure that the product is a proper homogeneous transformation by using
the .* operator. At each time step we repeat the process, moving a fraction of the re-
quired relative pose until the motion is complete. In this way even if the goal moves,
or the robot has errors and does not move as requested, the motion computed at the
next time step will account for that error.

For this example we choose the initial pose of the camera in world coordinates as

>> T_C0 = SE3(1,1,-3)*SE3.Rz(0.6);

and the desired pose of the goal with respect to the camera is

>> Cd_T_G = SE3(0, 0, 1);

which has the goal 1 m in front of the camera and fronto-parallel to it. We create an
instance of the PBVS class

pbvs = PBVS(cam, 'pose0', C_T0, 'posef', Cd_T_G, ...	
 'axis', [-1 2 -1 2 -3 0.5])
Visual servo object: camera=default
 200 iterations, 0 history
 P= -0.25 -0.25 0.25 0.25
 -0.25 0.25 0.25 -0.25
 0 0 0 0
 C_T0: t = (1, 1, -3), R = (34.3775deg | 0, 0, 1)
 C*_T_G: t = (0, 0, 1), R = (0deg | 0, 0, 0)

Fig. 15.3.
Relative pose network for PBVS

example. Frame {C} is the cur-
rent camera pose and frame {C∗}
is the desired camera pose. The

MATLAB variable names are
shown in the grey boxes: an esti-

mate (^) is indicated by ‘e’ and
a desired value (∗) by ‘d’

15.1 · Position-Based Visual Servoing

540 Chapter 15 · Vision-Based Control

Fig. 15.4. Snapshop from the visual
servo simulation. a An external view
showing camera pose and features;
b camera view showing current fea-
ture positions on the image plane

Fig. 15.5. Results of PBVS simula-
tion. a Image-plane feature mo-
tion, � is initial feature location,
� is desired; b Cartesian velocity;
c camera pose

541

which is a subclass of the VisualServo class and implements the controller out-
lined above. The object constructor takes a CentralCamera object as its argument,
and contains the control algorithm required to drive this camera to achieve the de-
sired pose relative to the goal specifi ed by the 'posef' option. Many additional op-
tions can be passed to this class constructor. The display method shows the coordi-
nates of the world points, the initial camera pose, and the desired goal relative pose.
The simulation is run by

>> pbvs.run();

which repeatedly calls the step method to simulate the motion for a single time step.
The simulation animates the features moving on the image plane of the camera and
the 3-dimensional visualization of the camera and the world points – as shown in
Fig. 15.4. The simulation completes after a defi ned number of iterations or when ξ∆
falls below some threshold.

The simulation results are stored within the object for later analysis. We can plot the
path of the goal features in the image, the Cartesian velocity versus time or Cartesian
position versus time

>> pbvs.plot_p();
>> pbvs.plot_vel();
>> pbvs.plot_camera();

which are shown in Fig. 15.5. We see that the feature points have followed a curved
path in the image, and that the camera’s translation and orientation have converged
smoothly on the desired values.

15.2
l
Image-Based Visual Servoing

IBVS differs fundamentally from PBVS by not estimating the relative pose of the goal.
The relative pose is implicit in the values of the image features. Figure 15.6 shows two
views of a square goal object. The view from the initial camera pose is shown in red
and it is clear that the camera is viewing the goal obliquely. The desired view is shown
in blue where the camera is further from the goal and its optical axis is normal to the
plane of the goal – a fronto-parallel view.

The control problem can be expressed in terms of image coordinates. The task is to
move the feature points indicated by �-markers to the points indicated by �-markers.
The points may, but do not have to, follow the straight line paths indicated by the ar-
rows. Moving the feature points in the image implicitly changes the camera pose – we
have changed the problem from pose estimation to control of points in the image.

Fig. 15.6.
Two views of a square goal

object. The blue shape is the de-
sired view, and the red shape is

the initial view

15.2 · Image-Based Visual Servoing

542 Chapter 15 · Vision-Based Control

15.2.1
l

Camera and Image Motion

Consider the default camera

>> cam = CentralCamera('default');

and a world point at

>> P = [1 1 5]';

which has image coordinates
>> p0 = cam.project(P)
p0 =
 672
 672

Now if we displace the camera slightly in the x-direction the pixel coordinates will become
>> px = cam.project(P, 'pose', SE3(0.1,0,0))
px =
 656
 672

Using the camera coordinate conventions of Fig. 11.5, the camera has moved to the
right so the image point has moved to the left. The sensitivity of image motion to
 camera motion is

>> (px - p0) / 0.1
ans =
 -160
 0

which is an approximation to the derivative ∂p/∂x. It shows that 1 m of camera mo-
tion would lead to −160 pixel of feature motion in the u-direction. We can repeat this
for z-axis translation

>> (cam.project(P, 'pose', SE3(0, 0, 0.1)) - p0) / 0.1
ans =
 32.6531
 32.6531

which shows equal motion in the u- and v-directions. For x-axis rotation
>> (cam.project(P, 'pose', SE3.Rx(0.1)) - p0) / 0.1
ans =
 40.9626
 851.8791

the image motion is predominantly in the v-direction. It is clear that camera motion along
and about the different degrees of freedom in SE(3) causes quite different motion of im-
age points. Earlier, in Eq. 11.10, we expressed perspective projection in functional form

and its derivative with respect to time is

where ν = (vx, vy, vz, ω x, ω y, ω z) ∈R6 is the velocity of the camera, the spatial veloc-
ity, which we introduced in Sect. 3.1. Jp is a Jacobian-like object, but because we have
taken the derivative with respect to a pose ξ ∈ SE(3) rather than a vector it is tech-
nically called an interaction matrix. However in the visual servoing world it is more
commonly called an image Jacobian or a feature sensitivity matrix.

Consider a camera moving with a body velocity ν = (v, ω) in the world frame and
observing a world point P with camera relative coordinates P = (X, Y, Z). The veloc-
ity of the point relative to the camera frame is

543

 (15.1)

which we can write in scalar form as

 (15.2)

The perspective projection Eq. 11.2 for normalized image-plane coordinates is

and the temporal derivative, using the quotient rule, is

Substituting Eq. 15.2, X = xZ and Y = yZ we can write this in matrix form

 (15.3)

which relates camera spatial velocity to feature velocity in normalized image coordinates.
The normalized image-plane coordinates are related to the pixel coordinates by Eq. 11.7

which we rearrange as

 (15.4)

where –u = u − u0 and –v = v − v0 are the pixel coordinates relative to the principal
point. The temporal derivative is

 (15.5)

and substituting Eq. 15.4 and Eq. 15.5 into Eq. 15.3 leads to

15.2 · Image-Based Visual Servoing

544 Chapter 15 · Vision-Based Control

and for the typical case where ρu = ρv = ρ we can express the focal length in pixels
f ′= f/ρ and write

 (15.6)

in terms of pixel coordinates with respect to the principal point. We can write this in
concise matrix form as

 (15.7)

where Jp is the 2 × 6 image Jacobian matrix for a point feature at coordinate p � and
camera distance Z.

The Toolbox CentralCamera class provides the method visjac_p to compute
the image Jacobian and for the example above it is

>> J = cam.visjac_p([672; 672], 5)
J =
 -160 0 32 32 -832 160
 0 -160 32 832 -32 -160

where the fi rst argument is the pixel coordinate of the point of interest, and the second
argument is the depth of the point. The approximate values computed on page 542 ap-
pear as columns one, three and four respectively. Image Jacobians can also be derived
for line and circle features and these are discussed in Sect. 15.3.

For a given camera velocity, the velocity of the point is a function of the point’s
coordinate, its depth and the camera parameters. Each column of the Jacobian indi-
cates the velocity of an image feature point caused by one unit of the corresponding
component of the velocity vector. The fl owfi eld method of the CentralCamera
class shows the image-plane velocity for a grid of world points projected to the image
plane for a particular camera velocity. For camera translational velocity in the x-di-
rection the fl ow fi eld is

>> cam.fl owfi eld([1 0 0 0 0 0]);

which is shown in Fig. 15.7a. As expected, moving the camera to the right causes all
the features points to move to the left. The motion of points on the image plane is
known as optical fl ow and can be computed from image sequences as we showed in
Sect. 14.7.4. Equation 15.6 is often referred to as the optical fl ow equation.

For translation in the z-direction

>> cam.fl owfi eld([0 0 1 0 0 0]);

the points radiate outward from the principal point – the Star Trek warp effect – as
shown in Fig. 15.7e. Rotation about the z-axis is

>> cam.fl owfi eld([0 0 0 0 0 1]);

causes the points to rotate about the principal point as shown in Fig. 15.7f.
Rotational motion about the y-axis is

>> cam.fl owfi eld([0 0 0 0 1 0]);

is shown in Fig. 15.7b and is very similar to the case of x-axis translation, with some
small curvature for points far from the principal point. This similarity is because the
fi rst and fi fth column of the image Jacobian are approximately equal in this case. For

This is commonly written in terms of u
and v rather than –u and –v but we use the
overbar notation to emphasize that the
coordinates are with respect to the prin-
cipal point, not the image origin which is
typically in the top-left corner.

545

Fig. 15.7.
Image-plane velocity vectors for
canonic camera velocities where

all corresponding world points
lie in a fronto-parallel plane.
a x-axis translation; b y-axis

rotation, f = 8 mm; c y-axis ro-
tation, f = 20 mm; d y-axis rota-
tion, f = 4 mm; e z-axis transla-
tion; f z-axis rotation. Note that
the fl ow vectors are normalized

– they are shown with correct
relative scale within each plot,

but not between plots

a point that projects to the center of the image, the principal point, and at a depth of
1 m the visual Jacobian is

>> cam.visjac_p(cam.pp', 1)
ans =
 -800.0000 0 0 0 -800.0000 0
 0 -800.0000 0 800.0000 0 0

and we see that columns one and fi ve are exactly equal. This implies that translation
in the x-direction causes the same image motion as rotation about the y-axis. You can

15.2 · Image-Based Visual Servoing

546 Chapter 15 · Vision-Based Control

easily demonstrate this equivalence by watching how the world moves if you translate
your head to the right or rotate your head to the right – in both cases the world ap-
pears to move to the left. As the focal length increases column fi ve

approaches a scalar multiple of column one.
We can easily demonstrate this by increasing the focal length to f = 20 mm (the

default focal length is 8 mm) and the fl ow fi eld

>> cam.f = 20e-3;
>> cam.fl owfi eld([0 0 0 0 1 0]);

shown in Fig. 15.7c is almost identical to that of Fig. 15.7a. Conversely, for small
focal lengths (wide-angle cameras) the image motion due to these camera motions
will be more dissimilar

>> cam.f = 4e-3;
>> cam.fl owfi eld([0 0 0 0 1 0]);

and as shown in Fig. 15.7d the curvature is much more pronounced. The same ap-
plies for columns two and four except for a difference of sign – there is an equiva-
lence between translation in the y-direction and rotation about the x-axis.�

The Jacobian matrix of Eq. 15.6 has some interesting properties. It does not
depend at all on the world coordinates X or Y, only on the image-plane coordi-
nates (u, v). However the fi rst three columns depend on the point’s depth Z and this
refl ects the fact that for a translating camera the image-plane velocity is inversely
proportional to depth. You can easily demonstrate this to yourself – translate your
head sideways and observe that near objects move more in your fi eld of view than
distant objects. However, if you rotate your head all objects, near and far, move
equally in your fi eld of view.

The matrix has a rank of two,� and therefore has a null space of dimension four.
The null space comprises a set of spatial velocity vectors that individually, or in any
linear combination, cause no motion in the image. Consider the simple case of a
world point lying on the optical axis which projects to the principal point

>> J = cam.visjac_p(cam.pp', 1);

The null space of the Jacobian is

>> null(J)
ans =
 0 0 -0.7071 0
 0 0.7071 0 0
 1.0000 0 0 0
 0 0.7071 0 0
 0 0 0.7071 0
 0 0 0 1.0000

The fi rst column indicates that motion in the z-direction, along the ray toward the
point, results in no motion in the image. Nor does rotation about the z-axis, as indi-
cated by column four. Columns two and three are more complex, combining rota-
tion and translation. Essentially these exploit the image motion ambiguity mentioned
above. Since x-axis translation causes the same image motion as y-axis rotation, col-
umn three indicates that if one is positive and the other negative the resulting image
motion will be zero – that is translating left and rotating to the right.

Our visual system uses additional in-
formation from sensors to help resolve
this ambiguity – proprioception from
muscles in our body as well as motion
estimates from the inertial sensors in our
 vestibular system.

The rank cannot be less than 2, even if
Z → ∞.

547

We can consider the motion of two points by stacking their Jacobians

to give a 4 × 6 matrix which will have a null space with two columns. One of these cam-
era motions corresponds to rotation around a line joining the two points.

For three points

 (15.8)

the matrix will be full rank, nonsingular, so long as the points are not coincident or
collinear.

15.2.2
l

Controlling Feature Motion

So far we have shown how points move in the image plane as a consequence of camera
motion. As is often the case, it is the inverse problem that is more useful – what cam-
era motion is needed in order to move the image features at a desired velocity?

For the case of three points {(ui, vi), i = 1�3} and corresponding velocities {(Éi, Êi)}
we can invert Eq. 15.8

 (15.9)

and solve for the required camera velocity.
Given feature velocity we can compute the required camera motion, but how do

we determine the feature velocity? The simplest strategy is to use a simple linear con-
troller

 (15.10)

that drives the features toward their desired values p∗ on the image plane. Combined
with Eq. 15.9 we write

That’s it! This controller will drive the camera so that the feature points move to-
ward the desired position in the image. It is important to note that nowhere have we
required the pose of the camera or of the object� – everything has been computed in
terms of what can be measured on the image plane.

We do require the depth Z of the points
but we will come to that shortly.

15.2 · Image-Based Visual Servoing

548 Chapter 15 · Vision-Based Control

For the general case where N > 3 points we can stack the Jacobians for all features
and solve for camera motion using the pseudo-inverse�

 (15.11)

Note that it is possible to specify a set of feature point velocities which are incon-
sistent, that is, there is no possible camera motion that will result in the required im-
age motion. In such a case the pseudo-inverse will fi nd a solution that minimizes the
norm of the feature velocity error.

The Jacobian is a fi rst-order approximation of the relationship between camera mo-
tion and image-plane motion. Faster convergence is achieved by using a second-order
approximation and it has been shown that this can be obtained very simply

 (15.12)

by taking the mean of the pseudo inverse of the image Jacobians at the current and
desired states.

For N ≥ 3 the matrix can be poorly conditioned if the points are nearly coincident
or collinear. In practice this means that some camera motions will cause very small
image motions, that is, the motion has low perceptibility. There is strong similarity
with the concept of manipulability that we discussed in Sect. 8.2.2 and we take a similar
approach in formalizing it. Consider a camera spatial velocity of unit magnitude

and from Eq. 15.7 we can write the camera velocity in terms of the pseudo-inverse

where J ∈R2N×6 is the Jacobian stack and the point velocities are ¹ ∈R2N. Substituting
yields

which is the equation of an ellipsoid in the point velocity space. The eigenvectors of JJT
defi ne the principal axes of the ellipsoid and the singular values of J are the radii. The
ratio of the maximum to minimum radius is given by the condition number of JJT and
indicates the anisotropy of the feature motion. A high value indicates that some of the
points have low velocity in response to some camera motions. An alternative to stack-
ing all the point feature Jacobians is to select just three that, when stacked, result in
the best conditioned square matrix which can then be inverted.

Using the Toolbox we start by defi ning a camera

>> cam = CentralCamera('default');

The goal comprises four points that form a square of side length 0.5 m that lies in the
xy-plane and is centered at (0, 0, 3)

>> P = mkgrid(2, 0.5, 'pose', SE3(0,0,3));

Note that papers based on the task
function approach such as Espiau et al.
(1992) write this as actual position mi-
nus demanded position and write −λ in
Eq. 15.11 to ensure negative feedback.

549

and we assume that this goal pose is unknown to the control system. The desired po-
sition of the goal features on the image plane are a 400 × 400 square centered on the
 principal point

>> pd = bsxfun(@plus, 200*[-1 -1 1 1; -1 1 1 -1], cam.pp');

which implicitly has the square goal fronto-parallel to the camera.
The camera is at some pose ξC ∼ T_C so the image-plane projections of the world

points are

>> p = cam.plot(P, 'pose', T_C);

where p and pd are each 2 × 4 matrices and have one column per point. We compute
the image-plane error

>> e = pd - p;

and the stacked image Jacobian

>> J = cam.visjac_p(p, 1);

is an 8 × 6 matrix in this case since p contains four points. The Jacobian does require
the point depth which we do not know, so for now we will just choose a constant value�.
This is an important topic that we will address in Sect. 15.2.3.

The control law determines the required translational and angular velocity of the
camera

>> v = lambda * pinv(J) * e(:);

where lambda is the gain, a positive number, and we take the pseudo-inverse of the
nonsquare Jacobian to implement Eq. 15.11. The resulting velocity is expressed in the
camera coordinate frame, and integrating it over a unit time step results in a spatial
displacement of the same magnitude. The camera pose is updated by

where ∆−1(·) is described in Sect. 3.1.4. Using the Toolbox this is implemented as

>> T_C = T_C .* delta2tr(v);

where we ensure that the transformation remains a proper homogeneous transforma-
tion by using the .* operator.

For this example we choose the initial pose of the camera in world coordinates as

>> T_C0 = SE3(1,1,-3)*SE3.Rz(0.6);

Similar to the PBVS example we create an instance of the IBVS class

>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd);

which is a subclass of the VisualServo class and implements the controller out-
lined above. The object constructor takes a CentralCamera object as its argu-
ment, and drives this camera to achieve the desired pose relative to the goal. The
option 'pose0' specifi es the initial pose of the camera and 'pstar' specifi es the
desired image coordinates of the features. Many additional options can be passed
to this class constructor. The display method shows the coordinates of the world
points, the initial absolute pose, and the desired image-plane feature coordinates.
The simulation is run by

>> ibvs.run();

which repeatedly calls the step method that simulates motion for a single time step.
The simulation animates the image plane of the camera as well as a 3-dimensional vi-
sualization of the camera and the world points.

Here we provide a single value which
is taken as the depth of all the points.
Alternatively we could provide a vector
to specify the depth of each point indi-
vidually.

15.2 · Image-Based Visual Servoing

550 Chapter 15 · Vision-Based Control

The simulation results are stored within the object for later analysis. We can plot
the path of the goal features on the image plane, the Cartesian velocity versus time or
Cartesian position versus time

>> ibvs.plot_p();
>> ibvs.plot_vel();
>> ibvs.plot_camera();

which are shown in Fig. 15.8. We see that the feature points have followed an almost
straight-line path in the image, and the Cartesian pose has changed smoothly toward
the fi nal value. The condition number of the image Jacobian

>> ibvs.plot_jcond();

decreases over the motion indicating that the Jacobian is becoming better conditioned,
and this is a consequence of the features moving further apart.

How is p∗ determined? The image points can be found by demonstration, by mov-
ing the camera to the desired pose and recording the observed image coordinates.
Alternatively, if the camera calibration parameters and the goal geometry are known
the desired image coordinates can be computed for any specifi ed goal pose. Note that
this calculation, world point point projection, is computationally cheap and performed
only once before visual servoing commences.

The IBVS system can also be expressed in terms of a Simulink model

>> sl_ibvs

which is shown in Fig. 15.9. The simulation is run by

>> r = sim('sl_ibvs')

Fig. 15.8. Results of IBVS simu-
lation, created by IBVS. a Image-
plane feature motion, � is the ini-
tial feature position and � is the
desired position b spatial velocity
components; c camera pose; d im-
age Jacobian condition number

551

and the camera pose, image-plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time. The initial
pose of the camera is set by a parameter of the camera pose block, and the world
points are parameters of a constant block. The CentralCamera object is a param-
eter to both the camera and visual Jacobian blocks.

The signals sent to the output ports are stored in the simulation output object r.
For example the camera velocity on output port 2

>> t = r.fi nd('tout');
>> v = r.fi nd('yout').signals(2).values;
>> about(v)
v [double] : 501x6 (24048 bytes)

has one row for every simulation time step, and the columns are the camera spatial
velocity components. We can plot camera velocity against time

>> plot(t, v)

The image-plane coordinates on output port 1 can also be retrieved and plotted
>> p = r.fi nd('yout').signals(1).values;
>> about(p)
p [double] : 2x4x501 (32.1 kB)
>> plot2(p)

15.2.3
l
Estimating Feature Depth

Computing the image Jacobian requires knowledge of the camera intrinsics, the prin-
cipal point and focal length, but in practice it is quite tolerant to errors in these. The
Jacobian also requires knowledge of Zi, the distance to, or the depth of, each point. In
the simulations just discussed we have assumed that depth is known – this is easy in
simulation but not so in reality. Fortunately, in practice we fi nd that IBVS is remark-
ably tolerant to errors in Z.

Fig. 15.9. The Simulink model
 sl_ibvs drives the feature points
to the desired positions on the im-
age plane. User adjustable param-
eters are in the red blocks

15.2 · Image-Based Visual Servoing

552 Chapter 15 · Vision-Based Control

A number of approaches have been proposed to deal with the problem of unknown
depth. The simplest is to just assume a constant value for the depth which is quite rea-
sonable if the required camera motion is approximately in a plane parallel to the plane
of the object points. To evaluate the performance of different constant estimates of
point depth, we can compare the effect of choosing Z = 1 and Z = 10 for the example
above where the true depth is Z = 3

>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd 'depth', 1)
>> ibvs.run(50)
>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd 'depth', 10)
>> ibvs.run(50)

and the results are plotted in Fig. 15.10. We see that the image-plane paths are no
longer straight, because the Jacobian is now a poor approximation of the relation-
ship between the camera motion and image feature motion. We also see that for
Z = 1 the convergence is much slower than for the Z = 10 case. The Jacobian for
Z = 1 overestimates the optical fl ow, so the inverse Jacobian underestimates the
required camera velocity. Nevertheless, for quite signifi cant errors, IBVS has con-
verged. For the Z = 10 case the camera displacement at each timestep is large lead-
ing to a very jagged path.

A second approach is to use standard computer vision techniques to estimate the
value for Z. If the camera intrinsic parameters were known we could use sparse ste-
reo techniques from consecutive camera positions to estimate the depth of each fea-
ture point.

Fig. 15.10. Results of IBVS with
different constant estimates of
point depth: a, b Image and cam-
era motion for Z = 1; c, d Image
and camera motion for Z = 10

553

A third approach is to estimate the value of Z online using measurements of robot
and image motion. We can create a simple depth estimator by rearranging Eq. 15.6
into estimation form

which we rearrange as

 (15.13)

The right-hand side is the observed optical fl ow from which the expected optical
fl ow due to rotation of the camera is subtracted – a process referred to as derotating
optical fl ow. The remaining optical fl ow, after subtraction, is only due to translation.
Writing Eq. 15.13 in compact form

 (15.14)

we have a simple linear equation with one unknown parameter θ = 1 / Z which can
be solved using least-squares.

In our example we can enable this by
>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd 'depthest')
>> ibvs.run()
>> ibvs.plot_z()
>> ibvs.plot_p()

and the result is shown in Fig. 15.11. Figure 15.11b shows the estimated and true
point depth versus time. The estimate depth was initially zero, a poor choice, but it
has risen rapidly and then tracked the actual goal depth as the controller converges.
Figure 15.11a shows the feature motion, and we see that the features initially move in
the wrong direction because the error in depth has led to an image Jacobian that pre-
dicts poorly how feature points will move.

Fig. 15.11. IBVS with online depth
estimator. a Feature paths; b com-
parison of estimated (dashed) and
true depth (solid) for all four points

15.2 · Image-Based Visual Servoing

554 Chapter 15 · Vision-Based Control

15.2.4
l
Performance Issues

The control law for PBVS is defi ned in terms of the 3-dimensional workspace so there
is no mechanism by which the motion of the image features is directly regulated. For
the PBVS example shown in Fig. 15.5 the feature points followed a curved path on the
image plane, and therefore it is possible that they could leave the camera’s fi eld of
view. For a different initial camera pose

>> pbvs.T0 = SE3(-2.1, 0, -3)*SE3.Rz(5*pi/4);
>> pbvs.run()

the result is shown in Fig. 15.12a and we see that two of the points move outside the
image which would cause the PBVS control to fail.�

By contrast the IBVS control for the same initial pose
>> ibvs = IBVS(cam, 'pose0', pbvs.T0, 'pstar', pd, 'lambda',	
 0.002, 'niter', Inf, 'eterm', 0.5)
>> ibvs.run()
>> ibvs.plot_p();

gives the feature trajectories shown in Fig. 15.12b but there is no direct control over
the Cartesian motion of the camera. This can sometimes result in surprising motion,
particularly when the goal is rotated about the z-axis

>> ibvs = IBVS(cam, 'pose0', SE3(0,0, -1)*SE3.Rz(1), 'pstar', pd);
>> ibvs.run()
>> ibvs.plot_camera

which is shown in Fig. 15.13a,b. We see that the camera has performed an unnecessary
translation along the z-axis – away from the goal and back again. This phenomenon
is termed camera retreat. The resulting motion is not time optimal and can require
large and possibly unachievable camera motion. An extreme example arises for a pure
rotation about the optical axis by π rad

>> ibvs = IBVS(cam, 'pose0', SE3(0,0, -1)*SE3.Rz(pi), ...
 'pstar', pStar, 'niter', 10);
>> ibvs.run()
>> ibvs.plot_camera

which is shown in Fig. 15.13c,d. The feature points are, as usual, moving in a straight
line toward their desired values, but for this problem the paths all pass through the
principal point which is a singularity and where IBVS will fail. The only way the goal
feature points can be at the principal point is if the camera is at negative infi nity, and
that is where it is headed!

Fig. 15.12. Image-plane feature
paths for a PBVS and b IBVS

In this simulation the image plane co-
ordinates are still computed and used,
even though they fall outside the image
bounds.

555

A fi nal consideration is that the image Jacobian is a linearization of a highly non-
linear system. If the motion at each time step is large then the linearization is not
valid and the features will follow curved rather than linear paths in the image, as
we saw in Fig. 15.10. This can occur if the desired feature positions are a long way
from the initial positions and/or the gain λ is too high. One solution is to limit the
maximum norm of the commanded velocity

The feature paths do not have to be straight lines and nor do the features have to
move with asymptotic velocity – we have used these only for simplicity. Using the tra-
jectory planning methods of Sect. 3.3 the features could be made to follow any arbi-
trary trajectory in the image.

In summary, IBVS is a remarkably robust approach to vision-based control. We
have seen that it is quite tolerant to errors in the depth of points. We have also shown
that it can produce less than optimal Cartesian paths for the case of large rotations about
the optical axis. We will discuss remedies to these problems in the next chapter.

Fig. 15.13. IBVS for pure goal rota-
tion about the optical axis. a, b for
rotation of 1 rad; c, d for rotation
of π rad

15.2 · Image-Based Visual Servoing

556 Chapter 15 · Vision-Based Control

15.3
l
Using Other Image Features

So far we have considered only point features. In a real system we would use the feature ex-
traction techniques discussed in Chap. 13 and the points would be the centroids of distinct
regions, or Harris or SURF corner features. The points would then be used for pose estimation
in a PBVS scheme, or directly in an IBVS scheme. For both PBVS or IBVS we need to solve
the correspondence problem, that is, for each observed feature we must determine which
desired image-plane coordinate it corresponds to. IBVS can also be formulated to work with
other image features such as lines, as found by the Hough transform, or the shape of an ellipse.

15.3.1
l
Line Features

For a line the Jacobian is written in terms of the (ρ , θ) parameterization that we used for
the Hough transform in Sect. 13.2. The rate of change of the line parameters is related to
camera velocity by

and the Jacobian is

where aX + bY + cZ + d = 0 is the equation of the plane that contains the line and
λθ = (acosθ − bsinθ)/d and λρ = −(aρsinθ + bρcosθ + c)/d. The Jacobian describes
how the line parameters change as a function of camera velocity. Just as the point-fea-
ture Jacobian required some partial 3-dimensional knowledge (the point depth Z) the
line-feature Jacobian requires the equation of the plane that contains the line. There
are an infi nite number of planes that contain the line and we choose one for which
d ≠ 0. Like a point feature, a line provides two rows of the Jacobian so we require a
minimum of three lines in order to have a Jacobian of full rank.�

We illustrate this with an example comprising three lines that all lie in the plane
Z = 3, and we can conveniently construct three points in that plane using the circle
function with just three boundary points

>> P = circle([0 0 3], 0.5, 'n', 3);

and use the familiar CentralCamera class methods to project these to the image. For
each pair of points we compute the equations of the line

Interestingly a line feature provides two
rows of the stacked Jacobian, yet two
points which define a line segment would
provide four rows.

Fig. 15.14.
IBVS using line features. The
image plane showing the three
current lines (solid) and desired
(dashed)

557

The simulation is run in familiar fashion

>> ibvs = IBVS_l(cam, 'example');
>> ibvs.run()

and a snapshot of results is shown in Fig. 15.14. Note that we need to establish corre-
spondence between the observed and desired lines.

15.3.2
l

Circle Features

A circle in the world will be projected, in the general case, to an ellipse in the image
which is described by�

 (15.15)

where Ei are parameters of the ellipse. The rate of change of the ellipse coeffi cients is
related to camera velocity by

and the Jacobian is

where ρ = (α, β, γ) defi nes a plane in world coordinates aX + bY + cZ + d = 0 in
which the ellipse lies and α = −a / d, β = −b / d and γ = −c / d. Just as was the case
for point and line feature Jacobians we need to provide some depth information about
the goal. The Jacobian has a maximum rank of fi ve, but this drops to three when the
projection is of a circle centered in the image plane, and a rank of two if the circle has
zero radius.

An advantage of the ellipse feature is that the ellipse can be computed from the set
of all boundary points without needing to solve the correspondence problem. The el-
lipse feature can also be computed from the moments of all the points within the el-
lipse boundary. We illustrate this with an example of a circle comprising ten points
around its circumference

>> P = circle([0 0 3], 0.5, 'n', 10);

and the CentralCamera class projects these to the image plane.

>> p = cam.project(P, 'pose', Tc);

where Tc is the current camera pose and we convert to normalized image coordinates

>> pn = cam.normalized(p);

Ellipse are described in more detail in
Sect. C.1.4.

15.3 · Using Other Image Features

558 Chapter 15 · Vision-Based Control

The parameters of an ellipse are calculated using the methods of Sect. C.1.4.3
>> x = pn(1,:); y = pn(2,:);
>> a = [y.^2; -2*x.*y; 2*x; 2*y; ones(1,numcols(x))]';
>> b = -(x.^2)';
>> E = a\b;

which returns a 5-vector of ellipse parameters. The image Jacobian for an ellipse fea-
ture is computed by a method of the CentralCamera class

>> J = cam.visjac_e(E, plane);

where the plane containing the circle must also be specifi ed. For this example the plane
is Z = 3 so the plane parameters are (0, 0, 1, −3).

The Jacobian is 5 × 6 and has a maximum rank of only 5 so we cannot uniquely
solve for the camera velocity. We have at least two options. Firstly, if our fi nal view is
of a circle then we may not be concerned about rotation around the center of the cir-
cle, and in this case we can delete the sixth column of the Jacobian to make it square
and set ω z to zero. Secondly, and the approach taken in this example, is to combine
the features for the ellipse and a single point�

and the stacked Jacobian is now 7 × 6 and we can solve for camera velocity. As for the
previous IBVS examples the desired velocity is proportional to the difference between
the current and desired feature values

Fig. 15.15. IBVS using ellipse fea-
ture. a The image plane showing
the current points (solid) and de-
manded (�); b a world view show-
ing the points and the camera

Here we arbitrarily choose the first point,
any one will do, but we need to establish
correspondence in every frame.

559

The simulation is run in the now familiar fashion

>> ibvs = IBVS_e(cam, 'example');
>> ibvs.run()

and a snapshot of results is shown in Fig. 15.15.

15.3.3
l
Photometric Features

When servoing using point or line features we have to determine the error between
current and desired features, and this requires determining correspondence between
features in the current and the desired images. Correspondence is a complex task
which can be complicated by occlusions or features leaving the camera’s fi eld of view.
In photometric visual servoing we work directly with the pixel values and no corre-
spondences are required.

The image feature is a vector that contains all the pixels in the image – current or
desired – stacked into a very tall vector of height N = W × H. The rate of change of
the pixel values is related to the camera velocity by

where the Jacobian is

and where pi is the image-plane coordinate of the pixel corresponding to the ith element
of the feature vector, ∇I (p) = (∇u (p), ∇v (p)) are the image gradients in the u- and
v-directions at that pixel, and Jp(·) is the image point-feature Jacobian computed at
that pixel.

The Jacobians, as always, are also a function of the point depth. If we are servoing
with respect to a planar image then the depth might be approximately known and as
we have remarked previously IBVS is quite robust to errors in point depth. If we are
servoing with respect to a complex 3-dimensional scene then depth at each pixel will
be very diffi cult to determine and we again rely on the inherent robustness of IBVS.

In order to converge the actual and destination images must have signifi cant over-
lap. The derivation makes assumptions that the scene has Lambertian refl ectance, no
specular highlights, and that lighting magnitude and direction does not change over
time. In practice photometric visual servoing works well even if these assumptions are
not met or if the images are partially occluded during the camera motion.

15.3 · Using Other Image Features

560 Chapter 15 · Vision-Based Control

15.4
l
Wrapping Up

In this chapter we have learned about the fundamentals of vision-based robot control,
and the fundamental techniques developed over two decades up to the mid 1990s.
There are two distinct confi gurations. The camera can be attached to the robot observ-
ing the goal (eye-in-hand) or fi xed in the world observing both robot and goal. Another
form of distinction is the control structure: Position-Based Visual Servo (PBVS) and
Image-Based Visual Servo (IBVS). The former involves pose estimation based on a cali-
brated camera and a geometric model of the goal object, while the latter performs the
control directly in the image plane. Each approach has certain advantages and disad-
vantages. PBVS performs effi cient straight-line Cartesian camera motion in the world
but may cause image features to leave the image plane. IBVS always keeps features in
the image plane but may result in trajectories that exceed the reach of the robot, par-
ticularly if it requires a large amount of rotation about the camera’s optical axis. IBVS
also requires a touch of 3-dimensional information (the depth of the feature points)
but is quite robust to errors in depth and it is quite feasible to estimate the depth as
the robot moves. IBVS can be formulated to work not only with point features, but
also with lines, ellipses and pixel values. An arbitrary number of features (which can
be any mix of points, lines or ellipses) from an arbitrary number of cameras can be
combined simply by stacking the relevant Jacobian matrices.

So far in our simulations we have determined the required camera velocity and
moved the camera accordingly, without consideration of the mechanism to move it.
In the next chapter we consider cameras attached to arm-type robots, mobile ground
robots and fl ying robots.

Further Reading

The tutorial paper by Hutchinson et al. (1996) was the fi rst comprehensive articulation
and taxonomy of the fi eld, and Chaumette and Hutchinson (2006) provide a more re-
cent tutorial introduction. Chapters on visual servoing are included in Siciliano et al.
(2016, § 34) and Spong et al. (2006, § 12).

It is well known that IBVS is very tolerant to errors in depth and its effect on con-
trol performance is examined in detail in Marey and Chaumette (2008). Feddema
and Mitchell (1989) performed a partial 3D reconstruction to determine point depth
based on observed features and known goal geometry. Papanikolopoulos and Khosla
(1993) described adaptive control techniques to estimate depth, as used in this chap-
ter. Hosoda and Asada (1994), Jägersand et al. (1996) and Piepmeier et al. (1999) have
shown how the image Jacobian matrix itself can be estimated online from measure-
ments of robot and image motion. The second-order visual servoing technique was
introduced by Malis (2004).

The most common image Jacobian is based on the motion of points in the image,
but it can also be derived for the parameters of lines in the image plane (Chaumette
1990; Espiau et al. 1992) and the parameters of an ellipse in the image plane (Espiau
et al. 1992). Moments of binary regions have been proposed for visual servoing of pla-
nar scenes (Chaumette 2004; Tahri and Chaumette 2005). More recently the ability to
servo directly from image pixel values, without segmentation or feature extraction,
has been described by Collewet et al. (2008) and subsequent papers, and more recently
by Bakthavatchalam et al. (2015).

The literature on PBVS is much smaller, but the paper by Westmore and Wilson
(1991) is a good introduction. They use an EKF to implicitly perform pose estimation
– the goal pose is the fi lter state and the innovation between predicted and observed
feature coordinates updates the goal pose state. Hashimoto et al. (1991) present simu-
lations to compare position-based and image-based approaches.

561

History and background. Visual servoing has a very long history – the earliest reference
is by Shirai and Inoue (1973) who describe how a visual feedback loop can be used to
correct the position of a robot to increase task accuracy. They demonstrated a system
with a servo cycle time of 10 s, and this highlights a harsh reality of the fi eld which
has been the problem of real-time feature extraction. Until the late 1990s this required
bulky and expensive special-purpose hardware such as that shown in Fig. 15.16. Other
signifi cant early work on industrial applications occurred at SRI International during
the late 1970s (Hill and Park 1979; Makhlin 1985).

In the 1980s Weiss et al. (1987) introduced the classifi cation of visual servo structures
as either position-based or image-based. They also introduced a distinction between
visual servo and dynamic look and move, the former uses only visual feedback whereas
the latter uses joint feedback and visual feedback. This latter distinction is no longer
in common usage and most visual servo systems today make use of joint-position and
visual feedback, commonly encoder-based joint velocity loops as discussed in Chap. 9
with an outer vision-based position loop. Weiss (1984) applied adaptive control tech-
niques for IBVS of a robot arm without joint-level feedback, but the results were limited
to low degree of freedom arms due to the low-sample rate vision processing available at
that time. Others have looked at incorporating the manipulator dynamics Eq. 9.8 into
controllers that command motor torque directly (Kelly 1996; Kelly et al. 2002a,b) but
all still require joint angles in order to evaluate the manipulator Jacobian, and the joint
rates to provide damping. Feddema (Feddema and Mitchell 1989; Feddema 1989) used
closed-loop joint control to overcome problems due to low visual sampling rate and
demonstrated IBVS for 4-DOF. Chaumette, Rives and Espiau (Chaumette et al. 1991;
Rives et al. 1989) describe a similar approach using the task function method (Samson
et al. 1990) and show experimental results for robot positioning using a goal object with
four features. Feddema et al. (1991) describe an algorithm to select which subset of the
available features give the best conditioned square Jacobian. Hashimoto et al. (1991)
have shown that there are advantages in using a larger number of features and using
a pseudo-inverse to solve for velocity. Control and stability in closed-loop visual con-
trol systems was addressed by several researchers (Corke and Good 1992; Espiau et al.
1992; Papanikolopoulos et al. 1993) and feedforward predictive, rather than feedback,
controllers were proposed by Corke (1994) and Corke and Good (1996).

The 1993 book edited by Hashimoto (1993) was the fi rst collection of papers cover-
ing approaches and applications in visual servoing. The 1996 book by Corke (1996b) is
now out of print but available free online and covers the fundamentals of robotics and
vision for controlling the dynamics of an image-based visual servoing system. It con-
tains an extensive, but dated, collection of references to visual servoing applications
including industrial applications, camera control for tracking, high-speed planar mi-
cromanipulator, road vehicle guidance, aircraft refueling, and fruit picking. Another

Fig. 15.16.
A 19 inch VMEbus rack of hard-

ware image processing cards,
capable of 10 Mpix s−1 through-

put or 50 Hz framerate for
512 × 512 images. Used by the

author circa the early 1990s

15.4 · Wrapping Up

562 Chapter 15 · Vision-Based Control

important collection of papers (Kriegman et al. 1998) stems from a 1998 workshop on
the synergies between control and vision: how vision can be used for control and how
control can be used for vision. More recent algorithmic developments and application
are covered in a collection of workshop papers by Chesi and Hashimoto (2010).

Visual servoing has been applied to a diverse range of problems that normally re-
quire human hand-eye skills such as ping-pong (Andersson 1989), juggling (Rizzi and
Koditschek 1991) and inverted pendulum balancing (Dickmanns and Graefe 1988a;
Andersen et al. 1993), catching (Sakaguchi et al. 1993; Buttazzo et al. 1993; Bukowski
et al. 1991; Skofteland and Hirzinger 1991; Skaar et al. 1987; Lin et al. 1989), and con-
trolling a labyrinth game (Andersen et al. 1993).

Exercises

1. Position-based visual servoing
a) Run the PBVS example. Experiment with varying parameters such as the initial

camera pose, the path fraction λ and adding pixel noise to the output of the camera.
b) Create a Simulink model for PBVS.
c) Use a different camera model for the pose estimation (slightly different focal

length or principal point) and observe the effect on fi nal end-effector pose.
d) Implement an EKF based PBVS system as described in Westmore and Wilson

(1991).
2. Optical fl ow fi elds

a) Plot the optical fl ow fi elds for cameras with different focal lengths.
b) Plot the fl ow fi eld for some composite camera motions such as x- and y-transla-

tion, x- and z-translation, and x-translation and z-rotation.
3. For the case of two points the image Jacobian is 4 × 6 and the null space has two

columns. What camera motions do they correspond to?
4. Image-based visual servoing

a) Run the IBVS example, either command line or Simulink version. Experiment
with varying the gain λ . Remember that λ can be a scalar or a diagonal matrix
which allows different gain settings for each degree of freedom.

b) Implement the function to limit the maximum norm of the commanded velocity.
c) Experiment with adding pixel noise to the output of the camera.
d) Experiment with different initial camera poses and desired image-plane coor-

dinates.
e) Experiment with different number of goal points, from three up to ten. For the

cases where N > 3 compare the performance of the pseudo-inverse with just se-
lecting a subset of three points (fi rst three or random three). Can you design an
algorithm that chooses a subset of points which results in the stacked Jacobian
with the best condition number?

f) Create a set of desired image-plane points that form a rectangle rather than a
square. There is no perspective viewpoint from which a square appears as a rect-
angle (why is this?). What does the IBVS system do?

g) Create a set of desired image-plane points that cannot be reached, for example
swap two adjacent world or image points. What does the IBVS system do?

h) Use a different camera model for the image Jacobian (slightly different focal
length or principal point) and observe the effect on fi nal end-effector pose.

i) Implement second-order IBVS using Eq. 15.12.
j) For IBVS we generally force points to move in straight lines but this is just a con-

venience. Use a trajectory generator to move the points from initial to desired
position with some sideways motion, perhaps a half or full cycle of a sine wave.
What is the effect on camera Cartesian motion?

k) Implement stereo IBVS. Hint: stack the point feature Jacobians for both cameras
and determine the desired feature positions on each camera’s image plane.

563

5. Derive the image Jacobian for a pan/tilt camera head.
6. When discussing motion perceptibility we used the identity (Jp

+)TJp
+ = (Jp Jp

T)−1. Prove
this. Hint, use the singular value decomposition J = UΣVT and remember that U and V
are orthogonal matrices.

7. End-point open-loop visual servo systems have not been discussed in this book.
Consider a group of goal points on the robot end-effector as well as the those on
the goal object, both being observed by a single camera (challenging).
a) Create an end-point open-loop PBVS system.
b) Use a different camera model for the pose estimation (slightly different focal

length or principal point) and observe the effect on fi nal end-effector relative
pose.

c) Create an end-point open-loop IBVS system.
d) Use a different camera model for the image Jacobian (slightly different focal

length or principal point) and observe the effect on fi nal end-effector relative
pose.

8. Run the line-based visual servo example.
9. Ellipse-based visual servo

a) Run the ellipse-based visual servo example.
b) Modify to servo fi ve degrees of camera motion using just the ellipse parameters

(without the point feature).
c) For an arbitrary shape we can compute its equivalent ellipse which is expressed

in terms of an inertia matrix and a centroid. Determine the ellipse parameters
of Eq. 15.15 from the inertia matrix and centroid. Create an ellipse feature visual
servo to move to a desired view of the arbitrary shape (challenging).

10. Implement photometric visual servoing. Perhaps use the derivative of Gaussian
kernel to compute the image gradients. Investigate performance as you servo over
different translations and rotation, vary the assumed depth, and vary the param-
eters of the derivative kernel.

15.4 · Wrapping Up

Chapter

16 Advanced Visual Servoing

This chapter builds on the previous one and introduces some advanced vi-
sual servo techniques and applications. Section 16.1 introduces a hybrid vi-
sual servo method that avoids some of the limitations of the IBVS and PBVS

schemes described previously.
Wide-angle cameras such as fi sheye lenses and catadioptric camer-

as have signifi cant advantages for visual servoing. Section 16.2 shows
how IBVS can be reformulated for polar rather than Cartesian image-
plane coordinates. This is directly relevant to fi sheye lenses but also
gives improved rotational control when using a perspective cam-
era. The unifi ed imaging model from Sect. 11.4 allows most cameras

(perspective, fi sheye and panoramic) to be represented by a spherical
projection model, and Sect. 16.3 shows how IBVS can reformulated for
spherical cameras.

Section 16.4 presents a number of application examples. These illustrate
how visual servoing can be used with different types of cameras (perspec-

tive and spherical) and different types of robots (arm-type robots, mobile ground
robots and fl ying robots). Examples include a 6 degree of freedom robot arm manip-
ulating a camera; a mobile robot moving to a specifi c pose which could be used for
navigating through a doorway or docking; and a quadrotor moving to, and hovering
at, a fi xed pose with respect to a goal on the ground.

16.1
l
XY/Z-Partitioned IBVS

In the last chapter, in Sect. 15.2.4, we encountered the problem of camera retreat in an
IBVS system. This phenomenon can be explained intuitively by the fact that our IBVS
control law causes feature points to move in straight lines on the image plane, but for a
rotating camera the points will naturally move along circular arcs. The linear IBVS con-
troller dynamically changes the overall image scale so that motion along an arc appears
as motion along a straight line. The scale change is achieved by z-axis translation.

Partitioned methods eliminate camera retreat by using IBVS to control some degrees
of freedom while using a different controller for the remaining degrees of freedom.
The XY/Z hybrid schemes consider the x- and y-axes as one group, and the z-axes as
another group. The approach is based on a couple of insights. Firstly, and intuitively,
the camera retreat problem is a z-axis phenomenon: z-axis rotation leads to unwanted
z-axis translation. Secondly, from Fig. 15.7, the image-plane motion due to x- and y-axis
translational and rotation motion are quite similar, whereas the optical fl ow due to
z-axis rotation and translation are radically different.

We partition the point feature optical fl ow of Eq. 15.7 so that

 (16.1)

where νxy = (vx, vy, ωx, ωy), νz = (vz, ωz), and Jxy and Jz are respectively columns {1, 2, 4, 5}
and {3, 6} of Jp. Since νz will be computed by a different controller we can write Eq. 16.1 as

566 Chapter 16 · Advanced Visual Servoing

 (16.2)

where ¹∗ is the desired feature point velocity as in the traditional IBVS scheme
Eq. 15.10.

The z-axis velocities vz and ωz are computed directly from two additional image
features A and θ shown in Fig. 16.1. The fi rst image feature θ ∈[0, π), is the angle be-
tween the u-axis and the directed line segment joining feature points i and j. For nu-
merical conditioning it is advantageous to select the longest line segment that can be
constructed from the feature points, and allowing that this may change during the
motion as the feature point confi guration changes. The desired rotational rate is ob-
tained using a simple proportional control law

where the operator � indicates modulo-2π subtraction which is implemented by the
Toolbox function angdiff. As always with motion on a circle there are two directions
to move to achieve the goal. If the rotation is limited, for instance by a mechanical stop,
then the sign of ωz should be chosen so as to avoid motion through that stop.

The second image feature that we use is a function of the area A ∈ R of the reg-
ular polygon whose vertices are the image feature points. The advantages of this
measure are: it is a scalar; it is rotation invariant� thus decoupling camera rota-
tion from z-axis translation; and it can be cheaply computed. The area of the poly-
gon is just the zeroth-order moment, m00 which can be computed from the verti-
ces using the Toolbox function mpq_poly(p, 0, 0). The feature for control
is the square root of area

which has units of length, in pixels. The desired camera z-axis translation rate is ob-
tained using a simple proportional control law

 (16.3)

The features discussed above for z-axis translation and rotation control are simple
and inexpensive to compute, but work best when the goal’s normal is within ±40° of
the camera’s optical axis. When the goal plane is not orthogonal to the optical axis its
area will appear diminished, due to perspective, which causes the camera to initially
approach the goal. Perspective will also change the perceived angle of the line segment
which can cause small, but unnecessary, z-axis rotational motion.

The Simulink® model
>> sl_partitioned

Fig. 16.1.
Image features for XY / Z par-
titioned IBVS control. As well
as the coordinates of the four
points (blue dots), we use the
polygon area A and the angle
of the longest line segment θ

Rotationally invariant to rotation about
the z-axis, not the x- and y-axes.

567

is shown in Fig. 16.2. The initial pose of the camera is set by a parameter of the pose
block. The simulation is run by

>> sim('sl_partitioned')

and the camera pose, image-plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time.

If points are moving toward the edge of the fi eld of view the simplest way to keep them
in view is to move the camera away from the scene. We defi ne a repulsive force that acts
on the camera, pushing it away as a point approaches the boundary of the image plane

where d(p) is the shortest distance to the edge of the image plane from the image point
coordinate p, and d0 is the width of the image zone in which the repulsive force acts.
For a W × H image

 (16.4)

Such a repulsion force could be incorporated into the z-axis translation controller

where η is a gain constant with units of damping. The repulsion force is discontinuous
and may lead to chattering where the feature points oscillate in and out of the repulsive
force – this can be remedied by introducing smoothing fi lters and velocity limiters.

Fig. 16.2. The Simulink model
 sl_partitioned is an XY/Z-
partitioned visual servo scheme,
an extension of the IBVS system
shown in Fig. 15.9. The initial
camera pose is set in the camera
pose block and the desired im-
age-plane points p∗ are set in the
lower left red block

16.1 · XY/Z-Partitioned IBVS

568 Chapter 16 · Advanced Visual Servoing

16.2
l
IBVS Using Polar Coordinates

In Sect. 15.3 we showed image feature Jacobians for nonpoint features, but here we
will show the point feature Jacobian expressed in terms of a different coordinate sys-
tem. In polar coordinates the image point is written p = (r, φ) where r is the distance
of the point from the principal point

 (16.5)

where we recall that
_
u and

_
v are the image coordinates with respect to the principal

point rather than the image origin. The angle from the u-axis to a line joining the prin-
cipal point to the image point is

 (16.6)

The two coordinate representations are related by

 (16.7)

and taking the derivatives with respect to time

and inverting

which we substitute into Eq. 15.6 along with Eq. 16.7 to write

 (16.8)

where the feature Jacobian is

 (16.9)

This Jacobian is unusual in that it has three constant elements. In the fi rst row
the zero indicates that radius r is invariant to rotation about the z-axis. In the sec-
ond row the zero indicates that polar angle is invariant to translation along the op-
tical axis (points move along radial lines), and the negative one indicates that the
angle of a feature (with respect to the u-axis) decreases with positive camera rota-
tion. As for the Cartesian point features, the translational part of the Jacobian (the
fi rst 3 columns) are proportional to 1 / Z. Note also that the Jacobian is undefi ned
for r = 0, that is for a point on the optical axis. The interaction matrix is computed
by the visjac_p_polar method of the CentralCamera class.

569

The desired feature velocity is a function of feature error

where � is modulo-2π subtraction for the angular component subtraction for the an-
gular component. The choice of units (pixels and radians) means that |r|� |φ| and
radius should be normalized

so that r and φ are of approximately the same order.
An example of IBVS using polar coordinates is implemented by the class

 IBVS_polar. We first create a canonic camera, that has normalized image co-
ordinates

>> cam = CentralCamera('default')
>> T_C0 = SE3(-0.3, 0.2, -2)*SE3.Rz(pi/2);
>> vs = IBVS_polar(cam, 'T0', T_C0, 'verbose')

and we run run a simulation

>> vs.run()

The animation shows the feature motion in the image, and the camera and world
points in a world view. The camera motion is quite different compared to the
Cartesian IBVS scheme introduced in the previous chapter. For the previously
problematic case of large optical-axis rotation the camera has simply moved to-
ward the goal and rotated. The features have followed straight line paths on the
rφ -plane. The performance of polar IBVS is the complement of Cartesian IBVS
– it generates good camera motion for the case of large rotation, but poorer mo-
tion for the case of large translation.

The methods plot_error, plot_vel and plot_camera can be used to show
data recorded during the simulation. An additional method

>> vs.plot_features()

displays the path of the features in φ r-space and this is shown in Fig. 16.3 along with
the camera motion which shows no sign of camera retreat.

Fig. 16.3. IBVS using polar coor-
dinates. a Feature motion in po-
lar φ r-space; b camera motion in
Cartesian space

16.2 · IBVS Using Polar Coordinates

570 Chapter 16 · Advanced Visual Servoing

16.3
l
IBVS for a Spherical Camera

In Sect. 11.3 we looked at nonperspective cameras such as the fi sheye lens camera and
the catadioptric camera. Given the particular projection equations for any camera we
can derive an image feature Jacobian from fi rst principles. However the many dif-
ferent lens and mirror shapes leads to many different projection models and image
Jacobians. In Sect. 11.4 we showed that feature points from any type of camera can
be projected to a sphere, so we need to derive an image Jacobian for visual servo con-
trol on the sphere.

The image Jacobian for the sphere is derived in a manner similar to the perspec-
tive camera in Sect. 15.2.1. Referring to Fig. 11.21, the world point P is represented by
the vector P = (X, Y, Z) in the camera frame, and is projected onto the surface of the
sphere at the point p = (x, y, z) by a ray passing through the center of the sphere

 (16.10)

where R = √⎯
(X

⎯2⎯+⎯
Y
⎯2⎯+⎯

Z
⎯2) is the distance from the camera origin to the world point.

The spherical surface constraint x2 + y2 + z2 = 1 means that one of the Cartesian
coordinates is redundant so we will use a minimal spherical coordinate system com-
prising the angle of colatitude�

 (16.11)

where r = x̂2g+gy2, and the azimuth angle (or longitude)

 (16.12)

which yields the point feature vector p = (θ , φ).
Taking the derivatives of Eq. 16.11 and Eq. 16.12 with respect to time and substi-

tuting Eq. 15.2 as well as

 (16.13)

we obtain, in matrix form, the spherical optical fl ow equation

 (16.14)

where the image feature Jacobian is

 (16.15)

There are similarities to the Jacobian derived for polar coordinates in the previous
section. Firstly, the constant elements fall at the same place, indicating that colatitude
is invariant to rotation about the optical axis, and that azimuth angle is invariant to
translation along the optical axis but equal and opposite to camera rotation about the
optical axis. As for all image Jacobians the translational submatrix (the fi rst three col-
umns) is a function of point depth 1 / R.

Colatitude is zero at the north pole and
increases as we move southwards.

571

The Jacobian is not defi ned at the north and south poles where sinθ = 0 and azi-
muth also has no meaning at these points. This is a singularity, and as we remarked in
Sect. 2.2.1.3, in the context of Euler angle representation of orientation, this is a conse-
quence of using a minimal representation. However, in general the benefi ts outweigh
the costs for this application.

For control purposes we follow the normal procedure of computing one 2 × 6
Jacobian, Eq. 16.15, for each of N feature points and stacking them to form a 2N × 6
matrix

 (16.16)

The control law is

 (16.17)

where ¹∗ is the desired velocity of the features in φθ -space. Typically we choose this
to be proportional to feature error

 (16.18)

where λ is a positive gain, p is the current point in φθ -coordinates, and p∗ the de-
sired value. This results in locally linear motion of features within the feature space.�
� denotes modulo subtraction and returns the smallest angular distance given that
θ ∈ [0, π] and φ = [−π, π).

An example of IBVS using spherical coordinates (Fig. 16.4) is implemented by the
class IBVS_sph. We fi rst create a spherical camera

>> cam = SphericalCamera()

and then a spherical IBVS object

>> T_C0 = SE3(0.3, 0.3, -2)*SE3.Rz(0.4);
>> vs = IBVS_sph(cam, 'T0', T_C0, 'verbose')

Fig. 16.4. IBVS using spherical
camera and coordinates. a Feature
motion in θ − φ space; b four goal
points projected onto the sphere in
its initial pose

Note that motion on this plane is in gen-
eral not a great circle on the sphere –
only motion along lines of longitude and
the equator are great circles.

16.3 · IBVS for a Spherical Camera

572 Chapter 16 · Advanced Visual Servoing

and we run run a simulation

>> vs.run()

The animation shows the feature motion on the φθ -plane and the camera and world
points in a world view. Spherical imaging has many advantages for visual servoing.
Firstly, a spherical camera eliminates the need to explicitly keep features in the fi eld
of view which is a problem with both position-based visual servoing and some hybrid
schemes. Secondly, we previously observed an ambiguity between the optical fl ow
fi elds for Rx and −Ty motion (and Ry and Tx motion) for a small fi eld of view. For
IBVS with a long focal length this can lead to slow convergence and/or sensitivity to
 noise in feature coordinates. For a spherical camera, with the largest possible fi eld of
view, this ambiguity is reduced.�

Spherical cameras do not yet exist� but we can can project features from one or
more cameras of any type onto the spherical image plane, and compute the control
law in terms of spherical coordinates.

16.4
l
Applications

16.4.1
l
Arm-Type Robot

In this example the camera is carried by a 6-axis robot which can control all six degrees
of camera motion. We will assume that the robot’s joints are ideal velocity sources,
that is, they move at precisely the velocity that was commanded. A modern robot is
very close to this ideal, typically having high performance joint controllers using ve-
locity and position feedback from encoders on the joints.

The nested control structure for a robot joint was discussed in Sect. 9.1.7. The inner
velocity loop uses joint velocity feedback to ensure that the joint moves at the desired
speed. The outer position loop uses joint position feedback to determine the joint speed
required to follow the trajectory. In this visual servo system the position loop function is
provided by the vision system. Vision sensors have a low sample rate compared to an en-
coder, typically 25 or 30 Hz, and often with a high latency of one or two sample times.

The Simulink model of this eye-in-hand system

>> sl_arm_ibvs

is shown in Fig. 16.5. This is a complex example that simulates not only the camera and
IBVS control but also the robot, in this case the ubiquitous Puma 560 from Part III of

Provided that the world points are well
distributed around the sphere.

The camera of Fig. 11.27b (page 349) comes
close with 90% of a spherical field of view.

Fig. 16.5. The Simulink model
 sl_arm_ibvs uses IBVS to drive
a Puma robot arm that is holding
a camera

573

this book. The joint angles are the outputs of an integrator which represents the robot’s
velocity loops. These angles are input to a forward kinematics block which outputs the
end-effector pose. A perspective camera with default parameters is mounted on the
robot’s end-effector and its axes are aligned with the end-effector coordinate frame.
The camera block has one parameter which is a CentralCamera object, and its in-
puts are the camera pose world and the coordinates of the goal points which are the
corners of a square in the yz-plane. The output image features are used to compute a
Jacobian with an assumed Z value for every point, and also to determine the feature
error in image space. The image Jacobian is inverted and a gain applied to determine
the spatial velocity of the camera. The inverse manipulator Jacobian maps this to joint
rates which are integrated to determine joint angles. This closed loop system drives
the robot to the desired pose with respect to a square goal object.

We run this model

>> r = sim('sl_arm_ibvs')

which displays the robot moving and the image plane of a virtual camera. This model,
and the others in this chapter, use the InitFcn callback to create variables required
by the Simulation in the MATLAB® workspace�.

The signals at the various output blocks are stored in the simulation results object r
and the joint angles at each time step, output port one, are

>> q = squeeze(r.fi nd('yout').signals(1).values)';
>> about(q)
q [double] : 60x6 (2880 bytes)

with one row per time step. Note that this model does not include any dynamics
of the robot arm or the vision system. The joints are modeled as perfect velocity
control devices, and the vision system is modeled as having no delay. This model
could form the basis of more realistic system models that incorporate these real-
world effects.

16.4.2
l
Mobile Robot

In this section we consider a camera mounted on a mobile robot moving in a planar
environment. We will fi rst consider a holonomic robot, that is one that has an omni-
directional base and can move in any direction, and then extend the solution to a non-
holonomic car-like base which touches on some of the issues discussed in Chap. 4.
The camera observes two or more point landmarks that have known 3-dimensional
coordinates, that is, they can be placed above the plane on which the robot operates.
The visual servo controller will drive the robot until its view of the landmarks match-
es the desired view.

16.4.2.1
l
Holonomic Mobile Robot

For this problem we assume a central perspective camera fi xed to the robot and a num-
ber of landmarks with known locations that are continuously visible to the camera as
the robot moves along the path. The vehicle’s coordinate frame is such that the x-axis
is forward and the z-axis is upward.

We defi ne a perspective camera

>> cam = CentralCamera('default', 'focal', 0.002);

with a wide fi eld of view so that it can keep the landmarks in view as it moves. The
camera is mounted on the vehicle with a relative pose BξC

>> V_T_C = SE3(0.2, 0.1, 0.3)*SE3.Rx(-pi/4);

Simulink menu File+Model Properties
+Callbacks+PreLoadFcn. These com-
mands are executed once when a model
is loaded.

16.4 · Applications

574 Chapter 16 · Advanced Visual Servoing

relative to the vehicle coordinate frame. This is to the front left of the vehicle, 30 cm
above ground level, with its optical axis forward but pitched upward at 45°, and its
x-axis pointing to the right of the vehicle. The two landmarks are 2 m above the
ground and situated at x = 0 and y = ±1 m

>> P = [0 0; 1 -1; 2 2]

The desired vehicle position is with the center of the rear axle at (−2, 0, 0).
Since the robot operates in the xy-plane and can rotate only about the z-axis we

can remove the columns from Eq. 15.6 that correspond to nonpermissible motion
and write

 (16.19)

As for standard IBVS case we stack these Jacobians, one per landmark, and then in-
vert the equation to solve for the vehicle velocity. Since there are only three unknown
components of velocity, and each landmark contributes two equations, we need two
or more feature points in order to solve for velocity.

The Simulink model

>> sl_omni_vs

is shown in Fig. 16.6 and is similar in principle to earlier models such as Fig. 16.5 and
15.9. The model is simulated by

>> r = sim('sl_omni_vs')

and displays an animation of the vehicle’s path in the xy-plane and the camera view.
Results are stored in the simulation results object r and can be displayed as for previ-
ous examples. The parameters and camera are defi ned in the properties of the mod-
el’s various blocks.

Fig. 16.6. The Simulink model
 sl_mobile_vs drives a holo-
nomic mobile robot to a pose us-
ing IBVS control

575

16.4.2.2
l
Nonholonomic Mobile Robot

The diffi culties of servoing a nonholonomic mobile robot to a pose were discussed ear-
lier and a nonlinear pose controller was introduced in Sect. 4.1.1.4. The notation for our
problem is shown in Fig. 16.7 and once again we use a controller based on the polar co-
ordinates ρ , α and β . For this control example we will use PBVS techniques to estimate
the variables needed for control. We assume a central perspective camera that is fi xed to
the robot body frame with a relative pose BξC, a number of landmarks with known loca-
tions that are continuously visible to the camera as it moves along the path, and that the
vehicle’s orientation θ is also known, perhaps using a compass or some other sensor.

The Simulink model

>> sl_drivepose_vs

is shown in Fig. 16.8. The initial pose of the camera is set by a parameter of the Bicycle
block. The view of the landmarks is simulated by the camera block and its output,
the projected points, are input to a pose estimation block and the known locations of
the landmarks are set as parameters. As discussed in Sect. 11.2.3 at least three land-
marks are needed and in this example four landmarks are used. The output CûL is the
estimated pose of the landmarks with respect to the camera. The vehicle pose in the
world frame is obtained by a chain of simple transform operations ξ�B =� Cξ�0� BξC.
The x- and y-components of this transform are combined with estimated heading
angle� to yield an estimate of the vehicle’s confi guration (ú, ù, ø) which is input to
the pose controller. The remainder of the system is essentially the same as the ex-
ample from Fig. 4.11.

The simulation is run by

>> r = sim('sl_ibvs')

and the camera pose, image-plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time. Results are
stored in the simulation results object r and can be displayed as for previous examples.

Fig. 16.7.
PBVS for nonholonomic vehicle

(bicycle model) vehicle moving
toward a goal pose: ρ is the dis-
tance to the goal, β is the an-
gle of the goal vector with re-
spect to the world frame, and
α is the angle of the goal vector

with respect to the vehicle frame.
P1 and P2 are landmarks which
are at bearing angles of ψ 1 and
ψ 2 with respect to the camera

In a real system heading angle would
come from a compass, in this simulation
we “cheat” and simply use the true head-
ing angle.

16.4 · Applications

576 Chapter 16 · Advanced Visual Servoing

16.4.3
l

Aerial Robot

A spherical camera is particularly suitable for platforms that move in SE(3) such as
aerial and underwater robots. In this example we consider a spherical camera attached
to a quadrotor and we will use IBVS to servo the quadrotor to a particular pose with
respect to four goal points on the ground.

As we discussed in Sect. 4.3 the quadrotor is under-actuated and we cannot indepen-
dently control all 6 degrees of freedom in task space. We can control position (X, Y, Z) and
also yaw angle. Roll and pitch angle are manipulated to achieve translation in the hori-
zontal plane and must be zero when the vehicle is in equilibrium. The Simulink model

>> sl_quadrotor_vs

is shown in Fig. 16.9. This controller attempts to keep the quadrotor at a constant rela-
tive pose with respect to the goal points on the ground. If the goal moves so too will the
quadrotor – we could imagine a scheme like this being used to land a quadrotor on a car.

The model is a hybrid of the quadrotor controller from Fig. 4.21 and the under-actu-
ated IBVS system of Fig. 16.6. There are however a number of key differences. Firstly,
in the quadrotor control of Fig. 4.21 we used a rotation matrix to map xy-error in the
world frame to the pitch and roll demand of the vehicle. This is not needed for the vi-
sual servo case since the xy-error is given in the camera, or vehicle, frame rather than
the world frame. Secondly, like the mobile robot case the vehicle is under-actuated,
and here the Jacobian comprises only the columns corresponding to (vx, vy, vz, ωz).
Thirdly, we are using a spherical camera, so a SphericalCamera object is passed
to the camera and visual Jacobian blocks.

Fourthly, there is coupling between the roll and pitch motion of the quadrotor and
the image-plane feature coordinates. We recall how the quadrotor cannot translate
without fi rst tilting into the direction it wishes to translate, and this will cause the fea-
tures to move in the image and increase the image feature error. For small amounts
of roll and pitch this can be ignored but for aggressive maneuvers it must be taken
into account. We can use the image Jacobian to approximate� the displacements in θ
and φ as a function of displacements in camera roll and pitch angle which are rota-
tions about the x- and y-axes respectively

Fig. 16.8. The Simulink model
 sl_drivepose_vs drives a non-
holonomic mobile robot to a pose
(derived from Fig. 4.11)

This is a first-order approximation to the
feature motion.

577

and these are subtracted from the features observed by the camera to give the features
that would be observed by a camera in the vehicle’s body frame {B}. This scheme is
sometimes referred to as feature derotation since it mimics in software the effect of a
nonrotating or gimbal-stabilized camera.

Comparing Fig. 16.9 to Fig. 4.21 we see the visual controller performs the function
of the outermost position loops for x- and y-position, altitude and yaw and generates
the required velocities for the velocity loops of these degrees of freedom directly. Note
that rate information is still required as input to the velocity loops and in a real robot
this would be derived from an inertial measurement unit.

The simulation is run by

>> sim('sl_quadrotor_vs')

and the camera pose, image-plane feature error and camera velocity are animated.
Scope blocks also plot the camera velocity and feature error against time. The simu-
lation results can be obtained from the simulation output object out. The initial pose
of the camera is set in the model’s properties�.

Fig. 16.9. The Simulink model
 sl_quadrotor_vs. IBVS with a
spherical camera for hovering over
a goal. Compared to the previous
models this one has an angdiff
block after the feature error sum-
ming junction to allow for proper
handling of angles on the sphere

Simulink menu File+Model Properties
+Callbacks+ InitFcn. These commands
are always executed prior to the begin-
ning of a simulation.

16.4 · Applications

578 Chapter 16 · Advanced Visual Servoing

16.5
l
Wrapping Up

Further Reading

A good introduction to advanced visual servo techniques is the tutorial article by
Chaumette and Hutchinson (2007) and also the visual servoing chapter in Siciliano and
Khatib (2016, § 34). Much of the interest in so-called hybrid techniques was sparked
by Chaumette’s paper (Chaumette 1998) which introduced the specifi c example that
drives the camera of a point-based IBVS system to infi nity for the case of goal rota-
tion by π about the optical axis. One of the fi rst methods to address this problem was
2.5D visual servoing, proposed by Malis et al. (1999), which augments the image-based
point features with a minimal Cartesian feature. Other notable early hybrid methods
were proposed by Morel et al. (2000) and Deguchi (1998) which partitioned the image
Jacobian into a translational and rotational part. An homography is computed between
the initial and fi nal view (so the goal points must be planar) and then decomposed to
determine a rotation and translation. Morel et al. combine this rotational information
with translational control based on IBVS of the point features. Conversely, Deguchi
et al. combine this translational information with rotational control based on IBVS.
Since translation is only determined up to an unknown scale factor some additional
means of determining scale is required.

Corke and Hutchinson (2001) presented an intuitive geometric explanation for the
problem of the camera moving away from the goal during servoing, and proposed a
partitioning scheme split by axes: x- and y-translation and rotation in one group, and
z-translation and rotation in the other. Another approach to hybrid visual servoing is
to switch rapidly between IBVS and PBVS approaches (Gans et al. 2003). The perfor-
mance of several partitioned schemes is compared by Gans et al. (2003).

The polar form of the image Jacobian for point features (Iwatsuki and Okiyama
2002a; Chaumette and Hutchinson 2007) handles the IBVS failure case nicely, but re-
sults in somewhat suboptimal camera translational motion (Corke et al. 2009) – the
converse of what happens for the Euclidean formulation.

The Jacobian for a spherical camera is similar to the polar form. The two angle pa-
rameterization was fi rst described in Corke (2010) and was used for control and struc-
ture-from-motion estimation. There has been relatively little work on spherical visual
servoing. Fomena and Chaumette (2007) consider the case for a single spherical object
from which they extract features derived from the projection to the spherical imaging
plane such as the center of the circle and its apparent radius. Tahri et al. (2009) consider
spherical image features such as lines and moments. Hamel and Mahony (2002) de-
scribe kino-dynamic control of an under-actuated aerial robot using point features.

The robot manipulator dynamics Eq. 9.8 and the perspective projection Eq. 11.2 are
highly nonlinear and a function of the state of the manipulator and the goal. Almost all
visual servo systems consider that the robot is velocity controlled, and that the under-
lying dynamics are suppressed and linearized by tight control loops. As we learned in
Sect. 9.1 this is the case for arm-type robots and in the quadrotor example we used a
similar nested control structure. This approach is necessitated by the short time con-
stants of the underlying mechanism and the slow sample rate and latency of any visual
control loop. Modern computers and high-speed cameras make it theoretically pos-
sible to do away with axis-level velocity loops but it is far simpler to use them.

Visual servoing of nonholonomic robots is nontrivial since Brockett’s theorem (1983)
shows that no linear time-invariant controller can control it. The approach used in this
chapter was position based which is a minor extension of the pose controller introduced
in Sect. 4.1.1.4. IBVS approaches have been proposed (Tsakiris et al. 1998; Masutani et al.
1994) but require that the camera is attached to the base by a robot with a small num-
ber of degrees of freedom. Mariottini et al. (1994, 2007) describe a two-step servoing
approach where the camera is rigidly attached to the base and the epipoles of the ge-
ometry defi ned by the current and desired camera views are explicitly servoed. Usher

579

(Usher et al. 2003; Usher 2005) describes a switching control law that takes the robot
onto a line that passes through the desired pose, and then along the line to the pose – ex-
perimental results on an outdoor vehicle are presented. The similarity between mobile
robot navigation and visual servoing problem is discussed in Corke (2001).

Resources

The controllers demonstrated in this chapter have all worked with simulated robotic
systems, and have executed much slower than real time. In order to put visual control
into practice we need to have fast image processing and feature extraction algorithms,
as well as means of communicating with the robot hardware. Fortunately there are lots
of tools and technologies to help with this: the Robot Operating System (aka, ROS www.
ros.org) is a comprehensive robot software framework for creating robots, OpenCV
for image processing (www.opencv.org), ViSP for creating visual trackers and con-
trollers (www.irisa.fr/lagadic/visp). Simulink supports real-time vision through the
Computer Vision System Toolbox, and the automatic synthesis of controllers that
can run on your computer, can be exported to real-time hardware, or be exported
as source code of a complete ROS node.

Exercises

1. XY/Z-partitioned IBVS (page 567)
a) Investigate the generated motion for different combinations of initial camera trans-

lation and rotation, and compare to the classical IBVS scheme of the last chapter.
b) Create a scenario where the features leave the image.
c) Add a repulsion fi eld to ensure that the features remain within the image.
d) Investigate variations of Eq. 16.3. Instead of driving the difference of area to zero,

try driving the ratio of current and desired area to one, or the logarithm of this
ratio to zero.

2. Investigate the performance of polar and spherical IBVS for different combina-
tions of initial camera translation and rotation, and compare to the classical IBVS
scheme of the last chapter.

3. Arm-robot IBVS example (page 572)
a) Add an offset (rotation and/or translation) between the end-effector and the

camera. Your controller will need to incorporate an additional Jacobian (see
Sect. 3.1.2) to account for this.

b) Add a discrete time sampler and delay after the camera block to model the cam-
era’s frame rate and image processing time. Investigate the response as the delay
is increased, and the tradeoff between gain and delay. You might like to plot a
discrete-time root locus diagram for this dynamic system.

c) Model a moving goal. Hint use the Camera2 block from the roblocks library.
Show the tracking error, that is, the distance between the camera and the goal.

d) Investigate feedforward techniques to improve the control (Corke 1996b). Hint,
instead of basing the control on where the goal was seen by the camera, base it on
where it will be some short time into the future. How far into the future? What
is a good model for this estimation? Check out the Toolbox class AlphaBeta
for a simple to use tracking fi lter (challenging).

e) An eye-in-hand camera for a docking task might have problems as the camera
gets really close to the goal. How might you confi gure the goal points and cam-
era to avoid this?

4. Mobile robot visual servo (page 574)
a) For the holonomic and nonholonomic cases replace the perspective camera with

a catadioptric camera.

16.5 · Wrapping Up

580 Chapter 16 · Advanced Visual Servoing

b) For the holonomic case with a catadioptric camera, move the robot through a se-
ries of via points, each defi ned in terms of a set of desired feature coordinates.

c) For the nonholonomic case implement the pure pursuit and line following con-
trollers from Chap. 4 but in this case using visual features. For pure pursuit con-
sider the object being pursued carries one or two point features. For the line fol-
lowing case consider using one or two line features.

5. Display the feature fl ow fi elds, like Fig. 15.7, for the polar r − φ and spherical θ − φ
projections (Sect. 16.2 and 16.3). For the spherical case can you plot the fl ow vec-
tors on the surface of a sphere?

6. Quadrotor
a) Replace the spherical camera with a perspective camera.
b) Create a controller to follow a series of point features rather than hover over a

single point (challenging).
c) Create a controller to follow a series of point features rather than hover over a

single point (challenging).
d) Add image feature derotation to minimize the effect of vehicle roll and pitch on

the visual control.
7. Implement the 2.5D visual servo scheme by Malis (1999) (challenging).

 Appendices
 Appendix A Installing the Toolboxes

 Appendix B Linear Algebra Refresher

 Appendix C Geometry

 Appendix D Lie Groups and Algebras

 Appendix E Linearization, Jacobians and Hessians

 Appendix F Solving Systems of Equations

 Appendix G Gaussian Random Variables

 Appendix H Kalman Filter

 Appendix I Graphs

 Appendix J Peak Finding

Appendix

A

 The Toolboxes are freely available from the book’s home page

http://www.petercorke.com/RVC

which also has a lot of additional information related to the book such as web links
(all those printed in the book and more), code, fi gures, exercises and errata.

Downloading and Installing

Two toolboxes support this book: the Robotics Toolbox (RTB) and the Machine Vision
Toolbox (MVTB). For the second edition of this book the relevant versions are RTB v10
and MVTB v4.

Toolboxes can be installed from .zip or .mltbx format fi les, with details below. Once
the toolboxes are downloaded you can explore their capability using

>> rtbdemo

or

>> mvtbdemo

From .mltbx File

Since MATLAB® R2014b toolboxes can be packaged as, and installed from, fi les
with the extension .mltbx. Download the most recent version of robot.mltbx
or vision.mltbx to your computer. Using MATLAB navigate to the folder where
you downloaded the fi le and double-click it (or right-click then select Install). The
Toolbox will be installed within the local MATLAB fi le structure, and the paths will be
appropriately confi gured for this, and future MATLAB sessions.

From .zip File

Download the most recent version of robot.zip or vision.zip to your computer.
Use your favorite unarchiving tool to unzip the fi les that you downloaded.

To add the Toolboxes to your MATLAB path execute the command

>> addpath RVCDIR ;
>> startup_rvc

where RVCDIR is the full pathname of the directory where the folder rvctools was
created when you unzipped the Toolbox fi les. The script startup_rvc adds various
subfolders to your path and displays the version of the Toolboxes.

You will need to run the startup_rvc script each time you start MATLAB. Alternatively
you can run pathtool and save the path confi guration created by startup_rvc.

Installing the Toolboxes

584 Appendix A · Installing the Toolboxes

For installation from zip fi les, the fi les for both Toolboxes reside in a top-level di-
rectory called rvctools and beneath this are a number of subdirectories:

robot The Robotics Toolbox.
vision The Machine Vision Toolbox.
common Utility functions common to the Robotics and Machine Vision

Toolboxes.
simulink Simulink® blocks for robotics and vision, as well as examples.
contrib Code written by third-parties.

MEX-Files

Some functions in the Toolbox are implemented as MEX-fi les, that is, they are written
in C for computational effi ciency but are callable from MATLAB just like any other
function. Source code is provided in the mex folder along with instructions and scripts
to build the MEX-fi les from inside MATLAB or from the command line. You will re-
quire a C-compiler in order to build these fi les, but prebuilt MEX-fi les for a limited
number of architectures are included.

Contributed Code

A number of useful functions are provided by third-parties and wrappers have been
written to make them consistent with other Toolbox functions. If you attempt to access
a contributed function that is not installed you will receive an error message.

The contributed code contrib.zip can be downloaded, expanded and then
added your MATLAB path. If you installed the Toolboxes from .zip fi les then expand
contrib.zip inside the folder RVCDIR.

Many of these contributed functions are part of active software projects and the down-
loadable fi le is a snapshot that has been tested and works as described in this book.

Getting Help

A Google group at http://tiny.cc/rvcforum provides answers to frequently asked ques-
tions, and has a user forum for discussing questions, issues and bugs.

License

All the non-third-party code is released under the LGPL license. This means you are
free to distribute it in original or modifi ed form provided that you keep the license
and authorship information intact.

The third-party code modules are provided under various open-source licenses.
The Toolbox compatibility wrappers for these modules are provided under compat-
ible licenses.

MATLAB Versions

The Toolbox software for this book has been developed and tested using MATLAB
R2015b and R2016a under Mac OS X (10.11 El Capitan). MATLAB continuously evolves
so older versions of MATLAB are increasingly unlikely to work. Please do not report
bugs if you are using a MATLAB version older than R2014a.

585Appendix A · Installing the Toolboxes

Octave

GNU Octave (www.octave.org) is an impressive piece of free software that implements
a language that is close to, but not the same as, MATLAB. The Toolboxes will not work
well with Octave, though with Octave 4 the incompatibilities are greatly reduced. An
old version of the arm-robot functions described in Chap. 7–9 have been ported to
Octave and this code is distributed in RVCDIR/robot/octave.

Appendix

B

B.1
l
Vectors

We will only consider real vectors� which are an ordered n-tuple of real numbers
v1, v2,� vn which is usually written as

which are a colum- and row-vector respectively. These are equivalent to an n × 1 and
a 1 × n matrix respectively, and can be multiplied with a conforming matrix.

The numbers v1, v2 etc. are called the scalar components of v, and vi is called the
ith component of v. For a 3-vector we often write the elements as v = (vx, vy, vz).

The symbol Rn represents the set of ordered n-tuples of real numbers, each vec-
tor is a point in this space, that is v ∈Rn. The elements of R2 can be represented in a
plane by a point or a directed line segment. The elements of R3 can be represented in
a volume by a point or a directed line segment.

A vector space is an n-dimensional space whose elements are vectors plus the opera-
tions of addition and scalar multiplication. The addition of any two elements a, b ∈Rn
yields (a1 + b1, a2 + b2� an + bn) and sa = (sa1, sa2� san). Both results are element
of Rn. The negative of a vector is obtained by negating each element of the vector
−a = (−a1, −a2�−an).

We can use a vector to represent a point with coordinates (x1, x2,� xn) which is
called a coordinate vector . However we need to be careful because the operations of
addition and scalar multiplication , while valid for vectors are meaningless for points.
We can add a vector to the coordinate vector of a point to obtain the coordinate vec-
tor of another point, and we can subtract one coordinate vector from another, and the
result is the is the displacement between the points.

The magnitude or length of a vector is a nonnegative scalar given by its p-norm

The Euclidean length of a vector is given by �v�2 which is also referred to as the L2 norm
and is generally assumed when p is omitted, for example �v�. A unit vector is one where
�v�2 = 1 and is denoted as *. The L1 norm is sum of the absolute value of the elements
and is also known as the Manhattan distance , it is the distance traveled when confi ned to
moving along the lines in a grid. The L∞ norm is the maximum element of the vector.

The dot product of two column vectors is a scalar

where θ is the angle between the vectors. a ·b = 0 when the vectors are orthogonal.
For 3-vectors the cross product

Linear Algebra Refresher

A rank 1 tensor.

588 Appendix B · Linear Algebra Refresher

where ' is a unit-vector parallel to the x-axis etc., [·]× is a skew-symmetric matrix as
described in the next section, and % is a unit-vector normal to the plane containing a
and b. If the vectors are parallel a × b = 0.

B.2
l
Matrices

A taxonomy of matrices is shown in Fig. B.1. In this book we are concerned only with
real m × n matrices�

with m rows and n columns. If n = m the matrix is square.
The transpose is

and it can be shown that Fig. B.1. Taxonomy of matrices.
Classes of matrices that are always
singular are shown in red, those that
are never singular are shown in blue

Real matrices are a subset of all matri-
ces. For the general case of complex ma-
trices the term Hermitian is the analog
of symmetric, and unitary the analog of
orthogonal. AH denotes the Hermitian
transpose, the complex conjugate trans-
pose of the complex matrix A. Matrices
are rank 2 tensors.

589Appendix B · Linear Algebra Refresher

B.2.1
l
Square Matrices

A square matrix may have an inverse A−1 in which case

where

is the identity matrix, a unit diagonal matrix. The inverse exists provided that the ma-
trix is nonsingular, that is, its determinant det(A) ≠ 0. The inverse can be computed
from the matrix of cofactors. If A and B are square and nonsingular then

and also

The inverse can be written as

where adj(A) is the transpose of the matrix of cofactors and known as the adjugate or
adjoint matrix and sometimes denoted by A∗. If B = adj(A) then A = adj(B). If A is
nonsingular the adjugate can be computed by

For a square matrix if

A = AT the matrix is symmetric. The inverse of a symmetric matrix is also
symmetric. Many matrices that we encounter in robotics are sym-
metric, for example covariance matrices and manipulator inertia
matrices.

A = −AT the matrix is skew-symmetric or anti-symmetric. Such a matrix
has a zero diagonal, is always singular and has the property that
[av]× = a[v]×, [Rv]× = R[v]× RT and vT[v]× = [v]×v = 0, ∀v. For the
3 × 3 case

 (B.1)

 and the inverse operation is

A−1 = AT the matrix is orthogonal. The matrix is also known as orthonormal
since its column vectors (and row vectors) must be of unit length
and orthogonal to each other. The product of two orthogonal

Ai = inv(A)

S = skew(v)

v = vex(S)

590 Appendix B · Linear Algebra Refresher

matrices of the same size is also an orthogonal matrix. The set of
n × n orthogonal matrices forms a group O(n), known as the or-
thogonal group. The determinant of an orthogonal matrix is ei-
ther +1 or −1. The subgroup SO(n) consisting of orthogonal ma-
trices with determinant +1 is called the special orthogonal group.
The columns (and rows) are orthogonal vectors, that is, their dot
product is zero.

ATA = AAT the matrix is normal and can be diagonalized by an orthogonal ma-
trix U so that U TAU is a diagonal matrix. All symmetric, skew-sym-
metric and orthogonal matrices are normal matrices as are matrices
of the form A = BTB = BBT where B is an arbitrary matrix.

The square matrix A ∈Rn×n can be applied as a linear transformation to a vec-
tor x ∈Rn

which results in another vector, generally with a change in its length and direction.
However there are some important special cases. If A ∈ SO(n) the transformation is
isometric and the vector’s length is unchanged �x′�= �x�.

In 2-dimensions if x is the set of all points lying on a circle then x′ defi nes points
that lie on an ellipse. The MATLAB® builtin demonstration

>> eigshow

shows this very clearly as you interactively drag the tip of the vector x around the
unit circle.

The eigenvectors of a square matrix are those vectors x such that

 (B.2)

that is, their direction is unchanged when transformed by the matrix. They are simply
scaled by λi, the corresponding eigenvalue. The matrix has n eigenvalues (the spectrum
of the matrix) which can be real or complex. For an orthogonal matrix the eigenvalues
lie on a unit circle in the complex plane, |λi| = 1, and the eigenvectors are all orthogo-
nal to one another.

The eigenvalues of a real symmetric matrix are all real and we classify the matrix
according to the sign of its eigenvalues

� λ i > 0, ∀i positive defi nite
� λ i ≥ 0, ∀i positive semi-defi nite
� λ i < 0, ∀i negative defi nite
� otherwise indefi nite

The inverse of a positive defi nite matrix is also positive defi nite.
The matrices ATA and AAT are always symmetric and positive semidefi nite. This

implies than any symmetric matrix A can be written as

where L is the Cholesky decomposition of A.
The matrix R such that

is the square root of A or AC.

[x,e] = eig(A)

L = chol(A)

R = sqrtm(A)

591Appendix B · Linear Algebra Refresher

If T is any nonsingular matrix then

is known as a similarity transform and A and B are said to be similar, and it can be
shown that the eigenvalues are unchanged by the transformation.

If A is nonsingular then the eigenvectors of A−1 are the same as A and the eigen-
values of A−1 are the reciprocal of those of A. The eigenvalues of AT are the same as
those of A but the eigenvectors are different.

The matrix form of Eq. B.2 is

where X ∈Rn×n is a matrix of eigenvectors of A, arranged column-wise, and Λ is a diag-
onal matrix of corresponding eigenvalues. If X is not singular we can rearrange this as

which is the eigenvalue or spectral decomposition of the matrix. This implies that the
matrix can be diagonalized by a similarity transform

If A is symmetric then X is orthogonal and we can instead write

 (B.3)

The determinant of a square matrix A ∈Rn×n is the factor by which the transfor-
mation changes changes volumes in an n-dimensional space. For 2-dimensions imag-
ine a shape defi ned by points xi with an enclosed area a. The shape formed by the
points Axi would have an enclosed area adet(A). If A is singular the points Axi would
lie at a single point or along a line and have zero enclosed area. In a similar way for
3-dimensions, the determinant is a scale factor applied to the volume of a set of points
mapped through the transformation A.

The determinant is equal to the product of the eigenvalues

thus a matrix with one or more zero eigenvalues will be singular. A positive defi nite
matrix, λi > 0, therefore has det(A) > 0 and is not singular. The trace of a matrix is
the sum of the diagonal elements

which is also the sum of the eigenvalues

The columns of A = (c1c2� cn) can be considered as a set of vectors that defi ne a
space – the column space. Similarly, the rows of A can be considered as a set of vectors
that defi ne a space – the row space. The column rank of a matrix is the number of
linearly independent columns of A. Similarly, the row rank is the number of linearly

det(A)

trace(A)

592 Appendix B · Linear Algebra Refresher

independent rows of A. The column rank and the row rank are always equal and are simply
called the rank of A and the rank has an upper bound of min(m, n). The rank is the dimen-
sion of the largest nonsingular square submatrix that can be formed from A. A square ma-
trix for which rank(A) < n is said to be rank defi cient or not of full rank. The rank shortfall
min(m, n) − rank(A) is the nullity of A. In addition rank (AB) ≤ min (rank (A), rank (B))
and rank (A + B) ≤ rank (A) + rank (B). The matrix vvT has rank 1 for all v ≠ 0.

B.2.2
l
Nonsquare and Singular Matrices

For a nonsquare matrix A ∈Rm×n we can determine the left generalized inverse or
 pseudo inverse or Moore-Penrose pseudo inverse

where A+ = (ATA)−1AT. The right generalized inverse is

where A+ = AT(AAT)−1.
If the matrix A is not of full rank then it has a fi nite null space or kernel. A vector x

lies in the null space of the matrix if

More precisely this is the right-null space. A vector lies in the left-null space if

The left null space is equal to the right null space of AT.
The null space is defi ned by a set of orthogonal basis vectors whose dimension is the

nullity of A. Any linear combination of these null-space basis vectors lies in the null space.
For a nonsquare matrix A ∈ Rm×n the analog to Eq. B.2 is

where ui ∈ Rm and vi ∈ Rn are respectively the right- and left- singular vectors of A,
and σi its singular values. The singular values are nonnegative real numbers that are
the square root of the eigenvalues of AAT and ui are the corresponding eigenvectors.
vi are the eigenvectors of ATA.

The singular value decomposition or SVD of the matrix A is

where U ∈Rm×m and V ∈Rn×n are both orthogonal matrices comprising, as columns,
the corresponding singular vectors ui and vi. Σ ∈Rm×n is a diagonal matrix of the
 singular values

rank(A)

null(A)

[U,S,Vt] = svd(A)

593Appendix B · Linear Algebra Refresher

where r = rank(A) is the rank of A and σi ≥ σi+1. For the case where r < n the diagonal
will have zero elements as shown. Columns of VT corresponding to the zero columns
of Σ defi ne the null space of A. The condition number of a matrix A is maxσi / minσi
and a high value means the matrix is close to singular or “poorly conditioned”.

The matrix quadratic form

 (B.4)

is a scalar. If A is positive defi nite then s = xT A x > 0, ∀x ≠ 0.
For the case that A is diagonal this can be written

which is a weighted sum of squares. If A is symmetric then

the result also includes products or correlations between elements of x.
The Mahalanobis distance is a weighted distance or norm

where P ∈Rn×n is a covariance matrix which down-weights components of v where
uncertainty is high.

cond(A)

Appendix

C

Geometric concepts such as points, lines, ellipses and planes are critical to the fi elds
of robotics and robotic vision. We briefl y summarize key representations in both
Euclidean and projective (homogeneous coordinate) space.

C.1
l
Euclidean Geometry

C.1.1
l
Points

A point in n-dimensional space is represented by an n-tuple, an ordered set of n num-
bers (x1, x2� xn) which defi ne the coordinates of the point. The tuple can also be in-
terpreted as a vector – a coordinate vector – from the origin to the point.

C.1.2
l
Lines

C.1.2.1
l
Lines in 2D

A line is defi ned by `= (a, b, c) such that

 (C.1)

which is a generalization of the line equation we learned in school y = mx + c but
which can easily represent a vertical line by setting a = 0. v = (a, b) is a vector paral-
lel to the line, and v = (−b, a) is a vector normal to the line. The line that joins two
points is given by the solution to

which is found from the right-null space of the left-most term. The intersection point
of two lines is

which has no solution if the lines are parallel – the left-most term is singular.
We can also represent the line in polar form

where θ is the angle from the x-axis to the line and ρ is the normal distance between
the line and the origin, as shown in Fig. 13.18.

Geometry

596 Appendix C · Geometry

C.1.2.2
l
Lines in 3D and Plücker Coordinates

We can defi ne a line by two points, p and q, as shown in Fig. C.1, which would require
a total of six parameters `= (qx, qy, qz,px, py, pz). However since these points can be
arbitrarily chosen there would be an infi nite set of parameters that represent the same
line making it hard to determine the equivalence of two lines.

There are advantages in representing a line as

where ω is the direction of the line and v is the moment of the line – a vector from
the origin to a point on the line and normal to the line. This is a Plücker coordi-
nate vector – a six dimensional quantity subject to two constraints: the coordinates
are homogeneous and thus invariant to overall scale factor; and v · ω = 0. Lines
therefore have 4 degrees-of-freedom� and the Plücker coordinates lie on a 4-di-
mensional manifold in 6-dimensional space. Lines with ω = 0 lie at infi nity and
are known as ideal lines.�

In MATLAB® we will fi rst defi ne two points as column vectors

>> P = [2 3 4]'; Q = [3 5 7]';

and then create a Plücker line object
>> L = Plucker(P, Q)
L =
{ 1 -2 1; -1 -2 -3 }

which displays the v and w components. These can be accessed as properties

>> L.v'
ans =
 1 -2 1
>> L.w'
ans =
 -1 -2 -3

A Plücker line can also be represented as a skew-symmetric matrix

>> L.L
ans =
 0 1 2 -1
 -1 0 1 -2
 -2 -1 0 -3
 1 2 3 0

which can also be formed by pqT − qpT.
To plot this line we fi rst defi ne a region of 3D space� then plot it in blue

>> axis([-5 5 -5 5 -5 5]);
>> L.plot('b');

The line is the set of all points

which can be generated parametrically in terms of a scalar parameter

>> L.point([0 1 2])
ans =
 -0.5714 -1.5714 -2.5714
 -0.1429 -2.1429 -4.1429
 0.2857 -2.7143 -5.7143

where the columns are points on the line corresponding to λ = 0, 1, 2.
Fig. C.1. Describing a line in 3-di-
mensions

This is not intuitive but consider two
parallel planes and an arbitrary 3D line
passing through them. The line can be
described by the 2-dimensional coordi-
nates of its intersection point on each
plane – a total of four coordinates.

Ideal as in imaginery, not as in perfect.

Since lines lines are infinite we need to
specify a finite volume in which to draw it.

597Appendix C · Geometry

Julius Plücker (1801–1868) was a German mathematician and
physicist who made contributions to the study of cathode
rays and analytical geometry. He was born at Elberfeld
and studied at Düsseldorf, Bonn, Heidelberg and Berlin
and went to Paris in 1823 where he was infl uenced by the
French geometry movement. In 1825 he returned to the
University of Bonn, was made professor of mathematics in
1828, and professor of physics in 1836. In 1858 he proposed
that the lines of the spectrum, discovered by his colleague
Heinrich Geissler (of Geissler tube fame), were characteris-
tic of the chemical substance which emitted them. In 1865,
he returned to geometry and invented what was known as
line geometry. He was the recipient of the Copley Medal
from the Royal Society in 1866, and is buried in the Alter
Friedhof (Old Cemetery) in Bonn.

A point x is closest to the line when

For the point (1, 2, 3) the closest point on the line, and its distance, is given by

>> [x, d] = L.closest([1 2 3]')
x =
 3.1381
 2.5345
 1.9310
d =
 2.4495

The line intersects the plane nTx + d = 0 at the point coordinate

For the xy-plane the line intersects at
>> L.plane_intersect([0 0 1 0])'
ans =
 0.6667 0.3333 0

Two lines can be identical, coplanar or skewed. Identical lines have linearly depen-
dent Plücker coordinates, that is, ̀ 1 = λ`2. If coplanar they can be parallel or intersect-
ing and if skewed can be intersecting or not. If lines have ω1 × ω2 = 0 they are parallel
otherwise they are skewed.

The minimum distance between two lines is

and is zero if they intersect.
The side operator is a permuted dot product

which is zero if the lines intersect or are parallel and is computed by the side method.
We can transform a Plücker line by the adjoint of a rigid-body motion.

598 Appendix C · Geometry

C.1.3
l
Planes

A plane is defi ned by a 4-vector π = (a, b, c, d) such that

which can be written in point-normal form as

for a plane containing a point with coordinate p and a normal n, or more generally as

A plane can be defi ned by 3 points

and solved for using the right-null space of the left-most term, or by two nonpar-
allel lines

or by a line and a point with coordinate r

A point is defi ned as the intersection point of three planes

The Plücker line formed by the intersection of two planes is Fig. C.2. Ellipses. a Canonical el-
lipse centered at the origin and
aligned with the x- and y-axes;
b general form of ellipse

599Appendix C · Geometry

C.1.4
l
Ellipses and Ellipsoids

An ellipse belongs to the family of planar curves known as conics. The simplest form
of an ellipse is defi ned implicitly

and is shown in Fig. C.2a. This canonical ellipse is centered at the origin and has its
major and minor axes aligned with the x- and y-axes. The radius in the x-direction is
a and in the y-direction is b. The longer of the two radii is known as the semi-major
axis length and the other is the semi-minor axis length.

We can write the ellipse in matrix quadratic form Eq. B.4 as

 (C.2)

 (C.3)

In the most general form E is a symmetric matrix

 (C.4)

and its determinant det(E) = AB − C 2 defi nes the type of conic

An ellipse is therefore represented by a positive defi nite symmetric matrix E.
Conversely any positive defi nite symmetric matrix, such as an inertia matrix or cova-
riance matrix, can be represented by an ellipse.

Nonzero values of C change the orientation of the ellipse. The ellipse can be arbi-
trarily centered at xc by writing it in the form

which leads to the general ellipse shown in Fig. C.2b.
Since E is symmetric it can be diagonalized by Eq. B.3

where X is an orthogonal matrix comprising the eigenvectors of E. The inverse is

so the quadratic form becomes

600 Appendix C · Geometry

This is similar to Eq. C.3 but with the ellipse defi ned by the diagonal matrix Λ with
respect to the rotated coordinated frame x′ = XTx. The major and minor ellipse axes
are aligned with the eigenvectors of E. The squared radii of the ellipse are the eigen-
values of E or the diagonal elements of Λ.

For the general case of E ∈Rn×n the result is an ellipsoid in n-dimensional space.
The Toolbox function plot_ellipse will draw an ellipse for the n = 2 case and an
ellipsoid for the n = 3 case.

Alternatively the ellipse can be represented in polynomial form by writing as

and expanding to obtain

where e1 = a, e2 = b, e3 = 2c, e4 = −2(ax0 + cy0), e5 = −2(by0 + cx0) and e6 = ax0
2 + by0

2

+ 2cx0y0 − 1. The ellipse has only fi ve degrees of freedom, its center coordinate and
the three unique elements in E. For a nondegenerate ellipse where e1 ≠ 0 we can re-
write the polynomial in normalized form

 (C.5)

with fi ve unique parameters.

C.1.4.1
l
Properties

The area of an ellipse is πab and its eccentricity is

The eigenvectors of E defi ne the principal directions of the ellipse and the square
root of the eigenvalues are the corresponding radii.

Consider the ellipse

which is represented in MATLAB by
>> E = [2 -1; -1 1];

Fig. C.3.
Ellipse corresponding to a sym-
metric 2 × 2 matrix, and the unit
circle shown in red. The arrows
indicate the major and minor
axes of the ellipse

601Appendix C · Geometry

We can plot this by

>> plot_ellipse(E)

which is shown in Fig. C.3.
The eigenvectors and eigenvalues of E are

>> [x,e] = eig(E)
x =
 -0.5257 -0.8507
 -0.8507 0.5257
e =
 0.3820 0
 0 2.6180

and the ellipse radii are

>> r = sqrt(diag(e))
r =
 0.6180
 1.6180

which correspond to b and a respectively. If either radius is equal to zero the ellipse is
degenerate and becomes a line. If both radii are zero the ellipse is a point.

The eigenvectors are unit vectors in the minor- and major-axis directions and we
will scale them by the radii to yield radius vectors which we can plot

>> arrow([0 0]', x(:,1)*r(1));
>> arrow([0 0]', x(:,2)*r(2));

The orientation of the ellipse is the angle of the major-axis with respect to the hori-
zontal axis and is

For our example this is

>> atan2(x(2,2), x(1,2)) * 180/pi
ans =
 148.2825

in units of degrees.
The ellipse area is πr1r2 and the ellipsoid volume is ¿πr1r2r3 where the radii ri = λ̂i

where λi are the eigenvalues of E. Since det(E) = Πλi the area or volume is propor-
tional to d̂egtg(gE).

C.1.4.2
l
Drawing an Ellipse

In order to draw an ellipse we fi rst defi ne a point coordinate y = [x, y]T on the unit circle

and rewrite Eq. C.3 as

where EC is the matrix square root (MATLAB function sqrtm). Equating these two
equations we can write

602 Appendix C · Geometry

It is clear that

which we can rearrange as

which transforms a point on the unit circle to a point on an ellipse. If the ellipse is cen-
tered at xc rather than the origin we can perform a change of coordinates

from which we write the transformation as

Continuing the MATLAB example above

>> E = [2 -1; -1 1];

We defi ne a set of points on the unit circle

>> th = linspace(0, 2*pi, 50);
>> y = [cos(th); sin(th)];

which we transform to points on the perimeter of the ellipse

>> x = (sqrtm(E) * y)';
>> plot(x(:,1), x(:,2));

which is encapsulated in the Toolbox function

>> plot_ellipse(E, [0 0])

An ellipsoid is described by a positive-defi nite symmetric 3 × 3 matrix. Drawing an
ellipsoid is tackled in an analogous fashion and plot_ellipse is also able to dis-
play a 3-dimensional ellipsoid.

C.1.4.3
l
Fitting an Ellipse to Data

From a Set of Interior Points

We wish to fi nd the equation of an ellipse that best fi ts a set of points that lie within the el-
lipse boundary. A common approach is to fi nd the ellipse that has the same mass proper-
ties as the set of points. From the set of N points xi = (xi, yi) we can compute the moments

The center of the ellipse is taken to be the centroid of the set of points

603Appendix C · Geometry

which allows us to compute the central second moments

The inertia matrix for a general ellipse is the symmetric matrix

where the diagonal terms are the moments of inertia and the off-diagonal terms are
the products of inertia. Inertia can be computed more directly by

The relationship between the inertia matrix and the symmetric ellipse matrix is

To demonstrate this we can create a set of points that lie within the ellipse used in
the example above

1 % generate a set of points within the ellipse
2 p = [];
3 while true
4 x = (rand(2,1)-0.5)*4;
5 if norm(x'*inv(E)*x) <= 1
6 p = [p x];
7 end
8 if numcols(p) >= 500
9 break;
10 end
11 end
12 plot(p(1,:), p(2,:), '.')
13
14 % compute the moments
15 m00 = mpq_point(p, 0,0);
16 m10 = mpq_point(p, 1,0);
17 m01 = mpq_point(p, 0,1);
18 xc = m10/m00; yc = m01/m00;
19
20 % compute second moments relative to centroid
21 pp = bsxfun(@minus, p, [xc; yc]);
22
23 m20 = mpq_point(pp, 2,0);
24 m02 = mpq_point(pp, 0,2);
25 m11 = mpq_point(pp, 1,1);
26
27 % compute the moments and ellipse matrix
28 J = [m20 m11; m11 m02];
29 E_est = 4 * J / m00

604 Appendix C · Geometry

which results in an estimate
>> E_est
E_est =
 1.8706 -0.9151
 -0.9151 0.9716

which is similar to the original value of E. The point data is shown in Fig. C.4. We can
overlay the estimated ellipse on the point data

>> plot_ellipse(E_est, [xc yc], 'r')

and the result is shown in red in Fig. C.4.

From a Set of Boundary Points

We wish to fi nd the equation of an ellipse given a set of points (xi, yi) that defi ne the
boundary of an ellipse. Using the polynomial form of the ellipse Eq. C.5 for each point
we write this in matrix form

and for N ≥ 5 we can solve for the ellipse parameter vector.

C.2
l
Homogeneous Coordinates

A point in homogeneous coordinates, or the projective space Pn, is represented by a
coordinate vector x = (²1, ²2� ²n+1). The Euclidean coordinates are related to the
projective coordinates by

Conversely a homogeneous coordinate vector can be constructed from a Euclidean
coordinate vector by

and the tilde is used to indicate that the quantity is homogeneous.

Fig. C.4.
Data points (blue) with a fi tted
ellipse (red).

605Appendix C · Geometry

The extra degree of freedom offered by projective coordinates has several ad-
vantages. It allows points and lines at infinity, known as ideal points and lines, to
be represented using only real numbers. It also means that scale is unimportant,
that is x and x′ = αx both represent the same Euclidean point for all α ≠ 0. We
express this as x� x′. Points in homogeneous form can also be rotated with re-
spect to a coordinate frame and translated simply by multiplying the homogeneous
coordinate by an (n + 1) × (n + 1) homogeneous transformation matrix.

Homogeneous vectors are important in computer vision when we consider
points and lines that exist in a plane – a camera’s image plane. We can also con-
sider that the homogeneous form represents a ray in Euclidean space as shown in
Fig. C.5. The relationship between points and rays is at the core of the projective
transformation.

C.2.1
l
Two Dimensions

In two dimensions there is a duality between points and lines. In P2 a line is defi ned
by a 3-tuple, l = (`1, `2, `3)T, not all zero, and the equation of the line is the set of
all points

which expands to `1x + `2y + `3 = 0 and can be manipulated into the more familiar
representation of a line. Note that this form can represent a vertical line, parallel to
the y-axis, which the familiar form y = mx + c cannot. This is the point equation of
a line. The nonhomogeneous vector (`1, `2) is a normal to the line, and (−`2, `1) is
parallel to the line.

A point is defi ned by the intersection of two lines. If we write the point equations
for two lines l1

Tp = 0 and l2
Tp = 0 their intersection is the point with coordinates

and is known as the line equation of a point. Similarly, a line joining two points p1
and p2 is given by the cross-product

Consider the case of two parallel lines at 45° to the horizontal axis

>> l1 = [1 -1 0]';
>> l2 = [1 -1 -1]';

Fig. C.5.
A point P on the Euclidean

plane R2 (red) is described by a
coordinate vector p ∈ R2 which

is equivalent to the three-dimen-
sional vector in the projective

space P2 (blue) which is the ho-
mogeneous coordinate p ∈ P2

606 Appendix C · Geometry

which we can plot

>> plot_homline(l1, 'b')
>> plot_homline(l2, 'r')

The intersection point of these parallel lines is
>> cross(l1, l2)
ans =
 1 1 0

This is an ideal point since the third coordinate is zero – the equivalent Euclidean
 point would be at infi nity. Projective coordinates allow points and lines at infi nity
to be simply represented and manipulated without special logic.

The distance from a point with coordinates p to a line l is

 (C.6)

C.2.1.1
l
Conics

Conic sections are an important family of planar curves that includes circles , ellipses ,
parabolas and hyperbolas which can be described by

or more concisely as pTcp = 0 where c is a matrix

The determinant of the top-left submatrix indicates the type of conic: negative for
a hyperbola, 0 for a parabola and positive for an ellipse.

C.2.2
l
Three Dimensions

In three dimensions there is a duality between points and planes.

C.2.2.1
l
Lines

Using the homogeneous representation of the two points p and q we can form a
4 × 4 skew-symmetric matrix

whose 6 unique elements comprise the Plücker coordinate vector. This matrix is rank 2
and the determinant is a quadratic in the Plücker coordinates – a 4-dimensional quadric

607Appendix C · Geometry

hypersurface known as the Klein quadric . All points that lie on this manifold are valid
lines. Many of the relationships in Sect. C.1.2.2 (between lines and points and planes)
can be expressed in terms of this matrix. This matrix is returned by the L method of
the Plucker class.

For a perspective camera with a camera matrix C the 3-dimensional Plücker line
represented as a 4 × 4 skew-symmetric matrix L is projected onto the image plane as

which is a homogeneous line in P2. This is computed automatically if a Plucker ob-
ject is passed to the project method of a CentralCamera object.

C.2.2.2
l
Planes

The plane described by πx = 0 can be defi ned by a line and a point

The join and incidence relationships are more complex than the cross products used
for the 2-dimensional case. Three points defi ne a plane and the join relationship is

and the solution is found from the right-null space of the matrix. The incidence of
three planes is the dual

and is an ideal point, zero last component, if the planes do not intersect at a point.

C.2.2.3
l
Quadrics

Quadrics , short for quadratic surfaces , are a rich family of 3-dimensional surfaces.
There are 17 standard types including spheres , ellipsoids , hyperboloids , paraboloids ,
cylinders and cones all described by

where Q ∈R4×4 is symmetric.
For a perspective camera with a camera matrix C the outline of the quadric is pro-

jected to the image plane by

where c is a 3 × 3 matrix describing the conic, see Sect. C.2.1.1, and (·)∗ represents the
adjugate operation, see Appendix B.

608 Appendix C · Geometry

C.3
l
Geometric Transformations

A linear transform is y = Ax and an affi ne transform is

 (C.7)

which comprises a linear transformation and a change of origin. Examples of affi ne trans-
formations include translation , scaling , homothety , similarity transformation , refl ection ,
rotation , shear mapping , and compositions of them in any combination and sequence.
Every linear transformation is affi ne, but not every affi ne transformation is linear.

In homogeneous coordinates we can write Eq. C.7 as

and the transformation operates on a point with homogeneous coordinates x. If a vector
is defi ned as the difference between two homogeneous points p and q then the difference
p − q is a 4-vector whose last element is zero, distinguishing a point from a vector.

Affi ne space is a generalization of Euclidean space and has no distinguished point
that serves as an origin. Hence, no vector has a fi xed origin and no vector can be
uniquely associated to a point an affi ne space, there are instead displacement vec-
tors between two points of the space. Thus it makes sense to subtract two points of
the space, giving a vector, but it does not make sense to add two points of the space.
Likewise, it makes sense to add a vector to a point of an affi ne space, resulting in a
new point displaced from the starting point by that vector.

In two-dimensions the most general transformation is projective transformation
projective, also known as a collineation

which is unique up to scale and one element has been normalized to one. It has 8 de-
grees of freedom.

The affi ne transformation is a subset where the elements of the last row are fi xed

and has 6 degrees of freedom.

Fig. C.6.
A 2-dimensional square (dark
grey) is operated on by various
transformations from the most
limited (Euclidean) to the most
general (projective)

609Appendix C · Geometry

The similarity transformation is further subset

where R ∈ SO(2) resulting in only 4 degrees of freedom. Similarity transforms, without
refl ection, are sometimes referred to as a Procrustes transform .

Finally the Euclidean or rigid-body transformation

is the most restrictive and has only 3 degrees of freedom. Some graphical examples
of the effect of the various transformations on a square are shown in Fig. C.6. The
possible geometric transformations for each type of transform are summarized in
Table C.1 along with the geometric properties which are unchanged, or invariant,
under that transformation. We see that while Euclidean is most restrictive in terms of
the geometric transformations it can perform it is able to preserve important proper-
ties such as length and angle.

Table C.1.
For various planar transforma-

tion families the possible geo-
metric transformations and the
geometric properties which are

preserved are listed

Appendix

D

We cannot go very far in the study of rotations or rigid-body motion without com-
ing across the terms Lie groups , Lie algebras or Lie brackets – all named in honor
of the Norwegian mathematician Sophus Lie . Rotations and rigid-body motion
in 2- and 3-dimensions can be represented by matrices which form Lie groups and
which have Lie algebras.

We will start simply by considering the set of all real 2 × 2 matrices A ∈R2×2

which we could write as a linear combination of basis matrices

where each basis matrix represents a direction in a 4-dimensional space of 2 × 2 ma-
trices. That is, the four axes of this space are parallel with each of these basis matrices.
Any 2 × 2 matrix can be represented by a point in this space – this particular matrix
is a point with the coordinates (a11, a12, a21, a22).

All proper rotation matrices, those belonging to SO(2), are a subset of points with-
in the space of all 2 × 2 matrices. For this example the points lie in a 1-dimensional
subset, a closed curve, in the 4-dimensional space. This is an instance of a manifold ,
a lower-dimensional smooth surface embedded within a space.

The notion of a curve in the 4-dimensional space makes sense when we consider
that the SO(2) rotation matrix

has only one free parameter, and varying that parameter moves the point along the
manifold.

Lie Groups and Algebras

Sophus Lie (1842–1899) (surname pronounced lee) was a Norwegian
mathematician who obtained his Ph.D. from the University of
Christiania in Oslo in 1871. He spent time in Berlin working with
Felix Klein, and later contributed to Klein’s Erlangan program
to characterize geometries based on group theory and projec-
tive geometry. On a visit to Milan during the Franco-Prussian
war he was arrested as a German spy and spent one month in
prison. He is best known for his discovery that continuous trans-
formation groups (now called Lie groups) can be understood by
linearizing them and studying their generating vector spaces.
He is buried in the Vår Frelsers gravlund in Oslo. (Photograph
by Ludwik Szacinski)

612 Appendix D · Lie Groups and Algebras

Invoking mathematical formalism we say that rotations SO(2) and SO(3), and
rigid-body motions SE(2) and SE(3) are matrix Lie groups and this has two impli-
cations. Firstly, they are an algebraic group , a mathematical structure compris-
ing elements and a single operator. In simple terms, a group G has the following
properties:

1. if g1 and g2 are elements of the group, that is g1, g2 ∈ G, then the result of the group’s
 operator � is also an element of the group: g1 � g2 ∈ G. In general, groups are not
commutative so g1 � g2 ≠ g2 � g1. For rotations and rigid-body motions the group
 operator � represents composition.�

2. the group operator is associative, that is, (g1 � g2) � g3 = g1 � (g2 � g3).
3. for g ∈ G there is an identity element I ∈ G such that g � I = I � g = g.�

4. for every g ∈ G there is a unique inverse h ∈ G such that g � h = h � g = I.�

The second implication of being a Lie group is that there is a smooth (differen-
tiable) manifold structure. At any point on the manifold we can construct tangent
vectors. The set of all tangent vectors at that point form a vector space – the tangent
space . This is the multidimensional equivalent to a tangent line on a curve, or a tan-
gent plane on a solid. We can think of this as the set of all possible derivatives of the
manifold at that point.

The tangent space at the identity is described by the Lie algebra of the group,
and the basis directions of the tangent space are called the generators of the group.
Points in this tangent space map to elements of the group via the exponential function.
If g is the Lie algebra for group G then

where the elements of g and G are matrices of the same size and which each have a
specifi c structure.

The surface of a sphere is a manifold in 3-dimensional space and at any point
on that surface we can create a tangent vector. In fact we can create an infi nite
number of them and they lie within a plane which is a 2-dimensional vector space
– the tangent space. We can choose a set of basis directions and establish a 2-di-
mensional coordinate system and we can map points on the plane to points on the
sphere’s surface.

Now consider an arbitrary real 3 × 3 matrix A ∈R3×3

which we could write as a linear combination of basis matrices

where each basis matrix represents a direction in a 9-dimensional space of 3 × 3 ma-
trices. Every possible 3 × 3 matrix is represented by a point in this space.

Not all matrices in this space are proper rotation matrices belonging to SO(3),
but those that do lie on a manifold since SO(3) is a Lie group. The null rotation,
represented by the identity matrix, is one point in this space. At that point we can
construct a tangent space which has only 3 dimensions. Every point in the tangent
space – the derivatives of the manifold – can be expressed as a linear combination
of basis matrices

In this book’s notation the identity is de-
noted by 0 (implying null motion) so we
can say that ξ ⊕ 0 = 0 ⊕ ξ = ξ .

In this book’s notation the ⊕ operator is
the group operator.

In this book’s notation we use the opera-
tor �ξ to form the inverse.

613Appendix D · Lie Groups and Algebras

 (D.1)

which is the Lie algebra of the SO(3) group. The bases of this space: G1, G2 and G3 are
called the generators of SO(3) and belong to so(3).�

Equation D.1 can be written as a skew-symmetric matrix parameterized by the vec-
tor ω = (ω1, ω2, ω3) ∈R3

and this refl ects the 3 degrees of freedom of the SO(3) group embedded in the space
of all 3 × 3 matrices. The 3DOF is consistent with our intuition about rotations in
3D space and also Euler’s rotation theorem.

Mapping between vectors and skew-symmetric matrices is frequently required and
the following shorthand notation will be used

The fi rst mapping is performed by the Toolbox function skew and the second by vex
(which is named after the ∨×).

The exponential of any matrix in so(3) is a valid member of SO(3)

and an effi cient closed-form solution is given by Rodrigues’ rotation formula

Finally, consider an arbitrary real 4 × 4 matrix A ∈R4×4

which we could write as a linear combination of basis matrices

where each basis matrix represents a direction in a 16-dimensional space of all possible
4 × 4 matrices. Every 4 × 4 matrix is represented by a point in this space.

Not all matrices in this space are proper homogeneous transformation matrices
belonging to SE(3), but those that do lie on a smooth manifold . The null motion (zero
rotation and translation), which is represented by the identity matrix, is one point in
this space. At that point we can construct a tangent space, which has 6 dimensions in
this case, and points in the tangent space can be expressed as a linear combination
of basis matrices

The equivalent algebra is denoted using
lower case letters and is a set of matrices.

614 Appendix D · Lie Groups and Algebras

and these generator matrices belong to the Lie algebra of the group SE(3) and are de-
noted se(3). This can be written in general form as

which is an augmented skew symmetric matrix parameterized by S = (v, ω) ∈ R6
which is referred to as a twist and has physical interpretation in terms of a screw axis
direction and position. The sparse matrix structure and this concise parameteriza-
tion refl ects the 6 degrees of freedom of the SE(3) group embedded in the space of all
4 × 4 matrices. We extend our earlier shorthand notation

We can use these operators to convert between a twist representation which is a
6-vector and a Lie algebra representation which is a 4 × 4 augmented skew-symmetric
matrix. We convert the Lie algebra to the Lie group representation using

or the inverse using the matrix logarithm. The exponential and the logarithm each
have an effi cient closed form solution.

Transforming a Twist – the Adjoint Representation

We have seen that rigid-body motions can be described by a twist which represents
motion in terms of a screw axis direction and position, for example in Fig. D.1 the
twist SA can be used to transform points on the body. If the screw is rigidly attached
to the body which undergoes some motion in SE(3) the new twist is

Fig. D.1.
Points in the body (grey cloud) can
be transformed by the twist SA.
If the body and the screw axis
undergo a rigid-body transfor-
mation Aξ B the new twist is SB

615Appendix D · Lie Groups and Algebras

Fig. D.2.
The menagerie of SE(3) related

quantities. Matrix values are
coded as: 0 (black), 1 (white),

other values (grey). Transforma-
tions between types are indicat-

ed by blue arrows with the rel-
evant class plus method name.
Operations are indicated by red
arrows: the tail-end object oper-
ates on the head-end object and
results in another object of the

head-end type

where

 (D.2)

is the adjoint representation of the rigid-body motion. Alternatively we can write

where ad(S) is the logarithm of the adjoint and defi ned in terms of the twist parameters as

The relationship between the various mathematical objects discussed are shown
in Fig. D.2.

Appendix

E

In robotics and computer vision the equations we encounter are often nonlinear. To
apply familiar and powerful analytic techniques we must work with linear or qua-
dratic approximations to these equations. The principle is illustrated in Fig. E.1
for the 1-dimensional case, and the analytical approximations shown in red are made
at x = x0. The approximation equals the nonlinear function at x0 but is increasing
inaccurate as we move away from that point. This is called a local approximation
since it is valid in a region local to x0 – the size of the valid region depends on the
severity of the nonlinearity. This approach can be extended to an arbitrary number
of dimensions.

Scalar Function of a Scalar

The function f: R�R can be expressed as a Taylor series

which we truncate to form a fi rst-order or linear approximation

or a second-order approximation

where ∆ ∈R is an infi nitesimal change in x relative to the linearization point x0, and
the fi rst and second derivatives are given by J(x0) = df/dx|x0 and H(x0) = d2f/dx2|x0
respectively.

Linearization , Jacobians
and Hessians

Fig. E.1.
The nonlinear function f (x)

(black) is approximated (red) at
the point x = x0 by a a line – a

linear or fi rst-order approxima-
tion, b a parabola – a second-or-

der approximation. At the lin-
earization point both curves are

equal and tangent to the func-
tion while for b the second de-

rivatives also match

618 Appendix E · Linearization, Jacobians and Hessians

Ludwig Otto Hesse (1811–1874)
was a German mathematician,
born in Königsberg, Prussia, who
studied under Jacobi (p. 232) and
Bessel at the University of Kö-
nigsberg. He taught at Königs-
berg, Halle, Heidelberg and fi -
nally at the newly established
Polytechnic School in Munich.
In 1869 he joined the Bavarian
Academy of Sciences.

Scalar Function of a Vector

The scalar fi eld f(x): Rn�R can be expressed as a Taylor series

which we can truncate to form a fi rst-order or linear approximation

or a second-order approximation

where ∆ ∈Rn is an infi nitesimal change in x ∈Rn relative to the linearization point x0,
J ∈R1×n is the vector version of the fi rst derivative, and H ∈Rn×n is the Hessian – the
 matrix version of the second derivative.

The derivative of the function f(·) with respect to the vector x is

and is itself a vector that points in the direction at which the function f(x) has maxi-
mal increase. It is often written as ∇x f to make explicit that the differentiation is with
respect to x.

The Hessian is an n × n symmetric matrix of second derivatives

The function is at a critical point when the Jacobian is not full rank. If the Hessian
is positive defi nite then the function is at a local minimum, if negative defi nite then a
local maximum, and if indefi nite then the function is at a saddle point.

For functions which are quadratic in x, as is the case for least-squares problems, it
can be shown that the Hessian is

which is frequently approximated by just the fi rst term and this is key to Gauss-Newton
least-squares optimization discussed in Sect. F.2.2.

Vector Function of a Vector

The vector fi eld f(x): Rn�R
m can be expressed as a Taylor series which can also be

written as

619Appendix E · Linearization, Jacobians and Hessians

where fi:R
m →R for i ∈ {1, 2,� n}. The derivative of f with respect to the vector x

can be expressed in matrix form as a Jacobian matrix

which can also be written as

This derivative is also known as the tangent map of f, denoted Tf, or the differential
of f denoted Df. To make explicit that the differentiation is with respect to x this can
be denoted as Jx, Txf, Dxf or even ∂f / ∂x.

The Hessian in this case is H ∈Rn×m×n which is a 3-dimensional array called a cubix.

Deriving Jacobians

Jacobians of functions are required for many optimization algorithms as well as for
the extended Kalman fi lter, and can be evaluated numerically or symbolically.

Consider Eq. 6.8 for the range and bearing angle of a landmark given the pose of
the vehicle and the position of the landmark. We can express this as the very simple
MATLAB® anonymous function

>> zrange = @(xi, xv, w) ...
 [sqrt((xi(1)-xv(1))^2 + (xi(2)-xv(2))^2) + w(1);
 atan((xi(2)-xv(2))/(xi(1)-xv(1)))-xv(3) + w(2)];

To estimate the Jacobian Hxv = ∂h / ∂xv for xv = (1, 2, þ) and xi = (10, 8) we can com-
pute a fi rst-order numerical difference

>> xv = [1, 2, pi/3]; xi = [10, 8]; w= [0,0];
>> h0 = zrange(xi, xv, w)
h0 =
 10.8167
 -0.4592
>> d = 0.001;
>> J = [zrange(xi, xv+[1,0,0]*d, w)-h0 ...
 zrange(xi, xv+[0,1,0]*d, w)-h0, ...
 zrange(xi, xv+[0,0,1]*d,w)-h0] / d
J =
 -0.8320 -0.5547 0
 0.0513 -0.0769 -1.0000

which shares the characteristic last column with the Jacobian shown in Eq. 6.14. Note
that in computing this Jacobian we have set the measurement noise w to zero. The
principal diffi culty with this approach is choosing d, the difference used to compute
the fi nite-difference approximation to the derivative. Too large and the results will be
quite inaccurate if the function is nonlinear, too small and numerical problems will
lead to reduced accuracy.

620 Appendix E · Linearization, Jacobians and Hessians

Alternatively we can perform the differentiation symbolically. This particular func-
tion is relatively simple and the derivatives can be determined easily using differential
calculus. The numerical derivative can be used as a quick check for correctness. To
avoid the possibility of error, or for more complex functions we can perform the differ-
entiation symbolically using any of a large number of computer algebra packages. Using
the MATLAB Symbolic Math Toolbox™ we can declare some symbolic variables

>> syms xi yi xv yv thetav wr wb

and then evaluate the same function as above
>> z = zrange([xi yi], [xv yv thetav], [wr wb])
z =
 wr + ((xi - xv)/(yi - yv)^2)^(1/2)
 wb - thetav + atan((yi - yv)/(xi - xv))

which is simply Eq. 6.8 in MATLAB symbolic form. The Jacobian is computed by a
Symbolic Math Toolbox™ function

>> J = jacobian(z, [xv yv thetav])
J =
[-(2*xi - 2*xv)/(2*((xi - xv)^2 + (yi - yv)^2)^(1/2)),	
 -(2*yi - 2*yv)/(2*((xi - xv)^2 + (yi - yv)^2)^(1/2)), 0]
[(yi - yv)/((xi - xv)^2*((yi - yv)^2/(xi - xv)^2 + 1)),	
 -1/((xi - xv)*((yi - yv)^2/(xi - xv)^2 + 1)), -1]

which has the required dimensions

>> about(J)
J [sym] : 2x3 (112 bytes)

and the characteristic last column. We could cut and paste this code into our program
or automatically create a MATLAB callable function

>> Jf = matlabFunction(J);

where Jf is a MATLAB function handle. We can evaluate the Jacobian at the operat-
ing point given above

>> xv = [1, 2, pi/3]; xi = [10, 8]; w = [0,0];
>> Jf(xi(1), xv(1), xi(2), xv(2))
ans =
 -0.8321 -0.5547 0
 0.0513 -0.0769 -1.0000

which is similar to the approximation above obtained numerically. The function
 matlabFunction can also write the function to an M-fi le. The functions ccode
and fcode generate C and Fortran representations of the Jacobian.

Another interesting approach is the package ADOL-C which is an open-source
tool for the automatic differentiation of C and C++ programs, that is, given a func-
tion written in C it will return a Jacobian function written in C. It is available at
http://www.coin-or.org/projects/ADOL-C.xml.

Appendix

F

Solving systems of linear and nonlinear equations, particularly over-constrained sys-
tems, is a common problem in robotics and computer vision.

F.1
l
Linear Problems

F.1.1
l
Nonhomogeneous Systems

These are equations of the form

where we wish to solve for the unknown vector x ∈Rn and A ∈Rm×n and b ∈Rm are
constants.

If n = m then A is square, and if A is nonsingular then the solution is obtained us-
ing the matrix inverse

In practice we often encounter systems where m > n, that is there are more equa-
tions than unknowns. In general there will not be an exact solution but we can attempt
to fi nd the best solution, in a least-squares sense, which is

That solution is given by

which is known as the pseudo inverse or more formally the left-generalized inverse .�

Using SVD where A = UΣVT this is

where Σ−1 is simply the element-wise inverse of the diagonal elements of ΣT.
If the matrix is singular, or the system is under constrained n < m, then there are

infi nitely many solutions. We can again use the SVD approach

where this time Σ−1 is the element-wise inverse of the nonzero diagonal elements of Σ ,
all other zeros are left in place.

In MATLAB all these problems can be solved using the backslash operator

>> x = A\b

Solving Systems of Equations

Since the inverse left multiplies b.

622 Appendix F · Solving Systems of Equations

For the problem

where R is an unknown rotation matrix in SO(n), and P = {p1� pm} ∈ Rn×m and
Q = {q1� qm} ∈Rn×m comprise column vectors for which qi = Rpi. We fi rst compute
the moment matrix

and take then compute the SVD M = UΣVT. The least squares estimate of the rota-
tion matrix is

and is guaranteed to be an orthogonal matrix.

F.1.2
l
Homogeneous Systems

These are equations of the form

and always have the trivial solution x = 0. If A is square and nonsingular this is the
only solution. Otherwise, if A is not of full rank, that is the matrix is nonsquare, or
square and singular then there are an infi nite number of solutions which are linear
combinations of vectors in the right null space of A which is computed by the MATLAB
function null .

F.2
l
Nonlinear Problems

Many problems in robotics and computer vision involves sets of nonlinear equations.
Solution of these problems requires linearizing the equations about an estimated so-
lution, solving for an improved solution and iterating. Linearization is discussed in
Appendix E.

F.2.1
l
Finding Roots

Consider a set of equations expressed in the form

where f : Rn�R
m. This is a nonlinear version of the homogeneous system described

above. We fi rst linearize the equation about our best estimate of the solution x0

 (F.1)

where ∆ ∈Rn is an infi nitesimal change in x relative to x0. We truncate this to form
a linear approximation

 (F.2)

623Appendix F · Solving Systems of Equations

where f0 = f(x0) is the function value and J = J(x0) ∈R1×n the Jacobian, both evaluated at
the linearization point. Now we solve an approximation of our original problem f ′(∆) = 0

If n ≠ m then J is nonsquare and we can use the pseudo-inverse or the MATLAB
backslash operator -J\f0. The computed step ∆ is based on an approximation to
the original nonlinear function so x0 + ∆ will generally not be the solution but it will
be closer. This leads to an iterative solution – the Newton-Raphson method :

F.2.2
l
Nonlinear Minimization

A very common class of problems involves fi nding the minimum of a scalar function
f(x): Rn�R which can be expressed as

The derivative of the linearized system Eq. F.2 is

and if we consider the function to be a multi-dimensional surface then J(x0) is vector
indicating the direction and magnitude of the slope at x = x0 so an update of

will move the estimate down hill toward the minimum. This leads to an iterative solu-
tion called gradient descent :

and the challenge is to choose the appropriate step size β .
If we include the second-order term from Eq. F.1 the approximation becomes

and to fi nd its minima we take the derivative and set it to zero

and the update is

624 Appendix F · Solving Systems of Equations

This leads to another iterative solution – Newton’s method . The challenge is de-
termining the Hessian of the nonlinear system, either by numerical approximation
or symbolic manipulation.

F.2.3
l
Nonlinear Least Squares Minimization

Very commonly the scalar function we wish to optimize is a quadratic cost function

where f (x): Rn�R
m is some vector-valued nonlinear function which we can lin-

earize as

and the scalar cost is

where JT J ∈Rn×n is the approximate Hessian from page 618 .
To minimize the error of this linearized least squares system we take the derivative

with respect to ∆ and set it to zero

which we can solve for the locally optimal update

 (F.3)

where we can recognize the pseudo or left generalized-inverse of J. Once again we
iterate to fi nd the solution – a Gauss-Newton iteration .

Numerical Issues

When solving Eq. F.3 we may fi nd that the Hessian JTJ is poorly conditioned or
singular and this can be remedied by adding a damping term

which makes the system more positive defi nite. Since JTJ + λI is effectively in the de-
nominator, increasing λ will decrease �∆� and slow convergence.

How do we choose λ? We can experiment with different values but a better way is
the Levenberg-Marquardt algorithm (Algorithm F.1) which adjusts λ to ensure con-
vergence. If the error increases compared to the last step then the step is repeated with
increased λ to reduce the step size. If the error decreases then λ is reduced to increase
the convergence rate. The updates vary continuously between Gauss-Newton (low λ)
and gradient descent (high λ).

For problems where n is large inverting the n × n approximate Hessian is expensive.
Typically m < n which means the Jacobian is not square and Eq. F.3 can be rewritten as

One term is the transpose of the other,
but since both result in a scalar transpo-
sition doesn’t matter.

625Appendix F · Solving Systems of Equations

which is the right pseudo-inverse and involves inverting a smaller matrix. We can
reintroduce a damping term

and if λ is large this becomes simply

but exhibits very slow convergence.
If fk(·) has additive noise that is zero mean, normally distributed and time invari-

ant we have a maximum likelihood estimator of x. Outlier data has a signifi cant im-
pact on the result since errors are squared. Robust estimators minimize the effect of
outlier data and in an M-estimator

the squared norm is replaced by a loss function ρ(·) which models the likelihood of its
argument. Unlike the squared norm these functions fl atten off for large values, and some
common examples include the Huber loss function and the Tukey biweight function .

F.2.4
l

Sparse Nonlinear Least Squares

For a large class of problems the overall cost is the sum of quadratic costs

 (F.4)

Consider the problem of fi tting a model z= φ(w;x) where φ: Rp�Rm with parameters
x∈Rn to a set of data points (wk, zk). The error vector associated with the kth data point is

and minimizing Eq. F.4 gives the optimal model parameters x.

Algorithm F.1.
Levenberg-Marquardt algo-

rithm , c is typically chosen in
the range 2 to 10

626 Appendix F · Solving Systems of Equations

Another example is pose-graph optimization as used for pose-graph SLAM and
bundle adjustment. Edge k in the graph connects vertices i and j and has an associ-
ated cost fk(·): Rn�R

m

 (F.5)

where e#
k is the observed value of the edge parameter and -k(x) is the estimate based

on the state x of the pose graph. This is linearized

and the squared error for the edge is

where Ωk ∈Rm×m is a positive-defi nite constant matrix� which we combine as

where bT
k = fT

0,kΩk Jk and Hk = Σk JT
kΩkJk. The total cost is the sum of all edge costs

where bT = Σkf
T
0,kΩkJk and H = ΣkJT

kΩkJk are summations over the edges of the graph.
Once they are computed we proceed as previously, taking the derivative with respect
to ∆ and setting it to zero, solving for the update ∆ and iterating using Algorithm F.1.

State Vector

The state vector is a concatenation of all poses and coordinates in the optimization
problem. For pose-graph SLAM it takes the form

Poses must be represented in a vector form and preferably one that is compact and
singularity free. For SE(2) this is quite straightforward and we use ξ ∼ (x, y, θ) ∈R3.
For SE(3) we will use ξ ∼ (t, r) ∈R6 which comprises translation t ∈R3 and rotation
r ∈R3. The latter can be triple angles (Euler or roll-pitch-yaw), axis-angle, exponential
coordinates or the vector part of a unit-quaternion as discussed on page 499. The state
vector has structure, comprising a sequence of subvectors one per pose. We denote the
ith subvector of x as xi ∈RNξ, where Nξ = 3 for SE(2) and Nξ = 6 for SE(3).

For pose-graph SLAM with landmarks, or bundle adjustment the state vector com-
prises poses and coordinate vectors

This can be used to specify the signifi-
cance of the edge detΩk with respect to
other edges, as well as the relative sig-
nificance of the elements of fk(·).

627Appendix F · Solving Systems of Equations

and the ith and jth subvectors of x are denoted xi ∈RNξ and xj ∈RNP and correspond
to ξ i and Pj respectively.

Inherent Structure

A key observation is that the error vector fk(x) for edge k depends only on the associ-
ated vertices i and j, and this means that the Jacobian

is mostly zeros

where Ai ∈Rm×Nξ and Bj ∈Rm×Nξ or Bj ∈Rm×NP according to the state vector structure.
This sparse block structure means that the vector bk and the Hessian JT

kΩkJk also
have a sparse block structure as shown in Fig. F.1. The Hessian has just four small
nonzero blocks so rather than compute the product JT

kΩkJk, which involves many mul-
tiplications by zero, we can just compute the four nonzero blocks and add them into
the Hessian for the least squares system. All blocks in a row have the same height, and
in a column have the same width. For pose-graph SLAM with landmarks, or bundle
adjustment the blocks are of different sizes as shown in Fig. F.1b.

If the value of an edge represents pose then Eq. F.5 must be replaced with
fk(x) = -k(x)� e#

k. We generalize this with the � operator to indicate that the use of
− or � as appropriate. Similarly when updating the state vector at the end of an itera-
tion the poses must be compounded x0 ← x0 ⊕ ∆ and we generalize this to the � op-
erator. The pose-graph optimization is solved by the iteration in Algorithm F.2.

Alogorithm F.2.
Pose graph optimization. For
Levenberg-Marquardt opti-

mization replace line 14 with
lines 4–12 from Algorithm F.1

628 Appendix F · Solving Systems of Equations

Large Scale Problems

For pose-graph SLAM with thousands of poses or bundle adjustment with thousands of
cameras and millions of landmarks the Hessian matrix will be massive leading to com-
putation and storage challenges. The overall Hessian is the summation of many edge
Hessians structured as shown in Fig. F.1 and the total Hessian for two problems we have
discussed are shown in Fig. F.2. They have clear structure which we can exploit.

Firstly, in both cases the Hessian is sparse – that is, it contains mostly zeros. MATLAB
has built-in support for such matrices and instead of storing all those zeros (at 8 bytes
each) it simply keeps a list of the nonzero elements. All the standard matrix operations
employ effi cient algorithms for manipulating sparse matrices.

Secondly, for the bundle adjustment case we see that the Hessian has two block
diagonal submatrices so we partition the system as

where B and C are block diagonal.� The subscripts ξ and P denote the blocks of ∆
and b associated with camera poses and landmark positions respectively. We solve
fi rst for the camera pose updates ∆ξ

where S = B − EC−1ET is the Schur complement which is a symmetric positive-defi nite
matrix that is also block diagonal. Then we solve for the update to landmark positions

More sophisticated techniques exploit the fi ne-scale block structure to further re-
duce computational time, for example GTSAM (https://bitbucket.org/gtborg/gtsam)
and SLAM++ (https://sourceforge.net/projects/slam-plus-plus).

Fig. F.1. Inherent structure of the
error vector , Jacobian and Hessian
matrices for graph-based least-
squares problems. a Pose-graph
SLAM with N nodes representing
robot pose as RNξ; b bundle adjust-
ment with N nodes representing
camera pose as RNξ and M nodes
representing landmark position
as RNP. The indices i and j denote
the ith and jth block not the ith and
jth row or column. White indicates
zero values

A block diagonal matrix is inverted by
simply inverting each of the nonzero
blocks along the diagonal.

629Appendix F · Solving Systems of Equations

Anchoring

Optimization provides a solution where the relative poses and positions give the low-
est overall cost, and the solution will have an arbitrary transformation with respect to
a global reference frame. To obtain absolute poses and positions we must anchor or
fi x some nodes – assign them values with respect to the global frame and prevent the
optimization from adjusting them. The appropriate way to achieve this is to remove
from H and b the rows and columns corresponding to the anchored poses and posi-
tions. We then solve a lower dimensional problem for ∆′ which will be shorter than
x and careful book keeping is required to correctly match the subvectors of ∆′ with
those of x for the update.

Fig. F.2. Hessian sparsity maps
produced using the MATLAB
 spy function, the number of non-
zero elements is shown beneath
the plot. a Hessian for the pose-
graph SLAM problem of Fig. 6.17,
the diagonal elements represent
pose constraints between successive
nodes due to odometry, the off-di-
agonal terms represent constraints
due to revisiting locations (loop
closures); b Hessian for a bundle
adjustment problem with 10 cam-
eras and 110 landmarks (vision/
examples/bademo.m)

Appendix

G

The 1-dimensional Gaussian function

 (G.1)

is described by the position of its peak µ and its width σ . The total area under the
curve is unity and g(x) > 0, ∀x. The function can be plotted using the Toolbox func-
tion gaussfunc

>> x = linspace(-6, 6, 500);
>> plot(x, gaussfunc(0, 1, x), 'r')
>> hold on
>> plot(x, gaussfunc(0, 2^2, x), '--b')

and Fig. G.1 shows two Gaussians with zero mean and σ = 1 and σ = 2. Note that the
second argument to gaussfunc is the variance not standard deviation.

If the Gaussian is considered to be a probability density function (PDF) then this is
the well known normal distribution and the peak position µ is the mean value and the
width σ is the standard deviation. A random variable drawn from a normal distribu-
tion is often written as X ∼ N(µ, σ 2), and N(0, 1) is referred to as the standard normal
distribution – the MATLAB function randn draws random numbers from this dis-
tribution. To draw one hundred Gaussian random numbers with mean mu and stan-
dard deviation sigma is

>> g = sigma * randn(100) + mu;

The probability that a random value falls within an interval x ∈ [x1, x2] is obtained
by integration

 Gaussian Random Variables

Fig. G.1.
Two Gaussian functions, both
with with mean µ= 0, and with
standard deviation σ = 1, and
σ= 2. The markers indicate the
points x = µ ± 1σ. The blue curve
is wider but less tall, since the

total area under the curve is unity

632 Appendix G · Gaussian Random Variables

or evaluation of the cumulative normal distribution function Φ(x). The marked points
in Fig. G.1 at µ ± 1σ delimit the 1σ confi dence interval. The area under the curve over
this interval is 0.68, so the probability of a random value being drawn from this in-
terval is 68%.

The Gaussian can be extended to an arbitrary number of dimensions. The n-di-
mensional Gaussian, or multivariate normal distribution, is

 (G.2)

and compared to the scalar case of Eq. G.1 x ∈Rn and ¹ ∈Rn have become vectors,
the squared term in the exponent has been replaced by a matrix quadratic form,
and σ 2, the variance, has become a positive-defi nite (and hence symmetric) covari-
ance matrix P ∈Rn×n. The diagonal elements represent the variance of xi and the off-
diagonal elements Pij are the correlationss between xi and xj. If the variables are in-
dependent or uncorrelated the matrix P would be diagonal. The covariance matrix is
symmetric and positive defi nite.

We can plot a 2-dimensional Gaussian
>> [x,y] = meshgrid(-5:0.1:5, -5:0.1:5);
>> P = diag([1 2^2]);
>> surfc(x, y, gaussfunc([0 0], P, x, y))

as a surface which is shown in Fig. G.2. In this case ¹ = (0, 0) and P = diag(12, 22) which
corresponds to uncorrelated variables with standard deviation of 1 and 2 respectively.
Figure G.2 also shows a number of elliptical contours – contours of constant prob-
ability density. If this 2-dimensional probability density function represents the po-
sition of a robot in the xy-plane the most likely position for the robot is at (0, 0) and
the size of the ellipse says something about our spatial certainty. A particular contour
indicates the boundary of a region within which the robot is located with a particu-
lar probability. A large ellipse indicates we know, with that probability, that the robot
is somewhere inside a large area – we have low certainty about the robot’s position.
Conversely, a small ellipse means that we know the robot, with the same probability,
is somewhere within a much smaller area.

The contour lines are ellipses and in this example the radii in the y- and x-direc-
tions are in the ratio 2 :1 as defi ned by the ratio of the standard deviations. For higher
order Gaussians, n > 2, the corresponding confi dence interval is the surface of an el-
lipsoid in n-dimensional space.

Fig. G.2.
The 2-dimensional Gaussian
with covariance P = diag(12, 22).
Contours lines of constant prob-
ability density are shown beneath

633Appendix G · Gaussian Random Variables

The connection between Gaussian probability density functions and ellipses can
be found in the quadratic exponent of Eq. G.2 which is the equation of an ellipse or
 ellipsoid�. All the points that satisfy

result in a constant probability density value, that is, a contour of the 2-dimensional
Gaussian. s is related to the probability by

which is the χ2 distribution� with n degrees of freedom, 2 in this case, and p is the prob-
ability that the point x lies on the ellipse. For example the 50% confi dence interval is

>> s = chi2inv(0.5, 2)
s =
 1.3863

where the fi rst argument is the probability and the second is the number of degrees
of freedom�.

If the covariance matrix is diagonal then the ellipse is aligned with the x- and
y-axes as we saw in Sect. C.1.4. This indicates that the two variables are independent
and have zero correlation. Conversely a rotated ellipse indicates that the covariance
is not diagonal and the two variables are correlated.

To draw a covariance ellipse we use the general approach for ellipses outlined in
Sect. C.1.4 but the right-hand side of the ellipse equation is s not 1, and E ≡ P.

It is also the definition of Mahalanobis
distance , the covariance weighted dis-
tance between x and ¹.

If we draw a vector of length n from the
multivariate Gaussian each element is
normally distributed. The sum of squares
of independent normally distributed val-
ues is known to be distributed according
to a χ 2 (chi-squared) distribution with
n degrees of freedom.

This function requires the MATLAB
Statistics and Machine Learning Tool-
box™. The Robotics Toolbox provides
chi2inv_rtb which is an ap-
proximation for the case n = 2.

Appendix

H

Consider the system shown in Fig. H.1. The physical robot is a “black box” which has a
true state or pose x that evolves over time according to the applied inputs. We cannot
directly measure the state, but sensors on the robot have outputs which are a function
of that true state. Our challenge is: given the system inputs and sensor outputs estimate
the unknown true state x and how certain we are of that estimate.

At face value this might seem hard, or even impossible, but there are quite a lot of
things we know about system that will help us. Firstly, we know how the state evolves
over time as a function of the inputs – this is the state transition� model f(·), and we
know the inputs to the system u. Our model is unlikely to be perfect� and it is com-
mon to represent this uncertainty by an imaginary random number generator which is
corrupting the system state – process noise. Secondly, we know how the sensor output
depends on the state – this is the sensor model h(·) and its uncertainty is also modeled
by an imaginary random number generator – sensor noise.

The imaginary random number sources v and w are inside the black box so the
random numbers are also unknowable. However we can describe the characteristics
of these random numbers – their distribution which tells us how likely it is that we will
draw a random number with a particular value. A lot of noise in physical systems can
be modeled well by the Gaussian (aka normal) distribution N(µ , σ 2) which is charac-
terized by a mean µ and a standard deviation σ. There are infi nitely many possible dis-
tributions� but the Gaussian distribution has some nice mathematical properties that
we will rely on. However we should never assume that noise is Gaussian – we should
attempt to determine the distribution by understanding the physics of the process and
the sensor, or from careful measurement and analysis.

Kalman Filter

Fig. H.1.
The physical robot on the left
has a true state that cannot be

directly measured, however we
gain a clue from the sensor out-

put which is a function of this
unknown true state

Often called the process or motion model.

Which can be nonsymmetrical or have
multiple peaks.

For example wheel slippage on a mobile
ground robot or wind gusts for a UAV.

636 Appendix H · Kalman Filter

In general terms, the problem we wish to solve is:

given a model of the system f (·), h(·), Í and Ñ; the known inputs applied to
the system u; and some noisy sensor measurements z, fi nd an estimate ' of the
system state and our uncertainty Ï in that estimate.

In a robotic localization context x is the unknown position or pose of the robot, u is
the commands sent to the motors and z is the output of various sensors on the robot.
For a ground robot x would be the pose in SE(2) and u would be the motor commands
and z might be the measured odometry or range and bearing to landmarks. For a fl ying
robot x would be the pose in SE(3) and u are the known forces applied to the airframe
and z might be the measured accelerations and angular velocities.�

H.1
l
Linear Systems – Kalman Filter

Consider the transition model described as a discrete-time linear time-invariant system

 (H.1)

 (H.2)

where k is the time step, x∈Rn is the state vector, and u∈Rm is a vector of inputs to the
system at time k, for example a velocity command, or applied forces and torques. The ma-
trix F ∈Rn×n describes the dynamics of the system, that is, how the states evolve with time.
The matrix G ∈Rn×m describes how the inputs are coupled to the system states. The vector
z∈Rp represents the outputs of the system as measured by sensors. The matrix H ∈Rp×n
describes how the system states are mapped to the system outputs which we can observe.

To account for errors in the motion model (F and G) or unmodeled disturbances we
introduce a Gaussian random variable v ∈Rn termed the process noise . v〈k〉 ∼ N(0, V),
that is, it has zero mean and covariance V ∈Rn×n. Covariance is a matrix quantity which is the
variance for a multi-dimensional distribution – it is a positive defi nite matrix and there-
fore symmetric. The sensor measurement model H is not perfect either and this is mod-
eled by sensor measurement noise, a Gaussian random variable w ∈Rp, w〈k〉 ∼ N(0, W)
and covariance W ∈Rp×p.

The Kalman fi lter is an optimal estimator for the case where the process and mea-
surement noise are zero-mean Gaussian noise. The fi lter has two steps: prediction and
update. The prediction is based on the previous state and the inputs that were applied

 (H.3)

 (H.4)

where ' is the estimate of the state and Ï∈Rn×n is the estimated covariance, or uncertainty,
in '. The notation + makes explicit that the left-hand side is an estimate at time k + 1 based
on information from time k. Í is our best estimate of the covariance of the process noise.

The indicated term in Eq. H.4 projects the estimated covariance from the current time
step to the next. Consider a one dimensional example where F is a scalar and the state esti-
mate ú〈k〉 has a PDF which is Gaussian with a mean x–〈k〉 and a variance σ2〈k〉. The prediction
equation maps the state and its Gaussian distribution to a new Gaussian distribution with
a mean F x–〈k〉 and a variance F2σ2〈k〉. The term FP〈k〉F〈k〉T is the matrix form of this since

 (H.5)

which scales the covariance appropriately.

The state is a vector and there are many
approaches to mapping pose to a vector,
especially the rotational component –
Euler angles, quaternions, and exponen-
tial coordinates are commonly used.

637Appendix H · Kalman Filter

The prediction of Ï involves the addition of two positive-defi nite matrices so the
uncertainty will increase – this is to be expected since we have used an uncertain model
to predict the future value of an already uncertain estimate. Í must be a reasonable
estimate of the covariance of the actual process noise. If we overestimate it, that is our
estimate of process noise is larger than it really is, then we will have a large increase
in uncertainty at this step, a pessimistic estimate of our certainty.

To counter this growth in uncertainty we need to introduce new information such
as measurements made by the sensors since they depend on the state. The difference
between what the sensors measure and what the sensors are predicted to measure is

Some of this difference is due to noise in the sensor, the measurement noise, but
the remainder provides valuable information related to the error between the actual
and the predicted value of the state. Rather than considering this as error we refer to
it more positively as innovation – new information.

The second step of the Kalman fi lter, the update step, maps the innovation into a
correction for the predicted state, optimally tweaking the estimate based on what the
sensors observed

 (H.6)

 (H.7)

Uncertainty is now decreased or defl ated, since new information, from the sensors,
is being incorporated. The matrix

 (H.8)

is known as the Kalman gain . The term indicated is the estimated covariance of the
innovation and comprises the uncertainty in the state and the estimated measurement
noise covariance. If the innovation has high uncertainty in some dimensions then the
Kalman gain will be correspondingly small, that is, if the new information is uncertain
then only small changes are made to the state vector. The term HP+〈k+1〉HT in Eq. H.13
projects the covariance of the state estimate into the space of sensor values.

The covariance matrix must be positive-defi nite but after many updates the accu-
mulated numerical errors may cause this matrix to be no longer symmetric. The posi-
tive-defi nite structure can be enforced by using the Joseph form of Eq. H.7

but this is computationally more costly.
The equations above constitute the classical Kalman fi lter which is widely used in

robotics, aerospace and econometric applications. The fi lter has a number of impor-
tant characteristics. Firstly it is optimal, but only if the noise is truly Gaussian with zero
mean and time invariant parameters. This is often a good assumption but not always.
Secondly it is recursive, the output of one iteration is the input to the next. Thirdly, it is
asynchronous. At a particular iteration if no sensor information is available we just per-
form the prediction step and not the update. In the case that there are different sensors,
each with their own H, and different sample rates, we just apply the update with the ap-
propriate z and H. The fi lter must be initialized with some reasonable value of ' and Ï, as
well as good choices of the covariance matrices Í and Ñ. As the fi lter runs the estimated
covariance �Ï� decreases but never reaches zero – the minimum value can be shown to be
a function of Í and Ñ. The Kalman-Bucy fi lter is a continuous-time version of this fi lter.

638 Appendix H · Kalman Filter

The covariance matrix Ï is rich in information. The diagonal elements Ïii are the
variance, or uncertainty, in the state xi. The off-diagonal elements Ïij are the correla-
tions between states xi and xj and indicate that the errors are not independent. The
correlations are critical in allowing any piece of new information to fl ow through to
adjust all the states that affect a particular process output.

H.2
l
Nonlinear Systems – Extended Kalman Filter

For the case where the system is not linear it can be described generally by two func-
tions: the state transition (the motion model in robotics) and the sensor model

 (H.9)

 (H.10)

and as before we represent model uncertainty, external disturbances and sensor noise
by Gaussian random variables v and w.

We linearize the state transition function about the current state estimate 'k as
shown in Fig. H.2 resulting in

 (H.11)

 (H.12)

where Fx = ∂f/∂x∈Rn×n, Fu = ∂f/∂u∈Rn×m, Fv = ∂f/∂v∈Rn×n, Hx = ∂h/∂x∈Rp×n
and Hw = ∂h/∂w ∈Rp×p are Jacobians of the functions f(·) and h(·). Equating coeffi -
cients between Eq. H.1 and Eq. H.11 gives F ∼ Fx, G ∼ Fu and v〈k〉 ∼ Fvv〈k〉; and between
Eq. H.2 and Eq. H.12 gives H ∼ Hx and w〈k〉 ∼ Hww〈k〉.

Taking the prediction equation Eq. H.9 with v〈k〉 = 0, and the covariance equation
Eq. H.4 with the linearized terms substituted we can write the prediction step as

and the update step as

Fig. H.2.
One dimensional example illus-
trating how the nonlinear state
transition function f : xk� xk+1
shown in black is linearized
about the point (ú〈k〉, ú〈k+1〉)
shown in red

639Appendix H · Kalman Filter

where the Kalman gain is now

 (H.13)

These equations are only valid at the linearization point '〈k〉 – the Jacobians Fx,
Fv, Hx, Hw must be computed at every iteration.� The full procedure is summarized
in Algorithm H.1.

A fundamental problem with the extended Kalman fi lter is that PDFs of the ran-
dom variables are no longer Gaussian after being operated on by the nonlinear func-
tions f(·) and h(·). We can easily illustrate this by considering a nonlinear scalar
function y = (x + 2)2/4. We will draw a million Gaussian random numbers from the
normal distribution N(5, 4) which has a mean of 5 and a standard deviation of 2

>> x = 2*randn(1000000,1) + 5;

and map them through our function

>> y = (x+2).^2 / 4;

and plot the probability density function of y

>> histogram(y, 'Normalization', 'pdf');

Algorithm H.1.
Procedure EKF

Fig. H.3.
PDF of the state x (red) which

is Gaussian N(5, 4) and the
PDF of the nonlinear function

y = (x + 2)2/ 4 (black). The
peak and the mean of the non-

linear distribution are shown by
blue solid and dashed vertical

lines respectively

Properly these matrices should be de-
noted as depending on the time step, i.e.
Fx〈k〉 but this has been dropped in the
interest of readability.

640 Appendix H · Kalman Filter

which is shown in Fig. H.3. We see that the PDF of y is substantially changed and no
longer Gaussian. It has lost its symmetry so the mean value is greater than the mode.
The Jacobians that appear in the EKF equations appropriately scale the covariance
but the resulting non-Gaussian distribution breaks the assumptions which guaran-
tee that the Kalman fi lter is an optimal estimator. Alternatives include the iterated
EKF described by Jazwinski (2007) or the Unscented Kalman Filter (UKF) (Julier and
Uhlmann 2004) or the sigma-point fi lter which uses discrete sample points (sigma
points) to approximate the PDF.

Appendix

I

A graph is an abstract representation of a set of objects connected by links and de-
picted graphically as shown in Fig. I.1. Mathematically a graph is denoted G(V, E)
where V are the vertices or nodes, and E are the links that connect pairs of vertices and
are called edges or arcs. Edges can be directed (arrows) or undirected as in this case.
Edges can have an associated weight or cost associated with moving from one vertex
to another. A sequence of edges from one vertex to another is a path, and a sequence
that starts and ends at the same vertex is a cycle. An edge from a vertex to itself is a
loop. Graphs can be used to represent transport, communications or social networks,
and this branch of mathematics is graph theory.

The Toolbox provides a MATLAB® graph class called PGraph that supports em-
bedded graphs where the vertices are associated with a point in an n-dimensional
space.� To create a new graph

>> g = PGraph()
g =
 2 dimensions
 0 vertices
 0 edges
 0 components

and by default the nodes of the graph exist in a 2-dimensional space. We can add
nodes to the graph

>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));
>> g.add_node(rand(2,1));

and each has a random coordinate. The add_node method returns an integer identi-
fi er for the node just added. A summary of the graph is given with its display method

>> g
g =
 2 dimensions
 5 vertices
 0 edges
 0 components

and shows that the graph has 5 nodes but no edges. The nodes are numbered 1 to 5
and we add edges between pairs of nodes

>> g.add_edge(1, 2);
>> g.add_edge(1, 3);
>> g.add_edge(1, 4);
>> g.add_edge(2, 3);
>> g.add_edge(2, 4);
>> g.add_edge(4, 5);
>> g
g =
 2 dimensions
 5 vertices
 6 edges
 1 components

Graphs

This class is used other Toolbox class-
es such as PRM, Lattice, RRT,
 PoseGraph and BundleAdjust.
MATLAB 2015b introduced a built in
graph class to represent graphs.

642 Appendix I · Graphs

By default the distance between the nodes is the Euclidean distance between the ver-
tices but this can be overridden by a third argument to add_edge. The methods
add_node and add_edge return an integer that uniquely identifi es the node or
edge just created. The graph has one component, that is all the nodes are connected
into one network. The graph can be plotted by

>> g.plot('labels')

as shown in Fig. I.1. The vertices are shown as blue circles, and the option 'labels'
displays the vertex index next to the circle. Edges are shown as black lines joining ver-
tices. Many options exist to change default plotting behavior. Note that only graphs
embedded in 2- and 3-dimensional space can be plotted.

The neighbors of vertex 2 are
>> g.neighbours(2)
ans =
 3 4 1

which are vertices connected to vertex 2 by edges. Each edge has a unique index and
the edges connecting to vertex 2 are

>> e = g.edges(2)
e =
 4 5 1

The cost or length of these edges is
>> g.cost(e)
ans =
 0.9597 0.3966 0.6878

and clearly edge 5 has a lower cost than edges 4 and 1. Edge 5
>> g.vertices(5)'
ans =
 2 4

joins vertices 2 and 4, and vertex 4 is clearly the closest neighbor of vertex 2. Frequently
we wish to obtain a node’s neighboring vertices and their distances at the same time,
and this can be achieved conveniently by

>> [n,c] = g.neighbours(2)
n =
 3 4 1
c =
 0.9597 0.3966 0.6878

Concise information about a node can be obtained by
>> g.about(1)
Node 1 #1@ (0.814724 0.905792)
 neighbours: >-o-> 2 3 4
 edges: >-o-> 1 2 3

Arbitrary data can be attached to any node or edge by the methods setvdata and
setedata respectively and retrieved by the methods vdata and edata respec-
tively.

The vertex closest to the coordinate (0.5, 0.5) is
>> g.closest([0.5, 0.5])
ans =
 4

and the vertex closest to an interactively selected point is given by g.pick.
The minimum cost path between any two nodes in the graph can be computed us-

ing well known algorithms such as A∗ (Nilsson 1971)
>> g.Astar(3, 5)
ans =
 3 2 4 5

643Appendix I · Graphs

or the earlier method by Dijstrka (1959). By default the graph is treated as undirected,
that is, the edges have no preferred direction. The 'directed' option causes edges
to be treated as directed, and the path will only traverse edges in their specifi ed direc-
tion which is from the fi rst to the second argument of the method add_edge.

Methods exist to compute various other representations of the graph such as adja-
cency, incidence, degree and Laplacian matrices.

Fig. I.1.
An example graph generated by

the PGraph class

Appendix

J

Fig. J.1. Peak fi tting. a A signal with
several local maxima; b closeup
view of the fi rst maxima with the
fi t curve (red) and the estimated
peak (red-◊)

A commonly encountered problem is estimating the position of the peak of some dis-
crete 1-dimensional signal y(k), k ∈ Z, see for example Fig. J.1a

>> load peakfi t1
>> plot(y, '-o')

Finding the peak to the nearest integer is straightforward using MATLAB’s max func-
tion

>> [ypk,k] = max(y)
ypk =
 0.9905
k =
 8

which indicates the peak occurs at the eighth element and has a value of 0.9905. In this
case there is more than one peak and we can use the Toolbox function peak instead

>> [ypk,k] = peak(y)
ypk =
 0.9905 0.6718 -0.5799
k =
 8 25 16

which has returned three maxima in descending magnitude. A common test of the quality
of a peak is its magnitude and the ratio of the height of the second peak to the fi rst peak

>> ypk(2)/ypk(1)
ans =
 0.6783

which is called the ambiguity ratio and is ideally small.
This signal is a sampled representation of a continuous underlying signal y(x) and

the real peak might actually lie between the samples. If we look at a zoomed version
of the signal, Fig. J.1b, we can see that although the eighth point is the maximum the

Peak Finding

646 Appendix J · Peak Finding

ninth point is only slightly lower so the peak lies somewhere between points eight and
nine. A common approach is to fi t a parabola

 (J.1)

to the points surrounding the peak. For the discrete peak that occurs at (k, yk) then
δx = 0 corresponds to k and the discrete x-coordinates on either side correspond
to δx = −1 and δx = +1 respectively. Substituting the points (k − 1, yk−1), (k, yk) and
(k + 1, yk+1) into Eq. J.1 we can write three equations

or in compact matrix form as

and then solve for the parabolic coeffi cients

 (J.2)

The maxima of the parabola occurs when its derivative is zero

and substituting the values of a and b from Eq. J.2 we fi nd the displacement of the peak
of the fi tted parabola with respect to the discrete maxima

so the refi ned, or interpolated, position of the maxima is at

and the estimated value of the maxima is obtained by substituting δ x into Eq. J.1.
The coeffi cient a, which is negative for a maxima, indicates the sharpness of the

peak which can be useful in determining whether a peak is suffi ciently sharp. A large
magnitude of a indicates a well defi ned sharp peak wheras a low value indicates a very
broad peak for which estimation of a refi ned peak may not be so accurate.

Continuing the earlier example we can use the Toolbox function peak to estimate
the refi ned peak positions

>> [ymax,xmax] = peak(y, 'interp', 2)
ymax =
 0.9905 0.6718 -0.5799
xmax =
 8.4394 24.7299 16.2438

where the argument after the 'interp' option indicates that a second-order poly-
nomial should be fi tted. The fi tted parabola is shown in red in Fig. J.1b and is plotted
if the option 'plot' is given.

647Appendix J · Peak Finding

Counting the elements, starting with 1
at the top-left down each column then
back to the top of the next rightmost
column.

If the signal has superimposed noise then there are likely to be multiple peaks, many
of which are quite minor, and this can be overcome by specifying the scale of the peak.
For example the peaks that are greater than all other values within ±5 values in the
horizontal direction are

>> peak(y, 'scale', 5)
ans =
 0.9905 0.8730 0.6718

In this case the result is unchanged since the signal is fairly smooth.
For a 2-dimensional signal we follow a similar procedure but instead fi t a paraboloid

 (J.3)

which has fi ve coeffi cients that can be calculated from the center value (the discrete
maximum) and its four neighbors (north, south, east and west) using a similar pro-
cedure to above. The displacement of the estimated peak with respect to the central
point is

In this case the coeffi cients a and b represent the sharpness of the peak in the x- and
y-directions, and the quality of the peak can be considered as being min(a, b).

A 2D discrete signal was loaded from peakfi t1 earlier

>> z
z =
 -0.0696 0.0348 0.1394 0.2436 0.3480
 0.0800 0.2000 0.3202 0.4400 0.5600
 0.0400 0.1717 0.3662 0.4117 0.5200
 0.0002 0.2062 0.8766 0.4462 0.4802
 -0.0400 0.0917 0.2862 0.3317 0.4400
 -0.0800 0.0400 0.1602 0.2800 0.4000

In this small example it is clear that the peak is at element (3, 4) using image coordi-
nate convention, but programatically this is

>> [zmax,i] = max(z(:))
zmax =
 0.8766
i =
 16

and the maximum is at the sixteenth element in row-major order� which we convert
to array subscripts

>> [y,x] = ind2sub(size(z), i)
y =
 4
x =
 3

We can fi nd this more conveniently using the Toolbox function peak2

>> [zpk,xy]=peak2(z)
zpk =
 0.8766 0.5600
xy =
 3 5
 4 2

648 Appendix J · Peak Finding

which has returned two local maxima, one per column of the returned variables. This
function will return all nonlocal maxima where the size of the local region is given by the
'scale' option. As for the 1-dimensional case we can refi ne the estimate of the peak

>> [zpk,xy]=peak2(z, 'interp')
Warning: Peak at (5,2) too close to edge of image
zpk =
 0.8839
xy =
 3.1090
 3.9637

that is, the peak is at element (3.1090, 3.9637). When this process is applied to image
data it is referred to as subpixel interpolation.

Achtelik MW (2014) Advanced closed loop visual navigation for micro aerial vehicles. Ph.D. thesis,
ETH Zurich

Agarwal S, Furukawa Y, Snavely N, Simon I, Curless B, Seitz SM, Szeliski R (2011) Building Rome in
a day. Commun ACM 54(10):105–112

Agarwal P, Burgard W, Stachniss C (2014) Survey of geodetic mapping methods: Geodetic approaches
to mapping and the relationship to graph-based SLAM. IEEE Robot Autom Mag 21(3):63–80

Agrawal M, Konolige K, Blas M (2008) CenSurE: Center surround extremas for realtime feature detec-
tion and matching. In: Forsyth D, Torr P, Zisserman A (eds) Lecture notes in computer science.
Computer Vision – ECCV 2008, vol 5 305. Springer-Verlag, Berlin Heidelberg, pp 102–115

Albertos P, Mareels I (2010) Feedback and control for everyone. Springer-Verlag, Berlin Heidelberg
Altmann SL (1989) Hamilton, Rodrigues, and the quaternion scandal. Math Mag 62(5):291–308
Alton K, Mitchell IM (2006) Optimal path planning under defferent norms in continuous state spaces. In:

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). pp 866–872
Andersen N, Ravn O, Sørensen A (1993) Real-time vision based control of servomechanical systems.

In: Chatila R, Hirzinger G (eds) Lecture notes in control and information sciences. Experimental
Robotics II, vol 190. Springer-Verlag, Berlin Heidelberg, pp 388–402

Andersson RL (1989) Dynamic sensing in a ping-pong playing robot. IEEE T Robotic Autom 5(6):728–739
Antonelli G (2014) Underwater robots: Motion and force control of vehicle-manipulator systems, 3rd ed.

Springer Tracts in Advanced Robotics, vol 2. Springer-Verlag, Berlin Heidelberg
Arandjelovi R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp 2911–2918
Arkin RC (1999) Behavior-based robotics. MIT Press, Cambridge, Massachusetts
Armstrong WW (1979) Recursive solution to the equations of motion of an N-link manipulator. In: Proceed-

ings of the 5th World Congress on Theory of Machines and Mechanisms, Montreal, Jul, pp 1343–1346
Armstrong BS (1988) Dynamics for robot control: Friction modelling and ensuring excitation during

parameter identifi cation. Stanford University
Armstrong B (1989) On fi nding exciting trajectories for identifi cation experiments involving systems

with nonlinear dynamics. Int J Robot Res 8(6):28
Armstrong B, Khatib O, Burdick J (1986) The explicit dynamic model and inertial parameters of the

Puma 560 Arm. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), vol 3. pp 510–518

Armstrong-Hélouvry B, Dupont P, De Wit CC (1994) A survey of models, analysis tools and compen-
sation methods for the control of machines with friction. Automatica 30(7):1 083–1 138

Arun KS, Huang TS, Blostein SD (1987) Least-squares fi tting of 2 3-D point sets. IEEE T Pattern Anal
9(5):699–700

Asada H (1983) A geometrical representation of manipulator dynamics and its application to arm
design. J Dyn Syst-T ASME 105:131

Astolfi A (1999) Exponential stabilization of a wheeled mobile robot via discontinuous control. J Dyn
Syst-T ASME 121(1):121–126

Azarbayejani A, Pentland AP (1995) Recursive estimation of motion, structure, and focal length. IEEE
T Pattern Anal 17(6):562–575

Bailey T (n.d.) Software resources. University of Sydney. http://www-personal.acfr.usyd.edu.au/tbailey
Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping: Part II. IEEE Robot Autom

Mag 13(3):108–117
Bakthavatchalam M, Chaumette F, Tahri O (2015) An improved modelling scheme for photometric

moments with inclusion of spatial weights for visual servoing with partial appearance/disappear-
ance. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
pp 6037–6043

Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote
Sens Environ 113(4):711–715

Ball RS (1876) The theory of screws: A study in the dynamics of a rigid body. Hodges, Foster & Co., Dublin
Ball RS (1908) A treatise on spherical astronomy. Cambridge University Press, New York

Bibliography

650 Bibliography

Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn
13(2):111–122

Banks J, Corke PI (2001) Quantitative evaluation of matching methods and validity measures for ste-
reo vision. Int J Robot Res 20(7):512–532

Bar-Shalom Y, Fortmann T (1988) Tracking and data association. Mathematics in science and engi-
neering, vol 182. Academic Press, London Oxford

Bar-Shalom Y, Rong Li X, Thiagalingam Kirubarajan (2001) Estimation with applications to tracking
and navigation. John Wiley & Sons, Inc., Chichester

Bauer J, Sünderhauf N, Protzel P (2007) Comparing several implementations of two recently published
feature detectors. In: IFAC Symposium on Intelligent Autonomous Vehicles (IAV). Toulouse

Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image
Und 110(3):346–359

Benosman R, Kang SB (2001) Panoramic vision: Sensors, theory, and applications. Springer-Verlag,
Berlin Heidelberg

Benson KB (ed) (1986) Television engineering handbook. McGraw-Hill, New York
Bertozzi M, Broggi A, Cardarelli E, Fedriga R, Mazzei L, Porta P (2011) VIAC expedition: Toward au-

tonomous mobility. IEEE Robot Autom Mag 18(3):120–124
Besl PJ, McKay HD (1992) A method for registration of 3-D shapes. IEEE T Pattern Anal 14(2):

239–256
Bhat DN, Nayar SK (2002) Ordinal measures for image correspondence. IEEE T Pattern Anal 20(4):

415–423
Biber P, Straßer W (2003) The normal distributions transform: A new approach to laser scan match-

ing. In: Proceedings of the IEEE/RSJ International Conference on intelligent robots and systems
(IROS), vol 3. pp 2743–2748

Bishop CM (2006) Pattern recognition and machine learning. Information science and statistics.
Springer-Verlag, New York

Blewitt M (2011) Celestial navigation for yachtsmen. Adlard Coles Nautical, London
Bolles RC, Baker HH, Marimont DH (1987) Epipolar-plane image analysis: An approach to determin-

ing structure from motion. Int J Comput Vision 1(1):7–55, Mar
Bolles RC, Baker HH, Hannah MJ (1993) The JISCT stereo evaluation. In: Image Understanding Work-

shop: proceedings of a workshop held in Washington, DC apr 18–21, 1993. Morgan Kaufmann,
San Francisco, pp 263

Bolton W (2015) Mechatronics: Electronic control systems in mechanical and electrical engineering,
6th ed. Pearson, Harlow

Borenstein J, Everett HR, Feng L (1996) Navigating mobile robots: Systems and techniques. AK Peters,
Ltd. Natick, MA, USA, Out of print and available at http://www-personal.umich.edu/˜johannb/
Papers/pos96rep.pdf

Borgefors G (1986) Distance transformations in digital images. Comput Vision Graph 34(3):344–371
Bostrom N (2016) Superintelligence: Paths, dangers, strategies. Oxford University Press, Oxford, 432 p
Bouguet J-Y (2010) Camera calibration toolbox for MATLAB®. http://www.vision.caltech.edu/bouguetj/

calib_doc
Brady M, Hollerbach JM, Johnson TL, Lozano-Pérez T, Mason MT (eds) (1982) Robot motion: Planning

and control. MIT Press, Cambridge, Massachusetts
Braitenberg V (1986) Vehicles: Experiments in synthetic psychology. MIT Press, Cambridge, Massa-

chusetts
Bray H (2014) You are here: From the compass to GPS, the history and future of how we fi nd ourselves.

Basic Books, New York
Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millmann

RS, Sussmann HJ (eds) Progress in mathematics. Differential geometric control theory, vol 27.
pp 181–191

Broida TJ, Chandrashekhar S, Chellappa R (1990) Recursive 3-D motion estimation from a monocular
image sequence. IEEE T Aero Elec Sys 26(4):639–656

Brooks RA (1986) A robust layered control system for a mobile robot. IEEE T Robotic Autom 2(1):14–23
Brooks RA (1989) A robot that walks: Emergent behaviors from a carefully evolved network. MIT AI

Lab, Memo 1091
Brown MZ, Burschka D, Hager GD (2003) Advances in computational stereo. IEEE T Pattern Anal

25(8):993–1 008
Brynjolfsson E, McAfee A (2014) The second machine age: Work, progress, and prosperity in a time

of brilliant technologies. W. W. Norton & Co., New York
Buehler M, Iagnemma K, Singh S (eds) (2007) The 2005 DARPA grand challenge: The great robot race.

Springer Tracts in Advanced Robotics, vol 36. Springer-Verlag, Berlin Heidelberg
Buehler M, Iagnemma K, Singh S (eds) (2010) The DARPA urban challenge. Tracts in Advanced

Robotics, vol 56. Springer-Verlag, Berlin Heidelberg
Bukowski R, Haynes LS, Geng Z, Coleman N, Santucci A, Lam K, Paz A, May R, DeVito M (1991) Robot

hand-eye coordination rapid prototyping environment. In: Proc ISIR, pp 16.15–16.28

651Bibliography

Buttazzo GC, Allotta B, Fanizza FP (1993) Mousebuster: A robot system for catching fast moving ob-
jects by vision. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). Atlanta, pp 932–937

Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: Binary robust independent elementary features.
In: Daniilidis K, Maragos P, Paragios N (eds) Lecture notes in computer science. Computer Vision
– ECCV 2010, vol 6 311. Springer-Verlag, Berlin Heidelberg, pp 778–792

Canny JF (1983) Finding edges and lines in images. MIT, Artifi cial Intelligence Laboratory, AI-TR-720.
Cambridge, MA

Canny J (1987) A computational approach to edge detection. In: Fischler MA, Firschein O (eds) Readings
in computer vision: Issues, problems, principles, and paradigms. Morgan Kaufmann, San Francisco,
pp 184–203

Censi A (2008) An ICP variant using a point-to-line metric. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp 19–25

Chahl JS, Srinivasan MV (1997) Refl ective surfaces for panoramic imaging. Appl Optics 31(36):8275–8285
Chatfi eld K, Lempitsky VS, Vedaldi A, Zisserman A (2011) The devil is in the details: An evaluation of recent

feature encoding methods. In: Proceedings of the British Machine Vision Conference 2011. 12 p
Chaumette F (1990) La relation vision-commande: Théorie et application et des tâches robotiques.

Ph.D. thesis, Université de Rennes 1
Chaumette F (1998) Potential problems of stability and convergence in image-based and position-

based visual servoing. In: Kriegman DJ, Hager GD, Morse AS (eds) Lecture notes in control and
information sciences. The confl uence of vision and control, vol 237. Springer-Verlag, Berlin
Heidelberg, pp 66–78

Chaumette F (2004) Image moments: A general and useful set of features for visual servoing. IEEE T
Robotic Autom 20(4):713–723

Chaumette F, Hutchinson S (2006) Visual servo control 1: Basic approaches. IEEE Robot Autom Mag
13(4):82–90

Chaumette F, Hutchinson S (2007) Visual servo control 2: Advanced approaches. IEEE Robot Autom
Mag 14(1):109–118

Chaumette F, Rives P, Espiau B (1991) Positioning of a robot with respect to an object, tracking it and
estimating its velocity by visual servoing. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). Seoul, pp 2 248–2 253

Chesi G, Hashimoto K (eds) (2010) Visual servoing via advanced numerical methods. Lecture notes
in computer science, vol 401. Springer-Verlag, Berlin Heidelberg

Chiaverini S, Sciavicco L, Siciliano B (1991) Control of robotic systems through singularities. Lecture
notes in control and information sciences. Advanced Robot Control, Proceedings of the Interna-
tional Workshop on Nonlinear and Adaptive Control: Issues in Robotics, vol 162. Springer-Verlag,
Berlin Heidelberg, pp 285–295

Chiuso A, Favaro P, Jin H, Soatto S (2002) Structure from motion causally integrated over time. IEEE
T Pattern Anal 24(4):523–535

Choset HM, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles
of robot motion. MIT Press, Cambridge, Massachusetts

Colicchia G, Waltner C, Hopf M, Wiesner H (2009) The scallop’s eye – A concave mirror in the context
of biology. Physics Education 44(2):175–179

Collewet C, Marchand E, Chaumette F (2008) Visual servoing set free from image processing. In:
Proceedings of IEEE International Conference on Robotics and Automation (ICRA). pp 81–86

Commission Internationale de L’Éclairage (1987) Colorimetry, 2nd ed. Commission Internationale de
L’Eclairage, CIE No 15.2

Corke PI (1994) High-performance visual closed-loop robot control. University of Melbourne, Dept.
Mechanical and Manufacturing Engineering. http://eprints.unimelb.edu.au/archive/00000547/01/
thesis.pdf

Corke PI (1996a) In situ measurement of robot motor electrical constants. Robotica 14(4):433–436
Corke PI (1996b) Visual control of robots: High-performance visual servoing. Mechatronics, vol 2. Research

Studies Press (John Wiley). Out of print and available at http://www.petercorke.com/bluebook
Corke PI (2001) Mobile robot navigation as a planar visual servoing problem. In: Jarvis RA, Zelinsky A

(eds) Springer tracts in advanced robotics. Robotics Research: The 10th International Symposium,
vol 6. IFRR, Lorne, pp 361–372

Corke PI (2007) A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE
T Robotic Autom 23(3):590–594

Corke PI (2010) Spherical image-based visual servo and structure estimation. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). Anchorage, pp 5 550–5 555

Corke PI, Armstrong-Hélouvry BS (1994) A search for consensus among model parameters reported
for the PUMA 560 robot. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). San Diego, pp 1 608–1 613

Corke PI, Armstrong-Hélouvry BS (1995) A meta-study of PUMA 560 dynamics: A critical appraisal
of literature data. Robotica 13(3):253–258

652 Bibliography

Corke PI, Good MC (1992) Dynamic effects in high-performance visual servoing. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA). Nice, pp 1 838–1 843

Corke PI, Good MC (1996) Dynamic effects in visual closed-loop systems. IEEE T Robotic Autom
12(5):671–683

Corke PI, Hutchinson SA (2001) A new partitioned approach to image-based visual servo control.
IEEE T Robotic Autom 17(4):507–515

Corke PI, Dunn PA, Banks JE (1999) Frame-rate stereopsis using non-parametric transforms and pro-
grammable logic. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). Detroit, pp 1928–1933

Corke PI, Strelow D, Singh S (2004) Omnidirectional visual odometry for a planetary rover. In:
Proceedings of the International Conference on Intelligent Robots and Systems (IROS). Sendai,
pp 4 007–4 012

Corke PI, Spindler F, Chaumette F (2009) Combining Cartesian and polar coordinates in IBVS. In:
Proceedings of the International Conference on Intelligent Robots and Systems (IROS). St. Louis,
pp 5 962–5 967

Corke PI, Paul R, Churchill W, Newman P (2013) Dealing with shadows: Capturing intrinsic scene
appearance for image-based outdoor localisation. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp 2085–2092

Craig JJ (1987) Adaptive control of mechanical manipulators. Addison-Wesley Longman Publishing
Co., Inc. Boston

Craig JJ (2005) Introduction to robotics: Mechanics and control, 3rd ed. Pearson/Prentice Hall, Upper
Saddle River, New Jersey

Craig JJ, Hsu P, Sastry SS (1987) Adaptive control of mechanical manipulators. Int J Robot Res 6(2):16–28
Crombez N, Caron G, Mouaddib EM (2015) Photometric Gaussian mixtures based visual servoing. In:

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp 5486–5491

Crone RA (1999) A history of color: The evolution of theories of light and color. Kluwer Academic,
Dordrecht

Cummins M, Newman P (2008) FAB-MAP: Probabilistic localization and mapping in the space of ap-
pearance. Int J Robot Res 27(6):647

Cutting JE (1997) How the eye measures reality and virtual reality. Behav Res Meth Ins C 29(1):27–36
Daniilidis K, Klette R (eds) (2006) Imaging beyond the pinhole camera. Computational Imaging, vol 33.

Springer-Verlag, Berlin Heidelberg
Dansereau DG (2014) Plenoptic signal processing for robust vision in fi eld robotics. Ph.D. thesis, The

University of Sydney
Davison AJ, Reid ID, Molton ND, Stasse O (2007) MonoSLAM: Real-time single camera SLAM. IEEE

T Pattern Anal 29(6):1 052–1 067
Deguchi K (1998) Optimal motion control for image-based visual servoing by decoupling translation

and rotation. In: Proceedings of the International Conference on Intelligent Robots and Systems
(IROS). Victoria, Canada, pp 705–711

Dellaert F, Kaess M (2006) Square root SAM: Simultaneous localization and mapping via square root
information smoothing. Int J Robot Res 25(12):1181–1203

Dellaert F, Seitz SM, Thorpe CE, Thrun S (2000) Structure from motion without correspondence. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head
Island, SC, pp 557–564

DeMenthon D, Davis LS (1992) Exact and approximate solutions of the perspective-three-point prob-
lem. IEEE T Pattern Anal 14(11):1 100–1 105

Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices.
J Appl Mech-T ASME 22(1):215–221

Deo AS, Walker ID (1995) Overview of damped least-squares methods for inverse kinematics of robot
manipulators. J Intell Robot Syst 14(1):43–68

Deriche R, Giraudon G (1993) A computational approach for corner and vertex detection. Int J Comput
Vision 10(2):101–124

DeWitt BA, Wolf PR (2000) Elements of photogrammetry (with applications in GIS). McGraw-Hill,
New York

Dickmanns ED (2007) Dynamic vision for perception and control of motion. Springer-Verlag, London
Dickmanns ED, Graefe V (1988a) Applications of dynamic monocular machine vision. Mach Vision

Appl 1:241–261
Dickmanns ED, Graefe V (1988b) Dynamic monocular machine vision. Mach Vision Appl 1(4):223–240
Dickmanns ED, Zapp A (1987) Autonomous high speed road vehicle guidance by computer vision.

In: Tenth Triennial World Congress of the International Federation of Automatic Control, vol 4.
Munich, pp 221–226

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271
Dougherty ER, Lotufo RA (2003) Hands-on morphological image processing. Society of Photo-Optical

Instrumentation Engineers (SPIE)

653Bibliography

Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures.
Commun ACM 15(1):11–15

Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: Part I. IEEE Robot Autom
Mag 13(2):99–110

Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics. IEEE T Robotic
Autom 8(3):313–326

Everett HR (1995) Sensors for mobile robots: Theory and application. AK Peters Ltd., Wellesley
Faugeras OD (1993) Three-dimensional computer vision: A geometric viewpoint. MIT Press, Cambridge,

Massachusetts
Faugeras OD, Lustman F (1988) Motion and structure from motion in a piecewise planar environment.

Int J Pattern Recogn 2(3):485–508
Faugeras O, Luong QT, Papadopoulou T (2001) The geometry of multiple images: The laws that gov-

ern the formation of images of a scene and some of their applications. MIT Press, Cambridge,
Massachusetts

Featherstone R (1987) Robot dynamics algorithms. Kluwer Academic, Dordrecht
Feddema JT (1989) Real time visual feedback control for hand-eye coordinated robotic systems.

Purdue University
Feddema JT, Mitchell OR (1989) Vision-guided servoing with feature-based trajectory generation.

IEEE T Robotic Autom 5(5):691–700
Feddema JT, Lee CSG, Mitchell OR (1991) Weighted selection of image features for resolved rate visual

feedback control. IEEE T Robotic Autom 7(1):31–47
Felzenszwalb PF, Huttenlocher DP (2004) Effi cient graph-based image segmentation. Int J Comput

Vision 59(2):167–181
Ferguson D, Stentz A (2006) Using interpolation to improve path planning: The Field D∗ algorithm.

J Field Robotics 23(2):79–101
Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for model fi tting with applica-

tions to image analysis and automated cartography. Commun ACM 24(6):381–395
Flusser J (2000) On the independence of rotation moment invariants. Pattern Recogn 33(9):1405–1410
Fomena R, Chaumette F (2007) Visual servoing from spheres using a spherical projection model. In:

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Rome,
pp 2 080–2 085

Ford M (2015) Rise of the robots: Technology and the threat of a jobless future. Basic Books, New York
Förstner W (1994) A framework for low level feature extraction. In: Ecklundh J-O (ed) Lecture notes

in computer science. Computer Vision – ECCV 1994, vol 800. Springer-Verlag, Berlin Heidelberg,
pp 383–394

Förstner W, Gülch E (1987) A fast operator for detection and precise location of distinct points, corners
and centres of circular features. In: ISPRS Intercommission Workshop. Interlaken, pp 149–155

Forsyth DA, Ponce J (2011) Computer vision: A modern approach, 2nd ed. Pearson, London
Fraundorfer F, Scaramuzza D (2012) Visual odometry: Part II – Matching, robustness, optimization,

and applications. IEEE Robot Autom Mag 19(2):78–90
Freeman H (1974) Computer processing of line-drawing images. ACM Comput Surv 6(1):57–97
Friedman DP, Felleisen M, Bibby D (1987) The little LISPer. MIT Press, Cambridge, Massachusetts
Funda J, Taylor RH, Paul RP (1990) On homogeneous transforms, quaternions, and computational

effi ciency. IEEE T Robotic Autom 6(3):382–388
Gans NR, Hutchinson SA, Corke PI (2003) Performance tests for visual servo control systems, with

application to partitioned approaches to visual servo control. Int J Robot Res 22(10–11):955
Gautier M, Khalil W (1992) Exciting trajectories for the identifi cation of base inertial parameters of

robots. Int J Robot Res 11(4):362
Geiger A, Roser M, Urtasun R (2010) Effi cient large-scale stereo matching. In: Kimmel R, Klette R,

Sugimoto A (eds) Computer vision – ACCV 2010: 10th Asian Conference on Computer Vision,
Queenstown, New Zealand, November 8–12, 2010, revised selected papers, part I. Springer-Verlag,
Berlin Heidelberg, pp 25–38

Geraerts R, Overmars MH (2004) A comparative study of probabilistic roadmap planners. In: Boisson-
nat J-D, Burdick J, Goldberg K, Hutchinson S (eds) Springer tracts in advanced robotics. Algorithmic
Foundations of Robotics V, vol 7. Springer-Verlag, Berlin Heidelberg, pp 43–58

Gevers T, Gijsenij A, van de Weijer J, Geusebroek J-M (2012) Color in computer vision: Fundamentals
and applications. John Wiley & Sons, Inc., Chichester

Geyer C, Daniilidis K (2000) A unifying theory for central panoramic systems and practical implica-
tions. In: Vernon D (ed) Lecture notes in computer science. Computer vision – ECCV 2000, vol 1 843.
Springer-Verlag, Berlin Heidelberg, pp 445–461

Glover A, Maddern W, Warren M, Reid S, Milford M, Wyeth G (2012) OpenFABMAP: An open source
toolbox for appearance-based loop closure detection. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp 4730–4735

Gonzalez R, Woods R (2008) Digital image processing, 3rd ed. Prentice Hall, Upper Saddle River,
New Jersey

654 Bibliography

Gonzalez R, Woods R, Eddins S (2009) Digital image processing using MATLAB, 2nd ed. Gatesmark
Publishing

Grassia FS (1998) Practical parameterization of rotations using the exponential map. Journal of Graphics
Tools 3(3):29–48

Gregory RL (1997) Eye and brain: The psychology of seeing. Princeton University Press, Princeton,
New Jersey

Grey CGP (2014) Humans need not apply. YouTube video, www.youtube.com/watch?v=7Pq-S557XQU
Grisetti G (n.d.) Teaching resources. Sapienza University of Rome. http://www.dis.uniroma1.it/~grisetti/

teaching.html
Groves PD (2013) Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd ed.

Artech House, Norwood, USA
Hager GD, Toyama K (1998) X Vision: A portable substrate for real-time vision applications. Comput

Vis Image Und 69(1):23–37
Hamel T, Mahony R (2002) Visual servoing of an under-actuated dynamic rigid-body system: An im-

age based approach. IEEE T Robotic Autom 18(2):187–198
Hamel T, Mahony R, Lozano R, Ostrowski J (2002) Dynamic modelling and confi guration stabilization

for an X4-fl yer. IFAC World Congress 1(2), p 3
Hansen P, Corke PI, Boles W (2010) Wide-angle visual feature matching for outdoor localization. Int

J Robot Res 29(1–2):267–297
Harris CG, Stephens MJ (1988) A combined corner and edge detector. In: Proceedings of the Fourth

Alvey Vision Conference. Manchester, pp 147–151
Hart PE (2009) How the Hough transform was invented [DSP history]. IEEE Signal Proc Mag 26(6):18–22
Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York, available

online at http://kmoddl.library.cornell.edu/bib.php?m=23
Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press,

New York
Harvey P (nd) ExifTool. http://www.sno.phy.queensu.ca/~phil/exiftool
Hashimoto K (ed) (1993) Visual servoing. In: Robotics and automated systems, vol 7. World Scientifi c,

Singapore
Hashimoto K, Kimoto T, Ebine T, Kimura H (1991) Manipulator control with image-based visual

servo. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
Seoul, pp 2 267–2 272

Hellerstein JL, Diao Y, Parekh S, Tilbury DM (2004) Feedback control of computing systems. Wiley-
IEEE Press, 456 p

Herschel W (1800) Experiments on the refrangibility of the invisible rays of the sun. Phil Trans R Soc
Lond 90:284–292

Hill J, Park WT (1979) Real time control of a robot with a mobile camera. In: Proceedings of the 9th ISIR,
SME. Washington, DC. Mar, pp 233–246

Hirata T (1996) A unifi ed linear-time algorithm for computing distance maps. Inform Process Lett
58(3):129–133

Hirschmüller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE
Transactions on Pattern Analysis and Machine Intelligence 30(2):328–341

Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of
Earth’s gravity fi eld. Geophys Res Lett 40:4279–4283

Hoag D (1963) Consideration of Apollo IMU gimbal lock. MIT Instrumentation Laboratory, E–1344,
http://www.hq.nasa.gov/alsj/e-1344.htm

Hollerbach JM (1980) A recursive Lagrangian formulation of manipulator dynamics and a comparative
study of dynamics formulation complexity. IEEE T Syst Man Cyb 10(11):730–736, Nov

Hollerbach JM (1982) Dynamics. In: Brady M, Hollerbach JM, Johnson TL, Lozano-Pérez T, Mason MT
(eds) Robot motion – Planning and control. MIT Press, Cambridge, Massachusetts, pp 51–71

Horaud R, Canio B, Leboullenx O (1989) An analytic solution for the perspective 4-point problem.
Comput Vision Graph 47(1):33–44

Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A
4(4):629–642

Horn BKP, Hilden HM, Negahdaripour S (1988) Closed-form solution of absolute orientation using
orthonormal matrices. J Opt Soc Am A 5(7):1 127–1 135

Hosoda K, Asada M (1994) Versatile visual servoing without knowledge of true Jacobian. In: Proceedings
of the International Conference on Intelligent Robots and Systems (IROS). Munich, pp 186–193

Howard TM, Green CJ, Kelly A, Ferguson D (2008) State space sampling of feasible motions for high-
performance mobile robot navigation in complex environments. J Field Robotics 25(6–7):325–345

Hu MK (1962) Visual pattern recognition by moment invariants. IRE T Inform Theor 8:179–187
Hua M-D, Ducard G, Hamel T, Mahony R, Rudin K (2014) Implementation of a nonlinear attitude

estimator for aerial robotic vehicles. IEEE T Contr Syst T 22(1):201–213
Huang TS, Netravali AN (1994) Motion and structure from feature correspondences: A review. P IEEE

82(2):252–268

655Bibliography

Humenberger M, Zinner C, Kubinger W (2009) Performance evaluation of a census-based stereo match-
ing algorithm on embedded and multi-core hardware. In: Proceedings of the 19th International
Symposium on Image and Signal Processing and Analysis (ISPA). pp 388–393

Hunt RWG (1987) The reproduction of colour, 4th ed. Fountain Press, Tolworth
Hunter RS, Harold RW (1987) The measurement of appearance. John Wiley & Sons, Inc., Chichester
Hutchinson S, Hager G, Corke PI (1996) A tutorial on visual servo control. IEEE T Robotic Autom

12(5):651–670
Iwatsuki M, Okiyama N (2002a) A new formulation of visual servoing based on cylindrical coordinate

system with shiftable origin. In: Proceedings of the International Conference on Intelligent Robots
and Systems (IROS). Lausanne, pp 354–359

Iwatsuki M, Okiyama N (2002b) Rotation-oriented visual servoing based on cylindrical coordinates. In:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington,
DC, May, pp 4 198–4 203

Izaguirre A, Paul RP (1985) Computation of the inertial and gravitational coeffi cients of the dynamics
equations for a robot manipulator with a load. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). Mar, pp 1 024–1 032

Jägersand M, Fuentes O, Nelson R (1996) Experimental evaluation of uncalibrated visual servoing for
precision manipulation. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). Albuquerque, NM, pp 2 874–2 880

Jarvis RA, Byrne JC (1988) An automated guided vehicle with map building and path fi nding ca-
pabilities. In: Robotics Research: The Fourth international symposium. MIT Press, Cambridge,
Massachusetts, pp 497–504

Jazwinski AH (2007) Stochastic processes and fi ltering theory. Dover Publications, Mineola
Jebara T, Azarbayejani A, Pentland A (1999) 3D structure from 2D motion. IEEE Signal Proc Mag

16(3):66–84
Julier SJ, Uhlmann JK (2004) Unscented fi ltering and nonlinear estimation. P IEEE 92(3):401–422
Kaehler A, Bradski G (2016) Learning OpenCV: Computer vision in C++ with the OpenCV library.

O’Reilly & Associates, Köln
Kaess M, Ranganathan A, Dellaert F (2007) iSAM: Fast incremental smoothing and mapping with

effi cient data association. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). pp 1670–1677

Kahn ME (1969) The near-minimum time control of open-loop articulated kinematic linkages. Stanford
University, AIM-106

Kálmán RE (1960) A new approach to linear fi ltering and prediction problems. J Basic Eng-T Asme
82(1):35–45

Kane TR, Levinson DA (1983) The use of Kane’s dynamical equations in robotics. Int J Robot Res 2(3):3–21
Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using the RRT*. In:

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). pp 1478–1483
Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in

high-dimensional confi guration spaces. IEEE T Robotic Autom 12(4):566–580
Kelly R (1996) Robust asymptotically stable visual servoing of planar robots. IEEE T Robotic Autom

12(5):759–766
Kelly A (2013) Mobile robotics: Mathematics, models, and methods. Cambridge University Press,

New York
Kelly R, Carelli R, Nasisi O, Kuchen B, Reyes F (2002a) Stable visual servoing of camera-in-hand

robotic systems. IEEE-ASME T Mech 5(1):39–48
Kelly R, Shirkey P, Spong MW (2002b) Fixed-camera visual servo control for planar robots. In: Pro-

ceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington,
DC, pp 2 643–2 649

Khalil W, Creusot D (1997) SYMORO+: A system for the symbolic modelling of robots. Robotica
15(2):153–161

Khalil W, Dombre E (2002) Modeling, identifi cation and control of robots. Kogan Page Science, London
Khatib O (1987) A unifi ed approach for motion and force control of robot manipulators: The opera-

tional space formulation. IEEE T Robotic Autom 3(1):43–53
King-Hele D (2002) Erasmus Darwin’s improved design for steering carriages and cars. Notes and

Records of the Royal Society of London 56(1):41–62
Klafter RD, Chmielewski TA, Negin M (1989) Robotic engineering – An integrated approach. Prentice

Hall, Upper Saddle River, New Jersey
Klein CA, Huang CH (1983) Review of pseudoinverse control for use with kinematically redundant

manipulators. IEEE T Syst Man Cyb 13:245–250
Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspaces. In: Sixth IEEE and

ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007). pp 225–234
Klette R, Kruger N, Vaudrey T, Pauwels K, van Hulle M, Morales S, Kandil F, Haeusler R, Pugeault N,

Rabe C (2011) Performance of correspondence algorithms in vision-based driver assistance using
an online image sequence database. IEEE T Veh Technol 60(5):2 012–2 026

656 Bibliography

Koenderink JJ (1984) The structure of images. Biol Cybern 50(5):363–370
Koenderink JJ (2010) Color for the sciences. MIT Press, Cambridge, Massachusetts
Koenig S, Likhachev M (2002) D∗ Lite. In: Proceedings of the National Conference on Artifi cial Intelligence,

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press, Cambridge, Massachusetts; 1999,
pp 476–483

Koenig S, Likhachev M (2005) Fast replanning for navigation in unknown terrain. IEEE T Robotic
Autom 21(3):354–363

Kriegman DJ, Hager GD, Morse AS (eds) (1998) The confl uence of vision and control. Lecture notes
in control and information sciences, vol 237. Springer-Verlag, Berlin Heidelberg

Kuipers JB (1999) Quaternions and rotation sequences: A primer with applications to orbits, aeroespace
and virtual reality. Princeton University Press, Princeton, New Jersey

Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) g2o: A general framework for graph
optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). pp 3607–3613

Lam O, Dayoub F, Schulz R, Corke P (2015) Automated topometric graph generation from fl oor plan
analysis. In: Proceedings of the Australasian Conference on Robotics and Automation. Australasian
Robotics and Automation Association (ARAA)

Lamport L (1994) LATEX: A document preparation system. User’s guide and reference manual. Addison-
Wesley Publishing Company, Reading

Land EH, McCann J (1971) Lightness and retinex theory. J Opt Soc Am A 61(1):1–11
Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford
LaValle SM (1998) Rapidly-exploring random trees: A new tool for path planning. Computer Science

Dept., Iowa State University, TR 98–11
LaValle SM (2006) Planning algorithms. Cambridge University Press, New York
LaValle SM (2011a) Motion planning: The essentials. IEEE Robot Autom Mag 18(1):79–89
LaValle SM (2011b) Motion planning: Wild frontiers. IEEE Robot Autom Mag 18(2):108–118
LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400
Laussedat A (1899) La métrophotographie. Enseignement supérieur de la photographie. Gauthier-

Villars, 52 p
Leavers VF (1993) Which Hough transform? Comput Vis Image Und 58(2):250–264
Lee CSG, Lee BH, Nigham R (1983) Development of the generalized D’Alembert equations of motion for

mechanical manipulators. In: Proceedings of the 22nd CDC, San Antonio, Texas. pp 1 205–1 210
Lepetit V, Moreno-Noguer F, Fua P (2009) EPnP: An accurate O(n) solution to the PnP problem. Int

J Comput Vision 81(2):155–166
Li H, Hartley R (2006) Five-point motion estimation made easy. In: 18th International Conference on

Pattern Recognition ICPR 2006. Hong Kong, pp 630–633
Li Y, Jia W, Shen C, van den Hengel A (2014) Characterness: An indicator of text in the wild. IEEE T

Image Process 23(4):1666–1677
Li T, Bolic M, Djuric P (2015) Resampling methods for particle fi ltering: Classifi cation, implementa-

tion, and strategies. IEEE Signal Proc Mag 32(3):70–86
Lin Z, Zeman V, Patel RV (1989) On-line robot trajectory planning for catching a moving object. In: Pro-

ceedings of the IEEE International Conference on Robotics and Automation (ICRA). pp 1726–1731
Lindeberg T (1993) Scale-space theory in computer vision. Springer-Verlag, Berlin Heidelberg
Lloyd J, Hayward V (1991) Real-time trajectory generation using blend functions. In: Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA). Seoul, pp 784–789
Longuet-Higgins H (1981) A computer algorithm for reconstruction of a scene from two projections.

Nature 293:133–135
Lovell J, Kluger J (1994) Apollo 13. Coronet Books
Lowe DG (1991) Fitting parametrized three-dimensional models to images. IEEE T Pattern Anal

13(5): 441–450
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision

60(2):91–110
Lowry S, Sunderhauf N, Newman P, Leonard J, Cox D, Corke P, Milford M (2015) Visual place recog-

nition: A survey. Robotics, IEEE Transactions on (99):1–19
Lu F, Milios E (1997) Globally consistent range scan alignment for environment mapping. Auton

Robot 4:333–349
Lucas SM (2005) ICDAR 2005 text locating competition results. In: Proceedings of the Eighth International

Conference on Document Analysis and Recognition, ICDAR05. pp 80–84
Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo

vision. In: International joint conference on artifi cial intelligence (IJCAI), Vancouver, vol 2.
http://ijcai.org/Past%20Proceedings/IJCAI-81-VOL-2/PDF/017.pdf, pp 674–679

Luh JYS, Walker MW, Paul RPC (1980) On-line computational scheme for mechanical manipulators.
J Dyn Syst-T ASME 102(2):69–76

Lumelsky V, Stepanov A (1986) Dynamic path planning for a mobile automaton with limited infor-
mation on the environment. IEEE T Automat Contr 31(11):1 058–1 063

657Bibliography

Luong QT (1992) matrice fondamentale et autocalibration en vision par ordinateur. Ph.D. thesis,
Université de Paris-Sud, Orsay, France

Lynch KM, Park FC (2017) Modern robotics: Mechanics, planning, and control. Cambridge University
Press, New York

Ma Y, Kosecka J, Soatto S, Sastry S (2003) An invitation to 3D. Springer-Verlag, Berlin Heidelberg
Magnusson M, Lilienthal A, Duckett T (2007) Scan registration for autonomous mining vehicles using

3D-NDT. J Field Robotics 24(10):803–827
Magnusson M, Nuchter A, Lorken C, Lilienthal AJ, Hertzberg J (2009) Evaluation of 3D registration

reliability and speed – A comparison of ICP and NDT. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp 3907–3912

Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles: Modeling, estimation, and control of
quadrotor. IEEE Robot Autom Mag (19):20–32

Maimone M, Cheng Y, Matthies L (2007) Two years of visual odometry on the Mars exploration rov-
ers. J Field Robotics 24(3):169–186

Makhlin AG (1985) Stability and sensitivity of servo vision systems. In: Proc 5th International Conference
on Robot Vision and Sensory Controls – RoViSeC 5. IFS (Publications), Amsterdam, pp 79–89

Malis E (2004) Improving vision-based control using effi cient second-order minimization tech-
niques. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
pp 1843–1848

Malis E, Vargas M (2007) Deeper understanding of the homography decomposition for vision-based con-
trol. Research Report, RR-6303, Institut National de Recherche en Informatique et en Automatique
(INRIA), 90 p, https://hal.inria.fr/inria-00174036v3/document

Malis E, Chaumette F, Boudet S (1999) 2-1/2D visual servoing. IEEE T Robotic Autom 15(2):238–250
Marey M, Chaumette F (2008) Analysis of classical and new visual servoing control laws. In:

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Pasadena,
pp 3244–3249

Mariottini GL, Prattichizzo D (2005) EGT for multiple view geometry and visual servoing: Robotics
vision with pinhole and panoramic cameras. IEEE T Robotic Autom 12(4):26–39

Mariottini GL, Oriolo G, Prattichizzo D (2007) Image-based visual servoing for nonholonomic mobile
robots using epipolar geometry. IEEE T Robotic Autom 23(1):87–100

Marr D (2010) Vision: A computational investigation into the human representation and processing
of visual information. MIT Press, Cambridge, Massachusetts

Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its
application to evaluating segmentation algorithms and measuring ecological statistics. Proceedings
of the 8th International Conference on Computer Vision, vol 2. pp 416–423

Martins FN, Celeste WC, Carelli R, Sarcinelli-Filho M, Bastos-Filho TF (2008) An adaptive dynamic
controller for autonomous mobile robot trajectory tracking. Control Eng Pract 16(11):1354–1363

Masutani Y, Mikawa M, Maru N, Miyazaki F (1994) Visual servoing for non-holonomic mobile ro-
bots. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS).
Munich, pp 1 133–1 140

Matariõ MJ (2007) The robotics primer. MIT Press, Cambridge, Massachusetts
Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-baseline stereo from maximally stable ex-

tremal regions. Image Vision Comput 22(10):761–767
Matthews ND, An PE, Harris CJ (1995) Vehicle detection and recognition for autonomous intelligent

cruise control. Technical Report, University of Southampton
Matthies L (1992) Stereo vision for planetary rovers: Stochastic modeling to near real-time implemen-

tation. Int J Comput Vision 8(1):71–91
Mayeda H, Yoshida K, Osuka K (1990) Base parameters of manipulator dynamic models. IEEE T

Robotic Autom 6(3):312–321
McLauchlan PF (1999) The variable state dimension fi lter applied to surface-based structure from

motion. University of Surrey, VSSP-TR-4/99
Merlet JP (2006) Parallel robots. Kluwer Academic, Dordrecht
Mettler B (2003) Identifi cation modeling and characteristics of miniature rotorcraft. Kluwer Academic,

Dordrecht
Miãušík B, Pajdla T (2003) Estimation of omnidirectional camera model from epipolar geometry. In:

IEEE Conference on Computer Vision and Pattern Recognition, vol 1. Madison, pp 485–490
Middleton RH, Goodwin GC (1988) Adaptive computed torque control for rigid link manipulations.

Syst Control Lett 10(1):9–16
Mikolajczyk K, Schmid C (2004) Scale and affi ne invariant interest point detectors. Int J Comput

Vision 60(1):63–86
Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE T Pattern Anal

27(10):1 615–1 630
Mindell DA (2008) Digital Apollo. MIT Press, Cambridge, Massachusetts
Molton N, Brady M (2000) Practical structure and motion from stereo when motion is unconstrained.

Int J Comput Vision 39(1):5–23

658 Bibliography

Montemerlo M, Thrun S (2007) FastSLAM: A scalable method for the simultaneous localization and
mapping problem in robotics, vol 27. Springer-Verlag, Berlin Heidelberg

Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) FastSLAM: A factored solution to the simulta-
neous localization and mapping problem. In: Proceedings of the AAAI National Conference on
Artifi cial Intelligence. AAAI, Edmonton, Canada

Montemerlo M, Thrun S, Koller D, Wegbreit B (2003) FastSLAM 2.0: An improved particle fi ltering algorithm
for simultaneous localization and mapping that provably converges. In: Proceedings of the 18th Interna-
tional Joint Conference on Artifi cial Intelligence. Morgan Kaufmann, San Francisco, pp 1151–1156

Moravec H (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover. Ph.D.
thesis, Stanford University

Morel G, Liebezeit T, Szewczyk J, Boudet S, Pot J (2000) Explicit incorporation of 2D constraints in vision
based control of robot manipulators. In: Corke PI, Trevelyan J (eds) Lecture notes in control and infor-
mation sciences. Experimental robotics VI, vol 250. Springer-Verlag, Berlin Heidelberg, pp 99–108

Muja M, Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm confi gura-
tion. International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon,
Portugal (Feb 2009), pp 331–340

Murray RM, Sastry SS, Zexiang L (1994) A mathematical introduction to robotic manipulation. CRC
Press, Inc., Boca Raton

NASA (1970) Apollo 13: Technical air-to-ground voice transcription. Test Division, Apollo Spacecraft
Program Offi ce, http://www.hq.nasa.gov/alsj/a13/AS13_TEC.PDF

Nayar SK (1997) Catadioptric omnidirectional camera. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Los Alamitos, CA, pp 482–488

Neilson S (2011) Robot nation: Surviving the greatest socio-economic upheaval of all time. Eridanus
Press, New York, 124 p

Neira J, Tardós JD (2001) Data association in stochastic mapping using the joint compatibility test.
IEEE T Robotic Autom 17(6):890–897

Neira J, Davison A, Leonard J (2008) Guest editorial special issue on Visual SLAM. IEEE T Robotic
Autom 24(5):929–931

Nethery JF, Spong MW (1994) Robotica: A mathematica package for robot analysis. IEEE T Robotic
Autom 1(1):13–20

Newcombe RA, Lovegrove SJ, Davison AJ (2011) DTAM: Dense tracking and mapping in real-time. In:
Proceedings of the International Conference on Computer Vision, pp 2320–2327

Newman P (n.d.) C4B mobile robots and estimation resources. Oxford University. http://www.robots.
ox.ac.uk/~pnewman/Teaching/C4CourseResources/C4BResources.html

Ng J, Bräunl T (2007) Performance comparison of bug navigation algorithms. J Intell Robot Syst
50(1):73–84

Niblack W (1985) An introduction to digital image processing. Strandberg Publishing Company
Birkeroed, Denmark

Nilsson NJ (1971) Problem-solving methods in artifi cial intelligence. McGraw-Hill, New York
Nistér D (2003) An effi cient solution to the fi ve-point relative pose problem. In: IEEE Conference on

Computer Vision and Pattern Recognition, vol 2. Madison, pp 195–202
Nistér D, Naroditsky O, Bergen J (2006) Visual odometry for ground vehicle applications. J Field

Robotics 23(1):3–20
Nixon MS, Aguado AS (2012) Feature extraction and image processing, 3rd ed. Academic Press, London

Oxford
Noble JA (1988) Finding corners. Image Vision Comput 6(2):121–128
Okutomi M, Kanade T (1993) A multiple-baseline stereo. IEEE T Pattern Anal 15(4):353–363
Ollis M, Herman H, Singh S (1999) Analysis and design of panoramic stereo vision using equi-angu-

lar pixel cameras. Robotics Institute, Carnegie Mellon University, CMU-RI-TR-99-04, Pittsburgh,
PA

Olson E (2011) AprilTag: A robust and fl exible visual fi ducial system. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). pp 3400–3407

Orin DE, McGhee RB, Vukobratovic M, Hartoch G (1979) Kinematics and kinetic analysis of open-
chain linkages utilizing Newton-Euler methods. Math Biosci 43(1/2):107–130

Ortega R, Spong MW (1989) Adaptive motion control of rigid robots: A tutorial. Automatica
25(6):877–888

Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11:285–296
Papanikolopoulos NP, Khosla PK (1993) Adaptive robot visual tracking: Theory and experiments.

IEEE T Automat Contr 38(3):429–445
Papanikolopoulos NP, Khosla PK, Kanade T (1993) Visual tracking of a moving target by a camera

mounted on a robot: A combination of vision and control. IEEE T Robotic Autom 9(1):14–35
Park FC (1994) Computational aspects of the product-of-exponentials formula for robot kinematics.

IEEE T Automat Contr 39(3):643–647
Paul R (1972) Modelling, trajectory calculation and servoing of a computer controlled arm. Ph.D. the-

sis, technical report AIM-177, Stanford University

659Bibliography

Paul R (1979) Manipulator Cartesian path control. IEEE T Syst Man Cyb 9:702–711
Paul RP (1981) Robot manipulators: Mathematics, programming, and control. MIT Press, Cambridge,

Massachusetts
Paul RP, Shimano B (1978) Kinematic control equations for simple manipulators. In: IEEE Conference

on Decision and Control, vol 17. pp 1 398–1 406
Paul RP, Zhang H (1986) Computationally effi cient kinematics for manipulators with spherical wrists

based on the homogeneous transformation representation. Int J Robot Res 5(2):32–44
Piepmeier JA, McMurray G, Lipkin H (1999) A dynamic quasi-Newton method for uncalibrated vi-

sual servoing. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). Detroit, pp 1 595–1 600

Pilu M (1997) A direct method for stereo correspondence based on singular value decomposition. In:
Proceedings of the Computer Vision and Pattern Recognition, IEEE Computer Society, San Juan,
pp 261–266

Pivtoraiko M, Knepper RA, Kelly A (2009) Differentially constrained mobile robot motion planning
in state lattices. J Field Robotics 26(3):308–333

Pock T (2008) Fast total variation for computer vision. Ph.D. thesis, Graz University of Technology
Pollefeys M, Nistér D, Frahm JM, Akbarzadeh A, Mordohai P, Clipp B, Engels C, Gallup D, Kim SJ,

Merrell P, et al. (2008) Detailed real-time urban 3D reconstruction from video. Int J Comput Vision
78(2):143–167, Jul

Pomerleau D, Jochem T (1995) No hands across America Journal. http://www.cs.cmu.edu/~tjochem/
nhaa/Journal.html

Pomerleau D, Jochem T (1996) Rapidly adapting machine vision for automated vehicle steering. IEEE
Expert 11(1):19–27

Posner I, Corke P, Newman P (2010) Using text-spotting to query the world. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, pp 3181–3186

Pounds P (2007) Design, construction and control of a large quadrotor micro air vehicle. Ph.D. thesis,
Australian National University

Pounds P, Mahony R, Gresham J, Corke PI, Roberts J (2004) Towards dynamically-favourable quad-
rotor aerial robots. In: Proceedings of the Australasian Conference on Robotics and Automation.
Canberra

Pounds P, Mahony R, Corke PI (2006) A practical quad-rotor robot. In: Proceedings of the Australasian
Conference on Robotics and Automation. Auckland

Pounds P, Mahony R, Corke PI (2007) System identifi cation and control of an aerobot drive system.
In: Information, Decision and Control. IEEE, pp 154–159

Poynton CA (2003) Digital video and HDTV: Algorithms and interfaces. Morgan Kaufmann, San
Francisco

Poynton CA (2012) Digital video and HD algorithms and interfaces. Morgan Kaufmann, Burlington
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, 3rd ed. Cambridge

University Press, New York
Prince SJ (2012) Computer vision: Models, learning, and inference. Cambridge University Press, New

York
Prouty RW (2002) Helicopter performance, stability, and control. Krieger, Malabar FL
Pynchon T (2006) Against the day. Jonathan Cape, London
Rekleitis IM (2004) A particle fi lter tutorial for mobile robot localization. Technical report (TR-CIM-

04-02), Centre for Intelligent Machines, McGill University
Rives P, Chaumette F, Espiau B (1989) Positioning of a robot with respect to an object, tracking it and

estimating its velocity by visual servoing. In: Hayward V, Khatib O (eds) Lecture notes in control
and information sciences. Experimental robotics I, vol 139. Springer-Verlag, Berlin Heidelberg,
pp 412–428

Rizzi AA, Koditschek DE (1991) Preliminary experiments in spatial robot juggling. In: Chatila R,
Hirzinger G (eds) Lecture notes in control and information sciences. Experimental robotics II,
vol 190. Springer-Verlag, Berlin Heidelberg, pp 282–298

Roberts LG (1963) Machine perception of three-dimensional solids. MIT Lincoln Laboratory, TR 315,
http://www.packet.cc/fi les/mach-per-3D-solids.html

Rosenfi eld GH (1959) The problem of exterior orientation in photogrammetry. Photogramm Eng
25(4):536–553

Rosten E, Porter R, Drummond T (2010) FASTER and better: A machine learning approach to corner
detection. IEEE T Pattern Anal 32:105–119

Russell S, Norvig P (2009) Artifi cial intelligence: A modern approach, 3rd ed. Prentice Hall Press, Upper
Saddle River, NJ

Sakaguchi T, Fujita M, Watanabe H, Miyazaki F (1993) Motion planning and control for a robot per-
former. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
Atlanta, May, pp 925–931

Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with
accuracy evaluation. Image Vision Comput 25(5):578–596

660 Bibliography

Samson C, Espiau B, Le Borgne M (1990) Robot control: The task function approach. Oxford University
Press, Oxford

Sanderson AC, Weiss LE, Neuman CP (1987) Dynamic sensor-based control of robots with visual
feedback. IEEE T Robotic Autom RA-3(5):404–417

Scaramuzza D, Fraundorfer F (2011) Visual odometry [tutorial]. IEEE Robot Autom Mag 18(4):80–92
Scharstein D, Pal C (2007) Learning conditional random fi elds for stereo. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR 2007). Minneapolis, MN
Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence

algorithms. Int J Comput Vision 47(1):7–42
Selig JM (2005) Goemetric fundamentals of robotics. Springer-Verlag, Berlin Heidelberg
Sharp A (1896) Bicycles & tricycles: An elementary treatise on their design an construction; With ex-

amples and tables. Longmans, Green and Co., London New York Bombay
Sheridan TB (2003) Telerobotics, automation, and human supervisory control. MIT Press, Cambridge,

Massachusetts, 415 p
Shi J, Tomasi C (1994) Good features to track. In: Proceedings of the Computer Vision and Pattern

Recognition. IEEE Computer Society, Seattle, pp 593–593
Shih FY (2009) Image processing and mathematical morphology: Fundamentals and applications,

CRC Press, Boca Raton
Shirai Y (1987) Three-dimensional computer vision. Springer-Verlag, New York
Shirai Y, Inoue H (1973) Guiding a robot by visual feedback in assembling tasks. Pattern Recogn

5(2):99–106
Shoemake K (1985) Animating rotation with quaternion curves. In: Proceedings of ACM SIGGRAPH,

San Francisco, pp 245–254
Siciliano B, Khatib O (eds) (2016) Springer handbook of robotics, 2nd ed. Springer-Verlag, New York
Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: Modelling, planning and control. Springer-

Verlag, Berlin Heidelberg
Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots, 2nd ed.

MIT Press, Cambridge, Massachusetts
Silver WM (1982) On the equivalance of Lagrangian and Newton-Euler dynamics for manipulators.

Int J Robot Res 1(2):60–70
Sivic J, Zisserman A (2003) Video Google: A text retrieval approach to object matching in videos. In:

Proceedings of the Ninth IEEE International Conference on Computer Vision. pp 1 470–1 477
Skaar SB, Brockman WH, Hanson R (1987) Camera-space manipulation. Int J Robot Res 6(4):20–32
Skofteland G, Hirzinger G (1991) Computing position and orientation of a freefl ying polyhedron

from 3D data. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). Seoul, pp 150–155

Slama CC (ed) (1980) Manual of photogrammetry, 4th ed. American Society of Photogrammetry
Smith R (2007) An overview of the Tesseract OCR engine. In: 9th International Conference on Document

Analysis and Recognition (ICDAR). pp 629–633
Sobel D (1996) Longitude: The true story of a lone genius who solved the greatest scientifi c problem

of his time. Fourth Estate, London
Soille P (2003) Morphological image analysis: Principles and applications. Springer-Verlag, Berlin

Heidelberg
Spong MW (1989) Adaptive control of fl exible joint manipulators. Syst Control Lett 13(1):15–21
Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control, 2nd ed. John Wiley &

Sons, Inc., Chichester
Srinivasan VV, Venkatesh S (1997) From living eyes to seeing machines. Oxford University Press,

Oxford
Stachniss C, Burgard W (2014) Particle fi lters for robot navigation. Foundations and Trends in Robotics

3(4):211–282
Steinvall A (2002) English colour terms in context. Ph.D. thesis, Ume Universitet
Stentz A (1994) The D∗ algorithm for real-time planning of optimal traverses. The Robotics Institute,

Carnegie-Mellon University, CMU-RI-TR-94-37
Stewart A (2014) Localisation using the appearance of prior structure. Ph.D. thesis, University of

Oxford
Stone JV (2012) Vision and brain: How we perceive the world. MIT Press, Cambridge, Massachusetts
Strasdat H (2012) Local accuracy and global consistency for effi cient visual SLAM. Ph.D. thesis, Imperial

College London
Strelow D, Singh S (2004) Motion estimation from image and inertial measurements. Int J Robot Res

23(12):1 157–1 195
Sünderhauf N (2012) Robust optimization for simultaneous localization and mapping. Ph.D. thesis,

Technische Universität Chemnitz
Sussman GJ, Wisdom J, Mayer ME (2001) Structure and interpretation of classical mechanics. MIT

Press, Cambridge, Massachusetts
Sutherland IE (1974) Three-dimensional data input by tablet. P IEEE 62(4):453–461

661Bibliography

Svoboda T, Pajdla T (2002) Epipolar geometry for central catadioptric cameras. Int J Comput Vision
49(1):23–37

Szeliski R (2011) Computer vision: Algorithms and applications. Springer-Verlag, Berlin Heidelberg
Tahri O, Chaumette F (2005) Point-based and region-based image moments for visual servoing of

planar objects. IEEE T Robotic Autom 21(6):1 116–1 127
Tahri O, Mezouar Y, Chaumette F, Corke PI (2009) Generic decoupled image-based visual servoing for

cameras obeying the unifi ed projection model. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). Kobe, pp 1 116–1 121

Taylor RA (1979) Planning and execution of straight line manipulator trajectories. IBM J Res Dev
23(4):424–436

ter Haar Romeny BM (1996) Introduction to scale-space theory: Multiscale geometric image analysis.
Utrecht University

Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge, Massachusetts
Tissainayagam P, Suter D (2004) Assessing the performance of corner detectors for point feature track-

ing applications. Image Vision Comput 22(8):663–679
Titterton DH, Weston JL (2005) Strapdown inertial navigation technology. IEE Radar, Sonar, Naviga-

tion and Avionics Series, vol 17, The Institution of Engineering and Technology (IET), 576 p
Tomasi C, Kanade T (1991) Detection and tracking of point features. Carnegie Mellon University,

CMU-CS-91-132
Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment – A modern synthesis.

Lecture notes in computer science. Vision algorithms: theory and practice, vol 1 883. Springer-
Verlag, Berlin Heidelberg, pp 153–177

Tsakiris D, Rives P, Samson C (1998) Extending visual servoing techniques to nonholonomic mobile
robots. In: Kriegman DJ, Hager GD, Morse AS (eds) Lecture notes in control and information sciences.
The confl uence of vision and control, vol 237. Springer-Verlag, Berlin Heidelberg, pp 106–117

Uicker JJ (1965) On the dynamic analysis of spatial linkages using 4 by 4 matrices. Dept. Mechanical
Engineering and Astronautical Sciences, NorthWestern University

Usher K (2005) Visual homing for a car-like vehicle. Ph.D. thesis, Queensland University of Technology
Usher K, Ridley P, Corke PI (2003) Visual servoing of a car-like vehicle – An application of omnidirec-

tional vision. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). Taipai, Sep, pp 4 288–4 293

Valgren C, Lilienthal AJ (2010) SIFT, SURF & seasons: Appearance-based long-term localization in
outdoor environments. Robot Auton Syst 58(2):149–156

Vanderborght B, Sugar T, Lefeber D (2008) Adaptable compliance or variable stiffness for robotic ap-
plications. IEEE Robot Autom Mag 15(3):8–9

Vedaldi A, Fulkerson B (2008) VLFeat: An open and portable library of computer vision algorithms.
http://www.vlfeat.org

Wade NJ (2007) Image, eye, and retina. J Opt Soc Am A 24(5):1229–1249
Walker MW, Orin DE (1982) Effi cient dynamic computer simulation of robotic mechanisms. J Dyn

Syst-T ASME 104(3):205–211
Walter WG (1950) An imitation of life. Sci Am 182(5):42–45
Walter WG (1951) A machine that learns. Sci Am 185(2):60–63
Walter WG (1953) The living brain. Duckworth, London
Warren M (2015) Long-range stereo visual odometry for unmanned aerial vehicles. Ph.D. thesis,

Queensland University of Technology
Weiss LE (1984) Dynamic visual servo control of robots: An adaptive image-based approach. Ph.D.

thesis, technical report CMU-RI-TR-84-16, Carnegie-Mellon University
Weiss L, Sanderson AC, Neuman CP (1987) Dynamic sensor-based control of robots with visual feed-

back. IEEE T Robotic Autom 3(1):404–417
Westmore DB, Wilson WJ (1991) Direct dynamic control of a robot using an end-point mounted cam-

era and Kalman fi lter position estimation. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). Seoul, Apr, pp 2 376–2 384

Whitney DE (1969) Resolved motion rate control of manipulators and human prostheses. IEEE T
Man Machine 10(2):47–53

Wiener N (1965) Cybernetics or control and communication in the animal and the machine. MIT
Press, Cambridge, Massachusetts

Wilburn B, Joshi N, Vaish V, Talvala E-V, Antunez E, Barth A, Adams A, Horowitz M, Levoy M (2005)
High performance imaging using large camera arrays. ACM Transactions on Graphics (TOG)
– Proceedings of ACM SIGGRAPH 2005 24(3):765–776

Wolf PR (1974) Elements of photogrammetry. McGraw-Hill, New York
Woodfi ll J, Von Herzen B (1997) Real-time stereo vision on the PARTS reconfi gurable computer.

In: Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, Grenoble.
pp 201–210

Xu G, Zhang Z (1996) Epipolar geometry in stereo, motion, and object recognition: A unifi ed approach.
Springer-Verlag, Berlin Heidelberg

662 Bibliography

Ying X, Hu Z (2004) Can we consider central catiodioptric cameras and fi sheye cameras within a uni-
fi ed imaging model. In: Pajdla T, Matas J (eds) Lecture notes in computer science. Computer vision
– ECCV 2004, vol 3 021. Springer-Verlag, Berlin Heidelberg, pp 442–455

Yoshikawa T (1984) Analysis and control of robot manipulators with redundancy. In: Brady M, Paul R
(eds) Robotics research: The fi rst international symposium. MIT Press, Cambridge, Massachusetts,
pp 735–747

Zabih R, Woodfi ll J (1994) Non-parametric local transforms for computing visual correspondence.
In: Ecklundh J-O (ed) Lecture notes in computer science. Computer Vision – ECCV 1994, vol 800.
Springer-Verlag, Berlin Heidelberg, pp 151–158

Zarchan P, Musoff H (2005) Fundamentals of Kalman fi ltering: A practical approach. Progress in
Astronautics and Aeronautics, vol 208. American Institute of Aeronautics and Astronautics

Zhang Z, Faugeras O, Kohonen T, Hunag TS, Schroeder MR (1992) Three D-dynamic scene analysis:
A stereo based approach. Springer-Verlag, New York

Ziegler J, Bender P, Schreiber M, Lategahn H, Strauss T, Stiller C, Thao Dang, Franke U, Appenrodt
N, Keller CG, Kaus E, Herrtwich RG, Rabe C, Pfeiffer D, Lindner F, Stein F, Erbs F, Enzweiler M,
Knöppel C, Hipp J, Haueis M, Trepte M, Brenk C, Tamke A, Ghanaat M, Braun M, Joos A, Fritz
H, Mock H, Hein M, Zeeb E (2014) Making Bertha drive – An autonomous journey on a historic
route. IEEE Intelligent Transportation Systems Magazine 6(2):8–20

Index

A

Ackermann, Rudolph 101
Alhazen, aka 331
Asimov, Issac 1

B

Ball, Sir Robert 52, 55
Bayer, Bryce E. 294
Bayes, Reverend Thomas 157
Beer, August 289
Black, Harold 4
Bode, Henrik 4
Boltzman, Ludwig 288
Braitenberg, Valentino 126
Bryan, George 37

C

.apek, Karel 1, 3
Cardano, Gerolamo 37
Chasles, Michel 53
Chrétien, Henri 366
Clifford, William 55
Cook, Captain James 152, 167
Coriolis, Gaspard-Gustave de 69
Coulomb, Charles-Augustin de 253

D

Dalton, John 295
Davy, Sir Humphry 289
Delaunay, Boris 137
Denavit, Jacques 198
Descartes, René 19
Devol, George C. Jr. 1, 2
Draper, Charles Stark (Doc) 81, 82, 158

E

Edison, Thomas Alva 289
Einstein, Albert 70
Engelberger, Joseph F. 2
Euclid of Alexandria 18, 331
Euler, Leonhard 36, 68, 265

G

Gauss, Carl Friedrich 61, 383

Goetz, Raymond 7

H

Hall, Edwin 85
Hamilton, Sir William Rowan 44, 55, 60, 61
Harrison, John 152
Hartenberg, Richard 198
Helmholtz, Hermann, von 293
Hering, Karl Ewald 293
Herschel, William 288, 337
Hershey, Allen V. 220
Hesse, Ludwig Otto 618
Hough, Paul 455

I

Ilon, Bengt 112

J

Jacobi, Carl Gustav Jacob 232

K

Kálmán, Rudolf 157
Kepler, Johannes 331

L

Lagrange, Joseph-Louis 265
Lambert, Johann Heinrich 309
Land, Edward 307
Laplace, Pierre-Simon 383, 384
Laussedat, Aimé 354
Lazzarini, Mario 174
Leclerc, Georges-Louis 174
Lie, Sophus 611

M

Markov, Andrey 137
Marr, David 388
Maxwell, James Clerk 293
McCarthy, John 4
McCulloch, Warren 4
Metropolis, Nicholas 174
Minsky, Marvin 4
Moler, Cleve 9
Mozi (Chinese philosopher of 5th century bce) 319

Index of People

664 Index

N

Newell, Allen 4
Newton, Sir Isaac 67–69, 279, 287, 337
Nyquist, Harold 4, 403

P

Pitts, Walter 4
Planck, Max 288
Plücker, Julius 597
Price, Richard 157
Ptolemy, Claudius 331

R

Rodrigues, Olinde 42, 61

S

Scheinman, Victor 195
Schmidt, Stanley F. 158
Shannon, Claude 4, 403
Simon, Herbert 4
Sobel, Irwin 407
Stefan, Jozef 288
Swan, Sir Joseph 289

T

Tait, Peter 37, 61
Tesla, Nikola 6
Turing, Alan 4

U

Ulam, Stanislaw 174

V

von Goethe, Johann Wolfgang 293
von Kármán, Theodore 198
von Neumann, John 174
Voronoy, Georgy Feodosevich 137

W

Wald, George 292
Walter, William Grey 4, 126
Wien, Wilhelm 288
Wiener, Norbert 4

Y

Young, Thomas 293

Index of Functions, Classes and Methods

Classes are shown in bold, Simulink® models in italics, and methods are prefi xed by a dot.
All others are Toolbox functions.

A

abcolorspace 421
about 77, 118, 145, 204, 213, 264, 360–362, 365, 378, 402, 427, 485,

520, 551, 573, 620
abs 372
AlphaBeta 579
anaglyph 495
angdiff 103, 566, 577
angles 48
angvec2r 42
angvec2tr 61
animate 76, 77
AprilTag 164
apriltags 164, 184
atan2 372, 601
AxisWebCamera 366

–, .grab 366
–, .size 366

B

BagOfWords 515, 517, 519
–, .contains 516
–, .exemplars 516
–, .occurrence 516
–, .remove_stop 516
–, .similarity 517, 519
–, .wordfreq 516
–, .words 515

–, .wordvector 517
Bicycle 100, 101, 109, 111
Bicycle 163, 166, 168, 176, 185, 575
BinaryOccupancyGrid 148
blackbody 288, 289, 300, 306, 307
boundary 434
boundmatch 436
bug 129
bug.plot 129
bug2 129

–, .path 129, 131
BundleAdjust 498, 499, 502, 641

–, .addcamera 498
–, .errors 501
–, .getcamera 502
–, .getstate 500
–, .optimize 501
–, .plot 499, 502

bwdist 399

C

calib_gui_normal 336
cam 323–325, 481

–, .estpose 539
–, .grab 364

camcald 354
Camera 327, 338, 341, 343, 355, 551
Camera2 579
cast 373

665

CatadioptricCamera 341
ccode 620
CentralCamera 323, 331, 338, 341, 343, 352, 355, 465, 467, 468,

473, 477, 479, 501, 539, 542, 544, 548, 549, 569, 573, 607
–, .C 326
–, .clf 356
–, .derivs 501
–, .E 468
–, .estpose 539
–, .F 467
–, .f 546
–, .fl owfi eld 544, 546
–, .fov 327
–, .hold 356
–, .invC 327
–, .invE 481
–, .invH 477, 511
–, .K 557
–, .mesh 329, 339, 341, 356
–, .move 469, 481, 482, 497
–, .plot 328, 329, 356, 473, 539, 549
–, .plot_epiline 468, 473, 479
–, .pp 549
–, .project 323–325, 328, 335, 497, 542, 557, 607
–, .ray 482
–, .T 329
–, .visjac_e 558
–, .visjac_p 544, 546
–, .visjac_p_polar 568

children 432
circle 556, 557
clf 356
closest 505
cmfrgb 297, 298
cmfxyz 300
colnorm 476, 497
colorkmeans 420–422
colorname 301, 305, 421, 423, 491
colorspace 302, 303, 312
cones 292, 293
ctraj 8, 78, 214, 215
cylinder 329, 356

D

delta2tr 67, 549
descriptor 461
DHFactor 218, 222

–, .dh.command 222
diff 381, 523
DigitalCamera 480
dim 163
distance 461
Dstar 134

–, .costmap 134
–, .modify_cost 135
–, .niter 135
–, .path 135
–, .plan 134, 135

DXform 131
–, .path 131
–, .plan 131, 132
–, .visualize 131
–, .visualize3d 132

E

e2h 29, 467
EarthView 367, 410

–, .grab 367
ebundle 523
efund 523
eig 41, 430, 504
EKF 158, 160, 163, 166–168
ellipsoid 329
epidist 471
eps 50
ETS2 194, 227

–, .fkine 194
–, .plot 195
–, .Rz 194, 196
–, .structure 195, 196
–, .teach 194
–, .Tx 194, 196

ETS3 227
–, .fkine 196
–, .Ry 196
–, .Rz 196
–, .Tx 196
–, .Ty 196
–, .Tz 196

eul2jac 233
eul2r 36, 37
eul2tr 48
eval 218, 222
ExampleHelperRobot Simulator 123
exp 26, 43
expm 26, 43, 47, 52, 54, 61
eye 29, 218

F

fcode 620
FeatureMatch 463, 472, 478, 496

–, .inlier 473, 478, 479, 482
–, .outlier 473, 478
–, .plot 463, 473
–, .ransac 472
–, .show 472, 478
–, .subset 463, 473, 479, 482

FishEyeCamera 338, 339, 355
fkine 214
fl owers 302
fmatrix 470, 471, 531
fminsearch 207

G

gait 225
gaussfunc 631, 632
GeometricJacobian 248
ginput 531
Graph 214

H

h2e 29, 467, 468, 473
histogram 463
homography 474, 510, 531

Index of Functions, Classes and Methods

666 Index

homtrans 470, 474–476, 557
homwarp 510, 513
Hough 441, 442

–, .lines 441, 442
–, .plot 442
–, .show 441

humoments 434

I

ianimate 520
ibbox 428
iblobs 432–434
IBVS 549

–, .plot_camera 569
–, .plot_error 569
–, .plot_vel 569
–, .step 549

IBVS_polar 569
IBVS_sph 571
icanny 385, 440, 442
icensus 531
iclose 397
icolor 370, 373
iconv 377, 378, 382–384, 387
icorner 445, 446, 448, 460, 461, 520
icp 180
idecimate 403
idisp 311, 314, 346, 347, 361, 362, 367, 368, 372–374,

376, 378, 382, 383, 390, 392–394, 398, 401, 410,
415, 418, 419, 421, 424–426, 434, 442, 445, 446,
448–451, 453, 460, 463, 473, 478, 484, 487, 490,
491, 509, 515, 517

idouble 362, 370, 373, 405
iendpoint 399
igamma 372, 373
igraphcut 457
ihist 369, 372, 373, 416, 487
iint 370
ImageSource 365
imeshgrid 404–406, 493
imoments 431, 432
imono 362, 370
imorph 394, 395, 397, 398
imser 419
InitFcn 275, 573, 577
inormhist 372
interp 77, 78
interp2 405
invariant 314, 315
invcamcal 333, 334
InverseKinematics 227
iopen 397, 421
ipaste 368, 512, 513
ipixswitch 374, 487, 492, 494
ipyramid 403
irank 397, 531
iread 314, 345, 360–363, 373, 378, 390, 396, 401, 402, 406,

415, 417, 419, 426, 433, 437, 438, 442, 445, 448, 449,
451, 460, 478, 480, 483, 494, 509, 510, 512, 514, 518, 520

irectify 496
ireplicate 403
iroi 388, 401, 410
irotate 405, 440
isamesize 374

iscale 403
iscalemax 449
iscalespace 449, 451
isift 456
isimilarity 390, 392, 410
ismooth 378, 403
isobel 384
isosurface 357
istereo 484, 485, 487, 490, 496, 531
istretch 372
isurf 460, 462, 478, 496, 512, 514, 518
ithin 136, 399
ithresh 416
itriplepoint 399
iwindow 397

J

jacobian 172, 230, 620
Jacobian 237, 551
jsingu 234
jtraj 204, 212, 214, 216, 263, 274, 275

K

kcircle 368, 379, 397, 398, 421
kdgauss 384
kdog 385
kgauss 378, 384
klog 387
kmeans 423

L

lambda2rg 298, 299
lambda2xy 300, 306, 307, 309
LandmarkMap 160, 163
Lattice 141, 641
LineFeature 441, 442

–, .plot 442
–, .seglength 442

lines 442
Link 198, 200, 217, 256, 268

–, .A 199
–, .a 199
–, .offset 199
–, .RP 199

loadspectrum 289–291, 307, 309, 312, 317
log 25, 42
logm 25, 42, 54
lscov 248
lspb 72, 73, 78, 212
luminos 291, 292

M

makemap 131, 148
matlabFunction 620
max 372, 376, 492, 645
mdl_puma560 201, 207, 263, 265, 274
mdl_quadrotor 118
mdl_twolink 253
meshgrid 265, 266, 345, 347, 357
min 372, 376, 492
mkcube 329, 332, 334, 339, 341, 343

667

mkgrid 474, 504, 539, 548
model 103
models 200
MonteCarloLocalization 185
Movie 365, 366, 375

–, .framerate 365
–, .grab 365, 375, 376
–, .nframes 365
–, .size 365
–, .skiptoframe 365
–, .skiptotime 365

mplot 238
mpq 428, 429
mpq_point 603
mpq_poly 435, 566
mstraj 220, 224
mtraj 73, 76, 212
mxn 393

N

Navigation 130
ncc 388, 389, 462
niblack 418
npq 434
npq_poly 435
null 468, 622
numcols 81, 89, 90, 139, 220, 265, 266, 384, 497, 558, 603
numrows 131, 220, 384

O

oa2r 40
ocr 455
otsu 417

P

ParticleFilter 177, 185
pathtool 583
PBVS 539
pcregrigid 183
peak 369, 645–647
peak2 390, 647
PGraph 499, 641

–, .add_edge 641, 642
–, .add_node 641
–, .closest 642
–, .cost 642
–, .edges 642
–, .neighbours 642
–, .plot 642

pinv 240, 241, 243, 549
ploop 261, 280
ploop_test 261
plot 179
plot_box 428, 432, 437
plot_circle 390
plot_frame 334
plot_homline 351, 606
plot_point 28, 390, 478
plot_poly 509
plot_sphere 334, 466, 475
plot2 299, 551
plotbox 437

Plucker 54, 351, 607
–, .L 607
–, .side 597
–, .w 351

pnmfi lt 409
PointFeature 445, 446, 448, 449, 460, 461, 520

–, .descriptor 461
–, .plot 446, 448, 460

pol2cart 179
Polygon 149
PoseGraph 172, 173, 179, 641

–, .optimize 173
–, .plot 172, 173
–, .plotoccgrid 181
–, .scan 179
–, .scanmap 181
–, .scanxy 179
–, .time 180

PRM 138, 148, 641
–, .path 139
–, .plan 138
–, .visualize 139

Q

q.animate 76
qplot 213
qr 327
Quaternion 44

R

rand 139
randinit 138, 139
randn 139, 631
RandomPath 157, 166, 176
RangeBearingSensor 161, 162, 164, 166–168, 177, 186

–, .h 162
–, .H_w 162
–, .H_x 162
–, .reading 161

ransac 471, 472, 476, 496, 512
ransac_driver 531
Ray3D 481, 482

–, .intersect 482
RegionFeature 431–434

–, .boundary 435
–, .boundmatch 436
–, .moments 431
–, .plot_boundary 434
–, .plot_box 432, 434
–, .plot_centroid 432
–, .plot_ellipse 432
–, .shape 431
–, .theta 431
–, .uc 431

Revolute 198
RevoluteMDH 219
rgb2hsv 302
RigidBodyTree 227, 248
RNE 274, 280
roblocks 103, 111
Robot 271
rotx 34, 35, 42, 43, 66
roty 34–36

Index of Functions, Classes and Methods

668 Index

rotz 34, 36
rpy2r 41, 62
rpy2tr 45, 332, 504
RRT 144, 641

–, .path 145
–, .plan 144
–, .visualize 144

running 103

S

sad 388, 389
ScalePointFeature 449, 452
se2 405
SE2 57, 172, 201

–, .Rx 211
se2 405
SE3 57, 203, 204, 208, 210, 211, 214–216, 221, 224, 233

–, .Rx 216
–, .Ry 215
–, .Rz 224
–, .torotvec 233

Sensor 161, 166
–, .H_xf 166

sensorfi eld 127, 148
seq 362
SerialLink 200, 206, 212, 224, 227, 249, 265

–, .accel 271
–, .base 203, 204, 265
–, .coriolis 263
–, .edit 200
–, .fdyn 272
–, .fellipse 245
–, .fkine 200, 203, 204, 207, 209, 213, 230, 238
–, .gravity 265
–, .gravload 264, 265, 269
–, .ikcon 227
–, .ikine 208, 210, 215, 216, 224, 227, 246
–, .ikine6s 207–211, 214–216, 221, 227
–, .ikinesym 206
–, .inertia 263, 266, 268, 270
–, .jacob0 231–236, 244, 270
–, .jacobn 232
–, .jtraj 212
–, .links 269
–, .maniplty 215, 236, 271
–, .motordynamics 256
–, .nofriction 272
–, .plot 203, 209, 213, 216, 221, 227, 271
–, .plot3d 227
–, .rne 263, 264, 269
–, .teach 227, 235, 245, 248
–, .tool 203
–, .vellipse 235

shortest 76
showcolorspace 300, 312
SiftPointFeature 456
sigma 631
simplify 25, 62, 172
skew 613
sl_arm_ibvs 572, 573
sl_bicycle 101
sl_braitenberg 126, 127
sl_ctorque 273–275
sl_driveline 104, 105

sl_drivepoint 103, 104
sl_drivepose 108, 109
sl_drivepose_vs 575, 576
sl_fforward 273, 274
sl_ibvs 550, 551, 575
sl_jspace 214, 215
sl_lanechange 101, 102
sl_mobile_vs 574
sl_omni_vs 574
sl_opspace 275
sl_partitioned 566, 567
sl_pursuit 106
sl_quadcopter 118
sl_quadcopter_vs 577
sl_quadrotor 117, 118
sl_quadrotor_vs 576, 577
sl_rrmc 237, 238
sl_rrmc2 238, 239
sl_sea 277
sl_ztorque 271
SO2 57, 74
SO3 57, 76, 504
sol 469
sphere 329, 356
SphericalCamera 343, 355, 571, 576

–, .grab 364
–, .mesh 343
–, .size 364

spy 629
sqrt 159, 270, 372, 384, 406, 430, 502
sqrtm 601
ssd 388, 389
stdisp 483, 484, 496, 497
stereo 484
SurfPointFeature 452, 460, 462, 478, 496, 512, 514, 518

–, .match 463, 464, 478, 479, 496, 512
–, .plot_scale 453, 460
–, .scale 453
–, .support 515

T

T1.torpy 73
t2r 47
t2rt 481
T2xyz 214
tags 164
tau-d 259
tau_ff 260
testpattern 367, 440
Tgrid 474, 477
tic 410
toc 410
torpy 77
tpoly 71, 72, 78, 91, 92, 212
tr2angvec 41
tr2delta 67
tr2eul 36, 37
tr2rotvec 233
tr2rpy 38, 511
Tracking Controller 111
traj 220
tranimate 34, 35, 61, 62
transl 8, 47, 203, 204, 208, 210, 213, 215, 223, 224, 238, 324, 329,

332, 465, 470, 474, 504, 539, 542, 548, 549, 554, 569, 571, 573

669

transl2 27, 28
trexp 43, 52, 54, 61
trinterp 78
tripleangle 38, 62
triplepoint 136
tristim2cc 299, 305, 373
trlog 43, 54, 233
trnorm 539, 549
trot2 27
trotx 47, 48, 204, 222, 265, 329, 474, 542, 573
troty 215, 329, 465, 474
trotz 222, 329, 539, 549, 554, 569, 571
trplot 27, 35, 47, 61
trplot2 28, 61
Ts

–, .t 214
–, .torpy 214

Twist 30, 54, 201
–, .expm 54
–, .line 54
–, .S 54
–, .T 30, 54, 201

U

uint8 302, 360–362
Unicycle 111, 123, 185
UnitQuaternion 45, 46, 50, 68, 76, 81

–, .animate 81
–, .dot 64

–, .dotb 64
–, .omega 81
–, .plot 68
–, .torpy 81

upq 429
upq_poly 435

V

Vehicle 156, 158, 160, 185
–, .Fv 158
–, .Fx 158
–, .step 157

vex 25, 26, 42, 43, 613
VideoCamera 363, 365, 366

–, .grab 364
–, .size 364

VisualServo 541, 549
vl_imdisttf 399
vloop 257, 280
vloop_test 258
VREP_class 187

X, Y, Z

xv 620
zcross 387
zncc 389
zsad 389
zssd 389

General Index

Symbols

\-operator 71, 558, 621, 623
3D reconstruction 350, 459, 492, 527

A

A* search 134, 139, 142, 643
aberration

–, chromatic 330
–, spherical 330

absorption 289, 309
–, coeffi cient 290
–, color change 308
–, light, differential 290
–, shock 277
–, spectrum 290, 309

–, water 289, 309
acceleration 81, 82, 87, 120, 251, 275

–, angular 68
–, centripetal 70
–, Coriolis 70, 91
–, discontinuity 78
–, Euler 70
–, gravitational 70, 83
–, inertial 83
–, proper 83
–, sensor 83, 87
–, specifi c 83

accelerometer 39, 41, 81–83, 87
–, triaxial 83, 87

accomodation 321
ACF (see aggregate channel feature)
Ackermann steering 101
actuation 120

–, electric 256
–, electro-hydraulic 251

actuator 120, 251
–, joint 252
–, saturation 118
–, series-elastic (SEA) 276, 277

addition
–, Minkowski 395
–, vector 587

adjoint
–, logarithm of 615
–, matrix 65, 69, 201, 247, 597, 615

adjugate 352, 589, 607
adjustment, bundle 184, 497–503, 521–523, 527
affi ne

–, camera 353, 503
–, reconstruction 503
–, space 608
–, transformation 608

AGAST detector 462
aggregate channel feature (ACF) descriptor 462
AHRS (see attitude and heading reference system)
aircraft 119, 121
Airy pattern 378
albedo 290
algebra 611
algebraic group 612

General Index

670 Index

algorithm
–, box fi lter aggregation 526
–, Bresenham 181
–, bug 128–130
–, clustering 455
–, D* 134
–, dense stereo matching 526
–, FastSLAM (see also Rao-Blackwellized SLAM) 183
–, graphcuts 438
–, hybrid visual-servo 536
–, ICP (iterated closest point) 183, 506, 526
–, k-means 420
–, Levenberg-Marquardt 246, 624, 625
–, MSER (maximally stable extremal region) 419, 438, 454, 462
–, NCC matching (similarity measure) 388, 389, 410, 526, 531
–, Newton-Euler 263
–, Niblack 418
–, pose estimation 537
–, RANSAC (random sampling and consensus) 471, 472, 476,

478, 504
–, rapidly exploring 145
–, resolved-rate motion control 237
–, RRT (rapidly-exploring random tree) 145
–, SGM (semi-global matching) 526
–, skeletonization 136, 137
–, stereo matching 486
–, subpixel refi nement 526
–, SURF (speeded up robust feature) 453, 462, 463, 472, 478,

479, 496, 514–516, 524, 556
–, thinning 136, 137
–, velocity loop control 257
–, winner takes all 526

aliasing
–, anti- 402, 407
–, spatial 402, 486, 488

ambiguity ratio 486, 530
ampullae 83
anaglyph 495

–, image 495
–, stereo glasses 35

analysis
–, blob 455
–, connected component 424, 425, 438
–, image

–, segmentation 455
–, sequence 527

–, root-locus 280
analytical Jacobian 233
anamorphic lens 366
angle

–, Cardan 32, 38
–, declination 85
–, elevation 152
–, Euler 36, 37, 38, 40, 59, 75, 196, 232, 233, 247, 499, 571

–, singularity 39
–, heading 87
–, inclination 85
–, joint 5, 13, 198
–, nautical 38
–, representation 36
–, roll-pitch-yaw 37, 38, 78, 212–214, 232

–, rate 76
–, singularity 38

–, rotation 25, 26, 31, 35, 37, 39, 43
–, solid 288, 294, 326

–, steering 101, 102, 141, 145
–, Tait-Bryan 38
–, trajectory

–, joint 272
–, LSPB (linear segment with parabolic blend) 72, 261,

262
–, XYZ sequence 38

angle-axis representation 41, 45, 499
angular

–, acceleration 68
–, momentum 68, 79, 80
–, rate 88
–, uncertainty 159
–, velocity 50, 52, 64, 68, 70, 79, 80, 155, 233, 636

anthropomorphic 147, 202, 203
anti-aliasing 368, 402, 405, 407
anti-symmetric matrix 589
aperture 349, 364

–, lens 321, 331
Apollo

–, 13 38, 40
–, Lunar Module 39, 81

approach vector 40, 41, 210, 211
April tag 164
architecture, subsumption 127
ArduCopter (software project) 122
artifi cial intelligence 4
Asimo humanoid robot 6
aspect ratio 324, 366, 430–433
astigmatism 330
Asus Xtion 508
ASV (see autonomous surface vehicle)
attitude and heading reference system (AHRS) 87
autocorrelation matrix 444
automata 128
automated guided vehicle 96
autonomous surface vehicle (ASV) 96
autonomous underwater vehicle (AUV) 96, 120, 121
axis

–, instantaneous 64
–, of motion 73
–, optical 40, 321, 325, 496, 509, 510, 541, 554, 566, 568, 570
–, principal 430
–, rotation 32, 39, 41, 43, 48, 50, 63, 68

–, Earth 85
–, screw 47, 52

B

back
–, EMF (electromotive force) 252, 260
–, end 170
–, projection 497

–, error 497, 498
bag of words 515
balancing, white 306, 308
ballbot 112
barrel distortion 330
base

–, force 269
–, transform 199

Baxter robot 211, 277
Bayer

–, fi ltering 294
–, pattern 293

671

Beer’s law 289
behavior-based robot 127
Beidou (satellite navigation system) 153
bi-quaternion (see dual quaternion)
bias 88
bicycle model 100, 107, 144, 145, 575
bifi lar pendulum 279
bimodal distribution 416
binarization 415
binary

–, classifi cation 415
–, image 371
–, robust invariant scaleable keypoint (BRISK) 462
–, segmentation 421

blackbody 305
–, radiator 288, 313

black level 389
blade fl apping 115
blend 72

–, parabolic 72
blob analysis 454
body

–, acceleration estimation 83
–, moving 68

body-fi xed frame 39, 55, 70, 79, 115
Boltzmann constant 288
boundary 387, 419

–, curvature 436
–, detection 398
–, effect 380
–, gamut 299
–, pixel 434

bounding box 427
Braitenberg vehicle 126
breaking, stiction 252
Bresenham algorithm 181
BRISK (see binary robust invariant scaleable keypoint)
Buffon’s needle problem 174
bug algorithm 128
bundle adjustment 184, 355, 498–503, 521–523, 527

C

C-space 56
calibration

–, Bouguet’s 331
–, camera 10, 319, 326, 331

–, matrix 325, 333, 510
–, nonlinear method 335

–, sensor 88
–, target 308

camera 170
–, affi ne 353, 503
–, array 13, 349

–, omnidirectional 326, 349
–, panoramic 349

–, baseline 483, 493
–, calibration 10, 319, 326, 331

–, homogeneous transform method 331
–, matrix 325, 333, 510
–, nonlinear method 335

–, canonic 569
–, catadioptric 340–343, 345, 355, 565, 570

–, equiangular 341
–, toolbox 341

–, CCD 293, 294
–, cellphone 324
–, center 332, 350, 481
–, central-perspective 323
–, CMOS 285
–, decomposition 334
–, digital 293, 311
–, DSLR (digital single-lens refl ex) 364
–, dynamic range 294, 365
–, Euclidean 352
–, fi nite projective 352
–, fi sheye lens 337, 339, 346
–, frame 320, 321, 323
–, global shutter 364
–, high dynamic range 294
–, hyperspectral 315
–, image

–, motion 542
–, plane 321, 324

–, infra-red 315, 508
–, lens 321
–, light-fi eld 348, 350
–, location determination problem 334
–, LWIR (long-wavelength infra-red) 315
–, matrix 323, 325–327, 331–333, 352, 469, 503, 527
–, model 10
–, modeling 319–344
–, motion 454, 479, 481, 510, 521, 542, 547, 548, 552, 569
–, multispectral 294
–, nonperspective 352, 353
–, orientation 327, 481
–, panoramic 286, 308, 326, 348, 349
–, parameter

–, extrinsic 331, 333, 353, 503
–, intrinsic 326, 331, 477, 480, 503

–, perspective 319, 338, 340, 343, 344, 348, 350, 503, 565,
573

–, pin-hole 319, 320, 349
–, plenoptic 348
–, pose 175, 326, 479, 521, 524, 538, 539, 541
–, refl ector-based 337, 340
–, resectioning 354
–, retreat 554, 565
–, RGBD 509
–, rolling shutter 364
–, sensor 292, 313, 314
–, SLR (single-lens refl ex) 366
–, spherical 342, 343, 570–572, 576, 578
–, stereo 6, 483, 492, 496, 521
–, thermographic 315
–, time-of-fl ight 526
–, ultraviolet 315
–, unifi ed model 344
–, velocity 542–544, 547, 551, 552, 556–559, 567
–, verged 471
–, video 311
–, wide-angle 286, 354, 546, 565

Canny edge operator 384
canonical image coordinate 322
car 119–121
Cardan angle sequence 36
Cartesian

–, coordinate system 22
–, geometry 19
–, motion 77, 211, 214, 238, 554

General Index

672 Index

–, plane 19
–, point 179
–, trajectory 91, 214, 224

catadioptric camera 340–343, 345, 354, 355, 565, 570
cathode ray tube (CRT) 295
caustic 341, 348
CCD sensor 364
celestial navigation 152
CenSurE descriptor (see center surround extremas)
census

–, metric 391, 462
–, transform 391, 489

center
–, of mass 64, 68, 115, 253, 264
–, surround extremas (CenSurE) descriptor 462

central
–, imaging 340, 346, 348
–, moments 429, 603
–, perspective model 321

centripetal
–, acceleration 70
–, force 264

chamfer matching 401
character recognition 418, 436
characteristic scale 449
charge well 364, 365
Chasles theorem 52
child region 432
chi-squared (χ 2) distribution 160, 633
Cholesky decomposition 590
chroma keying 373
chromatic aberration 330
chromaticity 305, 312

–, coordinate 298, 300
–, D65 306
–, diagram 298, 300
–, plane 299
–, space 297, 298

CIE (see Commission Internationale de l’Eclairage)
circle 76, 606

–, feature 544, 557
–, of confusion 321

circularity 434, 435, 454
city block distance 130
classifi cation 415

–, binary 415
–, color 419
–, grey-level 415, 416
–, pixel 418, 421, 423

cleaning up 491
closed-form solution 205
clothoid 101
clustering

–, algorithm 455
–, k-means 421, 423, 514, 515
–, of data 455

CML (see concurrent mapping and localization)
CMOS sensor 329, 364
coarse-to-fi ne strategy 404
coeffi cient

–, Coulomb 272
–, ellipse 557
–, fi lter 376
–, Fourier 436
–, viscous friction 252, 272

colatitude 342, 570
collineation 608
color 291

–, blindness 295
–, change 308, 363
–, classifi cation 419
–, constancy 287, 307
–, fi lter 293, 295
–, gamut 299
–, image 312, 361, 424, 460
–, intensity 375, 382
–, matching

–, experiment 297
–, function 297, 298, 300, 312, 316

–, measuring 294
–, name 300
–, opponent 293
–, plane 362, 373, 377, 448
–, primary 294, 296
–, reproduction 295, 297
–, saturation 297, 301, 302
–, segmentation 419
–, space 301, 312

–, HSV 301
–, L*a*b* 303, 312
–, L*C*h 301
–, L*u*v* 303, 303
–, opponent 303
–, perceptually uniform 303
–, XYZ 300, 301, 312
–, YCBCR 303
–, YUV 303

–, spectral 298
–, temperature 306, 314

Color Checker 313
colorimetry 298
column space 591
Commission Internationale de l’Eclairage (CIE) 298

–, color space
–, L*C*h 301
–, L*u*v* 303

–, standard primary colors 294, 298
–, XYZ primary 300

compass 41, 85, 108, 151, 153, 155, 164, 575
compensation, gravity 118
compound

–, eye 285
–, lens 321

compression
–, format 361, 363, 365
–, gamma 311
–, image 361, 363, 445

computed torque control 274
concurrent mapping and localization (CML) 167
condition number (see matrix condition number)
cone 351, 607

–, cell 292, 293
–, projection 351

confi dence test 164
confi guration

–, change 216, 217
–, kinematic 198, 208, 209, 215, 216, 238
–, of a system 55
–, space 55, 56, 114, 119, 121, 145, 198, 201, 210, 211
–, zero-angle 197

673

conic 322, 344, 352, 606
–, projection 351

conjugate point 464, 467, 468, 470, 471, 475, 479, 483
connected component

–, analysis 424, 425, 438
–, graph 139, 642
–, image 424, 426

connectivity 454
–, analysis 424

consistency, left-right check 487
constant

–, Boltzmann 288
–, Planck 288

constraint
–, epipolar 468, 484, 521, 522

–, geometric 468
–, nonholonomic 101, 111
–, rolling 121
–, smoothness 526

control
–, feedback 262
–, feedforward 118, 260, 262, 272, 273
–, fl exible transmission 13
–, force 275
–, independent joint 251
–, integral

–, action 259
–, windup 280

–, joint 251, 262
–, loop, nested 251
–, mobile robot 102–109
–, model-based 192
–, operational space 275, 276
–, proportional 103, 104, 106, 257

–, derivative 116–118
–, integral 118, 260, 261

–, resolved-rate motion 237, 248
–, shared 7
–, space 275, 276
–, torque 272

–, computed 274
–, feedforward 273

–, traded 7
–, velocity 102, 257, 261
–, vision-based (visual servo) 9, 11, 535

convolution 377, 383
–, kernel 377, 382, 387, 393
–, properties 377

coordinate
–, frame 17, 18, 22

–, 2-dimensional 19
–, 3-dimensional 19
–, end-effector 194
–, global 181
–, moving 68
–, right-handed 31
–, velocity 68

–, generalized 55, 100, 109, 113, 119, 120, 194, 263
–, homogeneous 604
–, image 322

–, plane 543
–, joint 198, 218, 229, 263
–, normalized 322, 543
–, Plücker 52, 54, 350, 596
–, point 22, 26, 47, 51

–, random 641
–, system 19
–, vector 17–19, 587, 595, 604

Coriolis
–, acceleration 70, 91
–, force 263, 264, 267, 275

corner
–, detector

–, classical 443
–, Harris 445, 449, 452, 456
–, interest operator 443
–, Noble 445
–, Plessey 445
–, scale-invariant 448
–, scale-space 449
–, Shi-Tomasi 445

–, feature (see also point feature) 446, 448, 461, 521
–, Harris 445, 448, 449, 452, 460–462, 520

–, point 443, 446, 448, 461
–, strength 445, 448

cornerness 445, 446
correlation 376, 377

–, covariance 154, 632, 638
correspondence 461, 505, 506, 508, 521, 557, 559

–, candidate 463, 472
–, closest-point 507
–, feature 460
–, point 180, 471, 484, 522
–, problem 459, 508, 556, 557

cost map 134
Coulomb friction 252, 253, 255
covariance

–, correlation 154, 632, 638
–, ellipse 160, 166, 633
–, matrix 154, 156, 158, 160, 161, 163, 165, 167, 169, 170, 176,

632
–, extending 165

crack code 434
cropping 401
CRT (see cathode ray tube)
curvature 141, 444, 448

–, boundary 436
–, principal 444

cybernetics 1, 4, 126, 147

D

D* 134
D65

–, chromaticity 306
–, white 304, 305, 306, 312

d’Alembert force 69
damped inverse 240
data

–, association 164, 460, 471, 472
–, error 153, 164

–, laser scan 179
–, type 57, 58

dead reckoning 97, 151, 155
decimation, image 402
declination

–, angle 85
–, image 402
–, magnetic 85

decoding, gamma 311

General Index

674 Index

decomposition 478
–, camera 334
–, Cholesky 590
–, image 403
–, matrix 525
–, plane 478
–, RQ 327
–, spectral 591
–, value 506

Deep Phreatic Thermal Explorer (DEPTHX, AUV) 120, 121
defi nition

–, eigenvalue, eigenvector 41
–, frame 70
–, Mahalanobis distance 633
–, robot 5, 126, 130
–, white 306

degree of freedom (DOF) 39, 56, 73, 114, 120, 121, 191, 193, 195,
208, 210, 231, 234, 236, 240–242, 542, 562, 565, 577

Denavit-Hartenberg
–, notation 196, 197, 217, 218, 221, 229

–, modifi ed 218
–, parameter 197, 200, 227

depth of fi eld 321
DEPTHX (see Deep Phreatic Thermal Explorer)
derivative

–, of Gaussian 384
–, kernel 444

–, orientation 64, 68, 118
–, pose 63, 64
–, quaternion 64
–, time 63

descriptor 462
–, ACF (aggregate channel feature) 462
–, BRISK (binary robust invariant scaleable keypoint) 462
–, CenSurE (center surround extremas) 462
–, FREAK (fast retina keypoint) 462
–, Harris 461
–, HOG (histogram of oriented gradients) 462
–, MSER (maximally stable extremal region) 419, 438, 454, 462
–, ORB (oriented FAST and rotated BRIEF) 462
–, shape 433
–, SIFT (scale-invariant feature transform) 462
–, SURF (speeded up robust feature) 453, 462, 463, 472, 478,

479, 496, 514–516, 524, 556
–, VLAD (vector of locally aggregated descriptors) 456

detector 462
–, AGAST 462
–, corner (see also corner detector) 443, 445, 448, 449, 452,

456
–, edge 384, 392, 407
–, FAST 454, 462
–, Harris 445, 447–449, 452, 456, 460, 461, 462, 520, 524, 527,

556
–, Noble 445
–, Shi-Tomasi 462
–, SIFT (scale-invariant feature transform) 456, 462, 524
–, SURF (speeded up robust feature) 452, 453, 456, 460, 462,

524, 252, 527
–, zero crossing 387

determinant 49, 235, 240, 445, 591
–, of the Hessian 445

dichromatic refl ection 310
difference of Gaussian 385
differential, kinematics 229
differentiation 384

digital single-lens refl ex (DSLR) camera 366
Dijkstra method 132
dimension 17

–, curved 17
–, intensity 301
–, singleton 362

diopter (see also focal length) 321
Dirac function 313
direction 611–613
direct linear transform 354
disparity 483, 487

–, image 484, 487
–, space image (DSI) 485, 489

displacement
–, rigid body 52, 53
–, spatial 67, 245

distance 164
–, Euclidean 18, 130, 303, 312, 399, 400, 421, 423, 433,

461–463, 642
–, Hamming 391
–, Mahalanobis 164, 593, 633
–, Manhattan 130, 587
–, threshold 139, 464
–, transform 130, 134, 135, 137, 399, 400

distortion
–, barrel 330
–, correction 330
–, decentering 330
–, geometric 330
–, hard iron 87
–, keystone 509
–, lens 330, 353, 405, 472, 496, 502
–, map 336
–, modeling 331
–, perspective 391, 460, 509
–, pincushion 330
–, radial 330, 337
–, rolling shutter 364
–, soft iron 87
–, shape 353, 509, 510
–, tangential 330
–, vector 406

distribution
–, bimodal 416
–, chi-squared 633
–, von Mises 156

DOF (see degree of freedom)
DoG kernel 384, 385
DoH 445
double cover 499
down hill 623
drag, aerodynamic 115
DSI (see disparity space image)
DSLR camera (see digital single-lens refl ex camera)
dual

–, number 55
–, quaternion 55

Dubbins path 101
dynamic range 365
dynamics 251

–, error 274
–, forward 116, 118, 251, 271, 272
–, inverse 263, 273, 274
–, quadrotor 115, 116
–, rigid-body 263, 272

675

E

Earth
–, diameter 81
–, gravity 82
–, shape 81
–, surface 70, 79, 512

east-north-up (ENU) 79
eccentricity 344, 600
edge

–, detection 377
–, detector 392

–, Canny 384, 407
–, preserving fi lter 392

effect
–, Eötvös 91
–, jello 364
–, picket fence 486

effective inertia 256
effi ciency, quantum 364
EGNOS (satellite network) 153
eigenvalue 41, 160, 236, 270, 271, 430, 444, 503, 590
eigenvector 41, 430, 503, 590
EISPACK project 9
EKF (see extendet Kalman fi lter and Kalman fi lter)
EKF SLAM (see Kalman fi lter, extended, SLAM)
elasticity, joint 276
ellipse 159, 321, 352, 537, 556, 557, 599, 606, 633

–, canonical 598, 599
–, coeffi cient 557
–, confi dence 167, 168
–, covariance 160, 166, 633
–, drawing 601
–, equation 633
–, equivalent 429–431
–, error 160, 163
–, inertia of 603
–, parameter 557, 558
–, rotated 633
–, size 632
–, velocity 235, 244

ellipsoid 351, 599, 600, 607
–, equation 633
–, force 244, 245
–, hyper- 270
–, shape 236
–, surface 235, 245, 632
–, velocity 244

–, rotational 236
–, volume 236, 601
–, wrench 245

Elsie (robot) 95, 125
encoder 255, 256
encoding, gamma 306, 311, 312, 372
end-effector 193

–, coordinate frame 232
–, force 244
–, inertia 275
–, torque 244
–, velocity 229, 230

end-point
–, closed-loop 537
–, open-loop 537

ENU (see east-north-up)
Eötvös, effect 91

ephemeris 152
epipolar

–, constraint 468, 484, 521, 522
–, line 464–468, 470, 471, 473, 479, 483, 525
–, plane 464, 465

epipolar-aligned image 496
epipole 466, 467
equal-energy white 306
equation

–, differential 51
–, ellipse 602, 604
–, ellipsoid 548
–, Eulers rotation 68
–, line 595, 605
–, motion 101, 111, 271

–, Euler 116, 263
–, rigid-body 251, 263

–, optical fl ow 544, 570
–, Planck radiation 288
–, plane 504, 556
–, solving system 621
–, sparse nonlinear 501
–, thin lens 321, 336

equiangular mirror 340
equivalence principle 70
equivalent ellipsoid 503
error 49, 50, 169, 170

–, back projection 497, 498
–, cumulative 170
–, edge 172
–, ellipse 159, 166, 168
–, ICP (iterated closest point) 182
–, position 251
–, reprojection 502

–, squared 501
–, vector 628

essential matrix 468, 470, 477, 480
estimation 154

–, camera
–, motion 454
–, pose 524

–, Monte-Carlo 157, 175, 183
–, pose 83, 334, 536–538, 541, 556, 575
–, RANSAC (random sampling and consensus) 471, 472, 476,

478, 504
–, stereo 443
–, SaM (structure and motion) 498, 578

ethics 7
Euclidean

–, camera 352
–, coordinate 29, 467, 468, 604
–, distance 18, 130, 303, 312, 399, 400, 421, 423, 433, 461–463,

642
–, geometry 18, 19, 22, 595
–, group 21, 27, 46
–, homography 477, 510, 511
–, length 587
–, line 595
–, plane 19, 605
–, point 29, 595, 605, 606
–, reprojection error 501
–, space 19, 55, 595, 605, 608
–, transformation 608, 609

Euler
–, acceleration 70

General Index

676 Index

–, angle 36, 37, 38, 40, 59, 75, 196, 232, 233, 247, 499, 571
–, singularity 39

–, force 70
–, motion equation 68, 116, 263
–, rotation theorem 32, 33, 35–37, 613

EV (see exposure value)
EXIF fi le format 363, 510
explicit complementary fi lter 88, 89
exponential

–, coordinate 43, 233, 481, 626
–, rate 233

–, mapping 50, 52
–, matrix 25, 26, 43, 51
–, product of 196, 200, 201

exposure 388, 461
–, control 342
–, interval 364
–, time 321, 363, 364
–, value (EV) 364, 365

extended Kalman fi lter (EKF, see also Kalman fi lter) 88, 90, 157,
169, 619, 638

exteroceptive sensor 5, 170
extromission theory 287
extrinsic parameter 503
eye 285, 287

–, compound 285
–, cone cell 292, 293
–, dynamic range 365
–, evolution 285
–, fovea 293
–, human 292
–, lens-based 285
–, refl ector-based 285
–, retina 293
–, rod cell 365
–, secondary 285
–, sensitivity 301
–, tristimulus 312

eye-in-hand 537

F

f-number (inverse aperture diameter) 321, 364
FAST detector 454, 462
fast retina keypoint (FREAK) descriptor 462
FastSLAM (see also SLAM and Rao-Blackwellized SLAM) 169
feature

–, blob 431
–, circle 554, 557
–, classifi cation 415
–, corner 446, 448, 461, 521
–, correspondence 460
–, depth 551
–, description (see also descriptor) 445, 452, 453, 461
–, detection (see also detector) 399, 449
–, extraction 9, 286, 413
–, Harris corner 445, 452
–, image 332, 335, 413, 556
–, line 413, 438, 446, 556
–, map 163, 168
–, moment 428
–, point (see also point feature) 443, 449, 461
–, region 413, 415
–, scale 451

–, scale-space 449, 452
–, sensitivity matrix 542
–, shape 435
–, vector 432, 434
–, vector-valued 415

feedback control 118, 260–262
feedforward control 118, 260, 262, 272, 273
fi bre-optic gyroscope (FOG) 80
fi ctitious force 69, 83
fi eld

–, magnetic, intensity 86, 87
–, of view 326, 327, 336
–, robot 3, 96

fi le 172
–, EXIF 363, 510
–, image 360, 363

–, raw 294
–, JFIF 311
–, JPEG 363
–, MEX 584
–, video 365

fi ll factor 329, 364
fi lter

–, Bayer 293, 294
–, coeffi cient 376
–, complementary explicit 88, 89
–, edge preserving 392
–, Kalman 90, 91, 157, 162–164, 169, 175, 182, 184, 636

–, extended (EKF) 88, 90, 157, 169, 619, 638
–, unscented (UKF) 184

–, Kalman-Bucy 637
–, low-pass 384

–, anti-aliasing 407
–, spatial 403

–, median 407
–, particle 169, 175–178
–, spatial 376

fi sheye lens
–, camera 337, 339, 346
–, projection model 338

fl ow
–, current 85
–, fi eld 544
–, optical 521, 544, 552, 553, 565, 570, 572

fl ux
–, line, magnetic 85
–, luminous 291, 294
–, magnetic 85, 383
–, visual 287

focal
–, length 321, 331, 334, 364, 486
–, point 320, 340, 341, 344, 348, 514

focus 319, 321, 330, 331
FOG (see fi bre-optic gyroscope)
font, Hershey 220
force 52, 68, 244, 251

–, apparent 69
–, control 275
–, Coriolis 263, 264, 267, 275
–, d’Alembert 69
–, ellipsoid 244, 245
–, fi ctitious 69, 83
–, gyroscopic 275
–, inertial 69

677

–, pseudo 69
–, translational 69

foreshortening 321, 509
form, homogeneous 29
formula

–, Planck 288
–, Rodrigues rotation 37, 42, 43, 52, 53, 61, 66, 613

forward
–, dynamics 116, 271
–, kinematics 193, 194, 201, 204, 230

–, instantaneous 231
fovea 293
frame

–, body-fi xed 55, 70, 79
–, coordinate 17, 18, 22
–, key 503
–, reference 69

–, inertial 68, 69, 79, 83
–, noninertial 70

–, right-handed coordinate 31
–, world coordinate 18, 79

FREAK (see fast retina keypoint descriptor)
Freeman chain code 434, 455
Fresnel refl ection 310
friction 251–253, 262, 263, 268

–, aerodynamic 115
–, Coulomb 252, 253, 255, 268, 272
–, stiction 252
–, viscous 246, 252, 253, 255, 268, 271, 272

front end 170
fronto-parallel 321, 433, 510, 539, 541, 545, 549
frustum 326, 334
function

–, Cauchy-Lorentz 504
–, Dirac 313
–, Gaussian 631
–, Huber loss 625
–, observation 164
–, plenoptic 349
–, probability density (PDF) 153, 160, 161, 175, 631

–, Gaussian 175
–, scalar 617
–, signed distance 400
–, Tukey biweight 625

fundamental matrix 466, 470, 525
fusion, sensor 87, 88, 163

G

gait pattern 225
Galileo (satellite navigation system) 153
gamma

–, compression 311
–, correction 310
–, decoding 311, 362, 372, 373
–, decompression 311
–, encoding 311, 372, 407
–, sRGB 311, 372

gantry robot 191
Gaussian

–, distribution 635, 636
–, function 378, 383, 631, 633

–, width 378, 380
–, kernel 386, 403, 444, 449, 451

–, multivariate 632
–, noise 157, 160, 164, 332, 335, 504, 507, 636, 637
–, probability 160, 164, 633
–, properties 380
–, random variable 631, 636, 638
–, smoothing 427

gearbox 254–256
generalized

–, coordinate 55, 100, 109, 113, 119, 120, 194, 263
–, joint 198, 218, 263

–, forces 263
–, joint 244, 246, 263, 264, 266, 268, 269

–, matrix inverse 592
–, Voronoi diagram 136, 399

generator matrix 612, 614
Genghis (robot) 147
geomagnet 85
geometric

–, distortion 330
–, invariant 609
–, Jacobian 231
–, transformation 608, 609

geometry
–, algebraic 50
–, analytic 19
–, Cartesian 19
–, Euclidean 18, 19, 22, 595

Gestalt principle 426
gimbal 205

–, lock 38, 208, 215, 234
–, low-friction 80

Global Hawk unmanned aerial vehicle (UAV) 4, 114
Global Positioning System (GPS) 5, 6, 117, 151, 153, 165

–, differential 153
–, multi-pathing 153
–, RTK 153
–, selective availability 153

global shutter camera 364
GLONASS (satellite navigation system) 153
goal seeking 128
Google Maps™ 367
G protein-coupled receptor (GPCR) 292
GPS (see Global Positioning System)
gradient 382, 383, 462

–, calculation 377
–, descent 623, 624
–, edge 382, 384, 385
–, image 384, 443, 444, 459, 559
–, intensity 417, 438
–, squared 460

graph 136, 139, 426, 499, 641
–, A* search 134, 139, 142, 643
–, embedded 641

Grassmann’s laws 297, 299
gravity 70, 84, 115, 251, 253

–, compensation 118
–, disturbance 260
–, load 251, 260, 263–265, 271
–, term 264
–, torque 254, 264
–, vector 84, 263

great circle 76
grey value 360, 361, 368–372
ground effect 115

General Index

678 Index

group 504
–, algebraic 612
–, Euclidean 21
–, Lie 611
–, orthogonal 24, 34, 590

gyroscope 38, 79, 87, 101, 155
–, fi bre-optic (FOG) 80
–, ring-laser (RLG) 80
–, strapdown 80
–, triaxial 80

H

Hall effect 85
–, sensor 85

Hamming distance 391
hard-iron distortion 87
Harris

–, corner feature 445, 448, 449, 452, 460–462, 520
–, detector 445, 447–449, 452, 456, 460, 461, 462, 520, 524, 527,

556
heading 85

–, angle 87
–, rate (see yaw rate)

helicopter 121
Hershey font 220
Hessian 617, 618, 624

–, approximate 618, 624
–, determinant 445
–, matrix 445, 502, 618

histogram 361, 373, 416, 448, 462
–, cumulative 176
–, equalization 372
–, image 369, 371
–, normalization 372, 407
–, of oriented gradients (HOG) 462

hit and miss transform 398
HOG (see histogram of oriented gradients)
holonomic constraint 56
homogeneous

–, equation 622
–, form 27, 466
–, transformation 27, 46, 53, 54, 77, 199, 203, 324, 325, 328,

477, 481, 504, 605
–, normalization 50, 539, 549
–, SE(2) 27
–, SE(3) 46

homography 10, 164, 474–478, 496, 510, 512, 513
–, Euclidean 477, 510, 511
–, matrix 13, 474
–, planar 474
–, plane-induced 474
–, projective 477, 510
–, RANSAC (random sampling and consensus) estimation 478

homothety 608
Hough transform 440, 454, 556
hovercraft 119–121
HSV color space 301
Huber loss function 625
hue 297, 301, 302
humanoid robot 3, 6
hybrid

–, trajectory 72
–, visual servo 565

hyperbola 606
hyperboloid 351, 607
hypersurface, quadric 607
hysteresis threshold 385

I

IBVS (see image-based visual servo)
ICP (see iterated closest point)
ICR (see instantaneous center of rotation)
ideal

–, line 328, 605
–, point 605, 606

identity quaternion 45
illuminance 294, 307
illumination, infra-red 508
image 367

–, anaglyph 495
–, binary 371
–, compression 361, 363, 445
–, coordinate, canonical 322
–, decimation 402
–, disparity 484, 485, 487, 489
–, epipolar-aligned 496
–, feature 413, 556

–, extraction 369, 413
–, fi le format 360
–, gradient 444
–, histogram 369
–, Jacobian 542, 544, 551, 568, 570
–, matching 514
–, metadata 363, 486, 510
–, moment 428, 506
–, monochromatic 361
–, noise 364, 407
–, obtaining 359
–, perspective 341, 372
–, plane 321, 605

–, discrete 324
–, processing 12, 130, 136, 359, 579
–, pyramid 403
–, rectifi cation 496
–, region 424
–, resizing 402
–, retrieval 13, 454
–, segmentation 415
–, similarity 387, 443

–, census 391
–, nonparameteric 391
–, rank transform 392

–, sphere 342
–, stabilization 514
–, stitching 512
–, subsampling 402
–, warping 336, 345, 404–406, 496, 510, 513

image-based visual servo (IBVS) 537, 538, 541
–, polar coordinate 568
–, spherical camera 570

imaging
–, catadioptric 340
–, central 340, 346, 348

–, perspective 321
–, light fi eld 350, 355
–, low-light 350

679

–, noncentral 341
–, nonperspective 13

–, model 336
–, panoramic 319
–, perspective 321, 336, 337
–, underwater 309
–, unifi ed 344, 345
–, wide-angle 343, 354

impulse noise 392
IMU (see inertial measurement unit)
incandescence 287
inclination

–, angle 85
–, magnetic 85, 86

incremental replanning 134
inertia 253–255

–, effective 256
–, end-effector 275
–, load 255
–, matrix 116, 266, 503
–, motor 255

inertial
–, force 69
–, measurement unit (IMU) 39, 87, 577
–, navigation system (INS) 79, 87, 117
–, reference frame 68, 69, 79, 83
–, sensor 87

Inf 484
infl ation, obstacle 132
infra-red

–, camera 315, 508
–, illumination 508
–, near (NIR) 315
–, radiation 287–289, 292
–, short-wavelength (SWIR) 315

innovation 89, 162, 170, 637
INS (see inertial navigation system)
instantaneous center of rotation (ICR) 100, 109
integral

–, dynamics 271
–, windup 260

intelligence, artifi cial 14, 524
Intel RealSense R200 509
intensity 302

–, change 392
–, color 375, 382
–, dimension 301
–, edge 381, 387
–, gamma encoded 311
–, gradient 392
–, illuminance 307
–, light 125, 293
–, linear wedge 311
–, luminous 294
–, magnetic fi eld 85, 87
–, ramp 367
–, sinusoid 367
–, surface 396

inter-refl ection 310
interaction matrix 542
interest point 443
International Telecommunication Union (ITU) 298
interpolation 441

–, linear 75

–, orientation 75
–, quaternion 60, 76
–, rotational 76
–, scalar 212
–, unit-quaternion 76, 77

intrinsic parameter 468, 503
invariance 433, 453

–, geometric 609
–, property 454
–, rotational 444, 462
–, time 377

inverse
–, aperture diameter (f-number) 321, 364
–, dynamic control 274
–, dynamics 263, 273, 274
–, left-generalized 621
–, pseudo 240, 242, 548, 549, 592, 621

iris 321
ISO camera setting 364
iterated closest point (ICP) 179, 182, 183, 505, 506, 521, 526
ITU (see International Telecommunication Union)

J

Jacobian, Jacobian matrix 215, 218, 229, 230, 247, 617, 619
–, analytical 232, 233
–, condition 234
–, damped inverse 240
–, ellipse feature 558
–, end-effector coordinate frame 232
–, feature 568
–, geometric 231
–, image 542, 544, 549

–, feature 568, 570
–, insertion 165, 167
–, line feature 556, 557
–, manipulability 234, 235
–, manipulator 229, 231, 247, 263
–, matrix 158, 172, 192, 215, 229, 230
–, numerical approximation 619
–, over-actuated robot 242
–, point feature 548, 559, 568
–, singularity 234, 240
–, transpose 229, 245, 246
–, under-actuated robot 241
–, visual 10, 545

jello effect 364
jerk 70
JFIF fi le format 311
Johns Hopkins Beast (robot) 147
joint

–, actuator 252
–, angle 5, 13, 198
–, control, independent 251
–, elasticity 276
–, position 275
–, prismatic 193, 195
–, revolute 193
–, sliding 193
–, space 198, 244

–, trajectory 212
–, velocity 229, 230

Joseph form 637
JPEG fi le format 363

General Index

680 Index

K

k-means 514, 515
–, algorithm 420
–, clustering 421, 423, 514, 515

Kalman fi lter 90, 91, 157, 162–164, 169, 175, 182, 184, 636
–, extended (EKF) 88, 90, 157, 169, 619, 638

–, SLAM (EKF SLAM) 169
–, gain 637
–, unscented (UKF) 184

kd-tree 464, 506
kernel 376

–, circular 423
–, convolution 377, 382, 387, 393
–, density approach 183
–, Gaussian 386, 403, 444, 449, 451
–, Laplacian 386, 449
–, Laplacian of Gaussian (LoG) 385, 386, 452
–, Mexican hat 387
–, smoothing 378, 448
–, Sobel 382–384, 407

key frame 503
keypoint 443
keystone 509

–, distortion 509
kidnapped robot 178
Kinect sensor 508
kinematic

–, confi guration 198, 208, 209, 215, 216, 238
–, model 101, 107, 111, 114, 143, 145, 202

kinematics 193
–, differential 229
–, forward 193, 194, 201, 204, 230

–, instantaneous 231
–, symbolic 206, 230

–, inverse
–, closed form 205
–, numerical 206, 209, 245

–, velocity 229
Klein quadric 607

L

L*a*b* color space 303, 312
L*u*v* color space 303
Lambertian refl ection 309, 337
landmark 152, 164, 169, 182, 462, 499

–, identity 164
–, navigation 151
–, observation 161
–, point 497, 500

Laplacian of Gaussian (LoG) 385, 449, 451
–, kernel 385, 386, 452
–, response 449

laser
–, odometry 179
–, rangefi nder 178, 179, 181

–, noise 180
–, scanner 170

lateral motion 100
lattice planner 140
latus rectum 344
law

–, Beer 289, 309
–, Grassmann’s 297, 299

–, lens 321, 336
–, Newton

–, fi rst 69
–, second 68, 70, 82, 115, 263, 279

–, of robotics 1
–, power 311
–, Stefan-Boltzman 288, 317
–, Wien displacement 288

LCD (see liquid crystal display)
least squares problem 240, 241, 246, 332, 472, 553, 621

–, nonlinear 171, 501, 618, 624, 625
–, rotation matrix 622

left-right consistency check 487
length focal 321, 364
lens 320

–, anamorphic 366
–, aperture 321, 331
–, compound 321
–, distortion 330, 353, 405, 472, 496, 502
–, entrance pupil 332
–, equation 321
–, f-number 321, 364
–, fi sheye 337
–, focal length 321
–, iris 321
–, law 321, 336
–, shape 570
–, simple 321
–, telecentric 353
–, thin 321

lens-based eye 285
lenslet array 351
Levenberg-Marquardt

–, algorithm 246, 624, 625
–, optimization 246, 627

lever arm effect 253
Lie

–, algebra 53, 54, 611–614
–, group 25, 50, 611, 611–614

light
–, absorption 290, 308
–, fi eld camera 348, 350
–, intensity 125, 293
–, monochromatic 287
–, solar spectrum 289
–, structured 507
–, visible 287

line 606
–, 2D 595
–, 3D 596
–, epipolar 464–468, 470, 471, 473, 479, 483, 525
–, equation 595, 605
–, Euclidean 595
–, feature 413, 438, 446, 556
–, fronto-parallel 321
–, ideal 328, 605
–, of no motion 100
–, Plücker 351, 596–598
–, projection 329, 351, 607

linear segment with parabolic blend (LSPB) trajectory 72, 261,
262

linearization 617
–, general 617

link 252
–, effect 253

681

–, elasticity 276
–, mass 253, 264

LINPACK project 9
liquid crystal display (LCD) 295
load 277

–, gravity 251, 260, 263–265, 271
–, inertia 255

localization 9, 151, 167, 181, 520
–, algorithm 520
–, CML (concurrent mapping and localization) 167
–, error 153
–, laser-based 182
–, Monte-Carlo 175
–, problem 153, 154
–, SLAM (simultaneous localization and mapping) 167,

169–171, 175
locus, spectral 298–301
LoG kernel (see Laplacian of Gaussian kernel)
longitude problem 152
longitudinal motion 100
long-wavelength infra-red (LWIR) 315
LORAN (radio-based localization system) 153
LORD MicroStrain 79
LSPB (see linear segment with parabolic blend)
lumen 291
luminance 297, 299, 301, 306, 310, 349
luminance 290, 294
luminosity 291
luminous

–, fl ux 291, 294
–, intensity 294

LWIR (see long-wavelength infra-red)

M

machine vision 6
Machine Vision Toolbox (MVTB) 9
magnetic

–, declination 85
–, fi eld 86, 87
–, fl ux 85, 383
–, inclination 85, 86
–, north 85, 87
–, pole 85, 86

magnetometer 85, 87
Mahalanobis distance 164, 593, 633
Manhattan distance 130, 587
manifold 611–613
manipulability 215, 234–237, 548

–, dynamic 269, 271
manipulator (see also robot) 191

–, Jacobian 231, 244, 263
–, kinematics 229
–, over-actuated 56, 240, 242
–, serial-link, dynamics 251
–, under-actuated 56, 210, 240, 241

manoeuvre 120, 121
manufacturing robot 3
map 164, 169, 367

–, building, laser-based 181
–, distortiom 336
–, feature 163, 168
–, obstacle 131
–, road 367
–, using 160

mapping 167
–, CML (concurrent mapping and localization) 167
–, exponential 50, 52
–, point 56
–, PTAM (parallel tracking and mapping) 175
–, SLAM (simultaneous localization and mapping) 167,

169–171, 175
Markov random fi eld (MRF) algorithm 526
Marr-Hildreth operator 387
Mars rover 4, 6, 7, 527, 528
mass 68, 277

–, center of 64, 68, 115, 253, 264
–, distribution 68
–, link 253, 264
–, payload 268
–, proof 82

matching
–, function, color 297, 298, 300, 312, 316
–, image 514
–, stereo 485, 486, 491, 497
–, trichromatic 296

mathematical morphology 136, 393
–, closing 396, 423
–, dilation 394
–, erosion 394
–, hit and miss 398

–, end point 399
–, skeleton 399
–, triple point 399

–, opening 395, 421
MATLAB®

–, code 10
–, command prompt 10
–, matrix xxix
–, MEX-fi le 584
–, object 9
–, software 9
–, Toolbox 354, 355

–, conventions xxix
matrix 325, 588

–, adjoint 65, 69, 201, 247, 597, 615
–, adjugate 589, 607
–, angular velocity 66
–, anti-symmetric 589
–, camera 323, 325–327, 331–333, 352, 469, 503, 527
–, condition number 235, 548, 550, 593
–, covariance 154, 156, 158, 160, 161, 163, 165, 167, 169, 170,

176, 632
–, diagonal 161
–, extending 165
–, odometry 160
–, sensor 161

–, decomposition 525
–, defi nite

–, negative 618
–, positive 618, 626

–, diagonalization 591
–, essential 468–470, 477, 480, 498, 522
–, estimation 10, 471
–, exponential 25, 26, 43, 51
–, exponentiation 50
–, feature sensitivity 542
–, generator 612, 614
–, Hessian 445, 502, 618
–, homography 13, 474

General Index

682 Index

–, identity 66
–, indefi nite 618
–, inertia 116, 266, 503
–, interaction 542
–, inverse

–, damped 240
–, pseudo 240–242, 548, 549

–, Jacobian 172, 229, 230
–, logarithm 25
–, MATLAB® xxix
–, normalization 49
–, orthogonal 24
–, orthonormal 34, 49
–, projection 323
–, rank 234, 332, 467, 468, 546, 592
–, rotation 24, 35, 42, 50, 66

–, determinant 49
–, normalization 67
–, product 25

–, singular value decomposition 506, 592, 622
–, skew-symmetric 25, 42, 43, 37, 43, 50, 51, 63, 66, 589,

613
–, augmented 614

–, sparse 628
–, transformation, homogeneous 52, 64

MAV (see micro air vehicle)
maximally stable extremal region (MSER) algorithm, descriptor

419, 438, 454, 462
maximum

–, torque 259
–, velocity 72

measurement
–, odometry 156
–, random 156
–, strapdown inertial 87
–, unit, inertial (IMU) 40, 87, 577

mecanum wheel 112
median fi lter 392
MEMS (see micro-electro-mechanical system)
metamer 294
method

–, Newton’s 624
–, Newton-Raphson 623
–, roadmap 136

MEX-fi le 584
Mexican hat kernel 387
micro-electro-mechanical system (MEMS) 80
micro air vehicle (MAV) 114
microlens array 350
Mikrokopter (software project) 122
minimization, nonlinear 623
minimum-norm solution 210, 215, 242
Minkowski

–, addition 395
–, subtraction 395

mirror 340
–, concave 337
–, conical 341
–, equiangular 340, 341
–, shape 340, 570
–, spherical 341

missing parts problem 486
mixed pixel problem 391, 489
mobile robot 3, 95, 99, 573
mobility 121

model
–, 3D 13
–, bicycle 100, 107, 144, 145, 575
–, camera 10
–, geometric 13
–, imaging 321

–, central perspective 321, 344
–, unifi ed 344, 345, 347, 565

–, kinematic 101, 107, 111, 114, 143, 145, 202
–, motion 99, 109, 112, 114, 115, 140, 144, 155, 271, 635, 636
–, nonlinear 88
–, process 635
–, quadrotor 115
–, refl ection, dichromatic 310
–, screw 48
–, unicycle 107, 111
–, vehicle 107

model-based control 272
moment 52, 602

–, feature 428
–, image 428, 506

–, central 429, 431, 434, 506
–, invariant 433, 434, 455
–, line 596
–, matrix 506, 622
–, normalized 434
–, second 444

–, of inertia 68, 264, 429, 603
–, principal 430
–, torque 68, 115, 116, 244, 269
–, vector 30, 47, 52, 351, 596

momentum, angular 68, 79
monochromatic

–, image 361
–, light 287

Monte-Carlo
–, estimation 157, 175, 183
–, localization 175

MOOC (see open online course)
Moore-Penrose pseudo inverse 592
Moravec interest operator 443
morphology (see mathematical morphology)
mosaicing 512
motion 63, 84

–, axis of 73
–, camera 479, 481, 510, 521, 542, 547, 548, 552, 569
–, Cartesian 77, 211, 214, 238, 554
–, complex 12
–, control, resolved-rate 234, 238, 239
–, discontinuity 78
–, end-effector 238
–, equation 68, 101, 111, 116, 251, 263, 271
–, inertial frame 84
–, joint-space 211, 216
–, lateral 112
–, longitudinal 100
–, model 99, 109, 112, 114, 115, 140, 144, 155, 271, 635, 636
–, multi-dimensional 73
–, null-space 13
–, omnidirectional 99, 112, 128, 140
–, perceptibility 548
–, planner 105
–, resolved-rate 13
–, rigid-body 27, 46, 47, 54, 611, 612

–, incremental 67

683

–, rotational 51, 52, 68
–, screw 47, 48
–, segment 74
–, sickness 83
–, singularity 215
–, straight-line 214, 560
–, translational 30, 31, 51, 53, 68

motor 255, 256, 277
–, DC 251
–, high-torque 254
–, inertia 255
–, limit 259
–, servo 251
–, stepper 251
–, torque 252

MRF (see Markov random fi eld)
MSER (see maximally stable extremal region)
multi-camera array 348
multi-pathing 153
multi-segment trajectory 74
MVTB (see Machine Vision Toolbox)

N

NaN 484, 492
nautical

–, angle 38
–, chronometer 152
–, mile 151

navigation 97, 122, 125, 419, 455
–, aerospace 44
–, algorithm 131
–, Beidou (satellite navigation system) 153
–, chart 153
–, dead reckoning 151
–, Galileo (satellite navigation system) 153
–, GLONASS (satellite navigation system) 153
–, GPS (Global Positioning System) 5, 6, 117, 151, 153, 165
–, inertial 63, 66, 79, 87, 117
–, landmark 151
–, map-based 125
–, marine 167
–, planetary rover 525
–, principles 151
–, radio 79
–, reactive 125, 126
–, satellite 5, 6, 117, 151, 153, 165
–, spacecraft 38, 80
–, system 79, 87, 117

Navlab project 122
NCC similarity measure 388, 389, 410, 526, 531
near infra-red (NIR) 315
NED (see north-east-down)
nested control loop 251
Newton’s

–, fi rst law 69
–, method 624
–, second law 68, 70, 82, 115, 263, 279

Newton-Euler method 263, 278, 279
Newton-Raphson method 623
Newtonian telescope 337
Niblack threshold 418, 454
NIR (see near infra-red)
Noble detector 445
node, graph 20, 139, 141, 144, 170, 480, 641

noise 88, 156, 180, 359, 383
–, Gaussian 157, 160, 164, 332, 335, 504, 507, 636, 637
–, image 364, 407, 472

–, impulse 392, 407
–, reduction 383, 396, 444
–, salt and pepper 392

–, odometry 156, 158, 635
–, pixel 383, 397

–, dark current 364
–, nonuniformity 364
–, shot 364

–, random 88, 156, 177
–, scanning laser rangefi nder 180
–, sensitivity 386, 572
–, sensor 162, 175

noncentral imaging 341
nonholonomy, nonholonomic 99

–, constraint 101, 111
–, system 121

nonhomogeneous equation 619
nonlocal maxima suppression 384, 386, 393, 441, 445, 446,

648
nonparametric transform 489
normalization

–, histogram 369, 372, 407
–, homogeneous transformation 50, 539, 549
–, rotation matrix 49

normalized
–, image coordinate 322, 406, 468, 477, 543, 557, 569
–, moment 434

normal matrix 590
north

–, magnetic 85, 87
–, true 85

north-east-down (NED) 79
null space of matrix 242, 467, 546, 592, 622
number

–, denominate 17
–, dual 55
–, random 139, 174, 635

O

objective lens 321
observation 161
obstacle

–, infl ation 130
–, map 131

occlusion 423
occupancy grid 128, 130, 131, 181
OCR (see optical character recognition)
odometer 155
odometry 155, 156, 170

–, differential 155
–, laser 179
–, noise 156, 158, 635
–, visual (VO) 13, 520–522
–, wheel 155

omnidirectional
–, camera 326, 349
–, motion 99, 112, 128, 140
–, vehicle 112
–, wheel 112

OmniSTAR satellite network 153
open online course (MOOC) 11, 12

General Index

684 Index

operational space 55
–, control 275, 276

operator 71
–, associative binary 21
–, asterisc 81
–, backslash 71, 558, 621, 623
–, binary arithmetic 372
–, Canny edge 384, 385
–, differential 384
–, edge 385
–, Gaussian 385, 452
–, group 612
–, Harris 462
–, interest 443, 456
–, inverse 67
–, Laplacian 384, 386
–, Marr-Hildreth 387
–, monadic 362, 372, 415
–, multiplication 54
–, Sobel edge 458
–, spatial 359, 393

–, displacement 67
–, linear 376
–, nonlinear 376

opponent color
–, space 303
–, theory 293

opsin 292, 293
optical

–, axis 40, 321, 325, 496, 509, 541, 554, 566, 568, 570
–, character recognition (OCR) 436
–, fl ow 521, 544, 552, 553, 565, 570, 572

–, derotation 553
optimization 173, 175, 182, 401, 526

–, algorithm 246
–, bundle adjustment 498
–, graph 175
–, Levenberg-Marquardt 246, 627
–, nonlinear 333, 354
–, pose graph 172–174, 183
–, problem 171, 206

ORB (see oriented FAST and rotated BRIEF)
orientation 17

–, 2-dimensional 23
–, 3-dimensional 32
–, camera 327, 481
–, derivative 64, 68, 118
–, end-effector 196
–, error 88
–, estimation 80, 84, 89
–, feature 462
–, interpolation 75
–, region 431
–, relative 506
–, vector 40
–, vehicle 101, 108, 575

oriented FAST and rotated BRIEF (ORB) feature descriptor 462
origin 17
orthogonal matrix 34, 589, 592
orthographic projection 353
orthonormal matrix (see orthogonal matrix)
orthophoto 514
Otsu threshold 417, 454
over-actuated robot 56, 240, 242
over-actuation 121, 240

P

panoramic camera 326
parabolic blend 72
paraboloid 351, 607
parallel

–, projection 353
–, tracking and mapping (PTAM) system 175

parallel-link robot 191
parameter

–, camera 325, 326, 331, 333, 353, 477, 480, 503
–, Denavit-Hartenberg 197, 200, 227
–, ellipse 557, 588
–, extrinsic 326, 503
–, intrinsic 326, 503

particle fi lter 169, 175
path 70, 131, 134, 367, 399
payload 13, 251, 262

–, effect 268
–, lift capability 115
–, mass 268

PBVS (see position-based visual servoing)
PDF (see probability density function)
peak 153

–, fi nding 369, 416
–, point 390, 489, 645
–, refi nement 489
–, response 291–293, 295
–, velocity 72

pencil of lines 471
pendulum, bifi lar 279
perceptibility, motion 548
perception 5, 285
perceptually uniform color space 303
perimeter 434
perspective

–, camera 319, 338, 340, 343, 344, 348, 350, 503, 565, 573
–, correction 13, 509
–, distortion 391, 460, 509
–, foreshortening 509
–, image 341, 372

–, synthetic 347
–, imaging 321, 336, 337
–, projection 319–322, 325, 328, 347, 353, 459, 466, 469, 542, 543
–, tracking 443
–, transformation 319

perspective-n-point (PnP) problem 334
photogrammetry 354, 524
photometric unit 291
photopic response 291
photopsin 292
photoreceptor 292
photosensor array 350
photosite 293, 324, 364, 365
phototaxis 126
picket fence effector 486
pin-hole camera 285, 320, 321
pincushion distortion 330
pitch

–, angle 37
–, screw 47, 52

pixel
–, array 350
–, boundary 434
–, classifi cation 418, 421, 423

685

–, noise 364, 383, 397, 472
–, value, distribution 369

planar
–, homography 474
–, robot 205
–, surface 97, 119
–, transformation 31, 609

Planck
–, constant 288
–, radiation formula 288

Planckian source 288
plane 598, 607

–, Cartesian 19
–, chromaticity 299
–, color 362, 373, 377, 448
–, decomposition 478
–, epipolar 464, 465
–, equation 504, 556
–, Euclidean 19, 605
–, image 321, 324, 605
–, principal 327

planning
–, algorithm 135
–, map-based 130
–, robot path 130, 134, 367, 399
–, trajectory 147, 555

plenoptic
–, camera 348
–, function 349

Plessey corner detector 445
Plücker

–, coordinate 52, 54, 350, 596
–, line 351, 596–598

PnP (see perspective-n-point)
point 17, 413

–, 3D 31, 319
–, Cartesian 179
–, cloud 181, 184, 503, 504, 506

–, 3-dimensional 181
–, conjugate 464, 467, 468, 470, 475, 479
–, coordinate 26

–, homogeneous 51
–, vector 22, 47

–, corner 443, 446, 448, 461
–, corresponding, correspondence 180, 471, 473, 474, 476,

478, 484, 487, 496, 507, 522
–, detection 459
–, edge 434, 439
–, epipolar 473
–, equation

–, ellipsoid surface 235, 245
–, line 605

–, Euclidean 29, 595, 605, 606
–, feature 443, 449, 461

–, BRISK (binary robust invariant scaleable keypoint) 454
–, extraction 10
–, FAST 454, 462
–, Harris 454, 520
–, MSER (maximally stable extremal region) 419, 438,

454, 462
–, scale-space 449, 452
–, SIFT (scale-invariant feature transform) 452, 454, 462
–, SURF (speeded up robust feature) 452, 454, 460, 462,

463, 472, 478, 479, 496, 514
–, focal 320, 340, 341, 344, 348, 514

–, homogeneous form 29
–, ideal 605, 606
–, image-plane 503
–, instantaneous center of rotation (ICR) 100, 109
–, interest 443, 444, 460
–, iterative closest (ICP) 505
–, landmark 497, 500
–, line equation 605
–, mapping 56
–, moving to 102
–, peak 390, 489, 645
–, perimeter 435
–, principal 325, 330, 331, 338, 340, 345, 347, 406, 480, 514,

543, 544, 549, 568
–, salient 443
–, set, matching 505
–, spread function 321
–, task space 56
–, tool center (TCP) 203
–, transformation 24
–, triple 399
–, vanishing 321
–, vector xxix, 17, 22
–, velocity, angular 64
–, world 319, 322, 323, 325, 326, 331, 332, 459

Poisson distribution 364
polar-coordinate robot arm 196
pole

–, magnetic 85, 86
–, rotational 30

polynomial
–, ellipse 600
–, function of time 71
–, matrix approximation 52
–, trajectory 71

pose 17, 55, 60, 170
–, 2D 57
–, 3D 58
–, camera 175, 326, 479, 521, 538, 539, 541
–, change 63
–, derivative 63, 64
–, end-effector 193, 229
–, error 170, 245
–, estimation 83, 334, 536–538, 541, 556, 575
–, graph 170, 171

–, optimization 172–174, 183
–, SLAM (simultaneous localization and mapping) 167,

169–171, 175
–, robot (see also manipulator) 179, 181
–, singular 234
–, trajectory 77

position 17
position-based visual servoing (PBVS) 537, 538
positive defi nite 590
posterior probability 157
posterization 372
power

–, distribution, spectral (SPD) 317
–, law 311
–, series 52

primary
–, CIE (Commission Internationale de l’Eclairage) 294, 297,

300, 305
–, color 294, 296
–, standard 305

General Index

686 Index

PrimeSense camera 508
principal

–, axis 430
–, curvature 444
–, moment 430
–, plane 327
–, point 325, 330, 331, 338, 340, 345, 347, 406, 480, 514, 543,

544, 549, 568
prior probability 157
probabilistic roadmap (PRM) 137
probability 11, 37, 154, 157, 174

–, conditional 157
–, density function (PDF) 153, 160, 161, 175, 631, 632
–, Gaussian 160, 164, 633
–, posterior 157
–, prior 157

process noise 156, 636
Procrustes transform 609
product

–, of exponential 200, 201
–, of inertia 68, 429, 603

projection
–, back 497, 498
–, line 329, 351, 607
–, matrix 323
–, model 338
–, orthographic 353
–, parallel 353
–, perspective 319, 321, 322, 328, 347, 353, 459, 466, 469, 542, 543

–, weak 353
–, point 320–324, 325, 327
–, quadric 352, 607
–, stereographic 345

projective
–, homography 477, 510
–, reconstruction 503
–, transformation 321, 608

projector, speckle 509
Prometheus Project 122
proof mass 82
proprioception 546
proprioceptive sensor 5
pseudo

–, force 69
–, inverse 240, 242, 548, 549, 592, 621

–, Moore-Penrose 592
–, random numbers 174

PTAM (see parallel tracking and mapping)
Puma 560 robot 196, 202, 256, 276
pure

–, pursuit 105
–, quaternion 45, 55, 64

purple boundary 298
pyramidal decomposition 403

Q

quadratic surface 351, 607
quadric 350, 351, 606, 607

–, hypersurface 607
–, Klein 607
–, projection 607

quadrotor 56, 97, 99, 114, 120, 565, 576
–, control system 117

–, dynamics 115, 116
–, model 115

quantum effi ciency 364
quaternion 44

–, computational effi ciency 45
–, conjugate 45
–, convert to rotation matrix 45
–, derivative 64
–, double cover 44, 481
–, dual 55
–, identity 45
–, interpolation 60, 76
–, pure 45, 55, 64
–, unit 44, 45, 47, 50, 55, 58, 64, 76, 499

quintic polynomial 71
quiver plot 384

R

radial distortion 330
radiation

–, absorption 289
–, electro-magnetic 287
–, infra-red 287–289, 292
–, Planck formula 288

radiometric unit 291
radio navigation 79, 153
radius, turning 141
random

–, coordinate 641
–, dot pattern 508
–, measurement 156
–, noise 88, 156, 177
–, number 139, 174, 635
–, sampling 139, 145

–, and consensus (RANSAC) 471, 472, 476, 478, 504
–, variable 631

–, Gaussian 631, 636, 638
rangefi nder

–, remission 179
–, scanning laser 178, 179–181

rank
–, fi lter 392
–, matrix 234, 332, 467, 468, 546, 592
–, transform 391, 392, 462, 489

RANSAC (see random sampling and consensus)
Rao-Blackwellized SLAM (see also FastSLAM) 169
rapidly-exploring random tree (RRT) 144, 145
rate

–, angular 88
–, exponential coordinate 233
–, roll-pitch-yaw angle 76, 118, 233
–, rotation matrix 64

ratio 268
–, ambiguity 486
–, aspect 413, 430, 431, 433
–, gear 254, 264

raw image fi le 294
raxel 350, 481
recognition, character 418, 436
reconstruction 491

–, affi ne 503
–, projective 503

rectifi cation 496

687

recursive Newton-Euler 263
redundant robot 56, 210, 226, 240
Reeds-Shepp path 101
reference

–, frame 69
–, inertial 68, 69, 79, 83
–, noninertial 70

–, system, attitude and heading (AHRS) 87
refl ectance, refl ectivity 179, 180, 290, 307, 308, 608

–, dichromatic 310, 316
–, surface 290, 308, 310, 337

refl ection
–, diffuse 309
–, Fresnel 310
–, geometric 609
–, Lambertian 309, 337, 559
–, model 310
–, spectrum 290
–, specular 180, 309, 337, 423, 424

refl ector-based
–, camera 337, 340
–, eye 285

region
–, area 428
–, aspect ratio 430
–, bounding box 427
–, centroid 429
–, child 435
–, equivalent ellipse 429
–, feature 413, 415
–, image 424
–, inertia matrix 429
–, maximally stable extremal (MSER) 419, 438, 454, 462
–, of interest 401
–, orientation 431

remission 179
renormalization 55
replanning, incremental 134
representational singularity 233
reprojection error 500
resampling 176
resectioning 152
resizing 402
resolved-rate motion control 234, 237
response

–, human eye 288, 289
–, Laplacian of Gaussian 449
–, peak 291–293, 295
–, photopic 291
–, position loop 262
–, scotopic 291
–, spectral 292–294, 296, 313, 315
–, tristimulus 312
–, velocity loop 258–260

retinal
–, molecule 292
–, ganglion layer 293
–, image plane coordinates 322

retinex theory 307, 316
RGBD camera 509
rhodopsin 292
right-hand rule 31
rigid-body

–, displacement 46, 52, 53

–, dynamics 263, 272
–, motion 27, 46, 47, 54, 67, 611, 612

ring-laser gyroscope (RLG) 80
roadmap 136
robot (see also manipulator) 191

–, arm 121
–, model 200
–, planar 194, 245
–, polar-coordinate 196
–, PUMA 195
–, serial-link 196
–, SCARA (Selective Compliance Assembly Robot Arm)

191, 195, 210
–, Stanford 195

–, Asimo humanoid 6
–, base transform 203, 218
–, Baxter 211, 277
–, behavior-based 127
–, defi nition of 5, 126, 130
–, DEPTHX (Deep Phreatic Thermal Explorer, AUV) 120,

121
–, Elsie 96
–, end-effector 192
–, fi eld 3, 96
–, gantry 191
–, high-speed 276
–, humanoid 3, 6
–, joint

–, modelling 255
–, structure 195

–, kidnapped 178
–, law 1
–, manipulability 215, 236
–, manufacturing 3
–, maximum payload 268
–, mobile 3, 95, 99, 573
–, over-actuated 56, 242
–, path planning 131, 134, 367, 399
–, parallel-link 191
–, planar 205
–, pose 179, 181
–, Puma 560 196, 202, 256, 276
–, redundant 56, 210, 226, 240
–, Shakey 95
–, service 3
–, singularity 208, 215
–, tele- 6
–, tool transform 203, 204, 218, 222
–, tortoise 95
–, trajectory 169
–, under-actuated 56, 210, 240, 241
–, walking 221
–, wrist 196, 215

Rodrigues
–, rotation formula 37, 42, 52, 53, 61, 66, 613
–, vector 42

roll angle 37
roll-pitch-yaw angle 37, 38, 40, 232, 233

–, rate 76, 118, 233
–, singularity 38
–, XYZ 37, 38, 214, 232
–, YXZ 481
–, ZYX 37

rolling, constraint 121

General Index

688 Index

root, fi nding 622
Rossum’s Universal Robots (RUR) 3
rotation, rotational 47, 50, 54, 608

–, angle 25, 26, 31, 35, 37, 39, 43
–, axis 32, 39, 41, 43, 48, 50, 63, 68
–, direction 76
–, formula 37, 42, 52, 53, 61, 66, 613
–, incremental 66
–, inertia 68
–, interpolation 76
–, invariance 444, 462
–, matrix 24, 35, 36, 40, 42, 45, 50, 66, 232, 405, 511, 576

–, determinant 49
–, estimating 622
–, least squares problem 622
–, normalization 67
–, product 25
–, reading 35

–, motion 51, 52, 68
–, pole 30
–, rate 64
–, theorem, Euler’s 32, 33, 35–37, 613
–, torque 69
–, twist 30
–, vector 30
–, velocity 63, 65, 69

row space 591
RQ decomposition 327
RRT (see rapidly-exploring random tree)
RTK GPS (see Global Positioning System (GPS), RTK)
rule, right-hand 31
RUR (see Rossum’s Universal Robots)

S

saccule 83
SAD similarity measure 389, 392
salient point 443
salt and pepper noise 392
SaM (see structure and motion)
sampling

–, artifact 402
–, importance 176
–, probabilistic 147
–, random 139, 145
–, Shannon-Nyquist theorem 402
–, spatial 402

satellite
–, navigation

–, system 5, 6, 117, 151, 153, 165
–, network 153

–, view 367
saturation

–, actuator 118
–, color 297, 301, 302
–, function 375

scalar 17, 54
–, fi eld 618
–, function 617, 618
–, interpolation 212
–, multiplication 587

scale 384
–, characteristic 449
–, factor 88
–, feature 451

–, space 384, 403, 462
–, spatial 384

scale-invariant feature transform (SIFT)
–, descriptor 462
–, detector 456, 462, 524

scaling 608
scanning laser rangefi nder 178, 179, 181

–, noise 180
SCARA (see Selective Compliance Assembly Robot Arm)
scene luminance 364
Schur complement 628
scotopic response 291
screw 47, 52

–, axis 47, 52
–, model 48
–, motion 47, 48
–, pitch 47, 52
–, theory 52

SE(2) 27, 34
se(3) 53, 54, 614
SE(3) 46, 48, 53, 54, 73, 77, 479, 614, 615, 626
SEA (see series-elastic actuator)
segmentation 13, 396

–, binary 421
–, color 419
–, graph-based 426
–, image 415
–, shape 528

selective availability 153
Selective Compliance Assembly Robot Arm (SCARA) 191, 195,

210
semi-global matching (SGM) 526
sensor 170

–, acceleration 83, 87
–, bias 88
–, calibration 88
–, camera 292, 313, 314
–, CCD 364
–, CMOS 364
–, drift 88
–, error 170
–, fusion 88, 163
–, Hall effect 85
–, inertial 87
–, Kinect 508
–, noise 162, 175
–, range and bearing 161

serial-link manipulator 193
series-elastic actuator (SEA) 276, 277
servo-mechanism 537
servoing

–, visual 537, 572
–, advanced 565
–, image-based 536, 538, 541
–, photometric 559
–, position-based 536, 538

SfM (see structure from motion)
SGM (see semi-global matching)
shadow 314

–, removal 313
Shakey (robot) 95
shape 322, 413, 423, 433

–, change 13, 235, 245, 359, 401
–, descriptor 433
–, distortion 353, 509, 510

689

–, Earth 81
–, ellipse 556
–, ellipsoid 236
–, feature 435
–, fi lter 394
–, fi tting 456
–, from moment 433
–, from perimeter 434
–, lens 570
–, mirror 340, 570
–, object 319, 393, 435
–, perimeter 454
–, segmentation 528
–, structuring element 394

shared control 7
shear, transformation 608
Shi-Tomasi detector 462
shift invariance 377
short-wavelength infra-red (SWIR) 315
SIFT (see scale-invariant feature transform)
signed distance function 400
similarity transform, transformation 591, 609
similar matrix 591
Simulink 11, 272

–, block 101
–, library 111

–, diagram 536
–, kinematics 214

simultaneous localization and mapping (SLAM) 167
–, back end 170, 174, 175
–, EKF (extended Kalman fi lter) 169
–, Fast 169
–, front end 170, 174
–, pose graph 167, 169–171, 175
–, Rao-Blackwellized 169
–, system, vision-based 175

single-lens refl ex (SLR) camera 366
singleton dimension 362
singular

–, pose 234
–, value 592

–, decomposition 592
–, vector 592

singularity 37, 38, 208, 215
–, angle

–, Euler 39
–, roll-pitch-yaw 38

–, Jacobian 234, 240
–, motion 215
–, representational 233
–, three angle representation 38
–, wrist 208, 215

singular value decomposition (SVD) 592, 621, 622
skeleton 137, 203

–, topological 136
skeletonization 136, 137
skew-symmetric matrix 25, 26, 27, 42, 43, 50, 51, 63, 66, 90, 351,

589, 606, 607, 613
–, augmented 614

skid steering 111
SLAM (see simultaneous localization and mapping)
SLR camera (see single-lens refl ex camera)
smoothing 377, 384
smoothness constraint 526
SO(2) 24, 611, 612

so(3) 54, 233, 613
SO(3) 34, 68, 73, 75, 81, 612, 613
Sobel kernel 382
soft-iron distortion 87
solar spectrum 289
solid angle 294, 326
solution

–, closed-form 205
–, minimum-norm 242
–, numerical 206

solving system 621
SOS (see standard output sensitivity)
source, Planckian 288
space

–, affi ne 608
–, chromaticity 297, 298
–, color (see also color space) 301, 312
–, confi guration 55, 56, 114, 119, 121, 145, 198, 201, 210, 211
–, control 275, 276
–, Euclidean 19, 55, 595, 605, 608
–, inertial reference equipment (SPIRE) 79
–, joint 198, 212, 244
–, operational 55

–, control 275, 276
–, resectioning 354
–, scale 384, 403, 462
–, task 55, 56, 210, 211
–, vector 587

sparse
–, matrix 628
–, stereo 479, 483, 492, 524, 552

spatial
–, aliasing 402, 486, 488
–, displacement 67, 245
–, fi lter 376
–, operator 67, 359, 376, 393
–, sampling rate 402
–, scale 384
–, velocity 64, 65, 69, 231, 232, 239, 542, 546, 573

–, vector 64
SPD (see spectral power distribution)
special

–, Euclidean group 21, 27, 46
–, orthogonal group 24, 34, 590

speckle projector 509
spectral

–, color 298
–, decomposition 591
–, locus 298–300
–, power distribution (SPD) 317
–, response 292–294, 296, 313, 315

spectrum
–, absorption 289, 290, 309
–, D65 standard white 312
–, illumination 307
–, infra-red 292
–, luminance 290, 294, 297, 312
–, refl ection 290
–, solar 289
–, visible 289

specular refl ection 180, 309, 337, 423, 424
speculum, metal 337
speeded up robust feature (SURF)

–, descriptor 453, 462, 463, 472, 478, 479, 496, 514–516, 524, 556
–, detector 452, 453, 456, 460, 462, 524, 252, 527

General Index

690 Index

spherical
–, aberration 330
–, camera 342, 343, 570–572, 576, 578

–, image-based visual servo (IBVS) 570
–, linear interpolation 76
–, mirror 341
–, wrist 199, 205, 207

SPIRE (see space inertial reference equipment)
spring 82, 277

–, torsional 277
SSD similarity measure 389, 443, 514
stabilization, image 514
standard output sensitivity (SOS) 364
Stanford, robot arm 195
STAR (see center surround extremas (CenSurE) descriptor)
steering

–, Ackermann 101, 123
–, angle 101, 102, 141, 145
–, mechanism 99
–, skid 111

Stefan-Boltzman law 288, 317
steradian 326
stereo

–, baseline 524
–, camera 6, 483, 492, 496, 521
–, estimation 443
–, failure mode 485
–, glasses 35
–, matching 485, 486, 491, 497
–, movie 495
–, pair 483, 493, 495, 496
–, perception 495
–, sparse 479, 483, 492, 524, 552
–, system 492, 507
–, technique 552
–, triangulation 522
–, vision 479, 488, 491, 503, 507, 509, 524

stereographic projection 345
stereopsis 483
stiction 252
stop word 516
straight-line motion 214
strapdown

–, confi guration 80
–, gyroscope 80
–, inertial measurement 87

structure
–, and motion (SaM) estimation 498, 578
–, from motion (SfM) 498, 527
–, tensor 444, 445, 448, 461

structured light 507
structuring element 393
subpixel interpolation 648
subsampling, image 402
subsumption architecture 127
subtraction, Minkowski 395
Sun spectrum 289
support region 451, 453, 462
suppression, nonlocal maxima 384, 386, 441, 445, 446
SURF (see speeded up robust feature)
surface 494

–, 2D 319
–, 3D 132
–, Earth 70, 79, 512

–, ellipsoid 235, 245, 632
–, geometry 310
–, hypersphere 235
–, intensity 396
–, luminance 290
–, matte 310
–, meshing 528
–, planar 97, 119
–, polished 180
–, quadratic 351, 607
–, refl ectance 290, 308, 310
–, refl ective 337
–, sphere 342, 344, 570
–, textureless 509
–, water 309
–, writing on 220

SVD (see singular value decomposition)
Swedish wheel 112
SWIR (see short-wavelength infra-red)
symmetric matrix 266, 444, 589
system

–, attitude and heading reference (AHRS) 87
–, confi guration 55
–, coordinate 19
–, homogeneous 622
–, inertial navigation (INS) 79, 87, 117
–, nonholonomic 121
–, nonhomogeneous 621
–, nonintegrable 121
–, nonlinear 638
–, under-actuated 120
–, vestibular 80, 83, 546

T

tag, April 164
Tait-Bryan angle 38
tangential distortion 330
tangent space 612
task space 55, 56, 210, 211
taxis 126
Taylor series 444, 617
TCP (see tool center point)
telerobot 6
telecentric lens 353
temperature

–, color 306, 314
–, drift 88

template matching 484
tensor 587

–, structure 444, 445, 448, 461
–, trifocal 525

texture mapping 346, 494
theorem

–, Chasles 52
–, Euler’s rotation 32

theory
–, Lie group 25
–, opponent color 293
–, retinex 307, 316
–, screw 52
–, trichromatic 293

thin lens 321
thinning (also skeletonization) 136, 137

691

threshold 376, 415, 418
–, corner strength 448
–, distance 139, 464
–, local 418
–, Otsu’s method 417
–, Niblack algorithm 418

thresholding 371, 407, 415
–, hysteresis 385

thrust 115
tie point 512
time 63

–, derivative 63
–, exposure 321, 363, 364
–, invariance 377
–, of fl ight 508, 526
–, series xxix
–, varying pose 63, 70

tone matching 513
tool

–, center point (TCP) 203
–, transform 199, 203, 204, 218, 222

toolbox
–, functions 57–59
–, obtaining 583

top hat kernel 379
topological skeleton 136
topology, algebraic 50
torque 251, 253, 254, 275

–, control 272
–, computed 272, 274
–, feedforward 260, 272, 273

–, disturbance 251
–, end-effector 244
–, gravity 254, 264
–, maximum 259
–, moment 68, 115, 116, 244, 269
–, motor 252
–, rotational 69

trace of matrix 591
traded control 7
trajectory 70, 74, 76–78, 90, 139, 169, 209, 211, 223, 225, 251,

263
–, Cartesian 91, 214, 224
–, continuous 74, 220
–, end-effector 251
–, following 105, 140
–, hybrid 72
–, joint-space 212–214, 216
–, lane-changing 102
–, leg 221
–, multi-axis 73
–, multi-segment 74
–, planning 147, 555
–, polynomial 71
–, pose 77
–, robot 169

transconductance 252
transform

–, base 199
–, census 391, 489
–, distance 130, 134, 135, 137, 399, 400
–, nonparametric 391, 489
–, planar 31
–, Procrustes 609

–, rank 391, 392, 462, 489
–, SE(2) 31
–, tool 199, 203, 204, 218, 222

transformation
–, affi ne 608
–, conformal 322
–, Euclidean 608, 609
–, geometric 608, 609
–, homogeneous 27, 46, 53, 54, 77, 199, 203, 324, 325, 328, 477,

481, 504, 605
–, matrix 52, 64
–, perspective 319
–, planar 609
–, point 24
–, projective 321, 608
–, SE(2) 27
–, SE(3) 46
–, similarity 608, 609
–, wrench 244

translation 46, 53, 54, 608
transmission 251, 276, 309

–, fl exible 13
–, mechanical 109

transpose, Jacobian 246
trapezoidal trajectory 72
traversability 130, 134
triangulation 152, 459, 497, 521
triaxial

–, accelerometer 83, 87
–, gyroscope 80
–, magnetometer 85

trichromatic
–, matching 296
–, theory 293

trifocal tensor 525
triple point 136
tristimulus 294–299, 301, 302, 304–306, 308, 311, 362

–, eye 312
–, response 312
–, value 304, 315

true north 85
Tukey biweight function 625
turning radius 100, 141
twist 30, 48, 52, 53, 200, 247, 614

–, axis 47
–, Jacobian computing 247
–, nonunit 31, 48
–, rotational 30
–, transforming 614
–, unit 30, 48, 52, 54
–, vector 30, 31, 47
–, velocity 65, 247

U

UAV (see unmanned aerial vehicle)
UKF (see unscented Kalman Filter)
ultra-violet radiation 287, 289
uncertainty 160, 161, 163
under-actuated 56, 99, 120, 121, 195, 229

–, robot, manipulator 56, 210, 240, 241
–, system 120

unicycle, model 111
unifi ed imaging model 344, 565

General Index

692 Index

Unimation Inc. 2
unit

–, inertial measurement (IMU) 40, 87, 577
–, photometric 291
–, quaternion 44, 45, 47, 55, 58, 499

–, derivative 64
–, interpolation 76
–, normalization 50

–, radiometric 291
–, twist 30, 48, 52, 54

unmanned aerial vehicle (UAV) 114
unscented Kalman Filter (UKF) 184
utricle 83

V

VaMoRs system (autonomous van) 122
vanishing point 321, 328
variable, Gaussian random 636
Vaucanson’s duck 1
vector 17, 587

–, addition 587
–, approach 40
–, bound 17
–, coordinate 17–19, 587, 595, 604
–, distortion 406
–, error 628
–, feature 432, 434
–, fi eld 619
–, gravity 84, 263
–, moment 30, 47, 52, 351, 596
–, normal 40
–, of locally aggregated descriptors (VLAD) 456
–, orientation 40
–, point xxix, 17, 22
–, Rodrigues 42
–, rotation 30
–, scalar function of 618
–, singular 592
–, space 587
–, twist 30, 31, 47
–, vector function of 618
–, velocity 64, 230

vectorizing 493
vehicle

–, aerial 121
–, autonomous 7, 96

–, surface (ASV) 96
–, underwater (AUV) 96

–, Braitenberg 126
–, car-like 99, 100
–, confi guration 100
–, coordinate system 100
–, differentially-steered 99, 109
–, frame 100
–, micro air (MAV) 114
–, mobile robot 3, 95, 99, 573
–, model 107
–, omnidirectional 112
–, orientation 101, 108, 575
–, path 103, 105, 109
–, underwater 121
–, unmanned aerial (UAV) 96, 114
–, velocity 101
–, wheeled 97, 99

velocity 251, 275
–, angular 50, 52, 64, 68, 70, 79, 80, 155, 233, 636

–, time-varying 68
–, vector 66

–, camera 542–544, 547, 551, 552, 556–559, 567
–, control 102, 257, 261

–, feedforward 262
–, loop 257, 261

–, coupling torque 264
–, discontinuity 78
–, ellipse, ellipsoid 235, 236, 244
–, end-effector 229, 230
–, joint 229, 230
–, kinematics 229
–, linear 52, 68
–, maximum 72
–, peak 72
–, rotational 63, 65, 69
–, spatial 64, 65, 69, 231, 232, 239, 542, 546, 573
–, translational 63, 65, 69
–, twist 65, 247
–, vector 64, 230
–, vehicle 101

vestibular system 80, 83, 546
via point 74
view

–, fi eld of 327, 336, 338, 339, 347, 348, 487, 546, 559, 572
–, fronto-parallel 510, 511, 541
–, road map 367
–, satellite 367

vignetting 364
viscous friction coeffi cient 252
vision 6

–, animal 285
–, human 331
–, robotic 6
–, stereo 479, 488, 491, 503, 507, 509, 524

visual
–, fl ux 287
–, odometry (VO) 13, 520–522
–, servo control 535
–, servoing (see servoing, visual)
–, simultaneous localization and mapping (VSLAM) 184, 498
–, vocabulary 515
–, word 515

VLAD (see vector of locally aggregated descriptors)
VO (see visual odometry)
von Mises distribution 156
Voronoi

–, cell 137
–, diagram 136, 137, 399
–, roadmap 137
–, tessellation 137

VSLAM (see visual simultaneous localization and mapping)

W

WAAS (see wide area augmentation system)
walking robot 221
warping 336, 345, 404–406, 502, 510, 513
waypoint 157
white

–, balance, balancing 308
–, D65 304, 305, 306, 312
–, defi nition 306

693

–, equal-energy 305
–, point 302

Wide Area Augmentation System (WAAS) 153
Wien’s
–, approximation 314
–, displacement law 288
window, convolution 376
world coordinate frame 18, 79
wrench 65, 69, 244, 245, 263, 269

–, ellipsoid 245
–, end-effector 244, 245
–, transformation 244

wrist 208
–, coordinate frame 203
–, robot 196, 215
–, singularity 208, 215
–, spherical 199, 205, 207

X

Xbox 508
XY/Z-partitioned IBVS (image-based visual servo) 565
XYZ

–, CIE (Commission Internationale de l’Eclairage) primary 300

General Index

–, color
–, matching function 300
–, space 301, 312

–, roll-pitch-yaw angle 38, 214, 232
–, tristimulus value 304

Y

yaw angle 37
yaw rate 101, 163
YCBCR color space 303, 311
Yoshikawa’s manipulability measure 236
YUV color space 303, 311
YXZ roll-pitch-yaw angle 481

Z

zero-angle confi guration 197
zero crossing detector 387
ZNCC similarity measure 389, 390, 461, 484, 485, 489, 514
zoom lens 327
ZSSD similarity measure 389, 530
ZYX roll-pitch-yaw angle 37
ZYZ Euler angles 36

	Professor Bruno Siciliano
	Professor Oussama Khatib
	Author Peter Corke
	Foreword
	Preface
	Contents
	Nomenclature
	1
Introduction
	1.1
Robots, Jobs and Ethics
	1.2
About the Book
	1.2.1 MATLAB Software and the Toolboxes
	1.2.2 Notation, Conventions and Organization
	1.2.3 Audience and Prerequisites
	1.2.4 Learning with the Book
	1.2.5 Teaching with the Book
	1.2.6 Outline

	Further Reading

	Part I Foundations
	2
Representing Position and Orientation
	2.1 Working in Two Dimensions (2D)
	2.1.1
Orientation in 2-Dimensions
	2.1.1.1
Orthonormal Rotation Matrix
	2.1.1.2 Matrix Exponential

	2.1.2 Pose in 2-Dimensions

	2.1.2.1
Homogeneous Transformation Matrix
	2.1.2.2 Centers of Rotation
	2.1.2.3 Twists in 2D

	2.2
Working in Three Dimensions (3D)
	2.2.1 Orientation in 3-Dimensions
	2.2.1.1 Orthonormal Rotation Matrix
	2.2.1.2 Three- Angle Representations
	2.2.1.3 Singularities and Gimbal Lock
	2.2.1.4 Two Vector Representation
	2.2.1.5 Rotation about an Arbitrary Vector
	2.2.1.6 Matrix Exponentials
	2.2.1.7 Unit Quaternions

	2.2.2 Pose in 3-Dimensions
	2.2.2.1 Homogeneous Transformation Matrix
	2.2.2.2 Vector-Quaternion Pair
	2.2.2.3 Twists

	2.3
Advanced Topics
	2.3.1
Normalization
	2.3.2
Understanding the Exponential Mapping
	2.3.3
More About Twists
	2.3.4 Dual Quaternions
	2.3.5 Configuration Space

	2.4
Using the Toolbox
	2.5
Wrapping Up
	Further Reading
	Exercises

	3 Time and Motion
	3.1
Time-Varying Pose
	3.1.1
Derivative of Pose
	3.1.2 Transforming Spatial Velocities
	3.1.3 Incremental Rotation
	3.1.4 Incremental Rigid-Body Motion

	3.2
Accelerating Bodies and Reference Frames
	3.2.1 Dynamics of Moving Bodies
	3.2.2 Transforming Forces and Torques
	3.2.3 Inertial Reference Frame

	3.3
Creating Time-Varying Pose
	3.3.1 Smooth One-Dimensional Trajectories
	3.3.2 Multi-Dimensional Trajectories
	3.3.3 Multi-Segment Trajectories
	3.3.4 Interpolation of Orientation in 3D
	3.3.4.1 Direction of Rotation
	3.3.5 Cartesian Motion in 3D

	3.4
Application: Inertial Navigation
	l3.4.1 Gyroscopes
	3.4.1.1 How Gyroscopes Work
	3.4.1.2 Estimating Orientation

	3.4.2 Accelerometers
	3.4.2.1 How Accelerometers Work
	3.4.2.2 Estimating Pose and Body Acceleration

	3.4.3 Magnetometers
	3.4.3.1 How Magnetometers Work
	3.4.3.2 Estimating Heading

	3.4.4 Sensor Fusion

	3.5
Wrapping Up
	Further Reading
	Exercises

	Part II Mobile Robots
	II
Mobile Robots

	4
Mobile Robot Vehicles
	4.1
Wheeled Mobile Robots
	4.1.1 Car-Like Mobile Robots
	4.1.1.1 Moving to a Point
	4.1.1.2 Following a Line
	4.1.1.3 Following a Trajectory
	4.1.1.4 Moving to a Pose

	4.1.2 Differentially-Steered Vehicle
	4.1.3 Omnidirectional Vehicle

	4.2
Flying Robots
	4.3
Advanced Topics
	4.3.1 Nonholonomic and Under-Actuated Systems

	4.4Wrapping Up
	Further Reading
	Toolbox and MATLAB Notes
	Exercises
	Chapter

	5 Navigation
	5.1
Reactive Navigation
	l5.1.1 Braitenberg Vehicles
	l5.1.2 Simple Automata

	5.2
Map-Based Planning
	5.2.1 Distance Transform
	5.2.2 D*
	5.2.3 Introduction to Roadmap Methods
	5.2.4 Probabilistic Roadmap Method (PRM)
	5.2.5 Lattice Planner
	5.2.6 Rapidly-Exploring Random Tree (RRT)

	5.3
Wrapping Up
	Further Reading
	Resources
	MATLAB Notes
	Exercises
	Chapter

	6
Localization
	6.1
Dead Reckoning
	6.1.1 Modeling the Vehicle
	6.1.2 Estimating Pose

	6.2
Localizing with a Map
	6.3
Creating a Map
	6.4
Localization and Mapping
	6.5
Rao-Blackwellized SLAM
	6.6
Pose Graph SLAM
	6.7
Sequential Monte-Carlo Localization
	6.8
Application: Scanning Laser Rangefinder
	Laser Odometry
	Laser-Based Map Building
	Laser-Based Localization
	6.9
Wrapping Up
	Further Reading
	Toolbox and MATLAB Notes
	Exercises

	Part III Arm-Type Robots
	III
Arm-Type Robots

	7
Robot Arm Kinematics
	7.1
Forward Kinematics
	7.1.1 2-Dimensional (Planar) Robotic Arms
	7.1.2 3-Dimensional Robotic Arms
	l7.1.2.1 Denavit-Hartenberg Parameters
	l7.1.2.2 Product of Exponentials
	l7.1.2.3 6-Axis Industrial Robot

	7.2
Inverse Kinematics
	7.2.1 2-Dimensional (Planar) Robotic Arms
	7.2.1.1 Closed-Form Solution
	7.2.1.2 Numerical Solution

	7.2.2 3-Dimensional Robotic Arms
	7.2.2.1Closed-Form Solution
	7.2.2.2 Numerical Solution
	7.2.2.3 Under-Actuated Manipulator
	l7.2.2.4 Redundant Manipulator

	7.3
Trajectories
	7.3.1 Joint-Space Motion
	7.3.2 Cartesian Motion
	7.3.3 Kinematics in Simulink
	7.3.4 Motion through a Singularity
	7.3.5 Configuration Change

	7.4
Advanced Topics
	7.4.1 Joint Angle Offsets
	7.4.2 Determining Denavit-Hartenberg Parameters
	7.4.3 Modified Denavit-Hartenberg Parameters

	7.5
Applications
	7.5.1 Writing on a Surface
	7.5.2 A Simple Walking Robot

	Kinematics
	Motion of One Leg
	Motion of Four Legs
	7.6
Wrapping Up
	Further Reading
	MATLAB and Toolbox Notes
	Exercises
	Chapter

	8
Manipulator Velocity
	8.1
Manipulator Jacobian
	8.1.1 Jacobian in the World Coordinate Frame
	8.1.2 Jacobian in the End-Effector Coordinate Frame
	8.1.3 Analytical Jacobian

	8.2
Jacobian Condition and Manipulability
	l8.2.1 Jacobian Singularities
	l8.2.2 Manipulability

	8.3
Resolved-Rate Motion Control
	8.3.1 Jacobian Singularity

	8.4
Under- and Over-Actuated Manipulators
	8.4.1 Jacobian for Under-Actuated Robot
	8.4.2 Jacobian for Over-Actuated Robot

	8.5
Force Relationships
	8.5.1 Transforming Wrenches to Joint Space
	8.5.2 Force Ellipsoids

	8.6
Inverse Kinematics: a General Numerical Approach
	l8.6.1 Numerical Inverse Kinematics

	8.7
Advanced Topics
	8.7.1 Computing the Manipulator Jacobian Using Twists

	8.8 Wrapping Up
	Further Reading
	MATLAB and Toolbox Notes
	Exercises

	9
Dynamics and Control
	9.1
Independent Joint Control
	9.1.1 Actuators
	9.1.2 Friction
	9.1.3 Effect of the Link Mass
	9.1.4 Gearbox
	9.1.5 Modeling the Robot Joint
	9.1.6 Velocity Control Loop
	9.1.7 Position Control Loop
	9.1.8 Independent Joint Control Summary

	9.2
Rigid-Body Equations of Motion
	9.2.1 Gravity Term
	9.2.2 Inertia Matrix
	9.2.3 Coriolis Matrix
	9.2.4 Friction
	9.2.5 Effect of Payload
	9.2.6 Base Force
	9.2.7 Dynamic Manipulability

	9.3
Forward Dynamics
	9.4
Rigid-Body Dynamics Compensation
	9.4.1 Feedforward Control
	9.4.2 Computed Torque Control
	l9.4.3 Operational Space Control

	9.5
Applications
	9.5.1 Series-Elastic Actuator (SEA)

	9.6
Wrapping Up
	Further Reading
	Exercises

	Part IV Computer Vision
	IV
Computer Vision

	10
Light and Color
	10.1
Spectral Representation of Light
	10.1.1 Absorption
	10.1.2 Reflectance
	10.1.3 Luminance

	10.2 Color
	10.2.1The Human Eye
	10.2.2 Measuring Color
	10.2.3 Reproducing Colors
	10.2.4 Chromaticity Space
	10.2.5 Color Names
	10.2.6 Other Color and Chromaticity Spaces
	10.2.7 Transforming between Different Primaries
	10.2.8 What Is White?

	10.3
Advanced Topics
	10.3.1 Color Temperature
	10.3.2 Color Constancy
	10.3.3 White Balancing
	10.3.4 Color Change Due to Absorption
	10.3.5 Dichromatic Reflectance
	10.3.6 Gamma

	10.4
Application: Color Image
	10.4.1 Comparing Color Spaces
	10.4.2 Shadow Removal

	10.5
Wrapping Up
	Further Reading
	Data Sources
	Exercises

	11 Image Formation
	11.1
Perspective Camera
	11.1.1 Perspective Projection
	11.1.2 Modeling a Perspective Camera
	11.1.3 Discrete Image Plane
	11.1.4 Camera Matrix
	11.1.5 Projecting Points
	11.1.6 Lens Distortion

	11.2
Camera Calibration
	11.2.1 Homogeneous Transformation Approach
	11.2.2 Decomposing the Camera Calibration Matrix
	11.2.3 Pose Estimation
	11.2.4 Camera Calibration Toolbox

	11.3
Wide Field-of-View Imaging
	11.3.1 Fisheye Lens Camera
	11.3.2 Catadioptric Camera
	11.3.3 Spherical Camera

	11.4
Unified Imaging
	11.4.1 Mapping Wide-Angle Images to the Sphere
	11.4.2 Mapping from the Sphere to a Perspective Image

	11.5
Novel Cameras
	11.5.1 Multi-Camera Arrays
	11.5.2 Light-Field Cameras

	11.6
Advanced Topics
	11.6.1 Projecting 3D Lines and Quadrics
	11.6.2 Nonperspective Cameras

	11.7
Wrapping Up
	Further Reading and Resources
	Toolbox Notes
	Exercises
	Chapter

	12
Images and Image Processing
	12.1
Obtaining an Image
	12.1.1 Images from Files
	12.1.2 Images from an Attached Camera
	12.1.3 Images from a Movie File
	12.1.4 Images from the Web
	12.1.5 Images from Maps
	12.1.6 Images from Code

	12.2
Image Histograms
	12.3
Monadic Operations
	12.4
Diadic Operations
	12.5
Spatial Operations
	12.5.1 Linear Spatial Filtering
	12.5.1.1 Smoothing
	12.5.1.2 Boundary Effects
	12.5.1.3 Edge Detection

	12.5.2 Template Matching
	12.5.2.1 Nonparameteric Local Transforms

	12.5.3 Nonlinear Operations
	12.6
Mathematical Morphology
	12.6.1 Noise Removal
	12.6.2 Boundary Detection
	12.6.3 Hit or Miss Transform
	12.6.4 Distance Transform

	12.7
Shape Changing
	12.7.1 Cropping
	12.7.2 Image Resizing
	12.7.3 Image Pyramids
	12.7.4 Image Warping

	12.8
Wrapping Up
	Further Reading
	Sources of Image Data
	MATLAB Notes
	General Software Tools
	Exercises
	Chapter

	13
Image Feature Extraction
	13.1
Region Features
	13.1.1 Classification
	13.1.1.1 Grey-Level Classification
	13.1.1.2 Color Classification

	13.1.2 Representation
	13.1.2.1 Graph-Based Segmentation

	13.1.3 Description
	13.1.3.1 Bounding Boxes
	13.1.3.2 Moments
	13.1.3.3 Blob Features
	13.1.3.4 Shape from Moments
	13.1.3.5 Shape from Perimeter
	13.1.3.6 Character Recognition

	13.1.4 Summary
	13.2
Line Features
	13.2.1 Summary

	13.3
Point Features
	13.3.1 Classical Corner Detectors
	13.3.2 Scale-Space Corner Detectors
	13.3.2.1 Scale-Space Point Feature

	13.4
Wrapping Up
	MATLAB Notes
	Further Reading
	Exercises
	Chapter

	14
Using Multiple Images
	14.1
Feature Correspondence
	14.2
Geometry of Multiple Views
	14.2.1 The Fundamental Matrix
	14.2.2 The Essential Matrix
	14.2.3 Estimating the Fundamental Matrix from Real Image Data
	14.2.4 Planar Homography

	14.3
Stereo Vision
	14.3.1 Sparse Stereo
	14.3.2 Dense Stereo Matching
	14.3.2.1 Stereo Failure Modes
	14.3.3 Peak Refinement
	14.3.4 Cleaning up and Reconstruction
	14.3.5 3D Texture Mapped Display
	14.3.6 Anaglyphs
	14.3.7 Image Rectification

	14.4
Bundle Adjustment
	14.5
Point Clouds
	14.5.1 Fitting a Plane
	14.5.2 Matching Two Sets of Points

	14.6
Structured Light
	14.7
Applications
	14.7.1 Perspective Correction
	14.7.2 Mosaicing
	14.7.3 Image Matching and Retrieval
	14.7.4 Visual Odometry

	14.8
Wrapping Up
	MATLAB and Toolbox Notes
	Further Reading
	Resources
	Exercises

	Part V Robotics, Vision and Control
	V
Robotics, Vision and Control

	15
Vision-Based Control
	15.1
Position-Based Visual Servoing
	15.2
Image-Based Visual Servoing
	15.2.1 Camera and Image Motion
	15.2.2 Controlling Feature Motion
	15.2.3 Estimating Feature Depth
	15.2.4 Performance Issues

	15.3
Using Other Image Features
	15.3.1 Line Features
	15.3.2 Circle Features
	15.3.3 Photometric Features

	15.4
Wrapping Up
	Further Reading
	Exercises

	16
Advanced Visual Servoing
	16.1
XY/Z-Partitioned IBVS
	16.2
IBVS Using Polar Coordinates
	16.3
IBVS for a Spherical Camera
	16.4
Applications
	16.4.1 Arm-Type Robot
	16.4.2 Mobile Robot
	16.4.2.1 Holonomic Mobile Robot
	16.4.2.2 Nonholonomic Mobile Robot

	16.4.3 Aerial Robot

	16.5
Wrapping Up
	Further Reading
	Resources
	Exercises

	Appendices
	A Installing the Toolboxes
	B
Linear Algebra Refresher
	B.1
Vectors
	B.2
Matrices
	B.2.1 Square Matrices
	B.2.2 Nonsquare and Singular Matrices

	C
Geometry
	C.1
Euclidean Geometry
	
C.1.1 Points
	C.1.2 Lines
	C.1.2.1
Lines in 2D
	C.1.2.2 Lines in 3D and Plücker Coordinates
	C.1.3 Planes
	C.1.4 Ellipses and Ellipsoids
	C.1.4.1 Properties
	C.1.4.2 Drawing an Ellipse
	C.1.4.3 Fitting an Ellipse to Data
	From a Set of Interior Points
	From a Set of Boundary Points

	C.2
Homogeneous Coordinates
	C.2.1 Two Dimensions
	C.2.1.1 Conics
	C.2.2 Three Dimensions
	C.2.2.1 Lines
	C.2.2.2 Planes
	C.2.2.3 Quadrics

	C.3
Geometric Transformations

	D
Lie Groups and Algebras
	E
Linearization, Jacobians and Hessians
	F
Solving Systems of Equations
	F.1
Linear Problems
	F.1.1 Nonhomogeneous Systems
	F.1.2 Homogeneous Systems

	F.1.2
Homogeneous Systems
	F.2.1 Finding Roots
	F.2.2 Nonlinear Minimization
	F.2.3 Nonlinear Least Squares Minimization
	Numerical Issues
	F.2.4 Sparse Nonlinear Least Squares
	State Vector
	Inherent Structure
	Large Scale Problems
	Anchoring

	G
Gaussian Random Variables
	H
Kalman Filter
	H.1
Linear Systems – Kalman Filter
	H.2
Nonlinear Systems – Extended Kalman Filter

	I
Graphs
	Appendix

	J
Peak Finding
	Bibliography
	Index
	A
	H
	B
	I
	C

	J
	K
	L

	D
	E

	M
	G
	N

	T
	P

	U
	V
	R
	W

	S
	Y
	A
	B

	C
	E
	F
	D
	G
	H
	I
	J
	K
	L
	M
	N
	Q
	O

	R
	P
	S
	T
	V
	
X, Y, Z
	U
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	H
	J
	K
	L
	M
	N
	O
	P
	R
	Q
	S
	T
	U
	V
	W
	Y
	Z
	X

