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Foreword

Once upon a time, a very thick document of a dissertation from a faraway land came 
to me for evaluation. Visual robot control was the thesis theme and Peter Corke was 
its author. Here, I am reminded of an excerpt of my comments, which reads, this is a 
masterful document, a quality of thesis one would like all of one’s students to strive for, 
knowing very few could attain – very well considered and executed.

The connection between robotics and vision has been, for over two decades, the 
central thread of Peter Corke’s productive investigations and successful developments 
and implementations. This rare experience is bearing fruit in this second edition of his 
book on Robotics, Vision, and Control. In its melding of theory and application, this 
second edition has considerably benefi ted from the author’s unique mix of academic 
and real-world application infl uences through his many years of work in robotic min-
ing, fl ying, underwater, and fi eld robotics.

There have been numerous textbooks in robotics and vision, but few have reached 
the level of integration, analysis, dissection, and practical illustrations evidenced in 
this book. The discussion is thorough, the narrative is remarkably informative and 
accessible, and the overall impression is of a signifi cant contribution for researchers 
and future investigators in our fi eld. Most every element that could be considered as 
relevant to the task seems to have been analyzed and incorporated, and the effective 
use of Toolbox software echoes this thoroughness.

The reader is taken on a realistic walkthrough the fundamentals of mobile robots, 
navigation, localization, manipulator-arm kinematics, dynamics, and joint-level con-
trol, as well as camera modeling, image processing, feature extraction, and multi-view 
geometry. These areas are fi nally brought together through extensive discussion of 
visual servo system. In the process, the author provides insights into how complex 
problems can be decomposed and solved using powerful numerical tools and effec-
tive software.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the 
research community the latest advances in the robotics fi eld on the basis of their sig-
nifi cance and quality. Through a wide and timely dissemination of critical research 
developments in robotics, our objective with this series is to promote more exchanges 
and collaborations among the researchers in the community and contribute to further 
advancements in this rapidly growing fi eld.

Peter Corke brings a great addition to our STAR series with an authoritative book, 
reaching across fi elds, thoughtfully conceived and brilliantly accomplished.

Oussama Khatib
Stanford, California

October 2016



These are exciting times for robotics. Since the fi rst edition of this book was published 
we have seen much progress: the rise of the self-driving car, the Mars science labora-
tory rover making profound discoveries on Mars, the Philae comet landing attempt, 
and the DARPA Robotics Challenge. We have witnessed the drone revolution – fl ying 
machines that were once the domain of the aerospace giants can now be bought for just 
tens of dollars. All this has been powered by the continuous and relentless improve-
ment in computer power and tremendous advances in low-cost inertial sensors and 
cameras – driven largely by consumer demand for better mobile phones and gaming 
experiences. It’s getting easier for individuals to create robots – 3D printing is now 
very affordable, the Robot Operating System (ROS) is both capable and widely used, 
and powerful hobby technologies such as the Arduino, Raspberry Pi, Dynamixel servo 
motors and Lego’s EV3 brick are available at low cost. This in turn has contributed to 
the rapid growth of the global maker community – ordinary people creating at home 
what would once have been done by a major corporation. We have also witnessed an 
explosion of commercial interest in robotics and computer vision – many startups 
and a lot of acquisitions by big players in the fi eld. Robotics even featured on the front 
cover of the Economist magazine in 2014!

So how does a robot work? Robots are data-driven machines. They acquire data, 
process it and take action based on it. The data comes from sensors measuring the ve-
locity of a wheel, the angle of a robot arm’s joint or the intensities of millions of pixels 
that comprise an image of the world that the robot is observing. For many robotic ap-
plications the amount of data that needs to be processed, in real-time, is massive. For 
a vision sensor it can be of the order of tens to hundreds of megabytes per second.

Progress in robots and machine vision has been, and continues to be, driven by 
more effective ways to process data. This is achieved through new and more effi cient 
algorithms, and the dramatic increase in computational power that follows Moore’s 
law.� When I started in robotics and vision in the mid 1980s, see Fig. 0.1, the IBM PC 
had been recently released – it had a 4.77 MHz 16-bit microprocessor and 16 kbytes 
(expandable to 256 k) of memory. Over the intervening 30 years computing power has 
perhaps doubled 20 times which is an increase by a factor of one million.

Over the fairly recent history of robotics and machine vision a very large body of 
algorithms has been developed to effi ciently solve large-scale problems in perception, 
planning, control and localization – a signifi cant, tangible, and collective achievement 
of the research community. However its sheer size and complexity presents a very real 
barrier to somebody new entering the fi eld. Given so many algorithms from which to 
choose, a real and important question is:

 What is the right algorithm for this particular problem?

One strategy would be to try a few different algorithms and see which works best 
for the problem at hand, but this is not trivial and leads to the next question:

 How can I evaluate algorithm X on my own data without spending days coding and 
debugging it from the original research papers?

Preface
Tell me and I will forget.

Show me and I will remember.
Involve me and I will understand.

Chinese proverb

Simple things should be simple,
complex things should be possible.

Alan Kay

“Computers in the future may weigh no 
more than 1.5 tons.” Popular Mechanics, 
forecasting the relentless march of sci-
ence, 1949
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Two developments come to our aid. The fi rst is the availability of general purpose 
mathematical software which it makes it easy to prototype algorithms. There are 
commercial packages such as MATLAB®, Mathematica®, Maple® and MathCad®�, as 
well as open source projects include SciLab, Octave, and PyLab. All these tools deal 
naturally and effortlessly with vectors and matrices, can create complex and beauti-
ful graphics, and can be used interactively or as a programming environment. The 
second is the open-source movement. Many algorithms developed by researchers are 
available in open-source form. They might be coded in one of the general purpose 
mathematical languages just mentioned, or written in a mainstream language like C, 
C++, Java or Python.

For more than twenty years I have been part of the open-source community and 
maintained two open-source MATLAB Toolboxes: one for robotics and one for machine 
vision�. They date back to my own Ph.D. work and have evolved since then, growing 
features and tracking changes to the MATLAB language. The Robotics Toolbox has 
also been translated into a number of different languages such as Python, SciLab and 
LabView. More recently some of its functionality is fi nding its way into the MATLAB 
Robotics System Toolbox™ published by The MathWorks.

These Toolboxes have some important virtues. Firstly, they have been around for 
a long time and used by many people for many different problems so the code can be 
accorded some level of trust. New algorithms, or even the same algorithms coded in 
new languages or executing in new environments, can be compared against imple-
mentations in the Toolbox.

» allow the user to work with real problems,
 not just trivial examples

Secondly, they allow the user to work with real problems, not just trivial examples. 
For real robots, those with more than two links, or real images with millions of pixels 
the computation required is beyond unaided human ability. Thirdly, they allow us to 
gain insight which can otherwise get lost in the complexity. We can rapidly and easily 
experiment, play what if games, and depict the results graphically using the power-
ful 2D and 3D graphical display tools of MATLAB. Fourthly, the Toolbox code makes 
many common algorithms tangible and accessible. You can read the code, you can 
apply it to your own problems, and you can extend it or rewrite it. It gives you a “leg 
up” as you begin your journey into robotics.

» a narrative that covers robotics and computer vision
 – both separately and together

Fig. 0.1.
Once upon a time a lot of equip-
ment was needed to do vision-
based robot control. The author 
with a large rack full of real-time 
image processing and robot 
control equipment (1992)

Respectively the trademarks of The Math-
Works Inc., Wolfram Research, MapleSoft 
and PTC.

The term machine vision is uncommon 
today, but it implied the use of real-time 
computer vision techniques in an indus-
trial setting for some monitoring or con-
trol purpose. For robotics the real-time 
aspect is critical but today the interest-
ing challenges are in nonindustrial ap-
plications such as outdoor robotics. The 
term robotic vision is gaining currency 
and is perhaps a modern take on ma-
chine vision.
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The genesis of the book lies in the tutorials and reference material that originally 
shipped with the Toolboxes from the early 1990s, and a conference paper describing 
the Robotics Toolbox that was published in 1995. After a false start in 2004, the fi rst 
edition of this book was written in 2009–2010. The book takes a conversational ap-
proach, weaving text, mathematics and examples into a narrative that covers robotics 
and computer vision – both separately and together. I wanted to show how complex 
problems can be decomposed and solved using just a few simple lines of code. More 
formally this is an inductive learning approach, going from specifi c and concrete ex-
amples to the more general.

» show how complex problems can be decomposed
 and solved

The topics covered in this book are based on my own interests but also guided by 
real problems that I observed over many years as a practitioner of both robotics and 
computer vision. I want to give the reader a fl avor of what robotics and vision is about 
and what it can do – consider it a grand tasting menu. I hope that by the end of this 
book you will share my enthusiasm for these topics.

» consider it a grand tasting menu

I was particularly motivated to present a solid introduction to computer vision 
for roboticists. The treatment of vision in robotics textbooks tends to concentrate 
on simple binary vision techniques. In this book we will cover a broad range of top-
ics including color vision, advanced segmentation techniques, image warping, stereo 
vision, motion estimation, bundle adjustment, visual odometry and image retrieval. 
We also cover nonperspective imaging using fi sheye lenses, catadioptric optics and 
the emerging area of light-fi eld cameras. These topics are growing in importance for 
robotics but are not commonly covered. Vision is a powerful sensor, and roboticists 
should have a solid grounding in modern fundamentals. The last part of the book 
shows how vision can be used as the primary sensor for robot control.

This book is unlike other text books, and deliberately so. Firstly, there are already 
a number of excellent text books that cover robotics and computer vision separately 
and in depth, but few that cover both in an integrated fashion. Achieving such inte-
gration is a principal goal of the book.

» software is a first-class citizen in this book

Secondly, software is a fi rst-class citizen in this book. Software is a tangible instan-
tiation of the algorithms described – it can be read and it can be pulled apart, modifi ed 
and put back together again. There are a number of classic books that use software in 
an illustrative fashion and have infl uenced my approach, for example LaTeX: A docu-
ment preparation system (Lamport 1994), Numerical Recipes in C (Press et al. 2007), 
The Little Lisper (Friedman et al. 1987) and Structure and Interpretation of Classical 
Mechanics (Sussman et al. 2001). Over 1 000 examples in this book illustrate how the 
Toolbox software can be used and generally provide instant gratifi cation in just a 
couple of lines of MATLAB code.

» instant gratification in just a couple of lines
 of MATLAB code

Thirdly, building the book around MATLAB and the Toolboxes means that we are 
able to tackle more realistic and more complex problems than other books.

» this book provides a complementary approach
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The emphasis on software and examples does not mean that rigor and theory are 
unimportant – they are very important, but this book provides a complementary ap-
proach. It is best read in conjunction with standard texts which do offer rigor and 
theoretical nourishment. The end of each chapter has a section on further reading 
and provides pointers to relevant textbooks and key papers. I try hard to use the least 
amount of mathematical notation required, if you seek deep mathematical rigor this 
may not be the book for you.

Writing this book provided the impetus to revise and extend the Toolboxes and 
to include some great open-source software. I am grateful to the following for code 
that has been either incorporated into the Toolboxes or which has been wrapped into 
the Toolboxes. Robotics Toolbox contributions include: mobile robot localization 
and mapping by Paul Newman; a quadrotor simulator by Paul Pounds; a Symbolic 
Manipulator Toolbox by Jörn Malzahn; pose-graph SLAM code by Giorgio Grisetti 
and 3D robot models from the ARTE Robotics Toolbox by Arturo Gil. Machine Vision 
Toolbox contributions include: RANSAC code by Peter Kovesi; pose estimation by 
Francesco Moreno-Noguer, Vincent Lepetit, and Pascal Fua; color space conversions 
by Pascal Getreuer; numerical routines for geometric vision by various members of 
the Visual Geometry Group at Oxford (from the web site of the Hartley and Zisserman 
book; Hartley and Zisserman 2003); k-means, SIFT and MSER algorithms from the 
wonderful VLFeat suite (vlfeat.org); graph-based image segmentation software by 
Pedro Felzenszwalb; and the OpenSURF feature detector by Dirk-Jan Kroon. The Camera 
Calibration Toolbox by Jean-Yves Bouguet is used unmodifi ed.

Along the way I became fascinated by the mathematicians, scientists and engineers 
whose work, hundreds of years ago, underpins the science of robotic and computer 
vision today. Some of their names have become adjectives like Coriolis, Gaussian, 
Laplacian or Cartesian; nouns like Jacobian, or units like Newton and Coulomb. They 
are interesting characters from a distant era when science was a hobby and their day 
jobs were as doctors, alchemists, gamblers, astrologers, philosophers or mercenaries. 
In order to know whose shoulders we are standing on I have included small vignettes 
about the lives of some of these people – a smattering of history as a backstory.

In my own career I have had the good fortune to work with many wonderful peo-
ple who have inspired and guided me. Long ago at the University of Melbourne John 
Anderson fi red my interest in control and Graham Holmes tried with mixed suc-
cess to have me “think before I code”. Early on I spent a life-direction-changing ten 
months working with Richard (Lou) Paul in the GRASP laboratory at the University 
of Pennsylvania in the period 1988–1989. The genesis of the Toolboxes was my Ph.D. 
research (1991–1994) and my advisors Malcolm Good (University of Melbourne) and 
Paul Dunn (CSIRO) asked me good questions and guided my research. Laszlo Nemes 
(CSIRO) provided great wisdom about life and the ways of organizations, and encour-
aged me to publish and to open-source my software. Much of my career was spent at 
CSIRO where I had the privilege and opportunity to work on a diverse range of real 
robotics projects and to work with a truly talented set of colleagues and friends. Part 
way through writing the fi rst edition I joined the Queensland University of Technology 
which made time available to complete that work, and in 2015 sabbatical leave to com-
plete the second.

Many people have helped me in my endeavor and I thank them. I was generously 
hosted for periods of productive writing at Oxford (both editions) by Paul Newman, 
and at MIT (fi rst edition) by Daniela Rus. Daniela, Paul and Cédric Pradalier made 
constructive suggestions and comments on early drafts of that edition. For the second 
edition I was helped by comments on draft chapters by: Tim Barfoot, Dmitry Bratanov, 
Duncan Campbell, Donald Dansereau, Tom Drummond, Malcolm Good, Peter Kujala, 
Obadiah Lam, Jörn Malzahn, Felipe Nascimento Martins, Ajay Pandey, Cédric Pradalier, 
Dan Richards, Daniela Rus, Sareh Shirazi, Surya Singh, Ryan Smith, Ben Talbot, Dorian 
Tsai and Ben Upcroft; and assisted with wisdom and content by: François Chaumette, 
Donald Dansereau, Kevin Lynch, Robert Mahony and Frank Park.
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I have tried my hardest to eliminate errors but inevitably some will remain. Please 
email bug reports to me at rvc@petercorke.com as well as suggestions for improve-
ments and extensions.

Writing the second edition was fi nancially supported by EPSRC Platform Grant EP/
M019918/1, QUT Science & Engineering Faculty sabbatical grant, QUT Vice Chancellor’s 
Excellence Award, QUT Robotics and Autonomous Systems discipline and the ARC 
Centre of Excellence for Robotic Vision (grant CE140100016).

Over both editions I have enjoyed wonderful support from MathWorks, through 
their author program, and from Springer. My editor Thomas Ditzinger has been a great 
supporter of this project and Armin Stasch, with enormous patience and dedication in 
layout and typesetting, has transformed my untidy ideas into a thing of beauty.

Finally, my deepest thanks are to Phillipa who has supported me and “the book” 
with grace and patience for a very long time and in many different places – without 
her this book could never have been written.

Peter Corke
Brisbane,

Queensland
October 2016

Note on the Second Edition

It seems only yesterday that I turned in the manuscript for the fi rst edition of this book, 
but it was in fact December 2010, the end of 20 months of writing. So the oldest parts 
of the book are over 6 years old – it’s time for an update!

The revision principle was to keep the good (narrative style, code as a fi rst-class citi-
zen, soft plastic cover) and eliminate the bad (errors and missing topics). I started with 
the collected errata for the fi rst edition and pencilled markup from a battered copy of the 
fi rst edition that I’ve carried around for years. There were more errors than I would have 
liked and I thank everybody who submitted errata and suggested improvements.

The fi rst edition was written before I taught in the university classroom or created 
the MOOCs, which is the inverse of the way books are normally developed. Preparing 
for teaching gave me insights into better ways to present some topics, particularly 
around pose representation, robot kinematics and dynamics so the presentation has 
been adjusted accordingly.

New content includes matrix exponential notation; the basics of screw theory and 
Lie algebra; inertial navigation; differential steer and omnidirectional mobile robots; a 
deeper treatment of SLAM systems including scan matching and pose graphs; greater 
use of MATLAB computer algebra; operational space control; deeper treatment of ma-
nipulator dynamics and control; visual SLAM and visual odometry; structured light; 
bundle adjustment; and light-fi eld cameras.

In the fi rst edition I shied away from Lie algebra, matrix exponentials and twists 
but I think it’s important to cover them. The topic is deeply mathematical and I’ve 
tried to steer a middle ground between hardcore algebraic topology and the homog-
enous transformation only approach of most other texts, while also staying true to the 
overall approach of this book.

All MATLAB generated fi gures have been regenerated to refl ect recent improve-
ments to MATLAB graphics and all code examples have been updated as required and 
tested, and are available as MATLAB Live Scripts.

The second edition of the book is matched by new major releases of my Toolboxes: 
Robotics Toolbox (release 10) and the Machine Vision Toolbox (release 4). These newer 
versions of the toolboxes have some minor incompatibilities with previous releases of the 
toolboxes, and therefore also with the code examples in the fi rst edition of the book.

Preface
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Nomenclature

The  notation used in robotics and computer vision varies considerably across books and 
research papers. The symbols used in this book, and their units where appropriate, are 
listed below. Some symbols have multiple meanings and their context must be used to 
disambiguate them.
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MATLAB® Toolbox Conventions

� A Cartesian coordinate, a  point, is expressed as a column vector.
� A set of points is expressed as a matrix with columns representing the coordinates 

of individual points.
� A rectangular region by two opposite corners [xmin xmax; ymin ymax].
� A robot confi guration, a set of joint angles, is expressed as a row vector.
�  Time series data is expressed as a matrix with rows representing time steps.
� A   MATLAB matrix has subscripts (i, j) which represent row and column respec-

tively. Image coordinates are written (u, v) so an image represented by a matrix I 
is indexed as I(v, u).

� Matrices with three or more dimensions are frequently used:
 – A color image has 3 dimensions: row, column, color plane.
 – A greyscale image sequence has 3 dimensions: row, column, index.
 – A color image sequence has 4 dimensions: row, column, color plane, index.

Common Abbreviations

2D 2-dimensional
3D 3-dimensional
DOF Degrees of freedom
n-tuple A group of n numbers, it can represent a point of a vector
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1

The term robot means different things to different people. Science fi ction books and 
movies have strongly infl uenced what many people expect a robot to be or what it can 
do. Sadly the practice of robotics is far behind this popular conception. One thing is 
certain though – robotics will be an important technology in this century. Products 
such as vacuum cleaning robots have already been with us for over a decade and self-
driving cars are coming. These are the vanguard of a wave of smart machines that will 
appear in our homes and workplaces in the near to medium future.

In the eighteenth century the people of Europe were fascinated by automata such as 
 Vaucanson’s duck shown in Fig. 1.1a. These machines, complex by the standards of the 
day, demonstrated what then seemed life-like behavior. The duck used a cam mecha-
nism to sequence its movements and Vaucanson went on to explore mechanization of 
silk weaving. Jacquard extended these ideas and developed a loom, shown in Fig. 1.1b, 
that was essentially a programmable weaving machine. The pattern to be woven was 
encoded as a series of holes on punched cards. This machine has many hallmarks of a 
modern robot: it performed a physical task and was reprogrammable.

The term robot fi rst appeared in a 1920 Czech science fi ction play “Rossum’s Universal 
Robots” by Karel .apek (pronounced Chapek). The term was coined by his brother 
Josef, and in the Czech language means serf labor but colloquially means hardwork 
or drudgery. The robots in the play were artifi cial people or androids and as in so 
many robot stories that follow this one, the robots rebel and it ends badly for human-
ity. Isaac Asimov’s robot series, comprising many books and short stories written be-
tween 1950 and 1985, explored issues of human and robot interaction and morality. 
The robots in these stories are equipped with “positronic brains” in which the “Three 
 laws of robotics” are encoded. These stories have infl uenced subsequent books and 
movies which in turn have shaped the public perception of what robots are. The mid 
twentieth century also saw the advent of the fi eld of cybernetics  – an uncommon term 
today but then an exciting science at the frontiers of understanding life and creating 
intelligent machines.

The fi rst patent for what we would now consider a robot was fi led in 1954 by 
 George C. Devol and issued in 1961. The device comprised a mechanical arm with 

Introduction

Fig. 1.1.
Early programmable machines. 
a Vaucanson’s duck (1739) was 
an automaton that could fl ap its 
wings, eat grain and defecate. It 

was driven by a clockwork mech-
anism and executed a single 

program; b The Jacquard loom 
(1801) was a reprogrammable 
machine and the program was 

held on punched cards (photo-
graph by George P. Landow 

from www.victorianweb.org)
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a gripper that was mounted on a track and the sequence of motions was encod-
ed as magnetic patterns stored on a rotating drum. The fi rst robotics company, 
Unimation, was founded by Devol and Joseph Engelberger in 1956 and their fi rst 
industrial robot shown in Fig. 1.2 was installed in 1961. The original vision of Devol 
and Engelberger for robotic automation has become a reality and many millions of 
arm-type robots such as shown in Fig. 1.3 have been built and put to work at tasks 
such as welding, painting, machine loading and unloading, electronic assembly, 
packaging and palletizing. The use of robots has led to increased productivity and 
improved product quality. Today many products we buy have been assembled or 
handled by a robot.

Fig. 1.2.
Universal automation. a A plan
view of the machine from Devol’s 
patent; b the fi rst Unimation 
robot working at a General 
Motors factory (photo courtesy 
of George C. Devol)

Unimation Inc. (1956–1982).  Devol sought fi nancing to develop his unimation technology and at 
a cocktail party in 1954 he met Joseph Engelberger who was then an engineer with Manning, 
Maxwell and Moore. In 1956 they jointly established Unimation, the fi rst robotics company, in 
Danbury Connecticut. The company was acquired by Consolidated Diesel Corp. (Condec) and 
became Unimate Inc. a division of Condec. Their fi rst robot went to work in 1961 at a General
Motors die-casting plant in New Jersey. In 1968 they licensed technology to Kawasaki Heavy 
Industries which produced the fi rst Japanese industrial robot. Engelberger served as chief execu-
tive until it was acquired by Westinghouse in 1982. People and technologies from this company 
have gone on to be very infl uential on the whole fi eld of robotics.

George C.  Devol, Jr. (1912–2011) was a prolifi c American inventor. He was born in Louisville, 
Kentucky, and in 1932 founded United Cinephone Corp. which manufactured phonograph 
arms and amplifi ers, registration controls for printing presses and packaging machines. In 
1954, he applied for US patent 2,988,237 for Programmed Article Transfer which introduced 
the concept of Universal Automation or “Unimation”. Specifi cally it described a track-mounted 
polar-coordinate arm mechanism with a gripper and a programmable controller – the precur-
sor of all modern robots.

In 2011 he was inducted into the National Inventors Hall of Fame. (Photo on the right: cour-
tesy of George C. Devol)

 Joseph F. Engelberger (1925–2015) was an American engineer and entrepreneur who is often referred 
to as the “Father of Robotics”. He received his B.S. and M.S. degrees in physics from Columbia 
University, in 1946 and 1949, respectively. Engelberger has been a tireless promoter of robotics. 
In 1966, he appeared on The Tonight Show Starring Johnny Carson with a Unimate robot which 
poured a beer, putted a golf ball, and directed the band. He promoted robotics heavily in Japan, 
which led to strong investment and development of robotic technology in that country.

Engelberger served as chief executive of Unimation until 1982, and in 1984 founded Transitions 
Research Corporation which became HelpMate Robotics Inc., an early entrant in the hospital ser-
vice robot sector. He was elected to the National Academy of Engineering, received the Beckman 
Award and the Japan Prize, and has written two books: Robotics in Practice (1980) and Robotics 
in Service (1989). Each year the Robotics Industries Association presents an award in his honor 
to “persons who have contributed outstandingly to the furtherance of the science and practice 
of robotics.”



3

Fig. 1.3.
 Manufacturing robots, tech-
nological descendants of the 

Unimate shown in Fig. 1.2.
a A modern six-axis robot de-
signed for high accuracy and 
throughput (image courtesy 

ABB robotics); b Baxter two-
armed robot with built in vision 
capability and programmable 

by demonstration, designed for
moderate throughput piece work
(image courtesy Rethink Robotics)

Rossum’s Universal Robots (RUR) . In the introductory scene Helena Glory is visiting Harry Domin 
the director general of Rossum’s Universal Robots and his robotic secretary Sulla.

Domin Sulla, let Miss Glory have a look at you.
Helena (stands and offers her hand) Pleased to meet you. It must be very hard for you
 out here, cut off from the rest of the world [the factory is on an island]
Sulla I do not know the rest of the world Miss Glory. Please sit down.
Helena (sits) Where are you from?
Sulla From here, the factory
Helena Oh, you were born here.
Sulla Yes I was made here.
Helena (startled) What?
Domin (laughing) Sulla isn’t a person, Miss Glory, she’s a robot.
Helena Oh, please forgive me …

The full play can be found at http://ebooks.adelaide.edu.au/c/capek/karel/rur. (Image on the 
left: Library of Congress item 96524672)

Chapter 1  ·  Introduction

These fi rst generation robots are fi xed in place and cannot move about the fac-
tory – they are not mobile. By contrast  mobile robots as shown in Figs. 1.4 and 
1.5 can move through the world using various forms of mobility. They can loco-
mote over the ground using wheels or legs, fl y through the air using fi xed wings or 
multiple rotors, move through the water or sail over it. An alternative taxonomy 
is based on the function that the robot performs. Manufacturing  robots operate 
in factories and are the technological descendents of the fi rst generation robots. 
Service  robots supply services to people such as cleaning, personal care, medical 
rehabilitation or fetching and carrying as shown in Fig. 1.5b. Field  robots, such as 
those shown in Fig. 1.4, work outdoors on tasks such as environmental monitor-
ing, agriculture, mining, construction and forestry.  Humanoid  robots such as shown 
in Fig. 1.6 have the physical form of a human being – they are both mobile robots 
and service robots.�In practice the categorization of robots 

is not very consistently applied.
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Fig. 1.4. Non-land-based mobile 
robots. a Small autonomous un-
derwater vehicle (Todd Walsh 
© 2013 MBARI); b  Global Hawk 
unmanned aerial vehicle (UAV) 
(photo courtesy of NASA)

A manufacturing robot is typically an arm-type manipulator on a fi xed base such 
as Fig. 1.3a that performs repetitive tasks within a local work cell. Parts are presented 
to the robot in an orderly fashion which maximizes the advantage of the robot’s high 
speed and precision. High-speed robots are hazardous and safety is achieved by ex-
cluding people from robotic work places, typically placing the robot inside a cage. In 
contrast the Baxter robot shown in Fig. 1.3b is human safe, it operates at low speed 
and stops moving if it encounters an obstruction.

Field and service robots face specifi c and signifi cant challenges. The fi rst chal-
lenge is that the robot must operate and move in a complex, cluttered and chang-
ing environment. A delivery robot in a hospital must operate despite crowds of 
people and a time-varying confi guration of parked carts and trolleys. A  Mars rover 
as shown in Fig. 1.5a must navigate rocks and small craters despite not having an 
accurate local map in advance of its travel. Robotic, or self-driving cars, such as 
shown in Fig. 1.5c, must follow roads, avoid obstacles and obey traffi c signals and 
the rules of the road. The second challenge for these types of robots is that they 
must operate safely in the presence of people. The hospital delivery robot operates 
among people, the robotic car contains people and a robotic surgical device oper-
ates inside people.

Cybernetics, artificial intelligence and robotics.   Cybernetics fl our-
ished as a research fi eld from the 1930s until the 1960s and was 
fueled by a heady mix of new ideas and results from neurology, 
control theory and information theory. Research in neurology 
had shown that the brain was an electrical network of neurons. 
 Harold Black,  Henrik Bode and Harry Nyquist  at Bell Labs were 
researching negative feedback and the stability of electrical net-
works,  Claude Shannon’s information theory described digital 
signals, and  Alan Turing was exploring the fundamentals of 
computation.  Walter Pitts and  Warren McCulloch proposed 
an artifi cial neuron in 1943 and showed how it might perform 
simple logical functions. In 1951  Marvin Minsky built SNARC 
(from a B24 autopilot and comprising 3 000 vacuum tubes) 
which was perhaps the first neural-network-based learning 
machine as his graduate project.  William Grey Walter’s ro-
botic tortoises showed life-like behavior. Maybe an electronic 
brain could be built!

An important early book was  Norbert Wiener’s Cybernetics 
or Control and Communication in the Animal and the Machine 

(Wiener 1965). A characteristic of a cybernetic system is the use 
of feedback which is common in engineering and biological sys-
tems. The ideas were later applied to evolutionary biology, psy-
chology and economics.

In 1956 a watershed conference was hosted by  John McCarthy 
at Dartmouth College and attended by Minsky, Shannon,  Herbert 
Simon,  Allen Newell and others. This meeting defi ned the term 
artificial intelligence (AI) as we know it today with an em-
phasis on digital computers and symbolic manipulation and 
led to new research in robotics, vision, natural language, se-
mantics and reasoning. McCarthy and Minsky formed the AI 
group at MIT, and McCarthy left in 1962 to form the Stanford 
AI Laboratory. Minsky focused on artifi cially simple “blocks 
world”. Simon, and his student Newell, were infl uential in AI 
research at Carnegie-Mellon University from which the Robotics 
Institute was spawned in 1979. These AI groups were to be very 
infl uential in the development of robotics and computer vision 
in the USA. Societies and publications focusing on cybernetics 
are still active today.



5

So what is a robot? There are many  defi nitions and not all of them are particularly 
helpful. A defi nition that will serve us well in this book is 

a goal oriented machine that can sense, plan and act.

A robot senses its environment and uses that information, together with a goal, to 
plan some action. The action might be to move the tool of an arm-robot to grasp an 
object or it might be to drive a mobile robot to some place.

Sensing is critical to robots.  Proprioceptive sensors measure the state of the robot 
itself: the  angle of the joints on a robot arm, the number of wheel revolutions on a mo-
bile robot or the current drawn by an electric motor.  Exteroceptive sensors measure the 
state of the world with respect to the robot. The sensor might be a simple bump sensor 
on a robot vacuum cleaner to detect collision. It might be a GPS receiver that measures 
distances to an orbiting satellite constellation, or a compass that measures the direc-
tion of the Earth’s magnetic fi eld vector relative to the robot. It might also be an active 
sensor that emits acoustic, optical or radio pulses in order to measure the distance to 
points in the world based on the time taken for a refl ection to return to the sensor.

A camera is a passive device that captures patterns of optical energy refl ected from the 
scene. Our own experience is that eyes are a very effective sensor for recognition, navi-
gation, obstacle avoidance and manipulation so vision has long been of interest to ro-
botics researchers. An important limitation of a single camera, or a single eye, is that the
3-dimensional structure of the scene is lost in the resulting 2-dimensional image. Despite 
this, humans are particularly good at inferring the 3-dimensional nature of a scene using 
a number of visual cues. Robots are currently not as well developed. Figure 1.7 shows 
some very early work on reconstructing a 3-dimensional wireframe  model from a single 

Fig. 1.5. Mobile robots. a Mars 
Science Lander, Curiosity, self 
portrait taken at “John Klein”. 
The mast contains many cam-
eras including two stereo cam-
era pairs from which the robot 
can compute the 3-dimension-
al structure of its environment 
(image courtesy of NASA/JPL-
Caltech/MSSS); b Savioke Relay 
delivery robot (image courtesy 
Savioke); c self driving car (im-
age courtesy Dept. Informati-
on Engineering, Oxford Univ.); 
d Cheetah legged robot (image 
courtesy Boston Dynamics)

Chapter 1  ·  Introduction
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2-dimensional image and gives some idea of the diffi culties involved. Another approach 
is stereo vision where information from two cameras is combined to estimate the 3-di-
mensional structure of the scene – this is a technique used by humans and robots, for 
example, the  Mars rover shown in Fig. 1.5a has a stereo  camera on its mast.

In this book we focus on the use of cameras as sensors for robots.  Machine  vision, 
discussed in Part IV, is the use of computers to process images from one or more cam-
eras and to extract numerical features. For example determining the coordinate of a 
round red object in the scene, or how far a robot has moved based on how the world 
appears to have moved relative to the robot.

If the robot’s environment is unchanging it can make do with an accurate map and 
have little need to sense the state of the world, apart from determining where it is. Imagine 
driving a car with the front window covered over and just looking at the GPS  navigation 
system. If you had the road to yourself you could probably drive from A to B quite suc-
cessfully albeit slowly. However if there were other cars, pedestrians, traffi c signals or 
roadworks then you would be in some diffi culty. To deal with this you need to look out-
wards – to sense the world and plan your actions accordingly. For humans this is easy, 
done without conscious thought, but it is not yet easy to program a machine to do the 
same – this is the challenge of robotic vision.

 Telerobots are robot-like machines that are remotely controlled by a human operator. 
Perhaps the earliest was a radio controlled boat demonstrated by  Nikola Tesla in 1898 
and which he called a teleautomaton. According to the defi nition above these are not 
robots but they were an important precursor to robots and are still important today for 
many tasks where people cannot work but which are too complex for a machine to per-

Fig. 1.6.
 Humanoid robots. a Honda’s 
 Asimo humanoid robot (image
courtesy Honda Motor Co. Japan); 
b Hubo robot that won the 
DARPA Robotics Challenge in 
2015 (image courtesy KAIST, 
Korea)

Fig. 1.7. Early results in comput-
er vision for estimating the shape 
and pose of objects, from the Ph.D. 
work of L.G. Roberts at MIT Lin-
coln Lab in 1963 (Roberts 1963). 
a Original picture; b gradient im-
age; c connected feature points; 
d reconstructed line drawing
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form by itself. For example the underwater robots that surveyed the wreck of the Titanic 
were technically remotely operated vehicles (ROVs). A modern surgical robot as shown 
in Fig. 1.8 is also teleoperated – the motion of the small tools are remotely controlled by 
the surgeon and this makes it possible to use much smaller incisions than the old-fash-
ioned approach where the surgeon works inside the body with their hands.

The various  Mars rovers  autonomously navigate the  surface of Mars but human op-
erators provide the high-level goals. That is, the operators tell the robot where to go and 
the robot itself determines the details of the route. Local decision making on Mars is es-
sential given that the communications delay is several minutes. Some robots are hybrids 
and the control task is shared or traded with a human operator. In  traded  control, the 
 control function is passed back and forth between the human operator and the computer. 
For example an aircraft pilot can pass control to an autopilot and take control back. In 
 shared  control, the control function is performed by the human operator and the computer 
working together. For example an autonomous passenger car might have the computer 
keeping the car safely in the lane while the human driver just controls speed.

1.1 
l
Robots, Jobs and Ethics

A number of ethical issues arise from the advent of robotics. Perhaps the greatest con-
cern to the wider public is “robots taking jobs from people”. This is a complex issue 
but we cannot shy away from the fact that many jobs now done by people will, in the 
future, be performed by robots. Clearly there are dangerous jobs which people should 
not do, for example handling hazardous substances or working in dangerous envi-
ronments. There are many low-skilled jobs where human labor is increasingly hard to 

Fig. 1.8.
The working end of a surgical 
robot, multiple tools working 

through a single small inci-
sion (image © 2015 Intuitive 

Surgical, Inc)

1.1  ·  Robots, Jobs and Ethics

The Manhattan Project in World War 2 (WW II) developed the fi rst nuclear weapons and this re-
quired handling of radioactive material. Remotely controlled arms were developed by Ray Goertz  
at Argonne National Laboratory to exploit the manual dexterity of human operators while keeping 
them away from the hazards of the material they were handling. The operators viewed the work 
space through thick lead-glass windows or via a television link and manipulated the master arm 
(on the left). The slave arm (on the right) followed the motion, and forces felt by the slave arm 
were refl ected back to the master arm, allowing the operator to feel weight and interference force. 
Telerobotics is still important today for many tasks where people cannot work but which are too 
complex for a machine to perform by itself, for instance the underwater robots that surveyed the 
wreck of the Titanic. (Photo on the left: Courtesy Argonne National Laboratory)
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source, for instance in jobs like fruit picking. In many developed countries people no 
longer aspire to hard physical outdoor work in remote locations. What are the alter-
natives if people don’t want to do the work? In areas like manufacturing, particularly 
car manufacturing, the adoption of robotic automation has been critical in raising 
productivity which has allowed that industry to be economically viable in high-wage 
countries like Europe, Japan and the USA. Without robots these industries could not 
exist; they would not employ any people, not pay any taxes, and not consume prod-
ucts and services from other parts of the economy. Automated industry might employ 
fewer people but it still makes an important contribution to society. Rather than taking 
jobs we could argue that robotics and automation has helped to keep manufacturing 
industries viable in high-labor cost countries. How do we balance the good of the so-
ciety with the good of the individual?

There are other issues besides jobs. Consider self-driving cars. We are surprisingly 
accepting of manually driven cars even though they kill more than one million people 
every year, yet many are uncomfortable with the idea of self-driving cars even though 
they will dramatically reduce this loss of life. We worry about who to blame if a robotic 
car makes a mistake while the carnage caused by human drivers continues. Similar 
concerns are raised when talking about robotic healthcare and surgery – human sur-
geons are not perfect but robots are seemingly held to a much higher account. There 
is a lot of talk about using robots to look after elderly people, but does this detract 
from their quality of life by removing human contact, conversation and companion-
ship? Should we use robots to look after our children, and even teach them? What do 
we think of armies of robots fi ghting and killing human beings?

Robotic cars, health care, elder care and child care might bring economic benefi ts 
to our society but is it the right thing to do? Is it a direction that we want our society 
to go? Once again how do we balance the good of the society with the good of the in-
dividual? These are deep ethical questions that cannot and should not be decided by 
roboticists alone. But neither should roboticists ignore them. This is a discussion for 
all of society and roboticists have a duty to be active participants in this debate.

1.2 
l
About the Book

This book is about robotics and computer vision – separately, and together as robotic
vision. These are big topics and the combined coverage is necessarily broad. The in-
tent is not to be shallow but rather to give the reader a fl avor of what robotics and vi-
sion is about and what it can do – consider it a grand tasting menu.

The goals of the book are:

� to provide a broad and solid base of understanding through theory and examples;
� to make abstract concepts tangible
� to tackle more complex problems than other more specialized textbooks by virtue 

of the powerful numerical tools and software that underpins it;
� to provide instant gratifi cation by solving complex problems with relatively little code;
� to complement the many excellent texts in robotics and computer vision;
� to encourage intuition through hands on numerical experimentation; and
� to limit the number of equations presented to those cases where (in my judgment) 

they add value or clarity.

The approach used is to present background, theory and examples in an integrated 
fashion. Code and examples are fi rst-class citizens in this book and are not relegated 
to the end of the chapter or an associated web site. The examples are woven into the 
discussion like this

>> p = transl(Ts);
>> plot(t, p);  



9

where the MATLAB® code illuminates the topic being discussed and generally results 
in a crisp numerical result or a graph in a fi gure that is then discussed. The examples 
illustrate how to use the associated Toolboxes and that knowledge can then be ap-
plied to other problems. Most of the fi gures in this book have been generated by the 
code examples provided and they are available from the book’s website as described 
in Appendix A.

1.2.1 
l

MATLAB Software and the Toolboxes

To do good work, one must fi rst have good tools.
Chinese proverb

The computational foundation of this book is  MATLAB®, a software package devel-
oped by The MathWorks Inc. MATLAB is an interactive mathematical software envi-
ronment that makes linear algebra, data analysis and high-quality graphics a breeze. 
MATLAB is a popular package and one that is very likely to be familiar to engineering 
students as well as researchers. It also supports a programming language which allows 
the creation of complex algorithms.

A strength of MATLAB is its support for Toolboxes which are collections of func-
tions targeted at particular topics. Toolboxes are available from MathWorks, third 
party companies and individuals. Some Toolboxes are products to be purchased while 
others are open-source and generally free to use. This book is based on two open-source 
Toolboxes written by the author: the Robotics Toolbox for MATLAB and the Machine 
Vision Toolbox for MATLAB. These Toolboxes, with MATLAB, turn a personal com-
puter into a powerful and convenient environment for investigating complex prob-
lems in robotics, machine vision and vision-based  control. The Toolboxes are free to 
use and distributed under the GNU Lesser General Public License (GNU LGPL).

The Robotics Toolbox (RTB) provides a diverse range of functions for simulating 
mobile and arm-type robots. The Toolbox supports a very general method of repre-
senting the structure of serial-link manipulators using  MATLAB objects and provides 
functions for forward and inverse kinematics and dynamics. The Toolbox includes 
functions for manipulating and converting between datatypes such as vectors, homo-
geneous transformations, 3-angle representations, twists and unit-quaternions which 
are necessary to represent 3-dimensional position and  orientation. The Toolbox also 
includes functionality for simulating mobile robots and includes models of wheeled 
vehicles and quadrotors and controllers for these vehicles. It also provides standard 
algorithms for robot path planning,  localization, map making and SLAM.

The  Machine Vision Toolbox (MVTB) provides a rich collection of functions for 
 camera modeling, image processing, image  feature extraction, multi-view geometry 
and vision-based control. The MVTB also contains functions for image acquisition and 

The MATLAB software we use today has a long history. It starts 
with the LINPACK and EISPACK projects run by the Argonne 
National Laboratory in the 1970s to produce high quality, test-
ed and portable mathematical software.  LINPACK is a collec-
tion of routines for linear algebra and  EISPACK is a library of 
numerical algorithms for computing eigenvalues and eigen-
vectors of matrices. These packages were written in Fortran 
which was then the language of choice for large-scale numeri-
cal problems.

Cleve Moler, then at the University of New Mexico, contribut-
ed to both projects and wrote the fi rst version of MATLAB in the 
late 1970s. It allowed interactive use of LINPACK and EISPACK 
for problem solving without having to write and compile Fortran 
code. MATLAB quickly spread to other universities and found a 

strong audience within the applied mathematics and engineer-
ing community. In 1984 Cleve Moler and Jack Little founded 
The MathWorks Inc. which exploited the newly released IBM 
PC – the fi rst widely available desktop computer.

Cleve Moler received his bachelor’s degree from Caltech in 
1961, and a Ph.D. from Stanford University. He was a professor 
of mathematics and computer science at universities including 
University of Michigan, Stanford University, and the University 
of New Mexico. He has served as president of the Society for 
Industrial and Applied Mathematics (SIAM) and was elected to 
the National Academy of Engineering in 1997.

See also http://www.mathworks.com/company/aboutus/
founders/clevemoler.html which includes a video of Cleve Moler 
and also http://history.siam.org/pdfs2/Moler_final.pdf. 

1.2  ·  About the Book
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display; fi ltering; blob,  point and line feature extraction; mathematical morphology; 
image warping; stereo vision;  homography and fundamental matrix  estimation; robust 
estimation; bundle adjustment; visual  Jacobians; geometric  camera  models;  camera 
calibration and color space operations. For modest image sizes on a modern computer 
the processing rate can be suffi ciently “real-time” to allow for closed-loop  control.

If you’re starting out in robotics or vision then the Toolboxes are a signifi cant initial 
base of code on which to build your project. The Toolboxes are provided in source code 
form. The bulk of the code is written in the MATLAB M-language but a few functions 
are written in C� or Java for increased computational effi ciency. In general the Toolbox 
code is written in a straightforward manner to facilitate understanding, perhaps at the 
expense of computational effi ciency. Appendix A provides details of how to obtain the 
Toolboxes and pointers to online resources including discussion groups.

This book provides examples of how to use many Toolbox functions in the context 
of solving specifi c problems but it is not a reference manual. Comprehensive documen-
tation of all Toolbox functions is available through the MATLAB builtin help mecha-
nism or the PDF format manual that is distributed with each Toolbox.

1.2.2  
l
Notation, Conventions and Organization

The mathematical notation used in the book is summarized in the Nomenclature sec-
tion on page xxv. Since the coverage of the book is broad there are just not enough 
good symbols to go around, so it is unavoidable that some symbols have different 
meanings in different parts of the book.

There is a lot of  MATLAB code in the book and this is indicated in blue fi xed-width 
font such as

>> a = 2 + 2
a =
     4

The  MATLAB command prompt is >> and what follows is the command issued to 
MATLAB by the user. Subsequent lines, without the prompt, are MATLAB’s response. 
All functions, classes and methods mentioned in the text or in code segments are cross-
referenced and have their own indexes at the end of the book allowing you to fi nd dif-
ferent ways that particular functions can be used.

Colored boxes are used to indicate different types of material. Orange informational 
boxes highlight material that is particularly important while red and orange warning 
boxes highlight points that are often traps for those starting out. Blue boxes provide 
technical, historical or biographical information that augment the main text but they 
are not critical to its understanding.

As an author there is a tension between completeness, clarity and conciseness. For 
this reason a lot of detail has been pushed into notes� and blue boxes and on a fi rst 
reading these can be skipped. Some chapters have an Advanced Topics section at the 
end that can also be skipped on a fi rst reading. However if you are trying to understand 
a particular algorithm and apply it to your own problem then understanding the details 
and nuances can be important and the notes or advanced topics are for you.

Each chapter ends with a Wrapping Up section that summarizes the important les-
sons from the chapter, discusses some suggested further reading, and provides some 
exercises. For clarity, references are cited sparingly in the text of each chapter. The 
Further Reading subsection discusses prior work and references that provide more 
rigor or more complete description of the algorithms. Resources provides links to rel-
evant online code and datasets.  MATLAB Notes provides additional details about the 
author’s toolboxes and those with similar functionality from MathWorks. Exercises 
extend the concepts discussed within the chapter and are generally related to specifi c 
code examples discussed in the chapter. The exercises vary in diffi culty from straight-
forward extension of the code examples to more challenging problems.

These are implemented as MEX files, 
which are written in C in a very specif-
ic way that allows them to be invoked 
from MATLAB just like a function written 
in M-language.

They are placed as marginal notes near 
the corresponding marker.
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1.2.3 
l

Audience and Prerequisites

The book is intended primarily for third or fourth year engineering undergraduate 
students, Masters students and fi rst year Ph.D. students. For undergraduates the book 
will serve as a companion text for a robotics or computer vision course or to support 
a major project in robotics or vision. Students should study Part I and the appendices 
for foundational concepts, and then the relevant part of the book: mobile robotics, 
arm robots, computer vision or vision-based  control. The Toolboxes provide a solid 
set of tools for problem solving, and the exercises at the end of each chapter provide 
additional problems beyond the worked examples in the book.

For students commencing graduate study in robotics, and who have previously stud-
ied engineering or computer science, the book will help fi ll the gaps between what you 
learned as an undergraduate and what will be required to underpin your deeper study 
of robotics and computer vision. The book’s working code base can help bootstrap your 
research, enabling you to get started quickly and working productively on your own 
problems and ideas. Since the source code is available you can reshape it to suit your 
need, and when the time comes (as it usually does) to code your algorithms in some 
other language then the Toolboxes can be used to cross-check your implementation.

For those who are no longer students, the researcher or industry practitioner, the 
book will serve as a useful companion for your own reference to a wide range of topics 
in robotics and computer vision, as well as a handbook and guide for the Toolboxes.

The book assumes undergraduate-level knowledge of linear algebra (matrices, vec-
tors, eigenvalues), basic set theory, basic graph theory,  probability, dynamics (forces, 
torques, inertia) and  control theory. Some of these topics will likely be more familiar to 
engineering students than computer science students. Computer science students may 
struggle with some concepts in Chap. 4 and 9 such as the Laplace transform, transfer 
functions, linear  control (proportional  control, proportional-derivative  control, propor-
tional-integral  control) and block diagram notation. This material could be skimmed 
over on a fi rst reading and Albertos and Mareels (2010) may be a useful introduction to 
some of these topics. The book also assumes the reader is familiar with using and pro-
gramming in MATLAB and also familiar with object-oriented programming techniques 
(perhaps C++, Java or Python). Familiarity with  Simulink®, the graphical block-diagram 
modeling tool integrated with MATLAB will be helpful but not essential.

1.2.4 
l
Learning with the Book

The best way to learn is by doing. Although the book shows the MATLAB commands 
and the response there is something special about doing it for yourself. Consider the 
book as an invitation to tinker. By running the commands yourself you can look at 
the results in ways that you prefer, plot the results in a different way, or try the algo-
rithm on different data or with different parameters. The book is especially designed 
to stay open which enables you to type in commands as you read. You can also look 
at the online documentation for the Toolbox functions, discover additional features 
and options, and experiment with those, or read the code to see how it really works 
and perhaps modify it.

Most of the commands are quite short so typing them in to MATLAB is not too 
onerous. However the book’s web site, see Appendix A, includes all the MATLAB com-
mands shown in the book (more than 1 600 lines) and these can be cut and pasted into 
MATLAB or downloaded and used to create your own scripts.

In 2015 two open online courses (MOOCs) were released – based on the content 
and approach of this book. Introduction to Robotics covers most of Parts I and III, 
while Robotic Vision covers some of Parts IV and V. Each MOOC is six weeks long 
and comprises 12 hours of video lecture material plus quizzes, assignments and an 
optional project. They can be reached via http://petercorke.com/moocs.

1.2  ·  About the Book
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1.2.5 
l

Teaching with the Book

The book can be used in support of courses in robotics, mechatronics and comput-
er vision. All courses should include the introduction to coordinate frames and their 
composition which is discussed in Chap. 2. For a mobile robotics or  image processing 
course it is suffi cient to teach only the 2-dimensional case. For robotic manipulators 
or multi-view geometry the 2- and 3-dimensional cases should be taught.

Most fi gures (MATLAB-generated and line drawings) in this book are available as 
PDF format fi les from the book’s web site and you are free to use them with attribution 
in any course material that you prepare. All the code in this book can be downloaded 
from the web site and used as the basis for demonstrations in lectures or tutorials. 
See Appendix A for details.

The exercises at the end of each chapter can be used as the basis of assignments, or 
as examples to be worked in class or in tutorials. Most of the questions are rather open 
ended in order to encourage exploration and discovery of the effects of parameters 
and the limits of performance of algorithms. This exploration should be supported by 
discussion and debate about performance measures and what best means. True un-
derstanding of algorithms involves an appreciation of the effects of parameters, how 
algorithms fail and under what circumstances.

The teaching approach could also be inverted, by diving headfi rst into a particular 
problem and then teaching the appropriate prerequisite material. Suitable problems 
could be chosen from the Application sections of Chap. 7, 14 or 16, or from any of the 
exercises. Particularly challenging exercises are so marked.

If you wanted to consider a fl ipped learning approach then the two MOOCs men-
tioned on page 11 could be used in conjunction with your class. Students would watch 
the videos and undertake some formative assessment out of the classroom, and you 
could use classroom time to work through problem sets.

For graduate level teaching the papers and textbooks mentioned in the Further 
Reading could form the basis of a student’s reading list. They could also serve as can-
didate papers for a reading group or journal club.

1.2.6 
l

Outline

I promised a book with instant gratifi cation but before we can get started in robot-
ics there are some fundamental concepts that we absolutely need to understand, 
and understand well. Part I introduces the concepts of pose and coordinate frames 
– how we represent the position and  orientation of a robot, a camera or the objects 
that the robot needs to work with. We discuss how motion between two poses can 
be decomposed into a sequence of elementary translations and rotations, and how 
elementary motions can be composed into more complex  motions. Chapter 2 dis-
cusses how pose can be represented in a computer, and Chap. 3 discusses the rela-
tionship between velocity and the derivative of pose, estimating motion from sen-
sors and generating a sequence of poses that smoothly follow some path in space 
and time.

With these formalities out of the way we move on to the fi rst main event – robots. 
There are two important classes of robot: mobile robots and manipulator arms and 
these are covered in Parts II and III respectively.�

Part II begins, in Chap. 4, with motion models for several types of wheeled vehi-
cles and a multi-rotor fl ying vehicle. Various   control laws are discussed for wheeled 
vehicles such as moving to a point, following a path and moving to a specifi c pose. 
Chapter 5 is concerned with navigation, that is, how a robot fi nds a path between 
points A and B in the world. Two important cases, with and without a map, are dis-
cussed. Most navigation techniques require knowledge of the robot’s position and 
Chap. 6 discusses various approaches to this problem based on dead-reckoning, or 

Although robot arms came first chronolog-
ically, mobile robotics is mostly a 2-dimen-
sional problem and easier to understand 
than the 3-dimensional arm-robot case.
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landmark observation and a map. We also show how a robot can make a map, and 
even determine its location while simultaneously mapping an unknown region.

Part III is concerned with arm-type robots, or more precisely serial-link manipu-
lators. Manipulator arms are used for tasks such as assembly, welding, material han-
dling and even surgery. Chapter 7 introduces the topic of kinematics which relates the 
 angles of the robot’s joints to the 3-dimensional pose of the robot’s tool. Techniques 
to generate smooth paths for the tool are discussed and two examples show how an 
arm-robot can draw a letter on a surface and how multiple arms (acting as legs) can 
be used to create a model for a simple walking robot. Chapter 8 discusses the rela-
tionships between the rates of change of joint angles and tool pose. It introduces the 
 Jacobian  matrix and concepts such as singularities, manipulability, null-space  mo-
tion, and resolved-rate  motion  control. It also discusses under- and over-actuated ro-
bots and the general numerical solution to inverse kinematics.     Chapter 9 introduces 
the design of joint control systems, the dynamic equations of motion for a serial-link 
manipulator, and the relationship between joint forces and joint motion. It discusses 
important topics such as variation in inertia, the effect of payload, fl exible transmis-
sions and independent joint versus nonlinear control strategies.

Computer vision is a large fi eld concerned with processing images in order to 
enhance them for human benefi t, interpret the contents of the scene or create a 
3D  model corresponding to the scene. Part IV is concerned with machine vision, 
a subset of computer vision, and defi ned here as the extraction of numerical fea-
tures from images to provide input for control of a robot. The discussion starts in 
Chap. 10 with the fundamentals of light, illumination and color. Chapter 11 de-
scribes the geometric  model of perspective image creation using lenses and dis-
cusses topics such as camera calibration and pose estimation. We introduce non-
perspective  imaging using wide-angle lenses and  mirror systems,  camera arrays 
and light-fi eld  cameras. Chapter 12 discusses image processing which is a domain 
of 2-dimensional signal processing that transforms one image into another image. 
The discussion starts with acquiring real-world images and then covers various 
arithmetic and logical operations that can be performed on images. We then intro-
duce spatial operators such as convolution,  segmentation, morphological fi ltering 
and fi nally image  shape and size changing. These operations underpin the discus-
sion in Chap. 13 which describe how numerical  features are extracted from images. 
The features describe homogeneous regions (blobs), lines or distinct points in the 
scene and are the basis for vision-based robot control. Chapter 14 is concerned with 
estimating the underlying three-dimensional geometry of a scene using classical 
methods such as structured lighting and also combining features found in different 
views of the same scene to provide information about the geometry and the spatial 
relationship between the camera views which is encoded in fundamental, essential 
and  homography matrices. This leads to the topic of bundle adjustment and struc-
ture from motion and applications including  perspective correction,  mosaicing, 
 image retrieval and visual  odometry.

Part V discusses how visual  features extracted from the camera’s view can be used to 
control arm-type and mobile robots – an approach known as vision-based control or 
visual servoing. This part pulls together concepts introduced in the earlier parts of the 
book. Chapter 15 introduces the classical approaches to visual servoing known as posi-
tion-based and image-based visual servoing and discusses their respective limitations. 
Chapter 16 discusses more recent approaches that address these limitations and also 
covers the use of nonperspective cameras, under-actuated robots and mobile robots.

This is a big book but any one of the parts can be read standalone, with more or 
less frequent visits to the required earlier material. Chapter 2 is the only mandatory 
material. Parts II, III or IV could be used respectively for an introduction to mobile 
robots, arm robots or computer vision class. An alternative approach, following the 
instant gratifi cation theme, is to jump straight into any chapter and start exploring 
– visiting the earlier material as required.

1.2  ·  About the Book
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Further Reading

The Handbook of Robotics (Siciliano and Khatib 2016) provides encyclopedic coverage 
of the fi eld of robotics today, covering theory, technology and the different types of 
robot such as telerobots, service robots, fi eld robots, fl ying robots, underwater robots 
and so on. The classic work by Sheridan (2003) discusses the spectrum of autonomy 
from remote control, through shared and traded control to full autonomy.

A comprehensive coverage of computer vision is the book by Szeliski (2011), and a 
solid introduction to artifi cial  intelligence is the text by Russell and Norvig (2009).

A number of recent books discuss the future impacts of robotics and artifi cial intel-
ligence on society, for example Ford (2015), Brynjolfsson and McAfee (2014), Bostrom 
(2016) and Neilson (2011). The YouTube video Grey (2014) makes some powerful 
points about the future of work and is always a great discussion starter.
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2 Representing Position 
and  Orientation

Fig. 2.1.
a The point P is described by a 
coordinate vector with respect 

to an absolute coordinate frame. 
b The points are described with 

respect to the object’s coordi-
nate frame {B} which in turn is 
described by a relative pose ξB. 
Axes are denoted by thick lines 
with an open arrow, vectors by 

thin lines with a swept arrow 
head and a pose by a thick line 

with a solid head

Numbers are an important part of mathematics. We use numbers for counting: there are 
2 apples. We use  denominate numbers, a number plus a unit, to specify distance: the 

object is 2 m away. We also call this single number a  scalar. We use a vector, a de-
nominate number plus a direction, to specify a location: the object is 2 m due north. 
We may also want to know the orientation of the object: the object is 2 m due north 
and facing west. The combination of position and orientation we call  pose.

A  point in space is a familiar concept from mathematics and can be described 
by a coordinate vector, as shown in Fig. 2.1a. The vector represents the dis-
placement of the point with respect to some reference coordinate frame – we 

call this a  bound vector since it cannot be freely moved. A  coordinate frame, or 
Cartesian coordinate system, is a set of orthogonal axes which intersect at a  point 

known as the  origin. A  vector can be described in terms of its components, a linear 
combination of unit vectors which are parallel to the axes of the coordinate frame. 
Note that points and vectors are different types of mathematical objects even though 
each can be described by a tuple of numbers. We can add vectors but adding points 
makes no sense. The difference of two points is a vector, and we can add a vector to a 
point to obtain another point.

   A point is an interesting mathematical abstraction, but a real object comprises 
infi nitely many points. An object, unlike a point, also has an orientation. If we 

attach a coordinate frame to an object, as shown in Fig. 2.1b, we can describe every 
point within the object as a constant vector with respect to that frame.� Now we can 
describe the position and orientation – the pose – of that coordinate frame with re-
spect to the reference coordinate frame. To distinguish the different frames we label 
them and in this case the object coordinate frame is labeled {B} and its axes are labeled 
xB and yB, adopting the frame’s label as their subscript.

To completely describe the pose of a rigid object in a 3-dimensional world we need 
6 not 3  dimensions: 3 to describe its position and 3 to describe its orientation. These 
dimensions behave quite differently. If we increase the value of one of the position 
dimensions the object will move continuously in a straight line, but if we increase the 
value of one of the orientation dimensions the object will rotate in some way and soon 
get back to its original orientation – this  dimension is curved. We clearly need to treat 
the position and orientation dimensions quite differently.

We assume that the object is rigid, that 
is, the points do not move with respect 
to each other.
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In relative pose composition we can check that we have our reference frames correct by ensur-
ing that the subscript and superscript on each side of the ⊕ operator are matched. We can then 
cancel out the intermediate subscripts and superscripts

leaving just the end most subscript and superscript which are shown highlighted.

Fig. 2.2.
The point P can be described by 
coordinate vectors relative to ei-
ther frame {A} or {B}. The pose 
of {B} relative to {A} is AξB

The pose of the coordinate frame is denoted by the symbol ξ – pronounced ksi. 
Figure 2.2 shows two frames {A} and {B} and the relative pose AξB which describes {B} 
with respect to {A}. The leading superscript denotes the reference coordinate frame 
and the subscript denotes the frame being described. We could also think of AξB as 
describing some motion – imagine picking up {A} and applying a displacement and 
a rotation so that it is transformed to {B}. If the initial superscript is missing we as-
sume that the change in pose is relative to the   world coordinate frame which is gen-
erally denoted {O}.

The point P in Fig. 2.2 can be described with respect to either coordinate frame by 
the vectors Ap or Bp respectively. Formally they are related by

 (2.1)

where the right-hand side expresses the motion from {A} to {B} and then to P. The op-
erator i transforms the vector, resulting in a new vector that describes the same point 
but with respect to a different  coordinate frame.

An important characteristic of relative poses is that they can be composed or com-
pounded. Consider the case shown in Fig. 2.3. If one frame can be described in terms 
of another by a relative pose then they can be applied sequentially

 Euclid of Alexandria (ca. 325 BCE–265 BCE) was a Greek mathematician, 
who was born and lived in Alexandria Egypt, and is considered 
the “father of geometry”. His great work Elements comprising 
13 books, captured and systematized much early knowledge about 
geometry and numbers. It deduces the properties of planar and 
solid geometric shapes from a set of 5 axioms and 5 postulates.

Elements is probably the most successful book in the histo-
ry of mathematics. It describes plane geometry and is the ba-
sis for most people’s fi rst introduction to geometry and formal 
proof, and is the basis of what we now call Euclidean geometry. 
 Euclidean distance is simply the distance between two points on 
a plane. Euclid also wrote Optics which describes geometric vi-
sion and perspective.
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Fig. 2.3.
The point P can be described by 

coordinate vectors relative to
either frame {A}, {B} or {C}. The 

frames are described by rela-
tive poses

Chapter 2  ·  Representing Position and Orientation

Euclidean versus Cartesian geometry    . Euclidean geometry is concerned with points and lines in 
the Euclidean plane (2D) or Euclidean space (3D). It is entirely based on a set of axioms and 
makes no use of arithmetic. Descartes added a coordinate system (2D or 3D) and was then 
able to describe points, lines and other curves in terms of algebraic equations. The study 
of such equations is called analytic geometry  and is the basis of all modern geometry. The 
Cartesian plane  (or space) is the 
Euclidean plane  (or space) with all 
its axioms and postulates plus the 
extra facilities afforded by the ad-
ded coordinate system . The term
Euclidean geometry   is often used 
to mean that Euclid’s fifth postu-
late (parallel lines never intersect) 
holds, which is the case for a pla-
nar surface but not for a curved 
surface.

 René Descartes (1596–1650) was a French philosopher, mathematician and part-time mercenary. He 
is famous for the philosophical statement “Cogito, ergo sum” or “I am thinking, therefore I exist” or 
“I think, therefore I am”. He was a sickly child and developed a life-long habit of lying in bed and 
thinking until late morning. A possibly apocryphal story is that during one such morning he was 
watching a fl y walk across the ceiling and realized that he could describe its position in terms of 
its distance from the two edges of the ceiling. This is the basis of the Cartesian coordinate system 
and modern (analytic) geometry, which he described in his 1637 book La Géométrie. For the fi rst 
time mathematics and geometry were connected, and modern calculus was built on this foun-
dation by Newton and Leibniz. In Sweden at the invitation of Queen Christina he was obliged to 
rise at 5 a.m., breaking his lifetime habit – he caught pneumonia and died. His remains were later 
moved to Paris, and are now lost apart from his skull which is in the Musée de l’Homme. After his 
death, the Roman Catholic Church placed his works on the Index of Prohibited Books.

which says, in words, that the pose of {C} relative to {A} can be obtained by compound-
ing the relative poses from {A} to {B} and {B} to {C}. We use the operator ⊕ to indicate 
composition of relative poses.

For this case the point P can be described by

Later in this chapter we will convert these abstract notions of ξ , i and ⊕ into stan-
dard mathematical objects and operators that we can implement in MATLAB®.

In the examples so far we have shown 2-dimensional  coordinate frames. This is ap-
propriate for a large class of robotics problems, particularly for mobile robots which 
operate in a planar world. For other problems we require 3-dimensional  coordinate 
frames to describe objects in our 3-dimensional world such as the pose of a fl ying or 
underwater robot or the end of a tool carried by a robot arm.
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Figure 2.4 shows a more complex 3-dimensional example in a graphical form where 
we have attached 3D coordinate frames to the various entities and indicated some 
relative poses. The fi xed camera observes the object from its fi xed viewpoint and es-
timates the object’s pose FξB relative to itself. The other camera is not fi xed, it is at-
tached to the robot at some constant relative pose and estimates the object’s pose CξB 
relative to itself.

An alternative representation of the spatial relationships is a directed graph (see 
Appendix I) which is shown in Fig. 2.5.� Each node in the graph represents a pose 
and each edge represents a relative pose. An arrow from X to Y is denoted XξY and de-
scribes the pose of Y relative to X. Recalling that we can compose relative poses using 
the ⊕ operator we can write some spatial relationships

and each equation represents a loop in the graph with each side of the equation starting 
and ending at the same node. Each side of the fi rst equation represents a path through 
the network from {0} to {B}, a sequence of edges (arrows) written in order.

Fig. 2.5.
Spatial example of Fig. 2.4
expressed as a directed graph

Fig. 2.4.
Multiple 3-dimensional coordi-
nate frames and relative poses

It is quite possible that a pose graph can 
be inconsistent, that is, two paths through 
the graph give different results. In robot-
ics these poses are only ever derived from 
noisy sensor data.
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A very useful property of poses is the ability to perform algebra. The second loop 
equation says, in words, that the pose of the robot is the same as composing two rela-
tive poses: from the world frame to the fi xed  camera and from the fi xed camera to the 
robot. We can subtract ξF from both sides of the equation� by adding the inverse of 
ξF which we denote as �ξF and this gives

which is the pose of the robot relative to the fi xed camera, shown as a dashed line 
in Fig. 2.5.

We can write these expressions quickly by inspection. To fi nd the pose of node X 
with respect to node Y:

� fi nd a path from Y to X and write down the relative poses on the edges in a left to 
right order;

� if you traverse the edge in the direction of its arrow precede it with the ⊕ operator, 
otherwise use �.

So what is ξ? It can be any mathematical object that supports the algebra de-
scribed above and is suited to the problem at hand. It will depend on whether we 
are considering a 2- or 3-dimensional problem. Some of the objects that we will 
discuss in the rest of this chapter will be familiar to us, for example vectors, but 
others will be more exotic mathematical objects such as homogeneous transfor-
mations, orthonormal rotation matrices, twists and quaternions. Fortunately all 
these mathematical objects are well suited to the mathematical programming en-
vironment of MATLAB.

There are just a few algebraic rules:�

where 0 represents a zero relative pose. A pose has an inverse

which is represented graphically by an arrow from {Y} to {X}. Relative poses can 
also be composed or compounded

It is important to note that the algebraic rules for poses are different to nor-
mal algebra and that composition is not commutative

with the exception being the case where ξ1 ⊕ ξ2 = 0. A relative pose can trans-
form a point expressed as a vector relative to one frame to a vector relative to 
another

In mathematical terms poses constitute 
a group – a set of objects that supports 
an associative binary  operator (composi-
tion) whose result belongs to the group, 
an inverse operation and an identity ele-
ment. In this case the group is the special 
Euclidean  group  in either 2 or 3 dimen-
sions which are commonly referred to as 
SE(2) or SE(3) respectively.

Order is important here, and we add �ξF 
to the left on each side of the equation.

Chapter 2  ·  Representing Position and Orientation
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To recap:

1. A  point is described by a bound coordinate vector that represents its displacement 
from the origin of a reference coordinate system.

2. Points and vectors are different things even though they are each described by a 
tuple of numbers. We can add vectors but not points. The difference between two 
points is a vector.

3. A set of points that represent a rigid object can be described by a single coordinate 
frame, and its constituent points are described by constant vectors relative to that 
coordinate frame.

4. The position and orientation of an object’s coordinate frame is referred to as its 
pose.

5. A relative pose describes the pose of one coordinate frame with respect to another 
and is denoted by an algebraic variable ξ .

6. A coordinate vector describing a point can be represented with respect to a dif-
ferent coordinate frame by applying the relative pose to the vector using the i op-
erator.

7. We can perform algebraic manipulation of expressions written in terms of relative 
poses and the operators ⊕ and �.

The remainder of this chapter discusses concrete representations of ξ  for various 
common cases that we will encounter in robotics and computer vision. We start by 
considering the two-dimensional case which is comparatively straightforward and 
then extend those concepts to three dimensions. In each case we consider rotation 
fi rst, and then add translation to create a description of pose.

2.1 
l
Working in Two Dimensions (2D)

A 2-dimensional world, or plane, is familiar to us from high-school Euclidean geom-
etry. We use a  right-handed� Cartesian coordinate system or  coordinate frame with 
orthogonal axes denoted x and y and typically drawn with the x-axis horizontal and 
the y-axis vertical. The point of intersection is called the origin. Unit-vectors paral-
lel to the axes are denoted ' and (. A  point is represented by its x- and y-coordinates 
(x, y) or as a bound vector

 (2.2)

Figure 2.6 shows a red coordinate frame {B} that we wish to describe with respect 
to the blue reference frame {A}. We can see clearly that the origin of {B} has been 
displaced by the vector t = (x, y) and then rotated counter-clockwise by an angle θ .

Fig. 2.6.
Two 2D coordinate frames {A} 
and {B} and a world point P. 
{B} is rotated and translated 
with respect to {A}

The relative orientation of the x- and
y-axes obey the right-hand rule as shown 
on page 31.



23

A concrete representation of pose is therefore the 3-vector AξB ∼ (x, y, θ ), and we use 
the symbol ∼ to denote that the two representations are equivalent. Unfortunately 
this representation is not convenient for compounding since

is a complex trigonometric function of both poses. Instead we will look for a different 
way to represent rotation and pose. We will consider the problem in two parts: rota-
tion and then translation.

2.1.1  
l

Orientation in 2-Dimensions

2.1.1.1 
l
Orthonormal Rotation Matrix

Consider an arbitrary point P which we can express with respect to each of the coor-
dinate frames shown in Fig. 2.6. We create a new frame {V} whose axes are parallel 
to those of {A} but whose origin is the same as {B}, see Fig. 2.7. According to Eq. 2.2 
we can express the point P with respect to {V} in terms of the unit-vectors that defi ne 
the axes of the frame

 (2.3)

which we have written as the product of a row and a column vector.
The coordinate frame {B} is completely described by its two orthogonal axes which 

we represent by two unit vectors

which can be factorized into matrix form as

 (2.4)

Using Eq. 2.2 we can represent the point P with respect to {B} as

Fig. 2.7.
Rotated coordinate frames 

in 2D. The point P can be con-
sidered with respect to the red 

or blue coordinate frame

2.1  ·  Working in Two Dimensions (2D)
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and substituting Eq. 2.4 we write

 (2.5)

Now by equating the coeffi cients of the right-hand sides of Eq. 2.3 and Eq. 2.5 we write

which describes how  points are transformed from frame {B} to frame {V} when the 
frame is rotated. This type of matrix is known as a  rotation matrix since it transforms 
a point from frame {V} to {B} and is denoted VRB

 (2.6)

is a 2-dimensional rotation matrix with some special properties:

� it is orthonormal (also called  orthogonal) since each of its columns is a unit 
vector and the columns are orthogonal.�

� the columns are the unit vectors that defi ne the axes of the rotated frame Y 
with respect to X and are by defi nition both unit-length and orthogonal.

� it belongs to the  special orthogonal  group of dimension 2 or R ∈ SO(2) ⊂R2×2.  
This means that the product of any two matrices belongs to the group, as does 
its inverse.

� its determinant is +1, which means that the length of a vector is unchanged 
after transformation, that is, �Yp�= �Xp�, ∀θ .

� the inverse is the same as the transpose, that is, R−1 = RT.

We can rearrange Eq. 2.6 as

Note that inverting the matrix is the same as swapping the superscript and subscript, 
which leads to the identity R(−θ ) = R(θ )T.

It is interesting to observe that instead of representing an angle, which is a scalar, we 
have used a 2 × 2 matrix that comprises four elements, however these elements are not 
independent. Each column has a unit magnitude which provides two constraints. The 
columns are orthogonal which provides another constraint. Four elements and three 
constraints are effectively one independent value. The rotation matrix is an example of 
a nonminimum representation and the disadvantages such as the increased memory it 
requires are outweighed, as we shall see, by its advantages such as composability.

The Toolbox allows easy creation of these rotation matrices

  >> R = rot2(0.2)
R =
    0.9801   -0.1987
    0.1987    0.9801

See Appendix B which provides a re-
fresher on vectors, matrices and linear 
algebra.
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where the angle is specifi ed in radians. We can observe some of the properties such as
>> det(R)
ans =
     1

and the product of two rotation matrices is also a rotation matrix
  >> det(R*R)
ans =
     1

The Toolbox also supports symbolic mathematics� for example

>> syms theta
>> R = rot2(theta)
R =
[ cos(theta), -sin(theta)]
[ sin(theta),  cos(theta)]
>>  simplify(R*R)
ans =
[ cos(2*theta), -sin(2*theta)]
[ sin(2*theta),  cos(2*theta)]
>> simplify(det(R))
ans =
1

2.1.1.2 
l

Matrix Exponential

 Consider a pure rotation of 0.3 radians expressed as a rotation matrix
>> R = rot2(0.3)
ans =
    0.9553   -0.2955
    0.2955    0.9553

We can compute the logarithm of this matrix  using the MATLAB builtin function 
logm� 

>> S = logm(R)
S =
    0.0000   -0.3000
    0.3000    0.0000

and the result is a simple matrix with two elements having a magnitude of 0.3, which 
intriguingly is the original rotation  angle. There is something deep and interesting 
going on here – we are on the fringes of Lie group theory   which we will encounter 
throughout this chapter.

You will need to have the MATLAB Sym-
bolic Math Toolbox™ installed.

logm  is different to the builtin function 
log  which computes the logarithm of 
each element of the matrix. A logarithm 
can be computed using a power series, 
with a matrix rather than scalar argu-
ment. For a matrix the logarithm is not 
unique and logm  computes the prin-
cipal logarithm of the matrix.

In 2 dimensions the skew-symmetric matrix   is

 (2.7)

which has clear structure and only one unique element ω ∈ R. A simple example of Toolbox 
support for skew-symmetric matrices i  s

>> skew(2)
ans =
     0    -2
     2     0

and the inverse operation is performed using the Toolbox function vex

> > vex(ans)
ans =
     2

2.1  ·  Working in Two Dimensions (2D)
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This matrix has a zero diagonal and is an example of a 2 × 2 skew-symmetric ma-
trix. The matrix has only one unique element and we can unpack it using the Toolbox 
function  vex

> > vex(S)
ans =
    0.3000

to recover the rotation  angle.
The inverse of a logarithm is ex ponentiation and using the builtin MATLAB matrix 

exponential function expm�

>> expm(S)
ans =
    0.9553   -0.2955
    0.2955    0.9553

the result is, as expected, our original rotation matrix. In fact the command

>> R = rot2(0.3);

is equivalent to

>> R = expm(  skew(0.3)  );

Formally we can write

where θ is the rotation angle, and the  notation [·]×: R�R
2×2 indicates a mapping from 

a scalar to a skew-symmetric matrix.

2.1.2 
l
Pose in 2-Dimensions

2.1.2.1 
l
Homogeneous Transformation Matrix

Now we need to account for the translation between the origins of the frames shown 
in Fig. 2.6. Since the axes {V} and {A} are parallel, as shown in Figs. 2.6 and 2.7, this 
is simply vectorial addition

 (2.8)

 (2.9)

 (2.10)

or more compactly as

 (2.11)

where t = (x, y) is the translation of the frame and the orientation is ARB. Note that 
ARB = VRB since the axes of frames {A} and {V} are parallel. The coordinate vectors for 
 point P are now expressed in homogeneous form and we write

 expm i s different to the builtin function 
exp w hich computes the exponential 
of each element of the matrix.
expm(A) = I + A + A2/ 2! + A3/ 3! +�
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and ATB is referred to as a  homogeneous transformation. The matrix has a very 
specifi c structure and belongs to the  special Euclidean group of dimension 2 or 
 T ∈ SE(2) ⊂R3×3. 

By comparison with Eq. 2.1 it is clear that ATB represents translation and orienta-
tion or relative pose. This is often referred to as a    rigid-body motion.

A concrete representation of relative pose ξ  is ξ ∼ T ∈ SE(2) and T1 ⊕ T2� T1T2 
which is standard matrix multiplication

One of the algebraic rules from page 21 is ξ ⊕ 0 = ξ . For matrices we know 
that TI = T, where I is the identify matrix, so for pose 0� I the identity matrix. 
Another rule was that ξ� ξ = 0. We know for matrices that TT −1 = I which im-
plies that �T� T −1

For a point described by p ∈ P2 then T ip� Tp which is a standard matrix-
vector product.

To make this more tangible we will show some numerical examples using MATLAB 
and the Toolbox. We create a homogeneous transformation which represents a trans-
lation of (1, 2) followed by a rotation of 30°

>> T1 = transl2(1, 2) * trot2(30, 'deg')
T1 =
    0.8660   -0.5000    1.0000
    0.5000    0.8660    2.0000
         0         0    1.0000

The function  transl2 creates a relative pose with a fi nite translation but zero rota-
tion, while  trot2 creates a relative pose with a fi nite rotation but zero translation.� 
We can plot this, relative to the world coordinate frame, by

>> plotvol([0 5 0 5]);
>> trplot2(T1, 'frame', '1', 'color', 'b') 

A vector p= (x, y) is written in  homogeneous form as p ∈ P2, p = (x1, x2, x3) where x = x1/ x3, 
y = x2/x3 and x3 ≠ 0. The dimension has been increased by one and a point on a plane is now 
represented by a 3-vector. To convert a point to homogeneous form we typically append an ele-
ment equal to one p= (x, y, 1). The tilde indicates the vector is homogeneous.

Homogeneous vectors have the important property that p is equivalent to λp for all λ ≠ 0 
which we write as p� λp. That is p represents the same point in the plane irrespective of the 
overall scaling factor. Homogeneous representation is important for computer vision that we 
discuss in Part IV. Additional details are provided in Sect. C.2.

2.1  ·  Working in Two Dimensions (2D)

Many Toolbox functions have variants 
that return orthonormal rotation ma-
trices or homogeneous transformations, 
for example, rot2 and trot2.
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The options specify that the label for the frame is {1} and it is colored blue and this 
is shown in Fig. 2.8. We create another relative pose which is a displacement of (2, 1) 
and zero rotation

>> T2 =  transl2(2, 1)
T2 =
     1     0     2
     0     1     1
     0     0     1

which we plot in red

>> trplot2(T2, 'frame', '2', 'color', 'r'); 

Now we can compose the two relative poses

>> T3 = T1*T2
T3 =
    0.8660   -0.5000    2.2321
    0.5000    0.8660    3.8660
         0         0    1.0000

and plot it, in green, as

>> trplot2(T3, 'frame', '3', 'color', 'g'); 

We see that the displacement of (2, 1) has been applied with respect to frame {1}. It is 
important to note that our fi nal displacement is not (3, 3) because the displacement 
is with respect to the rotated coordinate frame. The noncommutativity of composi-
tion is clearly demonstrated by

>> T4 = T2*T1;
>> trplot2(T4, 'frame', '4', 'color', 'c'); 

and we see that frame {4} is different to frame {3}.
Now we defi ne a point (3, 2) relative to the world frame

>> P = [3 ; 2 ];

which is a column vector and add it to the plot

>> plot_point(P, 'label', 'P', 'solid', 'ko'); 

To determine the coordinate of the point with respect to {1} we use Eq. 2.1 and 
write down

Fig. 2.8.
Coordinate frames drawn using 
the Toolbox function trplot2
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and then rearrange as

Substituting numerical values

>> P1 = inv(T1) * [P; 1]
P1 =
    1.7321
   -1.0000
    1.0000

where we fi rst converted the Euclidean   point coordinates to  homogeneous form by ap-
pending a one. The result is also in homogeneous form and has a negative y-coordinate 
in frame {1}. Using the Toolbox we could also have expressed this as

>> h2e( inv(T1) *  e2h(P) )
ans =
    1.7321
   -1.0000  

where the result is in Euclidean coordinates. The helper function  e2h converts Euclidean 
coordinates to homogeneous and h2e performs the inverse conversion.

2.1.2.2 
l

Centers of Rotation

We will explore the noncommutativity property in more depth and illustrate with the 
example of a pure rotation.   First we create and plot a reference coordinate frame {0} 
and a target frame {X}

>> plotvol([-5 4 -1 5]);
>> T0 =  eye(3,3);
>> trplot2(T0, 'frame', '0');
>> X = transl2(2, 3);
>> trplot2(X, 'frame', 'X');

and create a rotation of 2 radians (approximately 115°)

>> R = trot2(2);

and plot the effect of the two possible orders of composition

>> trplot2(R*X, 'framelabel', 'RX', 'color', 'r');
>> trplot2(X*R, 'framelabel', 'XR', 'color', 'r');

The results are shown as red coordinate frames in Fig. 2.9. We see that the frame {RX} 
has been rotated about the origin, while frame {XR} has been rotated about the ori-
gin of {X}.

What if we wished to rotate a coordinate frame about an arbitrary point? First of 
all we will establish a new point C and display it

>> C = [1 2]';
>> plot_point(C, 'label', ' C', 'solid', 'ko')

and then compute a transform to rotate about point C

>> RC = transl2(C) * R * transl2(-C)
RC =
   -0.4161   -0.9093    3.2347
    0.9093   -0.4161    1.9230
         0         0    1.0000

and applying this

>> trplot2(RC*X, 'framelabel', 'XC', 'color', 'r');

2.1  ·  Working in Two Dimensions (2D)
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we see that the frame has indeed been rotated about point C. Creating the required 
transform was somewhat cumbersome and not immediately obvious. Reading from 
right to left� we fi rst apply an origin shift, a translation from C to the origin of the 
reference frame, apply the rotation about that origin, and then apply the inverse 
origin shift, a translation from the reference frame origin back to C. A more descrip-
tive way to achieve this is using twists.

2.1.2.3 
l

Twists in 2D

The corollary to what we showed in the last section is that, given any two frames we 
can fi nd a rotational center that will rotate the fi rst frame into the second. For the case 
of pure translational  motion the rotational center will be at infi nity. This is the key 
concept behind what is called a twist.

 We can create a rotational twist a bout the point specifi ed by the coordinate vec-
tor C

>> tw = Twist('R', C)
tw =
( 2 -1; 1 )

and the result is a Twist o bject that encodes a twist vector w ith two components: a 
2-vector moment a  nd a 1-vector rotation.   The fi rst argument 'R' indicates a rota-
tional twist is to be computed. This particular twist is a unit t wist s ince the magnitude 
of the rotation, the last element of the twist, is equal to one.

To create an SE(2) transformation for a rotation about this unit twist by 2 radians 
we use the T  method

>> tw.T(2)
ans =
   -0.4161   -0.9093    3.2347
    0.9093   -0.4161    1.9230
         0         0    1.0000

which is the same as that computed in the previous section, but more concisely speci-
fi ed in terms of the center of rotation. The center is also called the p  ole of the trans-
formation and is encoded in the twist

>> tw.pole'
ans =
     1     2

Fig. 2.9.
The frame {X} is rotated by 
2 radians about {0} to give 
frame {RX}, about {X} to 
give {XR}, and about point C
to give frame {XC}

RC left multiplies X, therefore the first 
transform applied to X is transl(-C), 
then R, then transl(C).
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If we wish to perform translational motion i n the direction (1, 1) the relevant unit 
twist is�

>> tw = Twist('T', [1 1])
tw =
( 0.70711 0.70711; 0 )

and for a displacement of √⎯2 in the direction defi ned by this twist the SE(2) trans-
formation is

>> tw.T(sqrt(2))
ans =
     1     0     1
     0     1     1
     0     0     1

which we see has a null rotation and a translation of 1 in the x- and y-directions.
For an arbitrary planar transform s uch as

>> T = transl2(2, 3) * trot2(0.5)
T =
    0.8776   -0.4794    2.0000
    0.4794    0.8776    3.0000
         0         0    1.0000

we can compute the twist vector
> > tw = Twist(T)
tw =
( 2.7082 2.4372; 0.5 )

and we note that the last element, the rotation, is not equal to one but is the required ro-
tation  angle of 0.5 radians. This is a nonunit twist.  Therefore when we convert this to an 
SE(2) transform w e don’t need to provide a second argument since it is implicit in the twist

>>  tw.T
ans =
    0.8776   -0.4794    2.0000
    0.4794    0.8776    3.0000
         0         0    1.0000

and we have regenerated our original homogeneous transformation.

2.2 
l
Working in Three Dimensions (3D)

The 3-dimensional case is an extension of the 2-dimensional case discussed in the 
previous section. We add an extra coordinate axis, typically denoted by z, that is or-
thogonal to both the x- and y-axes. The direction of the z-axis obeys the  right-hand 
rule and forms a right-handed coordinate frame  . Unit vectors parallel to the axes are 
denoted ', ( and ) such that�

 (2.12)

A  point P is represented by its x-, y- and z-coordinates (x, y, z) or as a bound vector

Figure 2.10 shows a red coordinate frame {B} that we wish to describe with respect 
to the blue reference frame {A}. We can see clearly that the origin of {B} has been 

 Right-hand rule. A right-handed coordinate frame is defi ned by the fi rst three fi ngers of your right 
hand which indicate the relative directions of the x-, y- and z-axes respectively.

In all these identities, the symbols from 
left to right (across the equals sign) are a 
cyclic rotation of the sequence xyz.

2.2  ·  Working in Three Dimensions (3D)

For a unit-translational twist the rotation 
is zero and the moment is a unit vector.
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displaced by the vector t = (x, y, z) and then rotated in some complex fashion. Just 
as for the 2-dimensional case the way we represent orientation is very important.

Our approach is to again consider an arbitrary point P with respect to each of the 
coordinate frames and to determine the relationship between Ap and Bp. We will 
again consider the problem in two parts: rotation and then translation. Rotation 
is surprisingly complex for the 3-dimensional case and we devote all of the next 
section to it.

2.2.1  
l

Orientation in 3-Dimensions

Any two independent orthonormal coordinate frames
can be related by a sequence of rotations (not more than three)

about coordinate axes, where no two successive rotations may be about the same axis.
Euler’s rotation theorem (Kuipers 1999).

Figure 2.10 shows a pair of right-handed coordinate frames with very different orien-
tations, and we would like some way to describe the orientation of one with respect 
to the other. We can imagine picking up frame {A} in our hand and rotating it until 
it looked just like frame {B}. Euler’s rotation theorem    states that any rotation can be 
considered as a sequence of rotations about different coordinate axes.

We start by considering rotation about a single coordinate axis. Figure 2.11 shows a 
right-handed coordinate frame, and that same frame after it has been rotated by vari-
ous angles about different coordinate axes.

The issue of rotation has some subtleties which are illustrated in Fig. 2.12. This 
shows a sequence of two rotations applied in different orders. We see that the fi nal 
orientation depends on the order in which the rotations are applied. This is a deep 
and confounding characteristic of the 3-dimensional world which has intrigued math-
ematicians for a long time. There are implication for the pose algebra we have used 
in this chapter:

In 3-dimensions rotation is not commutative – the order in which rotations are 
applied makes a difference to the result.

Mathematicians have developed many ways to represent rotation and we will discuss 
several of them in the remainder of this section: orthonormal rotation matrices, Euler 
and Cardan   angles, rotation axis and angle, exponential coordinates, and unit quater-
nions. All can be represented as vectors or matrices, the natural datatypes of MATLAB 
or as a Toolbox defi ned class. The Toolbox provides many function to convert between 
these representations and these are shown in Tables 2.1 and 2.2 (pages 57, 58).

Fig. 2.10.
Two 3D coordinate frames {A} 
and {B}. {B} is rotated and trans-
lated with respect to {A}
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Fig. 2.11.
Rotation of a 3D coordinate frame. 

a The original coordinate frame, 
b–f frame a after various rota-

tions as indicated

Fig. 2.12.
Example showing the noncom-

mutativity of rotation. In the top 
row the coordinate frame is ro-
tated by ü about the x-axis and 
then ü about the y-axis. In the 
bottom row the order of rota-

tions has been reversed. The re-
sults are clearly different

Rotation about a vector. Wrap your right hand around the vector with your thumb (your x-fi nger) in 
the direction of the arrow. The curl of your fi ngers indicates the direction of increasing angle.

2.2  ·  Working in Three Dimensions (3D)
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2.2.1.1 
l
Orthonormal Rotation Matrix

Just as for the 2-dimensional case we can represent the  orientation of a coordinate frame 
by its unit vectors expressed in terms of the reference coordinate frame. Each unit vec-
tor has three elements and they form the columns of a 3 × 3 orthonormal matrix   ARB

 (2.13)

which transforms the description of a vector defi ned with respect to frame {B} to 
a vector with respect to {A}.

A 3-dimensional rotation matrix XRY has some special properties:

� it is orthonormal (also called orthogonal) since each of its columns is a unit 
vector and the columns are orthogonal.�

� the columns are the unit vectors that defi ne the axes of the rotated frame Y 
with respect to X and are by defi nition both unit-length and orthogonal.

� it belongs to the  special orthogonal  group of dimension 3 or   R ∈ SO(3) ⊂R3×3. 
This means that the product of any two matrices within the group also belongs 
to the group, as does its inverse.

� its determinant is +1, which means that the length of a vector is unchanged 
after transformation, that is, �Yp�= �Xp�, ∀θ .

� the inverse is the same as the transpose, that is, R−1 = RT.

The orthonormal rotation matrices for rotation of θ  about the x-, y- and z-axes are

The Toolbox provides functions to compute these elementary rotation matrices, 
for example Rx(θ ) is

>> R =  rotx(pi/2)
R =
    1.0000         0         0
         0    0.0000   -1.0000
         0    1.0000    0.0000 

and its effect on a reference coordinate frame is shown graphically in Fig. 2.11b. The 
functions  roty and  rotz compute Ry(θ ) and Rz(θ ) respectively.

If we consider that the rotation matrix represents a pose then the corresponding 
coordinate frame can be displayed graphically

>> trplot(R)

which is shown in Fig. 2.13a. We can visualize a rotation more powerfully using the 
Toolbox function  tranimate which animates a rotation

>> tranimate(R) 

See Appendix B which provides a re-
fresher on vectors, matrices and linear 
algebra.



35

showing the world frame rotating into the specifi ed coordinate frame. If you have a 
pair of  anaglyph stereo glasses� you can see this in more realistic 3D by

>> tranimate(R, '3d')

To illustrate compounding of rotations we will rotate the frame of Fig. 2.13a again, 
this time around its y-axis

>> R =  rotx(pi/2) *  roty(pi/2)
R =
    0.0000         0    1.0000
    1.0000    0.0000   -0.0000
   -0.0000    1.0000    0.0000
>> trplot(R)   

to give the frame shown in Fig. 2.13b. In this frame the x-axis now points in the direc-
tion of the world y-axis.

The noncommutativity of rotation can be shown by reversing the order of the ro-
tations above

>>  roty(pi/2)*rotx(pi/2)
ans =
    0.0000    1.0000    0.0000
         0    0.0000   -1.0000
   -1.0000    0.0000    0.0000  

which has a very different value.
We recall that Euler’s rotation theorem states that any rotation can be represented 

by not more than three rotations about coordinate axes. This means that in general an 
arbitrary rotation between frames can be decomposed into a sequence of three rota-
tion  angles and associated rotation axes – this is discussed in the next section.

The orthonormal rotation matrix has nine elements but they are not independent. 
The columns have unit magnitude which provides three constraints. The columns are 
orthogonal to each other which provides another three constraints.� Nine elements 
and six constraints is effectively three independent values.

Reading an orthonormal rotation matrix  , the columns from left to right tell us the directions of the 
new frame’s axes in terms of the current coordinate frame. For example if

R =
    1.0000         0         0
         0    0.0000   -1.0000
         0    1.0000    0.0000

the new frame has its x-axis in the old x-direction (1, 0, 0), its y-axis in the old z-direction (0, 0, 1), 
and the new z-axis in the old negative y-direction (0, −1, 0). In this case the x-axis was unchanged 
since this is the axis around which the rotation occurred.  The rows are the converse – the current 
frame axes in terms of the new frame axes.

Fig. 2.13.
Coordinate frames displayed us-
ing trplot. a Reference frame 

rotated by ü about the x-axis, 
b frame a rotated by ü about 

the y-axis

2.2  ·  Working in Three Dimensions (3D)

If the column vectors are ci, i ∈ 1� 3 
then c1 ic2 = c2 ic3 = c3 ic1 = 0 and 
�ci�= 1.
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2.2.1.2 
l

Three- Angle Representations

 Euler’s rotation theorem requires successive rotation about three axes such that no 
two successive rotations are about the same axis. There are two classes of rotation se-
quence: Eulerian and Cardanian, named after Euler and Cardano respectively.

The Eulerian type involves repetition, but not successive, of rotations about one 
particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is character-
ized by rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX. 

It is common practice to refer to all 3-angle representations as Euler  angles 
but this is underspecified since there are twelve different types to choose 
from. The particular angle sequence is often a convention within a particular 
technological field.

The ZYZ sequence

 (2.14)

is commonly used in aeronautics and mechanical  dynamics, and is used in the Toolbox. 
The  Euler angles are the 3-vector ¡ = (φ, θ, ψ).

For example, to compute the equivalent  rotation matrix for ¡ = (0.1, 0.2, 0.3) we 
write

>> R =  rotz(0.1) *  roty(0.2) *  rotz(0.3);   

or more conveniently

>> R =  eul2r(0.1, 0.2, 0.3)
R =
    0.9021   -0.3836    0.1977
    0.3875    0.9216    0.0198
   -0.1898    0.0587    0.9801 

The inverse problem is fi nding the Euler  angles that correspond to a given rota-
tion matrix

>> gamma = tr2eul(R)
gamma =
    0.1000    0.2000    0.3000 

However if θ  is negative

>> R = eul2r(0.1 , -0.2, 0.3)
R =
    0.9021   -0.3836   -0.1977
    0.3875    0.9216   -0.0198
    0.1898   -0.0587    0.9801 

the inverse function
>>  tr2eul(R)
ans =
   -3.0416    0.2000   -2.8416 

returns a positive value for θ  and quite different values for φ  and ψ . However the cor-
responding rotation matrix

 Leonhard Euler (1707–1783) was a Swiss mathematician and physicist who dominated eighteenth 
century mathematics. He was a student of Johann Bernoulli and applied new mathematical 
techniques such as calculus to many problems in mechanics and optics. He also developed the 
functional notation, y = f(x), that we use today. In robotics we use his rotation theorem and his 
equations of motion in rotational dynamics.

He was prolifi c and his collected works fi ll 75 volumes. Almost half of this was produced dur-
ing the last seventeen years of his life when he was completely blind.
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>> eul2r(ans)
ans =
    0.9021   -0.3836   -0.1977
    0.3875    0.9216   -0.0198
    0.1898   -0.0587    0.9801 

is the same – the two different sets of Euler angles correspond to the one rotation ma-
trix. The mapping from a rotation matrix to Euler angles is not unique and the Toolbox 
always returns a positive angle for θ .

For the case where θ = 0

>> R = eul2r(0.1, 0, 0.3)
R =
    0.9211   -0.3894         0
    0.3894    0.9211         0
         0         0    1.0000 

the inverse function returns
>> tr2eul(R)
ans =
         0         0    0.4000 

which is clearly quite different but the result is the same rotation matrix. The expla-
nation is that if θ = 0 then Ry = I and Eq. 2.14 becomes

which is a function of the sum φ + ψ . Therefore the inverse operation can do no more 
than determine this sum, and by convention we choose φ = 0. The case θ = 0 is a   sin-
gularity and will be discussed in more detail in the next section.

Another widely used convention are the Cardan angles: roll, pitch and yaw. 
Confusingly there are two different versions in common use. Text books seem to de-
fi ne the roll-pitch-yaw sequence as ZYX or XYZ depending on whether they have a 
mobile robot or robot arm focus.� When describing the attitude of vehicles such as 
ships, aircraft and cars the convention is that the x-axis points in the forward direc-
tion and the z-axis points either up or down. It is intuitive to apply the rotations in 
the sequence: yaw (direction of travel), pitch (elevation of the front with respect to 
horizontal) and then fi nally roll (rotation about the forward axis of the vehicle). This 
leads to the ZYX angle sequence

 (2.15)

Roll-pitch-yaw angles are also known as Tait-Bryan angles� or nautical angles, and 
for aeronautical applications they can be called bank, attitude and heading angles re-
spectively.

2.2  ·  Working in Three Dimensions (3D)

 Gerolamo Cardano (1501–1576) was an Italian Renaissance mathematician, physician, astrologer, 
and gambler. He was born in Pavia, Italy, the illegitimate child of a mathematically gifted law-
yer. He studied medicine at the University of Padua and later was the fi rst to describe typhoid 
fever. He partly supported himself through gambling and his book about games of chance Liber 
de ludo aleae contains the fi rst systematic treatment of  probability as well as effective cheating 
methods. His family life was problematic: his eldest son was executed for poisoning his wife, 
and his daughter was a prostitute who died from syphilis (about which he wrote a treatise). He 
computed and published the horoscope of Jesus, was accused of heresy, and spent time in prison 
until he abjured and gave up his professorship.

He published the solutions to the cubic and quartic equations in his book Ars magna in 1545, 
and also invented the combination lock, the gimbal consisting of three concentric rings allow-
ing a compass or gyroscope to rotate freely (see Fig. 2.15), and the Cardan shaft with universal 
joints – the drive shaft used in motor vehicles today.

Named after Peter Tait a Scottish physi-
cist and quaternion supporter, and George 
Bryan an early Welsh aerodynamicist.  

Well known texts such as Siciliano 
et al. (2008), Spong et al. (2006) and 
Paul (1981) use the XYZ sequence. The 
Toolbox supports both formats by means 
of the 'xyz' and 'zyx' options. 
The ZYX order is default for Release 10, 
but for Release 9 the default was XYZ.
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When describing the attitude of a robot gripper, as shown in Fig. 2.16, the conven-
tion is that the z-axis points forward and the x-axis is either up or down. This leads 
to the XYZ angle sequence

 (2.16)

The Toolbox defaults to the ZYX sequence but can be overridden using the 'xyz' 
option. For example        

>> R = rpy2r(0.1, 0.2, 0.3)
R =
    0.9363   -0.2751    0.2184
    0.2896    0.9564   -0.0370
   -0.1987    0.0978    0.9752

and the inverse is
>> gamma = tr2rpy(R)
gamma =
    0.1000    0.2000    0.3000 

The roll-pitch-yaw sequence allows all  angles to have arbitrary sign and it has a  singularity 
when θp = ±ü which is fortunately outside the range of feasible attitudes for most vehicles.

The Toolbox includes an interactive graphical tool

>>  tripleangle

that allows you to experiment with Euler  angles or roll-pitch-yaw angles and see their ef-
fect on the orientation of a body as shown in Fig. 2.14.

2.2.1.3  
l
Singularities and Gimbal Lock

A fundamental problem with all the three-angle representations just described is  singu-
larity. This is also known as  gimbal lock, a term made famous in the movie  Apollo 13. 
This occurs when the rotational axis of the middle term in the sequence becomes paral-
lel to the rotation axis of the fi rst or third term.

A mechanical  gyroscope used for spacecraft  navigation is shown in Fig. 2.15. The 
innermost assembly is the stable member which has three orthogonal gyroscopes that 
hold it at a constant orientation with respect to the universe. It is mechanically con-
nected to the spacecraft via a gimbal mechanism which allows the spacecraft to move 
around the stable platform without exerting any torque on it. The attitude of the space-
craft is determined directly by measuring the angles of the gimbal axes with respect to 
the stable platform – giving a direct indication of  roll-pitch-yaw angles which in this 
design are a Cardanian YZX sequence.�

Fig. 2.14.
The Toolbox application
  tripleangle allows you to 
experiment with Euler angles 
and roll-pitch-yaw angles and 
see how the attitude of a body 
changes

“The LM Body coordinate system is right-
handed, with the +X axis pointing up
through the thrust axis, the +Y axis 
pointing right when facing forward 
which is along the +Z axis. The rotation-
al transformation matrix is constructed 
by a 2-3-1 Euler sequence, that is: Pitch 
about Y, then Roll about Z and, finally, 
Yaw about X. Positive rotations are pitch 
up, roll right, yaw left.” (Hoag 1963).
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Consider the situation when the rotation angle of the middle gimbal (rotation about 
the spacecraft’s z-axis) is 90° – the axes of the inner and outer gimbals are aligned and 
they share the same rotation axis. Instead of the original three rotational axes, since 
two are parallel, there are now only two effective rotational axes – we say that one  de-
gree of freedom has been lost.�

In mathematical, rather than mechanical, terms this problem can be seen using the 
defi nition of the Lunar module’s coordinate system where the rotation of the space-
craft’s  body-fi xed frame {B} with respect to the stable platform frame {S} is

For the case when θr = ü we can apply the identity�

leading to

which is unable to represent any rotation about the y-axis. This is not a good thing 
because spacecraft rotation about the y-axis would rotate the stable element and thus 
ruin its precise alignment with the stars: hence the anxiety on Apollo 13.

The loss of a degree of freedom means that mathematically we cannot invert the 
transformation, we can only establish a linear relationship between two of the angles. 
In this case the best we can do is determine the sum of the pitch and yaw angles. We 
observed a similar phenomena with the Euler  angle  singularity earlier.

2.2  ·  Working in Three Dimensions (3D)

Fig. 2.15.
Schematic of  Apollo Lunar 

Module (LM)  inertial measure-
ment unit (IMU).  The vehicle’s 
coordinate system has the x-axis 
pointing up through the thrust 
axis, the z-axis forward, and the 
y-axis pointing right. Starting 
at the stable platform {S} and 
working outwards toward the 

spacecraft’s body frame {B} the 
rotation  angle sequence is YZX. 
The components labeled Xg, Yg
and Zg are the x-, y- and z-axis

gyroscopes and those labeled Xa,
Ya and Za are the x-, y- and z-axis

 accelerometers (redrawn after 
Apollo Operations Handbook, 

LMA790-3-LM)

Operationally this was a significant limit-
ing factor with this particular gyroscope 
(Hoag 1963) and could have been allevi-
ated by adding a fourth gimbal, as was 
used on other spacecraft. It was omit-
ted on the Lunar Module for reasons of 
weight and space.

Rotations obey the cyclic rotation rules
 Rx(ü) Ry(θ ) Rx(ü)T ≡ Rz(θ )
 Ry(ü) Rz(θ ) Ry(ü)T ≡ Rx(θ )
 Rz(ü) Rx(θ ) Rz(ü)T ≡ Ry(θ )
and anti-cyclic rotation rules
 Ry(ü)T Rx(θ ) Ry(ü) ≡ Rz(θ )
 Rz(ü)T Ry(θ ) Rz(ü) ≡ Rx(θ ).
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All three-angle representations of attitude, whether Eulerian or Cardanian, suf-
fer this problem of gimbal lock when two consecutive axes become aligned. For ZYZ-
Euler angles this occurs when θ = kπ , k ∈ Z and for roll-pitch-yaw angles when pitch 
θp = ±(2k + 1)ü. The best that can be hoped for is that the singularity occurs for an 
attitude which does not occur during normal operation of the vehicle – it requires ju-
dicious choice of angle sequence and coordinate system.

Singularities are an unfortunate consequence of using a minimal representation. 
To eliminate this problem we need to adopt different representations of orientation. 
Many in the Apollo LM team would have preferred a four gimbal system and the clue 
to success, as we shall see shortly in Sect. 2.2.1.7, is to introduce a fourth parameter.

2.2.1.4 
l

Two Vector Representation

For arm-type robots it is useful to consider a coordinate frame {E} attached to the end-effec-
tor as shown in Fig. 2.16. By convention the axis of the tool is associated with the z-axis and 
is called the   approach vector and denoted $ = (ax, ay, az). For some applications it is more 
convenient to specify the approach vector than to specify Euler or roll-pitch-yaw angles.

However specifying the direction of the z-axis is insuffi cient to describe the coordi-
nate frame – we also need to specify the direction of the x- and y-axes. An orthogonal 
vector that provides orientation, perhaps between the two fi ngers of the robot’s gripper 
is called the   orientation vector, & = (ox, oy, oz). These two unit vectors are suffi cient to 
completely defi ne the  rotation matrix

 (2.17)

since the remaining column, the  normal vector, can be computed using Eq. 2.12 as 
% = & × $. Consider an example where the gripper’s approach and orientation vec-
tors are parallel to the world x- and y-directions respectively. Using the Toolbox this 
is implemented by

>> a = [1 0 0]';
>> o = [0 1 0]';
>> R = oa2r(o, a)
R =
     0     0     1
     0     1     0
    -1     0     0 

Any two nonparallel vectors are suffi cient to defi ne a coordinate frame. Even if the 
two vectors $ and & are not orthogonal they still defi ne a plane and the computed % 
is normal to that plane. In this case we need to compute a new value for &′ = $ × % 
which lies in the plane but is orthogonal to each of $ and %.

For a camera we might use the  optical  axis, by convention the z-axis, and the left 
side of the camera which is by convention the x-axis. For a mobile robot we might use 

Apollo 13 mission clock: 02 08 12 47

� Flight: “Go, Guidance.”
� Guido: “He’s getting close to gimbal lock there.”
� Flight: “Roger. CapCom, recommend he bring up C3, C4, B3, B4, C1 and C2 thrusters, and ad-

vise he’s getting close to gimbal lock.”
� CapCom: “Roger.”

Apollo 13, mission control communications loop (1970) (Lovell and Kluger 1994, p 131; NASA 
1970). 
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the gravitational acceleration vector (measured with  accelerometers) which is by con-
vention the z-axis and the heading direction (measured with an electronic compass) 
which is by convention the x-axis.

2.2.1.5 
l
Rotation about an Arbitrary Vector

Two coordinate frames of arbitrary orientation are related by a single rotation about 
some axis in space. For the example rotation used earlier

>> R = rpy2r(0.1 , 0.2, 0.3); 

we can determine such an angle and vector by

>> [theta, v] = tr2angvec(R)
th =
    0.3655
v =
    0.1886    0.5834    0.7900 

where theta is the angle of rotation and v is the vector� around which the rotation occurs. 
This information is encoded in the  eigenvalues and  eigenvectors of R. Using the built-

in MATLAB function  eig
>> [x,e] =  eig(R)
x =
  -0.6944 + 0.0000i  -0.6944 + 0.0000i   0.1886 + 0.0000i
   0.0792 + 0.5688i   0.0792 - 0.5688i   0.5834 + 0.0000i
   0.1073 - 0.4200i   0.1073 + 0.4200i   0.7900 + 0.0000i
e =
   0.9339 + 0.3574i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.9339 - 0.3574i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   1.0000 + 0.0000i

the eigenvalues are returned on the diagonal of the matrix e and the corresponding 
eigenvectors are the corresponding columns of x.�

From the  defi nition of eigenvalues and eigenvectors we recall that  

where v is the eigenvector corresponding to the eigenvalue λ . For the case λ = 1

which implies that the corresponding eigenvector v is unchanged by the rotation. There 
is only one such vector and that is the one about which the rotation occurs. In the exam-
ple the third eigenvalue is equal to one, so the rotation axis is the third column of x.

2.2  ·  Working in Three Dimensions (3D)

Fig. 2.16.
Robot end-effector coordinate 

system defi nes the pose in terms 
of an  approach vector $ and an 

orientation vector &, from which 
% can be computed. %, & and 

$ vectors correspond to the x-, 
y- and z-axes respectively of the 

end-effector coordinate frame. 
(courtesy of Kinova Robotics)

This is not unique. A rotation of –theta 
about the vector –v results in the same 
orientation.

Both matrices are complex, but some 
elements are real (zero imaginary part).
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An orthonormal  rotation matrix will always have one real eigenvalue at λ = 1 and 
in general a complex pair λ = cosθ ±i sinθ  where θ  is the rotation angle. The angle 
of rotation� in this case is

>> theta = angle(e(1,1))
theta =
    0.3655

The inverse problem, converting from angle and vector to a rotation matrix, is 
achieved using  Rodrigues’ rotation  formula

 (2.18)

where [v̂]× is a   skew-symmetric matrix. We can use this formula to determine the ro-
tation of ü about the x-axis

>> R = angvec2r(pi/2, [1 0 0])
R =
    1.0000         0         0
         0    0.0000   -1.0000
         0    1.0000    0.0000 

It is interesting to note that this representation of an arbitrary rotation is parameterized 
by four numbers: three for the rotation axis, and one for the angle of rotation. This is far 
fewer than the nine numbers required by a rotation matrix. However the direction can 
be represented by a unit vector which has only two parameters� and the angle can be en-
coded in the length to give a 3-parameter representation such as *θ , * sin (θ/2), * tan (θ) 
or the   Rodrigues’ vector * tan (θ/2). While these forms are minimal and effi cient in terms 
of data storage they are analytically problematic and ill-defi ned when θ = 0.

2.2.1.6 
l

Matrix Exponentials

Consider an x-axis rotation expressed as a rotation matrix
> > R =  rotx(0.3)
R =
    1.0000         0         0
         0    0.9553   -0.2955
         0    0.2955    0.9553

As we did for the 2-dimensional case we can compute the logarithm of this matrix 
using the MATLAB builtin function logm�

>> S = logm(R)
S =
         0         0         0
         0    0.0000   -0.3000
         0    0.3000    0.0000

and the result is a sparse matrix with two elements that have a magnitude of 0.3, which 
is the original rotation angle. This matrix has a zero diagonal and is another example 
of a skew-symmetric matrix,   in this case 3 × 3.

Applying vex t o the skew-symmetric matrix gives
>> vex(S)'
ans =
    0.3000         0         0

 Olinde Rodrigues (1795–1850) was a French banker and mathematician who wrote extensively on poli-
tics, social reform and banking. He received his doctorate in mathematics in 1816 from the University 
of Paris, for work on his fi rst well known formula which is related to Legendre polynomials. His 
eponymous rotation formula was published in 1840 and is perhaps the fi rst time the representation 
of a rotation as a scalar and a vector was articulated. His formula is sometimes, and inappropriate-
ly, referred to as the Euler-Rodrigues formula. He is buried in the Pere-Lachaise cemetery in Paris.

Imagine a unit-sphere. All possible unit
vectors from the center can be described
by the latitude and longitude of the 
point at which they touch the surface of 
the sphere.

It can also be shown that the trace of a 
rotation matrix tr(R) = 1 + 2cosθ  from 
which we can compute the magnitude 
of θ  but not its sign.

 logm i s different to the builtin function 
log w hich computes the logarithm of 
each element of the matrix. A logarithm 
can be computed using a power series, 
with a matrix rather than scalar argument. 
For a matrix the logarithm is not unique 
and logm c omputes the principal loga-
rithm of the matrix.
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and we fi nd the original rotation angle is in the fi rst element, corresponding to the 
x-axis about which the rotation occurred. For the 3-dimensional case the Toolbox 
function  trlog i s equivalent�

>> [th,w] = trlog(R)
th =
    0.3000
w =
    1.0000
         0
         0

The inverse of a logarithm is exponentiation and applying the builtin MATLAB 
matrix exponential f  unction  expm�

>> expm(S)
ans =
    1.0000         0         0
         0    0.9553   -0.2955
         0    0.2955    0.9553

we have regenerated our original rotation matrix. In fact the command

>> R =  rotx(0.3);

is equivalent to

>> R = expm( skew([1 0 0]) * 0.3 );

where we have specifi ed the rotation in terms of a rotation angle a nd a rotation axis 
( as a unit-vector). This generalizes to rotation about any axis and formally we can 
write

where θ  is the rotation  angle, ë is a unit-vector parallel to the rotation axis,  and the 
notation [·]×: R3� R

3×3 indicates a mapping from a vector to a skew-symmetric 
matrix. Since [ω]×θ = [ωθ ]× we can treat ωθ ∈ R3 as a rotational parameter called 
exponential coordinates.   For the 3-dimensional case, Rodrigues’ rotation formula 
(  Eq. 2.18) is a computationally effi cient means of computing the matrix exponen-
tial f or the special case where the argument is a skew-symmetric matrix, and this 
is used by the Toolbox function  trexp w hich is equivalent to  expm.

2.2  ·  Working in Three Dimensions (3D)

In 3-dimensions the skew-symmetric matrix h  as the form

 (2.19)

which has clear structure and only three unique elements ω ∈ R3. The matrix can be used to 
implement the vector cross product v1 ×v2 = [v1]×v2. A simple example of Toolbox support for 
skew-symmetric matrices is

>> skew([1 2 3])
ans =
     0    -3     2
     3     0    -1
    -2     1     0

and the inverse operation is performed using the Toolbox function vex

> > vex(ans)'
ans =
     1     2     3

Both functions work for the 3D case, shown here, and the 2D case where the vector is a 1-vector.

trlog u ses a more efficient closed- 
form solution as well as being able to 
return the angle and axis information 
separately.

 expm i s different to the builtin function 
exp w hich computes the exponential 
of each element of the matrix:
expm(A) = I + A + A2/ 2! + A3/ 3! +�
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2.2.1.7 
l
Unit Quaternions

Quaternions came from Hamilton after his really good work had been done;
and, though beautifully ingenious, have been an unmixed evil to those

who have touched them in any way, including Clark Maxwell.
Lord Kelvin, 1892

 Quaternions were discovered by Sir William Hamilton over 150 years ago and, while 
initially controversial, have great utility for robotics. The quaternion is an extension of
the complex number – a hypercomplex number – and is written as a scalar plus a vector

 (2.20)

where s ∈R, v∈R3 and the orthogonal complex numbers i, j and k are defi ned such that

 (2.21)

and we denote a quaternion as

In the Toolbox quaternions are implemented by the  Quaternion class. Quaternions 
support addition and subtraction, performed element-wise, multiplication by a scalar 
and multiplication

which is known as the quaternion or Hamilton product.�

One early objection to quaternions was that multiplication was not commutative 
but as we have seen above this is exactly what we require for rotations. Despite the 
initial controversy quaternions are elegant, powerful and computationally straight-
forward and they are widely used for robotics, computer vision, computer graphics 
and aerospace  navigation systems.

To represent rotations we use  unit-quaternions denoted by f. These are quaterni-
ons of unit magnitude; that is, those for which �q�= s2 + v1

2 + v2
2 + v3

2 = 1. They can 
be considered as a rotation of θ  about the unit vector * which are related to the qua-
ternion components by�

 Sir William Rowan Hamilton (1805–1865) was an Irish mathematician, physicist, and astronomer. 
He was a child prodigy with a gift for languages and by age thirteen knew classical and mod-
ern European languages as well as Persian, Arabic, Hindustani, Sanskrit, and Malay. Hamilton 
taught himself mathematics at age 17, and discovered an error in Laplace’s Celestial Mechanics. 
He spent his life at Trinity College, Dublin, and was appointed Professor of Astronomy and Royal 
Astronomer of Ireland while still an undergraduate. In addition to quaternions he contributed to 
the development of optics, dynamics, and algebra. He also wrote poetry and corresponded with 
Wordsworth who advised him to devote his energy to mathematics.

According to legend the key quaternion equation, Eq. 2.21, occured to Hamilton in 1843 while 
walking along the Royal Canal in Dublin with his wife, and this is commemorated by a plaque 
on Broome bridge:

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a fl ash of ge-
nius discovered the fundamental formula for quaternion multiplication i2 = j2 = k2 = i j k = −1 
& cut it on a stone of this bridge.

His original carving is no longer visible, but the bridge is a pilgrimage site for mathemati-
cians and physicists.

As for the angle-vector representation 
this is not unique. A rotation of θ  about 
the vector –ν results in the same orienta-
tion. This is referred to as a double map-
ping or double cover.

If we write the quaternion as a 4-vector 
(s, v1, v2, v2) then multiplication can be 
expressed as a matrix-vector product 
where
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 (2.22)

and has similarities to the  angle-axis representation of Sect. 2.2.1.5.
In the Toolbox these are implemented by the  UnitQuaternion class and the 

constructor converts a passed argument such as a rotation matrix to a unit quater-
nion, for example

>> q =  UnitQuaternion(  rpy2tr(0.1, 0.2, 0.3)  )
q =
0.98335 < 0.034271, 0.10602, 0.14357 >

This class overloads a number of standard methods and functions. Quaternion mul-
tiplication� is invoked through the overloaded multiplication operator

>> q = q * q;

and inversion, the conjugate of a unit quaternion, is
>> inv(q)
ans =
0.93394 < -0.0674, -0.20851, -0.28236 >

Multiplying a quaternion by its inverse yields the   identity quaternion
>> q*inv(q)
ans =
1 < 0, 0, 0 >

which represents a null rotation, or more succinctly
>> q/q
ans =
1 < 0, 0, 0 >

The quaternion can be converted to an orthonormal   rotation matrix by 

>> q.R
ans =
    0.7536   -0.4993    0.4275
    0.5555    0.8315   -0.0081
   -0.3514    0.2436    0.9040

and we can also plot the orientation represented by a quaternion

>> q.plot()

which produces a result similar in style to that shown in Fig. 2.13. A vector is rotated 
by a quaternion using the overloaded multiplication operator

>> q*[1 0 0]'
ans =
    0.7536
    0.5555
   -0.3514

For the case of unit quaternions our generalized pose is a rotation ξ ∼ h ∈ S3 and

and

which is the  quaternion conjugate. The zero rotation 0� 1 <0, 0, 0> which is 
the  identity quaternion. A vector v ∈R3 is rotated by

where È = 0 <v> is known as a  pure quaternion.

Compounding two orthonormal rota-
tion matrices requires 27 multiplications 
and 18 additions. The quaternion form 
requires 16 multiplications and 12 ad-
ditions. This saving can be particularly 
important for embedded systems. 

2.2  ·  Working in Three Dimensions (3D)
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The Toolbox implementation is quite complete and the  UnitQuaternion class has 
many methods and properties which are described fully in the online documentation.

2.2.2 
l
Pose in 3-Dimensions

We return now to representing relative pose in three dimensions – the position and 
orientation change between the two coordinate frames as shown in Fig. 2.10. This is 
often referred to as a rigid-body displacement or rigid-body  motion.

We have discussed several different representations of orientation, and we need to com-
bine one of these with translation, to create a tangible representation of relative pose.

2.2.2.1 
l
Homogeneous Transformation Matrix

The derivation for the homogeneous transformation matrix is similar to the 2D case 
of Eq. 2.11 but extended to account for the z-dimension. t ∈R3 is a vector defi ning the 
origin of frame {B} with respect to frame {A}, and R is the 3 × 3 orthonormal matrix 
which describes the orientation of the axes of frame {B} with respect to frame {A}.

If points are represented by homogeneous coordinate vectors then

 (2.23)

and ATB is a 4 × 4  homogeneous transformation matrix. This matrix has a very specifi c struc-
ture and belongs to the  special Euclidean group of dimension 3 or  T ∈ SE(3) ⊂R4×4. 

A concrete representation of relative pose is ξ ∼ T ∈ SE(3) and T1 ⊕ T2� T1T2 
which is standard matrix multiplication.

 (2.24)

One of the rules of pose algebra from page 21 is ξ ⊕ 0 = ξ. For matrices we 
know that TI = T, where I is the identify matrix, so for pose 0� I the identity 
matrix. Another rule of pose algebra was that ξ� ξ = 0. We know for matrices 
that TT −1 = I which implies that �T� T −1

 (2.25)

The 4 × 4 homogeneous transformation is very commonly used in robotics, com-
puter graphics and computer vision. It is supported by the Toolbox and will be used 
throughout this book as a concrete representation of 3-dimensional pose.

The Toolbox has many functions to create homogeneous transformations. For ex-
ample we can demonstrate composition of transforms by
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>> T = transl(1, 0, 0) * trotx(pi/2) * transl(0, 1, 0)
T =
    1.0000         0         0    1.0000
         0    0.0000   -1.0000    0.0000
         0    1.0000    0.0000    1.0000
         0         0         0    1.0000   

The function  transl creates a relative pose with a fi nite translation but no rotation, 
while  trotx creates a relative pose corresponding to a rotation of ü about the x-axis 
with zero translation.� We can think of this expression as representing a walk along 
the x-axis for 1 unit, then a rotation by 90° about the x-axis and then a walk of 1 unit 
along the new y-axis which was the previous z-axis. The result, as shown in the last 
column of the resulting matrix is a translation of 1 unit along the original x-axis and 
1 unit along the original z-axis. The orientation of the fi nal pose shows the effect of the 
rotation about the x-axis. We can plot the corresponding coordinate frame by

>> trplot(T) 

The rotation matrix component of T is
>> t2r(T)
ans =
    1.0000         0         0
         0    0.0000   -1.0000
         0    1.0000    0.0000 

and the translation component is a column vector
>> transl(T)'
ans =
    1.0000    0.0000    1.0000 

2.2.2.2 
l

Vector-Quaternion Pair

A compact and practical representation is the vector and unit quaternion pair. It rep-
resents pose using just 7 numbers, is easy to compound, and singularity free.�

For the vector-quaternion case ξ ∼ (t, h) where t ∈R3 is a vector defi ning the 
frame’s origin with respect to the reference coordinate frame, and h ∈ S3 is the 
frame’s orientation with respect to the reference frame.

Composition is defi ned by

and negation is

and a  point coordinate vector is transformed to a coordinate frame by

 2.2.2.3 
l

Twists

In Sect. 2.1.2.3 we introduced twists for the 2D case. Any rigid-body motion i n 3D space 
is equivalent to a screw motion  – motion about and along some line in space.� We rep-
resent a screw a s a pair of 3-vectors s = (v, ω) ∈R6.

The ω component of the twist vector i s the direction of the screw axis. The v com-
ponent is called the moment and encodes the position of the line of the twist axis i n 
space and also the pitch o f the screw. The pitch is the ratio of the distance along the 
screw axis t o the rotation about the screw axis.

Pure translation can be considered as ro-
tation a bout a point at infinity.

Many Toolbox functions have variants that 
return orthonormal rotation matrices or 
homogeneous transformations, for exam-
ple, rotx and trotx, rpy2r and 
rpy2tr etc. Some Toolbox functions 
accept an orthonormal rotation matrix 
or a homogeneous transformation and 
ignore the translational component, for 
example, tr2rpy.

2.2  ·  Working in Three Dimensions (3D)

This representation is not implemented 
in the Toolbox.
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Consider the example of a rotation of 0.3 radians about the x-axis. We fi rst specify 
a unit twist�   with an axis that is parallel to the x-axis and passes through the origin

>> tw = Twist('R', [1 0 0], [0 0 0])
tw =
( -0 -0 -0; 1 0 0 )

which we convert, for the required rotation angle, to an SE(3)-homogeneous trans-
formation

> >  tw.T(0.3)
ans =
    1.0000         0         0         0
         0    0.9553   -0.2955         0
         0    0.2955    0.9553         0
         0         0         0    1.0000

and has the same value we would obtain using  trotx(0.3).
For pure translation i  n the y-direction the unit twist� would be

>> tw = Twist('T', [0 1 0])
tw =
( 0 1 0; 0 0 0 )

which we convert, for the required translation distance, to an SE(3)-homogeneous 
transformation.

 >> tw.T(2)
ans =
     1     0     0     0
     0     1     0     2
     0     0     1     0
     0     0     0     1

which is, as expected, an identity matrix rotational component (no rotation) and a 
translational component of 2 in the y-direction.

To illustrate the underlying screw  model w e defi ne a coordinate frame {X}

>> X = transl(3, 4, -4);

which we will rotate by a range of angles

>>  angles = [0:0.3:15];

around a screw axis p arallel to the z-axis, direction (0, 0, 1), through the point (2, 3, 2) 
and with a pitch of 0.5

>> tw = Twist('R', [0 0 1], [2 3 2], 0.5);

The next line packs a lot of functionality. For values of θ drawn successively from the vector 
 angles we use an anonymous function to evaluate the twist for each value of θ  and apply
it to the frame {X}. This sequence is animated and each frame in the sequence is retained

>> tranimate( @(theta) tw.T(theta) * X, angles, ...
       'length', 0.5, 'retain', 'rgb', 'notext');

and the result is shown in Fig. 2.17. We can clearly see the screw  motion i n the successive 
poses of the displaced reference frame as it is rotated about the screw axis.

The screw axis is the line

>> L = tw.line
L = 
{ 3  -2  0; 0  0  1 }

which is described in terms of its Plücker coordinates which we can plot

>> L.plot('k:', 'LineWidth', 2)

Finally we can convert an arbitrary homogeneous transformation to a nonunit twist

> > T = transl(1, 2, 3) *  eul2tr(0.3, 0.4, 0.5);
>> tw = Twist(T)
tw =
( 1.1204 1.6446 3.1778; 0.041006 0.4087 0.78907 )

A rotational unit twist has �ω�= 1.

A translational unit twist has �v�= 1 
and ω = 0.
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which has a pitch of

>> tw.pitch
ans =
    3.2256

and the rotation about the axis is
>> tw.theta
ans =
    0.8896

and a point lying on the twist axis is
>> tw.pole'
ans =
    0.0011    0.8473   -0.4389

2.3 
l
Advanced Topics

2.3.1   
l
Normalization

Floating-point arithmetic has fi nite precision� and consecutive operations will accu-
mulate error.  A rotation matrix h  as by defi nition, a determinant of one

>> R = eye(3,3);
>> det(R) - 1
ans =
     0

but if we repeatedly multiply by a valid rotation matrix the result

>> for i=1:100
     R = R * rpy2r(0.2, 0.3, 0.4);
   end
>> det(R) - 1
ans =
  4.4409e-15

indicates a small error –  the determinant i s no longer equal to one and the matrix is 
no longer a proper orthonormal rotation matrix. To fi x this we need to no rmalize the 
matrix,   a process which enforces the constraints on the columns ci of an orthonormal 
matrix R  = [c1, c2, c3]. We need to assume that one column has the correct direction

then the fi rst column is made orthogonal to the last two

Fig. 2.17.
A coordinate frame {X} dis-

played for different values of θ
about a screw parallel to the 

z-axis and passing through the 
point (2, 3, 2). The x-, y- and

z-axes are indicated by red, 
green and blue lines respectively

The IEEE standard for double precision 
floating point, the standard MATLAB 
numeric format, has around 16 decimal 
digits of precision.

2.3  ·  Advanced Topics
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However the last two columns may not have been orthogonal so

Finally the columns are all normalized to unit magnitude

In the Toolbox  normalization is implemented by

>  > R = trnorm(R);

and the determinant is now much closer to one�

 >> det(R) - 1
ans =
  -2.2204e-16

A similar issue arises for unit quaternions when the norm, or magnitude, of the unit 
quaternion is no longer equal to one. However this is much easier to fi x since normal-
izing t he quaternion simply involves dividing all elements by the norm

which is implemented by the unit method

>> q = q.unit();

The UnitQuaternion c lass also supports a variant of multiplication

>> q = q .* q2;

which performs an explicit normalization a fter the multiplication.
Normalization does not need to be done after every multiplication since it is an 

expensive operation. However for situations like the example above where one trans-
form is being repeatedly updated it is advisable.

2.3.2 
l
Understanding the Exponential  Mapping

I  n this chapter we have glimpsed some connection between rotation matrices,   skew-
symmetric matrices a  nd matrix exponentiation.  The basis for this lies in the mathemat-
ics of L ie groups w hich are covered in text books on algebraic geometry a nd algebraic 
topology.  These require substantial knowledge of advanced mathematics and many 
people starting out in robotics will fi nd their content quite inaccessible. An introduc-
tion to the essentials of this topic is given in Appendix D. In this section we will use an 
intuitive approach, based on undergraduate engineering mathematics, to shed some 
light on these relationships.

Consider a point P, defi ned by a coordinate vector p, being rotated with an angular 
velocity ω   which is a vector whose direction defi nes the axis of rotation and whose 
magnitude �ω� specifi es the rate of rotation a bout the axis which we assume passes 
through the origin.� We wish to rotate the point by an angle θ  about this axis and the 
velocity of the point is known from mechanics to be

and we replace the cross product with a skew-symmetric matrix g  iving a matrix-vec-
tor product

This error i s now at the limit of double pre-
cision arithmetic which is 2.2204 ×10−16

and given by the MATLAB function eps.

Angular velocity will be properly intro-
duced in the next chapter.
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 (2.26)

We can fi nd the solution to this fi rst-order differential  equation by analogy to the 
simple scalar case

whose solution is

This implies that the solution to Eq. 2.26 is

If �ω�= 1 then after t seconds the vector will have rotated by t radians. We require 
a rotation by θ  so we can set t = θ  to give

which describes the vector p(0) being rotated to p(θ ). A matrix that rotates a vec-
tor is a rotation matrix, and this implies that our matrix exponential i s a rotation 
matrix

Now consider the more general case of rotational and translational motion.   We 
can write

and rearranging into matrix form

and introducing homogeneous coordinates this becomes

where Σ is a 4 × 4 augmented skew-symmetric matrix.   Again, by analogy with the 
scalar case we can write the solution as

A matrix that rotates and translates a  point in homogeneous coordinates is a ho-
mogeneous transformation matrix, and this implies that our matrix exponential is a 
homogeneous transformation matrix

where [ë]×θ  defi nes the magnitude and axis of rotation and vθ  is the translation.

2.3  ·  Advanced Topics
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The exponential of a scalar can be computed using a power series,  and the matrix 
case is analogous and relatively straightforward to compute. The MATLAB function 
 expm u ses a  polynomial approximation for the general matrix case. If A is skew-sym-
metric or augmented-skew-symmetric then an effi cient closed-form solution for a 
rotation matrix – the Rodrigues’  rotation formula ( Eq. 2.18) – can be used and this is 
implemented by the Toolbox function  trexp.

 2.3.3 
l

More About Twists

In this chapter we introduced and applied twists a nd here we will more formally defi ne 
them. We also highlight the very close relationship between tw ists and homogeneous 
transformation matrices v ia the exponential mapping.

The key concept comes from Chasle’s theorem:   “any displacement of a body in space 
can be accomplished by means of a rotation of the body about a unique line in space 
accompanied by a translation of the body parallel to that line”. Such a line is called a 
screw axis a  nd is illustrated in Fig. 2.18. The mathematics of screw theory w  as devel-
oped by Sir Robert Ball i n the late 19th century for the analysis of mechanisms. At the 
core of screw theory are pairs of vectors: angular and linear   velocity;   forces a nd mo-
ments;  and Plücker coordinates (  see Sect. C.1.2.2).

The general displacement of a rigid body in 3D c an be represented by a twist vector

where v ∈R3 is referred to as the moment and encodes the position of the action line 
in space and the pitch of the screw and ω ∈ R3 is the direction of the screw axis.

For rotational  motion where the screw axis is parallel to the vector $, passes 
through a point Q defi ned by its coordinate vector q, and the screw pitch p  is the 
ratio of the distance along the screw axis t o the rotation about the axis, the twist 
elements are

and the pitch can be recovered by

For the case of pure rotation the pitch of the screw is zero and the unit twist i  s

Fig. 2.18.
Conceptual depiction of a screw. 
   A coordinate frame is attached 
to a nut by a rigid rod and rotat-
ed around the screw thread. The 
pose changes from the red frame 
to the blue frame. The corollary 
is that given any two frames we 
can determine a screw axis to 
rotate one into the other
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For purely translational  motion in the direction parallel to the vector a, the pitch 
is infi nite which leads to a zero rotational component and the unit twist is

A twist is related to the rigid-body displacement i n SE(3) by the exponential map-
ping already discussed.

where the augmented skew-symmetric matrix

belongs to the Lie algebra s e(3) and is the generator of the rigid-body displacement. 
The matrix exponential has an effi cient closed-form

where R(θ , ë) is computed using Rodrigues’  rotation formula ( Eq. 2.18). For a nonunit 
rotational twist, that is �ω� ≠ 1, then θ = �ω�.

For real numbers, if x = log X and y = log Y then

but for the matrix case this is only true if the matrices commute, and rotation 
matrices do not, therefore

The bottom line is that there is no shortcut to compounding rotations, we 
must compute z = log(exey) not z = x + y.

The Toolbox provides many ways to create twists a nd to convert them to rigid-body 
displacements e xpressed as homogeneous transformations.  Now that we understand 
more about the exponential mapping we will revisit the example from page 48

>> tw = Twist('R', [1 0 0], [0 0 0])
tw =
( -0 -0 -0; 1 0 0 )

Michel Chasles ( 1793–1880) was a French mathematician born at Épernon. He studied at the 
École Polytechnique in Paris under Poisson and in 1814 was drafted to defend Paris in the War 
of the Sixth Coalition. In 1837 he published a work on the origin and development of methods in 
geometry, which gained him considerable fame and he was appointed as professor at the École 
Polytechnique in 1841, and at the Sorbonne in 1846.

He was an avid collector and purchased over 27000 forged letters purporting to be from Newton, 
Pascal and other historical fi gures – all written in French! One from Pascal claimed he had dis-
covered the laws of gravity before Newton, and in 1867 Chasles took this to the French Academy 
of Science but scholars recognized the fraud. Eventually Chasles admitted he had been deceived 
and revealed he had spent nearly 150 000 francs on the letters. He is buried in Cimetière du Père 
Lachaise in Paris.

2.3  ·  Advanced Topics
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which is a unit twist that describes rotation about the x-axis in SE(3). The Twist h as 
a number of properties

>> tw.S'
ans =
     0     0     0     1     0     0
>> tw.v'
ans =
     0     0     0
>> tw.w'
ans =
     1     0     0

as well as various methods. We can create the se(3) Lie algebra u sing the se m ethod 
of this class

>> tw.se
ans =
     0     0     0     0
     0     0    -1     0
     0     1     0     0
     0     0     0     0

which is the augmented skew-symmetric version of S. The method T p erforms the 
exponentiation� of this to create an SE(3) homogeneous transformation f or the speci-
fi ed rotation about the unit twist

 >>  tw.T(0.3)
ans =
    1.0000         0         0         0
         0    0.9553   -0.2955         0
         0    0.2955    0.9553         0
         0         0         0    1.0000

The Toolbox functions trexp a nd trlog a re respectively closed-form alternatives 
to expm a nd logm w hen the arguments are in so(3)/se(3) or SO(3)/SE(3).

The line m ethod returns a Plucker o bject that represents the line of the screw 
in Plücker coordinates

> > tw.line
ans =
{ 0  0  0; 1  0  0 }

Finally, the overloaded multiplication  operator for the Twist c lass will compound 
two twists.

>> t2 = tw * tw
t2 =
( -0  -0  -0; 2  0  0 )
>> tr2angvec(t2.T)
Rotation: 2.000000 rad x [1.000000 0.000000 0.000000]

and the result in this case is a nonunit twist of two units, or 2 rad, about the x-axis.

T  he expm m ethod is synonomous and 
both invoke the Toolbox function trexp.

A unit twist d  escribes a family of motions t hat have a single parameter, either 
a rotation a nd translation a bout and along some screw axis, or a pure transla-
tion i  n some direction. We can visualize it as a mechanical screw in space, or 
represent it as a 6-vector S = (v, ω) where �ω�= 1 for a rotational twist and 
�v�= 1, ω = 0 for a translational twist.

A particular rigid-body motion i s described by a unit-twist s and a motion 
parameter θ  which is a scalar s pecifying the amount of rotation or translation. 
The motion is described by the twist Sθ  which is in general not a unit-twist. The 
exponential of this in 4 × 4 matrix format is the 4 × 4 homogeneous transforma-
tion matrix describing that particular rigid-body motion in SE(3).
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2.3.4 
l
Dual Quaternions

Q uaternions were developed by William Hamilton i n 1843 and we have already seen 
their utility for representing orientation,  but using them to represent pose proved 
more diffi cult. One early approach was Hamilton’s bi-quaternion w here the quaternion 
coeffi cients were complex numbers. Somewhat later William Clifford�  developed the 
dual number,   defi ned as an ordered pair d = (x, y) which can be written as d = x + yε 
where ε 2 = 0 and for which specifi c addition and multiplication rules exist. Clifford 
created a quaternion dual number with x, y ∈H which he also called a bi-quaternion 
but is today called a dual quaternion

where ñ ∈H is a unit quaternion r  epresenting the rotational part of the pose and 
ò ∈H is a pure quaternion r  epresenting translation. This type of mathematical ob-
ject has been largely eclipsed by modern matrix and vector approaches, but there 
seems to be a recent resurgence of interest in alternative approaches. The dual qua-
ternion is quite compact, requiring just 8 numbers; it is easy to compound using a 
special multiplication table; and it is easy to renormalize t o eliminate the effect of 
imprecise arithmetic. However it has no real useful computational advantage over 
matrix methods.

2.3.5 
l

Configuration Space

W  e have so far considered the pose o f objects in terms of the position and orientation 
of a coordinate frame affi xed to them. For an arm-type robot we might affi x a coor-
dinate frame to its end-effector, while for a mobile robot we might affi x a frame to its 
body – its body-fi xed frame.   This is suffi cient to describe the state of the robot in the 
familiar 2D or 3D Euclidean space w  hich is referred to as the task space o  r operational 
space s  ince it is where the robot performs tasks or operates.

An alternative way of thinking about this comes from classical mechanics and is 
referred to as the confi guration of a system.   The confi guration is the smallest set of 
parameters, called generalized coordinates,   that are required to fully describe the po-
sition of every particle in the system. This is not as daunting as it may appear since in 
general a robot comprises one or more rigid elements, and in each of these the par-
ticles maintain a constant relative offset to each other.

If the system is a train moving along a track then all the particles comprising the 
train move together and we need only a single generalized coordinate q, the distance 
along the track from some datum, to describe their location. A robot arm with a 
fi xed base and two rigid links, connected by two rotational joints has a confi guration 
that is completely described by two generalized coordinates – the two joint angles 
(q1, q2). The generalized coordinates can, as their name implies, represent displace-
ments or rotations.

Sir Robert Ball (1840–1913) w as an Irish astronomer born in Dublin. He became Professor of 
Applied Mathematics at the Royal College of Science in Dublin in 1867, and in 1874 became Royal 
Astronomer of Ireland and Andrews Professor of Astronomy at the University of Dublin. In 1892 
he was appointed Lowndean Professor of Astronomy and Geometry at Cambridge University and 
became director of the Cambridge Observatory. He was a Fellow of the Royal Society and in 1900 
became the fi rst president of the Quaternion Society.

He is best known for his contributions to the science of kinematics described in his treatise 
“The Theory of Screws” (1876), but he also published “A Treatise on Spherical Astronomy” (1908) 
and a number of popular articles on astronomy. He is buried at the Parish of the Ascension Burial 
Ground in Cambridge.

1  845–1879, an English mathematician 
and geometer.

2.3  ·  Advanced Topics
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The number of independent� generalized coordinates N is known as the number 
of degrees of  freedom o  f the system.  Any confi guration of the system is represented 
by a point in its N-dimensional confi guration space,   or  C-space, denoted by C and 
q ∈ C. We can also say that dimC= N. For the train example C⊂R which says that 
the displacement is a bounded real number. For the 2-joint robot the generalized co-
ordinates are both angles so C⊂ S1× S1.

Any  point in the confi guration space can be mapped to a  point in the task space 
q ∈ C� τ ∈ T but the inverse is not necessarily true. This mapping depends on the 
task space that we choose and this, as its name suggests, is task specifi c.

Consider again the train moving along its rail. We might be interested to describe the 
train in terms of its position on a plane in which case the task space would be T⊂R2, or 
in terms of its latitude and longitude, in which case the task space would be T⊂ S1× S1. 
We might choose a 3-dimensional task space T⊂ SE(3) to account for height changes 
as the train moves up and down hills and its orientation changes as it moves around 
curves. However in all these case the dimension of the task space exceeds the dimension 
of the confi guration space dimT> dimC and this means that the train cannot access 
all points in the task space. While every point along the rail line can be mapped to the 
task space, most points in the task space will not map to a point on the rail line. The 
train is constrained by its fi xed rails to move in a subset of the task space.

The simple 2-joint robot arm can access a subset of points in a plane so a useful 
task space might be T⊂R2. The dimension of the task space equals the dimension of 
the confi guration space dimT= dimC and this means that the mapping between task 
and confi guration spaces is bi-directional but it is not necessarily unique – for this type 
of robot, in general, two different confi gurations map to a single point in task space. 
Points in the task space beyond the physical reach of the robot are not mapped to the 
confi guration space. If we chose a task space with more dimensions such as SE(2) or 
SE(3) then dimT> dimC and the robot would only be able to access points within a 
subset of that space.

Now consider a snake-robot arm, such as shown in Fig. 8.9, with 20 joints and 
C⊂ S1×� × S1 and dimT< dimC. In this case an infi nite number of confi gurations 
in a 20 − 6 = 14-dimensional subspace of the 20-dimensional confi guration space will 
map to the same point in task space. This means that in addition to the task of position-
ing the robot’s end-effector we can simultaneously perform motion in the confi gura-
tion subspace to control the shape of the arm to avoid obstacles in the environment. 
Such a robot is referred to as over-actuated o r redundant and this topic is covered in 
Sect. 8.4.2.

  The body of a  quadrotor, such as shown in Fig. 4.19d, i s a single rigid-body whose 
confi guration is completely described by six generalized coordinates, its position and 
orientation in 3D space C⊂ R3× S1× S1× S1 where the orientation is expressed in 
some three-angle representation. For such a robot the most logical task space would 
be SE(3) which is equivalent to the confi guration space and dimT= dimC. However 
the quadrotor has only four actuators which means it cannot directly access all the 
points in its confi guration space and hence its task space. Such a robot is referred to 
as under-actuated a  nd we will revisit this in Sect. 4.2.

2.4 
l
Using the Toolbox

The Toolbox supports all the different representations discussed in this chapter as 
well as conversions between many of them. The representations and possible con-
versions are shown in tabular form in Tables 2.1 and 2.2 for the 2D and 3D cases 
respectively.

In this chapter we have mostly used native MATLAB matrices to represent rotations 
and homogeneous transformations� and historically this has been what the Toolbox 
supported – the Toolbox classic functions. From Toolbox release 10 there are classes that 

Quaternions and twists are implemented 
as classes not native types, but in very old 
versions of the Toolbox quaternions were 
1 × 4 vectors.

That is, there are no holonomic constraints 
on the system.
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Table 2.1. Toolbox supported  data 
types for representing  2D pose: 
constructors and conversions

represent rotations and homogeneous transformations, named respectively  SO2 a nd 
 SE2 f or 2 dimensions and  SO3 a nd  SE3 f or 3 dimensions. These provide real advan-
tages in terms of code readability and type safety and can be used in an almost identical 
fashion to the native matrix types. They are also polymorphic meaning they support 
many of the same operations which makes it very easy to switch between using say ro-
tation matrices and quaternions or lifting a solution from 2- to 3-dimensions. A quick 
illustration of the new functionality is the example from page 27 which becomes

>> T1 = SE2(1, 2, 30, 'deg');
>> about T1
T1 [SE2] : 1x1 (176 bytes)

which results in an  SE2 c lass object not a 3 × 3 matrix.� If we display it however it 
does look like a 3 × 3 matrix�

>> T1
 T1 =
    0.8660   -0.5000         1
    0.5000    0.8660         2
         0         0         1

The matrix is encapsulated within the object and we can extract it readily if required

>> T1.T
ans =
    0.8660   -0.5000    1.0000
    0.5000    0.8660    2.0000
         0         0    1.0000
>> about ans
ans [double] : 3x3 (72 bytes)

Returning to that earlier example we can quite simply transform the vector
>> inv(T1) * P
ans =
    1.7321
   -1.0000

and the class handles the details of converting the vector between Euclidean and ho-
mogeneous forms.

This new functionality is also covered in Tables 2.1 and 2.2, and Table 2.3 is a map 
between the classic and new functionality to assist you in using the Toolbox. From here 
on the book will use a mixture of classic functions and the newer classes.

2.4  ·  Using the Toolbox

The size of the object in bytes, shown in 
parentheses, will vary between MATLAB. 
versions and computer types.

If you have the cprintf package from 
MATLAB File Exchange installed then the 
rotation submatrix will be colored red.
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2.5 
l
Wrapping Up

In this chapter we learned how to represent points and poses in 2- and 3-dimensional 
worlds. Points are represented by coordinate vectors relative to a coordinate frame. 
A set of points that belong to a rigid object can be described by a coordinate frame, 
and its constituent points are described by constant vectors in the object’s coordinate 
frame. The position and orientation of any coordinate frame can be described relative 
to another coordinate frame by its relative pose ξ . We can think of a relative pose as a 
motion – a rigid-body motion – and these motions can be applied sequentially (com-
posed or compounded). It is important to remember that composition is noncommu-
tative – the order in which relative poses are applied is important.

We have shown how relative poses can be expressed as a pose graph or manipulated 
algebraically. We can also use a relative pose to transform a vector from one coordinate 
frame to another. A simple graphical summary of key concepts is given in Fig. 2.19.

We have discussed a variety of mathematical objects to tangibly represent pose. We 
have used orthonormal rotation matrices for the 2- and 3-dimensional case to repre-
sent orientation and shown how it can rotate a points’ coordinate vector from one co-
ordinate frame to another. Its extension, the homogeneous transformation matrix, can 
be used to represent both orientation and translation and we have shown how it can 
rotate and translate a point expressed in homogeneous coordinates from one frame 

Table 2.2. Toolbox supported  data 
types for representing  3D pose: 
constructors and conversions
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Table 2.3. Table of subsitutions 
from classic  Toolbox functions 
that operate on and return a ma-
trix, to the corresponding new 
classes and methods

to another. Rotation in 3-dimensions has subtlety and complexity and we have looked 
at various parameterizations such as Euler angles, roll-pitch-yaw angles and unit qua-
ternions. Using Lie group theory we showed that rotation matrices, from the group 
SO(2) or SO(3), are the result of exponentiating skew-symmetric generator matrices. 
Similarly, homogeneous transformation matrices, from the group SE(2) or SE(3), are 
the result of exponentiating augmented skew-symmetric generator matrices. We have 
also introduced twists as a concise way of describing relative pose in terms of rotation 
around a screw axis, a notion that comes to us from screw theory and these twists are 
the unique elements of the generator matrices.

There are two important lessons from this chapter. The fi rst is that there are 
many mathematical objects that can be used to represent pose and these are sum-
marized in Table 2.4. There is no right or wrong – each has strengths and weak-
nesses and we typically choose the representation to suit the problem at hand. 
Sometimes we wish for a vectorial representation, perhaps for interpolation, in 
which case (x, y, θ ) or (x, y, z, ¡ ) might be appropriate, but this representation can-
not be easily compounded. Sometime we may only need to describe 3D rotation 
in which case Γ  or h is appropriate. Converting between representations is easy as 
shown in Tables 2.1 and 2.2.

The second lesson is that coordinate frames are your friend. The essential fi rst step 
in many vision and robotics problems is to assign coordinate frames to all objects of 
interest, indicate the relative poses as a directed graph, and write down equations for 
the loops. Figure 2.20 shows you how to build a coordinate frame out of paper that 
you can pick up and rotate – making these ideas more tangible. Don’t be shy, embrace 
the coordinate frame.

We now have solid foundations for moving forward. The notation has been defi ned 
and illustrated, and we have started our hands-on work with MATLAB. The next chap-
ter discusses motion and coordinate frames that change with time, and after that we 
are ready to move on and discuss robots.

2.5  ·  Wrapping Up
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Further Reading

The treatment in this chapter is a hybrid mathematical and graphical approach that 
covers the 2D and 3D cases by means of abstract representations and operators which 
are later made tangible. The standard robotics textbooks such as Kelly (2013), Siciliano 
et al. (2009), Spong et al. (2006), Craig (2005), and Paul (1981) all introduce homoge-
neous transformation matrices for the 3-dimensional case but differ in their approach. 
These books also provide good discussion of the other representations such as angle-
vector and 3-angle representations. Spong et al. (2006, sect. 2.5.1) have a good discus-
sion of singularities. The book Lynch and Park (2017) covers the standard matrix ap-
proaches but also introduces twists and screws. Siegwart et al. (2011) explicitly cover 
the 2D case in the context of mobile robotics.

Quaternions are discussed in Kelly (2013) and briefl y in Siciliano et al. (2009). The 
book by Kuipers (1999) is a very readable and comprehensive introduction to quater-
nions.  Quaternion  interpolation is widely used in computer graphics and animation 
and the classic paper by Shoemake (1985) is very readable introduction to this topic. 
The fi rst publication about quaternions for robotics is probably Taylor (1979), and 
followed up in subsequent work by Funda (1990).

You will encounter a wide variety of different  notation for rotations and transfor-
mations in textbooks and research articles. This book uses ATB to denote a transform 
giving the pose of frame {B} with respect to frame {A}. A common alternative  notation 
is TA

B or even ABT. To denote points this book uses ApB to denote a vector from the ori-
gin of frame {A} to the point B whereas others use pA

B, or even CpA
B to denote a vector 

Fig. 2.19.
Everything you need to know 
about pose

Table 2.4. Summary of the various 
concrete representations of  pose ξ 
introduced in this chapter
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from the origin of frame {A} to the point B but with respect to coordinate frame {C}. 
Twists can be written as either (v, ω) as in this book, or as (ω , v).

Historical and general. Hamilton and his supporters, including  Peter Tait, were vigor-
ous in defending Hamilton’s   precedence in inventing quaternions, and for opposing the 
concept of vectors which were then beginning to be understood and used. Rodrigues 
developed his eponymous formula in 1840 although Gauss discovered it in 1819 but, 
as usual, did not publish it.   It was published in 1900. Quaternions had a tempestuous 
beginning. The paper by Altmann (1989) is an interesting description on this tussle of 
ideas, and quaternions have even been woven into fi ction (Pynchon 2006).

Exercises

1. Explore the many options associated with trplot.
2. Animate a rotating cube

a) Write a function to plot the edges of a cube centered at the origin.
b) Modify the function to accept an argument which is a homogeneous transfor-

mation which is applied to the cube vertices before plotting.
c) Animate rotation about the x-axis.
d) Animate rotation about all axes.

3. Create a vector-quaternion class to describe pose and which supports composition, 
inverse and point transformation.

4. Create a 2D rotation matrix. Visualize the rotation using  trplot2.  Use it to trans-
form a vector. Invert it and multiply it by the original matrix; what is the result? 
Reverse the order of multiplication; what is the result? What is the determinant of 
the matrix and its inverse?

5. Create a 3D rotation matrix. Visualize the rotation using  trplot o r  tranimate. 
 Use it to transform a vector. Invert it and multiply it by the original matrix; what 
is the result? Reverse the order of multiplication; what is the result? What is the 
determinant of the matrix and its inverse?

6. Compute the matrix exponential using the power series. How many terms are re-
quired to match the result shown to standard MATLAB precision?

7. Generate the sequence of plots shown in Fig. 2.12.
8. For the 3-dimensional rotation about the vector [2, 3, 4] by 0.5 rad compute 

an SO(3) rotation matrix using: the matrix exponential functions  expm a nd 
 trexp,  Rodrigues’ rotation formula (code this yourself), and the Toolbox function 
 angvec2tr.  Compute the equivalent unit quaternion.

9. Create two different rotation matrices, in 2D or 3D, representing frames {A} and {B}. 
Determine the rotation matrix ARB and BRA. Express these as a rotation axis and 
angle, and compare the results. Express these as a twist.

Fig. 2.20.
Build your own coordinate frame. 

a Get the PDF fi le from http://
www.petercorke.com/axes.pdf; 
b cut it out, fold along the dot-

ted lines and add a staple. Voila!

2.5  ·  Wrapping Up
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10. Create a 2D or 3D homogeneous transformation matrix. Visualize the rigid-body 
displacement using tranimate.  Use it to transform a vector. Invert it and multi-
ply it by the original matrix, what is the result? Reverse the order of multiplication; 
what happens?

11. Create two different rotation matrices, in 2D or 3D, representing frames {A} and {B}. 
Determine the rotation matrix ARB and BRA. Express these as a rotation axis and 
angle and compare the results. Express these as a twist.

12. Create three symbolic variables to represent roll, pitch and yaw angles, then use these 
to compute a rotation matrix using rpy2r.  You may want to use the  simplify 
f unction on the result. Use this to transform a unit vector in the z-direction. Looking 
at the elements of the rotation matrix devise an algorithm to determine the roll, 
pitch and yaw angles. Hint – fi nd the pitch angle fi rst.

13. Experiment with the tripleangle a pplication in the Toolbox. Explore roll, pitch 
and yaw motions about the nominal attitude and at singularities.

14. If you have an iPhone or iPad download from the App Store the free “Euler Angles” 
app by École de Technologie Supérieure and experiment with it.

15. Using Eq. 2.24 show that TT −1 = I.
16. Is the inverse of a homogeneous transformation matrix equal to its transpose?
17. In Sect. 2.1.2.2 we rotated a frame about an arbitrary point. Derive the expression 

for computing RC that was given.
18. Explore the effect of negative roll, pitch or yaw angles. Does transforming from 

RPY angles to a rotation matrix then back to RPY angles give a different result to 
the starting value as it does for Euler angles?

19. From page 53 show that ex ey ≠ ex+y for the case of matrices. Hint – expand the fi rst 
few terms of the exponential series.

20. A camera has its z-axis parallel to the vector [0, 1, 0] in the world frame, and its
y-axis parallel to the vector [0, 0, −1]. What is the attitude of the camera with respect 
to the world frame expressed as a rotation matrix and as a unit quaternion?
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3

In the previous chapter we learned how to describe the pose of objects in 
2- or 3-dimensional space. This chapter extends those concepts to poses 
that change as a function of time. Section 3.1 introduces the derivative of 
 time-varying position, orientation and pose and relates that to concepts 
from mechanics such as velocity and angular velocity. Discrete-time ap-
proximations to the derivatives are covered which are useful for computer 
implementation of algorithms such as inertial  navigation. Section 3.2 is a 
brief introduction to the dynamics of objects moving under the infl uence 
of forces and torques and discusses the important difference between in-
ertial and noninertial reference frames.

Section 3.3 discusses how to generate a temporal sequence of poses, 
a trajectory, that smoothly changes from an initial pose to a fi nal pose. 
For robots this could be the path of a robot gripper moving to grasp an 
object or the fl ight path of a fl ying robot. Section 3.4 brings many of 
these topics together for the important application of inertial naviga-
tion. We introduce three common types of inertial sensor and learn 

how to how to use their measurements to update the estimate of pose for a moving 
object such as a robot.

3.1  
l
Time-Varying Pose

In this section we discuss how to describe the rate of change of pose  which has both a 
translational and rotational velocity   component. The translational velocity is straight-
forward: it is the rate of change of the position of the origin of the coordinate frame. 
Rotational velocity is a little more complex.

3.1.1 
l
Derivative of Pose 

There are many ways to represent the  orientation of a coordinate frame but most con-
venient for present purposes is the exponential form

where the rotation is described by a rotational axis  Aë(t) defi ned with respect to 
frame {A} and a rotational angle θ (t), and where [·]× is a skew-symmetric matrix  .

At an instant in time t we will assume that the axis has a fi xed direction and the 
frame is rotating around the axis. The derivative with respect to time is

 Time and  Motion
The only reason for time is

so that everything doesn’t happen at once
Albert Einstein
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which we write succinctly as

 (3.1)

where Aω = AëË  is the angular velocity   in frame {A}. This is a vector quantity 
Aω = (ωx, ωy, ωz) that defi nes the instantaneous axis  and rate of rotation . The direc-
tion of Aω is parallel to the axis about which the coordinate frame is rotating at a 
particular instant of time, and the magnitude �Aω� is the rate of rotation about that 
axis.� Note that the derivative of a rotation matrix is not a rotation matrix, it is a general 
3×3 matrix.

Consider now that angular velocity is expressed in frame {B} and we know that

and using the identity [Av]× = A[v]×AT it follows that

 (3.2)

The derivative of a unit quaternion  , the quaternion equivalent of Eq. 3.1, is defi ned as

 (3.3)

where ì is a pure quaternion   formed from the angular velocity vector. These are im-
plemented by the Toolbox methods dot  and dotb  respectively. The derivative of a 
unit-quaternion is not a unit-quaternion, it is a regular quaternion which can also be 
considered as a 4-vector.

The derivative of pose   can be determined by expressing pose as a homogeneous 
transformation matrix  

and taking the derivative with respect to time and substituting Eq. 3.1 gives

The rate of change can be described in terms of the current orientation ARB and two 
velocities. The linear or translational velocity v = A´B is the velocity of the origin of 
{B} with respect to {A}. The angular velocity AωB we have already introduced. We can 
combine these two velocity vectors to create the spatial velocity vector  

which is the instantaneous velocity of frame {B} with respect to {A}.
Every  point in the body has the same angular velocity. Knowing that, plus the trans-

lational velocity vector of any point is enough to fully describe the instantaneous mo-
tion of a rigid body. It is common to place {B} at the body’s center of mass.

3.1.2 
l

Transforming Spatial  Velocities 

The velocity of a moving body can be expressed with respect to a world reference 
frame {A} or the moving body frame {B} as shown in Fig. 3.1. The spatial velocities 
are linearly related by

For a tumbling object the axis of rotation 
changes with time.
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(3.4)

where AξB ∼ (ARB, AtB) and AJB(·) is a Jacobian or interaction matrix. For example, we 
can defi ne a body-fi xed frame and a spatial velocity in that frame

>> TB = SE3(1, 2, 0) * SE3.Rz(pi/2);
>> vb = [0.2 0.3 0 0 0 0.5]';

and the spatial velocity in the world frame is
>> va = TB.velxform * vb;
>> va'
ans =
    0.2000    0.0000    0.3000         0   -0.5000    0.0000

For the case where frame {C} is also on the moving body the transformation becomes

and involves the adjoint matrix of the relative pose which is discussed in Appendix D. 
Continuing the example above we will defi ne an additional frame {C} relative to frame {B}

>> TBC = SE3(0, 0.4, 0);

To determine velocity at the origin of this frame we fi rst compute CξB

>> TCB = inv(TBC);

and the velocity in frame {C} is
>> vc = TBC.Ad * vb;
>> vc'
ans =
         0    0.3000         0         0         0    0.5000

which has zero velocity in the xC-direction since the rotational and translational ve-
locity components cancel out.

Some texts introduce a velocity twist  V  which is different to the spatial velocity 
introduced above.� The velocity twist of a body-fixed frame {B} is BV = (Bv, Bω) 
which has a translational and rotational velocity   component but Bv is the body-
frame velocity of an imaginary point rigidly attached to the body and located at 
the world frame origin. The body- and world-frame velocity twists are related by 
the adjoint matrix rather than Eq. 3.4. The velocity twist is the dual of the  wrench 
described in Sect. 3.2.2.�

Lynch and Park (2017) use the term ve-
locity twist while Murray et al. 1994 call 
this a spatial velocity .

The scalar product of a velocity twist and 
a wrench represents power.

Fig. 3.1.
Representing the spatial velocity   
of a moving body b with respect 

to various coordinate frames. 
Note that ν is a 6-dimensional 

vector

3.1  ·  Time-Varying Pose
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3.1.3 
l
Incremental Rotation 

The physical meaning of ½ is not intuitively obvious – it is simply the way that the 
elements of R change with time. To gain some insight we consider a fi rst-order ap-
proximation to the derivative�

 (3.5)

Consider an object whose body frames {B} at two consecutive timesteps are related 
by a small rotation BR∆ expressed in the body frame

We substitute Eq. 3.2 into 3.5 and rearrange to obtain

 (3.6)

which says that an infi nitesimally small rotation can be approximated by the sum of 
a skew-symmetric matrix  and an identity matrix .� For example

>>  rotx(0.001)
ans =
    1.0000         0         0
         0    1.0000   -0.0010
         0    0.0010    1.0000

Equation 3.6 directly relates rotation between timesteps to the angular velocity. 
Rearranging it allows us to compute the approximate angular velocity vector 

from two consecutive rotation matrices where ∨×(·) is the inverse skew-symmetric ma-
trix operator such that if S = [v]× then v = ∨× (S). Alternatively, if the angular velocity 
in the body frame is known we can approximately update the rotation matrix

 (3.7)

which is cheap to compute, involves no trigonometric operations, and is key to inertial 
navigation systems which we discuss in Sect. 3.4.

Adding any nonzero matrix to a rotation matrix   results in a matrix that is not a 
rotation matrix.� However if the increment is sufficiently small, that is the an-
gular velocity and/or sample time is small,� the result will be close to ortho-
normal and we can straighten it up. The resulting  matrix should be normalized, 
as discussed in Sect. 2.3.1, to make it a proper rotation matrix. This is a com-
mon approach when implementing inertial navigation systems  on low-end 
computing hardware.

We can also approximate the quaternion derivative by a fi rst-order difference�

which combined with Eq. 3.3 gives us the approximation

This is the first two terms of the Rod-
rigues’ rotation formula on, Eq. 2.18, 
when θ = δtω.

Similar to the case for SO(n), addition 
and subtraction are not operators for the 
unit-quaternion group S3 so the result 
will be a quaternion q ∈H for which ad-
dition and substraction are permitted. 
The Toolbox supports this with overload-
ed operators + and - and appropriate 
object class conversions.

The only valid operator for the group 
SO(n) is composition ⊕, so the result of 
subtraction cannot belong to the group. 
The result is a 3 × 3 matrix of element-
wise differences. Groups are introduced 
in Appendix D. 

The only valid operator for the group 
SO(n) is composition ⊕, so the result of 
addition cannot be within the group. The 
result is a general 3 × 3 matrix.

Which is why inertial navigation sys-
tems operate at a high sample rate and 
δt is small.
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 (3.8)

which is even cheaper to compute than the rotation matrix approach. Adding a non-
zero vector to a unit-quaternion results in a nonunit quaternion but if the angular ve-
locity and/or sample time is small then the approximation is reasonable. Normalizing 
the result to create a unit-quaternion is computationally cheaper than normalizing a 
rotation matrix,   as discussed in Sect. 2.3.1.

3.1.4 
l
Incremental Rigid-Body  Motion

Consider two poses ξ1 and ξ2 which differ infi nitesimally and are related by

where ξ∆ =�ξ1 ⊕ ξ2. In homogeneous transformation matrix form

where t∆ is an incremental displacement and R∆ is an incremental rotation matrix 
which will be skew symmetric with only three unique elements ∨x(R∆ − I3×3) plus an 
identity matrix. The incremental rigid-body motion can therefore be described by 
just six parameters

where ∆ξ = (∆t, ∆R) can be considered as a spatial displacement  .� A body with con-
stant spatial velocity ν for δt seconds undergoes a spatial displacement of ∆ξ = δt ν.

The inverse  operator

is given by

The spatial displacement  operator and its inverse are implemented by the Toolbox 
functions tr2delta  and delta2tr  respectively. These functions assume that the 
displacements are infi nitesimal and become increasingly approximate with displace-
ment magnitude.

This is useful in optimization procedures 
that seek to minimize the error between 
two poses: we can choose the cost func-
tion e = �∆(ξ1, ξ2)� which is equal to 
zero when ξ1 ≡ ξ2. This is very approxi-
mate when the poses are significantly 
different, but becomes ever more accu-
rate as ξ1 → ξ2.

 Sir Isaac Newton (1642–1727) was an English mathematician and alchemist. He was Lucasian pro-
fessor of mathematics at Cambridge, Master of the Royal Mint, and the thirteenth president of 
the Royal Society. His achievements include the three laws of motion, the mathematics of gravi-
tational attraction, the motion of celestial objects and the theory of light and color (see page 287), 
and building the fi rst refl ecting telescope.

Many of these results were published in 1687 in his great 3-volume work “The Philosophiae 
Naturalis Principia Mathematica” (Mathematical principles of natural philosophy). In 1704 he pub-
lished “Opticks” which was a study of the nature of light and color and the phenomena of diffrac-
tion. The SI unit of force is named in his honor. He is buried in Westminster Abbey, London.

3.1  ·  Time-Varying Pose
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3.2 
l
Accelerating Bodies  and Reference Frames 

So far we have considered only the fi rst derivative, the velocity of coordinate frames . 
However all motion is ultimately caused by a force  or a torque which leads to accel-
eration and the consideration of dynamics.

3.2.1  
l
Dynamics of Moving Bodies 

For translational  motion Newton’s second  law   describes, in the inertial frame  , the ac-
celeration of a particle with position x and mass m

 (3.9)

due to the applied force f.
Rotational  motion in SO(3) is described by Euler’s equations of motion    which re-

lates the angular acceleration of the body in the body frame

 (3.10)

to the applied torque or moment τ and a positive-defi nite rotational inertia matrix 
BJ ∈ R3×3.� Nonzero angular acceleration  implies that angular velocity , the axis 
and/or angle of rotation , evolves over time.�

Consider the motion of a tumbling object  which we can easily simulate. We defi ne 
an inertia matrix�

>> J = [2 -1 0;-1 4 0;0 0 3];

and initial conditions for orientation and  angular velocity

>> attitude = UnitQuaternion(); 
>> w = 0.2*[1 2 2]';

The simulation loop computes  angular acceleration  with Eq. 3.10, uses rectangu-
lar integration to obtain angular velocity and attitude, and then updates a graphical 
coordinate frame

>> dt = 0.05;
>> h = attitude.plot();
>> for t=0:dt:10
        wd = -inv(J) * (cross(w, J*w));
        w = w + wd*dt; attitude = attitude .* UnitQuaternion.omega(wd*dt); 
        attitude.plot('handle', h); pause(dt)
   end

The  rotational inertia of a body that moves in SE(3) is represented by the 3 × 3 symmetric 
matrix

The diagonal elements are the  positive moments of inertia, and the off-diagonal elements are 
 products of inertia. Only six of these nine elements are unique: three moments and three prod-
ucts of inertia. The products of inertia are all zero if the object’s mass distribution is symmetrical 
with respect to the coordinate frame.

Notice that inertia has an associated ref-
erence frame, it is a matrix and its ele-
ments depend on the choice of the co-
ordinate frame.

In the absence of torque a body gener-
ally rotates with a time-varying angular 
velocity  – this is quite different to the 
linear velocity  case. It is angular momen-
tum   h= Jω  in the inertial frame that 
is constant.

The matrix must be positive definite, that 
is symmetric and all its eigenvalues are 
positive.
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3.2.2 
l

Transforming Forces and Torques

The spatial velocity   is a vector quantity that represents translational and rotational veloc-
ity  . In a similar fashion we can combine translational force  and rotational torque  into a 
6-vector that is called a  wrench  W = ( fx, fy, fz, mx, my, mz) ∈R6. A wrench BW is defi ned 
with respect to the coordinate frame {B} and applied at the origin of that frame.

The wrench CW is equivalent if it causes the same motion of the body when applied 
to the origin of coordinate frame {C} and defi ned with respect to {C}. The wrenches 
are related by

 (3.11)

which is similar to the spatial velocity transform of Eq. 3.4 but uses the transpose of 
the adjoint of the inverse relative pose.

Continuing the MATLAB example from page 65 we defi ne a wrench with respect to 
frame {B} with forces of 3 and 4 Nm in the x- and y-directions respectively

>> WB = [3 4 0 0 0 0]';

The equivalent wrench in frame {C} would be
>> WC = TBC.Ad' * WB;
>> WC'
ans =
    3.0000    4.0000         0         0         0    1.2000

which is the same forces as applied at {B} plus a torque of 1.2 Nm about the z-axis to counter 
the moment due to the application of the x-axis force along a different line of action.

3.2.3 
l
Inertial Reference Frame

The term inertial reference frame   is frequently used in robotics and it is crisply defi ned 
as “a reference frame that is not accelerating or rotating”.  

Consider a particle P at rest with respect to a stationary reference frame {0}. Frame {B} 
is moving with constant velocity 0vB relative to frame {0}. From the perspective of {B} 
the particle would be moving at constant velocity, in fact BvP = −0vB. The particle is 
not accelerating and obeys  Newton’s fi rst law   “that in the absence of an applied force 
a particle moves at a constant velocity”. Frame {B} is therefore also an inertial refer-
ence frame.

Now imagine that frame {B} is accelerating at a constant acceleration 0aB with re-
spect to {0}. From the perspective of {B} the particle appear to be accelerating, in fact 
BaP = −0aB and this violates Newton’s fi rst law. An observer in frame {B} who was 
aware of Newton’s  theories might invoke some magical force to explain what they ob-
serve. We call such a force a fi ctitious  , apparent, pseudo, inertial or d’Alembert force        
– they only exist in an accelerating or noninertial reference frame. This accelerating 

 Gaspard-Gustave de Coriolis (1792–1843) was a French mathematician, mechanical engineer and 
scientist. Born in Paris, in 1816 he became a tutor at the École Polytechnique where he carried 
out experiments on friction and hydraulics and later became a professor at the École des Ponts 
and Chaussées (School of Bridges and Roads). He extended ideas about kinetic energy and work 
to rotating systems and in 1835 wrote the famous paper Sur les équations du mouvement rela-
tif des systèmes de corps (On the equations of relative motion of a system of bodies) which dealt 
with the transfer of energy in rotating systems such as waterwheels. In the late 19th century his 
ideas were picked up by the meteorological community to incorporate effects due to the Earth’s 
rotation. He is buried in Paris’s Montparnasse Cemetery.

3.2  ·  Accelerating Bodies and Reference Frames
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frame {B} is not an inertial reference frame. In Newtonian mechanics, gravity is consid-
ered a real body force mg – a free object will  accelerate relative to the inertial frame.�

An everyday example of a noninertial reference frame   is an accelerating car or 
airplane. Inside an accelerating vehicle we observe fi ctitious forces pushing objects 
around in a way that is not explained by Newton’s law in an inertial reference frame. 
We also experience real forces acting on our body which, in this case, are provided by 
the seat and the restraint. 

For a rotating reference frame things are more complex still. Imagine that you and 
a friend are standing on a large rotating turntable, and throwing a ball back and forth. 
You will observe that the ball follows a curved path in space.� As a Newton-aware ob-
server in this noninertial reference frame you would have to resort to invoking some 
magical force that explains why fl ying objects follow curved paths.

If the reference frame {B} is rotating with  angular velocity ω  about its origin then 
Newton’s second  law Eq. 3.9 becomes

with three new acceleration terms. Centripetal acceleration   always acts inward toward 
the origin. If the point is moving then Coriolis acceleration   will be normal to its ve-
locity. If rotational velocity is time varying then Euler acceleration   will be normal to 
the position vector. Frequently the centripetal term is moved to the right-hand side in 
which case it becomes a fi ctitious outward centrifugal force. This complexity is symp-
tomatic of being in a noninertial reference frame, and another  defi nition of an inertial 
frame is one in which the “physical laws hold good in their simplest form”.�

In robotics the term inertial frame and world coordinate frame tend to be used 
loosely and interchangeably to indicate a frame fi xed to some point on the Earth. 
This is to distinguish it from   the body-frame attached to the robot or vehicle. The 
surface of the  Earth is an approximation of an inertial reference frame – the effect 
of the Earth’s rotation is a fi nite acceleration less than 0.04 m s−2 due to centripetal 
acceleration  . From the perspective of an Earth-bound observer a moving body will 
experience Coriolis acceleration  . Both effects are small,� dependent on latitude, and 
typically ignored.

3.3 
l
Creating  Time-Varying Pose 

In robotics we often need to generate a time-varying pose that moves smoothly in 
translation and rotation. A  path is a spatial construct – a locus in space that leads from 
an initial pose to a fi nal pose. A  trajectory is a path with specifi ed timing. For example 
there is a path from A to B, but there is a trajectory from A to B in 10 s or at 2 m s−1.

An important characteristic of a trajectory is that it is smooth – position and orienta-
tion vary smoothly with time. We start by discussing how to generate smooth trajectories 
in one dimension. We then extend that to the multi-dimensional case and then to piece-
wise-linear trajectories that visit a number of intermediate points without stopping.

3.3.1 
l
Smooth One-Dimensional Trajectories

We start our discussion with a scalar function of  time. Important characteristics of 
this function are that its initial and fi nal value are specifi ed and that it is smooth. 
Smoothness in this context means that its fi rst few temporal derivatives are continu-
ous. Typically velocity and acceleration are required to be continuous and sometimes 
also the derivative of acceleration or  jerk.

Of course if we look down onto the turn-
table from an inertial reference frame the 
ball is moving in a straight line.

Einstein, “The foundation of the general 
theory of relativity”.

Coriolis acceleration is significant for 
weather systems and meteorological 
prediction but below the sensitivity 
of low-cost sensors.

Albert Einstein’s  equivalence  principle   
is that “we assume the complete physical 
equivalence of a gravitational field and a 
corresponding acceleration of the refer-
ence system” – we are unable to distinguish 
between gravity and being on a rocket ac-
celerating at 1 g far from the gravitational 
influence of any celestial object.
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An obvious candidate for such a function is a  polynomial function of  time.  Poly-
nomials are simple to compute and can easily provide the required smoothness and 
boundary conditions. A quintic (fi fth-order) polynomial is often used 

 (3.12)

where time t ∈ [0, T]. The fi rst- and second-derivatives are also smooth polynomials

 (3.13)

 (3.14)

The trajectory has defi ned boundary conditions for position, velocity and acceleration� 
and frequently the velocity and acceleration boundary conditions are all zero.

Writing Eq. 3.12 to Eq. 3.14 for the boundary conditions t = 0 and t = T gives six 
equations which we can write in matrix form as

Since the matrix is square� we can solve for the coeffi cient vector (A, B, C, D, E, F) using 
standard linear algebra methods such as the MATLAB  \- operator.  For a quintic poly-
nomial acceleration will be a smooth cubic polynomial, and jerk will be a parabola.

The Toolbox function  tpoly generates a quintic  polynomial trajectory as described 
by Eq. 3.12. For example

>>  tpoly(0, 1, 50);

generates a polynomial trajectory and plots it, along with the corresponding velocity 
and acceleration, as shown in Fig. 3.2a. We can get these values into the workspace 
by providing output arguments

>> [s,sd,sdd] =  tpoly(0, 1, 50);

where s, sd and sdd are respectively the trajectory, velocity and acceleration – each 
a 50 × 1 column vector. We observe that the initial and fi nal velocity and acceleration 

This is the reason for choice of quintic 
polynomial. It has six coefficients that 
enable it to meet the six boundary con-
ditions on initial and final position, ve-
locity and acceleration.

Fig. 3.2. Quintic polynomial tra-
jectory. From top to bottom is 
position, velocity and accelera-
tion versus time step. a With zero-
velocity boundary conditions, 
b initial velocity of 0.5 and a fi -
nal velocity of 0. Note that veloc-
ity and acceleration are in units 
of timestep not seconds

3.3  ·  Creating Time-Varying Pose
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are all zero – the default value. The initial and fi nal velocities can be set to nonzero 
values

>>  tpoly(0, 1, 50, 0.5, 0); 

in this case, an initial velocity of 0.5 and a fi nal velocity of 0. The results shown in 
Fig. 3.2b illustrate an important problem with polynomials. The nonzero initial ve-
locity causes the polynomial to overshoot the terminal value – it peaks at 5 on a tra-
jectory from 0 to 1.

Another problem with polynomials, a very practical one, can be seen in the middle 
graph of Fig. 3.2a. The velocity  peaks at k = 25 which means that for most of the time 
the velocity is far less than the maximum. The mean velocity

>> mean(sd) / max(sd)
ans =
    0.5231

is only 52% of the peak so we are not using the motor as fully as we could. A real robot 
joint has a well defi ned  maximum velocity and for minimum-time motion we want to 
be operating at that maximum for as much of the time as possible. We would like the 
velocity curve to be fl atter on top.

A well known alternative is a   hybrid trajectory which has a constant velocity seg-
ment with polynomial segments for acceleration and deceleration. Revisiting our fi rst 
example the hybrid trajectory is

>> lspb(0, 1, 50); 

where the arguments have the same meaning as for tpoly and the trajectory is shown 
in Fig. 3.3a. The trajectory comprises a linear segment (constant velocity) with para-
bolic  blends, hence the name lspb.  The term  blend is commonly used to refer to a 
trajectory segment that smoothly joins linear segments. As with tpoly we can also 
return the trajectory and its velocity and acceleration

>> [s,sd,sdd] = lspb(0, 1, 50); 

This type of trajectory is also referred to as  trapezoidal due to the  shape of the velocity 
curve versus time, and is commonly used in industrial motor drives.�

The function lspb has chosen the velocity of the linear segment to be

>> max(sd)
ans =
    0.0306

but this can be overridden by specifying it as a fourth input argument

Fig. 3.3. Linear segment with par-
abolic blend (LSPB) trajectory: 
a default velocity for linear seg-
ment; b specifi ed linear segment 
velocity values

The trapezoidal trajectory is smooth in 
velocity, but not in acceleration.
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>> s = lspb(0, 1, 50, 0.025);
>> s = lspb(0, 1, 50, 0.035);  

The trajectories for these different cases are overlaid in Fig. 3.3b. We see that as the 
velocity of the linear segment increases its duration decreases and ultimately its du-
ration would be zero. In fact the velocity cannot be chosen arbitrarily�, too high or 
too low a value for the maximum velocity will result in an infeasible trajectory and 
the function returns an error.

3.3.2 
l
Multi-Dimensional Trajectories

Most useful robots have more than one  axis of  motion and it is quite straightforward 
to extend the smooth scalar trajectory to the vector case. In terms of confi guration 
space (Sect. 2.3.5), these axes of motion correspond to the dimensions of the robot’s 
confi guration space – to its  degrees of  freedom. We represent the robot’s confi gura-
tion as a vector q ∈RN where N is the number of degrees of freedom. The confi gu-
ration of a 3-joint robot would be its joint angles q = (q 1, q2, q3). The confi guration 
vector of wheeled mobile robot might be its position q = (x, y) or its position and head-
ing angle q = (x, y, θ ). For a 3-dimensional body that had an orientation in SO(3) we 
would use a confi guration vector q = (θ r, θ p, θ y) or for a pose in SE(3) we would use 
q = (x, y, z, θ r, θ p, θ y)�. In all these cases we would require smooth multi-dimensional 
 motion from an initial confi guration vector to a fi nal confi guration vector.

In the Toolbox this is achieved using the function mtraj and to move from con-
fi guration (0, 2) to (1, −1) in 50 steps we write

>> q = mtraj(@lspb, [0 2], [1 -1], 50);  

which results in a 50 × 2 matrix q with one row per time step and one column per axis. 
The fi rst argument is a handle to a function that generates a scalar trajectory, @lspb 
as in this case or @tpoly. The trajectory for the @lspb case

>> plot(q)

is shown in Fig. 3.4.
If we wished to create a trajectory for 3-dimensional pose we might consider con-

verting a pose T to a 6-vector by a command like

   q = [T1.t'  T1.torpy]

though as we shall see later interpolation of 3-angle representations has some limi-
tations.

The system has one design degree of 
freedom. There are six degrees of free-
dom (blend time, three parabolic coef-
ficients and two linear coefficients) and 
five constraints (total time, initial and fi-
nal position and velocity).

Fig. 3.4.
Multi-dimensional motion.

q1 varies from 0 → 1 and
q2 varies from 2 → −1

Or an equivalent 3-angle representation.

3.3  ·  Creating Time-Varying Pose
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3.3.3  
l
Multi-Segment  Trajectories

In robotics applications there is often a need to move smoothly along a path through one or 
more intermediate or via  points without stopping. This might be to avoid obstacles in the 
workplace, or to perform a task that involves following a piecewise continuous  trajectory 
such as welding a seam or applying a bead of sealant in a manufacturing application.

To formalize the problem consider that the trajectory is defi ned by M confi gurations 
qk, k ∈ [1, M] and there are M−1  motion segments. As in the previous section qk ∈RN 
is a vector representation of confi guration.

The robot starts from q1 at rest and fi nishes at qM at rest, but moves through (or close 
to) the intermediate confi gurations without stopping. The problem is over constrained 
and in order to attain continuous velocity we surrender the ability to reach each inter-
mediate confi guration. This is easiest to understand for the 1-dimensional case shown 
in Fig. 3.5. The motion comprises linear motion segments with polynomial blends, like 
lspb, but here we choose quintic polynomials because they are able to match bound-
ary conditions on position, velocity and acceleration at their start and end points.

The fi rst segment of the  trajectory accelerates from the initial confi guration q1 and 
zero velocity, and joins the line heading toward the second confi guration q2. The blend 
time is set to be a constant tacc and tacc / 2 before reaching q2 the trajectory executes 
a polynomial blend, of duration tacc, onto the line from q2 to q3, and the process re-
peats. The constant velocity ¸k can be specifi ed for each segment. The average accel-
eration during the blend is

If the maximum acceleration capability of the axis is known then the minimum blend 
time can be computed.�

On a particular motion segment each axis will have a different distance to travel and 
traveling at its maximum speed there will be a minimum time before it can reach its 
goal. The fi rst step in planning a segment is to determine which axis will be the slow-
est to complete the segment, based on the distance that each axis needs to travel for 
the segment and its maximum achievable velocity. From this the duration of the seg-
ment can be computed and then the required velocity of each axis. This ensures that 
all axes reach the next target qk at the same time.

The Toolbox function mstraj generates a multi-segment multi-axis  trajectory 
based on a matrix of via points. For example 2-axis motion via the corners of a rotat-
ed square can be generated by

>> via =  SO2(30, 'deg') * [-1 1; 1 1; 1 -1; -1 -1]';
>> q0 = mstraj(via(:,[2 3 4 1])', [2,1], [], via(:,1)', 0.2, 0);

The fi rst argument is the matrix of via points, each row is the coordinates of a point. The 
remaining arguments are respectively: a vector of maximum speeds per axis, a vector of 

The real limit of the axis will be its peak, 
rather than average, acceleration. The 
peak acceleration for the blend can be 
determined from Eq. 3.14 once the quin-
tic coefficients are known.

Fig. 3.5.
Notation for multi-segment tra-
jectory showing four points and 
three motion segments. Blue indi-
cates constant velocity motion, red 
indicates regions of acceleration
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durations for each segment,� the initial confi guration, the sample time step, and the accel-
eration time.� The function mstraj returns a matrix with one row per time step and the 
columns correspond to the axes. We can plot q2 against q1 to see the path of the robot

>> plot(q0(:,1), q0(:,2))

and is shown by the red path in Fig. 3.6a. If we increase the acceleration time

>> q2 = mstraj(via(:,[2 3 4 1])', [2,1], [], via(:,1)', 0.2, 2);

the trajectory becomes more rounded (blue path) as the polynomial blending functions 
do their work. The smoother trajectory also takes more time to complete.

>> [numrows(q0) numrows(q2)]
ans =
   28   80 

The confi guration variables as a function of time are shown in Fig. 3.6b. This func-
tion also accepts optional initial and fi nal velocity arguments and tacc can be a vector 
specifying different acceleration times for each of the N blends.

Keep in mind that this function simply interpolates pose represented as a vector. 
In this example the vector was assumed to be Cartesian coordinates, but this function 
could also be applied to Euler or roll-pitch-yaw angles but this is not an ideal way to 
interpolate rotation. This leads us nicely to the next section where we discuss  inter-
polation of  orientation.

3.3.4 
l
Interpolation of  Orientation in 3D

In robotics we often need to interpolate orientation, for example, we require the end-
effector of a robot to smoothly change from orientation ξ0 to ξ1 in SO(3). We require 
some function ξ(s) = σ(ξ0, ξ1, s) where s ∈ [0, 1] which has the boundary conditions 
σ(ξ0, ξ1, 0) = ξ0 and σ(ξ0, ξ1, 1) = ξ1 and where σ(ξ0, ξ1, s) varies smoothly for inter-
mediate values of s. How we implement this depends very much on our concrete rep-
resentation of ξ.

If pose is represented by an orthonormal rotation matrix, ξ ∼ R ∈ SO(3), we might 
consider a simple linear  interpolation σ(R0, R1, s) = (1 − s)R0 + sR1 but this would not, 
in general, be a valid orthonormal matrix which has strict column norm and inter-
column orthogonality constraints.

A workable and commonly used approach is to consider a 3-angle representation such 
as Euler or roll-pitch-yaw angles, ξ ∼ Γ ∈ S1×S1×S1 and use linear interpolation

Fig. 3.6. Multi-segment multi-axis 
trajectories: a configuration of 
robot (tool position) for acceler-
ation time of tacc = 0 s (red) and 
tacc = 2 s (blue), the via points are 
indicated by solid black markers; 
b confi guration versus time with 
segment transitions (tacc = 2 s) in-
dicated by dashed black lines. The 
discrete-time points are indicated 
by dots

Only one of the maximum axis speed or 
time per segment can be specified, the oth-
er is set to MATLAB’s empty matrix [].

Acceleration time if given is rounded up 
internally to a multiple of the time step.

3.3  ·  Creating Time-Varying Pose
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and converting the interpolated angles back to a rotation matrix always results in a 
valid form. For example we defi ne two orientations

>> R0 =  SO3.Rz(-1) * SO3.Ry(-1);
>> R1 = SO3.Rz(1) * SO3.Ry(1);

and fi nd the equivalent roll-pitch-yaw angles

>> rpy0 = R0.torpy();  rpy1 = R1.torpy();

and create a  trajectory between them over 50 time steps

>> rpy = mtraj(@tpoly, rpy0, rpy1, 50); 

which is most easily visualized as an animation�

>> SO3.rpy( rpy ). animate;

For large orientation changes we see that the axis around which the coordinate frame 
rotates changes along the trajectory. The motion, while smooth, sometimes looks un-
coordinated. There will also be problems if either ξ0 or ξ1 is close to a singularity in 
the particular 3-angle system being used. This particular trajectory passes very close to 
the singularity, at around steps 24 and 25, and a symptom of this is the very rapid rate 
of change of roll-pitch-yaw  angles at this point. The frame is not rotating faster at this 
point – you can verify that in the animation – the rotational parameters are changing 
very quickly and this is consequence of the particular representation.

 Interpolation of unit-quaternions is only a little more complex than for 3-angle 
vectors and produces a change in orientation that is a rotation around a fi xed axis in 
space. Using the Toolbox we fi rst fi nd the two equivalent quaternions

>> q0 = R0. UnitQuaternion;  q1 = R1.UnitQuaternion;

and then interpolate them
>> q = interp(q0, q1, 50);
>> about(q)
q [UnitQuaternion] : 1x50 (1.7 kB)

which results in a vector of 50  UnitQuaternion objects which we can animate by

>>  q.animate

 Quaternion interpolation is achieved using  spherical linear interpolation (slerp) in 
which the unit quaternions follow a great circle path on a 4-dimensional hypersphere. 
The result in 3-dimensions is rotation about a fi xed axis in space.

3.3.4.1 
l
Direction of Rotation 

When traveling on a circle  we can move clockwise or counter-clockwise to reach the goal 
– the result is the same but the distance traveled may be different. On a sphere or hyper-
sphere the principle is the same but now we are traveling on a great circle �. In this example 
we animate a rotation about the z-axis, from an angle of −2 radians to +2 radians

>> q0 = UnitQuaternion.Rz(-2);  q1 = UnitQuaternion.Rz(2);
>> q = interp(q0, q1, 50);
>> q.animate()

but this is taking the long way around the circle, moving 4 radians when we could travel 
2π − 4 ≈ 2.28 radians in the opposite direction. The 'shortest ' option requests 
the rotational  interpolation to select the shortest path

>> q = interp(q0, q1, 50, 'shortest');
>> q.animate()

and the animation clearly shows the difference.

rpy is a 50 × 3 matrix and the result of 
SO3.rpy is a 1 × 50 vector of SO3 
objects, and their animate method 
is then called.

A great circle on a sphere is the intersec-
tion of the sphere and a plane that passes 
through the center. On Earth the equa-
tor and all lines of longitude are great 
circles. Ships and aircraft prefer to follow 
great circles because they represent the 
shortest path between two points on the 
surface of a sphere.
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3.3.5 
l
Cartesian  Motion in 3D

Another common requirement is a smooth path between two poses in SE(3) which 
involves change in position as well as in orientation. In robotics this is often referred 
to as  Cartesian motion.

We represent the initial and fi nal poses as  homogeneous  transformations

>> T0 = SE3([0.4, 0.2, 0]) * SE3.rpy(0, 0, 3);
>> T1 = SE3([-0.4, -0.2, 0.3]) * SE3.rpy(-pi/4, pi/4, -pi/2);

The SE3 object has a method interp that interpolates between two poses for nor-
malized distance s ∈ [0, 1] along the path, for example the midway pose between T0 
and T1 is

>>  interp(T0, T1, 0.5)
ans =
    0.0975   -0.7020    0.7055         0
    0.7020    0.5510    0.4512         0
   -0.7055    0.4512    0.5465      0.15
         0         0         0         

where the translational component is linearly interpolated and the rotation is spheri-
cally interpolated using the unit-quaternion  interpolation method interp.

A trajectory between the two poses in 50 steps is created by

>> Ts =  interp(T0, T1, 50);

where the arguments are the initial and fi nal pose and the  trajectory length.� The re-
sulting trajectory Ts is a vector of SE3 objects

>> about(Ts)
Ts [SE3] : 1x50 (6.5 kB) 

representing the pose at each time step. The homogeneous transformation for the 
fi rst point on the path is

>> Ts(1)
ans =
   -0.9900   -0.1411         0       0.4
    0.1411   -0.9900         0       0.2
         0         0         1         0
         0         0         0         1

and once again the easiest way to visualize this is by animation

>> Ts. animate

which shows the coordinate frame moving and rotating from pose T0 to pose T1.
The translational part of this trajectory is obtained by�

>> P = Ts.transl;

which returns the Cartesian position for the trajectory in matrix form

>> about(P)
P [double] : 50x3 (1.2 kB) 

which has one row per time step that is the corresponding position vector. This is 
plotted

>> plot(P);

in Fig. 3.7 along with the orientation in roll-pitch-yaw format

>> rpy = Ts. torpy;
>> plot(rpy);

This could also be written as 
T0.interp(T1, 50).

3.3  ·  Creating Time-Varying Pose

The .t property applied to a vector of 
SE3 objects returns a MATLAB comma-
separated list of translation vectors. The 
.transl method returns the transla-
tions in a more useful matrix form.
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We see that the position coordinates vary smoothly and linearly with time and that 
orientation varies smoothly with time.�

However the  motion has a  velocity and  acceleration discontinuity at the fi rst and last 
points. While the path is smooth in space the distance s along the path is not smooth 
in time. Speed along the path jumps from zero to some fi nite value and then drops to 
zero at the end – there is no initial acceleration or fi nal deceleration. The scalar func-
tions  tpoly and  lspb discussed earlier can be used to generate s so that motion along 
the path is smooth. We can pass a vector of normalized distances along the path as 
the second argument to  interp

>> Ts = T0. interp(T1, lspb(0, 1, 50) ); 

The trajectory is unchanged but the coordinate frame now accelerates to a constant 
speed along the path and then decelerates and this is refl ected in smoother curves 
for the  trajectory shown in Fig. 3.8. The Toolbox provides a convenient shorthand 
 ctraj for the above

>> Ts = ctraj(T0, T1, 50); 

where the arguments are the initial and fi nal pose and the number of time steps.

Fig. 3.7. Cartesian motion. a Car-
tesian position versus time, b roll-
pitch-yaw  angles versus time

Fig. 3.8. Cartesian motion with 
LSPB path distance profi le. a Car-
tesian position versus time, b roll-
pitch-yaw angles versus time

The roll-pitch-yaw angles do not vary lin-
early with time because they represent a 
nonlinear transformation of the linearly 
varying quaternion.
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3.4 
l
Application: Inertial Navigation 

An inertial navigation system   or INS  is a “black box” that estimates its velocity, orien-
tation and position by measuring accelerations and  angular velocities and integrating 
them over time. Importantly it has no external inputs such as radio signals from satel-
lites. This makes it well suited to applications such as submarine, spacecraft and missile 
guidance where it is not possible to communicate with radio  navigation  aids  or which 
must be immune to radio jamming. These particular applications drove development 
of the technology during the cold war and space race of the 1950s and 1960s. Those 
early systems were large, see Fig. 3.9a, extremely expensive and the technical details 
were national secrets. Today INSs are considerably cheaper and smaller as shown in 
Fig. 3.9b; the sensor chips shown in Fig. 3.9c can cost as little as a few dollars and they 
are built into every smart phone.

An INS estimates its pose with respect to an inertial reference frame   which is typi-
cally denoted {0} and fi xed to some point on the Earth’s  surface – the world coordinate 
frame  .� The frame typically has its z-axis upward or downward and the x- and y-axes 
establish a local tangent plane. Two common conventions have the x-, y- and z-axes 
respectively parallel to north-east-down  (NED)  or east-north-up  (ENU)  directions. 
The coordinate frame {B} is attached to the moving vehicle or robot and is known as 
the body- or body-fi xed frame  .

3.4.1 
l
Gyroscopes 

Any sensor that measures the rate of change of orientation is known, for historical 
reasons, as a gyroscope.

3.4.1.1 
l
How Gyroscopes Work

The term gyroscope  conjures up an image of a childhood toy – a spinning disk in a 
round frame that can balance on the end of a pencil. Gyroscopes are confounding de-
vices – you try to turn them one way but they resist and turn (precess) in a different 
direction. This unruly behavior is described by a simplifi ed version of Eq. 3.10

 (3.15)

where h is the  angular momentum   of the gyroscope, a vector parallel to the rotor’s 
axis of spin and with magnitude �h�= Jϖ , where J is the rotor’s inertia and ϖ  its ro-
tational speed. It is the cross product in Eq. 3.15 that makes the gyroscope move in a 
contrary way.

Fig. 3.9. a SPIRE (Space Inertial 
Reference Equipment)   from 1953 
was 1.5 m in diameter and weighed 
1200 kg. b A modern inertial navi-
gation system the LORD Micro-
Strain  3DM-GX4-25 has triaxial 
gyroscopes, accelerometers and 
magnetometer, a pressure alti-
meter, is only 36×24×11 mm 
and weighs 16 g (image courtesy 
of LORD MicroStrain); c 9 De-
grees of Freedom IMU Breakout 
(LSM9DS1-SEN-13284 from Spark-
Fun Electronics), the chip itself is 
only 3.5 × 3 mm

3.4  ·  Application: Inertial Navigation

As discussed in Sect. 3.2.3 the Earth’s sur-
face is not an inertial reference frame, but 
for most robots with nonmilitary grade 
sensors this is a valid assumption.
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If no torque is applied to the gyroscope its  angular momentum remains constant in 
the inertial reference frame which implies that the axis will maintain a constant direc-
tion in that frame. Two gyroscopes with orthogonal axes form a stable platform that will 
maintain a constant  orientation with respect to the inertial reference frame – fi xed with 
respect to the universe. This was the principle of many early spacecraft  navigation systems 
such as that shown in Fig. 2.15 – the vehicle was able to rotate about the stable platform 
and the spacecraft’s  orientation could be measured with respect to the platform.�

Alternatively we can fi x the  gyroscope to the vehicle in the strapdown confi gura-
tion   as shown in Fig. 3.10. If the vehicle rotates with an angular velocity ω the attached 
gyroscope will resist and exert an orthogonal torque τ which can be measured.� If the 
magnitude of h is high then this kind of sensor is very sensitive – a very small angular 
velocity leads to an easily measurable torque.

Over the last few decades this rotating disk technology has been eclipsed by sensors 
based on optical principles such as the ring-laser gyroscope   (RLG ) and the fi ber-optic 
gyroscope   (FOG ). These are high quality sensors but expensive and bulky. The low-cost 
sensors used in mobile phones and drones are based on micro-electro-mechanical sys-
tems (MEMS)   fabricated on silicon chips. Details of the designs vary but all contain a mass 
vibrating at high frequency� in a plane, and rotation about an axis normal to the plane 
causes an orthogonal displacement within the plane that is measured capacitively.

Gyroscopic angular velocity sensors measure rotation about a single axis. Typically 
three gyroscopes are packaged together and arranged so that their sensitive axes are 
orthogonal. The three outputs of such a triaxial gyroscope   are the components of the 
angular velocity   vector Bω# measured in the body frame {B}, and we introduce the 
# superscript to explicitly indicate a sensor measurement.

Interestingly, nature has invented gyroscopic sensors. All vertebrates have angu-
lar velocity sensors as part of their vestibular system  . In each inner ear we have three 
semi-circular canals – fl uid fi lled organs that measure angular velocity. They are ar-
ranged orthogonally, just like a triaxial gyroscope, with two measurement axes in a 
vertical plane and one diagonally across the head.

3.4.1.2 
l
Estimating  Orientation 

If we assume that Bω is constant over a time interval δt the equivalent rotation at the 
timestep k is

 (3.16)

If the orientation of the sensor frame is initially ξB then the evolution of estimated 
pose can be written in discrete-time form as

 (3.17)

The challenge was to create a mechanism 
that allowed the vehicle to rotate around 
the stable platform without exerting any 
torque on the gyroscopes. This required 
exquisitely engineered low-friction gim-
bals  and bearing systems.

Typically by strain gauges attached to the 
bearings of the rotor shaft.

Typically over 10 kHz.

Fig. 3.10.
 Gyroscope in strapdown con-
fi guration  .  Angular velocity  ω 
induces a torque τ which can be 
sensed as forces at the bearings 
shown in red
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where we use the hat  notation to explicitly indicate an estimate of pose and k ∈ Z+ is 
the index of the time step. In concrete terms we can compute this update using SO(3) 
rotation matrices or unit-quaternions as discussed in Sect. 3.1.3 and taking care to 
normalize the rotation after each step.

We will demonstrate this integration using unit quaternions and simulated angular 
velocity data for a tumbling body. The script

>> ex_tumble

creates a matrix w whose columns represent consecutive body-frame angular velocity 
measurements with corresponding times given by elements of the vector t. We choose 
the initial pose to be the null rotation

>> attitude(1) =  UnitQuaternion();

and then for each time step we update the orientation and keep the orientation his-
tory in a vector of quaternions

>> for k=1:numcols(w)-1 
      attitude(k+1) = attitude(k) .* UnitQuaternion.omega( w(:,k)*dt );
   end

The omega  method creates a unit-quaternion corresponding to a rotation angle and 
axis given by the magnitude and direction of its argument. The .*  operator performs 
quaternion multiplication and normalizes the product, ensuring the result has a unit 
norm.� We can animate the changing orientation of the body frame

>> attitude.animate('time', t) 

or view the roll-pitch-yaw angles as a function of time

>> mplot(t, attitude.torpy() ) 

3.4.2 
l
Accelerometers

Accelerometers  are sensors that measure acceleration . Even when not moving they 
sense the acceleration due to gravity which defi nes the direction we know as down-
ward. Gravitational acceleration is a function of the material in the Earth beneath 
us and our distance from the Earth’s center. The Earth is not a perfect sphere� and 
points in the equatorial region are further from the center. Gravitational acceleration 
can be approximated by

where θ  is the angle of latitude and h is height above sea level. A map of gravity show-
ing the effect of latitude and topography is shown in Fig. 3.11.

The .increment method of the 
UnitQuaternion class does this in a sin-
gle call.

The technical term is an oblate spheroid, it 
bulges out at the equator because of cen-
trifugal acceleration due to the Earth’s ro-
tation. The equatorial diameter  is around 
40 km greater than the polar diameter.

3.4  ·  Application: Inertial Navigation

Much important development was undertaken by the MIT Instrumentation Laboratory un-
der the leadership of Charles Stark Draper.  In 1953 the feasibility of inertial navigation for 
aircraft was demonstrated in a series of flight tests with a system called SPIRE (Space Inertial 
Reference Equipment) shown in Fig. 3.9a. It was 1.5 m in diameter and weighed 1 200 kg. 
SPIRE guided a B-29 bomber on a 12 hour trip from Massachusetts to Los Angeles without 
the aid of a pilot and with Draper aboard. In 1954 the first self-contained submarine navi-
gation system (SINS) was introduced to service. The Instrumentation Lab also developed 
the Apollo Guidance Computer, a one-cubic-foot computer that guided the  Apollo Lunar 
Module to the surface of the Moon in 1969.

Today high-performance inertial navigation systems based on fi ber-optic gyroscopes are wide-
ly available and weigh around one 1 kg while low-cost systems based on MEMS technology can 
weigh just a few grams and cost a few dollars.
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3.4.2.1 
l
How Accelerometers Work

An accelerometer  is conceptually a very simple device comprising a mass, known as 
the proof mass,  supported by a spring as shown in Fig. 3.12. In the inertial reference 
frame  Newton’s second  law for the proof mass is

 (3.18)

and for a spring with natural length l0  the relationship between force and extension d is

The various displacements are related

and taking the double derivative then substituting Eq. 3.18 gives

The quantity we wish to measure is the acceleration  of the accelerometer a = Àb
� 

and the relative displacement of the proof mass

Fig. 3.11.
Variation in Earth’s gravitational
 acceleration, continents and 
mountain ranges are visible.
The hemispheres shown are cen-
terd on the prime (left) and anti 
(right) meridian respectively
(from Hirt et al. 2013)

We assume that d̈ = 0 in steady state. 
Typically there would be a damping 
element to increase friction and stop 
the proof mass oscillating. This adds 
a term −B¾m to the right-hand side 
of Eq. 3.18.

 Charles Stark (Doc) Draper (1901–1987) was an American scientist and engineer, often referred to 
as “the father of inertial navigation.” Born in Windsor, Missouri, he studied at the University 
of Missouri then Stanford where he earned a B.A. in psychology in 1922, then at MIT an S.B. in 
electro-chemical engineering and an S.M. and Sc.D. in physics in 1928 and 1938 respectively. He 
started teaching while at MIT and became a full professor in aeronautical engineering in 1939. 
He was the founder and director of the MIT Instrumentation Laboratory which made important 
contributions to the theory and practice of inertial navigation to meet the needs of the cold war 
and the space program.

Draper was named one of Time magazine’s Men of the Year in 1961 and inducted to the National 
Inventors Hall of Fame in 1981. The Instrumentation lab was renamed Charles Stark Draper Laboratory 
(CSDL) in his honor. (Photo courtesy of The Charles Stark Draper Laboratory Inc.)
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is linearly related to that acceleration. In an accelerometer the displacement is mea-
sured and scaled by k/m so that the output of the sensor is

If this accelerometer is stationary then a = 0 yet the measured acceleration would 
be a# = 0 + g = g in the upward direction. This is because our model has included 
the Newtonian gravity force   mg, as discussed in Sect. 3.2.3. Accelerometer output is 
sometimes referred to as s pecifi c, inertial or proper acceleration.  

The fact that a stationary accelerometer indicates an upward acceleration of 
1 g is unintuitive since the accelerometer is clearly stationary and not accel-
erating. Intuition would suggest, that if anything, the acceleration should be 
in the downward direction where the device would accelerate if dropped. 
However the reality is that an accelerometer at rest in a gravity field reports 
upward acceleration.�

Accelerometers measure acceleration along a single axis. Typically three accelerom-
eters are packaged together and arranged so that their sensitive axes are orthogonal. 
The three outputs of such a triaxial accelerometer   are the components of the accelera-
tion vector Ba# measured in the body frame {B}.

Nature has also invented the accelerometer. All vertebrates have  acceleration sen-
sors called ampullae  as part of their vestibular system.   We have two in each inner ear: 
the saccule  which measures vertical acceleration, and the utricle  which measures front-
to-back acceleration, and they help us maintain balance.� The proof mass in the am-
pullae is a collection of calcium carbonate crystals called otoliths, literally ear stones, 
on a gelatinous substrate which serves as the spring and damper. Hair cells embedded 
in the substrate measure the displacement of the otoliths due to acceleration.

3.4.2.2 
l
Estimating Pose  and Body Acceleration

 In frame {0} with its z-axis vertically upward, the gravitational acceleration  vector is

Fig. 3.12.
The essential elements of an
accelerometer  and notation

A number of iPhone sensor apps incor-
rectly report acceleration in the down-
ward direction when the phone is sta-
tionary.

Inconsistency between motion sensed in 
our ears and motion perceived by our eyes 
is the root cause of motion sickness. 

3.4  ·  Application: Inertial Navigation
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where g is the local gravitational acceleration from Fig. 3.11. In a body-fi xed frame {B} 
at an arbitrary  orientation expressed in terms of ZYX roll-pitch-yaw angles�

the gravitational acceleration will be

 (3.19)

The measured acceleration vector from the sensor in frame {B} is

and equating this with Eq. 3.19 we can solve for the roll and pitch angles

 (3.20)

 (3.21)

and we use the hat  notation to indicate that these are estimates of the angles.� Notice 
that there is no solution for the yaw angle and in fact θy does not even appear in Eq. 3.19. 
The  gravity vector is parallel to the vertical axis and rotating around that axis, yaw 
rotation, will not change the measured value at all.�

We have made a very strong assumption that the measured acceleration Ba# is only 
due to gravity. On a robot the sensor will experience additional acceleration as the 
vehicle moves and this will introduce an error in the estimated  orientation.

Frequently we want to estimate the  motion of the vehicle in the inertial frame, and 
the total measured acceleration in {0} is due to gravity  and motion

 

We observe acceleration in the body frame so the vehicle acceleration in the world 
frame is

 (3.22)

and we assume that 0ÄB and g are both known.� Integrating that with respect to time

 (3.23)

gives the velocity of the vehicle, and integrating again

 (3.24)

gives its position. Note that we can assume vehicle acceleration is zero and estimate 
attitude, or assume attitude and estimate vehicle acceleration. We cannot estimate 
both since there are more unknowns than measurements.

We could use any 3-angle sequence.

These angles are sufficient to determine 
whether a phone, tablet or camera is in 
portrait or landscape orientation.

Another way to consider this is that we 
are essentially measuring the direction
of the gravity vector with respect to the 
frame {B} and a vector provides only 
two unique pieces of directional infor-
mation, since one component of a unit 
vector can be written in terms of the 
other two.

The first assumption is a strong one and 
problematic in practice. Any error in the 
rotation matrix results in incorrect can-
cellation of the gravity component of a# 
which leads to an error in the estimated 
body acceleration.
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3.4.3 
l
Magnetometers

 The Earth is a massive but weak magnet. The poles of this geomagnet  are the Earth’s 
north and south magnetic poles  which are constantly moving and located quite some 
distance from the planet’s rotational axis. 

At any point on the planet the magnetic  fl ux lines can be considered a vector m 
whose magnitude and direction can be accurately predicted and mapped as shown in 
Fig. 3.13. We describe the vector’s direction in terms of two angles: declination and 
inclination. A horizontal projection of the vector m points in the direction of mag-
netic north   and the declination angle   D is measured from true north�   clockwise to that 
projection. The inclination angle   I of the vector is measured in a vertical plane down-
ward� from horizontal to m. The length of the vector, the magnetic fi eld  intensity, is 
measured by a magnetometer in units of Tesla (T) and for the Earth this varies from 
25−65 µT� as shown in Fig. 3.13a.

3.4.3.1 
l
How Magnetometers Work

The key element of most modern magnetometers  is a Hall-effect sensor,   a semiconduc-
tor device which produces a voltage proportional to the magnetic fi eld intensity in a 
direction normal to the current  fl ow. Typically three Hall-effect sensors are packaged 
together and arranged so that their sensitive axes are orthogonal. The three outputs 
of such a triaxial magnetometer are the components of the Earth’s magnetic fi eld in-
tensity vector Bm# measured in the body frame {B}.

Yet again nature leads, and creatures from bacteria to turtles and birds are known 
to sense magnetic fi elds. The effect is particularly well known in pigeons and there is 
debate about whether or not humans have this sense. The actual biological sensing 
mechanism has not yet been discovered.

3.4.3.2 
l
Estimating Heading

 Consider an inertial coordinate frame {0} with its z-axis vertically upward and its 
x-axis pointing toward magnetic north. The magnetic fi eld intensity vector therefore 
lies in the xz-plane

where B is the magnetic fi eld intensity and I the inclination angle which are both 
known from Fig. 3.13. In a body-fi xed frame {B} at an arbitrary  orientation expressed 
in terms of roll-pitch-yaw angles�

Edwin Hall  (1855–1938) was an American physicist born in Maine. His Ph.D. research in physics at 
the Johns Hopkins University in 1880 discovered that a magnetic fi eld exerts a force on a current 
in a conductor. He passed current through thin gold leaf and in the presence of a magnetic fi eld 
normal to the leaf was able to measure a very small potential difference between the sides of the 
leaf. This is now known as the Hall effect.  While it was then known that a magnetic fi eld exerted 
a force on a current carrying conductor it was believed the force acted on the conductor not the 
current itself – electrons were yet to be discovered. He was appointed as professor of physics at 
Harvard in 1895 where he worked on thermoelectric effects.

By comparison a modern MRI machine 
has a magnetic field strength of 4-8 T.

The direction of the Earth’s north rota-
tional pole, where the rotational axis 
intersects the surface of the northern 
hemisphere.

In the Northern hemisphere inclination 
is positive, that is, the vector points into 
the ground.

We could use any 3-angle sequence.

3.4  ·  Application: Inertial Navigation
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Fig. 3.13.
A predicted model of the 
Earth magnetic fi eld pa-
rameters for 2015. a Mag-
netic fi eld intensity  (nT); 
b magnetic declination 
 (degrees); c magnetic incli-
nation  (degrees). Magnetic 
poles  indicated by asterisk 
(maps by NOAA/NGDC 
and CIRES http://ngdc.
noaa.gov/geomag/WMM, 
published Dec 2014)
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the magnetic fi eld  intensity  will be

 (3.25)

The measured magnetic fi eld intensity vector from the sensor in frame {B} is

and equating this with Eq. 3.25 we can solve for the yaw angle

assuming that the roll and pitch angles have been determined, perhaps using measured 
acceleration and Eq. 3.21.�

We defi ned yaw angle as the orientation of the frame {B} x-axis� with respect to 
magnetic north.  To obtain the heading angle with respect to true-north we subtract 
the local declination angle

Magnetometers are great in theory but problematic in practice. Firstly, our modern 
world is full of magnets and electromagnets. Buildings contain electrical wiring and robots 
themselves are full of electric motors, batteries and electronics. These all add to, or over-
whelm, the local geomagnetic fi eld. Secondly, many objects in our world contain ferromag-
netic materials such as the reinforcing steel in buildings or the steel bodies of cars or ships. 
These distort the geomagnetic fi eld leading to local changes in its direction. These effects 
are referred to respectively as h  ard- and s oft-iron distortion of the magnetic fi eld.�

3.4.4 
l
Sensor  Fusion

An inertial  navigation system   uses the devices we have just discussed to determine the 
pose of a vehicle – its position and its orientation. Early inertial navigation systems, such 
as shown in Fig. 2.15, used mechanical gimbals to keep the accelerometers at a constant 
attitude with respect to the stars using a gyro-stabilized platform. The acceleration  mea-
sured on this platform is by defi nition referred to the inertial frame and simply needs 
to be integrated to obtain the velocity of the platform, and integrated again to obtain 
its position. In order to achieve accurate position estimates over periods of hours or 
days the gimbals and gyroscopes had to be of extremely high quality so that the stable 
platform did not drift, and the acceleration sensors   needed to be extremely accurate.

The modern strapdown inertial measurement   confi guration uses no gimbals. The 
angular velocity, acceleration and magnetic fi eld sensors are rigidly attached to the 
vehicle. The collection of inertial sensors is referred to as an inertial measurement 
unit   or IMU.  A 6-DOF IMU comprises triaxial gyroscopes and accelerometers while 
a 9-DOF IMU comprises triaxial gyroscopes, accelerometers and magnetometers.� A 
system that only determines attitude is called an attitude and heading reference sys-
tem    or AHRS. 

The sensors we use, particularly the low-cost ones in phones and drones, are far 
from perfect. Consider any sensor value – gyroscope,  accelerometer  or magnetometer 
 – the measured signal

Many triaxial Hall-effect sensor chips also 
include a triaxial accelerometer  for just 
this purpose.

Typically in vehicle navigation the x-axis 
points forward and the yaw angle is also 
called the heading  angle.  

These can be calibrated out but the pro-
cess requires that the sensor is rotated 
by 360 degrees.

Increasingly these sensor packages also 
include a barometric pressure sensor to 
measure changes in altitude.

3.4  ·  Application: Inertial Navigation
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is related� to the unknown true value x by a scale factor s, offset or bias  b and random 
 noise  ε . s is usually specifi ed by the manufacturer to some tolerance, perhaps ±1%, and 
for a particular sensor this can be determined by some  calibration procedure. Bias b is 
ideally equal to zero but will vary from device to device. Bias that varies over time is often 
called sensor drift.  Scale factor  and bias are typically both a function of temperature. �

In practice bias  is the biggest problem because it varies with time and temperature 
and has a very deleterious effect on the estimated pose and position. Consider a posi-
tive bias on the output of a gyroscopic sensor – the output is higher than it should be. 
At each time step in Eq. 3.17 the incremental rotation will be bigger than it should be, 
which means that the  orientation error  will grow linearly with time.�

If we use Eq. 3.22 to estimate the vehicle’s acceleration then the error in attitude 
means that the measured gravitation acceleration is incorrectly canceled out and will 
be indistinguishable from actual vehicle acceleration. This offset in acceleration be-
comes a linear  time error in velocity and a quadratic time error in position. Given that 
the pose error is already linear in time we end up with a cubic time error in position, 
and this is ignoring the effects of accelerometer bias. Sensor bias  is problematic! A 
rule of thumb is that gyroscopes with bias stability of 0.01 deg h−1 will lead to posi-
tion error growing at a rate of 1 nmi h−1 (1.85 km h−1). Military grade systems have 
very impressive stability, for missiles <0.00002 deg h−1 which is in stark contrast to 
consumer grade devices which are in the range 0.01−0.2 deg per second.

A simple approach to this problem is to estimate bias by leaving the IMU station-
ary for a few seconds and computing the average value of all the sensors.� This value 
is then subtracted from future sensor readings. This is really only valid over a short 
time period because the bias is not constant.

A more sophisticated approach is to estimate the bias online�, but to do this we need 
to combine information from different sensors – an approach known as sensor  fusion.  
We rely on the fact that different sensors have complementary characteristics. Bias on 
angular rate sensors causes the attitude estimate error to grow with time, but for ac-
celerometers it will only cause an attitude offset. However accelerometers respond to 
motion of the vehicle while good gyroscopes do not. Magnetometers provide partial 
information about roll, pitch and yaw, are immune to acceleration, but do respond to 
stray magnetic fi elds and other distortions. There are many ways to achieve this kind 
of fusion. A common approach is to use an estimation tool called an extended  Kalman 
fi lter   described in Appendix H. Given a full nonlinear mathematical  model that relates 
the sensor signals and their biases to the vehicle pose and knowledge about the  noise 
(uncertainty) on the sensor signals, the fi lter gives an optimal estimate of the pose and 
bias that best explain the sensor signals.

Here we will consider a simple but still very effective alternative called the explicit 
complementary fi lter.   The rotation update step is performed using Eq. 3.17 but com-
pared to Eq. 3.16 the incremental rotation is more complex

 (3.26)

The key differences are that the estimated bias + is subtracted from the sensor mea-
surement and a term based on the  orientation error σR is added. The estimated bias 
changes with time according to

 (3.27)

and also depends on the orientation error σR. kP > 0 and kI > 0 are both well chosen 
constants.

The orientation error is derived from N vector measurements 0v#
i

We assume a linear relationship but check 
the fine print in a datasheet to understand 
what a sensor really does.

Some sensors also exhibit cross-sensitiv-
ity. They may give a weak response to a 
signal in an orthogonal direction or from 
a different mode, quite commonly low-
cost gyroscopes respond to vibration and 
acceleration as well as rotation.

The effect of an attitude error is danger-
ous on something like a quadrotor. For 
example, if the estimated pitch angle is 
too high then the vehicle control system 
will pitch down by the same amount to 
keep the craft “level”, and this will cause 
it to accelerate forward.

A lot of hobby drones do this just before 
they take off.

Our brain has an online mechanism to 
cancel out the bias in our vestibular gy-
roscopes. It uses the recent average ro-
tation as the bias, based on the reason-
able assumption that we do not undergo 
prolonged rotation. If we do, then that 
 angular rate becomes the new normal 
so that when we stop rotating we per-
ceive rotation in the opposite direction. 
We call this dizziness.



89

where 0vi is the known value of a vector signal in the inertial frame (for example gravi-
tational acceleration) and

is the value measured in the body-fi xed frame and rotated into the inertial frame by 
the estimated  orientation 0ûB. Any error in direction between these vectors will yield 
a nonzero cross-product which is the axis around which to rotate one vector into the 
other. The fi lter uses this difference – the innovation  – to improve the orientation 
estimate by feeding it back into Eq. 3.26. This fi lter allows an unlimited number of 
vectorial measurements 0vi to be fused together; for example we could add magnetic 
fi eld or any other kind of direction data such as the altitude and azimuth of visual 
landmarks, stars or planets.

The script

>> ex_tumble

provides simulated “measured” gyroscope, accelerometer and magnetometer data 
organized as columns of the matrices wm, gm and mm respectively and all include a 
fi xed bias. Corresponding times are given by elements of the vector t. Firstly we will 
repeat the example from page 81 but now with sensor bias

>> attitude(1) = UnitQuaternion();
>> for k=1:numcols(wm)-1
       attitude(k+1) = attitude(k) .* UnitQuaternion.omega( wm(:,k)*dt );
   end

To see the effect of bias on the estimated attitude we will compare it to the true at-
titude truth that was also computed by the script. As a measure of error we plot the 
angle between the corresponding unit quaternions in the sequence

>> plot(t, angle(attitude, truth), 'r' );

which is shown as the red line in Fig. 3.14a. We can clearly see growth in angular er-
ror over time. Now we implement the explicit complementary fi lter   with just a few 
extra lines of code

Fig. 3.14.
a Effect of gyroscope bias on na-

ive INS (red) and explicit com-
plementary fi lter (blue); b esti-
mated gyroscope bias from the 

explicit complementary fi lter

3.4  ·  Application: Inertial Navigation
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>> kI = 0.2; kP = 1;
>> b = zeros(3, numcols(w));
 >> attitude_ecf(1) = UnitQuaternion(); b = [0 0 0]';
>> for k=1:numcols(wm)-1
      invq = inv( attitude_ecf(k) );
      sigmaR = cross(gm(:,k), invq*g0) + cross(mm(:,k), invq*m0);
      wp = wm(:,k) - b(:,k) + kP*sigmaR;
      attitude_ecf(k+1) = attitude_ecf(k) .* UnitQuaternion.omega( wp*dt );
      b(:,k+1) = b(:,k) - kI*sigmaR*dt;
   end

and plot the angular difference between the estimated and the attitude as a blue line

>> plot(t, angle(attitude_ecf, truth), 'b' );

Bringing together information from multiple sensors has checked the growth in 
attitude error, despite all the sensors having a bias. The estimated gyroscope bias is 
shown in Fig. 3.14b and we can see the bias estimates converging on their true value.

3.5 
l
Wrapping Up

In this chapter we have considered pose that varies as a function of time from sev-
eral perspectives.

Firstly we took a calculus perspective and showed that the temporal derivative of an or-
thonormal rotation matrix or a quaternion is a function of the angular velocity of the body 
– a concept from mechanics. The skew-symmetric matrix appears in the rotation matrix 
case and we should no longer be surprised about this given its intimate connection to ro-
tation via Lie group theory. We then looked at fi nite time differences as an approximation 
to the derivative and showed how these lead to computationally cheap methods to update 
rotation matrices and quaternions given knowledge of angular velocity. We also discussed 
the dynamics of moving bodies that translate and rotate under the infl uence of forces 
and torques, inertial and noninertial reference frames and the notion of fi ctitious forces.

The second perspective was to create motion – a sequence of poses, a  trajectory, 
that a robot can follow. An important characteristic of a  trajectory is that it is smooth 
– the position and orientation changes smoothly with time. We started by discussing 
how to generate smooth trajectories in one dimension and then extended that to the 
multi-dimensional case and then to piecewise-linear trajectories that visit a number 
of intermediate points. Smoothly varying rotation was achieved by interpolating roll-
pitch-yaw angles and quaternions.

With all this under our belt we were then able to tackle an application, the impor-
tant problem of inertial navigation. Given imperfect measurements from sensors on 
a moving body we are able to estimate the pose of that moving body.

Further Reading

The earliest work on manipulator Cartesian  trajectory generation was by Paul (1972, 
1979) and Taylor (1979). The multi-segment trajectory is discussed by Paul (1979, 
1981) and the concept of segment transitions or blends is discussed by Lloyd and 
Hayward (1991). These early papers, and others, are included in the compilation on 
Robot Motion (Brady et al. 1982). Polynomial and LSPB trajectories are described in 
detail by Spong et al. (2006) and multi-segment trajectories are covered at length in 
Siciliano et al. (2009) and Craig (2005).

The book Digital Apollo (Mindell 2008) is a very readable story of the development of 
the inertial navigation system for the Apollo Moon landings. The article by Corke et al. 
(2007) describes the principles of inertial sensors and the functionally equivalent sensors 
located in the inner ear of mammals that play a key role in maintaining balance.
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There is a lot of literature related to the theory and practice of inertial navigation 
systems. The thesis of Achtelik (2014) describes a sophisticated extended   Kalman fi l-
ter for estimating the pose, velocity and sensor bias for a small fl ying robot. The ex-
plicit complementary fi lter used in this chapter is described by Hua et al. (2014). The 
recently revised book Groves (2013) covers inertial and terrestrial radio and satel-
lite navigation and has a good coverage of  Kalman fi lter state estimation techniques. 
Titterton and Weston (2005) provides a clear and concise description of the principles 
underlying inertial navigation with a focus on the sensors themselves but is perhaps 
a little dated with respect to modern low-cost sensors. Data sheets on many low-cost 
inertial and magnetic fi eld sensing chips can be found at https://www.sparkfun.com 
in the Sensors category.

Exercises

1. Express the incremental rotation BR∆ as an exponential series and verify Eq. 3.7.
2. Derive the unit-quaternion update equation Eq. 3.8.
3. Make a simulation with a particle moving at constant velocity and a rotating reference 

frame. Plot the position of the particle in the inertial and the rotating reference frame 
and observe how the motion changes as a function of the inertial frame velocity.

4. Redo the quaternion-based angular velocity integration on page 81 using rotation 
matrices.

5. Derive the expression for fi ctitious forces in a rotating reference frame from Sect. 3.2.3.
6. At your location determine the magnitude and direction of centripetal acceleration you 

would experience. If you drove at 100 km h−1 due east what is the magnitude and di-
rection of the Coriolis acceleration   you would experience? What about at 100 km h−1 
due north? The vertical component is called the Eötvös effect,   how much lighter 
does it make you?

7. For a  tpoly trajectory from 0 to 1 in 50 steps explore the effects of different initial 
and fi nal velocities, both positive and negative. Under what circumstances does the 
quintic polynomial overshoot and why?

8. For a lspb trajectory from 0 to 1 in 50 steps explore the effects of specifying the 
velocity for the constant velocity segment. What are the minimum and maximum 
bounds possible?

9. For a trajectory from 0 to 1 and given a maximum possible velocity of 0.025 compare 
how many time steps are required for each of the tpoly and lspb trajectories?

10. Use animate to compare rotational interpolation using quaternions, Euler angles 
and roll-pitch-yaw angles. Hint: use the quaternion interp method and mtraj.

11. Repeat the example of Fig. 3.7 for the case where:
a) the interpolation does not pass through a singularity. Hint – change the start or 

goal pitch angle. What happens?
b) the fi nal orientation is at a singularity. What happens?

12. Develop a method to quantitatively compare the performance of the different orien-
tation interpolation methods. Hint: plot the locus followed by ) on a unit sphere.

13. For the mstraj example (page 75)
a) Repeat with different initial and fi nal velocity.
b) Investigate the effect of increasing the acceleration time. Plot total time as a func-

tion of acceleration time.
14. Modify mstraj so that acceleration limits are taken into account when determin-

ing the segment time.
15. There are a number of iOS and Android apps that display sensor data from gy-

ros, accelerometers and magnetometers. You could also use MATLAB, see http://
mathworks.com/hardware-support/iphone-sensor.html. Run one of these and 
explore how the sensor signals change with orientation and movement. What 
happens when you throw the phone into the air?

3.5  ·  Wrapping Up



92 Chapter 3  ·  Time and Motion

16. Consider a gyroscope with a 20 mm diameter steel rotor that is 4 mm thick and ro-
tating at 10 000 rpm. What is the magnitude of h? For an angular velocity of 5 deg s−1, 
what is the generated torque?

17. Using Eq. 3.15 can you explain how a toy gyroscope is able to balance on a single 
point with its spin axis horizontal? What holds it up?

18. A triaxial accelerometer has fallen off the table, ignoring air resistance what value 
does it return as it falls?

19. Implement the algorithm to determine roll and pitch angles from accelerometer 
measurements.
a) Devise an algorithm to determine if you are in portrait or landscape orientation?
b) Create a trajectory for the accelerometer using  tpoly  to generate motion in ei-

ther the x- or y-direction. What effect does the acceleration along the path have 
on the estimated angle?

c) Calculate the orientation using quaternions rather than roll-pitch-yaw angles.
20. You are in an aircraft fl ying at 30 000 feet over your current location. How much 

lighter are you?
21. Determine the Euler angles as a function of the measured acceleration. If you have 

the Symbolic Math Toolbox™ you might like to use that.
22. Determine the magnetic fi eld strength, declination and inclination at your location. 

Visit the website http://www.ngdc.noaa.gov/geomag-web.
23. Using the sensor reading app from above, orient the phone so that the magnetic 

fi eld vector has only a z-axis component, where is the magnetic fi eld vector with 
respect to your phone?

24. Using the sensor reading app from above log some inertial sensor data from a phone 
while moving it around. Use that data to estimate the changing attitude or full pose 
of the phone. Can you do this in real time?

25. Experiment with varying the parameters of the explicit complementary fi lter on 
page 90. Change the bias or add Gaussian noise to the simulated sensor readings.
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Part

II Mobile Robots

In this part we discuss  mobile robots, a class of robots that are able to move through 
the environment. The fi gures show an assortment of mobile robots that can move over 
the ground, over the water, through the air, or through the water. This highlights the 
diversity of what is referred to as the robotic platform – the robot’s physical embodi-
ment and means of locomotion as shown in Figs. II.2 through II.4.

However these mobile robots are very similar in terms of what they do and how 
they do it. One of the most important functions of a mobile robot is to move to some 
place. That place might be specifi ed in terms of some feature in the environment, for 
instance move to the light, or in terms of some geometric coordinate or map refer-
ence. In either case the robot will take some path to reach its destination and it faces 
challenges such as obstacles that might block its way or having an incomplete map, 
or no map at all.

One strategy is to have very simple sensing of the world and to react to what is 
sensed. For example Elsie the  robotic tortoise, shown in Fig. II.1a, was built in the 
1940s and reacted to  her environment to seek out a light source without having any 
explicit plan or knowledge of the position of the light. An alternative to the reactive 
approach was embodied in the 1960s robot Shakey, shown in Fig. II.1b, which was ca-
pable of 3D perception and created a map of its environment and then reasoned about 
the map to plan a path to its destination. 

These two approaches exemplify opposite ends of the spectrum for mobile robot 
navigation. Reactive systems can be fast and simple since sensation is connected di-
rectly to action – there is no need for resources to hold and maintain a representation 
of the world nor any capability to reason about that representation. In nature such 

Fig. II.1.
a Elsie the tortoise. Burden Insti-

tute Bristol (1948). Now in the 
collection of the Smithsonian 
Institution but not on display 

(photo courtesy Reuben Hoggett 
collection). b Shakey. SRI Inter-

national (1968). Now in the Com-
puter Museum in Mountain View
(photo courtesy SRI International)
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Fig. II.3.
Some mobile air and water ro-
bots: a Yamaha RMAX heli-
copter with 3 m blade diam-
eter (photo by Sanjiv Singh). 
b Fixed-wing robotic aircraft 
(photo of ScanEagle courtesy
of Insitu). c DEPTHX: Deep 
Phreatic Thermal Explorer, a 
6-thruster under-water robot. 
Stone Aerospace/CMU (2007) 
(photo by David Wettergreen, 
© Carnegie-Mellon University). 
d Autonomous Surface Vehicle 
(photo by Matthew Dunbabin)

Fig. II.2.
Some mobile ground robots: 
a The Roomba robotic vacuum
cleaner, 2008 (photo courtesy 
iRobot Corporation). b Boss, 
Tartan racing team’s autono-
mous car that won the Darpa 
Urban Grand Challenge, 2007 
(Carnegie-Mellon University) 

strategies are used by simple organisms such as insects. Systems that make maps 
and reason about them require more resources but are capable of performing more 
complex tasks. In nature such strategies are used by more complex creatures such as 
mammals.

The fi rst commercial applications of mobile robots came in the 1980s when  auto-
mated guided vehicles (AGVs) were developed for transporting material around fac-
tories and these have since become a mature technology. Those early free-ranging 
mobile wheeled vehicles typically use fi xed infrastructure for guidance, for example, 
a painted line on the fl oor, a buried cable that emits a radio-frequency signal, or wall-
mounted bar codes. The last decade has seen signifi cant achievements in mobile ro-
botics that can operate without navigational infrastructure. Figure II.2a shows a robot 
vacuum cleaner which use reactive strategies to clean the fl oor, after the fashion of 
Elsie. Figure II.2b shows an early self-driving vehicle developed for the DARPA series 
of grand challenges for  autonomous cars (Buehler et al. 2007, 2010). We see a multitude 
of sensors that provide the vehicle with awareness of its surroundings. Other examples 
are shown in Figs. 1.4 to 1.6. Mobile robots are not just limited to operations on the 
ground. Figure II.3 shows examples of  unmanned aerial vehicles (UAVs),  autonomous 
underwater vehicles (AUVs), and robotic boats which are known as   autonomous sur-
face vehicles (ASVs).  Field robotic systems such as trucks in mines, container trans-
port vehicles in shipping ports, and self-driving tractors for broad-acre agriculture are 
now commercially available for various applications are shown in Fig. II.4.
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The chapters in this part of the book cover the fundamentals of mobile robotics. 
Chapter 4 discusses the motion and control of two exemplar robot platforms: wheeled 
 vehicles that operate on a planar  surface, and fl ying robots that move in 3-dimensional 
space – specifi cally  quadrotor fl ying robots. Chapter 5 is concerned with navigation. 
We will cover in some detail the reactive and plan-based approaches to guiding a ro-
bot through an environment that contains obstacles. Most  navigation strategies re-
quire knowledge of the robot’s position and this is the topic of Chap. 6 which exam-
ines techniques such  dead reckoning and the use of maps along with observations of 
landmarks. We also show how a robot can make a map, and even determine its loca-
tion while simultaneously mapping an unknown region.

Fig. II.4.
a Exploration: Mars Science 

Laboratory (MSL) rover, known 
as Curiosity, undergoing testing
(image courtesy NASA/Frankie 
Martin). b Logistics: an auto-

mated straddle carrier that moves 
containers; Port of Brisbane, 

2006 (photo courtesy of Port of 
Brisbane Pty Ltd). c Mining: au-
tonomous haul truck (Copyright 

© 2015 Rio Tinto). d Agricul-
ture: broad-acre weeding robot 

(image courtesy Owen Bawden)



Chapter

4 Mobile Robot  Vehicles

into important issues of  under-actuation and  nonholonomy.

4.1 
l
Wheeled Mobile  Robots

Wheeled locomotion is one of humanity’s great innovations. The wheel was invented 
around 3000 bce and the two-wheeled cart around 2000 bce. Today four-wheeled 
 vehicles are ubiquitous and the total automobile population of the planet is over one 
billion. The effectiveness of cars, and our familiarity with them, makes them a natural 
choice for robot platforms that move across the ground.

We know from our everyday experience with cars that there are limitations on how 
they move. It is not possible to drive sideways, but with some practice we can learn to 
follow a path that results in the vehicle being to one side of its initial position – this 
is parallel parking. Neither can a car rotate on the spot, but we can follow a path that 
results in the vehicle being at the same position but rotated by 180° – a three-point 
turn. The necessity to perform such maneuvers is the hall mark of a system that is 
nonholonomic  – an important concept which is discussed further in Sect. 4.3. Despite 
these minor limitations the car is the simplest and most effective means of moving in 
a planar world that we have yet found. The car’s  motion model and the challenges it 
raises for control will be discussed in Sect. 4.1.1.

In Sect. 4.1.2 we will introduce differentially-steered  vehicles which are mechani-
cally simpler than cars and do not have steered wheels. This is a common confi gura-
tion for small mobile robots and also for larger machines like bulldozers. Section 4.1.3 
introduces novel types of wheels that are capable of  omnidirectional   motion and then 
models a vehicle based on these wheels.

4.1.1 
l
Car-Like Mobile Robots

Cars with steerable wheels are a very effective class of vehicle and the archetype for 
most ground robots such as those shown in Fig. II.4a–c. In this section we will create 
a model for a car-like  vehicle and develop controllers that can drive the car to a point, 
along a line, follow an arbitrary  trajectory, and fi nally, drive to a specifi c pose.

This chapter discusses how a robot platform moves, that is, how its pose changes 
with time as a function of its control inputs. There are many different types 

of robot platform as shown on pages 95–97 but in this chapter we will con-
sider only four important exemplars. Section 4.1 covers three different 
types of wheeled  vehicle that operate in a 2-dimensional world. They can 
be propelled forwards or backwards and their heading direction controlled 
by some  steering mechanism. Section 4.2 describes a  quadrotor, a fl ying 
vehicle, which is an example of a robot that moves in 3-dimensional space. 
Quadrotors are becoming increasing popular as a robot platform since they 

are low cost and can be easily modeled and controlled.
Section 4.3 revisits the concept of confi guration space and dives more deeply 
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A commonly used model for the low-speed behavior of a four-wheeled  car-like ve-
hicle is the kinematic  bicycle  model� shown in Fig. 4.1. The bicycle has a rear wheel 
fi xed to the body and the plane of the front wheel rotates about the vertical axis to steer 
the vehicle. We assume that the velocity of each wheel is in the plane of the wheel, and 
that the wheel rolls without slipping sideways

The pose of the vehicle is represented by its body coordinate frame {B} shown in 
Fig. 4.1, with its x-axis in the vehicle’s forward direction and its origin at the center of 
the rear axle. The confi guration of the  vehicle is represented by the generalized coor-
dinates q = (x, y, θ ) ∈ C where C⊂R2 × S1.

The dashed lines show the direction along which the wheels cannot move, the 
 lines of no motion, and these intersect at a  point known as the  Instantaneous Center 
of Rotation (ICR). The reference point of the vehicle thus follows a circular path and 
its angular velocity is

 (4.1)

and by simple geometry the  turning radius is RB = L / tanγ  where L is the length of 
the vehicle or wheel base. As we would expect the turning circle increases with vehicle 
length. The steering angle γ  is typically limited mechanically and its maximum value 
dictates the minimum value of RB.

Fig. 4.1.
 Bicycle model of a car. The car 
is shown in light grey, and the 
bicycle approximation is dark 
grey. The vehicle’s body frame 
is shown in red, and the world 
coordinate frame in blue. The 
steering wheel angle is γ  and 
the velocity of the back wheel, 
in the x-direction, is v. The two
wheel axes are extended as 
dashed lines and intersect at 
the Instantaneous Center of 
Rotation (ICR) and the distance 
from the ICR to the back and 
front wheels is RB and RF respec-
tively

Vehicle coordinate system.  The coordinate system that we will use, and a common one for vehicles 
of all sorts is that the x-axis is forward ( longitudinal  motion), the y-axis is to the left side ( lateral 
motion) which implies that the z-axis is upward. For aerospace and underwater applications the 
z-axis is often downward and the x-axis is forward.

Often incorrectly called the Ackermann 
model.
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For a fi xed steering wheel angle the car moves along a circular arc. For this reason 
curves on roads are circular arcs or clothoids� which makes life easier for the driver 
since constant or smoothly varying steering wheel angle allow the car to follow the road. 
Note that RF > RB which means the front wheel must follow a longer path and therefore 
rotate more quickly than the back wheel. When a four-wheeled vehicle goes around a 
corner the two steered wheels follow circular paths of different radii and therefore the 
angles of the steered wheels γL and γR should be very slightly different. This is achieved 
by the commonly used  Ackermann  steering mechanism which results in lower wear and 
tear on the tyres. The driven wheels must rotate at different speeds on corners which is 
why a differential gearbox is required between the motor and the driven wheels.

The velocity of the robot in the world frame is (vcosθ , vsinθ ) and combined with 
Eq. 4.1 we write the  equations of  motion as

 (4.2)

This model is referred to as a  kinematic  model since it describes the velocities of the  vehicle 
but not the forces or torques that cause the velocity. The rate of change of heading Ë is referred 
to as turn rate,  heading rate or  yaw rate and can be measured by a  gyroscope. It can also be 
deduced from the angular velocity of the nondriven wheels on the left- and right-hand sides 
of the vehicle which follow arcs of different radius, and therefore rotate at different speeds.

Equation 4.2 captures some other important characteristics of a car-like vehicle. When 
v= 0 then Ë = 0; that is, it is not possible to change the vehicle’s  orientation when it is 
not moving. As we know from driving, we must be moving in order to turn. When the 
steering angle γ = ü the front wheel is orthogonal to the back wheel, the vehicle cannot 
move forward and the model enters an undefi ned region.

In the world coordinate frame we can write an expression for velocity in the vehi-
cle’s y-direction

 (4.3)

which is the   called a nonholonomic constraint and will be discussed further in Sect. 4.3.1. 
This equation cannot be integrated to form a relationship between x, y and θ .

The  Simulink® system

>>   sl_lanechange

shown in Fig. 4.2 uses the Toolbox   Bicycle block which implements Eq. 4.2�. The 
velocity input is a constant, and the steering wheel angle is a fi nite positive pulse fol-
lowed by a negative pulse. Running the model simulates the motion of the vehicle and 
adds a new variable out to the workspace

 Rudolph Ackermann (1764–1834) was a German inventor born at Schneeberg, in Saxony. For fi nan-
cial reasons he was unable to attend university and became a saddler like his father. For a time he 
worked as a saddler and coach-builder and in 1795 established a print-shop and drawing-school 
in London. He published a popular magazine “The Repository of Arts, Literature, Commerce, 
Manufactures, Fashion and Politics” that included an eclectic mix of articles on water pumps, gas-
lighting, and lithographic presses, along with fashion plates and furniture designs. He manufactured 
paper for landscape and miniature painters, patented a method for waterproofi ng cloth and pa-
per and built a factory in Chelsea to produce it. He is buried in Kensal Green Cemetery, London.

In 1818 Ackermann took out British patent 4212 on behalf of the German inventor George 
Lankensperger for a steering mechanism which ensures that the steered wheels move on circles 
with a common center. The same scheme was proposed and tested by Erasmus Darwin (grand-
father of Charles) in the 1760s. Subsequent refi nement by the Frenchman Charles Jeantaud led 
to the mechanism used in cars to this day which is known as Ackermann steering.

Arcs with smoothly varying radius. 
Dubbins and Reeds-Shepp paths com-
prises constant radius circular arcs and 
straight line segments.

4.1  ·  Wheeled Mobile Robots

From Sharp 1896

The model also includes a maximum ve-
locity limit, a velocity rate limiter to mod-
el finite acceleration, and a limiter on the 
steering  angle to model the finite range 
of the steered wheel. These can be ac-
cessed by double clicking the Bicycle block 
in Simulink.
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>> out
Simulink.SimulationOutput:
    t: [504x1 double]
    y: [504x4 double]

from which we can retrieve the simulation time and other variables

>> t = out.get('t'); q = out.get('y');

Confi guration is plotted against time

>> mplot(t, q)

in Fig. 4.3a and the result in the xy-plane

>> plot(q(:,1), q(:,2))

shown in Fig. 4.3b demonstrates a simple lane-changing  trajectory.

4.1.1.1 
l
Moving to a  Point

Consider the problem of moving toward a goal point (x∗, y∗) in the plane. We will  con-
trol the robot’s velocity to be proportional to its distance from the goal

and to steer toward the goal which is at the vehicle-relative angle� in the world frame of

Fig. 4.2.
Simulink model  sl_lanechange 
that results in a lane changing 
maneuver. The pulse genera-
tor drives the steering  angle left 
then right. The vehicle has a de-
fault wheelbase L = 1

Fig. 4.3. Simple lane changing ma-
neuver. a Vehicle response as a 
function of time, b motion in the 
xy-plane, the vehicle moves in the 
positive x-direction

This angle can be anywhere in the inter-
val [–π, π) and is computed using the 
atan2 function.
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using a proportional  controller

which turns the steering wheel toward the target. Note the use of the operator � since θ ∗ 
and θ  are angles ∈ S1 not real numbers�. A Simulink model

>>  sl_drivepoint

is shown in Fig. 4.4. We specify a goal coordinate

>> xg = [5 5];

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_drivepoint');

The variable r is an object that contains the simulation results from which we extract 
the confi guration as a function of time

>> q = r.fi nd('y');

The  vehicle’s path in the plane is

>> plot(q(:,1), q(:,2));

To run the Simulink model called model we fi rst load it 

>>  model

and a new window is popped up that displays the model in block-diagram form. The simulation 
can be started by pressing the play button on the toolbar of the model’s window. The model can 
also be run directly from the MATLAB command line

>> sim('model')

Many Toolbox models create additional fi gures to display robot animations or graphs as they run.
All models in this chapter have the simulation data export option set to create a MATLAB 

SimulationOutput object. All the unconnected output signals are concatenated, in port 
number order, to form a row vector and these are stacked to form a matrix y with one row per 
timestep. The corresponding time values form a vector t. These variables are packaged in a 
SimulationOutput object which is written to the workspace variable out or returned if the 
simulation is invoked from MATLAB

>> r = sim('model')

Displaying r or out lists the variables that it contains and their value is obtained using the fi nd 
method, for example

>> t = r.fi nd('t');

Fig. 4.4.  sl_drivepoint, the 
Simulink model that drives the ve-
hicle to a point. Red blocks have 
parameters that you can adjust to 
investigate the effect on perfor-
mance

The Toolbox function  angdiff com-
putes the difference between two angles 
and returns a difference in the interval 
[−π, π). This is also the shortest dis-
tance around the circle, as discussed in 
Sect. 3.3.4.1. Also available in the Toolbox 
Simulink blockset roblocks .

4.1  ·  Wheeled Mobile Robots
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which is shown in Fig. 4.5 for a number of starting poses. In each case the vehicle has 
moved forward and turned onto a path toward the goal point. The fi nal part of each path 
is a straight line and the fi nal  orientation therefore depends on the starting point.

4.1.1.2 
l
Following a Line

Another useful task for a mobile robot is to follow a line on the plane� defi ned by 
ax + by + c = 0. This requires two controllers to adjust steering. One controller

turns the robot toward the line to minimize the robot’s normal distance from the 
line

The second controller adjusts the heading angle, or orientation, of the vehicle to be 
parallel to the line

using the proportional  controller

The  combined  control law

turns the steering wheel so as to drive the robot toward the line and move along it.
The Simulink model

>>  sl_driveline

is shown in Fig. 4.6. We specify the target line as a 3-vector (a, b, c)

>> L = [1 -2 4];

Fig. 4.5.
Simulation results for
 sl_drivepoint for different 
initial poses. The goal is (5, 5)

2-dimensional lines in homogeneous 
form are discussed in Sect. C.2.1.
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and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim( 'sl_driveline');

The  vehicle’s path for a number of different starting poses is shown in Fig. 4.7.

4.1.1.3 
l
Following a  Trajectory

Instead of a straight line we might wish to follow a trajectory that is a timed sequence 
of points on the xy-plane. This might come from a  motion planner, such as discussed 
in Sect. 3.3 or 5.2, or in real-time based on the robot’s sensors.

A simple and effective algorithm for trajectory following is  pure pursuit in which 
the goal point (x∗hti, y∗hti) moves along the trajectory, in its simplest form at constant 
speed. The vehicle always heads toward the goal – think carrot and donkey.

This problem is very similar to the control problem we tackled in Sect. 4.1.1.1, mov-
ing to a point, except this time the point is moving. The robot maintains a distance d∗ 
behind the pursuit point and we formulate an error

Fig. 4.6. The Simulink model 
 sl_driveline drives the ve-
hicle along a line. The line param-
eters (a, b, c) are set in the work-
space variable L. Red blocks have 
parameters that you can adjust to 
investigate the effect on perfor-
mance

Fig. 4.7.
Simulation results from different 
initial poses for the line (1, −2, 4)

�

4.1  ·  Wheeled Mobile Robots
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that we regulate to zero by controlling the robot’s velocity using a proportional-inte-
gral (PI) controller

The integral term is required to provide a nonzero velocity demand v∗ when the 
following error is zero. The second controller steers the robot toward the target which 
is at the relative angle

and a simple proportional  controller

turns the steering wheel so as to drive the robot toward the target.
The Simulink model

>>  sl_pursuit

shown in Fig. 4.8 includes a target that moves at constant velocity along a piecewise 
linear path defi ned by a number of waypoints. It can be simulated

>> r = sim('sl_pursuit')

and the results are shown in Fig. 4.9a. The robot starts at the origin but catches up to, 
and follows, the moving goal. Figure 4.9b shows how the speed converges on a steady 
state value when following at the desired distance. Note the slow down at the end of 
each segment as the robot short cuts across the corner.

4.1.1.4 
l
Moving to a Pose

The fi nal control problem we discuss is driving to a specifi c pose (x∗, y∗, θ ∗). The con-
troller of Fig. 4.4 could drive the robot to a goal position but the fi nal  orientation de-
pended on the starting position.

Fig. 4.8. The Simulink model 
 sl_pursuit drives the vehicle 
along a piecewise linear trajecto-
ry. Red blocks have parameters 
that you can adjust to investigate 
the effect on performance
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In order to control the fi nal  orientation we fi rst rewrite Eq. 4.2 in matrix form

where the inputs to the  vehicle  model are the speed v and the turning rate ω which can 
be achieved by applying the steering angle�

We then transform the equations into polar coordinate form using the  notation shown 
in Fig. 4.10 and apply a change of variables

Fig. 4.9. Simulation results from 
pure pursuit. a Path of the robot 
in the xy-plane. The red dashed 
line is the path to be followed and 
the blue line in the path followed 
by the robot, which starts at the 
origin. b The speed of the robot 
versus time

Fig. 4.10.
Polar coordinate notation for 

the  bicycle model vehicle mov-
ing toward a goal pose: ρ  is the 

distance to the goal, β  is the an-
gle of the goal vector with re-
spect to the world frame, and 

α  is the angle of the goal vector 
with respect to the vehicle frame

We have effectively converted the Bicy-
cle kinematic  model to a Unicycle   model 
which we discuss in Sect. 4.1.2.

4.1  ·  Wheeled Mobile Robots

�



108 Chapter 4  ·  Mobile Robot Vehicles

which results in

and assumes the goal frame {G} is in front of the vehicle. The  linear control law

drives the robot to a unique equilibrium� at (ρ, α, β ) = (0, 0, 0). The intuition behind 
this controller is that the terms kρρ  and kαα  drive the robot along a line toward {G} 
while the term kββ  rotates the line so that β → 0. The closed-loop system

is stable so long as

The distance and bearing to the goal (ρ, α) could be measured by a camera or laser 
range fi nder, and the angle β  could be derived from α  and  vehicle  orientation θ  as 
measured by a compass.

For the case where the goal is behind the robot, that is α ∉ (−ü, ü], we reverse the 
vehicle by negating v and γ  in the control  law. The velocity v always has a constant 
sign which depends on the initial value of α .

So far we have described a regulator that drives the vehicle to the pose (0, 0, 0). To 
move the robot to an arbitrary pose (x∗, y∗, θ ∗) we perform a change of coordinates

This pose controller is implemented by the Simulink model

>>  sl_drivepose

shown in Fig. 4.11 and the transformation from Bicycle to Unicycle kinematics is clearly 
shown, mapping angular velocity ω  to steering wheel angle γ . We specify a goal pose

The control law introduces a disconti-
nuity at ρ = 0 which satisfies Brockett’s 
theorem.

Fig. 4.11. The Simulink model 
 sl_drivepose drives the ve-
hicle to a pose. The initial and fi -
nal poses are set by the workspace 
variable x0 and xf respectively. 
Red blocks have parameters that 
you can adjust to investigate the 
effect on performance
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>> xg = [5 5 pi/2];

and an initial pose

>> x0 = [9 5 0];

and then simulate the motion

>> r = sim( 'sl_drivepose');

As before, the simulation results are stored in r and can be plotted

>> q = r.fi nd('y');
>> plot(q(:,1), q(:,2));

to show the  vehicle’s path in the plane. The vehicle’s path for a number of starting pos-
es is shown in Fig. 4.12. The vehicle moves forwards or backward and takes a smooth 
path to the goal pose.�

4.1.2 
l
Differentially-Steered  Vehicle

Having steerable wheels as in a car-like vehicle is mechanically complex. Differential 
steering does away with this and steers by independently controlling the speed of the 
wheels on each side of the vehicle – if the speeds are not equal the vehicle will turn. Very 
simple differential steer robots have two driven wheels and a front and back castor to 
provide stability. Larger differential steer vehicles such as the one shown in Fig. 4.13 
employ a pair of wheels on each side, with each pair sharing a drive motor via some 
mechanical  transmission. Very large differential steer vehicles such as bulldozers and 
tanks sometimes employ caterpillar tracks instead of wheels. The vehicle’s velocity is 
by defi nition v in the vehicle’s x-direction, and zero in the y-direction since the wheels 
cannot slip sideways. In the vehicle frame {B} this is

The pose of the vehicle is represented by the body coordinate frame {B} shown in 
Fig. 4.14, with its x-axis in the vehicle’s forward direction and its origin at the centroid 
of the four wheels. The confi guration of the vehicle is represented by the generalized 
coordinates q = (x, y, θ) ∈ C where C⊂R2 × S1.

The vehicle follows a curved path centered on the   Instantaneous Center of Rotation 
(ICR). The left-hand wheels move at a speed of vL along an arc with a radius of RL 

Fig. 4.12.
Simulation results from differ-

ent initial poses to the fi nal pose 
(5, 5, ü). Note that in some cas-
es the robot has backed into the 

fi nal pose

The controller is based on the bicycle mod-
el but the Simulink model  Bicycle 
has additional hard nonlinearities in-
cluding steering angle limits and veloc-
ity rate limiting. If those limits are violated 
the pose controller may fail.

4.1  ·  Wheeled Mobile Robots



110 Chapter 4  ·  Mobile Robot Vehicles

Fig. 4.13.
Clearpath Husky robot with dif-
ferential drive steering (photo by 
Tim Barfoot)

Fig. 4.14.
Differential drive robot is shown 
in light grey, and the unicycle 
approximation is dark grey. The 
vehicle’s body coordinate frame 
is shown in red, and the world 
coordinate frame in blue. The 
vehicle follows a path around 
the Instantaneous Center of 
Rotation (ICR) and the distance 
from the ICR to the left and 
right wheels is RL and RR respec-
tively. We can use the alterna-
tive body frame {B′} for trajec-
tory tracking control
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while the right-hand wheels move at a speed of vR along an arc with a radius of RR. 
The angular velocity of {B} is

and since RR = RL + W we can write the turn rate

 (4.4)

in terms of the differential velocity and wheel separation W. The  equations of  motion 
are therefore

 (4.5)

where v= ½(vR + vL) and v∆ = vR − vL are the average and differential velocities re-
spectively. For a desired speed v and turn rate Ë we can solve for vR and vL. This kine-
matic  model is often called the unicycle  model  .

There are similarities and differences to the bicycle  model of Eq. 4.2. The turn rate 
for this vehicle is directly proportional to v∆ and is independent of speed – the vehicle 
can turn even when not moving forward. For the 4-wheel case shown in Fig. 4.14 the 
axes of the wheels do not intersect the ICR, so when the vehicle is turning the wheel 
velocity vectors vL and vR are not tangential to the path – there is a component in 
the lateral direction which violates the no-slip constraint. This causes skidding or 
scuffi ng� which is extreme when the vehicle is turning on the spot – hence differen-
tial steering is also called skid steering  . Similar to the car-like vehicle we can write 
an expression for velocity in the vehicle’s y-direction expressed in the world coor-
dinate frame

 (4.6)

which is the nonholonomic constraint  . It is important to note that the ability to turn 
on the spot does not make the vehicle holonomic and is fundamentally different to the 
ability to move in an arbitrary direction which we will discuss next.

If we move the vehicle’s reference frame to {B′} and ignore orientation we can re-
write Eq. 4.5 in matrix form as

and if a ≠ 0 this can be be inverted

 (4.7)

to give the required forward speed and turn rate to achieve an arbitrary velocity (¾, Á) 
for the origin of frame {B′}.

The Toolbox   Simulink block library roblocks  contains a block called Unicycle  
to implement this model and the coordinate frame shift a is one of its parameters. It 
has the same outputs as the Bicycle  model used in the last section. Equation 4.7 is 
implemented in the block called Tracking Controller .

4.1  ·  Wheeled Mobile Robots

From Sharp 1896

For indoor applications this can destroy 
carpet.
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4.1.3  
l
Omnidirectional  Vehicle

The vehicles we have discussed so far have a constraint on lateral  motion, the non-
holonomic constraint, which necessitates complex maneuvers in order to achieve 
some goal poses. Alternative wheel designs such as shown in Fig. 4.15 remove this 
constraint and allow  omnidirectional  motion. Even more radical is the spherical wheel 
shown in Fig. 4.16.

In this section we will discuss the mecanum or “Swedish” wheel� shown in Fig. 4.15b 
and schematically in Fig. 4.17. It comprises a number of rollers set around the circum-
ference of the wheel with their axes at an angle of α  relative to the axle of the wheel. 
The dark roller is the one on the bottom of the wheel and currently in contact with the 
ground. The rollers have a barrel shape so only one point on the roller is in contact 
with the ground at any time.

As shown in Fig. 4.17 we establish a wheel coordinate frame {W} with its x-axis 
pointing in the direction of wheel motion. Rotation of the wheel will cause forward 
velocity of Rϖ'w where R is the wheel radius and ϖ  is the wheel rotational rate. 
However because the roller is free to roll in the direction indicated by the green line, 
normal to the roller’s axis, there is potentially arbitrary velocity in that direction. A 
desired velocity v can be resolved into two components, one parallel to the direction 
of wheel motion 'w and one parallel to the rolling direction

 (4.8)

where vw is the speed due to wheel rotation and vr is the rolling speed. Expressing 
v = vx'w + vy(w in component form allows us to solve for the rolling speed vr = vy/ sin α 
and substituting this into the fi rst term we can solve for the required wheel velocity

 (4.9)

The required wheel rotation rate is then ϖ = vw / R. If α =  0 then vw is undefi ned 
since the roller axes are parallel to the wheel axis and the wheel can provide no trac-
tion. If α = ü as in Fig. 4.15a, the wheel allows sideways rolling but not sideways driv-
ing since there is zero coupling from vw to vy.

Fig. 4.15.
Two types of  omnidirectional 
wheel, note the different roller 
orientation. a Allows the wheel 
to roll sideways (courtesy Vex 
Robotics); b allows the wheel 
to drive sideways (courtesy of 
Nexus Robotics)

Fig. 4.16. The Rezero ballbot  de-
veloped at ETH Zurich (photo by 
Péter Fankhauser)

Mecanum was a Swedish company where 
the wheel was invented by Bengt Ilon  in 
1973. It is described in US patent 3876255.
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A single mecanum wheel does not allow any control in the rolling direction but 
for three or more mecanum wheels, suitably arranged, the motion in the rolling di-
rection of any one wheel will be driven by the other wheels. A vehicle with four me-
canum wheels is shown in Fig. 4.18. Its pose is represented by the body frame {B} 
with its x-axis in the vehicle’s forward direction and its origin at the centroid of the 
four wheels. The confi guration of the vehicle is represented by the generalized co-
ordinates q = (x, y, θ ) ∈ C where C⊂R2 × S1. The rolling axes of the wheels are or-
thogonal which means that when the wheels are not rotating the vehicle cannot roll 
in any direction or rotate.

The four wheel contact points indicated by grey dots have coordinate vectors Bpi. 
For a desired body velocity BvB and angular rate Bω the velocity at each wheel contact 
point is

and we then apply Eq. 4.8 and 4.9 to determine wheel rotational rates ϖi, while noting 
that α has the opposite sign for wheels 2 and 4 in Eq. 4.8.

Fig. 4.17.
Schematic of a mecanum wheel 

in plan view. The light roll-
ers are on top of the wheel, the 

dark roller is in contact with the 
ground. The green arrow indi-

cates the rolling direction

Fig. 4.18. a Kuka youBot, which has 
has four mecanum wheels (image 
courtesy youBot Store); b schemat-
ic of a vehicle with four mecanum 
wheels in the youBot confi guration

4.1  ·  Wheeled Mobile Robots
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4.2 
l
Flying Robots

In order to fl y, all one must do is simply miss the ground.
Douglas Adams

Flying robots or  unmanned aerial vehicles ( UAV) are becoming increasingly common and 
span a huge range of size and shape as shown in shown in Fig. 4.19. Applications include 
military operations, surveillance, meteorological observation, robotics research, commer-
cial photography and increasingly hobbyist and personal use. A growing class of fl ying 
machines are known as  micro air vehicles or MAVs which are smaller than 15 cm in all di-
mensions. Fixed wing UAVs are similar in principle to passenger aircraft with wings to pro-
vide lift, a propeller or jet to provide forward thrust and control surface for maneuvering. 
Rotorcraft UAVs have a variety of confi gurations that include conventional helicopter de-
sign with a main and tail rotor, a coax with counter-rotating coaxial rotors and  quadrotors. 
Rotorcraft UAVs have the advantage of being able to take off vertically and to hover.

Flying robots differ from ground robots in some important ways. Firstly they 
have 6 degrees of freedom  and their  confi guration q ∈ C where C ⊂R3 × S1× S1× S1. 
Secondly they are actuated by forces; that is their motion  model is expressed in terms 
of forces, torques and accelerations rather than velocities as was the case for the ground 
vehicle models – we use a dynamic rather than a kinematic  model. Underwater robots 
have many similarities to fl ying robots and can be considered as vehicles that fl y through 
water and there are underwater equivalents to fi xed wing aircraft and rotorcraft. The 
principal differences underwater are an upward buoyancy force, drag forces that are 
much more signifi cant than in air, and added mass.

In this section we will create a model for a  quadrotor fl ying vehicle such as shown 
in Fig. 4.19d. Quadrotors are now widely available, both as commercial products and 
as open-source projects. Compared to fi xed wing aircraft they are highly maneuverable 
and can be fl own safely indoors which makes them well suited for laboratory or hob-
byist use. Compared to conventional helicopters, with a large main rotor and tail rotor, 
the quadrotor is easier to fl y, does not have the complex swash plate mechanism and is 
easier to model and control.

Fig. 4.19.
Flying robots. a  Global Hawk 
unmanned aerial vehicle (UAV) 
(photo courtesy of NASA), b a 
micro air vehicle (MAV) (photo
courtesy of AeroVironment, Inc.),
c a 1 gram co-axial helicopter
with 70 mm rotor diameter 
(photo courtesy of Petter Muren 
and Proxfl yer AS), d a quadro-
tor which has four rotors and 
a block of sensing and control 
electronics in the middle (photo 
courtesy of 3DRobotics)
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The  notation for the  quadrotor  model is shown in Fig. 4.20. The body coordinate 
frame {B} has its z-axis downward following the aerospace convention. The quadrotor 
has four rotors, labeled 1 to 4, mounted at the end of each cross arm. Hex- and octo-
rotors are also popular, with the extra rotors providing greater  payload lift capability. 
The approach described here can be generalized to N rotors, where N is even.

The rotors are driven by electric motors powered by electronic speed controllers. 
Some low-cost quadrotors use small motors and reduction gearing to achieve suffi -
cient torque. The rotor speed is ϖ i and the thrust is an upward vector

 (4.10)

in the vehicle’s negative z-direction, where b > 0 is the lift constant that depends on 
the air density, the cube of the rotor blade radius, the number of blades, and the chord 
length of the blade.�

The translational  dynamics of the vehicle in world coordinates is given by   Newton’s 
second  law

 (4.11)

where v is the velocity of the vehicle’s center of mass in the world frame, g is gravita-
tional acceleration, m is the total mass of the vehicle, B is  aerodynamic friction and 
T = ΣTi is the total upward thrust. The fi rst term is the force of  gravity which acts 
downward in the world frame, the second term is the total  thrust in the vehicle frame 
rotated into the world coordinate frame and the third term is  aerodynamic drag.

Pairwise differences in rotor thrusts cause the vehicle to rotate. The torque about 
the vehicle’s x-axis, the rolling torque, is generated by the moments

The propeller blades on a rotor craft have fascinating dynamics. When fl ying into the wind the 
blade tip coming forward experiences greater lift while the receding blade has less lift. This is 
equivalent to a torque about an axis pointing into the wind and the rotor blades behave like a 
gyroscope (see Sect. 3.4.1.1) so the net effect is that the rotor blade plane pitches up by an amount 
proportional to the apparent or nett wind speed, countered by the blade’s bending stiffness and 
the change in lift as a function of blade bending. The pitched blade plane causes a component of 
the thrust vector to retard the vehicle’s forward motion and this velocity dependent force acts 
like a friction force. This is known as  blade fl apping and is an important characteristic of blades 
on all types of rotorcraft.

Fig. 4.20.
Quadrotor notation showing the 

four rotors, their thrust vectors 
and directions of rotation. The 

 body frame {B} is attached to the 
vehicle and has its origin at the 
vehicle’s center of mass. Rotors 

1 and 3 (blue) rotate counter-
clockwise (viewed from above) 

while rotors 2 and 4 (red) rotate 
clockwise

4.2  ·  Flying Robots

Close to the ground, height <2d, the ve-
hicle experiences increased lift due to a 
cushion of air beneath it – this is ground 
effect.
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where d is the distance from the rotor axis to the center of mass. We can write this in 
terms of rotor speeds by substituting Eq. 4.10

 (4.12)

and similarly for the y-axis, the pitching torque is

 (4.13)

The torque applied to each propeller by the motor is opposed by aerodynamic drag

where k depends on the same factors as b. This torque exerts a reaction torque on the 
airframe which acts to rotate the airframe about the propeller shaft in the opposite 
direction to its rotation. The total reaction torque about the z-axis is

 (4.14)

where the different signs are due to the different rotation directions of the rotors. A 
yaw torque can be created simply by appropriate coordinated control of all four ro-
tor speeds.

The total torque applied to the airframe according to Eq. 4.12 to 4.14 is τ = (τx, τy, τz)
T 

and the rotational acceleration is given by  Euler’s  equation of motion from Eq. 3.10

 (4.15)

where J is the 3 × 3   inertia matrix of the vehicle and ω  is the angular velocity vector.
The motion of the quadrotor is obtained by integrating the   forward  dynamics equa-

tions Eq. 4.11 and Eq. 4.15 where the forces and moments on the airframe 

 (4.16)

are functions of the rotor speeds. The matrix A is constant, and full rank if b, k, d > 0 
and can be inverted

 (4.17)

to solve for the rotor speeds� required to apply a specifi ed thrust T and moment τ to 
the airframe.

To control the vehicle we will employ a nested control structure which we describe 
for pitch and x-translational motion. The innermost loop uses a proportional and de-
rivative controller� to compute the required pitching torque on the airframe

 (4.18)

based on the error between desired and actual pitch angle.� The gains Kτ,p and Kτ,d 
are determined by classical control design approaches based on an approximate dy-

The rotational dynamics has a second-
order transfer function of Θy(s) / τy(s) =
1 / (Js2 + Bs) where J is rotational in-
ertia and B is aerodynamic damping 
which is generally quite small. To regu-
late a second-order system requires a 
proportional-derivative controller.

The term Ëp
* is commonly ignored.

The direction of rotation is as shown in 
Fig. 4.20. Control of motor velocity is dis-
cussed in Sect. 9.1.6.
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namic model and then tuned to achieve good performance. The actual vehicle pitch 
angle θp

# would be estimated by an  inertial navigation system as discussed in Sect. 3.4 
and Ëp

# would be derived from gyroscopic sensors. The required rotor speeds are then 
determined using Eq. 4.17.

Consider a coordinate frame {B′} attached to the vehicle and with the same origin 
as {B} but with its x- and y-axes in the horizontal plane and parallel to the ground. The 
thrust vector is parallel to the z-axis of frame {B} and pitching the nose down, rotat-
ing about the y-axis by θp, generates a force

which has a component

that accelerates the vehicle in the B′x-direction, and we have assumed that θp is small. 
We can control the velocity in this direction with a proportional control  law

where Kf > 0 is a gain. Combining these two equations we obtain the desired pitch angle

 (4.19)

required to achieve the desired forward velocity. Using Eq. 4.18 we compute the re-
quired pitching torque, and then using Eq. 4.17 the required rotor speeds. For a vehicle 
in vertical equilibrium the total thrust equals the weight force so m / T ≈ 1 / g.

The actual vehicle velocity Bvx would be estimated by an  inertial  navigation system as 
discussed in Sect. 3.4 or a  GPS receiver. If the position of the vehicle in the xy-plane of the 
world frame is p ∈R2 then the desired velocity is given by the proportional control law

 (4.20)

based on the error between the desired and actual position. The desired velocity in 
the xy-plane of frame{B′} is

which is a function of the yaw angle θ y

Figure 4.21 shows a Simulink model of the complete control system for a  quadro-
tor� which can be loaded and displayed by

>>  sl_quadrotor

Working our way left to right and starting at the top we have the desired position 
of the quadrotor in world coordinates. The position error is rotated from the world 
frame to the body frame and becomes the desired velocity. The velocity controller 
implements Eq. 4.19 and its equivalent for the roll axis and outputs the desired pitch 
and roll angles of the quadrotor. The attitude controller is a proportional-derivative 
controller that determines the appropriate pitch and roll torques to achieve these 

This model is hierarchical and organized 
in terms of subsystems. Click the down 
arrow on a subsystem (can be seen on-
screen but not in the figure) to reveal 
the detail. Double-click on the subsys-
tem box to modify its parameters.

4.2  ·  Flying Robots
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angles based on feedback of current attitude and attitude rate.� The yaw control block 
determines the error in heading angle and implements a proportional-derivative con-
troller to compute the required yaw torque which is achieved by speeding up one pair 
of rotors and slowing the other pair.

Altitude is controlled by a proportional-derivative controller

which determines the average rotor speed. T0 = mg is the weight of the vehicle and this 
is an example of  feedforward  control – used here to counter the effect of gravity which 
otherwise is a constant disturbance to the altitude control loop. The alternatives to 
feedforward control would be to have very high gain for the altitude loop which often 
leads to actuator saturation and instability, or a proportional-integral (PI) control-
ler which might require a long time for the integral term to increase to a useful value 
and then lead to overshoot. We will revisit  gravity  compensation in Chap. 9 applied 
to arm-type robots.

The control mixer block combines the three torque demands and the vertical thrust 
demand and implements Eq. 4.17 to determine the appropriate rotor speeds. Rotor 
speed limits are applied here. These are input to the quadrotor block� which implements 
the forward  dynamics integrating Eq. 4.16 to give the position, velocity, orientation and 
 orientation rate. The output of this block is the state vector x = (0p, 0Γ, B¹, B¶) ∈R12. 
As is common in aerospace applications we represent orientation Γ and orientation 
rate ¶ in terms of   roll-pitch-yaw angles. Note that position and attitude are in the 
world frame while the rates are expressed in the body frame.

The parameters of a specifi c quadrotor can be loaded

>>  mdl_quadrotor

which creates a structure called quadrotor in the workspace, and its elements are 
the various dynamic properties of the quadrotor. The simulation can be run using the 
Simulink menu or from the MATLAB command line

>> sim( 'sl_quadrotor');

and it displays an animation in a separate window.� The vehicle lifts off and fl ies around 
a circle while spinning slowly about its own z-axis. A snapshot is shown in Fig. 4.22. 
The simulation writes the results from each timestep into a matrix in the workspace

>> about result
result [double] : 2412x16 (308.7 kB) 

Fig. 4.21. The Simulink® model
 sl_quadrotor which is a closed-
loop simulation of the quadrotor.
The vehicle takes off and fl ies in a cir-
cle at constant altitude. A Simulink 
bus is used for the 12-element state 
vector X output by the Quadrotor 
block. To reduce the number of 
lines in the diagram we have used 
Goto and From blocks to trans-
mit and receive the state vector

Note that according to the coordinate 
conventions shown in Fig. 4.20 x-direc-
tion motion requires a negative rotation 
about the y-axis (pitch angle) and y-di-
rection motion requires a positive rota-
tion about the x-axis (roll angle) so the 
gains have different signs for the roll and 
pitch loops.

The Simullink library roblocks also 
includes a block for an N-rotor vehicle.

Loading and displaying the model using 
>>  sl_quadrotor automatically 
loads the default quadrotor model. This 
is done by the PreLoadFcn callback set 
from model’s properties File+Model
Properties+Model Properties+Call-
backs+PreLoadFcn.
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which has one row per timestep, and each row contains the time followed by the state 
vector (elements 2–13) and the commanded rotor speeds ω i (elements 14–17). To 
plot x and y versus time is

>> plot(result(:,1), result(:,2:3));

To recap on control of the quadrotor. A position error results in a required trans-
lational velocity. To achieve this requires appropriate pitch and roll angles so that a 
component of the vehicle’s thrust acts in the horizontal plane and generates a force to 
accelerate the vehicle.� As it approaches its goal the airframe must be rotated in the 
opposite direction so that a component of thrust decelerates the motion. To achieve 
the pitch and roll angles requires differential propeller thrust to create a moment that 
rotationally accelerates the airframe.

This indirection from translational motion to rotational motion is a consequence 
of the vehicle being under-actuated – we have just four rotor speeds to adjust but the 
vehicle’s confi guration space is 6-dimensional. In the confi guration space we cannot 
move in the x- or y-direction, but we can move in the pitch- or roll-direction which 
results in motion in the x- or y-direction. The cost of under actuation is once again a 
maneuver. The pitch and roll angles are a means to achieve translation control and 
cannot be independently set.

4.3 
l
Advanced Topics

4.3.1 
l
Nonholonomic and Under-Actuated Systems

We introduced the notion of confi guration space   in Sect. 2.3.5 and it is useful to re-
visit it now that we have discussed several different types of mobile robot platform. 
Common vehicles – as diverse as cars , hovercrafts , ships  and aircraft  – are all able to 
move forward effectively but are unable to instantaneously move sideways. This is a 
very sensible tradeoff that simplifi es design and caters to the motion we most com-
monly require of the vehicle. Sideways motion for occasional tasks such as parking a 
car, docking a ship or landing an aircraft are possible, albeit with some complex ma-
neuvering but humans can learn this skill.

Consider a hovercraft  which moves over a planar  surface. To fully describe all its con-
stituent particles we need to specify three generalized coordinates: its position in the
xy-plane and its rotation angle. It has three degrees of freedom and its confi guration 
space is C⊂R2 × S1. This hovercraft has two propellers whose axes are parallel but not 

Fig. 4.22.
One frame from the quadrotor 
simulation. The marker on the 
ground plane is a projection of 

the vehicle’s centroid

The total thrust must be increased so 
that the vertical thrust component still 
balances gravity.

4.3  ·  Advanced Topics
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collinear. The sum of their thrusts provide a forward force and the difference in thrusts 
generates a yawing torque for steering. The number of actuators, two, is less than its 
degrees of  freedom   dimC= 3 and we call this an  under-actuated system . This imposes 
signifi cant limitations on the way in which it can move. At any point in time we can 
control the forward (parallel to the thrust vectors) acceleration and the rotational ac-
celeration of the hovercraft  but there is zero sideways (or lateral) acceleration  since it 
cannot generate any lateral thrust. Nevertheless with some clever maneuvering, like 
with a car, the hovercraft can follow a path that will take it to a place to one side of where 
it started. In the hovercraft’s 3-dimensional confi guration space this means that at any 
point there are certain directions in which acceleration is not possible. We can reach 
points in those direction but not directly, only by following some circuitous path.

All fl ying and underwater vehicles have a confi guration that is completely de-
scribed by six generalized coordinates – their position and orientation in 3D space. 
C⊂R3 × S1 × S1 × S1 where the orientation is expressed in some three-angle repre-
sentation – since dimC= 6 the vehicles have six degrees of freedom. A  quadrotor  has 
four actuators, four thrust-generating propellers, and this is fewer than its degrees 
of freedom making it  under-actuated. Controlling the four propellers causes motion 
in the up/down, roll, pitch and yaw directions of the confi guration space but not in 
the forward/backward or left/right directions. To access those degrees of freedom it 
is necessary to perform a maneuver : pitch down so that the thrust vector provides a 
horizontal force component, accelerate forward, pitch up so that the thrust vector 
provides a horizontal force component to decelerate, and then level out.

For a helicopter only four of the six degrees of freedom are practically useful: up/down, 
forward/backward, left/right and yaw. Therefore a helicopter requires a minimum of 
four actuators: the main rotor generates a thrust vector whose magnitude is controlled 
by the collective pitch and whose direction is controlled by the lateral and longitudi-
nal cyclic pitch. The tail rotor provides a yawing moment. This leaves two degrees of 
freedom unactuated, roll and pitch angles, but clever design ensures that gravity actu-
ates them and keeps them close to zero – without gravity a helicopter cannot work. A 
fi xed-wing aircraft moves forward very effi ciently and also has four actuators: engine 
thrust provides acceleration in the forward direction and the ailerons, elevator and 
rudder exert respectively roll, pitch and yaw moments on the aircraft.� To access the 
missing degrees of freedom such as up/down and left/right translation, the aircraft 
must pitch or yaw while moving forward.

The advantage of under-actuation  is having fewer actuators. In practice this means 
real savings in terms of cost, complexity and weight. The consequence is that at any 
point in its confi guration space there are certain directions in which the vehicle can-
not move. Full actuation  is possible but not common, for example the DEPTHX un-
derwater robot   shown on page 96 has six degrees of freedom  and six actuators . These 
can exert an arbitrary force and torque on the vehicle, allowing it to accelerate in any 
direction or about any axis.

A 4-wheeled car has many similarities to the hovercraft discussed above. It moves 
over a planar surface and its confi guration can be fully described by its generalized 
coordinates: its position in the xy-plane and a rotation angle. It has three degrees of 
freedom and its confi guration space is C⊂R2 × S1. A car has two actuators, one to 
move forwards or backwards and one to change the heading direction. A car, like a 
hovercraft , is  under-actuated.

We know from our experience with cars that we cannot move directly in certain 
directions and sometimes needs to perform a maneuver to reach our goal. A differ-
ential- or skid-steered vehicle, such as a tank, is also under-actuated – it has only two 
actuators, one for each track. While this type of vehicle can turn on the spot it cannot 
move sideways. To do that it has to turn, proceed, stop then turn – this need to ma-
neuver is the clear signature of an under-actuated system.

We might often wish for an ability to drive our car  sideways but the standard wheel 
provides real benefi t when cornering – lateral friction between the wheels and the 

Some low-cost hobby aircraft have no 
rudder and rely only on ailerons to bank 
and turn the aircraft. Even cheaper hob-
by aircraft have no elevator and rely on 
engine speed to control height.
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road provides, for free, the centripetal force which would otherwise require an extra 
actuator to provide. The hovercraft  has many similarities to a car but we can push a 
hovercraft sideways – we cannot do that with a car. This lateral friction is a distin-
guishing feature of the car.

The inability to slip sideways is a constraint, the   rolling constraint, on the velocity� 
of the vehicle just as under-actuation  is. A vehicle with one or more velocity constraints, 
due to under-actuation or a rolling constraint, is referred to as a nonholonomic system  . 
A key characteristic of these systems is that they cannot move directly from one con-
fi guration to another – they must perform a maneuver  or sequence of motions. A car 
has a velocity constraint due to its wheels and is also  under-actuated.

A holonomic constraint restricts the possible confi gurations that the system can 
achieve – it can be expressed as an equation written in terms of the confi guration 
variables.� A nonholonomic constraint such as Eq. 4.3 and 4.6 is one that restricts the 
velocity (or acceleration) of a system in confi guration space – it can only be expressed 
in terms of the derivatives of the confi guration variables.� The nonholonomic con-
straint does not restrict the possible confi gurations the system can achieve but it does 
preclude instantaneous velocity or acceleration in certain directions.

In control theoretic terms Brockett’s theorem (Brockett 1983) states that nonholo-
nomic systems are controllable but they cannot be stabilized to a desired state using 
a differentiable, or even continuous, pure state-feedback controller. A time-varying 
or nonlinear control  strategy is required which means that the robot follows some 
generally nonlinear path. One exception is an under-actuated system moving in 3-di-
mensional space within a force fi eld, for example a gravity fi eld – gravity acts like an 
additional actuator and makes the system linearly controllable (but not holonomic), 
as we showed for the quadrotor example in Sect. 4.2.

 Mobility parameters for the various robots that we have discussed here, and earlier 
in Sect. 2.3.5, are tabulated in Table 4.1. We will discuss under- and over-actuation   in 
the context of arm robots in Chap. 8.

4.4 
l
Wrapping Up

In this chapter we have created and discussed models and controllers for a number of 
common, but quite different, robot platforms. We fi rst discussed wheeled robots. For 
car-like vehicles we developed a kinematic model which we used to develop a number of 
different controllers in order that the platform could perform useful tasks such as driv-
ing to a point, driving along a line, following a trajectory or driving to a pose. We then 
discussed differentially steered vehicles on which many robots are based, and omnidi-
rectional robots based on novel wheel types. Then we we discussed a simple but common 

Table 4.1.
Summary of confi guration space  
characteristics for various robots. 

A nonholonomic system is
under-actuated and/or has a

rolling constraint           

The hovercraft , aerial and underwater 
vehicles   are controlled by forces so in 
this case the constraints are on vehicle 
acceleration in configuration space not 
velocity.

The constraint cannot be integrated to a 
constraint in terms of configuration vari-
ables, so such systems are also known as 
nonintegrable systems .

4.4  ·  Wrapping Up

For example fixing the end of the 10-joint 
robot arm introduces six holonomic con-
straints (position and orientation) so the 
arm would have only 4 degrees of freedom.
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fl ying vehicle, the quadrotor, and developed a dynamic model and a hierarchical control 
system that allowed the quadrotor to fl y a circuit. This hierarchical or nested control ap-
proach is described in more detail in Sect. 9.1.7 in the context of robot arms.

We also extended our earlier discussion about confi guration space to include the 
velocity constraints due to under actuation and rolling constraints from wheels.

The next chapters in this Part will discuss how to plan paths for robots through 
complex environments that contain obstacles and then how to determine the loca-
tion of a robot.

Further Reading

Comprehensive modeling of mobile ground robots is provided in the book by Siegwart 
et al. (2011). In addition to the models covered here, it presents in-depth discussion of 
a variety of wheel confi gurations with different combinations of driven wheels, steered 
wheels and passive castors. The book by Kelly (2013) also covers vehicle modeling and 
control. Both books also provide a good introduction to  perception, localization and 
 navigation which we will discuss in the coming chapters.

The paper by Martins et al. (2008) discusses kinematics, dynamics and control of 
differential steer robots. The Handbook of Robotics (Siciliano and Khatib 2016, part E) 
covers modeling and control of various vehicle types including aerial and underwater. 
The theory of helicopters with an emphasis on robotics is provided by Mettler (2003) 
but the defi nitive reference for helicopter  dynamics is the very large book by Prouty 
(2002). The book by Antonelli (2014) provides comprehensive coverage of modeling 
and control of underwater robots.

Some of the earliest papers on quadrotor modeling and control are by Pounds, 
Mahony and colleagues (Hamel et al. 2002; Pounds et al. 2004, 2006). The thesis by 
Pounds (2007) presents comprehensive aerodynamic modeling of a quadrotor with 
a particular focus on blade fl apping, a phenomenon well known in conventional he-
licopters but largely ignored for quadrotors. A tutorial introduction to the control of 
multi-rotor fl ying robots is given by Mahony, Kumar, and Corke (2012). Quadrotors 
are now commercially available from many vendors at quite low cost. There are also 
a number of hardware kits and open-source software projects such as  ArduCopter 
and  Mikrokopter.

Mobile ground robots are now a mature technology for transporting parts around 
manufacturing plants. The research frontier is now for vehicles that operate autono-
mously in outdoor environments (Siciliano and Khatib 2016, part F). Research into 
the automation of passenger cars has been ongoing since the 1980s and a number of 
automative manufacturers are talking about commercial autonomous cars by 2020.

Historical and interesting. The  Navlab project at Carnegie-Mellon University started 
in 1984 and a series of autonomous vehicles, Navlabs, were built and a large body of 
research has resulted. All vehicles made strong use of computer vision for navigation. 
In 1995 the supervised autonomous Navlab 5 made a 3 000-mile journey, dubbed “No 
Hands Across America” (Pomerleau and Jochem 1995, 1996). The vehicle steered itself 
98% of the time largely by visual sensing of the white lines at the edge of the road.

In Europe, Ernst Dickmanns and his team at Universität der Bundeswehr München 
demonstrated autonomous control of vehicles. In 1988 the  VaMoRs system, a 5 tonne 
Mercedes-Benz van, could drive itself at speeds over 90 km h−1 (Dickmanns and Graefe 
1988b; Dickmanns and Zapp 1987; Dickmanns 2007). The European  Prometheus Project 
ran from 1987–1995 and in 1994 the robot vehicles VaMP and VITA-2 drove more 
than 1 000 km on a Paris multi-lane highway in standard heavy traffi c at speeds up 
to 130 km h−1. They demonstrated autonomous driving in free lanes, convoy driv-
ing, automatic tracking of other vehicles, and lane changes with autonomous passing 
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of other cars. In 1995 an autonomous S-Class Mercedes-Benz made a 1 600 km trip 
from Munich to Copenhagen and back. On the German Autobahn speeds exceeded 
175 km h−1 and the vehicle executed traffi c maneuvers such as overtaking. The mean 
time between human interventions was 9 km and it drove up to 158 km without any 
human intervention. The UK part of the project demonstrated autonomous driving 
of an  XJ6 Jaguar with vision (Matthews et al. 1995) and radar-based sensing for lane 
keeping and collision avoidance. More recently, in the USA a series of Grand Challenges 
were run for autonomous cars. The 2005 desert and 2007 urban challenges are com-
prehensively described in compilations of papers from the various teams in Buehler 
et al. (2007, 2010). More recent demonstrations of self-driving vehicles are a journey 
along the fabled silk road described by Bertozzi et al. (2011) and a classic road trip 
through Germany by Ziegler et al. (2014).

Ackermann’s magazine can be found online at http://smithandgosling.wordpress.
com/2009/12/02/ackermanns-repository-of-arts and the carriage steering mecha-
nism is published in the March and April issues of 1818. King-Hele (2002) provides a 
comprehensive discussion about the prior work on steering geometry and Darwin’s 
earlier invention.

Toolbox and  MATLAB Notes

In addition to the Simulink Bicycle model used in this chapter the Toolbox also 
provides a MATLAB class which implements these kinematic equations and which 
we will use in Chap. 6. For example we can create a vehicle model with steer angle 
and speed limits

>> veh = Bicycle('speedmax', 1, 'steermax', 30*pi/180);

and evaluate Eq. 4.2 for a particular state and set of control inputs (v, γ)
>> veh.deriv([], [0 0 0], [0.3, 0.2])
ans =
    0.3000         0    0.0608

The  Unicycle class is used for a differentially-steered robot and has equivalent 
methods.

The Robotics System Toolbox™ from The MathWorks has support for differentially-steered 
mobile robots which can be created using the function  ExampleHelperRobotSimulator. 
It also includes a class robotics.PurePursuit that implements pure pursuit for a 
differential steer robot. An example is given in the Toolbox RST folder.

Exercises

1. For a 4-wheel vehicle with L = 2 m and width between wheel centers of 1.5 m
a) What steering wheel angle is needed for a turn rate of 10 deg s−1 at a forward 

speed of 20 km h−1?
b) compute the difference in wheel steer angle for Ackermann  steering around 

curves of radius 10, 50 and 100 m.
c) If the vehicle is moving at 80 km h−1 compute the difference in back wheel rota-

tion rates for curves of radius 10, 50 and 100 m.
2. Write an expression for turn rate in terms of the angular rotation rate of the two 

back wheels. Investigate the effect of errors in wheel radius and vehicle width.
3. Consider a car and bus with L = 4 and 12 m respectively. To follow a curve with 

radius of 10, 20 and 50 m determine the respective steered wheel angles.
4. For a number of steered wheel angles in the range −45 to 45° and a velocity of 

2 m s−1 overlay plots of the vehicle’s trajectory in the xy-plane.

4.4  ·  Wrapping Up
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5. Implement the � operator used in Sect. 4.1.1.1 and check against the code for 
angdiff.

6. Moving to a point (page 103) plot x, y and θ  against time.
7. Pure pursuit example (page 106)

a) Investigate what happens if you vary the look-ahead distance, heading gain or 
proportional gain in the speed controller.

b) Investigate what happens when the integral gain in the speed controller is zero.
c) With integral set to zero, add a constant to the output of the controller. What 

should the value of the constant be?
d) Add a velocity feedforward term.
e) Modify the pure pursuit example so the robot follows a slalom course.
f) Modify the pure pursuit example to follow a target moving back and forth along 

a line.
8. Moving to a pose (page 107)

a) Repeat the example with a different initial orientation.
b) Implement a parallel parking maneuver. Is the resulting path practical?
c) Experiment with different control parameters.

9. Use the MATLAB GUI interface to make a simple steering wheel and velocity con-
trol, and use this to create a very simple driving simulator. Alternatively interface 
a gaming steering wheel and pedal to MATLAB.

10. Adapt the various controllers in Sect. 4.1.1 to the differentially steered robot.
11. Derive Eq. 4.4 from the preceding equation.
12. For constant forward velocity, plot vL and vR as a function of ICR position along 

the y-axis. Under what conditions do vL and vR have a different sign?
13. Using Simulink implement a controller using Eq. 4.7 that moves the robot in its

y-direction. How does the robot’s orientation change as it moves?
14. Sketch the design for a robot with three mecanum wheels. Ensure that it cannot 

roll freely and that it can drive in any direction. Write code to convert from desired 
vehicle translational and rotational velocity to wheel rotation rates.

15. For the 4-wheel omnidirectional robot of Sect. 4.1.3 write an algorithm that will al-
low it to move in a circle of radius 0.5 m around a point with its nose always pointed 
toward the center of the circle.

16. Quadrotor (page 115)
a) At equilibrium, compute the speed of all the propellers.
b) Experiment with different control gains. What happens if you reduce the damp-

ing gains to zero?
c) Remove the gravity feedforward and experiment with large altitude gain or a 

PI controller.
d) When the vehicle has nonzero roll and pitch angles, the magnitude of the verti-

cal thrust is reduced and the vehicle will slowly descend. Add compensation to 
the vertical thrust to correct this.

e) Simulate the quadrotor fl ying inverted, that is, its z-axis is pointing upwards.
f) Program a ballistic motion. Have the quadrotor take off at 45 deg to horizontal 

then remove all thrust.
g) Program a smooth landing.
h) Program a barrel roll maneuver. Have the quadrotor fl y horizontally in its

x-direction and then increase the roll angle from 0 to 2π .
i) Program a fl ip maneuver. Have the quadrotor fl y horizontally in its x-direction 

and then increase the pitch angle from 0 to 2π .
j) Add another four rotors.
k) Use the function mstraj to create a trajectory through ten via points (Xi, Yi, Zi, θy) 

and modify the controller of Fig. 4.21 for smooth pursuit of this trajectory.
l) Use the MATLAB GUI interface to make a simple joystick control, and use this 

to create a very simple fl ying simulator. Alternatively interface a gaming joystick 
to MATLAB.
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5  Navigation
the process of directing a vehicle so as to reach the intended destination

IEEE Standard 172-1983

Robot navigation is the problem of guiding a robot towards a goal. 
The human approach to navigation is to make maps and erect sign-
posts, and at fi rst glance it seems obvious that robots should operate 
the same way. However many robotic tasks can be achieved without 
any map at all, using an approach referred to as reactive  navigation. 
For example, navigating by heading towards a light, following a white 
line on the ground, moving through a maze by following a wall, or 
vacuuming a room by following a random path. The robot is reacting 
directly to its environment: the  intensity of the light, the relative po-
sition of the white line or contact with a wall. Grey Walter’s tortoise 
 Elsie from page 95 demonstrated “life-like” behaviors – she reacted 
to her environment and could seek out a light source. Today tens of 
millions of robotic vacuum cleaners are cleaning fl oors and most of 
them do so without using any map of the rooms in which they work. 
Instead they do the job by making random moves and sensing only 
that they have made contact with an obstacle as shown in Fig. 5.1.

Human-style map-based  navigation is used by more sophisticated 
robots and is also known as motion planning. This approach supports 
more complex tasks but is itself more complex. It imposes a number 
of requirements, not the least of which is having a map of the envi-
ronment. It also requires that the robot’s position is always known. 
In the next chapter we will discuss how robots can determine their 
position and create maps. The remainder of this chapter discusses 
the reactive and map-based approaches to robot navigation with a 
focus on wheeled robots operating in a planar environment.

Fig. 5.1.
Time lapse photograph of a 

Roomba robot cleaning a room 
(photo by Chris Bartlett)
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5.1 
l
Reactive  Navigation

Surprisingly complex tasks can be performed by a robot even if it has no map and no 
real idea about where it is. As already mentioned robotic vacuum cleaners use only 
random motion and information from contact sensors to perform a complex task as 
shown in Fig. 5.1. Insects such as ants and bees gather food and return it to their nest 
based on input from their senses, they have far too few neurons to create any kind of 
mental map of the world and plan paths through it. Even single-celled organisms such 
as fl agellate protozoa exhibit goal-seeking behaviors. In this case we need to tempo-
rarily modify our earlier  defi nition of a robot to

a goal oriented machine that can sense, plan and act.

Grey Walter’s robotic tortoise demonstrated that it could moves toward a light 
source, a behavior known as  phototaxis.� This was an important result in the then 
emerging scientifi c fi eld of  cybernetics.

5.1.1  
l
Braitenberg  Vehicles

A very simple class of goal achieving robots are known as Braitenberg vehicles and 
are characterized by direct connection between sensors and motors. They have no 
explicit internal representation of the environment in which they operate and nor do 
they make explicit plans.�

Consider the problem of a robot moving in two dimensions that is seeking the lo-
cal maxima of a scalar fi eld – the fi eld could be light intensity or the concentration of 
some chemical.� The Simulink® model

>>  sl_braitenberg

shown in Fig. 5.2 achieves this using a steering signal derived directly from the sensors.�

Valentino Braitenberg (1926–2011) was an Italian-Austrian neuroscientist and cyberneticist, and 
former director at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. 
His 1986 book “Vehicles: Experiments in Synthetic Psychology” (image on right is the cover of 
this book, published by The MIT Press, ©MIT 1984) describes reactive goal-achieving vehicles, 
and such systems are now commonly known as Braitenberg Vehicles.

A  Braitenberg vehicle is an automaton which combines sensors, actuators and their direct in-
terconnection to produce goal-oriented behaviors. In the book these vehicles are described con-
ceptually as analog circuits, but more recently small robots based on a digital realization of the 
same principles have been developed. Grey Walter’s tortoise predates the use of this term but 
was nevertheless an example of such a vehicle.

More generally a taxis  is the response of 
an organism to a stimulus gradient.

This is a fine philosophical point, the plan 
could be considered to be implicit in the 
details of the connections between the 
motors and sensors.

This is similar to the problem of moving 
to a point discussed in Sect. 4.1.1.1.

This is similar to Braitenberg’s Vehicle 4a.

  William Grey Walter (1910–1977) was a neurophysiologist and pioneering cyberneticist born in 
Kansas City, Missouri and studied at King’s College, Cambridge. Unable to obtain a research 
fellowship at Cambridge, he worked on neurophysiological research in hospitals in London and 
from 1939 at the Burden Neurological Institute in Bristol. He developed electro-encephalographic 
brain topography which used multiple electrodes on the scalp and a triangulation algorithm to 
determine the amplitude and location of brain activity.

Walter was infl uential in the then new fi eld of  cybernetics. He built robots to study how complex 
refl ex behavior could arise from neural interconnections. His tortoise Elsie (of the species Machina 
Speculatrix) is shown, without its shell, on page 95. Built in 1948 Elsie was a three-wheeled robot capable 
of phototaxis that could also fi nd its way to a recharging station. A second generation tortoise (from 
1951) is in the collection of the Smithsonian Institution. He published popular articles in “Scientifi c 
American” (1950 and 1951) and a book “The Living Brain” (1953). He was badly injured in a car acci-
dent in 1970 from which he never fully recovered. (Image courtesy Reuben Hoggett collection)
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To ascend the gradient we need to estimate the gradient direction at the current 
location and this requires at least two measurements of the fi eld.� In this example we 
use two sensors, bilateral sensing, with one on each side of the robot’s body. The sen-
sors are modeled by the green sensor blocks shown in Fig. 5.2 and are parameterized 
by the position of the sensor with respect to the robot’s body, and the sensing function. 
In this example the sensors are at ±2 units in the vehicle’s lateral or y-direction.

The fi eld to be sensed is a simple inverse square fi eld defi ned by

1 function sensor =  sensorfi eld(x, y)
2     xc = 60; yc = 90;
3     sensor = 200./((x-xc).^2 + (y-yc).^2 + 200);

which returns the sensor value s(x, y) ∈ [0, 1] which is a function of the sensor’s posi-
tion in the plane. This particular function has a peak value at the point (60, 90).

The vehicle speed is

where sR and sL are the right and left sensor readings respectively. At the goal, where 
sR = sL = 1 the velocity becomes zero.

Steering angle is based on the difference between the sensor readings

so when the fi eld is equal in the left- and right-hand sensors the robot moves straight ahead.�

We start the simulation from the Simulink menu or the command line

>> sim( 'sl_braitenberg');

and the path of the robot is shown in Fig. 5.3. The starting pose can be changed through 
the parameters of the Bicycle block. We see that the robot turns toward the goal and 
slows down as it approaches, asymptotically achieving the goal position.

This particular sensor-action control  law results in a specifi c robotic behavior. We 
could add additional logic to the robot to detect that it had arrived near the goal and 
then switch to a stopping behavior. An obstacle would block this robot since its only 
behavior is to steer toward the goal, but an additional behavior could be added to han-
dle this case and drive around an obstacle. We could add another behavior to search 
randomly for the source if none was visible. Grey Walter’s tortoise had four behaviors 
and switching was based on light level and a touch sensor.

Multiple behaviors and the ability to switch between them leads to an approach 
known as  behavior-based robotics. The  subsumption  architecture was proposed as a 

Fig. 5.2.
The Simulink® model

 sl_braitenberg drives the 
vehicle toward the maxima of 

a provided scalar function. The 
vehicle plus controller is an ex-
ample of a Braitenberg vehicle

We can make the measurements simul-
taneously using two spatially separated 
sensors or from one sensor over time as 
the robot moves.

Similar strategies are used by moths 
whose two antennae are exquisitely 
sensitive odor detectors that are used 
to steer a male moth toward a phero-
mone emitting female.

5.1  ·  Reactive Navigation
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means to formalize the interaction between different behaviors. Complex, some might 
say intelligent looking, behaviors can be manifested by such systems. However as more 
behaviors are added the complexity of the system grows rapidly and interactions be-
tween behaviors become more complex to express and debug. Ultimately the penalty 
of not using a map becomes too great.

5.1.2 
l

Simple Automata

Another class of reactive robots are known as bugs – simple  automata that perform  goal 
seeking in the presence of nondriveable areas or obstacles.  There are a large number 
of bug  algorithms and they share the ability to sense when they are in proximity to an 
obstacle. In this respect they are similar to the Braitenberg class vehicle, but the bug 
includes a state machine and other logic in between the sensor and the motors. The 
automata have memory which our earlier Braitenberg vehicle lacked.� In this section 
we will investigate a specifi c bug algorithm known as bug2.

We start by loading an obstacle fi eld to challenge the robot
>> load house
>> about house
house [double] : 397x596 (1.9 MB)

which defi nes a matrix variable house in the workspace. The elements are zero or 
one representing free space or obstacle respectively and this is shown in Fig. 5.4. Tools 
to generate such maps are discussed on page 131. This matrix is an example of an  oc-
cupancy grid which will be discussed further in the next section. This command also 
loads a list of named places within the house, as elements of a structure

>> place
place = 
     kitchen: [320 190]
      garage: [500 150]
         br1: [50 220]
          .
          .

At this point we state some assumptions. Firstly, the robot operates in a grid world 
and occupies one grid cell. Secondly, the robot is capable of  omnidirectional  motion 
and can move to any of its eight neighboring grid cells. Thirdly, it is able to deter-
mine its position on the plane which is a nontrivial problem that will be discussed 
in detail in Chap. 6. Finally, the robot can only sense its goal and whether adjacent 
cells are occupied.

Fig. 5.3.
Path of the Braitenberg vehicle 
moving toward the maximum of 
a 2D scalar fi eld whose magni-
tude is shown color coded

Braitenberg’s book describes a series of 
increasingly complex vehicles, some of 
which incorporate memory. However the 
term Braitenberg vehicle has become as-
sociated with the simplest vehicles he 
described.
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We create an instance of the  bug2 class

>>  bug = Bug2(house);

and pass in the occupancy grid. The bug2  algorithm does not use the map to plan a 
path – the map is used by the simulator to provide sensory inputs to the robot. We 
can display the robot’s environment by

>>  bug.plot();

The simulation is run using the query method

>> bug.query(place.br3, place.kitchen, 'animate');

whose arguments are the start and goal positions of the robot within the house.
The method displays an animation of the robot moving toward the goal and the 

path is shown as a series of green dots in Fig. 5.4.
The strategy of the bug2 algorithm is quite simple. It is given a straight line – the 

m-line – towards its goal. If it encounters an obstacle it turns right and continues un-
til it encounters a point on the m-line that is closer to the goal than when it departed 
from the m-line.�

If an output argument is specifi ed

>> p = bug.query(place.br3, place.kitchen)  

it returns the path as a matrix p

>> about p
p [double] : 1299x2 (20.8 kB)

which has one row per point, and comprises 1 299 points for this example. Invoking 
the function with an empty matrix

>> p = bug.query([], place.kitchen)  ;  

will prompt for the corresponding point to be selected by clicking on the plot.
In this example the bug2  algorithm has reached the goal but it has taken a very 

suboptimal route, traversing the inside of a wardrobe, behind doors and visiting two 

Fig. 5.4.
Obstacles are indicated by red 

pixels. Named places are in-
dicated by hollow black stars. 

Approximate scale is 4.5 cm per 
cell. The start location is a solid 
blue circle and the goal is a sol-
id blue star. The path taken by 

the bug2 algorithm is marked by 
a green line. The black dashed 

line is the m-line, the direct path 
from the start to the goal

It could be argued that the m-line rep-
resents an explicit plan. Thus bug algo-
rithms occupy a position somewhere 
between Braitenberg vehicles and map-
based planning systems in the spectrum 
of approaches to navigation.

5.1  ·  Reactive Navigation
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bathrooms. It would perhaps have been quicker in this case to turn left, rather than 
right, at the fi rst obstacle but that strategy might give a worse outcome somewhere 
else. Many variants of the bug algorithm have been developed, but while they improve 
the performance for one type of environment they can degrade performance in others. 
Fundamentally the robot is limited by not using a map. It cannot see the big picture 
and therefore takes paths that are locally, rather than globally, optimal.

5.2 
l
Map-Based  Planning

The key to achieving the best path between points A and B, as we know from everyday 
life, is to use a map. Typically best means the shortest distance but it may also include 
some penalty term or cost related to  traversability which is how easy the terrain is to 
drive over – it might be quicker to travel further but faster over better roads. A more 
sophisticated planner might also consider the size of the robot, the kinematics and 
dynamics of the vehicle and avoid paths that involve turns that are tighter than the 
vehicle can execute. Recalling our earlier  defi nition of a robot as a

goal oriented machine that can sense,  plan  and act,

this section concentrates on planning.
There are many ways to represent a map and the position of the vehicle within the 

map. Graphs, as discussed in Appendix I, can be used to represent places and paths 
between them. Graphs can be effi ciently searched to fi nd a path that minimizes some 
measure or cost, most commonly the distance traveled. A simpler and very computer-
friendly representation is the  occupancy grid which is widely used in robotics.

An occupancy grid treats the world as a grid of cells and each cell is marked as oc-
cupied or unoccupied. We use zero to indicate an unoccupied cell or free space where 
the robot can drive. A value of one indicates an occupied or nondriveable cell. The 
size of the cell depends on the application. The memory required to hold the occu-
pancy grid increases with the spatial area represented and inversely with the cell size. 
However for modern computers this representation is very feasible. For example a cell 
size 1 × 1 m requires� just 125 kbyte km−2.

In the remainder of this section we use code examples to illustrate several different 
planners and all are based on the occupancy grid representation. To create unifor-
mity the planners are all implemented as classes derived from the  Navigation su-
perclass which is briefl y described on page 133. The bug2 class we used previously was 
also an instance of this class so the remaining examples follow a familiar pattern.

Once again we state some assumptions. Firstly, the robot operates in a grid world 
and occupies one grid cell. Secondly, the robot does not have any nonholonomic con-
straints and can move to any neighboring grid cell. Thirdly, it is able to determine 
its position on the plane. Fourthly, the robot is able to use the map to compute the 
path it will take.

In all examples we will use the house map introduced in the last section and fi nd 
paths from bedroom 3 to the kitchen. These parameters can be varied, and the occu-
pancy grid changed using the tools described above.

5.2.1 
l
Distance Transform

Consider a matrix of zeros with just a single nonzero element representing the goal. 
The  distance transform of this matrix is another matrix, of the same size, but the value 
of each element is its distance� from the original nonzero pixel. For robot path  plan-
ning we use the default  Euclidean  distance. The distance transform is actually an  im-
age processing technique and will be discussed further in Chap. 12.

Considering a single bit to represent 
each cell. The occupancy grid could be 
compressed or could be kept on a disk 
with only the local region in memory.

The distance between two points 
(x1, y1) and (x2, y2) where ∆x = x2 − x1

and ∆y = y2 − y1 can be Euclidean 
∆̂x

2g+g∆gy
2 or  CityBlock (also known as 

 Manhattan)  distance |∆x| + |∆y|.
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To use the distance transform for robot navigation we create a DXform object, 
which is derived from the Navigation class

>> dx = DXform(house);

and then create a plan to reach a specifi c goal

>> dx.plan(place.kitchen) 

which can be visualized

>> dx.plot() 

as shown in Fig. 5.5. We see the obstacle regions in red overlaid on the distance map 
whose grey level at any point indicates the distance from that point to the goal, in grid 
cells, taking into account travel around obstacles.

The hard work has been done and to fi nd the shortest path from any point to the goal 
we simply consult or query the plan.� For example a path from the bedroom to the goal is

>> dx.query(place.br3, 'animate');

which displays an animation of the robot moving toward the goal. The path is indi-
cated by a series of green dots as shown in Fig. 5.5.�

The plan is the distance map. Wherever the robot starts, it moves to the neighbor-
ing cell that has the smallest distance to the goal. The process is repeated until the ro-
bot reaches a cell with a distance value of zero which is the goal.

If the  path method is called with an output argument the path

>> p = dx.query(place.br3); 

is returned as a matrix, one row per point, which we can visualize overlaid on the oc-
cupancy grid and distance map

>> dx.plot(p) 

The path comprises
>> numrows(p)
ans =
   336 

points which is considerably shorter than the path found by bug2.
This  navigation algorithm has exploited its global view of the world and has, through 

exhaustive computation, found the shortest possible path. In contrast, bug2 without 

Making a map. An  occupancy grid is a matrix that corresponds to a region of 2-dimensional space. 
Elements containing zeros are free space where the robot can move, and those with ones are ob-
stacles where the robot cannot move. We can use many approaches to create a map. For example 
we could create a matrix fi lled with zeros (representing all free space)

>> map = zeros(100, 100);

and use MATLAB operations such as

>> map(40:50,20:80) = 1;

or the MATLAB builtin matrix editor to create obstacles but this is quite cumbersome. Instead we can 
use the Toolbox map editor  makemap to create more complex maps using an interactive editor

>> map = makemap(100)

that allows you to add rectangles, circles and polygons to an occupancy grid. In this example the 
grid is 100 × 100. See online help for details.

The occupancy grid in Fig. 5.4 was derived from a scanned image but online buildings plans 
and street maps could also be used.

Note that the occupancy grid is a matrix whose coordinates are conventionally expressed as 
(row, column) and the row is the vertical dimension of a matrix. We use the Cartesian conven-
tion of a horizontal x-coordinate fi rst, followed by the y-coordinate therefore the matrix is al-
ways indexed as y,x in the code.

5.2  ·  Map-Based Planning

For the bug2 algorithm there was no 
planning step so the query in that case 
was the simulated robot querying its 
proximity sensors.

By convention the plan is based on the 
goal location and we query for a start lo-
cation, but we could base the plan on the 
start position and then query for a goal.
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the global view has just bumped its way through the world. The penalty for achieving 
the optimal path is computational cost. This particular implementation of the distance 
transform is iterative. Each iteration has a cost of O(N 2) and the number of iterations 
is at least O(N), where N is the dimension of the map.

We can visualize the iterations of the distance transform by

>> dx.plan(place.kitchen, 'animate'); 

which shows the distance values propagating as a wavefront outward from the goal. 
The wavefront moves outward, spills through doorways into adjacent rooms and out-
side the house.� Although the plan is expensive to create, once it has been created it 
can be used to plan a path from any initial point to that goal.

We have converted a fairly complex planning problem into one that can now be 
handled by a Braitenberg-class robot that makes local decisions based on the distance 
to the goal. Effectively the robot is rolling downhill on the distance function which we 
can plot as a 3D  surface

>> dx.plot3d(p) 

shown in Fig. 5.6 with the robot’s path and room locations overlaid.
For large occupancy grids this approach to planning will become impractical. The 

roadmap methods that we discuss later in this chapter provide an effective means to 
fi nd paths in large maps at greatly reduced computational cost.

The scale associated with this occupancy grid is 4.5 cm per cell and we have as-
sumed the robot occupies a single grid cell – this is a very small robot. The planner 
could therefore fi nd paths that a larger real robot would be unable to fi t through. 
A common solution to this problem is to   infl ate the occupancy grid – making the 
obstacles bigger is equivalent to leaving the obstacles unchanged and making the 
robot bigger. For example, if we infl ate the obstacles by 5 cells

>> dx = DXform(house, 'infl ate', 5);
>> dx.plan(place.kitchen);
>> p = dx.query(place.br3);
>> dx.plot(p)

the path shown in Fig. 5.7b now takes the wider corridors to reach its goal. To illustrate 
how this works we can overlay this new path on the infl ated occupancy grid

>> dx.plot(p, 'infl ated');

Fig. 5.5.
The distance transform path. 
Obstacles are indicated by red 
cells. The background grey in-
tensity represents the cell’s dis-
tance from the goal in units of 
cell size as indicated by the scale 
on the right-hand side

More efficient algorithms exist such as 
fast marching methods and Dijkstra’s 
method, but the iterative wavefront 
method used here is easy to code and 
to visualize.
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and this is shown in Fig. 5.7a. The infl ation parameter of 5 has grown the obstacles by 
5 grid cells in all directions, a bit like applying a very thick layer of paint.� This is equiva-
lent to growing the robot by 5 grid cells in all directions – the robot grows from a single 
grid cell to a disk with a diameter of 11 cells which is equivalent to around 50 cm.

Fig. 5.6.
The distance transform as a 

3D function, where height is dis-
tance from the goal. Navigation 

is simply a downhill run. Note 
the discontinuity in the distance 
transform where the split wave-

fronts met

Navigation superclass. The examples in this chapter are all based 
on classes derived from the Navigation class which is designed 
for 2D grid-based navigation. Each example consists of essen-
tially the following pattern. Firstly we create an instance of an 
object derived from the Navigation class by calling the class 
constructor.

   nav = MyNavClass(map)

which is passed the occupancy grid. Then a plan is computed

   nav.plan()
   nav.plan(goal)

and depending on the planner the goal may or may not be required. 
A path from an initial position to the goal is computed by

   p = nav.query(start, goal)
   p = nav.query(start)

again depending on whether or not the planner requires a goal. 
The optional return value p is the path, a sequence of points from 
start to goal, one row per point, and each row comprises the 
x- and y-coordinate. If start or goal is given as [] the user is 
prompted to interactively click the point. The ‘animate’ option 
causes an animation of the robot’s motion to be displayed.

The map and planning information can be visualized by

   nav.plot()

or have a path overlaid

   nav.plot(p)

5.2  ·  Map-Based Planning

Fig. 5.7. Distance transform path 
with obstacles infl ated by 5 cells. 
a Path shown with infl ated obsta-
cles; b path computed for infl at-
ed obstacles overlaid on original 
obstacle map, black regions are 
where no distance was computed

This is morphological dilation which is 
discussed in Sect. 12.6.

�
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5.2.2 
l
D*

A popular  algorithm for robot path  planning is  D∗ which fi nds the best path� through 
a graph, which it fi rst computes, that corresponds to the input occupancy grid. D* has 
a number of features that are useful for real-world applications. Firstly, it generalizes 
the occupancy grid to a  cost map which represents the cost c ∈R, c > 0 of traversing 
each cell in the horizontal or vertical direction. The cost of traversing the cell diago-
nally is c\2. For cells corresponding to obstacles c = ∞ (Inf in MATLAB).

Secondly, D* supports  incremental replanning. This is important if, while we are mov-
ing, we discover that the world is different to our map. If we discover that a route has a 
higher than expected cost or is completely blocked we can incrementally replan to fi nd a 
better path. The  incremental replanning has a lower computational cost than complete-
ly replanning as would be required using the distance transform method just discussed.

D∗ fi nds the path which minimizes the total cost of travel. If we are interested in the 
shortest time to reach the goal then cost is the time to drive across the cell and is in-
versely related to  traversability. If we are interested in minimizing damage to the vehi-
cle or maximizing passenger comfort then cost might be related to the roughness of the 
terrain within the cell. The costs assigned to cells will also depend on the characteristics 
of the vehicle: a large 4-wheel drive vehicle may have a fi nite cost to cross a rough area 
whereas for a small car that cost might be infi nite.

To implement the D∗ planner using the Toolbox we use a similar pattern and fi rst 
create a D∗ navigation object

>> ds = Dstar(house); 

The D∗ planner converts the passed occupancy grid map into a  cost map which we 
can retrieve

>> c = ds.costmap();  

where the elements of c will be 1 or ∞ representing free and occupied cells respectively.
A plan for moving to the goal is generated by

>> ds.plan(place.kitchen); 

which creates a very dense directed graph (see Appendix I). Every cell is a graph vertex 
and has a cost, a distance to the goal, and a link to the neighboring cell that is closest to 
the goal. Each cell also has a state t ∈ {NEW, OPEN, CLOSED}. Initially every cell is in the 
NEW state, the cost of the goal cell is zero and its state is OPEN. We can consider the set of 
all cells in the OPEN state as a wavefront propagating outward from the goal.� The cost of 

Fig. 5.8.
The D∗ planner path. Obstacles 
are indicated by red cells and all 
driveable cells have a cost of 1. 
The background grey intensity
represents the cell’s distance 
from the goal in units of cell size 
as indicated by the scale on the 
right-hand side

D* is an extension of the A* algorithm for 
finding minimum cost paths through a 
graph, see Appendix I.

The  distance transform also evolves as 
a wavefront outward from the goal. 
However D* represents the frontier effi-
ciently as a list of cells whereas the dis-
tance transform computes the frontier 
on a per-cell basis at every iteration – the 
frontier is implicitly where a cell with in-
finite cost (the initial value of all cells) is 
adjacent to a cell with finite cost.
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reaching cells that are neighbors of an OPEN cell is computed and these cells in turn are 
set to OPEN and the original cell is removed from the open list and becomes CLOSED. In 
MATLAB this initial planning phase is quite slow� and takes over a minute and

>> ds.niter
ans =
      245184 

iterations of the  planning loop.
The path from an arbitrary starting point to the goal

>> ds.query(place.br3); 

is shown in Fig. 5.8. The robot has again taken a short and effi cient path around the 
obstacles that is almost identical to that generated by the  distance transform.

The real power of D∗ comes from being able to effi ciently change the cost map dur-
ing the mission. This is actually quite a common requirement in robotics since real 
sensors have a fi nite range and a robot discovers more of world as it proceeds. We 
inform D∗ about changes using the  modify_cost method, for example to raise the 
cost of entering the kitchen via the bottom doorway

>> ds.modify_cost( [300,325; 115,125], 5 );

we have raised the cost to 5 for a small rectangular region across the doorway. This re-
gion is indicated by the yellow dashed rectangle in Fig. 5.9. The other driveable cells have 
a default cost of 1. The plan is updated by invoking the  planning algorithm again

>> ds.plan(); 

and this time the number of iterations is only

>> ds.niter
ans =
      169580 

which is 70% of that required to create the original plan.� The new path for the robot

>> ds.query(place.br3); 

is shown in Fig. 5.9. The cost change is relatively small but we notice that the increased 
cost of driving within this region is indicated by a subtle brightening of those cells – in 
a cost sense these cells are now further from the goal. Compared to Fig. 5.8 the robot 
has taken a different route to the kitchen and avoided the bottom door. D∗ allows up-
dates to the map to be made at any time while the robot is moving. After replanning 
the robot simply moves to the adjacent cell with the lowest cost which ensures conti-
nuity of motion even if the plan has changed.

Fig. 5.9.
Path from D∗ planner with mod-
ifi ed map. The higher-cost region 
is indicated by the yellow dashed 

rectangle and has changed the 
path compared to Fig. 5.7

D* is more efficient than the  distance 
transform but it executes more slowly 
because it is implemented entirely in 
MATLAB code whereas the distance 
transform is a MEX-file written in C.

The cost increases with the number of 
cells modified and the effect those chang-
es have on the distance map. It is possible 
that incremental replanning takes more 
time than planning from scratch.

5.2  ·  Map-Based Planning
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5.2.3 
l
Introduction to Roadmap  Methods

In robotic path planning the analysis of the map is referred to as the  planning phase. 
The query phase uses the result of the planning phase to fi nd a path from A to B. The 
two previous planning algorithms, distance transform and D∗, require a signifi cant 
amount of computation for the planning phase, but the query phase is very cheap. 
However the plan depends on the goal. If the goal changes the expensive planning 
phase must be re-executed. Even though D∗ allows the path to be recomputed as the 
costmap changes it does not support a changing goal.

The disparity in planning and query costs has led to the development of roadmap 
methods where the query can include both the start and goal positions. The planning 
phase provides analysis that supports changing starting points and changing goals. 
A good analogy is making a journey by train. We fi rst fi nd a local path to the near-
est train station, travel through the train network, get off at the station closest to our 
goal, and then take a local path to the goal. The train network is invariant and plan-
ning a path through the train network is straightforward. Planning paths to and from 
the entry and exit stations respectively is also straightforward since they are, ideally, 
short paths. The robot navigation problem then becomes one of building a network 
of obstacle free paths through the environment which serve the function of the train 
network. In the literature such a network is referred to as a  roadmap. The roadmap 
need only be computed once and can then be used like the train network to get us 
from any start location to any goal location.

We will illustrate the principles by creating a roadmap from the occupancy grid’s 
free space using some  image processing techniques. The essential steps in creating 
the roadmap are shown in Fig. 5.10. The fi rst step is to fi nd the free space in the map 
which is simply the complement of the occupied space

>> free = 1 - house

and is a matrix with nonzero elements where the robot is free to move. The boundary 
is also an obstacle so we mark the outermost cells as being not free

>> free(1,:) = 0; free(end,:) = 0;
>> free(:,1) = 0; free(:,end) = 0;

and this map is shown in Fig. 5.10a where free space is depicted as white.
The  topological  skeleton of the free space is computed by a  morphological image 

processing  algorithm known as  thinning� applied to the free space of Fig. 5.10a

>> skeleton = ithin(free); 

and the result is shown in Fig. 5.10b. We see that the obstacles have grown and the 
free space, the white cells, have become a thin network of connected white cells 
which are equidistant from the boundaries of the original obstacles.

Figure 5.10c shows the free space network overlaid on the original map. We have 
created a network of paths that span the space and which can be used for obstacle-
free travel around the map.� These paths are the edges of a generalized  Voronoi 

A  graph is an abstract representation of a set of objects connected by links typically denoted G(V, E) 
and depicted diagrammatically as shown to the right. The objects, V, are called vertices or nodes, 
and the links, E, that connect some pairs of vertices are called edges or arcs. Edges can be directed 
(arrows) or undirected as in this case. Edges can have an associated weight or cost associated with 
moving from one of its vertices to the other. A sequence of edges from one vertex to another is a 
path. Graphs can be used to represent transport or communications networks and even social rela-
tionships, and the branch of mathematics is graph theory. Minimum cost path between two nodes 
in the graph can be computed using well known algorithms such as Dijstrka’s method or A∗.

The navigation classes use a simple MATLAB graph class called PGraph, see Appendix I.

Also known as skeletonization. We will 
cover this topic in Sect. 12.6.3.

The junctions in the roadmap are in-
dicated by black dots. The junctions, 
or triple points , are identified using the 
morphological image processing func-
tion  triplepoint.
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diagram. We could obtain a similar result by computing the distance transform 
of the obstacles, Fig. 5.10a, and this is shown in Fig. 5.10d. The value of each pixel 
is the distance to the nearest obstacle and the ridge lines correspond to the  skel-
eton of Fig. 5.10b.  Thinning or  skeletonization, like the  distance transform, is a 
computationally expensive iterative   algorithm but it illustrates well the principles 
of finding paths through free space. In the next section we will examine a cheap-
er alternative.

5.2.4 
l
Probabilistic Roadmap Method (PRM)

The high computational cost of the distance transform and skeletonization meth-
ods makes them infeasible for large maps and has led to the development of proba-
bilistic methods. These methods sparsely sample the world map and the most well 
known of these methods is the  probabilistic roadmap or  PRM method.

The   Voronoi tessellation of a set of planar points, known as sites, is a set of  Voronoi cells as shown 
to the left. Each cell corresponds to a site and consists of all points that are closer to its site than 
to any other site. The edges of the cells are the points that are equidistant to the two nearest sites. 
A generalized Voronoi diagram comprises cells defi ned by measuring distances to objects rather 
than points. In MATLAB we can generate a Voronoi diagram by

>> sites = rand(10,2)
>> voronoi(sites(:,1), sites(:,2))

Georgy Voronoi (1868–1908) was a Russian mathematician, born in what is now Ukraine. He 
studied at Saint Petersburg University and was a student of Andrey Markov. One of his stu-
dents  Boris Delaunay defi ned the eponymous triangulation which has dual properties with the 
 Voronoi diagram.  

Fig. 5.10. Steps in the creation of 
a  Voronoi roadmap. a Free space 
is indicated by white cells; b the 
skeleton of the free space is a net-
work of adjacent cells no more 
than one cell thick; c the skeleton
with the obstacles overlaid in 
red and road-map junction points 
indicated by black dots; d the dis-
tance transform of the obstacles, 
pixel values correspond to distance 
to the nearest obstacle

5.2  ·  Map-Based Planning
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To use the Toolbox PRM planner for our problem we fi rst create a PRM object

>> prm = PRM(house) 

and then create the plan

>> prm.plan('npoints', 150) �

with 150 roadmap nodes. Note that we do not pass the goal as an argument since the 
plan is independent of the goal. Creating the path is a two phase process: planning, and 

Fig. 5.11.
Probablistic roadmap (PRM) 
planner and the random graphs 
produced in the planning phase. 
a Well connected network with 
150 nodes; b poorly connected 
network with 100 nodes

To replicate the following result be sure to 
initialize the random number generator 
first using  randinit. See page 139.
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query. The  planning phase fi nds N random points, 150 in this case, that lie in free space. 
Each point is connected to its nearest neighbors by a straight line path that does not cross 
any obstacles, so as to create a network, or  graph, with a minimal number of disjoint 
components and no cycles. The advantage of PRM is that relatively few points need to 
be tested to ascertain that the points and the paths between them are obstacle free. The 
resulting network is stored within the PRM object and a summary can be displayed

>> prm
prm = 
PRM navigation class:    
  occupancy grid: 397x596
  graph size: 150        
  dist thresh: 178.8     
  2 dimensions           
  150 vertices           
  1223 edges             
  14 components  

which indicates the number of edges and  connected components in the graph. The 
graph can be visualized

>> prm.plot() 

as shown in Fig. 5.11a. The dots represent the randomly selected points and the lines 
are obstacle-free paths between the points. Only paths less than 178.8 cells long are 
selected� which is the distance  threshold parameter of the PRM class. Each edge of the 
graph has an associated cost which is the distance between its two nodes. The color of 
the node indicates which component it belongs to and each component is assigned a 
unique color. In this case there are 14 components but the bulk of nodes belong to a 
single large component.

The query phase fi nds a path from the start point to the goal. This is simply a mat-
ter of moving to the closest node in the roadmap (the start node), following a mini-
mum cost A∗ route through the roadmap, getting off at the node closest to the goal 
and then traveling to the goal. For our standard problem this is

>> prm.query(place.br3, place.kitchen)
>> prm.plot() 

and the path followed is shown in Fig. 5.12. The path that has been found is quite ef-
fi cient although there are two areas where the path doubles back on itself. Note that 
we provide the start and the goal position to the query phase. An advantage of this 
planner is that once the roadmap is created by the planning phase we can change 
the goal and starting points very cheaply, only the query phase needs to be repeated. 
The path taken is

>> p = prm.query(place.br3, place.kitchen);
>> about p
p [double] : 9x2 (144 bytes)   

which is a list of the node coordinates that the robot passes through – via points. These 
could be passed to a  trajectory following controller as discussed in Sect. 4.1.1.3.

There are some important tradeoffs in achieving this computational effi ciency. 
Firstly, the underlying random  sampling of the free space means that a different road-
map is created every time the planner is run, resulting in different paths and path 
lengths. Secondly, the planner can fail by creating a network consisting of disjoint 
components. The roadmap in Fig. 5.11b, with only 100 nodes has several large discon-
nected components and the nodes in the kitchen and bedrooms belong to different 
components. If the start and goal nodes are not connected by the roadmap, that is, they 
are close to different components the query method will report an error. The only 
solution is to rerun the planner and/or increase the number of nodes. Thirdly, long 
narrow gaps between obstacles such as corridors are unlikely to be exploited since the 
probability of randomly choosing points that lie along such spaces is very low.

This is derived automatically from the size 
of the occupancy grid.

Random numbers.  The MATLAB 
 random number generator 
(used for rand and  randn) 
generates a very long sequence 
of numbers that are an excel-
lent approximation to a ran-
dom sequence. The generator 
maintains an internal state 
which is effectively the posi-
tion within the sequence. After 
startup MATLAB always gen-
erates the following random 
number sequence

>> rand
ans =
    0.8147
>> rand
ans =
    0.9058
>> rand
ans =
    0.1270

Many algorithms discussed 
in this book make use of ran-
dom numbers and this means 
that the results can never be 
repeated. Before all such ex-
amples in this book is an invis-
ible call to  randinit which 
resets the random number gen-
erator to a known state

>> randinit
>>  rand
ans =
    0.8147
>> rand
ans =
    0.9058

and we see that the random se-
quence has been restarted.

5.2  ·  Map-Based Planning
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5.2.5  
l
Lattice Planner

The planners discussed so far have generated paths independent of the motion that 
the vehicle can actually achieve, and we learned in Chap. 4 that wheeled vehicles have 
signifi cant motion constraints. One common approach is to use the output of the 
planners we have discussed and move a point along the paths at constant velocity 
and then follow that point, using techniques such as the  trajectory following control-
ler described in Sect. 4.1.1.3.

An alternative is to design a path from the outset that we know the vehicle can fol-
low. The next two planners that we introduce take into account the motion  model of 
the vehicle, and relax the assumption we have so far made that the robot is capable of 
 omnidirectional  motion.

Fig. 5.12.
Probablistic roadmap (PRM) 
planner a showing the path taken
by the robot via nodes of the 
roadmap which are highlighted 
in yellow; b closeup view of goal 
region where the short path from 
the fi nal roadmap node to the 
goal can be seen
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We consider that the robot is moving between discrete points in its 3-dimensional 
confi guration space. The robot is initially at the origin and can drive forward to the 
three points shown in black in Fig. 5.13a.� Each path is an arc� which requires a con-
stant steering wheel setting and the arc radius is chosen so that at the end of each arc 
the robot’s heading direction is some multiple of ü radians.

At the end of each branch we can add the same set of three motions suitably ro-
tated and translated, and this is shown in Fig. 5.13b. The graph now contains 13 nodes 
and represents 9 paths each 2 segments long. We can create this lattice by using the 
Lattice  planner class

>> lp = Lattice();
>> lp.plan('iterations', 2)
13 nodes created
>> lp.plot()

which will generate a plot like Fig. 5.13b. Each node represents a confi guration (x, y, θ), 
not just a position, and if we rotate the plot we can see in Fig. 5.14 that the paths lie in 
the 3-dimensional confi guration space.

While the paths appear smooth and continuous the  curvature is in fact discontinu-
ous – at some nodes the steering wheel angle would have to change instantaneously 
from hard left to hard right for example.�

Fig. 5.13.
Lattice plan after 1, 2 and

8 iterations

Fig. 5.14.
Lattice plan after 2 iterations 

shown in 3-dimensional confi gu-
ration space

The pitch of the grid is dictated by the 
turning radius   of the vehicle.

Sometimes called Dubins curves.

A real robot would take a finite time to 
adjust its steering  angle and this would in-
troduce some error in the robot path. The 
steering control system could compen-
sate for this by turning harder later in the 
segment so as to bring the robot to the 
end point with the correct orientation.

5.2  ·  Map-Based Planning
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By increasing the number of iterations
>> lp.plan('iterations', 8)
780 nodes created
>> lp.plot()

we can fi ll in more possible paths as shown in Fig. 5.13c and the paths now extend well 
beyond the area shown.

Now that we have created the lattice we can compute a path between any two nodes 
using the query method

>> lp.query( [1 2 pi/2], [2 -2 0] );
A* path cost 6

where the start and goal are specifi ed as confi gurations (x, y, θ) and the lowest cost 
path found by an A∗ search is reported.� We can overlay this on the vertices

>> lp.plot

and is shown in Fig. 5.15a. This is a path that takes into account the fact that the ve-
hicle has an orientation and preferred directions of motion, as do most wheeled robot 
platforms. We can also access the confi guration-space coordinates of the nodes

>> p = lp.query( [1 2 pi/2], [2 -2 0] )
A* path cost 6
>> about p
p [double] : 7x3 (168 bytes)

where each row represents the confi guration-space coordinates (x, y, θ) of a node in 
the lattice along the path from start to goal confi guration.

Implicit in our search for the lowest cost path is the cost of traversing each edge of 
the graph which by default gives equal cost to the three steering options: straight ahead, 
turn left and turn right. We can increase the cost associated with turning

>> lp.plan('cost', [1 10 10])
>> lp.query(start, goal);
A* path cost 35
>> lp.plot()

and now we now have the path shown in Fig. 5.15b which has only 3 turns compared 
to 5 previously. However the path is longer – having 8 rather than 6 segments.

Consider a more realistic scenario with obstacles in the environment. Specifi cally we 
want to fi nd a path to move the robot 2 m in the lateral direction with its fi nal heading 
angle the same as its initial heading angle

>> load road
>> lp = Lattice(road, 'grid', 5, 'root', [50 50 0])
>> lp.plan();

Fig. 5.15.
Paths over the lattice graph. 
a With uniform cost; b with
increased penalty for turns

Every segment in the lattice has a de-
fault cost of 1 so the cost of 6 simply 
reflects the total number of segments 
in the path. A* search is introduced in 
Appendix I.
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where we have loaded an obstacle grid that represents a simple parallel-parking sce-
nario and planned a lattice with a grid spacing of 5 units and the root node at a cen-
tral obstacle-free confi guration. In this case the planner continues to iterate until it 
can add no more nodes to the free space. We query for a path from the road to the 
parking spot

>> lp.query([30 45 0], [50 20 0])

and the result is shown in Fig. 5.16.
Paths generated by the lattice planner are inherently driveable by the robot but 

there are clearly problems driving along a diagonal with this simple lattice. The plan-
ner would generate a continual sequence of hard left and right turns which would 
cause undue wear and tear on a real vehicle and give a very uncomfortable ride. More 
sophisticated version of lattice planners are able to deal with this by using motion 
primitives with hundreds of arcs, such as shown in Fig. 5.17, instead of the three shown 
in these examples.

Fig. 5.16.
A simple parallel parking

scenario based on the lattice 
planner with an occupancy grid 

(cells are 10 cm square)

Fig. 5.17.
A more sophisticated lattice 

generated by the package sbpl 
with 43 paths based on the kine-

matic  model of a unicycle

5.2  ·  Map-Based Planning
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5.2.6  
l
Rapidly-Exploring Random Tree (RRT)

The fi nal planner that we introduce is also able to take into account the motion  model 
of the vehicle. Unlike the lattice planner which plans over a regular grid, the RRT uses 
probabilistic methods like the PRM planner.

The underlying insight is similar to that for the lattice planner and Fig. 5.18 shows 
a family of paths that the bicycle model of Eq. 4.2 would follow in confi guration 
space. The paths are computed over a fi xed time interval for discrete values of ve-
locity, forward or backward, and various steering angles. This demonstrates clearly 
the subset of all possible confi gurations that a nonholonomic vehicle can reach from 
a given initial confi guration.

The main steps in creating an RRT are as follows, with the  notation shown in the fi g-
ure to the right. A graph of robot confi gurations is maintained and each node is a con-
fi guration q ∈R2×S1 which is represented by a 3-vector q ∼ (x, y, θ). The fi rst, or root, 
node in the graph is the goal confi guration of the robot. A random confi guration qrand 
is chosen, and the node with the closest confi guration qnear is found – this confi guration 
is near in terms of a cost function that includes distance and orientation.� A control 
is computed that moves the robot from qnear toward qrand over a fi xed path simulation 
time. The confi guration that it reaches is qnew and this is added to the graph.

For any desired starting confi guration we can fi nd the closest confi guration in the 
graph, and working backward toward the starting confi guration we could determine 
the sequence of steering angles and velocities needed to move from the start to the 
goal confi guration. This has some similarities to the roadmap methods discussed 
previously, but the limiting factor is the combinatoric explosion in the number of 
possible poses.

We fi rst of all create a model to describe the vehicle kinematics

>> car = Bicycle('steermax', 0.5);

and here we have specifi ed a car-like vehicle with a maximum steering angle of 0.5 rad. 
Following our familiar programming pattern we create an RRT object

>> rrt = RRT(car, 'npoints', 1000) 

for an obstacle free environment which by default extends from –5 to +5 in the x- and 
y-directions and create a plan

>> rrt.plan();
>> rrt.plot();  

The distance measure must account for 
a difference in position and orientation 
and requires appropriate weighting of 
these quantities. From a consideration 
of units this is not quite proper since we 
are adding meters and radians.

Fig. 5.18.
A set of possible paths that the 
 bicycle model robot could follow 
from an initial confi guration of 
(0, 0, 0). For v = ±1, α ∈ [−1, 1] 
over a 2 s period. Red lines cor-
respond to v < 0
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The random tree is shown in Fig. 5.19 and we see that the paths have a good coverage 
of the  confi guration space, not just in the x- and y-directions but also in orientation, 
which is why the  algorithm is known as rapidly exploring.

An important part of the RRT  algorithm is computing the control input that moves 
the robot from an existing confi guration in the graph to qrand. From Sect. 4.1 we under-
stand the diffi culty of driving a nonholonomic vehicle to a specifi ed confi guration. Rather 
than the complex nonlinear controller of Sect. 4.1.1.4 we will use something simpler that 
fi ts with the randomized  sampling  strategy used in this class of planner. The controller 
randomly chooses whether to drive forwards or backwards and randomly chooses a 
steering angle within the limits�. It then simulates motion of the vehicle model for a fi xed 
period of time, and computes the closest distance to qrand. This is repeated multiple times 
and the control input with the best performance is chosen. The confi guration on its path 
that was closest to qrand is chosen as qnear and becomes a new node in the graph.

Handling obstacles with the RRT is quite straightforward. The confi guration qrand is 
discarded if it lies within an obstacle, and the point qnear will not be added to the graph 
if the path from qnear toward qrand intersects an obstacle. The result is a set of paths, a 
roadmap, that is collision free and driveable by this nonholonomic vehicle.�

We will repeat the parallel parking example from the last section

>> rrt = RRT(car, road, 'npoints', 1000, 'root', [50 22 0], 'simtime', 4)
>> rrt.plan();  

where we have specifi ed the vehicle kinematic  model, an occupancy grid, the number of 
sample points, the location of the fi rst node, and that each random motion is simulated 
for 4 seconds. We can query the RRT plan for a path between two confi gurations

>> p = rrt.query([40 45 0], [50 22 0]);

and the result is a continuous path

>> about p
p [double] : 520x3 (12.5 kB) 

which will take the vehicle from the street to the parking slot. We can overlay the path 
on the occupancy grid and RRT

>> rrt.plot(p)

Fig. 5.19.
An RRT computed for the  bi-
cycle model with a velocity of 

±1 m s−1, steering  angle limits of 
±0.5 rad, integration period of 
1 s, and initial confi guration of 

(0, 0, 0). Each node is indicated by 
a green circle in the 3-dimension-

al space of vehicle poses (x, y, θ )

Uniformly randomly distributed between 
the steering angle limits.

We have chosen the first node to be the 
goal configuration, and we search from 
here toward possible start configura-
tions. However we could also make 
the first node the start configuration. 
Alternatively we could choose the start 
node to be neither the start or goal posi-
tion, the planner will find a path through 
the RRT between configurations close to 
the start and goal.

5.2  ·  Map-Based Planning
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and the result is shown in Fig. 5.20 with some vehicle confi gurations overlaid. We can 
also animate the motion along the path

>> plot_vehicle(p, 'box', 'size', [20 30], 'fi ll', 'r', 'alpha', 0.1)

where we have specifi ed the vehicle be displayed as a red translucent shape of width 20 
and length 30 units.

This example illustrates some important points about the RRT. Firstly, as for the PRM 
planner, there may be some distance (and orientation) between the start and goal con-
fi guration and the nearest node. Minimizing this requires tuning RRT parameters such 
as the number of nodes and path simulation time. Secondly, the path is feasible but not 
quite optimal. In this case the vehicle has changed direction twice before driving into the 
parking slot. This is due to the random choice of nodes – rerunning the planner and/or 
increasing the number of nodes may help. Finally, we can see that the vehicle body col-
lides with the obstacle, and this is very apparent if you view the animation. This is actu-
ally not surprising since the collision check we did when adding a node only tested if the 
node’s position lay in an obstacle – it should properly check if a fi nite-sized vehicle with 
that confi guration intersects an obstacle. Alternatively, as discussed on page 132 we could 
infl ate the obstacles by the radius of the smallest disk that contains the robot.

5.3 
l
Wrapping Up

Robot navigation is the problem of guiding a robot towards a goal and we have covered 
a spectrum of approaches. The simplest was the purely reactive Braitenberg-type vehicle. 
Then we added limited memory to create state machine based automata such as bug2 
which can deal with obstacles, however the paths that it fi nds are far from optimal.

A number of different map-based planning algorithms were then introduced. The 
distance transform is a computationally intense approach that fi nds an optimal path to 
the goal. D∗ also fi nds an optimal path, but supports a more nuanced travel cost – in-
dividual cells have a continuous traversability measure rather than being considered 
as only free space or obstacle. D∗ also supports computationally cheap incremental re-

Fig. 5.20.
A simple parallel parking ex-
ample based on the RRT plan-
ner with an occupancy grid 
(cells are 10 cm square). RRT 
nodes are shown in blue, the 
initial confi guration is a sol-
id circle and the goal is a solid 
star. The path through the RRT 
is shown in green, and a few 
snapshots of the vehicle confi g-
uration are overlaid in pink
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planning for small changes in the map. PRM reduces the computational burden sig-
nifi cantly by probabilistic  sampling but at the expense of somewhat less optimal paths. 
In particular it may not discover narrow routes between areas of free space. The lattice 
planner takes into account the motion constraints of a real vehicle to create paths which 
are feasible to drive, and can readily account for the orientation of the vehicle as well 
as its position. RRT is another random sampling method that also generates kinemati-
cally feasible paths. All the map-based approaches require a map and knowledge of the 
robot’s location, and these are both topics that we will cover in the next chapter.

Further Reading

Comprehensive coverage of planning for robots is provided by two text books. Choset 
et al. (2005) covers geometric and probabilistic approaches to planning as well as the 
application to robots with dynamics and nonholonomic constraints. LaValle (2006) 
covers motion planning, planning under uncertainty, sensor-based planning, rein-
forcement learning, nonlinear systems,  trajectory planning, nonholonomic planning, 
and is available online for free at http://planning.cs.uiuc.edu. In particular these books 
provide a much more sophisticated approach to representing obstacles in confi gura-
tion space and cover potential-fi eld planning methods which we have not discussed. 
The powerful planning techniques discussed in these books can be applied beyond 
robotics to very high order systems such as vehicles with trailers, robotic arms or 
even the shape of molecules. LaValle (2011a) and LaValle (2011b) provide a concise 
two-part tutorial introduction. More succinct coverage of planning is given by Kelly 
(2013), Siegwart et al. (2011), the Robotics Handbook (Siciliano and Khatib 2016, § 7), 
and also in Spong et al. (2006) and Siciliano et al. (2009).

The bug1 and bug2 algorithms were described by Lumelsky and Stepanov (1986). 
More recently eleven variations of Bug algorithm were implemented and compared for 
a number of different environments (Ng and Bräunl 2007). The distance transform is 
well described by Borgefors (1986) and its early application to robotic navigation was 
explored by Jarvis and Byrne (1988). Effi cient approaches to implementing the distance 
transform include the two-pass method of Hirata (1996), fast marching methods or 
reframing it as a graph search problem which can be solved using Dijkstra’s method; 
the last two approaches are compared by Alton and Mitchell (2006). The A∗ algorithm 
(Nilsson 1971) is an effi cient method to fi nd the shortest path through a graph, and we 
can always compute a graph that corresponds to an occupancy grid map. D∗ is an exten-
sion by Stentz (1994) which allows cheap replanning when the map changes and there 
have been many further extensions including, but not limited to, Field D∗ (Ferguson 
and Stentz 2006) and D∗ lite (Koenig and Likhachev 2002). D∗ is used in many real-
world robot systems and many implementations exist including open source.

The ideas behind PRM started to emerge in the mid 1990s and it was fi rst described by 
Kavraki et al. (1996). Geraerts and Overmars (2004) compare the effi cacy of a number of 
subsequent variations that have been proposed to the basic PRM algorithm. Approaches 
to planning that incorporate the vehicle’s dynamics include state-space sampling 
(Howard et al. 2008), and the RRT which is described in LaValle (1998, 2006) and related 
resources at http://msl.cs.uiuc.edu. More recently RRT∗ has been proposed by Karaman 
et al. (2011). Lattice planners are covered in Pivtoraiko, Knepper, and Kelly (2009).

Historical and interesting. The defi ning book in  cybernetics was written by Wiener in 
1948 and updated in 1965 (Wiener 1965). Grey Walter published a number of popular 
articles (1950, 1951) and a book (1953) based on his theories and experiments with ro-
botic tortoises.

The defi nitive reference for Braitenberg vehicles is Braitenberg’s own book (1986) 
which is a whimsical, almost poetic, set of thought experiments. Vehicles of increasing 
complexity (fourteen vehicle families in all) are developed, some including nonlinearities,

5.3  ·  Wrapping Up
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memory and logic to which he attributes  anthropomorphic characteristics such as love, 
fear, aggression and egotism. The second part of the book outlines the factual basis of these 
machines in the neural structure of animals.

Early behavior-based robots included the Johns Hopkins Beast , built in the 1960s, 
and Genghis  (Brooks 1989) built in 1989. Behavior-based robotics are covered in the 
book by Arkin (1999) and the Robotics Handbook (Siciliano and Khatib 2016, § 13). 
Matariõ’s Robotics Primer (Matariõ 2007) and associated comprehensive web-based 
resources is also an excellent introduction to reactive control, behavior based control 
and robot navigation. A rich collection of archival material about early cybernetic ma-
chines, including Grey-Walter’s tortoise and the Johns Hopkins Beast can be found at 
the Cybernetic Zoo  http://cyberneticzoo.com.

Resources

A very powerful set of motion planners exist in OMPL, the Open MotionPLanning 
Library (http://ompl.kavrakilab.org) written in C++. It has a Python-based app that 
provides a convenient means to explore planning problems. Steve LaValle’s web site 
http://msl.cs.illinois.edu/~lavalle/code.html has many code resources (C++ and Python) 
related to motion planning. Lattice planners are included in the sbpl package from the 
Search-Based Planning Lab (http://sbpl.net) which has MATLAB tools for generating 
motion primitives and C++ code for planning over the lattice graphs.

MATLAB Notes

The Robotics System Toolbox™ from The MathWorks Inc. includes functions  Binary-
OccupancyGrid and  PRM to create occupancy grids and plan paths using proba-
bilistic roadmaps. Other functions support reading and writing ROS navigation and 
map messages. The Image Processing Toolbox™ function bwdist is an effi cient 
implementation of the distance transform.

Exercises

1. Braitenberg vehicles (page 127)
a) Experiment with different starting confi gurations and control gains.
b) Modify the signs on the steering signal to make the vehicle light-phobic.
c) Modify the  sensorfi eld function so that the peak moves with time.
d) The vehicle approaches the maxima asymptotically. Add a stopping rule so that 

the vehicle stops when the when either sensor detects a value greater than 0.95.
e) Create a scalar fi eld with two peaks. Can you create a starting pose where the 

robot gets confused?
2. Occupancy grids. Create some different occupancy grids and test them on the dif-

ferent planners discussed.
a) Create an occupancy grid that contains a maze and test it with various planners. 

See http://rosettacode.org/wiki/Maze_generation.
b) Create an occupancy grid from a downloaded fl oor plan.
c) Create an occupancy grid from a city street map, perhaps apply color segmen-

tation (Chap. 13) to segment roads from other features. Can you convert this to 
a cost map for D∗ where different roads or intersections have different costs?

d) Experiment with obstacle infl ation.
e) At 1 m cell size how much memory is required to represent the surface of the Earth? 

How much memory is required to represent just the land area of Earth? What cell 
size is needed in order for a map of your country to fi t in 1 Gbyte of memory?
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3. Bug algorithms (page 128)
a) Using the function  makemap create a new map to challenge bug2. Try different 

starting points.
b) Create an obstacle map that contains a maze. Can bug2 solve the maze?
c) Experiment with different start and goal locations.
d) Create a bug trap. Make a hollow box, and start the bug inside a box with the 

goal outside. What happens?
e) Modify bug2 to change the direction it turns when it hits an obstacle.
f) Implement other bug algorithms such as bug1 and tangent bug. Do they perform 

better or worse?
4. Distance transform (page 132)

a) Create an obstacle map that contains a maze and solve it using distance trans-
form.

5. D∗ planner (page 134)
a) Add a low cost region to the living room. Can you make the robot prefer to take 

this route to the kitchen?
b) Block additional doorways to challenge the robot.
c) Implement D∗ as a mex-fi le to speed it up.

6. PRM planner (page 138)
a) Run the PRM planner 100 times and gather statistics on the resulting path 

length.
b) Vary the value of the distance threshold parameter and observe the effect.
c) Use the output of the PRM planner as input to a pure pursuit planner as discussed 

in Chap. 4.
d) Implement a nongrid based version of PRM. The robot is represented by an ar-

bitrary polygon as are the obstacles. You will need functions to determine if a 
polygon intersects or is contained by another polygon (see the Toolbox  Polygon 
class). Test the algorithm on the piano movers problem.

7. Lattice planner (page 140)
a) How many iterations are required to completely fi ll the region of interest shown 

in Fig. 5.13c?
b) How does the number of nodes and the spatial extent of the lattice increase with 

the number of iterations?
c) Given a car with a wheelbase of 4.5 m and maximum steering angles of ±30 deg 

what is the smallest possible grid size?
d) Redo Fig. 5.15b to achieve a path that uses only right hand turns.
e) Compute curvature as a function of path length for a path through the lattice 

such as the one shown in Fig. 5.15a.
f) Design a controller in Simulink that will take a unicycle or bicycle model with 

a fi nite steering angle rate (there is a block parameter to specify this) that will 
drive the vehicle along the three paths shown in Fig. 5.13a.

8. RRT planner (page 144)
a) Find a path to implement a 3-point turn.
b) Experiment with RRT parameters such as the number of points, the vehicle steer-

ing angle limits, and the path integration time.
c) Additional information in the node of each graph holds the control input that 

was computed to reach the node. Plot the steering angle and velocity sequence 
required to move from start to goal pose.

d) Add a local planner to move from initial pose to the closest vertex, and from the 
fi nal vertex to the goal pose.

e) Determine a path through the graph that minimizes the number of reversals of 
direction.

f) The collision test currently only checks that the center point of the robot does not 
lie in an occupied cell. Modify the collision test so that the robot is represented 
by a rectangular robot body and check that the entire body is obtacle free.

5.3  ·  Wrapping Up



Chapter

6

In our discussion of map-based navigation we assumed that the robot had a means of 
knowing its position. In this chapter we discuss some of the common techniques used 
to estimate the location of a robot in the world – a process known as  localization.

Today  GPS makes outdoor localization so easy that we often take this capability for 
granted. Unfortunately GPS is a far from perfect sensor since it relies on very weak radio 
signals received from distant orbiting satellites. This means that GPS cannot work where 
there is no line of sight radio reception, for instance indoors, underwater, underground, 
in urban canyons or in deep mining pits. GPS signals are also extremely weak and can 
be easily jammed and this is not acceptable for some applications.

GPS has only been in use since 1995 yet humankind has been navigating the plan-
et and localizing for many thousands of years. In this chapter we will introduce the 

classical    navigation principles such as dead reckoning and the use of landmarks on 
which modern robotic navigation is founded.

 Dead reckoning is the estimation of location based on estimated speed, direction 
and time of travel with respect to a previous estimate. Figure 6.1 shows how a ship’s 

position is updated on a chart. Given the average compass heading over the previ-
ous hour and a distance traveled the position at 3 p.m. can be found using elementary 
geometry from the position at 2 p.m. However the measurements on which the up-
date is based are subject to both systematic and random error. Modern instruments 

 Localization
in order to get somewhere we need to know where we are

Measuring speed at sea. A ship’s log is an instrument that provides an estimate of the distance 
traveled. The oldest method of determining the speed of a ship at sea was the Dutchman’s log – a 
fl oating object was thrown into the water at the ship’s bow and the time for it to pass the stern was 
measured using an hourglass. Later came the chip log, a fl at quarter-circle of wood with a lead 
weight on the circular side causing it to fl oat upright and resist towing. It was tossed overboard 
and a line with knots at 50 foot intervals was payed out. A special hourglass, called a log glass, 
ran for 30 s, and each knot on the line over that interval corresponds to approximately 1 nmi h−1 
or 1 knot. A   nautical mile (nmi) is now defi ned as 1.852 km. (Image modifi ed from Text-Book of 
Seamanship, Commodore S. B. Luce 1891)

Fig. 6.1.
Location estimation by dead 

reckoning. The ship’s position 
at 3 p.m. is based on its position 
at 2 p.m., the estimated distance 

traveled since, and the average 
compass heading

are quite precise but 500 years ago clocks, compasses and speed measurement were 
primitive. The recursive nature of the process, each estimate is based on the previous 
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one, means that errors will accumulate over time and for sea voyages of many-years 
this approach was quite inadequate.

The Phoenicians were navigating at sea more than 4 000 years ago and they did not 
even have a compass – that was developed 2 000 years later in China. The Phoenicians 
navigated with crude dead reckoning but wherever possible they used additional infor-
mation to correct their position estimate – sightings of islands and headlands, primi-
tive maps and observations of the Sun and the Pole Star.

A  landmark is a visible feature in the environment whose location is known with 
respect to some coordinate frame. Figure 6.2 shows schematically a map and a num-
ber of lighthouse landmarks. We fi rst of all use a compass to align the north axis of 
our map with the direction of the north pole. The direction of a single landmark con-
strains our position to lie along a line on the map. Sighting a second landmark places 
our position on another constraint line, and our position must be at their intersec-
tion – a process known as  resectioning.� For example lighthouse A constrains us to 
lie along the blue line. Lighthouse C constrains us to lie along the red line and the in-
tersection is our true position p.

However this process is critically reliant on correctly associating the observed 
landmark with the feature on the map. If we mistake one lighthouse for another, for 
example we see B but think it is C on the map, then the red dashed line leads to a 

Celestial navigation.  The position of celestial bodies in the sky is a predictable function of the time 
and the observer’s latitude and longitude. This information can be tabulated and is known as 
 ephemeris (meaning daily) and such data has been published annually in Britain since 1767 as the 
“The Nautical Almanac” by HM Nautical Almanac Offi ce. The elevation of a celestial body with 
respect to the horizon can be measured using a sextant, a handheld optical instrument.

Time and longitude are coupled, the star fi eld one hour later is the same as the star fi eld 15° to 
the east. However the northern Pole Star, Polaris or the North Star, is very close to the celestial 
pole and its elevation  angle is independent of longitude and time, allowing latitude to be deter-
mined very conveniently from a single sextant measurememt.

Solving the  longitude  problem was the greatest scientifi c challenge to European governments 
in the eighteenth century since it was a signifi cant impediment to global navigation and mari-
time supremacy.  The British Longitude Act of 1714 created a prize of £20 000 which spurred the 
development of  nautical chronometers, clocks that could maintain high accuracy onboard ships. 
More than fi fty years later a suitable chronometer was developed by  John Harrison, a copy of 
which was used by  Captain James Cook on his second voyage of 1772–1775. After a three year 
journey the error in estimated longitude was just 13 km. With accurate knowledge of time, the 
elevation angle of stars could be used to estimate latitude and longitude. This technological ad-
vance enabled global exploration and trade. (Image courtesy archive.org)

Fig. 6.2.
Location estimation using a 
map. Lines of sight from two 
light-houses, A and C, and their 
corresponding locations on the 
map provide an estimate p of 
our location. However if we mis-
take lighthouse B for C then we 
obtain an incorrect estimate q

Resectioning is the estimation of posi-
tion by measuring the bearing angles to 
known landmarks.  Triangulation is the 
estimation of position by measuring the 
bearing angles to the unknown point 
from each of the landmarks.
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signifi cant error in estimated position – we would believe we were at q instead of p. 
This belief would lead us to overestimate our distance from the coastline. If we de-
cided to sail toward the coast we would run aground on rocks and be surprised since 
they were not where we expected them to be. This is unfortunately a very common 
error and countless ships have foundered because of this fundamental  data associa-
tion error. This is why lighthouses fl ash! In the eighteenth century technological ad-
vances enabled lighthouses to emit unique fl ashing patterns so that the identity of 
the particular lighthouse could be reliably determined and associated with a point 
on a  navigation chart.

Of course for the earliest mariners there were no maps, or lighthouses or even 
compasses. They had to create maps as they navigated by incrementally adding new 
nonmanmade features to their maps just beyond the boundaries of what was already 
known. It is perhaps not surprising that so many early explorers came to grief� and 
that maps were tightly kept state secrets.

Robots operating today in environments without GPS face exactly the same prob-
lems as ancient navigators and, perhaps surprisingly, borrow heavily from navigational 
strategies that are centuries old. A robot’s estimate of distance traveled will be imper-
fect and it may have no map, or perhaps an imperfect or incomplete map. Additional 
information from observed features in the world is critical to minimizing a robot’s 
 localization error but the possibility of  data association error remains.

We can defi ne the  localization problem more formally where x is the true, but un-
known, position of the robot and ' is our best estimate of that position. We also wish 
to know the uncertainty of the estimate which we can consider in statistical terms as 
the standard deviation associated with the position estimate '.

It is useful to describe the robot’s estimated position in terms of a  probability den-
sity  function (PDF) over all possible positions of the robot.� Some example PDFs are 
shown in Fig. 6.3 where the magnitude of the function at any point is the relative like-
lihood of the vehicle being at that position. Commonly a Gaussian function is used 
which can be described succinctly in terms of its mean and standard deviation. The 
robot is most likely to be at the location of the  peak (the mean) and increasingly less 
likely to be at positions further away from the peak. Figure 6.3a shows a peak with 
a small standard deviation which indicates that the vehicle’s position is very well 
known. There is an almost zero probability that the vehicle is at the point indicated 
by the vertical black line. In contrast the peak in Fig. 6.3b has a large standard devia-
tion which means that we are less certain about the location of the vehicle. There is 
a reasonable probability that the vehicle is at the point indicated by the vertical line. 

Radio-based localization.  One of the earliest systems was  LORAN, 
based on the British World War II GEE system. LORAN trans-
mitters around the world emit synchronized radio pulses and a 
receiver measures the difference in arrival time between pulses 
from a pair of radio transmitters. Knowing the identity of two 
transmitters and the time difference (TD) constrains the receiver 
to lie along a hyperbolic curve shown on navigation charts as TD 
lines. Using a second pair of transmitters (which may include 
one of the fi rst pair) gives another hyperbolic constraint curve, 
and the receiver must lie at the intersection of the two curves.

The    Global Positioning System ( GPS) was proposed in 1973 
but did not become fully operational until 1995. It comprises 
around 30 active satellites orbiting the Earth in six planes at a 
distance of 20 200 km. A GPS receiver works by measuring the 
time of travel of radio signals from four or more satellites whose 
orbital position is encoded in the GPS signal. With four known 
points in space and four measured time delays it is possible to 
compute the (x, y, z) position of the receiver and the time. If the 
GPS signals are received after refl ecting off some surface the dis-

tance traveled is longer and this will introduce an error in the 
position estimate. This effect is known as  multi-pathing and is 
a common problem in large-scale industrial facilities.

Variations in the propagation speed of radio waves through the 
atmosphere is the main cause of error in the position estimate. 
However these errors vary slowly with time and are approximately 
constant over large areas. This allows the error to be measured at 
a reference station and transmitted as an augmentation to com-
patible nearby receivers which can offset the error – this is known 
as  Differential GPS (DGPS). This information can be transmitted 
via the internet, via coastal radio networks to ships, or by satel-
lite networks such as WAAS  ,  EGNOS or  OmniSTAR to aircraft 
or other users.  RTK GPS achieves much higher precision in time 
measurement by using phase information from the carrier signal. 
The original GPS system deliberately added error, euphemistically 
termed   selective  availability, to reduce its utility to military op-
ponents but this feature was disabled in May 2000. Other satellite 
navigation systems include the Russian   GLONASS, the European 
  Galileo, and the Chinese   Beidou.

Magellan’s 1519 expedition started with 
237 men and 5 ships but most, including 
Magellan, were lost along the way. Only 
18 men and 1 ship returned.

Chapter 6  ·  Localization 

For robot pose (x, y, θ) the PDF is a 4-dimen-
sional surface.
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Using a PDF also allows for multiple hypotheses about the robot’s position. For ex-
ample the PDF of Fig. 6.3c describes a robot that is quite certain that it is at one of 
four places. This is more useful than it seems at face value. Consider an indoor ro-
bot that has observed a vending machine and there are four such machines marked 
on the map. In the absence of any other information the robot must be equally like-
ly to be in the vicinity of any of the four vending machines. We will revisit this ap-
proach in Sect. 6.7.

Determining the PDF based on knowledge of how the vehicle moves and its obser-
vations of the world is a problem in  estimation which we can defi ne as:

the process of inferring the value of some quantity of interest, x, by processing data 
that is in some way dependent on x.

For example a ship’s navigator or a surveyor estimates location by measuring the 
bearing angles to known landmarks or celestial objects, and a GPS receiver estimates 
latitude and longitude by observing the time delay from moving satellites whose lo-
cations are known.

For our robot  localization problem the true and estimated state are vector quan-
tities so uncertainty will be represented as a  covariance  matrix, see Appendix G. The 
diagonal elements represent uncertainty of the corresponding states, and the off-
diagonal elements represent  correlations between states.

The value of a PDF is not the  probability of being at that location. Consider a 
small region of the xy-plane, the volume under that region of the PDF is the 
probability of being in that region.

Fig. 6.3. Notions of vehicle posi-
tion and uncertainty in the xy-
plane, where the vertical axis is 
the relative likelihood of the vehi-
cle being at that position, some-
times referred to as belief or bel(x). 
Contour lines are displayed on the 
lower plane. a The vehicle has low 
position uncertainty, σ = 1; b the 
vehicle has much higher position 
uncertainty, σ = 20; c the vehicle 
has multiple hypotheses for its po-
sition, each σ = 1
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6.1 
l
Dead Reckoning

 Dead reckoning is the estimation of a robot’s pose based on its estimated speed, di-
rection and time of travel with respect to a previous estimate.

An  odometer is a sensor that measures distance traveled and sometimes also change 
in heading direction. For wheeled vehicles this can be determined by measuring the 
angular rotation of the wheels. The direction of travel can be measured using an elec-
tronic compass, or the change in heading can be measured using a  gyroscope or dif-
ferential odometry.� These sensors are imperfect due to systematic errors such an 
incorrect wheel radius or gyroscope bias, and random errors such as slip between 
wheels and the ground. Robots without wheels, such as aerial and underwater robots, 
can use visual  odometry – a computer vision approach based on observations of the 
world moving past the robot which is discussed in Sect. 14.7.4.

6.1.1 
l
Modeling the Vehicle

The fi rst step in estimating the robot’s pose is to write a function, f(·), that describes 
how the vehicle’s confi guration changes from one time step to the next. A vehicle model 
such as Eq. 4.2 or 4.4 describes the evolution of the robot’s confi guration as a function of 
its control inputs, however for real robots we rarely have access to these control inputs. 
Most robotic platforms have proprietary motion control systems that accept motion 
commands from the user (speed and direction) and report odometry information.

Instead of using Eq. 4.2 or 4.4 directly we will write a discrete-time model for the 
evolution of confi guration based on odometry where δ hki = (δd, δθ) is the distance trav-
eled and change in heading over the preceding interval, and k is the time step. The 
initial pose is represented in SE(2) as

We make a simplifying assumption that motion over the time interval is small so 
the order of applying the displacements is not signifi cant. We choose to move forward 
in the vehicle x-direction by δd, and then rotate by δθ giving the new confi guration

which we can represent concisely as a 3-vector x = (x, y, θ)

 (6.1)

which gives the new confi guration in terms of the previous confi guration and the odometry.
In practice odometry is not perfect and we model the error by imagining a random 

number generator that corrupts the output of a perfect odometer. The measured output 
of the real odometer is the perfect, but unknown, odometry (δd, δθ) plus the output of the 
random number generator (vd, vθ). Such random errors are often referred to as noise, or 

Measuring the difference in  angular veloc-
ity of a left- and right-hand side wheel.

6.1  ·  Dead Reckoning 
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more specifi cally as sensor noise. The random numbers are not known and cannot be 
measured, but we assume that we know the distribution from which they are drawn.

The robot’s confi guration at the next time step, including the odometry error, is

 (6.2)

where k is the time step, δ hki= (δd, δθ)T ∈ R2×1 is the odometry  measurement  and 
v〈k〉 = (vd, vθ)T ∈R2×1 is the random measurement   noise  over the preceding interval.�

In the absence of any information to the contrary we model the odometry  noise as 
v = (vd, vθ)T ∼ N(0, V), a zero-mean multivariate Gaussian process� with variance

This constant matrix, the  covariance  matrix, is diagonal which means that the errors 
in distance and heading are independent.� Choosing a value for V is not always easy 
but we can conduct experiments or make some reasonable engineering assumptions. 
In the examples which follow, we choose σd = 2 cm and σθ = 0.5° per sample interval 
which leads to a covariance matrix of

>> V = diag([0.02, 0.5*pi/180].^2);

All objects of the Toolbox  Vehicle superclass provide a method f() that imple-
ments the appropriate odometry update equation. For the case of a vehicle with bicy-
cle kinematics that has the motion model of Eq. 4.2 and the odometric update Eq. 6.2, 
we create a Bicycle object

>> veh= Bicycle('covar', V)
veh = 
Bicycle object                                       
  L=1                                                
  Superclass: Vehicle                                
    max speed=1, max steer input=0.5, dT=0.1, nhist=0
    V=(0.0004, 7.61544e-05)                          
    confi guration: x=0, y=0, theta=0  

which shows the default parameters such as the vehicle’s length, speed, steering limit 
and the sample interval which defaults to 0.1 s. The object provides a method to sim-
ulate motion over one time step

>> odo = veh.step(1, 0.3)
odo =
    0.1108    0.0469

where we have specifi ed a speed of 1 m s−1 and a steering angle of 0.3 rad. The function 
updates the robot’s true confi guration and returns a noise corrupted odometer read-
ing.� With a sample interval of 0.1 s the robot reports that is moving approximately 
0.1 m each interval and changing its heading by approximately 0.03 rad. The robot’s 
true (but ‘unknown’) confi guration can be seen by

>> veh.x'
ans =
    0.1000         0    0.0309

Given the reported odometry we can estimate the confi guration of the robot after 
one time step using Eq. 6.2 which is implemented by

>> veh.f([0 0 0], odo)
ans =
    0.1106    0.0052    0.0469

where the discrepancy with the exact value is due to the use of a noisy odometry mea-
surement.

The odometry noise is inside the model 
of our process (vehicle motion) and is re-
ferred to as process noise .

In reality this is unlikely to be the case 
since odometry distance errors tend to be 
worse when change of heading is high.

We simulate the odometry noise using 
MATLAB generated random numbers 
that have zero-mean and a covariance 
given by the diagonal of V. The random 
noise means that repeated calls to this 
function will return different values.

A normal distribution of angles on a circle 
is actually not possible since θ ∈S1∉R, 
that is angles wrap around 2π. However if 
the covariance for angular states is small 
this problem is minimal. A normal-like 
distribution of angles on a circle is the 
 von Mises  distribution.
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For the scenarios that we want to investigate we require the simulated robot to drive 
for a long time period within a defi ned spatial region. The  RandomPath class is a 
driver that steers the robot to randomly selected  waypoints within a specifi ed region. 
We create an instance of the driver object and connect it to the robot

>> veh.add_driver( RandomPath(10) )

where the argument to the RandomPath constructor specifi es a working region that 
spans ±10 m in the x- and y-directions. We can display an animation of the robot 
with its driver by

>> veh.run()

which repeatedly calls the  step method and maintains a history of the true state 
of the vehicle over the course of the simulation within the Bicycle object.� The 
RandomPath and Bicycle classes have many parameters and methods which are 
described in the online documentation.

 6.1.2 
l
Estimating Pose

The problem we face, just like the ship’s navigator, is how to estimate our new pose given 
the previous pose and noisy odometry. We want the best estimate of where we are and 
how certain we are about that. The mathematical tool that we will use is the   Kalman fi l-
ter which is described more completely in Appendix H. This fi lter provides the optimal 
estimate of the system state, vehicle confi guration in this case, assuming that the  noise 
is zero-mean and Gaussian. The fi lter is a recursive algorithm that updates, at each time 
step, the optimal estimate of the unknown true confi guration and the uncertainty asso-
ciated with that estimate based on the previous estimate and noisy measurement data. 
The  Kalman fi lter is formulated for linear systems but our model of the vehicle’s mo-
tion Eq. 6.2 is nonlinear – the tool of choice is the extended  Kalman fi lter ( EKF).

For this problem the state vector is the vehicle’s confi guration

and the prediction  equations�

 (6.3)

 (6.4)

describe how the state and covariance evolve with time. The term '+hk+1i indicates an 
estimate of x at time k + 1 based on information up to, and including, time k. rhki is the 

The number of history records is indicat-
ed by nhist= in the displayed value 
of the object. The hist property is an 
array of structures that hold the vehicle 
state at each time step.

6.1  ·  Dead Reckoning 

The Kalman filter, Fig. 6.6, has two steps: 
prediction based on the model and up-
date based on sensor data. In this dead-
reckoning case we use only the prediction 
equation.

 Reverend Thomas Bayes (1702–1761) 
was a nonconformist Presbyterian 
minister. He studied logic and the-
ology at the University of Edinburgh 
and lived and worked in Tunbridge-
Wells in Kent. There, through his as-
sociation with the 2nd Earl Stanhope 
he became interested in mathematics 
and was elected to the Royal Society 
in 1742. After his death his friend 
 Richard Price edited and published 
his work in 1763 as An Essay towards 
solving a Problem in the Doctrine of 

Chances which contains a statement of a special case of Bayes’ theo-
rem. Bayes is buried in Bunhill Fields Cemetery in London.

Bayes’ theorem shows the relation between a conditional   proba-
bility and its inverse: the probability of a hypothesis given observed 
evidence and the probability of that evidence given the hypothesis. 
Consider the hypothesis that the robot is at location X and it makes 
a sensor observation S of a known landmark. The  posterior  prob-
ability that the robot is at X given the observation S is

where P(X) is the  prior  probability that the robot is at X (not ac-
counting for any sensory information), P(S |X) is the likelihood of 
the sensor observation S given that the robot is at X, and P(S) is the 
prior probability of the observation S. The Kalman fi lter, and the 
Monte-Carlo  estimator we discuss later in this chapter, are essen-
tially two different approaches to solving this inverse problem.
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input to the process, which in this case is the measured odometry, so rhki= δ hki. Ï∈R3×3 
is a covariance  matrix representing uncertainty in the estimated vehicle confi guration. Í is 
our estimate of the covariance of the odometry  noise which in reality we do not know.

Fx and Fv are  Jacobian matrices – the vector version of a derivative. They are obtained 
by differentiating Eq. 6.2 and evaluating the result at v = 0 giving�

 (6.5)

 (6.6)

which are functions of the current state and odometry.� Jacobians are reviewed in 
Appendix E. All objects of the Vehicle superclass provide methods  Fx and  Fv to 
compute these Jacobians, for example

>> veh.Fx( [0,0,0], [0.5, 0.1] )
ans =
    1.0000         0   -0.0499
         0    1.0000    0.4975
         0         0    1.0000

where the fi rst argument is the state at which the Jacobian is computed and the sec-
ond is the odometry.

To simulate the vehicle and the EKF using the Toolbox we defi ne the initial covariance 
to be quite small since, we assume, we have a good idea of where we are to begin with

>> P0 = diag([0.005, 0.005, 0.001].^2);

and we pass this to the constructor for an  EKF object

>> ekf = EKF(veh, V, P0);

Running the fi lter for 1 000 time steps

>> ekf.run(1000);

drives the robot as before, along a random path. At each time step the fi lter updates 
the state estimate using various methods provided by the  Vehicle superclass.

We can plot the true path taken by the vehicle, stored within the Vehicle super-
class object, by

>> veh.plot_xy()

and the fi lter’s estimate of the path stored within the EKF object,

Rudolf Kálmán (1930–2016) was a mathematical system theorist born in Budapest. He obtained his 
bachelors and masters degrees in electrical engineering from MIT, and Ph.D. in 1957 from Columbia 
University. He worked as a Research Mathematician at the Research Institute for Advanced Study, in 
Baltimore, from 1958–1964 where he developed his ideas on estimation. These were met with some 
skepticism among his peers and he chose a mechanical (rather than electrical) engineering journal 
for his paper A new approach to linear fi ltering and prediction problems because “When you fear step-
ping on hallowed ground with entrenched interests, it is best to go sideways”. He has received many 
awards including the IEEE Medal of Honor, the Kyoto Prize and the Charles Stark Draper  Prize.

 Stanley F. Schmidt (1926–2015) was a research scientist who worked at NASA Ames Research Center 
and was an early advocate of the Kalman fi lter. He developed the fi rst implementation as well as 
the nonlinear version now known as the extended Kalman fi lter. This led to its incorporation in 
the Apollo navigation computer for trajectory estimation. (Extract from Kálmán’s famous paper 
(1960) on the right reprinted with permission of ASME)

The time step notation hki is dropped to 
reduce clutter.

Since the noise value cannot actually be 
measured we use the mean value which 
is zero.
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>> hold on
>> ekf.plot_xy('r')

These are shown in Fig. 6.4 and we see some divergence between the true and esti-
mated robot path.

The covariance at the 700th time step is

>> P700 = ekf.history(700).P
P700 =
    1.8929   -0.5575   -0.1851
   -0.5575    3.4184    0.3400
   -0.1851    0.3400    0.0533

The matrix is symmetric and the diagonal elements are the estimated variance asso-
ciated with the states, that is σx

2, σy
2 and σθ

2 respectively. The standard deviation σx of 
the PDF associated with the vehicle’s x-coordinate is

>>  sqrt(P700(1,1))
ans =
   1.3758

There is a 95% chance that the robot’s x-coordinate is within the ±2σ  bound or ±2.75 m 
in this case. We can compute uncertainty for y and θ  similarly.

The off-diagonal terms are correlation coefficients and indicate that the un-
certainties between the corresponding variables are related. For example the value 
P1,3 = P3,1= –0.5575 indicates that the uncertainties in x and θ  are related – error 
in heading angle causes error in x-position and vice versa. Conversely new infor-
mation about θ  can be used to correct θ  as well as x. The uncertainty in position is 
described by the top-left 2 × 2 covariance submatrix of Ï. This can be interpreted 
as an   ellipse defi ning a confi dence bound on position. We can overlay such ellipses 
on the plot by

>> ekf.plot_ellipse('g')

as shown in Fig. 6.4. These correspond to the default 95% confi dence bound and 
are plotted by default every 20 time steps. The vehicle started at the origin and as 
it progresses we see that the ellipses become larger as the estimated uncertainty in-
creases. The ellipses only show x- and y-position but uncertainty in θ  also grows.

The total uncertainty,� position and heading, is given by ]detg(gÏ̀) and is plotted 
as a function of time

>> ekf.plot_P();

as shown in Fig. 6.5 and we observe that it never decreases. This is because the sec-
ond term in Eq. 6.4 is positive defi nite which means that P, the position uncertainty, 
can never decrease.

Fig. 6.4.
Deadreckoning using the EKF. 

The true path of the robot, blue, 
and the path estimated from 

odometry in red. 95% confi dence 
ellipses are indicated in green. 

The robot starts at the origin

6.1  ·  Dead Reckoning 

The elements of P have different units: 
m2 and rad2. The uncertainty is therefore 
a mixture of spatial and  angular uncer-
tainty with an implicit weighting. If the 
range of the position variables x, y� π 
then positional uncertainty dominates.
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Note that we have used the odometry  covariance  matrix V twice. The first usage, 
in the  Vehicle constructor, is the covariance V of the Gaussian  noise source 
that is added to the true odometry to simulate odometry error in Eq. 6.2. In a 
real application this noise is generated by some physical process hidden inside 
the robot and we would not know its parameters. The second usage, in the  EKF 
constructor, is ÷ which is our best estimate of the odometry covariance and is 
used in the filter’s state covariance update equation Eq. 6.4.

The relative values of V and ÷ control the rate of uncertainty growth as shown 
in Fig. 6.5. If ÷ > V then P will be larger than it should be and the filter is pessi-
mistic – it overestimates uncertainty and is less certain than it should be. If ÷ < V 
then P will be smaller than it should be and the filter will be overconfident of its 
estimate – the actual uncertainty is greater than the estimated uncertainty. In 
practice some experimentation is required to determine the appropriate value 
for the estimated covariance.

6.2 
l
Localizing with a  Map

We have seen how  uncertainty in position grows without bound using dead-reckon-
ing alone. The solution, as the Phoenicians worked out 4 000 years ago, is to bring in 
additional information from observations of known features in the world. In the ex-
amples that follow we will use a map that contains N fi xed but randomly located land-
marks whose positions are known.

The Toolbox supports a  LandmarkMap object

>> map = LandmarkMap(20, 10)

Fig. 6.5.
Overall uncertainty is given by 

d̂egtg(gÏ) which shows mono-
tonically increasing uncertainty 
(blue). The effect of changing 
the magnitude of Í is to change 
the rate of uncertainty growth. 
Curves are shown for Í = αV 
where α = 1 / 2, 1, 2

Error  ellipses.  We consider the PDF of the robot’s position (ignor-
ing orientation) such as shown in Fig. 6.3 to be a 2-dimensional 
Gaussian   probability density function

where x= (x, y)T is the position of the robot, µx = (ú,ù)T is the esti-
mated mean position and Pxy ∈R2×2 is the  position covariance ma-
trix, the top left of the covariance matrix P computed by the Kalman 
fi lter. A horizontal cross-section is a contour of constant probability 
which is an ellipse defi ned by the points x such that

Such error ellipses are often used to represent positional uncer-
tainty as shown in Fig. 6.4. A large ellipse corresponds to a wider 
PDF peak and less certainty about position. To obtain a particu-
lar confi dence contour (eg. 99%) we choose s as the inverse of the 
χ2 cumulative distribution function for 2 degrees of freedom, in 
MATLAB that is chi2inv(C, 2)where C ∈ [0, 1] is the confi -
dence value. Such confi dence values can be passed to several EKF 
methods when specifying error ellipses.

A handy scalar measure of total position uncertainty is the 
area of the ellipse π r1r2 where the radii ri = λ̂i and λi are the 
 eigenvalues of Pxy. Since det (Pxy) = Πλi the ellipse area – the 
scalar uncertainty – is proportional to d̂getg(gPgxgy) . See also Ap-
pendices C.1.4 and G.
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that in this case contains N = 20 landmarks uniformly randomly spread over a region 
spanning ±10 m in the x- and y-directions and this can be displayed by

>> map.plot()

The robot is equipped with a sensor that provides  observations of the landmarks 
with respect to the robot as described by

 (6.7)

where x = (xv, yv, θ v)T is the vehicle state, and pi = (xi, yi)
T is the known location of 

the ith landmark in the world frame.
To make this tangible we will consider a common type of sensor that measures the 

range and bearing angle to a landmark in the environment, for instance a radar or a 
scanning-laser rangefi nder such as shown in Fig. 6.22a.  The sensor is mounted on-
board the robot so the observation of the ith landmark is

 (6.8)

where z = (r, β )T and r is the range, β  the bearing angle, and w = (wr, wβ)T is a zero-
mean Gaussian random variable that models errors in the sensor

The constant diagonal  covariance  matrix indicates that range and bearing errors are 
independent.�

For this example we set the sensor  uncertainty to be σr = 0.1 m and σβ = 1° giving 
a sensor covariance matrix

>> W = diag([0.1, 1*pi/180].^2);

We model this type of sensor with a  RangeBearingSensor object�

>> sensor = RangeBearingSensor(veh, map, 'covar', W)

which is connected to the vehicle and the map, and the sensor covariance  matrix W is 
specifi ed along with the maximum range and the bearing angle limits. The  reading 
method provides the range and bearing to a randomly selected visible� landmark along 
with its identity, for example

>> [z,i] = sensor.reading()
z =
    9.0905
    1.0334
i =
    17

The identity is an integer i ∈ [1, 20] since the map was created with 20 landmarks. 
We have avoided the data association problem by assuming that we know the 
identity of the sensed landmark. The position of landmark 17 can be looked up 
in the map

>> landmark(17)
   -4.4615
   -9.0766

Using Eq. 6.8 the robot can estimate the range and bearing angle to the landmark 
based on its own estimated position and the known position of the landmark from 
the map. Any difference between the observation z# and the estimated observation 

It also indicates that covariance is inde-
pendent of range but in reality covari-
ance may increase with range since the 
strength of the return signal, laser or ra-
dar, drops rapidly (1/r4) with distance 
(r) to the target.

A subclass of Sensor .

6.2  ·  Localizing with a Map

The landmark is chosen randomly from 
the set of visible landmarks, those that 
are within the field of view and the min-
imum and maximum range limits. If no 
landmark is visible i is assigned a val-
ue of 0.
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indicates an error in the robot’s pose estimate ' – it isn’t where it thought it was. 
However this difference

 (6.9)

has real value and is key to the operation of the  Kalman fi lter. It is called the  inno-
vation since it represents new information. The Kalman fi lter uses the innovation to 
correct the state estimate and update the uncertainty estimate in an optimal way.

The predicted state computed earlier using Eq. 6.3 and Eq. 6.4 is updated by

 (6.10)

 (6.11)

which are the  Kalman fi lter update equations. These take the predicted values for the 
next time step denoted with the + and compute the optimal estimate by applying land-
mark measurements from time step k + 1. The innovation is added to the estimated 
state after multiplying by the Kalman gain matrix K which is defi ned as

 (6.12)

 (6.13)

where Ñ is the estimated covariance of the sensor  noise and Hx and Hw are Jacobians 
obtained by differentiating Eq. 6.8 yielding

 (6.14)

which is a function of landmark position, vehicle pose and landmark range; and

 (6.15)

The  RangeBearingSensor object above includes methods  h to implement Eq. 6.8 
and  Hx and  Hw to compute these Jacobians respectively.

The Kalman gain matrix K in Eq. 6.10 distributes the innovation from the landmark 
observation, a 2-vector, to update every element of the state vector – the position and 
orientation of the vehicle. Note that the second term in Eq. 6.11 is subtracted from the 
estimated covariance and this provides a means for covariance to decrease which was 

Fig. 6.6.
Summary of extended Kalman 
fi lter algorithm showing the pre-
diction and update phases
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not possible for the dead-reckoning case of Eq. 6.4. The EKF comprises two phases: 
prediction and update, and these are summarized in Fig. 6.6.

We now have all the piece to build an estimator that uses odometry and observa-
tions of map  features. The Toolbox implementation is

>> map = LandmarkMap(20);
>> veh =  Bicycle('covar', V);
>> veh.add_driver( RandomPath(map.dim) );
>> sensor = RangeBearingSensor(veh, map, 'covar', W, 'angle',	 
 [-pi/2 pi/2], 'range', 4, 'animate');
>> ekf =  EKF(veh, V, P0, sensor, W, map);

The  LandmarkMap constructor has a default map dimension of ±10 m which is ac-
cessed by its  dim property.

Running the simulation for 1 000 time steps

>> ekf.run(1000);

shows an animation of the robot moving and observations being made to the land-
marks. We plot the saved results

>> map.plot()
>> veh.plot_xy();
>> ekf.plot_xy('r');
>> ekf.plot_ellipse('k')

which are shown in Fig. 6.7a. The error  ellipses are now much smaller and many can 
hardly be seen.

Figure 6.7b shows a zoomed view of the robot’s actual and estimated path – the robot 
is moving from top to bottom. We can see the error  ellipses growing as the robot moves 
and then shrinking, just after a jag in the estimated path. This corresponds to the obser-
vation of a landmark. New information, beyond odometry, has been used to correct the 
state in the  Kalman fi lter update phase.

Figure 6.8a shows that the overall  uncertainty is no longer growing monotonically. 
When the robot sees a landmark it is able to dramatically reduce its estimated covariance. 
Figure 6.8b shows the error associated with each component of pose and the pink back-
ground is the estimated 95% confi dence bound (derived from the covariance  matrix) and 
we see that the error is mostly within this envelope. Below this is plotted the landmark 
observations and we see that the confi dence bounds are tight (indicating low uncertainty) 
while landmarks are being observed but that they start to grow once observations stop. 
However as soon as an observation is made the uncertainty rapidly decreases.

This EKF framework allows data from many and varied sensors to update the state which 
is why the estimation problem is also referred to as  sensor  fusion. For example heading an-
gle from a compass,  yaw rate from a gyroscope, target bearing angle from a camera, position 

Fig. 6.7. a EKF localization show-
ing the true path of the robot (blue)
and the path estimated from odom-
etry and landmarks (red). Black 
stars are landmarks. 95% confi -
dence ellipses are indicated in 
green. The robot starts at the ori-
gin. b Closeup of the robot’s true 
and estimated path

6.2  ·  Localizing with a Map
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from GPS could all be used to update the state. For each sensor we need only to provide the 
observation  function h(·), the Jacobians Hx and Hw and some estimate of the sensor covari-
ance W. The function h(·) can be nonlinear and even noninvertible – the EKF will do the rest.

As discussed earlier for V, we also use W twice. The first usage, in the constructor for 
the  RangeBearingSensor object, is the covariance W of the Gaussian  noise that 
is added to the computed range and bearing to simulate sensor error as in Eq. 6.8. 
In a real application this noise is generated by some physical process hidden in-
side the sensor and we would not know its parameters. The second usage, ö is our 
best estimate of the sensor covariance which is used by the   Kalman filter Eq. 6.12.

Fig. 6.8. a Covariance magnitude 
as a function of time. Overall un-
certainty is given by d̂egtg(gP)  and 
shows that uncertainty does not 
continually increase with time.
b Top: pose estimation error with 
95% confi dence bound shown in 
pink; bottom: observed landmarks  
the bar indicates which landmark 
is seen at each time step, 0 means 
no observation

Simple landmarks. For educational purposes it might be appropriate 
to use artifi cial landmarks  that can be cheaply sensed by a camera. 
These need to be not only visually distinctive in the environment 
but also encode an identity . 2-dimensional bar codes such as QR 
codes or ARTags are well suited for this purpose. The Toolbox sup-
ports a variant called AprilTags , shown to the right, and

>>  tags = apriltags (im);

returns a vector of AprilTag  objects whose elements correspond 
to tags found in the image im. The centroid of the tag (centre 
property) can be used to determine relative bearing (see page 161), 
and the length of the edges (from the corners property) is a 

A landmark might be some easily identifiable 
pattern such as this April tag (36h11) which 
can be detected in an image. Its position and 
size in the image encodes the bearing angle 
and range. The pattern itself encodes a num-
ber between 0 and 586 which could be used 
to uniquely identify the landmark in a map.

function of distance . The tag object also includes an homography  
(see Sect. 14.2.4) (H property) which encodes information about 
the orientation of the plane of the April tag  . More details about 
April tags can be found at http://april.eecs.umich.edu.

Data association . So far we have assumed that the observed landmark  
reveals its identity to us, but in reality this is rarely the case. Instead 
we compare our observation to the predicted position of all currently 
known landmarks and make a decision as to which landmark it is 
most likely to be, or whether it is a new landmark. This decision 
needs to take into account the uncertainty associated with the vehi-
cle’s pose, the sensor measurement and the landmarks in the map . 
This is the data association problem  . Errors in this step are potential-
ly catastrophic – incorrect innovation is coupled via the Kalman fi lter  
to the state of the vehicle and all the other landmarks which increases 
the chance of an incorrect data association on the next cycle. In 
practice, fi lters only use a landmark when there is a very high confi -
dence in its estimated identity  – a process that involves Mahalanobis 
distance   and χ2 confi dence tests . If the situation is ambiguous it 
is best not to use the landmark – it can do more harm than good.

and future observations will reinforce one hypothesis and weaken 
the others. The extended Kalman fi lter uses a Gaussian  probability 
model, with just one peak, which limits it to holding only one hypoth-
esis about the robot’s pose. (Picture: the wreck of the Tararua, 1881)

An alternative 
is to use a multi-
hypothesis esti-
mator, such as the 
particle fi lter that
we will discuss in
Sect. 6.7, which can 
model the pos-
sibility of observ-
ing landmark A 
or landmark B, 
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6.3 
l
Creating a Map

So far we have taken the existence of the map for granted, an understandable mindset given 
that maps today are common and available for free via the internet. Nevertheless somebody, 
or something, has to create the maps we will use. Our next example considers the problem 
of a robot moving in an environment with landmarks and creating a map of their locations.

As before we have a range and bearing sensor mounted on the robot which mea-
sures, imperfectly, the position of landmarks with respect to the robot. There are a total 
of N landmarks in the environment and as for the previous example we assume that the 
sensor can determine the identity of each observed landmark. However for this case we 
assume that the robot knows its own location perfectly – it has ideal localization. This is 
unrealistic but this scenario is an important stepping stone to the next section.�

Since the vehicle pose is known perfectly we do not need to estimate it, but we do 
need to estimate the coordinates of the landmarks. For this problem the state vector 
comprises the estimated coordinates of the M landmarks that have been observed so far

The corresponding estimated covariance Ï will be a 2M × 2M matrix. The state vec-
tor has a variable length since we do not know in advance how many landmarks exist 
in the environment. Initially M = 0 and is incremented every time a previously un-
seen landmark is observed.

The prediction  equation is straightforward in this case since the landmarks are as-
sumed to be stationary

 (6.16)

 (6.17)

We introduce the function g(·) which is the inverse of h(·) and gives the coordinates of 
the observed landmark based on the known vehicle pose and the sensor observation

Since ' has a variable length we need to extend the state vector and the  covariance 
 matrix whenever we encounter a landmark we have not previously seen. The state vec-
tor is extended by the function y(·)

 (6.18)

 (6.19)

which appends the sensor-based estimate of the new landmark’s coordinates to those 
already in the map. The order of feature coordinates within ' therefore depends on 
the order in which they are observed.

The  covariance matrix also needs to be extended when a new landmark is observed 
and this is achieved by

where Yz is the insertion  Jacobian

 (6.20)

A close and realistic approximation would 
be a high-end RTK  GPS+INS system op-
erating in an environment with no build-
ings or hills to obscure satellites.

6.3  ·  Creating a Map
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that relates the rate of change of the extended state vector to the new observation. n is 
the dimension of Ï prior to it being extended and

 (6.21)

 (6.22)

Gx is zero since g(·) is independent of the map in x. An additional Jacobian for 
h(·) is

 (6.23)

which describes how the landmark observation changes with respect to landmark posi-
tion for a particular robot pose, and is implemented by the  method  Hp.

For the mapping case the Jacobian Hx used in Eq. 6.11 describes how the landmark 
observation changes with respect to the full state vector. However the observation de-
pends only on the position of that landmark so this Jacobian is mostly zeros

 (6.24)

where Hpi is at the location in the vector corresponding to the state pi. This structure 
represents the fact that observing a particular landmark provides information to es-
timate the position of that landmark, but no others.

The Toolbox implementation is

>> map = LandmarkMap(20);
>> veh =  Bicycle();  % error free vehicle
>> veh.add_driver(  RandomPath(map.dim) );
>> W = diag([0.1, 1*pi/180].^2);
>> sensor =  RangeBearingSensor(veh, map, 'covar', W);
>> ekf =  EKF(veh, [], [], sensor, W, []);

the empty matrices passed to EKF indicate respectively that there is no estimated 
odometry covariance for the vehicle (the estimate is perfect), no initial vehicle state 
covariance, and the map is unknown. We run the simulation for 1 000 time steps

>> ekf.run(1000);

Fig. 6.9. EKF mapping results. a The 
estimated landmarks are indicat-
ed by black dots with 95% confi -
dence ellipses (green), the true lo-
cation (black ª-marker) and the 
robot’s path (blue). The landmark 
estimates have not fully converged 
on their true values and the es-
timated covariance ellipses can 
only be seen by zooming; b the 
nonzero elements of the fi nal co-
variance matrix
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and see an animation of the robot moving and the covariance   ellipses associated with 
the map features evolving over time. The estimated landmark positions

>> map.plot();
>> ekf.plot_map('g');
>> veh.plot_xy('b');

are shown in Fig. 6.9a as 95% confi dence  ellipses along with the true landmark positions 
and the path taken by the robot. The  covariance  matrix has a block diagonal structure 
which is shown graphically in Fig. 6.9b. The off-diagonal elements are zero, which implies 
that the landmark estimates are uncorrelated or independent. This is to be expected since 
observing one landmark provides no new information about any other landmark.

Internally the  EKF object maintains a table to relate the landmark’s identity, re-
turned by the  RangeBearingSensor, to the position of that landmark’s coordi-
nates in the state vector. For example the landmark with identity 6

>> ekf.landmarks(:,6)
ans =
    19
    71

was seen a total of 71 times during the simulation and comprises elements 19 and 20 of '
>> ekf.x_est(19:20)'
ans =
   -6.4803    9.6233

which is its estimated location. Its estimated covariance is a submatrix within Ï

>> ekf.P_est(19:20,19:20)
ans =
   1.0e-03 *
    0.2913    0.1814
    0.1814    0.3960

6.4   
l
Localization and  Mapping

Finally we tackle the problem of determining our position and creating a map at the 
same time. This is an old problem in marine  navigation and cartography – incremen-
tally extending maps while also using the map for navigation. Figure 6.10 shows what 
can be done without GPS from a moving ship with poor odometry and infrequent ce-
lestial position “fi xes”. In robotics this problem is known as   simultaneous localization 
and  mapping ( SLAM) or  concurrent  mapping and  localization (CML). This is often 

Fig. 6.10. Map of the New Holland 
coast  (now eastern Australia) by 
Captain James Cook  in 1770. The 
path of the ship and the map of the 
coast were determined at the same 
time. Numbers indicate depth in 
fathoms (1.83 m) (National Library 
of Australia, MAP NK 5557 A)

considered to be a “chicken and egg” problem – we need a map to localize and 
we need to localize to make the map. However based on what we have learned 
in the previous sections this problem is now quite straightforward to solve.

The state vector comprises the vehicle confi guration and the coordinates of 
the M landmarks that have been observed so far

The estimated covariance is a (2M + 3) × (2M + 3) matrix and has the structure

where Ïvv is the covariance of the vehicle pose, Ïmm the covariance of the map land-
mark positions, and Ïvm is the correlation between vehicle and landmark states.

The predicted vehicle state and covariance are given by Eq. 6.3 and Eq. 6.4 
and the sensor-based update is given by Eq. 6.10 to 6.15. When a new feature 
is observed the state vector is updated using the insertion  Jacobian Yz given by 
Eq. 6.20 but in this case Gx is nonzero

6.4  ·  Localization and Mapping
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 (6.25)

since the estimate of the new landmark depends on the state vector which now con-
tains the vehicle’s pose.

For the SLAM case the Jacobian Hx used in Eq. 6.11 describes how the landmark 
observation changes with respect to the state vector. The observation will depend on 
the position of the vehicle and on the position of the observed landmark and is

 (6.26)

where Hpi is at the location corresponding to the landmark pi. This is similar to Eq. 6.24 
but with an extra nonzero block Hxv given by Eq. 6.14.

The Kalman gain matrix K distributes innovation from the landmark observation, 
a 2-vector, to update every element of the state vector – the pose of the vehicle and the 
position of every landmark in the map.

The Toolbox implementation is by now quite familiar

>> P0 = diag([.01, .01, 0.005].^2);
>> map = LandmarkMap(20);
>> veh =  Bicycle('covar', V);
>> veh.add_driver( RandomPath(map.dim) );
>> sensor =  RangeBearingSensor(veh, map, 'covar', W);
>> ekf = EKF(veh, V, P0, sensor, W, []);

and the empty matrix passed to  EKF indicates that the map is unknown. P0 is the ini-
tial 3 × 3 covariance for the vehicle state.

We run the simulation for 1 000 time steps

>> ekf.run(1000);

and as usual an animation is shown of the vehicle moving. We also see the covariance 
  ellipses associated with the map  features evolving over time. We can plot the results

>> map.plot();
>> ekf.plot_map('g');
>> ekf.plot_xy('r');
>> veh.plot_xy('b');

which are shown in Fig. 6.11.
Figure 6.12a shows that uncertainty is decreasing over time. The fi nal covariance 

matrix is shown graphically in Fig. 6.12b and we see a complex structure. Unlike the 
mapping case af Fig. 6.9 Ïmm is not block diagonal, and the fi nite off-diagonal terms 

Fig. 6.11.
Simultaneous localization and 
mapping showing the true (blue) 
and estimated (red) robot path 
superimposed on the true map 
(black ª-marker). The estimat-
ed map features are indicated by 
black dots with 95% confi dence 
ellipses (green)



169

represent correlation between the landmarks in the map. The landmark uncertain-
ties never increase, the position prediction model is that they do not move, but they 
also never drop below the initial uncertainty of the vehicle which was set in P0. The 
block Ïvm is the correlation between errors in the vehicle pose and the landmark loca-
tions. A landmark’s location estimate is a function of the vehicle’s location and errors 
in the vehicle location appear as errors in the landmark location – and vice versa.

The correlations are used by the  Kalman fi lter to connect the observation of any 
landmark to an improvement in the estimate of every other landmark in the map as 
well as the vehicle pose. Conceptually it is as if all the states were connected by springs 
and the movement of any one affects all the others.

The extended   Kalman fi lter introduced here has a number of drawbacks. Firstly the 
size of the matrices involved increase with the number of landmarks and can lead to 
memory and computational bottlenecks as well as numerical problems. The underlying 
assumption of the Kalman fi lter is that all errors are Gaussian and this is far from true for 
sensors like laser rangefi nders which we will discuss later in this chapter. We also need 
good estimates of covariance of the noise sources which in practice is challenging.

6.5 
l
Rao-Blackwellized SLAM

We will briefl y and informally introduce the underlying principle of Rao-Blackwellized 
SLAM   of which FastSLAM   is a popular and well known instance. The approach is motivated 
by the fact that the size of the covariance  matrix for EKF SLAM   is quadratic in the number 
of landmarks, and for large-scale environments becomes computationally intractable.

If we compare the covariance matrices   shown in Fig. 6.9b and 6.12b we notice a stark 
difference. In both cases we were creating a map  of unknown landmarks  but Fig. 6.9b is 
mostly zero with a fi nite block diagonal structure whereas Fig. 6.12b has no zero values 
at all. The difference is that for Fig. 6.9b we assumed the robot trajectory was known 
exactly and that makes the landmark estimates independent – observing one landmark 
provides information about only that landmark. The landmarks are uncorrelated, hence 
all the zeros in the covariance matrix. If the robot trajectory  is not known, the case for 
Fig. 6.12b, then the landmark estimates are correlated – error  in one landmark posi-
tion is related to errors in robot pose and other landmark positions. The Kalman fi lter   
uses the correlation information so that a measurement of any one landmark provides 
information to improve the estimate of all the other landmarks and the robot’s pose.

In practice we don’t know the true pose of the robot but imagine a multi-hypothesis 
estimator�   where every hypothesis represents a robot  trajectory that we assume is cor-
rect. This means that the covariance matrix will be block diagonal like Fig. 6.9b – rather 
than a fi lter with a 2N × 2N covariance matrix we can have N simple fi lters which are 

Fig. 6.12. Simultaneous localiza-
tion and mapping. a Covariance 
versus time; b the fi nal covariance 
matrix

6.5  ·  Rao-Blackwellized SLAM

Such as the particle filter that we will dis-
cuss in Sect. 6.7.
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each independently estimating the position of a single landmark and have a 2 × 2 cova-
riance  matrix. Independent estimation leads to a considerable saving in both memory 
and computation. Importantly though, we are only able to do this because we assumed 
that the robot’s estimated trajectory is correct.

Each hypothesis also holds an estimate of the robot’s trajectory to date. Those hypoth-
eses that best explain the landmark measurements are retained and propagated while 
those that don’t are removed and recycled. If there are M hypotheses the overall compu-
tational burden falls from O(N2) for the EKF SLAM case to O(M log N) and in practice 
works well for M in the order of tens to hundreds but can work for a value as low as M = 1.

6.6 
l
Pose Graph SLAM  

An alternative approach to the SLAM problem is to separate it into two components: a 
front end and a back end, connected by a  pose graph as shown in Fig. 6.13. The robot’s 
path is considered to be a sequence of distinct poses and the task is to estimate those 
poses. Constraints between the unknown poses are based on measurements from a 
variety of sensors  including odometry , laser scanners  and cameras . The problem is 
formulated as a directed graph as shown in Fig. 6.14. A node corresponds to a robot 
pose or a landmark position. An edge between two nodes represents a spatial con-
straint between the nodes derived from some sensor data.

As the robot progresses it compounds an increasing number of uncertain relative 
poses so that the cumulative error  in the pose  of the nodes  will increase – the prob-
lem with dead reckoning we discussed earlier. This is shown in exaggerated fashion in 
Fig. 6.14 where the robot is traveling around a square. By the time the robot reaches 
node 4 the error is signifi cant. However when it makes a measurement of node 1 a con-
straint is added – the dashed edge – indicating that the nodes are closer than the esti-
mated relative pose based on the chain of relative poses from odometry: 1ξ2

# ⊕ 2ξ3
# ⊕ 3ξ4

#. 
The back-end algorithm will then pull all the nodes closer to their correct pose.

The front end  adds new nodes as the robot travels� as well as edges that defi ne con-
straints between poses. For example, when moving from one place to another wheel 
odometry gives an estimate of distance and change in orientation which is a constraint. 
In addition the robot’s exteroceptive sensors may observe the relative position of a land-
mark and this also adds a constraint. Every measurement adds a constraint – an edge 
in the graph. There is no limit to the number of edges entering or leaving a node. 

The back end  adjusts the poses of the nodes� so that the constraints are satisfi ed as 
well as possible, that is, that the sensor observations are best explained.

Figure 6.15 shows the  notation  associated with two poses in the graph. Coordinate 
frames {i} and {j} are associated with robot poses i and j respectively and we seek to 
estimate 0ξi and 0ξj in the world coordinate frame. The robot makes a measurement of 
the relative pose iξ#

j which will, in general, be different to the relative pose iξj inferred 
from the poses 0ξi and 0ξj . This difference, or innovation , is caused by error in the sen-
sor  measurement iξ#

j and/or the node poses 0ξi and 0ξj and we use it to adjust the poses  
of the nodes . However there is insuffi cient information to determine where the error 
lies so naively adjusting 0ξi and 0ξj to better explain the measurement might increase 

Fig. 6.13.
Pose-graph SLAM system. The 
front end creates nodes as the 
robot travels, and creates edges 
based on sensor data. The back 
end adjusts the node positions 
to minimize total error   

Typically a new place is declared every 
meter or so of travel, or after a sharp turn.

Also the positions of landmarks as we 
discuss later in this section.
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the error in another part of the graph – we need to minimize the error consistently 
over the whole graph.

The fi rst step is to express the error associated with the graph edge in terms of 
the sensor measurement and our best estimates of the node poses with respect to the 
world frame�

 (6.27)

which is ideally zero.
We can formulate this as a minimization problem and attempt to fi nd the poses of 

all the nodes x = {ξ1, ξ2� ξN} that minimizes the error across all the edges

 (6.28)

where x is the state of the pose graph and contains the pose of every node, and Fk(x) 
is a nonnegative scalar cost associated with the edge k connecting node i to node j.

We convert the edge pose error in Eq. 6.27 to a vector representation ξε ∼ (x, y, θ) 
which is a function fk(x) ∈R3 of the state. The scalar cost can be obtained from a 
quadratic expression

 (6.29)

where Ωk is a positive-defi nite information matrix used as a weighting term.� Although 
Eq. 6.29 is written as a function of all poses x, it in fact depends only on the pose of its two 
vertices ξi and ξj and the measurement iξ#

j. Solving Eq. 6.28 is a complex  optimization prob-
lem which does not have a closed-form solution, but this kind of nonlinear least squares 
problem  can be solved numerically if we have a good initial estimate of x. Specifi cally
this is a sparse nonlinear least squares problem which is discussed in Sect. F.2.4.

Fig. 6.14.
Pose-graph SLAM example. 
Places are shown as circular 

nodes and have an associated 
pose. Landmarks are shown as 
star-shaped nodes and have an 

associated position. Edges repre-
sent a measurement of a relative 
pose or position with respect to 
the node at the tail of the arrow   

Fig. 6.15.
Pose graph notation . The light 

grey robot is the estimated pose 
of {j} based on the sensor mea-
surement iξj

#. The yellow ellipse 
indicates uncertainty associated 

with that measurement

We have used our pose notation here but 
in the literature measurements are typi-
cally denoted by z, error by e and pose 
or position by x.

In practice this matrix is diagonal reflect-
ing confidence in the x-, y- and θ -direc-
tions. The ”bigger” (in a matrix sense) Ω 
is, the more the edge matters in the op-
timization procedure. Different sensors 
have different accuracy and this must be 
taken into account. Information from a 
high-quality sensor should be given more 
weight than information from a low-qual-
ity sensor.

6.6  ·  Pose Graph SLAM



172 Chapter 6  ·  Localization

The edge error   fk(x) can be linearized about the current state x0 of the pose graph

where f0,k = fk(x0) and

is a Jacobian matrix   which depends only on the pose of its two vertices ξi and ξj so it 
is mostly zeros

and more details are provided in Appendix E.
There are many ways to compute the Jacobians but here will demonstrate use of 

the MATLAB Symbolic Math Toolbox™
>> syms xi yi ti xj yj tj xm ym tm assume real
>> xi_e = inv(  SE2(xm, ym, tm) ) * inv( SE2(xi, yi, ti) ) * SE2(xj, yj, tj);
>> fk = simplify(xi_e.xyt);

and the Jacobian which describes how the function fk varies with respect to ξi is

>> jacobian ( fk, [xi yi ti] );
>> Ai = simplify (ans)
Ai =
[ -cos(ti+tm), -sin(ti+tm), yj*cos(ti+tm)-yi*cos(ti+tm)+xi*sin(ti+tm)-xj*sin(ti+tm)]
[  sin(ti+tm), -cos(ti+tm), xi*cos(ti+tm)-xj*cos(ti+tm)+yi*sin(ti+tm)-yj*sin(ti+tm)]
[           0,           0,                                                      -1]

and we follow a similar procedure for Bj .
It is quite straightforward to solve this type of pose-graph problem with the Toolbox. 

We load a simple pose graph, similar to Fig. 6.14, from a data fi le�

>> pg = PoseGraph('pg1.g2o')
loaded g2o format fi le: 4 nodes, 4 edges in 0.00 sec 

which returns a Toolbox PoseGraph  object that describes the pose graph. We can 
visualize this by�

>> pg.plot() 

The  file format is one used by the popular 
posegraph optimization package g2o which 
you can find at http://openslam.org.

The nodes have an orientation which is in 
the z-direction, rotate the graph to see this.

Fig. 6.16.
Pose graph optimization  show-
ing the result over consecutive 
iterations, the fi nal confi gura-
tion is the square shown in bold
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The  optimization reduces the error in the network while animating the changing 
pose of the nodes

>> pg.optimize('animate')
solving....done in 0.075 sec.  Total cost 316.88
solving....done in 0.0033 sec.  Total cost 47.2186
 .
 .
solving....done in 0.0023 sec.  Total cost 3.14139e-11 

The displayed text indicates that the total cost is decreasing while the graphics show 
the nodes moving into a confi guration that minimizes the overall error in the network. 
The pose graph confi gurations are overlaid and shown in Fig. 6.16.

Now let’s look a much larger example based on real robot data

>> pg = PoseGraph('killian-small.toro');
loaded TORO/LAGO format fi le: 1941 nodes, 3995 edges in 0.68 sec 

which we can plot�

>> pg.plot() 

and this is shown in Fig. 6.17a. Note the mass of edges in the center of the graph, and 
if you zoom in you can see these in detail. We optimize the pose graph by

>> pg.optimize()
solving....done in 0.91 sec.  Total cost 1.78135e+06
 .
 .
solving....done in 1.1 sec.  Total cost 5.44567 

and the fi nal confi guration is shown in Fig. 6.17b. The original pose graph had severe 
pose errors from accumulated odometry error which meant that two trips along the 
corridor were initially very poorly aligned.

The pose graph can also include landmarks as shown in Fig. 6.18. Landmarks have 
a position Pj ∈R2 not a pose, and therefore differ from the nodes discussed so far. 
To accomodate this we redefi ne the state vector to be x = {ξ1, ξ2� ξN | P1, P2�PM} 
which includes N robot poses and M landmark positions. The robot at pose i observes 
landmark j at range and bearing z# = (r#, β #) which is converted to Cartesian form in 
frame {i}

There are a lot of nodes and this takes 
a few seconds.

Fig. 6.17. Pose graph with 1 941 
nodes and 3 995 edges from the 
MIT Killian Court dataset. a Ini-
tial confi guration; b fi nal confi gu-
ration after optimization 

6.6  ·  Pose Graph SLAM
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The estimated position of the landmark in frame {i} is

and the error vector is

We follow a similar approach as earlier but the Jacobian matrix is now

which again is mostly zero but the two nonzero blocks now have different widths

and the solution can be achieved as before, see Sect. F.2.3 for more details.
Pose graph  optimization results in a graph that has optimal relative poses and 

positions between the nodes but the absolute poses and positions are not neces-
sarily correct. To remedy this we can fix or anchor one or more nodes (poses or 
landmarks) and not update them during the optimization, and this is discussed 
in Sect. F.2.4.

In practice the front and back ends can operate asynchronously. The graph is 
continually extended by the front end while the back end runs periodically to opti-

Fig. 6.18.
Notation for a pose graph with a 
landmark indicated by the star-
shaped symbol. The measured 
position of landmark j with re-
spect to robot pose i is iP j

#. The 
yellow ellipse indicates uncer-
tainty associated with that mea-
surement

Monte Carlo methods are a class of computational algorithms that rely on repeated  random sam-
pling to compute their results. An early example of this idea is  Buffon’s needle problem posed in 
the eighteenth century by  Georges-Louis Leclerc (1707–1788), Comte de Buffon: Suppose we have 
a fl oor made of parallel strips of wood of equal width t, and a needle of length l is dropped onto the 
fl oor. What is the probability that the needle will lie across a line between the strips? If n needles 
are dropped and h cross the lines, the  probability can be shown to be h/n = 2l/πt and in 1901 an 
Italian mathematician  Mario Lazzarini performed the experiment, tossing a needle 3408 times, and 
obtained the estimate π ≈ 355/113 (3.14159292).

Monte Carlo methods are often used when simulating systems with a large number of coupled de-
grees of freedom with signifi cant uncertainty in inputs. Monte Carlo methods tend to be used when it 
is infeasible or impossible to compute an exact result with a deterministic algorithm. Their reliance 
on repeated computation and  random or pseudo-random numbers make them well suited to cal-
culation by a computer. The method was developed at Los Alamos as part of the Manhattan project 
during WW II by the mathematicians  John von Neumann,  Stanislaw Ulam and  Nicholas Metropolis. 
The name Monte Carlo alludes to games of chance and was the code name for the secret project.



175

mize the pose graph. Since the graph is only ever extended in a local region it is pos-
sible to optimize just a local subset of the pose graph and less frequently optimize 
the entire graph. If nodes are found to be equivalent after  optimization they can be 
merged. The parallel tracking and  mapping system (PTAM)   is a vision-based SLAM 
system  that has two parallel computational threads. One is the map builder which 
performs the front- and back-end tasks, adding landmarks to the pose graph based 
on estimated camera (vehicle) pose and performing graph  optimization. The other 
thread is the localizer which matches observed landmarks to the estimated map to 
estimate the  camera pose.

6.7 
l
Sequential  Monte-Carlo  Localization

 The estimation examples so far have assumed that the error in sensors such as odom-
etry and landmark range and bearing have a Gaussian  probability density  function. In 
practice we might fi nd that a sensor has a one sided distribution (like a Poisson dis-
tribution) or a multi-modal distribution with several peaks. The functions we used in 
the  Kalman fi lter such as Eq. 6.2 and Eq. 6.7 are strongly nonlinear which means that 
sensor  noise with a Gaussian distribution will not result in a Gaussian error distribu-
tion on the value of the function – this is discussed further in Appendix H. The prob-
ability density function associated with a robot’s confi guration may have multiple 
peaks to refl ect several hypotheses that equally well explain the data from the sensors 
as shown for example in Fig. 6.3c.

The Monte-Carlo  estimator that we discuss in this section makes no assumptions 
about the distribution of errors. It can also handle multiple hypotheses for the state 
of the system. The basic idea is disarmingly simple. We maintain many different val-
ues of the vehicle’s confi guration or state vector. When a new measurement is avail-
able we score how well each particular value of the state explains what the sensor 
just observed. We keep the best fi tting states and randomly sample from the predic-
tion distribution to form a new generation of states. Collectively these many possi-
ble states and their scores form a discrete approximation of the probability density 
function of the state we are trying to estimate. There is never any assumption about 
Gaussian distributions nor any need to linearize the system. While computationally 
expensive it is quite feasible to use this technique with today’s standard computers. 
If we plot these state vectors as points in the state space we have a cloud of particles 
hence this type of estimator is often referred to as a  particle  fi lter.

We will apply Monte-Carlo estimation to the problem of localization using odom-
etry and a map. Estimating only three states x = (x, y, θ ) is computationally tractable 
to solve with straightforward MATLAB code. The estimator is initialized by creating 
N particles xi, i ∈ [1, N] distributed randomly over the confi guration space of the ve-
hicle. All particles have the same initial weight or likelihood wi = 1 / N. The steps in 
the main iteration of the algorithm are:

1. Apply the state update to each particle

 where rhki is the input to the system or the measured odometry rhki= δ hki. We also 
add a random vector q hki which represents uncertainty in the model or the odom-
etry. Often q is drawn from a Gaussian random variable with covariance Q but any 
physically meaningful distribution can be used. The state update is often simplifi ed to

 where q hki represents uncertainty in the pose of the vehicle.

6.7  ·  Sequential Monte-Carlo Localization



176 Chapter 6  ·  Localization

2. We make an observation z# of landmark j which has, according to the map, coor-
dinate pj. For each particle we compute the innovation

 which is the error between the predicted and actual landmark observation. A like-
lihood function provides a scalar measure of how well the particular particle ex-
plains this observation. In this example we choose a likelihood function

 where w is referred to as the importance or weight of the particle, L is a covariance-like 
 matrix, and w0 > 0 ensures that there is a fi nite probability of a particle being retained 
despite sensor error. We use a quadratic exponential function only for convenience, 
the function does not need to be smooth or invertible but only to adequately describe 
the likelihood of an observation.�

3. Select the particles that best explain the observation, a process known as   resam-
pling� or  importance sampling. A common scheme is to randomly select particles 
according to their weight. Given N particles xi with corresponding weights wi we 
fi rst normalize the weights w′i = wi / ΣN

i=1wi and construct a cumulative  histogram 
cj = Σ j

i=1w′i. We then draw a uniform random number r ∈ [0, 1] and fi nd

 where particle i is selected for the next generation. The process is repeated N times.
Particles with a large weight will correspond to a larger fraction of the vertical 

span of the cumulative histogram and therefore be more likely to be chosen. The 
result will have the same number of particles, some will have been copied� multi-
ple times, others not at all. Resampling is a critical component of the particle  fi lter 
without which the fi lter would quickly produce a degenerate set of particles where 
a few have high weights and the bulk have almost zero weight.

These steps are summarized in Fig. 6.19. The Toolbox implementation is broadly 
similar to the previous examples. We create a map

>> map = LandmarkMap(20);

and a robot with noisy odometry and an initial condition
>> W = diag([0.1, 1*pi/180].^2);
>> veh =  Bicycle('covar', V);
>> veh.add_driver(  RandomPath(10) );

Step 1 of the next iteration will spread out 
these copies through the addition of qhki.

Fig. 6.19.
The particle fi lter estimator 
showing the prediction and up-
date phases

There are many resampling strategies
for particle filters, both the resampling 
algorithm and the resampling frequency. 
Here we use the simplest strategy known 
variously as multinomial resampling, 
simple random resampling or select with 
replacement, at every time step. This is 
sometimes referred to as bootstrap par-
ticle filtering or condensation.

In this bootstrap type filter the weight is 
computed at each step, with no depen-
dence on previous values.
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and then a sensor with noisy readings

>> V = diag([0.005, 0.5*pi/180].^2);
>> sensor =  RangeBearingSensor(veh, map, 'covar', W);

For the particle  fi lter we need to defi ne two covariance matrices. The fi rst is the covariance 
of the random  noise added to the particle states at each iteration to represent uncertainty 
in confi guration. We choose the covariance values to be comparable with those of W

>> Q = diag([0.1, 0.1, 1*pi/180]).^2;

and the covariance of the likelihood function applied to innovation

>> L = diag([0.1 0.1]);

Finally we construct a  ParticleFilter estimator

>> pf = ParticleFilter(veh, sensor, Q, L, 1000);

which is confi gured with 1 000 particles. The particles are initially uniformly distrib-
uted over the 3-dimensional confi guration space.

We run the simulation for 1 000 time steps

>> pf.run(1000);

and watch the animation, two snapshots of which are shown in Fig. 6.20. We see the 
particles move about as their states are updated by odometry and random pertur-
bation. The initially randomly distributed particles begin to aggregate around those 
regions of the confi guration space that best explain the sensor observations that are 
made. In Darwinian fashion these particles become more highly weighted and survive 
the resampling step while the lower weight particles are extinguished.

The particles approximate the probability density function of the robot’s confi g-
uration. The most likely confi guration is the expected value or mean of all the par-
ticles. A measure of uncertainty of the estimate is the spread of the particle cloud or 
its standard deviation. The ParticleFilter object keeps the history of the mean 
and standard deviation of the particle state at each time step, taking into account the 
particle weighting�. As usual we plot the results of the simulation

>> map.plot();
>> veh.plot_xy('b');

and overlay the mean of the particle cloud

>> pf.plot_xy('r');

Fig. 6.20. Particle filter results 
showing the evolution of the par-
ticle cloud (green dots) over time. 
The vehicle is shown as a blue tri-
angle. The red diamond is a way-
point, or temporary goal. When 
the simulation is running this is 
actually a 3D plot with orientation 
plotted in the z-direction, rotate 
the plot to see this dimension

6.7  ·  Sequential Monte-Carlo Localization

Here we take statistics over all particles. 
Other strategies are to estimate the ker-
nel density at every particle – the sum 
of the weights of all neighbors within a 
fixed radius – and take the particle with 
the largest value.
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which is shown in Fig. 6.21. The initial part of the estimated path has quite high stan-
dard deviation since the particles have not converged on the true confi guration. We 
can plot the standard deviation against time

>> plot(pf.std(1:100,:))

and this is shown in Fig. 6.21b. We can see the sudden drop between timesteps 10–20 as 
the particles that are distant from the true solution are eliminated. As mentioned at the 
outset the particles are a sampled approximation to the PDF and we can display this as

>> pf.plot_pdf()

The problem we have just solved is known in robotics as the  kidnapped robot problem 
where a robot is placed in the world with no idea of its initial location. To represent 
this large uncertainty we uniformly distribute the particles over the 3-dimensional 
confi guration space and their sparsity can cause the particle  fi lter to take a long time 
to converge unless a very large number of particles is used. It is debatable whether 
this is a realistic problem. Typically we have some approximate initial pose of the ro-
bot and the particles would be initialized to that part of the confi guration space. For 
example, if we know the robot is in a corridor then the particles would be placed in 
those areas of the map that are corridors, or if we know the robot is pointing north 
then set all particles to have that orientation.

Setting the parameters of the particle fi lter requires a little experience and the best 
way to learn is to experiment. For the kidnapped robot problem we set Q and the num-
ber of particles high so that the particles explore the confi guration space but once the 
fi lter has converged lower values could be used. There are many variations on the par-
ticle fi lter in the shape of the likelihood function and the resampling  strategy.

6.8 
l
Application: Scanning Laser Rangefinder 

As we have seen, robot localization is informed by measurements of range and bearing
to landmarks. Sensors that measure range can be based on many principles such as laser 
rangefi nding (Fig. 6.22a, 6.22b), ultrasonic ranging (Fig. 6.22c), computer vision or radar.

A laser rangefi nder  emits short pulses of infra-red laser light and measures how 
long it takes for the refl ected pulse to return. Operating range can be up to 50 m with 
an accuracy of the order of centimeters.

A scanning laser rangefi nder  , as shown in Fig. 6.22a, contains a rotating laser range-
fi nder and typically emits a pulse every quarter, half or one degree over an angular 
range of 180 or 270 degrees and returns a planar cross-section of the world in polar 
coordinate form {(ri, θi), i ∈ 1� N}. Some scanning laser rangefi nders also measure 

Fig. 6.21. Particle filter results. 
a True (blue) and estimated (red) 
robot path; b standard deviation 
of the particles versus time
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the return signal strength, remission  , which is a function of the infra-red refl ectivity  
of the surface. The rangefi nder is typically confi gured to scan in a plane parallel to, 
and slightly above, the ground.

Laser rangefi nders have advantages and disadvantages compared to cameras and com-
puter vision which we discuss in Parts IV and V of this book. On the positive side laser 
scanners provide metric data, that is, the actual range to points in the world in units of 
meters, and they can work in the dark. However laser rangefi nders work less well than 
cameras outdoors since the returning laser pulse is overwhelmed by infra-red light from 
the sun. Other disadvantages include providing only a linear cross section of the world, 
rather than an area as a camera does; inability to discern fi ne texture or color; having mov-
ing parts; as well as being bulky, power hungry and expensive compared to cameras.

Laser Odometry  

A common application of scanning laser rangefi nders is laser odometry, estimating 
the change in robot pose  using laser scan data  rather than wheel encoder data . We will 
illustrate this with laser scan data from a real robot  

>> pg = PoseGraph('killian.g2o', 'laser');
loaded g2o format fi le: 3873 nodes, 4987 edges in 1.78 sec
  3873 laser scans: 180 beams, fov -90 to 90 deg, max range 50 

and each scan is associated with a vertex of this already optimized pose graph. The 
range and bearing data for the scan at node 2 580 is

>> [r, theta] = pg.scan(2580);
>> about r theta
r [double] : 1x180 (1.4 kB)
theta [double] : 1x180 (1.4 kB) 

represented by two vectors each of 180 elements. We can plot these in polar form

>> polar(theta, r)

or convert them to Cartesian coordinates and plot them

>> [x,y] = pol2cart (theta, r);
>> plot (x, y, '.')

The method scanxy  is a simpler way to perform these operations. We load scans 
from two closely spaced nodes

>> p2580 = pg.scanxy(2580);
>> p2581 = pg.scanxy(2581);
>> about p2580
p2580 [double] : 2x180 (2.9 kB) 

which creates two matrices whose columns are Cartesian  point coordinates and these 
are overlaid in Fig. 6.23a.�

To determine the change in pose of the robot between the two scans we need to align 
these two sets of points and this can be achieved with iterated closest- point-matching  

Fig. 6.22.
Robot rangefi nders . a A scan-
ning laser rangefi nder with a 

maximum range of 30 m, an an-
gular range of 270 deg in 0.25 deg 

intervals at 40 scans per second 
(courtesy of Hokuyo Automatic 
Co. Ltd.); b a low-cost time-of-

fl ight rangefi nder with maximum 
range of 20 cm at 10 measure-

ments per second (VL6180 cour-
tesy of SparkFun Electronics);
c a low-cost ultrasonic range-

fi nder with maximum range of 
6.5 m at 20 measurements per
second (LV-MaxSonar-EZ1

courtesy of SparkFun Electronics)

Note that the points close to the laser, at 
coordinate (0,0) in this sensor reference 
frame are much more tightly clustered 
and this is a characteristic of laser scan-
ners where the points are equally spaced 
in angle not over an area.

6.8  ·  Application: Scanning Laser Rangefinder
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or ICP. This is implemented by the Toolbox function icp � and we pass in the second 
and fi rst set of points, each organized as a 2 × N matrix

>> T = icp( p2581, p2580, 'verbose' , 'T0', transl2(0.5, 0), 'distthresh', 3)
[1]: n=132/180, d=   0.466, t = (   0.499   -0.006), th = (  -0.0) deg
[2]: n=130/180, d=   0.429, t = (   0.500   -0.009), th = (   0.0) deg
  .
  .
[6]: n=130/180, d=   0.425, t = (   0.503   -0.011), th = (   0.0) deg

T =
    1.0000   -0.0002    0.5032
    0.0002    1.0000   -0.0113
         0         0    1.0000 

and the algorithm converges after a few iterations with an estimate of T ∼ 2 580ξ2 581 
∈ SE(2).� This transform maps points from the second scan so that they are as close as 
possible to the points in the fi rst scan. Figure 6.23b shows the fi rst set of points trans-
formed and overlaid on the second set and we see good alignment. The translational 
part of this transform is an estimate of the robot’s motion between scans – around 
0.50 m in the x-direction. The nodes of the graph also hold time stamp information 
and these two scans were captured

>> pg.time(2581)-pg.time(2580)
ans =
    1.7600 

seconds apart which indicates that the robot is moving quite slowly – a bit under 0.3 m s−1.
At each iteration ICP assigns each point in the second set to the closest point in the 

fi rst set and then computes a transform that minimizes the sum of distances between 
all corresponding points. Some points may not actually be corresponding but as long 
as enough are, the algorithm will converge. The 'verbose' option causes data about 
each iteration to be displayed and d is the total distance between corresponding points 
which is decreasing but does not reach zero. This is due to many factors. The beams 
from the laser at the two different poses will not strike the walls at the same location 
so ICP’s assumption about point  correspondence is not actually valid.�

In practice there are additional challenges. Some laser pulses will not return to the sensor 
if they fall on a surface with low refl ectivity  or on an oblique polished  surface that   specu-
larly refl ects the pulse away from the sensor – in these cases the sensor typically reports its 
maximum value. People moving through the environment change the shape of the world 
and temporarily cause a shorter range to be reported. In very large spaces all the walls 
may be beyond the maximum range of the sensor. Outdoors the beams can be refl ected 
from rain drops, absorbed by fog or smoke and the return pulse can be overwhelmed by 
ambient sunlight. Finally the laser rangefi nder, like all sensors, has measurement  noise.  

Fig. 6.23. Laser scan matching. 
a Laser scans from location 2 580 
(blue) and 2 581 (red); b location 
2580 points (blue) and transformed 
points from location 2 581 (red)

The ICP algorithm is described more fully 
for the SE(3) case in Sect. 14.5.2.

We demonstrate the principle using ICP 
but in practice more robust algorithms 
are used. Here we provide an initial esti-
mate of the translation between frames, 
based on odometry, so as to avoid get-
ting stuck in a local minimum. ICP works 
poorly in plain corridors where the points 
lie along lines – this example was delib-
erately chosen because it has wall seg-
ments in orthogonal directions.

To remove invalid correspondences 
we pass the 'distthresh' op-
tion to icp(). This causes any corre-
spondences that involve a distance 
more than three times the median dis-
tance between all corresponding points 
to be dropped. In the icp() output
the notation 132/180 means that 
132 out of 180 possible correspondences 
met this test, 48 were rejected.
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Laser-Based Map Building 

If the robot pose  is suffi ciently well known, through some  localization process, then 
we can transform all the laser scans to a global coordinate frame  and build a map. 
Various map representations are possible but here we will outline how to build an oc-
cupancy grid  as discussed in Chap. 5.

For a robot at a given pose, each beam in the scan is a ray and tells us several things. 
From the range measurement we can determine the coordinates of a cell that contains 
an obstacle but we can tell nothing about cells further along the ray. It is also implicit 
that all the cells between the sensor and the obtacle must be obstacle free. A maximum 
distance value, 50 m in this case, is the sensor’s way of indicating that there was no re-
turning laser pulse so we ignore all such measurements. We create the occupancy grid 
as a matrix and use the Bresenham  algorithm   to fi nd all the cells along the ray based 
on the robot’s pose and the laser range and bearing measurement, then a simple voting 
scheme to determine whether cells are free or occupied

>> pg.scanmap()
>> pg.plot_occgrid()  

and the result is shown in Fig. 6.24. More sophisticated approaches treat the beam as a 
wedge of fi nite angular width and employ a probabilistic model of sensor return versus 
range. The principle can be extended to creating 3-dimensional  point clouds  from a 
scanning laser rangefi nder on a moving vehicle as shown in Fig. 6.25.  

Fig. 6.24.
a Laser scans rendered into

an occupancy grid , the area en-
closed in the green square is dis-
payed in b. White cells are free 
space, black cells are occupied 

and grey cells are unknown.
Grid cell size is 10 cm

Fig. 6.25.
3D point cloud created by in-
tegrating multiple scans from
a vehicle-mounted scanning
laser rangefi nder, where the

scans are in a vertical plane nor-
mal to the vehicle’s forward axis.

This is sometimes called a “2.5D” 
representation since only the 

front surfaces of objects are de-
scribed – note the range shad-
ows on the walls behind cars. 

Note also that the density of laser 
points is not constant across the 
map, for example the point den-
sity on the road surface is much 

greater than it is high on the walls 
of buildings (image courtesy Alex 

Stewart; Stewart 2014) 

6.8  ·  Application: Scanning Laser Rangefinder
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Laser-Based Localization 

We have mentioned landmarks a number of times in this chapter but avoided concrete ex-
amples of what they are. They could be distinctive visual features as discussed in Sect. 13.3 
or artifi cial markers as discussed on page 164. If we consider a laser scan such as shown in 
Fig. 6.23a or 6.24b we see a fairly distinctive arrangement of points – a geometric signature 
– which we can use as a landmark. In many cases the signature will be ambiguous and of 
little value, for example a long corridor where all the points are collinear, but some signa-
tures will be highly unique and can serve as a useful landmark . Naively we could match 
the current laser scan against all others and if the fi t is good (the ICP error   is low) we could 
add another constraint to the pose graph. However this strategy would be expensive with 
a large number of scans so typically only scans in the vicinity of the robot’s estimated po-
sition are checked, and this once again raises the data association problem.

6.9 
l
Wrapping Up

In this chapter we learned about two very different ways of estimating a robot’s posi-
tion: by dead reckoning, and by observing landmarks whose true position is known 
from a map. Dead reckoning is based on the integration of odometry information, the 
distance traveled and the change in heading angle. Over time errors accumulate lead-
ing to increased uncertainty about the pose of the robot.

We modeled the error in odometry by adding noise to the sensor outputs. The noise 
values are drawn from some distribution that describes the errors of that particular 
sensor. For our simulations we used zero-mean Gaussian noise with a specifi ed cova-
riance, but only because we had no other information about the specifi c sensor. The 
most realistic noise model available should be used. We then introduced the  Kalman 
fi lter which provides an optimal estimate, in the least-squares sense, of the true confi g-
uration of the robot based on noisy measurements. The Kalman fi lter is however only 
optimal for the case of zero–mean Gaussian noise and a linear model. The model that 
describes how the robot’s confi guration evolves with time can be nonlinear in which 
case we approximate it with a linear model which included some partial derivatives 
expressed as Jacobian matrices – an approach known as extended Kalman fi ltering.

The Kalman fi lter also estimates uncertainty associated with the pose estimate and 
we see that the magnitude can never decrease and typically grows without bound. Only 
additional sources of information can reduce this growth and we looked at how obser-
vations of landmarks, with known locations, relative to the robot can be used. Once 
again we use the Kalman fi lter but in this case we use both the prediction and the up-
date phases of the fi lter. We see that in this case the uncertainty can be decreased by a 
landmark observation, and that over the longer term the uncertainty does not grow. 
We then applied the Kalman fi lter to the problem of estimating the positions of the 
landmarks given that we knew the precise position of the vehicle. In this case, the state 
vector of the fi lter was the coordinates of the landmarks themselves.

Next we brought all this together and estimated the vehicle’s position, the position 
of the landmarks and their uncertainties – simultaneous localization and mapping. 
The state vector in this case contained the confi guration of the robot and the coordi-
nates of the landmarks.

An important problem when using landmarks is data association, being able to de-
termine which landmark has been known or observed by the sensor so that its position 
can be looked up in a map or in a table of known or estimated landmark positions. If the 
wrong landmark is looked up then an error will be introduced in the robot’s position.

The Kalman fi lter scales poorly with an increasing number of landmarks and we in-
troduced two alternative approaches: Rao-Blackwellized SLAM and pose-graph SLAM. 
The latter involves solving a large but sparse nonlinear least squares problem, turning 
the problem from one of (Kalman) fi ltering to one of  optimization.
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We fi nished our discussion of localization methods with  Monte-Carlo  estimation 
and introduced the particle fi lter. This technique is computationally intensive but 
makes no assumptions about the distribution of errors from the sensor or the lin-
earity of the vehicle model, and supports multiple hypotheses. Particles fi lters can be 
considered as providing an approximate solution to the true system model, whereas 
a Kalman fi lter provides an exact solution to an approximate system model.

Finally we introduced laser rangefi nders and showed how they can be applied to 
robot navigation, odometry and creating detailed fl oor plan maps.

Further Reading

Localization and SLAM. The tutorials by Bailey and Durrant-Whyte (2006) and Durrant-
Whyte and Bailey (2006) are a good introduction to this topic, while the textbook 
Probabilistic Robotics (Thrun et al. 2005) is a readable and comprehensive coverage 
of all the material touched on in this chapter.

The book by Siegwart et al. (2011) also has a good treatment of robot localization. 
FastSLAM (Montemerlo et al. 2003; Montemerlo and Thrun 2007) is a state-of-the-art 
 algorithm for Rao-Blackwellized SLAM.

Particle fi lters are described by Thrun et al. (2005), Stachniss and Burgard (2014) and 
the tutorial introduction by Rekleitis (2004). There are many variations such as fi xed 
or adaptive number of particles and when and how to resample – and Li et al. (2015) 
provide a comprehensive review of resampling strategies. Determining the most likely 
pose was demonstrated by taking the weighted mean of the particles but many more 
approaches have been used. The  kernel density approach takes the particle with the 
highest weight of neighboring particles within a fi xed-size surrounding hypersphere.

Pose graph  optimization, also known as GraphSLAM, has a long history starting with 
Lu and Milios (1997). There has been signifi cant recent interest with many publications 
and open-source tools including g2o (Kümmerle et al. 2011), ̂ SAgMg (Dellaert and Kaess 
2006), iSAM (Kaess et al. 2007) and factor graphs. Agarwal et al. (2014) provides a gentle 
introduction to pose-graph SLAM and discusses the connection to land-based geodetic 
survey which is centuries old. Parallel Tracking and Mapping (PTAM) was described in 
Klein and Murray (2007), the code is available on github and there is also a blog.

There are many online resources related to SLAM. A collection of open-source 
SLAM implementations such as gmapping and iSam is available from OpenSLAM 
at http://www.openslam.org. An implementation of smoothing and mapping us-
ing factor graphs is available at https://bitbucket.org/gtborg/gtsam and has C++ 
and MATLAB bindings. MATLAB implementations include a 6DOF SLAM system at 
http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html and the now dated 
CAS Robot Navigation Toolbox for planar SLAM at http://www.cas.kth.se/toolbox. 
Tim Bailey’s website http://www-personal.acfr.usyd.edu.au/tbailey has MATLAB 
implementations of various SLAM and scan matching algorithms.

Many of the SLAM summer schools have websites that host excellent online re-
sources such as lecture notes and practicals. Great teaching resources available online 
include Giorgio Grisetti’s site http://www.dis.uniroma1.it/~grisetti and Paul Newman’s 
C4B Mobile Robots and Estimation Resources ebook at https://www.free-ebooks.net/
ebook/C4B-Mobile-Robotics.

Scan matching and map making. Many versions and variants of the ICP  algorithm  
exist and it is discussed further in Chap. 14. Improved convergence and accuracy can 
be obtained using the normal distribution transform (NDT), originally proposed for 
2D by Biber and Straßer (2003), extended to 3D by Magnusson et al. (2007) and im-
plementations are available at pointclouds.org. A comparison of ICP and NDT for a 
fi eld robotic application is described by Magnusson et al. (2009). A fast and popular 
approach to laser scan matching is that of Censi (2008).

6.9  ·  Wrapping Up
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When attempting to match a local geometric signature in a large  point cloud (2D or 
3D) to determine loop closure we often wish to limit our search to a local spatial region. 
An effi cient way to achieve this is to organize the data using a kd-tree which is provided 
in MATLAB’s Statistics and Machine Learning Toolbox™ and various contributions on 
File Exchange. FLANN (Muja and Lowe 2009) is a fast approximation which is available 
on github and has a MATLAB binding, and is also included in the VLFeat package.

For creating a map from robotic laser scan data in Sect. 6.8 we used a naive approach 
– a more sophisticated technique is the beam model or likelihood fi eld as described 
in Thrun et al. (2005).

 Kalman filtering. There are many published and online resources for Kalman fi ltering. 
Kálmán’s original paper, Kálmán (1960), over 50 years old, is quite readable. The book 
by Zarchan and Musoff (2005) is a very clear and readable introduction to Kalman 
fi ltering. I have always found the classic book, recently republished, Jazwinski (2007) 
to be very readable. Bar-Shalom et al. (2001) provide comprehensive coverage of es-
timation theory and also the use of GPS. Groves (2013) also covers Kalman fi ltering. 
Welch and Bishop’s online resources at http://www.cs.unc.edu/~welch/kalman have 
pointers to papers, courses, software and links to other relevant web sites.

A signifi cant limitation of the EKF is its fi rst-order linearization, particularly for 
processes with strong nonlinearity. Alternatives include the iterated EKF described 
by Jazwinski (2007) or the    Unscented Kalman Filter (UKF) (Julier and Uhlmann 2004) 
which uses discrete sample points (sigma points) to approximate the PDF. Some of 
these topics are covered in the Handbook (Siciliano and Khatib 2016, §5 and §35). The 
information fi lter is an equivalent fi lter that maintains an inverse covariance matrix 
which has some useful properties, and is discussed in Thrun et al. (2005) as the sparse 
extended information fi lter.

Data association. SLAM techniques are critically dependent on accurate data association 
between observations and mapped landmarks, and a review of data association tech-
niques is given by Neira and Tardós (2001). FastSLAM (Montemerlo and Thrun 2007) is 
capable of estimating data association as well as landmark position. The April tag which 
can be used as an artifi cial landmark is described in Olson (2011) and is supported by 
the Toolbox function apriltags . Mobile robots can uniquely identify places based 
on their visual appearance using tools such as OpenFABMAP (Glover et al. 2012).

Data association for Kalman fi ltering is covered in the Robotics Handbook (Siciliano 
and Khatib 2016). Data association in the tracking context is covered in considerable 
detail in, the now very old, book by Bar-Shalom and Fortmann (1988).

Sensors. The book by Kelly (2013) has a good coverage of sensors particularly laser 
range fi nders. For fl ying and underwater vehicles, odometry cannot be determined from 
wheel motion and an alternative, also suitable for wheeled vehicles, is visual odometry 
(VO). This is introduced in the tutorials by Fraundorfer and Scaramuzza (2012) and 
Scaramuzza and Fraundorfer (2011) and will be covered in Chap. 14. The Robotics 
Handbook (Siciliano and Khatib 2016) has good coverage of a wide range of robotic 
sensors. The principles of GPS and other radio-based localization systems are covered 
in some detail in the book by Groves (2013), and a number of links to GPS technical data 
are provided from this book’s web site. The SLAM problem can be formulated in terms 
of bearing-only or range-only measurements. A camera is effectively a bearing-only 
sensor, giving the direction to a feature in the world. A VSLAM  system is one that per-
forms SLAM using bearing-only visual information, just a camera, and an introduction 
to the topic is given by Neira et al. (2008) and the associated special issue. Interestingly 
the robotic VSLAM problem is the same as the bundle adjustment problem   known to 
the computer vision community and which will be discussed in Chap. 14.

The book by Borenstein et al. (1996) although dated has an excellent discussion of 
robotic sensors in general and odometry in particular. It is out of print but can be found 
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online. The book by Everett (1995) covers odometry, range and bearing sensors, as well 
as radio, ultrasonic and optical localization systems. Unfortunately the discussion of 
range and bearing sensors is now quite dated since this technology has evolved rapidly 
over the last decade.

General interest. Bray (2014) gives a very readable account of the history of techniques to 
determine our location on the planet. If you ever wondered how to navigate by the stars or use 
a sextant Blewitt (2011) is a slim book that provides an easy to understand introduction.

The book Longitude (Sobel 1996) is a very readable account of the longitude  prob-
lem and John Harrison’s quest to build a marine chronometer.

Toolbox and MATLAB Notes

This chapter has introduced a number of Toolbox classes to solve mapping and local-
ization problems. The principle was to decompose the problem into clear functional 
subsystems and implement these as a set of cooperating classes, and this allows quite 
complex problems to be expressed in very few lines of code.

The relationships between the objects and their methods and properties are shown 
in Fig. 6.26. As always more documentation is available through the online help sys-
tem or comments in the code.  Vehicle is a superclass and concrete subclasses in-
clude  Unicycle and  Bicycle.

The MATLAB Computer Vision System Toolbox™ includes a fast version of ICP called
 pcregrigid. The Robotics System Toolbox™ contains a generic particle fi lter class
ParticleFilter and a particle fi lter based localizer class MonteCarloLocalization.

Exercises

1. What is the value of the Longitude Prize in today’s currency?
2. Implement a driver object (page 157) that drives the robot around inside a circle 

with specifi ed center and radius.
3. Derive an equation for heading change in terms of the rotational rate of the left and 

right wheels for the car-like and differential-steer vehicle models.

Fig. 6.26.
Toolbox class relationship for 

localization and mapping. Each 
class is shown as a rectangle, 

method calls are shown as ar-
rows from caller to callee, prop-

erties are boxed, and dashed 
lines represent object references

6.9  ·  Wrapping Up
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4. Dead-reckoning (page 156)
a) Experiment with different values of P0, V and Í.
b) Figure 6.4 compares the actual and estimated position. Plot the actual and esti-

mated heading angle.
c) Compare the variance associated with heading to the variance associated with 

position. How do these change with increasing levels of range and bearing angle 
variance in the sensor?

d) Derive the Jacobians in Eq. 6.5 and 6.6 for the case of a differential steer robot.
5. Using a map (page 163)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and 
bearing angle limits) and investigate the effect on performance

b) Vary W and Ñ and investigate what happens to estimation error and fi nal co-
variance.

c) Modify the  RangeBearingSensor to create a bearing-only sensor, that is, as 
a sensor that returns angle but not range. The implementation includes all the 
Jacobians. Investigate performance.

d) Modify the sensor model to return occasional errors (specify the error rate) such 
as incorrect range or beacon identity. What happens?

e) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

f) Figure 6.7 compares the actual and estimated position. Plot the actual and esti-
mated heading angle.

g) Compare the variance associated with heading to the variance associated with 
position. How do these change with increasing levels of range and bearing angle 
variance in the sensor?

6. Making a map (page 166)
a) Vary the characteristics of the sensor (covariance, sample rate, range limits and 

bearing angle limits) and investigate the effect on performance.
b) Use the bearing-only sensor from above and investigate performance relative to 

using a range and bearing sensor.
c) Modify the EKF to perform data association instead of using identity returned 

by the sensor.
7. Simultaneous localization and mapping (page 168)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and 
bearing angle limits) and investigate the effect on performance.

b) Use the bearing-only sensor from above and investigate performance relative to 
using a range and bearing sensor.

c) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

d) Figure 6.11 compares the actual and estimated position. Plot the actual and es-
timated heading angle.

e) Compare the variance associated with heading to the variance associated with 
position. How do these change with increasing levels of range and bearing angle 
variance in the sensor?

8. Modify the pose-graph optimizer and test using the simple graph pg1.g2o
a) anchor one node at a particular pose.
b) add one or more landmarks. You will need to derive the relevant Jacobians 

fi rst and add the landmark positions, constraints and information matrix to 
the data fi le.

9. Create a simulator for Buffon’s needle problem, and estimate π for 10, 100, 1 000 
and 10 000 needle throws. How does convergence change with needle length?

10. Particle fi lter (page 176)
a) Run the fi lter numerous times. Does it always converge?
b) Vary the parameters Q, L, w0 and N and understand their effect on convergence 

speed and fi nal standard deviation.
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c) Investigate variations to the kidnapped robot problem. Place the initial particles 
around the initial pose. Place the particles uniformly over the xy-plane but set 
their orientation to its actual value.

d) Use a different type of likelihood function, perhaps inverse distance, and com-
pare performance.

11. Experiment with April tags. Print some tags and extract them from images using 
the apriltags function. Check out Sect. 12.1 on how to acquire images using 
MATLAB.

12. Implement a laser odometer and test it over the entire path saved in killian.
g2o. Compare your odometer with the relative pose changes in the fi le.

13. In order to measure distance using laser rangefi nding what timing accuracy is re-
quired to achieve 1cm depth resolution?

14. Reformulate the localization, mapping and SLAM problems using a bearing-only 
landmark sensor.

15. Implement a localization or SLAM system using an external simulator such as 
V-REP or Gazebo. Obtain range measurements from the simulated robot, do laser 
odometry and landmark recognition, and send motion commands to the robot. You 
can communicate with these simulators from MATLAB using the ROS protocol if 
you have the Robotics System Toolbox. Alternatively you can communicate with 
V-REP using the Toolbox VREP  class, see the documentation.

6.9  ·  Wrapping Up
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Part

III Arm-Type Robots

Arm-type robots or robot manipulators are a very common and fa-
miliar type of robot. We are used to seeing pictures or video of them 
at work in factories doing jobs such as assembly, welding and han-
dling tasks, or even in operating rooms doing surgery. The fi rst robot 
manipulators started work nearly 60 years ago and have been enor-
mously successful in practice – many millions of robot manipulators 
are working in the world today. Many products we buy have been as-
sembled, packed or handled by a robot.  

Unlike the mobile robots we discussed in the previous part, robot 
manipulators do not move through the world. They have a static base 
and therefore operate within a limited workspace. Many different types 
of robot manipulator have been created and Fig. III.1 shows some of 

Fig. III.1.
a A 6DOF serial-link manipu-
lator. General purpose indus-

trial manipulator (source: ABB).
b  SCARA robot which has 4DOF,

typically used for electronic as-
sembly (photo of Adept Cobra 

s600 SCARA robot courtesy
of Adept Technology, Inc.).

c A  gantry robot; the arm moves
along an overhead rail (image
courtesy of Güdel AG Switzer-

land | Mario Rothenbühler | 
www.gudel.com). d A  parallel-

link manipulator, the end-effec-
tor is driven by 6 parallel links 

(source: ABB)

the diversity. The most common is the 6DOF arm-type of robot comprising a series 
of rigid-links and actuated joints. The  SCARA (Selective Compliance Assembly Robot 
Arm) is rigid in the vertical direction and compliant in the horizontal plane which is 
an advantage for planar tasks such as electronic circuit board assembly. A gantry ro-
bot has one or two  degrees of  freedom of motion along overhead rails which gives it 
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Fig. III.2.
Robot end-effectors. a A vacuum 
gripper holds a sheet of glass. 
b A human-like robotic hand
(© Shadow Robot Company 2008)

a very large working volume. A parallel-link manipulator has its links connected in 
parallel to the tool which brings a number of advantages such as having all the mo-
tors on the base and providing a very stiff structure. The focus of this part is serial-
link arm-type robot manipulators.

These nonmobile robots allow some signifi cant simplifi cations to problems such 
as perception and safety. The work environment for a factory robot can be made very 
orderly so the robot can be fast and precise and assume the location of objects that it 
is working with. The safety problem is simplifi ed since the robot has a limited work-
ing volume – it is straightforward to just exclude people from the robot’s work space 
using safety barriers or even cages.

A robot manipulates objects using its  end-effector or tool as shown in Fig. III.2. End-
effectors range in complexity from simple 2-fi nger or parallel-jaw grippers to complex 
human-like hands with multiple actuated fi nger joints and an opposable thumb.

The chapters in this part cover the fundamentals of serial-link manipulators. 
Chapter 7 is concerned with the kinematics of serial-link manipulators. This is the 
geometric relationship between the angles of the robot’s joints and the pose of its end-
effector. We discuss the creation of smooth paths that the robot can follow and pres-
ent an example of a robot drawing a letter on a plane and a 4-legged walking robot. 
Chapter 8 introduces the relationship between the rate of change of joint coordinates 
and the end-effector velocity which is described by the manipulator  Jacobian matrix. 
It also covers alternative methods of generating paths in Cartesian space and intro-
duces the relationship between forces on the end-effector and torques at the joints. 
Chapter 9 discusses independent joint control and some performance limiting factors 
such as gravity load and varying inertia. This leads to a discussion of the full nonlinear 
dynamics of serial-link manipulators – effects such as inertia, gyroscopic forces, fric-
tion and gravity – and more sophisticated model-based control approaches.
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7 Robot Arm Kinematics
Take to kinematics. It will repay you.

It is more fecund than geometry; it adds a fourth dimension to space.
Chebyshev to Sylvester 1873

position of each joint given the end-effector pose. Section 7.3 describes methods for 
generating smooth paths for the end-effector. The remainder of the chapter covers 
advanced topics and two complex applications: writing on a plane surface and a four-
legged walking robot whose legs are simple robotic arms.

7.1 
l
Forward Kinematics

Forward kinematics  is the mapping from joint coordinates, or robot confi guration, 
to end-effector pose . We start in Sect. 7.1.1 with conceptually simple robot arms that 
move in 2-dimensions in order to illustrate the principles, and in Sect. 7.1.2 extend 
this to more useful robot arms that move in 3-dimensions.

Kinematics� is the branch of mechanics that studies the motion of a body, or a 
system of bodies, without considering its mass or the forces acting on it.

A robot arm, more formally a  serial-link manipulator, comprises a chain of 
rigid links and joints.  Each joint has one  degree of freedom, either translational 
(a  sliding or prismatic  joint) or rotational (a  revolute joint). Motion of the joint 
changes the relative pose of the links that it connects. One end of the chain, the 
base, is generally fi xed and the other end is free to move in space and holds the 
tool or  end-effector that does the useful work.

Figure 7.1 shows two modern arm-type robots that have six and seven joints 
respectively. Clearly the pose of the end-effector will be a complex function of 
the state of each joint and Sect. 7.1 describes how to compute the pose of the 
end-effector. Section 7.2 discusses the inverse problem, how to compute the 

From the Greek word for motion.

Fig. 7.1.
a Mico 6-joint robot with 3-fi n-
gered hand (courtesy of Kinova 
Robotics). b Baxter 2-armed ro-

botic coworker, each arm has 
7 joints (courtesy of Rethink 

Robotics)
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7.1.1 
l
2-Dimensional (Planar) Robotic Arms 

Consider the simple robot arm shown in Fig. 7.2a which has a single rotational joint. We 
can describe the pose of its end-effector – frame {E} – by a sequence of relative poses: 
a rotation about the joint axis and then a translation by a1 along the rotated x-axis�

The Toolbox allows us to express this, for the case a1 = 1, by
>> import ETS2.*
>> a1 = 1;
>> E = Rz('q1') * Tx(a1)  

which is a sequence of ETS2  class objects. The argument to Rz is a string which in-
dicates that its parameter is a joint variable whereas the argument to Tx is a constant 
numeric robot dimension.

The forward kinematics   for a particular value of q1 = 30 deg

>> E.fkine( 30, 'deg')
ans =
    0.8660   -0.5000     0.866
    0.5000    0.8660       0.5
         0         0         1 

is an SE(2) homogeneous transformation matrix representing the pose of the end-
effector –  coordinate frame {E}.

An easy and intuitive way to understand how this simple robot behaves is inter-
actively

>> E.teach 

which generates a graphical representation of the robot arm as shown in Fig. 7.3. The 
rotational joint is indicated by a grey vertical cylinder and the link by a red horizontal 
pipe. You can adjust the joint angle q1 using the slider and the arm pose and the dis-
played end-effector position and orientation will be updated. Clearly this is not a very 
useful robot arm since its end-effector can only reach points that lie on a circle.

Consider now a robot arm with two joints as shown in Fig. 7.2b. The pose of the 
end-effector is

 (7.1)

We can represent this using the Toolbox as

>> a1 = 1; a2 = 1;
>> E = Rz('q1') * Tx(a1) * Rz('q2') * Tx(a2)  

When computing the forward kinematics the joint angles are now specifi ed by a vector

>> E.fkine( [30, 40], 'deg')
ans =
    0.3420   -0.9397     1.208
    0.9397    0.3420      1.44
         0         0         1 

Fig. 7.2. Some simple planar ro-
botic arms. a Planar arm with one 
rotational joint; b planar arm with 
two rotational joints; c planar arm 
with two joints: one rotational 
and one prismatic. The base {0} 
and end-effector {E} coordinate 
frames are shown. The joint vari-
ables, angle or prismatic exten-
sion, are generalized coordinates 
and denoted by qj 

We use the symbols Ò, Óx, Óy to denote 
relative poses in SE(2) that are respec-
tively pure rotation and pure translation 
in the x- and y-directions.
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and the result is the end-effector pose when q1 = 30 and q2 = 40 deg. We could display 
the robot interactively as in the previous example, or noninteractively by

>> E.plot( [30, 40], 'deg') 

The joint structure of a robot  is often referred to by a shorthand comprising the 
letters R (for revolute) or P (for prismatic) to indicate the number and types of its 
joints. For this robot

>> E.structure
ans =
RR 

indicates a revolute-revolute sequence of joints. The notation underneath the terms 
in Eq. 7.1 describes them in the context of a physical robot manipulator which com-
prises a series of joints and links.

You may have noticed a few characteristics of this simple planar robot arm. Firstly, 
most end-effector positions can be reached with two different joint angle vectors. 
Secondly, the robot can position the end-effector at any point within its reach but we 
cannot specify an arbitrary orientation. This robot has 2 degrees of freedom  and its 
confi guration space is C= S1 × S1. This is suffi cient to achieve positions in the task 
space T⊂R2 since dimC= dimT. However if our task space includes orientation 
T⊂ SE(2) then it is  under-actuated since dimC< dimT and the robot can access only 
a subset of the task space.

So far we have only considered revolute joints but we could use a prismatic joint 
instead as shown in Fig. 7.2c. The end-effector pose is

Prismatic joints . Robot joints are commonly revolute (rotational) but can also be prismatic (linear, 
sliding, telescopic, etc.). The SCARA robot   of Fig. III.1b has a prismatic third joint while the gantry 
robot of Fig. III.1c has three prismatic joints for motion in the x-, y- and z-directions.

The Stanford arm   shown here has a prismatic third joint. It was developed at the Stanford AI Lab 
in 1972 by robotics pioneer Victor Scheinman  who went on to design the PUMA robot arms . This 
type of arm supported a lot of important early research work in robotics and one can be seen in the 
Smithsonian Museum of American History, Washington DC. (Photo courtesy Oussama Khatib)

Fig. 7.3.
Toolbox depiction of 1-joint 

planar robot using the teach 
method. The blue panel contains 
the joint angle slider and displays 

the position and orientation
(yaw angle) of the end-effector 

(in degrees)

7.1  ·  Forward Kinematics
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and the Toolbox representation follows a familiar pattern

>> a1 = 1;
>> E = Rz('q1') * Tx(a1) * Tz('q2')  

and the arm structure is now
>> E.structure
ans =
RP 

which is commonly called a polar-coordinate robot arm .
We can easily add a third joint

and use the now familiar Toolbox functionality to represent and work with this arm. 
This robot has 3 degrees of freedom and is able to access all points in the task space 
T⊂ SE(2), that is, achieve any pose in the plane (limited by reach).

7.1.2 
l
3-Dimensional Robotic Arms

Truly useful robots have a task space T⊂ SE(3) enabling arbitrary position and  orientation 
of the end-effector. This requires a robot with a confi guration space dimC≥ dimT which 
can be achieved by a robot with six or more joints. In this section we will use the Puma 560   
as an exemplar of the class of all-revolute six-axis robot manipulators with C⊂ (S1)6.

We can extend the technique from the previous section for a robot like the Puma 560 
whose dimensions are shown in Fig. 7.4. Starting with the world frame {0} we move up, 
rotate about the waist axis (q1), rotate about the shoulder axis (q2), move to the left, move 
up and so on. As we go, we write down the transform expression�

The marked term represents the kinematics of the robot’s  wrist and should be fa-
miliar to us as a  ZYZ Euler angle sequence from Sect. 2.2.1.2 – it provides an arbitrary 
orientation but is subject to a singularity when the middle angle q5 = 0.

We can represent this using the 3-dimensional version of the Toolbox class we 
used previously

>> import ETS3.*
>> L1 = 0; L2 = -0.2337; L3 = 0.4318; L4 = 0.0203; L5 = 0.0837; L6 = 0.4318;
>> E3 = Tz(L1) * Rz('q1') * Ry('q2') * Ty(L2) * Tz(L3) * Ry('q3')	
    * Tx(L4) * Ty(L5) * Tz(L6) * Rz('q4') * Ry('q5')  * Rz('q6');     

We can use the interactive teach facility or compute the forward kinematics

>> E3.fkine([0 0 0 0 0 0])
ans =
         1         0         0    0.0203
         0         1         0     -0.15
         0         0         1    0.8636
         0         0         0         1 

While this notation is intuitive it does becomes cumbersome as the number of 
robot joints increases. A number of approaches have been developed to more con-
cisely describe a serial-link robotic arm : Denavit-Hartenberg notation   and product 
of exponentials .

We use the symbols Òi, Ói, i ∈ {x, y, z} 
to denote relative poses in SE(3) that are 
respectively pure rotation about, or pure 
translation along, the i-axis.

Fig. 7.4. Puma robot   in the zero-
joint-angle confi guration show-
ing dimensions and joint axes 
(indicated by blue triple arrows) 
(after Corke 2007)
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7.1.2.1 
l
Denavit-Hartenberg Parameters 

One systematic way of describing the geometry of a serial chain of links and joints is 
 Denavit-Hartenberg  notation.

For a manipulator with N joints numbered from 1 to N, there are N + 1 links, 
numbered from 0 to N. Joint j connects link j − 1 to link j and moves them rela-
tive to each other. It follows that link � connects joint � to joint �+ 1. Link 0 is 
the base of the robot, typically fi xed and link N, the last link of the robot, carries 
the end-effector or tool.

In  Denavit-Hartenberg, notation a link defi nes the spatial relationship between 
two neighboring joint axes as shown in Fig. 7.5. A link is specifi ed by four param-
eters. The relationship between two link coordinate frames would ordinarily entail 
six parameters, three each for translation and rotation. For Denavit-Hartenberg 
notation there are only four parameters but there are also two constraints: axis 
xj intersects zj−1 and axis xj is perpendicular to zj−1. One consequence of these 
constraints is that sometimes the link coordinate frames are not actually located 
on the physical links of the robot. Another consequence is that the robot must be 
placed into a particular confi guration – the zero-angle confi guration   – which is 
discussed further in Sect. 7.4.1. The Denavit-Hartenberg parameters are summa-
rized in Table 7.1.

The coordinate frame {j} is attached to the far (distal) end of link j. The z-axis of 
frame {j} is aligned with the axis of joint j + 1.

Table 7.1.
Denavit-Hartenberg parameters: 

their physical meaning, symbol 
and formal defi nition 

Fig. 7.5.
Defi nition of standard Denavit 

and Hartenberg link parameters. 
The colors red and blue denote all 
things associated with links j − 1 
and j respectively. The numbers 

in circles represent the order 
in which the elementary trans-
forms are applied. xj is parallel 

to zj−1 × zj and if those two axes 
are parallel then dj can be arbi-

trarily chosen

7.1  ·  Forward Kinematics
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The transformation from link coordinate frame {j − 1} to frame {j} is defi ned in 
terms of elementary rotations and translations as

 (7.2)

which can be expanded in homogeneous matrix form as

 (7.3)

The parameters αj and aj are always constant. For a revolute joint, θ j is the joint 
variable and dj is constant, while for a prismatic joint, dj is variable, θj is constant 
and αj = 0. In many of the formulations that follow, we use  generalized joint co-
ordinates qj

For an N-axis robot, the  generalized joint coordinates q ∈ C where C⊂RN is called 
the  joint space or  confi guration space.� For the common case of an all-revolute robot 
C⊂ (S1)N the joint coordinates are referred to as  joint angles. The joint coordinates 
are also referred to as the pose of the manipulator which is different to the pose of the 
end-effector which is a Cartesian pose ξ ∈ SE(3). The term confi guration is shorthand 
for  kinematic  confi guration which will be discussed in Sect. 7.2.2.1.

Within the Toolbox a robot revolute joint and link can be created by

>> L = Revolute('a', 1)
L =
 Revolute(std): theta=q, d=0, a=1, alpha=0, offset=0 

which is a revolute-joint object of type Revolute which is a subclass of the generic 
Link object. The displayed value of the object shows the kinematic parameters (most 
of which have defaulted to zero), the joint type and that standard Denavit-Hartenberg 
convention is used (the tag std).�

This is the same concept as was intro-
duced for mobile robots in Sect. 2.3.5.

A slightly different notation, modifed 
Denavit-Hartenberg notation is discussed 
in Sect. 7.4.3.

Jacques Denavit (1930–2012) was born
in Paris where he studied for his Bach-
elor degree before pursuing his mas-
ters and doctoral degrees in mechan-
ical engineering at Northwestern 
University, Illinois. In 1958 he joined 
the Department of Mechanical En-
gineering and Astronautical Science 
at Northwestern where the collabo-
ration with Hartenberg was formed. 
In addition to his interest in dynam-
ics and kinematics Denavit was also 

 Richard Hartenberg (1907–1997) was 
born in Chicago and studied for his
degrees at the University of Wiscon-
sin, Madison. He served in the mer-
chant marine and studied aeronau-
tics for two years at the University 
of Göttingen with space-fl ight pio-
neer  Theodore von Kármán. He was 
Professor of mechanical engineering 
at Northwestern University where
he taught for 56 years. His research 
in kinematics led to a revival of in-

interested in plasma physics and kinetics. After the publication of 
the book he moved to Lawrence Livermore National Lab, Liver-
more, California, where he undertook research on computer anal-
ysis of plasma physics problems. He retired in 1982.

terest in this fi eld in the 1960s, and his efforts helped put kine-
matics on a scientifi c basis for use in computer applications in 
the analysis and design of complex mechanisms. He also wrote 
extensively on the history of mechanical engineering.

 Jacques Denavit and  Richard Hartenberg introduced many of the key concepts of kinematics for serial-link manipulators in a 1955 paper 
(Denavit and Hartenberg 1955) and their later classic text Kinematic Synthesis of Linkages (Hartenberg and Denavit 1964).
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A Link object has many parameters and methods which are described in the online 
documentation, but the most common ones are illustrated by the following examples. 
The link transform Eq. 7.3 for q = 0.5 rad is an SE3 object

>> L.A(0.5)
ans =
    0.8776   -0.4794         0    0.8776
    0.4794    0.8776        -0    0.4794
         0         0         1         0
         0         0         0         1

representing the  homogeneous transformation due to this robot link with the particu-
lar value of θ . Various link parameters can be read or altered, for example

>> L.type
ans =
     R 

indicates that the link is revolute and

>> L.a
ans =
    1.0000 

returns the kinematic parameter a. Finally a link can contain an offset

>> L.offset = 0.5;
>> L.A(0)
ans =
    0.8776   -0.4794         0    0.8776
    0.4794    0.8776        -0    0.4794
         0         0         1         0
         0         0         0         1  

which is added to the joint variable before computing the link transform and will be 
discussed in more detail in Sect. 7.4.1.

The forward kinematics is a function of the joint coordinates and is simply the 
composition of the relative pose due to each link

 (7.4)

In this notation link 0 is the base of the robot and commonly for the fi rst link d1 = 0 
but we could set d1 > 0 to represent the height of the fi rst joint above the world coor-
dinate frame. The fi nal link, link N, carries the tool – the parameters dN, aN and α N 
provide a limited means to describe the tool-tip pose with respect to the {N} frame. By 
convention the robot’s tool points in the z-direction as shown in Fig. 2.16.

More generally we add two extra transforms to the chain�

The base transform  ξB puts the base of the robot arm at an arbitrary pose within 
the world coordinate frame. In a manufacturing system the base is usually fi xed to 
the environment but it could be mounted on a mobile ground, aerial or underwater 
robot, a truck, or even a space shuttle.

The frame {N} is often defi ned as the center of the spherical  wrist mechanism, and 
the  tool transform ξT describes the pose of the tool tip with respect to that. In prac-
tice ξT might consist of several components. Firstly, a transform to a tool-mounting 
fl ange on the physical end of the robot. Secondly, a transform from the fl ange to the 
end of the tool that is bolted to it, where the tool might be a gripper, screwdriver or 
welding torch.

We have used W to denote the world 
frame in this case since 0 designates 
link 0, the base link.

7.1  ·  Forward Kinematics
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In the Toolbox we connect Link  class objects in series using the SerialLink  class
>> robot = SerialLink( [ Revolute('a', 1) Revolute('a', 1) ],	 
 'name', 'my robot')
robot =
my robot:: 2 axis, RR, stdDH
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         q1|0          |1          |0          |0          |
|  2|         q2|0          |1          |0          |0          |
+---+-----------+-----------+-----------+-----------+-----------+ 

We have just recreated the 2-robot robot we looked at earlier, but now it is embed-
ded in SE(3). The forward kinematics are

>> robot.fkine([30 40], 'deg')
ans =
    0.3420   -0.9397         0     1.208
    0.9397    0.3420         0      1.44
         0         0         1         0
         0         0         0         1 

The Toolbox contains a large number of robot arm models  defi ned in this way and 
they can be listed by

>> models 
ABB, IRB140, 6DOF, standard_DH (mdl_irb140)
Aldebaran, NAO, humanoid, 4DOF, standard_DH (mdl_nao)
Baxter, Rethink Robotics, 7DOF, standard_DH (mdl_baxter)
 ...

where the name of the Toolbox script to load the model is given in parentheses at the end 
of each line, for example

>> mdl_irb140

The models  function also supports searching by keywords and robot arm type. You can 
adjust the parameters of any model using the editing method, for example

>> robot.edit 

Determining the Denavit-Hartenberg parameters   for a particular robot is described 
in more detail in Sect. 7.4.2.

7.1.2.2 
l
Product of Exponentials  

In Chap. 2 we introduced twists . A twist is defi ned by a screw axis direction and pitch, 
and a point that the screw axis passes through. In matrix form the twist S ∈R6

rotates the coordinate frame described by the pose T about the screw axis by an an-
gle θ .� This is exactly the case of the single-joint robot of Fig. 7.2a, where the screw 
axis is the joint axis and T is the pose of the end-effector when q1 = 0. We can therefore 
write the forward kinematics as

where TE(0) is the end-effector pose in the zero-angle joint confi guration: q1 = 0.
For the 2-joint robot of Fig. 7.2b we would write

For a prismatic twist, the motion is a dis-
placement of θ  along the screw axis.   Here 
we are working in the plane so T ∈ SE(2) 
and S ∈R3.
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where S1 and S2 are the screws defi ned by the joint axes and TE(0) is the end-effector 
pose in the zero-angle joint confi guration: q1 = q2 = 0. The indicated term is similar 
to the single-joint robot above, and the fi rst twist rotates that joint and link about S1. 
In MATLAB we defi ne the link lengths and compute TE(0)

>> a1 = 1; a2 = 1;
>> TE0 =  SE2(a1+a2, 0, 0); 

defi ne the two twists, in SE(2), for this example

>> S1 = Twist( 'R', [0 0] );
>> S2 = Twist( 'R', [a1 0] ); 

and apply them to TE(0)

>> TE = S1.T(30, 'deg') * S2.T(40, 'deg') * TE0
TE =
    0.3420   -0.9397     1.208
    0.9397    0.3420      1.44
         0         0         1 

For a general robot that moves in 3-dimensions we can write the forward kinemat-
ics   in product of exponential (PoE)   form as

where 0TE(0) is the end-effector pose when the joint coordinates are all zero and Sj is 
the twist for joint j expressed in the world frame.� This can also be written as

and ESj is the twist for joint j expressed in the end-effector frame which is related to 
the twists above by ESj = Ad(Eξ0)Sj .

A serial-link manipulator can be succinctly described by a table listing the 6 screw 
parameters for each joint as well as the zero-joint-coordinate end-effector pose.

7.1.2.3 
l

6-Axis Industrial Robot

Truly useful robots have a task space T⊂ SE(3) enabling arbitrary position and at-
titude of the end-effector – the task space has six spatial degrees of freedom: three 
translational and three rotational. This requires a robot with a  confi guration space 
C⊂R6 which can be achieved by a robot with six joints. In this section we will use the 
Puma 560 as an example of the class of all-revolute six-axis robot manipulators. We 
defi ne an instance of a Puma 560 robot using the script

>> mdl_puma560 

which creates a SerialLink object, p560, in the workspace. Displaying the vari-
able shows the table of its Denavit-Hartenberg parameters

>> p560
Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE            
 - viscous friction; params of 8/95;                             
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         q1|          0|          0|      1.571|          0|
|  2|         q2|          0|     0.4318|          0|          0|
|  3|         q3|       0.15|     0.0203|     -1.571|          0|
|  4|         q4|     0.4318|          0|      1.571|          0|
|  5|         q5|          0|          0|     -1.571|          0|
|  6|         q6|          0|          0|          0|          0|
+---+-----------+-----------+-----------+-----------+-----------+

The tool and base transform are effec-
tively included in 0TE(0), but an explicit 
base transform could be added if the 
screw axes are defined with respect to 
the robot’s base rather than the world 
coordinate frame, or use the adjoint 
matrix to transform the screw axes from 
base to world coordinates.

7.1  ·  Forward Kinematics
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The  Puma 560 robot (Programmable Universal Manipulator for Assembly) released in 1978 was 
the fi rst modern industrial robot and became enormously popular. It featured an  anthropomor-
phic design, electric motors and a spherical wrist – the archetype of all that followed. It can be 
seen in the Smithsonian Museum of American History, Washington DC.

The Puma 560 catalyzed robotics research in the 1980s and it was a very common laboratory 
robot. Today it is obsolete and rare but in homage to its important role in robotics research we 
use it here. For our purposes the advantages of this robot are that it has been well studied and its 
parameters are very well known – it has been described as the “white rat” of robotics research.

Most modern 6-axis industrial robots are very similar in structure and can be accomodated 
simply by changing the Denavit-Hartenberg parameters. The Toolbox has kinematic  models for 
a number of common industrial robots from manufacturers such as Rethink, Kinova, Motoman, 
Fanuc and ABB. (Puma photo courtesy Oussama Khatib)

Fig. 7.6.
The Puma robot in 4 different
poses. a Zero angle; b ready 
pose; c stretch; d nominal
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Note that aj and dj are in SI units which means that the translational part of the for-
ward kinematics will also have SI units.

The script mdl_puma560 also creates a number of joint coordinate vectors in the 
workspace which represent the robot in some canonic confi gurations:

qz (0, 0, 0, 0, 0, 0) zero angle
qr (0, ü, −ü, 0, 0, 0) ready, the arm is straight and vertical
qs (0, 0, −ü, 0, 0, 0) stretch, the arm is straight and horizontal
qn (0, ý, −π, 0, ý, 0) nominal, the arm is in a dextrous working pose�

and these are shown graphically in Fig. 7.6. These plots are generated using the plot 
method, for example

>> p560.plot(qz) 

which shows a  skeleton of the robot with pipes that connect the link coordinate frames 
as defi ned by the Denavit-Hartenberg parameters. The plot method has many options 
for showing the joint axes,  wrist coordinate frame, shadows and so on. More realistic-
looking plots such as shown in Fig. 7.7 can be created by the plot3d method for a 
limited set of Toolbox robot models.

Forward kinematics can be computed as before

>> TE = p560.fkine(qz)
TE =
    1.0000         0         0    0.4521
         0    1.0000         0   -0.1500
         0         0    1.0000    0.4318
         0         0         0    1.0000 

where the joint coordinates are given as a row vector. This returns the  homogeneous 
transformation corresponding to the end-effector pose. The origin of this frame, the 
link-6 coordinate frame {6}, is defi ned� as the point of intersection of the axes of the 
last 3 joints – physically this point is inside the robot’s wrist mechanism. We can de-
fi ne a  tool transform, from the T6 frame to the actual tool tip by

>> p560.tool =  SE3(0, 0, 0.2);  

in this case a 200 mm extension in the T6 z-direction.� The pose of the tool tip, often 
referred to as the  tool center  point or  TCP, is now

>> p560.fkine(qz)
ans =
    1.0000         0         0    0.4521
         0    1.0000         0   -0.1500
         0         0    1.0000    0.6318
         0         0         0    1.0000 

The kinematic defi nition we have used considers that the base of the robot is the in-
tersection point of the waist and shoulder axes which is a point inside the structure 
of the robot. The Puma 560 robot includes a “30-inch” tall pedestal. We can shift the 
origin of the robot from the point inside the robot to the base of the pedestal using a 
 base transform

>> p560.base =  SE3(0, 0, 30*0.0254);  

Anthropomorphic means having human-like characteristics.   The Puma 560 robot was designed to 
have approximately the dimensions and reach of a human worker. It also had a spherical joint 
at the wrist just as humans have.

Roboticists also tend to use anthropomorphic terms when describing robots. We use words 
like waist, shoulder, elbow and wrist when describing serial link manipulators. For the Puma 
these terms correspond respectively to joint 1, 2, 3 and 4–6.

Well away from singularities, which will 
be discussed in Sect. 7.3.4.

By the Denavit-Hartenberg parameters 
of the model in the mdl_puma560 
script.

Alternatively we could change the kine-
matic parameter d6. The tool transform 
approach is more general since the fi-
nal link kinematic parameters only allow 
setting of d6, a6 and α 6 which provide 
z-axis translation, x-axis translation and 
x-axis rotation respectively.

7.1  ·  Forward Kinematics



204 Chapter 7  ·  Robot Arm Kinematics

where for consistency we have converted the pedestal height to SI units. Now, with 
both base and  tool transform, the  forward kinematics are

>> p560.fkine(qz)
ans =
    1.0000         0         0    0.4521
         0    1.0000         0   -0.1500
         0         0    1.0000    1.3938
         0         0         0    1.0000 

and we can see that the z-coordinate of the tool is now greater than before.
We can also do more interesting things, for example

>> p560.base =  SE3(0,0,3) * SE3.Rx(pi);
>> p560.fkine(qz)
ans =
    1.0000         0         0    0.4521
         0   -1.0000   -0.0000    0.1500
         0    0.0000   -1.0000    2.3682
         0         0         0    1.0000    

which positions the robot’s origin 3 m above the world origin with its coordinate frame 
rotated by 180° about the x-axis. This robot is now hanging from the ceiling!

The Toolbox supports joint angle time series, or trajectories, such as

>> q
q =
         0         0         0         0         0         0
         0    0.0365   -0.0365         0         0         0
         0    0.2273   -0.2273         0         0         0
         0    0.5779   -0.5779         0         0         0
         0    0.9929   -0.9929         0         0         0
         0    1.3435   -1.3435         0         0         0
         0    1.5343   -1.5343         0         0         0
         0    1.5708   -1.5708         0         0         0

where each row represents the joint coordinates at a different timestep and the col-
umns represent the joints.� In this case the method  fkine

>> T = p560.fkine(q);  

returns an array of SE3 objects

>> about T
T [SE3] : 1x8 (1.0 kB) 

one per timestep. The homogeneous transform corresponding to the joint coordinates 
in the fourth row of q is

Fig. 7.7. These two different robot 
confi gurations result in the same 
end-effector pose. They  are called 
the left- and right-handed confi gu-
rations, respectively. These graph-
ics, produced using the plot3d 
method, are available for a limited 
subset of robot models

Generated by the jtraj  function, which 
is discussed in Sect. 7.3.1.
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>> T(4)
ans =
    1.0000         0         0     0.382
         0        -1         0      0.15
         0         0   -1.0000     2.132
         0         0         0         1

Creating trajectories will be covered in Sect. 7.3.

7.2 
l
Inverse Kinematics

We have shown how to determine the pose of the end-effector given the joint coordi-
nates and optional tool and base transforms. A problem of real practical interest is the 
inverse problem: given the desired pose of the end-effector ξE what are the required 
joint coordinates? For example, if we know the Cartesian pose of an object, what joint 
coordinates does the robot need in order to reach it? This is the  inverse kinematics 
problem which is written in functional form as

 (7.5)

and in general this function is not unique, that is, several joint coordinate vectors q 
will result in the same end-effector pose.

Two approaches can be used to determine the inverse kinematics. Firstly, a closed-
form or analytic solution can be determined using geometric or algebraic approaches. 
However this becomes increasingly challenging as the number or robot joints increas-
es and for some serial-link manipulators no closed-form solution exists. Secondly, an 
iterative numerical solution can be used. In Sect. 7.2.1 we again use the simple 2-di-
mensional case to illustrate the principles and then in Sect. 7.2.2 extend these to robot 
arms that move in 3-dimensions.

7.2.1 
l
2-Dimensional (Planar) Robotic Arms 

We will illustrate inverse kinematics for the 2-joint robot of Fig. 7.2b in two ways: al-
gebraic closed-form and numerical.

7.2.1.1 
l

Closed-Form Solution  

We start by computing the forward kinematics algebraically as a function of joint 
angles. We can do this easily, and in a familiar way

>> import ETS2.*
>> a1 = 1; a2 = 1;
>> E = Rz('q1') * Tx(a1) * Rz('q2') * Tx(a2)

but now using the MATLAB Symbolic Math Toolbox™ we defi ne some real-valued 
symbolic variables to represent the joint angles

>> syms q1 q2 real

Spherical wrists  are a key component of almost all modern arm-type robots. They have three axes 
of rotation that are orthogonal and intersect at a common point. This is a gimbal-like  mechanism, 
and as discussed in Sect. 2.2.1.3 and will have a singularity.

The robot end-effector pose, position and an orientation, is defi ned at the center of the wrist. 
Since the wrist axes intersect at a common point they cause zero translation, therefore the position 
of the end-effector is a function only of the fi rst three joints. This is a critical simplifi cation that 
makes it possible to fi nd closed-form inverse kinematic solutions for 6-axis industrial robots. An 
arbitrary end-effector orientation is achieved independently by means of the three wrist joints.

7.2  ·  Inverse Kinematics
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and then compute the forward kinematics 

>> TE = E.fkine( [q1, q2] )
TE =
[ cos(q1 + q2), -sin(q1 + q2), cos(q1 + q2) + cos(q1)]
[ sin(q1 + q2),  cos(q1 + q2), sin(q1 + q2) + sin(q1)]
[            0,             0,                      1]

which is an algebraic representation of the robot’s forward kinematics – the end-
effector pose as a function of the joint variables.

We can defi ne two more symbolic variables to represent the desired end-effector 
position (x, y)

>> syms x y real

and equate them with the results of the forward kinematics�

>> e1 =  x == TE.t(1)
e1 =
x == cos(q1 + q2) + cos(q1)
>> e2 =  y == TE.t(2)
e2 =
y == sin(q1 + q2) + sin(q1)

which gives two scalar equations that we can solve simultaneously

>> [s1,s2] = solve( [e1 e2], [q1 q2] )

where the arguments are respectively the set of equations and the set of unknowns to solve 
for. The outputs are the solutions for q1 and q2 respectively. We observed in Sect. 7.1.1 that 
two different sets of joint angles give the same end-effector position, and this means that 
the inverse kinematics does not have a unique solution. Here MATLAB has returned

>> length(s2)
ans =
     2

indicating two solutions. One solution for q2 is
>> s2(1)
ans =
-2*atan((-(x^2 + y^2)*(x^2 + y^2 - 4))^(1/2)/(x^2 + y^2))

and would be used in conjunction with the corresponding element of the solution 
vector for q1 which is s1(1).

As mentioned earlier the complexity of algebraic solution increases dramatically 
with the number of joints and more sophisticated symbolic solution approaches need 
to be used. The SerialLink  class has a method ikine_sym  that generates symbolic 
inverse kinematics solutions for a limited class of robot manipulators.

7.2.1.2 
l
Numerical Solution  

We can think of the inverse kinematics problem as one of adjusting the joint coordi-
nates until the forward kinematics matches the desired pose. More formally this is an 
 optimization problem – to minimize the error between the forward kinematic solu-
tion and the desired pose ξ∗

For our simple 2-link example the error function comprises only the error in the 
end-effector position, not its orientation

With the MATLAB Symbolic Math Tool-
box™ the == operator denotes equal-
ity, as opposed to = which denotes as-
signment.
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We can solve this using the builtin MATLAB multi-variable minimization function 
fminsearch 

>> pstar = [0.6; 0.7];
>> q = fminsearch( @(q) norm( E.fkine(q).t - pstar ), [0 0] )
q =
   -0.2295    2.1833

where the fi rst argument is the error function, expressed here as a MATLAB anony-
mous function, that incorporates the desired end-effector position; and the second 
argument is the initial guess at the joint coordinates. The computed joint angles in-
deed give the desired end-effector position

>> E.fkine(q).print
t = (0.6, 0.7), theta = 111.9 deg

As already discussed there are two solutions for q but the solution that is found 
using this approach depends on the initial choice of q.

7.2.2 
l
3-Dimensional Robotic Arms

7.2.2.1 
l
Closed-Form Solution

Closed-form solutions have been developed for most common types of 6-axis industrial 
robots and many are included in the Toolbox. A necessary condition for a closed-form 
solution of a 6-axis robot is a  spherical wrist mechanism. We will illustrate closed-form 
inverse kinematics using the Denavit-Hartenberg model for the Puma robot

>> mdl_puma560 

At the nominal joint coordinates shown in Fig. 7.6d
>> qn
qn =
         0    0.7854    3.1416         0    0.7854         0

the end-effector pose is

>> T = p560.fkine(qn)
T =
   -0.0000    0.0000    1.0000    0.5963
   -0.0000    1.0000   -0.0000   -0.1501
   -1.0000   -0.0000   -0.0000   -0.0144
         0         0         0    1.0000  

Since the Puma 560 is a 6-axis robot arm with a spherical wrist we use the method 
 ikine6s to compute the inverse kinematics using a closed-form solution.� The re-
quired joint coordinates to achieve the pose T are

>> qi = p560.ikine6s(T)
qi =
    2.6486   -3.9270    0.0940    2.5326    0.9743    0.3734  

Surprisingly, these are quite different to the joint coordinates we started with. However 
if we investigate a little further

>> p560.fkine(qi) 
ans =
   -0.0000    0.0000    1.0000    0.5963
    0.0000    1.0000   -0.0000   -0.1500
   -1.0000    0.0000   -0.0000   -0.0144
         0         0         0    1.0000

we see that these two different sets of joint coordinates result in the same end-effector 
pose and these are shown in Fig. 7.7. The shoulder of the Puma robot is horizontally 
offset from the waist, so in one solution the arm is to the left of the waist, in the other 

The method ikine6s  checks the Dena-
vit-Hartenberg parameters to determine 
if the robot meets these criteria.

7.2  ·  Inverse Kinematics
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it is to the right. These are referred to as the left- and right-handed  kinematic  confi g-
urations respectively. In general there are eight sets of joint coordinates that give the 
same end-effector pose – as mentioned earlier the inverse solution is not unique.

We can force the right-handed solution
>> qi = p560.ikine6s(T, 'ru')
qi =
  -0.0000    0.7854    3.1416    0.0000    0.7854   -0.0000  

which gives the original set of joint angles by specifying a right handed confi guration 
with the elbow up.

In addition to the left- and right-handed solutions, there are solutions with the el-
bow either up or down,� and with the wrist fl ipped or not fl ipped. For the Puma 560 
robot the  wrist joint, θ 4, has a large rotational range and can adopt one of two angles 
that differ by π radians.

Some different various kinematic confi gurations are shown in Fig. 7.8. The kinemat-
ic confi guration returned by  ikine6s is controlled by one or more of the options:

left or right handed 'l', 'r'
elbow up or down 'u', 'd'
wrist fl ipped or not fl ipped 'f', 'n'

Due to mechanical limits on joint angles and possible collisions between links not 
all eight solutions are physically achievable. It is also possible that no solution can be 
achieved. For example

>> p560.ikine6s(  SE3(3, 0, 0) )
Warning: point not reachable
ans =
   NaN   NaN   NaN   NaN   NaN   NaN  

has failed because the arm is simply not long enough to reach this pose.
A pose may also be unachievable due to   singularity where the alignment of axes re-

duces the effective  degrees of  freedom (the  gimbal lock problem again). The Puma 560 
has a   wrist singularity when q5 is equal to zero and the axes of joints 4 and 6 become 

Fig. 7.8. Different confi gurations 
of the Puma 560 robot. a Right-
up-nofl ip; b right-down-nofl ip; 
c right-down-fl ip

More precisely the elbow is above or be-
low the shoulder.
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aligned. In this case the best that  ikine6s can do is to constrain q4 + q6 but their 
individual values are arbitrary. For example consider the confi guration

>> q = [0 pi/4 pi 0.1 0 0.2];

for which q4 + q6 = 0.3. The inverse kinematic solution is
>> p560.ikine6s(p560.fkine(q), 'ru')
ans =
  -0.0000    0.7854    3.1416   -3.0409    0.0000   -2.9423  

which has quite different values for q4 and q6 but their sum
>> q(4)+q(6)
ans =
    0.3000

remains the same.

7.2.2.2 
l
Numerical Solution

 For the case of robots which do not have six joints and a spherical wrist we need to 
use an iterative numerical solution. Continuing with the example of the previous sec-
tion we use the method  ikine to compute the general inverse kinematic solution

>> T = p560.fkine(qn)
ans =
   -0.0000    0.0000    1.0000    0.5963
   -0.0000    1.0000   -0.0000   -0.1501
   -1.0000   -0.0000   -0.0000   -0.0144
         0         0         0    1.0000
>> qi = p560.ikine(T)
qi =
    0.0000   -0.8335    0.0940   -0.0000   -0.8312    0.0000    

which is different to the original value
>> qn
qn =
         0    0.7854    3.1416         0    0.7854         0

but does result in the correct tool pose
>> p560.fkine(qi)
ans =
   -0.0000    0.0000    1.0000    0.5963
   -0.0000    1.0000   -0.0000   -0.1501
   -1.0000   -0.0000   -0.0000   -0.0144
         0         0         0    1.0000 

Plotting the pose

>> p560.plot(qi) 

shows clearly that  ikine has found the elbow-down confi guration.
A limitation of this general numeric approach is that it does not provide explicit 

control over the arm’s kinematic  confi guration as did the analytic approach – the only 
control is implicit via the initial value of joint coordinates (which defaults to zero). If 
we specify the initial joint coordinates

>> qi = p560.ikine(T, 'q0', [0 0 3 0 0 0])
qi =
    0.0000    0.7854    3.1416    0.0000    0.7854   -0.0000  

we have forced the solution to converge on the elbow-up confi guration.�

As would be expected the general numerical approach of  ikine is considerably slow-
er than the analytic approach of  ikine6s. However it has the great advantage of being 
able to work with manipulators at singularities and manipulators with less than six or 
more than six joints. Details of the principle behind  ikine is provided in Sect. 8.6.

When solving for a  trajectory as on p.  204 
the inverse kinematic solution for one 
point is used to initialize the solution for 
the next point on the path.

7.2  ·  Inverse Kinematics
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7.2.2.3 
l
Under-Actuated  Manipulator

An  under-actuated manipulator is one that has fewer than six joints, and is therefore 
limited in the end-effector poses that it can attain.    SCARA robots such as shown on 
page 191 are a common example. They typically have an x-y-z-θ   task space, T⊂R3 × S1 
and a  confi guration space C⊂ (S1)3 ×R.

We will load a model of SCARA robot

>> mdl_cobra600
>> c600
c600 = 
Cobra600 [Adept]:: 4 axis, RRPR, stdDH                  
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         q1|      0.387|      0.325|          0|          0|
|  2|         q2|          0|      0.275|      3.142|          0|
|  3|          0|         q3|          0|          0|          0|
|  4|         q4|          0|          0|          0|          0|
+---+-----------+-----------+-----------+-----------+-----------+

and then defi ne a desired end-effector pose

>> T =  SE3(0.4, -0.3, 0.2) * SE3.rpy(30, 40, 160, 'deg') 

where the end-effector  approach vector is pointing downward but is not vertically 
aligned. This pose is over-constrained for the 4-joint SCARA robot – the tool physically 
cannot meet the orientation requirement for an approach vector that is not vertically 
aligned. Therefore we require the   ikine method to not consider rotation about the 
x- and y-axes when computing the end-effector pose error. We achieve this by speci-
fying a mask vector as the fourth argument

>> q = c600.ikine(T, 'mask', [1 1 1 0 0 1])
q =
   -0.1110   -1.1760    0.1870   -0.8916

The elements of the mask vector correspond respectively to the three translations and 
three orientations: tx, ty, tz, rx, ry, rz in the end-effector coordinate frame. In this exam-
ple we specifi ed that rotation about the x- and y-axes are to be ignored (the zero ele-
ments). The resulting joint angles correspond to an achievable end-effector pose

>> Ta = c600.fkine(q);
>> Ta.print('xyz')
t = (0.4, -0.3, 0.2), RPY/xyz = (22.7, 0, 180) deg

which has the desired translation and yaw angle, but the roll and pitch angles are in-
correct, as we allowed them to be. They are what the robot mechanism actually per-
mits. We can also compare the desired and achievable poses graphically

>> trplot(T, 'color', 'b')
>> hold on 
>> trplot(Ta, 'color', 'r')

7.2.2.4  
l
Redundant Manipulator

A  redundant manipulator is a robot with more than six joints. As mentioned previ-
ously, six joints is theoretically suffi cient to achieve any desired pose in a Cartesian 
taskspace T⊂ SE(3). However practical issues such as joint limits and singularities 
mean that not all poses within the robot’s reachable space can be achieved. Adding 
additional joints is one way to overcome this problem but results in an infi nite num-
ber of joint-coordinate solutions. To fi nd a single solution we need to introduce con-
straints – a common one is the minimum-norm constraint which returns a solution 
where the joint-coordinate vector elements have the smallest magnitude.
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We will illustrate this with the Baxter robot   shown in Fig. 7.1b. This is a two armed 
robot, and each arm has 7 joints. We load the Toolbox model

>> mdl_baxter

which defi nes two SerialLink objects in the workspace, one for each arm. We will work 
with the left arm

>> left
left =
Baxter LEFT [Rethink Robotics]:: 7 axis, RRRRRRR, stdDH
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         q1|       0.27|      0.069|     -1.571|          0|
|  2|         q2|          0|          0|      1.571|      1.571|
|  3|         q3|      0.364|      0.069|     -1.571|          0|
|  4|         q4|          0|          0|      1.571|          0|
|  5|         q5|      0.374|       0.01|     -1.571|          0|
|  6|         q6|          0|          0|      1.571|          0|
|  7|         q7|       0.28|          0|          0|          0|
+---+-----------+-----------+-----------+-----------+-----------+
base:    t = (0.064614,0.25858,0.119), RPY/xyz = (0, 0, 45) deg

which we can see has a base offset that refl ects where the arm is attached to Baxter’s 
torso. We want the robot to move to this pose

>> TE =  SE3(0.8, 0.2, -0.2) * SE3.Ry(pi); 

which has its  approach vector downward. The required joint angles are obtained us-
ing the numerical inverse kinematic solution and

>> q = left.ikine(TE)
q =
    0.0895   -0.0464   -0.4259    0.6980   -0.4248    1.0179    0.2998

is the joint-angle vector with the smallest norm that results in the desired end-effector 
pose. We can verify this by computing the forward kinematics or plotting

>> left.fkine(q).print('xyz')
t = (0.8, 0.2, -0.2), RPY/xyz = (180, 180, 180) deg
>> left.plot(q)

7.3 
l
Trajectories

One of the most common requirements in robotics is to move the end-effector smoothly 
from pose A to pose B. Building on what we learned in Sect. 3.3 we will discuss two ap-
proaches to generating such  trajectories: straight lines in   confi guration space and straight 
lines in   task space. These are known respectively as joint-space and  Cartesian   motion.

7.3.1 
l

Joint-Space  Motion

Consider the end-effector moving between two Cartesian poses�

>> T1 = SE3(0.4,  0.2, 0) * SE3.Rx(pi);
>> T2 = SE3(0.4, -0.2, 0) * SE3.Rx(pi/2);  

which describe points in the xy-plane with different end-effector orientations. The 
joint coordinate vectors associated with these poses are

>> q1 = p560.ikine6s(T1);
>> q2 = p560.ikine6s(T2);    

and we require the motion to occur over a time period of 2 seconds in 50 ms time steps

In this robot configuration, similar to
Fig. 7.6d, we specify the pose to include a
rotation so that the end-effector z-axis 
is not pointing straight up in the world
z-direction. For the Puma 560 robot this
would be physically impossible to achieve 
in the elbow-up configuration.

7.3  ·  Trajectories
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>> t = [0:0.05:2]';

A  joint-space  trajectory is formed by smoothly interpolating between the joint confi gu-
rations q1 and q2. The scalar  interpolation functions  tpoly or  lspb from Sect. 3.3.1 
can be used in conjunction with the multi-axis driver function  mtraj

>> q = mtraj(@tpoly, q1, q2, t); 

or

>> q = mtraj(@lspb, q1, q2, t); 

which each result in a 50 × 6 matrix q with one row per time step and one column per 
joint. From here on we will use the equivalent jtraj convenience function

>> q = jtraj(q1, q2, t);� 

For mtraj and jtraj the fi nal argument can be a time vector, as here, or an integer 
specifying the number of time steps.

We can obtain the joint velocity and acceleration vectors, as a function of time, 
through optional output arguments

>> [q,qd,qdd] = jtraj(q1, q2, t); 

An even more concise way to achieve the above steps is provided by the  jtraj meth-
od of the  SerialLink class

>> q = p560.jtraj(T1, T2, t)   

This is equivalent to mtraj  with 
tpoly interpolation but optimized 
for the multi-axis case and also allowing 
initial and final velocity to be set using 
additional arguments.

Fig. 7.9. Joint-space motion. a Joint 
coordinates versus time; b Carte-
sian position versus time; c Carte-
sian position locus in the xy-plane 
d roll-pitch-yaw  angles versus time
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Fig. 7.10. Cartesian motion. a Joint
coordinates versus time; b Carte-
sian position versus time; c Carte-
sian position locus in the xy-plane; 
d roll-pitch-yaw  angles versus time

The trajectory is best viewed as an animation

>> p560.plot(q) 

but we can also plot the joint angle, for instance q2, versus time

>> plot(t, q(:,2))

or all the angles versus time

>> qplot(t, q); 

as shown in Fig. 7.9a. The joint coordinate  trajectory is smooth but we do not know 
how the robot’s end-effector will move in Cartesian space. However we can easily de-
termine this by applying forward kinematics to the joint coordinate trajectory

>> T = p560.fkine(q);  

which results in an array of SE3 objects. The translational part of this trajectory is

>> p = T.transl; 

which is in matrix form

>> about(p)
p [double] : 41x3 (984 bytes) 

and has one column per time step, and each column is the end-effector position vector. 
This is plotted against time in Fig. 7.9b. The path of the end-effector in the xy-plane

7.3  ·  Trajectories
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>> plot(p(1,:), p(2,:))

is shown in Fig. 7.9c and it is clear that the path is not a straight line. This is to be ex-
pected since we only specifi ed the Cartesian coordinates of the end-points. As the robot 
rotates about its waist joint during the motion the end-effector will naturally follow a 
circular arc. In practice this could lead to collisions between the robot and nearby ob-
jects even if they do not lie on the path between poses A and B. The orientation of the 
end-effector, in  XYZ roll-pitch-yaw  angle form, can also be plotted against time

>> plot(t, T.torpy('xyz'))

as shown in Fig. 7.9d. Note that the yaw angle� varies from 0 to ü radians as we speci-
fi ed. However while the roll and pitch angles have met their boundary conditions they 
have varied along the path.

7.3.2  
l

Cartesian Motion

For many applications we require  straight-line  motion in Cartesian space which is 
known as  Cartesian motion.  This is implemented using the Toolbox function ctraj 
which was introduced in Sect. 3.3.5. Its usage is very similar to jtraj

>> Ts = ctraj(T1, T2, length(t)); 

where the arguments are the initial and fi nal pose and the number of time steps and 
it returns the trajectory as an array of  SE3 objects.

As for the previous joint-space example we will extract and plot the translation

>> plot(t,  Ts.transl);

and orientation components

>> plot(t,  Ts.torpy('xyz'));

of this motion which is shown in Fig. 7.10 along with the path of the end-effector in 
the xy-plane. Compared to Fig. 7.9 we note some important differences. Firstly the 
end-effector follows a straight line in the xy-plane as shown in Fig. 7.10c. Secondly 
the roll and pitch angles shown in Fig. 7.10d are constant at zero along the path.

The corresponding joint-space  trajectory is obtained by applying the inverse kine-
matics

>> qc = p560.ikine6s(Ts);  

and is shown in Fig. 7.10a. While broadly similar to Fig. 7.9a the minor differences are 
what result in the straight line  Cartesian motion.

7.3.3 
l
Kinematics in  Simulink

We can also implement this example in Simulink®

>>  sl_jspace

and the block diagram model is shown in Fig. 7.11. The parameters of the jtraj 
block are the initial and fi nal values for the joint coordinates and the time duration 
of the motion segment. The smoothly varying joint angles are wired to a plot block 
which will animate a robot in a separate window, and to an  fkine block to compute 
the forward kinematics. Both the plot and  fkine blocks have a parameter which is 
a SerialLink object, in this case p560. The Cartesian position of the end-effector 
pose is extracted using the  T2xyz block which is analogous to the Toolbox function 
transl. The XY  Graph block plots y against x.

Rotation about x-axis for a robot end-
effector from Sect. 2.2.1.2.
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7.3.4 
l

Motion through a  Singularity

We have already briefl y touched on the topic of  singularities (page 209) and we will 
revisit it again in the next chapter. In the next example we deliberately choose a tra-
jectory that moves through a  robot wrist  singularity. We change the Cartesian end-
points of the previous example to

>> T1 =  SE3(0.5,  0.3, 0.44) * SE3.Ry(pi/2);
>> T2 = SE3(0.5, -0.3, 0.44) *  SE3.Ry(pi/2);    

which results in motion in the y-direction with the end-effector z-axis pointing in the 
world x-direction. The Cartesian path is

>> Ts = ctraj(T1, T2, length(t)); 

which we convert to joint coordinates

>> qc = p560.ikine6s(Ts)  

and is shown in Fig. 7.12a. At time t ≈ 0.7 s we observe that the rate of change of the 
wrist joint angles q4 and q6 has become very high.� The cause is that q5 has become 
almost zero which means that the q4 and q6 rotational axes are almost aligned – an-
other  gimbal lock situation or singularity.

The joint axis alignment means that the robot has lost one degree of freedom and is 
now effectively a 5-axis robot. Kinematically we can only solve for the sum q4 + q6 and 
there are an infi nite number of solutions for q4 and q6 that would have the same sum. 
From Fig. 7.12b we observe that the generalized inverse kinematics method  ikine 
handles the  singularity with far less unnecessary joint motion. This is a consequence 
of the minimum-norm solution which has returned the smallest magnitude q4 and q6 
which have the correct sum. The joint-space motion between the two poses, Fig. 7.12c, 
is immune to this problem since it is does not involve inverse kinematics. However 
it will not maintain the orientation of the tool in the x-direction for the whole path 
– only at the two end points.

The   dexterity of a manipulator, its ability to move easily in any direction, is referred 
to as its manipulability. It is a scalar measure, high is good, and can be computed for 
each point along the trajectory

>> m = p560.maniplty(qc);  

and is plotted in Fig. 7.12d. This shows that manipulability was almost zero around 
the time of the rapid wrist joint motion. Manipulability and the generalized inverse 
kinematics function are based on the manipulator’s   Jacobian matrix which is the topic 
of the next chapter.

Fig. 7.11.
Simulink model  sl_jspace 

for joint-space motion

q6 has increased rapidly, while q4 has 
decreased rapidly and wrapped around 
from −π to π. This counter-rotational 
motion of the two joints means that the 
gripper does not rotate but the two mo-
tors are working hard.

7.3  ·  Trajectories



216 Chapter 7  ·  Robot Arm Kinematics

7.3.5  
l

Configuration Change

Earlier (page 208) we discussed the  kinematic  confi guration of the manipulator arm 
and how it can work in a left- or right-handed manner and with the elbow up or down. 
Consider the problem of a robot that is working for a while left-handed at one work 
station, then working right-handed at another. Movement from one confi guration to 
another ultimately results in no change in the end-effector pose since both confi gura-
tion have the same forward kinematic solution – therefore we cannot create a trajec-
tory in Cartesian space. Instead we must use joint-space  motion.

For example to move the robot arm from the right- to left-handed confi guration 
we fi rst defi ne some end-effector pose

>> T =  SE3(0.4, 0.2, 0) *  SE3.Rx(pi);

and then determine the joint coordinates for the right- and left-handed elbow-up 
confi gurations

>> qr = p560.ikine6s(T, 'ru');
>> ql = p560.ikine6s(T, 'lu');    

and then create a joint-space  trajectory between these two joint coordinate vectors

>> q = jtraj(qr, ql, t); 

Although the initial and fi nal end-effector pose is the same, the robot makes some quite sig-
nifi cant joint space motion as shown in Fig. 7.13 – in the real world you need to be careful 
the robot doesn’t hit something. Once again, the best way to visualize this is in animation

>> p560.plot(q) 

Fig. 7.12. Cartesian motion through 
a wrist singularity. a Joint coordi-
nates computed by inverse kine-
matics ( ikine6s); b joint coor-
dinates computed by numerical 
inverse kinematics ( ikine); c joint 
coordinates for joint-space mo-
tion; d manipulability
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7.4 
l
Advanced Topics

7.4.1 
l
Joint Angle Offsets

The pose of the robot with zero joint angles is an arbitrary decision of the robot 
designer and might even be a mechanically unachievable pose. For the Puma robot 
the zero-angle pose is a nonobvious L- shape with the upper arm horizontal and the 
lower arm vertically upward as shown in Fig. 7.6a. This is a consequence of con-
straints imposed by the  Denavit-Hartenberg formalism.

The joint coordinate offset provides a mechanism to set an arbitrary confi gu-
ration for the zero joint coordinate case. The offset vector, q0, is added to the user 
specifi ed joint angles before any kinematic or dynamic function is invoked,� for 
example

 (7.6)

Similarly it is subtracted after an operation such as inverse kinematics

 (7.7)

The offset is set by assigning the offset property of the Link object, or giving the 
'offset' option to the SerialLink constructor.

7.4.2 
l
Determining Denavit-Hartenberg Parameters

The classical method of determining  Denavit-Hartenberg parameters is to system-
atically assign a coordinate frame to each link. The link frames for the Puma robot 
using the standard Denavit-Hartenberg formalism are shown in Fig. 7.14. However 
there are strong constraints on placing each frame since joint rotation must be 
about the z-axis and the link displacement must be in the x-direction. This in turn 
imposes constraints on the placement of the coordinate frames for the base and the 
end-effector, and ultimately dictates the zero-angle pose just discussed. Determining 
the  Denavit-Hartenberg parameters and link coordinate frames for a completely 
new mechanism is therefore more diffi cult than it should be – even for an experi-
enced roboticist.

An alternative approach, supported by the Toolbox, is to simply describe the ma-
nipulator as a series of elementary translations and rotations from the base to the 
tip of the end-effector as we discussed in Sect. 7.1.2. Some of the elementary opera-
tions are constants such as translations that represent link lengths or offsets, and 

Fig. 7.13.
Joint space motions for  confi gu-
ration change from right-handed 

to left-handed

It is actually implemented within the 
Link  object.

Fig. 7.14. Puma 560 robot coor-
dinate frames. Standard Denavit-
Hartenberg link coordinate frames 
for Puma in the zeroangle pose 
(Corke 1996b)

7.4  ·  Advanced Topics
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some are functions of the generalized joint coordinates qj. Unlike the conventional 
approach we impose no constraints on the axes about which these rotations or trans-
lations can occur.

For the Puma robot shown in Fig. 7.4 we fi rst defi ne a convenient coordinate frame 
at the base and then write down the sequence of translations and rotations, from “toe 
to tip”, in a string�

>> s = 'Tz(L1) Rz(q1) Ry(q2) Ty(L2) Tz(L3) Ry(q3) Tx(L4) Ty(L5)
              Tz(L6) Rz(q4) Ry(q5) Rz(q6)'

Note that we have described the second joint as Ry(q2), a rotation about the y-axis, 
which is not permissible using the  Denavit-Hartenberg formalism.

This string is input to a symbolic algebra function�

>> dh =  DHFactor(s);

which returns a DHFactor object� that holds the kinematic structure of the robot 
that has been factorized into  Denavit-Hartenberg parameters. We can display this in 
a human-readable form

>> dh
dh =
DH(q1, L1, 0, -90).DH(q2+90, 0, -L3, 0).DH(q3-90, L2+L5, L4, 90).
DH(q4, L6, 0, -90).DH(q5, 0, 0, 90).DH(q6, 0, 0, 0)

which shows the Denavit-Hartenberg parameters for each joint in the order θ , d, a 
and α. Joint angle offsets (the constants added to or subtracted from joint angle vari-
ables such as q2 and q3) are generated automatically, as are  base and  tool transfor-
mations. The object can generate a string that is a complete Toolbox command to cre-
ate the robot named “puma”

>> cmd = dh.command('puma')
cmd =
SerialLink([0, L1, 0, -pi/2, 0; 0, 0, -L3, 0, 0; 0, L2+L5, L4,	  
pi/2, 0; 0, L6, 0, -pi/2, 0; 0, 0, 0, pi/2, 0; 0, 0, 0, 0, 0; ], ...
 'name', 'puma', ...
 'base',  eye(4,4), 'tool', eye(4,4), ...
 'offset', [0 pi/2 -pi/2 0 0 0 ])

which can be executed

>> robot =  eval(cmd)

to create a workspace variable called robot that is a SerialLink object.�

7.4.3 
l

Modified Denavit-Hartenberg Parameters

The  Denavit-Hartenberg   notation introduced in this chapter is commonly used and 
described in many robotics textbooks. Craig (1986) fi rst introduced the  modifi ed 
Denavit-Hartenberg parameters where the link coordinate frames shown in Fig. 7.15 
are attached to the near (proximal), rather than the far (distal) end of each link. This 
modifi ed notation is in some ways clearer and tidier and is also now commonly used. 
However its introduction has increased the scope for confusion, particularly for those 
who are new to robot kinematics. The root of the problem is that the algorithms for 
kinematics,  Jacobians and dynamics depend on the kinematic conventions used. 
According to Craig’s convention the link transform matrix is

 (7.8)

denoted in that book as j−1
jA. This has the same terms as Eq. 7.2 but in a different order 

– remember rotations are not commutative – and this is the nub of the problem. aj is 

All lengths must start with L and negative 
signs cannot be used in the string, but 
the values themselves can be negative.
You can generate this string from an ETS3 
sequence (page 196) using its string 
method.

Written in Java, the MATLAB® Symbolic 
Math Toolbox™ is not required.

Actually a Java object.

The length parameters L1 to L6 must 
be defined in the workspace first.
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always the length of link j, but it is the displacement between the origins of frame {j} 
and frame {j + 1} in one convention, and frame {j − 1} and frame {j} in the other.

If you intend to build a Toolbox robot model from a table of kinematic parame-
ters provided in a research paper it is really important to know which convention 
the author of the table used. Too often this important fact is not mentioned. An 
important clue lies in the column headings. If they all have the same subscript, 
i.e. θ j, dj, aj and α j then this is standard Denavit-Hartenberg  notation. If half the 
subscripts are different, i.e. θ j, dj, aj−1 and α j−1 then you are dealing with modi-
fied Denavit-Hartenberg  notation. In short, you must know which kinematic 
convention your Denavit-Hartenberg parameters conform to.

You can also help the field when publishing by stating clearly which kine-
matic convention is used for your parameters.

The Toolbox can handle either form, it only needs to be specifi ed, and this is achieved 
using variant classes when creating a link object

>> L1 =  RevoluteMDH('d', 1)
L1 = 
Revolute(mod): theta=q, d=1, a=0, alpha=0, offset=0

Everything else from here on, creating the robot object, kinematic and dynamic 
functions works as previously described.

The two forms can be interchanged by considering the link transform as a string 
of elementary rotations and translations as in Eq. 7.2 or Eq. 7.8. Consider the trans-
formation chain for standard Denavit-Hartenberg notation

which we can regroup as

where the terms marked as MDHj have the form of Eq. 7.8 taking into account that trans-
lation along, and rotation about the same axis is commutative, that is, Òi(θ) ⊕ Ói(d) 
= Ói(d) ⊕ Òi(θ) for i ∈ {x, y, z}.

Fig. 7.15.
Defi nition of modifi ed Denavit 

and Hartenberg link parameters. 
The colors red and blue denote 
all things associated with links 

j − 1 and j respectively. The 
numbers in circles represent the 

order in which the elementary 
transforms are applied

7.4  ·  Advanced Topics
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7.5 
l
Applications

7.5.1 
l
Writing on a  Surface [examples/drawing.m]

Our goal is to create a trajectory that will allow a robot to draw a letter. The Toolbox 
comes with a preprocessed version of the Hershey font  �

>> load hershey

as a cell array of character descriptors. For an upper-case ‘B’

>> B = hershey{'B'}
B =
    stroke: [2x23 double]
     width: 0.8400
       top: 0.8400
    bottom: 0

the structure describes the dimensions of the character, vertically from 0 to 0.84 and 
horizontally from 0 to 0.84�. The path to be drawn is

>> B.stroke
ans =
  Columns 1 through 11
    0.1600    0.1600       NaN    0.1600    0.5200    0.6400    ...
    0.8400         0       NaN    0.8400    0.8400    0.8000    ...

where the rows are the x- and y-coordinates respectively, and a column of NaNs indi-
cates the end of a segment – the pen is lifted and placed down again at the beginning 
of the next segment. We perform some processing

>> path = [ 0.25*B.stroke; zeros(1,numcols(B.stroke))];
>> k = fi nd(isnan(path(1,:)));
>> path(:,k) = path(:,k-1); path(3,k) = 0.2; 

to scale the path by 0.25 so that the character is around 20 cm tall, append a row of 
zeros (add z-coordinates to this 2-dimensional path), fi nd the columns that contain 
NaNs and replace them with the preceding column but with the z-coordinate set to 
0.2 in order to lift the pen off the surface.

Next we convert this to a continuous  trajectory

>> traj = mstraj(path(:,2:end)', [0.5 0.5 0.5], [], path(:,1)',	 
 0.02, 0.2); 

where the second argument is the maximum speed in the x-, y- and z-directions, the 
fourth argument is the initial coordinate followed by the sample interval and the ac-
celeration time. The number of steps in the interpolated path is

>> about(traj)
 traj [double] : 487x3 (11.7 kB)

and will take
>> numrows(traj) * 0.02
ans =
   9.7400 

seconds to execute at the 20 ms sample interval. The trajectory can be plotted

>> plot3(traj(:,1), traj(:,2), traj(:,3))

as shown in Fig. 7.16.
We now have a sequence of 3-dimensional points but the robot end-effector has a 

pose, not just a position, so we need to attach a coordinate frame to every point. We 
assume that the robot is writing on a horizontal surface so these frames must have 
their approach vector pointing downward, that is, a = [0, 0, −1], with the gripper ar-

Developed by Dr. Allen V. Hershey  at 
the Naval Weapons Laboratory in 1967, 
data from http://paulbourke.net/data-
formats/hershey.

This is a variable-width font, and all 
characters fit within a unit-height rect-
angle.
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bitrarily oriented in the y-direction with o = [0, 1, 0]. The character is also placed at 
(0.6, 0, 0) in the workspace, and all this is achieved by

>> Tp = SE3(0.6, 0, 0) * SE3(traj) * SE3.oa( [0 1 0], [0 0 -1]); 

Now we can apply inverse kinematics

>> q = p560.ikine6s(Tp);  

to determine the joint coordinates and then animate it

>> p560.plot(q) 

The Puma is drawing the letter ‘B’, and lifting its pen in between strokes! The ap-
proach is quite general and we could easily change the size of the letter, write whole 
words and sentences, write on an arbitrary plane or use a robot with quite different 
kinematics.�

7.5.2 
l

A Simple Walking Robot [examples/walking.m]

Four legs good, two legs bad!
Snowball the pig, Animal Farm by George Orwell

Our goal is to create a four-legged  walking robot. We start by creating a 3-axis robot 
arm that we use as a leg, plan a  trajectory for the leg that is suitable for walking, and 
then instantiate four instances of the leg to create the walking robot.

Kinematics

Kinematically a robot leg is much like a robot arm. For this application a three joint 
serial-link manipulator is suffi cient since the foot has point contact with the ground 
and orientation is not important. Determining the  Denavit-Hartenberg parameters, 
even for a simple robot like this, is an involved procedure and the zero-angle offsets 
need to be determined in a separate step. Therefore we will use the procedure intro-
duced in Sect. 7.4.2.

As always we start by defi ning our coordinate frame. This is shown in Fig. 7.17 
along with the robot leg in its zero-angle pose. We have chosen the aerospace coor-
dinate convention which has the x-axis forward and the z-axis downward, constrain-
ing the y-axis to point to the right-hand side. The fi rst joint will be hip motion, for-
ward and backward, which is rotation about the z-axis or Rz(q1). The second joint 
is hip motion up and down, which is rotation about the x-axis, Rx(q2). These form a 

Fig. 7.16.
The end-effector path drawing 

the letter ‘B’

7.5  ·  Applications

We have not considered the force that 
the robot-held pen exerts on the paper, 
we cover force control in Chap. 9. In a 
real implementation of this example it 
would be prudent to use a spring to push 
the pen against the paper with sufficient 
force to allow it to write.
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spherical hip joint since the axes of rotation intersect. The knee is translated by L1 
in the y-direction or Ty(L1). The third joint is knee motion, toward and away from 
the body, which is Rx(q3). The foot is translated by L2 in the z-direction or Tz(L2). 
The transform sequence of this robot, from hip to toe, is therefore Rz(q1)Rx(q2)Ty
(L1)Rx(q3)Tz(L2).

Using the technique of Sect. 7.4.2 we write this sequence as the string

>> s = 'Rz(q1) Rx(q2) Ty(L1) Rx(q3) Tz(L2)';

The string can be automatically manipulated into Denavit-Hartenberg factors
>> dh =  DHFactor(s)
DH(q1+90, 0, 0, 90).DH(q2, 0, L1, 0).DH(q3-90, 0, -L2, 0)	 
.Rz(+90).Rx(-90).Rz(-90)

The last three terms in this factorized sequence is a  tool transform
 >> dh.tool
ans =
 trotz(pi/2)* trotx(-pi/2)*trotz(-pi/2)

that changes the orientation of the frame at the foot. However for this problem the 
foot is simply a point that contacts the ground so we are not concerned about its ori-
entation. The method  dh.command generates a string that is the Toolbox command 
to create a SerialLink object

>> dh.command('leg')
ans =
SerialLink([0, 0, 0, pi/2, 0; 0, 0, L1, 0, 0; 0, 0, -L2, 0, 0; ],	 
 'name', 'leg', 'base', eye(4,4),	 
 'tool', trotz(pi/2)*trotx(-pi/2)*trotz(-pi/2),	 
 'offset', [pi/2 0 -pi/2 ])

which is input to the MATLAB  eval command

>> L1 = 0.1; L2 = 0.1;
>> leg = eval( dh.command('leg') )
>> leg
leg =
leg:: 3 axis, RRR, stdDH, slowRNE                                
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         q1|          0|          0|     1.5708|     1.5708|
|  2|         q2|          0|        0.1|          0|          0|
|  3|         q3|          0|       -0.1|          0|    -1.5708|
+---+-----------+-----------+-----------+-----------+-----------+
tool:    t = (0, 0, 0), RPY/zyx = (0, -90, 0) deg

after fi rst setting the length of each leg segment to 100 mm in the MATLAB work-
space.

Fig. 7.17.
The coordinate frame and axis 
rotations for the simple leg. The 
leg is shown in its zero angle pose
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We perform a quick sanity check of our robot. For zero joint angles the foot is at
>> transl( leg.fkine([0,0,0]) )
ans =
         0    0.1000    0.1000 

as we designed it. We can visualize the zero-angle pose

>> leg.plot([0,0,0], 'nobase', 'noshadow', 'notiles')
>> set(gca, 'Zdir', 'reverse'); view(137,48);

which is shown in Fig. 7.18. Now we should test that the other joints result in the ex-
pected motion. Increasing q1

>> transl( leg.fkine([0.2,0,0]) )
ans =
   -0.0199    0.0980    0.1000 

results in motion in the xy-plane, and increasing q2

>> transl( leg.fkine([0,0.2,0]) )
ans =
   -0.0000    0.0781    0.1179 

results in motion in the yz-plane, as does increasing q3

>> transl( leg.fkine([0,0,0.2]) )
ans =
   -0.0000    0.0801    0.0980 

We have now created and verifi ed a simple robot leg.

Motion of One Leg

The next step is to defi ne the path that the end-effector of the leg, its foot, will follow. 
The fi rst consideration is that the end-effector of all feet move backwards at the same 
speed in the ground plane – propelling the robot’s body forward without its feet slip-
ping. Each leg has a limited range of movement so it cannot move backward for very 
long. At some point we must reset the leg – lift the foot, move it forward and place it 
on the ground again. The second consideration comes from static stability – the robot 
must have at least three feet on the ground at all times so each leg must take its turn 
to reset. This requires that any leg is in contact with the ground for ¾ of the cycle and 
is resetting for ¼ of the cycle. A consequence of this is that the leg has to move much 
faster during reset since it has a longer path and less time to do it in.

The required  trajectory is defi ned by the via points

>> xf = 50; xb = -xf;  y = 50; zu = 20; zd = 50;
>> path = [xf y zd; xb y zd; xb y zu; xf y zu; xf y zd] * 1e-3;

where xf and xb are the forward and backward limits of leg motion in the x-direction (in 
units of mm), y is the distance of the foot from the body in the y-direction, and zu and zd 

Fig. 7.18.
Robot leg in its zero angle pose. 

Note that the z-axis points 
downward

7.5  ·  Applications
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are respectively the height of the foot motion in the z-direction for foot up and foot down. 
In this case the foot moves from 50 mm forward of the hip to 50 mm behind. When the foot 
is down, it is 50 mm below the hip and it is raised to 20 mm below the hip during reset. The 
points in path defi ne a complete cycle: the start of the stance phase, the end of stance, top 
of the leg lift, top of the leg return and the start of stance. This is shown in Fig. 7.19a.

Next we sample the multi-segment path at 100 Hz

>> p = mstraj(path, [], [0, 3, 0.25, 0.5, 0.25]', path(1,:), 0.01, 0); 

In this case we have specifi ed a vector of desired segment times rather than maxi-
mum joint velocities.� The fi nal three arguments are the initial leg confi guration, the 
sample interval and the acceleration time. This trajectory has a total time of 4 s and 
therefore comprises 400 points.

We apply inverse kinematics to determine the joint angle trajectories required for 
the foot to follow the computed Cartesian  trajectory. This robot is under-actuated so 
we use the generalized inverse kinematics  ikine and set the mask so as to solve only 
for end-effector translation

>> qcycle = leg.ikine( SE3(p), 'mask', [1 1 1 0 0 0] ); 

We can view the motion of the leg in animation

>> leg.plot(qcycle, 'loop')

to verify that it does what we expect: slow motion along the ground, then a rapid lift, 
forward motion and foot placement. The 'loop' option displays the trajectory in an 
endless loop and you need to type control-C to stop it.

Motion of Four Legs

Our robot has width and length

>> W = 0.1; L = 0.2;

We create multiple instances of the leg by cloning the leg object we created earlier, and 
providing different base transforms so as to attach the legs to different points on the body

>> legs(1) = SerialLink(leg, 'name', 'leg1');
>> legs(2) = SerialLink(leg, 'name', 'leg2', 'base', SE3(-L, 0, 0));
>> legs(3) = SerialLink(leg, 'name', 'leg3', 'base',  SE3(-L, -W, 0) 	
 *SE3.Rz(pi));
>> legs(4) =  SerialLink(leg, 'name', 'leg4', 'base', SE3(0, -W, 0) 	
 * SE3.Rz(pi));

Fig. 7.19. a Trajectory taken by a 
single foot. Recall from Fig. 7.17 
that the z-axis is downward. The 
red segments are the leg reset. 
b The x-direction motion of each 
leg (offset vertically) to show the 
gait. The leg reset is the period of 
high x-direction velocity

This way we can ensure that the reset 
takes exactly one quarter of the cycle.
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The result is a vector of SerialLink objects. Note that legs 3 and 4, on the left-
hand side of the body have been rotated about the z-axis so that they point away from 
the body.

As mentioned earlier each leg must take its turn to reset. Since the trajectory is a 
cycle, we achieve this by having each leg run the  trajectory with a phase shift equal to 
one quarter of the total cycle time. Since the total cycle has 400 points, each leg’s tra-
jectory is offset by 100, and we use modulo arithmetic to index into the cyclic gait for 
each leg. The result is the  gait  pattern shown in Fig. 7.19b.

The core of the walking program is
clf; k = 1;
while 1
    legs(1).plot( gait(qcycle, k, 0,   false) );
    if k == 1, hold on; end
    legs(2).plot( gait(qcycle, k, 100, false) );
    legs(3).plot( gait(qcycle, k, 200, true) );
    legs(4).plot( gait(qcycle, k, 300, true) );
    drawnow
    k = k+1;
end

where the function

 gait(q, k, ph, fl ip)

returns the k+phth element of q with modulo arithmetic that considers q as a cycle. 
The argument fl ip reverses the sign of the joint 1 motion for the legs on the left-hand 
side of the robot. A snapshot from the simulation is shown in Fig. 7.20. The entire im-
plementation, with some additional refi nement, is in the fi le examples/walking.m 
and detailed explanation is provided by the comments.

7.6 
l
Wrapping Up

In this chapter we have learned how to determine the forward and inverse kinemat-
ics of a serial-link manipulator arm. Forward kinematics involves compounding the 
relative poses due to each joint and link, giving the pose of the robot’s end-effector 
relative to its base. Commonly the joint and link structure is expressed in terms of 
Denavit-Hartenberg parameters for each link. Inverse kinematics is the problem of 
determining the joint coordinates given the end-effector pose. For simple robots, or 
those with six joints and a spherical wrist we can compute the inverse kinematics us-
ing an analytic solution. This inverse is not unique and the robot may have several 
joint confi gurations that result in the same end-effector pose.

Fig. 7.20.
The walking robot

7.6  ·  Wrapping Up
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For robots which do not have six joints and a spherical wrist we can use an iterative 
numerical approach to solving the inverse kinematics. We showed how this could 
be applied to an under-actuated 4-joint SCARA robot and a redundant 7-link  robot. 
We also touched briefl y on the topic of singularities which are due to the alignment 
of joint axes.

We also learned about creating paths to move the end-effector smoothly between 
poses. Joint-space paths are simple to compute but in general do not result in straight 
line paths in Cartesian space which may be problematic for some applications. Straight 
line paths in Cartesian space can be generated but singularities in the workspace may 
lead to very high joint rates.

Further Reading

Serial-link manipulator kinematics are covered in all the standard robotics text-
books such as the Robotics Handbook (Siciliano and Khatib 2016), Siciliano et al. 
(2009), Spong et al. (2006) and Paul (1981). Craig’s text (2005) is also an excellent 
introduction to robot kinematics and uses the modifi ed Denavit-Hartenberg  no-
tation, and the examples in the third edition are based on an older version of the 
Robotics Toolbox. Lynch and Park (2017) and Murray et al. (1994) cover the prod-
uct of exponential approach. An emerging alternative to Denavit-Hartenberg nota-
tion is URDF (unifi ed robot description format) which is described at http://wiki.
ros.org/urdf.

Siciliano et al. (2009) provide a very clear description of the process of assigning 
Denavit-Hartenberg parameters to an arbitrary robot. The alternative approach de-
scribed here based on symbolic factorization was described in detail by Corke (2007). 
The defi nitive values for the parameters of the Puma 560 robot are described in the 
paper by Corke and Armstrong-Hélouvry (1995).

Robotic walking is a huge fi eld in its own right and the example given here is very 
simplistic. Machines have been demonstrated with complex gaits such as running 
and galloping that rely on dynamic rather than static balance. A good introduc-
tion to legged robots is given in the Robotics Handbook (Siciliano and Khatib 2016, 
§ 17). Robotic hands, grasping and manipulation is another large topic which we 
have not covered – there is a good introduction in the Robotics Handbook (Siciliano 
and Khatib 2016, §37, 38).

Parallel-link manipulators were mentioned only briefl y on page 192 and have ad-
vantages such as increased actuation force and stiffness (since the actuators form a 
truss-like structure). For this class of mechanism the inverse kinematics is usually 
closed-form and it is the forward kinematics that requires numerical solution. Useful 
starting points for this class of robots are the handbook (Siciliano and Khatib 2016, 
§18), a brief section in Siciliano et al. (2009) and Merlet (2006).

Closed-form inverse kinematic solutions can be derived symbolically by writing 
down a number of kinematic relationships and solving for the joint angles, as de-
scribed in Paul (1981). Software packages to automatically generate the forward and 
inverse kinematics for a given robot have been developed and these include Robotica 
(Nethery and Spong 1994) which is now obsolete, and SYMORO (Khalil and Creusot 
1997) which is now available as open-source.

Historical. The original work by Denavit and Hartenberg was their 1955 paper 
(Denavit and Hartenberg 1955) and their textbook (Hartenberg and Denavit 1964). 
The book has an introduction to the field of kinematics and its history but is cur-
rently out of print, although a version can be found online. The first full descrip-
tion of the kinematics of a six-link arm with a spherical wrist was by Paul and 
Zhang (1986).
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MATLAB and Toolbox Notes

The workhorse of the Toolbox is the SerialLink  class which has considerable func-
tionality and very many methods – we will use it extensively for the remainder of Part III. 
The classes ETS2  and ETS3  used in the early parts of this chapter were designed to 
illustrate principles as concisely as possible and have limited functionality, but the names 
of their methods are the same as their equivalents in the SerialLink  class.

The plot  method draws a stick fi gure robot and needs only Denavit-Hartenberg 
parameters. However the joints depicted are associated with the link frames and don’t 
necessarily correspond to physical joints on the robot, but that is a limitation of the 
Denavit-Hartenberg parameters  . A small number of robots have more realistic 3-di-
mensional models defi ned by STL fi les and these can be displayed using the plot3d . 
The models shipped with the Toolbox were created by Arturo Gil  and are also shipped 
with his ARTE Toolbox.

The numerical inverse kinematics method  ikine can handle over- and under-
actuated robot arms, but does not handle joint coordinate limits which can be set in 
the SerialLink object. The alternative inverse kinematic method  ikcon respects 
joint limits but requires the MATLAB Optimization Toolbox™.

The MATLAB Robotics System Toolbox™ provides a  RigidBodyTree class to 
represent a serial-link manipulator, and this also supports branched mechanisms such 
as a humanoid robot. It also provides a general  InverseKinematics class to solve 
inverse kinematic problems and can handle joint limits.

Exercises

1. Forward kinematics for planar robot from Sect. 7.1.1.
a) For the 2-joint robot use the teach method to determine the two sets of joint 

angles that will position the end-effector at (0.5, 0.5).
b) Experiment with the three different models in Fig. 7.2 using the fkine and 
teach methods.

c) Vary the models: adjust the link lengths, create links with a translation in the 
y-direction, or create links with a translation in the x- and y-direction.

2. Experiment with the  teach method for the Puma 560 robot.
3. Inverse kinematics for the 2-link robot on page 206.

a) Compute forward and inverse kinematics with a1 and a2 as symbolic rather than 
numeric values.

b) What happens to the solution when a point is out of reach?
c) Most end-effector positions can be reached by two different sets of joint angles. 

What points can be reached by only one set?
4. Compare the solutions generated by  ikine6s and  ikine for the Puma 560 

robot at different poses. Is there any difference in accuracy? How much slower 
is  ikine?

5. For the Puma 560 at confi guration qn demonstrate a confi guration change from 
elbow up to elbow down.

6. For a Puma 560 robot investigate the errors in end-effector pose due to manufac-
turing errors.
a) Make link 2 longer by 0.5 mm. For 100 random joint confi gurations what is the 

mean and maximum error in the components of end-effector pose?
b) Introduce an error of 0.1 degrees in the joint 2 angle and repeat the analysis 

above.
7. Investigate the redundant robot models mdl_hyper2d and mdl_hyper3d. 

Manually control them using the teach method, compute forward kinematics 
and numerical inverse kinematics.

7.6  ·  Wrapping Up
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8. If you have the MATLAB Optimization Toolbox™ experiment with the ikcon 
method which solves inverse kinematics for the case where the joint coordinates 
have limits (modeling mechanical end stops). Joint limits are set with the qlim 
property of the Link class.

9. Drawing a ‘B’ (page 220)
a) Change the size of the letter.
b) Write a word or sentence.
c) Write on a vertical plane.
d) Write on an inclined plane.
e) Change the robot from a Puma 560 to the Fanuc 10L.
f) Write on a sphere. Hint: Write on a tangent plane, then project points onto the 

sphere’s surface.
g) This writing task does not require 6DOF since the rotation of the pen about its 

axis is not important. Remove the fi nal link from the Puma 560 robot model and 
repeat the exercise.

10. Walking robot (page 221)
a) Shorten the reset trajectory by reducing the leg lift during reset.
b) Increase the stride of the legs.
c) Figure out how to steer the robot by changing the stride length on one side of 

the body.
d) Change the gait so the robot moves sideways like a crab.
e) Add another pair of legs. Change the gait to reset two legs or three legs at a 

time.
f) Currently in the simulation the legs move but the body does not move forward. 

Modify the simulation so the body moves.
g) A robot hand comprises a number of fi ngers, each of which is a small serial-link 

manipulator. Create a model of a hand with 2, 3 or 5 fi ngers and animate the 
fi nger motion.

11. Create a simulation with two robot arms next to each other, whose end-effectors 
are holding a basketball at diametrically opposite points in the horizontal plane. 
Write code to move the robots so as to rotate the ball about the vertical axis.

12. Create STL fi les to represent your own robot and integrate them into the Toolbox. 
Check out the code in SerialLink.plot3d.
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8 Manipulator Velocity

strates how the  Jacobian transpose is used to transform forces from the end-effector 
to the joints and between coordinate frames. Finally, in Sect. 8.6 the numeric inverse 
kinematic solution, used in the previous chapter, is introduced and its dependence 
on the  Jacobian matrix is fully described.

8.1 
l
Manipulator  Jacobian

In the last chapter we discussed the relationship between joint coordinates  and 
end-effector pose  – the manipulator kinematics  . Now we investigate the relation-
ship between the rate of change of these quantities – between joint velocity   and 
velocity of the end-effector  . This is called the   velocity or differential kinematics   of 
the manipulator.

8.1.1 
l

Jacobian in the World Coordinate Frame

We illustrate the basics with our now familiar 2-dimensional example, see Fig. 8.1, this time 
defi ned using Denavit-Hartenberg notation  

>> mdl_planar2_sym
>> p2
two link:: 2 axis, RR, stdDH
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         q1|          0|         a1|          0|          0|
|  2|         q2|          0|         a2|          0|          0|
+---+-----------+-----------+-----------+-----------+-----------+

A robot’s end-effector moves in Cartesian space with a translational and rotational 
velocity – a spatial velocity. However that velocity is a consequence of the velocities 
of the individual robot joints. In this chapter we introduce the relationship between 

the velocity of the joints and the spatial velocity of the end-effector.
The 3-dimensional end-effector pose ξE ∈ SE(3) has a rate of change which 

is represented by a 6-vector known as a spatial velocity that was introduced 
in Sect. 3.1. The joint rate of change and the end-effector velocity are related 
by the manipulator  Jacobian  matrix which is a function of manipulator con-
fi guration.

Section 8.1 uses a simple planar robot to introduce the manipulator Jacobian 
and then extends this concept to more general robots. Section 8.2 discusses the 

numerical properties of the  Jacobian matrix which are shown to provide insight 
into the dexterity of the manipulator – the directions in which it can move eas-

ily and those in which it cannot. In Sect. 8.3 we use the inverse Jacobian to gener-
ate Cartesian paths without requiring inverse kinematics, and this can be applied to 
over- and  under-actuated robots which are discussed in Sect. 8.4. Section 8.5 demon-
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A   Jacobian is the matrix equiv-
alent of the derivative – the 
derivative of a vector-valued 
function of a vector with re-
spect to a vector. If y= f(x) 
and x∈Rn and y∈Rm then 
the Jacobian is the m × n ma-
trix

The Jacobian is named af-
ter Carl Jacobi, and more de-
tails are given in Appendix E.

and defi ne two real-valued symbolic variables to represent the joint angles

>> syms q1 q2 real

and then compute the forward kinematics using these 

>> TE = p2.fkine( [q1 q2] ); 

The position of the end-effector p = (x, y) ∈R2 is�

>> p = TE.t;  p = p(1:2)
p =
 a2*cos(q1 + q2) + a1*cos(q1)
 a2*sin(q1 + q2) + a1*sin(q1)

and we compute the derivative of p with respect to the joints variables q. Since p and 
q are both vectors the derivative

 (8.1)

will be a matrix – a Jacobian matrix  
>> J =  jacobian(p, [q1 q2])
J =
[ - a2*sin(q1 + q2) - a1*sin(q1), -a2*sin(q1 + q2)]
[   a2*cos(q1 + q2) + a1*cos(q1),  a2*cos(q1 + q2)]

which is typically denoted by the symbol J and in this case is 2 × 2.
To determine the relationship between joint velocity   and end-effector velocity   we 

rearrange Eq. 8.1 as

and divide through by dt to obtain

The Jacobian matrix maps velocity from the joint coordinate or confi guration space 
to the end-effector’s Cartesian coordinate space and is itself a function of the joint 
coordinates.

More generally we write the forward kinematics in functional form, Eq. 7.4, as

The Toolbox considers robot pose in
3-dimensions using SE(3). This robot op-
erates in a plane, a subset of SE(3), so we 
select p = (x, y).

Fig. 8.1.
Two-link robot showing the 
end-effector position p= (x, y) 
and the Cartesian velocity vector  
ν = dp/ dt
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and taking the derivative we write

 (8.2)

where 0ν = (vx, vy, vz, ωx, ωy, ωz) ∈R6 is the  spatial velocity, as discussed in Sect. 3.1.1, 
of the end-effector in the world frame and comprises translational and rotational ve-
locity components. The matrix 0J(q) ∈R6×N is the  manipulator  Jacobian or the  geo-
metric  Jacobian. This relationship is sometimes referred to as the  instantaneous for-
ward kinematics.

For a realistic 3-dimensional robot this Jacobian matrix can be numerically com-
puted by the  jacob0 method of the SerialLink object, based on its Denavit-
Hartenberg parameters. For the Puma robot in the pose shown in Fig. 8.2 the 
Jacobian is

>> J = p560.jacob0(qn)
J =
    0.1501    0.0144    0.3197         0         0         0
    0.5963    0.0000    0.0000         0         0         0
         0    0.5963    0.2910         0         0         0
         0   -0.0000   -0.0000    0.7071   -0.0000   -0.0000
         0   -1.0000   -1.0000   -0.0000   -1.0000   -0.0000
    1.0000    0.0000    0.0000   -0.7071    0.0000   -1.0000  

and is a matrix with dimensions dim T× dim C – in this case 6 × 6�. Each row cor-
responds to a Cartesian  degree of freedom. Each column corresponds to a joint – 
it is the end-effector spatial velocity created by unit velocity of the corresponding 
joint. In this configuration, motion of joint 1, the first column, causes motion 
in the world x- and y-directions and rotation about the z-axis. Motion of joints 2 
and 3 cause motion in the world x- and z-directions and negative rotation about 
the y-axis.

Physical insight comes from Fig. 8.2 which shows the joint axes in space. Alternatively 
you could use the teach method

>> p560.teach(qn)

and jog the various joint angles and observe the change in end-effector pose.

Fig. 8.2.
Puma robot in its nominal pose 

qn. The end-effector z-axis points 
in the world x-direction, and the 

x-axis points downward

8.1  ·  Manipulator Jacobian

τ is the task space of the robot, typically 
τ ⊂ SE(3), and C⊂RN is the configura-
tion or joint space of the robot where N is 
the number of robot joints.
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The 3 × 3 block of zeros in the top right indicates that motion of the wrist joints 
have no effect on the end-effector translational motion – this is a consequence of the 
spherical wrist and the default zero-length tool.

8.1.2  
l

Jacobian in the  End-Effector Coordinate Frame

The Jacobian computed by the method  jacob0 maps joint velocity to the end-
effector  spatial velocity expressed in the world coordinate frame. To obtain the 
spatial velocity in the end-effector coordinate frame we introduce the velocity trans-
formation Eq. 3.4 from the world frame to the end-effector frame which is a function 
of the end-effector pose

which results in a new Jacobian for end-effector velocity.�

In the Toolbox this Jacobian is computed by the method  jacobe and for the Puma 
robot at the pose used above is

>> p560.jacobe(qn)
ans =
   -0.0000   -0.5963   -0.2910         0         0         0
    0.5963    0.0000    0.0000         0         0         0
    0.1500    0.0144    0.3197         0         0         0
   -1.0000         0         0    0.7071         0         0
   -0.0000   -1.0000   -1.0000   -0.0000   -1.0000         0
   -0.0000    0.0000    0.0000    0.7071    0.0000    1.0000 

8.1.3 
l

Analytical  Jacobian

In Eq. 8.2 the spatial velocity was expressed in terms of translational and angular ve-
locity vectors, however angular velocity is not a very intuitive concept. For some appli-
cations it can be more intuitive to consider the rotational velocity in terms of rates of 
change of  roll-pitch-yaw angles or  Euler angles. Analytical Jacobians are those where 
the rotational velocity is expressed in a representation other than angular velocity, 
commonly in terms of triple-angle rates.

Consider the case of  XYZ roll-pitch-yaw  angles ¡ = (θ r, θ p, θ y) for which the  rota-
tion matrix is

 Carl Gustav Jacob Jacobi (1804–1851) was a Prussian mathematician. He obtained a Doctor of Phi-
losophy degree from Berlin University in 1825. In 1827 he was appointed professor of mathe-
matics at Königsberg University and held this position until 1842 when he suffered a breakdown 
from overwork.

Jacobi wrote a classic treatise on elliptic functions in 1829 and also described the derivative 
of m functions of n variables which bears his name. He was elected a foreign member of the 
Royal Swedish Academy of Sciences in 1836. He is buried in Cementary I of the Trinity Church 
(Dreifaltigkeitskirche) in Berlin.

For historical reasons the Toolbox imple-
mentation computes the end-effector 
Jacobian directly and applies a velocity 
transform for the world frame Jacobian.
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where we use the shorthand cθ  and sθ  to mean cosθ  and sinθ  respectively. With some 
effort we can write the derivative ½ and recalling Eq. 3.1

we can solve for ω  in terms of  roll-pitch-yaw angles and their rates to obtain 

which can be factored as

and written concisely as

This matrix A is itself a Jacobian that maps XYZ roll-pitch-yaw angle rates to  an-
gular velocity. It can be computed by the Toolbox function

>> rpy2jac(0.1, 0.2, 0.3)
ans =
    0.1987         0    1.0000
   -0.2896    0.9553         0
    0.9363    0.2955         0

where the arguments are the roll, pitch and yaw angles. The  analytical  Jacobian is

provided that A is not singular. A is singular when cosφ = 0 or pitch angle φ = ±ü 
and is referred to as a  representational  singularity. A similar approach can be taken 
for Euler angles using the corresponding function  eul2jac.

The analytical Jacobian can be computed by passing an extra argument to the 
Jacobian function  jacob0, for example

>> p560.jacob0(qn, 'eul'); 

to specify the Euler angle analytical form.
Another useful analytical Jacobian expresses angular rates as the rate of change of 

  exponential coordinates s = *θ ∈ so(3)

where

and * and θ  can be determined from the end-effector rotation matrix via the matrix 
logarithm.�

Implemented by the Toolbox functions 
 trlog and  tr2rotvec or the SE3  
method torotvec .

8.1  ·  Manipulator Jacobian
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8.2   
l
Jacobian Condition and  Manipulability

We have discussed how the Jacobian matrix maps joint rates to end-effector Cartesian 
velocity but the inverse problem has strong practical use – what joint velocities are 
needed to achieve a required end-effector Cartesian velocity? We can invert Eq. 8.2 
and write

 (8.3)

provided that J is square and nonsingular. The Jacobian is a dim T× dim C matrix so in 
order to achieve a square Jacobian matrix a robot operating in the task space T⊂ SE(3), 
which has 6 spatial degrees-of-freedom, requires a robot with 6 joints. 

8.2.1  
l

Jacobian  Singularities

A robot confi guration q at which det(J(q)) = 0 is described as  singular or degenerate. 
Singularities occur when the robot is at maximum reach or when one or more axes become 
aligned resulting in the loss of  degrees of freedom – the  gimbal lock problem again.

For example at the Puma’s ready pose the Jacobian

>> J = p560.jacob0(qr)
J =
    0.1500   -0.8636   -0.4318         0         0         0
    0.0203    0.0000    0.0000         0         0         0
         0    0.0203    0.0203         0         0         0
         0         0         0         0         0         0
         0   -1.0000   -1.0000         0   -1.0000         0
    1.0000    0.0000    0.0000    1.0000    0.0000    1.0000  

is singular
>> det(J)
ans =
     0

Digging a little deeper we see that the Jacobian rank is only
>> rank(J)
ans =
     5

compared to a maximum of six for a 6 × 6 matrix. The rank defi ciency of one means 
that one column is equal to a linear combination of other columns. Looking at the 
Jacobian it is clear that columns 4 and 6 are identical meaning that two of the wrist 
joints (joints 4 and 6) are aligned. This leads to the loss of one degree of freedom since 
motion of these joints results in the same Cartesian velocity, leaving motion in one 
Cartesian direction unaccounted for.� The function jsingu performs this analysis 
automatically, for example

>> jsingu(J)
1 linearly dependent joints:
  q6 depends on: q4 

indicating velocity of q6 can be expressed completely in terms of the velocity of q4.
However if the robot is close to, but not actually at, a singularity we encounter 

problems where some Cartesian end-effector velocities require very high joint rates� 
– at the singularity those rates will go to infi nity. We can illustrate this by choosing a 
confi guration slightly away from qr which we just showed was singular. We set q5 to 
a small but nonzero value of 5 deg

>> qns = qr; qns(5) = 5 * pi/180
qns =
         0    1.5708   -1.5708         0    0.0873         0

For the Puma 560 robot arm joints 4 and 6
are the only ones that can become aligned
and lead to singularity. The offset distanc-
es, dj and aj, between links prevents oth-
er axes becoming aligned.

We observed this effect in Fig. 7.12.
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and the Jacobian is now

>> J=p560.jacob0(qns);  

To achieve relatively slow end-effector motion of 0.1 m s−1 in the z-direction requires
>> qd = inv(J)*[0 0 0.1 0 0 0]' ;
>> qd'
ans =   -0.0000   -4.9261    9.8522    0.0000   -4.9261         0

very high-speed motion of the shoulder and elbow – the elbow would have to move at 
9.85 rad s−1 or nearly 600 deg s−1. The reason is that although the robot is no longer 
at a singularity, the  determinant of the Jacobian is still very small

>> det(J)
ans =
  -1.5509e-05

 Alternatively we can say that its  condition number is very high
>> cond(J)
ans =
  235.2498

and the Jacobian is poorly conditioned.
However for some motions, such as rotation in this case, the poor condition of the 

Jacobian is not problematic. If we wished to rotate the tool about the y-axis then
>> qd = inv(J)*[0 0 0 0 0.2 0]';
>> qd'
ans =    0.0000   -0.0000         0    0.0000   -0.2000         0

the required joint rates are very modest.
This particular joint confi guration is therefore good for certain motions but poor 

for others.

8.2.2   
l
Manipulability

Consider the set of generalized joint velocities with a unit norm

which lie on the  surface of a hypersphere in the N-dimensional joint velocity space. 
Substituting Eq. 8.3 we can write

 (8.4)

which is the equation of  points on the  surface of an ellipsoid within the dim T-dimen-
sional end-effector velocity space. If this ellipsoid is close to spherical, that is, its radii are 
of the same order of magnitude then all is well – the end-effector can achieve arbitrary 
Cartesian velocity. However if one or more radii are very small this indicates that the end-
effector cannot achieve velocity in the directions corresponding to those small radii.

We will load the numerical, rather than symbolic model, for the planar robot arm 
of Fig. 8.1

>> mdl_planar2

which allows us to plot the velocity  ellipse for an arbitrary pose

>> p2.vellipse([30 40], 'deg') 

We can also interactively explore how its  shape changes with confi guration by

>> p2.teach('callback', @(r,q) r.vellipse(q), 'view', 'top') 

which is shown in Fig. 8.3.

8.2  ·  Jacobian Condition and Manipulability
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For a robot with a task space T⊂ SE(3) Eq. 8.4 describes a 6-dimensional ellipsoid 
which is impossible to visualize. However we can extract that part of the Jacobian re-
lating to translational velocity� in the world frame

>> J = p560.jacob0(qns);
>> J = J(1:3, :);  

and plot the corresponding velocity ellipsoid

>> plot_ellipse(J*J')

which is shown in Fig. 8.4a. The Toolbox provides a shorthand for this

>> p560.vellipse(qns, 'trans');

We see that the end-effector can achieve higher velocity in the y- and z-directions than 
in the x-direction. Ellipses and ellipsoids are discussed in more detail in Sect. C.1.4.

The rotational velocity  ellipsoid for the near singular case

>> p560.vellipse(qns, 'rot')

is shown in Fig. 8.4b and is an elliptical plate with almost zero thickness.� This indicates 
an inability to rotate about the direction corresponding to the small radius, which in 
this case is rotation about the x-axis. This is the  degree of freedom that was lost – both 
joints 4 and 6 provide rotation about the world z-axis, joint 5 provides provides rota-
tion about the world y-axis, but none allow rotation about the world x-axis.

The  shape of the  ellipsoid describes how well-conditioned the manipulator is for 
making certain motions.   Manipulability is a succinct scalar measure that describes how 
spherical the ellipsoid is, for instance the ratio of the smallest to the largest radius.� 
The Toolbox method  maniplty computes  Yoshikawa’s manipulability measure

which is proportional to the volume of the  ellipsoid. For example
>> m = p560.maniplty(qr)
m =
     0

indicates a singularity. If the method is called with no output arguments it displays 
the volume of the translational and rotational velocity ellipsoids

>> p560.maniplty(qr)
Manipulability: translation 0.00017794, rotation 0

Fig. 8.3.
Two-link robot with overlaid ve-
locity ellipse

Since we can only plot three dimensions.

This is much easier to see if you change 
the viewpoint interactively.

The radii are the square roots of the ei-
genvalues  of the J(q)J(q)T as discussed 
in Sect. C.1.4.
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which indicates very poor manipulability for translation and zero for rotation. At the 
nominal pose the manipulability is higher�

>> p560.maniplty(qn)
Manipulability: translation 0.111181, rotation 2.44949

In practice we fi nd that the seemingly large workspace of a robot is greatly reduced 
by joint limits, self collision, singularities and regions of reduced  manipulability. The 
manipulability measure discussed here is based only on the kinematics of the mecha-
nism. The fact that it is easier to move a small wrist joint than the larger waist joint 
suggests that mass and inertia should be taken into account and such manipulability 
measures are discussed in Sect. 9.2.7.

8.3 
l
Resolved-Rate Motion  Control

 Resolved-rate motion control is a simple and elegant  algorithm to generate straight 
line motion by exploiting Eq. 8.3

to map or resolve desired Cartesian velocity to joint velocity without explicitly requir-
ing inverse kinematics as we used earlier. For now we will assume that the Jacobian is 
square (6 × 6) and nonsingular but we will relax these constraints later.

The motion control scheme is typically implemented in discrete-time form as

 
(8.5)

where δ t is the sample interval. The fi rst equation computes the required joint veloc-
ity as a function of the current joint confi guration and the desired end-effector veloc-
ity ν∗. The second performs forward rectangular integration to give the desired joint 
angles for the next time step, q∗hk+1i.

An example of the algorithm is implemented by the Simulink® model

>>  sl_rrmc

shown in Fig. 8.5. The Cartesian velocity is a constant 0.05 m s−1 in the y-direction. 
The  Jacobian block has as its input the current manipulator joint angles and out-
puts a 6 × 6 Jacobian matrix. This is inverted and multiplied by the desired velocity to 
form the desired joint rates. The robot is modeled by a discrete-time integrator – an 
ideal velocity controller.�

The manipulability measure combines 
translational and rotational velocity infor-
mation which have different units. The
options 'trans' and 'rot' can 
be used to compute manipulability on 
just the translational or rotational velocity 
respectively.

Fig. 8.4. End-effector velocity el-
lipsoids. a Translational veloci-
ty ellipsoid for the nominal pose 
(m s−1); b rotational velocity el-
lipsoid for a near singular pose 
(rad s−1), the ellipsoid is an ellip-
tical plate

In this model we assume that the robot 
is perfect, that is, the actual joint angles 
are equal to the desired joint angles q*. 
The issue of tracking error is discussed 
in Sect. 9.1.7.

8.3  ·  Resolved-Rate Motion Control
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Running the simulation

>> r = sim( 'sl_rrmc');

we see an animation of the manipulator end-effector  moving at constant velocity in 
Cartesian space. Simulation results are returned in the simulation object r from which 
we extract time and joint coordinates

>> t = r.fi nd('tout');
>> q = r.fi nd('yout');

We apply forward kinematics to determine the end-effector position

>> T = p560.fkine(q);
>> xyz = transl(T);   

which we then plot� as a function of time

>> mplot(t, xyz(:,1:3))

which is shown in Fig. 8.6a. The  Cartesian motion is 0.05 m s−1 in the y-direction as de-
manded but we observe some small and unwanted motion in the x- and z-directions.

The motion of the fi rst three joints

>> mplot(t, q(:,1:3))

is shown in Fig. 8.6b and are not linear with time – refl ecting the changing kinematic 
 confi guration of the arm.

The approach just described, based purely on integration, suffers from an accu-
mulation of error which we observed as the unwanted x- and z-direction motion in 
Fig. 8.6a. We can eliminate this by changing the algorithm to a closed-loop form based 
on the difference between the desired and actual pose

 (8.6)

where Kp is a proportional gain, ∆(·) ∈R6 is a spatial displacement� and the desired 
pose ξ∗hki is a function of time.

A Simulink example to demonstrate this for a circular path is

>>  sl_rrmc2

shown in Fig. 8.7 and the tool of a Puma 560 robot traces out a circle of radius 
50 mm. The x-, y- and z-coordinates as a function of time are computed and con-
verted to a homogeneous transformation by the blocks in the grey area. The differ-
ence between the desired pose and the current pose from forward kinematics us-
ing the ∆(·) operator is computed by the tr2delta block. The result is a spatial 
displacement, a translation and a rotation described by a 6-vector which is used as 

Fig. 8.5. The Simulink® model 
 sl_rrmc for resolved-rate  mo-
tion control for constant end-ef-
fector velocity

The function  mplot is a Toolbox utility 
that plots columns of a matrix in sepa-
rate subgraphs.

See Sect. 3.1.4 for definition.
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the desired spatial velocity  to drive the end-effector toward the desired pose. The 
Jacobian matrix is computed from the current manipulator joint angles and is in-
verted so as to transform the desired spatial velocity to joint angle rates. These are 
scaled by a proportional gain, to become the desired joint-space velocity that will 
correct any Cartesian error.

Fig. 8.6.  Resolved-rate motion con-
trol, Cartesian and joint coordinates 
versus time. a Cartesian end-effec-
tor motion. Note the small, but un-
wanted motion in the x- and z-di-
rections; b joint motion

Fig. 8.7. The Simulink® model 
 sl_rrmc2 for closed-loop re-
solved-rate  motion control with 
circular end-effector motion

8.3  ·  Resolved-Rate Motion Control
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8.3.1  
l

Jacobian  Singularity

For the case of a square Jacobian where det(J(q)) = 0 we cannot solve Eq. 8.3 direct-
ly. One strategy to deal with singularity is to replace the inverse with the   damped 
inverse

 

where λ is a small constant added to the diagonal which places a fl oor under the  de-
terminant. This will introduces some error in ¸, which integrated over time could lead 
to a signifi cant discrepancy in tool position but the closed-loop resolved-rate motion 
scheme of Eq. 8.6 would minimize this.

An alternative is to use the  pseudo-inverse of the Jacobian J+ which has the property

just as the inverse does. It is defi ned as

and is readily computed using the MATLAB® builtin function  pinv.� The solution

provides a least-squares solution for which �J¸ − ν� is smallest.�

Yet another approach is to delete from the Jacobian all those columns that are lin-
early dependent on other columns. This is effectively locking the joints correspond-
ing to the deleted columns and we now have an under-actuated system which we treat 
as per the next section.

8.4 
l
Under- and  Over-Actuated   Manipulators

So far we have assumed that the Jacobian is square. For the nonsquare cases it is help-
ful to consider the velocity relationship

in the diagrammatic form shown in Fig. 8.8. The Jacobian is a 6 × N matrix, the joint 
velocity is an N-vector, and ν  is a 6-vector.

The case of N < 6 is referred to as an  under-actuated robot, and N > 6 is  over-ac-
tuated or   redundant. The under-actuated case cannot be solved because the system 
of equations is under-constrained but the system can be squared up by deleting some 
rows of ν  and J – accepting that some Cartesian  degrees of  freedom are not controllable 
given the low number of joints. For the over-actuated case the system of equations is 
under-constrained and the best we can do is fi nd a least-squares solution as described 
in the previous section. Alternatively we can square up the Jacobian to make it invert-
ible by deleting some columns – effectively locking the corresponding joints.

This is the left generalized- or pseudoin-
verse, see Sect. F.1.1 for more details.

A matrix expression like v = J¸  is a sys-
tem of scalar equations which we can 
solve for ¸. At singularity some of the 
equations are the same, leading to more 
unknowns than equations, and therefore 
an infinite number of solutions. The 
pseudo-inverse computes a solution 
that satisfies the equation and has the 
minumum norm.

Fig. 8.8.
Schematic of Jacobian, ν  and 
¸ for different cases of N. The 
hatched areas represent matrix 
regions that could be deleted in 
order to create a square sub-
system capable of solution
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8.4.1  
l

Jacobian for  Under-Actuated Robot

An  under-actuated robot has N < 6, and a Jacobian that is taller than it is wide. For 
example a 2-joint manipulator at a nominal pose

>> mdl_planar2
>> qn = [1 1];

has the Jacobian
>> J = p2.jacob0(qn)
J =
   -1.7508   -0.9093
    0.1242   -0.4161
         0         0
         0         0
         0         0
    1.0000    1.0000

We cannot solve the inverse problem Eq. 8.3 using the  pseudo-inverse since it will at-
tempt to satisfy motion constraints that the manipulator cannot meet. For example the 
desired motion of 0.1 m s−1 in the x-direction gives the required joint velocity

>> qd =  pinv(J) * [0.1 0 0 0 0 0]'
qd =
   -0.0698
    0.0431

which results in end-effector velocity
>> xd = J*qd;
>> xd'
ans =
    0.0829   -0.0266         0         0         0   -0.0266

This has the desired motion in the x-direction but undesired motion in y-axis trans-
lation and z-axis rotation. The end-effector rotation cannot be independently con-
trolled (since it is a function of q1 and q2) yet this solution has taken it into account 
in the least-squares solution.

We have to confront the reality that we have only two  degrees of freedom which we 
will use to control just vx and vy. We rewrite Eq. 8.2 in partitioned form as

and taking the top partition, the fi rst two rows, we write

where Jxy is a 2 × 2 matrix. We invert this

which we can solve if det(Jxy) ≠ 0.
>> Jxy = J(1:2,:);
>> qd = inv(Jxy)* [0.1 0]'
qd =
   -0.0495
   -0.0148

8.4  ·  Under- and Over-Actuated Manipulators
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which results in end-effector velocity
>> xd = J*qd;
>> xd'
ans =
    0.1000    0.0000         0         0         0   -0.0642

We have achieved the desired x-direction motion with no unwanted motion apart from 
the z-axis rotation which is unavoidable – we have used the two  degrees of freedom to 
control x- and y-translation, not z-rotation.

8.4.2  
l

Jacobian for Over-Actuated Robot

An  over-actuated or redundant robot has N > 6, and a Jacobian that is wider than it 
is tall. In this case we rewrite Eq. 8.3 to use the left  pseudo-inverse

 (8.7)

which, of the infi nite number of solutions possible, will yield the one for which �¸� is 
smallest – the  minimum-norm  solution.

We will demonstrate this for the left arm of the Baxter robot from Sect. 7.2.2.4 at 
a nominal pose

>> mdl_baxter
>> TE = SE3(0.8, 0.2, -0.2) * SE3.Ry(pi);
>> q = left.ikine(TE)

and its Jacobian
>> J = jacob0(left, q);
>> about J
J [double] : 6x7 (336 bytes)

is a 6 × 7 matrix. Now consider that we want the end-effector to move at 0.2 m s−1 in 
the x-, y- and z-directions. Using Eq. 8.7 we compute the required joint rates

>> xd = [0.2 0.2 0.2 0 0 0]';
>> qd = pinv(J) * xd;
>> qd'
ans =
        0.0895   -0.0464   -0.4259    0.6980   -0.4248    1.0179    0.2998

We see that all joints have nonzero velocity and contribute to the desired end-effector 
motion.�

This Jacobian has seven columns and a rank of six
>> rank(J)
ans =
     6

and therefore a  null space� whose basis has just one vector
>> N = null(J)
N =
   -0.2244
   -0.1306
    0.6018
    0.0371
   -0.7243
    0.0653
    0.2005

In the case of a Jacobian matrix any joint velocity that is a linear combination of its 
null-space vectors will result in no end-effector motion. For this robot there is only one 
vector and we can show that this null-space joint motion causes no end-effector motion

>> norm( J * N(:,1))
ans =
   2.6004e-16

If the robot end-effector follows a repeti-
tive path using RRMC the joint angles 
may drift over time and not follow a re-
petitive path, potentially moving toward 
joint limits. We can use null-space con-
trol to provide additional constraints to 
prevent this.

See Appendix B.
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This is remarkably useful because it allows Eq. 8.7 to be written as

 (8.8)

where the matrix NN+ ∈RN×N projects the desired joint motion into the null space so 
that it will not affect the end-effector Cartesian motion, allowing the two motions to 
be superimposed.

Null-space motion can be used for highly-redundant robots to avoid collisions be-
tween the links and obstacles (including other links), or to keep joint coordinates away 
from their mechanical limit stops. Consider that in addition to the desired Cartesian 
velocity xd we wish to simultaneously increase joint 5 in order to move the arm away 
from some obstacle. We set a desired joint velocity

>> qd_null = [0 0 0 0 1 0 0]';

and project it into the null space
>> qp = N *  pinv(N) * qd_null;
>> qp'
   0.1625    0.0946   -0.4359   -0.0269    0.5246   -0.0473   -0.1452

A scaling has been introduced but this joint velocity, or a scaled-up version of, this 
will increase the joint 5 angle without changing the end-effector pose. Other joints 
move as well – they provide the required compensating motion in order that the end-
effector pose is not disturbed as shown by

>> norm( J * qp)
ans =
   1.9541e-16

A highly redundant snake robot like that shown in Fig. 8.9 would have a null space 
with 14 dimensions (20-6). This can be used to control the shape of the arm which is 
critical when moving within confi ned spaces.

Fig. 8.9.
20-DOF snake-robot arm:

2.5 m reach, 90 mm diameter 
and payload capacity of 25 kg 

(image courtesy of OC Robotics)

8.4  ·  Under- and Over-Actuated Manipulators
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8.5  
l
Force Relationships

In Sect. 3.2.2 we introduced   wrenches W = ( fx, fy, fz, mx, my, mz) ∈R6 which are a vec-
tor of forces and moments.

8.5.1 
l

Transforming   Wrenches to  Joint Space

The  manipulator Jacobian transforms joint velocity to an end-effector spatial velocity ac-
cording to Eq. 8.2 and the Jacobian transpose transforms a wrench applied at the end-ef-
fector to torques and forces experienced at the joints�

 (8.9)

where W is a wrench in the world coordinate frame and Q is the generalized joint force 
vector. The elements of Q are joint torque or force for revolute or prismatic joints re-
spectively.

The mapping for velocity, from end-effector to joints, involves the inverse Jacobian which 
can potentially be singular. The mapping of forces and torques, from end-effector to joints, 
is different – it involves the transpose of the Jacobian which can never be singular. We ex-
ploit this property in the next section to solve the inverse-kinematic problem numerically.

If the wrench is defi ned in the end-effector coordinate frame then we use instead

 (8.10)

For the Puma 560 robot in its nominal pose, see Fig. 8.2, a force of 20 N in the world 
y-direction results in joint torques of

>> tau = p560.jacob0(qn)' * [0 20 0 0 0 0]';
>> tau'
ans =
   11.9261    0.0000    0.0000         0         0         0  

The force pushes the arm sideways and only the waist joint will rotate in response – 
experiencing a torque of 11.93 N m due to a lever arm effect. A force of 20 N applied 
in the world x-direction results in joint torques of

>> tau = p560.jacob0(qn)' * [20 0 0 0 0 0]';
>> tau'
ans =
    3.0010    0.2871    6.3937         0         0         0  

which is pulling the end-effector away from the base which results in torques being 
applied to the fi rst three joints.

8.5.2 
l
Force  Ellipsoids 

In Sect. 8.2.2 we introduced the velocity  ellipse and  ellipsoid which describe the direc-
tions in which the end-effector is best able to move. We can perform a similar analysis 
for the forces and torques at the end-effector   – the end-effector  wrench. We start with 
a set of generalized joint forces with a unit norm

and substituting Eq. 8.9 we can write

Derived through the principle of virtual 
work, see for instance Spong et al. (2006, 
sect. 4.10).
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which is the equation of  points on the  surface of a 6-dimensional   ellipsoid  in the end-
effector  wrench space. For the planar robot arm  of Fig. 8.1 we can plot this ellipse

>> p2.fellipse([30 40], 'deg') 

or we can interactively explore how its  shape changes with confi guration by

>> p2.teach(qn, 'callback', @(r,q) r.fellipse(q), 'view', 'top') 

If this ellipsoid is close to spherical, that is, its radii are of the same order of mag-
nitude then the end-effector can achieve an arbitrary wrench. However if one or more 
radii are very small this indicates that the end-effector cannot exert a force along, or 
a moment about, the axes corresponding to those small radii.

The force and velocity ellipsoids provide complementary information about how well 
suited the confi guration of the arm is to a particular task. We know from personal experi-
ence that to throw an object quickly we have our arm outstretched and orthogonal to the 
throwing direction, whereas to lift something heavy we hold our arms close in to our body.

8.6 
l
Inverse Kinematics: a General Numerical Approach

In Sect. 7.2.2.1 we solved the inverse kinematic problem using an explicit solution that 
required the robot to have 6 joints and a spherical wrist. For the case of robots which 
do not meet this specifi cation, for example those with more or less than 6 joints, we 
need to consider a numerical solution. Here we will develop an approach based on the 
forward kinematics and the  Jacobian transpose which we can compute for any ma-
nipulator confi guration since these functions have no singularities.

8.6.1 
l
Numerical Inverse Kinematics 

The principle is shown in Fig. 8.10 where the robot in its current confi guration is drawn 
solidly and the desired confi guration is faint. From the overlaid pose graph the error 
between actual ξE and desired pose  ξE

∗ is ξ∆  which can be described by a spatial dis-
placement  as discussed in Sect. 3.1.4

where the current pose is computed using forward kinematics ξE =K(q).
Imagine a special spring between the end-effector of the two poses which is pulling 

(and twisting) the robot’s end-effector toward the desired pose with a wrench  propor-
tional to the spatial displacement

Fig. 8.10.
Schematic of the numerical in-

verse kinematic approach, show-
ing the current ξE and the de-

sired ξE
∗ manipulator pose

8.6  ·  Inverse Kinematics: a General Numerical Approach
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 (8.11)

which is resolved to generalized joint forces

using the  Jacobian transpose   Eq. 8.10. We assume that this virtual robot has no joint 
motors only viscous dampers so the joint velocity will be proportional to the applied 
forces

where B is the joint damping coeffi cient (assuming all dampers are the same). Putting 
all this together we can write

which gives the joint velocities that will drive the forward kinematic solution toward 
the desired end-effector pose. This can be solved iteratively by

 (8.12)

until the norm of the update �δ q〈k〉� is suffi ciently small and where α > 0 is a well-cho-
sen constant. Since the solution is based on the Jacobian transpose  rather than inverse 
the algorithm works when the Jacobian is nonsquare or singular. In practice however 
this algorithm is slow to converge and very sensitive to the choice of α .

More practically we can formulate this as a least-squares problem in the world co-
ordinate frame and minimize the scalar cost

where M = diag(m) ∈R6×6 and m is the mask vector introduced in Sect. 7.2.2.3. The 
update becomes

which is much faster to converge but can behave poorly near singularities. We remedy 
this by introducing a damping constant λ

which ensures that the term being inverted can never be singular.
An effective way to choose λ  is to test whether or not an iteration reduces the er-

ror, that is if �δq〈k〉�< �δq〈k – 1〉�. If the error is reduced we can decrease λ  in order to 
speed convergence. If the error has increased we revert to our previous estimate of q〈k〉 
and increase λ . This adaptive damping factor scheme is the basis of the well-known 
  Levenberg-Marquardt  optimization  algorithm.

This algorithm is implemented by the ikine  method and works well in prac-
tice. As with all  optimization algorithms it requires a reasonable initial estimate of 
q and this can be explicitly given using the option 'q0'. A brute-force search for 
an initial value can be requested by the option 'search'. The simple  Jacobian-
transpose approach of Eq. 8.12 can be invoked using the option 'transpose' 
along with the value of α .
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8.7 
l
Advanced Topics

8.7.1 
l
Computing the Manipulator Jacobian Using Twists

In Sect. 7.1.2.2 we computed the forward kinematics as a product of exponentials based 
on the screws representing the joint axes in a zero-joint angle confi guration. It is easy 
to differentiate the product of exponentials with respect to motion about each screw 
axis which leads to the Jacobian matrix

for velocity in the world coordinate frame. The Jacobian is very elegantly expressed 
and can be easily built up column by column. Velocity in the end-effector coordinate 
frame is related to joint velocity by the Jacobian matrix

where Ad (·) is the adjoint matrix introduced in Sect. 3.1.2.

However, compared to the Jacobian of Sect. 8.1, these Jacobians give the ve-
locity of the end-effector as a velocity twist  , not a spatial velocity as defined 
on page 65.

To obtain the Jacobian that gives spatial velocity as described in Sect. 8.1 we must ap-
ply a velocity transformation

8.8 
l
Wrapping Up

Jacobians are an important concept in robotics, relating changes in one space to chang-
es in another. We previously encountered Jacobians for estimation in Chap. 6 and will 
use them later for computer vision and control.

In this chapter we have learned about the manipulator Jacobian which describes 
the relationship between the rate of change of joint coordinates and the spatial veloc-
ity of the end-effector expressed in either the world frame or the end-effector frame. 
We showed how the inverse Jacobian can be used to resolve desired Cartesian veloc-
ity into joint velocity as an alternative means of generating Cartesian paths for un-
der- and over-actuated robots. For over-actuated robots we showed how null-space 
motions can be used to move the robot’s joints without affecting the end-effector 
pose. The numerical properties of the Jacobian tell us about manipulability, that is 
how well the manipulator is able to move, or exert force, in different directions. At 
a singularity, indicated by linear dependence between columns of the Jacobian, the 
robot is unable to move in certain directions. We visualized this by means of the 
velocity and force ellipsoids.

We also created Jacobians to map angular velocity to roll-pitch-yaw or Euler angle 
rates, and these were used to form the analytic Jacobian matrix. The Jacobian trans-
pose is used to map wrenches applied at the end-effector to joint torques, and also to 
map wrenches between coordinate frames. It is also the basis of numerical inverse ki-
nematics for arbitrary robots and singular poses.

8.8  ·  Wrapping Up
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Further Reading

The manipulator Jacobian is covered by almost all standard robotics texts such as the 
robotics handbook (Siciliano and Khatib 2016), Lynch and Park (2017), Siciliano et al. 
(2008), Spong et al. (2006), Craig (2005), and Paul (1981). An excellent discussion of 
manipulability and velocity ellipsoids is provided by Siciliano et al. (2009), and the most 
common manipulability measure is that proposed by Yoshikawa (1984). Computing 
the manipulator Jacobian based on Denavit-Hartenberg parameters, as used in this 
Toolbox, was fi rst described by Paul and Shimano (1978).

The resolved-rate motion  control scheme was proposed by Whitney (1969). Exten-
sions such as pseudo-inverse Jacobian-based control are reviewed by Klein and Huang 
(1983) and damped least-squares methods are reviewed by Deo and Walker (1995).

MATLAB and Toolbox Notes

The MATLAB Robotics System Toolbox™ describes a serial-link manipulator using 
an instance of the RigidBodyTree class. Jacobians can be computed using the class 
method GeometricJacobian.

Exercises

1. For the simple 2-link example (page 230) compute the determinant symbolically 
and determine when it is equal to zero. What does this mean physically?

2. For the Puma 560 robot can you devise a confi guration in which three joint axes 
are parallel?

3. Derive the analytical Jacobian for Euler angles.
4. Velocity and force ellipsoids for the two link manipulator (page 236, 245). Perhaps 

using the interactive teach  method with the 'callback' option:
a) What confi guration gives the best manipulability?
b) What confi guration is best for throwing a ball in the positive x-direction?
c) What confi guration is best for carrying a heavy weight if gravity applies a force 

in the negative y-direction?
d) Plot the velocity ellipse (x- and y-velocity) for the two-link manipulator at a grid 

of end-effector positions in its workspace. Each ellipsoid should be centered on 
the end-effector position.

5. Velocity and force ellipsoids for the Puma manipulator (page 237)
a) For the Puma 560 manipulator fi nd a confi guration where manipulability is 

greater than at qn.
b) Use the teach  method with the 'callback' option to interactively animate 

the ellipsoids. You may need to use the 'workspace' option to teach to 
prevent the ellipsoid being truncated.

6. Resolved-rate motion control (page 237)
a) Experiment with different Cartesian translational and rotational velocity de-

mands, and combinations.
b) Extend the Simulink system of Fig. 8.6 to also record the determinant of the 

Jacobian matrix to the workspace.
c) In Fig. 8.6 the robot’s motion is simulated for 5 s. Extend the simulation time to 

10 s and explain what happens.
d) Set the initial pose and direction of motion to mimic that of Sect. 7.3.4. What 

happens when the robot reaches the singularity?
e) Replace the Jacobian inverse block in Fig. 8.5 with the MATLAB function pinv.
f) Replace the Jacobian inverse block in Fig. 8.5 with a damped least squares func-

tion, and investigate the effect of different values of the damping factor.
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g) Replace the Jacobian inverse block in Fig. 8.5 with a block based on the MATLAB 
function  lscov.

7. The model mdl_p8 describes an 8-joint robot (PPRRRRRR) comprising an xy-base 
(PP) carrying a Puma arm (RRRRRR).
a) Compute a Cartesian end-effector path and use numerical inverse kinematics 

to solve for the joint coordinates. Analyze how the motion is split between the 
base and the robot arm.

b) With the end-effector at a constant pose explore null-space control. Set a veloc-
ity for the mobile base and see how the arm confi guration accomodates that.

c) Develop a null-space controller that keeps the last six joints in the middle of 
their working range by using the fi rst two joints to position the base of the Puma. 
Modify this so as to maximize the manipulability of the P8 robot.

d) Consider now that the Puma robot is mounted on a nonholonomic robot, cre-
ate a controller that generates appropriate steering and velocity inputs to the 
mobile robot (challenging).

e) For an arbitrary pose and end-point spatial velocity we will move six joints and lock 
two joints. Write an algorithm to determine which two joints should be locked.

8. The model mdl_hyper3d(20) is a 20-joint robot that moves in 3-dimensional 
space.
a) Explore the capabilities of this robot.
b) Compute a Cartesian end-effector trajectory that traces a circle on the ground, 

and use numerical inverse kinematics to solve for the joint coordinates.
c) Add a null-space control strategy that keeps all joint angles close to zero while 

it is moving.
d) Defi ne an end-effector pose on the ground that the robot must reach after passing 

through two holes in vertical planes. Can you determine the joint confi guration 
that allows this?

9. Write code to compute the Jacobian of a robot represented by a SerialLink  ob-
ject using twists as described in Sect. 8.7.1.

10. Consider the Puma 560 robot moving in the xz-plane. Divide the plane into 2-cm 
grid cells and for each cell determine if it is reachable, and if it is then determine 
the manipulability for the fi rst three joints of the robot arm and place that value 
in the corresponding grid cell. Display a heat map of the robot’s manipulability in 
the plane.

8.8  ·  Wrapping Up
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9  Dynamics and Control

In this chapter we consider the dynamics  and control of a serial-link manipulator arm . 
The motion of the end-effector is the composition of the motion of each link, and the 
links are ultimately moved by forces  and torques  exerted by the joints. Section 9.1 de-

scribes the key elements of a robot joint control system that enables a single joint 
to follow a desired trajectory ; and the challenges involved such as friction, gravity 

 load and varying inertia.
Each link in the serial-link manipulator is supported by a reaction force 

and torque from the preceding link, and is subject to its own weight as well 
as the reaction forces and torques from the links that it supports. Section 9.2 
introduces the rigid-body  equations of motion, a set of coupled dynamic 
equations, that describe the joint torques necessary to achieve a particular 

manipulator state. These equations can be factored into terms describing inertia, grav-
ity load and gyroscopic coupling which provide insight into how the motion of one 
joint exerts a disturbance force on other joints, and how inertia and gravity load varies 
with confi guration and  payload. Section 9.3 introduces the forward  dynamics which 
describe how the manipulator moves, that is, how its confi guration evolves with time 
in response to forces and torques applied by the joints and by external forces such 

as gravity. Section 9.4 introduces control systems that compute the required joint 
forces based on the desired trajectory as well as the rigid-body dynamic forces. 
This enables improved control of the end-effector  trajectory, despite changing ro-
bot confi guration, as well as compliant motion. Section 9.5 covers an important 

application of what we have learned about joint control – series-elastic ac-
tuators for human-safe robots.

9.1 
l
Independent Joint  Control 

A robot drive train comprises an actuator or motor, and a  transmission to connect it to 
the link. A common approach to robot joint control is to consider each joint or axis as an 
independent control system that attempts to accurately follow its joint angle trajectory . 
However as we shall see, this is complicated by various disturbance torques  due to gravity , 
velocity  and acceleration  coupling, and friction  that act on the joint. A very common control 
structure is the nested control loop  . The outer loop is responsible for maintaining position 
and determines the velocity of the joint that will minimize position error . The inner loop is 
responsible for maintaining the velocity of the joint as demanded by the outer loop.

9.1.1 
l

Actuators 

The vast majority of robots today are driven by rotary electric motors (Fig. 9.1). Large 
industrial robots typically use brushless servo motors  while small laboratory or hobby 
robots use brushed DC motors  or stepper motors . Manipulators for very large payloads 
as used in mining, forestry or construction are typically hydraulically driven using elec-
trically operated hydraulic valves – electro-hydraulic actuation .
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Electric motors can be either current or voltage controlled.� Here we assume cur-
rent control where a motor driver or amplifi er provides current

that is linearly related to the applied control voltage u and where Ka is the transcon-
ductance  of the amplifi er with units of AV−1. The   torque generated by the motor is 
proportional to current

where Km is the motor torque constant with units of N m A−1. The torque accelerates 
the rotational inertia Jm, due to the rotating part of the motor itself, which has a rota-
tional velocity of ω . Frictional effects are modeled by Bm.

9.1.2 
l
Friction 

Any rotating machinery, motor or gearbox, will be affected by friction – a force or 
torque that opposes motion. The net torque from the motor is

where τf is the friction torque which is function of velocity

 (9.1)

where the slope B > 0 is the viscous friction coeffi cient   and the offset is Coulomb fric-
tion  . The latter is frequently modeled by the nonlinear function

 (9.2)

In general the friction  coeffi cients depend on the direction of rotation and this 
asymmetry is more pronounced for Coulomb than for viscous friction.

The total friction torque as a function of rotational velocity is shown in Fig. 9.2. 
At very low speeds, highlighted in grey, an effect known as  stiction  becomes evident. 
The applied torque must exceed the stiction torque before rotation can occur – a 
process known as breaking stiction  . Once the machine is moving the stiction force 
rapidly decreases and viscous friction dominates.

There are several sources of friction experienced by the motor. The fi rst compo-
nent is due to the motor itself: its bearings and, for a brushed motor, the brushes 
rubbing on the commutator. The friction parameters are often provided in the 
motor manufacturer’s data sheet. Other sources of friction are the gearbox and 
the bearings that support the link .

Fig. 9.1.
Key components of a robot-joint 
actuator . A demand voltage u con-
trols the current im fl owing into the 
motor which generates a torque τm
that accelerates the rotational 
inertia Jm and is opposed by fric-
tion Bm ωm. The encoder mea-
sures rotational speed and angle

Current control is implemented by an 
electronic constant current source, or a 
variable voltage source with feedback 
of actual motor current. A variable volt-
age source is most commonly imple-
mented by a pulse-width modulated 
(PWM) switching circuit. Voltage control 
requires that the electrical dynamics of 
the motor due to its resistance and in-
ductance, as well as  back EMF, must be 
taken into account when designing the 
control system.
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9.1.3 
l
Effect of the Link Mass 

A motor in a robot arm does not exist in isolation, it is connected to a link as shown 
schematically in Fig. 9.3. The link has two obvious signifi cant effects on the motor – it 
adds extra inertia  and it adds a torque  due to the weight of the arm and both vary with 
the confi guration of the joint.

With reference to the simple 2-joint robot shown in Fig. 9.4 consider the fi rst joint 
which is directly attached to the fi rst link which is colored red. If we assume the mass 
of the red link is concentrated at its center of mass (CoM) the extra inertia of the link 
will be m1r1

2. The motor will also experience the inertia of the blue link and this will 
depend on the value of q2 – the inertia of the arm when it is straight is greater than 
the inertia when it is folded.

We also see that gravity  acting on the center of mass   of the red link will create a 
torque  on the joint 1 motor which will be proportional to cos q1. Gravity acting on the 
center of mass of the blue link also creates a torque on the joint 1 motor, and this is 
more pronounced since it is acting at a greater distance from the motor – the lever 
arm effect   is greater.

These effects are clear from even a cursory examination of Fig. 9.4 but the reality is 
even more complex. Jumping ahead to material we will cover in the next section, we 
can use the Toolbox� to determine the torque acting on each of the joints as a func-
tion of the position, velocity and acceleration of the joints

>>  mdl_twolink_sym
>> syms q1 q2 q1d q2d q1dd q2dd real
>> tau = twolink.rne([q1 q2], [q1d q2d], [q1dd q2dd]);

and the result is a symbolic 2-vector, one per joint, with surprisingly many terms 
which we can summarize as:

 Charles-Augustin de Coulomb (1736–1806) was a French physicist. He was born in Angoulême to a 
wealthy family and studied mathematics at the Collége des Quatre-Nations under Pierre Charles 
Monnier, and later at the military school in Méziéres. He spent eight years in Martinique involved 
in the construction of Fort Bourbon and there he contracted tropical fever.

Later he worked at the shipyards in Rochefort which he used as laboratories for his experi-
ments in static and dynamic friction of sliding surfaces. His paper Théorie des machines simples 
won the Grand Prix from the Académie des Sciences in 1781. His later research was on electro-
magnetism and electrostatics and he is best known for the formula on electrostatic forces, named 
in his honor, as is the SI unit of charge. After the revolution he was involved in determining the 
new system of weights and measures.

Fig. 9.2.
Typical friction  versus speed  

characteristic. The dashed lines 
depict a simple piecewise-linear 
friction model characterized by 
slope (viscous friction ) and in-

tercept (Coulomb friction  ). The 
low-speed regime is shaded and 

shown in exaggerated fashion

This requires the MATLAB Symbolic Math 
Toolbox™.

9.1  ·  Independent Joint Control
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 (9.3)

We have already discussed the fi rst and last terms in a qualitative way – the inertia  
is dependent on q2 and the  gravity torque g is  dependent on q1 and q2. What is perhaps 
most surprising is that the torque applied to joint 1 depends on the velocity and the ac-
celeration of q2 and this will covered in more detail in Sect. 9.2.

In summary, the effect of joint motion in a series of mechanical links is nontrivial. The 
motion of any joint is affected by the motion of all the other joints and for a robot with 
many joints this becomes quite complex.

9.1.4 
l

Gearbox 

Electric motors are compact and effi cient and can rotate at very high speed , but produce 
very low torque . Therefore it is common to use a reduction gearbox  to tradeoff speed for 
increased torque. For a prismatic joint the gearbox might convert rotary motion to linear. 
The disadvantage of a gearbox is increased cost, weight, friction, backlash, mechanical 
 noise and, for harmonic gears, torque ripple. Very high-performance robots, such as those 
used in high-speed electronic assembly, use expensive high-torque motors  with a direct 
drive or a very low gear  ratio achieved using cables or thin metal bands rather than gears.

Fig. 9.3.
Robot joint actuator with at-
tached links. The center of mass 
of each link is indicated by ©

Fig. 9.4. Notation for rigid-body 
dynamics of two-link arm show-
ing link frames and relevant di-
mensions. The center of mass  
(CoM) of each link is indicated 
by ©. The CoM is a distance of 
ri from the axis of joint i, and ci 
from the origin of frame {i} as 
defi ned in Fig. 7.5 – therefore 
ri = ai + ci
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Figure 9.5 shows the complete drive train of a typical robot joint. For a G : 1 
reduction drive the torque at the link is G times the torque at the motor. For ro-
tary joints the quantities measured at the link, reference frame l, are related to 
the motor referenced quantities, reference frame m, as shown in Table 9.1. The 
inertia of the load is reduced by a factor of G2� and the disturbance torque by a 
factor of G.

There are two components of inertia  seen by the motor. The fi rst is due to the 
rotating part of the motor itself, its rotor. It is denoted Jm and is a constant intrinsic 
characteristic of the motor and the value is provided in the motor manufacturer’s 
data sheet. The second component is the variable load inertia Jl which is the iner-
tia   of the driven link and all the other links that are attached to it. For joint j this is 
element Mjj of the confi guration dependent inertia matrix of Eq. 9.3.

9.1.5 
l

Modeling the Robot Joint 

The complete motor drive comprises the motor  to generate torque, the gearbox  to 
amplify the torque and reduce the effects of the load, and an encoder  to provide feed-
back of position and velocity. A schematic of such a device is shown in Fig. 9.6.

Collecting the various equations above we can write the torque balance on the mo-
tor shaft as

 (9.4)

where B′, τ′C and J ′ are the effective total viscous friction , Coulomb friction   and inertia  
due to the motor, gearbox, bearings and the load

 (9.5)

In order to analyze the dynamics of Eq. 9.4 we must fi rst linearize it, and this can 
be done simply by setting all additive constants to zero

and then applying the Laplace transformation

where Ω(s) and U(s) are the Laplace transform of the time domain signals ω(t) and 
u(t) respectively. This can be rearranged as a linear transfer function

Fig. 9.5. Schematic of complete ro-
bot joint including gearbox . The 
effective inertia of the links is shown 
as Jl and the disturbance torque due 
to the link motion is τd

For example if you turned the motor 
shaft by hand you would feel the inertia 
of the load through the gearbox but it 
would be reduced by G2.

Table 9.1. Relationship between 
load and motor referenced quan-
tities for reduction gear ratio G

9.1  ·  Independent Joint Control
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relating motor speed to control input, and has a single pole� at s = −B′ / J ′.
We will use data for joint 2 – the shoulder – of the Puma 560 robot   since its pa-

rameters are well known and are listed in Table 9.2. In the absence of other informa-
tion we will take B′ = Bm. The link inertia M22 experienced by the joint 2 motor as a 
function of confi guration is shown in Fig. 9.16c and we see that it varies signifi cantly 
– from 3.66 to 5.21 kg m2. Using the mean value of the extreme inertia values, which 
is 4.43 kg m2, the effective inertia   is

and we see that the inertia of the link referred to the motor side of the gearbox is com-
parable to the inertia of the motor itself.

The Toolbox can automatically generate� a dynamic model suitable for use with 
the MATLAB control design tools

>> tf = p560.jointdynamics(qn); 

is a vector of continuous-time linear-time-invariant (LTI) models, one per joint, com-
puted for the particular pose qn. For the shoulder joint we are considering here that 
transfer function is

>> tf(2)
ans =
            1
  ----------------------
  0.0005797 s + 0.000817
Continuous-time transfer function.

which is similar to that above except that it does not account for Km and Ka since these 
are not parameters of the Link  object. Once we have a model of this form we can plot 
the step response and use a range of standard control system design tools.

Fig. 9.6.
Schematic of an integrated motor -
encoder -gearbox  assembly 
(courtesy of maxon precision 
motors, inc.)

The mechanical pole.

This requires the Control Systems Tool-
box™.
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9.1.6 
l

Velocity Control  Loop 

A very common approach to controlling the position output of a motor is the nested 
control loop. The outer loop is responsible for maintaining position and determines 
the velocity of the joint that will minimize position error. The inner loop – the veloc-
ity loop – is responsible for maintaining the velocity of the joint as demanded by the 
outer loop. Motor speed control is important for all types of robots, not just arms. 
For example it is used to control the speed of the wheels for car-like vehicles and the 
rotors of a quadrotor as discussed in Chap. 4.

The Simulink® model is shown in Fig. 9.7. The input to the motor driver is based 
on the error between the demanded and actual velocity.� A delay of 1 ms is included 
to model the computational time of the velocity loop control  algorithm and a satura-
tor models the fi nite maximum torque that the motor that can deliver.

We fi rst consider the case of proportional control where Ki = 0 and

 (9.6)

To test this velocity controller we create a test harness

>> vloop_test

with a trapezoidal velocity demand which is shown in Fig. 9.8. Running the simulator

>> sim('vloop_test');

and with a little experimentation we fi nd that a gain of Kv = 0.6 gives satisfactory per-
formance as shown in Fig. 9.9. There is some minor overshoot at the discontinuity 
but less gain leads to increased velocity error and more gain leads to oscillation – as 
always control engineering is all about tradeoffs.

Table 9.2.
Motor and drive parameters for 

Puma 560 shoulder joint with 
respect to the motor side of the 

gearbox (Corke 1996b)

The motor velocity is typically computed 
by taking the difference in motor posi-
tion at each sample time, and the posi-
tion is measured by a shaft encoder. This 
can be problematic at very low speeds 
where the encoder tick rate is lower than 
the sample rate. In this case a better strat-
egy is to measure the time between en-
coder ticks.

Fig. 9.7. Velocity control loop, 
Simulink model  vloop

9.1  ·  Independent Joint Control
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Fig. 9.8. Test harness for the veloc-
ity control loop, Simulink model 
 vloop_test. The input tau_d 
is used to simulate a disturbance 
torque acting on the joint

Fig. 9.9. Velocity loop with a trape-
zoidal demand. a Response; b clo-
seup of response

We also observe a very slight steady-state error – the actual velocity is less than 
the demand at all times. From a classical control system perspective the velocity loop 
contains no integrator block and is classifi ed as a Type 0 system – a characteristic of 
Type 0 systems is they exhibit a fi nite error for a constant input. More intuitively we 
can argue that in order to move at constant speed the motor must generate a fi nite 
torque to overcome friction, and since motor torque is proportional to velocity error 
there must be a fi nite velocity error.

Now we will investigate the effect of inertia variation on the closed-loop  response. 
Using Eq. 9.5 and the data from Fig. 9.16c we fi nd that the minimum and maximum 
joint inertia at the motor are 515 ×10−6 and 648 ×10−6 kg m2 respectively. Figure 9.10 
shows the velocity tracking error using the control gains chosen above for various val-
ues of link inertia. We can see that the tracking error decays more slowly for larger 
inertia, and is showing signs of instability for the case of zero link inertia. For a case 
where the inertia variation is more extreme the gain should be chosen to achieve sat-
isfactory closed-loop performance at both extremes.
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Figure 9.15a shows that the gravity torque on this joint varies from approximate-
ly −40 to 40 N m. We now add a disturbance torque equal to just half that maximum 
amount, 20 N m applied on the load side of the gearbox. We do this by setting a non-
zero value in the  tau_d block and rerunning the simulation. The results shown in 
Fig. 9.11 indicate that the control performance has been badly degraded – the tracking 
error has increased to more than 2 rad s−1. This has the same root cause as the very 
small error we saw in Fig. 9.9 – a Type 0 system exhibits a fi nite error for a constant 
input or a constant disturbance.

There are three common approaches to counter this error. The fi rst, and simplest, 
is to increase the gain. This will reduce the tracking error but push the system toward 
instability and increase the overshoot.

The second approach, commonly used in industrial motor drives, is to add  inte-
gral action – adding an integrator changes the system to Type 1 which has zero error 

Fig. 9.10.
Velocity loop  response with a 

trapezoidal demand for varying 
inertia M22

Fig. 9.11.
Velocity loop response to a trap-

ezoidal demand with a gravity 
disturbance of 20 N m

Motor limits.  Electric motors are limited in both torque and speed. The  maximum torque is de-
fi ned by the maximum current the drive electronics can provide. A motor also has a maximum 
rated current beyond which the motor can be damaged by overheating or demagnetization of its 
permanent magnets which irreversibly reduces its torque constant. As speed increases so does 
friction and the maximum speed is ωmax = τmax/ B.

The product of motor torque and speed is the mechanical output power and also has an upper 
bound. Motors can tolerate some overloading, peak power and peak torque, for short periods of 
time but the sustained rating is signifi cantly lower than the peak.

9.1  ·  Independent Joint Control
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for a constant input or constant disturbance. We change Eq. 9.6 to a  proportional-
integral controller

In the Simulink model of Fig. 9.7 this is achieved by setting Ki to a nonzero value. 
With some experimentation we fi nd the gains Kv = 1 and Ki = 10 work well and the per-
formance is shown in Fig. 9.12. The integrator state evolves over time to cancel out the 
disturbance term and we can see the error decaying to zero. In practice the disturbance 
varies over time and the integrator’s ability to track it depends on the value of the inte-
gral gain Ki. In reality other disturbances affect the joint, for instance Coulomb friction 
and torques due to velocity and acceleration coupling. The controller needs to be well 
tuned so that these have minimal effect on the tracking performance.

As always in engineering there are some tradeoffs. The integral term can lead to in-
creased overshoot so increasing Ki usually requires some compensating reduction of Kv. If 
the joint actuator is pushed to its performance limit, for instance the torque limit is reached, 
then the tracking error will grow with time since the motor acceleration will be lower than 
required. The integral of this increasing error will grow leading to a condition known as 
 integral windup. When the joint fi nally reaches its destination the large accumulated inte-
gral keeps driving the motor forward until the integral decays – leading to large overshoot. 
Various strategies are employed to combat this, such as limiting the maximum value of the 
integrator, or only allowing integral action when the motor is close to its setpoint.

These two approaches are collectively referred to as disturbance rejection and are con-
cerned with reducing the effect of an unknown disturbance. However if we think about the 
problem in its robotics context the  gravity disturbance is not unknown. In Sect. 9.1.3 we 
showed how to compute the  torque due to gravity that acts on each joint. If we know this 
torque, and the motor torque constant, we can add it to the output of the PI controller.�

The third approach is therefore to predict the disturbance and cancel it out – a strategy 
known as  torque  feedforward  control. This is shown by the red wiring in Fig. 9.7 and can 
be demonstrated by setting the  tau_ff block of Fig. 9.8 to the same, or approximately 
the same, value as the disturbance.

 Back EMF. A spinning motor acts like a generator and produces a voltage Vb called the  back EMF 
which opposes the current fl owing into the motor. Back EMF is proportional to motor speed 
Vb = Kmω  where Km is the motor torque constant whose units can also be interpreted as V s rad−1. 
When this voltage equals the maximum possible voltage from the drive electronics then no more 
current can fl ow into the motor and torque falls to zero. This provides a practical upper bound 
on motor speed, and torque at high speeds.

Fig. 9.12.
Velocity loop response to a trap-
ezoidal demand with a gravity 
disturbance of 20 N m and pro-
portional-integral control

Even if the gravity load is known impre-
cisely this trick will reduce the magni-
tude of the disturbance.
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9.1.7 
l
Position Control  Loop 

The outer loop is responsible for maintaining position and we use a proportional 
controller� based on the error between actual and demanded position to compute 
the desired speed of the motor

 (9.7)

A Simulink model is shown in Fig. 9.13 and the position demand q∗(t) comes from 
an LSPB trajectory generator that moves from 0 to 0.5 rad in 1 s with a sample rate of 
1 000 Hz. Joint position is obtained by integrating joint velocity, obtained from the 
motor velocity loop via the gearbox. The error between the motor and desired posi-
tion provides the velocity demand for the inner loop.

We load this control loop model

>>  ploop_test

and its performance is tuned by adjusting the three gains: Kp, Kv, Ki in order to achieve 
good tracking performance along the trajectory. For Kp = 40 the tracking and error 
responses are shown in Fig. 9.14a. We see that the fi nal error is zero but there is some 
tracking error along the path where the motor position lags behind the demand. The 
error between the demand and actual curves is due to the cumulative velocity error 
of the inner loop which has units of angle.

Another common approach is to use a 
proportional-integral-derivative (PID) 
controller for position but it can be shown 
that the D gain of this controller is related 
to the P gain of the inner velocity loop.

Fig. 9.13. Position control loop, 
Simulink model   ploop_test. 
a Test harness for following an 
LSPB  angle trajectory. b The po-
sition loop ploop which is a pro-
portional controller around the 
inner velocity loop of Fig. 9.7

9.1  ·  Independent Joint Control
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The position loop, like the velocity loop is based on classical negative feedback. 
Having zero position error while tracking a ramp would mean zero demanded ve-
locity to the inner loop which is actually contradictory. More formally, we know 
that a Type 1 system� exhibits a constant error to a ramp input. If we care about 
reducing this tracking error there are two common remedies. We can add an inte-
grator to the position loop – making it a proportional-integral controller but this 
gives us yet another parameter to tune. A simple and effective alternative is  veloc-
ity  feedforward  control – we add the desired velocity to the output of the propor-
tional control loop, which is the input to the velocity loop. The  LSPB trajectory 
function computes velocity as a function of time as well as position. The time  re-
sponse with velocity feedforward is shown in Fig. 9.14b and we see that tracking 
error is greatly reduced.

9.1.8 
l
Independent Joint Control Summary

A common structure for robot joint control is the nested control loop. The inner 
loop uses a proportional or proportional-integral control  law to generate a torque 
so that the actual velocity closely follows the velocity demand. The outer loop uses 
a proportional control law to generate the velocity demand so that the actual posi-
tion closely follows the position demand. Disturbance torques due to gravity and 
other dynamic coupling effects impact the performance of the velocity loop as do 
variation in the parameters of the plant being controlled, and this in turn leads to 
errors in position tracking. Gearing reduces the magnitude of disturbance torques 
by 1 / G and the variation in inertia and friction by 1/G2 but at the expense of cost, 
weight, increased  friction and mechanical  noise.

The velocity loop performance can be improved by adding an integral control 
term, or by feedforward of the disturbance torque which is largely predictable. The 
position loop performance can also be improved by feedforward of the desired joint 
velocity. In practice control systems use both  feedforward and  feedback   control. 
Feedforward is used to inject signals that we can compute, in this case the joint 
velocity, and in the earlier case the gravity torque. Feedback control compensates 
for all remaining sources of error including variation in inertia due to manipulator 
confi guration and  payload, changes in friction with time and temperature, and all 
the disturbance torques due to velocity and acceleration coupling. In general the 
use of feedforward allows the feedback gain to be reduced since a large part of the 
demand signal now comes from the feedforward.

Fig. 9.14. Position loop following 
an LSPB trajectory. a Proportional 
control only b proportional con-
trol plus velocity demand feedfor-
ward

Since the model contains an integrator 
after the velocity loop.
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9.2 
l
Rigid-Body  Equations of Motion

Consider the motor which actuates the jth revolute joint of a serial-link manipula-
tor. From Fig. 7.5 we recall that joint j connects link j − 1 to link j. The motor exerts 
a torque that causes the outward link, j, to rotationally accelerate but it also exerts a 
reaction torque on the inward link j − 1. Gravity acting on the outward links j to N 
exert a weight force, and rotating links also exert gyroscopic forces on each other. 
The inertia that the motor experiences is a function of the confi guration of the out-
ward links.

The situation at the individual link is quite complex but for the series of links the 
result can be written elegantly and concisely as a set of coupled differential equations 
in matrix form

 (9.8)

where q, ¸ and » are respectively the vector of generalized joint coordinates, veloci-
ties and accelerations, M is the joint-space inertia matrix, C is the  Coriolis and cen-
tripetal coupling matrix, F is the  friction force, G is the  gravity  loading, and Q is the 
vector of  generalized actuator forces associated with the  generalized coordinates q. 
The last term gives the joint forces due to a  wrench W applied at the end-effector 
and J is the  manipulator  Jacobian. This equation describes the manipulator  rigid-
body  dynamics and is known as the  inverse  dynamics – given the pose, velocity and 
acceleration it computes the required joint forces or torques.

These equations can be derived using any classical dynamics method such as 
 Newton’s second  law and  Euler’s  equation of motion, as discussed in Sect. 3.2.1, 
or a Lagrangian energy-based approach. A very effi cient way for computing Eq. 9.8 
is the  recursive  Newton-Euler  algorithm which starts at the base and working out-
ward adds the velocity and acceleration of each joint in order to determine the ve-
locity and acceleration of each link. Then working from the tool back to the base, it 
computes the forces and moments acting on each link and thus the joint torques.� 
The recursive Newton-Euler algorithm has O(N) complexity and can be written in 
functional form as

 (9.9)

In the Toolbox it is implemented by the  rne method of the SerialLink object.� 
Consider the Puma 560 robot

 >> mdl_puma560 

at the nominal pose, and with zero joint velocity and acceleration. To achieve this state, 
the required generalized joint forces, or joint torques in this case, are

>> Q = p560.rne(qn, qz, qz)
Q =
   -0.0000   31.6399    6.0351    0.0000    0.0283         0  

Since the robot is not moving (we specifi ed ¸ = » = 0) these torques must be those 
required to hold the robot up against gravity. We can confi rm this by computing the 
torques required in the absence of gravity

>> Q = p560.rne(qn, qz, qz, 'gravity', [0 0 0])
ans =
     0     0     0     0     0     0  

by overriding the object’s default  gravity vector.
Like most Toolbox methods  rne can operate on a  trajectory

>> q = jtraj(qz, qr, 10)
>> Q = p560.rne(q, 0*q, 0*q)   

The recursive form of the inverse dynam-
ics does not explicitly calculate the ma-
trices M, C and G of Eq. 9.8. However we 
can use the recursive Newton-Euler al-
gorithm to calculate these matrices and 
the Toolbox functions inertia  and
coriolis  use Walker and Orin’s (1982) 
‘Method 1’. While the recursive forms are 
computationally efficient for the inverse 
dynamics, to compute the coefficients of 
the individual dynamic terms (M, C and 
G) in Eq. 9.8 is quite costly – O(N3) for an 
N-axis manipulator.

Not all robot arm models in the Toolbox 
have dynamic parameters, see the “dy-
namics” tag in the output of the mod-
els() command, or use models('dyn') to 
list models with dynamic parameters. 
The Puma 560 robot is used for the ex-
amples in this chapter since its dynamic 
parameters are reliably known.

9.2  ·  Rigid-Body Equations of Motion
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which has returned

>> about(Q)
Q [double] : 10x6 (480 bytes) 

a 10 × 6 matrix with each row representing the generalized force required for the cor-
responding row of q. The joint torques corresponding to the fi fth time step are

>> Q(5,:)
ans =
    0.0000   29.8883    0.2489         0         0         0

Consider now a case where the robot is moving. It is instantaneously at the nominal 
pose but joint 1 is moving at 1 rad s−1 and the acceleration of all joints is zero. Then 
in the absence of gravity, the required joint torques

>> p560.rne(qn, [1 0 0 0 0 0], qz, 'gravity', [0 0 0])
   30.5332    0.6280   -0.3607   -0.0003   -0.0000         0 

are nonzero. The torque on joint 1 is that needed to overcome friction which always op-
poses the motion. More interesting is that torques need to be exerted on joints 2, 3 and 4. 
This is to oppose the gyroscopic effects ( centripetal and  Coriolis forces) – referred to as 
 velocity coupling torques since the rotational velocity of one joint has induced a torque 
on several other joints.

The elements of the matrices M, C, F and G are complex functions of the link’s kine-
matic parameters (θ j, dj, aj, α j) and inertial parameters. Each link has ten independent 
inertial parameters: the link mass mj; the  center of mass (COM) rj with respect to the 
link coordinate frame; and six second moments which represent the inertia of the link 
about the COM but with respect to axes aligned with the link frame {j}, see Fig. 7.5. We 
can view the dynamic parameters of a robot’s link by

>> p560.links(1).dyn
Revolute(std): theta=q, d=0, a=0, alpha=1.5708, offset=0
  m    = 0          
  r    = 0           0           0          
  I    = | 0           0           0           |
         | 0           0.35        0           |
         | 0           0           0           |
  Jm   = 0.0002     
  Bm   = 0.00148    
  Tc   = 0.395      (+) -0.435     (-)
  G    = -62.61     
  qlim = -2.792527 to 2.792527

which in order are: the kinematic parameters, link mass, COM position, link iner-
tia matrix, motor inertia, motor friction, Coulomb friction, reduction gear  ratio and 
joint angle limits.

The remainder of this section examines the various matrix components of Eq. 9.8.

9.2.1  
l

Gravity Term

We start our detailed discussion with the gravity term because it is generally the 
dominant term in Eq. 9.8 and  is present even when the robot is stationary or mov-
ing slowly. Some robots use counterbalance weights� or even springs to reduce the 
 gravity torque that needs to be provided by the motors – this allows the motors to be 
smaller and thus lower in cost.

In the previous section we used the  rne method to compute the gravity load by 
setting the joint velocity and acceleration to zero. A more convenient approach is to 
use the  gravload method

Counterbalancing will however increase 
the inertia associated with a joint since 
it adds additional mass at the end of a 
lever arm, and increase the overall mass 
of the robot.
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>> gravload = p560.gravload(qn)
gravload =
   -0.0000   31.6399    6.0351    0.0000    0.0283         0  

The SerialLink object contains a default gravitational acceleration vector which 
is initialized to the nominal value for Earth�

>> p560.gravity'
ans =
         0         0    9.8100 

We could change gravity to the lunar value
>> p560.gravity = p560.gravity/6;  

resulting in reduced joint torques
>> p560.gravload(qn)
ans =
    0.0000    5.2733    1.0059    0.0000    0.0047         0 

or we could turn our lunar robot upside down
>> p560.base = SE3.Rx(pi);
>> p560.gravload(qn)
ans =
    0.0000   -5.2733   -1.0059   -0.0000   -0.0047         0   

and see that the torques have changed sign. Before proceeding we bring our robot 
back to Earth and right-side up

>> mdl_puma560 

The torque exerted on a joint due to gravity acting on the robot depends very strongly 
on the robot’s pose. Intuitively the torque on the shoulder joint is much greater when 
the arm is stretched out horizontally

>> Q = p560.gravload(qs)
Q =
   -0.0000   46.0069    8.7722    0.0000    0.0283         0  

than when the arm is pointing straight up
>> Q = p560.gravload(qr)
Q =
         0   -0.7752    0.2489         0         0         0  

The gravity torque on the elbow is also very high in the fi rst pose since it has to sup-
port the lower arm and the wrist. We can investigate how the  gravity  load on joints 2 
and 3 varies with joint confi guration by
1 [Q2,Q3] =  meshgrid(-pi:0.1:pi, -pi:0.1:pi);  
2 for i=1:numcols(Q2),
3  for j=1:numcols(Q3);
4  g = p560.gravload([0 Q2(i,j) Q3(i,j) 0 0 0]);
5  g2(i,j) = g(2);
6  g3(i,j) = g(3);
7  end
8 end
9 surfl (Q2, Q3, g2); surfl (Q2, Q3, g3);

The 'gravity'  option for the 
SerialLink  constructor can 
change this.

 Joseph-Louis Lagrange (1736–1813) was an Italian-born (Giuseppe Lodovico Lagrangia) French math-
ematician and astronomer. He made signifi cant contributions to the fi elds of analysis, number theo-
ry, classical and celestial mechanics. In 1766 he succeeded Euler  as the director of mathematics at the 
Prussian Academy of Sciences in Berlin, where he stayed for over twenty years, producing a large body 
of work and winning several prizes of the French Academy of Sciences. His treatise on analytical me-
chanics “Mécanique Analytique” fi rst published in 1788, offered the most comprehensive treatment of 
classical mechanics since Newton and formed a basis for the development of mathematical physics in 
the nineteenth century. In 1787 he became a member of the French Academy, was the fi rst professor 
of analysis at the École Polytechnique, helped drive the decimalization of France, was a member of the 
Legion of Honour and a Count of the Empire in 1808. He is buried in the Panthéon in Paris.

9.2  ·  Rigid-Body Equations of Motion
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and the results are shown in Fig. 9.15. The gravity torque on joint 2 varies be-
tween ±40 N m and for joint 3 varies between ±10 N m. This type of analysis is 
very important in robot design to determine the required torque capacity for the 
motors.

9.2.2 
l
Inertia Matrix

The joint-space inertia is a positive defi nite, and therefore symmetric, matrix �

>> M = p560.inertia(qn)
M =
    3.6594   -0.4044    0.1006   -0.0025    0.0000   -0.0000
   -0.4044    4.4137    0.3509    0.0000    0.0024    0.0000
    0.1006    0.3509    0.9378    0.0000    0.0015    0.0000
   -0.0025    0.0000    0.0000    0.1925    0.0000    0.0000
    0.0000    0.0024    0.0015    0.0000    0.1713    0.0000
   -0.0000    0.0000    0.0000    0.0000    0.0000    0.1941  

which is a function of the manipulator confi guration. The diagonal elements Mjj de-
scribe the inertia experienced by joint j, that is, Qj = MjjÌj. Note that the fi rst two diag-
onal elements, corresponding to the robot’s waist and shoulder joints, are large since 
motion of these joints involves rotation of the heavy upper- and lower-arm links. The 
off-diagonal terms Mij = Mji, i ≠ j are the products of inertia and represent coupling 
of acceleration from joint j to the generalized force on joint i.

We can investigate some of the elements of the inertia matrix and how they vary 
with robot confi guration using the simple (but slow�) commands
1 [Q2,Q3] =  meshgrid(-pi:0.1:pi, -pi:0.1:pi);
2 for i=1:numcols(Q2)
3     for j=1:numcols(Q3)
4         M = p560.inertia([0 Q2(i,j) Q3(i,j) 0 0 0]);
5         M11(i,j) = M(1,1);
6         M12(i,j) = M(1,2);
7     end
8 end
9 surfl (Q2, Q3, M11); surfl (Q2, Q3, M12);    

The results are shown in Fig. 9.16 and we see signifi cant variation in the value of M11 
which changes by a factor of

>> max(M11(:)) / min(M11(:))
ans =
    2.1558

Fig. 9.15. Gravity load variation 
with manipulator pose. a Shoulder 
gravity load, g2(q2, q3); b elbow 
gravity load g3(q2, q3)

The diagonal elements of this inertia 
matrix includes the motor armature in-
ertias, multiplied by G2.

Displaying the value of the robot object
>> p560 displays a tag slowRNE 
or fastRNE. The former indicates all 
calculations are done in MATLAB code. 
Build the MEX version, provided in the 
mex folder, to enable the fastRNE 
mode which is around 100 times faster.
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This is important for robot design since, for a fi xed maximum motor torque, inertia 
sets the upper bound on acceleration which in turn effects path following accuracy.

The off-diagonal term M12 represents coupling between the angular acceleration 
of joint 2 and the torque on joint 1. That is, if joint 2 accelerates then a torque will be 
exerted on joint 1 and vice versa.

9.2.3 
l

Coriolis Matrix

The Coriolis matrix C is a function of joint coordinates and joint velocity. The cen-
tripetal torques are proportional to Åj

2, while the  Coriolis torques are proportional to 
ÅiÅj. For example, at the nominal pose with the elbow joint moving at 1 rad s−1

>> qd = [0 0 1 0 0 0];

the Coriolis matrix is

>> C = p560.coriolis(qn, qd)
C =
    0.8992   -0.2380   -0.2380    0.0005   -0.0375    0.0000
   -0.0000    0.9106    0.9106         0   -0.0036         0
    0.0000    0.0000   -0.0000         0   -0.0799         0
   -0.0559    0.0000    0.0000   -0.0000    0.0000   -0.0000
   -0.0000    0.0799    0.0799   -0.0000         0         0
    0.0000         0         0    0.0000         0         0

Fig. 9.16. Variation of inertia ma-
trix elements as a function of ma-
nipulator pose. a Joint 1 inertia as 
a function of joint 2 and 3 angles 
M11(q2, q3); b product of inertia 
M12(q2, q3); c joint 2 inertia as a 
function of joint 3 angle M22(q3)

9.2  ·  Rigid-Body Equations of Motion
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The off-diagonal terms Ci,j represent coupling of joint j velocity to the generalized force 
acting on joint i. C2,3 = 0.9106 represents signifi cant coupling from joint 3 velocity to 
torque on joint 2 – rotation of the elbow exerting a torque on the shoulder. Since the 
elements of this matrix represents a coupling from velocity to joint force they have the 
same dimensions as viscous friction or damping, however the sign can be positive or 
negative. The joint torques due to the motion of just this one joint are

>> C*qd'
ans =
   -0.2380
    0.9106
   -0.0000
    0.0000
    0.0799
         0 

9.2.4 
l
Friction

For most electric drive robots friction is the next most dominant joint force after 
gravity.�

The Toolbox models friction within the Link object. The friction values are lumped 
and motor referenced, that is, they apply to the motor side of the gearbox. Viscous 
friction is a scalar that applies for positive and negative velocity.� Coulomb friction 
is a 2-vector comprising (QC

+, QC
−). The dynamic parameters of the Puma robot’s fi rst 

link are shown on page 264 as link parameters Bm and Tc. The online documentation 
for the  Link class describes how to set these parameters.

9.2.5 
l
Effect of  Payload

Any real robot has a specifi ed  maximum payload which is dictated by two dynamic 
effects. The fi rst is that a mass at the end of the robot will increase the inertia experi-
enced by the joint motors and which reduces acceleration and dynamic performance. 
The second is that mass generates a weight force which all the joints need to support. 
In the worst case the increased gravity torque component might exceed the rating of 
one or more motors. However even if the rating is not exceeded there is less torque 
available for acceleration which again reduces dynamic performance.

As an example we will add a 2.5 kg point mass to the Puma 560 which is its rated maxi-
mum payload. The center of mass of the payload cannot be at the center of the wrist coordi-
nate frame, that is inside the wrist, so we will offset it 100 mm in the z-direction of the wrist 
frame. We achieve this by modifying the inertial parameters of the robot’s last link�

>> p560.payload(2.5, [0 0 0.1]);

The inertia at the nominal pose is now

>> M_loaded = p560.inertia(qn);  

and the  ratio with respect to the unloaded case, computed earlier, is

>> M_loaded ./ M
ans =
    1.3363    0.9872    2.1490   49.3960   80.1821    1.0000
    0.9872    1.2667    2.9191    5.9299   74.0092    1.0000
    2.1490    2.9191    1.6601   -2.1092   66.4071    1.0000
   49.3960    5.9299   -2.1092    1.0647   18.0253    1.0000
   83.4369   74.0092   66.4071   18.0253    1.1454    1.0000
    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000

For the Puma robot joint friction varied 
from 10 to 47% of the maximum mo-
tor torque for the first three joints (Corke 
1996b).

In practice some mechanisms have a ve-
locity dependent friction characteristic.

This assumes that the last link itself has 
no mass which is a reasonable approxi-
mation.
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We see that the diagonal elements have increased signifi cantly, for instance the elbow joint 
inertia has increased by 66% which reduces the maximum acceleration by nearly 40%. 
Reduced acceleration impairs the robot’s ability to accurately follow a high speed path. The 
inertia of joint 6 is unaffected since this added mass lies on the axis of this joint’s rotation. 
The off-diagonal terms have increased signifi cantly, particularly in rows and columns four 
and fi ve. This indicates that motion of joints 4 and 5, the wrist joints, which are swinging 
the offset mass give rise to large reaction forces that are felt by all the other robot joints.

The gravity load has also increased by some signifi cant factors
>> p560.gravload(qn) ./ gravload
ans =
    0.3737    1.5222    2.5416   18.7826  86.8056       NaN 

at the elbow and wrist. Note that the values for joints 1, 4 and 6 are invalid since they 
are each the quotient of numbers that are almost zero. We set the payload of the ro-
bot back to zero before proceeding

>> p560.payload(0)

9.2.6  
l
Base Force

A moving robot exerts a  wrench on its base – its weight as well as reaction forces and 
torques as the arm moves around. This wrench is returned as an optional output ar-
gument of the  rne method, for example

>> [Q,Wb] = p560.rne(qn, qz, qz); 

The wrench
>> Wb'
ans =
         0   -0.0000  230.0445  -48.4024  -31.6399   -0.0000

needs to be applied to the base to keep it in equilibrium. The vertical force of 230 N is 
the total weight of the robot which has a mass of

>> sum([p560.links.m])
ans =
   23.4500 

There is also a moment about the x- and y-axes since the center of mass of the robot 
in this confi guration is not over the origin of the base coordinate frame.

The base forces are important in situations where the robot does not have a rigid 
base such as on a satellite in space, on a boat, an underwater vehicle or even on a ve-
hicle with soft suspension.

9.2.7 
l
Dynamic  Manipulability

In Sect. 8.2.2 we discussed a kinematic measure of manipulability, that is, how well con-
fi gured the robot is to achieve velocity in any Cartesian direction. The force ellipsoid of 
Sect. 8.5.2 describes how well the manipulator is able to accelerate in different Cartesian 
directions but is based on the kinematic, not dynamic, parameters of the robot arm. 
Following a similar approach, we consider the set of generalized joint forces with unit norm

From Eq. 9.8 and ignoring gravity and assuming ¸ = 0 we write

Differentiating Eq. 8.2 and still assuming ¸ = 0 we write

9.2  ·  Rigid-Body Equations of Motion
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Combining these we write

or more compactly

which is the equation of a  hyperellipsoid in Cartesian acceleration space. For exam-
ple, at the nominal pose

>> J = p560.jacob0(qn);
>> M = p560.inertia(qn);
>> Mx = (J * inv(M) * inv(M)' * J');    

If we consider just the translational acceleration, that is the top left 3 × 3 submatrix 
of Mx

>> Mx = Mx(1:3, 1:3);

this is a 3-dimensional ellipsoid

>> plot_ellipse( Mx )

which is plotted in Fig. 9.17. The major axis of this ellipsoid is the direction in which 
the manipulator has maximum acceleration at this confi guration. The radii of the el-
lipse are the square roots of the  eigenvalues

>>  sqrt(eig(Mx))
ans =
    0.4412
    0.1039
    0.1677

and the direction of maximum acceleration is given by the fi rst eigenvector. The ratio 
of the minimum to maximum radius

>> min(ans)/max(ans)
ans =
    0.2355

is a measure of the nonuniformity of end-effector acceleration.� It would be unity for 
isotropic acceleration capability. In this case acceleration capability is good in the x- 
and z-directions, but poor in the y-direction.

The 6-dimensional ellipsoid has dimen-
sions with different units: m s−2 and 
rad s−2. This makes comparison of all 
6 radii problematic.

Fig. 9.17.
Spatial acceleration ellipsoid for 
Puma 560 robot in nominal pose
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The scalar dynamic  manipulability measure proposed by Asada is similar but con-
siders the ratios of the  eigenvalues of

and returns a uniformity measure m ∈ [0, 1] where 1 indicates uniformity of accelera-
tion in all directions. For this example

>> p560.maniplty(qn, 'asada')
ans =
    0.2094 

9.3 
l
Forward  Dynamics

To determine the motion of the manipulator in response to the forces and torques ap-
plied to its joints we require the  forward dynamics or  integral dynamics. Rearranging 
the  equations of motion Eq. 9.8 we obtain the joint acceleration

 (9.10)

and M is always invertible. This function is computed by the  accel method of the 
SerialLink class

   qdd = p560.accel(q, qd, Q)  

given the joint coordinates, joint velocity and applied joint torques. This functionality 
is also encapsulated in the Simulink block  Robot and an example of its use is

>>  sl_ztorque

which is shown in Fig. 9.18. The torque applied to the robot is zero and the initial joint 
angles is set as a parameter of the  Robot block, in this case to the zero-angle pose. 
The simulation is run

>> r = sim('sl_ztorque');

and the joint angles as a function of time are returned in the object r

>> t = r.fi nd('tout');
>> q = r.fi nd('yout');

We can show the robot’s motion in animation

>> p560.plot(q) 

and see it collapsing under gravity since there are no torques to counter gravity and 
hold in upright.  The shoulder falls and swings back and forth as does the elbow, while 
the waist joint rotates because of Coriolis coupling. The motion will slowly decay as 
the energy is dissipated by viscous friction.

Fig. 9.18.
Simulink model  sl_ztorque 

for the Puma 560 manipulator 
with zero joint torques. This 

model removes Coulomb fric-
tion in order to simplify the nu-

merical integration

9.3  ·  Forward Dynamics
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Alternatively we can plot the joint angles as a function of time

>> plot(t, q(:,1:3))

and this is shown in Fig. 9.19. The method  fdyn can be used as a nongraphical alter-
native to Simulink and is described in the online documentation.

This example is rather unrealistic and in reality the joint torques would be com-
puted by some control  law as a function of the actual and desired robot joint angles. 
This is the topic of the next section.

Coulomb friction is a strong nonlinearity and can cause difficulty when using 
numerical integration routines to solve the forward  dynamics. This is usually 
manifested by very long integration times. Fixed-step solvers tend to be more 
tolerant, and these can be selected through the  Simulink Simulation+Model 
Confi guration Parameters+Solver menu item.

The default Puma 560 model, defined using mdl_puma560, has nonzero 
viscous and Coulomb friction parameters for each joint. Sometimes it is useful 
to zero the friction parameters for a robot and this can be achieved by

>> p560_nf = p560.nofriction();  

which returns a copy of the robot object that is similar in all respects except 
that the Coulomb friction is zero. Alternatively we can set Coulomb and viscous 
friction   coefficients to zero

>> p560_nf = p560.nofriction('all');  

9.4 
l
Rigid-Body  Dynamics Compensation

In Sect. 9.1 we discussed some of the challenges for independent joint control and in-
troduced the concept of feedforward to compensate for the gravity disturbance torque. 
Inertia variation and other dynamic coupling forces were not explicitly dealt with and 
were left for the feedback controller to handle. However inertia and coupling torques 
can be computed according to Eq. 9.8 given knowledge of joint angles, joint velocities 
and accelerations, and the inertial parameters of the links. We can incorporate these 
torques into the control law using one of two model-based approaches:   feedforward 
 control, and computed torque    control. The structural differences are contrasted in 
Fig. 9.20 and Fig. 9.21.

Fig. 9.19.
Joint  angle trajectory for 
Puma 560 robot with zero 
Coulomb friction collapsing
under gravity from initial joint 
confi guration qz
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9.4.1  
l
Feedforward  Control

The  torque feedforward controller shown in Fig. 9.20 is given by

 
(9.11)

where Kp and Kv are the position and velocity gain (or damping) matrices respectively, 
and D−1(·) is the  inverse  dynamics function. The gain matrices are typically diagonal. 
The feedforward term provides the joint forces required for the desired manipulator 
state (q∗, Å∗, Ì∗) and the feedback term compensates for any errors due to uncertainty 
in the inertial parameters, unmodeled forces or external disturbances.

Fig. 9.21. Robotics Toolbox ex-
ample  sl_ctorque, computed 
torque control

Fig. 9.20. The Simulink model 
 sl_fforward for Puma 560 with 
torque feedforward control. The 
blocks with the staircase icons are 
zero-order holds

�

�

9.4  ·  Rigid-Body Dynamics Compensation
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We can also consider that the feedforward term linearizes the nonlinear  dynamics 
about the operating point (q∗,¸∗,»∗). If the linearization is ideal then the dynamics of 
the error e = q∗ − q# can be obtained by combining Eq. 9.8 and 9.11

 (9.12)

For well chosen Kp and Kv the error will decay to zero but the joint errors are cou-
pled� and their dynamics are dependent on the manipulator confi guration.

To test this controller using Simulink we fi rst create a SerialLink object

>> mdl_puma560 

and then load the torque feedforward controller model

>>  sl_fforward

The feedforward torque is computed using the   RNE block and added to the feedback 
torque computed from position and velocity error. The desired joint angles and 
velocity are generated using a jtraj block. Since the robot confi guration changes 
relatively slowly the feedforward torque can be evaluated at a greater interval, Tff, than 
the error feedback loops, Tfb. In this example we use a zero-order hold block sampling 
at the relatively low sample rate of 20 Hz.

We run the simulation by pushing the Simulink play button or

>> r = sim('sl_fforward');

9.4.2 
l

Computed Torque  Control

The computed torque controller is shown in Fig. 9.21. It belongs to a class of control-
lers known as  inverse dynamic control. The principle is that the nonlinear system is 
cascaded with its inverse so that the overall system has a constant unity gain. In prac-
tice the inverse is not perfect so a feedback loop is required to deal with errors.

The  computed torque control is given by

(9.13)

where Kp and Kv are the position and velocity gain (or damping) matrices respectively, 
and D−1(·) is the  inverse  dynamics function.

In this case the inverse dynamics must be evaluated at each servo interval, although 
the coeffi cient matrices M, C, and G could be evaluated at a lower rate since the robot 
confi guration changes relatively slowly. Assuming ideal modeling and parameteriza-
tion the error  dynamics of the system are obtained by combining Eq. 9.8 and 9.13

 (9.14)

where e = q∗ − q#. Unlike Eq. 9.12 the joint errors are uncoupled and their dynamics 
are therefore independent of manipulator confi guration. In the case of model error 
there will be some coupling between axes, and the right-hand side of Eq. 9.14 will be 
a nonzero forcing function.

Using Simulink we fi rst create a SerialLink object and then load the computed 
torque controller

>> mdl_puma560
>>  sl_ctorque 

Due to the nondiagonal matrix M.
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The desired joint angles and velocity are generated using a jtraj block whose pa-
rameters are the initial and fi nal joint angles. We run the simulation by pushing the 
Simulink play button or

>> r = sim( 'sl_ctorque');

9.4.3 
l

Operational Space Control  

The control strategies so far have been posed in terms of the robot’s joint coordinates 
– its confi guration space. Equation 9.8 describes the relationship between joint posi-
tion , velocity , acceleration  and applied forces or torques . However we can also express 
the dynamics of the end-effector in the Cartesian operational space where we consider 
the end-effector as a rigid body with inertia that actuator and disturbance forces and 
torques act on. We can reformulate Eq. 9.8 in operational space as

 (9.15)

where x ∈ R6 is the manipulator Cartesian pose and Λ is the end-effector inertia   
which is subject to a gyroscopic and Coriolis force    µ  and gravity load p and an ap-
plied control wrench W. These operational space terms are related to those we have 
already discussed by

Imagine the task of wiping a table when the table’s height is unknown and its sur-
face is only approximately horizontal. The robot’s z-axis is vertical so to achieve the 
task we need to move the end-effector along a path in the xy-plane to achieve cover-
age and hold the wiper at a constant orientation about the z-axis. Simultaneously we 
maintain a constant force in the z-direction to hold the wiper against the table and 
a constant torque about the x- and y-axes in order to conform to the orientation of 
the table top. The fi rst group of axes are position controlled, and the second group 
are force controlled. Each Cartesian degree of freedom can be either position or  force 
controlled. The operational space control   allows independent control of position and 
forces along and about the axes of the operational space coordinate frame.

A Simulink model of the controller and a simplifi ed version of this scenario can 
be loaded by

>>  sl_opspace

and is shown in Fig. 9.22. It comprises a position-control loop and a force-control 
loop whose results are summed together and used to drive the operational space ro-
bot model – details can be found by opening that block in the Simulink diagram. In 
this simulation the operational space coordinate frame is parallel to the end-effector 
coordinate frame. Motion is position controlled in the x- and y-directions and about 
the x-, y- and z-axes of this frame – the robot moves from its initial pose to a nearby 
pose using 5 out of the 6 Cartesian DOF.�

Motion is force controlled in the z-direction with a setpoint of –5 N. To achieve this 
the controller moves the end-effector downward in order to decrease the force. It moves 
in free space until it touches the surface at z = −0.2 which is modeled as a stiffness of 
100 N m−1. Results in Fig. 9.23 show the x- and y-position moving toward the goal and 
the z-position decreasing and the simulated sensed force decreasing after contact. The 
controller is able to simultaneously satisfy position and force constraints.

The robot model and the compliance 
specification are set by the model’s 
  InitFcn callback function. The set-
points are the red user adjustable boxes 
in the top-level diagram.

9.4  ·  Rigid-Body Dynamics Compensation
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9.5 
l
Applications 

9.5.1 
l
Series-Elastic Actuator (SEA)

For high-speed robots  the elasticity of the links  and the joints  becomes a signifi cant dy-
namic effect which will affect path following accuracy. Joint elasticity   is typically caused 
by elements of the  transmission such as: longitudinal elasticity of a toothed belt or cable 
drive, a harmonic gearbox which is inherently elastic, or torsional elasticity of a motor 
shaft. In dynamic terms, as shown schematically in Fig. 9.24, the problem arises because 
the force is applied to one side of an elastic element and we wish to control the position of 
the other side – the actuator and sensor are not colocated. More complex still, and harder 
to analyze, is the case where the elasticity of the links must be taken into account.

However there are advantages in having some fl exibility between the motor and the 
load. Imagine a robot performing a task that involves the gripper picking an object off a 
table whose height is uncertain.� A simple strategy to achieve this is to move down until 
the gripper touches the table, close the gripper and then lift up. However at the instant of 
contact a large and discontinuous force will be exerted on the robot which has the potential 
to damage the object or the robot. This is particularly problematic for robots with large 

Fig. 9.22. Simulink model of an 
operational-space control system 
for a Puma 560 robot as described 
by   (Khatib 1987)  

Fig. 9.23.
Operational space controller re-
sults. The end-effector moves to 
a desired x- and y-position while 
also moving in the negative z-di-
rection until it contacts the work 
piece and is able to exert the 
specifi ed force of –5 N  

�

Or the robot is not very accurate.
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inertia that are moving quickly – the kinetic energy must be instantaneously dissipated. 
An elastic element – a spring – between the motor and the joint would help here. At the 
moment of contact the spring would start to compress and the kinetic energy is trans-
ferred to potential energy in the spring – the robot control system has time to react and 
stop or reverse the motors. We have changed the problem from a damaging hard impact 
to a soft impact. In addition to shock  absorption, the deformation of the spring provides 
a means of determining the force that the robot is exerting. This capability is particularly 
useful for robots that interact closely with people since it makes the robot less dangerous 
in case of collision, and a spring  is simple technology that cannot fail. For robots that must 
exert a force as part of their task, this is a simpler approach than the operational space 
controller introduced in Sect. 9.4.3. However position control is now more challenging 
because there is an elastic element between the motor  and the load .

Consider the 1-dimensional case shown in Fig. 9.24 where the motor is represented by 
a mass m1 to which a controllable force u is applied.� It is connected via a linear elastic 
element or spring to the load mass m2. If we apply a positive force to m1 it will move to 
the right and compress the spring, and this will exert a positive force on m2 which will 
also move to the right. Controlling the position of m2 is not trivial since this system has 
no friction and is marginally stable. It can be stabilized by feedback of position and ve-
locity of the motor and of the load – all of which are potentially measurable.

In robotics such a system, built into a robot joint, is known as a series-elastic actua-
tor   or SEA . The Baxter robot   of Fig. 7.1b includes SEAs in some of its joints.

A Simulink model of an SEA system can be loaded by

>>  sl_sea

and is shown in Fig. 9.25. A state-feedback LQR controller has been designed using 
MATLAB and requires input of motor and load position and velocity which form a vec-
tor x in the Simulink model. Fig. 9.26 shows a simulation of the model moving the load 
m2 to a position x2

∗ = 1. In the fi rst case there is no obstacle and it achieves the goal with 
minimal overshoot, but note the complex force profi le applied to m1. In the second case 
the load mass is stopped at x2 = 0.8 and the elastic force changes to accomodate this.

Fig. 9.24.
Schematic of a series-elastic

actuator . The two masses repre-
sent the motor and the load, and 
they are connected by an elastic 

element or spring

Fig. 9.25. Simulink model  sl_sea 
of a series-elastic actuator  colliding 
with an obstacle

In a real robot this is a rotary system with 
a torsional spring .

9.5  ·  Applications
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9.6 
l
Wrapping Up

In this Chapter we discussed approaches to robot manipulator control. We started with 
the simplest case of independent joint control, and explored the effect of disturbance 
torques and variation in inertia, and showed how feedforward of disturbances such as 
gravity could provide signifi cant improvement in performance. We then learned how 
to model the forces and torques acting on the individual links of a serial-link manipu-
lator. The equations of motion or inverse dynamics compute the joint forces required 
to achieve particular joint velocity and acceleration. The equations have terms corre-
sponding to inertia, gravity, velocity coupling, friction and externally applied forces. 
We looked at the signifi cance of these terms and how they vary with manipulator con-
fi guration and payload. The equations of motion provide insight into important issues 
such as how the velocity or acceleration of one joint exerts a disturbance force on other 
joints which is important for control design. We then discussed the forward dynam-
ics which describe how the confi guration evolves with time in response to forces and 
torques applied at the joints by the actuators and by external forces such as gravity. 
We extended the feedforward notion to full model-based control using torque feed-
forward, computed torque and operational-space controllers. Finally we discussed 
series-elastic actuators where a compliant element between the robot motor and the 
link enables force control and people-safe operation.

Further Reading

The engineering design of motor control systems is covered in mechatronics textbooks 
such as Bolton (2015). The dynamics of serial-link manipulators is well covered by all 
the standard robotics textbooks such as Paul (1981), Spong et al. (2006), Siciliano et al. 
(2009) and the Robotics Handbook (Siciliano and Khatib 2016). The effi cient recursive 
 Newton-Euler method we use today is the culmination of much research in the early 
1980s and described in Hollerbach (1982). The equations of motion can be derived via a 
number of techniques, including Lagrangian (energy based), Newton-Euler, d’Alembert 
(Fu et al. 1987; Lee et al. 1983) or Kane’s method (Kane and Levinson 1983). However the 
computational cost of Lagrangian methods (Uicker 1965; Kahn 1969) is enormous, O(N4), 
which made it infeasible for real-time use on computers of that era and many simplifi -
cations and approximation had to be made. Orin et al. (1979) proposed an alternative 
approach based on the Newton-Euler (NE) equations of rigid-body motion applied to 
each link. Armstrong (1979) then showed how recursion could be applied resulting in 

Fig. 9.26. Response of the series-
elastic actuator to a unit-step de-
mand at t = 1 s, showing load posi-
tion (m), motor force (N) and spring 
force (N). a Moving to x2

∗= 1 with 
no collision; b moving to x2

∗ = 1 
with an obstacle at x2 = 0.8 which 
is reached at t ≈ 2.3
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O(N) complexity. Luh et al. (1980) provided a recursive formulation of the  Newton-
Euler equations with linear and angular velocities referred to link coordinate frames 
which resulted in a thousand-fold improvement in execution time making it practical 
to implement in real-time. Hollerbach (1980) showed how recursion could be applied 
to the Lagrangian form, and reduced the computation to within a factor of 3 of the re-
cursive NE form, and Silver (1982) showed the equivalence of the recursive Lagrangian 
and  Newton-Euler forms, and that the difference in effi ciency was due to the represen-
tation of angular velocity.

The forward dynamics, Sect. 9.3, is computationally more expensive. An O(N3) meth-
od was proposed by Walker and Orin (1982) and is used in the Toolbox. Featherstone’s 
(1987) articulated-body method has O(N) complexity but for N < 9 is more expensive 
than Walker’s method.

Critical to any consideration of robot dynamics is knowledge of the inertial param-
eters, ten per link, as well as the motor’s parameters. Corke and Armstrong-Hélouvry 
(1994, 1995) published a meta-study of Puma parameters and provide a consensus 
estimate of inertial and motor parameters for the Puma 560 robot. Some of this data 
was obtained by painstaking disassembly of the robot and determining the mass and 
dimensions of the components. Inertia of components can be estimated from mass 
and dimensions by assuming mass distribution, or it can be measured using a  bifi lar 
 pendulum as discussed in Armstrong et al. (1986).

Alternatively the parameters can be estimated by measuring the joint torques or 
the base reaction force and moment as the robot moves. A number of early works in 
this area include Mayeda et al. (1990), Izaguirre and Paul (1985), Khalil and Dombre 
(2002) and a more recent summary is Siciliano and Khatib (2016, § 6). Key to success-
ful identifi cation is that the robot moves in a way that is suffi ciently exciting (Gautier 
and Khalil 1992; Armstrong 1989). Friction is an important dynamic characteristic 
and is well described in Armstrong’s (1988) thesis. The survey by Armstrong-Hélouvry 
et al. (1994) is a very readable and thorough treatment of friction modeling and 
control. Motor parameters can be obtained directly from the manufacturer’s data 
sheet or determined experimentally, without having to remove the motor from the 
robot, as described by Corke (1996a). The parameters used in the Toolbox Puma 
model are the best estimates from Corke and Armstrong-Hélouvry (1995) and 
Corke (1996a).

The discussion on control has been quite brief and has strongly emphasized the ad-
vantages of feedforward control. Robot joint control techniques are well covered by 
Spong et al. (2006), Craig (2005) and Siciliano et al. (2009) and summarized in Siciliano 
and Khatib (2016, § 8). Siciliano et al. have a good discussion of actuators and sensors 
as does the, now quite old, book by Klafter et al. (1989). The control of fl exible joint 
robots is discussed in Spong et al. (2006). Adaptive control can be used to accomodate 
the time-varying inertial parameters and there is a large literature on this topic but 
some good early references include the book by Craig (1987) and key papers include 
Craig et al. (1987), Spong (1989), Middleton and Goodwin (1988) and Ortega and Spong 
(1989). The operational-space control structure was proposed in Khatib (1987). There 
has been considerable recent interest in series-elastic as well as variable stiffness ac-
tuators (VSA) whose position and stiffness can be independently controlled much like 
our own muscles – a good collection of articles on this technology can be found in the 
special issue by Vanderborght et al. (2008).

Dynamic manipulability is discussed in Spong et al. (2006) and Siciliano et al. (2009). 
The Asada measure used in the Toolbox is described in Asada (1983).

Historical and general.  Newton’s second  law is described in his master work Principia 
Nautralis (mathematical principles of natural philosophy), written in Latin but an 
English translation is available on line at http://www.archive.org/details/newton-
spmathema00newtrich. His writing on other subjects, including transcripts of his 
notebooks, can be found online at http://www.newtonproject.sussex.ac.uk. 

9.6  ·  Wrapping Up
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Exercises

1. Independent joint control (page 258ff)
a) Investigate different values of Kv and Ki as well as demand signal shape and 

amplitude.
b) Perform a root-locus  analysis of  vloop to determine the maximum permissible 

gain for the proportional case. Repeat this for the PI case.
c) Consider that the motor is controlled by a voltage source instead of a current 

source, and that the motor’s impedance is 1 mH and 1.6 Ω. Modify  vloop ac-
cordingly. Extend the model to include the effect of back EMF.

d) Increase the required speed of motion so that the motor torque becomes sat-
urated. With integral action you will observe a phenomena known as  integral 
windup – examine what happens to the state of the integrator during the motion. 
Various strategies are employed to combat this, such as limiting the maximum 
value of the integrator, or only allowing integral action when the motor is close 
to its setpoint. Experiment with some of these.

e) Create a Simulink model of the Puma robot with each joint controlled by  vloop 
and  ploop. Parameters for the different motors in the Puma are described in 
Corke and Armstrong-Hélouvry (1995).

2. The motor torque constant has units of N m A−1 and is equal to the back EMF con-
stant which has units of V s rad−1. Show that these units are equivalent.

3. Simple two-link robot arm of Fig. 9.4
a) Plot the gravity load as a function of both joint angles. Assume m1 = 0.45 kg, 

m2 = 0.35 kg, r1 = 8 cm and r2 = 8 cm.
b) Plot the inertia for joint 1 as a function of q2. To compute link inertia assume 

that we can model the link as a point mass located at the center of mass.
4. Run the code on page 265 to compute gravity loading on joints 2 and 3 as a func-

tion of confi guration. Add a payload and repeat.
5. Run the code on page 266 to show how the inertia of joints 1 and 2 vary with pay-

load?
6. Generate the curve of Fig. 9.16c. Add a payload and compare the results.
7. By what factor does this inertia vary over the joint angle range?
8. Why is the manipulator inertia matrix symmetric?
9. The robot exerts a wrench on the base as it moves (page 269). Consider that the robot 

is sitting on a frictionless horizontal table (say on a large air puck). Create a simulation 
model that includes the robot arm dynamics and the sliding dynamics on the table. 
Show that moving the arm causes the robot to translate and spin. Can you devise an 
arm motion that moves the robot base from one position to another and stops?

10. Overlay the dynamic manipulability ellipsoid on the display of the robot. Compare 
this with the force ellipsoid from Sect. 8.5.2.

11. Model-based control (page 273ff)
a) Compute and display the joint tracking error for the torque feedforward and 

computed torque cases. Experiment with different motions, control parameters 
and sample rate Tfb.

b) Reduce the rate at which the feedforward torque is computed and observe its 
effect on tracking error.

c) In practice the dynamic model of the robot is not exactly known, we can only 
invert our best estimate of the rigid-body dynamics. In simulation we can model 
this by using the perturb method, see the online documentation, which returns 
a robot object with inertial parameters varied by plus and minus the specifi ed 
percentage. Modify the Simulink models so that the  RNE block is using a robot 
model with parameters perturbed by 10%. This means that the inverse dynamics 
are computed for a slightly different dynamic model to the robot under control 
and shows the effect of model error on control performance. Investigate the ef-
fects on error for both the torque feedforward and computed torque cases.
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d) Expand the operational-space control example to include a sensor that mea-
sures all the forces and torques exerted by the robot.on an inclined table surface. 
Move the robot end-effector along a circular path in the xy-plane while exerting 
a constant downward force – the end-effector should move up and down as it 
traces out the circle. Show how the controller allows the robot tool to conform 
to a surface with unknown height and surface orientation.

12. Series-elastic actuator (page 276)
a) Experiment with different values of stiffness for the elastic element and control 

parameters. Try to reduce the settling time.
b) Modify the simulation so that the robot arm moves to touch an object at un-

known distance and applies a force of 5 N to it.
c) Plot the frequency response function X2(s)/X1(s) for different values of Ks, m1 

and m2.
d) Simulate the effect of a collision between the load and an obstacle by adding a 

step to the spring force.

9.6  ·  Wrapping Up
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Part

IV Computer Vision
Vision is the process of discovering from images

what is present in the world and where it is.
David Marr

Almost all animal species use  eyes – in fact evolution has invented the eye many times 
over. Figure IV.1 shows a variety of eyes from nature: the  compound  eye of a fl y, the main 
and secondary  eyes of a spider, the  refl ector-based  eyes of a scallop, and the  lens-based 
 eye of a human. Vertebrates have two eyes, but spiders and scallops have many eyes.

Even very simple animals, bees for example, with brains comprising just 106 neu-
rons (compared to our 1011) are able to perform complex and life critical tasks such 
as fi nding food and returning it to the hive using vision (Srinivasan and Venkatesh 
1997). This is despite the very high biological cost of owning an eye: the complex eye 
itself, muscles to move it, eyelids and tear ducts to protect it, and a large visual cortex 
(relative to body size) to process its data.

Our own experience is that eyes are very effective sensors for recognition, naviga-
tion, obstacle avoidance and manipulation. Cameras mimic the function of an eye and 
we wish to use cameras to create vision-based competencies for robots – to use digital 
images to recognize objects and navigate within the world. Figure IV.2 shows a robot 
with a number of different types of cameras.

Technological development has made it feasible for robots to use cameras as eyes. 
For much of the history of computer vision, dating back to the 1960s, electronic cameras 
were cumbersome and expensive and computer power was inadequate. Today CMOS 
 cameras for cell phones cost just a few dollars each, and our mobile and personal com-
puters come standard with massive parallel computing power. New algorithms, cheap 
sensors and plentiful computing power make vision a practical sensor today.

In Chap. 1 we defi ned a robot as

a goal oriented machine that can sense , plan and act

and this part of the book is concerned with sensing using vision, or visual percep-
tion. Whether a robot works in a factory or a fi eld it needs to sense its world in order 
to plan its actions.

In this part of the book we will discuss the process of vision from start to fi nish: from 
the light falling on a scene, being refl ected, gathered by a lens, turned into a digital im-
age and processed by various algorithms to extract the information required to support 
the robot competencies listed above. These steps are depicted graphically in Fig. IV.3.

Development of the eye. It is believed that all animal eyes share a common ancestor in a proto-eye 
that evolved 540 million years ago.  However major evolutionary advances seem to have occurred 
in just the last few million years. The very earliest eyes, called eyespots, were simple patches 
of photoreceptor protein in single-celled animals. Multi-celled animals evolved multi-cellular 
eyespots which could sense the brightness of light but not its direction. Gradually the eyespot 
evolved into a shallow cup shape which gave a limited ability to discriminate directional bright-
ness according to which cells were illuminated. The pit deepened, the opening became smaller, 
and the number of photoreceptor cells increased, forming a  pin-hole camera that was capable 
of distinguishing shapes. Next came an overgrowth of transparent cells to protect the eyespot 
which led to a fi lled eye chamber and eventually the eye as we know it today. The lensed eye has 
evolved independently seven different times across species. Nature has evolved ten quite distinct 
eye designs including those shown above.

Fig. IV.1. a Robber fl y, Holocephala 
fusca; b jumping spider, Phidippus 
putnami (a and b courtesy Tho-
mas Shahan, thomasshanan.com).
c Scallop (courtesy Sönke Johnsen), 
each of the small blue spheres is an 
eye. d Human eye
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In Chap. 10 we start by discussing light, and in particular color because it is such an 
important characteristic of the world that we perceive. Although we learn about color at 
kindergarten it is a complex topic that is often not well understood. Next, in Chap. 11, 
we discuss how an image of the world is formed on a sensor and converted to a digital 
image that can be processed by a computer. Fundamental image processing algorithms 
are covered in Chap. 12 and provide the foundation for the  feature extraction algorithms 
discussed in Chap. 13. Feature extraction is a problem in data reduction, in extracting 
the essence of the scene from the massive amount of pixel data. For example, how do we 
determine the coordinate of the round red object in the scene, which can be described 
with perhaps just 4 bytes, given the millions of bytes that comprise an image. To solve 
this we must address many important subproblems such as “what is red?”, “how do we 
distinguish red pixels from nonred pixels?”, “how do we describe the shape of the red 
pixels?”, “what if there are more than one red object?” and so on.

As we progress through these chapters we will encounter the limitations of using 
just a single camera to view the world. Once again biology shows the way – multiple 
eyes are common and have great utility. This leads us to consider using multiple views 
of the world, from a single moving camera or multiple cameras observing the scene 
from different viewpoints. This is discussed in Chap. 14 and is particularly important 
for understanding the 3-dimensional structure of the world. All of this sets the scene 
for describing how vision can be used for closed-loop control of arm-type and mobile 
robots which is the subject of the next and fi nal part of the book.

Fig. IV.2.
A cluster of cameras on an out-
door mobile robot: forward 
looking stereo pair, side look-
ing wide angle  camera, over-
head panoramic  camera mirror 
(CSIRO mobile robot)

Fig. IV.3.
Steps involved in image
processing



Chapter

10 Light and Color
I cannot pretend to feel impartial about colours.

I rejoice with the brilliant ones
and am genuinely sorry for the poor browns.

Winston Churchill

In ancient times it was believed that the eye radiated a cone of visual  fl ux which mixed 
with visible objects in the world to create a sensation in the observer – like the sense 
of touch, but at a distance – this is the extromission theory. Today we consider that 
light from an illuminant falls on the scene, some of which is refl ected into the  eye of 
the observer to create a perception about that scene. The light that reaches the eye, 

or the camera, is a function of the illumination impinging on the scene and the 
material property known as refl ectivity.

This chapter is about light itself and our perception of light in terms of 
brightness and color. Section 10.1 describes light in terms of electro-mag-
netic  radiation and mixtures of light as continuous spectra. Section 10.2 
provides a brief introduction to colorimetry, the science of color perception, 

human trichromatic color perception and how colors can be represented in 
various color spaces. Section 10.3 covers a number of advanced topics such as  col-
or constancy, gamma correction and white balancing. Section 10.4 has two worked 
application examples concerned with distinguishing different colored objects in an 
image and the removal of shadows in an image.

10.1 
l
Spectral Representation of Light

Around 1670, Sir Isaac Newton discovered that white light was a mixture of different 
colors. We now know that each of these colors is a single frequency or wavelength of 
electro-magnetic radiation. We perceive the wavelengths between 400 and 700 nm as 
different colors as shown in Fig. 10.1. 

In general the light that we observe is a mixture of many wavelengths and can be 
represented as a function E(λ) that describes intensity as a function of wavelength λ . 
 Monochromatic light, such as emitted by a laser comprises a single wavelength in 
which case E is an impulse.

The most common source of light is  incandescence which is the emission of light 
from a hot body such as the Sun or the fi lament of a traditional light bulb. In physics 

Spectrum of light. During the plague years of 
1665–1666 Isaac Newton  developed his the-
ory of light and color. He demonstrated that
a prism could decompose white light into a 
spectrum of colors, and that a lens and a sec-
ond prism could recompose the multi-colored

spectrum into white light. Importantly he 
showed that the color of the light did not 
change when it was refl ected from different 
objects, from which he concluded that color 
is an intrinsic property of light not the object. 
(Newton’s sketch to the left)

Fig. 10.1.
The spectrum of visible colors 
as a function of wavelength in 
nanometers. The visible range 

depends on viewing conditions 
and the individual but is general-
ly accepted as being 400–700 nm. 
Wavelengths greater than 700 nm 

are termed  infra-red and those 
below 400 nm are  ultra-violet
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  Infra-red  radiation was discov-
ered in 1800 by William Herschel  
(1738–1822) the German-born 
British astronomer. He was Court 
Astronomer to George III; built 
a series of large telescopes; with 
his sister Caroline performed the 
fi rst sky survey discovering dou-
ble stars, nebulae and the planet 
Uranus; and studied the spectra 
of stars. Using a prism and ther-
mometers to measure the amount 

of heat in the various colors of sunlight he observed that temperature 
increased from blue to red, and increased even more beyond red where 
there was no visible light. (Image from Herschel 1800)

Fig. 10.2. Blackbody spectra.
a Blackbody emission spectra for 
temperatures from 3 000–6 000 K. 
b Blackbody emissions for the 
Sun (5 778 K), a tungsten lamp 
(2 600 K) and the  response of the 
human eye – all normalized to 
unity for readability

this is modeled as a  blackbody radiator or  Planckian  source. The emitted power as a 
function of wavelength λ  is given by   Planck’s  radiation  formula

 (10.1)

where T is the absolute temperature (K) of the source, h is  Planck’s  constant, k is 
 Boltzmann’s  constant, and c the speed of light.� This is the power emitted per stera-
dian� per unit area per unit wavelength.    

We can plot the emission spectra for a blackbody at different temperatures. First 
we defi ne a range of wavelengths

>> lambda = [300:10:1000]*1e-9;

in this case from 300 to 1 000 nm, and then compute the blackbody spectra
>> for T=3000:1000:6000
>>   plot( lambda, blackbody(lambda, T)); hold all
>> end 

as shown in Fig. 10.2a. We can see that as temperature increases the maximum amount 
of power increases and the wavelength at which the peak occurs decreases. The total 
amount of power radiated (per unit area) is the area under the blackbody curve and 
is given by the  Stefan-Boltzman  law

c = 2.998 × 108 m s−1

h = 6.626 × 10−34 Js
k = 1.381 × 10−23 J K−1

Solid  angle is measured in steradians, a 
full sphere is 4π sr.

and the wavelength corresponding to the peak of 
the blackbody curve is given by  Wien’s displace-
ment  law

The wavelength of the peak decreases as tem-
perature increases and in familiar terms this is 
what we observe when we heat an object. It starts 
to glow faintly red at around 800 K and moves 
through orange and yellow toward white as tem-
perature increases.�

Incipient red heat 770 – 820 K
dark red heat 920 – 1 020 K
bright red heat 1 120 – 1 220 K
yellowish red heat 1 320 – 1 420 K
incipient white heat 1 520 – 1 620 K
white heat 1 720 – 1 820 K
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Sir Humphry Davy demonstrated the fi rst electrical in-
candescent lamp using a platinum fi lament in 1802. Sir 
Joseph Swan demonstrated his fi rst light bulbs in 1850 
using carbonized paper fi laments. However it was not 
until advances in vacuum pumps in 1865 that such lamps 
could achieve a useful lifetime. Swan patented a carbon-
ized cotton fi lament in 1878 and a carbonized cellulose 
fi lament in 1881. His lamps came into use after 1880 and 
the Savoy Theatre in London was completely lit by elec-

tricity in 1881. In the USA Thomas Edison did not start 
research into incandescent lamps until 1878 but he pat-
ented a long-lasting carbonized bamboo fi lament the next 
year and was able to mass produce them. The Swan and 
Edison companies merged in 1883.

The light bulb subsequently became the dominant 
source of light on the planet but is now being phased 
out due to its poor energy effi ciency.    (Photo by Douglas 
Brackett, Inv., Edisonian.com)

The fi lament of a tungsten lamp has a temperature of 2 600 K and glows white hot. 
The Sun has a  surface temperature of 5 778 K. The spectra of these sources

>> lamp = blackbody(lambda, 2600);
>> sun = blackbody(lambda, 5778);
>> plot(lambda, [lamp/max(lamp) sun/max(sun)])  

are compared in Fig. 10.2b. The tungsten lamp curve is much lower in magnitude, 
but has been scaled up (by 56) for readability. The peak of the Sun’s emission is 
around 500 nm and it emits a significant amount of power in the visible part of 
the  spectrum. The peak for the tungsten lamp is at a much longer wavelength 
and perversely most of its power falls in the infra-red band which we perceive 
as heat not light.

10.1.1  
l

Absorption

The  Sun’s  spectrum at ground level on the Earth has been measured and tabulated

>> sun_ground = loadspectrum(lambda, 'solar');
>> plot(lambda, sun_ground) 

and is shown in Fig. 10.3a.   It differs markedly from that of a blackbody since some 
wavelengths have been absorbed more than others by the atmosphere. Our eye’s  peak 
sensitivity has evolved to be closely aligned to the peak of the spectrum of atmospheri-
cally fi ltered sunlight.

Transmittance T is the inverse of absorptance, and is the fraction of light passed as 
a function of wavelength and distance traveled. It is described by  Beer’s  law 

 (10.2)

Fig. 10.3. a Modifi ed solar spectrum 
at ground level (blue). The dips in 
the solar spectrum correspond to 
various water  absorption bands. 
CO2 absorbs  radiation in the  infra-
red region, and ozone O3 absorbs 
strongly in the  ultra-violet region. 
The Sun’s blackbody spectrum is 
shown in dashed blue and the  re-
sponse of the human eye is shown 
in red. b Transmission through 5 m 
of water. The longer wavelengths, 
reds, have been strongly attenuated

10.1  ·  Spectral Representation of Light
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where A is the  absorption coeffi cient in units of m−1 which is a function of wavelength, 
and d is the optical path length. The  absorption  spectrum A(λ) for water is loaded 
from tabulated data

>> [A, lambda] = loadspectrum([400:10:700]*1e-9, 'water'); 

and the transmission through 5 m of water is
>> d = 5;
>> T = 10.^(-A*d);
>> plot(lambda, T);

which is plotted in Fig. 10.3b. We see that the red light is strongly attenuated which 
makes the object appear more blue. Differential  absorption of wavelengths is a signifi -
cant concern when imaging underwater and we revisit this topic in Sect. 10.3.4.

10.1.2  
l
Reflectance

 Surfaces refl ect incoming light. The refl ection might be specular (as from a mirror-
like surface, see page 337), or Lambertian (diffuse refl ection from a matte surface, see 
page 309). The fraction of light that is refl ected R ∈ [0, 1] is the  refl ectivity,  refl ectance 
or  albedo of the surface and is a function of wavelength. White paper for example has a 
refl ectance of around 70%. The refl ectance spectra of many materials have been mea-
sured and tabulated.� Consider for example the refl ectivity of a red house brick

>> [R, lambda] = loadspectrum([100:10:10000]*1e-9, 'redbrick');
>> plot(lambda, R); 

which is plotted in Fig. 10.4 and shows that it refl ects red light more than blue.

10.1.3  
l
Luminance

The light refl ected from a  surface, its luminance, has a   spectrum given by

 (10.3)

where E is the incident illumination and R is the refl ectance. The illuminance of the 
Sun in the visible region is

>> lambda = [400:700]*1e-9;
>> E = loadspectrum(lambda, 'solar'); 

From http://speclib.jpl.nasa.gov/ 
weathered red brick (0412UUUBRK).

Fig. 10.4. Refl ectance of a weath-
ered red house brick (data from 
ASTER, Baldridge et al. 2009).
a Full range measured from 300 nm 
visible to 10 000 nm (infra-red); 
b closeup of visible region
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at ground level. The refl ectivity of the brick is

>> R = loadspectrum(lambda, 'redbrick'); 

and the light refl ected from the brick is

>> L = E .* R;
>> plot(lambda, L);

which is shown in Fig. 10.5. It is this spectrum that is interpreted by our eyes as the 
color red.

10.2  
l
Color

Color is the general name for all sensations arising from the activity of the 
retina of the eye and its attached nervous mechanisms, this activity being, 

in nearly every case in the normal individual, a specifi c response to radiant 
energy of certain wavelengths and intensities.

T. L. Troland, Report of Optical Society of America
Committee on Colorimetry 1920–1921

We have described the spectra of light in terms of power as a function of wavelength, but 
our own perception of light is in terms of subjective quantities such as brightness and color. 
Light that is visible to humans lies in the range of wavelengths from 400 nm (violet) to 700 nm 
(red) with the  colors blue, green, yellow and orange in between, as shown in Fig. 10.1.

The brightness we associate with a particular wavelengths is given by the lumi-
nosity function with units of  lumens per watt. For our daylight ( photopic) vision the 
luminosity as a function of wavelength has been experimentally determined, tabulated 
and forms the basis of the 1931 CIE standard that represents the average human ob-
server.� The photopic luminosity function is provided by the Toolbox

>> human = luminos(lambda);
>> plot(lambda,  human) 

Radiometric and photometric quantities. Two quite different sets of 
units are used when discussing light: radiometric and photometric. 
 Radiometric   units are used in Sect. 10.1 and are based on quantities 
like power which are expressed in familiar SI units such as Watts.

 Photometric units are analogs of radiometric units but take 
into account the visual sensation in the observer. Luminous pow-
er or luminous  fl ux is the perceived power of a light source and 
is measured in lumens (abbreviated to lm) rather than Watts.

A 1 W monochromatic light source at 555 nm, the peak  response, 
by defi nition emits a luminous fl ux of 683 lm. By contrast a 1 W 
light source at 800 nm emits a luminous fl ux of 0 lm – it causes 
no visual sensation at all.

A 1 W incandescent lightbulb however produces a perceived 
visual sensation of less than 15 lm or a luminous effi ciency of 
15 lm W−1. Fluorescent lamps achieve effi ciencies up to 100 lm W−1 
and white LEDs up to 150 lm W−1.

Fig. 10.5.
Luminance of the weathered red 
house brick under illumination 

from the Sun at ground level, 
based on data from Fig. 10.3a 

and 10.4b

This is the photopic  response  for a light-
adapted eye using the cone photorecep-
tor cells. The dark adapted, or scotopic  re-
sponse , using the eye’s monochromatic 
rod photoreceptor cells is different, and 
peaks at around 510 nm.

10.2  ·  Color
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and is shown in Fig. 10.7a. Consider two light sources emitting the same power (in 
watts) but one has a wavelength of 550 nm (green) and the other has a wavelength of 
450 nm (blue). The perceived brightness of these two lights is quite different, in fact 
the blue light appears only

>> luminos(450e-9) / luminos(550e-9)
ans =
    0.0382  

or 3.8% as bright as the green one. The silicon sensors used in digital  cameras have 
strong sensitivity in the red and infra-red part of the  spectrum.�

10.2.1 
l

The Human  Eye

Our eyes contain two types of light-sensitive cells as shown in Fig. 10.6. Rod cells are 
much more sensitive than cone cells but respond to intensity only and are used at 
night. In normal daylight conditions our  cone photoreceptors are active and these are 
color sensitive. Humans are trichromats and have three types of cones that respond 
to different parts of the spectrum. They are referred to as long (L), medium (M) and 
short (S) according to the wavelength of their  peak  response, or more commonly as 
red, green and blue. The spectral  response of rods and cones has been extensively 
studied and the response of human cone cells can be loaded

>>  cones = loadspectrum(lambda, 'cones');
>> plot(lambda, cones)

Opsins  are the photoreceptor  molecules used in the visual systems of all animals. They belong to 
the class of G protein-coupled receptors (GPCRs)   and comprise seven helices that pass through the 
cell’s membrane. They change shape in response to particular molecules outside the cell and initi-
ate a cascade of chemical signaling events inside the cell that results in a change in cell function. 
Opsins contain a chromophore, a light-sensitive molecule called retinal  derived from vitamin A, 
that stretches across the opsin. When retinal absorbs a photon its changes its shape which deforms 
the opsin and activates the cell’s signalling pathway. The basis of all vision is a fortuitous genetic 
mutation 700 million years ago that made a chemical sensing receptor light sensitive. There are 
many opsin variants across the animal kingdom – our rod cells contain rhodopsin  and our  cone 
cells contain photopsins . The American biochemist George Wald  (1906–1997) received the 1967 
Nobel Prize in Medicine for his discovery of retinal and characterizing the spectral absorbance of 
photopsins. (Image by Dpyran from Wikipedia, the chromophore is indicated by the arrow)

The LED on an infra-red remote control 
can be seen as a bright light in most digi-
tal cameras – try this with your mobile 
phone camera and TV remote. Some se-
curity cameras provide infra-red scene 
illumination for covert night time mon-
itoring. Note that some cameras are fit-
ted with infra-red filters to prevent the 
sensor becoming saturated by ambi-
ent infra-red  radiation.

Fig. 10.6.
A colored scanning electron 
micrograph of rod cells (white) 
and cone cells (yellow) in the 
human eye. The cells diameters 
are in the range 0.5–4 µm. The 
cells contain different types of 
light-sensitive opsin proteins. 
Surprisingly the rods and cones 
are not on the surface of the ret-
ina, they are behind that surface 
which is a network of nerves and 
blood vessels
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where  cones has three columns corresponding to the L, M and S cone responses and 
each row corresponds to the wavelength in lambda. The spectral  response of the cones 
L(λ), M(λ) and S(λ) are shown in Fig. 10.7b.�

The retina of the human eye has a central or  foveal region  which is only 0.6 mm in 
diameter, has a 5 degree fi eld of view and contains most of the 6 million cone cells: 
65% sense red, 33% sense green and only 2% sense blue. We unconsciously scan our 
high-resolution fovea over the world to build a large-scale mental image of our sur-
rounds. In addition there are 120 million rod cells, which are also motion sensitive, 
distributed over the retina.

The sensor in a digital  camera is analogous to the retina, but instead of rod and cone 
cells there is a regular array of light-sensitive  photosites (or pixels) on a silicon chip. 
Each photosite is of the order 1–10 µm square and outputs a signal proportional to the 
 intensity of the light falling over its area.� For a color camera the photosites are covered 
by color fi lters which pass either red, green or blue light to the photosites. The spectral 
response of the fi lters is the functional equivalent of the cones’ response M(λ) shown 
in Fig. 10.7b. A very common arrangement of  color   fi lters is the  Bayer  pattern shown 

in 1802 but made little impact. It was later championed by 
Hermann von Helmholtz  and James Clerk Maxwell . The fi g-

ure on left shows how beams of red, green and blue light mix. 
Helmholtz (1821–1894) was a prolifi c German physician and physi-
cist. He invented the opthalmascope for examing the retina in 
1851, and in 1856 he published the “Handbuch der physiologischen 
Optik” (Handbook of Physiological Optics) which contained theo-
ries and experimental data relating to depth perception, color vi-
sion, and motion perception. Maxwell (1831–1879) was a Scottish 
scientist best known for his electro-magnetic equations, but who 
also extensively studied color perception, color-blindness, and 
color theory. His 1860 paper “On the Theory of Colour Vision” 
won a Rumford medal, and in 1861 he demonstrated color pho-
tography in a Royal Institution lecture.

The   trichromatic theory of color 
vision suggests that our eyes have 
three discrete types of receptors 
that when stimulated produce the 
sensations of red, green and blue, 
and that all color sensations are 
“psychological mixes” of these 
fundamental colors. It was fi rst 
proposed by the English scien-
tist Thomas Young  (1773–1829) 

The opponent color theory   holds that colors are perceived with re-
spect to two axes: red-green and blue-yellow. One clue comes from 
color after-images – staring at a red square and then a white surface 
gives rise to a green after-image. Another clue comes from language 
– we combine color words to describe mixtures, for example redish-
blue, but we never describe a reddish-green or a blueish-yellow. The 
theory was fi rst mooted by the German writer Johann Wolfgang von 
Goethe  (1749–1832) in his 1810 “Theory of Colours” but later had a 

strong advocate in Karl Ewald Hering  (1834–1918), a German physi-
ologist who also studied binocular perception and eye movements. 
He advocated opponent color theory over trichromatic theory and 
had acrimonious debates with Helmholtz on the topic.

In fact both theories hold. Our eyes have three types of col-
or sensing cells but the early processing in the  retinal ganglion 
layer appears to convert these signals into an opponent color 
representation.

The different spectral characteristics 
are due to the different photopsins in 
the  cone cell.

More correctly the output is proportional 
to the total number of photons captured 
by the photosite since the last time it was 
read. See page 364.

Fig. 10.7. a Luminosity curve for 
the standard human observer. 
The peak  response is 683 lm W−1 

at 555 nm (green). b Spectral  re-
sponse of human cones (normal-
ized)

10.2  ·  Color
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in Fig. 10.8. It uses a regular 2 × 2 photosite pattern comprising two green fi lters, one 
red and one blue.�

10.2.2 
l

Measuring  Color

The path taken by the light entering the eye shown in Fig. 10.9a. The  spectrum of the 
luminance L(λ) is a function of the light source and the refl ectance of the object as 
given by Eq. 10.3. The response from each of the three cones is

 (10.4)

where Mr(λ), Mg(λ) and Mb(λ) are the spectral  response of the red, green and blue 
cones respectively as shown in Fig. 10.7b. The response is a 3-vector (ρ, γ , β ) which 
is known as a  tristimulus.

For the case of the red brick the integrals correspond to the areas of the solid color 
regions in Fig. 10.9b. We can compute the tristimulus by approximating the integrals 
of Eq. 10.4 as a summation with dλ = 1 nm

>> sum( (L*ones(1,3)) .* cones * 1e-9)
ans =
   16.3571   10.0665    2.8225

The dominant response is from the L cone, which is unsurprising since we know that 
the brick is red.

An arbitrary continuous spectrum is an infi nite-dimensional vector and cannot 
be uniquely represented by just 3 parameters but it is clearly suffi cient for our spe-
cies and allowed us to thrive in a variety of natural environments. A consequence 
of this choice of representation is that many different spectra will produce the same 

Fig. 10.8.
 Bayer  fi ltering. The grey blocks 
represent the array of light-
sensitive silicon photosites 
over which is an array of red, 
green and blue fi lters. Invented 
by  Bryce E. Bayer of Eastman 
Kodak, U.S. Patent 3,971,065.

Each pixel therefore cannot provide in-
dependent measurements of red, green 
and blue but it can be estimated. For ex-
ample, the amount of red at a blue sen-
sitive pixel is obtained by interpolation 
from its red filtered neighbors. More ex-
pensive “3 CCD”  cameras can make in-
dependent measurements at each pixel 
since the light is split by a set of prisms, 
filtered and presented to one CCD array 
for each primary color. Digital camera 
raw image files  contain the actual out-
puts of the Bayer-filtered photosites.

3 × 3 or 4 × 4 arrays of filters allow 
many interesting camera designs. Using 
more than 3 different color filters leads 
to a multispectral  camera with better 
color resolution, a range of neutral den-
sity (grey) filters leads to high dynamic 
range  camera, or these various filters can 
be mixed to give a camera with better 
dynamic range and color resolution.

Lightmeters, illuminance and luminance. A photographic lightme-
ter measures  luminous  fl ux which has units of lm m−2 or lux (lx). 
The  luminous  intensity I of a point light source is the luminous 
fl ux per unit  solid  angle measured in lm sr−1 or candelas (cd). The 
 illuminance E falling normally onto a surface is

where d is the distance between source and the surface. Out-
door illuminance on a bright sunny day is approximately 
10 000 lx. Offi ce lighting levels are typically around 1 000 lx 
and moonlight is 0.1 lx.

The  luminance or brightness of a surface is

which has units of cd m−2 or nit (nt), and where Ei is the incident 
illuminance at an angle θ  to the surface normal.

visual stimulus and these are 
referred to as  metamers. More 
important is the corollary – an 
arbitrary visual stimulus can be 
generated by a mixture of just 
three monochromatic stimuli.
These are the three primary 
 colors we learned about as chil-
dren.� There is no unique set 
of primaries – any three will do 
so long as none of them can be 
matched by a combination of 
the others. The   CIE has defined 
a set of monochromatic prima-
ries and their wavelengths are 
given in Table 10.1.

Primary colors are not a fundamental 
property of light – they are a fundamen-
tal property of the observer. There are 
three primary colors only because we, 
as trichromats, have three types of cones. 
Birds would have four primary colors and 
dogs would have two.

Table 10.1. The CIE 1976 primaries  
(Commission Internationale de 
L’Éclairage 1987) are spectral col-
ors corresponding to the emission 
lines in a mercury vapor lamp
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10.2.3 
l
Reproducing  Colors

A computer or television display is able to produce a variable amount of each of three 
primaries at every pixel. The primaries for a   cathode ray tube (CRT) are created by 
exciting phosphors on the back of the screen with a controlled electron beam. For a 
  liquid crystal display (LCD) the colors are obtained by  color fi ltering and attenuating 
white light emitted by the backlight, and an  OLED display comprises a stack of red, 
green and blue LEDs at each pixel. The important problem is to determine how much 
of each primary is required to match a given  tristimulus.

We start by considering a monochromatic stimulus of wavelength λS which is de-
fi ned as

The response of the cones to this stimulus is given by Eq. 10.4 but because L(·) is 
an impulse we can drop the integral to obtain the  tristimulus

 (10.5)

Consider next three monochromatic primary light sources denoted R, G and B with 
wavelengths λr, λg and λb and intensities R, G and B respectively.� The  tristimulus 
from these light sources is

The English scientist John Dalton  
(1766–1844) confused scarlet 
with green and pink with blue. 
He hypothesized that the vitre-
ous humor in his eyes was tinted 
blue and instructed that his eyes 
be examined after his death. This 
revealed that the humors were 
perfectly clear but DNA recently 
extracted from his preserved eye 
showed that he was a deuteran-
ope. Color blindness was once 
referred to as Daltonism.

Color blindness, or color defi ciency, is the inability to perceive dif-
ferences between some of the colors that others can distinguish.  
Protanopia, deuteranopia, tritanopia refer to the absence of the L, 
M and S cones respectively. More common conditions are prot-
anomaly, deuteranomaly and tritanomaly where the cone pig-
ments are mutated and the peak  response frequency changed. 
It is most commonly a genetic condition since the red and green 
photopsins are coded in the X chromosome. The most common 
form (occurring in 6% of males including the author) is deuter-
anomaly where the M-cone’s  response is shifted toward the red 
end of the spectrum resulting in reduced sensitivity to greens and 
poor discrimination of hues in the red, orange, yellow and green 
region of the spectrum.

Fig. 10.9.
The tristimulus  pathway. a Path 
of light from illuminant to the eye.
 b Within the eye three fi lters are 
applied and the total output of 

these fi lters, the areas shown in 
solid color, are the tristimulus value

The units are chosen such that equal 
quantities of the primaries appear to 
be white.

10.2  ·  Color
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(10.6)

For the perceived color of these three light sources combined to match that of the 
monochromatic stimulus the two tristimuli must be equal. We equate Eq. 10.5 and 
Eq. 10.6 and write compactly in matrix form as

and then solve for the required amounts of primary  colors

 (10.7)

 This tristimulus has a spectrum comprising three impulses (one per primary), yet 
has the same visual appearance as the original continuous spectrum – this is the basis 
of trichromatic matching. The 3 × 3 matrix is constant, but depends upon the spectral 
 response of the cones to the chosen primaries (λr, λg, λb).

The right-hand side of Eq. 10.7 is simply a function of λS which we can write in an 
even more compact form

 (10.8)

The notion of primary colors   is very old, but their number (anything from two to six) and their 
color was the subject of much debate. Much of the confusion was due to there being additive 
primaries (red, green and blue) that are used when mixing lights, and subtractive primaries 
(cyan, magenta, yellow) used when mixing paints or inks. Whether or not black and white were 
primary colors was also debated.

Fig. 10.10.
The 1931 color matching func-
tions for the standard observer, 
based on the CIE 1976 standard 
primaries
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where –r(λ), –g(λ), 
–
b(λ) are known as   color  matching functions. These functions have 

been empirically determined from human test subjects and tabulated for the standard 
CIE primaries listed in Table 10.1. They can be loaded using the function cmfrgb

>> lambda = [400:700]*1e-9;
>> cmf = cmfrgb(lambda);
>> plot(lambda, cmf);

and are shown graphically in Fig. 10.10. Each curve indicates how much of the 
corresponding primary is required to match the monochromatic light of wave-
length λ .

For example to create the sensation of light at 500 nm (green) we would need
>> green = cmfrgb(500e-9)
green =
   -0.0714    0.0854    0.0478 

Surprisingly this requires a signifi cant negative amount of the red primary and this is 
problematic since a light source cannot have a negative  luminance.

We reconcile this by adding some white light (R = G = B = w, see Sect. 10.2.8) so 
that the  tristimulus values are all positive. For instance

>> white = -min(green) * [1 1 1]
white =
    0.0714    0.0714    0.0714
>> feasible_green = green + white
feasible_green =
         0    0.1567    0.1191

If we looked at this color side-by-side with the desired 500 nm green we would say that 
the generated color had the correct  hue but was not as saturated.

 Saturation refers to the purity of the color. Spectral  colors are fully saturated but 
become less saturated (more pastel) as increasing amounts of white is added. In this 
case we have mixed in a stimulus of light (7%) grey.

This leads to a very important point about  color reproduction – it is not possible to 
reproduce every possible color using just three primaries. This makes intuitive sense 
since a color is properly represented as an infi nite-dimensional spectral function and 
a 3-vector can only approximate it. To understand this more fully we need to consid-
er  chromaticity spaces.

The Toolbox function cmfrgb can also compute the CIE  tristimulus for an arbi-
trary spectrum. The  luminance  spectrum of the redbrick illuminated by sunlight at 
ground level was computed on page 291 and its tristimulus is

>> RGB_brick = cmfrgb(lambda, L)
RGB_brick =
    0.0155    0.0066    0.0031 

These are the respective amounts of the three CIE  primaries that are perceived – by 
the average human – as having the same color as the original brick under those light-
ing conditions.

Color matching experiments  are performed using a light source 
comprising three adjustable lamps that correspond to the prima-
ry colors and whose intensity can be individually adjusted. The 
lights are mixed and diffused and compared to some test color. 
In color matching notation the primaries, the lamps, are denoted 
by R, G and B, and their intensities are R, G and B respectively. 
The three lamp intensities are adjusted by a human subject until 
they appear to match the test color. This is denoted

which is read as the visual stimulus C (the test color) is matched 
by, or looks the same as, a mixture of the three primaries with 

brightness R, G and B. The notation RR can be considered as the 
lamp R at intensity R.

Experiments show that color matching obeys the algebraic 
rules of additivity and linearity which is known as  Grassmann’s 
laws. For example two light stimuli C1 and C2

when mixed will match

10.2  ·  Color
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10.2.4  
l

Chromaticity Space

The  tristimulus values describe color as well as brightness. Relative tristimulus values 
are obtained by normalizing the tristimulus values

 (10.9)

which results in  chromaticity coordinates r, g and b that are invariant to overall bright-
ness. By defi nition r + g + b = 1 so one coordinate is redundant and typically only r 
and g are considered. Since the effect of intensity has been eliminated the 2-dimen-
sional quantity (r, g) represents color.

We can plot the  locus of spectral  colors , the colors of the rainbow, on the  chroma-
ticity diagram using a variant of the  color  matching functions

>> [r,g] = lambda2rg( [400:700]*1e-9 );
>> plot(r, g)
>> rg_addticks 

which results in the horseshoe-shaped curve shown in Fig. 10.11. The Toolbox func-
tion lambda2rg computes the color matching function Fig. 10.10 for the specifi ed 
wavelength and then converts the  tristimulus value to chromaticity coordinates us-
ing Eq. 10.9.

The CIE primaries listed in Table 10.1 can be plotted as well

>> primaries = lambda2rg( cie_primaries() );
>> plot(primaries(:,1), primaries(:,2), 'o') 

and are shown as circles in Fig. 10.11.

Colorimetric standards.  Colorimetry is a complex topic and stan-
dards are very important. Two organizations, CIE and ITU, play 
a leading role in this area.

The Commission Internationale de l’Eclairage (CIE) or  Inter-
national Commission on Illumination was founded in 1913 and is 
an independent nonprofi t organization that is devoted to world-
wide cooperation and the exchange of information on all matters 
relating to the science and art of light and lighting, color and vi-
sion, and image technology. The CIE’s eighth session was held 
at Cambridge, UK, in 1931 and established international agree-
ment on colorimetric specifi cations and formalized the XYZ color 
space. The CIE is recognized by ISO as an international standard-

ization body. See http://www.cie.co.at for more information and 
CIE datasets. 

The  International Telecommunication Union (ITU) is an agency 
of the United Nations and was established to standardize and reg-
ulate international radio and telecommunications. It was founded 
as the International Telegraph Union in Paris on 17 May 1865. The 
International Radio Consultative Committee or CCIR (Comité 
Consultatif International des Radiocommunications) became, 
in 1992, the Radiocommunication Bureau of ITU or ITU-R. It
publishes standards and recommendations relevant to colorim-
etry in its BT series (broadcasting service television). See http://
www.itu.int for more detail.

Fig. 10.11.
The  spectral locus on the r-g chro-
maticity plane. Monochromatic 
stimuli lie on the locus and the
wavelengths (in nm) are marked. 
The straight line joining the ex-
tremities is the  purple boundary 
and is the locus of saturated pur-
ples. All possible colors lie on, or 
within, this locus. The  CIE stan-
dard primary colors are marked 
and the dashed line indicates the 
gamut of colors that can be rep-
resented by these primaries
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 Grassmann’s center of gravity  law states that a mixture of two colors lies along a line 
between those two colors on the  chromaticity plane. A mixture of N colors lies within 
a region bounded by those colors. Considered with respect to Fig. 10.11 this has sig-
nifi cant implications. Firstly, since all color stimuli are combinations of spectral stim-
uli all real color stimuli must lie on or inside the  spectral  locus. Secondly, any colors 
we create from mixing the primaries can only lie within the triangle bounded by the 
primaries – the  color gamut. It is clear from Fig. 10.11 that the CIE primaries defi ne 
only a small subset of all possible colors – within the dashed triangle. Very many real 
colors cannot be created using these primaries, in particular the colors of the rainbow 
which lie on the spectral locus from 460–545 nm. In fact no matter where the prima-
ries are located, not all possible colors can be produced.� In geometric terms there are 
no three points within the gamut that form a triangle that includes the entire gamut. 
Thirdly, we observe that much of the locus requires a negative amount of the red pri-
mary and cannot be represented.

We revisit the problem from page 297 concerned with displaying 500 nm green and 
Figure 10.12 shows the chromaticity of the spectral green color

>> green_cc = lambda2rg(500e-9)
green_cc =
   -1.1558    1.3823
>> plot2(green_cc, 's')  

as a star-shaped marker. White is by defi nition R = G = B = 1 and its chromaticity
>> white_cc = tristim2cc([1 1 1])
white_cc =
    0.3333    0.3333
>> plot2(white_cc, 'o')  

is plotted as a hollow circle. According to Grassmann’s law the mixture of our de-
sired green and white must lie along the indicated green line. The chromaticity 
of the feasible green computed earlier is indicated by a square, but is outside the 
displayable gamut of the nonstandard primaries used in this example. The least 
saturated displayable green lies at the intersection of the green line and the gamut 
 boundary and is indicated by the triangular marker.

Earlier we said that there are no three points within the gamut that form a 
triangle that includes the entire gamut. The CIE therefore proposed, in 1931, a 
system of imaginary nonphysical primaries known as X, Y and Z that totally en-
close the spectral locus of Fig. 10.11. X and Z have zero  luminance – the lumi-
nance is contributed entirely by Y�. All real colors can thus be matched by posi-
tive amounts of these three primaries.� The corresponding  tristimulus values 
are denoted (X, Y, Z).

We could increase the gamut by choos-
ing different primaries, perhaps using a 
different green primary would make the 
gamut larger, but there is the practical 
constraint of finding a light source (LED 
or phosphor) that can efficiently produce 
that color.

Fig. 10.12.
Chromaticity diagram showing  

the color gamut for nonstan-
dard primaries at 600, 555 and 

450 nm. 500 nm green (star), 
equal-energy white (circle), a 
feasible green (square) and a 
displayable green (triangle). 

The locus of different saturated 
greens in shown as a green line

The units are chosen such that equal 
quantities of the primaries are required to 
match the equal-energy white stimulus.

10.2  ·  Color

Luminance here has different meaning to 
that defined in Sect. 10.1.3 and can be con-
sidered synonymous to brightness here.
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The  XYZ  color  matching functions defi ned by the CIE

>> cmf = cmfxyz(lambda);
>> plot(lambda, cmf); 

are shown graphically in Fig. 10.13a. This shows the amount of each   CIE  XYZ prima-
ry that is required to match a spectral color and we note that these curves are never 
negative. The corresponding  chromaticity coordinates are

 (10.10)

and once again x + y + z = 1 so only two parameters are required – by convention 
y is plotted against x in a   chromaticity diagram. The  spectral  locus can be plotted in 
a similar way as before

>> [x,y] = lambda2xy(lambda);
>> plot(x, y); 

A more sophisticated plot, showing the colors within the spectral locus, can be created

>>  showcolorspace('xy')

and is shown� in Fig. 10.13b. These coordinates are a standard way to represent color 
for graphics, printing and other purposes. For example the chromaticity coordinates 
of peak green (550 nm) is

>> lambda2xy(550e-9)
ans =
    0.3016    0.6923 

and the chromaticity coordinates of a standard tungsten illuminant at 2 600 K is
>> lamp = blackbody(lambda, 2600);
>> lambda2xy(lambda, lamp)
ans =
    0.4677    0.4127  

10.2.5  
l

Color Names

Chromaticity coordinates provide a quantitative way to describe and compare colors, 
however humans refer to colors by name. Many computer operating systems contain 
a database or fi le� that maps human understood names of colors to their correspond-

Fig. 10.13. a The color matching 
functions for the standard observ-
er, based on the imaginary prima-
ries X, Y (intensity) and Z are tab-
ulated by the CIE. b Colors on the 
xy-chromaticity plane

The colors depicted in figures such as 
Fig. 10.1 and 10.13b can only approxi-
mate the true color due to the gamut 
limitation of the technology you use to 
view the book: the inks used to print 
the page or your computer’s display. 
No display technology has a gamut large 
enough to present an accurate represen-
tation of the chromaticity at every point.

The file is named /etc/rgb.txt 
on most Unix-based systems.
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ing (R, G, B)  tristimulus values. The Toolbox provides a 
copy of a such a fi le and an interface function  color-
name. For example, we can query a color name that in-
cludes a particular substring

>> colorname('?burnt')
ans =
    'burntsienna'    'burntumber' 

The RGB  tristimulus value of burnt Sienna is
>> colorname('burntsienna')
ans =
    0.5412    0.2118    0.0588 

with the values normalized to the interval [0, 1]. We could 
also request xy-chromaticity coordinates

>> bs = colorname('burntsienna', 'xy')
bs =
    0.5568    0.3783 

With reference to Fig. 10.13, we see that this point is in 
the red-brown part of the colorspace and not too far from 
the color of chocolate

Colors are important to hu-
man beings and there are over 
4 000 color-related words in 
the English language. The an-
cient Greeks only had words 
for black, white, red and yel-
lowish-green. All languages 
have words for black and white, 
and red is the next most like-
ly color word to appear in a 
language followed by yellow, 

green, blue and so on. We also associate colors with emotions, 
for example red is angry and blue is sad but this varies across 
cultures. In Asia orange is generally a positive color where-
as in the west it is the color of road hazards and bulldozers. 
Chemistry and technology has made a huge number of colors 
available to us in the last 700 years yet with this choice comes 
confusion about color naming – people may not necessarily 
agree on the linguistic tag to assign to a particular color. (Word 
cloud by tagxedo.com using data from Steinvall 2002)

>> colorname('chocolate', 'xy')
ans =
    0.5318    0.3988 

We can also solve the inverse problem. Given a  tristimulus value
>>  colorname([0.2 0.3 0.4])
ans =
darkslateblue

we obtain the name of the closest, in Euclidean terms, color. 

10.2.6 
l

Other Color and Chromaticity Spaces

A  color space is a 3-dimensional space that contains all possible  tristimulus values – all col-
ors and all levels of brightness. If we think of this in terms of coordinate frames as discussed 
in Sect. 2.2 then there are an infi nite number of choices of Cartesian frame with which to 
defi ne colors. We have already discussed two different Cartesian color spaces: RGB and 
 XYZ. However we could also use polar, spherical or hybrid coordinate systems.

The 2-dimensional chromaticity spaces r-g or x-y do not account for brightness – we 
normalized it out in Eq. 10.9 and Eq. 10.10. Brightness, frequently referred to as lumi-
nance in this context, is denoted by Y and the defi nition from ITU Recommendation 709

 (10.11)

is a weighted sum of the RGB-tristimulus values and refl ects the  eye’s high sensitivity 
to green and low sensitivity to blue. Chromaticity plus luminance leads to 3-dimen-
sional color spaces such as rgY or xyY.

Humans seem to more naturally consider chromaticity in terms of two character-
istics:  hue and  saturation. Hue is the dominant color, the closest spectral color, and 
saturation refers to the purity, or absence of mixed white. Stimuli on the spectral  lo-
cus are completely saturated while those closer to its centroid are less saturated. The 
concepts of hue and saturation are illustrated in geometric terms in Fig. 10.14.

The color spaces that we have discussed lack easy interpretation in terms of hue 
and saturation so alternative color spaces have been proposed. The two most com-
monly known are HSV and CIE L*C*h.    In color-space  notation H is hue, S is satura-
tion which is also known as C or chroma. The  intensity dimension is named either V 
for value or L for lightness but they are computed quite differently.�

L* is a nonlinear function of relative lumi-
nance and approximates the nonlinear 
response of the human eye. Value is given 
by V =C (min R, G, B + max R, G, B).

10.2  ·  Color
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The function  colorspace can be used to convert between different color spac-
es. For example the  hue,  saturation and  intensity for each of pure red, green and blue 
RGB  tristimulus value� is

>> colorspace('RGB->HSV', [1, 0, 0])
ans =
     0     1     1
>> colorspace('RGB->HSV', [0, 1, 0])
ans =
   120     1     1
>> colorspace('RGB->HSV', [0, 0, 1])
ans =
   240     1     1   

In each case the saturation is 1, the colors are pure, and the intensity is 1. As shown in 
Fig. 10.14 hue is represented as an angle in the range [0, 360)° with red at 0° increas-
ing through the spectral colors associated with decreasing wavelength (orange, yellow, 
green, blue, violet). If we reduce the amount of the green primary

>> colorspace('RGB->HSV', [0, 0.5, 0])
ans =
  120.0000    1.0000    0.5000 

we see that intensity drops but hue and saturation are unchanged.� For a medium 
grey

>> colorspace('RGB->HSV', [0.4, 0.4, 0.4])
ans =
  240.0000         0    0.4000 

the saturation is zero, it is only a mixture of white, and the hue has no meaning since 
there is no color. If we add the green to the grey

>> colorspace('RGB->HSV', [0, 0.5, 0] + [0.4, 0.4, 0.4])
ans =
  120.0000    0.5556    0.9000 

we have the green hue and a medium saturation value.
The colorspace function can also be applied to a color image

>>  fl owers = iread('fl owers4.png', 'double');
>> about fl owers
fl owers [double] : 426x640x3 (6.5 MB)

which is shown in Fig. 10.15a and comprises several different colored fl owers and 
background greenery. The image fl owers has 3 dimensions and the third is the color 
plane that selects the red, green or blue pixels.

Fig. 10.14.
Hue and saturation. A line is 
extended from the  white point 
through the chromaticity in 
question to the spectral locus. 
The angle of this line is hue, and 
saturation is the length of the 
vector normalized with respect 
to distance to the locus

This function assumes that RGB values 
are gamma encoded (γ = 0.45), see 
Sect. 10.3.6. The particular numerical 
values chosen here are invariant under 
gamma encoding. The builtin MATLAB 
function  rgb2hsv does not assume 
gamma encoded values and represents 
hue in different units.

For very dark colors numerical problems 
lead to imprecise hue and saturation co-
ordinates.
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To convert the image to hue, saturation and value is simply
>> hsv =  colorspace('RGB->HSV', fl owers);
>> about hsv
hsv [double] : 426x640x3 (6.5 MB)

and the result is another 3-dimensional matrix but this time the color planes represent 
hue, saturation and value. We can display these planes

>> idisp( hsv(:,:,1) )
>> idisp( hsv(:,:,2) )
>> idisp( hsv(:,:,3) )

as images which are shown in Fig. 10.15b, c and d respectively. In the hue image dark 
represents red and bright white represents violet. The red fl owers appear as both a 
very small hue angle (dark) and a very large angle close to 360°. The yellow fl owers and 
the green background can be seen as distinct hue values. The saturation image shows 
that the red and yellow fl owers are highly saturated, while the green leaves and stems 
are less saturated. The white fl owers have very low saturation, since by defi nition the 
color white contains a lot of white.

A limitation of many color spaces is that the perceived color difference between two 
points is not directly related to their Euclidean distance. In some parts of the chroma-
ticity space two distant points might appear quite similar, whereas in another region 
two close points might appear quite different. This has led to the development of    per-
ceptually uniform color spaces such as the CIE  L*u*v* (CIELUV) and L*a*b* spaces. 

The  colorspace function can convert between thirteen different     color spaces 
including  L*a*b*,  L*u*v*,  YUV and  YCBCR. To convert this image to L*a*b* color 
space follows the same pattern

>> Lab = colorspace('RGB->Lab', fl owers);
>> about Lab
Lab [double] : 426x640x3 (6.5 MB)

which again results in an image with 3 dimensions. The chromaticity� is encoded in 
the a* and b* planes.

>> idisp( Lab(:,:,2) )
>> idisp( Lab(:,:,3) )

and these are shown in Fig. 10.15e and f respectively. L*a*b* is an   opponent color space 
where a* spans colors from green (black) to red (white) while b* spans blue (black) to 
yellow (white), with white at the origin where a* = b* = 0.

Fig. 10.15. Flower scene. a Orig-
inal color image; b hue image; 
c saturation image. Note that the 
white fl owers have low saturation 
(they appear dark); d intensity or 
monochrome image; e a* image 
(green to red); f b* image (blue to 
yellow)

10.2  ·  Color

Relative to a white illuminant, which this 
function assumes as CIE D65 with Y = 1. 
a*b* are not invariant to overall lumi-
nance.
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10.2.7 
l

Transforming between Different Primaries

The CIE standards were defi ned in 1931 which was well before the introduction of 
color television in the 1950s. The CIE primaries in Table 10.1 are based on the emis-
sion lines of a mercury lamp which are highly repeatable and suitable for laboratory 
use. Early television receivers used CRT monitors where the primary colors were gen-
erated by phosphors that emit light when bombarded by electrons. The phosphors 
used, and their colors has varied over the years in pursuit of brighter displays. An 
international agreement, ITU recommendation 709, defi nes the primaries for high 
defi nition television (HDTV) and these are listed in Table 10.2.

This raises the problem of converting  tristimulus values from one sets of pri-
maries to another. Consider for example that we wish to display an image, where 
the tristimulus values are with respect to CIE primaries, on a screen that uses ITU 
Rec. 709 primaries. Using the  notation we introduced earlier we defi ne two sets of 
primaries: P1, P2, P3 with tristimulus values (S1, S2, S3), and P′1, P′2, P′3 with tristimu-
lus values (S′1, S′2, S′3). We can always express one set of primaries as a linear com-
bination� of the other

 (10.12)

and since the two tristimuli match then

 (10.13)

Substituting Eq. 10.12, equating  tristimulus values and then transposing we 
obtain

 (10.14)

which is simply a linear transformation of  tristimulus values.
Consider the concrete problem of transforming from CIE primaries to  XYZ 

 tristimulus values. We know from Table 10.2 the CIE primaries in terms of XYZ 
primaries

>> C = [ 0.7347, 0.2653, 0; 0.2738, 0.7174, 0.0088; 0.1666, 
0.0089, 0.8245]'
C =
    0.7347    0.2738    0.1666
    0.2653    0.7174    0.0089
         0    0.0088    0.8245

which is exactly the fi rst three columns of Table 10.2. The transform is therefore

Recall from page 299 that luminance is contributed entirely by the Y primary. 
It is common to apply the constraint that unity R, G, B values result in unity lumi-
nance Y and a white with a specifi ed chromaticity. We will choose  D65 white whose 

The coefficients can be negative so the 
new primaries do not have to lie within 
the gamut of the old primaries.
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chromaticity is given in Table 10.2 and which we will denote (xw, yw, zw). We can 
now write

where the left-hand side has Y = 1 and we have introduced a diagonal matrix J which 
scales the luminance of the primaries. We can solve for the elements of J

Substituting real values we obtain
>> J = inv(C) * [0.3127 0.3290 0.3582]' * (1/0.3290)
J =
    0.5609
    1.1703
    1.3080
>> C * diag(J)
ans =
    0.4121    0.3204    0.2179
    0.1488    0.8395    0.0116
         0    0.0103    1.0785

The middle row of this matrix leads to the luminance relationship

which is similar to Eq. 10.11. The small variation is due to the different primaries used 
– CIE in this case versus Rec. 709 for Eq. 10.11.

The RGB  tristimulus value of the redbrick was computed earlier and we can deter-
mine its XYZ tristimulus

>> XYZ_brick = C * diag(J) * RGB_brick';
ans =
    0.0092
    0.0079
    0.0034

which we convert to chromaticity coordinates by Eq. 10.10
>> tristim2cc(XYZ_brick')
xybrick =
    0.4483    0.3859 

Referring to Fig. 10.13b we see that this xy-chromaticity lies in the red region and is 
named

>> colorname(ans, 'xy')
ans =
sandybrown 

which is plausible for a “weathered red brick”.

Table 10.2.
xyz-chromaticity  of standard 

primaries   and whites. The CIE 
primaries of Table 10.1 and the 

more recent ITU recommen-
dation 709 primaries defi ned 

for HDTV. D65 is the  white of a 
blackbody  radiator at 6 500 K, 

and E is equal-energy  white

10.2  ·  Color
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10.2.8 
l

What Is White?

In the previous section we touched on the subject of white. White is both the absence of col-
or and also the sum of all colors. One  defi nition of white is standard daylight which is taken 
as the mid-day Sun in Western/Northern Europe which has been tabulated by the CIE as 
illuminant D65.  It can be closely approximated by a blackbody radiator at 6 500 K

>> d65 = blackbody(lambda, 6500);
>> lambda2xy(lambda, d65)
ans =
    0.3136    0.3243  

which we see is close to the  D65 chromaticity given in Table 10.2.
Another defi nition is based on white light being an equal mixture of all spectral col-

ors. This is represented by a uniform spectrum

>> ee = ones(size(lambda));

which is also known as the  equal-energy stimulus and has chromaticity
>> lambda2xy(lambda, ee)
ans =
    0.3334    0.3340 

which is close to the defi ned value of (D, D).

10.3 
l
Advanced Topics

Color is a large and complex subject, and in this section we will briefl y introduce a few 
important remaining topics. Color temperature is a common way to describe the spec-
trum of an illuminant, and the effect of illumination color on the apparent color of an 
object is the color constancy problem which is very real for a robot using color cues in 
an environment with natural lighting. White balancing is one way to overcome this. 
Another source of color change, in media such as water, is the absorption of certain 
wavelengths. Most cameras actually implement a nonlinear relationship, called gamma 
correction, between actual scene luminance and the output tristimulus values. Finally 
we look at a more realistic model of surface refl ection which has both specular and dif-
fuse components, each with different spectral characteristics.

10.3.1 
l

Color Temperature

Photographers often refer to the color temperature   of a light source – the temperature of a 
black body whose spectrum according to Eq. 10.1 is most similar to that of the light source. 
The color temperature of a number of common lighting conditions are listed in Table 10.3. We 
describe low-color-temperature illumination as warm – it appears reddy orange to us. High-
color-temperature is more harsh – it appears as brilliant white perhaps with a tinge of blue.

Table 10.3.
Color temperatures of some 
common light sources
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10.3.2  
l

Color Constancy

Studies show that human perception of what is white is adaptive and has a remarkable 
ability to tune out the effect of scene illumination so that white objects always appear to 
be white.� For example at night under a yellowish tungsten lamp the pages of a book still 
appear white to us, but a photograph of that scene viewed later under different lighting 
conditions will look yellow. All of this poses real problems for a robot that is using color to 
understand the scene because the observed chromaticity varies with lighting. Outdoors a 
robot has to contend with an illumination  spectrum that depends on the time of day and 
cloud cover as well as colored refl ections from buildings and trees. This affects the lumi-
nance and apparent color of the object. To illustrate this problem we revisit the red brick

>> lambda = [400:10:700]*1e-9;
>> R = loadspectrum(lambda, 'redbrick'); 

under two different illumination conditions, the Sun at ground level

>> sun = loadspectrum(lambda, 'solar'); 

and a tungsten lamp

>> lamp = blackbody(lambda, 2600); 

and compute the xy-chromaticity for each case

>> xy_sun = lambda2xy(lambda, sun .* R)
xy_sun =
    0.4760    0.3784
>> xy_lamp = lambda2xy(lambda, lamp .* R)  
xy_lamp =
    0.5724    0.3877

and we can see that the chromaticity, or apparent color, has changed signifi cantly. 
These values are plotted on the chromaticity diagram in Fig. 10.16.

Scene luminance is the product of illuminance  and refl ectance  but refl ectance is key to scene understand-
ing since it can be used as a proxy for the type of material . Illuminance can vary in  intensity and color 
across the scene and this complicates image understanding. Unfortunately separating luminance into 
illuminance and refl ectance is an ill-posed problem yet humans are able to do this very well as the illu-
sion to the right illustrates – the squares labeled A and B have the same grey level.

The American inventor and founder of Polaroid Corporation Edward Land  (1909–1991) proposed the ret-
inex   theory (retinex = retina + cortex) to explain how the human visual system factorizes refl ectance from 
luminance. (Checker shadow illusion courtesy of Edward H. Adelson, http://persci.mit.edu/gallery)

We adapt our perception of color so that 
the integral, or average, over the entire 
scene is grey. This works well over a color 
temperature range 5 000–6 500 K.

Fig. 10.16.
Chromaticity of the red-brick 

under different illumination 
conditions

10.3  ·  Advanced Topics
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10.3.3 
l

White  Balancing

Photographers need to be aware of the illumination color temperature. An incandes-
cent lamp appears more yellow than daylight so a photographer would place a blue 
fi lter on the camera to attenuate the red part of the spectrum to compensate.  We can 
achieve a similar function by choosing the matrix J

to adjust the gains of the color channels.� For example, boosting JB would compensate 
for the lack of blue under tungsten illumination. This is the process of  white balancing 
– ensuring the appropriate chromaticity of objects that we know are white (or grey).

Some cameras allow the user to set the color temperature of the illumination through 
a menu, typically with options for tungsten, fl uorescent, daylight and fl ash which select 
different preset values of J. In manual white balancing the camera is pointed at a grey or 
white object and a button is pressed. The camera adjusts its channel gains J so that equal 
 tristimulus values are produced R′ = G′ = B′ which as we recall results in the desired 
white chromaticity. For colors other than white these corrections introduces some color 
error but this nevertheless has a satisfactory appearance to the eye. Automatic white bal-
ancing is commonly used and involves heuristics to estimate the color temperature of the 
light source but it can be fooled by scenes with a predominance of a particular color.

The most practical solution is to use the  tristimulus values of three objects with known 
chromaticity in the scene. This allows the matrix C in Eq. 10.14 to be estimated directly, 
mapping the tristimulus values from the sensor to XYZ coordinates which are an abso-
lute lighting-independent representation of  surface  refl ectance. From this the chroma-
ticity of the illumination can also be estimated. This approach is used for the panoramic 
 camera on the Mars Rover where the  calibration target shown in Fig. 10.17 can be imaged 
periodically to update the white balance under changing Martian illumination.

10.3.4 
l

Color  Change Due to  Absorption

A fi nal and extreme example of problems with color occurs underwater. For example 
consider a robot trying to fi nd a docking station identifi ed by colored targets. As dis-
cussed earlier in Sect. 10.1.1 water acts as a fi lter that absorbs more red light than blue 
light.  For an object underwater this fi ltering affects both the illumination falling on 

Typically JG = 1 and JR and JB are ad-
justed.

Fig. 10.17.
The calibration target used for the 
Mars Rover’s PanCam. Regions 
of known refl ectance and chro-
maticity (red, yellow, green, blue 
and shades of grey) are used to 
set the  white balance of the cam-
era. The central stalk has a very 
low refl ectance and also serves 
as a sundial. In the best tradi-
tions of sundials it bears a mot-
to (photo courtesy NASA/JPL/
Cornell/Jim Bell)
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the object and the refl ected light, the luminance, on its way to the camera. Consider 
again the red brick

>> [R,lambda] = loadspectrum([400:5:700]*1e-9, 'redbrick'); 

which is now 1 m underwater and with a camera a further 1 m from the brick. The il-
lumination on the water’s  surface is that of sunlight at ground level

>> sun = loadspectrum(lambda, 'solar'); 

The  absorption  spectrum of water is

>> A = loadspectrum(lambda, 'water'); 

and the total optical path length through the water is

>> d = 2;

The  transmission T is given by Beer’s  law Eq. 10.2.

>> T = 10 .^ (-d*A);

and the resulting luminance of the brick is

>> L = sun .* R .* T;

which is shown in Fig. 10.18. We see that the longer wavelengths, the reds, have been 
strongly attenuated. The apparent color of the brick is

>> xy_water = lambda2xy(lambda, L) 
xy_water =
    0.3738    0.3814

which is also plotted in the chromaticity diagram of Fig. 10.16. The brick appears much 
more blue than it did before. In reality underwater  imaging is more complex than this 
due to the scattering of light by tiny suspended particles which refl ect ambient light 
into the camera that has not been refl ected from the target.

Fig. 10.18.
Spectrum of the red brick lumi-
nance when viewed underwater. 
The spectrum without the water 

 absorption is shown in red

10.3  ·  Advanced Topics

Lambertian reflection. A non-mirror-like or matte surface is a diffuse 
refl ector  and the amount of light refl ected at a particular angle from the 
surface normal is proportional to the cosine of the refl ection angle θ r. 
This is known as Lambertian refl ection   after the Swiss mathematician 
and physicist Johann Heinrich Lambert  (1728–1777). A consequence 
is that the object has the same apparent brightness at all viewing an-
gles. A powerful example of this is the moon which appears as a disc 
of uniform brightness despite it being a sphere with its surface curved 
away from us. See also specular refl ection on page 337. (Moon image 
courtesy of NASA)
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10.3.5 
l
Dichromatic Reflectance 

The simple reflectance model introduced in Sect. 10.1.3 is suitable for objects 
with matte  surfaces (e.g. paper, unfinished wood) but if the surface is somewhat 
shiny the light reflected from the object will have two components – the dichro-
matic reflection   model – as shown in Fig. 10.19a. One component is the illuminant 
  specularly reflected from the surface without spectral change – the interface or 
Fresnel reflection  . The other is light that interacts with the surface: penetrating, 
scattering, undergoing selective spectral absorbance and being re-emitted in all 
directions as modeled by Lambertian reflection  . The relative amounts of these 
two components depends on the material and the geometry of the light source, 
observer and surface normal.

A good example of this can be seen in Fig. 10.19b. Both tomatoes appear red 
which is due to the scattering lightpath where the light has interacted with the sur-
face of the fruit. However each fruit has an area of specular refl ection that appears 
to be white, the color of the light source, not the surface of the fruit.

The real world is more complex still due to inter-reflections . For example green 
light reflected from the leaves will fall on the red fruit and be scattered. Some of 
that light will be reflected off the green leaves again, and so on – nearby objects 
influence each other’s color in complex ways. To achieve photorealistic results in 
computer graphics all these effects need to be modeled based on detailed knowl-
edge of  surface reflection properties and the geometry of all  surfaces. In robotics 
we rarely have this information so we need to develop algorithms that are robust 
to these effects.

10.3.6 
l

Gamma

CRT monitors were once ubiquitous and the  luminance produced at the face of the 
display was nonlinearly related to the control voltage V according to

 (10.15)

where γ ≈ 2.2. To correct for this early video cameras applied the inverse nonlinearity 
V = L1/γ to their output signal which resulted in a system that was linear from end to 
end.� Both transformations are commonly referred to as  gamma correction though 

Fig. 10.19. Dichromatic refl ection. 
a Some incoming light undergoes 
specular refl ection from the sur-
face, while some penetrates the 
surface is scattered, fi ltered and re-
emitted in all directions according 
to the Lambertian refl ection model.
b Specular surface refl ection can 
be seen clearly in the nonred high-
light areas on the two tomatoes, 
these are refl ections of the ceil-
ing lights (courtesy of Distributed 
Robot Garden project, MIT)

Some cameras have an option to choose 
gamma as either 1 or 0.45 (= 1 / 2.2).
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more properly the camera-end operation is  gamma  encoding and the display-end op-
eration is  gamma  decoding.�

LCD displays have a stronger nonlinearity than CRTs but correction tables are ap-
plied within the display to make it follow the standard γ = 2.2 behavior of the obso-
lete CRT.�

To show the effect of display gamma we create a simple test pattern

>> wedge = [0:0.1:1];
>> idisp(wedge) 

that is shown in Fig. 10.20 and is like a photographer’s greyscale step wedge. If we dis-
play this on our computer screen it will appear differently to the one printed in the 
book. We will most likely observe a large change in brightness between the second 
and third block – the effect of the  gamma decoding nonlinearity Eq. 10.15 in the dis-
play of your computer.

If we apply gamma encoding

>> idisp( wedge .^ (1/2.2) ) 

we observe that the intensity changes appear to be more linear and closer to the one 
printed in the book.

The chromaticity coordinates of Eq. 10.9 and Eq. 10.10 are computed as ratios 
of  tristimulus values which are linearly related to luminance in the scene. The 
nonlinearity applied to the camera output must be corrected, gamma decoded, 
before any colometric operations. The Toolbox function igamm performs this 
operation.  Gamma decoding can also be performed when an image is loaded 
using the 'gamma' option to the function iread.

Today most digital  cameras� encode images in  sRGB format (IEC 61966-2-1 stan-
dard) which uses the ITU Rec. 709 primaries and a gamma encoding function of

which comprise a linear function for small values and a power  law for larger values. 
The overall gamma is approximately 2.2.

The important property of colorspaces such as HSV or xyY is that the chromatic-
ity coordinates are invariant to changes in intensity. Many digital video  cameras 
provide output in  YUV or  YCBCR format which has a luminance component Y and 
two other components which are often mistaken for chromaticity coordinates 
– they are not. They are in fact color difference signals such that U, CB ∝ B′ − Y′ 
and V, CR ∝ R′ − Y′ where R′, B′ are gamma encoded tristimulus values, and Y′ is 
gamma encoded  intensity. The gamma nonlinearity means that UV or CBCR will 
not be a constant as overall lighting level changes.

The  tristimulus values from the camera must be first converted to linear tri-
stimulus values, by applying the appropriate gamma decoding, and then com-
puting chromaticity. There is no shortcut.

Gamma encoding and decoding are of-
ten referred to as  gamma  compression 
and  gamma decompression respectively, 
since the encoding operation compress-
es the range of the signal, while decod-
ing decompresses it.

Fig. 10.20.
The linear  intensity wedge

Macintosh computers are an exception 
and prior to MacOS 10.6 used γ = 1.8 
which made colors appear brighter and 
more vivid.

The JPEG file header (JFIF  file format ) has 
a tag Color Space which is set to 
either sRGB or Uncalibrated if 
the gamma or color model is not known. 
See page 363.

10.3  ·  Advanced Topics
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10.4 
l
Application:  Color Image

10.4.1 
l
Comparing Color Spaces  [examples/colorspaces]

In this section we bring together many of the concepts and tools introduced in this chap-
ter. We will compare the chromaticity coordinates of the colored squares (squares 1–18) 
of the Color Checker chart shown in Fig. 10.21 using the xy- and L*a*b*-color spaces.     
We compute chromaticity  from fi rst principles using the spectral refl ectance informa-
tion for each square which is provided with the Toolbox

>> lambda = [400:5:700]*1e-9;
>> macbeth = loadspectrum(lambda, 'macbeth'); 

which has 24 columns, one per square of the test chart. We load the relative power  spec-
trum of the  D65 standard white illuminant

>> d65 = loadspectrum(lambda, 'D65') * 3e9; 

and scale it to a brightness comparable to sunlight as shown in Fig. 10.3a. Then for each 
nongrey square

1 >> for i=1:18
2      L = macbeth(:,i) .* d65;
3      tristim = max(cmfrgb(lambda, L), 0);
4      RGB = igamm(tristim, 0.45);
5 
6      XYZ(i,:) = colorspace('XYZ<-RGB', RGB);
7      Lab(i,:) =  colorspace('Lab<-RGB', RGB);
8 end

we compute the luminance  spectrum (line 2), use the CIE  color  matching functions to 
determine the  eye’s tristimulus  response and impose the gamut limits (line 3) and then 
apply a gamma  encoding (line 4) since the colorspace  function expects gamma en-
coded RGB data. This is converted to the  XYZ color space (line 6), and the L*a*b* color 
space (line 7). Next we convert XYZ to xy by dividing X and Y each by X + Y + Z, and 
extract the a*b* columns

>> xy = XYZ(:,1:2) ./ (sum(XYZ,2)*[1 1]);
>> ab = Lab(:,2:3);

giving two matrices, each 18 × 2, with one row per colored square. Finally we plot 
these points on their respective color planes

>>  showcolorspace(xy', 'xy');
>> showcolorspace(ab', 'Lab'); 

and the results are displayed in Fig. 10.22. We see, for example, that square 15 is 
closer to 9 and further from 7 in the a*b* plane. The L*a*b* color space was designed 
so that the Euclidean distance between points is proportional to the color difference 
perceived by humans. If we are using algorithms to distinguish objects by color then 
L*a*b* would be preferred over RGB or XYZ.

Fig. 10.21.
The Gretag Macbeth Color 
Checker is an array of 24 printed 
color squares (numbered left to 
right, top to bottom), which in-
cludes different greys and colors 
as well as spectral simulations 
of skin, sky, foliage etc. Spectral 
data for the squares is provided 
with the toolbox



313

10.4.2 
l

Shadow Removal  [examples/shadow]

For a robot vision system that operates outdoors shadows are a signifi cant problem as we 
can see in Fig. 10.23a. Shadows cause surfaces of the same type to appear quite different and 
this is problematic for a robot trying to use vision to understand the scene and plan where 
to drive. Even more problematic is that this effect is not constant, it varies with the time 
of day and cloud condition. The image in Fig. 10.23b has had the effects of shadowing re-
moved, and we can now see very clearly the different types of terrain – grass and gravel.

The key to removing shadows comes from the observation that the bright parts of 
the scene are illuminated directly by the sun while the darker shadowed regions are il-
luminated by the sky. Both the sun and the sky can be modeled as blackbody radiators  
with color temperatures as listed in Table 10.3. Shadows therefore have two defi ning 
characteristics: they are dark and they have a slight blue tint.

We model the camera using Eq. 10.4 but model the spectral  response of the  camera’s color 
sensors as Dirac functions   Mx(λ) = δ(λ − λx) which allows us to eliminate the integrals

For each pixel we compute chromaticity coordinates r = R / G and b = B / G which 
are invariant to change in illumination magnitude.

Fig. 10.22.
Color Checker  chromaticities. 

a xy-space; b xy-space zoomed; 
c a*b*-space; d a*b*-space zoomed

10.4  ·  Application: Color Image
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To simplify further we apply the Wien approximation, eliminating the −1 term, 
which is a reasonable approximation for color temperatures in the range under con-
sideration, and now we can write

which is a function of color temperature   T and various constants: physical constants   c, 
h and k; sensor  response wavelength λ x and magnitude Mx(λ x), and material proper-
ties R(λ x). Taking the logarithm we obtain the very simple form

 (10.16)

and repeating the process for blue chromaticity we can write

 (10.17)

Every color pixel (R, G, B) ∈R3 can be mapped to a point (log r, log b) ∈R2 and 
as the color temperature changes the points will all move along lines with a slope of 
c′2 /c2. Therefore a projection onto the orthogonal direction, a line with slope c2 /c′2, 
results in a 1-dimensional quantity

that is invariant to the color temperature of the illuminant. We can compute this for 
every pixel in an image

>> im = iread('parks.jpg', 'gamma', 'sRGB');
>> gs =  invariant(im, 0.7, 'noexp');
>> idisp(gs)  

and the result is shown in Fig. 10.23b. The pixels have a greyscale value that is a com-
plex function of material refl ectance and  camera sensor properties. The arguments to 
the function are the color image, the slope of the line in radians and a fl ag to return 
the logarithm s rather than its exponent.

Fig. 10.23. Shadows  create con-
founding effects in images. a View 
of a park with strong shadows; 
b the shadow invariant image in 
which the variation lighting has 
been almost entirely removed 
(Corke et al. 2013)
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To achieve this result we have made some approximations and a number of rather 
strong assumptions: the camera has a linear response from scene luminance to RGB 
tristimulus values , the color channels of the camera have nonoverlapping spectral  re-
sponse, and the scene is illuminated by blackbody light sources. The fi rst assumption 
means that we need to use a camera with γ = 1 or apply gamma decoding to the im-
age before we proceed. The second is far from true, especially for the red and green 
channels of a color camera, yet the method works well in practice. The biggest effect 
is that the points move along a line with a slope different to c′2 /c2 but we can estimate 
the slope empirically by looking at a set of shadowed and nonshadowed pixels corre-
sponding to the same material in the scene

>> theta = esttheta(im)

which will prompt you to select a region and returns an angle which can be passed 
to  invariant. The fi nal assumption means that the technique will not work for 
nonincandescent light sources, or where the scene is partly illuminated by refl ec-
tions from colored surfaces. More details are provided in the MATLAB function 
source code.

10.5 
l
Wrapping Up

We have learned that the light we see is electro-magnetic radiation with a mixture 
of wavelengths, a continuous spectrum, which is modifi ed by refl ectance and ab-
sorption. The spectrum elicits a response from the eye which we interpret as color 
– for humans the response is a tristimulus, a 3-vector that represents the outputs of 
the three different types of cones in our eye. A digital color camera is functionally 
equivalent. The tristimulus can be considered as a 1-dimensional brightness coor-
dinate and a 2-dimensional chromaticity coordinate which allows colors to be plot-
ted on a plane. The spectral colors form a locus on this plane and all real colors lie 
within this locus. Any three primary colors form a triangle on this plane which is 
the gamut of those primaries. Any color within the triangle can be matched by an 
appropriate mixture of those primaries. No set of primaries can defi ne a gamut that 
contains all colors. An alternative set of imaginary primaries, the CIE XYZ system, 
does contain all real colors and is the standard way to describe colors. Tristimulus 
values can be transformed using linear transformations to account for different sets 
of primaries. Nonlinear transformations can be used to describe tristimulus values 
in terms of human-centric qualities such as hue and saturation. We also discussed 
the defi nition of white, color temperature, color constancy, the problem of white 
balancing, the nonlinear response of display devices and how this effects the com-
mon representation of images and video.

We learned that the colors and brightness we perceive is a function of the light source 
and the surface properties of the object. While humans are quite able to “factor out” 
illumination change this remains a signifi cant challenge for robotic vision systems. We 
fi nished up by showing how to remove shadows in an outdoor color image.

 Infra-red cameras. Consumer cameras are functionally equivalent
to the human eye and are sensitive to the visible spectrum.  Cam-
eras are also available that are sensitive to infra-red and a num-
ber of infra-red bands are defi ned by CIE: IR-A (700−1 400 nm),
IR-B (1 400−3 000 nm), and IR-C (3 000 nm−1 000 µm). In com-
mon usage IR-A and IR-B are known as   near infra-red (NIR) 
and   short-wavelength infra-red (SWIR) respectively, and the
IR-C subbands are medium-wavelength (MWIR, 3 000−8 000 nm) 
and long-wavelength (LWIR, 8 000−15 000 nm). LWIR  cameras 
are also called thermal or thermographic  cameras.

 Ultraviolet cameras typically work in the near ultra-violet region 
(NUV, 200−380 nm) and are used in industrial applications 
such as detecting corona discharge from high-voltage electrical 
systems.
 Hyperspectral cameras have more more than three classes of pho-
toreceptor, they sample the incoming spectrum at many points 
typically from infra-red to ultra-violet and with tens or even hun-
dreds of spectral bands. Hyperspectral cameras are used for ap-
plications including aerial survey classifi cation of land-use and 
identifi cation of the mineral composition of rocks.

10.5  ·  Wrapping Up
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Further Reading

At face value color is a simple concept that we learn in kindergarten but as we delve in we 
fi nd it is a fascinating and complex topic with a massive literature. In this chapter we have 
only begun to scrape the surface of photometry and colorimetry. Photometry is the part 
of the science of radiometry concerned with measurement of visible light. It is challeng-
ing for engineers and computer scientists since it makes use of uncommon units such as 
lumen, steradian, nit, candela and lux. One source of complexity is that words like inten-
sity and brightness are synonyms in everyday speech but have very specifi c meanings in 
photometry. Colorimetry is the science of color perception and is also a large and complex
area since human perception of color depends on the individual observer, ambient illumi-
nation and even the fi eld of view. Colorimetry is however critically important in the design 
of cameras, computer displays, video equipment and printers. Comprehensive online infor-
mation about computer vision is available through CVonline at http://homepages.inf.ed.ac.
uk/rbf/CVonline, and the material in this chapter is covered by the section Image Physics.

The computer vision textbooks by Gonzalez and Woods (2008) and Forsyth and Ponce 
(2011) each have a discussion on color and color spaces. The latter also has a discussion 
on the effects of shading and inter-refl ections. The book by Gevers et al. (2012) is solid in-
troduction to color vision theory and covers the dichromatic refl ectance model  in detail. 
It also covers computer vision algorithms that deal with the challenges of color constancy. 
The Retinex theory   is described in Land and McCann (1971) and MATLAB implementa-
tions can be found at http://www.cs.sfu.ca/~colour/code. Other resources related to color 
constancy can be found at http://colorconstancy.com.

Readable and comprehensive books on color science include Koenderink (2010), Hunt 
(1987) and from a television or engineering perspective Benson (1986). A more conver-
sational approach is given by Hunter and Harold (1987), which also covers other aspects 
of appearance such as gloss and luster. The CIE standard (Commission Internationale 
de l’Éclairage 1987) is defi nitive but hard reading. The work of the CIE is ongoing and its 
standards are periodically updated at www.cie.co.at. The  color matching functions were 
fi rst tabulated in 1931 and revised in 1964.

Charles Poynton has for a long time maintained excellent online tutorials about color 
spaces and gamma at http://www.poynton.com. His book (Poynton 2012) is an excel-
lent and readable introduction to these topics while also discussing digital video systems 
in great depth.

General interest. Crone (1999) covers the history of theories of human vision and color. 
How the human visual system works, from the eye to perception, is described in two very 
readable books Stone (2012) and Gregory (1997). Land and Nilsson (2002) describes the 
design principles behind animal eyes and how characteristics such as acuity, fi eld of view 
and low light capability are optimized for different species.

Data Sources

The Toolbox contains a number of data fi les describing various spectra which are sum-
marized in Table 10.4. Each fi le has as its fi rst column the wavelength in meters. The fi les 
have different wavelength ranges and intervals but the helper function loadspectrum 
interpolates the data to the user specifi ed range and sample interval.

Several internet sites contain spectral data in tabular format and this is linked from 
the book’s web site. This includes refl ectivity data for over 2 000 materials provided by 
NASA’s online ASTER spectral library 2.0 (Baldridge et al. 2009) at http://speclib.jpl.nasa.
gov and the Spectral Database from the University of Eastern Finland Color Research 
Laboratory at http://uef.fi/en/spectral. Data on cone responses and CIE color matching 
functions is available from the Colour & Vision Research Laboratory at University College 
London at http://cvrl.org. CIE data is also available online at http://cie.co.at.
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Exercises

1. You are a blackbody radiator! Plot your own blackbody emission spectrum. What 
is your peak emission frequency? What part of the EM spectrum is this? What sort 
of sensor would you use to detect this?

2. Consider a sensor that measures the amount of radiated power P1 and P2 at wave-
lengths λ1 and λ2 respectively. Write an equation to give the temperature T of the 
blackbody in terms of these quantities.

3. Using the Stefan-Boltzman  law compute the power emitted per square meter of the 
Sun’s surface. Compute the total power output of the Sun.

4. Use numerical integration to compute the power emitted in the visible band 
400−700 nm per square meter of the Sun’s surface.

5. Why is the peak luminosity defi ned as 683 lm W−1?
6. Given typical outdoor illuminance as per page 294 determine the luminous inten-

sity of the Sun.
7. Sunlight at ground level. Of the incoming radiant power determine, in percentage 

terms, the fraction of infra-red, visible and ultra-violet light.
8. Use numerical integration to compute the power emitted in the visible band 

400−700 nm per square meter for a tungsten lamp at 2 600 K. What fraction is this 
of the total power emitted?

9. Plot and compare the human photopic and scotopic spectral response.
a) Compare the response curves of human cones and the RGB channels of a color 

camera. Use cones.dat and bb2.dat.
10. Can you create a metamer for the red brick?
11. Prove Grassmann’s center of gravity  law mentioned on page 297.
12. On the xy-chromaticity plane plot the locus of a blackbody radiator with tempera-

tures in the range 1 000–10 000 K.
13. Plot the XYZ primaries on the rg-plane.
14. For Fig. 10.12 determine the chromaticity of the feasible green.
15. Determine the tristimulus values for the red brick using the Rec. 709 primaries.
16. Take a picture of a white object using incandescent illumination. Determine the 

average RGB tristimulus value and compute the xy-chromaticity. How far off white 
is it? Determine the color balance matrix J to correct the chromaticity. What is the 
chromaticity of the illumination?

17. What is the name of the color of the red brick when viewed underwater (page 308).
18. Image a target like Fig. 10.17 that has three colored patches of known chromaticity. 

From their observed chromaticity determine the transform from observed tristim-
ulus values to Rec. 709 primaries. What is the chromaticity of the illumination?

Table 10.4.
Various spectra provided with 

the Toolbox. Relative luminosity 
values lie in the interval [0, 1], 

and relative  spectral power distri-
bution (SPD)  are normalized to a
value of 1.0 at 550 nm. These fi les 
can be loaded using the Toolbox 

 loadspectrum function

10.5  ·  Wrapping Up
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19. Consider an underwater application where a target d meters below the surface is 
observed through m meters of water, and the water surface is illuminated by sun-
light. From the observed chromaticity can you determine the true chromaticity of 
the target? How sensitive is this estimate to incorrect estimates of m and d? If you 
knew the true chromaticity of the target could you determine its distance?

20. Is it possible that two different colors look the same under a particular lighting 
condition? Create an example of colors and lighting that would cause this?

21. Use one of your own pictures and the approach of Sect. 10.4.1. Can you distinguish 
different objects in the picture?

22. Show analytically or numerically that scaling a tristimulus value has no effect on the 
chromaticity. What happens if the chromaticity is computed on gamma encoded 
tristimulus values?

23. Create an interactive tool with sliders for R, G and B that vary the color of a dis-
played patch. Now modify this for sliders X, Y and Z or x, y and Y.

24. Take a color image and determine how it would appear through 1, 5 and 10 m of 
water.

25. Determine the names of the colors in the Gretag-Macbeth color checker chart.
26. Plot the color-matching function components shown in Fig. 10.10 as a 3D curve. 

Rotate it to see the locus as shown in Fig. 10.11.
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11 Image Formation
Everything we see is a perspective,

not the truth.
Marcus Aurelius

In this chapter we discuss how images are formed and captured, the fi rst step 
in robot and human perception of the world. From images we can deduce the 
size,  shape and position of objects in the world as well as other characteristics 
such as color and texture which ultimately lead to recognition.

It has long been known that a simple pin-hole is able to create a perfect invert-
ed image on the wall of a darkened room. Some marine mollusks, for example 
the Nautilus, have pin-hole  camera eyes. All vertebrates have a lens that forms 
an inverted image on the retina where the light-sensitive cells rod and cone cells, 
shown previously in Fig. 10.6, are arranged. A digital camera is similar in prin-

ciple – a glass or plastic lens forms an image on the surface of a semiconductor chip 
with an array of light-sensitive devices to convert light to a digital image.

The process of image formation, in an eye or in a camera, involves a projection 
of the 3-dimensional world onto a 2-dimensional  surface. The depth information 
is lost and we can no longer tell from the image whether it is of a large object in 
the distance or a smaller closer object. This transformation from 3 to 2 dimensions 
is known as  perspective projection and is discussed in Sect. 11.1. Section 11.2 in-
troduces the topic of  camera  calibration, the estimation of the parameters of the 
 perspective transformation. Sections 11.3 to 11.5 introduce alternative types of 
cameras capable of wide-angle, panoramic or light-field  imaging. Section 11.6 in-
troduces some advanced concepts such as projecting lines and conics, and non-
perspective cameras.

11.1  
l
Perspective  Camera

11.1.1 
l
Perspective  Projection

A small hole in the wall of a darkened room will cast a dim inverted image of the out-
side world on the opposite wall – a so-called pin-hole  camera. The pin-hole camera 
produces a very dim image since its radiant power is the scene luminance in units 
of W m−2 multiplied by the area of the pin hole. Figure 11.1a shows that only a small 
fraction of the light leaving the object fi nds its way to the image. A pin-hole camera 
has no focus adjustments – all objects are in focus irrespective of distance.

In the 5th century bce, the philosopher Mozi in ancient China 
mentioned the effect of an inverted image forming through 
a pinhole. A camera obscura is a darkened room where a dim 
inverted image of the world is cast on the wall by light enter-
ing through a small hole. They were popular tourist attrac-
tions in Victorian times, particularly in Britain, and many are 
still operating today. (Image on the right from the Drawing 
with Optical Instruments collection at http://vision.mpiwg-
berlin.mpg.de/elib)



320 Chapter 11  ·  Image Formation

Fig. 11.1.
Light gathering ability of
a pin-hole  camera   and b a lens 

Fig. 11.2.
Image formation geometry for
a thin convex lens shown in
2-dimensional cross section.
A lens has two  focal points at a 
distance of f on each side of the 
lens. By convention the camera’s 
optical axis is the z-axis

Fig. 11.3.
The central-projection model.
The image plane is at a distance 
f in front of the camera’s origin, 
and on which a noninverted im-
age is formed. The  camera’s co-
ordinate frame is right-handed 
with the z-axis defi ning the cen-
ter of the fi eld of view
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The key to brighter images is to use an  objective lens, as shown in Fig. 11.1b, which 
collects light from the object over a larger area and directs it to the image. A convex lens 
can form an image just like a pinhole and the fundamental geometry of image formation 
for a  thin  lens � is shown in Fig. 11.2. The positive z-axis is the camera’s  optical axis.

The z-coordinate of the object and its image, with respect to the lens center, are 
related by the thin  lens equation 

 (11.1)

where zo is the distance to the object, zi the distance to the image, and f is the focal length 
of the lens.�   For zo > f an inverted image is formed on the  image plane at zi < −f.

In a  camera the image plane is fi xed at the surface of the sensor chip so the focus ring 
of the camera moves the lens along the optical axis so that it is a distance zi from the image 
plane – for an object at infi nity zi = f. The downside of using a lens is the need to focus. Our 
own eye has a single convex lens made from transparent crystallin proteins, and focus is 
achieved by muscles which change its shape – a process known as  accomodation. A high-
quality  camera lens is a   compound lens comprising multiple glass or plastic lenses.

In computer vision it is common to use the  central  perspective  imaging   model shown 
in Fig. 11.3. The rays converge on the origin of the  camera frame {C} and a noninverted 
image is projected onto the image plane located at z = f. The z-axis intersects the im-
age plane at the principal point which is the origin of the 2D image coordinate frame. 
Using similar triangles we can show that a point at the world coordinates P = (X, Y, Z) 
is projected to the image point p = (x, y) by

 (11.2)

which is a  projective transformation, or more specifi cally a   perspective projection. This 

Lens  aperture.   The  f-number of 
a lens, typically marked on the 
rim, is a dimensionless quan-
tity F = f/d where d is the di-
ameter of the lens (often de-
noted φ  on the lens rim). The 
f-number is inversely related 
to the light gathering abili-
ty of the lens. To reduce the 
amount of light falling on the image plane the effective di-
ameter is reduced by a mechanical aperture, or iris, which in-
creases the f-number. Illuminance on the image plane is inversely 
proportional to F2 since it depends on light gathering area. To 
reduce illuminance by a factor of 2, the f-number must be in-
creased by a factor of \2 or “one stop”. The f-number gradua-
tions increase by \2 at each stop. An f-number is conventionally 
written in the form f/1.4 for F = 1.4.

Focus and  depth of field. Ideally a group of light rays from a point 
in the scene meet at a point in the image. With imperfect focus 
the rays instead form a fi nite sized spot called the  circle of confu-
sion which is the point spread function of the optical system. By 
convention, if the size of the circle is around that of a pixel then 
the image is acceptably focused.

A  pin-hole camera has no focus control and always creates a 
focused image of objects irrespective of their distance. A lens does 

not have this property – the focus ring changes the distance be-
tween the lens and the image plane and must be adjusted so that 
the object of interest is acceptably focused. Photographers refer 
to depth of fi eld which is the range of object distances for which 
acceptably focused images are formed. Depth of fi eld is high for 
small aperture settings where the lens is more like a pin-hole, but 
this means less light and noisier images or longer  exposure time 
and motion blur. This is the photographer’s dilemma!

Real camera lenses comprise multiple lens 
elements but still have focal points on each 
side of the compound lens assembly.

The inverse of   focal length is known as 
  diopter. For thin  lenses placed close to-
gether their combined diopter is close to 
the sum of their individual diopters.

mapping from the 3-dimensional world to a 2-dimen-
sional image has consequences that we can see in Fig. 11.4 
– parallel lines converge and circles become ellipses .

More formally we can say that the transformation, 
from the world to the image plane has the following char-
acteristics:

1. It performs a mapping from 3-dimensional space to 
the 2-dimensional image plane: P :R3� R

2.
2. Straight lines in the world are projected to straight 

lines on the image plane.
3. Parallel lines in the world are projected to lines that 

intersect at a  vanishing  point as shown in Fig. 11.4a. 
In drawing, this effect is known as  foreshortening. The 
exception are   fronto-parallel lines – lines lying in a 
plane parallel to the image plane – which always re-
main parallel.

11.1  ·  Perspective Camera
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4.  Conics� in the world are projected to conics on the image plane. For example, a 
circle is projected as a circle or an ellipse as shown in Fig. 11.4b.

5. The size (area) of a  shape is not preserved and depends on distance.
6. The mapping is not one-to-one and no unique inverse exists. That is, given (x, y) 

we cannot uniquely determine (X, Y, Z). All that can be said is that the  world point 
lies somewhere along the red projecting ray shown in Fig. 11.3. This is an impor-
tant topic that we will return to in Chap. 14.

7. The transformation is not  conformal – it does not preserve shape since internal 
angles are not preserved. Translation, rotation and scaling are examples of confor-
mal transformations.

11.1.2 
l

Modeling a Perspective  Camera

We can write the image-plane point coordinates in homogeneous form p= (x~, y~, z~) where

or in compact matrix form as

 (11.3)

where the nonhomogeneous image-plane coordinates are

These are often referred to as the  retinal image-plane coordinates. For the case 
where f = 1 the coordinates are referred to as the normalized, retinal or canonical 
 image-plane coordinates.  

If we write the world coordinate in homogeneous form as well Cn = (X, Y, Z, 1)T 
then the  perspective projection can be written in linear form as

Fig. 11.4. The effect of perspective 
transformation. a Parallel lines con-
verge, b circles become ellipses

Conic sections, or conics , are a family of 
curves obtained by the intersection of a 
plane with a cone. They include circles, 
ellipses, parabolas and hyperbolas.
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 (11.4)

or

 (11.5)

where C is a 3 × 4 matrix known as the   camera  matrix. Note that we have written Cn 
to highlight the fact that this is the coordinate of the point with respect to the  camera 
frame {C}. The tilde indicates homogeneous quantities and Sect. C.2 provides a re-
fresher on homogeneous coordinates. The camera matrix can be factored

where the second matrix is the  projection matrix.
The Toolbox allows us to create a model of a central-perspective  camera. For ex-

ample

>>  cam = CentralCamera('focal', 0.015); 

returns an instance of a  CentralCamera object with a 15 mm lens. By default the 
camera is at the origin of the world frame with its optical axis pointing in the world 
z-direction as shown in Fig. 11.3. We defi ne a  world point

>> P = [0.3, 0.4, 3.0]';

in units of meters and the corresponding image-plane coordinates are
>> cam.project(P)
ans =
    0.0015
    0.0020 

The point on the image plane is at (1.5, 2.0) mm with respect to the principal point. This is 
a very small displacement but it is commensurate with the size of a typical image sensor.

In general the camera will have an arbitrary pose ξC with respect to the world coordi-
nate frame as shown in Fig. 11.5. The position of the point with respect to the camera is

 (11.6)

Fig. 11.5.
Camera coordinate frames

11.1  ·  Perspective Camera
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or using homogeneous coordinates

We can easily demonstrate this by moving our camera 0.5 m to the left
>>  cam.project(P, 'pose', SE3(-0.5, 0, 0) )
ans =
    0.0040
    0.0020  

where the third argument is the pose of the camera ξ C as a  homogeneous transforma-
tion. We see that the x-coordinate has increased from 1.5 mm to 4.0 mm, that is, the 
image point has moved to the right.

11.1.3 
l
Discrete  Image Plane

In a digital  camera the image plane is a W × H grid of light-sensitive elements called 
photosites that correspond directly to the picture elements (or pixels) of the image as 
shown in Fig. 11.6. The pixel coordinates are a 2-vector (u, v) of nonnegative integers 
and by convention the origin is at the top-left hand corner of the image plane. In 

Image sensor. The light-sensitive cells in a camera chip, the  pho-
tosites (see page 364), are commonly square with a side length 
in the range 1–10 µm. Professional cameras have large photosites 
for increased light sensitivity whereas cellphone  cameras have 
small sensors and therefore small less-sensitive photosites. The 
ratio of the number of horizontal to vertical pixels is the   aspect 
ratio and is commonly 4 : 3 or 16 : 9 (see page 366). The dimen-
sion of the sensor is measured diagonally across the array and is 
commonly expressed in inches, e.g. D, ¼ or C inch. However the active sensing area of the chip 
has a diagonal that is typically around E of the given dimension.

Fig. 11.6.
Central projection model showing 
image plane and discrete pixels
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MATLAB® the top-left pixel is (1, 1). The pixels are uniform in size and centered on 
a regular grid so the pixel coordinate is related to the image-plane coordinate by

where ρ w and ρ h are the width and height of each pixel respectively, and (u0, v0) is the 
 principal point – the pixel coordinate of the point where the  optical axis intersects 
the image plane with respect to the new origin. We can write Eq. 11.4 in terms of pixel 
coordinates by prepending a  camera parameter matrix K

 (11.7)

where p = (u~, v~, w~) is the homogeneous coordinate of the  world point P in pixel co-
ordinates.� The nonhomogeneous image-plane pixel coordinates are

 (11.8)

For example if the pixels are 10 µm square and the pixel array is 1 280 × 1 024 pix-
els with its principal point at image-plane coordinate (640, 512) then

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6,	
 'resolution', [1280 1024], 'centre', [640 512], 'name', 'mycamera')
 cam = 
 name: mycamera [central-perspective]
  focal length:   0.015
  pixel size:     (1e-05, 1e-05)
  principal pt:   (640, 512)
  number pixels:  1280 x 1024
  pose:           t = (0,0,0), RPY/yxz = (0,0,0) deg

which displays the parameters of the camera model including the camera pose T. The 
corresponding nonhomogeneous image-plane coordinates of the previously defi ned 
world point are

>> cam.project(P)
ans =
   790
   712 

11.1.4   
l

Camera  Matrix

Combining Eq. 11.6 and Eq. 11.7 we can write the camera projection in general form as

 (11.9)

where all the terms are rolled up into the  camera  matrix C�. This is a 3 × 4  homoge-
neous transformation which performs scaling, translation and  perspective projection. 
It is often also referred to as the projection matrix or the camera  calibration matrix.

The matrix K is often written with a fi-
nite value at K 1,2 to represent skew. This 
accounts for the fact that the u- and
v-axes are not orthogonal, which with 
precise semiconductor fabrication pro-
cesses is quite unlikely.

The terms f /ρw and f /ρh are the focal 
length expressed in units of pixels.

11.1  ·  Perspective Camera
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The projection can also be written in functional form as

 (11.10)

where P  is the point coordinate vector in the world frame. K is the camera  parameter 
matrix and comprises the intrinsic  parameters which are the innate characteristics 
of the camera and sensor such as f, ρw, ρ h, u0 and v0. ξC is the pose of the  camera and 
comprises a minimum of six parameters – the extrinsic parameters – that describe 
camera translation and orientation in SE(3).

There are 5 intrinsic and 6 extrinsic parameters – a total of 11 independent pa-
rameters to describe a camera. The   camera  matrix has 12 elements so one degree of 
freedom, the overall scale factor, is unconstrained and can be arbitrarily chosen. In 
practice the camera parameters are not known and must be estimated using a   camera 
 calibration procedure which we will discuss in Sect. 11.2.

The  camera intrinsic parameter matrix K for this camera is

>> cam.K
ans =
   1.0e+03 *
    1.5000         0    0.6400
         0    1.5000    0.5120
         0         0    0.0010

The camera matrix is implicitly created when the Toolbox camera object is con-
structed and for this example is

>> cam.C
ans =
   1.0e+03 *
    1.5000         0    0.6400         0
         0    1.5000    0.5120         0
         0         0    0.0010         0 

The fi eld of view  of a lens is an open rectangular pyramid, a frustum, that subtends angles θ h 
and θ v in the horizontal and vertical planes respectively. A normal lens is one with a fi eld of 
view around 50°, while a wide angle lens has a fi eld of view >60°. Beyond 110° it is diffi cult 
to create a lens that maintains perspective projection, so nonperspective fi sheye lenses are 
required.

For very wide-angle lenses it is more common to describe the fi eld of view as a  solid  angle 
which is measured in units of  steradians (or sr). This is the area of the fi eld of view projected 
onto the surface of a unit sphere. A hemispherical fi eld of view is 2π sr and a full spherical 
view is 4π sr. If we approximate the camera’s fi eld of view by a cone with apex angle θ  the cor-
responding solid angle is 2π (1 − cos θ / 2) sr. A camera with a fi eld of view greater than a full 
hemisphere is termed   omnidirectional or  panoramic.

We have already mentioned the fundamental ambiguity with perspective pro-
jection, that we cannot distinguish between a large distant object and a smaller 
closer object. We can rewrite Eq. 11.9 as

where H is an arbitrary nonsingular 3 × 3 matrix. This implies that an infinite 
number of camera C′ and  world point coordinate n′ combinations will result 
in the same image-plane projection p.

This illustrates the essential difficulty in determining 3-dimensional world 
coordinates from 2-dimensional projected coordinates. It can only be solved if 
we have information about the camera or the 3-dimensional object.
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The  fi eld of  view of a camera is a function of its focal length f. A wide-angle lens has 
a small focal length, a telephoto lens has a large focal length, and a  zoom lens has an 
adjustable focal length. The fi eld of view can be determined from the geometry of 
Fig. 11.6. In the horizontal direction the half-angle of view is

where W is the number of pixels in the horizontal direction. We can then write

 (11.11)

We note that the fi eld of view is also a function of the dimensions of the camera chip which 
is Wρw × Hρh. The fi eld of view is computed by the  fov method of the camera object

>> cam.fov() * 180/pi
ans =
   46.2127   37.6930 

in degrees in the horizontal and vertical directions respectively.

11.1.5  
l
Projecting Points

The CentralCamera class is a subclass of the  Camera class and inherits the ability 
to project multiple points or lines. Using the Toolbox we create a 3 × 3 grid of points 
in the xy-plane with overall side length 0.2 m and centered at (0, 0, 1)

>> P = mkgrid(3, 0.2, 'pose', SE3(0, 0, 1.0));

which returns a 3 × 9 matrix with one column per grid point where each column com-
prises the coordinates in X, Y, Z order. The fi rst four columns are

>> P(:,1:4)
ans =
   -0.1000   -0.1000   -0.1000         0
   -0.1000         0    0.1000   -0.1000
    1.0000    1.0000    1.0000    1.0000

Yes, R has two different meanings here. 
MATLAB does not provide an RQ-de-
composition but it can be determined by 
transforming the inputs to, and results of, 
the builtin MATLAB QR-decomposition 
function qr . There are many subtleties 
in doing this though: negative scale fac-
tors in the K matrix or det R = −1, see 
Hartley and Zisserman (2003), or the im-
plementation of invC  for details.

The  camera  matrix C ⊂R3×4 has some important structure and properties:

� It can be partitioned C = (M | c4) into a nonsingular matrix M ⊂R3×3 and a 
vector, where c4 = −Mc and c is the world origin in the camera frame. We 
can recover this by c = −M−1c4.

� The null space of C is c.
� A pixel at coordinate p corresponds to a ray in space parallel to the vector M−1p.
� The matrix M = KR is the product of the camera intrinsics and the camera in-

verse  orientation. We can perform an RQ- decomposition of M = RQ where R is 
an upper-triangular matrix (which is K) and an orthogonal matrix Q (which is R).�

� The bottom row of C defi nes the principal plane, which is parallel to the im-
age plane and contains the camera origin.

� If the rows of M are vectors mi then
– m3

T is a vector normal to the principal plane   and parallel to the optical axis 
and Mm3

T is the principal point in homogeneous form.
– if the camera has zero skew, that is K1,2 = 0, then
 (m1 × m3) · (m2 × m3) = 0
– and, if the camera has square pixels, that is ρu = ρv then
 �m1 ×m3�= �m2 ×m3�= f / ρ

11.1  ·  Perspective Camera
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By default mkgrid generates a grid in the xy-plane that is centered at the origin. The 
optional last argument is a  homogeneous transformation that is applied to the default 
points and allows the plane to be arbitrarily positioned and oriented.

The image-plane coordinates of the vertices are
>> cam.project(P)
ans =
   490   490   490   640   640   640   790   790   790
   362   512   662   362   512   662   362   512   662 

which can also be plotted

>> cam.plot(P) 

giving the virtual camera view shown in Fig. 11.7a. The camera pose

>> Tcam = SE3(-1,0,0.5)*SE3.Ry(0.9);

results in an oblique view of the plane

>> cam.plot(P, 'pose', Tcam) 

shown in Fig. 11.7b. We can clearly see the effect of  perspective projection which has 
distorted the  shape of the square – the top and bottom edges, which are parallel lines, 
have been projected to lines that converge at a vanishing point.

The  vanishing point for a line can be determined from the projection of its  ideal 
line. The top and bottom lines of the grid are parallel to the world x-axis or the vec-
tor (1, 0, 0). The corresponding ideal line has homogeneous coordinates (1, 0, 0, 0) 
and exists at infi nity due to the fi nal zero element. The vanishing point is the projec-
tion of this vector

>> cam.project([1 0 0 0]', 'pose', Tcam)
ans =
   1.0e+03 *
    1.8303
    0.5120 

which is (1 803, 512) and just to the right of the visible image plane.
The  plot method can optionally return the image-plane coordinates

>> p = cam.plot(P, 'pose', Tcam)  

just like the  project method. For the oblique viewing case the image-plane coor-
dinates

Fig. 11.7. Two views of a planar 
grid of points. a Frontal view, 
b oblique view
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>> p(:,1:4)
ans =
  887.7638  887.7638  887.7638  955.2451
  364.3330  512.0000  659.6670  374.9050

have a fractional component which means that the point is not projected to the cen-
ter of the pixel. However a pixel responds to light equally� over its surface area so the 
discrete pixel coordinate can be obtained by rounding.

A 3-dimensional object, a cube, can be defi ned and projected in a similar fashion. The 
vertices of a cube with side length 0.2 m and centered at (0, 0, 1) can be defi ned by

>> cube = mkcube(0.2, 'pose', SE3(0, 0, 1) );  

which returns a 3 × 8 matrix with one column per vertex. The image-plane points can 
be plotted as before by

>> cam.plot(cube); 

Alternatively we can create an edge representation of the cube by

>> [X,Y,Z] = mkcube(0.2, 'pose', SE3(0, 0, 1), 'edge');  

and display it

>> cam.mesh(X, Y, Z) 

as shown in Fig. 11.8 along with an oblique view generated by

>> Tcam = SE3(-1,0,0.5)*SE3.Ry(0.8);
>> cam.mesh(X, Y, Z, 'pose', Tcam);    

The edges are in the same 3-dimensional mesh format� as generated by MATLAB built-
in functions such as  sphere,  ellipsoid and  cylinder.

Successive calls to  plot will redraw the points or line segments and provides a 
simple method of animation. The short piece of code

1 theta = [0:500]/100*2*pi;
2 [X,Y,Z] = mkcube(0.2, [], 'edges');
3 for th=theta
4    T_cube = SE3(0, 0, 1.5)*SE3.rpy(th*[1.1 1.2 1.3])
5    cam.mesh( X, Y, Z, 'objpose', T_cube ); drawnow
6 end      

shows a cube tumbling in space. The cube is defi ned with its center at the origin and 
its vertices are transformed at each time step.

This is not strictly true for  CMOS sensors 
where transistors reduce the light-sen-
sitive area by the fill factor  – the frac-
tion of each photosite’s area that is light 
sensitive.

Fig. 11.8. Line segment represen-
tation of a cube. a Frontal view, 
b oblique view

The elements of the mesh (i, j ) have 
coordinates (X i, j, Y i, j, Z i, j).

11.1  ·  Perspective Camera
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11.1.6  
l
Lens  Distortion

No lenses are perfect and the low-cost lenses used in many webcams are far from per-
fect. Lens imperfections result in a variety of distortions including  chromatic  aberra-
tion (color fringing),  spherical  aberration or  astigmatism (variation in focus across 
the scene), and  geometric  distortions where points on the image plane are displaced 
from where they should be according to Eq. 11.3.

Geometric distortion is generally the most problematic effect that we encounter for 
robotic applications, and comprises two components: radial and tangential.  Radial 
 distortion causes image points to be translated along radial lines from the  principal 
point. The radial error is well approximated by a polynomial

 (11.12)

where r is the distance of the image point from the principal point.  Barrel  distortion 
occurs when magnifi cation decreases with distance from the principal point which 
causes straight lines near the edge of the image to curve outward.  Pincushion  distor-
tion occurs when magnifi cation increases with distance from the principal point and 
causes straight lines near the edge of the image to curve inward.  Tangential  distor-
tion, or decentering  distortion, occurs at right angles to the radii but is generally less 
signifi cant than radial  distortion. Examples of a distorted and undistorted image are 
shown in Fig. 11.9.

The coordinate of the point (u, v) after distortion is given by

 (11.13)

where the displacement is

 
(11.14)

This displacement vector can be plotted for different values of (u, v) as shown in 
Fig. 11.13b. The vectors indicate the displacement required to correct the  distortion at 
different points in the image, in fact (−δu, −δv), and shows dominant radial distortion.

In practice three coeffi cients are suffi cient to describe the radial distortion and the 
distortion model is parameterized by (k1, k2, k3, p1, p2) which are considered as addi-

Fig. 11.9. Lens distortion. a Dis-
torted image, the curvature of the 
top row of the squares is quite 
pronounced, b undistorted image. 
This is calibration image #19 from 
Bouguet’s Camera Calibration Tool-
box (Bouguet 2010)
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tional  intrinsic parameters.  Distortion can be modeled by the  CentralCamera class 
using the 'distortion' option, for example

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
    'resolution', [1280 1024], 'centre', [512 512], ...
    'distortion', [k1 k2 k3 p1 p2] )

11.2  
l
Camera  Calibration

The camera projection model Eq. 11.9 has a number of parameters that in practice 
are unknown. In general the  principal point is not at the center of the photosite ar-
ray. The focal length of a lens is only accurate� to 4% of what it purports to be, and 
is only correct if the lens is focused at infi nity. It is also common experience that the 
intrinsic parameters change if a lens is detached and reattached, or adjusted for focus 
or  aperture.� The only intrinsic parameters that it may be possible to obtain are the 
photosite dimensions ρw and ρ h from the sensor manufacturer’s data sheet. The ex-
trinsic parameters, the camera’s pose, raises the question of where exactly is the cen-
ter point of the camera.

  Camera calibration is the process of determining the camera’s intrinsic parameters 
and the extrinsic parameters with respect to the world coordinate system. Calibration 
techniques rely on sets of  world points whose relative coordinates are known and whose 
corresponding image-plane coordinates are also known. State-of-the-art techniques 
such as Bouguet’s  Calibration Toolbox for MATLAB (Bouguet 2010) simply require a 
number of images of a planar chessboard target such as shown in Fig. 11.12. From this, 
as discussed in Sect. 11.2.4, the intrinsic parameters (including distortion parameters) 
can be estimated as well as the relative pose of the chessboard in each image. Classical 
 calibration techniques require a single view of a 3-dimensional calibration target but 
are unable to estimate the distortion model. These methods are however easy to un-
derstand and they start our discussion in the next section.

11.2.1 
l
Homogeneous Transformation Approach

The  homogeneous transform method allows direct estimation of the  camera  matrix C 
in Eq. 11.9. The elements of this matrix are functions of the intrinsic and extrinsic 
parameters. Setting p = (u, v, 1), expanding equation Eq. 11.9 and substituting into 
Eq. 11.8 we can write

 According to ANSI Standard PH3.13-1958 
“Focal Length Marking of Lenses”.

Changing focus shifts the lens along the 
optical axis. In some designs, changing 
focus rotates the lens so if it is not per-
fectly symmetric this will move the dis-
tortions with respect to the image plane. 
Changing the aperture alters the parts of 
the lens that light rays pass through and 
hence the distortion that they incur.

11.2  ·  Camera Calibration

It has taken humankind a long time to understand 
light, color and human vision . The Ancient greeks 
had two schools of thought. The emission theory, 
supported by Euclid and Ptolemy, held that sight 
worked by the eye emitting rays of light that 
interacted with the world somewhat like the 
sense of touch. The intromission theory, sup-
ported by Aristotle and his followers, had physi-
cal forms entering the eye from the object.

 Euclid of Alexandria (325–265) arguably got the 
geometry of image formation correct, but his rays 
emananted from the eye, not the object. Claudius 
Ptolemy  (100–170) wrote Optics and discussed refl ec-
tion, refraction, and color but today there remains only 
a poor Arabic translation of his work.

The Arab philosopher Hasan Ibn al-Haytham  (aka 
Alhazen, 965–1040) wrote a seven-volume treatise Kitab 
al-Manazir (Book of Optics) around 1020. He combined 
the mathematical rays of Euclid, the medical knowledge 

of Galen, and the intromission theories of Aristotle. 
He wrote that “from each point of every colored 

body, illuminated by any light, issue light and 
color along every straight line that can be drawn 

from that point”. He understood refraction but 
believed the eye’s lens, not the retina, received 

the image – like many early thinkers he strug-
gled with the idea of an inverted image on the 

retina. A Latin translation of his work was a great 
infl uence on later European scholars.

It was not until 1604 that geometric optics and hu-
man vision came together when the German astrono-

mer and mathematician Johannes Kepler  (1571–1630) 
published Astronomiae Pars Optica (The Optical Part 

of Astronomy). He was the fi rst to recognize that images 
are projected inverted and reversed by the eye’s lens onto 

the retina – the image being corrected later “in the hol-
lows of the brain”. (Image from Astronomiae Pars Optica, 

Johannes Kepler, 1604)
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 (11.15)

where (u, v) are the pixel coordinates corresponding to the  world point (X, Y, Z) and 
Cij are elements of the unknown camera  matrix.

Calibration requires a 3-dimensional target such as shown in Fig. 11.10. The po-
sition of the center of each marker (Xi, Yi, Zi), i ∈ [1, N] with respect to the target 
frame {T} must be known, but {T} itself is not known. An image is captured and 
the corresponding image-plane coordinates (ui, vi) are determined. Assuming that 
C34 = 1 we stack the two equations of Eq. 11.15 for each of the N markers to form 
the matrix equation

 (11.16)

which can be solved for the camera matrix elements C11� C33. Equation 11.16 has 11 un-
knowns and for solution requires that N ≥ 6. Often more than 6 points will be used lead-
ing to an over-determined set of equations which is solved using least squares.

If the points are coplanar then the left-hand matrix of Eq. 11.16 becomes  rank de-
fi cient. This is why the calibration target must be 3-dimensional, typically an array of 
dots or squares on two or three planes as shown in Fig. 11.10.

We will illustrate this with an example. The calibration target is a cube, the markers 
are its vertices and its coordinate frame {T} is parallel to the cube faces with its origin 
at the center of the cube. The coordinates of the markers with respect to {T} are

>> P = mkcube(0.2); 

Now the calibration target is at some “unknown pose” CξT with respect to the camera 
which we choose to be

>> T_unknown = SE3(0.1, 0.2, 1.5) * SE3.rpy(0.1, 0.2, 0.3);  

Next we create a perspective camera whose parameters we will attempt to estimate

>> cam = CentralCamera('focal', 0.015, ...
    'pixel', 10e-6, 'resolution', [1280 1024], 'noise', 0.05);

We have also specifi ed that zero-mean  Gaussian  noise with σ = 0.05 is added to the 

Where is the  camera’s center?  A compound lens has many cardi-
nal points including focal points, nodal points, principal points 
and planes, entry and exit pupils. The  entrance pupil is a point 
on the optical axis of a compound lens system that is its center 
of perspective or its no-parallax point. We could consider it to 
be the virtual pinhole. Rotating the camera and lens about this 
point will not change the relative geometry of targets at differ-
ent distances in the perspective image.

Rotating about the entrance pupil is important in panoram-
ic photography to avoid parallax errors in the fi nal, stitched 
panorama. A number of web pages are devoted to discussion 
of techniques for determining the position of this point. Some 
sites even tabulate the position of the entrance pupil for popu-
lar lenses. Much of this online literature refers to this point in-
correctly as the nodal point even though the techniques given 
do identify the entrance pupil.

Depending on the lens design, the entrance pupil may be 
behind, within or in front of the lens system.

(u, v) coordinates to model camera noise and errors in the 
computer vision algorithms. The image-plane coordinates 
of the calibration target at its “unknown” pose are

>> p = cam.project(P, 'objpose', T_unknown);

Now using just the object model P and the observed im-
age  features p we estimate the  camera matrix

>> C = camcald(P, p)
maxm residual 0.066733 pixels.
C =
  853.0895 -236.9378  634.2785  740.0438
  222.6439  986.6900  295.7327  712.0152
   -0.1304    0.0610    0.6495    1.0000

The maximum residual in this case is less than 0.1 pixel, 
that is, the worst error between the projection of a  world 
point using the camera matrix C and the actual image-
plane location is very small.
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Linear techniques such as this cannot estimate lens distortion parameters. The dis-
tortion will introduce errors into the camera  matrix elements but for many situations 
this might be acceptably low. Distortion parameters are often estimated using a non-
linear  optimization over all parameters, typically 16 or more, with the linear solution 
used as the initial parameter estimate.

11.2.2 
l
Decomposing the  Camera Calibration Matrix

The elements of the   camera matrix are functions of the intrinsic and extrinsic parame-
ters. However given a camera matrix most of the parameter values can be recovered.

The null space of C is the world origin in the camera frame. Using data from the 
example above this is

>> null(C)'
ans =
    0.0809   -0.1709   -0.8138    0.5495

which is expressed in homogeneous coordinates that we can convert to Cartesian form
>> h2e(ans)'
ans =
    0.1472   -0.3110   -1.4809

which is close to the true value
>> T_unknown.inv.t'
ans =
    0.1464   -0.3105   -1.4772

To recover orientation as well as the intrinsic parameters we can decompose the pre-
viously estimated camera matrix

>> est =  invcamcal(C)
est =
name: invcamcal [central-perspective]
  focal length:   1504
  pixel size:     (1, 0.9985)
  principal pt:   (646.8, 504.4)
  pose:           t = (0.147, -0.311, -1.48), RPY/zyx	
   = (-1.87, -12.4, -16.4) deg

which returns a CentralCamera object with its parameters set to values that result 
in the same camera matrix. We note immediately that the focal length is very large 
compared to the true focal length of our lens which was 0.015 m, and that the pixel 

Fig. 11.10.
A 3D calibration target show-

ing its coordinate frame {T}. The 
centroids of the circles are taken 

as the calibration points. Note 
that the calibration circles are 

situated on three planes (photo 
courtesy of Fabien Spindler)

11.2  ·  Camera Calibration
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sizes are very large. From Eq. 11.9 we see that focal length and pixel dimensions al-
ways appear together as factors f / ρw and f / ρ h.� The function  invcamcal has set 
ρw = 1 but the ratios of the estimated parameters

>> est.f/est.rho(1)
ans =
   1.5044e+03

are very close to the ratio for the true parameters of the camera
>> cam.f/cam.rho(2)
ans =
   1.500e+03

The small error in the estimated parameter values is due to the noisy image-plane co-
ordinate values that we used in the calibration process.

The pose of the estimated camera is with respect to the calibration target {T} 
and is therefore Tξ�C. The true pose of the target with respect to the camera is CξT. 
If our estimation is accurate then CξT ⊕ Tξ�C will be 0. We earlier set the variable 
T_unknown equal to CξT and for our example we find that

>> trprint(T_unknown*est.T)
t = (4.13e-05, -4.4e-05, -0.00386),	
 RPY/zyx = (0.296, 0.253, -0.00557) deg

which is the relative pose between the true and estimated camera pose. The camera pose 
is estimated to better than 5 mm in position and a fraction of a degree in orientation.

We can plot the calibration markers as small red spheres

>> hold on; plot_sphere(P, 0.03, 'r')
>> trplot(eye(4,4), 'frame', 'T', 'color', 'b', 'length', 0.3)  

as well as {T} which we have set at the world origin. The estimated pose of 
the camera can be superimposed

>> est.plot_camera()

and the result is shown in Fig. 11.11.� The problem of determining the 
pose of a camera with respect to a calibration object is an important 
problem in photogrammetry known as the  camera location determina-
tion problem.

11.2.3 
l
Pose  Estimation

The  pose estimation problem is to determine the pose CξT of a target’s coordi-
nate frame {T} with respect to the camera. The geometry of the target is known, 
that is, we know the position of a number of points (Xi, Yi, Zi), i ∈ [1, N] on the 
target with respect to {T}. The camera’s intrinsic parameters are also known. 
An image is captured and the corresponding image-plane coordinates (ui, vi) 
are determined using computer vision algorithms.

Estimating the pose using (ui, vi), (Xi, Yi, Zi) and camera intrinsic param-
eters is known as the  Perspective-n-Point problem or  PnP for short. It is a 
simpler problem than camera calibration and  decomposition because there 
are fewer parameters to estimate. To illustrate pose estimation we will create 
a calibrated camera with known parameters

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
    'resolution', [1280 1024], 'centre', [640 512]);

The object whose pose we wish to determine is a cube with side lengths of 
0.2 m and the coordinates of the markers with respect to {T} are

>> P = mkcube(0.2); 

These quantities have units of pixels 
since ρ  has units of m pixel−1. It is quite 
common in the literature to consider 
ρ = 1 and the focal length is given in 
pixels. If the pixels are not square then 
different focal lengths fu and fv must be 
used for the horizontal and vertical direc-
tions respectively.

The option 'frustum' shows the 
camera as a rectangular pyramid, such 
as shown in Fig. 11.13a, rather than a 
camera icon. 

Fig. 11.11. Calibration target points 
and estimated camera pose with re-
spect to the target frame {T} which 
is assumed to be at the origin
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which we can consider a simple geometric model of the object. The object is at some 
arbitrary but unknown pose CξT pose with respect to the camera

>> T_unknown = SE3(0.1, 0.2, 1.5) * SE3.rpy(0.1, 0.2, 0.3);
>> T_unknown.print
t = (0.1, 0.2, 1.5), RPY/zyx = (5.73, 11.5, 17.2) deg

The image-plane coordinates of the object’s points at its unknown pose are

>> p = cam.project(P, 'objpose', T_unknown);  

Now using just the object model P, the observed image  features p and the calibrated 
camera cam we estimate the relative pose CξT of the object

>> T_est = cam.estpose(P, p).print
t = (0.1, 0.2, 1.5), RPY/zyx = (5.73, 11.5, 17.2) deg

which is the same (to four decimal places) as the unknown pose T_unknown of the 
object.

In reality the image features coordinates will be imperfectly estimated by the vision 
system and we would model this by adding zero-mean  Gaussian  noise to the image 
feature coordinates as we did in the camera calibration example.

11.2.4 
l

Camera Calibration Toolbox

A popular and practical tool for calibrating cameras using a planar chessboard target 
is the Camera Calibration Toolbox.  A number of images, typically twenty, are taken 
of the target at different distances and orientations as shown in Fig. 11.12.

Fig. 11.12. Example frames from 
Bouguet’s Calibration Toolbox 
showing the calibration target 
in many different orientations. 
These are images 2, 5, 9, 18 from 
the Calibration Toolbox example

11.2  ·  Camera Calibration
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The calibration tool is launched by

>> calib_gui

and a graphical user interface (GUI) is displayed.� The fi rst step is to load the images 
using the  Image Names  button. The second step is the  Extract Grid Corners  button which 
prompts you to pick the corners of the calibration target in each of the images. This 
is a little tedious but needs to be done carefully. The fi nal step, the  Calibration  button, 
uses the calibration target information to estimate the camera parameter values

Focal Length:          fc = [ 657.39071   657.74678 ]	
 ± [ 0.37195   0.39793 ]
Principal point:       cc = [ 303.22367   242.74729 ]	
 ± [ 0.75632   0.69189 ]
Skew:             alpha_c = [ 0.00000 ] ± [ 0.00000  ]	
   => angle of pixel axes = 90.00000 ± 0.00000 degrees
Distortion:            kc = [ -0.25541   0.12617   -0.00015   0.00006	
   0.00000 ] ± [ 0.00290   0.01154   0.00016   0.00015  0.00000 ]
Pixel error:          err = [ 0.13355   0.13727 ]

For each parameter the uncertainty (3σ  bounds) is estimated and displayed.
The camera pose relative to the target is estimated for each calibration image 

and can be displayed using the  Show Extrinsic  button. This target-centric view is 
shown in Fig. 11.13a indicates the estimated relative pose of the camera for each 
input image.

The distortion vector kc contains the parameters in the order (k1, k2, p1, p2, k3) – 
note that k3 is out of sequence. The  distortion map can be displayed by

>> visualize_distortions

and is shown in Fig. 11.13b. This indicates the displacement from true to distorted im-
age-plane coordinates which in this case is predominately in the radial direction. This 
is consistent with k1 and k2 being orders of magnitude greater than p1 and p2 which 
is typical for most lenses. The  Undistort Image  button can be used to undistort a set of 
images and a distorted and undistorted image are compared in Fig. 11.9b. The details 
of this transformation using  image warping will be discussed in Sect. 12.7.4.

11.3 
l
 Wide Field-of-View Imaging

We have discussed  perspective imaging in quite some detail since it is the model of our 
own eyes and almost all cameras that we encounter. However perspective imaging con-
strains us to a fundamentally limited  fi eld of  view. The thin lens equation (11.1) is singular 
for points with Z = f which limits the fi eld of view to at most one hemisphere – real lenses 

Fig. 11.13. Calibration results 
from the example in Bouguet’s 
Calibration Toolbox. a The esti-
mated camera pose relative to the 
target for each calibration image, 
b the distortion map with vectors 
showing how points in the image 
will move due to distortion

The GUI is optional, and the Toolbox 
functions can be called from inside your 
own programs. The function  calib_
gui_normal shows the mapping 
from GUI button names to Calibration 
Toolbox function names. Note that most 
of the functions are actually scripts and 
program state variables are kept in the 
workspace.
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achieve far less. As the focal length decreases radial  distortion is increasingly diffi cult to 
eliminate and eventually a limit is reached beyond which lenses cannot practically be built. 
The only way forward is to drop the constraint of perspective  imaging. In Sect. 11.3.1 we 
describe the geometry of image formation with wide-angle lens systems.

An alternative to refractive optics is to use a refl ective  surface to form the image such as 
shown in Fig. 11.14.  Newtonian telescopes are based on refl ection from concave  mirrors rather 
than refraction by lenses. Mirrors are free of color fringing and are easier to scale to larger 
sizes than a lens. Nature has also evolved refl ective optics – the spookfi sh and some scallops 
(see page 285) have eyes based on refl ectors formed from guanine crystals. In Sect. 11.3.2 
we describe the geometry of image formation with a combination of lenses and mirrors.

The cost of cameras is decreasing so an alternative approach is to combine the output of 
multiple cameras into a single image, and this is briefl y described in Sect. 11.5.1.

11.3.1 
l
Fisheye  Lens Camera

A fi sheye lens image in shown in Fig. 11.17, and we create a model using the notation 
shown in Fig. 11.15 where the camera is positioned at the origin O and its optical axis 
is the z-axis. The world point P is represented in spherical coordinates (R, θ , φ), where 
θ  is the angle outward from the optical axis and φ  is the angle of rotation around the 
optical axis. We can write

Specular reflection   occurs with a mirror-like surface. Incoming rays are refl ect-
ed such that the angle of incidence equals the angle of refl ection or θ r = θ i . 
Speculum is Latin for mirror and speculum metal  (E copper, D tin) is an al-
loy that can be highly polished. It was used by Newton and Herschel   for the 
curved mirrors in their refl ecting telescopes. See also Lambertian refl ection   
on page 309. (The 48 inch speculum mirror from Herschel’s 40 foot telescope, 
completed in 1789, is now in the British Science Museum, photo by Mike Peel 
(mikepeel.net) licensed under CC-BY-SA)

Fig. 11.14.
Images formation by refl ection 

from a curved surface (Cloud 
Gate, Chicago, Anish Kapoor, 
2006). Note that straight lines 

have become curves

11.3  ·  Wide Field-of-View Imaging
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On the image plane of the camera we represent the projection p in polar coordi-
nates (r, φ) with respect to the  principal point, where r = r(θ ). The Cartesian image-
plane coordinates are

and the exact nature of the function r(θ ) depends on the type of fi sheye  lens. Some 
common projection models are listed in Table 11.1 and all have a scaling parame-
ter k.

Using the Toolbox we can create a fi sheye camera
>> cam =  FishEyeCamera('name', 'fi sheye', ...
         'projection', 'equiangular', ...
         'pixel', 10e-6, ...
         'resolution', [1280 1024])

which returns an instance of a  FishEyeCamera object which is a subclass of the 
Toolbox’s  Camera object and polymorphic with the  CentralCamera class dis-
cussed earlier. If k is not specifi ed, as in this example, then it is computed such that 
a hemispheric fi eld of  view is projected into the maximal circle on the image plane. 
As is the case for  perspective cameras the parameters such as principal point and 
pixel dimensions are generally not known and must be estimated using a calibra-
tion procedure.

Fig. 11.15.
Image formation for a fi sheye 
lens  camera. The world point P 
is represented in spherical coor-
dinates (R, θ , φ ) with respect to 
the camera’s origin

Table 11.1.
Fisheye lens  projection models
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Fig. 11.17.
Fisheye lens image. Note that 
straight lines in the world are 

no longer projected as straight 
lines. Note also that the fi eld of 
view is mapped to a circular re-

gion on the image plane

Fig. 11.16.
A cube projected using the 

 FishEyeCamera class. The 
straight edges of the cube are 

curves on the image plane

We create an edge-based model of a cube with side length 0.2 m

>> [X,Y,Z] = mkcube(0.2, 'centre', [0.2, 0, 0.3], 'edge'); 

and project it to the fi sheye camera’s image plane

>> cam.mesh(X, Y, Z) 

and the result is shown in Fig. 11.16. We see that straight lines in the world are no lon-
ger straight lines in the image.

Wide angle lenses are available with 180° and even 190° fi eld of view, however they 
have some practical drawbacks. Firstly, the spatial resolution is lower since the cam-
era’s pixels are spread over a wider fi eld of view. We also note from Fig. 11.17 that the 
fi eld of  view is a circular region which means that nearly 25% of the rectangular im-
age plane is effectively wasted. Secondly, outdoors images are more likely to include 
bright sky so the camera will automatically reduce its exposure which can result in 
some nonsky parts of the scene being very underexposed.

11.3  ·  Wide Field-of-View Imaging
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11.3.2 
l

Catadioptric  Camera

A catadioptric  imaging system comprises both refl ective and refractive elements�, a 
 mirror and a lens, as shown in Fig. 11.18a. An example catadioptric image is shown 
in Fig. 11.18b.

The geometry shown in Fig. 11.19 is fairly complex. A ray is constructed from the 
point P to the focal point of the mirror at O which is the origin of the camera system. 
The ray has an elevation angle of

upward from the optical axis and intersects the mirror at the point M. The refl ected 
ray makes an angle ψ  with respect to the optical axis which is a function of the in-
coming ray angle, that is ψ (θ ). The relationship between θ  and ψ  is determined by 
the tangent to the mirror at the point M and is a function of the  shape of the mirror. 
Many different  mirror shapes are used for catadioptric imaging including spherical, 
parabolic, elliptical and hyberbolic. In general the function ψ (θ ) is nonlinear but an 
interesting class of mirror is the  equiangular  mirror for which

The refl ected ray enters the camera lens at angle ψ  from the optical axis, and from 
the lens geometry we can write

which is the distance from the  principal point. The polar coordinate of the image-plane 
point is p = (r, φ) and the corresponding Cartesian coordinate is

where φ  is the azimuth angle

In Fig. 11.19 we have assumed that all rays pass through a single focal point or view-
point – O in this case. This is referred to as  central  imaging and the resulting image 

Fig. 11.18.
Catadioptric imaging. a A cata-
dioptric imaging system com-
prising a conventional perspec-
tive  camera is looking upward
at the mirror; b Catadioptric
image. Note the dark spot in the 
center which is the support that 
holds the mirror above the lens. 
The fl oor is in the center of the 
image and the ceiling is at the edge 
(photos by Michael Milford)

From the Greek for curved mirrors (catop-
trics) and lenses (dioptrics).
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can be correctly transformed to a  perspective image. The equiangular  mirror does not 
meet this constraint and is therefore a  noncentral  imaging system – the focal point 
varies with the angle of the incoming ray and lies along a short locus within the mirror 
known as the  caustic. Conical, spherical and equiangular   mirrors are all noncentral. 
In practice the variation in the viewpoint is very small compared to the world scale 
and many such mirrors are well approximated by the central model.

The Toolbox provides a model for catadioptric  cameras. For example we can cre-
ate an equiangular catadioptric   camera

>> cam =  CatadioptricCamera('name', 'panocam', ...
         'projection', 'equiangular', ...
         'maxangle', pi/4, ...
         'pixel', 10e-6, ...
         'resolution', [1280 1024])

which returns an instance of a  CatadioptricCamera object which is a subclass 
of the Toolbox’s  Camera object and polymorphic with the  CentralCamera class 
discussed earlier. The option maxangle specifi es the maximum elevation angle θ 
from which the parameters α  and f are determined such that the maximum elevation 
angle corresponds to a circle that maximally fi ts the image plane. The parameters can 
be individually specifi ed using the options 'alpha' and 'focal'. Other supported 
projection models include parabolic and spherical and each camera type has different 
options as described in the online documentation.

We create an edge-based cube model

>> [X,Y,Z] = mkcube(1, 'centre', [1, 1, 0.8], 'edge'); 

which we project onto the image plane

>> cam.mesh(X, Y, Z) 

and the result is shown in Fig. 11.20.

Fig. 11.19.
Catadioptric image formation. 
A ray from point P at elevation 

angle θ  and azimuth φ  toward O 
is refl ected from the mirror sur-
face at M and is projected by the 

lens on to the image plane at p

11.3  ·  Wide Field-of-View Imaging
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Catadioptric  cameras have the advantage that they can view 360° in azimuth but they 
also have some practical drawbacks. They share many of the problems of fi sheye  lenses 
such as reduced spatial resolution, wasted image-plane pixels and  exposure control. In 
some designs there is also a blind spot due to the mirror support which is commonly 
a central stalk or a number of side supports.

11.3.3 
l

Spherical  Camera

The fi sheye  lens and catadioptric systems just discussed guide the light rays from a 
large fi eld of view onto an image plane. Ultimately the 2-dimensional image plane is 
a limiting factor and it is advantageous to consider instead an  image sphere as shown 
in Fig. 11.21.

The world point P is projected by a ray to the origin of a unit sphere. The pro-
jection is the point p where the ray intersects the surface of the sphere. If we write 
p = (x, y, z) then

 (11.17)

where R = X̂2gg+gYg2g+gZ 2g is the radial distance to the world point. The  surface of 
the sphere is defi ned by x2 + y2 + z2 = 1 so one of the three Cartesian coordinates is 
redundant. A minimal two-parameter representation for a point on the surface of a 
sphere (φ , θ ) comprises the angle of  colatitude measured down from the North pole

 (11.18)

where r = ]x2g+ggyg2, and the azimuth angle (or longitude)

 (11.19)

Conversely, the Cartesian coordinates for the point p = (φ , θ ) are given by

 (11.20)

Fig. 11.20.
A cube projected with an equi-
angular catadioptric  camera
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Using the Toolbox we can create a spherical camera

>> cam = SphericalCamera('name', 'spherical') 

which returns an instance of a  SphericalCamera object which is a subclass of the 
Tool-box’s  Camera object and polymorphic with the  CentralCamera class dis-
cussed earlier.

As previously we can create an edge-based cube model

>> [X,Y,Z] = mkcube(1, 'centre', [2, 3, 1], 'edge'); 

and project it onto the sphere

>> cam.mesh(X, Y, Z) 

and this is shown in Fig. 11.22. To aid visualization the spherical image plane has been 
unwrapped into a rectangle – lines of longitude and latitude are displayed as vertical 
and horizontal lines respectively. The top and bottom edges correspond to the north 
and south poles respectively.

It is not yet possible to buy a spherical camera although prototypes have been dem-
onstrated in several laboratories. The spherical camera is more useful as a conceptual 
construct to simplify the discussion of wide-angle  imaging. As we show in the next 
section we can transform images from  perspective, fi sheye or catadioptric  camera onto 
the sphere where we can treat them in a uniform manner.

Fig. 11.21.
Spherical image formation. The 

world point P is mapped to p on 
the surface of the unit sphere 

and represented by the angles of 
colatitude θ  and longitude φ

Fig. 11.22.
Cube projected by a spheri-

cal  camera. The spherical
image plane is represented in 

Cartesian coordinates

11.3  ·  Wide Field-of-View Imaging
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11.4 
l
Unified  Imaging

We have introduced a number of different imaging  models in this chapter. Now we 
will discuss how to transform an image captured with one type of camera to the im-
age that would have been captured with a different type of camera. For example, given 
a fi sheye  lens projection we will generate the corresponding projection for a spheri-
cal camera or a  perspective camera. The  unifi ed imaging model provides a powerful 
framework to consider very different types of cameras such as standard perspective, 
catadioptric and many types of fi sheye lens.

The unifi ed imaging model is a two-step process and the notation is shown in 
Fig. 11.23. The fi rst step is spherical projection of the world point P to the surface of 
the unit sphere p′ as discussed in the previous section and described by Eq. 11.17 to 
Eq. 11.18. The view point O is the center of the sphere which is a distance m from the 
image plane along its normal z-axis. The single view point implies a central camera.

In the second step the point p′ = (θ , φ) is reprojected to the image plane p using 
the view point F which is at a distance ` along the z-axis above O. The polar coordi-
nates of the image-plane point are p = (r, φ) where

 (11.21)

The unifi ed imaging model has only two parameters m and ` and these are a func-
tion of the type of camera as listed in Table 11.2. For a perspective camera the two 
view points O and F are coincident and the geometry becomes the same as the central 
perspective  model shown in Fig. 11.3.

For catadioptric cameras with mirrors that are   conics the focal point F lies between the 
center of the sphere and the north pole, that is, 0 < `< 1. This projection model is some-
what simpler than the catadioptric camera geometry shown in Fig. 11.19. The imaging pa-
rameters are written in terms of the conic parameters  eccentricity ε  and  latus rectum 4p.�

The length of a chord parallel to the direc-
trix and passing through the focal point.

Fig. 11.23.
Unifi ed imaging model of Geyer 
and Daniilidis (2000)
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The projection with F at the north pole is known as  stereographic projection and is 
used in many fi elds to project the  surface of a sphere onto a plane. Many fi sheye  lenses 
are extremely well approximated by F above the north pole.

11.4.1 
l

Mapping Wide-Angle Images to the Sphere

We can use the unifi ed  imaging model in reverse. Consider an image captured by a 
wide fi eld of view camera such as the fi sheye image shown in Fig. 11.24a. If we know 
the location of F then we can project each point from the image onto the sphere to cre-
ate a spherical image, even though we do not have a spherical camera.

In order to achieve this inverse mapping we need to know some parameters of the 
camera that captured the image. A common feature of images captured with a fi sheye 
lens or catadioptric  camera is that the outer bound of the image is a circle. This circle 
can be found and its center estimated quite precisely – this is the  principal point. A 
variation of the camera calibration procedure of Sect. 11.2.4 is applied which uses cor-
responding world and image-plane points from the planar calibration target shown 
in Fig. 11.24a. This particular camera has a fi eld of view of 190 degrees and its cali-
bration parameters have been estimated to be: principal point (528.1214, 384.0784), 
`= 2.7899 and m = 996.4617.

We will illustrate this using the image shown in Fig. 11.24a

>> fi sheye = iread('fi sheye_target.png', 'double', 'grey'); 

and we also defi ne the domain of the input image

>> [Ui,Vi] = imeshgrid(fi sheye); 

We will use  image warping to achieve this mapping. Warping is discussed in detail in 
Sect. 12.7.4 but we will preview the approach here. The output domain covers the en-
tire sphere with longitude from −π to +π radians and colatitude from 0 to π radians 
with 500 steps in each direction

>> n = 500;
>> theta_range = linspace(0, pi, n);
>> phi_range = linspace(-pi, pi, n);
>> [Phi,Theta] =  meshgrid(phi_range, theta_range);

For warping we require a function that returns the coordinates of a point in the input 
image given the coordinates of a point in the output spherical image. This function is 
the second step of the unifi ed imaging  model Eq. 11.21 which we implement as

>> r = (l+m)*sin(Theta) ./ (l-cos(Theta));

from which the corresponding Cartesian coordinates in the input image are

>> U = r.*cos(Phi) + u0;
>> V = r.*sin(Phi) + v0;

Table 11.2.
Unifi ed imaging model parame-
ters � and m according to camera 

type. ε  is the eccentricity of the 
conic and 4p is the latus rectum

11.4  ·  Unified Imaging
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The image warp is performed with a single MATLAB builtin function

>> spherical = interp2(Ui, Vi, fi sheye, U, V);

where the fi rst three arguments defi ne the input domain, and the last two arguments 
are the coordinates for which grey-scale values will be interpolated from the input 
image and returned. We display the result

>> idisp(spherical) 

which is shown in Fig. 11.24b. The image appears refl ected about the equator and this 
is because the mapping from a point on the image plane to the sphere is double valued 
– since F is above the north pole the ray intersects the sphere twice. The top and bot-
tom row of this image corresponds to the principal point, while the dark band above 
the equator corresponds to the circular outer edge of the input image.

The image is extremely distorted but this coordinate system is very convenient to 
 texture map onto a sphere

>> sphere
>> h = fi ndobj('Type', 'surface');
>> set(h, 'CData', fl ipud(spherical), 'FaceColor', 'texture');
>> colormap(gray)

and this is shown in Fig. 11.25. Using the MATLAB fi gure toolbar we can rotate the 
sphere and look at the image from different view points.

Any wide-angle image that can be expressed in terms of central  imaging parame-
ters can be similarly projected onto a sphere. So too can multiple perspective images 
obtained from a camera array such as shown in Fig. 11.27.

Fig. 11.24. Fisheye image of a pla-
nar calibration target. a Fisheye 
image (image courtesy of Peter 
Hansen); b Image warped to (φ , θ) 
coordinates

Fig. 11.25.
Fisheye image mapped to the 
unit sphere. We can clearly see 
the planar grid lying on a table, 
the ceiling light, a door and a 
whiteboard

�
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11.4.2 
l
Mapping from the Sphere to a Perspective Image

Given a spherical image we now want to reconstruct a perspective view in a particu-
lar direction. We can think of this as looking out, from inside the sphere, at a small 
surface area which is close to fl at and approximates a perspective camera view. This 
is the second step of the unifi ed imaging  model where F is at the center of the sphere 
in which case Fig. 11.23 becomes similar to Fig. 11.3. The perspective camera’s opti-
cal axis is the negative z-axis of the sphere.

For this example we will use the spherical image created in the previous section. 
We wish to create a perspective image of 1 000 × 1 000 pixels and with a fi eld-of-view 
of 45°. The fi eld of  view can be written in terms of the image width W and the unifi ed 
imaging parameter m as

For a 45° fi eld-of-view we require
>> W = 1000;
>> m = W / 2 / tan(45/2*pi/180)
m =
   1.2071e+03

and for   perspective projection we require

>> l = 0;

We also require the  principal point to be in the center of the image

>> u0 = W/2; v0 = W/2;

The domain of the output image will be

>> [Uo,Vo] =  meshgrid(0:W-1, 0:W-1);

The polar coordinate (r, φ) of each point in the output image is

>> [phi,r ]= cart2pol(Uo-u0, Vo-v0);

and the corresponding spherical coordinates (φ , θ ) are

>> Phi_o = phi;
>> Theta_o = pi - atan(r/m);

We now warp from spherical coordinates to the perspective image plane

>> perspective = interp2(Phi, Theta, spherical, Phi_o, Theta_o);

and the result

>> idisp(perspective) 

is shown in Fig. 11.26a. This is the view from a perspective camera at the center 
of the sphere looking down through the south pole. We see that the lines on the 
chessboard calibration target are now straight as we would expect from a perspec-
tive image.

Of course we are not limited to just looking along the negative z-axis of the sphere. 
In Fig. 11.25 we can see some other features of the room such as a door, a whiteboard 
and some ceiling lights. We can point our virtual perspective camera in their direc-
tion by fi rst rotating the spherical image

>> spherical = sphere_rotate(spherical, SE3.Ry(0.9)*SE3.Rz(-1.5) );  

so that the negative z-axis now points toward the distant wall. Repeating the warp 
process we obtain the result shown in Fig. 11.26b in which we can clearly see a door 
and a whiteboard.�

From a single wide-angle image we can 
create a perspective view in any direc-
tion without having any mechanical 
pan/tilt mechanism – it’s just computa-
tion.  In fact multiple users could look in 
different directions simultaneously.

11.4  ·  Unified Imaging
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The original wide-angle image contains a lot of detail though it can be hard to see 
because of the distortion. After mapping the image to the sphere we can create a vir-
tual  perspective camera view (where straight lines in the world are straight) along any 
line of sight. This is only possible if the original image was taken with a  central cam-
era that has a single viewpoint. In theory we cannot create a perspective image from a 
noncentral wide-angle image but in practice if the caustic is small the parallax errors 
introduced into the perspective image will be negligible.

11.5 
l
Novel Cameras

11.5.1 
l
Multi-Camera Arrays  

The cost of cameras and computation continues to fall making it feasible to do away 
with the unusual and expensive lenses and mirrors discussed so far, and instead use 
computation to stitch together the images from a number of cameras onto a cylindri-
cal or spherical image plane. One such camera is shown in Fig. 11.27a and uses fi ve 
cameras to capture a 360° panoramic view as shown in Fig. 11.27c. The camera in 
Fig. 11.27b uses six cameras to achieve an almost spherical fi eld of  view.

These camera arrays are not central cameras  since light rays converge on the focal 
 points of the individual cameras, not the center of the camera assembly. This can be 
problematic when imaging objects at short range but in typical use the distance between 
camera focal points, the caustic , is small compared to distances in the scene. The different 
viewpoints do have a real advantage however when it comes to capturing the light fi eld.

11.5.2 
l
Light-Field Cameras    

As we discussed in the early part of this chapter a traditional perspective camera  
– analog or digital – captures a representation of a scene using the two dimensions 
of the fi lm or sensor. We can think of the captured image as a 2-dimensional func-
tion L(X, Y) that describes the light emitted by the 3D scene. The function is scalar 
L(·) ∈R for the monochrome case and vector-valued L(·) ∈R3 for a tristimulus color 
representation.�

Fig. 11.26. Perspective projection 
of spherical image Fig. 11.25 with 
a fi eld of view of 45°. a Note that 
the lines on the chessboard are now 
straight. b This view is looking to-
ward the door and whiteboard

We could add extra dimensions to repre-
sent polarization of the light.
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The pin-hole camera  of Fig. 11.1 allows only a very small number of light rays to 
pass through the  aperture, yet space is fi lled with innumerable light rays that pro-
vide a richer and more complete description of the world. This detailed geometric 
distribution of light is called the plenoptic function  .� Luminance  is really a func-
tion of position and direction in 3-dimensional space, for example L(X, Y, Z, θ , φ ). 

The word plenoptic comes from the Latin 
word plenus meaning full or complete.

Fig. 11.27.  Omnidirectional  cam-
era array  . a Five perspective cam-
eras provide a 360° panorama
with a 72° vertical field of view 
(camera by Occam Vision Group). 
b Panoramic  camera array   uses 
six perspective cameras to provide 
90% of a spherical fi eld of view. 
c A seamless panoramic image 
(3 760 × 480 pixels) as output by 
the camera a (photographs a and 
c by Edward Pepperell; image b 
courtesy of Point Grey Research)

11.5  ·  Novel Cameras

Fig. 11.28.
An 8×12  camera array as de-

scribed in Wilburn et al. (2005) 
(photo courtesy of Marc Levoy, 

Stanford University)

�



350 Chapter 11  ·  Image Formation

Unintuitively lines in 3D space have only four parameters, see Sect. C.1.2.2, so the 
plenoptic function can be written as L(s, t, u, v) using the 2-plane parameterization 
shown in Fig. 11.29a.� The traditional camera image is just a 2-dimensional slice of 
the full plenoptic function.

Although the concepts behind the light fi eld have been around for decades, it is 
only in recent years that the technology to capture light fi elds has become widely 
available. Early light-fi eld cameras were arrays of regular cameras arranged in a plane, 
such as shown in Fig. 11.28, or on a sphere surrounding the scene, but these tended to 
be physically large, complex and expensive to construct. More recently low-cost and 
compact light-fi eld cameras   based on microlens arrays  have come on to the market. 
One selling point for consumer light-fi eld cameras has been the ability to refocus the 
image after taking the picture but the light-fi eld  image has many other virtues includ-
ing synthesizing novel views, 3D reconstruction, low-light  imaging and seeing through 
particulate obscurants.

The microlens array   is a regular grid of tiny lenses, typically comprising hun-
dreds of thousands of lenses, which is placed a fraction of a millimeter above the 
surface of the camera’s photosensor array  . The main objective lens focuses an im-
age onto the surface of the microlens array as shown in Fig. 11.29b. The microlens 
directs incoming light to one of a small, perhaps 8 × 8, patch of pixels according 
to its direction. The resulting image captures information about both the origin of 
the ray (the lenslet) and its direction (the particular pixel beneath the lenslet). By 
contrast, in a standard  perspective camera all the rays, irrespective of direction, 
contribute to the value of the pixel. The light-field camera pixels are sometimes 
referred to as raxels  and the resolution of these cameras is typically expressed in 
megarays.

The raw image from the sensor array looks like Fig. 11.30a but can be decoded into 
a 4-dimensional light fi eld, as shown in Fig. 11.30b, and used to render novel views.

11.6 
l
Advanced Topics

11.6.1 
l
Projecting 3D Lines and  Quadrics

In Sect. 11.1 we projected 3D points to the image plane, and we projected 3D line seg-
ments by simply projecting their endpoints and joining them on the image plane. How 
would we project an arbitrary line in 3-dimensional space?

The fi rst issue we confront is how to represent such a line and there are many pos-
sibilities which are discussed in Sect. C.1.2.2. One useful parameterization is Plücker 
coordinates  – a 6-vector with many similarities to twists.

Fig. 11.29. a The light ray Φ pass-
es through the image plane at 
point (u, v) and the center of the 
 camera at (s, t). This is similar 
to the central projection model 
shown in Fig. 11.3. Any ray can 
be described by two points, in 
this case (u, v) and (s, t). b Path 
of light rays from object through 
main objective lens and lenslet 
array to the pixel array   (fi gures 
courtesy Donald G. Dansereau)

If the scene contains obstructions then 
the rays become finite-length line seg-
ments, this increases the dimensionality 
of the light field from 4D to 5D. However 
to record such a light field the camera 
would have to be simultaneously at ev-
ery position in the scene without obscur-
ing anything, which is impossible.
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We can easily create a Plücker line  using the Toolbox. A line that passes through 
(0, 0, 1) and (1, 1, 1) would be

>> L = Plucker([0 0 1], [1 1 1])
L =
{ -1  1  0; -1  -1  0 } 

which returns a Plucker object that is represented as a 6-vector with two compo-
nents: a moment vector and a direction vector. Options can be used to specify a line 
using a point and a direction or the intersection of two planes. The direction of the 
Plücker line is the vector

>> L.w'
ans =
    -1    -1     0

The Plucker object also has methods for plotting as well as determining the 
intersection with planes or other Plücker lines. There are many representations of 
a Plücker line including the 6-vector used above, a minimal 4-vector, and a skew-
symmetric  4 × 4 matrix computed using the L method. The latter is used to project 
the line by

where C is the camera matrix, and results in a 2-dimensional line expressed in homoge-
neous coordinates. Observing this line with the default camera

>> cam = CentralCamera('default');
>> l = cam.project(L)'
l =
     1    -1     0

results in a diagonal line across the image plane. We could plot this using  plot_homline  
or on the camera’s virtual image plane by

>> cam.plot(l)

Quadrics , short for quadratic surfaces  , are a rich family of 3-dimensional surfaces. 
There are 17 standard types including  spheres,  ellipsoids,  hyperboloids,  paraboloids, 
 cylinders and  cones all described by

Fig. 11.30. a Closeup of image 
formed on the sensor array   by the 
lenslet array  ; b array of images ren-
dered from the light fi eld for dif-
ferent camera view points (fi gures 
courtesy Donald G. Dansereau)

11.6  ·  Advanced Topics
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where Q ∈R4×4 is symmetric. The outline of the quadric is projected to the image plane by

where (·)∗ represents the adjugate operation, see Appendix B, and c is a matrix represent-
ing a conic section on the image plane

which can be written as

where

The determinant of the top-left submatrix indicates the type of conic: negative for 
a hyperbola, 0 for a parabola and positive for an  ellipse.

To demonstrate this we will defi ne a camera looking toward the origin

>> cam =  CentralCamera('default', 'pose', SE3(0.2,0.1, -5)*SE3.Rx(0.2));

and defi ne a unit sphere at the origin

>> Q = diag([1 1 1 -1]);

then compute its projection to the image plane
>> Qs = inv(Q)*det(Q); % adjugate
>> cs = cam.C * Qs * cam.C';
>> c = inv(cs)*det(cs);  % adjugate

which is a 3 × 3 matrix describing a  conic. The determinant
>> det(c(1:2,1:2))
ans =
   2.2862e+14

is positive indicating an ellipse, and a simple way to plot this is using the Symbolic 
Math Toolbox™

>> syms x y real
>> ezplot([x y 1]*c*[ x y 1]', [0 1024 0 1024])
>> set(gca, 'Ydir', 'reverse')

11.6.2 
l
Nonperspective  Cameras 

The camera  matrix Eq. 11.9 represents a special subset of all possible camera matrices 
– fi nite projective or Euclidean cameras   – where the left-hand 3 × 3 matrix is nonsin-
gular. The camera projection matrix C from Eq. 11.9 can be written generally as

which has arbitrary scale so one element, typically C3,4 is set to one – this matrix has 
11 unique elements or 11 DOF. We could think of every possible matrix as correspond-
ing to some type of camera, but most of them would produce wildly distorted images.
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Orthographic or parallel projection is a simple perspective-free projection of 
3D points onto a plane, like a “plan view”. For small objects close to the camera this 
projection can be achieved using a telecentric lens. The apparent size of an object 
is independent of its distance.     

For the case of an aerial robot fl ying high over relatively fl at terrain the variation 
of depth, the depth relief, ∆ Z is small compared to the average depth of the scene Z–, 
that is ∆Z� Z–. We can use a scaled-orthographic projection which is an orthographic 
projection followed by uniform scaling m = f / Z–.

These two nonperspective cameras  are special cases of the more general affi ne cam-
era model   which is described by a matrix of the form

that can be factorized as

It can be shown that the principal point is undefi ned for such a camera model, 
simplifying the intrinsic matrix, but we have introduced a skew parameter to handle 
the case of nonorthogonal sensor axes. The projection matrix is different compared 
to the perspective case in Eq. 11.9 – the column of zeros has moved from column 4 to 
column 3. This zero column effectively deletes the third row and column of the  ex-
trinsic matrix resulting in

and has at most 8 DOF�. The independence from depth is very clear since tz does not 
appear. The case where skew s = 0 and mx = my = 1 is orthographic projection and has 
only 5 DOF, while the scaled-orthographic case when s = 0 and mx = my has 6 DOF. 
The case where mx ≠ my is known as weak perspective projection, although this term 
is sometimes also used to describe scaled-orthographic projection.

11.7 
l
Wrapping Up

We have discussed the fi rst steps in the computer vision process – the formation of an im-
age of the world and its conversion to an array of pixels which comprise a digital image. 
The images with which we are familiar are  perspective projections of the world in which 
3 dimensions are compressed into 2 dimensions. This leads to ambiguity about object 
size – a large object in the distance looks the same as a small object that is close. Straight 
lines and conics are unchanged by this projection but  shape  distortion occurs – parallel 
lines can appear to converge and circles can appear as ellipses. We have modeled the per-
spective projection process and described it in terms of eleven parameters – intrinsic and 
extrinsic. Geometric lens  distortion adds additional lens parameters. Camera calibration 
is the process of estimating these parameters and two approaches have been introduced. 
We also discussed pose estimation where the pose of an object of known geometry can 
be estimated from a perspective projection obtained using a calibrated camera.

The 2 × 3 submatrix of the rotation ma-
trix has 6 elements but 3 constraints – 
the two rows have unit norms and are 
orthogonal – and therefore has 3 DOF.

11.7  ·  Wrapping Up
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Perspective images are limited in their fi eld of view and we discussed several wide-
angle  imaging systems based on the fi sheye lens, catadioptrics and multiple cameras. We 
also discussed the ideal wide-angle  camera, the spherical camera, which is currently still 
a theoretical construct. However it can be used as an intermediate representation in the 
unifi ed imaging model which provides one model for almost all camera geometries. We 
used the unifi ed imaging model to convert a fi sheye camera image to a spherical image 
and then to a perspective image along a specifi ed view axis. Finally we covered some more 
recent camera developments such as panoramic camera arrays and light-fi eld cameras.

In this chapter we treated imaging as a problem of pure geometry with a small num-
ber of world points or line segments. In the next chapter we will discuss the acquisition 
and processing of images sourced from fi les, cameras and the web.

Further Reading and Resources

Computer vision textbooks such as Szeliski (2011), Hartley and Zisserman (2003), 
Forsyth and Ponce (2011) and Gonzalez and Woods (2008) provide deeper coverage 
of the topics introduced in this chapter. Many topics in geometric computer vision 
have also been studied by the photogrammetric community, but different language is 
used. For example camera calibration is known as  camera resectioning, and pose es-
timation is known as  space resectioning. The revised classic textbook by DeWitt and 
Wolf (2000) is a thorough and readable introduction to photogrammetry.

Camera calibration. The homogeneous transformation calibration (Sutherland 1974) 
approach of Sect. 11.2.1 is also known as the  direct linear transform (DLT) in the 
photogrammetric literature. The Toolbox implementation  camcald requires that 
the centroids of the calibration markers have already been determined which is a 
nontrivial problem (Corke 1996b, § 4.2). It also cannot estimate lens distortion. Wolf 
(1974) describes extensions to the linear camera calibration with models that include 
up to 18 parameters and suitable nonlinear  optimization estimation techniques. A 
more concise description of nonlinear calibration is provided by Forsyth and Ponce 
(2011). Hartley and Zisserman (2003) describe how the linear calibration model can 
be obtained using features such as lines within the scene.

There are a number of good camera calibration toolboxes available on the web. The 
  MATLAB Toolbox, discussed in Sect. 11.2.4, is by Jean-Yves Bouguet and available from 
http://www.vision.caltech.edu/bouguetj/calib_doc. It has extensive online documen-
tation and includes example calibration images which were used in Sect. 11.2.4. Several 
tools build on this and automatically fi nd the chessboard target which is otherwise te-
dious to locate in every image, for example the AMCC and RADOCC Toolboxes and the 
MATLAB Camera Calibrator App included with the Computer Vision System Toolbox™. 
The MATLAB Toolbox by Janne Heikkilä is available at http://www.ee.oulu.fi/~jth/calibr/ 
and works for planar or 3D targets with circular dot features and estimates lens distortion.

Photogrammetry  is the science of understanding the geometry 
of the world from images. The techniques were developed by 
the French engineer Aimé Laussedat  (1819–1907) working for 
the Army Corps of Engineers in the 1850s. He produced the fi rst 
measuring  camera and developed a mathematical analysis of 
photographs as perspective projections. He pioneered the use 
of aerial photography as a surveying tool to map Paris – using 
rooftops as well as unmanned balloons and kites.

Photogrammetry is normally concerned with making maps 
from images acquired at great distance but the subfield of 
close-range or terrestrial photogrammetry is concerned with 
camera to object distances less than 100 m which is directly relevant to robotics. (Image from 
La Métrophotographie, Aimé Laussedat, 1899)
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Pose estimation is a classic and hard problem in computer vision and for which 
there exists a very large literature. The approaches can be broadly divided into ana-
lytic and iterative solutions. Assuming that lens distortion has been corrected the 
analytic solutions for three and four noncollinear points are given by Fischler and 
Bolles (1981), DeMenthon and Davis (1992) and Horaud et al. (1989). Typically mul-
tiple solutions exist but for four coplanar points there is a unique solution. Six or 
more points always yield unique solutions, as well as the intrinsic camera calibra-
tion parameters. Iterative solutions were described by Rosenfeld (1959) and Lowe 
(1991). A more recent discussion based around the concept of  bundle adjustment 
is provided by Triggs et al. (2000). The pose estimation in the Toolbox is a wrapper 
around an effi cient noniterative perspective n-point pose estimator described by 
Lepetit et al. (2009) and available at http://cvlab.epfl.ch/EPnP. Pose estimation requires 
a geometric model of the object and such computer vision approaches are known as 
model-based vision. An interesting historical perspective on model-based vision is 
the 1987 video by the late Joe Mundy which is available at http://www.archive.org/
details/JosephMu1987.

Wide field-of-view cameras. There is recent and growing interest in this type of cam-
era and today good quality lightweight fi sheye lenses and catadioptric  camera systems 
are available. Nayar (1997) provides an excellent motivation for, and introduction to, 
wide-angle imaging. A very useful online resource is the catadioptric sensor design 
page at http://www.math.drexel.edu/~ahicks/design and a page of links to research 
groups, companies and workshops at http://www.cis.upenn.edu/~kostas/omni.html. 
Equiangular mirror systems were described by Chahl and Srinivasan (1997) and Ollis 
et al. (1999). Nature’s solution, the refl ector-based scallop eye, is described in Colicchia 
et al. (2009). A number of workshops on Omnidirectional Vision have been held, start-
ing in 2000, and their proceedings are a useful introduction to the fi eld. The book 
of Daniilidis and Klette (2006) is a collection of papers on nonperspective imaging 
and Benosman and Kang (2001) is another, earlier, published collection of papers. 
Some information is available through CVonline at http://homepages.inf.ed.ac.uk/
rbf/CVonline in the section Image Physics.

A MATLAB Toolbox for calibrating wide-angle cameras by Davide Scaramuzza 
is available at https://sites.google.com/site/scarabotix/ocamcalib-toolbox. It is in-
spired by, and similar in usage, to Bouguet’s Toolbox for perspective cameras. Another 
MATLAB Toolbox, by Juho Kannala, handles wide angle central cameras and is avail-
able at http://www.ee.oulu.fi/~jkannala/calibration.

The unifi ed imaging model was introduced by Geyer and Daniilidis (2000) in the 
context of catadioptric cameras. Later it was shown (Ying and Hu 2004) that many fi sh-
eye cameras can also be described by this model. The fi sheye calibration of Sect. 11.4.1 
was described by Hansen et al. (2010) who estimates ` and m rather than a polynomial 
function r(θ ) as does Scaramuzza’s Toolbox.

There is a huge and growing literature on light-fi eld  imaging but as yet no text-
book. A great introduction to light fi elds and its application to robotics is the thesis 
by Dansereau (2014). The same author has a  MATLAB Toolbox available at http://
mathworks.com/matlabcentral/fileexchange/49683. An interesting description of an 
early camera array is given by Wilburn et al. (2005) and the associated video demon-
strates many capabilities. Light-fi eld imaging is a subset of the larger, and growing, 
fi eld of computational photography.

Toolbox Notes

The Toolbox camera classes  CentralCamera,  FishEyeCamera and  SphericalCamera 
are all derived from the abstract superclass  Camera. Common methods of all classes are 
shown in Table 11.3.

11.7  ·  Wrapping Up
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The virtual camera view has similar behavior to a MATLAB fi gure. By default  plot 
and  mesh will redraw the camera’s view. If no camera view exists one will be created. The 
methods   clf and  hold are analogous to the MATLAB commands clf and hold.

The constructor of all camera classes accepts a number of option arguments which are 
listed in Table 11.4. Specifi c camera subclasses have unique options which are described 
in the online documentation. With no arguments the default CentralCamera param-
eters are for a 1 024 × 1 024 image, 8 mm focal length lens and 10 µm square pixels. If the 
principal point is not set explicitly it is assumed to be in the middle of the image plane.

Exercises

1. Create a central camera and a cube target and visualize it for different camera and 
cube poses. Create and visualize different 3D mesh shapes such as created by the 
MATLAB functions  cylinder and  sphere.

2. Write a script to fl y the camera in an orbit around the cube, always facing toward 
the center of the cube.

3. Write a script to fl y the camera through the cube.
4. Create a central camera with lens distortion and which is viewing a 10 × 10 pla-

nar grid of points. Vary the distortion parameters and see the effect this has on the 
shape of the projected grid. Create pincushion and barrel distortion.

5. Repeat the homogeneous camera calibration exercise of Sect. 11.2.1 and the decom-
position of Sect. 11.2.2. Investigate the effect of the number of calibration points, 
noise and camera distortion on the calibration residual and estimated target pose.

Table 11.4.
Common options for camera 
class constructors

Table 11.3.
Common methods for all 
Toolbox camera classes
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6. Determine the solid angle for a rectangular pyramidal fi eld of view that subtends 
angles θ h and θ v.

7. Do example 1 from Bouguet’s Camera Calibration Toolbox.
8. Calibrate the camera on your computer.
9. Derive Eq. 11.14.
10. For the camera calibration matrix decomposition example (Sect. 11.2.2) determine 

the roll-pitch-yaw orientation error between the true and estimated camera pose.
11. Pose estimation (Sect. 11.2.3)

a) Repeat the pose estimation exercise for different object poses (closer, further 
away).

b) Repeat for different levels of camera noise.
c) What happens as the number of points is reduced?
d) Does increasing the number of points counter the effects of increased noise?
e) Change the intrinsic parameters of the camera cam before invoking the est-
pose method. What is the effect of changing the focal length and the principal 
point by say 5%.

12. Repeat exercises 2 and 3 for the fi sheye camera and the spherical camera.
13. With reference to Fig. 11.19 derive the function ψ(θ ) for a parabolic mirror.
14. With reference to Fig. 11.19 derive the equation of the equiangular mirror z(x) in 

the xz-plane.
15. Quadrics

a) Write a routine to plot a quadric given a 4 × 4 matrix. Hint use  meshgrid and 
 isosurface.

b) Write code to compute the quadric matrix for a sphere at arbitrary location and 
of arbitrary radius.

c) Write code to compute the quadric matrix for an arbitrary circular cylinder.
d) Write numeric MATLAB code to plot the planar conic section described by a 

3 × 3 matrix.
16. Project an ellipsoidal or spherical quadric to the image plane. The result will be the 

implicit equation for a conic – write code to plot the implicit equation.

11.7  ·  Wrapping Up
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 Image processing is a computational process that transforms one or 
more input images  into an output image. Image processing is frequent-
ly used to enhance an image for human viewing or interpretation, for 
example to improve contrast. Alternatively, and of more interest to ro-
botics, it is the foundation for the process of feature extraction which 
will be discussed in much more detail in the next chapter.

An image is a rectangular array of picture elements (pixels) so we 
will use a MATLAB® matrix to represent an image in the workspace. 
This allows us to use MATLAB’s powerful and effi cient armory of ma-
trix  operators and functions.

We start in Sect. 12.1 by describing how to load images into MATLAB 
from sources such as fi les (images and movies), cameras and the internet. 
Next, in Sect. 12.2, we introduce image histograms which provide use-
ful information about the distribution of pixel values. We then discuss 
various classes of  image processing algorithms. These algorithms oper-
ate pixel-wise on a single image, a pair of images, or on local groups of 

pixels within an image and we refer to these as monadic, diadic, and spatial operations 
respectively. Monadic and diadic operations are covered in Sect. 12.3 and 12.4. Spatial 
 operators are described in Sect. 12.5 and include operations such as smoothing, edge 
detection, and template matching. A closely related technique is shape-specifi c fi ltering 
or mathematical morphology and this is described in Sect. 12.6. Finally in Sect. 12.7 we 
discuss  shape changing operations such as cropping, shrinking, expanding, as well as 
more complex operations such as rotation and generalized image warping.

Robots will always gather imperfect images of the world due to  noise, shadows, re-
fl ections and uneven illumination. In this chapter we discuss some fundamental tools 
and “tricks of the trade” that can be applied to real-world images.

12.1 
l
Obtaining an  Image

Today digital images are ubiquitous since cameras are built into our digital devices and 
images cost almost nothing to create and share. We each have ever growing personal col-
lections and access to massive online collections of digital images such as Google Images, 
Picasa or Flickr. We also have access to live image streams from other people’s cameras 
– there are tens of thousands of webcams around the world capturing images and broad-
casting them on the internet, as well images of Earth from space, the Moon and Mars.

12.1.1 
l
Images from Files

We start with images stored in fi les since it is very likely that you already have lots of 
images stored on your computer. In this chapter we will work with some images pro-
vided with the Toolbox, but you can easily substitute your own images. We import an 
image into the MATLAB workspace using the Toolbox function iread

Images and Image Processing
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>> street = iread('street.png'); 

which returns a matrix

>> about(street)
street [uint8] : 851x1280 (1.1 MB) 

that belongs to the class  uint8 – the elements of the matrix are unsigned 8-bit inte-
gers in the interval [0,255]. The elements are referred to as pixel values or  grey val-
ues and are the gamma-encoded� luminance of that point in the original scene. For 
this 8-bit image the pixel values vary from 0 (darkest) to 255 (brightest). The image 
is shown in Fig. 12.1a.

The matrix has 851 rows and 1 280 columns. We normally describe the dimensions of 
an image in terms of its width × height, so this would be a 1 280 × 851 pixel image.

In Chap. 11 we wrote the coordinates of a pixel as (u, v) which are the horizon-
tal and vertical coordinates respectively. In MATLAB this is the matrix element 
(v, u) – note the reversal of coordinates. Note also that the top-left pixel is (1, 1) 
in MATLAB not (0, 0).

For example the pixel at image coordinate (300, 200) is
>> street(200,300)
ans =
   42

which is quite dark – the pixel corresponds to a point in the closest doorway.
There are some subtleties when working with  uint8 values in MATLAB which we 

can demonstrate by defi ning two uint8 values

>> a = uint8(100)
a =
  100
>> b = uint8(200)
b =
  200

Arithmetic on uint8 values obeys the rules of uint8 arithmetic

>> a+b
ans =
  255
>> a-b
ans =
    0

and values are clipped to the interval 0 to 255. For division
>> a/b
ans =
    1

the result has been rounded up to an integer value. For some image processing opera-
tions that we will consider later it is useful to consider the pixel values as fl oating-point 

A very large number of image  file formats  have been developed and are comprehensively catalogued at 
http://en.wikipedia.org/wiki/Image_file_formats. The most popular is JPEG which is used for digital 
cameras and webcams. TIFF is common in many computer systems and often used for scanners. PNG 
and GIF are widely used on the web. The internal format of these fi les are complex but a large amount of 
good quality open-source software exists in a variety of languages to read and write such fi les. MATLAB 
is able to read many of these image fi le formats.

A much simpler set of formats, widely used on Linux systems, are PBM, PGM and PPM (generically 
PNM) which represent images without compression, and optionally as readable ASCII text. A host of 
open-source tools such as ImageMagick provide format conversions and image manipulation under 
Linux, MacOS X and Windows. (word map by tagxedo.com)

Gamma encoding and decoding is dis-
cussed in Sect. 10.3.6. Use the 'gamma' 
option for iread to perform gamma 
decoding and obtain pixel values pro-
portional to scene luminance.
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numbers for which more familiar arithmetic rules apply. In this case each pixel is an 
8-byte MATLAB double precision number in the range [0, 1] and we can specify this 
as an option when we load the image

>> streetd = iread('street.png', 'double');
>> about streetd
streetd [double] : 851x1280 (8.7 MB)

or by applying the function idouble to the integer image.
The image was read from a fi le called street.png which is in portable network 

graphics (PNG) format – a  lossless  compression format� widely used on the internet. 
The function iread searches for the image in the current folder, and then in each 
folder along your MATLAB path.� This particular image has no color, it is a greyscale 
or  monochromatic  image.

A tool that we will use a lot in this part of the book is idisp

>> idisp(street) 

which displays the matrix as an image and allows interactive inspection of pixel val-
ues as shown in Fig. 12.1. Clicking on a pixel will display the pixel coordinate and its 
 grey value – integer or fl oating point – in the top right of the window. The image can 
be zoomed (and unzoomed), we can display a histogram or the intensity profi le along 
a line between any two selected points, or change the color map.� It has many options 
and these are described in the online documentation.

We can just as easily load a color  image
>> fl owers = iread('fl owers8.png');
>> about(fl owers)  
fl owers [uint8] : 426x640x3 (817920 bytes)

which is a 426 × 640 × 3 matrix of  uint8 values as shown in Fig. 12.1b. We can think 
of this as a 426 × 640 matrix of RGB tristimulus values, each of which is a 3-vector. For 
example the pixel at (318, 276)

>> pix = fl owers(276,318,:)
ans(:,:,1) =
   57
ans(:,:,2) =
   91
ans(:,:,3) =
  198

has a tristimulus value (57, 91, 198) but has been displayed by MATLAB in an unusual 
and noncompact manner. This is because the pixel value is

Lossless means that the compressed im-
age, when uncompressed, will be exactly 
the same as the original image.

The example images are kept within the 
images folder of the Machine Vision 
Toolbox distribution which is automati-
cally searched by the  iread function.

The colormap controls the mapping of 
pixel values to the displayed intensity or 
color.

Fig. 12.1. The idisp image brows-
ing window. The top right shows 
the coordinate and value of the 
last pixel clicked on the image. The 
buttons at the top left allow the pixel 
values along a line to be plotted, a 
 histogram to be displayed, or the 
image to be zoomed. a Greyscale 
image; b color image

12.1  ·  Obtaining an Image
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>> about(pix)
pix [uint8] : 1x1x3 (3 bytes) 

a 1 × 1 × 3 matrix. The fi rst two dimensions are called  singleton  dimensions and we 
can squeeze them out

>> squeeze(pix)'
ans =
   57   91  198

which results in a more familiar 3-vector. This pixel corresponds to one of the small 
blue fl owers and has a large blue component. We can display the image and examine 
it interactively using idisp and clicking on a pixel will display its  tristimulus value.

The tristimulus values are of type  uint8 in the range [0, 255] but the image can 
be converted to double precision values in the range [0, 1] using the 'double' op-
tion to iread or by applying the function  idouble to the integer color image, just 
as for a greyscale image.

The image is a matrix with three dimensions and the third dimension as shown in 
Fig. 12.2 is known as the  color plane index. For example

>> idisp( fl owers(:,:,1) ) 

would display the red color plane as a greyscale image that shows the red stimulus at 
each pixel. The index 2 or 3 would select the green or blue plane respectively.

The option 'grey' ensures that a greyscale image is returned irrespective of 
whether or not the fi le contains a color image.� The option 'gamma' performs  gam-
ma decoding and returns a linear image where the greylevels, or tristimulus values, 
are proportional to the luminance of the original scene.

The  iread function can also accept a wildcard fi lename allowing it to load a se-
quence of fi les. For example

>>  seq = iread('seq/*.png');
>> about(seq)
seq [uint8] : 512x512x9 (2.4 MB)  

loads nine images in PNG format from the folder seq. The result is a H × W × N ma-
trix and the last index represents the image number within the sequence. That is 
seq(:,:,k) is the kth image in the sequence and is a 512 × 512 greyscale image. In 
terms of Fig. 12.2 the images in the sequence extend in the p direction. If the images were 
color then the result would be a H × W × 3 × N matrix where the last index represents 
the image number within the sequence, and the third index represents the color plane.

Fig. 12.2.
Color image shown as a 3-dimen-
sional structure with dimensions: 
row, column, and color plane

Using ITU Rec. 709 by default.  See also the 
Toolbox monadic  operator  imono.
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If  iread is called with no arguments, a fi le browsing window pops up allowing navi-
gation through the fi le system to fi nd the image. The function also accepts a URL allow-
ing it to load an image, but not a sequence, from the web. The function can read most 
common image fi le formats including JPEG, TIFF, GIF, PNG, PGM, PPM, PNM.

Many image fi le formats also contain rich metadata – data about the data in the fi le. 
The JPEG fi les generated by most digital cameras are particularly comprehensive and 
the metadata can be retrieved by providing a second output argument to iread

>> [im,md]=iread('church.jpg');
>> md
md = ...
              Width: 1280
             Height: 851
               Make: 'Panasonic'
              Model: 'DMC-FZ30'
        Orientation: 1
      DigitalCamera: [1x1 struct]

and the DigitalCamera substructure has additional details about the camera settings 
for the particular image

>> md.DigitalCamera
ans = ...
               ExposureTime: 0.0025
                   FNumber: 8
           ISOSpeedRatings: 80
                     Flash: 'Flash did not fi re…'
               FocalLength: 7.4000

More details and options for iread are described in the online documentation.

12.1.2 
l
Images from an Attached Camera

Most laptop computers today have a builtin camera for video conferencing. For com-
puters without a builtin camera an external camera can be easily attached via a USB 
or FireWire connection. The means of accessing a camera is operating system specifi c.� 
A list of all attached cameras and their resolution can be obtained by

>> VideoCamera('?')

We open a particular camera

>> cam = VideoCamera('name')

which returns an instance of a  VideoCamera object that is a subclass of the 
ImageSource class. If name is not provided the fi rst camera found is used. The 
constructor accepts a number of additional arguments such as 'grey' which en-
sures that the returned image is greyscale irrespective of the camera type, 'gamma' 

JPEG  employs lossy   compression to reduce the size of the fi le.  Unlike 
normal fi le compression (eg. zip, rar, etc.) and decompression, the 
decompressed image isn’t the same as the original image and this 
allows much greater levels of compression. JPEG compression ex-
ploits limitations of the human eye and discards information that 
won’t be noticed such as very small  color changes (which are per-
ceived less accurately than small changes in brightness) and fi ne 
texture. It is very important to remember that JPEG is intended for 
compressing images that will be viewed by humans. The loss of color 
detail and fi ne texture may be problematic for computer algorithms 
that analyze images.

JPEG was designed to work well for natural scenes but it does not 
do so well on lettering and line drawings with high spatial-frequency 

content. The degree of loss can be varied by adjusting the so-called 
quality factor which allows a tradeoff between image quality and fi le 
size. JPEG can be used for greyscale or color images.

What is commonly referred to as a JPEG fi le, often with an exten-
sion of .jpg or .jpeg, is more correctly a JPEG JFIF fi le. JFIF is 
the  format of the fi le that holds a JPEG-compressed image as well 
as metadata.  EXIF fi le format (Exchangeable Image File Format) 
is a standard for camera related metadata such as camera set-
tings, time, location and so on. This metadata can be retrieved as 
a second output argument to iread as a cell array, or by using 
a command-line utility such as exiftool (http://www.sno.phy.
queensu.ca/~phil/exiftool). See the Independent JPEG group web 
site http://www.ijg.org for more details.

The Toolbox provides a simple interface to 
a camera for MacOS, Linux and Windows 
but more general support requires the 
Image Acquisition Toolbox.

12.1  ·  Obtaining an Image



364 Chapter 12  ·  Images and Image Processing

to apply gamma decoding, and 'framerate' which sets the number of frames cap-
tured per second.

The dimensions of the image returned by the camera are given by the  size method

>> cam.size() 

and an image is obtained using the   grab method

>> im = cam.grab();  

which waits until the next frame becomes available.� With no output arguments the 
acquired image is displayed using idisp.

Since the frames are generated at a 
rate of R per second as specified by the 
'framerate' option, then the 
worst case wait is uniformly distribut-
ed in the interval [0,1/R). Ungrabbed 
images don’t accumulate, they are dis-
carded.

 focal length, lens quality and  vignetting. Exposure time T has an 
upper bound equal to the inverse frame rate. To avoid motion 
blur a short exposure time is needed, which leads to darker and 
noisier images.

The integer pixel value is

where k is a gain related to the  ISO settinga of the camera. To 
obtain an sRGB (see page 311) image with an average value of 
118b the required exposure is

where SSOS is the ISO rating –   standard output sensitivity (SOS) 
– of the digital camera. Higher ISO increases image brightness 
by greater amplifi cation of the measured charge but the various 
noise sources are also amplifi ed leading to increased image noise 
which is manifested as graininess.

In photography the camera settings that control image bright-
ness can be combined into an   exposure value (EV)

and all combinations of f-number and shutter speed that have the 
same EV value yield the same exposure. This allows a tradeoff be-
tween  aperture (depth of fi eld) and exposure time (motion blur). 
For most low-end cam-
eras the aperture is fi xed 
and the camera controls 
exposure using T instead 
of relying on an expen-
sive, and slow, mechan-
ical aperture. A differ-
ence of 1 EV is a factor of 
two change in exposure 
which photographers re-
fer to as a stop. Increasing 
EV results in a darker im-
age – most DSLR  camer-
as allow you to manually 
adjust EV relative to what 
the camera’s lightmeter 
has determined.

a Which is backward compatible with historical scales (ASA, DIN, 
ISO) devised to refl ect the sensitivity of chemical fi lms for cameras 
– a higher number refl ected a more sensitive or “faster” fi lm.

b 18% saturation, middle grey, of 8-bit pixels with gamma of 2.2.

Photons to pixel values. A lot goes on inside a camera. Over a fi xed 
time interval the number of photons falling on a photosite fol-
lows a  Poisson distribution. The mean number of photons and 
the variance are proportional to the luminance – this variance ap-
pears as shot noise on the pixel value. A fraction of these photons 
are converted to electrons – this is the   quantum effi ciency of the 
sensor – and they accumulate in a charge well at the photosite . 
The number of photons captured is proportional to surface area 
but not all of a photosite is light sensitive due to the presence of 
transistors and other devices – the fraction of the photosite’s area 
that is sensitive is called the  fi ll factor and for  CMOS sensors can 
be less than 50%, but this can be improved by fabricating micro-
lenses above each photosite.

The charge well also accumulates thermally generated elec-
trons, the  dark current, which is proportional to temperature 
and is a source of noise – extreme low light  cameras are cooled.   
Another source of noise is pixel nonuniformity due to adjacent 
pixels having a different gain or offset – uniform illumination 
therefore leads to pixels with different values which appears as 
additive noise. The charge well has a maximum capacity and with 
excessive illumination surplus electrons can overfl ow into adja-
cent charge wells leading to fl aring and bleeding.

At the end of the  exposure interval the accumulated charge 
(thermal- and photo-electrons) is read. For low-cost CMOS sen-
sors the charge wells are connected sequentially via a switching 
network to one or more on-chip analog to digital converters. This 

results in a rolling shut-
ter and for high speed 
relative motion this leads 
to  tearing or  jello  effect 
as shown to the right. 
More expensive   CMOS 
and   CCD sensors have 
a   global shutter – they 
make a temporary snap-
shot copy of the charge 
in a buffer which is then 
digitized sequentially.

The exposure on the 
sensor is

where L is  scene lumi-
nance (in nit), T is   ex-
posure time, N is the 
  f-number (inverse ap-
erture diameter) and 
q ≈ 0.7 is a function of 



365

12.1.3 
l
Images from a Movie File

In Sect. 12.1.1 we loaded an image sequence into memory where each image came 
from a separate image fi le. More commonly image sequences are stored in a movie 
fi le format such as MPEG4 or AVI and it may not be practical or possible to keep the 
whole sequence in memory.

The Toolbox supports reading frames from a movie fi le stored in any of the popular 
formats such as AVI, MPEG and MPEG4. For example we can open a movie fi le

>> cam = Movie('traffi c_sequence.mpg');
traffi c_sequence.mpg
720 x 576 @ 30 fps; 351 frames, 11.7 sec
cur frame 1/351 (skip=1) 

which returns a Movie object that is an instance of a subclass of the  ImageSource 
class and therefore polymorphic with the  VideoCamera class just described. This 
movie has 350 frames and was captured at 30 frames per second.

The size of each frame within the movie is
>> cam.size()
ans =
   720   576 

and the next frame is read from the movie fi le by
>> im = cam.grab();
>> about(im)
im [uint8] : 576x720x3 (1244160 bytes)   

which is a 720 × 576 color image. With these few primitives we can write a very sim-
ple movie player

1    while 1
2        im = cam.grab;
3        if isempty(im) break; end
4        image(im); drawnow
5    end 

where the test at line 3 is to detect the end of fi le, in which case  grab returns an emp-
ty matrix.

The methods  nframes and  framerate provide the total number of frames and 
the number of frames per second. The methods  skiptotime and  skiptoframe 
provide an ability to select particular frames within the movie.

The  dynamic range of a sensor is the ratio of its largest value to 
its smallest value. For images it is useful to express the log2 of 
this ratio which makes it equivalent to the photographic con-
cepts of stops or  exposure value. Each  photosite contains a 
 charge well in which photon-generated electrons are captured 
during the exposure period (see page 364). The charge well has 
a fi nite capacity before the photosite saturates and this defi nes 
the maximum value. The minimum number of electrons is not 
zero but a fi nite number of thermally generated electrons.

An 8-bit image has a  dynamic range of around 8 stops, a high-
end 10-bit camera has a range of 10 stops, and photographic fi lm 
is perhaps in the range 10–12 stops but is quite nonlinear.

At a particular state of adaptation, the human eye has a range 
of 10 stops, but the total adaptation range is an impressive 
20 stops. This is achieved by using the iris and slower (tens of 
minutes) chemical adaptation of the sensitivity of  rod cells.  
Dark adaptation to low luminance is slow, whereas adaptation 
from dark to bright is faster but sometimes painful.

Video  file formats. Just as for im-
age fi les there are a large number 
of different fi le formats for videos. 
The most common formats are 
MPEG and AVI. It is important to 
distinguish between the format of 
the fi le (the container), technically 
AVI is a fi le format, and the type of 
 compression (the codec) used on 
the images within the fi le.

MPEG and AVI format fi les can be converted to a sequence 
of frames as individual fi les using tools such as FFmpeg and 
convert from the ImageMagick suite. The individual frames 
can then be loaded individually into MATLAB for process-
ing using iread. The Toolbox Movie class provides a more 
convenient way to read frames directly from common movie 
formats without having to fi rst convert the movies to a set of 
individual frames. (word map by tagxedo.com)

12.1  ·  Obtaining an Image
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12.1.4 
l
Images from the Web

The term web camera has come to mean any USB or Firewire connected local cam-
era but here we use it to refer to an internet connected camera that runs a web server 
that can deliver images on request. There are tens of thousands of these web cam-
eras around the world that are pointed at scenes from the mundane to the spectac-
ular. Given the URL of a webcam from Axis Communications� we can acquire an 
image from a camera anywhere in the world and place it in a matrix in our MATLAB 
workspace.

For example we can connect to a camera at Dartmouth College in New Hamp-
shire

>> cam = AxisWebCamera('http://wc2.dartmouth.edu'); 

which returns an  AxisWebCamera object which is an instance of a subclass of the 
ImageSource class and therefore polymorphic with the  VideoCamera and  Movie 
classes previously described.

The image size in this case is
>> cam.size()
ans =
   480   640 

and the next image is obtained by

>> im = cam.grab();  

which returns a color image such as the one shown in Fig. 12.3. Webcams are confi g-
ured by their owner to take pictures periodically, anything from once per second to 
once per minute. Repeated access will return the same image until the camera takes 
its next picture.

 Aspect ratio  is the ratio of an image’s width to its height. It varies widely across different imaging 
and display technologies. For 35 mm fi lm it is 3 : 2 (1.5) which matches a 4 × 6'' (1.5) print. Other 
print sizes have different aspect ratios: 5 × 7'' (1.4), and 8 × 10'' (1.25) which require cropping 
the vertical edges of the image in order to fi t.

TV and early computer monitors used 4 : 3 (1.33), for example the ubiquitous 640 × 480 VGA 
format. HDTV has settled on 16 : 9 (1.78). Modern digital SLR  cameras typically use 1.81 which 
is close to the ratio for HDTV. In movie theatres very-wide images are preferred with aspect ra-
tios of 1.85 or even 2.39. CinemaScope was developed by 20th Century Fox from the work of  Henri 
Chrétien in the 1920s. An  anamorphic  lens on the camera compresses a wide image into a stan-
dard aspect ratio in the camera, and the process is reversed at the projector.

Fig. 12.3.
An image from the Dartmouth 
University webcam which looks 
out over the main college green

Webcams support a variety of options 
that can be embedded in the URL and 
there is no standard for these. This 
Toolbox function only supports web-
cams from Axis Communications.
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12.1.5 
l
Images  from Maps 

You can access satellite views   and road maps of anywhere on the planet from inside 
MATLAB. First create an instance of an EarthView  object

>> ev = EarthView('key', YOUR_KEY); 

where  YOUR_KEY is your 86-character Google API key�. To grab a satellite image of 
my university is simply

>> ev.grab(-27.475722,153.0285, 17); 

which is shown in Fig. 12.4a, and the arguments are latitude, longitude and a zoom 
level�. With no output arguments the result will be displayed using idisp . If the co-
ordinates are unknown we can perform a lookup by name

>> ev.grab('QUT brisbane', 17)

Instead of a satellite view we can select a road map  view 

>> ev.grab(-27.475722,153.0285, 15, 'map'); 

which shows rich mapping information such as road and place names. A simpler rep-
resentation is given by

>> ev.grab(-27.475722,153.0285, 15, 'roads'); 

which is shown in Fig. 12.4 as a binary image where white pixels correspond to roads 
and everything else is black – we could use this occupancy grid for robot path  plan-
ning as discussed in Chap. 5.

12.1.6 
l
Images from Code

When debugging an algorithm it can be very helpful to start with a perfect and simple 
image before moving on to more challenging real-world images. You could draw such 
an image with your favorite drawing package and import it to MATLAB, or draw it 
directly in MATLAB. The Toolbox function  testpattern generates simple images 
with a variety of patterns including lines, grids of dots or squares,   intensity ramps and 
intensity sinusoids. For example

>> im = testpattern('rampx', 256, 2);
>> im = testpattern('siny', 256, 2);
>> im = testpattern('squares', 256, 50, 25);
>> im = testpattern('dots', 256, 256, 100);    

To obtain an API key you need to register 
on the Google Developers Console and 
agree to abide by Google's terms and 
conditions of usage.

Zoom level is an integer and a value of 
zero returns a view that covers the entire 
Earth. Every increase by one doubles the 
resolution in the x- and y-directions.

Fig. 12.4.
Aerial views of Brisbane, 

Australia. a Color aerial image; 
b binary image or occupancy 

grid where white pixels are 
driveable roads (images provid-

ed by Google, CNES/Astrium, 
Sinclair Knight Merz & Fugro)

12.1  ·  Obtaining an Image
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are shown in Fig. 12.5a. The second argument is the size of the of the created image, 
in this case they are all 256 × 256 pixels, and the remaining arguments are specifi c to 
the type of pattern requested. See the online documentation for details.

We can also construct an image from simple graphical primitives.� First we create 
a blank canvas containing all black pixels (pixel value of zero)

>> canvas = zeros(1000, 1000);

and then we create two squares

>> sq1 = 0.5 * ones(150, 150);
>> sq2 = 0.9 * ones(80, 80);

The fi rst has pixel values of 0.5 (medium grey) and is 40 × 40. The second is smaller (just 
20 × 20) but brighter with pixel values of 0.9. Now we can paste these onto the canvas

>> canvas = ipaste(canvas, sq1, [100 100]);
>> canvas = ipaste(canvas, sq2, [300 300]);  

where the last argument specifi es the canvas coordinate (u, v) where the pattern will be 
pasted – the top-left corner of the pattern on the canvas. We can also create a circle

>> circle = 0.6 * kcircle(120); 

of radius 30 pixels with a  grey value of 0.6. The Toolbox function kcircle returns 
a square matrix

>> size(circle)
ans =
    61    61

of zeros with a centered maximal disk of values set to one. We can paste that on to 
the canvas as well

>> canvas = ipaste(canvas, circle, [600, 200]); 

Finally, we draw a line segment onto our canvas

>> canvas = iline(canvas, [100 100], [800 800], 0.8);

which extends from (100, 100) to (800, 800) and its pixels are all set to 0.8. The result

>> idisp(canvas) 

is shown in Fig. 12.5b. We can clearly see that the shapes have different brightness, 
and we note that the line and the circle show the effects of quantization which results 
in a steppy or jagged  shape.�

Note that all these functions take coordinates expressed in (u, v) notation not 
MATLAB row column  notation. The top-left pixel is (1, 1) not (0, 0).

Fig. 12.5.
Images from code. a Some Tool-
box generated test patterns; 
b Simple image created from 
graphical primitives

An image/matrix can be edited using the 
command openvar('canvas') 
which brings up a spreadsheet-like in-
terface.

In computer graphics it is common to ap-
ply  anti-aliasing where edge pixels and 
edge-adjacent pixels are set to fractional 
grey values which give the impression of 
a smoother line.
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12.2  
l
Image  Histograms

The distribution of  pixel values provides useful information about the quality of the im-
age and the composition of the scene. We obtain the distribution by computing the his-
togram of the image which indicates the number of times each pixel value occurs. For 
example the histogram of the image, shown in Fig. 12.8a, is computed and displayed by

>> church = iread('church.png', 'grey');
>> ihist( church )

and the result is shown in Fig. 12.6a. We see that the  grey values (horizontal axis) span 
the range from 5 to 238 which is close to the full range of possible values. If the image 
was under-exposed the histogram area would be shifted to the left. If the image was 
over-exposed the histogram would be shifted to the right and many pixels would have 
the maximum value. A cumulative histogram is shown in Fig. 12.6b and its use will be 
discussed in the next section. Histograms can also be computed for color images, in 
which case the result is three histograms – one for each color channel.

In this case distribution of pixel values is far from uniform and we see that there are 
three signifi cant peaks. However if we look more closely we see lots of very minor peaks. 
The concept of a peak depends on the scale at which we consider the data. We can obtain 
the histogram as a pair of vectors

>> [n,v] = ihist(church);

where the elements of n are the number of times pixels occur with the value of the cor-
responding element of v. The Toolbox function  peak will automatically fi nd the posi-
tion of the peaks

>> [~,x] = peak(n, v)
>> about x
x [double] : 1x58 (464 bytes)

and in this case has found 58 peaks most of which are quite minor. Peaks that are sig-
nifi cant are not only greater than their immediate neighbors they are greater than all 
other values nearby – the problem now is to specify what we mean by nearby. For ex-
ample the peaks that are greater than all other values within ±25 pixel values in the 
horizontal direction are

>> [~,x] = peak(n, v, ‚scale', 25)
x =
   213   147    41

which are the three signifi cant peaks that we observe by eye. The critical part of fi nd-
ing the peaks is choosing the appropriate scale.  Peak fi nding is a topic that we will en-
counter again later and is also discussed in Appendix J.

Fig. 12.6. Church scene. a Histo-
gram, b cumulative histogram be-
fore and after  normalization

12.2  ·  Image Histograms
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The peaks in the histogram correspond to particular populations of pixels in the 
image. The lowest peak corresponds to the dark pixels which generally belong to the 
ground and the roof. The middle peak generally corresponds to the sky pixels, and 
the highest peak generally corresponds to the white walls. However each of the scene 
elements has a distribution of  grey values and for most real scenes we cannot sim-
ply map grey level to a scene element. For example some sky pixels are brighter than 
some wall pixels, and a very small number of ground pixels are brighter than some 
sky and wall pixels.

12.3 
l
Monadic Operations

Monadic image-processing operations are shown schematically in Fig. 12.7. The re-
sult is an image of the same size W × H as the input image, and each output pixel is a 
function of the corresponding input pixel

One useful class of monadic functions changes the type of the pixel data. For ex-
ample to change from uint8 (integer pixels in the range [0, 255]) to double precision 
values in the range [0, 1] we use the Toolbox function idouble

>> imd = idouble(church); 

and vice versa

>> im = iint(imd); 

A color image has 3-dimensions which we can also consider as a 2-dimensional image 
where each pixel value is a 3-vector. A monadic operation can convert a color image 
to a greyscale image where each output pixel value is a scalar representing the lumi-
nance of the corresponding input pixel

>> grey = imono(fl owers); 

The inverse operation is

>> color = icolor(grey); 

which returns a 3-dimensional color image where each color plane is equal to grey 
– when displayed it still appears as a monochrome image. We can create a color im-
age where the red plane is equal to the input image by

>> color = icolor(grey, [1 0 0]); 

which is a red tinted version of the original image.

Fig. 12.7.
Monadic image processing op-
erations. Each output pixel is a 
function of the corresponding 
input pixel (shown in red)
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A very common monadic operation is  thresholding. This is a logical monadic op-
eration which separates the pixels into two classes according to their intensity

>> bright = (church >= 180);
>> idisp(bright)

and the resulting image is shown in Fig. 12.8b where all pixels that lie in the inter-
val [180, 255] are shown as white. Such images, where the pixels have only two values are 
known as   binary images. Looking at the image  histogram in Fig. 12.6a we see that the  grey 
value of 180 lies midway between the second and third peak which is a good approxima-
tion to the optimal strategy for separating pixels belonging to these two populations.

The variable bright is of type logical where the pixels have values of only true or 
false. MATLAB automatically converts these to one and zero respectively when used 
in arithmetic operations and the idisp function does likewise.

Fig. 12.8. Some monadic image 
operations: a original, b thresh-
olding, c histogram normalized, 
d gamma correction, e brightness 
increase, f posterization. Inset in 
each fi gure is a graph showing the 
mapping from image grey level on 
the horizontal axis to the output 
value on the vertical axis

12.3  ·  Monadic Operations
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Many monadic operations are concerned with altering the distribution of grey lev-
els within the image. Sometimes an image does not span the full range of available 
grey levels, for example the image is under- or over-exposed. We can apply a linear 
mapping to the grey-scale values

>> im = istretch(church); 

which ensures that pixel values span the full range� which is either [0, 1] or [0, 255] 
depending on the class of the image.

A more sophisticated version is  histogram  normalization or  histogram equalization

>> im = inormhist(church); 

which is based on the cumulative distribution

>> ihist(church, 'cdf');

as shown in Fig. 12.6b. Mapping the original image via the normalized cumulative distri-
bution ensures that the cumulative distribution of the resulting image is linear – all  grey 
values occur an equal number of times. The result is shown in Fig. 12.8c and now details 
of wall and sky texture which had a very small grey-level variation have been accentuated.

Operations such as  istretch and  inormhist can enhance the  image from 
the perspective of a human observer, but it is important to remember that no 
new information has been added to the image. Subsequent image processing 
steps will not be improved.

As discussed in Sect. 10.3.6 the output of a camera is generally  gamma encoded so 
that the pixel value is a nonlinear function Lγ  of the luminance sensed at the photosite. 
Such images can be  gamma decoded by a nonlinear monadic operation

>> im = igamm(church, 1/0.45); 

that raises each pixel to the specifi ed power as shown in Fig. 12.8d, or

>> im = igamm(church, 'sRGB'); 

to decode images with the  sRGB standard gamma  encoding.�

Another simple nonlinear monadic operation is  posterization or banding. This 
pop-art effect is achieved by reducing the number of grey levels

>> idisp( church/64 ) 

as shown in Fig. 12.8f. Since integer division is used the resulting image has pixels with 
values in the range [0, 3] and therefore just four different shades of grey. Finally, since 
an image is represented by a matrix any MATLAB element-wise matrix function or 
operator is a monadic  operator, for example unary negation, scalar multiplication or 
addition, or functions such  abs or  sqrt.

12.4 
l
Diadic Operations

Diadic operations are shown schematically in Fig. 12.9. Two input images result in a 
single output image, and all three images are of the same size. Each output pixel is a 
function of the corresponding pixels in the two input images

Examples of useful diadic operations include binary arithmetic  operators such as 
addition, subtraction, element-wise multiplication, or builtin MATLAB diadic matrix 
functions such as  max,  min,  atan2.

The histogram of such an image will have 
gaps. If M is the maximum possible pixel 
value, and N < M is the maximum value in 
the image then the stretched image will 
have at most N unique pixel values, mean-
ing that M − N values cannot occur.

The gamma correction has now been ap-
plied twice: once by the igamm func-
tion and once in the display device. This 
makes the resulting image appear to have 
unnaturally high contrast.
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Subtracting one uint8 image from another results in another uint8 image 
even though the result is potentially negative. MATLAB quite properly clamps 
values to the interval [0, 255] so subtracting a larger number from a smaller 
number will result in zero not a negative value. With addition a result greater 
than 255 will be set to 255. To remedy this, the images should be first converted 
to signed integers using the MATLAB function  cast or to floating-point values 
using the Toolbox function  idouble.

We will illustrate diadic operations with two examples. The fi rst example is  chro-
ma-keying – a technique commonly used in television to superimpose the image of a 
person over some background, for example a weather presenter superimposed over a 
weather map. The subject is fi lmed against a blue or green background which makes 
it quite easy, using just the pixel values, to distinguish between background and the 
subject. We load an image of a subject taken in front of a green screen

>> subject = iread('greenscreen.jpg', 'double'); 

and this is shown in Fig. 12.10a. We compute the chromaticity coordinates Eq. 10.9

>> linear = igamm(subject, 'sRGB');
>> [r,g] = tristim2cc(linear);  

after fi rst converting the  gamma encoded color image to linear tristimulus values. In 
this case g alone is suffi cient to distinguish the background pixels. A  histogram of values

>> ihist(g) 

shown in Fig. 12.10b indicates a large population of pixels around 0.55 which is the 
background and another population which belongs to the subject. We can safely say 
that the subject corresponds to any pixel for which g < 0.45 and create a mask image

>> mask = g < 0.45;
>> idisp(mask) 

where a pixel is true (equal to one and displayed as white) if it is part of the subject 
as shown in Fig. 12.10c. We need to apply this mask to all three  color planes so we 
replicate it

>> mask3 = icolor( idouble(mask) );  

The image of the subject without the background is

>> idisp(mask3 .* subject); 

Next we load the desired background image

>> bg = iread('road.png', 'double'); 

Fig. 12.9. Diadic image processing 
operations. Each output pixel is a 
function of the two correspond-
ing input pixels (shown in red)

12.4  ·  Diadic Operations
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and scale and crop it to be the same size as our original image

>> bg = isamesize(bg, subject); 

and display it with a cutout for the subject

>> idisp(bg .* (1-mask3)) 

Finally we add the subject with no background, to the background with no subject to 
obtain the subject superimposed over the background

>> idisp( subject.*mask3  + bg.*(1-mask3) ); 

which is shown in Fig. 12.10d. The technique will of course fail if the subject contains 
any colors that match the color of the background.� This example could be solved more 
compactly using the Toolbox per-pixel switching function ipixswitch

>> ipixswitch(mask, subject, bg); 

where all arguments are images of the same width and height, and each output pixel 
is selected from the corresponding pixel in the second or third image according to the 
logical value of the corresponding pixel in the fi rst image.

Distinguishing foreground objects from the background is an important problem in 
robot vision but the terms foreground and background are ill-defi ned and application 
specifi c. In robotics we rarely have the luxury of a special background as we did for the 
chroma-key example. We could instead take a picture of the scene without a foreground 
object present and consider this to be the background, but that requires that we have 
special knowledge about when the foreground object is not present. It also assumes that 

Fig. 12.10. Chroma-keying. a The 
subject against a green back-
ground; b a histogram of green 
chromaticity values; c the com-
puted mask image where true is 
white; d the subject masked into 
a background scene (photo cour-
tesy of Fiona Corke)

In the early days of television a blue 
screen was used. Today a green back-
ground is more popular because of prob-
lems that occur with blue eyes and blue 
denim clothing.
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the background does not vary over time. Variation is a signifi cant problem in real-world 
scenes where ambient illumination and shadows change over quite short time intervals, 
and the scene may be structurally modifi ed over very long time intervals.

In the next example we process an image sequence and estimate the background 
even though there are a number of objects moving in the scene. We will use a recur-
sive algorithm that updates the estimated background image Î at each time step based 
on the previous estimate and the current image

where k is the time step and c(·) is a monadic image saturation function

To demonstrate this we open a movie showing traffi c moving through an intersection
>> vid = Movie('traffi c_sequence.mpg', 'grey', 'double');
vid =
traffi c_sequence.mpg
720 x 576 @ 30 fps; 351 frames, 11.7 sec      
cur frame 1/351 (skip=1) 

and initialize the background to the fi rst image in the sequence
>> bg = vid.grab();  

Fig. 12.11. Example of motion de-
tection for the traffi c sequence at 
frame 200. a The current image; 
b the estimated background image; 
c the difference between the cur-
rent and estimated background im-
ages where white is zero, red and 
blue are negative and positive val-
ues respectively and magnitude is 
indicated by color  intensity

12.4  ·  Diadic Operations



376 Chapter 12  ·  Images and Image Processing

then the main loop is
1 sigma = 0.02;
2 while 1
3    im = vid.grab;
4    if isempty(im) break; end; % end of fi le?
5    d = im-bg;
6    d =  max( min(d, sigma), -sigma);  % apply c(.)
7    bg = bg + d;
8    idisp(bg);
9 end  

One frame from this sequence is shown in Fig. 12.11a. The estimated background im-
age shown in Fig. 12.11b reveals the static elements of the scene and the moving ve-
hicles have become a faint blur. Subtracting the scene from the estimated background 
creates an image where pixels are bright where they are different to the background 
as shown in Fig. 12.11c. Applying a  threshold to the absolute value of this difference 
image shows the area of the image where there is motion. Of course where the cars are 
stationary for long enough they will become part of the background.

12.5 
l
Spatial Operations

Spatial operations are shown schematically in Fig. 12.12. Each pixel in the output im-
age is a function of all pixels in a region surrounding the corresponding pixel in the 
input image

where W is known as the  window, typically a w × w square region with odd side length 
w = 2h + 1 where h ∈ Z+ is the half-width. In Fig. 12.12 the window includes all pix-
els in the red shaded region. Spatial operations are powerful because of the variety of 
possible functions f(·), linear or nonlinear, that can be applied. The remainder of this 
section discusses linear spatial  operators such as smoothing and edge detection, and 
some nonlinear functions such as rank fi ltering and template matching. The follow-
ing section covers a large and important class of nonlinear spatial  operators known 
as mathematical morphology.

12.5.1 
l
Linear Spatial  Filtering

A very important linear spatial operator is correlation 

 (12.1)

where K ∈Rw×w is the  kernel and the elements are referred to as the fi lter coeffi cients  . 
For every output pixel the corresponding window of pixels from the input image W 
is multiplied element-wise with the kernel K. The center of the window and kernel is 
considered to be coordinate (0, 0) and i, j ∈ [−h, h] ⊂ Z× Z. This can be considered 
as the weighted sum of pixels within the window where the weights are defi ned by the 
 kernel K. Correlation is often written in operator form as

A closely related operation is convolution

 
(12.2)
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where K ∈Rw×w is the   convolution kernel. Note that the sign of the i and j indices has 
changed in the fi rst term. Convolution is often written in operator form as

As we will see convolution is the workhorse of image processing and the kernel K can 
be chosen to perform functions such as  smoothing,  gradient calculation or  edge de-
tection.

Convolution is computationally expensive – an N × N input image with a w × w kernel 
requires w2N2 multiplications and additions. In the Toolbox convolution is performed 
using the function iconvolve

O = iconvolve(K, I); 

If I has multiple color planes then so will the output image – each output  color plane 
is the convolution of the corresponding input plane with the kernel K.

12.5.1.1  
l
Smoothing

Consider a convolution kernel which is a square 21 × 21 matrix containing equal el-
ements

>> K = ones(21,21) / 21^2;

and of unit volume, that is, its values sum to one. The result of convolving an im-
age with this kernel is an image where each output pixel is the mean of the pixels in

Fig. 12.12.
Spatial image processing op-

erations. The red shaded region 
shows the window W that is the 

set of pixels used to compute the 
output pixel (show in red)

Correlation  or convolution . These two terms are often used 
loosely and they have similar, albeit distinct, defi nitions. 
Convolution is the spatial domain equivalent of frequency 
domain multiplication and the kernel is the impulse  response 
of a frequency domain fi lter. Convolution also has many use-
ful mathematical properties outlined in the adjacent box. 
The difference in indexing between Eq. 12.1 and Eq. 12.2 
is equivalent to refl ecting the kernel – fl ipping it horizon-
tally and vertically about its center point. Many kernels are 
symmetric in which case correlation and convolution yield 
the same result. However edge detection is always based on 
nonsymmetric kernels so we must take care to apply convo-
lution. We will only use correlation for template matching 
in Sect. 12.5.2.

Properties of convolution.  Convolution obeys the familiar rules 
of algebra, it is commutative

associative

distributive (superposition applies)

linear

and  shift invariant – the spatial equivalent of time  invariance 
in 1D signal processing – the result of the operation is the same 
everywhere in the image.

12.5  ·  Spatial Operations
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a corresponding 21 × 21 neighborhood in the input image. As you might expect this 
averaging

>> mona = iread('monalisa.png', 'double', 'grey');
>> idisp( iconvolve(mona, K) );   

leads to smoothing, blurring or defocus� which we see in Fig. 12.13b. Looking very care-
fully we will see some faint horizontal and vertical lines – an artifact known as ringing. 
A more suitable   kernel for smoothing is the 2-dimensional  Gaussian function

 (12.3)

which is symmetric about the origin and the volume under the curve is unity. The 
spread of the Gaussian is controlled by the standard deviation parameter σ .  Applying 
this kernel to the image

>> K = kgauss(5);
>> idisp( iconvolve(mona, K) );   

produces the result shown in Fig. 12.13c. Here we have specifi ed the standard deviation 
of the Gaussian to be 5 pixels. The discrete approximation to the Gaussian is

>> about(K)
K [double] : 31x31 (7688 bytes) 

a 31 × 31 kernel. Smoothing can be achieved conveniently using the Toolbox func-
tion ismooth

>> idisp( ismooth(mona, 5) )  

Blurring is a counter-intuitive image processing operation since we typically go to a 
lot of effort to obtain a clear and crisp image. To deliberately ruin it seems, at face 
value, somewhat reckless. However as we will see later, Gaussian smoothing turns out 
to be extremely useful.

The kernel is itself a matrix and therefore we can display it as an image

>> idisp( K ); 

which is shown in Fig. 12.14a. We clearly see the large value at the center of the kernel 
and that it falls off smoothly in all directions. We can also display the kernel as a surface

>> surfl (-15:15, -15:15, K);

Fig. 12.13. Smoothing. a Original 
image; b smoothed with a 21 × 21 
averaging kernel; c smoothed with a 
31×31 Gaussian G(σ = 5) kernel

Defocus involves a kernel which is a 2-di-
mensional Airy  pattern  or sinc function. The 
Gaussian function  is similar in shape, but is 
always positive whereas the Airy pattern 
has low amplitude negative going rings.
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as shown in Fig. 12.14b. A crude approximation to the Gaussian is the  top hat kernel 
which is cylinder with vertical sides rather than a smooth and gentle fall off in ampli-
tude. The function kcircle creates a kernel which can be considered a unit height 
cylinder of specifi ed radius

>> K = kcircle(8, 15); 

as shown in Fig. 12.14c. The arguments specify a radius of 8 pixels within a window 
of half width h = 15.

Fig. 12.14. Gallery of commonly 
used convolution kernels. h = 15, 
σ = 5

12.5  ·  Spatial Operations
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12.5.1.2  
l
Boundary Effects

A diffi culty with all spatial operations occurs when the window is close to the edge of 
the input image as shown in Fig. 12.15. In this case the output pixel is a function of a 
window that contains pixels beyond the edge of the input image – these pixels have 
no defi ned value. There are several common remedies to this problem. Firstly, we can 
assume the pixels beyond the image have a particular value. A common choice is zero 
and this is the default behavior implemented by the Toolbox function iconvolve. 
We can see the effect of this in Fig. 12.13 where the borders of the smoothed image 
are dark due to the infl uence of these zeros.

Another option is to consider that the result is invalid when the window crosses the 
boundary of the image. Invalid output pixels are shown hatched out in Fig. 12.15. The 
result is an output image of size (W − 2h) × (H − 2h) which is slightly smaller than the 
input image. This option can be selected by passing the option 'valid' to iconvolve.

12.5.1.3 
l
Edge Detection

Frequently we are interested in fi nding the edges of objects in a scene. Consider the image

>> castle = iread('castle.png', 'double', 'grey');

shown in Fig. 12.16a. It is informative to look at the pixel values along a 1-dimensional 
profi le through the image. A horizontal profi le of the image at v = 360 is

>> p = castle(360,:);

which is a vector that we can plot

>> plot(p);

against the horizontal coordinate u in Fig. 12.16b. The clearly visible tall spikes correspond 
to the white letters and other markings on the sign. Looking at one of the spikes more 
closely, Fig. 12.16c, we see the intensity profi le across the vertical stem of the letter T. The 
background intensity ≈0.3 and the bright intensity ≈0.9 but will depend on lighting lev-
els. However the very rapid increase over the space of just a few pixels is distinctive and a 
more reliable indication of an edge than any decision based on the actual grey levels.

The fi rst-order derivative along this cross-section is

 How wide is my Gaussian? When choosing a Gaussian kernel 
we need to consider the standard deviation, usually defi ned 
by the task, and the dimensions of the kernel W∈Rw×w that 
contains the discrete Gaussian function. Computation time 
is proportional to w2 so ideally we want the window to be no 
bigger than it needs to be. The Gaussian decreases monotoni-
cally in all directions but never reaches zero. Therefore we 
choose the half-width h of the window such that value of the 
Gaussian is less than some threshold outside the w × w con-
volution window.

At the edge of the window, a distance h from the center, 
the value of the Gaussian will be e−h2/2σ 2

. For σ = 1 and h = 2 
the Gaussian will be e−2 ≈ 0.14, for h = 3 it will be e−4.5 ≈ 0.01, 
and for h = 4 it will be e−8 ≈ 3.4 × 10−4. If h is not specifi ed 
the Toolbox chooses h = 3σ. For σ = 1 that is a 7 × 7 window 
which contains all values of the Gaussian greater than 1% of 
the peak value.

Properties of the Gaussian. The  Gaussian function G(·) has some special 
properties. The convolution of two Gaussians is another Gaussian

For the case where σ1 = σ2 = σ then

The 2-dimensional Gaussian is separable – it can be written as the 
product of two 1-dimensional Gaussians

This implies that convolution with a 2-dimensional Gaussian can be 
computed by convolving each row with a 1-dimensional Gaussian, and 
then each column. The total number of operations is reduced to 2wN 2, 
better by a factor of w. A Gaussian also has the same shape in the spatial 
and frequency domains.
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which can be computed using the MATLAB function  diff

>> plot(diff(p))

and is shown in Fig. 12.16d. The signal is nominally zero with clear nonzero responses 
at the edges of an object, in this case the edges of the stem of the letter T.

The derivative at point v can also be written as a symmetrical fi rst-order differ-
ence

Fig. 12.15.
For the case where the window W 

falls off the edge of the input 
image the output pixel at (u, v) 

is not defi ned. The hatched pixels 
in the output image are all those 
for which the output value is not 

defi ned

Fig. 12.16. Edge  intensity profi le. 
a Original image; b greylevel pro-
fi le along horizontal line v = 360; 
c closeup view of the spike at 
u ≈ 580; d derivative of c (image 
from the ICDAR 2005 OCR data-
set; Lucas 2005)

12.5  ·  Spatial Operations
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which is equivalent to convolution with the 1-dimensional  kernel

Convolving the image with this kernel

>> K = [0.5 0 -0.5];
>> idisp( iconvolve(castle, K), 'invsigned')  

produces a result very similar to that shown in Fig. 12.17a in which vertical edges, high 
horizontal gradients, are clearly seen.

Since this kernel has signed values the result of the convolution will also be 
signed, that is, the  gradient at a pixel can be positive or negative as shown in 
Fig. 12.17a,b. idisp always displays the minimum, most negative, value as black 
and the maximum, most positive, value as white. Zero would therefore appear 
as middle grey. The 'signed' option to  idisp uses red and blue shading 
to clearly indicate sign – zero is black, negative pixels are red, positive pixels 
are blue and the  intensity of the color is proportional to pixel magnitude. The 
'invsigned' option is similar except that zero is indicated by white.

Many convolution kernels have been proposed for computing horizontal gradient. 
A popular choice is the  Sobel kernel� 

Fig. 12.17. Edge  gradient. a u-di-
rection gradient; b v-direction 
gradient; c gradient magnitude; 
d gradient direction. Gradients 
shown with blue as positive, red as 
negative and white as zero

This kernel is commonly written with the 
signs reversed which is correct for corre-
lation. For convolution the kernel must 
be written as shown here.
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>> Du = ksobel
Du =
    0.1250         0   -0.1250
    0.2500         0   -0.2500
    0.1250         0   -0.1250

and we see that each row is a scaled version of the 1-dimensional kernel K defi ned 
above. The overall result is a weighted sum of the horizontal gradient for the current 
row, and the rows above and below. Convolving our image with this kernel

>> idisp( iconvolve(castle, Du), 'invsigned')  

generates the horizontal  gradient image shown in Fig. 12.17a which highlights vertical 
edges. Vertical gradient is computed using the transpose of the kernel

>> idisp( iconvolve(castle, Du'), 'invsigned')  

and highlights horizontal edges� as shown in Fig. 12.17b. The  notation used for gra-
dients varies considerably in the literature. Most commonly the horizontal and verti-
cal gradient are denoted respectively as ∂I/∂u, ∂I/∂v; ∇u I, ∇v I or Iu, Iv. In operator 
form this is written

where D is a derivative  kernel such as Sobel.
Taking the derivative of a signal accentuates high-frequency  noise, and all images 

have noise as discussed on page 364.  At the pixel level  noise is a stationary random 
process – the values are not correlated between pixels. However the features that we 
are interested in such as edges have correlated changes in pixel value over a larger 
spatial scale as shown in Fig. 12.16c. We can reduce the effect of  noise by smoothing 
the image before taking the derivative

Instead of convolving the image with the Gaussian and then the derivative, we ex-
ploit the associative property of  convolution to write

Filters can be designed to respond to 
edges at any arbitrary angle. The Sobel 
kernel itself can be considered as an im-
age and rotated using irotate. To 
obtain angular precision generally re-
quires a larger kernel is required such as 
that generated by kdgauss.

 Carl Friedrich Gauss (1777–1855) was a German mathematician 
who made major contributions to fi elds such as number the-
ory, differential geometry, magnetism, astronomy and optics. 
He was a child prodigy, born in Brunswick, Germany, the only 
son of uneducated parents. At the age of three he corrected, in 
his head, a fi nancial error his father had made, and made his 
fi rst mathematical discoveries while in his teens. Gauss was a 
perfectionist and a hard worker but not a prolifi c writer. He 
refused to publish anything he did not consider complete and 
above criticism. It has been suggested that mathematics could 
have been advanced by fi fty years if he had published all of his 
discoveries. According to legend Gauss was interrupted in the 
middle of a problem and told that his wife was dying – he re-
sponded “Tell her to wait a moment until I am through”.

The normal distribution, or  Gaussian function, was not one of his achievements. It was fi rst 
discovered by de Moivre in 1733 and again by  Laplace in 1778. The SI unit for magnetic  fl ux den-
sity is named in his honor.

12.5  ·  Spatial Operations
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We convolve the image with the derivative of the Gaussian ( DoG) which can be 
obtained numerically by

   Gu = iconvolve( Du, kgauss(sigma) , 'full');  

or analytically by taking the derivative, in the u-direction, of the Gaussian Eq. 12.3 
yielding

 (12.4)

which is computed by the Toolbox function kdgauss and is shown in Fig. 12.14d.
The standard deviation σ  controls the  scale of the edges that are detected. For large 

σ, which implies increased smoothing, edges due to fi ne texture will be attenuated leav-
ing only the edges of large features. This ability to fi nd edges at different spatial  scale is 
important and underpins the concept of  scale space that we will discuss in Sect. 13.3.2. 
Another interpretation of this operator is as a spatial bandpass  fi lter since it is a cas-
cade of a low-pass  fi lter ( smoothing) with a high-pass  fi lter ( differentiation).

Computing the horizontal and vertical components of gradient at each pixel

>> Iu = iconvolve( castle, kdgauss(2) );
>> Iv = iconvolve( castle, kdgauss(2)' );    

allows us to compute the magnitude of the gradient at each pixel

>> m =  sqrt( Iu.^2 + Iv.^2 );

This edge-strength image shown in Fig. 12.17c reveals the edges very distinctly. The 
direction of the gradient at each pixel is

>> th = atan2( Iv, Iu);

and is best viewed as a sparse  quiver plot

>> quiver(1:20:numcols(th), 1:20:numrows(th), ...  
       Iu(1:20:end,1:20:end), Iv(1:20:end,1:20:end))

as shown in Fig. 12.17d. The edge direction plot is much noisier than the magnitude 
plot. Where the edge  gradient is strong, on the border of the sign or the edges of let-
ters, the direction is normal to the edge, but the fi ne-scale brick texture appears as 
almost random edge direction. The  gradient images can be computed conveniently 
using the Toolbox function

>> [du,dv] = isobel( castle, kdgauss(2) );  

where the last argument overrides the default Sobel  kernel.
A well known and very effective  edge detector is the  Canny edge  operator. It uses the 

edge magnitude and direction that we have just computed and performs two addition-
al steps. The fi rst is   nonlocal maxima  suppression. Consider the gradient magnitude 
image of Fig. 12.17c as a 3-dimensional surface where height is proportional to bright-
ness as shown in Fig. 12.18. We see a series of hills and ridges and we wish to fi nd the 

 Pierre-Simon Laplace (1749–1827) was a French mathematician and 
astronomer who consolidated the theories of mathematical astron-
omy in his fi ve volume Mécanique Céleste (Celestial Mechanics). 
While a teenager his mathematical ability impressed d’Alembert 
who helped to procure him a professorship. When asked by 
Napoleon why he hadn’t mentioned God in his book on astrono-
my he is reported to have said “Je n’avais pas besoin de cette hy-
pothèse-là” (“I have no need of that hypothesis”). He became a 
count of the Empire in 1806 and later a marquis.

The Laplacian  operator, a second-order differential  operator, 
and the Laplace transform are named after him.
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pixels that lie along the ridge lines. By examining pixel values in a local neighborhood 
normal to the edge direction, that is in the direction of the edge  gradient, we can fi nd 
the maximum value and set all other pixels to zero. The result is a set of nonzero pix-
els corresponding to peaks and ridge lines. The second step is  hysteresis  thresholding. 
For each nonzero pixel that exceeds the upper threshold a chain is created of adjacent 
pixels that exceed the lower threshold. Any other pixels are set to zero.

To apply the Canny  operator to our example image is straightforward

>> edges = icanny(castle, 2); 

and returns an image where the edges are marked by nonzero intensity values corre-
sponding to gradient magnitude at that pixel as shown in Fig. 12.19a. We observe that 
the edges are much thinner than those for the magnitude of  derivative of Gaussian  oper-
ator which is shown in Fig. 12.19b. In this example σ = 2 for the derivative of Gaussian 
operation. The hysteresis threshold parameters can be set with optional arguments.

Fig. 12.18.
Closeup of gradient magnitude 
around the letter T shown as a 

3-dimensional surface

Fig. 12.19.
Comparison of two edge  opera-
tors: a Canny  operator with de-
fault parameters; b Magnitude 

of derivative of Gaussian kernel 
(σ = 2). The |DoG|  operator re-

quires less computation than 
Canny but generates thicker 

edges. For both cases results are 
shown inverted, white is zero
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Difference of Gaussians. The  Laplacian of Gaussian can be approximated by the difference of two 
Gaussian functions 

where σ1 > σ2 and commonly σ1 = 1.6σ2. This is computed by the Toolbox function  kdog. 
Figure 12.13e and f shows the  LoG and  DiffG kernels respectively.

This approximation is useful in scale-space sequences which will be discussed in Sect. 13.3.2. 
Consider an image sequence Ihki where Ihk+1i= G(σ) ⊗ Ihki, that is, the images are increasing-
ly smoothed. The difference between any two images in the sequence is therefore equivalent to 
DiffG( 2̂gσ , σ ) applied to the original image.
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So far we have considered an edge as a point of high gradient, and nonlocal maxima 
 suppression has been used to search for the maximum value in local neighborhoods. 
An alternative means to fi nd the point of maximum gradient is to compute the second 
derivative and determine where this is zero. The Laplacian   operator

 (12.5)

is the sum of the second spatial derivative in the horizontal and vertical directions. For 
a discrete image this can be computed by convolution with the  Laplacian kernel 

>> L = klaplace()
L =
     0     1     0
     1    -4     1
     0     1     0

which is isotropic – it responds equally to edges in any direction. The second deriva-
tive is even more sensitive to  noise than the fi rst derivative and is again commonly 
used in conjunction with a Gaussian smoothed image

 (12.6)

which we combine into the  Laplacian of Gaussian   kernel ( LoG), and L is the Laplacian 
kernel given above. This can be written analytically as

Fig. 12.20. Laplacian of Gaussian. 
a Laplacian of Gaussian; b close-
up of a around the letter T where 
blue and red colors indicate pos-
itive and negative values respec-
tively; c a horizontal cross-section 
of the LoG through the stem of 
the T; d closeup of the zero-cross-
ing detector output at the letter T
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 (12.7)

 (12.8)

which is known as the  Marr-Hildreth  operator or the  Mexican hat  kernel and is shown 
in Fig. 12.14e.

We apply this kernel to our image by

>> lap = iconvolve( castle, klog(2) );  

and the result is shown in Fig. 12.20a and b. The maximum gradient occurs where the 
second derivative is zero but a signifi cant edge is a zero crossing from a strong posi-
tive value (blue) to a strong negative value (red). Consider the closeup view of the 
Laplacian of the letter T shown in Fig. 12.20b. We generate a horizontal cross-section 
of the stem of the letter T at v = 360

>> p = lap(360,570:600);
>> plot(570:600, p, '-o');

which is shown in Fig. 12.20c. We see that the zero values of the second derivative lies be-
tween the pixels. A  zero crossing  detector selects pixels adjacent to the zero crossing points

>> zc = zcross(lap); 

and this is shown in Fig. 12.20d. We see that the edges appear twice. Referring again to 
Fig. 12.20c we observe a weak zero crossing in the interval u ∈ [573, 574] and a much 
more defi nitive zero crossing in the interval u ∈ [578, 579].

A fundamental limitation of all edge detection approaches is that  intensity 
edges do not necessarily delineate the boundaries of objects. The object may 
have poor contrast with the background which results in weak  boundary edg-
es. Conversely the object may have a stripe on it which is not its edge. Shadows 
frequently have very sharp edges but are not real objects. Object texture will 
result in a strong output from an edge detector at points not just on its bound-
ary, as for example with the bricks in Fig. 12.16b.

12.5.2 
l

Template Matching

In our discussion so far we have used kernels that represent mathematical functions 
such as the Gaussian and its derivative and its Laplacian. We have also considered the 
convolution  kernel as a matrix, as an image and as a 3-dimensional surface as shown 
in Fig. 12.14. In this section we will consider that the kernel is an image or a part of 
an image which we refer to as a template. In template matching we wish to fi nd which 
parts of the input image are most similar to the template.

Template matching is shown schematically in Fig. 12.21. Each pixel in the output 
image is given by

where T is the w × w template, the pattern of pixels we are looking for, with odd side 
length w = 2h + 1, and W is the w × w window centered at (u, v) in the input image. 
The function s(I1, I2) is a scalar measure that describes the similarity of two equally 
sized images I1 and I2.

A number of common  similarity measures� are given in Table 12.1. The most intui-
tive are computed simply by computing the pixel-wise difference T −W and taking 

These measures can be augmented with 
a Gaussian weighting to deemphasize 
the differences that occur at the edges 
of the two windows.

12.5  ·  Spatial Operations



388 Chapter 12  ·  Images and Image Processing

the sum of the absolute differences (SAD) or the sum of the squared differences (SSD). 
These metrics are zero if the images are identical and increase with dissimilarity. It is 
not easy to say what value of the measure constitutes a poor match but a ranking of 
similarity measures can be used to determine the best match.

More complex measures such as normalized cross-correlation yield a score in the 
interval [−1, +1] with +1 for identical regions. In practice a value greater than 0.8 is 
considered to be a good match. Normalized cross correlation is computationally more 
expensive – requiring multiplication, division and square root operations. Note that 
it is possible for the result to be undefi ned if the denominator is zero, which occurs if 
the elements of either I1 or I2 are identical.

If I2 ≡ I1 then it is easily shown that SAD = SSD = 0 and NCC = 1 indicating a per-
fect match. To illustrate we will use the Mona Lisa’s eye as a 51 × 51 template

>> mona = iread('monalisa.png', 'double', 'grey');
>> T = mona(170:220, 245:295); 

and evaluate the three common measures

>> sad(T, T)
ans =
     0
>> ssd(T, T)
ans =
     0
>> ncc(T, T)
ans =
     1   

Now consider the case where the two images are of the same scene but one image is 
darker than the other – the illumination or the camera  exposure has changed. In this 
case I2 = αI1 and now

>> sad(T, T*0.9)
ans =
  111.1376
>> ssd(T, T*0.9)
ans =
    5.6492  

 David Marr (1945–1980) was a British neuroscientist and psychologist who synthesized results from 
psychology, artifi cial intelligence, and neurophysiology to create the discipline of Computational 
Neuroscience. He studied mathematics at Trinity College, Cambridge and his Ph.D. in physiology 
was concerned with modeling the function of the cerebellum. His key results were published in 
three journal papers between 1969 and 1971 and formed a theory of the function of the mamma-
lian brain much of which remains relevant today. In 1973 he was a visiting scientist in the Artifi cial 
Intelligence Laboratory at MIT and later became a professor in the Department of Psychology. 
His attention shifted to the study of vision and in particular the so-called early visual system.

He died of leukemia at age 35 and his book Vision: A computational investigation into the human 
representation and processing of visual information (Marr 2010) was published after his death.

Fig. 12.21.
Spatial image processing op-
erations. The red shaded region 
shows the window W that is the 
set of pixels used to compute the 
output pixel (shown in red)
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these measure indicate a degree of dissimilarity. However the normalized cross-cor-
relation

 >> ncc(T, T*0.9)
ans =
     1

is invariant to the change in intensity.
Next consider that the pixel values have an offset� so that I2 = I1 + β  and we fi nd that
>> sad(T, T+0.1)
ans =
  260.1000
>> ssd(T, T+0.1)
ans =
   26.0100
>> ncc(T, T+0.1)
ans =
    0.9974   

all measures now indicate a degree of dissimilarity. The problematic offset can be dealt 
with by fi rst subtracting from each of T and W their mean value

>> zsad(T, T+0.1)
ans =
   3.5670e-12
>> zssd(T, T+0.1)
ans =
   4.8935e-27
>> zncc(T, T+0.1)
ans =
    1.0000   

and these measures now all indicate a perfect match. The z-prefi x denotes variants 
of the similarity measures described above that are invariant to intensity offset. Only 
the  ZNCC measure

>> zncc(T, T*0.9+0.1)
ans =
    1.0000 

is invariant to both gain and offset variation. All these methods will fail if the images 
have even a small change in relative rotation or scale.

Table 12.1.
Similarity measures for two 
equal sized image regions I1 

and I2. The Z-prefi x indicates 
that the measure accounts for the
zero-offset or the difference in 
mean of the two images (Banks 
and Corke 2001). –I1 and –I2 are 
the mean of image regions I1 
and I2 respectively. Toolbox 

functions are indicated in the 
last column

This could be due to an incorrect  black 
level setting. A camera’s black level is the 
value of a pixel corresponding to no light 
and is often >0.

12.5  ·  Spatial Operations
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Consider the problem from the well known children’s book “Where’s Wally” or 
“Where’s Waldo” – the fun is trying to fi nd Wally’s face in a crowd

>> crowd = iread('wheres-wally.png', 'double'); 
>> idisp(crowd)

Fortunately we know roughly what he looks like and the template

>> wally = iread('wally.png', 'double'); 
>> idisp(wally)

was extracted from a different image and scaled so that the head is approximately the 
same width as other heads in the crowd scene (around 21 pixel wide).

The similarity of our template wally to every possible window location is com-
puted by

>> S = isimilarity(wally, crowd, @zncc); 

using the matching measure  ZNCC. The result

>> idisp(S, 'colormap', 'jet', 'bar') 

is shown in Fig. 12.22 and the pixel color indicates the ZNCC similarity as indicated by 
the color bar. We can see a number of spots of high similarity (white) which are candi-
date positions for Wally. The peak values, with respect to a local 3 × 3 window, are

>> [mx,p] = peak2(S, 1, 'npeaks', 5);
>> mx
mx =
    0.5258    0.5230    0.5222    0.5032    0.5023 

in descending order. The second argument specifi es the window half-width h = 1 and the 
third argument specifi es the number of peaks to return. The largest value 0.5258 is the 
similarity of the strongest match found. These matches occur at the coordinates (u, v) 
given by the second return value p and we can highlight these points on the scene

>> idisp(crowd);
>> plot_circle(p, 30, 'edgecolor', 'g')
>> plot_point(p, 'sequence', 'bold', 'textsize', 24, 'textcolor', 'y')   

using green circles that are numbered sequentially. The best match at (261, 377) is in 
fact the correct answer – we found Wally! It is interesting to look at the other highly 
ranked candidates. Numbers two and three at the bottom of the image are people also 
wearing baseball caps who look quite similar.

Fig. 12.22.
Similarity image S with top fi ve 
Wally candidates marked. The 
color bar indicate the similarity 
scale. Note the border of inde-
terminate values where the tem-
plate window falls off the edge 
of the input image
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There are some important points to note from this example. The images have quite 
low resolution and the template is only 21 × 25 – it is a very crude likeness to Wally. The 
match is not a strong one – only 0.5258 compared to the maximum possible value of 1.0 
and there are several contributing factors. The matching measure is not invariant to scale, 
that is, as the relative scale (zoom) changes the similarity score falls quite quickly. In prac-
tice perhaps a 10–20% change in scale between T and W can be tolerated. For this exam-
ple the template was only approximately scaled. Secondly, not all Wallys are the same. 
Wally in the template is facing forward but the Wally we found in the image is looking to 
our left. Another problem is that the square template typically includes pixels from the 
background as well as the object of interest. As the object moves the background pixels 
may change, leading to a lower similarity score. This is known as the  mixed pixel  prob-
lem and is discussed in the next section. Ideally the template should bound the object of 
interest as tightly as possible. In practice another problem arises due to  perspective dis-
tortion. A square pattern of pixels in the center of the image will appear keystone shaped 
at the edge of the image and thus will match less well with the square template.

 A common problem with template matching is that false matches can occur. In the ex-
ample above the second candidate had a similarity score only 0.5% lower than the fi rst, the 
fi fth candidate was only than 5% lower. In practice a number of rules are applied before 
a match is accepted: the similarity must exceed some threshold and the fi rst candidate 
must exceed the second candidate by some factor to ensure there is no ambiguity.

Another approach is to bring more information to bear on the problem such as known 
motion of the camera or object. For example if we were tracking Wally from frame to 
frame in an image sequence then we would pick the best Wally closest to the previous 
location he was found. Alternatively we could create a motion model, typically a constant 
velocity model which assume he moves approximately the same distance and direction 
from frame to frame. In this way we could predict his future position and pick the Wally 
closest to that predicted position, or only search in the vicinity of the predicted position 
in order to reduce computation. We would also have to deal with practical diffi culties 
such as Wally stopping, changing direction or being temporarily obscured.

12.5.2.1 
l
Nonparameteric Local Transforms

Nonparametric similarity measures are more robust to the mixed pixel problem and 
we can apply a local transform to the image and template before matching. Two com-
mon  transforms from this class are the  census transform and the  rank transform.

The   census transform maps pixel values from a local region to an integer considered 
as a bit string – each bit corresponds to one pixel in the region as shown in Fig. 12.23. 
If a pixel is greater than the center pixel its corresponding bit is set to one, else it is 
zero. For a w × w window the string will be w2 − 1 bits long.� The two bit strings are 
compared using a  Hamming  distance which is the number of bits that are different. 

Fig. 12.23.
Example of census and rank 

transform for a 3 × 3 window. 
Pixels are marked red or blue 
if they are less than or great-
er than or equal to the center 

pixel respectively. These bool-
ean values are then packed into 
a binary word, in the direction 

shown, from least signifi cant bit 
upwards. The census value is 

101011012 or decimal 173. The 
rank transform value is the total 

number of one bits and is 5

For a 32-bit integer uint32 this lim-
its the window to 5 × 5 unless a sparse 
mapping is adopted (Humenberger et al. 
2009). A 64-bit integer uint64 sup-
ports a 7 × 7 window.
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This can be computed by counting the number of set bits in the exclusive-or of the two 
bit strings. Thus very few arithmetic operations are required compared to the more 
conventional methods – no square roots or division – and such algorithms are ame-
nable to implementation in special purpose hardware or FPGAs. Another advantage 
is that intensities are considered relative to the center pixel of the window making it 
invariant to overall changes in intensity or gradual  intensity gradients.

The   rank transform maps the pixel values in a local region to a scalar which is the num-
ber of elements in the region that are greater than the center pixel. This measure captures 
the essence of the region surrounding the center pixel, and like the census transform it is in-
variant to overall changes in  intensity since it is based on local relative grey-scale values.

These transforms are typically used as a pre-processing step applied to each of the im-
ages before using a simple classical similarity measure such as  SAD. The Toolbox function 
 isimilarity supports these metrics using the 'census' and 'rank' options.

12.5.3 
l
Nonlinear Operations

Another class of spatial operations is based on nonlinear functions of pixels within 
the window. For example

>> out = iwindow(mona, ones(7,7), 'var');

computes the variance of the pixels in every 7 × 7 window. The arguments specify 
the window size and the builtin MATLAB function var. The function is called with 
a 49 × 1 vector argument comprising the pixels in the window arranged as a column 
vector and the function’s return value becomes the corresponding output pixel value. 
This operation acts as an  edge detector since it has a low value for homogeneous re-
gions irrespective of their brightness. It is however computationally expensive because 
the var function is called over 470 000 times. Any MATLAB function, builtin or your 
own M-fi le, that accepts a vector input and returns a scalar can be used in this way.

 Rank fi lters sort the pixels within the window by value and return the specifi ed ele-
ment from the sorted list. The maximum value over a 5 × 5 window about each pixel 
is the fi rst ranked pixel in the window

>> mx = irank(mona, 1, 2);

where the arguments are the rank and the window half-width h = 2. The median over 
a 5 × 5 window is the twelfth in rank

>> med = irank(mona, 12, 2);

and is useful as a fi lter to remove impulse-type  noise and for the Mona Lisa image this 
signifi cantly reduces the fi ne surface cracking. A more powerful demonstration is to 
add signifi cant impulse noise to a copy of the Lena  image

>> lena = iread('lena.pgm', 'double'); spotty = lena;
>> npix = prod(size(lena));
>> spotty(round(rand(5000,1)*(npix-1)+1)) = 0;
>> spotty(round(rand(5000,1)*(npix-1)+1)) = 1.0;
>> idisp(spotty) 

and this is shown in Fig. 12.24a. We have set 5 000 random pixels to be zero, and an-
other 5 000 random pixels to the maximum value. This type of noise is often referred 
to as  impulse noise or  salt and pepper  noise. We apply a 3 × 3  median fi lter

>> idisp( irank(spotty, 5, 1) ) 

and the result shown in Fig. 12.24b is considerably improved. A similar effect could 
have been obtained by smoothing but that would tend to blur the image, median fi l-
tering has the advantage of  preserving edges in the scene. 
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The third argument to irank can be a matrix instead of a scalar and this allows 
for some very powerful operations. For example

>> M = ones(3,3);
>> M(2,2) = 0
M =
     1     1     1
     1     0     1
     1     1     1
>>  mxn = irank(lena, 1, M);

specifi es the fi rst in rank (maximum) over a subset of pixels from the window corre-
sponding to the nonzero elements of M. In this case M specifi es the eight neighboring 
pixels but not the center pixel. The result mxn is the maximum of the eight neighbors 
of each corresponding pixel in the input image. We can use this

>> idisp(lena > mxn) 

to display all those points where the pixel value is greater than its local neighbors which 
performs   nonlocal maxima  suppression. These correspond to local maxima, or peaks 
if the image is considered as a surface. This mask matrix is very similar to a structur-
ing element which we will meet in the next section. 

12.6 
l
Mathematical Morphology

 Mathematical morphology is a class of nonlinear spatial  operators shown schemati-
cally in Fig. 12.25. Each pixel in the output matrix is a function of a subset of pixels in 
a region surrounding the corresponding pixel in the input image

 (12.9)

where S is the  structuring element, an arbitrary small binary image. For implementa-
tion purposes this is embedded in a rectangular window with odd side lengths. The 
structuring element is similar to the convolution  kernel discussed previously except 
that now it controls which pixels in the neighborhood the function f(·) is applied to – it 
specifi es a subset of pixels within the window. The selected pixels are those for which 
the corresponding values of the structuring element are nonzero – these are shown 
in red in Fig. 12.25. Mathematical morphology, as its name implies, is concerned with 
the form or  shape of objects in the image.

Fig. 12.24.
Median fi lter cleanup of impulse 
noise. a Noise corrupted image; 

b median fi ltered result

12.6  ·  Mathematical Morphology
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The easiest way to explain the concept is with a simple example, in this case a syn-
thetic binary image created by the script

>> eg_morph1
>> idisp(im) 

which is shown, repeated, down the fi rst column of Fig. 12.26. The structuring element 
is shown in red at the end of each row. If we consider the top most row, the structur-
ing element is a square

>> S = ones(5,5);

and is applied to the original image using the minimum operation

>> mn =  imorph(im, S, 'min');

and the result is shown in the second column. For each pixel in the input image we 
take the minimum of all pixels in the 5 × 5 window. If any of those pixels are zero the 
resulting pixel will be zero. We can see this in animation by

>> morphdemo(im, S, 'min')

The result is dramatic – two objects have disappeared entirely and the two squares have 
become separated and smaller. The two objects that disappeared were not consistent 
with the  shape of the structuring element. This is where the connection to morphol-
ogy or shape comes in – only shapes that could contain the structuring element will 
be present in the output image.

The structuring element could defi ne any shape: a circle, an annulus, a 5-point-
ed star, a line segment 20 pixels long at 30° to the horizontal, or the silhouette of a 
duck. Mathematical morphology allows very powerful  shape-based fi lters to be cre-
ated. The second row shows the results for a larger 7 × 7 structuring element which 
has resulted in the complete elimination of the small square and the further reduc-
tion of the large square. The third row shows the results for a structuring element 
which is a horizontal line segment 14 pixel wide, and the only remaining shapes are 
long horizontal lines.

The operation we just performed is often known as  erosion since large objects are 
eroded and become smaller – in this case the 5 × 5 structuring element has caused 
two pixels� to be shaved off all the way around the perimeter of each shape. The small 
square, originally 5 × 5, is now only 1 × 1. If we repeated the operation the small square 
would disappear entirely, and the large square would be reduced even further.

The inverse operation is  dilation which makes objects larger. In Fig. 12.26 we ap-
ply dilation to the second column results

Fig. 12.25.
Morphological image process-
ing operations. The operation is 
defi ned only for the selected ele-
ments (red) within the structur-
ing element (red outlined square)

The half width of the structuring element.
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>> mx =  imorph(mn, S, 'max');

and the results are shown in the third column. For each pixel in the input image we 
take the maximum of all pixels in the 5 × 5 window. If any of those neighbors is one 
the resulting pixel will be one. In this case we see that the two squares have returned 
to their original size, but the large square has lost its protrusions.

Morphological operations are often written in operator form. Erosion is

where in Eq. 12.9 f(·) = min(·), and dilation is

where in Eq. 12.9 f(·) = max(·). These operations are also known as      Minkowski sub-
traction and  addition respectively.

Erosion and dilation are related by

where the bar denotes the logical complement of the pixel values, and the prime denotes 
refl ection about the center pixel. Essentially this states that eroding the white pixels is 
the same as dilating the dark pixels and vice versa. For morphological operations

which means that successive erosion or dilation with a structuring element is equiva-
lent to the application of a single larger structuring element, but the former is com-
putationally cheaper.� The shorthand functions

>> out = ierode(im, S);
>> out = idilate(im, S);

can be used instead of the low-level function   imorph.
The sequence of operations, erosion then dilation, is known as  opening since it 

opens up gaps. In operator form it is written as

Fig. 12.26.
Mathematical morphology ex-

ample. Pixels are either 0 (grey) 
or 1 (white). Each column corre-

sponds to processing using the 
structuring element, shown at 

the end in red. The fi rst column 
is the original image, the sec-

ond column is after erosion by 
the structuring element, and the 
third column is after the second 

column is dilated by the struc-
turing element

For example a 3 × 3 square structuring 
element applied twice is equivalent to 
5 × 5 square structuring element. The 
former involves 2 × (3 × 3 × N2) = 18N2 
operations whereas the later involves 
5 × 5 × N2 = 25N2 operations.

12.6  ·  Mathematical Morphology
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Not only has the opening selected particular shapes but it has also cleaned up 
the image: the squares have been separated and the protrusions on the large square 
have been removed since they are not consistent with the shape of the structuring 
element.

In Fig. 12.27 we perform the operations in the opposite order, dilation then 
erosion. In the first row no shapes have been lost, they grew then shrank, and the 
large square still has its protrusions. The hole has been filled since it is not con-
sistent with the shape of the structuring element. In the second row, the larger 
structuring element has caused the two squares to join together. This sequence 
of operations is referred to as  closing since it closes gaps and is written in op-
erator form as

Note that in the bottom row the two line segments have remained attached to the 
edge, this is due to the default behavior in handling edge pixels.

Opening and closing� are implemented by the Toolbox functions iopen and 
iclose respectively. Unlike erosion and dilation repeated application of opening or 
closing is futile since those operations are idempotent

These operations can also be applied to greyscale images to emphasize particular 
shaped objects in the scene prior to an operation like thresholding. A circular structur-
ing element of radius R can be considered as a ball of radius R rolling on the intensity 
surface. Dilation, or the maximum operation, is the surface defi ned by the center of the 
ball rolling over the top of the input image intensity surface. Erosion, or the minimum 
operation, is the surface defi ned by the center of the ball rolling on the underside of 
the input image  intensity surface.

12.6.1   
l
Noise Removal

A common use of morphological opening is to remove noise in an image. The image

>> objects = iread('segmentation.png'); 

shown in Fig. 12.28a is a noisy binary image from the output of a rather poor object 
 segmentation operation.� We wish to remove the dark pixels that do not belong to 
the objects and we wish to fill in the holes in the four dark rectangular objects.

Fig. 12.27.
Mathematical morphology ex-
ample. Pixels are either 0 (grey) 
or 1 (white). Each row corre-
sponds to processing using the 
structuring element, shown at 
the end in red. The fi rst column 
is the original image, the second 
column is after dilation by the 
structuring element, and the 
third column is after the second 
column is eroded by the struc-
turing element

These names make sense when consid-
ering what happens to white objects 
against a black background. For black 
objects the operations perform the in-
verse function.

Image segmentation and binarization is 
discussed in Sect. 13.1.1.
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We choose a symmetric circular structuring element of radius 3
>> S = kcircle(3)
S =
     0     0     0     1     0     0     0
     0     1     1     1     1     1     0
     0     1     1     1     1     1     0
     1     1     1     1     1     1     1
     0     1     1     1     1     1     0
     0     1     1     1     1     1     0
     0     0     0     1     0     0     0 

and apply a closing operation to fi ll the holes in the objects

>> closed = iclose(objects, S); 

and the result is shown in Fig. 12.28b. The holes have been fi lled, but the  noise pixels 
have grown to be small circles and some have agglomerated. We eliminate these by 
an opening operation

>> clean = iopen(closed, S); 

and the result shown in Fig. 12.28c is a considerably cleaned up image. If we apply the 
operations in the inverse order, opening then closing

>> opened = iopen(objects, S);
>> closed = iclose(opened, S);  

the results shown in Fig. 12.28d are much poorer. Although the opening has removed the 
isolated noise pixels it has removed large chunks of the targets which cannot be restored.

Dealing with edge pixels. The problem of a convolution window near 
the edge of an input image was discussed on page 381. Similar prob-
lems exist for morphological spatial operations, and the Toolbox 
functions  imorph,  irank and  iwindow support the option 
'valid' as does iconvolve. Other options cause the returned 
image to be the same size as the input image:

� 'replicate' (default) the border pixel is replicated, that is, 
the value of the closest border pixel is used.

� 'none' pixels beyond the border are not included in the set 
of pixels specifi ed by the structuring element.

� 'wrap' the image is assumed to wrap around, left to right, 
top to bottom.

Fig. 12.28.
Morphological cleanup. a Orig-

inal image, b original after 
opening, c opening then clos-

ing, d closing then opening. 
Structuring element is a circle of 
radius 3. Color map is inverted, 

set pixels are shown as black

12.6  ·  Mathematical Morphology
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12.6.2  
l
Boundary Detection

The top-hat transform uses morphological operations to detect the edges of objects. 
Continuing the example from above, and using the image clean shown in Fig. 12.28c 
we compute its erosion using a circular structuring element

>> eroded =  imorph(clean, kcircle(1), 'min'); 

The objects in this image are slightly smaller since the structuring element has caused 
one pixel to be shaved off the outside of each object. Subtracting the eroded image 
from the original

>> idisp(clean-eroded) 

results in a layer of pixels around the edge of each object as shown in Fig. 12.29.

12.6.3 
l
Hit or Miss Transform

The hit or miss transform uses a variation on the morphological structuring element. 
Its values are zero, one or don’t care as shown in Fig. 12.30a. The zero and one pixels 
must exactly match the underlying image pixels in order for the result to be a one, as 
shown in Fig. 12.30b. If there is any mismatch of a one or zero as shown in Fig. 12.30c 
then the result will be zero. The Toolbox implementation is very similar to the mor-
phological function, for example

out = hitormiss(image, S);

where the don’t care elements of the structuring element are set to the special MATLAB 
value NaN.  

Fig. 12.29.
Boundary detection by morpho-
logical processing. Results are 
shown inverted, white is zero

Fig. 12.30.
Hit or miss transform. a The 
structuring element has values of 
zero (red), one (blue), or don’t 
care (hatched); b an example of 
a hit; c an example of a miss, the 
pixel circled is inconsistent with 
the structuring element



399

The hit or miss transform can be used iteratively with a sequence of structuring 
elements to perform complex operations such as skeletonization and linear  feature 
detection.  The skeleton of the objects is computed by

>> skeleton = ithin(clean); 

and is shown in Fig. 12.31a. The lines are a single pixel wide and are the edges of a  gen-
eralized  Voronoi diagram – they delineate sets of pixels according to the shape bound-
ary they are closest to.  We can then fi nd the endpoints of the skeleton

>> ends = iendpoint(skeleton); 

 and also the triplepoints

>> joins = itriplepoint(skeleton); 

which are points at which three lines join. These are shown in Fig. 12.31b and c re-
spectively.

12.6.4 
l
Distance Transform   [examples/chamfer_match.m]

We discussed the distance transform in Sect. 5.2.1 for robot path  planning. Given an 
occupancy grid it computed the distance of every free cell from the goal location. The 
distance transform we discuss here� operates on a binary image and the output value, 
corresponding to every zero pixel in the input image, is the Euclidean distance to the 
nearest nonzero pixel.

Fig. 12.31. Hit or miss transform 
operations.  a Skeletonization; 
b end-point detection; c triple-
point join detection. The images 
are shown inverted with the orig-
inal binary image superimposed 
in grey. The end- and triplepoints 
are shown as black pixels

For path planning in Sect. 5.2.1 we used 
a slow iterative wavefront approach to 
compute the distance transform. For this 
case a two pass algorithm can be used and 
if you have the MATLAB Image Processing 
Toolbox or VLFeat installed the faster func-
tions  bwdist or  vl_imdisttf
respectively will be used.

12.6  ·  Mathematical Morphology
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Consider the problem of fi tting a model to a shape in an image. We create the out-
line of a rotated square

>> im = testpattern('squares', 256, 256, 128);
>> im = irotate(im, -0.3);
>> edges = icanny(im) > 0;

which is shown in Fig. 12.32a and then compute the distance transform

>> dx = distancexform(edges, 'euclidean');

which is shown in Fig. 12.32b.
An initial estimate of the square is shown with a red line. The value of the distance 

transform at any point on this red square indicates how far away it is from the nearest 

The    distance transform of a binary image has a 
value at each pixel equal to the distance from 
that pixel to the nearest nonzero pixel in the 
input image. The distance metric is typical-
ly either Euclidean (L2 norm) or Manhattan 
distance (L1 norm). It is zero for pixels that 
are nonzero in the input image. This trans-
form is closely related to the   signed distance 
function whose value at any point is the dis-
tance of that point to the nearest boundary of 
a shape, and is positive inside the shape and 
negative outside the shape. The fi gure shows 
the signed distance function for a unit circle, 
and has a value of zero, indicated by the red plane, at the object boundary. If we consider a shape to 
be defi ned by its signed distance transform then its zero contour defi nes the shape boundary.

Fig. 12.32.
Distance transform. a Input 
binary image; b distance trans-
formed input image with over-
laid model square; c distance 
transform as a surface
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point on the original square. If we summed the distance transform for every point on 
the red square, or even just the vertices, we obtain a total distance measure which will 
only be zero when our model square overlays the original square. The total distance is 
a cost function which we can minimize using an  optimization routine that adjusts the 
position, orientation and size of the square. Considering the distance transform as a 3-
dimensional surface in Fig. 12.32c, our problem is analogous to dropping an extensible 
square hoop into the valley of the distance transform. Note that the distance transform 
only needs to be computed once, and during model fi tting the cost function is simply 
a lookup of the computed distance. This is an example of chamfer matching  and a full 
example, with optimization, is given in examples/chamfer_match.m.

12.7  
l
Shape Changing

The fi nal class of image processing operations that we will discuss are those that change 
the shape or size of an image.

12.7.1 
l

Cropping

The simplest shape change of all is selecting a rectangular region from an image which 
is the familiar cropping operation.  Consider the image

>> mona = iread('monalisa.png'); 

shown in Fig. 12.33a from which we interactively specify a  region of interest or ROI

>> [eyes,roi] = iroi(mona);
>> idisp(eyes)  

by clicking and dragging a selection box over the image. In this case we selected the eyes, 
and the corners of the selected region can be optionally returned and in this case was

>> roi
roi =
   239   359
   237   294

where the columns are the (u, v) coordinates for the top-left and bottom-right corners 
respectively. The rows are the u- and v-span respectively. The function can be used 
noninteractively by specifying a ROI

>> smile = iroi(mona, [265 342; 264 286]); 

which in this case selects the Mona Lisa’s smile shown in Fig. 12.33b.

Fig. 12.33.
Example of region of interest or 
image cropping. a Original im-

age, b selected region of interest

12.7  ·  Shape Changing
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12.7.2  
l
Image  Resizing

Often we wish to reduce the dimensions of an image, perhaps because the large num-
ber of pixels results in long processing time or requires too much memory. We dem-
onstrate this with a high-resolution image

>> roof = iread('roof.jpg', 'grey');
>> about(roof)  
roof [uint8] : 1668x2009 (3351012 bytes)

which is shown in Fig. 12.34a. The simplest means to reduce image size is   subsam-
pling or   decimation which selects every mth pixel in the u- and v-direction, where 
m ∈ Z+ is the subsampling factor. For example with m = 2 an N × N image becomes 
an N / 2 × N / 2 images which has one quarter the number of pixels of the original 
image.

For this example we will reduce the image size by a factor of seven in each direction

>> smaller = roof(1:7:end,1:7:end);

using standard MATLAB indexing syntax to select every seventh row and column. The 
result is shown is shown in Fig. 12.34b and we observe some pronounced curved lines 
on the roof which were not in the original image. These are artifacts of the  sampling 
process. Subsampling reduces the  spatial  sampling rate of the image which can lead 
to  spatial  aliasing of high-frequency components due to texture or sharp edges. To 
ensure that the Shannon-Nyquist  sampling theorem is satisfi ed an  anti- aliasing low-

Fig. 12.34. Image scaling example. 
a Original image; b subsampled 
with m = 7, note the axis scaling; 
c subsampled with m = 7 after 
smoothing; d image c restored to 
original size by pixel replication
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pass spatial    fi lter must be applied to reduce the spatial bandwidth of the image before 
it is subsampled.� This is another use for image blurring and the  Gaussian  kernel is 
a suitable low-pass fi lter for this purpose. The combined operation of smoothing and 
subsampling is implemented in the Toolbox by

>> smaller =  idecimate(roof, 7); 

and the results for m = 7 are shown in Fig. 12.34c. We note that the curved line arti-
facts are no longer present.

The inverse operation is pixel replication, where each input pixel is replicated as 
an m × m tile in the output image

>> bigger = ireplicate( smaller, 7 ); 

which is shown in Fig. 12.34d and appears a little blocky along the edge of the roof and 
along the skyline. The decimation stage removed 98% of the pixels and restoring the 
image to its original size has not added any new information. However we could make 
the image easier on the eye by smoothing out the tile boundaries

>> smoother = ismooth( bigger, 4); 

We can perform the same function using the Toolbox function iscale which 
scales an image by an arbitrary factor m ∈R+ for example

>> smaller = iscale(lena, 0.1);
>> bigger = iscale(smaller, 10);  

The second argument is the scale factor and if m < 1 the image will be reduced, and 
if m > 1 it will be expanded.

12.7.3  
l
Image Pyramids

An important concept in computer vision, and one that we return to in the next chap-
ter is  scale space. The Toolbox function ipyramid returns a  pyramidal  decomposi-
tion of the input image

>> p = ipyramid( imono(mona) ) 
p =
  Columns 1 through 11
   [700x677 double] [350x339 double] ... [2x2 double]  [0.0302]

as a MATLAB cell array containing images at successively lower resolutions. Note that 
the last element is the 1 × 1 resolution version – a single dark grey pixel! These images 
are pasted into a composite image which is displayed in Fig. 12.35.

Any realizable low-pass filter has a finite 
response above its cutoff frequency. In 
practice the cutoff frequency is select-
ed to be far enough below the theoreti-
cal cutoff that the filter’s response at the 
Nyquist frequency is sufficiently small. 
As a rule of thumb for subsampling with 
m = 2 a Gaussian with σ = 1 is used.

Fig. 12.35.
Image pyramid, a succession 

of images each half (by side 
length) the resolution of the 

one to the left

12.7  ·  Shape Changing



404 Chapter 12  ·  Images and Image Processing

An image pyramid is the basis of many so-called  coarse-to-fi ne  strategies. Consider 
the problem of looking for a pattern of pixel values that represent some object of inter-
est. The smallest image can be searched very quickly for the object since it comprises 
only a small number of pixels. The search is then refi ned using the next larger image 
but we now know which area of that larger image to search. The process is repeated 
until the object is located in the highest resolution image.

12.7.4 
l
Image Warping

 Image warping is a transformation of the pixel coordinates rather than the pixel val-
ues. Warping can be used to scale an image up or down in size, rotate an image or ap-
ply quite arbitrary shape changes. The coordinates of a pixel in the new view (u′, v′) 
are expressed as functions

 (12.10)

of the coordinates in the original view.
Consider a simple example where the image is reduced in size by a factor of 4 in 

both directions and offset so that its origin, its top-left corner, is shifted to the coor-
dinate (100, 200). We can express this concisely as

 (12.11)

First we read the image and establish a pair of coordinate matrices� that span the 
domain of the input image, the set of all possible (u, v)

>> mona = iread('monalisa.png', 'double', 'grey');
>> [Ui,Vi] = imeshgrid(mona); 

and another pair that span the domain of the output image, which we choose arbi-
trarily to be 400 × 400, the set of all possible (u′, v′)

>> [Up,Vp] = imeshgrid(400, 400); 

Now, for every pixel in the output image the corresponding coordinate in the input image 
is given by the inverse of the functions fu and fv. For our example the inverse of Eq. 12.11 is

 (12.12)

which is implemented in matrix form in MATLAB as

>> U = 4*(Up-100); V = 4*(Vp-200);

The coordinate matrices are such that 
U(u,v) = u and V(u,v) = v and 
are a common construct in MATLAB see 
the documentation for meshgrid.

Fig. 12.36.
Warped images. a Scaled and 
shifted; b rotated by 30° about 
its center. Pixels displayed as 
red were set to a value of NaN by 
interp2 – they were not inter-
polated from any image pixels
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We can now warp the input image using the MATLAB function  interp2

>> little_mona = interp2(Ui, Vi, mona, U, V); 

and the result is shown in Fig. 12.36a. Note that interp2 requires a fl oating-point 
image.

Some subtle things happen under the hood. Firstly, while (u′, v′) are integer coordinates 
the input image coordinates (u, v) will not necessarily be integers. The pixel values must 
be interpolated� from neighboring pixels in the input image. Secondly, not all pixels in 
the output image have corresponding pixels in the input image as illustrated in Fig. 12.37. 
Fortunately for us interp2 handles all these issues and pixels that do not exist in the in-
put image are set to NaN in the output image which we have displayed as red. In case of 
mappings that are extremely distorted it may be that many adjacent output pixels map to 
the same input pixel and this leads to pixelation or blockyness in the output image.

Now let’s try something a bit more ambitious and rotate the image by 30° into an 
output image of the same size as the input image

>> [Up,Vp] = imeshgrid(mona); 

We want to rotate the image about its center but since the origin of the input image is the 
top-left corner we must fi rst change the origin to the center, then rotate and then move 
the origin back to the top-left corner.� The warp  equation is therefore

 (12.13)

where (uc, vc) is the coordinate of the image center and R(ÿ) is a  rotation matrix in SE(2). 
This can be rearranged into the inverse form and implemented as

>> R =  SO2(pi/6).R; uc = 256; vc = 256;
>> U = R(1,1)*(Up-uc) + R(2,1)*(Vp-vc) + uc;
>> V = R(1,2)*(Up-uc) + R(2,2)*(Vp-vc) + vc;
>> twisted_mona = interp2(Ui, Vi, mona, U, V);  

and the result is shown in Fig. 12.36b. Note the direction of rotation – our defi nition of the 
x- and y-axes (parallel to the u- and v-axes respectively) is such that the z-axis is defi ned as 
being into the page making a clockwise rotation a positive angle. Also note that the corners 
of the original image have been lost, they fall outside the bounds of the output image.

The function iscale uses image warping to change image scale, and the function 
irotate uses warping to perform rotation. The example above could be achieved by

>> twisted_mona = irotate(mona, pi/6); 

Finally we will revisit the lens  distortion example from Sect. 11.2.4. The distorted im-
age from the camera is the input image and will be warped to remove the distortion. We 
are in luck since the distortion model Eq. 11.13 is already in the inverse form. Recall that

where the distorted coordinates are denoted with a prime and δu and δv are functions of (u, v).

Different interpolation modes can be 
selected by a trailing argument to 
 interp2 but the default option is 
bilinear interpolation. A pixel at coordi-
nate (u + δu, v + δv) where u, v ∈Z+ 
and δu, δv ∈ [0, 1) is a  linear combination 
of the pixels (u, v), (u + 1, v), (u, v + 1) 
and (u + 1, v + 1).  The interpolation 
function acts as a weak  anti-aliasing fil-
ter, but for very large reductions in scale 
the image should be smoothed first us-
ing a Gaussian kernel.

This is the application of a twist as dis-
cussed in Chap. 2.

Fig. 12.37.
Coordinate notation for image 

warping. The pixel (u′, v′) in the 
output image is sourced from the 

pixel at (u, v) in the input image 
as indicated by the arrow. The 

warped image is not necessarily 
polygonal, nor entirely contained 

within the output image

12.7  ·  Shape Changing
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First we load the distorted image and build the coordinate matrices for the distort-
ed and undistorted images

>> distorted = iread('Image18.tif', 'double');
>> [Ui,Vi] = imeshgrid(distorted);
>> Up = Ui; Vp = Vi;  

and then load the results of the camera calibration

>> load  Bouguet

For readability we unpack the required parameters from the Calibration Toolbox vari-
ables cc, fc and kc

>> k = kc([1 2 5]); p = kc([3 4]);
>> u0 = cc(1); v0 = cc(2);
>> fpix_u = fc(1); fpix_v = fc(2);

for radial and tangential  distortion vectors, principal  point and focal length in pixels. 
Next we convert pixel coordinates to  normalized image coordinates�

>> u = (Up-u0) / fpix_u;
>> v = (Vp-v0) / fpix_v;

The radial distance of the pixels from the principal point is then

>> r =  sqrt( u.^2 + v.^2 );

and the pixel coordinate errors due to distortion are
>> delta_u = u .* (k(1)*r.^2 + k(2)*r.^4 + k(3)*r.^6) + ...
   2*p(1)*u.*v + p(2)*(r.^2 + 2*u.^2);
>> delta_v = v .* (k(1)*r.^2 + k(2)*r.^4 + k(3)*r.^6) + ...
   p(1)*(r.^2 + 2*v.^2) + 2*p(2)*u.*v;

The distorted pixel coordinates in metric units are

>> ud = u + delta_u;  vd = v + delta_v;

which we convert back to pixel coordinates

>> U = ud * fpix_u + u0;
>> V = vd * fpix_v + v0;

and fi nally apply the warp

>> undistorted = interp2(Ui, Vi, distorted, U, V);

The results are shown in Fig. 12.38. The change is quite subtle, but is most pronounced 
at the edges and corners of the image where r is the greatest.

In units of meters with respect to the 
camera’s principal point.

Fig. 12.38. Warping to undistort 
an image. a Original distorted im-
age; b corrected image. Note that 
the top edge of the target has be-
come a straight line (example from 
Bouguet’s Camera Calibration Tool-
box, image number 18)
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12.8 
l
Wrapping Up

In this chapter we learned how to acquire images from a variety of sources such as im-
age fi les, movie fi les, video cameras and the internet, and load them into the MATLAB 
workspace. Once there we can treat them as matrices, the principal MATLAB datatype, 
and conveniently manipulate them. The elements of the image matrices can be inte-
ger, fl oating-point or logical values. Next we discussed many processing operations 
and a taxonomy of these is shown in Table 12.2. Operations on a single image include: 
unary arithmetic operations, type conversion, various color transformations and grey-
level stretching; nonlinear operations such as  histogram  normalization and  gamma 
encoding or decoding; and logical operations such as  thresholding. We also discussed 
operations on pairs of images such as green screening, background estimation and 
moving object detection.

The largest and most diverse class of operations are spatial operators. We dis-
cussed convolution which can be used to smooth an image and to detect edges. 
Linear operations are defi ned by a kernel matrix which can be chosen to perform 
functions such as image smoothing (to reduce the effect of image  noise or as a low-
pass  anti- aliasing  fi lter prior to decimation) or for edge detection. Nonlinear spatial 
operations were used for template matching, computing rank statistics (including 
the median  fi lter which eliminates impulse  noise) and mathematical morphology 
which fi lters an image based on shape and can be used to cleanup binary images. 
A variant form, the hit or miss transform, can be used iteratively to perform func-
tions such as skeletonization.

Finally we discussed shape changing operations such as regions of interest, scale 
changing and the problems that can arise due to aliasing, and generalized image warp-
ing which can be used for scaling, translation, rotation or undistorting an image. All 
these image processing techniques are the foundations of feature extraction algorithms 
that we discuss in the next chapter.

Further Reading

Image processing is a large fi eld and this chapter has provided an introduction to 
many of the most useful techniques from a robotics perspective. More comprehen-
sive coverage of the topics introduced here and others such as greyscale morphol-
ogy, image restoration, wavelet and frequency domain methods, and image com-
pression can be found in Szeliski (2011), Nixon and Aguado (2012), Forsyth and 
Ponce (2011) and Gonzalez and Woods (2011). Online information about computer 
vision is available through CVonline at http://homepages.inf.ed.ac.uk/rbf/CVonline, 
and the material in this chapter is covered under the section Image Transformations 
and Filters.

Edge detection is a subset of image processing but one with huge literature of its 
own. Forsyth and Ponce (2011) have a comprehensive introduction to edge detection 
and a useful discussion on the limitations of edge detection. Nixon and Aguado (2012) 
also cover phase congruency approaches to edge detection and compare various edge 
detectors. The Sobel  kernel for edge detection was described in an unpublished 1968 
publication from the Stanford AI lab by Irwin Sobel and Jerome  Feldman: A 3 × 3 
Isotropic Gradient Operator for Image Processing. The Canny  edge detector was origi-
nally described in Canny (1983, 1987).

Nonparametric measures for image similarity became popular in the 1990s with with 
a number of key papers such as Zabih and Woodfi ll (1994), Banks and Corke (2001), 
Bhat and Nayar (2002). The application to real-time image processing systems using 
high-speed logic such as FPGAs has been explored by several groups (Corke et al. 1999; 
Woodfi ll and Von Herzen 1997).
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Mathematical morphology is another very large topic and we have only scraped 
the surface and important techniques such as greyscale morphology and watersheds 
have not been covered at all. The general image processing books mentioned above 
have useful discussion on this topic. Most of the specialist books in this fi eld are now 
quite old but Shih (2009) is a good introduction and the book by Dougherty and Latufo 
(2003) has a more hands on tutorial approach.

The approach to computer vision covered in this book is often referred to as bot-
tom-up processing. This chapter has been about low-level vision techniques which are 
operations on pixels. The next chapter is about high-level vision techniques where sets 
of pixels are grouped and then described so as to represent objects in the scene.

Sources of Image Data

All the images used in this part of the book are provided with the Toolbox in the im-
ages folder of the Machine Vision Toolbox.

There are thousands of online webcams as well as a number of sites that aggregate 
them and provide lists categorized by location, for example Opentopia, EarthCam and 
WatchThisCam. Most of these sites do not connect you directly to the web camera so 
the URL of the camera has to be dug out of the HTML page source. The root part of 
the URL (before the fi rst single slash) is required for the AxisWebCamera class. Some 
of the content on these list pages can be rather dubious – so beware.

MATLAB Notes

Table 12.2 shows the image processing functions that have been discussed in 
this chapter and the equivalent functions from several toolboxes available from 
MathWorks: Image Processing Toolbox™, Image Acquisition Toolbox™ and Computer 
Vision System Toolbox™. There are many additional functions from these toolboxes 
that are not listed here. The RVC toolbox is open source and free, but its development 
is limited and the code is written for understanding rather than performance. In con-
trast the MathWorks’ toolboxes are supported products and many have GPU support, 
can be used in Simulink or be used for automatic code generation. The companion to 
Gonzalez and Woods (2008) is their MATLAB based book from 2009 (Gonzalez et al. 
2009) which provides a detailed coverage of image processing using MATLAB and in-
cludes functions that extend the IPT. These are provided for free as P-code format (no 
source or help available) or as M-fi les for purchase but are now quite dated.

The image processing search term at MATLAB CENTRAL http://www.mathworks.
com/matlabcentral/fileexchange lists thousands of fi les.

General Software Tools

There are many high quality software tools for image and video manipulation outside the 
MATLAB environment. OpenCV at http://opencv.org is a mature open-source computer 
vision software project with over 2 500 algorithms, interfaces for C++, C, Python and Java 
and runs on Windows, Linux, Mac OS, iOS and Android. There are now several books 
about OpenCV and Kaehler and Bradski (2016) is the second edition of a popular book 
that provides a good introduction to the software and to computer vision in general.

ImageMagick http://www.imagemagick.org is a cross-platform collection of librar-
ies and command-line tools for image format conversion (over 100 formats) and is use-
ful for batch operations on large sets of images.  For video manipulation FFmpeg http://
www.ffmpeg.org is an excellent and comprehensive cross-platform tool. It supports 
conversion between video formats as well as videos to still images and vice versa.

Table 12.2.
Summary of image processing
algorithms discussed in this 
chapter

�
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Exercises

1. Become familiar with  idisp for greyscale and color images. Explore pixel values 
in the image as well as the zoom, line and histogram buttons. Use iroi to extract 
the Mona Lisa’s smile.

2. Look at the histogram of greyscale images that are under, well and over exposed. 
For a color image look at the histograms of the RGB color channels for scenes with 
different dominant colors. Combine real-time image capture with computation and 
display of the histogram.

3. Create two copies of a greyscale image into workspace variables A and B. Write code 
to time how long it takes to compute the difference of A and B using the MATLAB 
shorthand A-B or using two nested for loops. Use the functions  tic and  toc to 
perform the timing.

4. Grab some frames from the camera on your computer or from a movie fi le and dis-
play them.

5. Write a loop that grabs a frame from your camera and displays it. Add some effects 
to the image before display such as “negative image”, thresholding, posterization, 
false color, edge fi ltering etc.

6. Given a scene with luminance of 800 nit and a camera with ISO of 1 000, q = 0.7 and 
f-number of 2.2 what exposure time is needed so that the average grey level of the 
8-bit image is 150?

7. Images from space, page 367
a) Obtain a map of the roads in your neighborhood. Use this to fi nd a path between 

two locations, using the robot motion planners discussed in Chap. 5.
b) For the images returned by the  EarthView function write a function to convert 

pixel coordinate to latitude and longitude.
c) Upload GPS track data from your phone and overlay it on a satellite image.

8. Motion detection
a) Modify the Traffi c example on page 375 and highlight the moving vehicles.
b) Write a loop that performs background estimation using frames from your cam-

era. What happens as you move objects in the scene, or let them sit there for a 
while? Explore the effect of changing the parameter σ .

c) Combine concepts from motion detection and chroma-keying to put pixels from 
the camera where there is motion into the desert scene.

9. Convolution
a) Compare the results of smoothing using a 21 × 21 uniform kernel and a Gaussian 

kernel. Can you observe the ringing artifact in the former?
b) Why do we choose a smoothing kernel that sums to one?
c) Compare the performance of the simple horizontal gradient kernel K = (−0.5 0 0.5) 

with the Sobel kernel.
d) Investigate fi ltering with the Gaussian kernel for different values of σ  and ker-

nel size.
e) Create a 31 × 31 kernel to detect lines at 60 deg.
f) Derive analytically the derivative of the Gaussian in the x-direction Eq. 12.4.
g) Derive analytically the Laplacian of Gaussian Eq. 12.8.
h) Derive analytically the difference of Gaussian from page 385.
i) Show the difference between difference of Gaussian and derivative of Gaussian.

10. Show analytically the effect of an intensity scale error on the SSD and NCC similar-
ity measures.

11. Template matching using the Mona Lisa image; convert it fi rst to greyscale.
a) Use  iroi to select one of Mona Lisa’s eyes as a template. The template should 

have odd dimensions.
b) Use  isimilarity to compute the similarity image. What is the best match 

and where does it occur? What is the similarity to the other eye? Where does the 
second best match occur and what is its similarity score?
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c) Scale the intensity of the Mona Lisa image and investigate the effect on the peak 
similarity.

d) Add an offset to the intensity of the Mona Lisa image and investigate the effect 
on the peak similarity.

e) Repeat steps (c) and (d) for different similarity measures such as SAD, SSD, rank 
and census.

f) Scale the template size by different factors (use iscale) in the range 0.5 to 2.0 
in steps of 0.05 and investigate the effect on the peak similarity. Plot peak simi-
larity vs scale.

g) Repeat (f ) for rotation of the template in the range −0.2 to 0.2 rad in steps 
of 0.05.

12. Perform the sub-sampling example on page 402 and examine aliasing artifacts 
around sharp edges and the regular texture of the roof tiles. What is the appropri-
ate smoothing kernel width for a decimation by M?

13. Write a function to create Fig. 12.35 from the output of ipyramid.
14. Create a warp function that mimics your favorite funhouse mirror.
15. Warp the image to polar coordinates (r, θ ) with respect to the center of the image, 

where the horizontal axis is r and the vertical axis is θ .

12.8  ·  Wrapping Up
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In the last chapter we discussed the acquisition and processing of images. 
We learned that images are simply large arrays of pixel values but for ro-
botic applications images have too much data and not enough informa-
tion. We need to be able to answer pithy questions such as what is the pose 
of the object? what type of object is it? how fast is it moving? how fast am I 
moving? and so on. The answers to such questions are measurements ob-
tained from the image and which we call  image  features. Features are the 
gist of the scene and the raw material that we need for robot control.

The image processing operations from the last chapter operated on 
one or more input images and returned another image. In contrast fea-
ture extraction operates on an image and returns one or more  image 
features. Features are typically scalars (for example area or aspect  ratio) 
or short vectors (for example the coordinate of an object or the param-

eters of a line). Image feature extraction is a necessary fi rst step in using image data 
to control a robot. It is an information concentration step that reduces the data rate 
from 106−108 bytes s−1 at the output of a camera to something of the order of tens of 
features per frame that can be used as input to a robot’s control system.

In this chapter we discuss features and how to extract them from images. Drawing 
on image processing techniques from the last chapter we will discuss several classes of 
 feature: regions, lines and interest points. Section 13.1 discusses region features which 
are contiguous groups of pixels that are homogeneous with respect to some pixel prop-
erty. For example the set of pixels that represent a red object against a nonred back-
ground. Section 13.2 discusses line  features which describe straight lines in the world. 
Straight lines are distinct and very common in man-made environments – for exam-
ple the edges of doorways, buildings or roads. The fi nal class of features are interest 
points which are discussed in Sect. 13.3. These are particularly distinctive  points in a 
scene which can be reliably detected in different views of the same scene.

It is important to always keep in mind that image features are a summary of the 
information present in the pixels that comprise the image, and that the mapping 
from the world to pixels involves significant information loss – the perspective 
projection discussed in Chap. 11. We typically counter this information loss by 
making assumptions based on our knowledge of the environment, but our sys-
tem will only ever be as good as the validity of our assumptions. For example, 
we might use image features to describe the position and  shape of a group of 
red pixels that correspond to a red object. However the size feature, typically the 
number of pixels, does not say anything about the size of the red object in the 
world – we need extra information such as the distance between the camera 
and the object, and the camera’s intrinsic parameters. We also need to assume 
that the object is not partially occluded – that would make the observed size less 
than the true size. Further we need to assume that the illumination is such that 
the chromaticity of the light reflected from the object is considered to be red. We 
might also find features in an image that do not correspond to a physical object 
– decorative markings, the strong edges of a shadow, or reflections in a window.

 Image  Feature Extraction
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13.1 
l
Region  Features

 Image  segmentation is the process of partitioning an image into application meaning-
ful regions as illustrated in Fig. 13.1. The aim is to segment or separate those pixels 
that represent objects of interest from all other pixels in the scene. This is one of the 
oldest approaches to scene understanding and while conceptually straightforward it 
is very challenging in practice. A key requirement is robustness which is how grace-
fully the method degrades as the underlying assumptions are violated, for example 
changing scene illumination or viewpoint.

Image segmentation is considered as three subproblems. The fi rst is  classifi ca-
tion which is a decision process applied to each pixel that assigns the pixel to one of 
C classes c ∈ {0� C − 1}. Commonly we use C = 2 which is known as  binary  classifi -
cation or  binarization and some examples are shown in Fig. 13.1a–c. The pixels have 
been classifi ed as object (c = 1) or not-object (c = 0) which are displayed as white 
or black pixels respectively. The classifi cation is always application specifi c – for ex-
ample the object corresponds to pixels that are bright or yellow or red or moving. 
Figure 13.1d is a multi-level classifi cation where C = 28 and the pixel’s class is refl ect-
ed in its displayed color.

The underlying assumption in the examples of Fig. 13.1 is that regions are homoge-
neous with respect to some characteristic such as brightness, color or texture. In prac-
tice we accept that this stage is imperfect and that pixels may be misclassifi ed – sub-
sequent processing steps will have to deal with this.

The second step in the segmentation process is representation where adjacent pixels 
of the same class are connected to form spatial sets S1 … Sm. The sets can be represent-
ed by assigning a set label to each pixel or by a list of pixel coordinates that defi nes the 
boundary of the connected set. In the third and fi nal step, the sets Si are described in 
terms of compact scalar or vector-valued  features such as size, position, and shape.

13.1.1   
l

Classification

The pixel class is represented by an integer c ∈ {0� C − 1} where C is the number 
of classes. In this section we discuss the problem of assigning each pixel to a class. 
In many of the examples we will use binary classifi cation with just two classes corre-
sponding to not-object and object, or background and foreground.

13.1.1.1 
l
Grey-Level  Classification

A common approach to binary classifi cation of pixels is the monadic  operator

where the decision is based simply on the value of the pixel I. This approach is called 
 thresholding and t is referred to as the  threshold. 

Thresholding is very simple to implement. Consider the image

>> castle = iread('castle.png', 'double'); 

which is shown in Fig. 13.2a. The thresholded image

>> idisp(castle >= 0.7) 

is shown in Fig. 13.2c. The pixels have been quite accurately classifi ed as corresponding 
to white paint or not. This classifi cation is based on the seemingly reasonable assump-
tion that the white paint objects are brighter than everything else in the image.

Fig. 13.1.
Examples of pixel classifi cation. 
The left-hand column is the in-
put image and the right-hand 
column is the classifi cation. The 
classifi cation is application spe-
cifi c and the pixels have been 
classifi ed as either object (white) 
or not-object (black). The ob-
jects of interest are a the indi-
vidual letters on the sign; b the 
yellow targets; c the red toma-
toes. d is a multi-level segmen-
tation where pixels have been 
assigned to 28 classes that rep-
resent locally homogeneous 
groups of pixels in the scene

�
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In the early days of computer vision, when computer power was limited, this ap-
proach was widely used – it was easier to contrive a world of white objects and dark 
backgrounds than to implement more sophisticated classifi cation. Many modern in-
dustrial vision inspection systems use this simple approach since it allows the use of 
modest embedded computers – it works very well if the objects are on a conveyor belt 
of a suitable contrasting color or in silhouette at an inspection station. In a real world 
robot environment we generally have to work a little harder in order to achieve use-
ful grey-level  classifi cation. An important question, and a hard one, is where did the 
threshold value of 0.7 come from? The most common approach is trial and error! The 
Toolbox function ithresh

>> ithresh(castle) 

displays the image and a threshold slider that can be adjusted until a satisfactory re-
sult is obtained. However on a day with different lighting condition the intensity pro-
fi le of the image would change

>> ithresh(castle*0.8) 

and a different threshold would be required.
A more principled approach than trial and error is to analyze the  histogram of the image

>> ihist(castle); 

which is shown in Fig. 13.2b. The  histogram has two clearly defi ned  peaks, a  bimodal  dis-
tribution, which correspond to two populations of pixels. The smaller peak around 0.9 
corresponds to the pixels that are bright and it has quite a small range of variation in 

Fig. 13.2. Binary classification. 
a Original image (image sourced 
from the ICDAR collection; Lucas 
2005); b histogram of greyscale 
pixel values, threshold values in-
dicated, Otsu in red; c binary clas-
sifi cation with threshold of 0.7; 
d binary classifi cation with Otsu 
threshold
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value. The wider and taller peak around 0.3 corresponds to pixels in the darker back-
ground of the sign and the bricks, and has a much larger variation in brightness.

To separate the two classes of pixels we choose the decision boundary, the threshold, 
to lie in the valley between the peaks. In this regard the choice of t = 0.7 is a good one. 
Since the valley is very wide we actually have quite a range of choice for the threshold, 
for example t = 0.75 would also work well. The optimal  threshold can be computed 
using  Otsu’s method

>> t = otsu(castle)
t =
    0.5898 

which separates an image into two classes of pixels in a way that minimizes the vari-
ance of values within each class and maximizes the variance of values between the 
classes – assuming that the histogram has just two peaks. Sadly, as we shall see, the 
real world is rarely this facilitating.

Consider a different image of the same scene which has a highlight

>> castle = iread('castle2.png', 'double'); 

and is shown in Fig. 13.3a. The histogram shown in Fig. 13.3b is similar – it is still bi-
modal – but we see that the peaks are wider and the valley is less deep. The pixel grey-
level populations are now overlapping and unfortunately for us no single threshold 
can separate them. Otsu’s method computes a threshold of

>> t = otsu(castle) 
t =
    0.5859

Fig. 13.3. Binary segmentation ex-
ample. a Grey-scale image with 
intensity highlight , b histogram, 
c thresholded with Otsu’s thresh-
old at 0.59, d thresholded at 0.75

13.1  ·  Region Features
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and the result of applying this threshold is shown in Fig. 13.3c. The pixel  classifi cation 
is poor and the highlight overlaps several of the characters. The result of using a higher 
threshold of 0.75 is shown in Fig. 13.3d – the highlight is reduced, but not completely, 
but some other characters are starting to break up.

Thresholding-based techniques are notoriously brittle – a slight change in illu-
mination of the scene means that the  thresholds we chose would no longer be 
appropriate. In most real scenes there is no simple mapping from pixel values 
to particular objects – we cannot for example choose a threshold that would 
select a motorbike or a duck. Distinguishing an object from the background re-
mains a hard computer vision problem.

One alternative is to choose a local rather than a global threshold. The  Niblack 
 algorithm is widely used in optical  character recognition systems and computes a 
local threshold

where W is a region about the point (u, v) and µ(·) and σ(·) are the mean and standard 
deviation respectively. The size of the window W is a critical parameter and should 
be of a similar size to the objects we are looking for. For this example we make an 
assumption about the scene, that the characters are approximately 50–70 pixels tall, 
to choose a window half-width of 30 pixels

>> t = niblack(castle, -0.1, 30);
>> idisp(t)  

where k = −0.1. The resulting local threshold t is shown in Fig. 13.4a. We apply the 
threshold pixel-wise to the original image

>> idisp(castle >= t) 

resulting in the classifi cation shown in Fig. 13.4b. All the pixels belonging to the let-
ters have been correctly classifi ed but compared to Fig. 13.3c there are many false 
positives – nonobject pixels classifi ed as objects. Later in this section we will discuss 
techniques to eliminate these false positives. Note that the classifi cation process is no 
longer a function of just the input pixel, it is now a complex function of the pixel and 
its neighbors. While we no longer need to choose t we now need to choose the param-
eters k and window size, and again this is usually a trial and error process that can be 
made to work well for a particular type of scene.

Fig. 13.4. Niblack thresholding. 
a The local threshold displayed as 
an image; b the binary segmen-
tation
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The results shown in Fig. 13.3c and d are disappointing at fi rst glance, but we see 
that every character object is correctly classifi ed at some, but not all, thresholds. In fact 
each object is correctly segmented for some range of thresholds and what we would 
like is the union of regions classifi ed over the range of all thresholds. The   maximally 
stable extremal region or MSER  algorithm does exactly this. It is implemented by the 
Toolbox function imser

>> [mser,nsets] = imser(castle, 'area', [100 20000]); 

and for this image

>> nsets
nsets =
    95

stable sets were found.� The other return value is an image

>> idisp(mser, 'colormap', 'jet') 

which is shown in Fig. 13.5 as a false color image. Each nonzero pixel corresponds to 
a stable set and the value is the label assigned to that stable set which is displayed as 
a unique color. All the character objects were correctly classifi ed. The  boundary has 
been partly misclassifi ed as background, and part of it has been joined to the brick 
texture on the right hand side of the image.

13.1.1.2 
l
Color  Classification

Color is a powerful cue for  segmentation but roboticists tend to shy away from using 
it because of the problems with color constancy discussed in Sect. 10.3.2. In this sec-
tion we consider two examples that use color images. The fi rst is a rather primitive 
 navigation target for an indoor UAV landing experiment

>> im_targets = iread('yellowtargets.png'); 

shown in Fig. 13.6a and the second from the MIT Robotic Garden project

>> im_garden = iread('tomato_124.jpg'); 

is shown in Fig. 13.7a. Our objective is to determine the centroids of the yellow tar-
gets and the red tomatoes respectively. The initial stages of processing are the same 
for each image but we will illustrate the process in detail for the image of the yellow 
targets as shown in Fig. 13.6.

Fig. 13.5.
Segmentation using   maximally 

stable extremal regions (MSER). 
The identifi ed regions are 

uniquely color coded

Although no explicit threshold has been 
given imser has a number of param-
eters and in this case their default values 
have given satisfactory results.  See the 
online documentation for details of the 
parameters.

13.1  ·  Region Features
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The Toolbox function  colorkmeans fi rst maps each color pixel to a point on the 
xy- or a*b*-chromaticity plane. Then the  k-means  algorithm is used to fi nd clusters of 
points on the plane and each cluster corresponds to a group of pixels with a distinguish-
able color. A limitation of the k-means algorithm is that we must specify the number 
of clusters to fi nd. We will use our knowledge that this particular scene has essentially 
two differently colored elements: yellow targets and grey fl oor, metal drain cover and 
shadows. The pixels are clustered into two chromaticity classes (C = 2) by

>> [cls, cab,resid] = colorkmeans(im_targets, 2, 'ab'); 

Fig. 13.6. Target image example. 
a Original image; b pixel classifi ca-
tion (C = 2) shown in false color; 
c cluster centers in the a*b*-chro-
maticity space; d all pixels of class 
c = 1; e after morphological open-
ing with a circular structuring ele-
ment (radius 2)
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We have specifi ed a*b*-chromaticity since Euclidean distance in this space, used by
k-means to determine the clusters, matches the human perception of difference be-
tween colors. The function returns the a*b*-chromaticity of the cluster centers

>> cab
cab =
   -0.8190    0.4783
   57.6140   -4.1910

as one column per cluster. We can plot these cluster centers on the a*b*-plane

>>  showcolorspace(cab, 'ab');

which is shown in Fig. 13.6c. We see that cluster 1 is the closest to yellow
>> colorname(cab(:,1), 'ab')
ans =
    'gold4' 

The residual
>> resid
resid =
   2.8897e+03

is the sum of the distance of every point from its assigned cluster centroid. Since the 
algorithm uses a random initialization we will obtain different clusters and classifi ca-
tion on every run, and therefore different residuals.�

The function  colorkmeans also returns the pixel  classifi cation which we can 
display as an image

>> idisp(cls, 'colormap', fl ag(2), 'bar') 

in false color� as shown in Fig. 13.6b. The pixels in this image have values c = {1, 2} in-
dicating which class the corresponding input pixels has been assigned to. We see that 
the yellow targets have been assigned to class c = 1 which is displayed as red.

k-means  clustering is computationally expensive and therefore not very well suit-
ed to real-time applications. However we can divide the process into a training phase 
and a classifi cation phase. In the training phase a number of example images would 
be concatenated and passed to colorkmeans which would identify the centers of 
the clusters for each class. Subsequently we can assign pixels to their closest cluster 
relatively cheaply

>> cls = colorkmeans(im_targets, cab, 'ab'); 

The pixels belonging to class 1 can be selected

>> cls1 = (cls == 1);

which is a logical image that can be displayed

>> idisp(cls1) 

as shown in Fig. 13.6d. All pixels of class 1 are displayed as white and correspond 
to the yellow targets in the original image. This binary image is a good classifica-
tion but there are a few minor imperfections: some rough edges, and some tiny 
holes.

A morphological  opening operation as discussed in Sect. 12.6 will eliminate these. 
We apply a symmetric structuring element of radius 2

>> targets_binary = iopen(cls1, kcircle(2));  

and the result is shown in Fig. 13.6e. It shows a clean binary  segmentation of the pix-
els into the two classes: target and not-target.

For the garden image we follow a very similar procedure. We classify the pixels into 
three clusters (C = 3) based on our knowledge that the scene contains: red tomatoes, 
green leaves, and dark background

One option is to run k-means a number 
of times, and take the cluster centers for 
which the residual is lowest.

We have specified a color map of length 2 
since we know there are only 2 possible 
pixel values.

13.1  ·  Region Features
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>> [cls, cab] =  colorkmeans(im_garden, 3, 'ab');
>> cab
cab =
  -16.3326   44.0622   -1.5073
   28.8824   26.7948    3.3873

The pixel classes are shown in false color in Fig. 13.7b. Pixels corresponding to the to-
mato have been assigned to class c = 2 which are displayed as white. The cluster cen-
ters are marked on the a*b*-chromaticity plane in Fig. 13.7c. The name of the color 
closest to cluster 2 is

Fig. 13.7. Garden image example.
a Original image (courtesy of Dis-
tributed Robot Garden project, 
MIT); b pixel classifi cation (C = 3) 
shown in false color; c cluster cen-
ters in the a*b*-chromaticity space 
d all pixels of class c = 2; e after 
morphological closing with a circu-
lar structuring element (radius 15)
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k-means clustering is an iterative algorithm for grouping n-dimensional points into k spatial  clusters. Each cluster is defi ned by a cen-
ter point which is an n-vector ci, i ∈ [1, k]. At each iteration all points are assigned to the closest cluster center, and then each cluster 
center is updated to be the mean of all the points assigned to the cluster.

The algorithm is implemented by the Toolbox function  kmeans. The distance metric used is Euclidean distance. The k-means algo-
rithm requires an initial estimate of the center of each cluster and this can be provided in various ways, see the documentation. By default  
kmeans randomly selects k of the provided points, and this means the algorithm will return different results at each invocation.

To demonstrate we choose 500 random 2-dimensional points

>> a = rand(2,500);

where a is a 2 × 500 matrix with one point per column. We will cluster this data 
into three sets

>> [cls,centre,r] = kmeans(a, 3); 

where cls is a 500-vector whose elements specify the class of the correspond-
ing column of a. center is a 2 × 3 matrix whose columns specify the center of 
each 2-dimensional cluster and r is the residual – the norm of the distance of 
every point from its assigned cluster centroid.

We plot the points in each cluster with different colors

>> hold on
>> for i=1:3
     plot( a(1,cls==i), a(2,cls==i), '.' );
   end

and it is clear that the points have been sensibly partitioned. The centroids cen-
ter have been superimposed as black dots.

>>  colorname(cab(:,2)', 'ab')
ans =
    'brown4'

The red pixels can be selected

>> cls2 = (cls == 2);

and the resulting logical image is shown in Fig. 13.7d.
This segmentation is far from perfect. Both tomatoes have holes due to specular re-

fl ection as discussed in Sect. 10.3.5. A few pixels at the bottom left have been erroneously 
classifi ed as a tomato. We can improve the result by applying a morphological  closing 
operation with a large circular  kernel which is consistent with the  shape of the tomato

>> tomatoes_binary = iclose(cls2, kcircle(15));

and the result is shown in Fig. 13.7e. The closing operation has somewhat restored the 
shape of the fruit but with the unwanted consequence that the group of misclassifi ed 
pixels in the bottom-left corner have been enlarged. Nevertheless this image contains 
a workable  classifi cation of pixels into two classes: tomato and not-tomato.

The garden image illustrates two common real-world imaging artifacts:  specular 
refl ection and  occlusion. The surface of the tomato is suffi ciently shiny and orient-
ed in such a way that the camera sees a refl ection of the room light – these pixels are 
white rather than red.� The top tomato is also partly obscured by leaves and branches. 
Depending on how the application works this may or may not be a problem. Since the 
tomato cannot be reached from the direction the picture was taken, because of the oc-
cluding material, it might in fact be appropriate to not classify this as a tomato.

These examples have achieved a workable classifi cation of the image pixels into 
object and not-object. The resulting groups of white pixels are commonly known as 
blobs. It is interesting to note that we have not specifi ed any threshold or any defi ni-
tion of the object color, but we did have to specify the number of classes and determine 
which of those classes corresponded to the objects of interest.� We have also had to 
choose the sequence of image processing steps and the parameters for each of those 
steps, for example, the radius of the structuring element. Pixel classifi cation is a dif-
fi cult problem but we can get quite good results by exploiting knowledge of the prob-
lem, having a good collection of image processing tricks, and experience.

Observe that they have the same chroma-
ticity as the black background, class 3 pix-
els, which are situated close to the white 
point on the a∗b∗-plane.

This is a relatively easy problem. The 
color of the object of interest is known 
(we could use the  colorname func-
tion to find it) so we could compute the 
distance between each cluster center and 
the color of interest by name and choose 
the cluster that is closest.

13.1  ·  Region Features
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13.1.2 
l
Representation

In the previous section we took greyscale or color images and processed them to pro-
duce binary or blob images. Representation is the subproblem of connecting adjacent 
pixels of the same class to form spatial sets S1 … Sm.

Consider the binary image

>> im = iread('multiblobs.png');

which is shown

>> idisp(im) 

in Fig. 13.8a. We quickly identify a number of white and black blobs in this scene but 
what defi nes a blob? It is a set of pixels of the same class that are connected to each 
other. More formally we could say a blob is a spatially contiguous region of pixels 
of the same class. Blobs are also known as  regions or  connected components.

The Toolbox can perform connected component or connectivity  analysis on this 
binary image  

>> [label, m] = ilabel(im);

The number of sets, or components, in this image is
>> m
m =
     11

comprising fi ve white blobs and six black blobs (the background and the holes). 
These blobs are labeled from 1 to 11. The returned label matrix has the same size 
as the original image and each element contains the label s ∈ {1�m} of the set to 
which the corresponding input pixel belongs. The label matrix can be displayed as 
an image� in false color

>> idisp(label, 'colormap', jet, 'bar') 

as shown in Fig. 13.8b. Each connected region has a unique label and hence unique 
color. Looking at the label values in this image, or by interactively probing the dis-
played label matrix using idisp, we see that the background has been labeled as 1, 
the leftmost blob is labeled 3, and its holes are labeled 5 and 7.

To obtain an image containing just a particular blob is now very easy. To select all 
pixels belonging to region 3 we create a logical image

>> reg3 = (label==3);
>> idisp(reg3) 

which is shown in Fig. 13.8c. The total number of pixels in this blob is given by the to-
tal number of true-valued pixels in this logical image

>> sum(reg3(:))
ans =
      171060

Specular highlights in images are refl ections of bright light sources and can complicate segmen-
tation as shown in Fig. 13.3.

As discussed in Sect. 10.3.5 the light refl ected by most real objects has two components: the 
specular surface refl ectance which does not change the spectrum of the light; and the diffuse body 
refl ectance which fi lters the refl ected light.

There are several ways to reduce the problem of specular highlights. Firstly, move or remove 
the problematic light source, or move the camera. Secondly, use a diffuse light source near the 
camera, for instance a ring illuminator that fi ts around the lens of the camera. Thirdly, attenu-
ate the specular refl ection using a polarizing fi lter since light that is specularly refl ected from a 
dielectric surface will be polarized.

We have seen a label image previous-
ly. The output of the MSER function in 
Fig. 13.5 is a label image.
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Connectivity  analysis can return additional output values

>> [label, m, parents, cls] = ilabel(im);

where the vector
>> parents'
ans =
   0    1    1    2    3    1   3    6    6    9    9

describes the topology or hierarchy of the regions. It indicates, for example, that the parent 
of region 4 is region 2� since region 4 is completely enclosed by region 2. The parent of re-
gions 2, 3 and 5 is region 1 which is the background. Region 1 has a parent of 0 indicating 
that it touches the edge of the image and is not enclosed by any region. Each connected 
region contains pixel values of a single class and the pixel class for each region is given by

>> cls'
ans =
    0    1    1    0    0    1    0    0    0    1    1

which indicates that regions 2, 3, 6, 10 and 1 comprise pixels of class 1 (white) and re-
gions 1, 4, 5, 7, 8 and 9 comprise pixels of class 0 (black).�

In this example we have assumed 4-way connectivity, that is, pixels are connected 
within a region only through their north, south, east and west neighbors of the same 
class. The 8-way connectivity option allows connection via any of a pixel’s eight neigh-
bors of the same class.�

Returning now to the examples from the previous section. For the colored targets

>> targets_label = ilabel(targets_binary);
>> idisp(targets_label, 'colormap', 'jet'); 

Fig. 13.8. Image labelling exam-
ple. a Binary image; b labeled im-
age; c all pixels with the label 3

We use the variable name cls  rath-
er than class since the latter is the 
name of a useful function in MATLAB.

8-way connectivity can lead to surprising 
results. For example a black and white 
chequerboard would have just two re-
gions; all white squares are one region 
and all the black squares another.

13.1  ·  Region Features

Element 4 of this array is equal to 2.
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and the garden image

>> tomatoes_label = ilabel(tomatoes_binary);
>> idisp(tomatoes_label, 'colormap', 'jet'); 

the connected regions are shown in false color in Fig. 13.9. We are now starting to 
know something quantitative about these scenes: there are four yellow objects and 
three red objects respectively.

13.1.2.1 
l

Graph-Based  Segmentation

So far we have classifi ed pixels based on some homogeneous characteristic of the ob-
ject such as intensity or color. Consider now the complex scene

>> im = iread('58060.jpg'); 

shown in Fig. 13.10a. The  Gestalt  principle of emergence says that we identify objects as 
a whole rather than as a collection of parts – we see a bowl of grain rather than deducing 
a bowl of grain by recognizing its individual components. However when it comes to 
a detailed pixel by pixel segmentation things become quite subjective – different peo-
ple would perform the segmentation differently based on judgment calls about what 
is important.� For example, should the colored stripes on the cloth be segmented? If 
segments represent real world objects, then the Gestalt view would be that the cloth 
should be just one segment. However the stripes are real, some effort was made to cre-
ate them, so perhaps they should be segmented. This is why segmentation is a hard 
problem – humans cannot agree on what is correct. No computer algorithm could, or 
could be expected to, make this type of judgment.

Nevertheless more sophisticated algorithms can do a very impressive job on complex 
real world scenes. The image can be represented as a  graph (see Appendix I) where each 
pixel is a vertex and has 8 edges connecting it to its neighboring pixels. The weight of each 
edge is a nonnegative measure of the dissimilarity between the two pixels – the absolute 
value of the difference in color. The algorithm starts with every vertex assigned to its own 
set. At each iteration the edge weights are examined and if the vertices are in different sets 
but the edge weight is below a threshold the two vertex sets are merged. The threshold is a 
function of the size of the set and a global parameter k which sets the scale of the segmen-
tation – a larger value of k leads to a preference for larger  connected components.

For the image discussed the graph-based segmentation is given by
>> [label, m] = igraphseg(im, 1500, 100, 0.5);
>> m
m =
    28
>> idisp(label, 'colormap', 'jet')  

Fig. 13.9. Label images for the tar-
gets and garden examples in false 
color. The value of each pixel is 
the label of the spatially contigu-
ous set to which the correspond-
ing input pixel belongs

The Berkeley segmentation site http://
www.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds hosts these im-
ages plus a number of different human-
made segmentations.
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where label is a matrix, shown in Fig. 13.10b, whose elements are the region label 
for the corresponding input pixels. The pixel classifi cation step has been integrated 
into the representation step. The arguments are a scale parameter k = 1 500, the mini-
mum component size of 100 pixels, and the standard deviation for an initial  Gaussian 
smoothing applied to the image.

13.1.3 
l
Description

In the previous section we learned how to fi nd connected components in the image 
and how to isolate particular components such as shown in Fig. 13.8c. However this 
representation of the component is still just an image with logical pixel values rather 
than a concise description of its size, position and shape.

13.1.3.1 
l
Bounding Boxes

The simplest representation of size and shape is the  bounding box – the smallest 
rectangle with sides parallel to the u- and v-axes that encloses the region.  We will 
illustrate this with a simple binary image

>> sharks = iread('sharks.png');

which is shown in Fig. 13.11a. As described above we will label the pixels and select 
all those belonging to region 2

>> [label, m] = ilabel(sharks);
>> blob = (label == 2);

and the resulting logical image is shown in Fig. 13.11b. The number of pixels in this 
region is simply the sum

>> sum(blob(:))
ans =
    7728

The coordinates of all the nonzero (object) pixels are the corresponding elements 
of

>> [v,u] = fi nd(blob);

where u and v are each vectors of size

>> about(u)
u [double] : 7728x1 (61.8 kB) 

Fig. 13.10. Complex segmenta-
tion example. a Original color 
image (image from the Berkeley 
Segmentation Dataset; Martin et al. 
2001); b graph-based segmentation

13.1  ·  Region Features
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The bounds of the region� are

>> umin = min(u)
umin =
   443
>> umax = max(u)
umax =
   581
>> vmin = min(v)
vmin =
   125
>> vmax = max(v)
vmax =
   235

These bounds defi ne a rectangle which we can superimpose on the image

>>   plot_box(umin, vmin, umax, vmax, 'g')

as shown in Fig. 13.11b. The bounding box fi ts snugly around the blob and its cen-
ter could be considered as the center of the blob. However the bounding box is not 
aligned with the blob, that is, its sides are not parallel with the sides of the blob. This 
means that as the blob rotates the size and shape of the bounding box would change 
even though the size and shape of the blob does not.

13.1.3.2 
l
Moments

 Moments are a rich and computationally cheap class of image  features which can de-
scribe region size and location as well as shape. The moment of an image I is a scalar

 (13.1)

where (p + q) is the order of the moment. The zeroth moment p = q = 0 is

 (13.2)

and for a binary image where the background pixels are zero this is simply the num-
ber of nonzero (white) pixels – the  area of the region.

Moments are calculated using the Toolbox function  mpq and for the single shark 
the zeroth moment is

Fig. 13.11. a Sharks image. b Re-
gion 2 with bounding box (green)

This can be obtained more simply using 
the Toolbox function  ibbox.
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>> m00 =  mpq(blob, 0, 0)
m00 =
        7728

which is the area of the region in units of pixels.
Moments can be given a physical interpretation by regarding the image function as 

a mass distribution. Consider the region as being made out of thin plate where each 
pixel has one unit of area and one unit of mass. The total mass of the region is m00 and 
the center of mass or centroid of the region is

 (13.3)

where m10 and m01 are the fi rst-order moments. For our example the  centroid of the 
target region is

>> uc = mpq(blob, 1, 0) / m00
uc =
  503.4981
>> vc = mpq(blob, 0, 1) / m00
vc =
  184.7285  

which we can display

>> hold on; plot(uc, vc, 'gx', uc, vc, 'go');

as shown in Fig. 13.11b.
The  central moments µ pq are computed with respect to the centroid

 (13.4)

and are invariant to the position of the region. They are related to the moments mpq by

 (13.5)

and are computed by the Toolbox function  upq.
Using the thin plate analogy again, the inertia of the region about axes parallel to 

the u- and v-axes and intersecting at the centroid of the region  is given by the sym-
metric matrix

 (13.6)

The central second moments µ 20, µ 02 are the  moments of inertia and µ 11 is the  prod-
uct of inertia. The product of inertia is nonzero if the shape is asymmetric with re-
spect to the region’s axes.

The  equivalent  ellipse is the ellipse that has the same inertia matrix as the region. 
For our example

>> u20 = upq(blob, 2, 0); u02 = upq(blob, 0, 2); u11 = upq(blob, 1, 1);
>> J = [ u20 u11; u11 u02]
J =
   1.0e+06 *
    7.8299   -2.9169
   -2.9169    4.7328   

and we can superimpose the equivalent ellipse over the region
>> plot_ellipse(4*J/m00, [uc, vc], 'b');

and the result is shown in Fig. 13.12.

13.1  ·  Region Features
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The  eigenvalues and  eigenvectors of J are related to the radii of the ellipse and the 
orientation of its major and minor axes (see Sect. C.1.4). For this example the ei-
genvalues

>> lambda = eig(J)
lambda =
   1.0e+06 *
    2.9788
    9.5838

are the  principal moments of the region. The maximum and minimum radii of the 
equivalent  ellipse are

 (13.7)

respectively where λ2 ≥ λ1. In MATLAB this is�

>> a = 2 *  sqrt(lambda(2) / m00)
a =
   70.4313
>> b = 2 * sqrt(lambda(1) / m00)
b =
   39.2663

in units of pixels. These lengths are characteristic of this particular shape and are in-
variant to rotation. The  aspect  ratio of the region

>> b/a
ans =
    0.5575

is a scalar that crudely characterizes the shape and is invariant to scale and rotation. 
The eigenvectors of J are the  principal axes of the ellipse – the directions of its ma-

jor and minor axes. The major, or principal, axis is the eigenvector v corresponding 
to the maximum eigenvalue. For our example this is

>> [x,lambda] = eig(J);
>> x
x =
   -0.5153   -0.8570
   -0.8570    0.5153

and since MATLAB returns eigenvalues in increasing order v is always the last column 
of the returned eigenvector matrix

>> v = x(:,end);

Fig. 13.12. Sharks image. a Equiv-
alent ellipse (blue), centroid and 
bounding box (green) for region 2 
of the targets image; b zoomed 
view

MATLAB returns eigenvalues in increas-
ing order: λ1 then λ2.
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The angle of this vector with respect to the horizontal axis is 

and for our example this is
>> atand( v(2)/v(1) )
ans =
  -31.0185

degrees which indicates that the major axis of the equivalent ellipse is approximately 
30 degrees above horizontal.�

To summarize, we have created an image containing a spatially contiguous set of 
pixels corresponding to one of the objects in the scene that we segmented from the 
original color image. We have determined its area, a box that entirely contains it, its 
position (the location of its centroid), its orientation and its shape ( aspect  ratio). The 
equivalent  ellipse is a crude indicator of the region’s shape but it is invariant to chang-
es in position, orientation and scale. The invariance of the different blob descriptors 
to camera motion is summarized in Table 13.1.

13.1.3.3 
l
Blob  Features

The Toolbox provides a simpler way to perform the functions described above
>> f = imoments(blob)
f =
area=7728, cent=(503.5,184.7), theta=-0.54, b/a=0.558  

which returns a  RegionFeature object that contains many features describing this 
region including its area, its centroid, orientation and aspect ratio – the ratio of its mini-
mum to maximum radius. These values are available as object properties, for example

>> f.uc
ans =
  503.4981
>> f.theta
ans =
   -0.5414
>> f.aspect
ans =
    0.5575   

along with the zeroth- and fi rst-order moments and the second-order central moments
>> f.moments.m00
ans =
        7728
>> f.moments.u11
ans =
  -2.9169e+06  

Table 13.1.
Region features and their invari-
ance to camera motion: transla-
tion, rotation about the object’s 

centroid and scale factor

13.1  ·  Region Features

With reference to Fig. C.2b the angle in-
creases clockwise from the horizontal 
since the y-axis of the image is down-
ward so the z-axis is into the page.
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The Toolbox provides a high-level function to compute features for every region in 
the image

>> fv = iblobs(targets_binary)
fv =
(1) area=14899, cent=(298.0,181.0), theta=1.48, b/a=0.702,	
 color=1, label=1, touch=0, parent=4 
(2) area=7728, cent=(503.5,184.7), theta=-0.54, b/a=0.558,	
 color=1, label=2, touch=0, parent=4 
(3) area=7746, cent=(84.2,160.7), theta=0.50, b/a=0.558,	
 color=1, label=3, touch=0, parent=4   
(4) area=258946, cent=(306.7,252.9), theta=0.05, b/a=0.831,	
 color=0, label=4, touch=1, parent=0
(5) area=18814, cent=(246.8,426.9), theta=-0.02, b/a=0.559,	
 color=1, label=5, touch=0, parent=4  

which returns a vector fv of RegionFeature objects. The display method shows a 
summary of the region’s properties and the number in parentheses indicates the index 
within the vector. Each  RegionFeature object contains the area, bounding box, 
centroid, raw and central moments, and equivalent ellipse parameters as returned by 
 imoments as well as additional properties such as the class of the pixels within the 
region, the region label, the label of the parent region and whether or not the blob 
touches the edge.� We can tell that region 4 is the background since it is large, com-
prises zero valued pixels and touches the edge of the image.

Some examples of the properties of this class are

>> fv(2).umin
ans =
   443
>> fv(3).class
ans =
     1
>> fv(3).parent
ans =
           4
>> fv(3).umin
ans =
    24
>> fv(3).aspect
ans =
    0.5580

The  RegionFeature class also has plotting methods such as

>> fv(2). plot_box('g')

which overlays the bounding box of feature fv(2), in green, on the current plot. Other 
plot methods include  plot_centroid and  plot_ellipse. All methods add to the 
current plot and can operate on a single object or a vector of objects, for example

>> fv.plot_box('r:') 

overlays the bounding box, in dotted red, for all blobs in fv.
The  children property is the inverse mapping of the parent property. It is a 

list of indices into the  feature vector of RegionFeature objects which are children 
of this feature.  For example the background blob, fv(4), has as its children

>> fv(4).children
ans =
     1     2     3     5

blobs fv(1), fv(2), fv(3) and fv(5).
Importantly the function iblobs can perform fi ltering. For the tomato image 

(page 423) we might know something about the minimum and/or maximum size of a 
tomato so we can set bounds on the possible area

This calculation assumes that pixels 
are square and this is almost always 
the case with digital cameras. If not the 
'aspect' option should be provid-
ed to iblobs to define a nonunity 
pixel  aspect ratio which is pixel height 
over pixel width.
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>> fv = iblobs(tomatoes_binary, 'area', [1000, 5000])
fv =
(1) area=1529, cent=(132.6,132.9), theta=-0.36, b/a=0.866,	
 color=1, label=2, touch=0, parent=1
(2) area=3319, cent=(95.5,210.9), theta=-0.33, b/a=0.886,	
 color=1, label=4, touch=1, parent=0  

which returns only blobs with an area between 1 000 and 5 000 pixels. Other fi lter pa-
rameters include  aspect ratio and edge touching, and more details are provided in 
the online documentation. For the tomato image we might wish to accept only blobs 
that do not touch the edge

>> fv = iblobs(tomatoes_binary, 'touch', 0)
fv =
(1) area=1529, cent=(132.6,132.9), theta=-0.36, b/a=0.866,	
 color=1, label=2, touch=0, parent=1 

The fi lter rules can also be cascaded, for example

>> fv = iblobs(tomatoes_binary, 'area', [1000, 5000], 'touch',	
 0, 'class', 1)
fv = 
(1) area=1529, cent=(132.6,132.9), theta=-0.36, b/a=0.866,	
 color=1, label=2, touch=0, parent=1 

and a blob must pass all rules in order to be accepted. 

13.1.3.4  
l
Shape from Moments

In order to recognize particular objects we need some measures of shape that are in-
variant to the rotation and scale of the image and provide more detail than the simple 
aspect ratio parameter.

For the case of planar objects, which are  fronto-parallel to the camera, complex ratios 
of moments can be used to form a vector of invariants for recognition of planar objects 
irrespective of position, orientation and scale. For example the image of Fig. 13.11a has 
three similarly shaped regions and one that is different

>> [fv,L] = iblobs(sharks, 'class', 1);
>> fv =
(1) area=14899, cent=(298.0,181.0), theta=1.48, b/a=0.702,	
 color=1, label=1, touch=0, parent=4 
(2) area=7728, cent=(503.5,184.7), theta=-0.54, b/a=0.558,	
 color=1, label=2, touch=0, parent=4 
(3) area=7746, cent=(84.2,160.7), theta=0.50, b/a=0.558,	
 color=1, label=3, touch=0, parent=4   
(4) area=18814, cent=(246.8,426.9), theta=-0.02, b/a=0.559,	
 color=1, label=5, touch=0, parent=4

and from the aspect ratio parameter b/a we see that blob 1 is different to blobs 2, 3 
and 4. The second output argument is the label matrix and the moment invariants for 
the four white blobs can be computed by

>> for i=1:4
    H(i,:) = humoments(L == fv(i).label);
   end
>> H
H =
    0.4544    0.0238    0.0006    0.0000    0.0000   -0.0000   -0.0000
    0.2104    0.0122    0.0020    0.0006    0.0000    0.0001    0.0000
    0.2101    0.0122    0.0020    0.0006    0.0000    0.0001    0.0000
    0.2102    0.0121    0.0020    0.0006    0.0000    0.0001    0.0000

which indicate the similarity of blobs 2, 3 and 4 despite their different position, ori-
entation and scale.� It also indicates the difference in shape of blob 1. This  shape de-
scriptor can be considered as a point in 7-dimensional space, and similarity to other 
shapes can be defi ned in terms of Euclidean distance in this descriptor space.

In practice the discrete nature of the pix-
el data means that the  invariance will 
only be approximate.

13.1  ·  Region Features
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13.1.3.5  
l
Shape from  Perimeter

The shape of a region is concisely described by its  boundary or perimeter pixels 
– sometimes called edgels. Figure 13.13 shows three common ways to represent the 
perimeter of a region – each will give a slightly different estimate of the perimeter 
length. A chain code is a list of the outermost pixels of the region whose center’s 
are linked by short line segments. In the case of a 4-neighbor chain code the suc-
cessive pixels must be adjacent and the perimeter segments have an orientation 
of k × 90°, where k ∈ {0� 3}. With an 8-neighbor chain code, or  Freeman chain 
code, the perimeter segments have an orientation of k × 45°, where k ∈ {0� 7}. 
The  crack code has its segments in the cracks between the pixels on the edge of 
the region and the pixels outside the region. These have orientations of k × 90°, 
where k ∈ {0� 3}.

The perimeter can be encoded as a list of pixel coordinates (ui, vi) or very com-
pactly as a bit string using just 2 or 3 bits to represent k for each segment. These 
various representations are equivalent and any representation can be transformed 
to another.

Note that for chain codes the boundary follows a path that is on average half 
a pixel inside the true boundary and therefore underestimates the perimeter 
length. The error is most significant for small regions.

To enable the extra computation to trace around the boundary of the objects using 
8-neighbor chain code we must give the  'boundary' option

>> fv = iblobs(sharks, 'boundary', 'class', 1);
>> fv(1)
ans = 
(1) area=14899, cent=(298.0,181.0), theta=1.48, b/a=0.702,	
 class=1, label=1, touch=0, parent=4, perim=1236.4, circ=0.136 

 Moment invariants. The  normalized  moments

 (13.8)

are invariant to translation and scale, and are computed from 
the central moments by the Toolbox function  npq.

Third-order moments allow for the creation of quan-
tities that are invariant to translation, scale and orienta-
tion within a plane. One such set of moments defi ned by 
Hu (1962) are

and computed by the Toolbox function  humoments.

and we see that two extra parameters are now displayed: 
perim and circ which are perimeter length and  circu-
larity respectively. The boundary is a list of edge points 
represented as a matrix with one column per edge point. 
In this case there are

>> about(fv(1).edge)
 [double] : 2x1085 (17.4 kB)

1 085 edge  points and the fi rst fi ve points of the boundary are
>> fv(1).edge(:,1:5)
ans =
   285   284   283   282   281
    71    72    72    72    72

The displayed perimeter length of 1236.4 has had a 
heuristic correction applied to compensate for the under-
estimation due to chain coding.

The boundary can be overlaid on the current plot using 
the object’s  plot_boundary method

>> fv(1).plot_boundary('r')

in this case as a red line. The plotting methods can also be 
invoked on a  feature vector

>> idisp(sharks)
>> fv.plot_boundary('r')
>> fv.plot_centroid()   

which is shown in Fig. 13.14.
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 Circularity is another commonly used and intuitive shape  feature. It is defi ned as

 (13.9)

where p is the region’s perimeter length. Circularity has a maximum value of ρ = 1 
for a circle, is ρ = ý for a square and zero for an infi nitely long line. Circularity is also 
invariant to translation, rotation and scale. In the results of iblobs shown above we 
note that the circularity measure is the same for blobs 2, 3 and 4, and much lower for 
blob 1 due to it being effectively a long line.�

Every object has one external boundary, which may include a section of the image 
border if the object touches the border. An object with holes has one internal boundary 
per hole but the Toolbox returns only the external boundary – the inner boundaries can 
be found as the external boundaries of the holes which are its  child regions. Since the 
external boundary contains all the essential information about the shape of a region it 
is possible, assuming that the region has no holes, to compute the moments from the 
boundary using the functions  mpq_poly,  upq_poly and  npq_poly.

One way to analyze the rich shape information encoded in the perimeter is to com-
pute the distance and angle to every perimeter  point with respect to the object’s cen-
troid – this is computed by the boundary  method

>> [r,th] = fv(2).boundary;
>> plot([r th])

and is shown in Fig. 13.15a. These are computed for 400 points (default) evenly spaced 
along the entire perimeter of the object. Both the radius and angle signatures describe 
the  shape of the object. The angle signature is invariant to the scale of the object while 

�
Fig. 13.13. Boundary representa-
tions with region pixels shown in 
grey, perimeter segments shown 
in blue and the center of bound-
ary pixels marked by a red dot. 
a Chain code with 4 directions; 
b Freeman chain code with 8 di-
rections; c crack code. The perim-
eter lengths for this example are 
respectively 14, 12.2 and 18 pixels

Fig. 13.14.
Boundaries (red) and centroids 

of four blobs

13.1  ·  Region Features

For small blobs, quantization effects can 
lead to significant errors in circularity.
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the amplitude of the radius signature scales with object size. The radius signatures of 
all four blobs can be compared by

>> hold on
>> for f=fv
     [r,t] = f.boundary();
     plot(r/sum(r));
   end

and are shown in Fig. 13.15b. We have normalized by the sum in order to remove the 
effect of object scale.� The signatures are a function of normalized distance along the 
perimeter. They all start at the top left-most pixel on the object’s boundary. Different 
objects of the same shape have identical signatures but possibly shifted horizontally and 
wrapped around – the fi rst and last points in the horizontal direction are adjacent.

To compare the shape profi le of objects requires us to compare the signature for 
all possible horizontal shifts. The radius signatures of all four blobs is

>> b = fv.boundary

which is a 400 × 4 matrix with the radius signatures as columns. To compare the sig-
nature of blob 2 with all the signatures

>> RegionFeature.boundmatch(b(:,2), b)
ans =
    0.6494    1.0000    0.9854    0.9927 

which indicates that the shape of blob 2 closely matches the shape of itself and blobs 3 
and 4, but not the shape of blob 1. The static method boundmatch  computes the 
1-dimensional normalized cross correlation, see Table 12.1, for every possible rotation 
of one signature with respect to the other, and returns the highest value.

There are many variants to the approach described. The signature can be Fourier 
transformed and described more concisely in terms of a few Fourier  coeffi cients. The 
boundary  curvature can be computed which highlights corners, or the boundary can 
be segmented into straight lines and arcs.

13.1.3.6  
l

Character Recognition  

A particularly important class of objects are characters. Our world is fi lled with in-
formative text in the form of signs and labels which provides information about the 
names of places and directions to travel. We process much of this unconsciously but 
this rich source of information is largely unavailable to robots.

If you have the Computer Vision System Toolbox™ you can access the inbuilt opti-
cal character recognition functionality. We start with the image of a sign we have used 

Fig. 13.15. Radius signature match-
ing. a Radius and angle signa-
ture for blob 2 (top left shark in 
Fig. 13.14), b normalized radius 
signatures for all blobs (letter S 
is shown dashed)

We could have normalized by the maxi-
mum value but normalizing by the sum 
is more noise tolerant.
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previously and apply OCR to a region of interest specifi ed as (u, v, w, h) where (u, v) 
are the coordinates of the top-left of region

>> castle = iread('castle.png');
>> words = ocr(castle, [420 300 580 420]); 

which returns a structure. The recognized words are

>> words.Text
ans =
Tourist
information
Castle

and its confi dence about those words is
>> words.WordConfi dences'
ans =
    0.8868    0.7884    0.8588

We can highlight the location of the words in the original image by

>>  plot_box('matlab', words.WordBoundingBoxes, 'y') 

with the result shown in Fig. 13.16. This function does require a reasonable estimate 
of the region in which the text is to be found.

13.1.4 
l

Summary

We have discussed how to convert an input image, grey scale or color, into concise de-
scriptors of regions within the scene. The criteria for what constitutes a region is ap-
plication specifi c. For a tomato picking robot it would be round red regions, for land-
ing a UAV it might be yellow targets on the ground.

The process outlined is the classical bottom up approach to machine vision appli-
cations and the key steps are:

1. Classifying the pixels according to the application specifi c criterion, for example, 
redness, yellowness or motion. Each pixel is assigned a class c.

2. Grouping adjacent pixels of the same class into sets, and each pixel is assigned a 
label S indicating the set to which it has been assigned.

3. Describing the sets in terms of features derived from their spatial extent, moments, 
equivalent ellipse and boundary.

These steps are a progression from low-level to high-level. The low-level operations 
consider pixels in isolation, whereas the high-level is concerned with more abstract 

Fig. 13.16.
Optical character recognition. 

The bounding boxes of detected 
words are shown in yellow. The 
manually set region of interest 

within which to search for text is 
shown as a dashed red box

13.1  ·  Region Features



438 Chapter 13  ·  Image Feature Extraction

concepts such as size and shape. The MSER and graphcuts   algorithms are powerful be-
cause they combines steps 1 and 2 and consider regions of pixels and localized differ-
ences in order to create a segmentation.

Importantly none of these steps need be perfect. Perhaps the fi rst step has some false 
positives, isolated pixels misclassifi ed as objects, that we can eliminate by morphologi-
cal operations, or reject after connectivity  analysis based on their small size. The fi rst 
step may also have false negatives, for example specular refl ection and occlusion may 
cause some object pixels to be classifi ed incorrectly as non-object. In this case we need 
to develop some heuristics, for instance morphological processing to fi ll in the gaps in 
the blob. Another option is to oversegment the scene – increase the number of regions 
and use some application-specifi c knowledge to merge adjacent regions. For example a 
specular refl ection colored region might be merged with surrounding regions to create 
a region corresponding to the whole fruit.

For some applications it might be possible to engineer the camera position and illu-
mination to obtain a high quality image but for a robot operating in the real world this 
luxury does not exist. A robot needs to glean as much useful information as it can from 
the image and move on.

Domain knowledge is always a powerful tool. Given that we know the scene con-
tains tomatoes and plants, the fact that we observe a large red region that is not cir-
cular, we use our domain knowledge to infer that the fruit is occluded. We therefore 
might command the robot to seek the fruit that is not occluded, and then to move to 
another location where the fruit might not be occluded. Object segmentation remains 
one of the hardest aspects of machine vision and there is no silver bullet. It requires 
knowledge of image formation, fundamental image processing algorithms, insight, a 
good box of tools and patience.

13.2  
l
Line  Features

Lines are distinct visual features that are particularly common in man-made environ-
ments – for example the edges of roads, buildings and doorways. In Sect. 12.5.1.3 we 
discussed how image intensity  gradients can be used to fi nd edges within an image, 
and this section will be concerned with fi tting line segments to such edges.

We will illustrate the principle using the very simple scene

>> im = iread('5points.png', 'double'); 

shown in Fig. 13.17a. Consider any one of these points – there are an infi nite num-
ber of lines that pass through that point. If the point could vote for these lines, then 
each possible line passing through the point would receive one vote. Now consider 

Fig. 13.17. Hough transform fun-
damentals. a Five points that de-
fi ne six lines; b the Hough accu-
mulator array. The horizontal axis 
is an angle θ ∈ S1 so we can imag-
ine the graph wrapped around a 
cylinder and the left- and right-
hand edges joined. The sign of ρ 
also changes at the join so the 
curve intersections on the left- and 
right-hand edges are equivalent
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another point that does the same thing, casting a vote for all the possible lines that 
pass through it. One line (the line that both points lie on) will receive a vote from 
each point – a total of two votes – while all the other possible lines receive either 
zero or one vote.

We want to describe each line in terms of a minimum number of parameters but the 
standard form v = mu + c is problematic for the case of vertical lines where m = ∞. 
Instead it is common to represent lines using the (ρ, θ ) parameterization shown in 
Fig. 13.18

 (13.10)

where θ ∈ [−ü, ü) is the angle from the horizontal axis to the line, and ρ ∈ [−ρmin, ρmax] 
is the perpendicular distance between the origin and the line. A horizontal line has 
θ = 0 and a vertical line has θ = −ü. Any line can therefore be considered as a point 
(θ , ρ) in the 2-dimensional space of all possible lines.

It is not practical to vote for one out of an infi nite number of lines through each 
point, so we consider lines drawn from a fi nite set. The θ ρ-space is quantized and a 
corresponding Nθ × Nρ array A is used to tally the votes – the accumulator array. For 
a W × H input image

The array A has Nρ elements spanning the interval ρ ∈ [−ρmax, ρmax] and Nθ elements 
spanning the interval θ ∈ [−ü, ü). The indices of the array are integers (i, j) ⊂ Z2 
such that

An edge point (u, v) votes for all lines that satisfy Eq. 13.10 which is all (i, j) pairs 
for which

 (13.11)

and the elements A[i, j] are all incremented. For every i ∈ [1, Nθ] the corresponding value 
of θ  is computed, then ρ is computed according to Eq. 13.11 and mapped to a correspond-
ing integer j. Every edge  point adds a vote to Nθ elements of A that lie along a curve.

Fig. 13.18.
(θ , ρ ) parameterization for two 
line segments. Positive quanti-
ties are shown in blue, negative 

in red

13.2  ·  Line Features
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At the end of the process those elements of A with the largest number of votes 
correspond to dominant lines in the scene. For the example of Fig. 13.17a the result-
ing accumulator array is shown in Fig. 13.17b. Most of the array contains zero votes 
(dark blue) and the light curves are trails of single votes corresponding to each of the 
fi ve input points. These curves intersect and those points correspond to lines with 
more than one vote. We see four locations where two curves intersect, resulting in 
cells with two votes, and these correspond to the lines joining the four outside points 
of Fig. 13.17a. The horizontal axis represents angle θ ∈ S1 so the left- and right-hand 
ends are joined and ρ  changes sign – the curve intersection points on the left- and 
right-hand sides of the array are equivalent. We also see two locations where three 
curves intersect, resulting in cells with three votes, and these correspond to the di-
agonal lines that include the middle point of Fig. 13.17a. This technique is known as 
the  Hough� transform.

Consider the more complex example of a solid square rotated counter-clockwise 
by 0.3 rad

>> im = testpattern('squares', 256, 256, 128);
>> im = irotate(im, -0.3);  

We compute the edge points

>> edges = icanny(im); 

which are shown in Fig. 13.19a. The Hough transform is computed by

Fig. 13.19. Hough transform for 
a rotated square. a Edge image; 
b Hough accumulator; c closeup 
view of the Hough accumulator; 
d estimated lines overlaid on the 
original image

Pronounced “huff”.
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>> h = Hough(edges)
Hough: nd=401, ntheta=400, interp=3x3, distance=1 

and returns an instance of the Hough class. Its properties include the two-dimen-
sional vote accumulator array A with nd rows and ntheta columns. By default the 
θ ρ-plane is quantized into 401 ×400 bins.� The accumulator array can be visualized 
as an image

>> h.show(); 

which is shown in Fig. 13.19b. The four bright spots correspond to dominant edges 
in the input image. We can see that many other possible lines have received a small 
number of votes as well.

The next step is to fi nd the peaks in the accumulator array

>> lines = h.lines()
lines =
theta=0.298527, rho=224.412, strength=1
theta=0.306267, rho=96.2507, strength=0.962963
theta=-1.27224, rho=-20.1637, strength=0.874074
theta=-1.28026, rho=-150.256, strength=0.837037
theta=0.282667, rho=94.1344, strength=0.785185
theta=-1.25683, rho=-146.799, strength=0.77037
theta=0.318101, rho=226.064, strength=0.718519
theta=0.278998, rho=222.699, strength=0.703704
theta=-1.25286, rho=-17.337, strength=0.666667
theta=0.325784, rho=97.7635, strength=0.562963
theta=-1.29514, rho=-23.7157, strength=0.503704

which returns a vector of  LineFeature objects corresponding to the lines with the 
most votes, as well as the number of votes associated with that line normalized with 
respect to the largest vote. If the function is called without output arguments the iden-
tifi ed peaks are indicated on an image of the accumulator array.

Note that although the object has only four sides there are many more than four 
peaks in the accumulator array. We also note that the fourth and sixth peaks have quite 
similar line parameters, and this region of the accumulator is shown in more detail 
in Fig. 13.19c. We see several bright spots (high numbers of votes) that are close to-
gether and this is due to quantization effects. The concept of peak scale discussed on 
pages 369 and 390 applies here and once again we apply  nonlocal maxima  suppres-
sion to eliminate smaller peaks in the neighborhood of the maxima

>> h = Hough(edges, 'suppress', 5)
h =
Hough: nd=401, ntheta=400, interp=3x3, distance=5 

In this case distance is fi ve accumulator cells – the maxima suppresses smaller local 
maxima within a fi ve cell radius. This leads to just four peaks

>> lines = h.lines()
lines =
theta=0.298527, rho=224.412, strength=1
theta=0.306267, rho=96.2507, strength=0.962963
theta=-1.27224, rho=-20.1637, strength=0.874074
theta=-1.28026, rho=-150.256, strength=0.837037   

corresponding to the edges of the object.
Since the line parameters are quantized the  lines method uses  interpolation to 

refi ne the location of the peak (see Appendix J). By default, interpolation is performed 
over a 3 × 3 window centered on the local vote maxima. Once a peak has been found 
all votes within the suppression distance are zeroed so as to eliminate any close max-
ima, and the process is repeated for all peaks in the voting array that exceed a speci-
fi ed fraction of the largest peak.�

ρ  is symmetric about zero, so including 
zero this is an odd number of elements. 
θ  has a range of [−ü, ü), it is asymmet-
ric about zero and has an even number 
of elements.

With no argument all peaks greater than 
'houghThresh' are displayed.
This defaults to 0.5 but can be set by the
'houghThresh' option to Hough .

13.2  ·  Line Features
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The detected lines can be projected onto the original image

>> idisp(im);
>> h.plot('b')  

and the result is shown in Fig. 13.19d.
A real image example is
>> im = iread('church.png', 'grey', 'double');
>> edges = icanny(im);
>> h = Hough(edges, 'suppress', 10);
>> lines = h.lines();     

and the strongest ten lines

>> idisp(im, 'dark');
>> lines(1:10).plot('g');  

are shown in Fig. 13.20. Many strong lines in the image have been found, and lines 
corresponding to the roof edges and building-ground line are correct. However most 
of the vertical lines do not correspond to lines in the image – they are the result of 
disjoint sections of high gradient voting up a line that passes through them.

Another measure of the importance of an edge can be found by reprojecting the 
line onto the edge image and counting the maximum number of contiguous edge pix-
els that lie along it

>> lines = lines.seglength(edges); 

which returns a vector of  LineFeature objects similar to that returned by the   lines 
method but with the property length set to the maximum edge segment length

>> lines(1)
ans =
theta=0.0237776, rho=791.008, strength=1, length=24

in this case 24 pixels. An edge segment is defi ned as an almost contiguous group of 
edge pixels with no gap greater than fi ve (by default) pixels. We can then choose all 
those Hough peaks corresponding to segments longer than 80 pixels

>> k = fi nd( lines.length > 80);

and then highlight those lines in blue

>> lines(k).plot('b--') 

as shown in Fig. 13.20. We can see that a number of lines are converging on a perspec-
tive vanishing point to the right of the image.

Fig. 13.20.
Hough transform of a real im-
age. The green lines correspond 
to the ten strongest voting 
peaks. The overlaid dashed blue 
lines are those with an edge seg-
ment length of at least 80 pixels. 
Three lines meet both criteria
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13.2.1 
l

Summary

The Hough transform is elegant in principle and in practice it can either work well or in-
furiatingly badly. It performs poorly when the scene contains a lot of texture or the edges 
are indistinct. Texture causes votes to be cast widely, but not uniformly, over the accu-
mulator array which tends to mask the true peaks. Consequently a lot of experimentation 
is required for the parameters of the edge detector and the Hough peak detector.

The function Hough has many options which are described in the online documen-
tation. By default the strength of the vote cast by each edge point is the edge strength 
at that point which emphasizes stronger edges. Edge strengths less than edgeThresh 
times the maximum edge strength are considered as zero. The Hough object can also 
be constructed from an array of edge coordinates with equal votes, or from an array 
of edge coordinates and a vector of corresponding vote strength.

The Hough transform estimates the direction of the line by fi tting lines to the edge 
pixels. It ignores rich information about the direction of the edge at each pixel which 
was discussed on page 382. The consequence of not using all the information available is 
poorer estimation. There is little added expense in using the direction at each pixel since 
we have already computed the image  gradients in order to evaluate edge magnitude. 

13.3   
l
Point  Features

The fi nal class of features that we will discuss are point features. These are visually dis-
tinct points in the image that are known as  interest    points,  salient points,  keypoints 
or  corner points. We will fi rst introduce some classical techniques for fi nding interest 
points and then discuss more recent scale-invariant techniques.

13.3.1 
l

Classical  Corner Detectors

We recall from Sect. 12.5.1.3 that a point on a line has a strong gradient in a direction 
normal to the line. However gradient along the line is low which means that a pixel on 
the line will look very much like its neighbors along the line. In contrast, an interest 
point is a point that has a high image gradient in orthogonal directions. It might be 
single pixel that has a signifi cantly different intensity to all of its neighbors or it might 
literally be a pixel on the corner of an object. Since interest points are quite distinct 
they have a much higher likelihood of being reliably detected in different views of the 
same scene. They are therefore key to multi-view techniques such as stereo and mo-
tion   estimation which we will discuss in the next chapter.

 The earliest  corner point detector was Moravec’s interest  operator, so called because 
it indicated points in the scene that were interesting from a tracking  perspective. It 
was based on the intuition that if a small image patch W is to be unambiguously lo-
cated in another image it must be quite different to the same size patch at any adja-
cent location. Moravec defi ned the similarity between a region centered at (u, v) and 
an adjacent region, displaced by (δu, δv), as

 (13.12)

where W is some local image region and typically a W × W square window. This is 
the  SSD  similarity measure from Table 12.1 that we discussed previously. Similarity 
is evaluated for displacements in eight cardinal� directions (δu, δv) ∈D and the mini-
mum value is the interest measure

 (13.13)

N, NE, E, … W, NW or i, j ∈ {–1, 0, 1}.

13.3  ·  Point Features
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which has a large value only if all the displaced patches are different to the original 
patch. The function CM(·) is evaluated for every pixel in the image and interest  points 
are those where CM is high. The main limitation of the Moravec detector is that it is 
nonisotropic since it examines image change, essentially gradient, in a limited num-
ber of directions. Consequently the detector can give a strong output for a point on a 
line, which is not desirable.

We can generalize the approach by defi ning the similarity as the weighted sum of 
squared differences between the image region and the displaced region as

where W is a weighting matrix that emphasizes points closer to the center of the win-
dow W. The indicated term can be approximated by a truncated Taylor series�

where Iu and Iv are the horizontal and vertical  image gradients respectively. We can 
now write

which can be written compactly in quadratic form as

where

If the weighting matrix is a  Gaussian  kernel W = G(σI) and we replace the summa-
tion by a convolution then

 (13.14)

which is a  symmetric 2 × 2 matrix referred to variously as the  structure  tensor,  auto-
correlation matrix or second moment matrix. It captures the intensity structure of the 
local neighborhood and its  eigenvalues provide a  rotationally invariant description of 
the neighborhood. The elements of the A matrix are computed from the  image  gradi-
ents, squared or multiplied, and then smoothed using a weighting matrix. The latter 
reduces  noise and improves the stability and reliability of the detector. The gradient 
images Iu and Iv are typically calculated using a  derivative of Gaussian kernel method 
(Sect. 12.5.1.3) with a smoothing parameter σD.

An interest point (u, v) is one for which s(·) is high for all directions of the vec-
tor (δu, δv). That is, in whatever direction we move the window it rapidly becomes 
dissimilar to the original region. If we consider the original image I as a surface the 
eigenvalues of A are the  principal  curvatures of the surface at that point. If both  ei-

See Appendix E.
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genvalues are small then the surface is fl at, that is the image region has approximately 
constant local intensity. If one eigenvalue is high and the other low, then the surface 
is ridge shaped which indicates an edge. If both eigenvalues are high the surface is 
sharply peaked which we consider to be a corner.�

The Shi-Tomasi detector considers the strength of the  corner, or  cornerness, as the 
minimum eigenvalue

 (13.15)

where λi are the eigenvalues of A. Points in the image for which this measure is high 
are referred to as “good  features to track”. The  Harris detector� is based on this same 
insight but defi nes  corner strength as

 (13.16)

and again a large value represents a strong, distinct, corner. Since det(A) = λ1λ2 and 
tr(A) = λ1 + λ2 the Harris detector responds when both eigenvalues are large and el-
egantly avoids computing the eigenvalues of A which has a somewhat higher com-
putational cost.� A commonly used value for k is 0.04. Another variant is the   Noble 
 detector

 (13.17)

which is arithmetically simple but potentially singular.
Typically the  corner strength is computed for every pixel and results in a corner 

strength image. Then  nonlocal maxima  suppression is applied to only retain values 
that are greater than their immediate neighbors. A list of such points is created and 
sorted into descending corner strength. A threshold can be applied to only accept cor-
ners above a particular strength, or above a particular fraction of the strongest corner, 
or simply the N strongest corners.

The Toolbox provides a  Harris  corner detector which we will demonstrate using 
a real image

>> b1 = iread('building2-1.png', 'grey', 'double');
>> idisp(b1)  

The Harris  features are computed by

>> C = icorner(b1, 'nfeat', 200);
7497 corners found (0.8%),  200 corner features saved  

which returns a vector of  PointFeature objects. The detector found over 7 000 cor-
ners that were local maxima of the corner strength image and these comprised 0.8% of 
all pixels in the image. In this case we requested the 200 strongest corners. The vector 
contains the corners sorted by decreasing corner strength, and each PointFeature 
object contains the corner coordinate (u, v), the  corner strength and a descriptor which 
comprises the unique elements of the structure  tensor in vector form (A11, A22, A12). 
The  descriptor can be used as a simple signature of the corner to help match corre-
sponding corners between different views.

Recall from page 363 that lossy image 
compression such as JPEG   removes high-
frequency detail from the image, and this 
is exactly what defines a corner. Ideally 
corner detectors should be applied to 
images that have not been compressed 
and decompressed.

Sometimes referred to in the literature 
as the  Plessey  corner detector.

Evaluating eigenvalues for a 2 × 2 ma-
trix involves solving a quadratic equa-
tion and therefore requires a square root 
operation.

Another approach to determining image curvature is to use the  determinant of the  Hessian ( DoH). 
The  Hessian is the  matrix of second-order gradients at a point

where Iuu = ∂2I / ∂u2, Ivv = ∂2I / ∂v2 and Iuv = ∂ 2I2/ ∂u∂v. The  determinant det(H) has a large 
magnitude when there is grey-level variation in two directions. However second derivatives ac-
centuate image noise even more than fi rst derivatives and the image must be smoothed fi rst.

13.3  ·  Point Features
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The corners can be overlaid on the image as white squares

>> idisp(b1, 'dark');
>> C.plot('ws');  

as shown in Fig. 13.21a. The 'dark' option to  idisp reduces the brightness of the 
image to make the overlaid corner markers more visible. A closeup view is shown in 
Fig. 13.21b and we see the features are indeed often located on the corners of objects.

We also see that the corners tend to cluster unevenly, with a greater density in re-
gions of high contrast and texture, and for some applications this can be problematic. 
To distribute  corner  points more evenly we can increase the distance used for  nonlo-
cal maxima  suppression

>> Cs =  icorner(b1, 'nfeat', 200, 'suppress', 10);
7497 corners found (0.7%),  200 corner features saved  

by specifying a minimum distance between corners, in this case 10 pixels.
We can apply standard MATLAB operations and syntax to vectors of  PointFeature 

objects, for example
>> length(C)
ans =
    200

and indexing

>> C(1:4)
ans =
(3,3), strength=2.97253e-05,	
  descrip=(0.00704357 0.00703274 0.00344741)
(600,662), strength=2.13105e-05,	
  descrip=(0.00568787   0.00448007 -0.000189851)
(24,277), strength=1.5516e-05,	
  descrip=(0.00577341  0.00361102 -0.00134506)
(54,407), strength=1.53644e-05,	
  descrip=(0.0062428 0.00301444 0.00016217)

where the display method shows the essential properties of the feature. We can also 
create expressions such as

>> C(1:5).strength
ans =
   1.0e-04 *
    0.2973    0.2131    0.1552    0.1536    0.1496
>> C(1).u
ans =
     3

To plot the coordinate of every fi fth feature in the fi rst 100 features is

>> C(1:5:100).plot()

The corner strength is computed at each pixel and can be optionally returned

>> [C,strength] = icorner(b1, 'nfeat', 200);
7497 corners found (0.7%),  200 corner features saved 

and displayed as an image

>> idisp(strength, 'invsigned') 

which is shown in Fig. 13.22a. We observe that the corner strength function is strong-
ly positive (blue) for  corner  features and strongly negative (red) for linear  features. A 
zoomed in view is shown in Fig. 13.22b which indicates that the detected corner is at 
the top of a peak of  cornerness that is several pixels wide. The detected corner is a local 
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�
Fig. 13.21. Harris corner detector 
applied to two views of the same 
building. a View one; b zoomed 
in view one; c view two; d zoomed 
in view two. Notice that quite a 
number of the detected corners 
are attached to the same world 
features in the two views

Fig. 13.22. Harris corner strength. 
a Zoomed view of corner strength 
displayed as an image (blue is posi-
tive, red is negative); b zoomed view 
of corner strength image displayed 
as a surface
�
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maxima but we could use the surrounding values to estimate its location to subpixel 
accuracy (see Appendix J). This involves additional computation but can be enabled 
using the option 'interp'.

A cumulative  histogram of the strength of the 200 detected corners is shown in 
Fig. 13.23. The strongest corner has CH ≈ 3 × 10−5 but most are much weaker than 
this, only 2% of corners exceed half this value.

Consider another image of the same building taken from a different location

>> b2 = iread('building2-2.png', 'grey', 'double'); 

and the detected corners

>> C2 = icorner(b2,  'nfeat', 200);
7712 corners found (0.8%),  200 corner features saved
>> idisp(b2,'dark')
>> C2.plot('ws');    

are shown in Fig. 13.21c and d. For many useful applications in robotic vision – such 
as tracking, mosaicing and stereo vision that we will discuss in the next chapter – it 
is important that  corner  features are detected at the same world points irrespective 
of variation in illumination or changes in rotation and scale between the two views. 
From Fig. 13.21 we see that many, but not all, of the features are indeed attached to 
the same world feature in both views.

The  Harris detector is computed from image gradients and is therefore robust to 
offsets in illumination, and the eigenvalues of the structure  tensor A are invariant to 
rotation. However the detector is not invariant to changes in scale. As we zoom in the 
gradients around the  corner  points become lower – the same change in intensity is 
spread over a larger number of pixels. This reduces the image  curvature and hence 
the corner strength. The next section discusses a remedy for this using scale-invari-
ant  corner detectors.

For a color image the structure tensor is computed using the gradient images of the 
individual  color planes which is slightly different to fi rst converting the image to grey 
scale according to Eq. 10.11. In practice the use of color defi es intuition – it makes sur-
prisingly little difference for most scenes but adds signifi cant computational cost. The 
 icorner function accepts a large number of options: k, the derivative and smooth-
ing  kernel sizes σD and σI, absolute and/or relative corner strength  threshold and en-
forcing a minimum distance between corners. The options 'st' and 'noble' allow 
computation of the corner measures Eq. 13.15 and Eq. 13.17 respectively. Details are 
provided in the online documentation.

Fig. 13.23.
Cumulative histogram of corner 
strengths
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13.3.2 
l

Scale-Space  Corner Detectors

The  Harris  corner detector introduced in the previous section works very well in practice 
but responds poorly to changes in scale. Unfortunately change in scale, due to changing 
camera to scene distance or zoom, is common in many real applications. We also no-
tice that the Harris detector responds strongly to fi ne texture, such as the leaves of the 
trees in Fig. 13.21 but we would like to be able to detect features that are associated with 
larger-scale scene structure such as windows and balconies.

Figure 13.24 illustrates the fundamental  principle of scale-space  feature detection. 
We fi rst load a synthetic image

>> im = iread('scale-space.png', 'double'); 

which is shown in Fig. 13.24a. The image contains four squares of different size: 
5 × 5, 9 × 9, 17 × 17 and 33 × 33. The scale-space sequence is computed by applying 
a  Gaussian  kernel with increasing σ  that results in the regions becoming increasingly 
blurred and smaller regions progressively disappearing from view. At each step in the 
sequence the Gaussian-smoothed image is convolved with the  Laplacian  kernel Eq. 12.5 
which results in a strong negative responses for these bright blobs.�

With the Toolbox we compute the scale-space sequence by

>> [G,L,s] = iscalespace(im, 60, 2);  

where the input arguments are the number of scale steps to compute, and the σ  of the 
 Gaussian  kernel to be applied at each successive step. The function returns two 3-di-
mensional images, each a sequence of images where the last index corresponds to the 
scale. G is the image im at increasing levels of smoothing, L is the Laplacian of those 
smoothed images, and s is the corresponding scale. For example the fi fth image in the 
 Laplacian of Gaussian sequence (LoG) is displayed by

>> idisp(L(:,:,5), 'invsigned') 

and has a scale of
>> s(5)
ans =
    4.0311

Figures 13.24b–e show the Laplacian of Gaussian at four different points in the scale-
space sequence.

Figure 13.24f shows the magnitude of the Laplacian of Gaussian  response as a func-
tion of scale, taken at the points corresponding to the center of each square in the in-
put image. Each curve has a well defi ned peak, and the scale associated with the peak 
is proportional to the size of the region – the   characteristic  scale of the region.

If we consider the 3-dimensional image L as a volume then a scale-space  feature 
point is any pixel that is a 3D maxima. That is, an element that is greater than its 
26 neighbors in all three dimensions – its spatial neighbors at the current scale and at 
the scale above and below. Such  points are detected by the function iscalemax

>> f = iscalemax(L, s)
f =
  (64,64), scale=2.91548, strength=1.96449
  (128,64), scale=4.06202, strength=1.72512
  (128,128), scale=18.1246, strength=1.54391
  (64,128), scale=8.97218, strength=1.54057
  (96,128), scale=15.5081, strength=0.345028
  (97,128), scale=14.7139, strength=0.34459 

which returns an array of  ScalePointFeature objects which are a subclass of 
  PointFeature. Each object has properties for the feature’s coordinate, strength 
and scale. The features are arranged in order of decreasing strength and we see that 

We actually compute the difference of 
Gaussian approximation to the Laplacian 
of Gaussian, as illustrated in Fig. 13.27.
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four have signifi cant strength and correspond to the four white objects. We can su-
perimpose the detected features on the original image

>> idisp(im)
>> f(1:4).plot('g+') 

and the result is shown in Fig. 13.25.
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The scale associated with a feature can be easily visualized using circles of radius 
equal to the feature scale

>> f(1:4).plot_scale('r')

and the result is also shown in Fig. 13.25. We see that the identifi ed features are located 
at the center of each object and that the scale of the  feature is related to the size of the 
object. The region within the circle is known as the   support region of the feature.

For a real image

>> im = iread('lena.pgm', 'double'); 

we compute the scale-space in eight large steps with σ = 8

>> [G,L] = iscalespace(im, 8, 8); 

which we can fl atten and display

>> idisp(G,  'fl atten', 'wide', 'square');
>> idisp(L,  'fl atten', 'wide', 'square', 'invsigned');  

as shown in Fig. 13.26. From left to right we see the eight levels of scale. The Gaussian 
sequence of images becomes increasing blurry. In the  Laplacian of Gaussian sequence 
the dark eyes are strongly positive (blue) blobs at low scale and the light colored hat 
becomes a strongly negative (red) blob at high scale.

Convolving the original image with a  Gaussian  kernel of increasing σ  results in 
the kernel size, and therefore the amount of computation, growing at each scale step. 
Recalling the properties of a Gaussian from page 377, a Gaussian convolved with a 

Fig. 13.24.
Scale-space example. a Syn-
thetic image I with blocks of
sizes 5 × 5, 9 × 9, 17 × 17, and
33 × 33; b–e Normalized Lapla-
cian of Gaussian σ2L ∗ G(σ) ∗ I 
for increasing values of scale, 
σ value indicated in lower left. 
False color is used: red is nega-
tive and blue is positive; f magni-
tude of Laplacian of Gaussian at 
center of each square (indicated 
by ‘+’) versus σ

�

Fig. 13.25.
Synthetic image with overlaid 

feature center and scale indicator

Fig. 13.26. Scale-space sequence 
for σ = 2, (top) Gaussian sequence, 
(bottom) Laplacian of Gaussian se-
quence
�

�
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Gaussian is another wider Gaussian. Instead of convolving our original image with 
ever wider Gaussians, we can repeatedly apply the same Gaussian to the previous re-
sult. We also recall from page 385 that the  LoG  kernel is approximated by the differ-
ence of two Gaussians. Using the properties of convolution we can write

where σ1 > σ2. The difference of Gaussian  operator applied to the image is equivalent 
to the difference of the image at two different levels of smoothing. If we perform the 
smoothing by successive application of a Gaussian we have a sequence of images at 
increased levels of smoothing. The difference between successive steps in the sequence 
is therefore an approximation to the Laplacian of Gaussian. Figure 13.27 shows this 
in diagrammatic form.

13.3.2.1 
l

Scale-Space  Point  Feature

The scale-space concepts just discussed underpin a number of popular   feature detec-
tors which fi nd salient points within an image and determines their scale and also their 
orientation. The Scale-Invariant Feature Transform ( SIFT) is based on the maxima in 
a difference of Gaussian sequence. The Speeded Up Robust Feature ( SURF) is based 
on the maxima in an approximate Hessian of Gaussian sequence.

To illustrate we will compute the SURF features for the building image used previously

>> sf1 = isurf(b1, 'nfeat', 200) 
2667 corners found (0.3%), 200 corner features saved
sf1 =
200 features (listing suppressed)
 Properties: image_id theta scale u v strength descriptor

which returns an array of 200  SurfPointFeature objects which are a subclass of 
 ScalePointFeature. For example the fi rst feature is

>> sf1(1)
ans = (117.587,511.978), theta=0.453513, scale=2.16257,
strength=0.0244179, descrip= ..

Each object includes the feature’s coordinate (estimated to subpixel precision), scale, 
orientation, and a  descriptor which is a 64-element vector. Orientation is defi ned by 
the dominant edge direction within the support region.

This image contains nearly 3 000 SURF features but, as we did earlier with the Harris 
  corner  features, we requested the 200 strongest which we plot

Fig. 13.27. Schematic for calcula-
tion of Gaussian and Laplacian of 
Gaussian scale-space sequence
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>> idisp(b1, 'dark');
>> sf1.plot_scale('g', 'clock') 

and the result is shown in Fig. 13.28. The  plot_scale method draws a circle around 
the feature’s location with a radius that indicates its scale – the size of the support re-
gion. The option 'clock' draws a radial line which indicates the orientation of the 
SURF  feature.

Feature scale varies widely and a histogram

>> hist(sf1.scale, 100); 

shown in Fig. 13.29 indicates that there are many small features associated with fi ne 
image detail and texture. The bulk of the features have a scale less than 25 pixels but 
some have scales over 40 pixels. The isurf function accepts a number of options 
which are described in the online documentation.

The SURF  algorithm is more than just a scale-invariant feature detector, it also 
computes a very robust descriptor. The  descriptor is a 64-element vector that encodes 
the image gradient in subregions of the  support region in a way which is  invariant to 
brightness, scale and rotation. This enables feature descriptors to be unambiguously 
matched to a descriptor of the same world point in another image even if their scale 
and orientation are quite different. The difference in position, scale and orientation 
of the matched features gives some indication of the relative camera motion between 
the two views. Matching features between scenes is crucial to the problems that we 
will address in the next chapter.

Fig. 13.28.
SURF descriptors showing the 
support region (scale) and ori-

entation as a radial line

Fig. 13.29.
Histogram of feature scales 

shown with logarithmic verti-
cal scale
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13.4 
l
Wrapping Up

In this chapter we have discussed the extraction of features from an image. Instead of con-
sidering the image as millions of independent pixel values we succinctly describe regions 
within the image that correspond to distinct objects in the world. For instance we can fi nd 
regions that are homogeneous with respect to intensity or color and describe them in terms 
of features such as a bounding box, centroid, equivalent ellipse, aspect ratio,  circularity 
and perimeter  shape. Features have  invariance properties with respect to translation, ro-
tation about the optical axis and scale which are important for object recognition. Straight 
lines are common visual features in man-made environments and we showed how to fi nd 
and describe distinct straight lines in an image using the Hough transform.

We also showed how to fi nd interest points that can reliably associate to particular 
points in the world irrespective of the camera view. These are key to techniques such as 
camera motion  estimation, stereo vision,  image retrieval, tracking and mosaicing that we 
will discuss in the next chapter.

MATLAB Notes

The hierarchy of feature classes used in the Toolbox is shown in Fig. 13.30. A list of Toolbox 
functions and MATLAB equivalents is given in Table 13.2. The latter come from the Image 
Processing and the Computer Vision System Toolbox which have a large number of ad-
ditional functions, some of which support code generation or operation with Simulink.

Fig. 13.30.
Feature class hierarchy used in 
the Toolbox

Table 13.2.
List of feature extraction func-
tions and equivalence with 
MATLAB Image Processing 
Toolbox and Computer Vision 
System Toolbox functions           
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Further Reading

This chapter has presented a classical bottom up approach for feature extraction, start-
ing with pixels and working our way up to higher level concepts such as regions and 
lines. Prince (2012) and Szeliski (2011) both provide a good introduction to high-level 
vision using probabilistic techniques that can be applied to problems such as object rec-
ognition, for example face recognition, and image retrieval. In the last few years com-
puter vision, particularly object recognition, has undergone a revolution using deep 
convolutional neural networks. These have demonstrated very high levels of accuracy 
in locating and recognizing objects against complex background despite changes in 
viewpoint and illumination and resources are available at http://deeplearning.net.

Region features. Region-based image segmentation and blob   analysis are classical tech-
niques covered in many books and papers. Gonzalez and Woods (2008) and Szeliski 
(2011) provide a thorough treatment of the methods introduced in this chapter, in par-
ticular thresholding and boundary descriptors. Otsu’s algorithm for threshold determina-
tion was introduced in Otsu (1975), and the Niblack algorithm for adaptive thresholding 
was introduced in Niblack (1985). The book by Nixon and Aguado (2012) expands on 
material covered in this chapter and introduces techniques such as deformable templates 
and boundary descriptors. The  Freeman chain code was fi rst described in Freeman 
(1974). Flusser (2000) has shown that the seven moments proposed by Hu (1962), and 
described on page 434, are in fact not independent since φ3 = (φ5

2 + φ7
2) / φ4

3.
In addition to region homogeneity based on intensity and color it also possible to 

describe the texture of regions – a spatial pattern of pixel intensities whose statistics 
can be described (Gonzalez and Woods 2008). Regions can then be segmented accord-
ing to texture, for example a smooth road versus textured grass.

 Clustering of data is an important topic in machine learning (Bishop 2006). In this chap-
ter we have used a simple implementation of k-means, which is far from state-of-the-art in 
clustering, and requires the number of clusters to be known in advance. More advanced 
 clustering  algorithms are hierarchical and employ data structures such as kd-trees to speed 
the search for neighboring points. The initialization of the cluster centers is also critical 
to performance. Szeliski (2011) introduces more general clustering methods as well as 
graph-based methods for computer vision. The graphcuts algorithm for segmentation was 
described by Felzenszwalb and Huttenlocher (2004) and the Toolbox graph-cuts imple-
mentation is based on code by Pedro Felzenszwalb and available at http://cs.brown.edu/
~pff/segment/. The maximally stable extremal region (MSER) algorithm is described by 
Matas et al. (2004) and the Toolbox implementation is based on the work of Andrea Vedaldi 
and Brian Fulkerson which is available at http://vlfeat.org. The Berkeley Segmentation 
Dataset at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds contains nu-
merous complex real-world images each with several human-made segmentations.

Early work on using text recognition for robotics is described by Posner et al. (2010), 
while Lam et al. (2015) describe the application of OCR to parsing fl oor plans of build-
ings for robot  navigation. A central challenge with OCR of real-world scenes is to de-
termine which parts of the scene contain text and should be passed to the OCR engine. 
A powerful text detector is the stroke width transform described by Li et al. (2014). 
The MATLAB ocr  function is based on the Tesseract open-source OCR engine which 
is available at https://github.com/tesseract-ocr and described by Smith (2007).

Line features. The Hough transform was fi rst fi rst described in U.S. Patent 3,069,654 
“Method and Means for Recognizing Complex Patterns” by Paul Hough, and its history is 
discussed in Hart (2009). The original application was automating the analysis of bubble 
chamber photographs and it used the problematic slope-intercept parametrization for 
lines. The currently known form with the (θ , ρ) parameterization was fi rst described in 
Duda and Hart (1972) as a “generalized Hough transform” and is available at http://www.
ai.sri.com/pubs/files/tn036-duda71.pdf.  The Hough transform is covered in textbooks 
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such as Szeliski (2011) and Gonzalez and Woods (2008). The latter has a good discus-
sion on  shape fi tting in general and estimators that are robust with respect to outlier data 
points. The basic Hough transform has been extended in many ways and there is a large 
literature. A useful review of the transform and its variants is presented in Leavers (1993). 
The transform can be generalized to other shapes (Ballard 1981) such as circles of a fi xed 
size where votes are cast for the coordinates of the circle’s center. For circles of unknown 
size a three-dimensional voting array is required for the circle’s center and radius.

Point features. The literature on interest  operators dates back to the early work of 
Moravec (1980) and Förstner (Förstner and Gülch 1987; Förstner 1994). The Harris 
 corner detector (Harris and Stephens 1988) became very popular for robotic vision 
application in the late 1980s since it was able to run in real-time on computers of the 
day and the features were quite stable (Tissainayagam and Suter 2004) from image to 
image. The Noble detector is described in Noble (1988). The work of Shi, Tomasi, Lucas 
and Kanade (Shi and Tomasi 1994; Tomasi and Kanade 1991) led to the Shi-Tomasi 
detector and the Kanade-Lucas-Tomasi (KLT) tracker. Good surveys of the relative 
performance of many corner detectors include those by Deriche and Giraudon (1993) 
and Mikolajczyk and Schmid (2004).

Scale-space concepts have long been known in computer vision. Koenderink (1984), 
Lindeberg (1993) and ter Haar Romeny (1996) are a readable introduction to the top-
ic. Scale-space was applied to classic corner detectors creating hybrid detectors such 
as scale-Harris (Mikolajczyk and Schmid 2004). An important development in scale-
space feature detectors was the scale-invariant feature transform (SIFT) introduced 
in the early 2000s by Lowe (2004) and was a signifi cant improvement for applications 
such as tracking and object recognition. Unusually, and perhaps unfortunately, it was 
patented and could not be used in this book. Nature abhors a vacuum and an effective 
alternative called Speeded Up Robust Features (SURF) was developed (Bay et al. 2008). 
The Toolbox function isurf wraps a MATLAB implementation by Dirk-Jan Kroon 
and available at http://www.mathworks.com/matlabcentral/fileexchange/28300-
opensurf-including-image-warp, which in turn is based on the OpenSurf imple-
mentations in C++ and C# by Chris Evans which is now hosted at https://github.
com/amarburg. GPU-based parallel implementations have also been developed. The 
SIFT and SURF detectors do give different results and they are compared in Bauer 
et al. (2007). The Toolbox SIFT detector function  isift returns a feature vector of 
class  SiftPointFeature and is a wrapper for the MATLAB implementation from 
http://www.vlfeat.org which you will need to download and compile.

Many other interest point detectors and features have been, and continue to be 
proposed. FAST by Rosten et al. (2010) has very low computational requirements 
and high repeatability, and C and MATLAB software resources are available at http://
www.edwardrosten.com/work/fast.html. CenSurE by Agrawal et al. (Agrawal et al. 
2008) claims higher performance than SIFT, SURF and FAST at lower cost. BRIEF by 
Calonder et al. (2010) is not a feature detector but is a low cost and compact feature 
descriptor, requiring just 256 bits instead of 64 fl oating-point numbers per feature. 
Other feature descriptors include histogram of oriented gradients (HOG), oriented 
FAST and rotated BRIEF (ORB), binary robust invariant scaleable keypoint (BRISK), 
fast retina keypoint (FREAK), aggregate channel features (ACF),   vector of locally ag-
gregated descriptors (VLAD), random ferns and many many more.

Local features have many advantages and are quite stable from frame to frame, but 
for outdoor applications the feature locations and the descriptors vary considerably 
with changes in lighting conditions, see for example Valgren and Lilienthal (2010). 
Night and day are obvious examples but even over a period of a few hours the descrip-
tors change considerably. Over seasons the appearance change can be drastic: trees with 
or without leaves; the ground covered by grass or snow, wet or dry. Enabling robots 
to recognize places despite their changing appearance is the research fi eld of robust 
place recognition which is introduced in Lowry et al. (2015).
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Exercises

1. Grey-level classifi cation
a) Experiment with ithresh on the images castle.png and castle2.png.
b) Experiment with the Niblack algorithm and vary the value of k and window size.
c) Apply iblobs to the output of the MSER segmentation. Develop an algorithm 

that uses the width and height of the bounding boxes to extract just those blobs 
that are letters.

d) The function imser has many parameters: 'Delta', 'MinDiversity', 
'MaxVariation', 'MinArea', 'MaxArea'. Explore the effect of adjust-
ing these.

e) Apply the function  igraphcut to the castle2.png image. Understand and 
adjust the parameters to improve performance.

f) Load the image adelson.png from page 307 and attempt to segment the let-
ters A and B.

2. Color classifi cation
a) Change k, the number of clusters, in the color classifi cation examples. Is there 

a best value?
b) k-means with 'random' or 'spread' options performs a randomized initializa-

tion. Run k-means several times and determine how different the fi nal clusters are.
c) Write a function that determines which of the clusters represents the targets, 

that is, the yellow cluster or the red cluster.
d) Apply the function igraphcut to the targets and garden image. How does it 

perform? Understand and adjust the parameters to improve performance.
e) Experiment with the parameters of the morphological “cleanup” used for the 

targets and garden images.
f) Write code that loops over images captured from your computer’s camera, applies 

a classifi cation, and shows the result. The classifi cation could be a greyscale thresh-
old or color clustering to a pre-learned set of color clusters (see colorkmeans).

3. Blobs. Create an image of an object with several holes in it. You could draw it and 
take a picture, export it from a drawing program, or write code to generate it.
a) Determine the outer, inner and total boundaries of the object.
b) Place small objects within the holes in the objects. Write code to display the to-

pological hierarchy of the blobs in the scene.
c) For the same shape at different scales plot how the circularity changes as a func-

tion of scale. Explain the shape of this curve?
d) Create a square object and plot the estimated and true perimeter as a function 

of the square’s side length. What happens when the square is small?
e) Create an image of a simple scene with a number of different shaped objects. Using 

the shape invariant features (aspect ratio, circularity) to create a simple shape clas-
sifi er. How well does it perform? Repeat using the Hu moment features.

f) Repeat the boundary matching example with some objects that you create. Modify 
the code to create a plot of edge-segment angle (k) versus θ  and repeat the bound-
ary matching example.

g) Another commonly used feature, not supported by the Toolbox, is the aligned 
rectangle. This is the smallest rectangle whose sides are aligned with the axes of 
the equivalent ellipse and which entirely contains the blob. The aspect ratio of 
this rectangle and the ratio of the blob’s area to the rectangle’s area are each scale 
and rotation invariant features. Write code to compute this rectangle, overlay 
the rectangle on the image, and compute the two features.

h) Write code to trace the perimeter of a blob.
4. Experiment with the ocr function.

a) What is the effect of a larger region of interest?
b) Capture your own image and attempt to read the text in it. How does accuracy 

vary with text size, contrast or orientation?

13.4  ·  Wrapping Up
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5. Hough transform
a) Experiment with varying the size of the Hough accumulator.
b) Experiment with using the Sobel edge  operator instead of Canny.
c) Experiment with varying the parameters 'suppress', 'interpSize', 
'EdgeThresh', 'houghThresh'.

d) Apply the Hough transform to one of your own images.
e) Write code that loops over images captured your computer’s camera, fi nding 

the two dominant lines and overlaying them on the image.
6. Corner detectors

a) Experiment with the Harris detector by changing the parameters k, σD and σI.
b) Compare the performance of the Harris, Noble and Shi-Tomasi corner detectors.
c) Implement the Moravec detector and compare to Harris detector.
d) Create a smoothed second derivative Iuu, Ivv and Iuv.



Chapter

14

In the previous chapter we learned about corner detectors 
which fi nd particularly distinctive  points in a scene. These 
points can be reliably detected in different views of the same 
scene irrespective of viewpoint or lighting conditions. Such 
points are characterized by high image  gradients in orthogo-
nal directions and typically occur on the corners of objects. 
However the 3-dimensional coordinate of the correspond-
ing world point was lost in the  perspective projection process 
which we discussed in Chap. 11 – we mapped a 3-dimensional 
world point to a 2-dimensional image coordinate. All we know 
is that the world point lies along some ray in space correspond-
ing to the pixel coordinate, as shown in Fig. 11.6. To recover the 
missing third dimension we need additional information. In 
Sect. 11.2.3 the additional information was camera calibration 
parameters plus a geometric object model, and this allowed us 

to estimate the object’s 3-dimensional pose from 2-dimensional image data.
In this chapter we consider an alternative approach in which the additional in-

formation comes from multiple views of the same scene. As already mentioned the 
pixel coordinates from a single view constrain the world point to lie along some 
ray. If we can locate the same world point in another  image, taken from a different 
but known pose, we can determine another ray along which that world point must 
lie. The world  point lies at the intersection of these two rays – a process known as 
 triangulation or  3D reconstruction. Even more powerfully, if we observe suffi cient 
points, we can estimate the 3D motion of the camera between the views as well as the 
3D structure of the world.�

The underlying challenge is to fi nd the same world point in multiple images. This 
is the  correspondence  problem, an important but nontrivial problem that we will dis-
cuss in Sect. 14.1. In Sect. 14.2 we revisit the fundamental geometry of image forma-
tion developed in Chap. 11 for the case of a single camera. If you haven’t yet read 
that chapter, or it’s been a while since you read it, it would be helpful to (re)acquaint 
yourself with that material. We extend the geometry to encompass multiple image 
planes and show the geometric relationship between pairs of images. Stereo vision is 
an important technique for robotics where information from two images of a scene, 
taken from different viewpoints, is combined to determine the 3-dimensional struc-
ture of the world. We discuss sparse and dense approaches to stereo, and recon-
struction, in some detail in Sect. 14.3. Bundle adjustment is a very general approach 
to combining information from many cameras and is introduced in Sect. 14.4. The 
3-dimensional information that is created is typically represented as a point cloud, 
a set of 3D points, and techniques for plane fi tting and alignment of such data are 
introduced in Sect. 14.5. For some applications we can use RGBD cameras which re-
turn depth as well as color information and the underlying principle of structured 
light is introduced in Sect. 14.6.

We fi nish this chapter, and this part of the book, with four application examples 
based on the concepts we have learned. Section 14.7.1 describes how we can transform 

Using Multiple Images

Almost! We can determine the trans-
lation of the camera only up to an un-
known scale factor, that is, the transla-
tion is λt  ∈R3 where the direction of 
t is known but λ  is not.
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an image with obvious  perspective  distortion into one without, effectively synthesizing 
the view from a virtual camera at a different location. Section 14.7.2 describes mosaicing 
which is the process of taking consecutive images from a moving camera and stitching 
them together to form one large virtual image. Section 14.7.3 describes image retrieval 
which is the problem of fi nding which image, from an existing set of images, is most 
similar to some new image. This can be used by a robot to determine whether it has 
visited a particular place, or seen the same object, before. Section 14.7.4 describes how 
we can process a sequence of images from a moving camera to locate consistent world 
points and to estimate the camera motion and 3-dimensional world structure.

14.1  
l
Feature  Correspondence

 Correspondence is the problem of fi nding the pixel coordinates in two different images 
that correspond to the same point in the world.� Consider the pair of real images

>> im1 = iread('eiffel2-1.jpg', 'mono', 'double');
>> im2 = iread('eiffel2-2.jpg', 'mono', 'double');  

shown in Fig. 14.1. They show the same scene viewed from two different positions using 
two different cameras – the pixel size, focal length and number of pixels for each image 
are quite different. The scenes are complex and we see immediately that determining 
correspondence is not trivial. More than half the pixels in each scene correspond to blue 
sky and it is impossible to match a blue pixel in one image to the corresponding blue 
pixel in the other – these pixels are insuffi ciently distinct. This situation is common and 
can occur with homogeneous image regions such as dark shadows, smooth sheets of 
water, snow or smooth man-made objects such as walls or the bodies of cars.

The solution is to choose only those points that are distinctive. We can use the interest 
 point detectors that we introduced in the last chapter to fi nd Harris  corner features

>> hf = icorner(im1, 'nfeat', 200);
>> idisp(im1, 'dark'); hf.plot('gs');    

or  SURF features�

>> sf = isurf(im1, 'nfeat', 200);
>> idisp(im1, 'dark'); sf.plot_scale('g');    

and these are shown in Fig. 14.2. We have simplifi ed the problem – instead of millions 
of pixels to deal with we have just 200 distinctive points.

Consider the general case of two sets of features points: {1pi ∈ Z2, i = 1� N1} in the 
fi rst image and {2pj ∈ Z2, j = 1� N2} in the second image. Since these are distinctive 
image points we would expect a signifi cant number of points in image one would cor-

This is another example of the  data as-
sociation problem.

The SURF detector cannot process a color 
image, it converts it to greyscale. The  Harris 
detector computes the squared  gradients 
for the individual color planes separately 
and then combines them. All detectors 
in the Toolbox can process an image se-
quence provided as a matrix with more 
than two dimensions. There is ambigu-
ity between a  color image and an image 
sequence of length three. If the image’s 
third dimension is three it is deemed to 
be a color image, not a sequence. A four-
dimensional image is unambiguous as a 
sequence of color images.

Fig. 14.1. Two views of the Eiffel 
tower. The images were captured 
approximately simultaneously
using two different handheld digi-
tal cameras. a 7 Mpix camera with 
f = 7.4 mm; b 10 Mpix camera with
f = 5.2 mm (photo by Lucy Corke).
The images have quite different 
scale and the tower is 700 and 
600 pixels tall in a and b respec-
tively. The camera that captured 
image b is held by the person in 
the bottom-right corner of a
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respond to points found in image two. The problem is to determine which (2uj,
2vj), if 

any, corresponds to each (1ui,
1vi).

We cannot use the feature coordinates to determine  correspondence – the features 
will have different coordinates in each image. For example in Fig. 14.1 we see that most 
features are lower in the right-hand image. We cannot use the intensity or color of the 
pixels either. Variations in white balance, illumination and  exposure setting make it 
highly unlikely that corresponding pixels will have the same value. Even if intensity 
variation was eliminated there are likely to be tens of thousands of pixels in the other 
image with exactly the same intensity value – it is not suffi ciently unique. We need 
some richer way of describing each feature.

In practice we describe the region of pixels around the  corner  point which provides 
a distinctive and unique description of the corner point and its immediate surrounds 
– the  feature descriptor. In the Toolbox the feature descriptor for a corner point is a 
vector – the   descriptor property of the  PointFeature superclass. For the  Harris 
 corner feature the descriptor

>> hf(1).descriptor'
ans =
    0.0805    0.0821    0.0371

is a 3-vector that contains the unique elements of the structure  tensor Eq. 13.14. This 
low-dimensional descriptor is computationally cheap since the elements were already 
computed in order to determine corner strength. These descriptor elements are gra-
dients which have the advantage of being robust to offsets in image intensity. The 
similarity of two descriptors is based on Euclidean distance and is zero for a perfect 
match. For example, the similarity of corner features one and two is

>> hf(1).distance( hf(2) )
ans =
    0.0518 

but it is diffi cult to know whether this value represents strong similarity or not since the 
units are not very intuitive. Typically we would compare feature 1fi ∈RM with all fea-
tures in the other image {2fj ∈RM, j = 1�N2} and choose the one that is most similar.� 
However a short descriptor vector like this is still insuffi ciently distinctive and prone to 
incorrect matching. Feature descriptors are often referred to as feature vectors.

We can create a large descriptor vector by representing the square window around 
the feature point as a vector. For example

>> hf = icorner(im1, 'nfeat', 200, 'color', 'patch', 5)  

creates a 121-element descriptor vector for each corner point from the window of 
specifi ed half-width around the feature point – in this case an 11 × 11 window. The 
pixel values are offset by the mean value, rearranged into a vector and then normal-
ized to create a unit vector. We can use the  ZNCC similarity measure from Table 12.1 
in 1-dimensional form to compare these descriptor vectors

If the world point is not visible in image 
two then the most similar feature will be 
an incorrect match.

Fig. 14.2. Corner features com-
puted for Fig. 14.1a. a Harris cor-
ner features; b SURF corner fea-
tures showing scale

14.1  ·  Feature Correspondence
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 (14.1)

which we have factored into the dot product of the descriptor unit-vectors associated 
with each image patch. Determining the similarity of two descriptors using normal-
ized cross-correlation is simply the dot product of two descriptors and the resulting 
similarity measure s ∈ [−1, 1] has some meaning – perfect match is s = 1 and s ≥ 0.8 
is typically considered a good match. For the example above

>> hf(1).ncc( hf(2) )
ans =
   -0.0292 

the correlation score indicates a poor match. This descriptor is distinctive and in-
variant to changes in image intensity but is not invariant to scale or rotation. Other 
descriptors of the surrounding region that we could use include  census and  rank val-
ues as well as  histograms of intensity or color. Histograms have the advantage of be-
ing invariant to rotation but they say nothing about the spatial relationship between 
the pixels, that is, the same pixel values in a completely different spatial arrangement 
have the same histogram.

The  SURF  algorithm computes a 64-element descriptor� vector to describe the 
feature point in a way that is scale and rotationally  invariant, and based on the pixels 
within the feature’s  support region. It is created from the image in the  scale-space se-
quence corresponding to the feature’s scale and rotated according to the feature’s  ori-
entation. The vector is normalized to a unit vector to increase its invariance to chang-
es in image intensity. Similarity between descriptors is based on Euclidean distance. 
This descriptor is quite invariant to image intensity, scale and rotation. SURF is both 
a corner detector and a descriptor, whereas the  Harris  operator is just a corner detec-
tor which must be used with one of a number of different descriptors.�

For the remainder of this chapter we will use SURF features. They are computation-
ally more expensive but pay for themselves in terms of the quality of matches between 
widely different views of the same scene. We compute SURF features for each image

>> sf1 = isurf(im1)
sf1 =
1288 features (listing suppressed)
  Properties: theta image_id scale u v strength descriptor
>> sf2 = isurf(im2)
sf2 =
1426 features (listing suppressed)
  Properties: theta image_id scale u v strength descriptor    

which results in two vectors of SurfPointFeature objects. Over a thousand cor-
ner features were found in each image.

Detectors versus descriptors. When matching world feature points, or landmarks, between differ-
ent views we must fi rst fi nd points that are distinctive. This is the job of the detector and results 
in a coordinate (u, v) and perhaps a scale factor or orientation. The second task is to describe the 
region around the point in a way that allows it to be matched as decisively as possible with the 
region around the corresponding point in the other view. This is the descriptor which is typi-
cally a long vector formed from pixel values,  histograms,  gradients, histograms of gradient and 
so on. There are many    detectors to choose from: Harris and variants, Shi-Tomasi, FAST,  AGAST, 
MSER etc.; as well as many descriptors: ORB, BRISK, FREAK, CenSurE (aka STAR), HOG, ACF 
etc. Some algorithms such as SIFT and SURF defi ne both a detector and a descriptor. The SIFT 
descriptor is a form of HOG descriptor.                             

A 128-element vector can be created by 
passing the option 'extended' to 
isurf.

It is conceivable to use the SURF descrip-
tor with a Harris corner point.
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Next we match the two sets of  SURF features based on the distance between the 
SURF descriptors

>> m = sf1.match(sf2)
m =
644 corresponding points (listing suppressed)  

which results in a vector of FeatureMatch objects that represents 644 candidate-
corresponding points. The fi rst fi ve candidate  correspondences� are

>> m(1:5)
ans =
(819.56, 358.557) <-> (708.008, 563.342), dist=0.002137
(1028.3, 231.748) <-> (880.14, 461.094), dist=0.004057
(1027.6, 571.118) <-> (885.147, 742.088), dist=0.004297
(927.724, 509.93) <-> (800.833, 692.564), dist=0.004371
(854.35, 401.633) <-> (737.504, 602.187), dist=0.004417 

which shows the feature coordinate in the fi rst and second image, as well as the Euclidean 
distance between the two feature vectors. The matches are ordered by decreasing simi-
larity, and a threshold on feature similarity has been applied.

We can overlay a subset of these matches on the original image pair

>> idisp({im1, im2}, 'dark')
>> m.subset(100).plot('w')   

and the result is shown in Fig. 14.3. White lines connect the matched features in 
each image and the lines show a consistent pattern. Most of these connections seem 
quite sensible, but a few are quite obviously incorrect and we will deal with these 
shortly. Note that we passed a cell-array of images to idisp which it displays hori-
zontally tiled as a single image. The  subset method of the  FeatureMatch class 
returns a vector with the specifi ed number of FeatureMatch objects sampled 
evenly from the original vector. If all correspondences were shown we would just 
see a solid white mass.

The correspondences can be obtained via an optional return value

>> [m,corresp] = sf1.match(sf2);
>> corresp(:,1:5)
ans =
         215         389         357        1044         853
         246         418         312        1240         765 

which is a matrix with one column per correspondence. The fi rst column indicates 
that feature 215 in image one matches feature 246 in image two and so on. In terms of 
workspace variables this is sf1(215) and sf2(246).

The Euclidean distance between the matched feature descriptors is given by the 
distance property and the distribution of these, with no thresholding applied, is

>> m2 = sf1.match(sf2, 'all');
>>  histogram(m2.distance, 'Normalization', 'cdf')

We refer to them as candidates because 
although they are very likely to corre-
spond this has not yet been confirmed.

Fig. 14.3.
Feature matching. Subset (100 
out of 1 664) of matches based 
on SURF descriptor similarity. 
We note that a few are clearly 

incorrect

14.1  ·  Feature Correspondence
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shown in Fig. 14.4. It shows that 35% of all matches have descriptor distances below 0.05 
whereas the maximum distance can be over ten times larger – such matches are less 
likely to be valid. We can specify a distance threshold

>> mm = sf1.match(sf2, 'thresh', 0.05);

but choosing the threshold value is always problematic. By default the method selects 
all matches whose distance is less than the median of all distances. Alternatively, we 
could choose to take the N best matches

>> mm = sf1.match(sf2, 'top', N);  

Feature matching is computationally expensive – it is an O(N2) problem since every 
feature descriptor in one image must be compared with every feature descriptor in 
the other image. More sophisticated systems store the descriptors in a data structure 
like a  kd-tree so that similar descriptors – nearest neighbors in feature space – can 
be easily found.

Although the quality of matching shown in Fig. 14.3 looks quite good there are a 
few obviously incorrect matches in this small subset. We can discern a pattern in the 
lines joining the corresponding points, they are slightly converging and sloping down 
to the right. This pattern is a function of the relative pose between the two camera 
views, and understanding this is key to determining which of the candidate matches 
are correct. That is the topic of the next section.

14.2 
l
Geometry of Multiple Views

We start by studying the geometric relationships between images of a single point P 
observed from two different viewpoints and this is shown in Fig. 14.5. This geome-
try could represent the case of two cameras simultaneously viewing the same scene, 
or one moving camera taking a picture from two different viewpoints.� The center 
of each camera, the origins of {1} and {2}, plus the world point P defi nes a plane in 
space – the  epipolar plane. The world point P is projected onto the image planes 
of the two cameras at points 1p and 2p respectively, and these points are known as 
 conjugate  points.

Consider image one. The image point 1e is a function of the position of camera 
two. The image point 1p is a function of the world point P. The camera center, 1e and 
1p defi ne the epipolar plane and hence the  epipolar line 2` in image two. By defi nition 
the conjugate point 2p must lie on that line. Conversely 1p must lie along the epipolar 
line in image one 1` that is defi ned by 2p in image two.

Fig. 14.4.
Cumulative distribution of
feature distance

Assuming the point does not move.
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This is a very fundamental and important geometric relationship – given a point in 
one image we know that its conjugate is constrained to lie along a line in the other im-
age. We illustrate this with a simple example that mimics the geometry of Fig. 14.5

>> T1 = SE3(-0.1, 0, 0) * SE3.Ry(0.4);
>> cam1 = CentralCamera('name', 'camera 1', 'default', ...	
    'focal', 0.002, 'pose', T1)  

which returns an instance of the  CentralCamera class as discussed previously in 
Sect. 11.1.2. Similarly for the second camera

>> T2 = SE3(0.1, 0,0)*SE3.Ry(-0.4);
>> cam2 = CentralCamera('name', 'camera 2', 'default', ...	
    'focal', 0.002, 'pose', T2);  

and the pose of the two cameras is visualized by
>> axis([-0.5 0.5 -0.5 0.5 0 1])
>> cam1.plot_camera('color', 'b', 'label')
>> cam2.plot_camera('color', 'r', 'label')

which is also shown in Fig. 14.6. We defi ne an arbitrary world point

>> P=[0.5 0.1 0.8]';

Fig. 14.5.
Epipolar geometry showing the 

two cameras with associated co-
ordinate frames {1} and {2} and 

image planes. The world point P 
and the two camera centers form 

the epipolar plane, and the in-
tersection of this plane with the
image-planes form epipolar lines

Fig. 14.6.
Simulation of two cameras and 
a target point. The origins of the 

two cameras are offset along 
the x-axis and the cameras are 

verged, that is, their optical axes 
intersect

14.2  ·  Geometry of Multiple Views
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which we display as a small sphere

>> plot_sphere(P, 0.03, 'b'); 

which is shown in Fig. 14.6. We project this point to both cameras

>> p1 = cam1.plot(P)
p1 =
  561.6861
  532.6079
>> p2 = cam2.plot(P)
p2 =
  746.0323
  546.4186

and this is shown in Fig. 14.7. The  epipoles are computed by projecting the center of 
each camera to the other camera’s image plane

>> cam1.hold
>> e1 = cam1.plot( cam2.centre, 'Marker', 'd',	
 'MarkerFaceColor', 'k')
e1 =
  985.0445
  512.0000
>> cam2.hold
>> e2 = cam2.plot( cam1.centre, 'Marker', 'd',	
 'MarkerFaceColor', 'k')
e2 =
   38.9555
  512.0000

and these are shown in Fig. 14.7 as a black �-marker.

14.2.1 
l

The Fundamental Matrix

The epipolar relationship shown graphically in Fig. 14.5 can be expressed concisely 
and elegantly as

 (14.2)

where 1p and 2p are the image points 1p and 2p expressed in  homogeneous form and 
F ⊂R3×3 is known as the  fundamental matrix. We can rewrite this as

 (14.3)

Fig. 14.7.
Epipolar geometry simula-
tion showing the virtual im-
age planes of two Toolbox 
CentralCamera objects. The 
 perspective projection of point P 
is a black circle, the projection 
of the other camera’s center is a 
black �-marker, and the epipolar 
line is shown in red
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where

 (14.4)

is the equation of a line, the  epipolar line, along which  conjugate  point in image two 
must lie. This line is a function of the point coordinate 1p in image one and Eq. 14.3 is 
a powerful test as to whether or not a point in image two is a possible conjugate.

Taking the transpose of both sides of Eq. 14.2 yields

 (14.5)

from which we can write the epipolar line for camera one

 (14.6)

in terms of a point viewed by camera two.
The fundamental matrix is a function of the camera parameters and the relative cam-

era pose between the views

 (14.7)

where K1 and K2 are the camera intrinsic matrices defi ned in Eq. 11.7�, and 2ξ1 ∼ (R, t) is the 
relative pose of camera one with respect to camera two.� The fundamental matrix that re-
lates the two views is returned by the method  F of the  CentralCamera class, for example

>> F = cam1.F( cam2 )
F =
         0   -0.0000    0.0010
   -0.0000         0    0.0019
    0.0010    0.0001   -1.0208

and for the two image points computed earlier
>> e2h(p2)' * F * e2h(p1)
ans =
   1.1102e-16

we see that Eq. 14.2 holds.
The fundamental matrix has some interesting properties. It is singular with a rank 

of two
>> rank(F)
ans =
     2

and has seven degrees of freedom.� The  epipoles are encoded in the  null space of the 
matrix. The epipole for camera one is the right null space of F

>> null(F)'
ans =
   -0.8873   -0.4612   -0.0009

2D projective geometry in brief. The projective plane P2 is the set of all points (x1, x2, x3)T, xi ∈R 
and xi not all zero. Typically the 3-tuple is considered a column vector. A point p = (u, v) is rep-
resented in P2 by homogeneous coordinates p = (u, v, 1)T. Scale is unimportant for homoge-
neous quantities and we express this as p� λp where the operator � means equal up to a (pos-
sibly unknown) nonzero scale factor. A point in P2 can be represented in nonhomogeneous, or 
Euclidean, form p = (x1/x3, x2/x3)T in R2. The homogeneous vector (u, v, f )T, where f  is the focal 
length in pixels, is a vector from the camera’s origin that points toward the world point P. More 
details are given in Sect. C.2.

The Toolbox functions  e2h and  h2e convert between Euclidean and homogeneous coordinates 
for points (a column vector) or sets of points (a matrix with one column per point).

If both images were captured with the 
same camera then K1 = K2. 

Note well that this is the inverse of what 
you might expect: camera two with re-
spect to camera one, but the mathemat-
ics can be expressed more simply this way. 
Toolbox functions always describe camera 
pose with respect to the world frame.

The matrix F ⊂R3×3 has seven under-
lying parameters so its nine elements 
are not independent. The overall scale is 
not defined, and there exists a constraint 
that det(F) = 0.

14.2  ·  Geometry of Multiple Views



468 Chapter 14  ·  Using Multiple Images

in homogeneous coordinates or
>> e1 = h2e(ans)'
e1 =
  985.0445  512.0000 

in Euclidean coordinates – as shown in Fig. 14.7. The epipole for camera two is the left 
null space� of the fundamental matrix

>> null(F');
>> e2 = h2e(ans)'
e2 =
   38.9555  512.0000 

The Toolbox can display epipolar lines using the  plot_epiline methods of the 
CentralCamera class

>> cam2.plot_epiline(F, p1, 'r')

which is shown in Fig. 14.7 as a red line in the camera two image plane. We see, as 
expected, that the projection of P lies on this epipolar line. The epipolar line for cam-
era one is

>> cam1.plot_epiline(F', p2, 'r');

14.2.2 
l

The Essential  Matrix

The epipolar geometric  constraint can also be expressed in terms of  normalized im-
age coordinates

 (14.8)

where E ⊂R3×3 is the  essential matrix and 2x and 1x are  conjugate  points in homo-
geneous  normalized image coordinates.� This matrix is a simple function of the rela-
tive camera pose

 (14.9)

where 2ξ1 ∼ (R, t) is the relative pose of camera one with respect to camera two. The 
essential matrix is singular, has a rank of two, and has two equal nonzero singular 
values� and one of zero. The essential matrix has only 5 degrees of freedom and is 
completely defi ned by 3 rotational and 2 translational� parameters. For pure rotation, 
when t = 0, the essential matrix is not defi ned.

We recall from Eq. 11.7 that p� Kx and substituting into Eq. 14.8 we write

 (14.10)

Equating terms with Eq. 14.2 yields a relationship between the two matrices

 (14.11)

in terms of the  intrinsic parameters of the two cameras involved.� This is implemented 
by the  E method of the  CentralCamera class

>> E = cam1.E(F)
E =
         0   -0.0779         0
   -0.0779         0    0.1842
         0   -0.1842    0.0000

where the intrinsic parameters of camera one (which is the same as camera two) are used.

This is the right null space of the matrix 
transpose. The MATLAB function  null 
returns the right null space.

For a camera with a focal length of 1 and 
the coordinate origin at the principal 
point, see page 322.

See Appendix B.

A 3-dimensional translation (x, y, z) with 
unknown scale can be considered as 
(x’, y’, 1).

If both images were captured with the 
same camera then K1 = K2.
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Like the camera  matrix in Sect. 11.2.2 the essential  matrix can be decomposed to 
yield the relative pose 1ξ2 in homogeneous transformation form.� The inverse is not 
unique and in general there are two solutions

>>  sol = cam1.invE(E)
sol(1) = 
    1.0000         0         0   -0.1842
         0   -1.0000         0         0
         0         0        -1  -0.07788
         0         0         0         1

sol(2) = 
    0.6967         0   -0.7174    0.1842
         0    1.0000         0         0
    0.7174         0    0.6967   0.07788
         0         0         0         1

The true relative pose from camera one to camera two is

>> inv(cam1.T) * cam2.T
ans =
    0.6967         0   -0.7174    0.1842
         0         1         0         0
    0.7174         0    0.6967   0.07788
         0         0         0         1

which indicates that, in this case, solution two is the correct one.
Unusually we have recovered the camera translation exactly but since E� λE the 

translational part of the homogeneous transformation matrix has an unknown scale 
factor.� In this case the scale is correct because the essential matrix was determined 
directly from the relative pose between the cameras.

In the general case we do not know the pose of the two cameras, so how do we deter-
mine the correct solution in practice? One approach is to determine whether a world point 
is visible. Typically we would choose a point on the optical axis in front of the fi rst camera

>> Q = [0 0 10]';

and its  projection to the fi rst camera
>> cam1.project(Q)'
ans =
  429.7889  512.0000

is a reasonable value. We can test each of the possible relative poses in  sol by using 
them to move the fi rst camera. We can create an instance copy of the fi rst camera with 
an arbitrary displacement using the  move method

>> cam1.move(sol(1).T).project(Q)'
ans =
   NaN   NaN

and the values of NaN indicate that the point Q is not visible from this camera pose 
– in fact it is behind the camera. The second solution

>> cam1.move(sol(2).T).project(Q)'
ans =
  594.2111  512.0000

has a fi nite value and indicates that it is the valid one. We can perform this more com-
pactly by providing a test point

>> sol = cam1.invE(E, Q)
sol = 
    0.6967         0   -0.7174    0.1842
         0    1.0000         0         0
    0.7174         0    0.6967   0.07788
         0         0         0         1

in which case only the valid solution is returned.

Although Eq. 14.9 is written in terms 
of (R, t) ∼ 2ξ1 the Toolbox function re-
turns 1ξ2.

As observed by Hartley and Zisserman 
(2003, p 259) not even the sign of t can 
be determined.

14.2  ·  Geometry of Multiple Views
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In summary these 3 × 3 matrices, the fundamental and the  essential  matrix, encode 
the parameters and relative pose of the two cameras. The  fundamental matrix and a 
point in one image defi nes an  epipolar line in the other image along which its  conju-
gate  points must lie. The essential matrix encodes the relative pose of the two camera’s 
centers and the pose can be extracted, with two possible values, and with translation 
scaled by an unknown factor. In this example the fundamental matrix was computed 
from known camera motion and intrinsic parameters. The real world isn’t like this – 
camera motion is diffi cult to measure and the camera may not be calibrated. Instead 
we can estimate the fundamental matrix directly from corresponding image points.

14.2.3 
l
Estimating the Fundamental Matrix from Real Image Data

Assume that we have N pairs of corresponding points in two views of the same scene 
(1pi,

2pi), i = 1� N. To demonstrate this we create a set of twenty random point fea-
tures (within a 2 × 2 × 2 m cube) whose center is located 3 m in front of the cameras�

>> P = SE3(-1, -1, 2)*(2 *rand(3,20) );  

and project these points onto the two camera image planes

>> p1 = cam1.project(P);
>> p2 = cam2.project(P);

If N ≥ 8 the fundamental matrix can be estimated from these two sets of correspond-
ing points

>> F =  fmatrix(p1, p2)
maximum residual 2.645e-29
F =
    0.0000   -0.0000    0.0239
   -0.0000   -0.0000    0.0460
    0.0239    0.0018  -24.4896 

where the residual is the maximum value of the left-hand side of Eq. 14.2 and is ideally zero. 
The value here is not zero, but it is very small, and this is due to the accumulation of er-
rors from fi nite precision arithmetic. The estimated matrix has the required rank property

>> rank(F)
ans =
    2

For camera two we can plot the projected points

>> cam2.plot(P);

The SE3 class, a 4 × 4 matrix is applied 
to a set of 3D points expressed as a 
3 × 20 matrix. The ∗ operator for the 
SE3 class does the right thing here, it 
first converts the second matrix to ho-
mogeneous form, performs the matrix 
multiplication, and then converts back 
to Euclidean form.

Fig. 14.8.
A pencil of epipolar lines on the
camera two image plane. Note 
how all epipolar lines pass through 
the epipole which is the projec-
tion of camera one’s center
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and overlay the epipolar lines generated by each point in image one

>> cam2.plot_epiline(F, p1, 'r')

which is shown in Fig. 14.8. We see a family or pencil of epipolar lines, and that every point 
in image two  lies on an epipolar line. Note how the epipolar lines all converge on the epipole 
which is possible in this case� because the two cameras are  verged as shown in Fig. 14.6.

To demonstrate the importance of correct  point  correspondence we will repeat 
the example above but introduce two bad  data associations by swapping two ele-
ments in p2

>> p2(:,[8 7]) = p2(:,[7 8]);

The fundamental matrix  estimation

>>   fmatrix(p1, p2)
maximum residual 0.000424
ans =
    0.0000   -0.0001    0.0628
    0.0000   -0.0000    0.0098
   -0.0192    0.0511  -29.7672 

now has a residual that is over 20 orders of magnitude larger than previously. This means 
that the point correspondence cannot be explained by the relationship Eq. 14.2.

If we knew the fundamental matrix we could test whether a pair of candidate cor-
responding points are in fact conjugates  by measuring how far one is from the  epipo-
lar line defi ned by the other

>> epidist(F, p1(:,1), p2(:,1))
ans =
   1.5356e-13
>> epidist(F, p1(:,7), p2(:,7))
ans =
   18.8228  

which shows that point 1 is a good fi t, but point 7 (which we swapped with point 8), is 
a poor fi t. However we have to fi rst estimate the fundamental matrix and that requires 
that point correspondence is known. We break this deadlock with an ingenious  algo-
rithm called Random  Sampling and Consensus or  RANSAC.

The underlying principle is delightfully simple. Estimating a fundamental matrix re-
quires eight points so we randomly choose eight candidate corresponding points (the 
sample) and estimate F to create a model. This model is tested against all the other can-
didate pairs and those that fi t� vote for this model. The process is repeated a number of 
times and the model that had the most supporters (the consensus) is returned. Since the 
sample is small the chance that it contains all valid candidate pairs is high. The point 
pairs that support the model are termed inliers and those that do not are outliers.

RANSAC is remarkably effective and effi cient at fi nding the inlier set, even in 
the presence of large numbers of outliers (more than 50%), and is applicable to a 
wide range of problems. Within the Toolbox we invoke  RANSAC as a driver of the 
 fmatrix function

>> [F,in,r] = ransac(@fmatrix, [p1; p2], 1e-6, 'verbose');
15 trials
2 outliers
2.03262e-29 fi nal residual 

and we obtain an excellent fi nal residual. The set of inliers is also returned

>> in
in =
  Columns 1 through 14
   1   2   3   4   5   6   9  10  11   12    13    14    15    16
  Columns 15 through 18
  17  18  19  20

The example has been contrived so that 
the epipoles lie within the images, that 
is, that each camera can see the center 
of the other camera. A common imag-
ing geometry is for the optical axes to 
be parallel, such as shown in Fig. 14.19 
in which case the epipoles are at infinity 
(the third element of the homogeneous 
coordinate is zero) and all the epipolar 
lines are parallel.

To within a defined threshold t. The 
Toolbox function  epidist returns 
the distance between a point and an 
epipolar line.

14.2  ·  Geometry of Multiple Views
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and the two incorrect associations, points 7 and 8, are notably absent from this list. The 
third parameter to ransac is the threshold t which is used to determine whether or not 
a point pair supports the model. If t is chosen to be too small RANSAC requires many 
more trials than its default maximum and this requires adjustment of additional param-
eters. Keep in mind also that the results of RANSAC will vary from run to run due to the 
random subsampling performed. Using RANSAC involve some trial and error to choose 
the correct threshold based on the fi nal residual and the number of outliers. There are 
also a number of other options that are described in the online documentation.

We return now to the pair of images of the Eiffel tower shown in Fig. 14.3. When 
we left off at page 464 we had found candidate  correspondences based on descriptor 
similarity but there were a number of clearly incorrect matches.  RANSAC is available 
as a method  ransac that operates on a vector of  FeatureMatch objects

>> F = m.ransac(@fmatrix, 1e-4, 'verbose')
1527 trials
312 outliers
0.000140437 fi nal residual
F =
    0.0000   -0.0000    0.0098
    0.0000    0.0000   -0.0148
   -0.0121    0.0129    3.6393 

A small amount of trial and error was required to settle on the tolerance of 10−4. Making it 
smaller requires more RANSAC trials, and therefore raising the limit on the maximum 
number of trials allowed, but without any signifi cant change in the result. It is also un-
realistic to expect a very small residual since the real image data is subject to random 
error such as image sensor noise and systematic error such as  lens distortion.�

RANSAC identifi ed 312 outliers or incorrect  data associations from the  SURF fea-
ture matching stage which is nearly 50% of the candidate matches – the preliminary 
matching was worse than it looked. Running RANSAC has also updated the elements 
of the FeatureMatch vector

>> m.show
ans =
644 corresponding points
332 inliers (51.6%)
312 outliers (48.4%) 

which now displays the total number of inliers and outliers. Compared to page 463 
the elements of the vector

>> m(1:5)
ans =
(819.56, 358.557) <-> (708.008, 563.342), dist=0.002137 +
(1028.3, 231.748) <-> (880.14, 461.094), dist=0.004057 -
(1027.6, 571.118) <-> (885.147, 742.088), dist=0.004297 +
(927.724, 509.93) <-> (800.833, 692.564), dist=0.004371 +
(854.35, 401.633) <-> (737.504, 602.187), dist=0.004417 +

Example of RANSAC fi tting a line to data with a few erroneous, or outlier, points. 
The blue dashed line is the least squares best fi t and is clearly biased away from the 
true line by the outlier data points. Despite 40% of the points not fi tting the model 
RANSAC fi nds the parameters of the consensus line, the line that the largest number 
of points agree on

>> [theta,inliers] = ransac(@linefi t, [x; y], 1e-3)
theta =
    3.0000  -10.0000
inliers =
     1     3     4     5     9    10 

and the indices of the data points that support that model. [examples/linefit.m]

Lens distortion causes points to be dis-
placed on the image plane and this vio-
lates the epipolar geometry. Images can 
be corrected by warping as discussed in 
Sect. 12.7.4 but this is computationally 
expensive. A cheaper alternative is to 
find the coordinates of the features in 
the distorted image and correct those 
using the inverse of the distortion mod-
el Eq. 11.13.
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now have a trailing plus or minus sign to indicate whether the corresponding match 
is an inlier or outlier respectively.� We can plot some of the inliers

>> idisp({im1, im2});
>> m.inlier.subset(100).plot('g')    

or some of the outliers

>> idisp({im1, im2});
>> m.outlier.subset(100).plot('r')    

and these are shown in Fig. 14.9.
An alternative way to create a CentralCamera object is from an image

>> cam = CentralCamera('image', im1); 

The size of the pixel array is inferred from the image and the intrinsic parameters are 
set to default values. As before, we can overlay the epipolar lines computed from the 
corresponding  points found in the second image

>> cam.plot_epiline(F', m.inlier.subset(20).p2, 'g'); 

and the result is shown in Fig. 14.10. The  epipolar lines intersect at the epipolar  point 
which we can clearly see is the projection of the second camera in the fi rst image.� The 
epipole at

>> h2e( null(F))
ans =
   1.0e+03 *
    1.0359
    0.6709
>> cam.plot(ans, 'bo')  

is also superimposed on the plot. With two handheld cameras and a common view we have 
been able to pinpoint the second camera in the fi rst image. The result is not quite perfect 
– there is a horizontal offset of about 20 pixels which is likely to be due to a small pointing 
error in one or both cameras which were handheld and only approximately synchronized.�

�
Fig. 14.9. Results of SURF feature 
matching after RANSAC. a Sub-
set of all inlier matches; b subset 
of the outlier matches, some are 
quite visibly incorrect while oth-
ers are more subtly wrong

Fig. 14.10.
Image from Fig. 14.1a showing 

epipolar lines converging on the 
projection of the second cam-

era’s center. In this case the sec-
ond camera is clearly visible in 

the bottom right of the image

The second match has been determined 
to be an outlier even though it was the 
second strongest candidate based on de-
scriptor similarity. Similarity alone is not 
enough, the corresponding points in the 
two images must be consistent with the 
epipolar geometry as represented by the 
consensus fundamental matrix. 

We only plot a small subset of the epi-
polar lines since they are too numerous 
and would obscure the image.

At the focal lengths used a 20 pix displace-
ment on the image plane corresponds to 
a pointing error of less than 0.5°.

14.2  ·  Geometry of Multiple Views
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14.2.4 
l
Planar  Homography

In this section we will consider a camera viewing a set of world points Pi that lie on 
a plane. They are viewed by two different cameras and the projection in the cameras 
are 1pi and 2pi respectively which are related by

 (14.12)

where H ⊂R3×3 is a nonsingular matrix known as an   homography, a  planar homog-
raphy, or the homography induced by the plane.�

For example consider again the pair of cameras from page 465 now observing a 
3 × 3 grid of points

>>   Tgrid = SE3(0,0,1)*SE3.Rx(0.1)*SE3.Ry(0.2);
>> P = mkgrid(3, 1.0, 'pose', Tgrid);    

where  Tgrid is the pose of the grid coordinate frame {G} and the grid points are cen-
tered in the frame’s xy-plane. The points are projected to both cameras

>> p1 = cam1.plot(P, 'o');
>> p2 = cam2.plot(P, 'o');

and the images are shown in Fig. 14.11a and b respectively.
Just as we did for the fundamental matrix, if N ≥ 8 we can estimate the matrix H 

from two sets of corresponding  points

>> H = homography(p1, p2)
H =
   -0.4282   -0.0006  408.0894
   -0.7030    0.3674  320.1340
   -0.0014   -0.0000    1.0000 

According to Eq. 14.12 we can predict the position of the grid points in image two from 
the corresponding image one coordinates

>> p2b = homtrans(H, p1); 

which we can can superimpose on image two as +-symbols

>> cam2.hold()
>> cam2.plot(p2b, '+')

This is shown in Fig. 14.11b and we see that the predicted points are perfectly aligned 
with the actual projection of the world points. The inverse of the  homography matrix

 (14.13)

Fig. 14.11.
Views of the oblique planar grid 
of points from two different 
view points. The grid points are 
projected as open circles. Plus 
signs in b indicate points trans-
formed from the camera one im-
age plane by the homography

An homography matrix has arbitrary scale 
and therefore 8 degrees of freedom. With 
respect to Eq. 14.14 the rotation, transla-
tion and normal have 3, 3 and 2 degrees 
of freedom respectively, for a total of 8. 
Homographies form a group : the prod-
uct of two homographies is another ho-
mography, the identity homography is 
a unit matrix and an inverse operation 
is defined.
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performs the inverse mapping, from image two coordinates to image one

>> p1b = homtrans(inv(H), p2); 

The fundamental matrix constrains the  conjugate  point to lie along a line but the  ho-
mography tells us exactly where the conjugate point will be in the other image – pro-
vided that the points lie on a plane.

We can use this proviso to our advantage as a test for whether or not points lie on 
a plane. We will add some extra world points� to our example

>> Q = [
   -0.2302   -0.0545    0.2537
    0.3287    0.4523    0.6024
    0.4000    0.5000    0.6000  ];

which we plot in 3D

>> axis([-1 1 -1 1 0 2])
>> plot_sphere(P, 0.05, 'b')
>> plot_sphere(Q, 0.05, 'r')
>> cam1.plot_camera('color', 'b', 'label')
>> cam2.plot_camera('color', 'r', 'label')  

and this is shown in Fig. 14.12. The new points, shown in red, are clearly not in the 
same plane as the original blue points. Viewed from camera one

These points lie along the ray from the 
camera one center to an extra row of 
points in the grid plane. However their 
z-coordinates have been chosen to be 
0.4, 0.5 and 0.6 m respectively.

Fig. 14.12.
World view of target points and 
two camera poses. Blue points 

lie in a planar grid, while the red 
points appear to lie in the grid 

from the viewpoint of camera one

Fig. 14.13.
Views of the oblique planar grid 
of points from two different view 

points. The grid points are pro-
jected as open circles. Plus signs 

in b indicate points transformed 
from the camera one image plane 
by the homography. The bottom 

of row of points in each case are 
not coplanar with the other points

14.2  ·  Geometry of Multiple Views
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>> p1 = cam1.plot([P Q], 'o');

as shown in Fig. 14.13a, these new points appear as an extra row in the grid of points 
we used above. However in the second view

>> p2 = cam2.plot([P Q], 'o');

as shown in Fig. 14.13b these out of plane  points no longer form a regular grid. If we 
apply the  homography to the camera one image points

>> p2h = homtrans(H, p1); 

we fi nd where they should be in the camera two image if they belonged to the plane 
implicit in the homography

>> cam2.plot(p2h, '+')

We see that the original nine points overlap, but the three new points do not. We could 
make an automated test based on the prediction error

>> colnorm( homtrans(H, p1)-p2 )
ans =
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
    0.0000    0.0000    0.0000   50.5969   46.4423   45.3836  

which is large for these last three points – they do not belong to the plane that induced 
the homography.

In this example we estimated the homography based on two sets of corresponding 
 points which were projections of known planar points. In practice we do not know in 
advance which points belong to the plane so we can again use  RANSAC

>> [H,in] = ransac(@homography, [p1; p2], 0.1)
resid =
   4.0990e-13
H =
   -0.4282   -0.0006  408.0894
   -0.7030    0.3674  320.1340
   -0.0014   -0.0000    1.0000
in =
     1     2     3     4     5     6     7     8     9 

which fi nds the  homography that best explains the relationship between the sets of 
image points. It has also identifi ed those points which support the homography and 
the three out of plane points, points 10–12, are not on the inlier list.

Fig. 14.14.
Geometry of homography 
showing two cameras with as-
sociated coordinate frames {1} 
and {2} and image planes. The 
world point P belongs to a plane 
with surface normal n. H is the 
homography, a 3 × 3 matrix 
that maps 1p to 2p
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The geometry related to the homography is shown in Fig. 14.14. We can express 
the  homography in  normalized image coordinates�

where HE is the  Euclidean  homography which is written

 (14.14)

in terms of the camera motion (R, t) ∼ 2ξ1 and the plane nTP + d = 0 with respect to 
frame {1}. The Euclidean and projective homographies are related by 

where K is the  camera intrinsic parameter matrix.
As for the  essential  matrix the  projective homography can be decomposed to yield 

the relative pose 1ξ2 in  homogeneous transformation form� as well as the normal to 
the plane. We use the  invH method of the  CentralCamera class

>> cam1.invH(H)
solution 1
     T =0.82478    -0.01907    -0.56513    -0.01966
        0.01907     0.99980    -0.00591    -0.01917
        0.56513    -0.00591     0.82498     0.19911
        0.00000     0.00000     0.00000     1.00000
    n = 0.95519     0.00998     0.29582
solution 2
     T =0.69671     0.00000    -0.71736     0.18513
        0.00000     1.00000     0.00000    -0.00000
        0.71736    -0.00000     0.69671     0.07827
        0.00000     0.00000     0.00000     1.00000
    n = -0.19676    -0.09784     0.97556

which returns a short structure array. Again there are multiple solutions and we need 
to apply additional information to determine the correct one. As usual the translational 
component of the transformation matrix has an unknown scale factor. We know from 
Fig. 14.12 that the camera motion is predominantly in the x-direction and that the plane 
normal is approximately parallel to the camera’s optical- or z-axis and this knowledge 
helps us to choose solution two. The true transformation from camera one to two is

>> inv(T1)*T2
ans =
    0.6967         0   -0.7174    0.1842
         0    1.0000         0         0
    0.7174         0    0.6967    0.0779
         0         0         0    1.0000

and supports our choice.� The pose of the grid with respect to camera one is

>> inv(T1)* Tgrid
ans =
    0.9797   -0.0389   -0.1968   -0.2973
    0.0198    0.9950   -0.0978         0
    0.1996    0.0920    0.9756    0.9600
         0         0         0    1.0000

and the third column is the grid’s normal� which matches the estimated normal as-
sociated with solution two.

We can apply this technique to a pair of real images

>> im1 = iread('walls-l.jpg',  'double', 'reduce', 2);
>> im2 = iread('walls-r.jpg',  'double', 'reduce', 2);  

See Sect. 11.1.2.

Although Eq. 14.14 is written in terms 
of (R, t) ∼ 2ξ1 the Toolbox function re-
turns 1ξ2.

The translation scale factor is quite close 
to one in this example, but in general it 
must be considered unknown.

Since the points are in the xy-plane of the 
grid frame {G} the normal is the z-axis.

14.2  ·  Geometry of Multiple Views
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which we have downsized by a factor of 2 in each dimension and are shown in Fig. 14.15. 
We start by fi nding the  SURF features

>> sf1 = isurf(im1);
>> sf2 = isurf(im2);    

and the candidate corresponding points
>> m = sf1.match(sf2, 'top', 1000)
m = 
1000 corresponding points (listing suppressed)  

then use  RANSAC to fi nd the set of corresponding  points that best fi ts a plane in the world

[H,r] = m.ransac(@homography, 4)
H =
    0.8463    0.0164 -150.4748
    0.0050    1.0067   20.3413
   -0.0000   -0.0000    1.0000
r =
    1.6799

The number of inlier and outlier points is

>> m.show
ans =
1000 corresponding points
262 inliers (26.2%)
738 outliers (73.8%) 

In this case the majority of point pairs do not fi t the model, that is they do not belong 
to the plane that induces the  homography H. However 262 points do belong to the 
plane and we can superimpose them on the fi gure

>> idisp(im1)
>> plot_point(m.inlier.p1, 'ys')   

as shown in Fig. 14.15a. RANSAC has found a consensus which is the plane contain-
ing the left-hand wall. The error tolerance was set to 4 pixels to account for lens dis-
tortion and the planes being not perfectly smooth. If we remove the inlier points from 
the  FeatureMatch vector, that is, we keep the outliers

>> m = m.outlier 

and repeat the  RANSAC   homography  estimation step we will fi nd the next most dom-
inant plane in the scene which turns out to be the right-hand wall. Planes are very 
common in man-made environments and we will revisit homographies and their   de-
composition in Sect. 14.7.1.

Fig. 14.15. Two pictures of a court-
yard taken from different view-
points. Image b was taken ap-
proximately 30 cm to the right 
of image a. Image a has super-
imposed features that fi t a plane. 
The camera was handheld
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14.3 
l
Stereo Vision

 Stereo vision is the technique of estimating the 3-dimensional structure of the 
world from two images taken from different viewpoints as for example shown in 
Fig. 14.15. Human eyes are separated by 50–80 mm and the difference between these 
two viewpoints is an important, but not the only, part of how we sense distance. 
We will discuss two approaches known as sparse and dense stereo respectively. 
 Sparse stereo is a natural extension of what we have learned about feature match-
ing and recovers the world coordinate (X, Y, Z) for each corresponding point pair. 
Dense stereo attempts to recover the world coordinate (X, Y, Z) for every pixel in 
the image.

14.3.1  
l

Sparse Stereo

To illustrate sparse stereo we will return to the pair of images shown in Fig. 14.15. We 
have already found the  SURF features and established candidate correspondences be-
tween them. Now we estimate the fundamental matrix

>> [F,r] = m.ransac(@fmatrix,1e-4, 'verbose');
102 trials
238 outliers
0.000132333 fi nal residual

which captures the relative geometry of the two views. We can display the  epipolar 
lines for a subset of right-hand image points overlaid on the left-hand image

>> cam = CentralCamera('image', im1);
>> cam.plot_epiline(F', m.inlier.subset(40).p2, 'y');    

which is shown in Fig. 14.16. In this case the epipolar lines are approximately hori-
zontal and parallel which is expected for a  camera motion that is a pure translation in 
the x-direction. Figure 14.17 shows the epipolar geometry for stereo vision. It is clear 
that as points move away from the camera, P to P′ the  conjugate  points in the right-
hand image moves to the right along the epipolar line.

The points 1p and 2p each defi ne a ray in space which intersect at the world point. 
However to determine these rays we need to know the two poses of the camera and 
its intrinsic parameters. We can consider that the camera one frame {1} is the origin 
but the pose of  camera two remains unknown. However we could estimate its pose 
by decomposing the  essential  matrix computed between the two views. We have the 

14.3  ·  Stereo Vision

Fig. 14.16.
Image of Fig. 14.15a with epipo-
lar lines for a subset of right im-

age points superimposed
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fundamental matrix, but to determine the essential matrix according to Eq. 14.11 we 
need the  camera’s intrinsic parameters. With a little sleuthing we can fi nd them!

The focal length used when the picture was taken is stored in the metadata of the 
image as we discussed on page 363 and can be examined

>> [~,md] = iread('walls-l.jpg'); 

where md is a structure of text strings that contains various characteristics of the im-
age – its metadata. The element  DigitalCamera is a structure that describes the 
camera

>> f = md.DigitalCamera.FocalLength
f =
    4.1500

from which we determine the focal length is 4.15 mm.
The dimensions of the pixels ρw × ρh are not included in the image header but some 

web-based research on this model camera
>> md.Model
ans =
iPhone 5s

suggests that this camera has an image sensor with 1.5 µm pixels. We create a 
CentralCamera object based on the known focal length, pixel size and image 
dimension�

>> cam = CentralCamera('image', im1, 'focal', f/1000, ...	
    'pixel', 2*1.5e-6)
cam =
name: noname [central-perspective]              
  focal length:   0.00415                       
  pixel size:     (3e-06, 3e-06)                
  principal pt:   (816, 612)                    
  number pixels:  1632 x 1224                   
  pose:           t = (0,0,0), RPY/yxz = (0,0,0) deg

In the absence of any other information the  principal  point is assumed to be in the 
center of the image.

The  essential matrix is obtained by applying the camera intrinsic parameters to 
the fundamental matrix

>> E = cam.E(F)
E =
    0.0143    1.1448    0.2380
   -1.1286   -0.1483    6.0273
   -0.2826   -6.0536   -0.1461

We have doubled the pixel dimensions 
to account for halving the image reso-
lution when we loaded the images. A 
low-resolution image effectively has 
larger pixels.

Fig. 14.17.
Epipolar geometry for stereo 
vision. We can see clearly that 
as the depth of the world point 
increases, from P to P′, the pro-
jection moves along the epipolar 
line in the second image plane
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and we then decompose it to determine the  camera motion

>> T = cam.invE(E, [0,0,10]')
T =
    0.9999    0.0115    0.0027     6.042
   -0.0115    0.9996   -0.0255   -0.3092
   -0.0030    0.0254    0.9997     1.124
         0         0         0         1   

We chose a test point 1P = (0, 0, 10), a distant point along the optical axis, to determine 
the correct solution for the relative camera motion. Since the camera  orientation was 
kept fairly constant the rotational part of the transformation is expected to be close 
to the identity matrix as we observe, and the actual rotation

>> T.torpy('yxz', 'deg')
ans =
   -0.6569    1.4597    0.1561

is less than two degrees of rotation about any axis.�

The estimated translation t from {1} to {2} has an unknown scale factor. Once again 
we bring in an extra piece of information – when we took the images the camera posi-
tion changed by approximately 0.3 m in the positive x-direction. The estimated trans-
lation has the correct direction, dominant x-axis motion, but the magnitude is quite 
wrong. We therefore scale the translation

>> t = T.t;
>> T.t = 0.3 * t/t(1)
T = 
    0.9999    0.0115    0.0027       0.3
   -0.0115    0.9996   -0.0255  -0.01535
   -0.0030    0.0254    0.9997    0.0558
         0         0         0         1

and we have an estimate of 1ξ2 – the relative pose of camera two with respect to cam-
era one represented as a  homogeneous transformation.

Each point p in an image corresponds to a ray in space�

where P0 is the principal point of the  camera and d ∈R3, �d�= 1 is a unit-vector in 
the direction of the ray. Consider now the fi rst corresponding point pair m(1). The 
ray from camera one is

>> r1 = cam.ray(m(1).p1)
r1 = 
d=(0.37844, -0.0819363, 0.921992), P0=(0, 0, 0)

which is an instance of a  Ray3D object with properties d and P0 representing d and P0 
respectively. The corresponding ray from the second camera is

>> r2 = cam.move(T).ray(m(1).p2)
r2 =
d=(0.29936, -0.0826926, 0.95055), P0=(0.3, -0.0153494, 0.0557958)  

where the  move method returns an instance copy of the CentralCamera object  cam 
with the relative pose we have just estimated. The two rays intersect at

>> [P,e] = r1.intersect(r2);
P'
ans =
    1.2134   -0.2627    2.9563

which is a point with a z-coordinate, or depth, of almost 3 m. Due to errors in the es-
timate of camera two’s pose the two rays do not actually intersect, but their closest 
point is returned. At their closest point the rays are

>> e
e =
   0.0049

14.3  ·  Stereo Vision

We have specified a different roll-pitch-
yaw rotation order YXZ. Given the way 
we have defined our axes the camera 
orientation with respect to the world 
frame is a yaw about the vertical or y-
axis, followed by a pitch about the x-axis 
followed by a roll about the optical axis 
or z-axis.

Sometimes called a  raxel. Many repre-
sentations exist including Plücker coordi-
nates which are described in Sect. C.1.2.2. 
Determining a ray from a pixel coordinate is 
covered on page 327.
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nearly 5 mm apart. Considering the lack of rigor in this exercise, two handheld cam-
era shots and only approximate knowledge of the magnitude of the camera displace-
ment, the recovered depth information is quite remarkable.�

We draw a subset of one hundred corresponding points from the inlier set

>> m2 = m.inlier.subset(100);  

and then compute the rays in world space from each camera

>> r1 = cam.ray( m2.p1 );
>> r2 = cam.move(T).ray( m2.p2 );    

which are each vectors of  Ray3D objects. Their intersection points are

>> [P,e] = r1.intersect(r2); 

where P is a matrix of closest points, one per column, and the last row

>>  z = P(3,:);

is the depth coordinate. The columns of the vector e contains the distance between 
the rays at their closest points. We can superimpose the distance to each point on the 
image of the courtyard

>> idisp(im1)
>> plot_point(m2.p1, 'y+', 'textcolor', 'y', 'printf', {'%.1f', z});

which is shown in Fig. 14.18 and the feature markers are annotated with the estimated 
depth.

Even small errors in the estimated rota-
tion between the camera poses will lead 
to large closing errors at distances of sev-
eral meters. The closing error observed 
here would be induced by a rotational 
error of less than 1 deg.

Fig. 14.18.
Image of Fig. 14.15a with depth 
of selected points indicated 
(units of meters)

Fig. 14.19.
A small stereo camera sensor 
mounted on a mobile robot and 
capable of real-time depth map 
generation (image courtesy of 
Stereolabs Inc.)
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This is an example of  stereopsis where we have used information from two over-
lapping images to infer the 3-dimensional position of points in the world. For obvious 
reasons the approach used here is referred to as  sparse stereo because we only com-
pute distance at a tiny subset of pixels in the image. More commonly the relative pose 
between the cameras would be known as would the camera intrinsic parameters.

14.3.2 
l
Dense Stereo Matching

A  stereo pair is more commonly taken simultaneously by two cameras, generally with 
parallel optical axes, and separated by a known distance referred to as the  camera base-
line. Figure 14.19 shows a typical stereo  camera system which simultaneously captures 
images from both cameras and transfers them to a host computer for processing.

To illustrate we load the left and right images comprising a stereo pair

>> L = iread('rocks2-l.png', 'reduce', 2);
>> R = iread('rocks2-r.png', 'reduce', 2);  

We can interactively examine these two images together

>> stdisp(L, R) 

as shown in Fig. 14.20. Clicking on a point in the left-hand image updates a pair of 
cross hairs that mark the same coordinate relative to the right-hand image. Clicking 
in the right-hand image sets another vertical cross hair and displays the difference 
between the horizontal coordinate of the two crosshairs. The cross hairs as shown are 
set to a point on the digit 5 written on one of the foreground rocks and we observe 
several things. Firstly the spot has the same vertical coordinate in both images, and 
this implies that the  epipolar lines are horizontal. Secondly, in the right-hand image 
the spot has moved to the left by 70.9 pixels. If we probed more points we would see 
that disparity decreases for points that are further from the camera.

As shown in Fig. 14.17 the  conjugate point in the right-hand image moves right-
ward along the epipolar line as the point depth increases. For the parallel-axis cam-
era geometry the epipolar lines are parallel and horizontal, so conjugate points have 
the same v-coordinate. If the coordinates of two corresponding points are (Lu, Lv) and 
(Ru, Rv) then Rv = Lv. The displacement along the horizontal epipolar line d = Lu − Ru 
where d ≥ 0 is called  disparity.

14.3  ·  Stereo Vision

Fig. 14.20. The  stdisp image 
browsing window. The black cross 
hair in the left-hand image has 
been positioned at the top right of 
the digit 5 on a foreground rock. 
Another black cross hair is auto-
matically positioned at the same 
coordinate in the right-hand im-
age. Clicking on the correspond-
ing point in the right-hand image 
sets the green cross-hair, and the 
panel at the top indicates a hori-
zontal shift of 70.9 pixels to the 
left. This stereo image pair is from 
the Middlebury stereo database 
(Scharstein and Pal 2007). The fo-
cal length f /ρ  is 3 740 pixels, and 
the baseline is 160 mm. The imag-
es have been cropped so that the 
actual disparity should be offset 
by 274 pixels



484 Chapter 14  ·  Using Multiple Images

The dense stereo process is illustrated in Fig. 14.21. For the pixel at (Lu, Lv) in the 
left-hand image we know that its corresponding pixel is at some coordinate (Lu − d, Lv) 
in the right-hand image where d ∈ [dmin, dmax]. To reliably fi nd the corresponding point 
for a pixel in the left-hand image we create an N × N pixel template region T about 
that pixel. As shown in Fig. 14.21 we slide the template window horizontally across 
the right-hand image. The position at which the template is most similar is consid-
ered to be the  corresponding  point from which disparity is calculated. Compared to 
the matching problem we discussed in Sect. 12.5.2, this one is much simpler because 
there is no change in relative scale or orientation between the two images.

The epipolar  constraint means that we only need to perform a 1-dimensional search 
for the corresponding point. The template is moved in D steps of 1 pixel in the range 
dmin� dmax. At each template position we perform a  template matching operation, 
such as we discussed in Sect. 12.5.2, and for an N × N template these have a compu-
tational cost of O(N 2). For a W × H image the total cost of dense stereo matching is 
O(DWHN 2) which is high but feasible in real time.

To perform stereo matching for the image pair in Fig. 14.20 using the Toolbox is 
quite straightforward

>> d = istereo(L, R, [40, 90], 3); 

The result is a matrix the same size as L and the value of each element d[u, v], or 
d(v,u) in MATLAB, is the disparity at that coordinate in the left image. The corre-
sponding pixel in the right image would be at (u − d[u, v], v). We can display the dis-
parity as an image – a  disparity  image

>> idisp(d, 'bar') 

which is shown in Fig. 14.22. Disparity images have a distinctive ghostly appearance 
since all surface color and texture is absent. The third argument to  stereo is the 
range of disparities to be searched, in this case from 40 to 90 pixel so the pixel values 
in the disparity image lie in the range [40, 90]. The disparity range was determined by 
examining some far and near points using  stdisp.� The fourth argument to iste-
reo is the half-width of the template, in this case we are using a 7 × 7 window. By de-
fault stereo uses the   ZNCC similarity measure.

In the disparity image we can clearly see that the rocks at the bottom of the pile 
have a larger disparity and are closer to the camera than those at the top. There are 
also some errors, such as the anomalous bright values around the edges of some rocks. 
These pixels are indicated as being nearer than they really are. The similarity score 
is set to NaN around the edge of the image where the similarity matching template 
falls off the edge of the image   and to Inf for the case where the denominator of the 
ZNCC similarity metric (Table 12.1) is equal to zero.� The values NaN and Inf are 
both displayed as red.

Fig. 14.21.
Stereo matching. A search win-
dow in the right image, starting at 
u = Lu, is moved leftward along 
the epipolar line v = Lv until it 
matches the template window T 
from the left image

We could chose a range such as [0, 90] 
but this increases the search time: 91 dis-
parities would have to be evaluated in-
stead of 51. It also increases the possibil-
ity of matching errors.

This occurs if all the pixels in either tem-
plate have exactly the same value.
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14.3.2.1  
l
Stereo Failure Modes

The stereo function can also return the  disparity space  image (DSI)

>> [d,sim,DSI] = istereo(L, R, [40 90], 3); 

where sim is an H × W matrix whose elements are the peak similarity score at the 
corresponding pixel and DSI is an H × W × D matrix shown in Fig. 14.23

>> about(DSI)
DSI [double] : 555x638x51 (144468720 bytes) 

whose elements (u, v, d) are the similarity measure between the templates centered at 
(u, v) in the left image and (u − d, v) in the right image.� The disparity image we saw 
earlier is simply the position of the maximum value in the d-direction evaluated at 
every pixel� and the matrix sim is the value of those maxima.

Each column in the d-direction, as shown in Fig. 14.23, holds the similarity mea-
sure versus disparity for the corresponding pixel in the left image. For the pixel at 
(138, 439) we can plot this

>> plot( squeeze(DSI(439,138,:)), 'o-');

which is shown in Fig. 14.24a. We are using the  ZNCC measure and an almost per-
fect match occurs at a disparity of 80 pixels, since the horizontal axis is d − dmin and 
dmin = 40. Such a strong and unambiguous peak is fortunately very common. However 
Fig. 14.22 shows that the  stereo matching process is not perfect and plots of the tem-
plate similarity metric versus disparity provide insight into the causes of error.
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Fig. 14.22.
Disparity image for the rock 

pile stereo pair, where brighter 
means higher disparity or short-

er range. Red indicates Inf or 
NaN values in the result where 

disparity could not be com-
puted. Note the quantization in 

grey levels since we search for 
disparity in steps of one pixel

Fig. 14.23.
The    disparity space image ( DSI) 
is a 3-dimensional image where 

element D(u, v, d) is the simi-
larity between the support re-

gions centered at (Lu, Lv) in the 
left image and (Lu − d, Lv) in the 

right image

This is a workable but simplistic ap-
proach. A better approach is to apply 
regularization and estimate a function 
g(u, v) that fits the points of maximum 
similarity while maintaining smoothness 
and continuity.

This is a large matrix (144 Mbyte) which 
is why the images were reduced in size 
when loaded.
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Figure 14.24b shows two peaks of almost similar amplitude and this means that 
the template pattern was found twice in the search region. This occurs when there are 
regular vertical features in the scene as is often the case in man-made scenes: brick 
walls, rows of windows, architectural features or a picket fence. The problem, illus-
trated in Fig. 14.25, is commonly known as the  picket fence  effect and more properly 
as  spatial  aliasing. There is no real cure for this problem� but we can detect its pres-
ence. The  ambiguity  ratio is the ratio of the height of second peak to the height of the 
fi rst peak – a high-value indicate that the result is uncertain and should not be used. 
The chance of detecting incorrect peaks can be reduced by ensuring that the dispar-
ity range used in istereo is as small as possible but this requires some knowledge 
of the expected range of objects.

A weak match is shown in Fig. 14.24c. This typically occurs when the correspond-
ing scene point is not visible in the right-hand view due to occlusion – also known 
as the  missing parts  problem. Occlusion is illustrated in Fig. 14.26 and it is clear that 
point 3 is only visible to the left camera. The  stereo matching  algorithm will always 
return the best match so if the point is occluded it will return disparity to the most 
similar, but wrong, template. Even though the fi gure is an exaggerated depiction, real 
images suffer this problem where the depth changes rapidly. In our example, this oc-
curs at the edges of the rocks which is exactly where we observe the incorrect dispari-
ties in Fig. 14.22. The problem becomes more prevalent as the baseline increases. The 
problem also occurs when the corresponding point does not lie within the disparity 
search range, that is, the disparity search range is too small.

Multi-camera stereo, using more than 
two cameras, is a powerful method to 
solve this ambiguity.

Fig. 14.24. Some typical ZNCC met-
ric versus disparity curves. a Sin-
gle strong peak; b multiple peaks; 
c weak peak; d broad peak
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The problem cannot be cured but it can be detected. The simplest method is to con-
sider the similarity score returned by the  istereo function

>> idisp(sim)  

as shown in Fig. 14.27a and we see that the erroneous  disparity values correspond to 
low similarity scores. Disparity results where similarity is low can be discarded

>>  ipixswitch(sim<0.7, 'yellow', d/90); 

and this is shown in Fig. 14.27b where pixels with similarity s < 0.7 are displayed as 
yellow. The distribution of maximum similarity scores

>>  ihist(sim(isfi nite(sim)), 'normcdf'); 

is shown in Fig. 14.28. We see that only 5% of pixels have a similarity score less than 0.6, 
and that around 80% of pixels have a similarity score greater than 0.9.

A simple but effective way to test for occlusion is to perform the matching in two 
directions –   left-right consistency checking. Starting with a pixel in the left-hand im-
age the strongest match in the right-image is found. Then the strongest match to that 
pixel is found in the left-hand image. If this is where we started the match is consid-
ered valid. However if the corresponding  point was occluded in the right image the 
fi rst match will be a weak one to a different feature, and there is a high probability that 
the second match will be to a different pixel in the left image.

From Fig. 14.26 it is clear that pixels on the left-side of the left-hand image may 
not overlap at all with the right-hand image – point 1 for example is outside the fi eld 
of  view of the right-hand camera. This is the reason for the large number of incorrect 
matches on the left-hand side of the disparity  image in Fig. 14.22. It is common prac-
tice to discard the dmax left-most columns (90 in this case) of the disparity image.
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Fig. 14.25.
Picket fence effect. The template 

will match well at a number of 
different disparities. This prob-

lem occurs in any scene with re-
peating patterns

Fig. 14.26.
Occlusion in stereo vision. The 
fi eld of view of the two camer-

as are shown as colored sectors. 
Points 1 and 7 fall outside the 

overlapping view area and are 
seen by only one camera each. 

Point 5 is occluded from the left 
camera and point 3 is occluded 
from the right camera. The or-

der of points seen by each cam-
era is given underneath it
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The fi nal problem that can arise is a similarity function with a very broad peak as 
shown in Fig. 14.24d. The breadth makes it diffi cult to precisely estimate the maxima. 
This generally occurs when the template region has very low texture for example cor-
responding to the sky, dark shadows, sheets of water, snow, ice or smooth man-made 
objects. Simply put, in a region that is all grey, a grey template matches equally well 
with any number of grey candidate regions. One approach to detect this is to look at 
the variability of pixel values in the template using measures such as the difference 
between the maximum and minimum value or the variance of the pixel values. If the 
template has too little variance it is less likely to result in a strong peak. Measures of 
peak sharpness can also be used to eliminate these cases and this is discussed in the 
next section.

For the various problem cases just discussed disparity cannot be determined, but the 
problem can be detected. This is important since it allows those pixels to be marked as 
having no known range and this allows a robot to be prudent with respect to regions 
whose 3-dimensional structure cannot be reliably determined.

The design of a  stereo-vision system has three degrees of freedom. The fi rst is the 
baseline distance between the cameras. As it increases the disparities become larger 
making it possible to estimate depth to greater precision, but the occlusion problem 
becomes worse. Second, the disparity search range needs to be set carefully. If the 
maximum is too large the chance of spatial  aliasing increases but if too small then 

�
Fig. 14.27. Stereo template sim-
ilarity. a Similarity image where 
brighter means higher similarity; 
b disparity image with pixels hav-
ing low similarity score marked in 
yellow. Red indicates Inf or NaN 
values in the result where dispar-
ity could not be computed

Fig. 14.28.
Cumulative probability of ZNCC 
scores. The probability of a score 
less than 0.9 is 45%
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points close to the camera will generate incorrect and weak matches. A large dispar-
ity range also increases the computation time. Third, template size involves a tradeoff 
between computation time and quality of the disparity image. A small template size 
can pick up fi ne depth structure but tends to give results that are much noisier since 
a small template is more susceptible to ambiguous matches. A large template gives a 
smoother disparity image but requires greater computation. It also increases the chance 
that the template will contain pixels belonging to objects at different depths which is 
referred to as the  mixed pixel  problem. This tends to cause poor quality matching at 
the edges of objects, and the resulting disparity map appears blurred. One solution 
is to use a  nonparametric local      transform such as the rank or census transform prior 
to performing correlation. Since these rely on the ordering of intensity values not the 
values themselves they give better performance at object boundaries.

An alternative way to look at the failure modes is to use MATLAB’s volume visual-
ization functions to create horizontal slices through the disparity space image

>> slice(DSI, [], [100 200 300 400 500], [])
>> shading interp; colorbar

which is shown in Fig. 14.29. These are slices at constant v-coordinate, effectively 
horizontal cross sections of the scene. Within each of the ud-planes we see a bright 
path (high similarity values) that represents disparity d(u). Note the signifi cant dis-
continuities in the path for the plane at v = 100 which correspond to sudden changes 
in depth. The planes at v = 200, 300, 400 show that the path also fades away in places. 
In these regions the maximum similarity is low, there is no strong match in the right-
hand image, and the most likely cause is occlusion.

14.3.3  
l
Peak Refinement

The disparity at each pixel is an integer value d ∈ [dmin, dmax] at which the greatest 
similarity was found. Figure 14.24a shows a single unambiguous strong peak and we 
can use the peak and adjacent  points to refi ne the estimate of the peak’s position.� 
A parabola

 (14.15)

is defi ned by three points and is fi tted to the peak value and its two neighbors. For the 
 ZNCC similarity measure, a maxima corresponds to the best match which means that 
the parabola is inverted and A < 0. The maximum value of the fi tted parabola occurs 
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Fig. 14.29.
The disparity space  image is

a 3-dimensional image where 
element D(u, v, d) is the simi-
larity between the support re-

gions centered at (Lu, Lv) in the 
left image and (Lu − d, Lv) in 

the right image

This two-dimensional peak refinement 
is discussed in Appendix J.
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when its derivative equals zero, from which we can obtain a more precise estimate of 
the position of the peak which is the disparity

The A coeffi cient will have a large magnitude for a sharp peak, and a simple thresh-
old can be used to reject broad peaks, as we will discuss in the next section.

Disparity peak refi nement is enabled with the 'interp' option

>> [di,sim,peak] = istereo(L, R, [40 90], 3, 'interp');
>> idisp(di)  

and the resulting disparity image is shown in Fig. 14.30a. We see that it is much smooth-
er than the one shown previously in Fig. 14.22. The additional optional output argu-
ment peak is a structure

>> peak
peak =
     A: [555x638 double]
     B: [555x638 double]

that contains the per-pixel values of the parabola coeffi cients. The magnitude of the 
A coeffi cient is shown as an image in Fig. 14.30b.

Fig. 14.30.
a Disparity image with peak re-
fi nement; b magnitude of the d2 
coeffi cient for every pixel. High 
values (bright) correspond to 
sharp peaks and occur where 
image texture is high. Broad 
peaks (dark) occur where image 
texture is low
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14.3.4  
l

Cleaning up and  Reconstruction

The result of  stereo matching, such as shown in Fig. 14.22 or 14.30a, have a number 
of imperfections for the reasons we have just described. For robotic applications such 
as path planning and obstacle avoidance it is important to know the 3-dimensional 
structure of the world, but it is also critically important to know what we don’t know. 
Where reliable depth information from  stereo vision is missing a robot should be 
prudent and treat it differently to free space. We use a number of simple measures to 
mark elements of the disparity image as being invalid or unreliable.

We start by creating a matrix status the same size as d and initialized to one

>> status = ones(size(d));

The elements are set to different values if they correspond to specifi c failure conditions

>> [U,V] = imeshgrid(L);
>> status(isnan(d)) = 5;     % search template off the edge
>> status(U<=90) = 2;        % no overlap
>> status(sim<0.8) = 3;      % weak match
>> status(peak.A>=-0.1) = 4; % broad peak

We can display this matrix as an image

>> idisp(status)
>> colormap(  colorname({'lightgreen', 'cyan', 'blue', 'orange', 'red'}) )  

which is shown in Fig. 14.31. The colormap is chosen to display the status values as light 
green for a good stereo match, cyan if the disparity search range extends beyond the 
left edge of the right image, blue if the peak similarity is too small, orange if the peak 
is too broad, and red for NaN values where the search template would fall off the edge 
of the image. The good news is that there are a lot of light green pixels! In fact

>> sum(status(:) == 1) / prod(size(status)) * 100
ans =
   57.7223

nearly 60% of disparity values pass our battery of quality tests. The blue pixels, indi-
cating weak similarity, occur around the edges of rocks and are due to occlusion. The 
orange pixels, indicating a broad peak, occur in areas that are fairly smooth, either 
deep shadow between rocks or the nonrock background.

Earlier we created an interpolated disparity image di and now we will invalidate 
the disparity values that we have determined to be unreliable

>> di(status>1) = NaN;

14.3  ·  Stereo Vision

Fig. 14.31.
Stereo matching status on a per 

pixel basis
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Fig. 14.32.
Interpolated disparity image 
with unreliable estimates indi-
cated in red

The special floating-point value NaN (for 
not a number) has the useful property 
that the result of any arithmetic opera-
tion involving NaN is always NaN. Many 
MATLAB functions such as  max or  min 
ignore NaN values in the input matrix, 
and  plotting and graphics functions do 
not display this value, leaving a hole in 
the graph or surface.

The division by 90 is to convert the float-
ing-point disparity values in the range 
[40, 90] into valid greyscale values in the 
range [0, 1].

by setting them to the value NaN.� We can display this with the unreliable pixels 
marked in red by

>> ipixswitch(isnan(di), 'red', di/90); 

which is shown in Fig. 14.32.� This is now in useful form for a robot – it contains dispar-
ity values interpolated to better than a pixel and all unreliable values are clearly marked.

The fi nal step is to convert the disparity values in pixels to world coordinates in 
meters – a process known as  3D reconstruction. In the earlier discussion on  sparse ste-
reo we determined the world point from the intersection of two rays in 3-dimensional 
space. For a parallel axis  stereo  camera rig as shown in Fig. 14.19 the geometry is much 
simpler as illustrated in Fig. 14.33. For the red and blue triangles we can write

where b is the baseline and the angles of the rays correspond to the horizontal image 
coordinate iu, i = {L, R}

Substituting and eliminating X gives

which shows that depth is inversely proportional to disparity d = Lu − Ru and d > 0. 
We can also recover the X- and Y-coordinates so the 3D point coordinate is

 (14.16)

A good  stereo system can estimate disparity with an accuracy of 0.2 pixels. 
Distant points have a small disparity and the error in the estimated 3D coordinate 
will be significant. A rule of thumb is that stereo systems typically have a maxi-
mum range of 50b.
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Fig. 14.33.
Stereo geometry for parallel 

camera axes. X and Z are mea-
sured with respect to camera 

one, b is the baseline

Fig. 14.34.
3-dimensional reconstruction for 

parallel stereo cameras. Hotter 
colors indicate parts of the surface 

that are further from the camera

A process known as vectorizing . Using 
matrix and vector operations instead 
of for loops greatly increases the 
speed of MATLAB code execution. See 
http://www.mathworks.com/support/
tech-notes/1100/1109.html for details.

The images shown in Fig. 14.20, from the Middlebury dataset, were taken with 
a very wide  camera baseline. The left edge of the left-image and the right 
edge of the right-image have no overlap and have been cropped. Cropping 
N pixels from the left of the left-hand image only, reduces the disparity by N. 
For this  stereo pair the actual disparity must be increased by 274 to account 
for the cropping.

The true disparity is

>> di = di + 274;

and we compute the X-, Y- and Z-coordinate of each pixel as separate matrices to ex-
ploit MATLAB’s effi cient matrix operations�

>> [U,V] = imeshgrid(L);
>> u0 = size(L,2)/2; v0 = size(L,1)/2;
>> b = 0.160;
>> X = b*(U-u0) ./ di; Y = b*(V-v0) ./ di; Z = 3740 * b ./ di; 

which can be displayed as a surface
>> surf(Z)
>> shading interp; view(-150, 75)
>> set(gca,'ZDir', 'reverse'); set(gca,'XDir', 'reverse')
>> colormap(fl ipud(hot))

as shown in Fig. 14.34. This is somewhat unimpressive in print but by using the 
mouse to rotate the image using the MATLAB fi gure toolbar 3D rotate option the 

14.3  ·  Stereo Vision
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3-dimensionality becomes quite clear. The axis reversals are required to have z in-
crease from our viewpoint and to maintain a right-handed coordinate frame. There 
are many holes in this surface which are the NaN values we inserted to indicate un-
reliable disparity values.

14.3.5 
l
3D Texture Mapped Display

For human, rather than robot, consumption it would be nice to enhance the surface 
representation so that it looks less ragged. We create a median fi ltered image

>> dimf = irank(di, 41, ones(9,9));

where each output pixel is the median value over a 9 × 9 window. This has patched 
many of the smaller holes but has the undesirable side effect of blurring the underly-
ing disparity image. Instead we will keep the original interpolated disparity image and 
insert the median fi ltered values only where a NaN exists

>> di = ipixswitch(isnan(di), dimf, di); 

We perform the reconstruction again

>> X = b*(U-u0) ./ di;  Y = b*(V-v0) ./ di; Z = 3740 * b ./ di;

and plotting this as a  surface we see that it looks signifi cantly less ragged.
However we can do even better. We can drape the left-hand image over the 3-di-

mensional surface using a process called texture mapping. We reload the left-hand 
image, this time in color

>> Lcolor = iread('rocks2-l.png'); 

and render the surface with the image  texture mapped
>> surface(X, Y, Z, Lcolor, 'FaceColor', 'texturemap', ...
   'EdgeColor', 'none', 'CDataMapping', 'direct')
>> xyzlabel
>> set(gca,'ZDir', 'reverse'); set(gca,'XDir', 'reverse')

which creates the image shown in Fig. 14.35. Once again it is easier to get an impres-
sion of the 3-dimensionality by using the mouse to rotate the image using the MATLAB 
fi gure toolbar 3D rotate option.

Fig. 14.35.
3-dimensional reconstruction 
for parallel stereo cameras with 
image texture mapped onto the 
surface
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Anaglyphs. The earliest developments occurred in France. In 1858 Joseph D’Almeida projected 
3D magic lantern slide shows as red-blue anaglyphs and the audience wore red and blue goggles. 
Around the same time Louis Du Hauron created the fi rst printed anaglyphs. Later, around 1890 
William Friese-Green created the fi rst 3D anaglyphic motion pictures using a camera with two 
lenses. Anaglyphic fi lms called plasticons or plastigrams were a craze in the 1920s.

Today high-resolution panoramic anaglyphs can be found on http://gigapan.com and ana-
glyphs of Mars can be found at http://mars.nasa.gov/mars3d.

Fig. 14.36.
Anaglyphs for stereo viewing. 

a Anaglyph glasses shown with 
red and blue lenses, b anaglyph 

rendering of the rock scene from 
Fig. 14.20 with left in red and 

right in cyan

14.3.6  
l

Anaglyphs

Human  stereo perception of depth works because each eye views the scene from a dif-
ferent viewpoint. If we look at a photograph of a 3D scene we still get a perception of 
depth, albeit reduced, because our brain uses many visual cues besides stereo to infer 
depth. Since the invention of photography in the 19th century people have been fasci-

nated by 3D photographs and movies, and the current popularity of 3D movies 
and availability of 3D television is further evidence of this.

The key in all 3D display technologies is to take the image from two cameras, 
with a similar baseline to the human eyes (approximately 8 cm) and present those im-
ages again to the corresponding eyes. Old fashioned stereograms required a binocular 
viewing device or could, with diffi culty, be viewed by squinting at the  stereo pair and 
crossing your eyes. More modern and convenient means of viewing stereo pairs are LCD 
shutter (gaming) glasses or polarized glasses which allow full-color  stereo movie view-
ing, or head mounted displays.

An old but inexpensive method of viewing and distributing  stereo information is 
through  anaglyph  images in which the left and right images are overlaid in different 
colors. Typically red is used for the left eye and cyan (greeny blue) for the right eye but 
many other color combinations are used. The red lens allows only the red part of the 
anaglyph image through to the left eye, while the cyan lens allows only the cyan parts of 
the image through to the right eye. The disadvantage is that only the scene intensity, not 
its color, can be portrayed. The big advantage of anaglyphs is that they can be printed 
on paper or imaged onto ordinary movie fi lm and viewed with simple and cheap glasses 
such as those shown in Fig. 14.36a.

The rock pile stereo pair can be displayed as an anaglyph

>> anaglyph(L, R, 'rc') 

which is shown in Fig. 14.36b. The argument 'rc' indicates that left and right imag-
es are encoded in red and cyan respectively. Other color options include: blue, green, 
magenta and orange.

14.3  ·  Stereo Vision
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14.3.7  
l
Image Rectification

The rock pile  stereo pair of Fig. 14.20 has corresponding points on the same row in the 
left- and right-hand images – they are an  epipolar-aligned  image pair.  Stereo  cameras, 
such as shown in Fig. 14.19, are built with precision to ensure that the optical  axes of 
the cameras are parallel and that the u- and v-axes of the two sensor chips are parallel. 
However there are limits to the precision of mechanical alignment and lens  distortion 
will introduce error. Typically one or both images are warped to correct for these er-
rors – a process known as  rectifi cation.

We will illustrate rectifi cation using the courtyard stereo pair from Fig. 14.15

>> L = iread('walls-l.jpg', 'mono', 'double', 'reduce', 2);
>> R = iread('walls-r.jpg', 'mono', 'double', 'reduce', 2);

which we recall are far from being epipolar aligned. We fi rst fi nd the  SURF fea-
tures

>> sL = isurf(L);
>> sR = isurf(R);    

and determine the candidate matches

>> m = sL.match(sR, 'top', 1000);  

then determine the epipolar relationship
>> F = m.ransac(@fmatrix,1e-4, 'verbose');
96 trials
309 outliers
0.000305205 fi nal residual  

The rectifi cation step requires the fundamental matrix as well as the set of correspond-
ing points which is embedded in the  FeatureMatch object m

>> [Lr,Rr] = irectify(F, m, L, R); 

and returns rectifi ed versions of the two input images. We display these using stdisp

>> stdisp(Lr, Rr) 

which is shown in Fig. 14.37. We see that corresponding  points in the scene now have 
the same vertical coordinate. The function irectify works by computing unique 
homographies to warp the left and right  images. As we have observed previously when 
 warping images not all of the output pixels are mapped to the input images which re-
sults in undefi ned pixels which are displayed here as red.

Fig. 14.37.
Rectifi ed images of the court-
yard. Red pixels have no corress-
pondance in the other image
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We can think of these images as having come from a virtual stereo camera with paral-
lel axes and aligned pixel rows, and they can now be used for dense  stereo matching

>> d = istereo(Lr, Rr, [180 530], 7, 'interp'); 

and the result is shown in Fig. 14.38. The disparity range parameters were deter-
mined interactively using  stdisp(Lr, Rr) to check the disparity at near and 
far points in the rectifi ed image pair. The window half size of 7 was arrived at with 
a little trial and error, this value corresponding to a 15× 15 window and produces a 
reasonably smooth result, at the expense of computation. The noisy patches at the 
bottom and top right are due to occlusion – world points in one image are not visible 
in the other. Nevertheless this is quite an impressive result – using only two images 
taken from a handheld camera we have been able to create a dense 3-dimensional 
representation of the scene.

14.4 
l
Bundle Adjustment 

In Sect. 14.3.1 we used triangulation  to estimate the 3D coordinates of a number of 
landmark points in the world, but this was an approximation based on a guesstimate 
of the relative pose between the cameras. To assess the quality of our solution we can 
  “back project” the estimated 3D landmark  points onto the image planes based on the 
estimated camera poses� and the known camera model. The   back-projection error 
is the image-plane distance between the back-projected landmark and its observed 
position on the image plane.

For the previous example the back projection is

>> p1 = cam.project(P);
>> p2 = cam.move(T).project(P);  

for the fi rst and second camera respectively. The distances between the back projec-
tions and observations across both cameras is

>> e = colnorm( [p1-m2.p1 p2-m2.p2] ); 

with statistics

>> mean(e)
ans =
    0.9942
>> max(e)
ans =
    6.6765

14.4  ·  Bundle Adjustment

Fig. 14.38.
Dense stereo disparity image 

for the courtyard. The walls and 
ground show a clear depth gra-

dient

In this case we only estimated the rela-
tive pose 1ξ2 but we can consider the first 
camera pose as the reference coordinate 
frame ξ1 = 0 and ξ2 = 1ξ2.
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which clearly indicates the approximate nature of our solution – each back-projected 
point is in error by up to 7 pixels. Unfortunately we do not know whether the error 
is in the estimated camera poses, the landmark coordinates or both. However we 
do know that a good estimate is one where this total back-projection error   is low 
– ideally zero.

  Bundle adjustment is an  optimization process that simultaneously adjusts the cam-
era poses and the landmark coordinates so as to minimize the total back-projection 
error. It uses 2D measurements from a set of images of the same scene to recover 
information related to the 3D geometry of the imaged scene as well as the locations 
and optical characteristics of the cameras. This is also called Structure from Motion   
(SfM) or Structure and Motion  Estimation   (SaM) – structure being the 3D landmarks 
in the world and motion being a sequence of camera poses. It is also called visual 
SLAM  (VSLAM ) since it is very similar to the pose-graph SLAM problem discussed in 
Sect. 6.6. That was a planar problem solved in the three dimensions of SE(2) whereas 
bundle adjustment involves camera poses in SE(3) and points in R3.

To formalize the problem consider a camera with known intrinsic parameters 
at N different poses ξi ∈ SE(3), i = 1� N and a set of M landmark points Pj ∈ R3, 
j = 1�M. At pose {i} the camera observes Pj and the measured image-plane projec-
tion is ipj

# ∈R2, but not all landmarks are necessarily visible from each camera pose. 
The notation is shown in Fig. 14.39 for two cameras.

The estimated value of the image-plane projection of the jth landmark in the ith im-
age plane is

and the back-projection error   is iÂj − ipj
#.

Using the Toolbox we start by creating a BundleAdjust  object

>> ba = BundleAdjust(cam); 

which is passed an intrinsic model of the camera which we assume is known. Next we 
add estimates of the two camera poses

>> c1 = ba.add_camera( SE3(), 'fi xed' );
>> c2 = ba.add_camera( T ); 

and indicate that the fi rst camera pose is known and that we do not wish to optimize 
for it. The second camera’s estimated pose is that derived earlier from the essential 
 matrix. The method returns an integer handle to the particular camera pose which 
we will use below.

Fig. 14.39.
Bundle adjustment    notation il-
lustrated with a simple problem 
comprising only two cameras 
and three world points. The es-
timated camera poses and point 
positions are indicated, as are 
the estimated and measured im-
age-plane coordinates. The re-
projection errors are shown as 
dashed grey lines. The problem is 
solved when the variables are ad-
justed so that the total reprojec-
tion error is as small as possible
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Next we add the estimated landmarks

>> for j=1:length(m2)
     lm = ba.add_landmark( P(:,j) );

     ba.add_projection(c1, lm, m2(j).p1);
     ba.add_projection(c2, lm, m2(j).p2);
   end

where lm is another integer handle, in this case to the particular landmark coordinate. 
Finally, we add the measurements by specifying the camera, the landmark and its projec-
tion on the image plane. The problem is now fully defi ned and a summary can be displayed

>> ba
ba =
Bundle adjustment problem:
  2 cameras
    locked cameras: 1
  100 landmarks
  200 projections
  306 dimension linear problem
  landmarks per camera: min=100.0, max=100.0, avg=100.0
  cameras per landmark: min=2.0, max=2.0, avg=2.0

In general only a subset of landmarks  are visible from any camera, and this visibility 
information can be represented elegantly using a graph  as shown in Fig. 14.40 where 
each camera pose and each landmark coordinate is a node. Edges between camera 
and landmark nodes represent observations, and the value of the edge is the observed 
image-plane coordinate. Such a graph, a Toolbox  PGraph  object, is held inside the 
BundleAdjust  object and can be plotted by

>> ba.plot 

and an example is shown in Fig. 14.41.
To solve this optimization problem we put all the variables we wish to adjust into 

a single state vector. For bundle adjustment   the state vector contains camera poses 
and landmark coordinates

where the SE(3) camera pose is represented in a vector format ξi ∼ (t, r) ∈R6 com-
prising translation t ∈R3 and rotation r ∈R3; and Pj ∈R3.

Possible representations of rotation include Euler angles, roll-pitch-yaw angles, 
 angle-axis or exponential coordinate representations. For bundle adjustment it is com-
mon to use the vector component of a unit-quaternion which is singularity free and 
has only three parameters. The double cover   property of unit-quaternions means that 
any unit-quaternion  can be written with a nonnegative scalar component. By defi nition 

14.4  ·  Bundle Adjustment

Fig. 14.40.
A simple visibility graph show-

ing camera nodes (red) and land-
mark nodes (blue). Lines con-

necting nodes represent a view 
of that node on that camera, and 
the edge value is the observed 
image-plane coordinate. The 

landmarks here are viewed by 1, 
2 or 3 cameras
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the unit-quaternion has a unit norm, so the scalar component can be easily recovered 
s = 1̂g−gvgx

2g−gvgy
2g−gvz

2  given the vector component.
The number of unknowns in this system is 6N + 3M: 6 unknowns for each camera 

pose and 3 unknowns for the position of each landmark  point. However we have up 
to 2NM equations due to the measured projections of the points on the image planes. 
Typically the pose of one camera is assumed to be the reference coordinate frame, and 
this reduces the number of unknowns to 6(N − 1) + 3M.

In the problem we are discussing N = 2, but one camera is locked, and M = 100 
so we have 6 × (2 − 1) + 3 × 100 = 306 unknowns and 2 × 2 × 100 = 400 equations 
– an overdetermined set of equations for which a solution should be possible. For our 
problem we can extract the state vector

>> x = ba.getstate;
>> about x
x [double] : 1x312 (2.5 kB) 

which includes the pose of the fi xed camera, although that will remain constant. The 
pose of camera two is stored in the second block of 6 elements

>> x(7:12)
ans =
    0.3000   -0.0153    0.0558    0.0127    0.0014   -0.0057

as translation followed by rotation, and the fi rst landmark is stored in
>> x(13:15)
ans =
    1.2134   -0.2627    2.9563

Bundle adjustment is a minimization problem that fi nds the camera poses and land-
mark positions that minimize the  reprojection error across all the edges  

where Fk(·) > 0 is a nonnegative scalar cost associated with the graph edge k from cam-
era i to landmark j. The reprojection error of a landmark at Pj onto the camera at pose ξi is

Fig. 14.41.
Bundle adjustment   problem 
shown as an embedded graph. 
Blue dots represent landmark 
positions, camera icons repre-
sent camera pose, and grey lines 
denote observations. Camera 1 
is blue and camera 2 is red
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and the scalar cost is the squared Euclidean reprojection error

Although written as a function of the entire state vector Fk (·) only depends on two 
elements of that vector: ξi and Pj . The total error, the sum of the squared back-pro-
jection error for all edges, can be computed for any value of the state vector and for 
the initial conditions is

>> ba.errors(x)
ans =
  553.2853 

The bundle adjustment task is to adjust the camera and landmark parameters to 
reduce this value. We have framed bundle adjustment   as a sparse nonlinear least 
squares problem  and this can be solved numerically if we have a suffi ciently good 
initial estimate of x.  

The fi rst step in solving this class of problem is to linearize it. The reprojection er-
ror fk(x) can be linearized about the current state x0 of the system

where f0,k = fk(x0) and

is a Jacobian matrix which depends only on the camera pose ξi and the landmark po-
sition Pj so is therefore mostly zeros

The structure of the Jacobian matrix Ai is specifi c to the chosen representation of 
camera pose. The Jacobians, particularly Ai, are quite complex to derive but can be 
automatically generated using the MATLAB Symbolic Math Toolbox™ and the script 
vision/symbolic/bundleAdjust. Code derived from this is implemented by 
the derivs  method of the CentralCamera  class

[p,A,B] = cam.derivs(t, r, P); 

which returns the image-plane projection and the two Jacobians in a single call, and 
where t and r are the camera pose and P is the landmark coordinate.� Linearization 
and Jacobians are discussed in Appendix E, and solution of sparse nonlinear  equa-
tions in Appendix F.

Now that everything is in place we can solve our bundle adjustment problem  
>> baf = ba.optimize(x);
Initial cost 553.285
  total cost 33.5955 (solved in 0.15 sec)
  total cost 33.5459 (solved in 0.051 sec)
  total cost 33.5459 (solved in 0.04 sec)
  total cost 33.5459 (solved in 0.038 sec)
  total cost 33.5459 (solved in 0.041 sec)
  total cost 33.5459 (solved in 0.037 sec)
 * 6 iterations in 0.5 seconds
 * 0.41 pixels RMS error 

and the displayed text shows how the total cost (squared reprojection error ) decreases 
at each iteration, reducing by over an order of magnitude. The fi nal result has an RMS 
reprojection error better than half a pixel for each landmark which is impressive given 

14.4  ·  Bundle Adjustment

Translating the camera by d and translat-
ing the point by −d have an equivalent 
effect on the image. Therefore Bj is the 
negative of the first three columns of Aj.



502 Chapter 14  ·  Using Multiple Images

that the images were captured with a phone camera and we have completely ignored 
lens  distortion.

The result is another BundleAdjust  object but with updated camera poses and 
landmark positions. We can compare the initial and fi nal pose of camera 2

>> ba.getcamera(2).print('camera')
t = (0.3, -0.0153, 0.0558), RPY/yxz = (-0.657, 1.46, 0.156) deg
>> baf.getcamera(2).print('camera')
t = (0.303, -0.0158, 0.0649), RPY/yxz = (-0.685, 1.38, 0.128) deg 

and the fi nal coordinate of landmark 5 is
>> baf.getlandmark(5)'
ans =
   -0.3861   -0.0968    2.0744

We can also plot the result graphically

>> ba.plot() 

and this is shown in Fig. 14.41. While the overall RMS error is low we can look at the 
fi nal reprojection error  in more detail

>> e =  sqrt( baf.getresidual() );
>> about e
e [double] : 2x100 (1.6 kB)

where element (i, j) is the reprojection error in pixels for camera i and landmark j. 
The median error is

>> median( e(:) )
ans =
    0.2540

around a quarter of a pixel, but there are a handful of landmarks with a fi nal reprojec-
tion error in camera one that are greater than 1 pixel

>> fi nd( e(1,:) > 1 )
ans =
    90    97

and the worst error for camera 1

>> [mx,k] = max( e(1,:) )
mx =
    1.2129
k =
    90

of 1.2 pixels occurs for landmark 90.
Bundle adjustment   fi nds the optimal relative pose and positions – not absolute. For 

example if all the cameras and landmarks moved 1 m in the x-direction the total re-
projection error would be the same. To remedy this we can fi x or anchor one or more 
cameras or landmarks – in this example we fi xed the fi rst camera. The values of the 
fi xed poses and positions are kept in the state vector but they are not updated during 
the iterations – their Jacobians do not need to be computed and the  Hessian  matrix 
used to solve the update at each iteration is smaller since the rows and columns cor-
responding to those fi xed parameters can be deleted.

The fundamental issue of scale ambiguity with monocular cameras has been men-
tioned a number of times and it applies here as well. A scale model of the same world 
with a similarly scaled camera translation is indistinguishable from the real thing. 
More formally, if the whole problem was scaled so that P ′j = λ  P j , [ξ′i ]t = λ[ξi]t and 
λ ≠ 0 the total reprojection error would be the same. The solution we obtained above 
has an arbitrary scale or value of λ  – changing the initial condition for the camera 
poses or landmark coordinates will lead to a solution with a different scale. We can 
remedy this by anchoring the pose of at least two cameras, one camera and one land-
mark, or two landmarks.
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The bundle adjustment technique  , but not this implementation, allows for con-
straints between cameras. For example, a multi-camera rig moving through space 
would use constraints to ensure the fi xed relative pose of the cameras at each time 
step. Odometry from wheels or inertial sensing could be used to constrain the distance 
between camera coordinate frames to enforce the correct scale, or orientation from an 
IMU could be used to constrain the camera attitude. In the underlying graph repre-
sentation of the problem as shown in Fig. 14.40 this would involve adding additional 
edges between the camera nodes. Constraints could also be added between landmarks 
that had a known relative position, for example the corners of a window – this would 
involve adding additional edges between the relevant landmark nodes.

The particular problem we studied is unusual in that every camera views every 
landmark. In a more common situation the camera might be moving in a very large 
environment so any one camera will only see a small subset of landmarks. In a real-
time system a limited bundle adjustment might be performed with respect to occa-
sional frames known as key frames  , and a bundle adjustment over all frames, or all 
keyframes, performed at a low rate in the background.

In this example we have assumed the   camera intrinsic parameters are known and 
constant. Theoretically bundle adjustment can solve for   intrinsic as well as   extrin-
sic parameters. We simply add additional parameters for each camera in the state 
vector and adjust the Jacobian A accordingly. However given the coupling between 
intrinsic and extrinsic parameters� this may lead to poor performance. If we chose 
to estimate the elements of the camera  matrix C directly then the state vector would 
contain 11� rather than 6 elements for each camera. However if Ci and Pj are solu-
tions so to is CiQ

−1 and Qnj for any nonsingular matrix Q ∈R4×4. Fortunately, pro-
jection matrices for realistic cameras have well defi ned structure and properties as 
described on page 327, and these provide constraints that allow us to estimate Q. 
Estimating an arbitrary Ci is referred to as a projective reconstruction  . This can be 
upgraded to an affi ne reconstruction   (using an affi ne  camera model) or a metric re-
construction (using a perspective  camera model) by suitable choice of Q.

14.5  
l
Point Clouds

 Stereo vision results in a set of 3-dimensional world points Pi which are often referred 
to as a  point cloud. For a robotics application we need to extract some concise mean-
ing from the thousands or millions of points.

14.5.1 
l
Fitting a Plane

Planes are common in our built world and for robotics useful planes include the 
ground (for wheeled mobile robot driving or UAV landing) and walls. Given a set of 
3-dimensional coordinates, a point cloud, a simple and effective approach for fi nding 
the plane of best fi t is to fi t the data to an ellipsoid. The ellipsoid will have one very 
small radius in the direction normal to the plane – that is, it will be an elliptical plate. 
The  inertia matrix of the points can be calculated by

 (14.17)

where x = Pi −
−
P are the coordinates of the points with respect to the centroid of the 

points −P =  1/N Σ
N

i=1
Pi. The ellipsoid is centered at the centroid of the point cloud. The radii 

of the  ellipsoid are the  eigenvalues of J and the  eigenvector corresponding to the small-
est eigenvalue is the direction of the minimum radius which is the normal to the plane.

14.5  ·  Point Clouds

Changes in focal length and z-axis trans-
lation have similar image-plane effects as 
do change in principal point and camera 
x- and y-axis translation.

The camera matrix has an arbitrary scale 
factor.
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To illustrate this we create a 10 × 10 grid of points in a plane
>> T = SE3(1,2,3) * SE3.rpy(0.3, 0.4, 0.5);
>> P = mkgrid(10, 1, 'pose', T);
>> P = P + 0.02*randn(size(P));   

with an arbitrary orientation represented by the  homogeneous transformation T, and 
to which some  Gaussian  noise has been added with σ = 0.02 m.

The mean of the point cloud is
>> x0 = mean(P')
ans =
    0.9967    2.0009    3.0013

which we subtract from all the data  points

>> P = bsxfun(@minus, P, x0');

and the inertia Eq. 14.17 is simply a matrix multiplication

>> J = P*P'
J =
    7.8769    0.3239   -4.2585
    0.3239   10.0076    0.6153
   -4.2585    0.6153    2.4271

The eigenvalues are
>> [x,lambda] =  eig(J);
>> diag(lambda)'
ans =
    0.0478   10.0553   10.2085

and we see two large eigenvalues corresponding to the spread of points within the 
plane, and one eigenvalue which is the thickness of the plane. The eigenvector corre-
sponding to the fi rst, and smallest, eigenvalue is

>> n = x(:,1)'
n =
    0.4789   -0.0696    0.8751

which is the estimated normal to the plane.
The true direction of the plane’s normal is given by the third column� of the rota-

tion matrix
>> T. SO3.a'

ans =
    0.4682   -0.0810    0.8799

and we see that it is very close to the estimated normal.
The  equation of a plane is the set of points x such that 

 (14.18)

where n is the normal and x0 is the centroid.
Outlier data points are problematic with this type of estimator since they signifi -

cantly bias the solution. A number of approaches are commonly used but a simple 
one is to modify Eq. 14.17 to include a weight

which is inversely related to the distance of xi from the plane and solve iteratively. 
Initially all weights wi = 1, and on subsequent iterations the weights� are set accord-
ing to the distance of Pi from the plane estimated at the previous step.

Alternatively we could apply  RANSAC by taking samples of three points to solve 
for Eq. 14.18. Section C.1.4 has more details about ellipses.

Since the points lie in the frame’s xy-plane, 
the normal is the frame’s z-axis.

Commonly a Cauchy-Lorentz  function 
w = β 2 / (d 2 + β 2) is used where d is 
the distance of the point from the plane 
and β  is the half-width. The function is 
smooth for d = [0, inf) and has a value 
of ½ when d = β .
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14.5.2 
l

Matching Two Sets of  Points

Consider a model of some object represented by a set of points in 2- or 3-dimensions 
with respect to the world frame. Now consider an example of that object with a differ-
ent pose and we observe a set of 2- or 3-dimensional points on the object. The task is 
to determine the relative pose ξ that will transform the model points to the observed 
data points by matching the two sets of points.�

More formally, given two sets of point coordinate vectors: the model Mi ∈ Rn, 
i ∈ [1, NM] and some noisy observed data Dj ∈Rn, j ∈ [1, ND] determine the rigid-
body motion from the data coordinate frame to the model frame

At fi rst glance this looks like a problem where we need to establish  correspon-
dence between the points in the two sets but we will introduce an alternative approach 
called   iterated closest  point or ICP. For each data point Dj, the corresponding model 
point Mi is assumed to be the closest one, that is Mi which minimizes �Mi − Dj�. 
Correspondence is not unique and quite commonly several points in one set can be 
associated with a single point in the other set, and consequently some points will be 
unpaired. Often the sensor returns only a subset of points in the model, for instance a 
laser scanner can see the front but not the back of an object. This approach to corre-
spondence is far from perfect but it is surprisingly good in practice and improves the 
alignment of the point clouds so that in the next iteration the computed correspon-
dences will be a little more accurate.

In robotics the problem is often considered as comprising a model M of a 3-di-
mensional object which we want to fi t to the observed sensor data D. To illustrate we 
will load a version of the famous Stanford bunny�

>> load bunny
>> about bunny
bunny [double] : 3x453 (10.9 kB)

which is a cloud of 453 3-dimensional points and this will be our model

>> M = bunny;

We simulate a sensor that is observing the model with respect to a different coordinate 
frame by making a copy of the model and applying a transformation

>> T_unknown = SE3(0.2, 0.2, 0.1) * SE3.rpy(0.2, 0.3, 0.4);
>> D = T_unknown * M;

The fi rst step is to compute a translation that makes the centroids of the two point 
clouds coincident�

from which we compute a displacement

Next we compute correspondence. For each data point Dj we fi nd the closest model 
point Mi, and for this we use the Toolbox function  closest

>> corresp = closest(D, M);

The dual problem is that the camera has 
moved, not the object. The same tech-
nique can be applied to determine the 
camera motion.

This model is well known in the comput-
er graphics community. It was created 
by Greg Turk and Marc Levoy in 1994 at 
Stanford University using a Cyberware 
3030 MS scanner and a ceramic rab-
bit figurine. The original scan has over 
30 000 points, here we use a low-reso-
lution version.

We consider the general case where the 
two points clouds have different num-
bers of points, that is, ND ≠ NM.

14.5  ·  Point Clouds
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where i=corresp(j) is the column of M that corresponds to column j of D. The 
next step is to compute the 3 × 3 moment matrix

which encodes the rotation between the two point sets.� The singular value  decomposition is

from which the rotation matrix is determined� to be

The estimated relative pose between the two  point clouds is ξ∆ ∼ (R, t) and the model 
points are transformed so that they are closer to the data points

and the process repeated until it converges. The  correspondences used are unlikely 
to have all been correct and therefore the estimate of the relative  orientation between 
the sets is only an approximation.

The Toolbox provides an implementation of ICP (Fig. 14.42)

>> [T,d] = icp(M, D, 'plot');

which returns the pose DξM

>> trprint(T, 'rpy', 'radian')
t = (0.2, 0.2, 0.1), RPY/zyx = (0.2, 0.3, 0.4) rad

which is exactly the “unknown” relative pose of the data point cloud that we chose 
above. The residual

>> d
d =
   1.7619e-15

is the root mean square of the errors between the transformed model points and the data. 
The option 'plot' shows the model and data points at each step as well as the closest-
point correspondences. ICP is a popular  algorithm because it is both fast and robust.

We can demonstrate the robustness of ICP by simulating some realistic sensor er-
rors. Firstly we will randomly remove forty points from the data

>> D(:,randi(numcols(D), 40,1)) = [];

This is the sum of a number of rank 1 
matrices.

See Sect. F.1.1.

Fig. 14.42.  Iterated closest point 
(ICP) matching of two point clouds: 
model (red) and data (blue) a be-
fore registration, b after registra-
tion; observed data points have 
been transformed to the model co-
ordinate frame using the inverse 
of the identifi ed transformation 
(Stanford bunny model courtesy 
Stanford Graphics Laboratory)
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which are points in the model not observed by the sensor. Then we will add twenty 
spurious points that are not part of the model

>> D = [D 0.1*rand(3,20)+0.1];

and fi nally we will add Gaussian  noise with σ = 0.01 to the data

>> D = D + 0.01*randn(size(D));

Now we fi t this imperfect sensor data to the model

>> [T,d] = icp(M, D, 'plot', 'distthresh', 3);

using an additional option to eliminate incorrect closest-point  correspondences. The 
correspondences are established as described above and the median of the distances 
between the corresponding  points is computed. In this case the correspondence is not 
made if the distance between the points is more than 3 times the median distance. The 
estimated pose DξM is now

>> trprint(T, 'rpy', 'radian')
t = (0.186, 0.194, 0.108), RPY/zyx = (0.125, 0.287, 0.298) rad

which is still close to the value computed for the ideal case but the residual
>> d
d =
    0.2114

is higher since an exact fi t between the model and noise corrupted data is no longer 
possible.� ICP is popular, fast and robust for modest sized point clouds but the cor-
respondence determination is an O(N 2) problem which leads to computational bot-
tlenecks for very large data sets.�

14.6 
l
Structured Light 

An old, yet simple and effective, method of estimating the 3D structure of a scene is  struc-
tured light. It is conceptually similar to  stereo vision but we replace the left camera with a 
projector that emits a vertical plane of light as shown in Fig. 14.43a.� This is equivalent, 
in a  stereo system, to a left-hand image that is a vertical line. The image of the line pro-
jected onto the surface viewed from the right-hand camera will be a distorted version of 
the line, as shown in Fig. 14.43b. The disparity between the virtual left-hand image and 
the actual right-hand image is a function of the depth of points along the line.

We would expect the residual to be ap-
proximately equal to N̂σ  where N is 
the number of corresponding points 
and σ  is the standard deviation of the 
additive noise.

For large-scale problems the data would 
be kept in a kd-tree which reduces the 
time required to find the closest point.

Laser-based line projectors, so called 
“laser stripe”' or “line laser”', are avail-
able for just a few dollars. They comprise 
a low-power solid-state laser and a cylin-
drical lens or diffractive optical element.

Fig. 14.43. a Geometry of struc-
tured light showing a light projec-
tor on the left and a camera on the 
right; four corresponding points 
are marked with dots on the left 
and right images and the scene; 
b a real structured light scenario 
showing the light stripe falling on 
a simple 3D scene. The superim-
posed dashed line represents the 
stripe position for a plane at infi nity. 
Disparity, left shift of the project-
ed line relative to the dashed line, 
is inversely proportional to depth 

14.6  ·  Structured Light
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Finding the light stripe on the scene is a relatively simple vision problem. In each 
image row we search for the pixel corresponding to the projected stripe based on in-
tensity or color. If the camera coordinate frames are parallel then depth is computed 
by Eq. 14.16.

To achieve depth estimates over the whole scene we need to move the light plane 
horizontally across the scene and there are many ways to achieve this: mechanically 
rotating the laser stripe projector, using a moving  mirror to defl ect the stripe or us-
ing a data projector and software to create the stripe image. However sweeping the 
light plane across the scene is slow and fundamentally limited by the rate at which 
we can acquire successive images of the scene. One way to speed up the process is 
to project multiple lines on the scene but then we have to solve the  correspondence 
 problem which is not simple if parts of some lines are occluded. Many solutions have 
been proposed but generally involve coding the lines in some way – using different 
colors or using a sequence of binary or grey-coded line patterns which can match 2N 
lines in just N frames.

A related approach is to project a known but random  pattern of dots onto the scene 
as shown in Fig. 14.44a. Each dot can be identifi ed by the unique pattern of dots in 
its surrounding window. The original  Kinect  sensor� uses this approach: its left-most 
lens� projects an infra-red   dot pattern using a laser with a diffractive optical element 
which is viewed, see Fig. 14.44a, by an infra-red sensitive  camera behind the right-most 
lens from which the depth image shown in Fig. 14.44c is computed. The shape of the 
dots also varies with distance, due to imperfect focus, and this provides additional cues 
about the distance of a point. The middle lens is a regular color camera which provides 

The Kinect for Xbox 360  and Kinect for 
Windows is now known as the Kinect 1, 
as well as sensors such as PrimeSense 
Carmine  and Asus Xtion . The newer Kinect 
for Xbox One , or Kinect 2, uses per pixel 
 time-of-flight measurement.

Looking at the front of the device.

Fig. 14.44. 3D imaging with the 
Kinect 360 sensor . a  Random dot 
 pattern as seen by the Kinect’s in-
fra-red camera; b original scene 
captured with the Kinect’s color 
camera; c computed depth im-
age. Red pixels indicate NaN values 
where depth could not be comput-
ed due to occlusion or the maxi-
mum range being exceeded, as for 
example through the window on 
the left side of the scene (images 
courtesy William Chamberlain)
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the view shown in Fig. 14.44b. This is an example of an  RGBD  camera, returning an 
RGB color values as well as depth (D) at every pixel.

Structured light approaches work well for ranges of a few meters indoors, for tex-
tureless  surfaces, and they also work in the dark. However outdoors the projected 
pattern is overwhelmed by ambient illumination from the sun.

Some stereo systems, such as the Intel RealSense R200 , also employ a dot pattern pro-
jector, sometimes known as a speckle projector  . This provides artifi cial texture which 
helps the  stereo vision system when it is looking at textureless surfaces where matching 
is frequently weak and ambiguous as discussed in Sect. 14.3.2.1. Such a sensor has the 
advantage of working on textureless surfaces which are common indoors where the sun 
is not a problem, and outdoors using pure stereo where scene texture is usually rich.

14.7 
l
Applications

14.7.1   
l
Perspective Correction

Consider the image

>> im = iread('notre-dame.jpg', 'double');
>> idisp(im)  

shown in Fig. 14.45. The  shape of the building is signifi cantly distorted because the 
camera’s optical  axis was not normal to the plane of the building and we see evidence 
of  perspective  foreshortening or  keystone   distortion.  We manually pick four points, 
clockwise from the bottom left, that are the corners of a large rectangle on the planar 
face of the building

>> p1 = ginput(4)'
ans =
   44.1364   94.0065  537.8506  611.8247
  377.0654  152.7850  163.4019  366.4486

which has one column per point that contains the u- and v-coordinate. We mark these 
on the image of the cathedral and overlay a translucent blue keystone shape

>> plot_poly(p1, 'wo', 'fi ll', 'b', 'alpha', 0.2); 

We use the extrema of these points to defi ne the vertices of a rectangle in the image

>> mn = min(p1');
>> mx = max(p1');
>> p2 = [mn(1) mx(2); mn(1) mn(2); mx(1) mn(2); mx(1) mx(2)]';

Fig. 14.45.
Photograph taken from the 

ground shows the effect of  fore-
shortening which gives the 

building a trapezoidal appear-
ance (also known as  keystone 

distortion). Four points on the 
approximately planar face of the 

building have been manually 
picked as indicated by the white 
�-markers (Notre Dame de Paris)

14.7  ·  Applications
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which we overlay on the image in red

>> plot_poly(p2, 'k', 'fi ll',  'r', 'alpha', 0.2)

The sets of points p1 and p2 are projections of world points that lie approximately 
in a plane so we can compute an  homography

>> H = homography(p1, p2)
H =
    1.4003    0.3827 -136.5900
   -0.0785    1.8049  -83.1054
   -0.0003    0.0016    1.0000 

that will transform the vertices of the blue trapezoid to the vertices of the red rectangle.�

That is, the  homography maps image coordinates from the distorted keystone  shape 
to an undistorted rectangular shape.

We can apply this homography to the coordinate of every pixel in an output im-
age in order to warp the input image. We use the Toolbox generalized  image warp-
ing function

>> homwarp(H, im, 'full') 

and the result shown in Fig. 14.46 is a synthetic  fronto-parallel  view. This is equivalent 
to the view that would be seen by a camera high in the air with its optical  axis normal to 
the face of the cathedral. However points that are not in the plane, such as the left-hand 
side of the right bell tower have been distorted. The black pixels in the output image are 
due to the corresponding pixel coordinates not being present in the input image. Note 
that with no output argument specifi ed the warped image is displayed using idisp.

In addition to creating this synthetic view we can decompose the  homography to recover 
the  camera motion from the actual to the virtual viewpoint and also the surface normal of 
the cathedral. As we saw in Sect. 14.2.4 we need to determine the  camera calibration ma-
trix so that we can convert the projective  homography into a Euclidean   homography. We 
obtain the focal length from the metadata in the  EXIF-format fi le that holds the image

>> [~,md] = iread('notre-dame.jpg', 'double');
>> f = md.DigitalCamera.FocalLength
f =
    7.4000 

An homography can also be computed 
from four lines in the plane, but this is 
not supported by the Toolbox.

Fig. 14.46.
A fronto-parallel  view synthe-
sized from Fig. 14.45. The image 
has been transformed so that the 
marked points become the cor-
ners of a rectangle in the image
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which is in units of millimeters, and the sensor is known to be 7.18 × 5.32 mm. We 
create a calibrated camera

>> cam = CentralCamera('image', im, 'focal', f/1000, ...
    'sensor', [7.18e-3,5.32e-3])
name: image [central-perspective]                       
  focal length:   0.0074                                
  pixel size:     (1.122e-05, 1.249e-05)                
  principal pt:   (320, 213)                            
  number pixels:  640 x 426                             
  pose:           t = (0, 0, 0), RPY/yxz = (0, 0, 0) deg

Now we use the camera model to compute and decompose the  Euclidean homography

>> sol = cam.invH(H, 'verbose');
solution 1
     T = 0.99958    -0.01394     0.02526    -0.07271
         0.01431     0.99979    -0.01453    -0.00041
        -0.02505     0.01488     0.99958     0.68149
         0.00000     0.00000     0.00000     1.00000
    n = 0.21602    -0.95261     0.21420
solution 2
     T = 0.98872     0.10353    -0.10820     0.10448
        -0.01647     0.79331     0.60859    -0.57151
         0.14885    -0.59994     0.78607     0.36357
         0.00000     0.00000     0.00000     1.00000
    n = -0.18131     0.32802     0.92711  

which returns a structure array of two possible solutions for 1ξ2. The coordinate frames 
for this example are sketched in Fig. 14.47 and shows the actual and virtual camera 
poses. In this case the second solution is the correct one since it represents consider-
able rotation about the x-axis. The camera translation vector, which is not to scale but 
has the correct sign,� is dominantly in the negative y- and positive z-direction with 
respect to the frame {1}. The  rotation in YXZ-angle form

>> tr2rpy(sol(2).T, 'deg', 'camera')
ans =
   -1.1893  -37.4876   -7.8375 

indicates that the camera needs to be pitched downward (pitch is rotation about the 
camera’s x-axis) by 37 degrees to achieve the attitude of the virtual camera. The nor-
mal to the frontal plane of the church n is defi ned with respect to {1} and is essentially 
in the camera z-direction as expected.

Fig. 14.47.
Notre-Dame example show-

ing the two camera coordinate 
frames. The blue frame {1} is 

that of the camera that took the 
image, and the red frame {2} is 
the viewpoint for the synthetic 

fronto-parallel  view

See Malis and Vargas (2007).

14.7  ·  Applications
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14.7.2 
l

Mosaicing [examples/mosaic]

 Mosaicing or  image stitching is the process of creating a large-scale composite image 
from a number of overlapping images. It is commonly applied to drone and satellite 
images to create a seemingly continuous single picture of the Earth’s  surface. It can 
also be applied to images of the ocean fl oor captured from downward looking cameras 
on an underwater robot. The panorama generation software supplied with, or built 
into, digital cameras is another example of mosaicing.

The input to the mosaicing process is a sequence of overlapping images.� It is not 
necessary to know the camera calibration parameters or the pose of the camera where 
the images were taken – the camera can rotate arbitrarily between images and the scale 
can change. However for the approach that we will use the scene is assumed to be planar 
which is reasonable for high-altitude photography where the vertical relief� is small.

We will illustrate our discussion with a real example using the pair of images

>> im1 = iread('mosaic/aerial2-1.png', 'double', 'grey');
>> im2 = iread('mosaic/aerial2-2.png', 'double', 'grey');  

which are each 1 280 × 1 024. We create an empty composite image that is 2 000 × 2 000

>> composite = zeros(2000,2000);

that will hold the mosaic. The essentials of the mosaicing process are shown in Fig. 14.48.
The fi rst image is easy and we simply paste it into the top left corner

>> composite = ipaste(composite, im1, [1 1]); 

of the composite image as shown in red in Fig. 14.48. The next image, shown in blue, 
is more complex and needs to be rotated, scaled and translated so that it correctly 
overlays the red image.

For this problem we assume that the scene is planar. This means that we can use an 
homography to relate the various camera views. The fi rst step is to identify common 
feature points which are known as  tie points, and we use now familiar tools

>> f1 = isurf(im1)
>> f2 = isurf(im2)
>> m = f1.match(f2);      

and then RANSAC to estimate the  homography

>> [H,in] = m.ransac(@homography, 0.2) 

which maps 1p to 2p. Now we wish to map 2p to its corresponding coordinate in the 
fi rst image

As a rule of thumb images should over-
lap by 60% of area in the forward direc-
tion and 30% sideways.

The ratio of the height of points above 
the plane to the distance of the camera 
from the plane.

Fig. 14.48.
The fi rst image in the sequence is 
shown as red, the second as blue. 
The second image is warped into 
the image tile and then blended 
into the composite image
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We do this for every pixel in the new image by  warping

>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', 0); 

As shown in Fig. 14.48 the warped blue image falls outside the bounds of the original 
blue image and the option 'full' specifi es that the returned image is the minimum 
containing rectangle� of the warped image. This image is referred to as a tile and shown 
with a dashed black line. The vector t is returned by homwarp and gives the offset 
of the tile’s coordinate frame with respect to the original image. In general not every 
pixel in the tile has a corresponding point in the input image and those pixels are set 
to zero, as specifi ed by the fi fth argument.�

Now the tile has to be blended into the composite mosaic image

>> composite = ipaste(composite, tile, t, 'add'); 

and the result is shown in Fig. 14.49. We can clearly see several images overlaid with 
good alignment. The nonmapped pixels in the warped image are set to zero so adding 
them causes no change to the existing pixel values in the composite image.

Simply adding the tile into the composite image means that overlapping pixels are 
necessarily brighter and a number of different strategies can be used to remedy this. 
We could instead set pixels in the composite image from the tile only if the composite 
image pixels have not yet been set. Conversely we could always set pixels in the com-
posite image from the nonzero pixels in the tile. Alternatively we set the composite 
image pixels to the mean of the tile and the composite image. This requires that we 
tag the tile pixels that are not mapped

>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', NaN); 

and then blend using the 'mean' option�

>> composite = ipaste(composite, tile, t, 'mean'); 

If the images were taken with the same exposure then the edges of the tiles would not 
be visible. If the exposures were different the two sets of overlapping pixels have to be 
analyzed to determine the average intensity offset and scale factor which can be used 
to correct the tile before blending – a process known as  tone matching.

The bounding box of the tile is com-
puted by applying the  homography to 
the image corners A = (1, 1), B = (W, 1), 
C = (W, H) and D = (1, H), where W and 
H are the width and height respectively, 
and finding the bounds in the u- and 
v-directions.

The default is NaN.

Which ignores any pixels with the val-
ue NaN.

Fig. 14.49.
Example image mosaic. At the 

bottom of the frame we can clear-
ly see three overlapping views of 
the airport runway which shows 

good alignment between the 
frames

14.7  ·  Applications
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Finally, we need to consider the effect of points in the image that are not in the 
ground plane such as those on a tall building. An image taken from directly overhead 
will show just the roof of the building, but an image taken from further away will be 
an oblique view that shows the side of the building. In a mosaic we want to create the 
illusion that we are directly above every point in the image so we should not see the 
sides of any building. This type of image is known as an  orthophoto and unlike a per-
spective view, where rays converge on the camera’s focal  point, the rays are all paral-
lel which implies a viewpoint at infi nity.� At every pixel in the composite image we 
can choose a pixel from any of the overlapping tiles. To best approximate an ortho-
photo we should choose the pixel that is closest to overhead, that is, prior to warping 
the pixel was closest to the  principal point.

In photogrammetry this type of mosaic is referred to as an uncontrolled digital mo-
saic since it does not use explicit control points – manually identifi ed corresponding 
features in the images. The full code is given by mosaic in the examples directory. 
The principles illustrated here can also be applied to the problem of  image  stabiliza-
tion. The homography is used to map features in the new image to the location they 
had in the previous image.

14.7.3 
l
Image Matching and Retrieval [examples/retrieval]

Given a set of images {Ij, j = 1�N} and a new image I′ the  image matching problem is 
to determine j such that I′ and Ij are most similar. This is a diffi cult problem when we 
consider the effect of changes in viewpoint and exposure. Pixel-level similarity mea-
sures such as  SSD or   ZNCC that we used previously are not suitable for this problem 
since quite small changes in viewpoint will result in almost zero similarity.

Image matching is useful to a robot to determine if it has visited a particular place 
before, or seen the same object before. If those previous images have some associated 
semantic data such as the name of an object or the name of a place then by inference 
that semantic data applies to the new image. For example if a new image matches an 
existing image that has the semantic tag “lobby” then it implies the robot is seeing the 
same scene and is therefore in or close to, the lobby.

The particular technique that we will introduce is commonly referred to as “bag 
of words” and has been used successfully in a number of robotic applications. It 
builds on techniques we have previously encountered such as  SURF point features 
and  k-means  clustering.

We start by loading a set of twenty images

>> images = iread('campus/*.jpg', 'mono'); 

as a 426 × 640 × 20 array and for each of these we compute the SURF features

>> sf = isurf(images, 'thresh', 0);  

which returns a MATLAB cell array whose elements are vectors of SURF features that 
correspond to the input images. For example

>> sf{1}
ans =
1407 features (listing suppressed)
  Properties: theta scale u v strength descriptor image_id

is a vector of 1 407 SURF feature objects corresponding to the fi rst image in the se-
quence. The set of all SURF features across all images is

>> sf = [sf{:}]
sf =
28644 features (listing suppressed)
  Properties: theta scale u v strength descriptor image_id

which is a vector of nearly 30 000 SURF features objects.

Google Earth sometimes provides an im-
perfect orthophoto. When looking at cities 
we might see oblique views of buildings.
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Consider a particular SURF feature
>> sf(259)
ans =
(207.101,300.162), theta=2.31733, scale=2.1409,	
 strength=0.00114015, image_id=1, descrip= ..

and we see the SurfPointFeature properties discussed earlier such as centroid, 
scale and orientation. The property image_id indicates that this feature was extract-
ed from the fi rst image in the original image sequence. We can display that image and 
superimpose the feature

>> idisp(images(:,:,1))
>> sf(259).plot('g+')
>> sf(259).plot_scale('g', 'clock') 

which is shown in Fig. 14.50a. The support region for this feature

>> sf(259).support(images)

is shown in Fig. 14.50b. The support region shows bricks and the edge of a window. 
The  support method uses the image_id property to determine which of the passed 
images contains the feature.

The key insight behind the  bag of words technique is that many of these features 
will describe visually similar scene elements such as leaves, corners of windows, bricks, 
chimneys and so on. If we consider each SURF feature descriptor as a point in a 
64-dimensional space then similar descriptors will form clusters, and this is a  k-means 
problem. To fi nd 2 000 feature clusters

>> bag = BagOfWords(sf, 2000) 

returns a BagOfWords object that contains the original features, the center of each 
cluster, and various other information.� Each cluster is referred to as a  visual word 
and is described by a 64-element SURF descriptor. The set of all visual words, 2 000 in 
this case, is a  visual vocabulary. Just as a document comprises a set of words drawn 
from some vocabulary, each image comprises a collection (or bag) of visual words 
drawn from the visual vocabulary.

The clustering step assigns a visual word index to every SURF feature. For the par-
ticular feature shown above

>> w = bag.words(259)
w =
        1962 

we find that the k-means  clustering has assigned this image feature to word 1 962 
in the vocabulary – it is an instance of visual word 1 962. That particular visual 
word appears

Fig. 14.50. a Image 1 with visual 
word SURF feature 380 indicated 
by green circle showing scale and 
a radial line showing orientation 
direction; b the square support re-
gion has the same area as the circle 
and the horizontal axis is parallel 
to the orientation direction

The BagOfWords  class uses the 
MEX-file k-means implementation 
from http://www.vlfeat.org/. This uses 
its own random number generator 
and to initialize it to a known state use
vl_twister('STATE', 0.0);.

14.7  ·  Applications
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>> bag.occurrence(w)
ans =
    29 

times across the set of images, and it appears at least once in each of the images
>> bag.contains(w)
ans =
   1     5     7     8     9    11    12    15    16    18 

We can display some of the different instances of word 1 962 by

>> bag.exemplars(w, images) 

which is shown in Fig. 14.51. These exemplars actually look quite different, but we 
need to keep in mind that we are viewing them as patterns of pixels whereas the simi-
larity is in terms of the descriptor.� The exemplars do however share some dominant 
horizontal and vertical structure.

Visual words occur with quite different frequencies

>> [word,f] = bag.wordfreq() ;

where word is a vector containing all unique words and f are their corresponding 
frequencies. We can display these in descending order of frequency

>> bar( sort(f, 'descend') )

which is shown in Fig. 14.52. Words that occur very frequently have less meaning or 
power to discriminate between images. They are analogous to English words that are 
considered  stop words in text document retrieval.� The visual stop words are removed 
from the  bag of words

>> bag.remove_stop(50)
Removing 2863 features associated with 50 most frequent words
>> bag
bag = 
BagOfWords: 25781 features from 20 images
           1950 words, 50 stop words

which leaves some 26 000 SURF features behind. This method performs relabelling so 
that word labels are now in the interval 1 to 1 950.

�
Fig. 14.51. Exemplars of visual 
word 1962 from the various imag-
es in which it appears. The annota-
tion is of the form word/image

The descriptor comprises responses of Haar 
wavelet detectors computed over multiple 
windows within the support region.

Search engines ignore words such as ‘a’, 
‘and’, ‘the’ and so on.

Fig. 14.52.
Histogram of the number of oc-
currences of each word (sorted). 
Note the small number of words 
that occur very frequently
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Our visual vocabulary comprises K visual words and in this case K = 1 950. We ap-
ply a technique from text document retrieval and describe each image by a word fre-
quency vector. This is a K-element vector

whose elements describes the frequency of the corresponding visual words in an image.

 (14.19)

where j is the visual word label, N is the total number of images in the database, Nj is the 
number of images which contain word j, ni is the number of words in image i, and nji is 
the number of times word j appears in image i. The inverse document frequency (idf) 
term is a weighting that reduces the signifi cance of words that are common across all 
images and which are thus less discriminatory. The weighted word frequency vectors 
are a property of the  BagOfWords object and can be accessed by

>> M = bag.wordvector; 

which is a 1 950 × 20 matrix and each column is a 1 950-element vector that concisely 
describes the corresponding image.�

The similarity between two images is the cosine of the angle between their corre-
sponding word-frequency vectors

and is implemented by the  similarity method. A value of one indicates maximum sim-
ilarity. To compute the mutual similarity across this set of images (bags of words) is simply

>> S = bag.similarity(bag)  

which returns a 20 × 20 similarity matrix where the elements S(i,j) indicate the 
similarity between the ith column and jth columns of M, or between image i and im-
age j. This matrix is symmetric and is best interpreted visually

>> idisp(S, 'bar') 

which is shown in Fig. 14.53. The bright diagonal indicates, as a useful cross check, 
that image i is identical to image i. We also see that there is also some nonzero simi-
larity between images 12 and 18, among others.

Fig. 14.53.
Similarity matrix for 20 images 

where light colors indicate strong 
similarity. Element (i, j) indicates 

the similarity between image i 
and image j

This might seem like a very large vector 
but it contains less than 1% of the num-
ber of elements of the original image.

14.7  ·  Applications
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Consider image 11 shown in Fig. 14.54a. Its similarity to other images is given by 
row, or column, 11 of the similarity matrix

>> s = S(:,11);

which we sort into descending order of similarity

>> [z,k] = sort(s, 'descend');
>> [z k]
ans =
    1.0000   11.0000
    0.3722   13.0000
    0.3394    9.0000
    0.2610   12.0000
    0.2038    5.0000
      .
      .

where each row comprises the similarity measure and the corresponding image. Image 11 
is identical to image 11 as expected, and in decreasing order of similarity we have im-
ages 13, 9, 12 and so on. These are shown in Fig. 14.54 and we see that the algorithm 
has recalled quite different views of the same building.

Now consider that we have some new images and we wish to determine which of 
the previous images is the most similar. Perhaps the robot has taken a picture and 
wishes to compare it to its database of existing images. The steps are broadly similar 
to the previous case

>> images2 = iread('campus/holdout/*.jpg', 'mono');
>> sf2 = isurf(images2, 'thresh', 0)   

Fig. 14.54. Image recall. Image 11 
is the query, and in decreasing or-
der of match quality we have re-
called images 13, 9 and 12
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but rather than perform clustering we want to assign the features to the existing set 
of visual words, that is, to determine the closest visual word for each of the new fea-
ture descriptors

>> bag2 = BagOfWords(sf2, bag)
BagOfWords: 6530 features from 5 images
           1950 words, 50 stop words 

This operation also removes any features words that were previously determined to be 
stop words, and computes the word frequency vectors� according to Eq. 14.19.

Finally the similarity between the images in the two bags of words is

>> S2 = bag.similarity(bag2);  

which returns a 20 × 5 matrix where the elements S2(i,j) indicates the similarity 
between the existing image i and new image j. The maxima in each column corresponds 
to the most similar image in the previously observed set

>> [z,k] = max(S2)
z =
    0.3435    0.6948    0.5427    0.5521    0.3627
k =
     2    11    16    18    20

New image 1 best matches image 2 in the original sequence, new image 2 matches im-
age 11 and so on. Two of the new images and their closest existing images are shown 
in Fig. 14.55. The fi rst recall has a low similarity score but is a reasonable result – the 
recall image includes the building from the test image at the right and another build-
ing that has many similarities.

Fig. 14.55. Image recall for new 
images. The new query images 
a and c recall the database images 
b and d respectively

Which requires the image-word statistics 
from the existing bag of words to com-
pute the idf weighting terms.

14.7  ·  Applications
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14.7.4 
l

Visual Odometry [examples/vodemo]

A common problem in robotics is to estimate the distance a robot has traveled, and 
this is a key input to all of the   localization  algorithms discussed in Chap. 6. For a 
wheeled robot we can use information from the wheel encoders but these are sub-
ject to random errors (slippage) as well as systematic errors (imprecisely known 
wheel radius). However for a fl ying or underwater robot the problem of odometry 
is much more diffi cult.    Visual odometry (VO) is the process of using information 
from consecutive images to estimate the robot’s relative motion from one camera 
image to the next.

We load a sequence of images taken from a car driving along a road�

>> left = iread('bridge-l/*.png', 'roi', [20 750; 20 440]); 

and the option 'roi' selects a region of interest from each image to eliminate an ir-
regular black border.� These images are unusual in having 16-bit pixels

>> about(left)
left [uint16] : 421x731x251 (154.5 MB) 

and the image im belongs to the class 'uint16'. Since this sequence is already near-
ly 200 Mbyte we do not convert it to double precision since this would quadruple the 
amount of memory required.

The image sequence can be displayed as an animation

>> ianimate(left, 'fps', 10); 

at 10 frames per second.
For each frame we compute corner features

>> c = icorner(im, 'nfeat', 200, 'patch', 7);  

and for a change we have used Harris corners since they are computationally cheaper. 
For this application the change in orientation and scale from frame to frame is small 
and Harris corner features are well suited for this purpose. The function returns a cell 
array with one element per input image, and each element is a vector of the 200 stron-
gest Harris corner features per image. The image sequence can be displayed as an ani-
mation with the features overlaid

>> ianimate(im, c, 'fps', 10); 

at 10 frames per second and a single frame of this sequence is shown in Fig. 14.56. 
The features are associated with regions of high gradient such as the edges of trees, as 

Fig. 14.56.
Frame number 15 from the 
bridge-l image sequence 
with overlaid features (image 
from .enpeda. project, Klette 
et al. 2011)

This image sequence is bulky and not 
distributed with the main toolbox, but it 
can be found in the contrib2 zip file on 
the Toolbox website. This sequence is da-
taset 4 of the .enpeda.. Image Sequence 
Analysis Test Site (EISATS).

The black border is the result of image 
rectification.
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well as the corners of signs and cars. Watching the animation we see that the  corner 
features stick reliably to world points for many frames. The motion of features in the 
image is known as  optical fl ow and is a function of the camera’s motion through the 
world and the 3-dimensional structure of the world.�

The magnitude of optical fl ow  – the speed of a world point on the image plane – is 
proportional to camera velocity divided by distance to the world point and therefore 
has a scale ambiguity – a camera moving quickly through a world with distant points 
yields the same fl ow magnitude as a slower  camera moving past closer points. To 
resolve this we need to use additional information. For example if we knew that the 
points were on the road  surface, that the road was fl at, and the height of the camera 
above the road then we can resolve this unknown scale. However this assumption is 
quite strict and would not apply for something like a drone moving over unknown 
terrain. Instead we will use information from a different view of the world – the right 
image from a  stereo camera fi tted to the vehicle.

>> right = iread('bridge-r/*.png', 'roi', [20 750; 20 440]);

For each pair of left and right images we extract features, and determine corre-
spondence by robustly matching features using descriptor similarity and the epipolar 
 constraint implied by a fundamental matrix. Next we compute horizontal disparity 
between corresponding features, and assuming the cameras are fully calibrated we 
 triangulate the image-plane coordinates to determine the world coordinates of the 
landmark points with respect to the left-hand camera on the vehicle. We can match 
the 3D point clouds at the current and previous time step using a technique like iter-
ated closest point   (ICP) in order to determine the camera pose change. This is the so-
called 3D-3D approach  to visual odometry and while the principle is sound it works 
poorly in practice. Firstly, some of the 3D points may be on other moving objects and 
this violates the assumption of ICP that the sensor or the object moves, but not both. 
Secondly, the estimated range to distant points is quite inaccurate since errors in es-
timated disparity become signifi cant when disparity is small.   

An alternative approach, 3D-2D matching, projects the 3D points at the current 
time step into the previous image and fi nds the  camera pose that minimizes the error 
with respect to the observed feature coordinates – this is bundle adjustment  . Typically 
this is done for just one image and we will choose the left image. To establish  corre-
spondence of features over time we fi nd correspondences between left-image features 
that had a match with the right image and a match with features from the previous left 
image – again enforcing an epipolar constraint. We now know the correspondence 
between points in the three views of the scene as shown in Fig. 14.57.

Fig. 14.57.
Feature correspondence for vi-
sual odometry. The top row is 

a stereo pair at the current time 
step, and the bottom row is a ste-
reo pair at the previous time step. 

Epiplolar consistent correspon-
dences between three of the im-
age images are shown in yellow   

We will revisit optical flow in the next 
chapter.

14.7  ·  Applications
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At each time step we set up a bundle adjustment problem that has two cameras 
and a number of landmarks determined from  stereo triangulation. The fi rst camera 
is associated with the previous time step and is fi xed at the reference frame origin. 
The second camera is associated with the current time step and would be expected to 
have a translation in the positive z-axis direction. We could obtain an initial estimate 
of the second camera’s pose by estimating and decomposing an essential  matrix, but 
we will instead set it to the origin.

The details can be found in the example script

>> visodom

which processes 100 frames and displays graphics like Fig. 14.57 for every frame. The 
fi nal results for z-axis translation are shown in Fig. 14.58a and we notice a value of 
around 0.5 m at each time step, but there are also some missing data points and two 
incorrect looking results. The bundle adjustment process   returns the fi nal squared 
error and this is plotted in Fig. 14.58b for each frame. For 8% of the frames that error 
was over 20 pix2 (red dashed line) and we exclude those results. The likely source of 
error is incorrect point  correspondences. Bundle adjustment assumes that all points 
in the world are fi xed but in this sequence there are numerous moving objects. We 
used the epipolar constraint   between current and previous frame to ensure that only 
features points consistent with a moving camera and a fi xed world are in the inliner 
set. However when the script runs we see quite a lot of points on the car in front which 
are being incorrectly included in the inlier set – that car is moving but because it is 
a large and constant distance away those points are not inducing enough error to be 
considered outliers. A more sophisticated bundle adjustment algorithm   would detect 
and reject such points. Finally there is a preponderance of points in the top part of the 
scene which tend to be quite distant from the cameras. A more sophisticated approach 
to feature detection would choose features more uniformly over the image.

The erroneous points at timesteps 29 and 71 highlight a common problem with us-
ing video data for robots. The clue is that those values are suspiciously close to exactly 
twice the other values. Each image in the sequence was assigned a timestamp when it 
was received by the computer and those timestamps can be loaded

>> ts = load('timestamps.dat');

Fig. 14.58.
Visual odometry results. a Esti-
mated displacement of the cam-
era its z-direction (forward); 
b bundle adjustment   fi nal error 
per frame, shown with a logo-
rithmic vertical scale   



523

and if we plot the difference between timestamps

>> plot( diff(ts))

we see that the average time between images is 44.6 ms but there are two spikes where 
the interval is twice that. The computer logging the images has skipped a frame, per-
haps it was unable to write image data to memory or disk as quickly as it was arriving. 
So the interval between the frames was twice as long, the vehicle traveled twice as far, 
and the spikes on our estimated displacement are in fact correct. This is not an un-
common situation – in a robot system all data should be timestamped and timestamps 
should be checked to detect problems like this.

The median velocity over the valid estimates is
>> median(tz(ebundle<20))
ans =
    0.5201

in units of meters which, with the camera frame interval of 44.6 ms, indicates a vehicle 
speed of around 40 km h−1. The variable tz is a vector of frame-to-frame displace-
ment computed by the script, and  ebundle is a vector of bundle adjustment   errors 
at each time step. The residuals from estimating the fundamental matrix between the 
current and previous left image are saved in the vector  efund.

For a vehicle or robot the estimated displacements over time are not independent 
and are related by vehicle kino-dynamic model, and we can use this to smooth the 
results and discount erroneous velocity estimates. If the bundle adjuster included 
constraints on camera pose we could set the weighting to penalize infeasible motion 
in the lateral and vertical directions as well as roll and pitch motion.

14.8 
l
Wrapping Up

This chapter has covered many topics but the aim has been to demonstrate a multi-
plicity of concepts that are of use in real robotic vision systems. There have been two 
common threads through this chapter. The fi rst has been the use of corner features to 
fi nd distinctive points in images, and matching them to the same world point in an-
other image. The second thread has been the loss of scale in the perspective projection 
process and techniques based on additional sources of information to recover scale 
such as stereo vision, structured light or bundle adjustment.

We extended the geometry of single camera imaging to the case of two cameras 
and showed how corresponding points in the two images are constrained by the fun-
damental matrix. We showed how the fundamental matrix can be estimated from 
image data, the effect of incorrect data association, and how to overcome this using 
the RANSAC algorithm. Using camera intrinsic parameters the essential matrix can 
be computed and then decomposed to give the camera motion between the two view, 
but the translation has an unknown scale factor. With some extra information such 
as the magnitude of the translation, the camera motion can be estimated completely. 
Given the camera motion, then the 3-dimensional coordinates of points in the world 
can be estimated.

For the special case where world points lie on a plane they induce an homography 
that is a linear mapping of image points between images. The homography can be 
used to detect points that do not lie in the plane and can be decomposed to give the 
camera motion between the two views (translation again has an unknown scale fac-
tor) and the normal to the plane.

If the fundamental matrix is known then a pair of overlapping images can be recti-
fi ed to create an epipolar-aligned stereo pair and dense stereo matching can be used to 
recover the world coordinates for every point. Errors due to effects such as occlusion 
and lack of texture were discussed as were techniques to detect these situations.

14.8  ·  Wrapping Up
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We used bundle adjustment to solve the structure and motion estimation problem 
– using 2D measurements from a set of images of the scene to recover information 
related to the 3D geometry of the scene as well as the locations of the cameras.  Stereo 
vision is a simple case where the motion is known – fi xed by the  stereo baseline – and 
we are interested only in structure. The visual odometry problem is complementary 
and we are interested only in the motion of the camera, not the scene structure.

These multi-view techniques were then used in a number of application exam-
ples such as perspective  correction, mosaic creation, image retrieval and visual 
odometry.

MATLAB and Toolbox Notes

The Toolbox uses open-source code to support SIFT (VLFeat) and SURF (OpenSURF 
http://www.mathworks.com/matlabcentral/fileexchange/28300) features. VLFeat 
(http://www.vlfeat.org) includes a number of feature detectors and other useful func-
tions. The OpenCV library implements many feature detectors and descriptors and can 
be accessed in MATLAB using mexopencv (https://kyamagu.github.io/mexopencv).

The MATLAB Computer Vision System Toolbox™ (CVST) has support for stereo 
rectifi cation; stereo matching; SURF, FAST and Harris feature detectors; a range of de-
scriptors (BRISK, HOG, MSER); and point cloud processing including kd-trees, model 
fi tting and visualization. Many CVST functions can be used inside Simulink and sup-
port automatic code generation for real-time hardware such as FPGAs.

Further Reading

3-dimensional reconstruction and camera pose  estimation has been studied by the 
 photogrammetry community since the mid nineteenth century, see page 354. 3-di-
mensional computer vision or robot vision has been studied by the computer vi-
sion and artifi cial  intelligence communities since the 1960s. This book follows the 
language and nomenclature associated with the computer vision literature, but the 
photogrammetric literature can be comprehended with only a little extra diffi culty. 
The similarity of a stereo camera to our own two eyes is very striking, and while we 
do make strong use of stereo vision it is not the only technique we use to infer dis-
tance (Cutting 1997).

Signifi cant early work on multi-view geometry was conducted at laboratories such 
as Stanford, SRI International, MIT AI laboratory, CMU, JPL, INRIA, Oxford and ETL 
Japan in the 1980s and 1990s and led to a number of text books being published in 
the early 2000s. The defi nitive references for multiple-view geometry are Hartley and 
Zisserman (2003) and Ma et al. (2003). These books present quite different approaches 
to the same body of material. The former takes a more geometric approach while the 
latter is more mathematical. Unfortunately they use quite different notation, and each 
differs from the notation used in this book – a summary of the important notational 
elements is given in Table 14.1. These books all cover feature extraction (using Harris 
corner features, since they were published before scale invariant feature detectors 
such as SIFT and SURF corner detectors were developed); the geometry of one, two 
and N views; fundamental and essential matrices; homographies; and the recovery of 
3-dimensional scene structure and camera motion through offl ine batch techniques. 
Both provide the key algorithms in pseudo-code and have some supporting MATLAB 
code on their associated web sites. The slightly earlier book by Faugeras et al. (2001) 
covers much of the same material using a fairly mathematical approach and with dif-
ferent notation again. The older book by Faugeras (1993) focuses on  sparse stereo from 
line features. The recent book by Szeliski (2010) provides a very readable and deeper 
discussion of the topics in this chapter.
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References related to SURF and other feature detectors were previously discussed 
on page 456. The performance of feature detectors and their matching performance is 
covered in Mikolajczyk and Schmid (2005) which reviews a number of different fea-
ture descriptors including spin images and local jets.� Arandjeloviõ and Zisserman 
(2012) discuss some important points when matching feature vectors.

The RANSAC algorithm described by Fischler and Bolles (1981) is the workhorse of all 
the feature-based methods discussed in this chapter but fails with very small inlier ratios. 
A recent more robust development is vector fi eld consensus (VFC) by Ma et al. (2014). Pilu 
(1997) discusses how SVD can be applied to a matrix formed from the distances between 
features to determine correspondence. Dellaert et al. (2000) describe a probabilistic ap-
proach to determining structure from a group of images not necessarily in order.

The term  fundamental matrix was defi ned in the thesis of Luong (1992). The book by 
Xu and Zhang (1996) is a readable introduction to epipolar geometry. Epipolar geom-
etry can also be formulated for nonperspective cameras in which case the epipolar line 
becomes an epipolar curve (Miãuïík and Pajdla 2003; Svoboda and Pajdla 2002). For 
three views the geometry is described by the  trifocal  tensor T which is a 3 × 3 × 3 ten-
sor with 18 degrees of freedom that relates a point in one image to epipolar lines in two 
other images (Hartley and Zisserman 2003; Ma et al. 2003). An important early paper 
on epipolar geometry for an image sequence is Bolles et al. (1987).

The essential matrix was fi rst described a decade earlier in a letter to Nature (Longuet-
Higgins 1981) by the eminent theoretical chemist and cognitive scientist Christopher 
Longuet-Higgins (1923–2004). The paper describes a method of estimating the essen-
tial matrix from eight corresponding point pairs. The  decomposition of the essential 
matrix was fi rst described in Faugeras (1993, § 7.3.1) but is also covered in the texts 
Hartley and Zisserman (2003) and Ma et al. (2003). In this chapter we have estimated 
camera motion by fi rst computing the essential matrix and then decomposing it. The 
fi rst step requires at least eight pairs of corresponding points but algorithms such as 
Nistér (2003), Li and Hartley (2006) compute the motion directly from just fi ve pairs 
of points. Decomposition of an homography is described by Faugeras and Lustman 
(1988), Hartley and Zisserman (2003), Ma et al. (2003), and the comprehensive tech-
nical report by Malis and Vargas (2007). The relationships between these matrices, 
camera motion, and the relevant Toolbox functions are summarized in Fig. 14.59.

Stereo cameras and stereo matching software are available today from many ven-
dors and can provide high-resolution depth maps at more than 10 Hz on standard 
computers. A decade ago this was diffi cult and custom hardware including FPGAs was 
required to achieve real-time operation (Corke et al. 1999; Woodfi ll and Von Herzen 
1997). The application of stereo vision for planetary rover  navigation is discussed by 
Matthies (1992). More than two cameras can be used, and multi-camera stereo was 
introduced by Okutomi and Kanade (1993) and provides robustness to problems such 
as the picket fence effect.

Table 14.1.
Rosetta stone. Summary of  no-

tational differences between 
two other popular textbooks 

and this book

A jet is a vector of higher order deriv-
atives such as Iuu, Ivv, Iuv, Iuuu, Iuuv, Iuvv, 
Ivvv, Iuuuu, Iuuuv, Iuuvv, Iuvvv, Ivvvv and so on 
(Mikolajczyk and Schmid 2005).

14.8  ·  Wrapping Up



526 Chapter 14  ·  Using Multiple Images

Brown et al. (2003) provide a readable review of stereo vision techniques with a fo-
cus on real-time issues. An old but clearly written book on the principles of stereo vi-
sion is Shirai (1987). Scharstein and Szeliski (2002) consider the stereo process as four 
steps: matching, aggregation, disparity computation and refi nement. The cost and 
performance of different     algorithms for each step are compared. The example in this 
chapter would be described as: NCC matching, box  fi lter aggregation, winner takes all, 
and subpixel refi nement. The dense stereo matching  algorithm presented in Sect. 14.3.2 
is a very conventional correlation-based stereo algorithm. The disparity computed at 
each pixel is independent of other pixels but for most real scenes adjacent pixels be-
long to the same surface and disparity will be quite similar – this is referred to as the 
  smoothness  constraint. Of course disparity will be discontinuous at the edges of surfaces. 
Finding the shortest best-fi t path through a slice of the disparity space image as shown in 
Fig. 14.29 will enforce the smoothness constraint in the horizontal direction. Ideally we 
wish to also ensure vertical smoothness as well and this can be achieved using Markov 
random fi elds (MRFs), total variation with regularizers (Pock 2008), or more effi cient 
semi-global matching (SGM)   algorithms (Hirschmüller 2008). The very popular library 
for effi cient large-scale stereo matching (LIBELAS) by Geiger et al. (2010) uses an al-
ternative to global  optimization that provides fast and accurate results for a variety of 
indoor and outdoor scenes. Stereo vision involves a signifi cant amount of computation 
but there is considerable scope for parallelization using multiple cores, MIMD instruc-
tion sets, GPUs, custom chips and FPGAs. The use of nonparametric local transforms 
is described by Zabih and Woodfi ll (1994) and Banks and Corke (2001).

An emerging alternative to stereo vision are cameras based on  time-of-fl ight mea-
surement which are dropping rapidly in cost. A pulse of infra-red light illuminates 
the scene and every pixel records the intensity and time delay of the refl ected energy. 
Time-of-fl ight sensors include the REAL3 devices by Infi neon (infineon.com) and 
PhotonICs from pmdtechnologies (pmdtec.com). Complete time-of-fl ight  cameras 
include the Kinect for Xbox One (Kinect 2) and various from pmdtechnologies. This 
type of camera works well indoors and even in complete darkness, but outdoors under 
full sun the maximum range is limited just as it is for structured light.�

The ICP  algorithm (Besl and McKay 1992) is used for a wide range of applications 
from robotics to medical imaging. ICP is fast but determining the correspondences 
via nearest neighbors is an expensive O(N 2) operation. Many variations have been de-
veloped that make the approach robust to outlier data and to improve computational 
speed for large datasets. Salvi et al. (2007) provide a recent review and comparison of 

Fig. 14.59.
Toolbox functions and camera 
object methods, and their inter-
relationship

In fact it is worse than structured light. 
The illumination energy is limited by 
eye-safety considerations and structured 
light concentrates that energy over a line 
whereas time-of-flight cameras spread it 
over an area.
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some different algorithms. Determining the relative orientation between two sets of 
points is a classical problem and the SVD approach used here is described by Arun 
et al. (1987). Solutions based on quaternions and orthonormal rotation matrices have 
been described by Horn (Horn et al. 1988; Horn 1987).

Structure from motion (SfM), the simultaneous recovery of world structure and 
camera motion, is a classical problem in computer vision. Two useful review papers 
are by Huang and Netravali (1994) which provides a taxonomy of approaches, and 
Jebara et al. (1999). Broida et al. (1990) describe an early recursive SfM technique for a 
monocular camera sequence using an EKF where each world point is represented by its 
(X, Y, Z) coordinate. McLauchlan provides a detailed description of a variable-length 
state estimator for SfM (McLauchlan 1999). Azarbayejani and Pentland (1995) present 
a recursive approach where each world point is parameterized by a scalar, its depth 
with respect to the fi rst image. A more recent algorithm with bounded estimation error 
is described by Chiuso et al. (2002) and also discusses the problem of scale variation. 
The MonoSlam system by Davison et al. (2007) is an impressive monocular SfM system 
that maintains a local map that includes features even when they are not currently in 
the fi eld of view. A more recent extension by Newcombe et al. (2011) performs camera 
tracking and dense 3D reconstruction from a single moving RGB camera. The applica-
tion of SfM to large-scale urban mapping is becoming increasing popular and Pollefeys 
et al. (2008) describe a system for offl ine processing of large image sets.

Bundle adjustment   or structure from motion (SfM)   is a big fi eld with a large litera-
ture that cover many variants of the problem, for example robustness to outliers, and 
specifi c applications and camera types. Classical introductions include Triggs et al. 
(2000) and Hartley and Zisserman (2003). Recent theses by Warren (2015), Sünderhauf 
(2012) and Strasdat (2012) are comprehensive and readable. Unfortunately every ref-
erence uses different notation. Estimating the camera  matrix for each view, comput-
ing a projective reconstruction, and then upgrading it to a Euclidean reconstruction 
is described by Hartley and Zisserman (2003) and Ma et al. (2003).

The SfM problem can be simplifi ed by using stereo rather than monocular image 
sequences (Molton and Brady 2000; Zhang et al. 1992), or by incorporating inertial data 
(Strelow and Singh 2004). A readable two-part tutorial introduction to visual odom-
etry (VO) is Scaramuzza and Fraundorfer (2011) and Fraundorfer and Scaramuzza 
(2012). Visual odometry is discussed by Nistér et al. (2006) using point features and 
monocular or stereo vision. Maimone et al. (2007) describe experience with stereo-
camera VO on the  Mars rover and Corke et al. (2004) describe  monocular catadiop-
tric VO for a prototype planetary rover.

Mosaicing is a process as old as photography. In the past it was highly skilled and 
labor intensive requiring photographs, scalpels and sandpaper. The  surface of the 
Moon and nearby planets was mosaiced manually in the 1960s using imagery sent back 
by robotic spacecraft. High-quality offl ine mosaicing tools are available for creating 
panoramas, for example the Hugin open source project http://hugin.sourceforge.net 
and the proprietary AutoStitch.

The “bag of words” technique for image retrieval was fi rst proposed by Sivic and 
Zisserman (2003) and has been used by many other researchers since. A notable exten-
sion for robotic applications is FABMAP (Cummins and Newman 2008) which explic-
itly accounts for the joint probability of feature occurrence and associates a probability 
with the image match, and is available in OpenCV. An open source version (Glover et al. 
2012) is available at https://github.com/arrenglover/openfabmap. Chatfi eld et al. (2011) 
discussed some recent improvements to the bag-of-words image retrieval problem.

Image sequence  analysis is the core of many real-time robotic vision systems. Real-
time feature tracking across frames is described by Hager and Toyama (1998), Lucas 
and Kanade (1981) and is typically based on the computationally cheaper Harris de-
tectors or the pyramidal Kanade-Lucas-Tomasi (KLT) tracker. SURF detectors are still 
too time consuming to use for this purpose although some C-based implementations 
and GPU implementations are capable of real-time performance.

14.8  ·  Wrapping Up
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Resources

The fi eld of computer vision has progressed through the availability of standard da-
tasets. These have enabled researchers to quantitatively compare the performance of 
different algorithms on the same data. One of the earliest collections of stereo image 
pairs was the JISCT dataset (Bolles et al. 1993). The more recent Middlebury dataset 
(Scharstein and Szeliski 2002) at http://vision.middlebury.edu/stereo provides an ex-
tensive collection of stereo images, at high resolution, taken at different exposure set-
tings and including ground truth data. Stereo images from various NASA  Mars rovers 
are available online as left+right pairs or encoded in anaglyphs. Motion datasets include 
classic motion sequences of indoor scenes http://vasc.ri.cmu.edu//idb/html/motion, 
people moving inside a building http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1, 
traffi c scenes http://i21www.ira.uka.de/image_sequences, and from a moving vehicle 
http://www.mi.auckland.ac.nz/EISATS.

The popular LIBELAS library (http://www.cvlibs.net/software/libelas) for large-
scale stereo matching supports parallel processing using OpenMP and has MATLAB 
and ROS interfaces. Various stereo vision algorithms are compared for speed and ac-
curacy at the KITTI (www.cvlibs.net/datasets/kitti/eval_scene_flow.php) and Middlebury 
(vision.middlebury.edu/stereo/eval3) benchmark sites.

An implementation of the KLT feature tracker, in C, written by Stan Birchfi eld is 
available at http://www.ces.clemson.edu/~stb/klt. A GPU-based version of KLT, in C, 
is available at http://cs.unc.edu/~ssinha/Research/GPU_KLT. The ViSP cross-platform 
library includes tracking capability and can be found at https://visp.inria.fr. Pointers 
to SIFT and SURF implementations are given on page 456. The Epipolar Geometry 
Toolbox (Mariottini and Prattichizzo 2005) for MATLAB by Gian Luca Mariottini and 
Domenico Prattichizzo is available at http://egt.dii.unisi.it and handles perspective and 
catadioptric cameras. Andrew Davison’s monocular visual SLAM system (MonoSLAM) 
for C and MATLAB is available at http://www.doc.ic.ac.uk/~ajd/software.html.

The sparse bundle adjustment software by Lourakis (users.ics.forth.gr/~lourakis/sba) 
is an effi cient C implementation that is widely used and has a MATLAB and OpenCV 
wrapper. One application is Bundler (www.cs.cornell.edu/~snavely/bundler) which can 
perform matching of points from thousands of cameras over city scales and has enabled 
reconstruction of cities such as Rome (Agarwal et al. 2014), Venice and Dubrovnik. 
Some of these large-scale datasets are available from grail.cs.washington.edu/projects/
bal and www.robots.ox.ac.uk/~vgg/data/data-mview.html. A MATLAB interface to 
Bundler is available at www.mathworks.com/matlabcentral/fileexchange/46341. 
SFMedu, a Structure from Motion System for Education (http://vision.princeton.edu/
courses/SFMedu) has learning resources and MATLAB source code. Other open source 
solvers that can be used for sparse bundle adjustment include g2o, SSBA and CERES, all 
implemented in C++. g2o by Kümmerle et al. (2011) (github.com/RainerKuemmerle/
g2o) can also be used to solve SLAM problems. SSBA by Christopher Zach is avail-
able at https://github.com/chzach/SSBA. The CERES solver from Google (ceres-solver.
org) is a library for modeling and solving large complex optimization problems on 
desktop and mobile platforms and also supports parallel processing using OpenMP. 
A MATLAB interface is available at github.com/tikroeger/BA_Matlab.

Pointcloud library (PCL) (pointclouds.org) is a large-scale, open and standalone 
package for 2D/3D image and point cloud processing with support for feature detec-
tors and descriptors, 3D registration, kd-trees,  shape segmentation,  surface meshing, 
visualization, camera interfaces and includes g2o. The Point Data Abstraction Library 
(PDAL) (www.pdal.io) is a library and set of Unix command line tools for manipulat-
ing point cloud data.

Point clouds can be stored in a number of common open formats. Point cloud data 
(PCD) fi les are defi ned by Pointcloud library (PCL) (pointclouds.org) and can be im-
ported into MATLAB using www.mathworks.com/matlabcentral/fileexchange/40382. 
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Polygon fi le format (PLY) fi les are designed to describe meshes but can be used to 
represent an unmeshed point cloud, and there are a number of great visualizers 
such as MeshLab and potree. PCL and PDAL can read, write and convert many 
point cloud fi le formats.

The fundamental matrix song can be found at http://danielwedge.com/fmatrix/.

Exercises

1. Corner features and matching (page 462). Examine the cumulative distribution of 
corner strength for Harris and SURF features. What is an appropriate way to choose 
strong corners for feature matching?

2. Feature matching. We could defi ne the quality of descriptor-based feature match-
ing in terms of the percentage of inliers after applying RANSAC.
a) Take any image. We will match this image against various transforms of itself to 

explore the robustness of SURF and Harris features. The transforms are: (a) scale 
the intensity by 70%; (b) add Gaussian noise with standard deviation of 0.05, 
0.5 and 2 grey values; (c) scale the size of the image by 0.9, 0.8, 0.7, 0.6 and 0.5; 
(d) rotate by 5, 10, 15, 20, 30, 40 degrees.

b) For the Harris detector compare the performance for the structure-tensor-based 
feature and the patch descriptor sizes of 3 × 3, 7 × 7 and 11 × 11 and 15 × 15.

c) Try increasing the suppression radius for SURF and Harris corners. Does the 
lower density of matches improve the matching performance?

d) The Harris detector can process a color image. Does this lead to improved per-
formance compared to the greyscale version of the same image.

e) Is there any correlation between outlier matches and strength of the corner fea-
tures involved?

3. Write the equation for the epipolar line in image two, given a point in image one.
4. Show that the epipoles are the null space of the fundamental matrix.
5. Can you determine the camera matrix C for camera two given the fundamental ma-

trix and the camera matrix for camera one?
6. Estimating the fundamental matrix (page 470)

a) For the synthetic data example vary the number of points and the additive Gaussian 
noise and observe the effect on the residual.

b) For the Eiffel tower data observe the effect of varying the parameter to RANSAC. 
Repeat this with SURF features computed with a lower strength threshold (the 
default is 0.002).

c) What is the probability of drawing 8 inlier points in a random sample (without 
replacement) from N inliers and M outliers?

7. Epipolar geometry
a) Create two central cameras, one at the origin and the other translated in the 

x-direction. For a sparse fronto-parallel grid of world points display the family of 
epipolar lines in image two that correspond to the projected points in image one. 
Describe these epipolar lines? Repeat for the case where camera two is translated 
in the y- and z-axes and rotated about the x-, y- and z-axes. Repeat this for com-
binations of motion such as x- and z-translation or x-translation and y-rotation.

b) The example of Fig. 14.16 has epipolar lines that slope slightly upward. What 
does this indicate about the two camera views?

8. Essential matrix (page 469)
a) Create a set of corresponding points for a camera undergoing pure rotational 

motion, and compute the fundamental and essential matrix. Can you recover 
the rotational motion?

b) For a case of translational and rotational motion visualize both poses that result 
from decomposing the essential matrix. Sketch it or use trplot.

14.8  ·  Wrapping Up
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9. Homography (page 477)
a) Compute Euclidean homographies for translation in the x-, y- and z-directions 

and for rotation about the x-, y- and z-axes. Convert these to projective homog-
raphies and apply to a fronto-parallel grid of points. Is the resulting image mo-
tion what you would expect? Apply these homographies as a warp to a real im-
age such as Lena.

b) Decompose the homography of Fig. 14.15, the courtyard image, to determine the 
plane of the wall with respect to the camera. You will need the camera intrinsic 
parameters.

10. Load a reference image of this book’s cover from rvc2_cover.png. Next, cap-
ture an image that includes the book’s front cover, compute SIFT or SURF features, 
match them and use RANSAC to estimate an homography between the two views of 
the book cover. Decompose the homography to estimate rotation and translation. 
Put all of this into a real-time loop and continually display the pose of the book 
relative to the camera.

11. Sparse stereo (page 482)
a) The ray intersection method can return the closest distance between the rays 

(which is ideally zero). Plot a histogram of the closing error and compute the 
mean and maximum error.

b) The assumed camera translation magnitude was 30 cm. Repeat for 25 and 35 cm. 
Are the closing error statistics changed? Can you determine what translation 
magnitude minimizes this error?

12. Bundle adjustment (page 497)
a) Vary the initial condition for the second camera, for example, set it to the iden-

tity matrix.
b) Set the initial camera translation to 3 m in the x-direction, and scale the land-

mark coordinates by 10×. What is the fi nal value of the back-projection error 
and the second camera pose.

c) Experiment with anchoring landmarks and cameras.
d) Derive the two Jacobians A (hard) and B.

13. Derive a relationship for depth in terms of disparity for the case of verged cameras. 
That is, cameras with their optical axes intersecting similar to the cameras shown 
in Fig. 14.6.

14. Stereo vision. Using the rock piles example (page 483)
a) Use idisp to zoom in on the disparity image and examine pixel values on the 

boundaries of the image and around the edges of rocks.
b) Experiment with different similarity measures and window sizes. What effects 

do you observe in the disparity image and computation time?
c) Experiment with changing the disparity range. Try [50,90], [30,90], [40,80] 

and [40,100]. What happens to the disparity image and why?
15. Using the rock piles example (page 483) obtain the disparity space image D

a) For selected pixels (u, v) plot D(u, v, d) versus d. Look for pixels that have a 
sharp peak, broad peak and weak peak. Repeat this for stereo computed using 
 ZSSD similarity. For a selected row v display D(u, v, d) as an image. What does 
this represent?

b) For a particular pixel plot s versus d, fi t a parabola around the maxima and over-
lay this on the plot.

c) Use raw data from the DSI, fi nd the second peak at each pixel and compute the 
 ambiguity ratio

d) Display the epipolar lines on image two for selected points in image one.
16. Download an anaglyph image and convert it into a pair of greyscale images, then 

compute dense stereo.
17. Variations to stereo matching

a) Try some other stereo images, either acquired with a stereo camera or from the 
Middlebury dataset.
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b) Perform stereo matching using the SAD rather than NCC metric. Use the 'metric' 
option to istereo .

c) Apply the census (icensus ) or rank transforms (irank ) to the left and right 
image prior to matching using the SAD measure and investigate the matching 
quality. More details in Banks and Corke (2001).

18. Stereo vision. For a pair of identical cameras with a focal length of 8 mm, 
1 000 × 1 000 pixels that are 10 µm square on an 80 mm baseline and with parallel 
optical axes:
a) Sketch the fi elds of views of the camera in a plan view. If the cameras are viewing 

a plane surface normal to the principal axes how wide is the horizontal overlap-
ping fi eld of view in units of pixels?

b) Assuming that disparity error is normally distributed with 2σ = 0.2 pixels compute 
and plot the distribution of error in the z-coordinate of the reconstructed 3D points 
which have a mean disparity of 0.5, 1, 2, 5, 10 and 20 pixels. Draw 1 000 random 
values of disparity, convert these to Z and plot a histogram (distribution) of their 
values.

19. Mona Lisa on your wall. Acquire an image of a room in your house and display it us-
ing MATLAB. Select four points, using  ginput, to defi ne the corners of the virtual 
frame on your wall. Perhaps use the corners of an existing rectangular feature in your 
room such as a window, poster or picture. Estimate the appropriate homography, 
warp the Mona Lisa image and insert it into the original image of your room.

20. Plane fi tting (page 504)
a) Test the robustness of the plane fi tting algorithm to additive noise and outlier 

points.
b) Implement an iterative approach with weighting to minimize the effect of out-

liers.
c) Create a RANSAC-based plane fi t algorithm that takes random samples of three 

points to solve for Eq. 14.18. Use the  fmatrix and  homography code to 
guide you. You will need to create a number of functions that are invoked by 
the  ransac_driver.

21. ICP (page 505)
a) Run the ICP example on your computer and watch the animation.
b) Change the initial relative pose between the point clouds. Try some very large 

rotations.
c) Increase the noise added to the data points.
d) For the case where there are missing and/or spurious data points experiment 

with different values of the 'distthresh' option.
22. Perspective correction (page 509)

a) Create a virtual view looking downward at 45° to the front of the cathedral.
b) Create a virtual view from the original camera height but with the camera ro-

tated 20° to the left.
c) Find another real picture with perspective distortion and attempt to correct it.

23. Mosaicing (page 512)
a) Run the example fi le mosaic and watch the whole mosaic being assembled.
b) Modify the way the tile is pasted into the composite image to use pixel averag-

ing rather than addition.
c) Modify the way the tile is pasted into the composite image so that pixels closest 

to the principal point are used.
d) Run the software on a set of your own overlapping images and create a panorama.

24. Image stabilization can be used to virtually stabilize an unsteady camera, perhaps 
one that is handheld, on a drone or on a mobile robot traversing rough terrain. 
Capture a short image sequence I1, I2� IN from an unsteady camera. For frame 
i, i ≥ 2 estimate an homography with respect to frame 1, warp the image appro-
priately, and store it in an array. Display the stabilized image sequence using 
ianimate.

14.8  ·  Wrapping Up
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25. Bag of words (page 514)
a) Examine the different support regions of different visual words using the ex-
emplars method.

b) Investigate the effect of changing the number of stop words.
c) Investigate the effect of changing the size of the vocabulary. Try 1 000, 1 500, 

2 500, 3 000.
d) Build a bag of words from a set of your own images.
e) the RootSIFT trick described by Arandjeloviõ and Zisserman (2012).
f) SURF rather than SIFT features.
g) SURF corner detector with BRISK or FREAK features.

26. Visual odometry, page 520. Modify the example script to
a) use SIFT or SURF features instead of Harris. What happens to accuracy and ex-

ecution time?
b) ensure that features are more uniformly spread over the scene, investigate the 
'suppress' option of icorner.

c) plot the fundamental matrix residuals at each time step (there are two of them). 
Is there a pattern here? Adjust the RANSAC parameters so as to reduce the num-
ber of times bundle adjustment fails.

d) use a robust bundle adjuster, either fi nd one or implement one (hard).
e) use a Kalman fi lter with simple vehicle dynamics to smooth the velocity estimates.

27. Learn about kd-trees. What problems in this chapter could benefi t from kd-trees?
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It is common to talk about a robot moving to an object, but in reality 
the robot is only moving to a pose at which it expects the object to be. 
This is a subtle but deep distinction. A consequence of this is that the 
robot will fail to grasp the object if it is not at the expected pose. It will 
also fail if imperfections in the robot mechanism or controller result in 
the end-effector not actually achieving the end-effector pose that was 
specifi ed. In order for this conventional approach to work successfully 
we need to solve two quite diffi cult problems: determining the pose of 
the object and ensuring the robot achieves that pose.

The fi rst problem, determining the pose of an object, is typically 
avoided in manufacturing applications by ensuring that the object is 
always precisely placed. This requires mechanical jigs and fi xtures 
which are expensive, and have to be built and set up for every differ-
ent part the robot needs to interact with – somewhat negating the fl ex-
ibility of robotic automation.

The second problem, ensuring the robot can achieve a desired pose, 
is also far from straightforward. As we discussed in Chap. 7 a robot end-
effector is moved to a pose by computing the required joint angles. This 
assumes that the kinematic model is accurate, which in turn necessi-

tates high precision in the robot’s manufacture: link lengths must be precise and axes 
must be exactly parallel or orthogonal. Further the links must be stiff so they do not 
deform under dynamic loading or gravity. It also assumes that the robot has accurate 
joint sensors and high-performance joint controllers that eliminate steady state errors 
due to friction or gravity loading. The nonlinear controllers we discussed in Sect. 9.4 
are capable of this high performance but they require an accurate dynamic model that 
includes the mass, center of gravity and inertia for every link, as well as the payload.

None of these problems are insurmountable but this approach has led us along a 
path toward high complexity. The result is a heavy and stiff robot that in turn needs 
powerful actuators to move it, as well as high quality sensors and a sophisticated con-
troller – all this contributes to a high overall cost. However we should, whenever pos-
sible, avoid solving hard problems if we do not have to. Stepping back for a moment 
and looking at this problem it is clear that

the root cause of the problem is that the robot cannot see what it is doing.

Consider if the robot could see the object and its end-effector, and could use that in-
formation to guide the end-effector toward the object. This is what humans call hand-eye 
coordination and what we will call vision-based control or  visual servo control – the use 
of information from one or more cameras to guide a robot in order to achieve a task.

The pose of the target does not need to be known a priori; the robot moves toward 
the observed target wherever it might be in the workspace. There are numerous advan-
tages of this approach: part position tolerance can be relaxed, the ability to deal with 
parts that are moving comes almost for free, and any errors in the robot’s intrinsic ac-
curacy will be compensated for.

Robotics, Vision and Control
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A vision-based control system involves continuous measurement of the target and 
the robot using vision to create a feedback signal and moves the robot arm until the 
visually observed error between the robot and the target is zero. Vision-based control 
is quite different to taking an image, determining where the target is and then reach-
ing for it. The advantage of continuous measurement and feedback is that it provides 
great robustness with respect to any errors in the system. There are of course some 
practical complexities. If the camera is on the end of the robot it might interfere with 
the task, or when the robot is close to the target the camera might be unable to focus, 
or the target might be obscured by the gripper.

In this part of the book we bring together much that we have learned previously: 
kinematics and dynamics for robot arms and mobile robots; geometric aspects of im-
age formation; and feature extraction. The part comprises two chapters. Chapter 15 
discusses the two classical approaches to visual servoing which are known as position-
based and image-based visual   servoing. The image coordinates of world features are 
used to move the robot toward a desired pose relative to the observed object. The fi rst 
approach requires explicit estimation of object pose from image features, but because 
it is performed in a closed-loop fashion any errors in pose estimation are compensated 
for. The second approach involves no pose  estimation and uses image-plane informa-
tion directly. Both approaches are discussed in the context of a perspective camera 
which is free to move in SE(3), and their respective advantages and disadvantages are 
described. The chapter also includes a discussion of the problem of determining ob-
ject depth, and the use of line and ellipse image features.

Chapter 16 extends the discussion to hybrid visual-servo  algorithms which over-
come the limitations of the position- and image-based visual servoing by using the best 
features of both. The discussion is then extended to nonperspective cameras such as 
fi sheye  lenses and catadioptric optics as well as arm robots, holonomic and nonholo-
nomic ground robots, and a fl ying robot.

This part of the book is pitched at a higher level than earlier parts. It assumes a 
good level of familiarity with the rest of the book, and the increasingly complex ex-
amples are sketched out rather than described in detail. The text introduces the essen-
tial mathematical and algorithmic principles of each technique, but the full details are 
to be found in the source code of the MATLAB® classes that implement the control-
lers, or in the details of the  Simulink diagrams. The results are also increasingly hard 
to depict in a book and are best understood by running the supporting MATLAB or 
Simulink® code and plotting the results or watching the animations.
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The task in visual  servoing is to control the pose of the robot’s end-effector, 
relative to the goal, using visual features extracted from an image of the goal 
object. As shown in Fig. 15.1 the camera may be carried by the robot or be fi xed 
in the world. The confi guration of Fig. 15.1a has the camera mounted on the 
robot’s end-effector observing the goal, and is referred to as  end-point closed-
loop or  eye-in-hand. The confi guration of Fig. 15.1b has the camera at a fi xed 
point in the world observing both the goal and the robot’s end-effector, and is 
referred to as  end-point open-loop. In the remainder of this book we will dis-
cuss only the eye-in-hand confi guration.

The image of the goal is a function of the relative pose CξG. Features such as 
the coordinates of points, or the parameters of lines or  ellipses are extracted 
from the image and these are also a function of the relative pose CξG.

There are two fundamentally different approaches to visual servo control:  Position-
Based Visual Servo (PBVS) and  Image-Based Visual Servo (IBVS).  Position-based visual 
servoing, shown in Fig. 15.2a, uses observed visual features, a calibrated camera and 
a known geometric model of the goal object to determine its pose with respect to the 
camera. The robot then moves toward that pose and the control is performed in task 
space which is commonly SE(3). Good  algorithms exist for  pose  estimation but it is 
computationally expensive and relies critically on the accuracy of the camera calibra-
tion and the model of the object’s geometry. PBVS is discussed in Sect. 15.1.

Vision-Based Control

A servo mechanism , or servo is an automatic device that uses feedback of error between the desired and 
actual position of a mechanism to drive the device to the desired position. The word servo is derived 
from the Latin root servus meaning slave and the fi rst usage was by the Frenchman J. J. L. Farcot in 
1868 – “Le Servomoteur” – to describe the hydraulic and steam engines used for steering ships.

Error in position is measured by a sensor then amplifi ed to drive a motor that generates a force to 
move the device to reduce the error. Servo system development was spurred by WW II with the devel-
opment of electrical servo systems for fi re-control applications that used electric motors and electro-
mechanical amplidyne power amplifi ers. Later servo amplifi ers used vacuum tubes and more recently 
solid state power amplifi ers (motor drives). Today servo mechanisms are ubiquitous and are used to 
position the read/write heads in optical and magnetic disk drives, the lenses in autofocus cameras, 
remote control toys, satellite-tracking antennas, automatic machine tools and robot joints.

“Servo” is properly a noun or adjective but has become a verb “to servo”. In the context of vi-
sion-based control we use the compound verb “visual servoing”.

Fig. 15.1. Visual servo confi gu-
rations and relevant coordinate 
frames: world, end-effector {E}, 
camera {C} and goal {G}. a End-
point closed-loop confi guration 
(eye-in-hand); b end-point open-
loop confi guration
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 Image-based visual  servoing, shown in Fig. 15.2b, omits the pose estimation step, and 
uses the image features directly. The control is performed in image coordinate space R2. 
The desired camera pose with respect to the goal is defi ned implicitly by the image feature 
values at the goal pose. IBVS is a challenging control problem since the image features 
are a highly nonlinear function of  camera pose. IBVS is discussed in Sect. 15.2.

15.1  
l
Position-Based Visual  Servoing

In a PBVS system the pose of the goal with respect to the  camera CξG is estimated. The 
pose  estimation problem was discussed in Sect. 11.2.3 and requires knowledge of the 
goal object’s geometry, the camera’s intrinsic parameters and the observed image fea-
tures. The relationships between the poses is shown as a pose graph in Fig. 15.3. We 
specify the desired relative pose with respect to the goal C

∗ξG and wish to determine the 
motion ξ∆ required to move the camera from its initial pose ξC to ξC

∗. The actual pose 
of the goal ξG is not known. The indicated loop of the pose network is

where Cξ�T is the estimated pose of the goal relative to the camera. We rearrange this as

which is the camera motion required to achieve the desired relative pose. The change 
in pose might be quite large so we do not attempt to make this movement in one step, 
rather we move to a point closer to {C∗} by

which is a fraction λ ∈ (0, 1) of the translation and rotation required.

Fig. 15.2.
The two distinct classes of visual 
servo system
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Using the Toolbox we start by defi ning a camera with known parameters

>> cam = CentralCamera('default'); 

The goal comprises four points that form a square of side length 0.5 m that lies in 
the xy-plane and is centered at (0, 0, 3)

>> P = mkgrid( 2, 0.5, 'pose', SE3(0,0,3) );  

and we assume that its pose is unknown to the control system. The camera is at some 
pose T_C so the image-plane projections of the world points are

>> p = cam.plot(P, 'pose', T_C)  

from which the pose of the goal with respect to the camera Cξ�G is estimated

>> C_Te_G = cam. estpose(P, p);  

The required motion ξ∆ is

>> T_delta = C_Te_G * inv(Cd_T_G);

and the fractional motion toward the goal is obtained by scaling this using its 
interp method giving the new value of the camera pose

>> T_C = T_C .* T_delta.interp(lambda); 

where we ensure that the product is a proper   homogeneous transformation by using 
the .* operator. At each time step we repeat the process, moving a fraction of the re-
quired relative pose until the motion is complete. In this way even if the goal moves, 
or the robot has errors and does not move as requested, the motion computed at the 
next time step will account for that error.

For this example we choose the initial pose of the  camera in world coordinates as

>> T_C0 = SE3(1,1,-3)*SE3.Rz(0.6);  

and the desired pose of the goal with respect to the camera is

>> Cd_T_G = SE3(0, 0, 1); 

which has the goal 1 m in front of the camera and fronto-parallel to it. We create an 
instance of the  PBVS class

pbvs = PBVS(cam, 'pose0', C_T0, 'posef', Cd_T_G, ...	
         'axis', [-1 2 -1 2 -3 0.5])
Visual servo object: camera=default
  200 iterations, 0 history
  P= -0.25       -0.25        0.25        0.25                 
     -0.25        0.25        0.25       -0.25                 
         0           0           0           0                 
  C_T0:   t = ( 1,  1,  -3), R = ( 34.3775deg |  0,  0,  1)    
  C*_T_G: t = ( 0,  0,  1), R = ( 0deg |  0,  0,  0) 

Fig. 15.3.
Relative pose network for PBVS 

example. Frame {C} is the cur-
rent camera pose and frame {C∗} 
is the desired camera pose. The 

MATLAB variable names are 
shown in the grey boxes: an esti-

mate (^) is indicated by ‘e’ and
a desired value (∗) by ‘d’

15.1  ·  Position-Based Visual Servoing
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Fig. 15.4. Snapshop from the visual 
servo simulation. a An external view 
showing camera pose and features; 
b camera view showing current fea-
ture positions on the image plane

Fig. 15.5. Results of PBVS simula-
tion. a Image-plane feature mo-
tion, � is initial feature location, 
� is desired; b Cartesian velocity; 
c camera pose
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which is a subclass of the  VisualServo class and implements the controller out-
lined above. The object constructor takes a CentralCamera object as its argument, 
and contains the control algorithm required to drive this camera to achieve the de-
sired pose relative to the goal specifi ed by the 'posef' option. Many additional op-
tions can be passed to this class constructor. The display method shows the coordi-
nates of the world points, the initial  camera pose, and the desired goal relative pose. 
The simulation is run by

>> pbvs.run();

which repeatedly calls the step method to simulate the motion for a single time step. 
The simulation animates the features moving on the image plane of the camera and 
the 3-dimensional visualization of the camera and the world points – as shown in 
Fig. 15.4. The simulation completes after a defi ned number of iterations or when ξ∆ 
falls below some threshold.

The simulation results are stored within the object for later analysis. We can plot the 
path of the goal features in the image, the Cartesian velocity versus time or Cartesian 
position versus time

>> pbvs.plot_p();
>> pbvs.plot_vel();
>> pbvs.plot_camera();

which are shown in Fig. 15.5. We see that the feature points have followed a curved 
path in the image, and that the camera’s translation and orientation have converged 
smoothly on the desired values.

15.2  
l
Image-Based Visual  Servoing

IBVS differs fundamentally from PBVS by not estimating the relative pose of the goal. 
The relative pose is implicit in the values of the image features. Figure 15.6 shows two 
views of a square goal object. The view from the initial camera pose is shown in red 
and it is clear that the camera is viewing the goal obliquely. The desired view is shown 
in blue where the camera is further from the goal and its optical  axis is normal to the 
plane of the goal – a  fronto-parallel  view.

The control problem can be expressed in terms of image coordinates. The task is to 
move the feature points indicated by �-markers to the points indicated by �-markers. 
The points may, but do not have to, follow the straight line paths indicated by the ar-
rows. Moving the feature points in the image implicitly changes the camera pose – we 
have changed the problem from pose  estimation to control of points in the image.

Fig. 15.6.
Two views of a square goal

object. The blue shape is the de-
sired view, and the red shape is 

the initial view

15.2  ·  Image-Based Visual Servoing



542 Chapter 15  ·  Vision-Based Control

15.2.1  
l

Camera and Image Motion

Consider the default camera

>> cam = CentralCamera('default'); 

and a world point at

>> P = [1 1 5]';

which has image coordinates
>> p0 = cam.project( P )
p0 =
   672
   672  

Now if we displace the camera slightly in the x-direction the pixel coordinates will become
>> px = cam.project( P, 'pose', SE3(0.1,0,0) )
px =
   656
   672   

Using the camera coordinate conventions of Fig. 11.5, the camera has moved to the 
right so the image point has moved to the left. The sensitivity of image motion to 
 camera motion is

>> ( px - p0 ) / 0.1
ans =
  -160
     0

which is an approximation to the derivative ∂p/∂x. It shows that 1 m of camera mo-
tion would lead to −160 pixel of feature motion in the u-direction. We can repeat this 
for z-axis translation

>> ( cam.project( P, 'pose', SE3(0, 0, 0.1) ) - p0 ) / 0.1
ans =
   32.6531
   32.6531  

which shows equal motion in the u- and v-directions. For x-axis rotation
>> ( cam.project( P, 'pose', SE3.Rx(0.1) ) - p0 ) / 0.1
ans =
   40.9626
  851.8791  

the image motion is predominantly in the v-direction. It is clear that camera motion along 
and about the different  degrees of freedom in SE(3) causes quite different motion of im-
age points. Earlier, in Eq. 11.10, we expressed   perspective projection in functional form

and its derivative with respect to time is

where ν = (vx, vy, vz, ω x, ω y, ω z) ∈R6 is the velocity of the  camera, the  spatial veloc-
ity, which we introduced in Sect. 3.1. Jp is a Jacobian-like object, but because we have 
taken the derivative with respect to a pose ξ ∈ SE(3) rather than a vector it is tech-
nically called an  interaction  matrix. However in the visual servoing world it is more 
commonly called an  image  Jacobian or a  feature sensitivity  matrix.

Consider a camera moving with a body velocity ν = (v, ω) in the world frame and 
observing a world point P with camera relative coordinates P = (X, Y, Z). The veloc-
ity of the point relative to the camera frame is
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 (15.1)

which we can write in scalar form as

 (15.2)

The  perspective projection Eq. 11.2 for normalized  image-plane coordinates is

and the temporal derivative, using the quotient rule, is

Substituting Eq. 15.2, X = xZ and Y = yZ we can write this in matrix form

 (15.3)

which relates  camera spatial velocity to feature velocity in  normalized image coordinates.
The normalized image-plane  coordinates are related to the pixel coordinates by Eq. 11.7

which we rearrange as

 (15.4)

where –u = u − u0 and –v = v − v0 are the pixel coordinates relative to the  principal 
point. The temporal derivative is

 (15.5)

and substituting Eq. 15.4 and Eq. 15.5 into Eq. 15.3 leads to

15.2  ·  Image-Based Visual Servoing
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and for the typical case where ρu = ρv = ρ we can express the focal length in pixels 
f ′= f/ρ and write

 (15.6)

in terms of pixel coordinates with respect to the principal point. We can write this in 
concise matrix form as

 (15.7)

where Jp is the 2 × 6 image  Jacobian matrix for a point feature at coordinate p � and 
camera distance Z.

The Toolbox  CentralCamera class provides the method  visjac_p to compute 
the  image Jacobian and for the example above it is

>> J = cam.visjac_p([672; 672], 5)
J =
  -160     0    32    32  -832   160
     0  -160    32   832   -32  -160  

where the fi rst argument is the pixel coordinate of the point of interest, and the second 
argument is the depth of the point. The approximate values computed on page 542 ap-
pear as columns one, three and four respectively. Image Jacobians can also be derived 
for line and  circle features and these are discussed in Sect. 15.3.

For a given  camera velocity, the velocity of the point is a function of the point’s 
coordinate, its depth and the camera parameters. Each column of the Jacobian indi-
cates the velocity of an image feature point caused by one unit of the corresponding 
component of the velocity vector. The  fl owfi eld method of the CentralCamera 
class shows the image-plane velocity for a grid of world points projected to the image 
plane for a particular camera velocity. For camera translational velocity in the x-di-
rection the  fl ow fi eld is

>> cam.fl owfi eld( [1 0 0 0 0 0] ); 

which is shown in Fig. 15.7a. As expected, moving the camera to the right causes all 
the features points to move to the left. The motion of points on the image plane is 
known as  optical  fl ow and can be computed from image sequences as we showed in 
Sect. 14.7.4. Equation 15.6 is often referred to as the optical  fl ow  equation.

For translation in the z-direction

>> cam.fl owfi eld( [0 0 1 0 0 0] ); 

the points radiate outward from the  principal point – the Star Trek warp effect – as 
shown in Fig. 15.7e. Rotation about the z-axis is

>> cam.fl owfi eld( [0 0 0 0 0 1] ); 

causes the points to rotate about the principal point as shown in Fig. 15.7f.
Rotational motion about the y-axis is

>> cam.fl owfi eld( [0 0 0 0 1 0] ); 

is shown in Fig. 15.7b and is very similar to the case of x-axis translation, with some 
small curvature for points far from the principal point. This similarity is because the 
fi rst and fi fth column of the image Jacobian are approximately equal in this case. For 

This is commonly written in terms of u 
and v rather than –u and –v but we use the 
overbar  notation to emphasize that the 
coordinates are with respect to the prin-
cipal point, not the image origin which is 
typically in the top-left corner.
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Fig. 15.7.
Image-plane velocity vectors for 
canonic camera velocities where 

all corresponding world points 
lie in a fronto-parallel plane.
a x-axis translation; b y-axis 

rotation, f = 8 mm; c y-axis ro-
tation, f = 20 mm; d y-axis rota-
tion, f = 4 mm; e z-axis transla-
tion; f z-axis rotation. Note that 
the fl ow vectors are normalized 

– they are shown with correct 
relative scale within each plot, 

but not between plots

a point that projects to the center of the image, the principal point, and at a depth of 
1 m the visual  Jacobian is

>> cam.visjac_p(cam.pp', 1)
ans =
 -800.0000         0         0         0 -800.0000         0
         0 -800.0000         0  800.0000         0         0 

and we see that columns one and fi ve are exactly equal. This implies that translation 
in the x-direction causes the same image motion as rotation about the y-axis. You can 

15.2  ·  Image-Based Visual Servoing
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easily demonstrate this equivalence by watching how the world moves if you translate 
your head to the right or rotate your head to the right – in both cases the world ap-
pears to move to the left. As the focal length increases column fi ve

approaches a scalar multiple of column one.
We can easily demonstrate this by increasing the focal length to f = 20 mm (the 

default focal length is 8 mm) and the fl ow fi eld

>> cam.f = 20e-3;
>> cam.fl owfi eld( [0 0 0 0 1 0] );  

shown in Fig. 15.7c is almost identical to that of Fig. 15.7a. Conversely, for small 
focal lengths (wide-angle  cameras) the image motion due to these camera motions 
will be more dissimilar

>> cam.f = 4e-3;
>> cam.fl owfi eld( [0 0 0 0 1 0] );  

and as shown in Fig. 15.7d the curvature is much more pronounced. The same ap-
plies for columns two and four except for a difference of sign – there is an equiva-
lence between translation in the y-direction and rotation about the x-axis.�

The Jacobian matrix of Eq. 15.6 has some interesting properties. It does not 
depend at all on the world coordinates X or Y, only on the image-plane coordi-
nates (u, v). However the fi rst three columns depend on the point’s depth Z and this 
refl ects the fact that for a translating camera the image-plane velocity is inversely 
proportional to depth. You can easily demonstrate this to yourself – translate your 
head sideways and observe that near objects move more in your fi eld of  view than 
distant objects. However, if you rotate your head all objects, near and far, move 
equally in your fi eld of view.

The matrix has a rank of two,� and therefore has a  null space of dimension four. 
The null space comprises a set of   spatial  velocity vectors that individually, or in any 
linear combination, cause no motion in the image. Consider the simple case of a 
world point lying on the optical axis which projects to the principal point

>> J = cam.visjac_p(cam.pp', 1);  

The null space of the Jacobian is

>> null(J)
ans =
         0         0   -0.7071         0
         0    0.7071         0         0
    1.0000         0         0         0
         0    0.7071         0         0
         0         0    0.7071         0
         0         0         0    1.0000

The fi rst column indicates that motion in the z-direction, along the ray toward the 
point, results in no motion in the image. Nor does rotation about the z-axis, as indi-
cated by column four. Columns two and three are more complex, combining rota-
tion and translation. Essentially these exploit the image motion ambiguity mentioned 
above. Since x-axis translation causes the same image motion as y-axis rotation, col-
umn three indicates that if one is positive and the other negative the resulting image 
motion will be zero – that is translating left and rotating to the right.

Our visual system uses additional in-
formation from sensors to help resolve 
this ambiguity –  proprioception from 
muscles in our body as well as motion 
estimates from the inertial sensors in our 
 vestibular  system.

The rank cannot be less than 2, even if 
Z → ∞.
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We can consider the motion of two points by stacking their Jacobians

to give a 4 × 6 matrix which will have a null space with two columns. One of these  cam-
era motions corresponds to rotation around a line joining the two points.

For three points

 (15.8)

the matrix will be full rank, nonsingular, so long as the points are not coincident or 
collinear.

15.2.2 
l

Controlling Feature Motion

So far we have shown how points move in the image plane as a consequence of camera 
motion. As is often the case, it is the inverse problem that is more useful – what cam-
era motion is needed in order to move the image features at a desired velocity?

For the case of three points {(ui, vi), i = 1�3} and corresponding velocities {(Éi, Êi)} 
we can invert Eq. 15.8

 (15.9)

and solve for the required  camera velocity.
Given feature velocity we can compute the required camera motion, but how do 

we determine the feature velocity? The simplest strategy is to use a simple linear con-
troller

 (15.10)

that drives the features toward their desired values p∗ on the image plane. Combined 
with Eq. 15.9 we write

That’s it! This controller will drive the camera so that the feature points move to-
ward the desired position in the image. It is important to note that nowhere have we 
required the pose of the camera or of the object� – everything has been computed in 
terms of what can be measured on the image plane.

We do require the depth Z of the points 
but we will come to that shortly.

15.2  ·  Image-Based Visual Servoing



548 Chapter 15  ·  Vision-Based Control

For the general case where N > 3 points we can stack the Jacobians for all features 
and solve for  camera motion using the  pseudo-inverse�

 (15.11)

Note that it is possible to specify a set of feature point velocities which are incon-
sistent, that is, there is no possible camera motion that will result in the required im-
age motion. In such a case the pseudo-inverse will fi nd a solution that minimizes the 
norm of the feature velocity error.

The Jacobian is a fi rst-order approximation of the relationship between camera mo-
tion and image-plane motion. Faster convergence is achieved by using a second-order 
approximation and it has been shown that this can be obtained very simply

 (15.12)

by taking the mean of the pseudo inverse of the image Jacobians at the current and 
desired states.

For N ≥ 3 the matrix can be poorly conditioned if the points are nearly coincident 
or collinear. In practice this means that some camera motions will cause very small 
image motions, that is, the  motion has low   perceptibility. There is strong similarity 
with the concept of  manipulability that we discussed in Sect. 8.2.2 and we take a similar 
approach in formalizing it. Consider a camera spatial velocity of unit magnitude

and from Eq. 15.7 we can write the camera velocity in terms of the  pseudo-inverse

where J ∈R2N×6 is the Jacobian stack and the point velocities are ¹ ∈R2N. Substituting 
yields

which is the  equation of an ellipsoid in the point velocity space. The eigenvectors of JJT 
defi ne the principal axes of the ellipsoid and the singular values of J are the radii. The 
ratio of the maximum to minimum radius is given by the  condition number of JJT and 
indicates the anisotropy of the feature motion. A high value indicates that some of the 
points have low velocity in response to some camera motions. An alternative to stack-
ing all the point feature  Jacobians is to select just three that, when stacked, result in 
the best conditioned square matrix which can then be inverted.

Using the Toolbox we start by defi ning a camera

>> cam = CentralCamera('default'); 

The goal comprises four points that form a square of side length 0.5 m that lies in the 
xy-plane and is centered at (0, 0, 3)

>> P = mkgrid( 2, 0.5, 'pose', SE3(0,0,3) );  

Note that papers based on the task 
function approach such as Espiau et al. 
(1992) write this as actual position mi-
nus demanded position and write −λ in 
Eq. 15.11 to ensure negative feedback.
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and we assume that this goal pose is unknown to the control system. The desired po-
sition of the goal features on the image plane are a 400 × 400 square centered on the 
 principal point

>> pd = bsxfun(@plus, 200*[-1 -1 1 1; -1 1 1 -1], cam.pp'); 

which implicitly has the square goal fronto-parallel to the camera.
The camera is at some pose ξC ∼ T_C so the image-plane projections of the world 

points are

>> p = cam.plot(P, 'pose', T_C);  

where p and pd are each 2 × 4 matrices and have one column per point. We compute 
the image-plane error

>> e = pd - p;

and the stacked image  Jacobian

>> J = cam.visjac_p( p, 1 );

is an 8 × 6 matrix in this case since p contains four points. The Jacobian does require 
the point depth which we do not know, so for now we will just choose a constant value�. 
This is an important topic that we will address in Sect. 15.2.3.

The control  law determines the required translational and angular velocity of the 
camera

>> v = lambda * pinv(J) * e(:); 

where lambda is the gain, a positive number, and we take the  pseudo-inverse of the 
nonsquare Jacobian to implement Eq. 15.11. The resulting velocity is expressed in the 
camera coordinate frame, and integrating it over a unit time step results in a spatial 
displacement of the same magnitude. The camera pose is updated by

where ∆−1(·) is described in Sect. 3.1.4. Using the Toolbox this is implemented as

>> T_C = T_C .* delta2tr(v);  

where we ensure that the transformation remains a proper   homogeneous transforma-
tion by using the .* operator.

For this example we choose the initial pose of the camera in world coordinates as

>> T_C0 = SE3(1,1,-3)*SE3.Rz(0.6);  

Similar to the PBVS example we create an instance of the  IBVS class

>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd);

which is a subclass of the  VisualServo class and implements the controller out-
lined above. The object constructor takes a  CentralCamera object as its argu-
ment, and drives this camera to achieve the desired pose relative to the goal. The 
option 'pose0' specifi es the initial pose of the camera and 'pstar' specifi es the 
desired image coordinates of the features. Many additional options can be passed 
to this class constructor. The display method shows the coordinates of the world 
points, the initial absolute pose, and the desired image-plane feature coordinates. 
The simulation is run by

>> ibvs.run();

which repeatedly calls the  step method that simulates motion for a single time step. 
The simulation animates the image plane of the camera as well as a 3-dimensional vi-
sualization of the camera and the world points.

Here we provide a single value which 
is taken as the depth of all the points. 
Alternatively we could provide a vector 
to specify the depth of each point indi-
vidually.

15.2  ·  Image-Based Visual Servoing
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The simulation results are stored within the object for later analysis. We can plot 
the path of the goal features on the image plane, the Cartesian velocity versus time or 
Cartesian position versus time

>> ibvs.plot_p();
>> ibvs.plot_vel();
>> ibvs.plot_camera();

which are shown in Fig. 15.8. We see that the feature points have followed an almost 
straight-line path in the image, and the Cartesian pose has changed smoothly toward 
the fi nal value. The  condition number of the image Jacobian

>> ibvs.plot_jcond();

decreases over the motion indicating that the Jacobian is becoming better conditioned, 
and this is a consequence of the features moving further apart.

How is p∗ determined? The image points can be found by demonstration, by mov-
ing the camera to the desired pose and recording the observed image coordinates. 
Alternatively, if the camera calibration parameters and the goal geometry are known 
the desired image coordinates can be computed for any specifi ed goal pose. Note that 
this calculation, world point point projection, is computationally cheap and performed 
only once before visual servoing commences.

The IBVS system can also be expressed in terms of a Simulink model

>>  sl_ibvs

which is shown in Fig. 15.9. The simulation is run by

>> r = sim('sl_ibvs')

Fig. 15.8. Results of IBVS simu-
lation, created by IBVS. a Image-
plane feature motion, � is the ini-
tial feature position and � is the 
desired position b spatial velocity 
components; c camera pose; d im-
age Jacobian condition number



551

and the camera pose, image-plane feature error and  camera velocity are animated. 
Scope blocks also plot the camera velocity and feature error against time. The initial 
pose of the camera is set by a parameter of the camera pose block, and the world 
points are parameters of a constant block. The CentralCamera object is a param-
eter to both the camera and  visual Jacobian blocks.

The signals sent to the output ports are stored in the simulation output object r. 
For example the camera velocity on output port 2

>> t = r.fi nd('tout');
>> v = r.fi nd('yout').signals(2).values;
>> about(v)
v [double] : 501x6 (24048 bytes) 

has one row for every simulation time step, and the columns are the camera spatial 
velocity components. We can plot camera velocity against time

>> plot(t, v)

The image-plane coordinates on output port 1 can also be retrieved and plotted
>> p = r.fi nd('yout').signals(1).values;
>> about(p)
p [double] : 2x4x501 (32.1 kB) 
>> plot2(p) 

15.2.3 
l
Estimating  Feature Depth

Computing the  image Jacobian requires knowledge of the camera intrinsics, the prin-
cipal point and focal length, but in practice it is quite tolerant to errors in these. The 
Jacobian also requires knowledge of Zi, the distance to, or the depth of, each point. In 
the simulations just discussed we have assumed that depth is known – this is easy in 
simulation but not so in reality. Fortunately, in practice we fi nd that IBVS is remark-
ably tolerant to errors in Z.

Fig. 15.9. The Simulink model
 sl_ibvs drives the feature points 
to the desired positions on the im-
age plane. User adjustable param-
eters are in the red blocks

15.2  ·  Image-Based Visual Servoing
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A number of approaches have been proposed to deal with the problem of unknown 
depth. The simplest is to just assume a constant value for the depth which is quite rea-
sonable if the required  camera motion is approximately in a plane parallel to the plane 
of the object points. To evaluate the performance of different constant estimates of 
point depth, we can compare the effect of choosing Z = 1 and Z = 10 for the example 
above where the true depth is Z = 3

>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd 'depth', 1)
>> ibvs.run(50)
>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd 'depth', 10)
>> ibvs.run(50)

and the results are plotted in Fig. 15.10. We see that the image-plane paths are no 
longer straight, because the Jacobian is now a poor approximation of the relation-
ship between the camera motion and image feature motion. We also see that for 
Z = 1 the convergence is much slower than for the Z = 10 case. The Jacobian for 
Z = 1 overestimates the optical   fl ow, so the inverse Jacobian underestimates the 
required  camera velocity. Nevertheless, for quite signifi cant errors, IBVS has con-
verged. For the Z = 10 case the camera displacement at each timestep is large lead-
ing to a very jagged path.

A second approach is to use standard computer vision techniques to estimate the 
value for Z. If the camera intrinsic parameters were known we could use  sparse  ste-
reo techniques from consecutive camera positions to estimate the depth of each fea-
ture point.

Fig. 15.10. Results of IBVS with 
different constant estimates of 
point depth: a, b Image and cam-
era motion for Z = 1; c, d Image 
and camera motion for Z = 10
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A third approach is to estimate the value of Z online using measurements of robot 
and image motion. We can create a simple depth estimator by rearranging Eq. 15.6 
into estimation form

which we rearrange as

 (15.13)

The right-hand side is the observed optical   fl ow from which the expected optical 
fl ow due to rotation of the camera is subtracted – a process referred to as  derotating 
optical fl ow. The remaining optical fl ow, after subtraction, is only due to translation. 
Writing Eq. 15.13 in compact form

 (15.14)

we have a simple linear equation with one unknown parameter θ = 1 / Z which can 
be solved using least-squares.

In our example we can enable this by
>> ibvs = IBVS(cam, 'pose0', T_C0, 'pstar', pd 'depthest')
>> ibvs.run()
>> ibvs.plot_z()
>> ibvs.plot_p()

and the result is shown in Fig. 15.11. Figure 15.11b shows the estimated and true 
point depth versus time. The estimate depth was initially zero, a poor choice, but it 
has risen rapidly and then tracked the actual goal depth as the controller converges. 
Figure 15.11a shows the feature motion, and we see that the features initially move in 
the wrong direction because the error in depth has led to an image Jacobian that pre-
dicts poorly how feature points will move.

Fig. 15.11. IBVS with online depth 
estimator. a Feature paths; b com-
parison of estimated (dashed) and
true depth (solid) for all four points

15.2  ·  Image-Based Visual Servoing
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15.2.4 
l
Performance Issues

The control  law for PBVS is defi ned in terms of the 3-dimensional workspace so there 
is no mechanism by which the motion of the image features is directly regulated. For 
the PBVS example shown in Fig. 15.5 the feature points followed a curved path on the 
image plane, and therefore it is possible that they could leave the camera’s fi eld of 
view. For a different initial camera pose

>> pbvs.T0 = SE3(-2.1, 0, -3)*SE3.Rz(5*pi/4);
>> pbvs.run()  

the result is shown in Fig. 15.12a and we see that two of the points move outside the 
image which would cause the PBVS control to fail.�

By contrast the IBVS control for the same initial pose
>> ibvs = IBVS(cam, 'pose0', pbvs.T0, 'pstar', pd, 'lambda',	
 0.002, 'niter', Inf, 'eterm', 0.5)
>> ibvs.run()
>> ibvs.plot_p();

gives the feature trajectories shown in Fig. 15.12b but there is no direct control over 
the  Cartesian motion of the camera. This can sometimes result in surprising motion, 
particularly when the goal is rotated about the z-axis

>> ibvs = IBVS(cam, 'pose0', SE3(0,0, -1)*SE3.Rz(1), 'pstar', pd);
>> ibvs.run()
>> ibvs.plot_camera  

which is shown in Fig. 15.13a,b. We see that the camera has performed an unnecessary 
translation along the z-axis – away from the goal and back again. This phenomenon 
is termed  camera retreat. The resulting motion is not time optimal and can require 
large and possibly unachievable camera motion. An extreme example arises for a pure 
rotation about the optical  axis by π  rad

>> ibvs = IBVS(cam, 'pose0',  SE3(0,0, -1)*SE3.Rz(pi), ...
    'pstar', pStar, 'niter', 10);
>> ibvs.run()
>> ibvs.plot_camera  

which is shown in Fig. 15.13c,d. The feature points are, as usual, moving in a straight 
line toward their desired values, but for this problem the paths all pass through the 
principal point which is a singularity and where IBVS will fail. The only way the goal 
feature points can be at the principal point is if the camera is at negative infi nity, and 
that is where it is headed!

Fig. 15.12. Image-plane feature 
paths for a PBVS and b IBVS

In this simulation the image plane co-
ordinates are still computed and used, 
even though they fall outside the image 
bounds.
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A fi nal consideration is that the image Jacobian is a linearization of a highly non-
linear system. If the motion at each time step is large then the linearization is not 
valid and the features will follow curved rather than linear paths in the image, as 
we saw in Fig. 15.10. This can occur if the desired feature positions are a long way 
from the initial positions and/or the gain λ is too high. One solution is to limit the 
maximum norm of the commanded velocity

The feature paths do not have to be straight lines and nor do the features have to 
move with asymptotic velocity – we have used these only for simplicity. Using the tra-
jectory  planning methods of Sect. 3.3 the features could be made to follow any arbi-
trary trajectory in the image.

In summary, IBVS is a remarkably robust approach to vision-based control. We 
have seen that it is quite tolerant to errors in the depth of points. We have also shown 
that it can produce less than optimal Cartesian paths for the case of large rotations about 
the optical axis. We will discuss remedies to these problems in the next chapter.

Fig. 15.13. IBVS for pure goal rota-
tion about the optical axis. a, b for 
rotation of 1 rad; c, d for rotation 
of π rad

15.2  ·  Image-Based Visual Servoing
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15.3 
l
Using Other  Image  Features

So far we have considered only point features. In a real system we would use the feature ex-
traction techniques discussed in Chap. 13 and the points would be the centroids of distinct 
regions, or Harris or SURF corner features. The points would then be used for pose  estimation 
in a PBVS scheme, or directly in an IBVS scheme. For both PBVS or IBVS we need to solve 
the  correspondence  problem, that is, for each observed feature we must determine which 
desired image-plane coordinate it corresponds to. IBVS can also be formulated to work with 
other image features such as lines, as found by the Hough transform, or the  shape of an  ellipse.

15.3.1 
l
Line  Features

For a line the  Jacobian is written in terms of the (ρ , θ ) parameterization that we used for 
the  Hough transform in Sect. 13.2. The rate of change of the line parameters is related to 
camera velocity by

and the Jacobian is

where aX + bY + cZ + d = 0 is the equation of the plane that contains the line and 
λθ = (acosθ − bsinθ )/d and λρ = −(aρsinθ + bρcosθ + c)/d. The Jacobian describes 
how the line parameters change as a function of  camera velocity. Just as the point-fea-
ture Jacobian required some partial 3-dimensional knowledge (the point depth Z) the 
line-feature Jacobian requires the  equation of the plane that contains the line. There 
are an infi nite number of planes that contain the line and we choose one for which 
d ≠ 0. Like a point feature, a line provides two rows of the Jacobian so we require a 
minimum of three lines in order to have a Jacobian of full rank.�

We illustrate this with an example comprising three lines that all lie in the plane 
Z = 3, and we can conveniently construct three points in that plane using the circle 
function with just three boundary points

>> P = circle([0 0 3], 0.5, 'n', 3); 

and use the familiar CentralCamera class methods to project these to the image. For 
each pair of points we compute the equations of the line

Interestingly a line feature provides two
rows of the stacked Jacobian, yet two 
points which define a line segment would 
provide four rows.

Fig. 15.14.
IBVS using line features. The 
image plane showing the three 
current lines (solid) and desired 
(dashed)
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The simulation is run in familiar fashion

>> ibvs = IBVS_l(cam, 'example');
>> ibvs.run()

and a snapshot of results is shown in Fig. 15.14. Note that we need to establish  corre-
spondence between the observed and desired lines.

15.3.2   
l

Circle  Features

A circle in the world will be projected, in the general case, to an  ellipse in the image 
which is described by�

 (15.15)

where Ei are parameters of the  ellipse. The rate of change of the  ellipse coeffi cients is 
related to  camera velocity by

and the Jacobian is

where ρ = (α, β, γ ) defi nes a plane in world coordinates aX + bY + cZ + d = 0 in 
which the ellipse lies and α = −a / d, β = −b / d and γ = −c / d. Just as was the case 
for point and line feature  Jacobians we need to provide some depth information about 
the goal. The Jacobian has a maximum rank of fi ve, but this drops to three when the 
projection is of a circle centered in the image plane, and a rank of two if the circle has 
zero radius.

An advantage of the  ellipse feature is that the ellipse can be computed from the set 
of all boundary points without needing to solve the  correspondence  problem. The el-
lipse feature can also be computed from the moments of all the points within the el-
lipse boundary. We illustrate this with an example of a circle comprising ten points 
around its circumference

>> P = circle([0 0 3], 0.5, 'n', 10); 

and the CentralCamera class projects these to the image plane.

>> p = cam.project(P, 'pose', Tc);  

where Tc is the current camera pose and we convert to  normalized image coordinates

>> pn = cam.normalized( p);  

Ellipse are described in more detail in 
Sect. C.1.4.

15.3  ·  Using Other Image Features
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The parameters of an  ellipse are calculated using the methods of Sect. C.1.4.3
>> x = pn(1,:); y = pn(2,:); 
>> a = [y.^2; -2*x.*y; 2*x; 2*y; ones(1,numcols(x))]';
>> b = -(x.^2)';
>> E = a\b;  

which returns a 5-vector of ellipse parameters. The image  Jacobian for an ellipse fea-
ture is computed by a method of the CentralCamera class

>> J = cam.visjac_e(E, plane);  

where the plane containing the circle must also be specifi ed. For this example the plane 
is Z = 3 so the plane parameters are (0, 0, 1, −3).

The Jacobian is 5 × 6 and has a maximum rank of only 5 so we cannot uniquely 
solve for the  camera velocity. We have at least two options. Firstly, if our fi nal view is 
of a circle then we may not be concerned about rotation around the center of the cir-
cle, and in this case we can delete the sixth column of the Jacobian to make it square 
and set ω z to zero. Secondly, and the approach taken in this example, is to combine 
the features for the ellipse and a single point�

and the stacked Jacobian is now 7 × 6 and we can solve for camera velocity. As for the 
previous IBVS examples the desired velocity is proportional to the difference between 
the current and desired feature values

Fig. 15.15. IBVS using ellipse fea-
ture. a The image plane showing 
the current points (solid) and de-
manded (�); b a world view show-
ing the points and the camera

Here we arbitrarily choose the first point, 
any one will do, but we need to establish 
correspondence in every frame.
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The simulation is run in the now familiar fashion

>> ibvs = IBVS_e(cam, 'example');
>> ibvs.run()

and a snapshot of results is shown in Fig. 15.15.

15.3.3 
l
Photometric Features

When  servoing using point or line features we have to determine the error between 
current and desired features, and this requires determining  correspondence between 
features in the current and the desired images. Correspondence is a complex task 
which can be complicated by occlusions or features leaving the camera’s fi eld of  view. 
In photometric visual  servoing we work directly with the pixel values and no corre-
spondences are required.

The image feature is a vector that contains all the pixels in the image – current or 
desired – stacked into a very tall vector of height N = W × H. The rate of change of 
the pixel values is related to the  camera velocity by

where the Jacobian is

and where pi is the image-plane coordinate of the pixel corresponding to the ith element 
of the feature vector, ∇I (p) = (∇u (p), ∇v (p)) are the image  gradients in the u- and
v-directions at that pixel, and Jp(·) is the image point-feature  Jacobian computed at 
that pixel.

The Jacobians, as always, are also a function of the point depth. If we are servoing 
with respect to a planar image then the depth might be approximately known and as 
we have remarked previously IBVS is quite robust to errors in point depth. If we are 
servoing with respect to a complex 3-dimensional scene then depth at each pixel will 
be very diffi cult to determine and we again rely on the inherent robustness of IBVS.

In order to converge the actual and destination images must have signifi cant over-
lap. The derivation makes assumptions that the scene has Lambertian refl ectance, no 
specular highlights, and that lighting magnitude and direction does not change over 
time. In practice photometric visual servoing works well even if these assumptions are 
not met or if the images are partially occluded during the camera motion.

15.3  ·  Using Other Image Features
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15.4 
l
Wrapping Up

In this chapter we have learned about the fundamentals of vision-based robot control, 
and the fundamental techniques developed over two decades up to the mid 1990s. 
There are two distinct confi gurations. The camera can be attached to the robot observ-
ing the goal (eye-in-hand) or fi xed in the world observing both robot and goal. Another 
form of distinction is the control structure: Position-Based Visual Servo (PBVS) and 
Image-Based Visual Servo (IBVS). The former involves pose estimation based on a cali-
brated camera and a geometric model of the goal object, while the latter performs the 
control directly in the image plane. Each approach has certain advantages and disad-
vantages. PBVS performs effi cient straight-line Cartesian camera  motion in the world 
but may cause image features to leave the image plane. IBVS always keeps features in 
the image plane but may result in trajectories that exceed the reach of the robot, par-
ticularly if it requires a large amount of rotation about the camera’s optical axis. IBVS 
also requires a touch of 3-dimensional information (the depth of the feature points) 
but is quite robust to errors in depth and it is quite feasible to estimate the depth as 
the robot moves. IBVS can be formulated to work not only with point features, but 
also with lines, ellipses and pixel values. An arbitrary number of features (which can 
be any mix of points, lines or ellipses) from an arbitrary number of cameras can be 
combined simply by stacking the relevant Jacobian matrices.

So far in our simulations we have determined the required camera velocity and 
moved the camera accordingly, without consideration of the mechanism to move it. 
In the next chapter we consider cameras attached to arm-type robots, mobile ground 
robots and fl ying robots.

Further Reading

The tutorial paper by Hutchinson et al. (1996) was the fi rst comprehensive articulation 
and taxonomy of the fi eld, and Chaumette and Hutchinson (2006) provide a more re-
cent tutorial introduction. Chapters on visual servoing are included in Siciliano et al. 
(2016, § 34) and Spong et al. (2006, § 12).

It is well known that IBVS is very tolerant to errors in depth and its effect on con-
trol performance is examined in detail in Marey and Chaumette (2008). Feddema 
and Mitchell (1989) performed a partial 3D reconstruction to determine point depth 
based on observed features and known goal geometry. Papanikolopoulos and Khosla 
(1993) described adaptive control techniques to estimate depth, as used in this chap-
ter. Hosoda and Asada (1994), Jägersand et al. (1996) and Piepmeier et al. (1999) have 
shown how the image Jacobian matrix itself can be estimated online from measure-
ments of robot and image motion. The second-order visual servoing technique was 
introduced by Malis (2004).

The most common image Jacobian is based on the motion of points in the image, 
but it can also be derived for the parameters of lines in the image plane (Chaumette 
1990; Espiau et al. 1992) and the parameters of an ellipse in the image plane (Espiau 
et al. 1992). Moments of binary regions have been proposed for visual servoing of pla-
nar scenes (Chaumette 2004; Tahri and Chaumette 2005). More recently the ability to 
servo directly from image pixel values, without segmentation or feature extraction, 
has been described by Collewet et al. (2008) and subsequent papers, and more recently 
by Bakthavatchalam et al. (2015).

The literature on PBVS is much smaller, but the paper by Westmore and Wilson 
(1991) is a good introduction. They use an EKF to implicitly perform pose estimation 
– the goal pose is the fi lter state and the innovation between predicted and observed 
feature coordinates updates the goal pose state. Hashimoto et al. (1991) present simu-
lations to compare position-based and image-based approaches.
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History and background. Visual servoing has a very long history – the earliest reference 
is by Shirai and Inoue (1973) who describe how a visual feedback loop can be used to 
correct the position of a robot to increase task accuracy. They demonstrated a system 
with a servo cycle time of 10 s, and this highlights a harsh reality of the fi eld which 
has been the problem of real-time feature extraction. Until the late 1990s this required 
bulky and expensive special-purpose hardware such as that shown in Fig. 15.16. Other 
signifi cant early work on industrial applications occurred at SRI International during 
the late 1970s (Hill and Park 1979; Makhlin 1985).

In the 1980s Weiss et al. (1987) introduced the classifi cation of visual servo structures 
as either position-based or image-based. They also introduced a distinction between 
visual servo and dynamic look and move, the former uses only visual feedback whereas 
the latter uses joint feedback and visual feedback. This latter distinction is no longer 
in common usage and most visual servo systems today make use of joint-position and 
visual feedback, commonly encoder-based joint velocity loops as discussed in Chap. 9 
with an outer vision-based position loop. Weiss (1984) applied adaptive control tech-
niques for IBVS of a robot arm without joint-level feedback, but the results were limited 
to low degree of freedom arms due to the low-sample rate vision processing available at 
that time. Others have looked at incorporating the manipulator dynamics Eq. 9.8 into 
controllers that command motor torque directly (Kelly 1996; Kelly et al. 2002a,b) but 
all still require joint angles in order to evaluate the manipulator Jacobian, and the joint 
rates to provide damping. Feddema (Feddema and Mitchell 1989; Feddema 1989) used 
closed-loop joint control to overcome problems due to low visual sampling rate and 
demonstrated IBVS for 4-DOF. Chaumette, Rives and Espiau (Chaumette et al. 1991; 
Rives et al. 1989) describe a similar approach using the task function method (Samson 
et al. 1990) and show experimental results for robot positioning using a goal object with 
four features. Feddema et al. (1991) describe an algorithm to select which subset of the 
available features give the best conditioned square Jacobian. Hashimoto et al. (1991) 
have shown that there are advantages in using a larger number of features and using 
a pseudo-inverse to solve for velocity. Control and stability in closed-loop visual con-
trol systems was addressed by several researchers (Corke and Good 1992; Espiau et al. 
1992; Papanikolopoulos et al. 1993) and feedforward predictive, rather than feedback, 
controllers were proposed by Corke (1994) and Corke and Good (1996).

The 1993 book edited by Hashimoto (1993) was the fi rst collection of papers cover-
ing approaches and applications in visual servoing. The 1996 book by Corke (1996b) is 
now out of print but available free online and covers the fundamentals of robotics and 
vision for controlling the dynamics of an image-based visual servoing system. It con-
tains an extensive, but dated, collection of references to visual servoing applications 
including industrial applications, camera control for tracking, high-speed planar mi-
cromanipulator, road vehicle guidance, aircraft refueling, and fruit picking. Another 

Fig. 15.16.
A 19 inch VMEbus rack of hard-

ware image processing cards, 
capable of 10 Mpix s−1 through-

put or 50 Hz framerate for 
512 × 512 images. Used by the 

author circa the early 1990s

15.4  ·  Wrapping Up
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important collection of papers (Kriegman et al. 1998) stems from a 1998 workshop on 
the synergies between control and vision: how vision can be used for control and how 
control can be used for vision. More recent algorithmic developments and application 
are covered in a collection of workshop papers by Chesi and Hashimoto (2010).

Visual servoing has been applied to a diverse range of problems that normally re-
quire human hand-eye skills such as ping-pong (Andersson 1989), juggling (Rizzi and 
Koditschek 1991) and inverted pendulum balancing (Dickmanns and Graefe 1988a; 
Andersen et al. 1993), catching (Sakaguchi et al. 1993; Buttazzo et al. 1993; Bukowski 
et al. 1991; Skofteland and Hirzinger 1991; Skaar et al. 1987; Lin et al. 1989), and con-
trolling a labyrinth game (Andersen et al. 1993).

Exercises

1. Position-based visual servoing
a) Run the PBVS example. Experiment with varying parameters such as the initial 

camera pose, the path fraction λ  and adding pixel noise to the output of the camera.
b) Create a Simulink model for PBVS.
c) Use a different camera model for the pose estimation (slightly different focal 

length or principal point) and observe the effect on fi nal end-effector pose.
d) Implement an EKF based PBVS system as described in Westmore and Wilson 

(1991).
2. Optical fl ow fi elds

a) Plot the optical fl ow fi elds for cameras with different focal lengths.
b) Plot the fl ow fi eld for some composite camera motions such as x- and y-transla-

tion, x- and z-translation, and x-translation and z-rotation.
3. For the case of two points the image Jacobian is 4 × 6 and the null space has two 

columns. What camera motions do they correspond to?
4. Image-based visual servoing

a) Run the IBVS example, either command line or Simulink version. Experiment 
with varying the gain λ . Remember that λ  can be a scalar or a diagonal matrix 
which allows different gain settings for each  degree of freedom.

b) Implement the function to limit the maximum norm of the commanded velocity.
c) Experiment with adding pixel noise to the output of the camera.
d) Experiment with different initial camera poses and desired image-plane coor-

dinates.
e) Experiment with different number of goal points, from three up to ten. For the 

cases where N > 3 compare the performance of the pseudo-inverse with just se-
lecting a subset of three points (fi rst three or random three). Can you design an 
algorithm that chooses a subset of points which results in the stacked Jacobian 
with the best condition number?

f) Create a set of desired image-plane points that form a rectangle rather than a 
square. There is no perspective viewpoint from which a square appears as a rect-
angle (why is this?). What does the IBVS system do?

g) Create a set of desired image-plane points that cannot be reached, for example 
swap two adjacent world or image points. What does the IBVS system do?

h) Use a different camera model for the image Jacobian (slightly different focal 
length or principal point) and observe the effect on fi nal end-effector pose.

i) Implement second-order IBVS using Eq. 15.12.
j) For IBVS we generally force points to move in straight lines but this is just a con-

venience. Use a trajectory generator to move the points from initial to desired 
position with some sideways motion, perhaps a half or full cycle of a sine wave. 
What is the effect on camera Cartesian motion?

k) Implement stereo IBVS. Hint: stack the point feature Jacobians for both cameras 
and determine the desired feature positions on each camera’s image plane.
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5. Derive the image Jacobian for a pan/tilt camera head.
6. When discussing motion perceptibility we used the identity (Jp

+)TJp
+ = (Jp Jp

T)−1. Prove 
this. Hint, use the singular value decomposition J = UΣVT and remember that U and V 
are orthogonal matrices.

7. End-point open-loop visual servo systems have not been discussed in this book. 
Consider a group of goal points on the robot end-effector as well as the those on 
the goal object, both being observed by a single camera (challenging).
a) Create an end-point open-loop PBVS system.
b) Use a different camera model for the pose estimation (slightly different focal 

length or principal point) and observe the effect on fi nal end-effector relative 
pose.

c) Create an end-point open-loop IBVS system.
d) Use a different camera model for the image Jacobian (slightly different focal 

length or principal point) and observe the effect on fi nal end-effector relative 
pose.

8. Run the line-based visual servo example.
9. Ellipse-based visual servo

a) Run the ellipse-based visual servo example.
b) Modify to servo fi ve degrees of camera motion using just the ellipse parameters 

(without the point feature).
c) For an arbitrary shape we can compute its equivalent ellipse which is expressed 

in terms of an inertia matrix and a centroid. Determine the ellipse parameters 
of Eq. 15.15 from the inertia matrix and centroid. Create an ellipse feature visual 
servo to move to a desired view of the arbitrary shape (challenging).

10. Implement photometric visual servoing. Perhaps use the derivative of Gaussian 
kernel to compute the image gradients. Investigate performance as you servo over 
different translations and rotation, vary the assumed depth, and vary the param-
eters of the derivative kernel.

15.4  ·  Wrapping Up
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16 Advanced Visual  Servoing

This chapter builds on the previous one and introduces some advanced vi-
sual servo techniques and applications. Section 16.1 introduces a  hybrid vi-
sual servo method that avoids some of the limitations of the IBVS and PBVS 

schemes described previously.
Wide-angle  cameras such as fi sheye  lenses and catadioptric   camer-

as have signifi cant advantages for visual servoing. Section 16.2 shows 
how IBVS can be reformulated for polar rather than Cartesian image-
plane coordinates. This is directly relevant to fi sheye lenses but also 
gives improved rotational control when using a  perspective  cam-
era. The  unifi ed imaging  model from Sect. 11.4 allows most cameras 

(perspective, fi sheye and panoramic) to be represented by a spherical 
projection model, and Sect. 16.3 shows how IBVS can reformulated for 
spherical cameras.

Section 16.4 presents a number of application examples. These illustrate 
how visual servoing can be used with different types of cameras (perspec-

tive and spherical) and different types of robots (arm-type robots, mobile ground 
robots and fl ying robots). Examples include a 6 degree of freedom robot arm manip-
ulating a camera; a mobile robot moving to a specifi c pose which could be used for 
navigating through a doorway or docking; and a quadrotor moving to, and hovering 
at, a fi xed pose with respect to a goal on the ground.

16.1  
l
XY/Z-Partitioned IBVS

In the last chapter, in Sect. 15.2.4, we encountered the problem of  camera retreat in an 
IBVS system. This phenomenon can be explained intuitively by the fact that our IBVS 
control  law causes feature points to move in straight lines on the image plane, but for a 
rotating camera the points will naturally move along circular arcs. The linear IBVS con-
troller dynamically changes the overall image scale so that motion along an arc appears 
as motion along a straight line. The scale change is achieved by z-axis translation.

Partitioned methods eliminate camera retreat by using IBVS to control some  degrees 
of freedom while using a different controller for the remaining degrees of freedom. 
The  XY/Z hybrid schemes consider the x- and y-axes as one group, and the z-axes as 
another group. The approach is based on a couple of insights. Firstly, and intuitively, 
the  camera retreat problem is a z-axis phenomenon: z-axis rotation leads to unwanted 
z-axis translation. Secondly, from Fig. 15.7, the image-plane motion due to x- and y-axis 
translational and rotation motion are quite similar, whereas the  optical  fl ow due to
z-axis rotation and translation are radically different.

We partition the point feature  optical fl ow of Eq. 15.7 so that

 (16.1)

where νxy = (vx, vy, ωx, ωy), νz = (vz, ωz), and Jxy and Jz are respectively columns {1, 2, 4, 5} 
and {3, 6} of Jp. Since νz will be computed by a different controller we can write Eq. 16.1 as
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 (16.2)

where ¹∗ is the desired feature point velocity as in the traditional IBVS scheme 
Eq. 15.10.

The z-axis velocities vz and ωz are computed directly from two additional image 
features A and θ  shown in Fig. 16.1. The fi rst image feature θ ∈[0, π), is the angle be-
tween the u-axis and the directed line segment joining feature points i and j. For nu-
merical conditioning it is advantageous to select the longest line segment that can be 
constructed from the feature points, and allowing that this may change during the 
motion as the feature point confi guration changes. The desired rotational rate is ob-
tained using a simple proportional control  law

where the operator � indicates modulo-2π subtraction which is implemented by the 
Toolbox function  angdiff. As always with motion on a circle there are two directions 
to move to achieve the goal. If the rotation is limited, for instance by a mechanical stop, 
then the sign of ωz should be chosen so as to avoid motion through that stop.

The second image feature that we use is a function of the area A ∈ R of the reg-
ular polygon whose vertices are the image feature points. The advantages of this 
measure are: it is a scalar; it is rotation invariant� thus decoupling camera rota-
tion from z-axis translation; and it can be cheaply computed. The area of the poly-
gon is just the zeroth-order moment, m00 which can be computed from the verti-
ces using the Toolbox function  mpq_poly(p, 0, 0). The feature for control 
is the square root of area

which has units of length, in pixels. The desired camera z-axis translation rate is ob-
tained using a simple proportional control law

 (16.3)

The features discussed above for z-axis translation and rotation control are simple 
and inexpensive to compute, but work best when the goal’s normal is within ±40° of 
the camera’s optical axis. When the goal plane is not orthogonal to the optical  axis its 
area will appear diminished, due to perspective, which causes the camera to initially 
approach the goal. Perspective will also change the perceived angle of the line segment 
which can cause small, but unnecessary, z-axis rotational motion.

The Simulink® model
>>  sl_partitioned

Fig. 16.1.
Image features for XY / Z par-
titioned IBVS control. As well 
as the coordinates of the four 
points (blue dots), we use the 
polygon area A and the angle
of the longest line segment θ

Rotationally invariant to rotation about 
the z-axis, not the x- and y-axes.
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is shown in Fig. 16.2. The initial pose of the camera is set by a parameter of the pose 
block. The simulation is run by

>> sim( 'sl_partitioned')

and the camera pose, image-plane feature error and camera velocity are animated. 
Scope blocks also plot the  camera velocity and feature error against time.

If points are moving toward the edge of the fi eld of view the simplest way to keep them 
in view is to move the camera away from the scene. We defi ne a repulsive force that acts 
on the camera, pushing it away as a point approaches the boundary of the image plane

where d(p) is the shortest distance to the edge of the image plane from the image point 
coordinate p, and d0 is the width of the image zone in which the repulsive force acts. 
For a W × H image

 (16.4)

Such a repulsion force could be incorporated into the z-axis translation controller

where η is a gain constant with units of damping. The repulsion force is discontinuous 
and may lead to chattering where the feature points oscillate in and out of the repulsive 
force – this can be remedied by introducing smoothing fi lters and velocity limiters.

Fig. 16.2. The Simulink model 
 sl_partitioned is an XY/Z-
partitioned visual servo scheme, 
an extension of the IBVS system 
shown in Fig. 15.9. The initial 
camera pose is set in the camera 
pose block and the desired im-
age-plane points p∗ are set in the 
lower left red block

16.1  ·  XY/Z-Partitioned IBVS
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16.2  
l
IBVS Using Polar Coordinates

In Sect. 15.3 we showed image feature   Jacobians for nonpoint features, but here we 
will show the point feature  Jacobian expressed in terms of a different coordinate sys-
tem. In polar coordinates the image point is written p = (r, φ) where r is the distance 
of the point from the  principal point

 (16.5)

where we recall that 
_
u and 

_
v are the image coordinates with respect to the principal 

point rather than the image origin. The angle from the u-axis to a line joining the prin-
cipal point to the image point is

 (16.6)

The two coordinate representations are related by

 (16.7)

and taking the derivatives with respect to time

and inverting

which we substitute into Eq. 15.6 along with Eq. 16.7 to write

 (16.8)

where the feature  Jacobian is

 (16.9)

This Jacobian is unusual in that it has three constant elements. In the fi rst row 
the zero indicates that radius r is invariant to rotation about the z-axis. In the sec-
ond row the zero indicates that polar angle is invariant to translation along the op-
tical  axis (points move along radial lines), and the negative one indicates that the 
angle of a feature (with respect to the u-axis) decreases with positive camera rota-
tion. As for the Cartesian point features, the translational part of the Jacobian (the 
fi rst 3 columns) are proportional to 1 / Z. Note also that the Jacobian is undefi ned 
for r = 0, that is for a point on the optical axis. The interaction matrix is computed 
by the  visjac_p_polar method of the CentralCamera class.
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The desired feature velocity is a function of feature error

where � is modulo-2π  subtraction for the angular component subtraction for the an-
gular component. The choice of units (pixels and radians) means that |r|� |φ| and 
radius should be normalized

so that r and φ  are of approximately the same order.
An example of IBVS using polar coordinates is implemented by the class

  IBVS_polar. We first create a canonic  camera, that has  normalized image co-
ordinates

>> cam = CentralCamera('default') 
>> T_C0 = SE3(-0.3, 0.2, -2)*SE3.Rz(pi/2);
>> vs = IBVS_polar(cam, 'T0', T_C0, 'verbose')  

and we run run a simulation

>> vs.run()

The animation shows the feature motion in the image, and the camera and world 
points in a world view. The camera motion is quite different compared to the 
Cartesian IBVS scheme introduced in the previous chapter. For the previously 
problematic case of large optical-axis rotation the camera has simply moved to-
ward the goal and rotated. The features have followed straight line paths on the 
rφ -plane. The performance of polar IBVS is the complement of Cartesian IBVS 
– it generates good camera motion for the case of large rotation, but poorer mo-
tion for the case of large translation.

The methods  plot_error,  plot_vel and  plot_camera can be used to show 
data recorded during the simulation. An additional method

>> vs.plot_features()

displays the path of the features in φ r-space and this is shown in Fig. 16.3 along with 
the  camera motion which shows no sign of camera retreat.

Fig. 16.3. IBVS using polar coor-
dinates. a Feature motion in po-
lar φ r-space; b camera motion in 
Cartesian space

16.2  ·  IBVS Using Polar Coordinates
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16.3  
l
IBVS for a Spherical  Camera

In Sect. 11.3 we looked at nonperspective cameras such as the  fi sheye  lens camera and 
the  catadioptric   camera. Given the particular projection equations for any camera we 
can derive an image feature  Jacobian from fi rst principles. However the many dif-
ferent lens and  mirror   shapes leads to many different projection models and image 
Jacobians. In Sect. 11.4 we showed that feature points from any type of camera can 
be projected to a sphere, so we need to derive an image Jacobian for visual servo con-
trol on the sphere.

The image Jacobian for the sphere is derived in a manner similar to the perspec-
tive camera in Sect. 15.2.1. Referring to Fig. 11.21, the world point P is represented by 
the vector P = (X, Y, Z) in the camera frame, and is projected onto the surface of the 
sphere at the point p = (x, y, z) by a ray passing through the center of the sphere

 (16.10)

where R = √⎯
(X

⎯2⎯+⎯
Y
⎯2⎯+⎯

Z
⎯2) is the distance from the camera origin to the world point.

The spherical  surface  constraint x2 + y2 + z2 = 1 means that one of the Cartesian 
coordinates is redundant so we will use a minimal spherical coordinate system com-
prising the angle of  colatitude�

 (16.11)

where r = x̂2g+gy2, and the azimuth angle (or longitude)

 (16.12)

which yields the point feature vector p = (θ , φ).
Taking the derivatives of Eq. 16.11 and Eq. 16.12 with respect to time and substi-

tuting Eq. 15.2 as well as

 (16.13)

we obtain, in matrix form, the spherical  optical  fl ow  equation

 (16.14)

where the image feature  Jacobian is

 (16.15)

There are similarities to the Jacobian derived for polar coordinates in the previous 
section. Firstly, the constant elements fall at the same place, indicating that colatitude 
is invariant to rotation about the optical axis, and that azimuth angle is invariant to 
translation along the optical axis but equal and opposite to camera rotation about the 
optical  axis. As for all image Jacobians the translational submatrix (the fi rst three col-
umns) is a function of point depth 1 / R.

Colatitude is zero at the north pole and 
increases as we move southwards.
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The Jacobian is not defi ned at the north and south poles where sinθ = 0 and azi-
muth also has no meaning at these points. This is a singularity, and as we remarked in 
Sect. 2.2.1.3, in the context of Euler angle representation of orientation, this is a conse-
quence of using a minimal representation. However, in general the benefi ts outweigh 
the costs for this application.

For control purposes we follow the normal procedure of computing one 2 × 6 
Jacobian, Eq. 16.15, for each of N feature points and stacking them to form a 2N × 6 
matrix

 (16.16)

The control  law is

 (16.17)

where ¹∗ is the desired velocity of the features in φθ -space. Typically we choose this 
to be proportional to feature error

 (16.18)

where λ  is a positive gain, p is the current point in φθ -coordinates, and p∗ the de-
sired value. This results in locally linear motion of features within the feature space.� 
� denotes modulo subtraction and returns the smallest angular distance given that 
θ ∈ [0, π] and φ = [−π, π).

An example of IBVS using spherical coordinates (Fig. 16.4) is implemented by the 
class  IBVS_sph. We fi rst create a spherical  camera

>> cam = SphericalCamera() 

and then a spherical IBVS object

>> T_C0 = SE3(0.3, 0.3, -2)*SE3.Rz(0.4);
>> vs = IBVS_sph(cam, 'T0', T_C0, 'verbose')  

Fig. 16.4. IBVS using spherical 
camera and coordinates. a Feature 
motion in θ − φ  space; b four goal 
points projected onto the sphere in 
its initial pose

Note that motion on this plane is in gen-
eral not a great circle on the sphere – 
only motion along lines of longitude and 
the equator are great circles.

16.3  ·  IBVS for a Spherical Camera
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and we run run a simulation

>> vs.run()

The animation shows the feature motion on the φθ -plane and the camera and world 
points in a world view. Spherical imaging has many advantages for visual  servoing. 
Firstly, a spherical  camera eliminates the need to explicitly keep features in the fi eld 
of view which is a problem with both position-based visual servoing and some hybrid 
schemes. Secondly, we previously observed an ambiguity between the  optical fl ow 
fi elds for Rx and −Ty motion (and Ry and Tx motion) for a small fi eld of  view. For 
IBVS with a long focal length this can lead to slow convergence and/or sensitivity to 
 noise in feature coordinates. For a spherical camera, with the largest possible fi eld of 
view, this ambiguity is reduced.�

Spherical cameras do not yet exist� but we can can project features from one or 
more cameras of any type onto the spherical image plane, and compute the control 
law in terms of spherical coordinates.

16.4 
l
Applications

16.4.1 
l
Arm-Type Robot

In this example the camera is carried by a 6-axis robot which can control all six degrees 
of camera motion. We will assume that the robot’s joints are ideal velocity sources, 
that is, they move at precisely the velocity that was commanded. A modern robot is 
very close to this ideal, typically having high performance joint controllers using ve-
locity and position feedback from encoders on the joints.

The nested control structure for a robot joint was discussed in Sect. 9.1.7. The inner 
velocity loop uses joint velocity feedback to ensure that the joint moves at the desired 
speed. The outer position loop uses joint position feedback to determine the joint speed 
required to follow the trajectory. In this visual servo system the position loop function is 
provided by the vision system. Vision sensors have a low sample rate compared to an en-
coder, typically 25 or 30 Hz, and often with a high latency of one or two sample times.

The Simulink model of this eye-in-hand system

>>  sl_arm_ibvs

is shown in Fig. 16.5. This is a complex example that simulates not only the camera and 
IBVS control but also the robot, in this case the ubiquitous Puma 560 from Part III of 

Provided that the world points are well 
distributed around the sphere.

The camera of Fig. 11.27b (page 349) comes 
close with 90% of a spherical field of view.

Fig. 16.5. The Simulink model
 sl_arm_ibvs uses IBVS to drive 
a Puma robot arm that is holding 
a camera
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this book. The joint angles are the outputs of an integrator which represents the robot’s 
velocity loops. These angles are input to a forward kinematics block which outputs the 
end-effector pose. A perspective  camera with default parameters is mounted on the 
robot’s end-effector and its axes are aligned with the end-effector coordinate frame. 
The camera block has one parameter which is a CentralCamera object, and its in-
puts are the camera pose world and the coordinates of the goal points which are the 
corners of a square in the yz-plane. The output image features are used to compute a 
Jacobian with an assumed Z value for every point, and also to determine the feature 
error in image space. The image Jacobian is inverted and a gain applied to determine 
the  spatial velocity of the camera. The inverse manipulator Jacobian maps this to joint 
rates which are integrated to determine joint angles. This closed loop system drives 
the robot to the desired pose with respect to a square goal object.

We run this model

>> r = sim( 'sl_arm_ibvs')

which displays the robot moving and the image plane of a virtual camera. This model, 
and the others in this chapter, use the  InitFcn callback to create variables required 
by the Simulation in the MATLAB® workspace�.

The signals at the various output blocks are stored in the simulation results object r 
and the joint angles at each time step, output port one, are

>> q = squeeze(r.fi nd('yout').signals(1).values)';
>> about(q)
q [double] : 60x6 (2880 bytes) 

with one row per time step. Note that this model does not include any dynamics 
of the robot arm or the vision system. The joints are modeled as perfect velocity 
control devices, and the vision system is modeled as having no delay. This model 
could form the basis of more realistic system models that incorporate these real-
world effects.

16.4.2 
l
Mobile Robot

In this section we consider a camera mounted on a  mobile robot moving in a planar 
environment. We will fi rst consider a holonomic robot, that is one that has an omni-
directional base and can move in any direction, and then extend the solution to a non-
holonomic car-like base which touches on some of the issues discussed in Chap. 4. 
The camera observes two or more point landmarks that have known 3-dimensional 
coordinates, that is, they can be placed above the plane on which the robot operates. 
The visual servo controller will drive the robot until its view of the landmarks match-
es the desired view.

16.4.2.1 
l
Holonomic Mobile Robot

For this problem we assume a central  perspective camera fi xed to the robot and a num-
ber of landmarks with known locations that are continuously visible to the camera as 
the robot moves along the path. The vehicle’s coordinate frame is such that the x-axis 
is forward and the z-axis is upward.

We defi ne a perspective camera

>> cam = CentralCamera('default', 'focal', 0.002); 

with a wide fi eld of view so that it can keep the landmarks in view as it moves. The 
camera is mounted on the vehicle with a relative pose BξC

>> V_T_C = SE3(0.2, 0.1, 0.3)*SE3.Rx(-pi/4);  

Simulink menu File+Model Properties 
+Callbacks+PreLoadFcn. These com-
mands are executed once when a model 
is loaded.

16.4  ·  Applications
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relative to the vehicle coordinate frame. This is to the front left of the vehicle, 30 cm 
above ground level, with its optical axis forward but pitched upward at 45°, and its 
x-axis pointing to the right of the vehicle. The two landmarks are 2 m above the 
ground and situated at x = 0 and y = ±1 m

>> P = [0 0; 1 -1; 2 2]

The desired vehicle position is with the center of the rear axle at (−2, 0, 0).
Since the robot operates in the xy-plane and can rotate only about the z-axis we 

can remove the columns from Eq. 15.6 that correspond to nonpermissible motion 
and write

 (16.19)

As for standard IBVS case we stack these Jacobians, one per landmark, and then in-
vert the equation to solve for the vehicle velocity. Since there are only three unknown 
components of velocity, and each landmark contributes two equations, we need two 
or more feature points in order to solve for velocity.

The Simulink model

>>  sl_omni_vs

is shown in Fig. 16.6 and is similar in principle to earlier models such as Fig. 16.5 and 
15.9. The model is simulated by

>> r = sim('sl_omni_vs')

and displays an animation of the vehicle’s path in the xy-plane and the camera view. 
Results are stored in the simulation results object r and can be displayed as for previ-
ous examples. The parameters and camera are defi ned in the properties of the mod-
el’s various blocks.

Fig. 16.6. The Simulink model 
 sl_mobile_vs drives a holo-
nomic mobile robot to a pose us-
ing IBVS control
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16.4.2.2 
l
Nonholonomic Mobile Robot

The diffi culties of servoing a nonholonomic mobile robot to a pose were discussed ear-
lier and a nonlinear pose controller was introduced in Sect. 4.1.1.4. The notation for our 
problem is shown in Fig. 16.7 and once again we use a controller based on the polar co-
ordinates ρ , α  and β . For this control example we will use PBVS techniques to estimate 
the variables needed for control. We assume a central perspective camera that is fi xed to 
the robot body frame with a relative pose BξC, a number of landmarks with known loca-
tions that are continuously visible to the camera as it moves along the path, and that the 
vehicle’s  orientation θ  is also known, perhaps using a compass or some other sensor.

The Simulink model

>>  sl_drivepose_vs

is shown in Fig. 16.8. The initial pose of the camera is set by a parameter of the Bicycle 
block. The view of the landmarks is simulated by the camera block and its output, 
the projected points, are input to a pose  estimation block and the known locations of 
the landmarks are set as parameters. As discussed in Sect. 11.2.3 at least three land-
marks are needed and in this example four landmarks are used. The output CûL is the 
estimated pose of the landmarks with respect to the camera. The vehicle pose in the 
world frame is obtained by a chain of simple transform operations ξ�B =� Cξ�0� BξC. 
The x- and y-components of this transform are combined with estimated heading 
angle� to yield an estimate of the vehicle’s confi guration (ú, ù, ø) which is input to 
the pose controller. The remainder of the system is essentially the same as the ex-
ample from Fig. 4.11.

The simulation is run by

>> r = sim( 'sl_ibvs')

and the camera pose, image-plane feature error and camera velocity are animated. 
Scope blocks also plot the camera velocity and feature error against time. Results are 
stored in the simulation results object r and can be displayed as for previous examples.

Fig. 16.7.
PBVS for nonholonomic vehicle 

( bicycle model) vehicle moving 
toward a goal pose: ρ  is the dis-
tance to the goal, β  is the an-
gle of the goal vector with re-
spect to the world frame, and
α  is the angle of the goal vector

with respect to the vehicle frame.
P1 and P2 are landmarks which
are at bearing angles of ψ 1 and
ψ 2 with respect to the camera

In a real system heading angle would 
come from a compass, in this simulation 
we “cheat” and simply use the true head-
ing angle.

16.4  ·  Applications
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16.4.3 
l

Aerial Robot

A  spherical  camera is particularly suitable for platforms that move in SE(3) such as 
aerial and underwater robots. In this example we consider a spherical camera attached 
to a  quadrotor and we will use IBVS to servo the quadrotor to a particular pose with 
respect to four goal points on the ground.

As we discussed in Sect. 4.3 the  quadrotor is under-actuated and we cannot indepen-
dently control all 6 degrees of freedom in task space. We can control position (X, Y, Z) and 
also yaw angle. Roll and pitch angle are manipulated to achieve translation in the hori-
zontal plane and must be zero when the vehicle is in equilibrium. The Simulink model

>>  sl_quadrotor_vs

is shown in Fig. 16.9. This controller attempts to keep the quadrotor at a constant rela-
tive pose with respect to the goal points on the ground. If the goal moves so too will the 
quadrotor – we could imagine a scheme like this being used to land a quadrotor on a car.

The model is a hybrid of the quadrotor controller from Fig. 4.21 and the under-actu-
ated IBVS system of Fig. 16.6. There are however a number of key differences. Firstly, 
in the quadrotor control of Fig. 4.21 we used a  rotation matrix to map xy-error in the 
world frame to the pitch and roll demand of the vehicle. This is not needed for the vi-
sual servo case since the xy-error is given in the camera, or vehicle, frame rather than 
the world frame. Secondly, like the mobile robot case the vehicle is under-actuated, 
and here the Jacobian comprises only the columns corresponding to (vx, vy, vz, ωz). 
Thirdly, we are using a spherical camera, so a  SphericalCamera object is passed 
to the camera and visual Jacobian blocks.

Fourthly, there is coupling between the roll and pitch motion of the quadrotor and 
the image-plane feature coordinates. We recall how the quadrotor cannot translate 
without fi rst tilting into the direction it wishes to translate, and this will cause the fea-
tures to move in the image and increase the image feature error. For small amounts 
of roll and pitch this can be ignored but for aggressive maneuvers it must be taken 
into account. We can use the image Jacobian to approximate� the displacements in θ 
and φ  as a function of displacements in camera roll and pitch angle which are rota-
tions about the x- and y-axes respectively

Fig. 16.8. The Simulink model 
 sl_drivepose_vs drives a non-
holonomic mobile robot to a pose 
(derived from Fig. 4.11)

This is a first-order approximation to the 
feature motion.
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and these are subtracted from the features observed by the camera to give the features 
that would be observed by a camera in the vehicle’s body frame {B}. This scheme is 
sometimes referred to as feature derotation since it mimics in software the effect of a 
nonrotating or gimbal-stabilized camera.

Comparing Fig. 16.9 to Fig. 4.21 we see the visual controller performs the function 
of the outermost position loops for x- and y-position, altitude and yaw and generates 
the required velocities for the velocity loops of these  degrees of freedom directly. Note 
that rate information is still required as input to the velocity loops and in a real robot 
this would be derived from an  inertial measurement unit.

The simulation is run by

>> sim( 'sl_quadrotor_vs')

and the camera pose, image-plane feature error and camera velocity are animated. 
Scope blocks also plot the camera velocity and feature error against time. The simu-
lation results can be obtained from the simulation output object out. The initial pose 
of the camera is set in the model’s properties�.

Fig. 16.9. The Simulink model 
 sl_quadrotor_vs. IBVS with a 
spherical camera for hovering over 
a goal. Compared to the previous 
models this one has an  angdiff 
block after the feature error sum-
ming junction to allow for proper 
handling of angles on the sphere

Simulink menu File+Model Properties
+Callbacks+ InitFcn. These commands 
are always executed prior to the begin-
ning of a simulation.

16.4  ·  Applications



578 Chapter 16  ·  Advanced Visual Servoing

16.5 
l
Wrapping Up

Further Reading

A good introduction to advanced visual servo techniques is the tutorial article by 
Chaumette and Hutchinson (2007) and also the visual servoing chapter in Siciliano and 
Khatib (2016, § 34). Much of the interest in so-called hybrid techniques was sparked 
by Chaumette’s paper (Chaumette 1998) which introduced the specifi c example that 
drives the camera of a point-based IBVS system to infi nity for the case of goal rota-
tion by π  about the optical axis. One of the fi rst methods to address this problem was 
2.5D visual servoing, proposed by Malis et al. (1999), which augments the image-based 
point features with a minimal Cartesian feature. Other notable early hybrid methods 
were proposed by Morel et al. (2000) and Deguchi (1998) which partitioned the image 
Jacobian into a translational and rotational part. An homography is computed between 
the initial and fi nal view (so the goal points must be planar) and then decomposed to 
determine a rotation and translation. Morel et al. combine this rotational information 
with translational control based on IBVS of the point features. Conversely, Deguchi 
et al. combine this translational information with rotational control based on IBVS. 
Since translation is only determined up to an unknown scale factor some additional 
means of determining scale is required.

Corke and Hutchinson (2001) presented an intuitive geometric explanation for the 
problem of the camera moving away from the goal during servoing, and proposed a 
partitioning scheme split by axes: x- and y-translation and rotation in one group, and 
z-translation and rotation in the other. Another approach to hybrid visual servoing is 
to switch rapidly between IBVS and PBVS approaches (Gans et al. 2003). The perfor-
mance of several partitioned schemes is compared by Gans et al. (2003).

The polar form of the image Jacobian for point features (Iwatsuki and Okiyama 
2002a; Chaumette and Hutchinson 2007) handles the IBVS failure case nicely, but re-
sults in somewhat suboptimal camera translational motion (Corke et al. 2009) – the 
converse of what happens for the Euclidean formulation.

The Jacobian for a spherical  camera is similar to the polar form. The two angle pa-
rameterization was fi rst described in Corke (2010) and was used for control and struc-
ture-from-motion  estimation. There has been relatively little work on spherical visual 
servoing. Fomena and Chaumette (2007) consider the case for a single spherical object 
from which they extract features derived from the projection to the spherical imaging 
plane such as the center of the circle and its apparent radius. Tahri et al. (2009) consider 
spherical image features such as lines and moments. Hamel and Mahony (2002) de-
scribe kino-dynamic control of an under-actuated aerial robot using point features.

The robot manipulator dynamics Eq. 9.8 and the perspective projection Eq. 11.2 are 
highly nonlinear and a function of the state of the manipulator and the goal. Almost all 
visual servo systems consider that the robot is velocity controlled, and that the under-
lying dynamics are suppressed and linearized by tight control loops. As we learned in 
Sect. 9.1 this is the case for arm-type robots and in the quadrotor example we used a 
similar nested control structure. This approach is necessitated by the short time con-
stants of the underlying mechanism and the slow sample rate and latency of any visual 
control loop. Modern computers and high-speed cameras make it theoretically pos-
sible to do away with axis-level velocity loops but it is far simpler to use them.

Visual servoing of nonholonomic robots is nontrivial since Brockett’s theorem (1983) 
shows that no linear time-invariant controller can control it. The approach used in this 
chapter was position based which is a minor extension of the pose controller introduced 
in Sect. 4.1.1.4. IBVS approaches have been proposed (Tsakiris et al. 1998; Masutani et al. 
1994) but require that the camera is attached to the base by a robot with a small num-
ber of degrees of freedom. Mariottini et al. (1994, 2007) describe a two-step servoing 
approach where the camera is rigidly attached to the base and the epipoles of the ge-
ometry defi ned by the current and desired camera views are explicitly servoed. Usher 



579

(Usher et al. 2003; Usher 2005) describes a switching control  law that takes the robot 
onto a line that passes through the desired pose, and then along the line to the pose – ex-
perimental results on an outdoor vehicle are presented. The similarity between mobile 
robot navigation and visual servoing problem is discussed in Corke (2001).

Resources

The controllers demonstrated in this chapter have all worked with simulated robotic 
systems, and have executed much slower than real time. In order to put visual control 
into practice we need to have fast  image processing and feature extraction algorithms, 
as well as means of communicating with the robot hardware. Fortunately there are lots 
of tools and technologies to help with this: the Robot Operating System (aka, ROS www.
ros.org) is a comprehensive robot software framework for creating robots, OpenCV 
for image processing (www.opencv.org), ViSP for creating visual trackers and con-
trollers (www.irisa.fr/lagadic/visp). Simulink supports real-time vision through the 
Computer Vision System Toolbox, and the automatic synthesis of controllers that 
can run on your computer, can be exported to real-time hardware, or be exported 
as source code of a complete ROS node.

Exercises

1. XY/Z-partitioned IBVS (page 567)
a) Investigate the generated motion for different combinations of initial camera trans-

lation and rotation, and compare to the classical IBVS scheme of the last chapter.
b) Create a scenario where the features leave the image.
c) Add a repulsion fi eld to ensure that the features remain within the image.
d) Investigate variations of Eq. 16.3. Instead of driving the difference of area to zero, 

try driving the ratio of current and desired area to one, or the logarithm of this 
ratio to zero.

2. Investigate the performance of polar and spherical IBVS for different combina-
tions of initial camera translation and rotation, and compare to the classical IBVS 
scheme of the last chapter.

3. Arm-robot IBVS example (page 572)
a) Add an offset (rotation and/or translation) between the end-effector and the 

camera. Your controller will need to incorporate an additional Jacobian (see 
Sect. 3.1.2) to account for this.

b) Add a discrete time sampler and delay after the camera block to model the cam-
era’s frame rate and image processing time. Investigate the response as the delay 
is increased, and the tradeoff between gain and delay. You might like to plot a 
discrete-time root locus diagram for this dynamic system.

c) Model a moving goal. Hint use the  Camera2 block from the roblocks library. 
Show the tracking error, that is, the distance between the camera and the goal.

d) Investigate feedforward techniques to improve the control (Corke 1996b). Hint, 
instead of basing the control on where the goal was seen by the camera, base it on 
where it will be some short time into the future. How far into the future? What 
is a good model for this estimation? Check out the Toolbox class  AlphaBeta 
for a simple to use tracking fi lter (challenging).

e) An eye-in-hand camera for a docking task might have problems as the camera 
gets really close to the goal. How might you confi gure the goal points and cam-
era to avoid this?

4. Mobile robot visual servo (page 574)
a) For the holonomic and nonholonomic cases replace the perspective camera with 

a catadioptric camera.

16.5  ·  Wrapping Up
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b) For the holonomic case with a catadioptric camera, move the robot through a se-
ries of via points, each defi ned in terms of a set of desired feature coordinates.

c) For the nonholonomic case implement the pure pursuit and line following con-
trollers from Chap. 4 but in this case using visual features. For pure pursuit con-
sider the object being pursued carries one or two point features. For the line fol-
lowing case consider using one or two line features.

5. Display the feature fl ow fi elds, like Fig. 15.7, for the polar r − φ  and spherical θ − φ 
projections (Sect. 16.2 and 16.3). For the spherical case can you plot the fl ow vec-
tors on the surface of a sphere?

6. Quadrotor
a) Replace the spherical camera with a perspective camera.
b) Create a controller to follow a series of point features rather than hover over a 

single point (challenging).
c) Create a controller to follow a series of point features rather than hover over a 

single point (challenging).
d) Add image feature derotation to minimize the effect of vehicle roll and pitch on 

the visual control.
7. Implement the 2.5D visual servo scheme by Malis (1999) (challenging).
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Appendix

A

 The Toolboxes are freely available from the book’s home page

http://www.petercorke.com/RVC

which also has a lot of additional information related to the book such as web links 
(all those printed in the book and more), code, fi gures, exercises and errata.

Downloading and Installing

Two toolboxes support this book: the Robotics Toolbox (RTB) and the Machine Vision 
Toolbox (MVTB). For the second edition of this book the relevant versions are RTB v10 
and MVTB v4.

Toolboxes can be installed from .zip or .mltbx format fi les, with details below. Once 
the toolboxes are downloaded you can explore their capability using

>> rtbdemo

or

>> mvtbdemo

From .mltbx File

Since MATLAB® R2014b toolboxes can be packaged as, and installed from, fi les 
with the extension .mltbx. Download the most recent version of robot.mltbx 
or vision.mltbx to your computer. Using MATLAB navigate to the folder where 
you downloaded the fi le and double-click it (or right-click then select Install). The 
Toolbox will be installed within the local MATLAB fi le structure, and the paths will be 
appropriately confi gured for this, and future MATLAB sessions.

From .zip File

Download the most recent version of robot.zip or vision.zip to your computer. 
Use your favorite unarchiving tool to unzip the fi les that you downloaded.

To add the Toolboxes to your MATLAB path execute the command

>> addpath RVCDIR ;
>> startup_rvc

where RVCDIR is the full pathname of the directory where the folder rvctools was 
created when you unzipped the Toolbox fi les. The script startup_rvc adds various 
subfolders to your path and displays the version of the Toolboxes.

You will need to run the startup_rvc script each time you start MATLAB. Alternatively 
you can run  pathtool and save the path confi guration created by startup_rvc.

Installing the Toolboxes
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For installation from zip fi les, the fi les for both Toolboxes reside in a top-level di-
rectory called rvctools and beneath this are a number of subdirectories:

robot The Robotics Toolbox.
vision The Machine Vision Toolbox.
common Utility functions common to the Robotics and Machine Vision 

Toolboxes.
simulink Simulink® blocks for robotics and vision, as well as examples.
contrib Code written by third-parties.

MEX-Files

Some functions in the Toolbox are implemented as  MEX-fi les, that is, they are written 
in C for computational effi ciency but are callable from MATLAB just like any other 
function. Source code is provided in the mex folder along with instructions and scripts 
to build the MEX-fi les from inside MATLAB or from the command line. You will re-
quire a C-compiler in order to build these fi les, but prebuilt MEX-fi les for a limited 
number of architectures are included.

Contributed Code

A number of useful functions are provided by third-parties and wrappers have been 
written to make them consistent with other Toolbox functions. If you attempt to access 
a contributed function that is not installed you will receive an error message.

The contributed code contrib.zip can be downloaded, expanded and then 
added your MATLAB path. If you installed the Toolboxes from .zip fi les then expand 
contrib.zip inside the folder RVCDIR.

Many of these contributed functions are part of active software projects and the down-
loadable fi le is a snapshot that has been tested and works as described in this book.

Getting Help

A Google group at http://tiny.cc/rvcforum provides answers to frequently asked ques-
tions, and has a user forum for discussing questions, issues and bugs.

License

All the non-third-party code is released under the LGPL license. This means you are 
free to distribute it in original or modifi ed form provided that you keep the license 
and authorship information intact.

The third-party code modules are provided under various open-source licenses. 
The Toolbox compatibility wrappers for these modules are provided under compat-
ible licenses.

MATLAB Versions

The Toolbox software for this book has been developed and tested using MATLAB 
R2015b and R2016a under Mac OS X (10.11 El Capitan). MATLAB continuously evolves 
so older versions of MATLAB are increasingly unlikely to work. Please do not report 
bugs if you are using a MATLAB version older than R2014a.
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Octave

GNU Octave (www.octave.org) is an impressive piece of free software that implements 
a language that is close to, but not the same as, MATLAB. The Toolboxes will not work 
well with Octave, though with Octave 4 the incompatibilities are greatly reduced. An 
old version of the arm-robot functions described in Chap. 7–9 have been ported to 
Octave and this code is distributed in RVCDIR/robot/octave.
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B

B.1 
l
Vectors

We will only consider real vectors� which are an ordered n-tuple of real numbers 
v1, v2,� vn which is usually written as

which are a colum- and row-vector respectively. These are equivalent to an n × 1 and 
a 1 × n matrix respectively, and can be multiplied with a conforming matrix.

The numbers v1, v2 etc. are called the scalar components of v, and vi is called the 
ith component of v. For a 3-vector we often write the elements as v = (vx, vy, vz).

The symbol Rn represents the set of ordered n-tuples of real numbers, each vec-
tor is a point in this space, that is v ∈Rn. The elements of R2 can be represented in a 
plane by a point or a directed line segment. The elements of R3 can be represented in 
a volume by a point or a directed line segment.

A vector space  is an n-dimensional space whose elements are vectors plus the opera-
tions of addition and scalar multiplication. The addition of any two elements a, b ∈Rn 
yields (a1 + b1, a2 + b2� an + bn) and sa = (sa1, sa2� san). Both results are element 
of Rn. The negative of a vector is obtained by negating each element of the vector 
−a = (−a1, −a2�−an).

We can use a vector to represent a point with coordinates (x1, x2,� xn) which is 
called a coordinate vector  . However we need to be careful because the operations of 
addition  and scalar multiplication , while valid for vectors are meaningless for points. 
We can add a vector to the coordinate vector of a point to obtain the coordinate vec-
tor of another point, and we can subtract one coordinate vector from another, and the 
result is the is the displacement between the points.

The magnitude or length of a vector is a nonnegative scalar given by its p-norm

The Euclidean length of a vector is given by �v�2 which is also referred to as the L2 norm 
and is generally assumed when p is omitted, for example �v�. A unit vector is one where 
�v�2 = 1 and is denoted as *. The L1 norm is sum of the absolute value of the elements 
and is also known as the Manhattan distance , it is the distance traveled when confi ned to 
moving along the lines in a grid. The L∞ norm is the maximum element of the vector.

The dot product of two column vectors is a scalar

where θ  is the angle between the vectors. a ·b = 0 when the vectors are orthogonal. 
For 3-vectors the cross product

Linear Algebra Refresher

A rank 1  tensor.
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where ' is a unit-vector parallel to the x-axis etc., [·]× is a skew-symmetric matrix as 
described in the next section, and % is a unit-vector normal to the plane containing a 
and b. If the vectors are parallel a × b = 0.

B.2 
l
Matrices

A taxonomy of matrices is shown in Fig. B.1. In this book we are concerned only with 
real m × n matrices�

with m rows and n columns. If n = m the matrix is square.
The transpose is

and it can be shown that Fig. B.1. Taxonomy of matrices. 
Classes of matrices that are always
singular are shown in red, those that
are never singular are shown in blue

Real matrices are a subset of all matri-
ces. For the general case of complex ma-
trices the term Hermitian is the analog 
of symmetric, and unitary the analog of 
orthogonal. AH denotes the Hermitian 
transpose, the complex conjugate trans-
pose of the complex matrix A. Matrices 
are rank 2 tensors.
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B.2.1 
l
Square Matrices

A square matrix may have an inverse A−1 in which case

where

is the identity matrix, a unit diagonal matrix. The inverse exists provided that the ma-
trix is nonsingular, that is, its determinant det(A) ≠ 0. The inverse can be computed 
from the matrix of cofactors. If A and B are square and nonsingular then

and also

The inverse can be written as

where adj(A) is the transpose of the matrix of cofactors and known as the  adjugate or  
adjoint matrix and sometimes denoted by A∗. If B = adj(A) then A = adj(B). If A is 
nonsingular the adjugate can be computed by

For a square matrix if

A = AT  . . . . . . . . . . . . .the matrix is  symmetric. The inverse of a symmetric matrix is also 
symmetric. Many matrices that we encounter in robotics are sym-
metric, for example covariance matrices and manipulator inertia 
matrices.

A = −AT  . . . . . . . . . .the   matrix is  skew-symmetric or  anti-symmetric. Such a matrix 
has a zero diagonal, is always singular and has the property that 
[av]× = a[v]×, [Rv]× = R[v]× RT and vT[v]× = [v]×v = 0, ∀v. For the 
3 × 3 case

 (B.1)

 and the inverse operation is

A−1 = AT  . . . . . . . . . .the matrix is  orthogonal. The matrix is also known as  orthonormal 
since its column vectors (and row vectors) must be of unit length 
and orthogonal to each other. The product of two orthogonal 

Ai = inv(A)

S = skew(v)

v = vex(S)
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matrices of the same size is also an orthogonal matrix. The set of 
n × n orthogonal matrices forms a group O(n), known as the or-
thogonal  group. The determinant of an orthogonal matrix is ei-
ther +1 or −1. The subgroup SO(n) consisting of orthogonal ma-
trices with determinant +1 is called the  special orthogonal group. 
The columns (and rows) are orthogonal vectors, that is, their dot 
product is zero.

ATA = AAT  . . . . . . .the matrix is  normal and can be diagonalized by an orthogonal ma-
trix U so that U TAU is a diagonal matrix. All symmetric, skew-sym-
metric and orthogonal matrices are normal matrices as are matrices 
of the form A = BTB = BBT where B is an arbitrary matrix.

The square matrix A ∈Rn×n can be applied as a linear transformation to a vec-
tor x ∈Rn

which results in another vector, generally with a change in its length and direction. 
However there are some important special cases. If A ∈ SO(n) the transformation is 
isometric and the vector’s length is unchanged �x′�= �x�.

In 2-dimensions if x is the set of all points lying on a circle then x′ defi nes points 
that lie on an ellipse. The MATLAB® builtin demonstration

>> eigshow

shows this very clearly as you interactively drag the tip of the vector x around the 
unit circle.

The  eigenvectors of a square matrix are those vectors x such that

 (B.2)

that is, their direction is unchanged when transformed by the matrix. They are simply 
scaled by λi, the corresponding  eigenvalue. The matrix has n eigenvalues (the spectrum 
of the matrix) which can be real or complex. For an orthogonal matrix the eigenvalues 
lie on a unit circle in the complex plane, |λi| = 1, and the eigenvectors are all orthogo-
nal to one another.

The eigenvalues of a real symmetric matrix are all real and we classify the matrix 
according to the sign of its eigenvalues

� λ i > 0, ∀i positive defi nite 
� λ i ≥ 0, ∀i positive semi-defi nite
� λ i < 0, ∀i negative defi nite
� otherwise indefi nite

The inverse of a positive defi nite matrix is also positive defi nite.
The matrices ATA and AAT are always symmetric and positive semidefi nite. This 

implies than any symmetric matrix A can be written as

where L is the  Cholesky  decomposition of A.
The matrix R such that

is the square root of A or AC.

[x,e] = eig(A)

L = chol(A)

R = sqrtm(A)
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If T is any nonsingular matrix then

is known as a  similarity transform and A and B are said to be  similar, and it can be 
shown that the eigenvalues are unchanged by the transformation.

If A is nonsingular then the eigenvectors of A−1 are the same as A and the eigen-
values of A−1 are the reciprocal of those of A. The eigenvalues of AT are the same as 
those of A but the eigenvectors are different.

The matrix form of Eq. B.2 is

where X ∈Rn×n is a matrix of eigenvectors of A, arranged column-wise, and Λ is a diag-
onal matrix of corresponding eigenvalues. If X is not singular we can rearrange this as

which is the eigenvalue or  spectral decomposition of the matrix. This implies that the 
matrix can be  diagonalized by a similarity transform

If A is symmetric then X is orthogonal and we can instead write

 (B.3)

The  determinant of a square matrix A ∈Rn×n is the factor by which the transfor-
mation changes changes volumes in an n-dimensional space. For 2-dimensions imag-
ine a shape defi ned by points xi with an enclosed area a. The shape formed by the 
points Axi would have an enclosed area adet(A). If A is singular the points Axi would 
lie at a single point or along a line and have zero enclosed area. In a similar way for 
3-dimensions, the determinant is a scale factor applied to the volume of a set of points 
mapped through the transformation A.

The determinant is equal to the product of the eigenvalues

thus a matrix with one or more zero eigenvalues will be singular. A positive defi nite 
matrix, λi > 0, therefore has det(A) > 0 and is not singular. The  trace of a matrix is 
the sum of the diagonal elements

which is also the sum of the eigenvalues

The columns of A = (c1c2� cn) can be considered as a set of vectors that defi ne a 
space – the  column space. Similarly, the rows of A can be considered as a set of vectors 
that defi ne a space – the  row space. The column rank of a matrix is the number of 
linearly independent columns of A. Similarly, the row rank is the number of linearly 

det(A)

trace(A)
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independent rows of A. The column rank and the row rank are always equal and are simply 
called the  rank of A and the rank has an upper bound of min(m, n). The rank is the dimen-
sion of the largest nonsingular square submatrix that can be formed from A. A square ma-
trix for which rank(A) < n is said to be  rank defi cient or not of full rank. The rank shortfall 
min(m, n) − rank(A) is the nullity of A. In addition rank (AB) ≤ min (rank (A), rank (B)) 
and rank (A + B) ≤ rank (A) + rank (B). The matrix vvT has rank 1 for all v ≠ 0.

B.2.2 
l
Nonsquare and Singular Matrices

For a nonsquare matrix A ∈Rm×n we can determine the left  generalized inverse or 
 pseudo inverse or  Moore-Penrose  pseudo inverse

where A+ = (ATA)−1AT. The right generalized inverse is

where A+ = AT(AAT)−1.
If the matrix A is not of full rank then it has a fi nite  null space or kernel. A vector x 

lies in the null space of the matrix if

More precisely this is the right-null space. A vector lies in the left-null space if

The left null space is equal to the right null space of AT.
The null space is defi ned by a set of orthogonal basis vectors whose dimension is the 

nullity of A. Any linear combination of these null-space basis vectors lies in the null space.
For a nonsquare matrix A ∈ Rm×n the analog to Eq. B.2 is

where ui ∈ Rm and vi ∈ Rn are respectively the right- and left- singular vectors of A, 
and σi its singular values. The singular values are nonnegative real numbers that are 
the square root of the eigenvalues of AAT and ui are the corresponding eigenvectors. 
vi are the eigenvectors of ATA.

The   singular  value decomposition or  SVD of the matrix A is

where U ∈Rm×m and V ∈Rn×n are both  orthogonal matrices comprising, as columns, 
the corresponding singular vectors ui and vi. Σ ∈Rm×n is a diagonal matrix of the 
 singular values

rank(A)

null(A)

[U,S,Vt] = svd(A)
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where r = rank(A) is the rank of A and σi ≥ σi+1. For the case where r < n the diagonal 
will have zero elements as shown. Columns of VT corresponding to the zero columns 
of Σ defi ne the null space of A. The  condition number of a matrix A is maxσi / minσi 
and a high value means the matrix is close to singular or “poorly conditioned”.

The matrix quadratic form

 (B.4)

is a scalar. If A is positive defi nite then s = xT A x > 0, ∀x ≠ 0.
For the case that A is diagonal this can be written

which is a weighted sum of squares. If A is symmetric then

the result also includes products or correlations between elements of x.
The Mahalanobis distance  is a weighted distance or norm

where P ∈Rn×n is a covariance matrix which down-weights components of v where 
uncertainty is high.

cond(A)
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Geometric concepts such as points, lines, ellipses and planes are critical to the fi elds 
of robotics and robotic vision. We briefl y summarize key representations in both 
Euclidean and projective (homogeneous coordinate) space.

C.1 
l
Euclidean  Geometry

C.1.1 
l
Points

A point in n-dimensional space is represented by an n-tuple, an ordered set of n num-
bers (x1, x2� xn) which defi ne the coordinates of the point. The tuple can also be in-
terpreted as a vector – a coordinate vector – from the origin to the point.

C.1.2 
l
Lines

C.1.2.1 
l
Lines in 2D 

A line is defi ned by `= (a, b, c) such that

 (C.1)

which is a generalization of the line  equation we learned in school y = mx + c but 
which can easily represent a vertical line by setting a = 0. v = (a, b) is a vector paral-
lel to the line, and v = (−b, a) is a vector normal to the line. The line that joins two 
points is given by the solution to

which is found from the right-null space of the left-most term. The intersection point 
of two lines is

which has no solution if the lines are parallel – the left-most term is singular.
We can also represent the line in polar form

where θ is the angle from the x-axis to the line and ρ  is the normal distance between 
the line and the origin, as shown in Fig. 13.18.

Geometry
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C.1.2.2 
l
Lines in 3D and Plücker Coordinates

We can defi ne a line by two points, p and q, as shown in Fig. C.1, which would require 
a total of six parameters `= (qx, qy, qz,px, py, pz). However since these points can be 
arbitrarily chosen there would be an infi nite set of parameters that represent the same 
line making it hard to determine the equivalence of two lines.

There are advantages in representing a line as

where ω is the direction of the line and v is the  moment of the line – a vector from 
the origin to a point on the line and normal to the line. This is a Plücker coordi-
nate   vector – a six dimensional quantity subject to two constraints: the coordinates 
are homogeneous and thus invariant to overall scale factor; and v · ω = 0. Lines 
therefore have 4 degrees-of-freedom� and the Plücker coordinates lie on a 4-di-
mensional manifold in 6-dimensional space. Lines with ω = 0 lie at infi nity and 
are known as ideal lines.�

In MATLAB® we will fi rst defi ne two points as column vectors

>> P = [2 3 4]';  Q = [3 5 7]';

and then create a Plücker line object
>> L = Plucker(P, Q)
L =
{ 1  -2  1; -1  -2  -3 }

which displays the v and w components. These can be accessed as properties

>> L.v'
ans =
     1    -2     1
>> L.w'
ans =
    -1    -2    -3

A Plücker line can also be represented as a skew-symmetric matrix

>> L.L
ans =
     0     1     2    -1
    -1     0     1    -2
    -2    -1     0    -3
     1     2     3     0

which can also be formed by pqT − qpT.
To plot this line we fi rst defi ne a region of 3D space� then plot it in blue

>> axis([-5 5  -5 5  -5 5]);
>> L.plot('b');

The line is the set of all points

which can be generated parametrically in terms of a scalar parameter

>> L.point([0 1 2])
ans =
   -0.5714   -1.5714   -2.5714
   -0.1429   -2.1429   -4.1429
    0.2857   -2.7143   -5.7143

where the columns are points on the line corresponding to λ = 0, 1, 2.
Fig. C.1. Describing a line in 3-di-
mensions

This is not intuitive but consider two 
parallel planes and an arbitrary 3D line 
passing through them. The line can be 
described by the 2-dimensional coordi-
nates of its intersection point on each 
plane – a total of four coordinates.

Ideal as in imaginery, not as in perfect.

Since lines lines are infinite we need to 
specify a finite volume in which to draw it.
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Julius Plücker  (1801–1868) was a German mathematician and 
physicist who made contributions to the study of cathode 
rays and analytical geometry. He was born at Elberfeld 
and studied at Düsseldorf, Bonn, Heidelberg and Berlin 
and went to Paris in 1823 where he was infl uenced by the 
French geometry movement. In 1825 he returned to the 
University of Bonn, was made professor of mathematics in 
1828, and professor of physics in 1836. In 1858 he proposed 
that the lines of the spectrum, discovered by his colleague 
Heinrich Geissler (of Geissler tube fame), were characteris-
tic of the chemical substance which emitted them. In 1865, 
he returned to geometry and invented what was known as 
line geometry. He was the recipient of the Copley Medal 
from the Royal Society in 1866, and is buried in the Alter 
Friedhof (Old Cemetery) in Bonn.

A point x is closest to the line when

For the point (1, 2, 3) the closest point on the line, and its distance, is given by

>> [x, d] = L.closest([1 2 3]')
x =
    3.1381
    2.5345
    1.9310
d =
    2.4495

The line intersects the plane nTx + d = 0 at the point coordinate

For the xy-plane the line intersects at
>> L.plane_intersect([0 0 1 0])'
ans =
    0.6667    0.3333         0

Two lines can be identical, coplanar or skewed. Identical lines have linearly depen-
dent Plücker coordinates, that is, ̀ 1 = λ`2. If coplanar they can be parallel or intersect-
ing and if skewed can be intersecting or not. If lines have ω1 × ω2 = 0 they are parallel 
otherwise they are skewed.

The minimum distance between two lines is

and is zero if they intersect.
The side operator is a permuted dot product

which is zero if the lines intersect or are parallel and is computed by the side  method.
We can transform a Plücker line   by the adjoint of a rigid-body motion.
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C.1.3 
l
Planes 

A plane is defi ned by a 4-vector π = (a, b, c, d) such that

which can be written in point-normal form as

for a plane containing a point with coordinate p and a normal n, or more generally as

A plane can be defi ned by 3 points

and solved for using the right-null space of the left-most term, or by two nonpar-
allel lines

or by a line and a point with coordinate r

A point is defi ned as the intersection point of three planes

The Plücker line   formed by the intersection of two planes is Fig. C.2. Ellipses. a Canonical  el-
lipse centered at the origin and 
aligned with the x- and y-axes; 
b general form of ellipse
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C.1.4  
l
Ellipses and  Ellipsoids  

An ellipse belongs to the family of planar curves known as conics. The simplest form 
of an ellipse is defi ned implicitly

and is shown in Fig. C.2a. This canonical  ellipse is centered at the origin and has its 
major and minor axes aligned with the x- and y-axes. The radius in the x-direction is 
a and in the y-direction is b. The longer of the two radii is known as the semi-major 
axis length and the other is the semi-minor axis length.

We can write the ellipse in matrix quadratic form Eq. B.4 as

 

 (C.2)

 (C.3)

In the most general form E is a symmetric matrix

 (C.4)

and its determinant det(E) = AB − C 2 defi nes the type of conic

An ellipse is therefore represented by a positive defi nite symmetric matrix E. 
Conversely any positive defi nite symmetric matrix, such as an inertia matrix or cova-
riance matrix, can be represented by an ellipse.

Nonzero values of C change the orientation of the ellipse. The ellipse can be arbi-
trarily centered at xc by writing it in the form

which leads to the general ellipse shown in Fig. C.2b.
Since E is symmetric it can be diagonalized by Eq. B.3

where X is an orthogonal matrix comprising the eigenvectors of E. The inverse is

so the quadratic form becomes
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This is similar to Eq. C.3 but with the ellipse defi ned by the diagonal matrix Λ with 
respect to the rotated coordinated frame x′ = XTx. The major and minor ellipse axes 
are aligned with the eigenvectors of E. The squared radii of the ellipse are the eigen-
values of E or the diagonal elements of Λ.

For the general case of E ∈Rn×n the result is an  ellipsoid in n-dimensional space. 
The Toolbox function plot_ellipse will draw an ellipse for the n = 2 case and an 
ellipsoid for the n = 3 case.

Alternatively the ellipse can be represented in  polynomial form by writing as

and expanding to obtain

where e1 = a, e2 = b, e3 = 2c, e4 = −2(ax0 + cy0), e5 = −2(by0 + cx0) and e6 = ax0
2 + by0

2 

+ 2cx0y0 − 1. The ellipse has only fi ve degrees of freedom, its center coordinate and 
the three unique elements in E. For a nondegenerate ellipse where e1 ≠ 0 we can re-
write the polynomial in normalized form

 (C.5)

with fi ve unique parameters.

C.1.4.1 
l
Properties

The area of an ellipse is πab and its  eccentricity is

The eigenvectors of E defi ne the principal directions of the ellipse and the square 
root of the eigenvalues are the corresponding radii.

Consider the ellipse

which is represented in MATLAB by
>> E = [2 -1; -1 1];

Fig. C.3.
Ellipse corresponding to a sym-
metric 2 × 2 matrix, and the unit 
circle shown in red. The arrows 
indicate the major and minor 
axes of the ellipse
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We can plot this by

>> plot_ellipse(E)

which is shown in Fig. C.3.
The eigenvectors and eigenvalues of E are

>> [x,e] = eig(E)
x =
   -0.5257   -0.8507
   -0.8507    0.5257
e =
    0.3820         0
         0    2.6180

and the ellipse radii are

>> r = sqrt(diag(e))
r =
    0.6180
    1.6180

which correspond to b and a respectively. If either radius is equal to zero the ellipse is 
degenerate and becomes a line. If both radii are zero the ellipse is a point.

The eigenvectors are unit vectors in the minor- and major-axis directions and we 
will scale them by the radii to yield radius vectors which we can plot

>> arrow([0 0]', x(:,1)*r(1));
>> arrow([0 0]', x(:,2)*r(2));

The orientation of the ellipse is the angle of the major-axis with respect to the hori-
zontal axis and is

For our example this is

>>  atan2(x(2,2), x(1,2)) * 180/pi
ans =
  148.2825

in units of degrees.
The ellipse area is πr1r2 and the  ellipsoid volume is ¿πr1r2r3 where the radii ri = λ̂i 

where λi are the eigenvalues of E. Since det(E) = Πλi the area or volume is propor-
tional to d̂egtg(gE).

C.1.4.2 
l
Drawing an  Ellipse

In order to draw an ellipse we fi rst defi ne a point coordinate y = [x, y]T on the unit circle

and rewrite Eq. C.3 as

where EC is the matrix square root (MATLAB function  sqrtm). Equating these two 
equations we can write
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It is clear that

which we can rearrange as

which transforms a point on the unit circle to a point on an ellipse. If the ellipse is cen-
tered at xc rather than the origin we can perform a change of coordinates

from which we write the transformation as

Continuing the MATLAB example above

>> E = [2 -1; -1 1];

We defi ne a set of points on the unit circle

>> th = linspace(0, 2*pi, 50);
>> y = [cos(th);  sin(th)];

which we transform to points on the perimeter of the ellipse

>> x = (sqrtm(E) * y)';
>> plot(x(:,1), x(:,2));

which is encapsulated in the Toolbox function

>> plot_ellipse(E, [0 0])

An ellipsoid is described by a positive-defi nite symmetric 3 × 3 matrix. Drawing an 
ellipsoid is tackled in an analogous fashion and plot_ellipse is also able to dis-
play a 3-dimensional ellipsoid.

C.1.4.3 
l
Fitting an Ellipse to Data

From a Set of Interior Points

We wish to fi nd the  equation of an ellipse that best fi ts a set of points that lie within the el-
lipse boundary. A common approach is to fi nd the ellipse that has the same mass proper-
ties as the set of points. From the set of N points xi = (xi, yi) we can compute the  moments

The center of the ellipse is taken to be the centroid of the set of points
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which allows us to compute the  central second  moments

The inertia matrix for a general ellipse is the symmetric matrix

where the diagonal terms are the   moments of inertia and the off-diagonal terms are 
the  products of inertia. Inertia can be computed more directly by 

The relationship between the inertia matrix and the symmetric ellipse matrix is

To demonstrate this we can create a set of points that lie within the ellipse used in 
the example above

1 % generate a set of points within the ellipse
2 p = [];
3 while true
4     x = (rand(2,1)-0.5)*4;
5     if norm(x'*inv(E)*x) <= 1
6         p = [p x];
7     end
8     if numcols(p) >= 500
9         break;
10     end
11 end
12 plot(p(1,:), p(2,:), '.')
13 
14 % compute the moments
15 m00 =  mpq_point(p, 0,0);
16 m10 = mpq_point(p, 1,0);
17 m01 = mpq_point(p, 0,1);
18 xc = m10/m00; yc = m01/m00;
19 
20 % compute second moments relative to centroid
21 pp = bsxfun(@minus, p, [xc; yc]);
22 
23 m20 = mpq_point(pp, 2,0);
24 m02 = mpq_point(pp, 0,2);
25 m11 = mpq_point(pp, 1,1);
26 
27 % compute the moments and ellipse matrix
28 J = [m20 m11; m11 m02];
29 E_est = 4 * J / m00       
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which results in an estimate
>> E_est
E_est =
    1.8706   -0.9151
   -0.9151    0.9716

which is similar to the original value of E. The point data is shown in Fig. C.4. We can 
overlay the estimated ellipse on the point data

>> plot_ellipse(E_est, [xc yc],  'r')

and the result is shown in red in Fig. C.4.

From a Set of Boundary Points

We wish to fi nd the  equation of an ellipse given a set of points (xi, yi) that defi ne the 
boundary of an ellipse. Using the polynomial form of the ellipse Eq. C.5 for each point 
we write this in matrix form

and for N ≥ 5 we can solve for the ellipse parameter vector.

C.2 
l
Homogeneous Coordinates 

A point in homogeneous coordinates, or the projective space Pn, is represented by a 
coordinate vector x = (²1, ²2� ²n+1). The Euclidean coordinates are related to the 
projective coordinates by

Conversely a homogeneous coordinate vector can be constructed from a Euclidean 
coordinate vector by

and the tilde is used to indicate that the quantity is homogeneous.

Fig. C.4.
Data points (blue) with a fi tted 
ellipse (red).
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The extra degree of freedom offered by projective coordinates has several ad-
vantages. It allows points and lines at infinity, known as ideal  points and lines, to 
be represented using only real numbers.   It also means that scale is unimportant, 
that is x and x′ = αx both represent the same Euclidean point for all α ≠ 0. We 
express this as x� x′. Points in homogeneous form can also be rotated with re-
spect to a coordinate frame and translated simply by multiplying the homogeneous 
coordinate by an (n + 1) × (n + 1)  homogeneous transformation matrix.

Homogeneous vectors are important in computer vision when we consider 
points and lines that exist in a plane – a camera’s  image plane. We can also con-
sider that the homogeneous form represents a ray in Euclidean space as shown in 
Fig. C.5. The relationship between points and rays is at the core of the projective 
transformation.

C.2.1 
l
Two Dimensions

In two dimensions there is a duality between points and lines. In P2 a line is defi ned 
by a 3-tuple, l = (`1, `2, `3)T, not all zero, and the equation of the line is the set of 
all points

which expands to `1x + `2y + `3 = 0 and can be manipulated into the more familiar 
representation of a line. Note that this form can represent a vertical line, parallel to 
the y-axis, which the familiar form y = mx + c cannot. This is the  point  equation of 
a line. The nonhomogeneous vector (`1, `2) is a normal to the line, and (−`2, `1) is 
parallel to the line.

A point is defi ned by the intersection of two lines. If we write the point equations 
for two lines l1

Tp = 0 and l2
Tp = 0 their intersection is the point with coordinates

and is known as the  line equation of a  point. Similarly, a line joining two points p1 
and p2 is given by the cross-product

Consider the case of two parallel lines at 45° to the horizontal axis

>> l1 = [1 -1 0]';
>> l2 = [1 -1 -1]';

Fig. C.5.
A point P on the Euclidean 

plane R2 (red) is described by a 
coordinate vector p ∈ R2 which 

is equivalent to the three-dimen-
sional vector in the projective 

space P2 (blue) which is the ho-
mogeneous coordinate p ∈ P2
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which we can plot

>> plot_homline(l1, 'b')
>> plot_homline(l2, 'r')  

The intersection point of these parallel lines is
>> cross(l1, l2)
ans =
     1     1     0

This is an ideal  point since the third coordinate is zero – the equivalent Euclidean 
 point would be at infi nity. Projective coordinates allow points and lines at infi nity 
to be simply represented and manipulated without special logic.

The distance from a point with coordinates p to a line l is

 (C.6)

C.2.1.1 
l
Conics 

Conic sections are an important family of planar curves that includes circles , ellipses , 
parabolas  and hyperbolas  which can be described by

or more concisely as pTcp = 0 where c is a matrix

The determinant of the top-left submatrix indicates the type of conic: negative for 
a hyperbola, 0 for a parabola and positive for an ellipse.

C.2.2 
l
Three Dimensions

In three dimensions there is a duality between points and planes.

C.2.2.1 
l
Lines 

Using the homogeneous representation of the two points p and q we can form a 
4 × 4 skew-symmetric matrix

whose 6 unique elements comprise the Plücker coordinate vector. This matrix is rank 2 
and the determinant is a quadratic in the Plücker coordinates – a 4-dimensional quadric  
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hypersurface   known as the Klein quadric  . All points that lie on this manifold are valid 
lines. Many of the relationships in Sect. C.1.2.2 (between lines and points and planes) 
can be expressed in terms of this matrix. This matrix is returned by the L  method of 
the Plucker  class.

For a perspective camera with a camera matrix C the 3-dimensional Plücker line 
represented as a 4 × 4 skew-symmetric matrix L is projected onto the image plane as

which is a homogeneous line in P2. This is computed automatically if a Plucker  ob-
ject is passed to the project  method of a CentralCamera  object.

C.2.2.2 
l
Planes 

The plane described by πx = 0 can be defi ned by a line and a point

The join and incidence relationships are more complex than the cross products used 
for the 2-dimensional case. Three points defi ne a plane and the join relationship is

and the solution is found from the right-null space of the matrix. The incidence of 
three planes is the dual

and is an ideal point, zero last component, if the planes do not intersect at a point.

C.2.2.3 
l
Quadrics 

Quadrics , short for quadratic surfaces  , are a rich family of 3-dimensional surfaces. 
There are 17 standard types including spheres , ellipsoids , hyperboloids , paraboloids , 
cylinders  and cones  all described by

where Q ∈R4×4 is symmetric.
For a perspective camera with a camera matrix C the outline of the quadric is pro-

jected to the image plane by

where c is a 3 × 3 matrix describing the conic, see Sect. C.2.1.1, and (·)∗ represents the 
adjugate operation, see Appendix B.
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C.3 
l
Geometric Transformations 

A linear transform is y = Ax and an affi ne transform is

 (C.7)

which comprises a linear transformation and a change of origin. Examples of affi ne trans-
formations  include translation , scaling , homothety , similarity transformation , refl ection , 
rotation , shear mapping , and compositions of them in any combination and sequence. 
Every linear transformation is affi ne, but not every affi ne transformation is linear.

In homogeneous coordinates we can write Eq. C.7 as

and the transformation operates on a point with homogeneous coordinates x. If a vector 
is defi ned as the difference between two homogeneous points p and q then the difference 
p − q is a 4-vector whose last element is zero, distinguishing a point from a vector.

Affi ne space   is a generalization of Euclidean space  and has no distinguished point 
that serves as an origin. Hence, no vector has a fi xed origin and no vector can be 
uniquely associated to a point an affi ne space, there are instead displacement vec-
tors between two points of the space. Thus it makes sense to subtract two points of 
the space, giving a vector, but it does not make sense to add two points of the space. 
Likewise, it makes sense to add a vector to a point of an affi ne space, resulting in a 
new point displaced from the starting point by that vector.

In two-dimensions the most general transformation is projective transformation   
projective, also known as a collineation 

which is unique up to scale and one element has been normalized to one. It has 8 de-
grees of freedom.

The affi ne transformation   is a subset where the elements of the last row are fi xed

and has 6 degrees of freedom.

Fig. C.6.
A 2-dimensional square (dark 
grey) is operated on by various 
transformations from the most 
limited (Euclidean) to the most 
general (projective)
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The similarity transformation   is further subset

where R ∈ SO(2) resulting in only 4 degrees of freedom. Similarity transforms, without 
refl ection, are sometimes referred to as a Procrustes transform  .

Finally the   Euclidean or rigid-body transformation

is the most restrictive and has only 3 degrees of freedom. Some graphical examples 
of the effect of the various transformations on a square are shown in Fig. C.6. The 
possible geometric transformations for each type of transform are summarized in 
Table C.1 along with the geometric properties which are unchanged, or invariant, 
under that transformation.   We see that while Euclidean is most restrictive in terms of 
the geometric transformations it can perform it is able to preserve important proper-
ties such as length and angle.

Table C.1.
For various planar transforma-

tion   families the possible geo-
metric transformations   and the 
geometric properties which are 

preserved are listed
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D

We cannot go very far in the study of rotations or rigid-body  motion without com-
ing across the terms Lie groups , Lie algebras  or Lie brackets  – all named in honor 
of the Norwegian mathematician Sophus Lie . Rotations and rigid-body motion 
in 2- and 3-dimensions can be represented by matrices which form Lie groups and 
which have Lie algebras.

We will start simply by considering the set of all real 2 × 2 matrices A ∈R2×2

which we could write as a linear combination of basis matrices

where each basis matrix represents a direction  in a 4-dimensional space of 2 × 2 ma-
trices. That is, the four axes of this space are parallel with each of these basis matrices. 
Any 2 × 2 matrix can be represented by a point in this space – this particular matrix 
is a point with the coordinates (a11, a12, a21, a22).

All proper rotation matrices, those belonging to SO(2), are a subset of points with-
in the space of all 2 × 2 matrices. For this example the points lie in a 1-dimensional 
subset, a closed curve, in the 4-dimensional space. This is an instance of a manifold , 
a lower-dimensional smooth surface embedded within a space.

The notion of a curve in the 4-dimensional space makes sense when we consider 
that the SO(2) rotation matrix

has only one free parameter, and varying that parameter moves the point along the 
manifold.

Lie Groups  and Algebras 

Sophus Lie (1842–1899) (surname pronounced lee) was a Norwegian 
mathematician who obtained his Ph.D. from the University of 
Christiania in Oslo in 1871. He spent time in Berlin working with 
Felix Klein, and later contributed to Klein’s Erlangan program 
to characterize geometries based on group theory and projec-
tive geometry. On a visit to Milan during the Franco-Prussian 
war he was arrested as a German spy and spent one month in 
prison. He is best known for his discovery that continuous trans-
formation groups (now called Lie groups) can be understood by 
linearizing them and studying their generating vector spaces. 
He is buried in the Vår Frelsers gravlund in Oslo. (Photograph 
by Ludwik Szacinski)
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Invoking mathematical formalism we say that rotations SO(2) and SO(3), and 
rigid-body  motions SE(2) and SE(3) are matrix Lie groups  and this has two impli-
cations. Firstly, they are an algebraic group  , a mathematical structure compris-
ing elements and a single operator. In simple terms, a group G has the following 
properties:

1. if g1 and g2 are elements of the group, that is g1, g2 ∈ G, then the result of the group’s 
 operator � is also an element of the group: g1 � g2 ∈ G. In general, groups are not 
commutative so g1 � g2 ≠ g2 � g1. For rotations and rigid-body motions the group 
 operator � represents composition.�

2. the group operator is associative, that is, (g1 � g2) � g3 = g1 � (g2 � g3).
3. for g ∈ G there is an identity element I ∈ G such that g � I = I � g = g.�

4. for every g ∈ G there is a unique inverse h ∈ G such that g � h = h � g = I.�

The second implication of being a Lie group is that there is a smooth (differen-
tiable) manifold   structure. At any point on the manifold we can construct tangent 
vectors. The set of all tangent vectors at that point form a vector space – the tangent 
space . This is the multidimensional equivalent to a tangent line on a curve, or a tan-
gent plane on a solid. We can think of this as the set of all possible derivatives of the 
manifold at that point.

The tangent space at the identity is described by the Lie algebra  of the group, 
and the basis directions of the tangent space are called the generators of the group. 
Points in this tangent space map to elements of the group via the exponential function.
If g is the Lie algebra for group G then

where the elements of g and G are matrices of the same size and which each have a 
specifi c structure.

The surface of a sphere is a manifold  in 3-dimensional space and at any point 
on that surface we can create a tangent vector. In fact we can create an infi nite 
number of them and they lie within a plane which is a 2-dimensional vector space 
– the tangent space. We can choose a set of basis directions and establish a 2-di-
mensional coordinate system and we can map points on the plane to points on the 
sphere’s surface.

Now consider an arbitrary real 3 × 3 matrix A ∈R3×3

which we could write as a linear combination of basis matrices

where each basis matrix represents a direction  in a 9-dimensional space of 3 × 3 ma-
trices. Every possible 3 × 3 matrix is represented by a point in this space.

Not all matrices in this space are proper rotation matrices belonging to SO(3), 
but those that do lie on a manifold  since SO(3) is a Lie group. The null rotation, 
represented by the identity matrix, is one point in this space. At that point we can 
construct a tangent space which has only 3 dimensions. Every point in the tangent 
space – the derivatives of the manifold – can be expressed as a linear combination 
of   basis matrices

In this book’s notation the identity is de-
noted by 0 (implying null motion) so we 
can say that ξ ⊕ 0 = 0 ⊕ ξ = ξ .

In this book’s  notation the ⊕ operator is 
the group operator.

In this book’s  notation we use the opera-
tor �ξ  to form the inverse.



613Appendix D  ·  Lie Groups and Algebras

 (D.1)

which is the Lie algebra  of the SO(3) group. The bases of this space: G1, G2 and G3 are 
called the generators of SO(3) and belong to so(3).�

Equation D.1 can be written as a skew-symmetric matrix parameterized by the vec-
tor ω = (ω1, ω2, ω3) ∈R3

and this refl ects the 3 degrees of freedom of the SO(3) group embedded in the space 
of all 3 × 3 matrices. The 3DOF is consistent with our intuition about rotations in 
3D space and also Euler’s rotation theorem.

Mapping between vectors and   skew-symmetric matrices is frequently required and 
the following shorthand  notation will be used

The fi rst mapping is performed by the Toolbox function skew  and the second by vex  
(which is named after the ∨×).

The exponential of any matrix in so(3) is a valid member of SO(3)

and an effi cient closed-form solution is given by Rodrigues’ rotation formula

Finally, consider an arbitrary real 4 × 4 matrix A ∈R4×4

which we could write as a linear combination of basis matrices

where each basis matrix represents a direction  in a 16-dimensional space of all possible 
4 × 4 matrices. Every 4 × 4 matrix is represented by a point in this space.

Not all matrices in this space are proper homogeneous transformation matrices 
belonging to SE(3), but those that do lie on a smooth manifold . The null motion (zero 
rotation and translation), which is represented by the identity matrix, is one point in 
this space. At that point we can construct a tangent space, which has 6 dimensions in 
this case, and points in the tangent space can be expressed as a linear combination 
of basis matrices

The equivalent algebra is denoted using 
lower case letters and is a set of matrices.
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and these   generator matrices belong to the Lie algebra of the group SE(3) and are de-
noted se(3). This can be written in general form as

which is an augmented skew symmetric matrix   parameterized by S = (v, ω) ∈ R6 
which is referred to as a twist  and has physical interpretation in terms of a screw axis 
direction and position. The sparse matrix structure and this concise parameteriza-
tion refl ects the 6 degrees of freedom of the SE(3) group embedded in the space of all 
4 × 4 matrices. We extend our earlier shorthand  notation

We can use these operators to convert between a twist representation which is a 
6-vector and a Lie algebra representation which is a 4 × 4 augmented skew-symmetric 
matrix. We convert the Lie algebra to the Lie group representation using

or the inverse using the matrix logarithm. The exponential and the logarithm each 
have an effi cient closed form solution.

Transforming a Twist  – the Adjoint Representation

We have seen that rigid-body motions can be described by a twist  which represents 
motion in terms of a screw axis direction and position, for example in Fig. D.1 the 
twist SA can be used to transform points on the body. If the screw is rigidly attached 
to the body which undergoes some motion in SE(3) the new twist is

Fig. D.1.
Points in the body (grey cloud) can 
be transformed by the twist SA. 
If the body and the screw axis 
undergo a rigid-body transfor-
mation Aξ B the new twist is SB
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Fig. D.2.
The menagerie of SE(3) related 

quantities. Matrix values are 
coded as: 0 (black), 1 (white), 

other values (grey). Transforma-
tions between types are indicat-

ed by blue arrows with the rel-
evant class plus method name. 
Operations are indicated by red 
arrows: the tail-end object oper-
ates on the head-end object and 
results in another object of the 

head-end type

where

 (D.2)

is the   adjoint representation of the rigid-body motion. Alternatively we can write

where ad(S) is the  logarithm of the adjoint and defi ned in terms of the twist parameters as

The relationship between the various mathematical objects discussed are shown 
in Fig. D.2.
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In robotics and computer vision the equations we encounter are often nonlinear. To 
apply familiar and powerful analytic techniques we must work with linear or qua-
dratic approximations to these equations. The principle is illustrated in Fig. E.1 
for the 1-dimensional case, and the analytical approximations shown in red are made 
at x = x0. The approximation equals the nonlinear function at x0 but is increasing 
inaccurate as we move away from that point. This is called a local approximation 
since it is valid in a region local to x0 – the size of the valid region depends on the 
severity of the nonlinearity. This approach can be extended to an arbitrary number 
of dimensions. 

Scalar  Function  of a Scalar

The function f: R�R can be expressed as a Taylor series 

which we truncate to form a fi rst-order or linear approximation

or a second-order approximation

where ∆ ∈R is an infi nitesimal change in x relative to the linearization point x0, and 
the fi rst and second derivatives are given by J(x0) = df/dx|x0 and H(x0) = d2f/dx2|x0 
respectively.

Linearization , Jacobians 
and Hessians 

Fig. E.1.
The nonlinear function f (x) 

(black) is approximated (red) at 
the point x = x0 by a a line – a 

linear or fi rst-order approxima-
tion, b a parabola – a second-or-

der approximation. At the lin-
earization point both curves are 

equal and tangent to the func-
tion while for b the second de-

rivatives also match
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Ludwig Otto Hesse  (1811–1874) 
was a German mathematician, 
born in Königsberg, Prussia, who
studied under Jacobi (p. 232) and
Bessel at the University of Kö-
nigsberg. He taught at Königs-
berg, Halle, Heidelberg and fi -
nally at the newly established 
Polytechnic School in Munich. 
In 1869 he joined the Bavarian 
Academy of Sciences.

Scalar Function  of a Vector 

The scalar fi eld  f(x): Rn�R can be expressed as a Taylor series

which we can truncate to form a fi rst-order or linear approximation

or a second-order approximation

where ∆ ∈Rn is an infi nitesimal change in x ∈Rn relative to the linearization point x0, 
J ∈R1×n is the vector version of the fi rst derivative, and H ∈Rn×n is the Hessian – the 
 matrix version of the second derivative.

The derivative of the function f(·) with respect to the vector x is

and is itself a vector that points in the direction at which the function f(x) has maxi-
mal increase. It is often written as ∇x f to make explicit that the differentiation is with 
respect to x.

The Hessian  is an n × n symmetric matrix of second derivatives

The function is at a critical point when the Jacobian is not full rank. If the Hessian 
is  positive defi nite then the function is at a local minimum, if  negative defi nite then a 
local maximum, and if  indefi nite then the function is at a saddle point.

For functions which are quadratic in x, as is the case for least-squares problems, it 
can be shown that the Hessian is

which is frequently  approximated by just the fi rst term and this is key to Gauss-Newton 
least-squares optimization discussed in Sect. F.2.2.

Vector  Function of a Vector 

The vector fi eld  f(x): Rn�R
m can be expressed as a Taylor series which can also be 

written as
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where fi:R
m →R for i ∈ {1, 2,� n}. The derivative of f with respect to the vector x 

can be expressed in matrix form as a  Jacobian matrix

which can also be written as

This derivative is also known as the tangent map of f, denoted Tf, or the differential 
of f denoted Df. To make explicit that the differentiation is with respect to x this can 
be denoted as Jx, Txf, Dxf or even ∂f / ∂x.

The Hessian in this case is H ∈Rn×m×n which is a 3-dimensional array called a cubix.

Deriving Jacobians

Jacobians of functions are required for many optimization algorithms as well as for 
the  extended Kalman fi lter, and can be evaluated numerically or symbolically.

Consider Eq. 6.8 for the range and bearing angle of a landmark given the pose of 
the vehicle and the position of the landmark.  We can express this as the very simple 
MATLAB® anonymous function

>> zrange = @(xi, xv, w) ...
       [ sqrt((xi(1)-xv(1))^2 + (xi(2)-xv(2))^2) + w(1);
         atan((xi(2)-xv(2))/(xi(1)-xv(1)))-xv(3) + w(2) ];

To estimate the Jacobian Hxv = ∂h / ∂xv for xv = (1, 2, þ) and xi = (10, 8) we can com-
pute a fi rst-order numerical difference

>> xv = [1, 2, pi/3]; xi = [10, 8]; w= [0,0];
>> h0 = zrange(xi, xv, w)
h0 =
   10.8167
   -0.4592
>> d = 0.001;
>> J = [ zrange(xi, xv+[1,0,0]*d, w)-h0 ...
         zrange(xi, xv+[0,1,0]*d, w)-h0, ...
         zrange(xi, xv+[0,0,1]*d,w)-h0]  /  d
J =
   -0.8320   -0.5547         0
    0.0513   -0.0769   -1.0000

which shares the characteristic last column with the Jacobian shown in Eq. 6.14. Note 
that in computing this Jacobian we have set the measurement noise w to zero. The 
principal diffi culty with this approach is choosing d, the difference used to compute 
the fi nite-difference approximation to the derivative. Too large and the results will be 
quite inaccurate if the function is nonlinear, too small and numerical problems will 
lead to reduced accuracy.
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Alternatively we can perform the differentiation symbolically. This particular func-
tion is relatively simple and the derivatives can be determined easily using differential 
calculus. The numerical derivative can be used as a quick check for correctness. To 
avoid the possibility of error, or for more complex functions we can perform the differ-
entiation symbolically using any of a large number of computer algebra packages. Using 
the MATLAB Symbolic Math Toolbox™ we can declare some symbolic variables

>> syms xi yi xv yv thetav wr wb

and then evaluate the same function as above
>> z = zrange([xi yi], [xv yv thetav], [wr wb])
z =
        wr + ((xi - xv)/(yi - yv)^2)^(1/2)
 wb - thetav + atan((yi - yv)/(xi - xv))

which is simply Eq. 6.8 in MATLAB symbolic form. The Jacobian is computed by a 
Symbolic Math Toolbox™ function

>> J =  jacobian(z, [xv yv thetav])
J =
[ -(2*xi - 2*xv)/(2*((xi - xv)^2 + (yi - yv)^2)^(1/2)),	
    -(2*yi - 2*yv)/(2*((xi - xv)^2 + (yi - yv)^2)^(1/2)),  0]
[ (yi - yv)/((xi - xv)^2*((yi - yv)^2/(xi - xv)^2 + 1)),	
    -1/((xi - xv)*((yi - yv)^2/(xi - xv)^2 + 1)), -1]

which has the required dimensions

>> about(J)
J [sym] : 2x3 (112 bytes) 

and the characteristic last column. We could cut and paste this code into our program 
or automatically create a MATLAB callable function

>> Jf = matlabFunction(J);

where Jf is a MATLAB function handle. We can evaluate the Jacobian at the operat-
ing point given above

>> xv = [1, 2, pi/3]; xi = [10, 8]; w = [0,0];
>> Jf( xi(1), xv(1), xi(2), xv(2) )
ans =
   -0.8321   -0.5547         0
    0.0513   -0.0769   -1.0000  

which is similar to the approximation above obtained numerically. The function 
 matlabFunction can also write the function to an M-fi le. The functions  ccode 
and  fcode generate C and Fortran representations of the Jacobian.

Another interesting approach is the package ADOL-C which is an open-source 
tool for the automatic differentiation of C and C++ programs, that is, given a func-
tion written in C it will return a Jacobian function written in C. It is available at 
http://www.coin-or.org/projects/ADOL-C.xml.
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F

Solving systems of linear and nonlinear equations, particularly over-constrained sys-
tems, is a common problem in robotics and computer vision.

F.1 
l
Linear Problems 

F.1.1 
l
Nonhomogeneous Systems 

These are equations of the form

where we wish to solve for the unknown vector x ∈Rn and A ∈Rm×n and b ∈Rm are 
constants.

If n = m then A is square, and if A is nonsingular then the solution is obtained us-
ing the matrix inverse

In practice we often encounter systems where m > n, that is there are more equa-
tions than unknowns. In general there will not be an exact solution but we can attempt 
to fi nd the best solution, in a least-squares sense, which is

That solution is given by

which is known as the pseudo inverse   or more formally the left-generalized inverse .�

Using  SVD where A = UΣVT this is

where Σ−1 is simply the element-wise inverse of the diagonal elements of ΣT.
If the matrix is singular, or the system is under constrained n < m, then there are 

infi nitely many solutions. We can again use the SVD approach

where this time Σ−1 is the element-wise inverse of the nonzero diagonal elements of Σ , 
all other zeros are left in place.

In MATLAB all these problems can be solved using the backslash  operator 

>> x = A\b

Solving Systems  of Equations 

Since the inverse left multiplies b.
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For the problem

where R is an unknown rotation matrix in SO(n), and P = {p1� pm} ∈ Rn×m and 
Q = {q1� qm} ∈Rn×m comprise column vectors for which qi = Rpi. We fi rst compute 
the moment matrix 

and take then compute the  SVD M = UΣVT. The least squares estimate of the rota-
tion matrix is

and is guaranteed to be an orthogonal matrix.

F.1.2 
l
Homogeneous Systems 

These are equations of the form

and always have the trivial solution x = 0. If A is square and nonsingular this is the 
only solution. Otherwise, if A is not of full rank, that is the matrix is nonsquare, or 
square and singular then there are an infi nite number of solutions which are linear 
combinations of vectors in the right null space  of A which is computed by the MATLAB 
function null .

F.2 
l
Nonlinear Problems 

Many problems in robotics and computer vision involves sets of nonlinear equations. 
Solution of these problems requires linearizing the equations about an estimated so-
lution, solving for an improved solution and iterating. Linearization is discussed in 
Appendix E.

F.2.1 
l
Finding Roots 

Consider a set of equations expressed in the form

where f : Rn�R
m. This is a nonlinear version of the homogeneous system described 

above. We fi rst linearize the equation about our best estimate of the solution x0

 (F.1)

where ∆ ∈Rn is an infi nitesimal change in x relative to x0. We truncate this to form 
a linear approximation

 (F.2)
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where f0 = f(x0) is the function value and J = J(x0) ∈R1×n the Jacobian, both evaluated at 
the linearization point. Now we solve an approximation of our original problem f ′(∆) = 0

If n ≠ m then J is nonsquare and we can use the pseudo-inverse or the MATLAB 
backslash  operator -J\f0. The computed step ∆ is based on an approximation to 
the original nonlinear function so x0 + ∆ will generally not be the solution but it will 
be closer. This leads to an iterative solution – the Newton-Raphson method  :

F.2.2 
l
Nonlinear Minimization 

A very common class of problems involves fi nding the minimum of a scalar function 
f(x): Rn�R which can be expressed as

The derivative of the linearized system Eq. F.2 is

and if we consider the function to be a multi-dimensional surface then J(x0) is vector 
indicating the direction and magnitude of the slope at x = x0 so an update of

will move the estimate down hill  toward the minimum. This leads to an iterative solu-
tion called gradient descent :

and the challenge is to choose the appropriate step size β .
If we include the second-order term from Eq. F.1 the approximation becomes

and to fi nd its minima we take the derivative and set it to zero

and the update is
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This leads to another iterative solution – Newton’s method  . The challenge is de-
termining the Hessian  of the nonlinear system, either by numerical approximation 
or symbolic manipulation.

F.2.3 
l
Nonlinear Least Squares Minimization 

Very commonly the scalar function we wish to optimize is a quadratic cost function

where f (x): Rn�R
m is some vector-valued nonlinear function which we can lin-

earize as

and the scalar cost is

where JT J ∈Rn×n is the approximate Hessian from page 618 .
To minimize the error of this linearized least squares system we take the derivative 

with respect to ∆ and set it to zero

which we can solve for the locally optimal update

 (F.3)

where we can recognize the pseudo or left generalized-inverse of J. Once again we 
iterate to fi nd the solution – a Gauss-Newton iteration .

Numerical Issues

When solving Eq. F.3 we may fi nd that the Hessian JTJ is poorly conditioned or 
singular and this can be remedied by adding a damping term

which makes the system more positive defi nite. Since JTJ + λI is effectively in the de-
nominator, increasing λ  will decrease �∆� and slow convergence.

How do we choose λ? We can experiment with different values but a better way is 
the Levenberg-Marquardt   algorithm (Algorithm F.1) which adjusts λ  to ensure con-
vergence. If the error increases compared to the last step then the step is repeated with 
increased λ  to reduce the step size. If the error decreases then λ  is reduced to increase 
the convergence rate. The updates vary continuously between Gauss-Newton (low λ) 
and  gradient descent (high λ).

For problems where n is large inverting the n × n approximate Hessian is expensive. 
Typically m < n which means the Jacobian is not square and Eq. F.3 can be rewritten as

One term is the transpose of the other, 
but since both result in a scalar transpo-
sition doesn’t matter.
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which is the right pseudo-inverse and involves inverting a smaller matrix. We can 
reintroduce a damping term

and if λ  is large this becomes simply

but exhibits very slow convergence.
If fk(·) has additive noise that is zero mean, normally distributed and time invari-

ant we have a maximum likelihood estimator of x. Outlier data has a signifi cant im-
pact on the result since errors are squared. Robust estimators minimize the effect of 
outlier data and in an M-estimator

the squared norm is replaced by a loss function ρ(·) which models the likelihood of its 
argument. Unlike the squared norm these functions fl atten off for large values, and some 
common examples include the Huber loss function   and the Tukey biweight function  .

F.2.4 
l

Sparse Nonlinear Least Squares

For a large class of problems the overall cost is the sum of quadratic costs

 (F.4)

Consider the problem of fi tting a model z= φ(w;x) where φ: Rp�Rm with parameters 
x∈Rn to a set of data points (wk, zk). The error vector associated with the kth data point is

and minimizing Eq. F.4 gives the optimal model parameters x.

Algorithm F.1.
Levenberg-Marquardt algo-

rithm  , c is typically chosen in 
the range 2 to 10
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Another example is pose-graph optimization as used for pose-graph SLAM and 
bundle adjustment. Edge k in the graph connects vertices i and j and has an associ-
ated cost fk(·): Rn�R

m

 (F.5)

where e#
k is the observed value of the edge parameter and -k(x) is the estimate based 

on the state x of the pose graph. This is linearized

and the squared error for the edge is

where Ωk ∈Rm×m is a  positive-defi nite constant matrix� which we combine as

where bT
k = fT

0,kΩk Jk and Hk = Σk JT
kΩkJk. The total cost is the sum of all edge costs

where bT = Σkf
T
0,kΩkJk and H = ΣkJT

kΩkJk are summations over the edges of the graph. 
Once they are computed we proceed as previously, taking the derivative with respect
to ∆ and setting it to zero, solving for the update ∆ and iterating using Algorithm F.1.

State Vector

The state vector is a concatenation of all poses and coordinates in the optimization 
problem. For pose-graph SLAM it takes the form

Poses must be represented in a vector form and preferably one that is compact and 
singularity free. For SE(2) this is quite straightforward and we use ξ ∼ (x, y, θ) ∈R3. 
For SE(3) we will use ξ ∼ (t, r) ∈R6 which comprises translation t ∈R3 and rotation 
r ∈R3. The latter can be triple angles (Euler or roll-pitch-yaw), axis-angle, exponential 
coordinates or the vector part of a unit-quaternion as discussed on page 499. The state 
vector has structure, comprising a sequence of subvectors one per pose. We denote the 
ith subvector of x as xi ∈RNξ, where Nξ = 3 for SE(2) and Nξ = 6 for SE(3).

For pose-graph SLAM with landmarks, or bundle adjustment the state vector com-
prises poses and coordinate vectors

This can be used to specify the signifi-
cance of the edge detΩk with respect to 
other edges, as well as the relative sig-
nificance of the elements of fk(·).
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and the ith and jth subvectors of x are denoted xi ∈RNξ and xj ∈RNP and correspond 
to ξ i and Pj respectively.

Inherent Structure

A key observation is that the error vector fk(x) for edge k depends only on the associ-
ated vertices i and j, and this means that the Jacobian

is mostly zeros

where Ai ∈Rm×Nξ and Bj ∈Rm×Nξ or Bj ∈Rm×NP according to the state vector structure.
This sparse block structure means that the vector bk and the Hessian JT

kΩkJk also 
have a sparse block structure as shown in Fig. F.1. The Hessian has just four small 
nonzero blocks so rather than compute the product JT

kΩkJk, which involves many mul-
tiplications by zero, we can just compute the four nonzero blocks and add them into 
the Hessian for the least squares system. All blocks in a row have the same height, and 
in a column have the same width. For pose-graph SLAM with landmarks, or bundle 
adjustment the blocks are of different sizes as shown in Fig. F.1b.

If the value of an edge represents pose then Eq. F.5 must be replaced with 
fk(x) = -k(x)� e#

k. We generalize this with the � operator to indicate that the use of 
− or � as appropriate. Similarly when updating the state vector at the end of an itera-
tion the poses must be compounded x0 ← x0 ⊕ ∆ and we generalize this to the � op-
erator. The pose-graph optimization is solved by the iteration in Algorithm F.2.

Alogorithm F.2.
Pose graph optimization. For 
Levenberg-Marquardt opti-

mization   replace line 14 with
lines 4–12 from Algorithm F.1
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Large Scale Problems

For pose-graph SLAM with thousands of poses or bundle adjustment with thousands of 
cameras and millions of landmarks the Hessian matrix will be massive leading to com-
putation and storage challenges. The overall Hessian is the summation of many edge 
Hessians structured as shown in Fig. F.1 and the total Hessian for two problems we have 
discussed are shown in Fig. F.2. They have clear structure which we can exploit.

Firstly, in both cases the Hessian is   sparse – that is, it contains mostly zeros. MATLAB 
has built-in support for such matrices and instead of storing all those zeros (at 8 bytes 
each) it simply keeps a list of the nonzero elements. All the standard matrix operations 
employ effi cient algorithms for manipulating sparse matrices.

Secondly, for the bundle adjustment case we see that the Hessian has two block 
diagonal submatrices so we partition the system as

where B and C are block diagonal.� The subscripts ξ  and P denote the blocks of ∆ 
and b associated with camera poses and landmark positions respectively. We solve 
fi rst for the camera pose updates ∆ξ

where S = B − EC−1ET is the Schur complement  which is a symmetric positive-defi nite 
matrix that is also block diagonal. Then we solve for the update to landmark positions

More sophisticated techniques exploit the fi ne-scale block structure to further re-
duce computational time, for example GTSAM (https://bitbucket.org/gtborg/gtsam) 
and SLAM++ (https://sourceforge.net/projects/slam-plus-plus).

Fig. F.1. Inherent structure of the 
error vector  , Jacobian and Hessian 
matrices for graph-based least-
squares problems. a Pose-graph 
SLAM with N nodes representing
robot pose as RNξ; b bundle adjust-
ment with N nodes representing 
camera pose as RNξ and M nodes 
representing landmark position 
as RNP. The indices i and j denote 
the ith and jth block not the ith and 
jth row or column. White indicates 
zero values

A block diagonal matrix is inverted by 
simply inverting each of the nonzero 
blocks along the diagonal.
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Anchoring

Optimization provides a solution where the relative poses and positions give the low-
est overall cost, and the solution will have an arbitrary transformation with respect to 
a global reference frame. To obtain absolute poses and positions we must anchor or 
fi x some nodes – assign them values with respect to the global frame and prevent the 
optimization from adjusting them. The appropriate way to achieve this is to remove 
from H and b the rows and columns corresponding to the anchored poses and posi-
tions. We then solve a lower dimensional problem for ∆′ which will be shorter than 
x and careful book keeping is required to correctly match the subvectors of ∆′ with 
those of x for the update.

Fig. F.2. Hessian sparsity maps
produced using the MATLAB 
 spy function, the number of non-
zero elements is shown beneath 
the plot. a Hessian for the pose-
graph SLAM problem of Fig. 6.17, 
the diagonal elements represent 
pose constraints between successive 
nodes due to odometry, the off-di-
agonal terms represent constraints 
due to revisiting locations (loop 
closures); b Hessian for a bundle 
adjustment problem with 10 cam-
eras and 110 landmarks (vision/
examples/bademo.m)
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The 1-dimensional  Gaussian  function

 (G.1)

is described by the position of its peak µ  and its width σ . The total area under the 
curve is unity and g(x) > 0, ∀x. The function can be plotted using the Toolbox func-
tion   gaussfunc

>> x = linspace(-6, 6, 500);
>> plot(x, gaussfunc(0, 1, x), 'r' )
>> hold on
>> plot(x, gaussfunc(0, 2^2, x), '--b' )

and Fig. G.1 shows two Gaussians with zero mean and σ = 1 and σ = 2. Note that the 
second argument to gaussfunc is the variance not standard deviation.

If the Gaussian is considered to be a  probability density function (PDF) then this is 
the well known normal distribution and the peak position µ  is the mean value and the 
width σ  is the standard deviation. A  random variable drawn from a normal distribu-
tion is often written as X ∼ N(µ, σ 2), and N(0, 1) is referred to as the standard normal 
distribution – the MATLAB function  randn draws random numbers from this dis-
tribution. To draw one hundred Gaussian random numbers with mean mu and stan-
dard deviation  sigma is

>> g = sigma * randn(100) + mu;

The probability that a random value falls within an interval x ∈ [x1, x2] is obtained 
by integration

 Gaussian  Random Variables

Fig. G.1.
Two Gaussian functions, both 
with with mean µ= 0, and with 
standard deviation σ = 1, and 
σ= 2. The markers indicate the
points x = µ ± 1σ. The blue curve
is wider but less tall, since the 

total area under the curve is unity
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or evaluation of the cumulative normal distribution function Φ(x). The marked points 
in Fig. G.1 at µ ± 1σ delimit the 1σ  confi dence interval. The area under the curve over 
this interval is 0.68, so the probability of a random value being drawn from this in-
terval is 68%.

The Gaussian can be extended to an arbitrary number of dimensions. The n-di-
mensional Gaussian, or multivariate normal distribution, is

 (G.2)

and compared to the scalar case of Eq. G.1 x ∈Rn and ¹ ∈Rn have become vectors, 
the squared term in the exponent has been replaced by a matrix quadratic form, 
and σ 2, the variance, has become a positive-defi nite (and hence symmetric)  covari-
ance matrix P ∈Rn×n. The diagonal elements represent the variance of xi and the off-
diagonal elements Pij are the  correlationss between xi and xj. If the variables are in-
dependent or uncorrelated the matrix P would be diagonal. The covariance matrix is 
symmetric and positive defi nite.

We can plot a 2-dimensional Gaussian
>> [x,y] = meshgrid(-5:0.1:5, -5:0.1:5);
>> P = diag([1 2^2]);
>> surfc(x, y,  gaussfunc([0 0], P, x, y))

as a surface which is shown in Fig. G.2. In this case ¹ = (0, 0) and P = diag(12, 22) which 
corresponds to uncorrelated variables with standard deviation of 1 and 2 respectively. 
Figure G.2 also shows a number of elliptical contours – contours of constant prob-
ability density. If this 2-dimensional probability density function represents the po-
sition of a robot in the xy-plane the most likely position for the robot is at (0, 0) and 
the size of the  ellipse says something about our spatial certainty. A particular contour 
indicates the boundary of a region within which the robot is located with a particu-
lar probability. A large ellipse indicates we know, with that probability, that the robot 
is somewhere inside a large area – we have low certainty about the robot’s position. 
Conversely, a small ellipse means that we know the robot, with the same probability, 
is somewhere within a much smaller area.

The contour lines are ellipses and in this example the radii in the y- and x-direc-
tions are in the ratio 2 :1 as defi ned by the ratio of the standard deviations. For higher 
order Gaussians, n > 2, the corresponding confi dence interval is the surface of an  el-
lipsoid in n-dimensional space.

Fig. G.2.
The 2-dimensional Gaussian 
with covariance P = diag(12, 22). 
Contours lines of constant  prob-
ability density are shown beneath
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The connection between   Gaussian probability density functions and  ellipses can 
be found in the quadratic exponent of Eq. G.2 which is the equation of an  ellipse or 
 ellipsoid�. All the points that satisfy

result in a constant probability density value, that is, a contour of the 2-dimensional 
Gaussian. s is related to the probability by

which is the χ2 distribution� with n degrees of freedom, 2 in this case, and p is the prob-
ability that the point x lies on the ellipse. For example the 50% confi dence interval is

>> s = chi2inv(0.5, 2)
s =
    1.3863

where the fi rst argument is the probability and the second is the number of degrees 
of freedom�.

If the covariance matrix is diagonal then the ellipse is aligned with the x- and 
y-axes as we saw in Sect. C.1.4. This indicates that the two variables are independent 
and have zero correlation. Conversely a rotated  ellipse indicates that the covariance 
is not diagonal and the two variables are correlated.

To draw a covariance  ellipse we use the general approach for ellipses outlined in 
Sect. C.1.4 but the right-hand side of the ellipse equation is s not 1, and E ≡ P.

It is also the  definition of Mahalanobis 
distance , the covariance weighted dis-
tance between x and ¹.

If we draw a vector of length n from the 
multivariate Gaussian each element is 
normally distributed. The sum of squares 
of independent normally distributed val-
ues is known to be distributed according 
to a χ 2 (chi-squared) distribution  with 
n degrees of freedom.

This function requires the MATLAB 
Statistics and Machine Learning Tool-
box™. The Robotics Toolbox provides 
chi2inv_rtb  which is an ap-
proximation for the case n = 2.
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Consider the system shown in Fig. H.1. The physical robot is a “black box” which has a 
true state or pose x that evolves over time according to the applied inputs. We cannot 
directly measure the state, but sensors on the robot have outputs which are a function 
of that true state. Our challenge is: given the system inputs and sensor outputs estimate 
the unknown true state x and how certain we are of that estimate.

At face value this might seem hard, or even impossible, but there are quite a lot of 
things we know about system that will help us. Firstly, we know how the state evolves 
over time as a function of the inputs – this is the state transition� model f(·), and we 
know the inputs to the system u. Our model is unlikely to be perfect� and it is com-
mon to represent this uncertainty by an imaginary  random number generator which is 
corrupting the system state – process noise. Secondly, we know how the sensor output 
depends on the state – this is the sensor model h(·) and its uncertainty is also modeled 
by an imaginary random number generator – sensor noise.

The imaginary random number sources v and w are inside the black box so the 
random numbers are also unknowable. However we can describe the characteristics 
of these random numbers – their distribution which tells us how likely it is that we will 
draw a random number with a particular value. A lot of noise in physical systems can 
be modeled well by the  Gaussian (aka normal) distribution N(µ , σ 2) which is charac-
terized by a mean µ  and a standard deviation σ. There are infi nitely many possible dis-
tributions� but the Gaussian distribution has some nice mathematical properties that 
we will rely on. However we should never assume that noise is Gaussian – we should 
attempt to determine the distribution by understanding the physics of the process and 
the sensor, or from careful measurement and analysis.

Kalman Filter

Fig. H.1.
The physical robot on the left 
has a true state that cannot be 

directly measured, however we 
gain a clue from the sensor out-

put which is a function of this 
unknown true state

Often called the process or motion model.  

Which can be nonsymmetrical or have 
multiple peaks.

For example wheel slippage on a mobile 
ground robot or wind gusts for a UAV.
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In general terms, the problem we wish to solve is:

given a model of the system f (·), h(·), Í and Ñ; the known inputs applied to 
the system u; and some noisy sensor measurements z, fi nd an estimate ' of the 
system state and our uncertainty Ï in that estimate.

In a robotic localization context x is the unknown position or pose of the robot, u is 
the commands sent to the motors and z is the output of various sensors on the robot. 
For a ground robot x would be the pose in SE(2) and u would be the motor commands 
and z might be the measured odometry or range and bearing to landmarks. For a fl ying 
robot x would be the pose in SE(3) and u are the known forces applied to the airframe 
and z might be the measured accelerations and  angular velocities.�

H.1 
l
Linear Systems – Kalman Filter  

Consider the transition model described as a discrete-time linear time-invariant system

 (H.1)

 (H.2)

where k is the time step, x∈Rn is the state vector, and u∈Rm is a vector of inputs to the 
system at time k, for example a velocity command, or applied forces and torques. The ma-
trix F ∈Rn×n describes the dynamics of the system, that is, how the states evolve with time. 
The matrix G ∈Rn×m describes how the inputs are coupled to the system states. The vector 
z∈Rp represents the outputs of the system as measured by sensors. The matrix H ∈Rp×n 
describes how the system states are mapped to the system outputs which we can observe.

To account for errors in the motion model (F and G) or unmodeled disturbances we 
introduce a  Gaussian random variable  v ∈Rn termed the process noise . v〈k〉 ∼ N(0, V), 
that is, it has zero mean and covariance V ∈Rn×n. Covariance is a matrix quantity which is the 
variance for a multi-dimensional distribution – it is a positive defi nite matrix and there-
fore symmetric. The sensor measurement model H is not perfect either and this is mod-
eled by sensor measurement noise, a Gaussian random variable w ∈Rp, w〈k〉 ∼ N(0, W) 
and covariance W ∈Rp×p.

The Kalman fi lter is an optimal estimator for the case where the process and mea-
surement noise are zero-mean  Gaussian noise. The fi lter has two steps: prediction and 
update. The prediction is based on the previous state and the inputs that were applied

 (H.3)

 (H.4)

where ' is the estimate of the state and Ï∈Rn×n is the estimated covariance, or uncertainty, 
in '. The  notation + makes explicit that the left-hand side is an estimate at time k + 1 based 
on information from time k. Í is our best estimate of the covariance of the process noise.

The indicated term in Eq. H.4 projects the estimated covariance from the current time 
step to the next. Consider a one dimensional example where F is a scalar and the state esti-
mate ú〈k〉 has a PDF which is Gaussian with a mean x–〈k〉 and a variance σ2〈k〉. The prediction 
equation maps the state and its Gaussian distribution to a new  Gaussian distribution with 
a mean F x–〈k〉 and a variance F2σ2〈k〉. The term FP〈k〉F〈k〉T is the matrix form of this since

 (H.5)

which scales the covariance appropriately.

The state is a vector and there are many 
approaches to mapping pose to a vector, 
especially the rotational component – 
Euler angles, quaternions, and exponen-
tial coordinates are commonly used.
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The prediction of Ï involves the addition of two positive-defi nite matrices so the 
uncertainty will increase – this is to be expected since we have used an uncertain model 
to predict the future value of an already uncertain estimate. Í must be a reasonable 
estimate of the covariance of the actual process noise. If we overestimate it, that is our 
estimate of process noise is larger than it really is, then we will have a large increase 
in uncertainty at this step, a pessimistic estimate of our certainty.

To counter this growth in uncertainty we need to introduce new information such 
as measurements made by the sensors since they depend on the state. The difference 
between what the sensors measure and what the sensors are predicted to measure is

Some of this difference is due to noise in the sensor, the measurement noise, but 
the remainder provides valuable information related to the error between the actual 
and the predicted value of the state. Rather than considering this as error we refer to 
it more positively as innovation  – new information.

The second step of the Kalman fi lter, the update step, maps the innovation into a 
correction for the predicted state, optimally tweaking the estimate based on what the 
sensors observed

 (H.6)

 (H.7)

Uncertainty is now decreased or defl ated, since new information, from the sensors, 
is being incorporated. The matrix

 (H.8)

is known as the Kalman gain . The term indicated is the estimated covariance of the 
innovation and comprises the uncertainty in the state and the estimated measurement 
noise covariance. If the innovation has high uncertainty in some dimensions then the 
Kalman gain will be correspondingly small, that is, if the new information is uncertain 
then only small changes are made to the state vector. The term HP+〈k+1〉HT in Eq. H.13 
projects the covariance of the state estimate into the space of sensor values.

The covariance matrix must be positive-defi nite but after many updates the accu-
mulated numerical errors may cause this matrix to be no longer symmetric. The posi-
tive-defi nite structure can be enforced by using the Joseph form  of Eq. H.7

but this is computationally more costly.
The equations above constitute the classical Kalman fi lter which is widely used in 

robotics, aerospace and econometric applications. The fi lter has a number of impor-
tant characteristics. Firstly it is optimal, but only if the noise is truly  Gaussian with zero 
mean and time invariant parameters. This is often a good assumption but not always. 
Secondly it is recursive, the output of one iteration is the input to the next. Thirdly, it is 
asynchronous. At a particular iteration if no sensor information is available we just per-
form the prediction step and not the update. In the case that there are different sensors, 
each with their own H, and different sample rates, we just apply the update with the ap-
propriate z and H. The fi lter must be initialized with some reasonable value of ' and Ï, as 
well as good choices of the covariance matrices Í and Ñ. As the fi lter runs the estimated 
covariance �Ï� decreases but never reaches zero – the minimum value can be shown to be 
a function of Í and Ñ. The Kalman-Bucy fi lter is a continuous-time version of this fi lter.
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The covariance matrix Ï is rich in information. The diagonal elements Ïii are the 
variance, or uncertainty, in the state xi. The off-diagonal elements Ïij are the  correla-
tions between states xi and xj and indicate that the errors are not independent. The 
correlations are critical in allowing any piece of new information to fl ow through to 
adjust all the states that affect a particular process output.

H.2 
l
Nonlinear Systems  – Extended Kalman Filter 

For the case where the system is not linear it can be described generally by two func-
tions: the state transition (the motion model in robotics) and the sensor model

 (H.9)

 (H.10)

and as before we represent model uncertainty, external disturbances and sensor noise 
by  Gaussian random variables v and w.

We linearize the state transition function about the current state estimate 'k as 
shown in Fig. H.2 resulting in

 (H.11)

 (H.12)

where Fx = ∂f/∂x∈Rn×n, Fu = ∂f/∂u∈Rn×m, Fv = ∂f/∂v∈Rn×n, Hx = ∂h/∂x∈Rp×n 
and Hw = ∂h/∂w ∈Rp×p are Jacobians of the functions f(·) and h(·). Equating coeffi -
cients between Eq. H.1 and Eq. H.11 gives F ∼ Fx, G ∼ Fu and v〈k〉 ∼ Fvv〈k〉; and between 
Eq. H.2 and Eq. H.12 gives H ∼ Hx and w〈k〉 ∼ Hww〈k〉.

Taking the prediction equation Eq. H.9 with v〈k〉 = 0, and the covariance equation 
Eq. H.4 with the linearized terms substituted we can write the prediction step as

and the update step as

Fig. H.2.
One dimensional example illus-
trating how the nonlinear state 
transition function f : xk� xk+1 
shown in black is linearized 
about the point (ú〈k〉, ú〈k+1〉) 
shown in red
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where the Kalman gain is now

 (H.13)

These equations are only valid at the linearization point '〈k〉 – the Jacobians Fx, 
Fv, Hx, Hw must be computed at every iteration.� The full procedure is summarized 
in Algorithm H.1.

A fundamental problem with the extended Kalman fi lter is that PDFs of the ran-
dom variables are no longer Gaussian after being operated on by the nonlinear func-
tions f(·) and h(·). We can easily illustrate this by considering a nonlinear scalar 
function y = (x + 2)2/4. We will draw a million Gaussian random numbers from the 
normal distribution N(5, 4) which has a mean of 5 and a standard deviation of 2

>> x = 2*randn(1000000,1) + 5;

and map them through our function

>> y = (x+2).^2 / 4;

and plot the probability density function of y

>> histogram(y, 'Normalization', 'pdf');

Algorithm H.1.
Procedure EKF

Fig. H.3.
PDF of the state x (red) which 

is Gaussian N(5, 4) and the 
PDF of the nonlinear function 

y = (x + 2)2/ 4 (black). The 
peak and the mean of the non-

linear distribution are shown by 
blue solid and dashed vertical 

lines respectively

Properly these matrices should be de-
noted as depending on the time step, i.e. 
Fx〈k〉 but this has been dropped in the 
interest of readability.
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which is shown in Fig. H.3. We see that the PDF of y is substantially changed and no 
longer Gaussian. It has lost its symmetry so the mean value is greater than the mode. 
The Jacobians that appear in the EKF equations appropriately scale the covariance 
but the resulting non-Gaussian distribution breaks the assumptions which guaran-
tee that the Kalman fi lter is an optimal estimator. Alternatives include the iterated 
EKF described by Jazwinski (2007) or the Unscented Kalman Filter (UKF) (Julier and 
Uhlmann 2004) or the sigma-point fi lter which uses discrete sample points (sigma 
points) to approximate the PDF.
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A  graph is an abstract representation of a set of objects connected by links and de-
picted graphically as shown in Fig. I.1. Mathematically a graph is denoted G(V, E) 
where V are the vertices or nodes, and E are the links that connect pairs of vertices and 
are called edges or arcs. Edges can be directed (arrows) or undirected as in this case. 
Edges can have an associated weight or cost associated with moving from one vertex 
to another. A sequence of edges from one vertex to another is a path, and a sequence 
that starts and ends at the same vertex is a cycle. An edge from a vertex to itself is a 
loop. Graphs can be used to represent transport, communications or social networks, 
and this branch of mathematics is graph theory.

The Toolbox provides a MATLAB® graph class called  PGraph that supports  em-
bedded graphs where the vertices are associated with a point in an n-dimensional 
space.� To create a new graph

>> g = PGraph()
g =
  2 dimensions
  0 vertices
  0 edges
  0 components 

and by default the nodes of the graph exist in a 2-dimensional space. We can add 
nodes to the graph

>> g.add_node( rand(2,1) );
>> g.add_node( rand(2,1) );
>> g.add_node( rand(2,1) );
>> g.add_node( rand(2,1) );
>> g.add_node( rand(2,1) );     

and each has a  random coordinate. The add_node method returns an integer identi-
fi er for the node just added. A summary of the graph is given with its display method

>> g
g =
  2 dimensions
  5 vertices
  0 edges
  0 components

and shows that the graph has 5 nodes but no edges. The nodes are numbered 1 to 5 
and we add edges between pairs of nodes

>> g.add_edge(1, 2);
>> g.add_edge(1, 3);
>> g.add_edge(1, 4);
>> g.add_edge(2, 3);
>> g.add_edge(2, 4);
>> g.add_edge(4, 5);
>> g
g =
  2 dimensions
  5 vertices
  6 edges
  1 components      

Graphs

This class is used other Toolbox class-
es such as  PRM,  Lattice,  RRT, 
 PoseGraph and  BundleAdjust. 
MATLAB 2015b introduced a built in 
graph class to represent graphs.
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By default the distance between the nodes is the Euclidean distance between the ver-
tices but this can be overridden by a third argument to  add_edge. The methods 
add_node and add_edge return an integer that uniquely identifi es the node or 
edge just created. The graph has one component, that is all the nodes are connected 
into one network.  The graph can be plotted by

>> g.plot('labels') 

as shown in Fig. I.1. The vertices are shown as blue circles, and the option 'labels' 
displays the vertex index next to the circle. Edges are shown as black lines joining ver-
tices. Many options exist to change default plotting behavior. Note that only graphs 
embedded in 2- and 3-dimensional space can be plotted.

The neighbors of vertex 2 are
>> g.neighbours(2)
ans =
     3     4     1 

which are vertices connected to vertex 2 by edges. Each edge has a unique index and 
the edges connecting to vertex 2 are

>> e = g.edges(2)
e =
     4     5     1  

The cost or length of these edges is
>> g.cost(e)
ans =
    0.9597    0.3966    0.6878 

and clearly edge 5 has a lower cost than edges 4 and 1. Edge 5
>> g.vertices(5)'
ans =
     2     4

joins vertices 2 and 4, and vertex 4 is clearly the closest neighbor of vertex 2. Frequently 
we wish to obtain a node’s neighboring vertices and their distances at the same time, 
and this can be achieved conveniently by

>> [n,c] = g.neighbours(2)
n =
     3     4     1
c =
    0.9597    0.3966    0.6878 

Concise information about a node can be obtained by
>> g.about(1)
Node 1 #1@ (0.814724 0.905792 )
  neighbours:   >-o-> 2 3 4 
  edges:   >-o-> 1 2 3 

Arbitrary data can be attached to any node or edge by the methods setvdata and 
setedata respectively and retrieved by the methods vdata and edata respec-
tively.

The vertex closest to the coordinate (0.5, 0.5) is
>> g.closest([0.5, 0.5])
ans =
     4 

and the vertex closest to an interactively selected point is given by g.pick.
The minimum cost path between any two nodes in the graph can be computed us-

ing well known algorithms such as A∗ (Nilsson 1971)
>> g.Astar(3, 5)
ans =
     3     2     4     5 
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or the earlier method by Dijstrka (1959). By default the graph is treated as undirected, 
that is, the edges have no preferred direction. The 'directed' option causes edges 
to be treated as directed, and the path will only traverse edges in their specifi ed direc-
tion which is from the fi rst to the second argument of the method add_edge.

Methods exist to compute various other representations of the graph such as adja-
cency, incidence, degree and Laplacian matrices.

Fig. I.1.
An example graph generated by 

the PGraph class
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Fig. J.1. Peak fi tting. a A signal with 
several local maxima; b closeup 
view of the fi rst maxima with the 
fi t curve (red) and the estimated 
peak (red-◊)

A commonly encountered problem is estimating the position of the peak of some dis-
crete 1-dimensional signal y(k), k ∈ Z, see for example Fig. J.1a

>> load peakfi t1
>> plot(y,  '-o')

Finding the peak to the nearest integer is straightforward using MATLAB’s  max func-
tion

>> [ypk,k] = max(y)
ypk =
    0.9905
k =
     8

which indicates the peak occurs at the eighth element and has a value of 0.9905. In this 
case there is more than one peak and we can use the Toolbox function  peak instead

>> [ypk,k] = peak(y)
ypk =
    0.9905    0.6718   -0.5799
k =
     8    25    16 

which has returned three maxima in descending magnitude. A common test of the quality 
of a peak is its magnitude and the ratio of the height of the second peak to the fi rst peak

>> ypk(2)/ypk(1)
ans =
    0.6783

which is called the ambiguity ratio and is ideally small.
This signal is a sampled representation of a continuous underlying signal y(x) and 

the real peak might actually lie between the samples. If we look at a zoomed version 
of the signal, Fig. J.1b, we can see that although the eighth point is the maximum the 

Peak Finding
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ninth point is only slightly lower so the peak lies somewhere between points eight and 
nine. A common approach is to fi t a parabola

 (J.1)

to the points surrounding the peak. For the discrete peak that occurs at (k, yk) then 
δx = 0 corresponds to k and the discrete x-coordinates on either side correspond 
to δx = −1 and δx = +1 respectively. Substituting the points (k − 1, yk−1), (k, yk) and 
(k + 1, yk+1) into Eq. J.1 we can write three equations

or in compact matrix form as

and then solve for the parabolic coeffi cients

 (J.2)

The maxima of the parabola occurs when its derivative is zero

and substituting the values of a and b from Eq. J.2 we fi nd the displacement of the peak 
of the fi tted parabola with respect to the discrete maxima

so the refi ned, or interpolated, position of the maxima is at

and the estimated value of the maxima is obtained by substituting δ x into Eq. J.1.
The coeffi cient a, which is negative for a maxima, indicates the sharpness of the 

peak which can be useful in determining whether a peak is suffi ciently sharp. A large 
magnitude of a indicates a well defi ned sharp peak wheras a low value indicates a very 
broad peak for which estimation of a refi ned peak may not be so accurate.

Continuing the earlier example we can use the Toolbox function  peak to estimate 
the refi ned peak positions

>> [ymax,xmax] = peak(y, 'interp', 2) 
ymax =
    0.9905    0.6718   -0.5799
xmax =
    8.4394   24.7299   16.2438

where the argument after the 'interp' option indicates that a second-order poly-
nomial should be fi tted. The fi tted parabola is shown in red in Fig. J.1b and is plotted 
if the option 'plot' is given.
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Counting the elements, starting with 1 
at the top-left down each column then 
back to the top of the next rightmost 
column.

If the signal has superimposed noise then there are likely to be multiple peaks, many 
of which are quite minor, and this can be overcome by specifying the scale of the peak. 
For example the peaks that are greater than all other values within ±5 values in the 
horizontal direction are

>> peak(y, 'scale', 5)
ans =
    0.9905    0.8730    0.6718 

In this case the result is unchanged since the signal is fairly smooth.
For a 2-dimensional signal we follow a similar procedure but instead fi t a paraboloid

 (J.3)

which has fi ve coeffi cients that can be calculated from the center value (the discrete 
maximum) and its four neighbors (north, south, east and west) using a similar pro-
cedure to above. The displacement of the estimated peak with respect to the central 
point is

In this case the coeffi cients a and b represent the sharpness of the peak in the x- and 
y-directions, and the quality of the peak can be considered as being min(a, b).

A 2D discrete signal was loaded from peakfi t1 earlier

>> z
z =
   -0.0696    0.0348    0.1394    0.2436    0.3480
    0.0800    0.2000    0.3202    0.4400    0.5600
    0.0400    0.1717    0.3662    0.4117    0.5200
    0.0002    0.2062    0.8766    0.4462    0.4802
   -0.0400    0.0917    0.2862    0.3317    0.4400
   -0.0800    0.0400    0.1602    0.2800    0.4000

In this small example it is clear that the peak is at element (3, 4) using image coordi-
nate convention, but programatically this is

>> [zmax,i] = max(z(:))
zmax =
    0.8766
i =
    16

and the maximum is at the sixteenth element in row-major order� which we convert 
to array subscripts

>> [y,x] = ind2sub(size(z), i)
y =
     4
x =
     3

We can fi nd this more conveniently using the Toolbox function  peak2

>> [zpk,xy]=peak2(z)
zpk =
    0.8766    0.5600
xy =
     3     5
     4     2
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which has returned two local maxima, one per column of the returned variables. This 
function will return all  nonlocal maxima where the size of the local region is given by the 
'scale' option. As for the 1-dimensional case we can refi ne the estimate of the peak

>> [zpk,xy]=peak2(z, 'interp')
Warning: Peak at (5,2) too close to edge of image
zpk =
    0.8839
xy =
    3.1090
    3.9637

that is, the peak is at element (3.1090, 3.9637). When this process is applied to image 
data it is referred to as  subpixel interpolation.
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Hamilton, Sir William Rowan  44, 55, 60, 61
Harrison, John  152
Hartenberg, Richard  198
Helmholtz, Hermann, von  293
Hering, Karl Ewald  293
Herschel, William  288, 337
Hershey, Allen V.  220
Hesse, Ludwig Otto  618
Hough, Paul  455

I

Ilon, Bengt  112

J

Jacobi, Carl Gustav Jacob  232

K

Kálmán, Rudolf  157
Kepler, Johannes  331

L

Lagrange, Joseph-Louis  265
Lambert, Johann Heinrich  309
Land, Edward  307
Laplace, Pierre-Simon  383, 384
Laussedat, Aimé  354
Lazzarini, Mario  174
Leclerc, Georges-Louis  174
Lie, Sophus  611

M

Markov, Andrey  137
Marr, David  388
Maxwell, James Clerk  293
McCarthy, John  4
McCulloch, Warren  4
Metropolis, Nicholas  174
Minsky, Marvin  4
Moler, Cleve  9
Mozi (Chinese philosopher of 5th century bce)  319

Index of People
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N

Newell, Allen  4
Newton, Sir Isaac  67–69, 279, 287, 337
Nyquist, Harold  4, 403

P

Pitts, Walter  4
Planck, Max  288
Plücker, Julius  597
Price, Richard  157
Ptolemy, Claudius  331

R

Rodrigues, Olinde  42, 61

S

Scheinman, Victor  195
Schmidt, Stanley F.  158
Shannon, Claude  4, 403
Simon, Herbert  4
Sobel, Irwin  407
Stefan, Jozef  288
Swan, Sir Joseph  289

T

Tait, Peter  37, 61
Tesla, Nikola  6
Turing, Alan  4

U

Ulam, Stanislaw  174

V

von Goethe, Johann Wolfgang  293
von Kármán, Theodore  198
von Neumann, John  174
Voronoy, Georgy Feodosevich  137

W

Wald, George  292
Walter, William Grey  4, 126
Wien, Wilhelm  288
Wiener, Norbert  4

Y

Young, Thomas  293

Index of Functions, Classes and Methods

Classes are shown in bold, Simulink® models in italics, and methods are prefi xed by a dot.
All others are Toolbox functions.

A

abcolorspace  421
about  77, 118, 145, 204, 213, 264, 360–362, 365, 378, 402, 427, 485, 

520, 551, 573, 620
abs  372
AlphaBeta  579
anaglyph  495
angdiff  103, 566, 577
angles  48
angvec2r  42
angvec2tr  61
animate  76, 77
AprilTag  164
apriltags  164, 184
atan2  372, 601
AxisWebCamera  366

–, .grab  366
–, .size  366

B

BagOfWords  515, 517, 519
–, .contains  516
–, .exemplars  516
–, .occurrence  516
–, .remove_stop  516
–, .similarity  517, 519
–, .wordfreq  516
–, .words  515

–, .wordvector  517
Bicycle  100, 101, 109, 111
Bicycle  163, 166, 168, 176, 185, 575
BinaryOccupancyGrid  148
blackbody  288, 289, 300, 306, 307
boundary  434
boundmatch  436
bug  129
bug.plot  129
bug2  129

–, .path  129, 131
BundleAdjust  498, 499, 502, 641

–, .addcamera  498
–, .errors  501
–, .getcamera  502
–, .getstate  500
–, .optimize  501
–, .plot  499, 502

bwdist  399

C

calib_gui_normal  336
cam  323–325, 481

–, .estpose  539
–, .grab  364

camcald  354
Camera  327, 338, 341, 343, 355, 551
Camera2  579
cast  373
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CatadioptricCamera  341
ccode  620
CentralCamera  323, 331, 338, 341, 343, 352, 355, 465, 467, 468, 

473, 477, 479, 501, 539, 542, 544, 548, 549, 569, 573, 607
–, .C  326
–, .clf  356
–, .derivs  501
–, .E  468
–, .estpose  539
–, .F  467
–, .f  546
–, .fl owfi eld  544, 546
–, .fov  327
–, .hold  356
–, .invC  327
–, .invE  481
–, .invH  477, 511
–, .K  557
–, .mesh  329, 339, 341, 356
–, .move  469, 481, 482, 497
–, .plot  328, 329, 356, 473, 539, 549
–, .plot_epiline  468, 473, 479
–, .pp  549
–, .project  323–325, 328, 335, 497, 542, 557, 607
–, .ray  482
–, .T  329
–, .visjac_e  558
–, .visjac_p  544, 546
–, .visjac_p_polar  568

children  432
circle  556, 557
clf  356
closest  505
cmfrgb  297, 298
cmfxyz  300
colnorm  476, 497
colorkmeans  420–422
colorname  301, 305, 421, 423, 491
colorspace  302, 303, 312
cones  292, 293
ctraj  8, 78, 214, 215
cylinder  329, 356

D

delta2tr  67, 549
descriptor  461
DHFactor  218, 222

–, .dh.command  222
diff  381, 523
DigitalCamera  480
dim  163
distance  461
Dstar  134

–, .costmap  134
–, .modify_cost  135
–, .niter  135
–, .path  135
–, .plan  134, 135

DXform  131
–, .path  131
–, .plan  131, 132
–, .visualize  131
–, .visualize3d  132

E

e2h  29, 467
EarthView  367, 410

–, .grab  367
ebundle  523
efund  523
eig  41, 430, 504
EKF  158, 160, 163, 166–168
ellipsoid  329
epidist  471
eps  50
ETS2  194, 227

–, .fkine  194
–, .plot  195
–, .Rz  194, 196
–, .structure  195, 196
–, .teach  194
–, .Tx  194, 196

ETS3  227
–, .fkine  196
–, .Ry  196
–, .Rz  196
–, .Tx  196
–, .Ty  196
–, .Tz  196

eul2jac  233
eul2r  36, 37
eul2tr  48
eval  218, 222
ExampleHelperRobot Simulator  123
exp  26, 43
expm  26, 43, 47, 52, 54, 61
eye  29, 218

F

fcode  620
FeatureMatch  463, 472, 478, 496

–, .inlier  473, 478, 479, 482
–, .outlier  473, 478
–, .plot  463, 473
–, .ransac  472
–, .show  472, 478
–, .subset  463, 473, 479, 482

FishEyeCamera  338, 339, 355
fkine  214
fl owers  302
fmatrix  470, 471, 531
fminsearch  207

G

gait  225
gaussfunc  631, 632
GeometricJacobian  248
ginput  531
Graph  214

H

h2e  29, 467, 468, 473
histogram  463
homography  474, 510, 531
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homtrans  470, 474–476, 557
homwarp  510, 513
Hough  441, 442

–, .lines  441, 442
–, .plot  442
–, .show  441

humoments  434

I

ianimate  520
ibbox  428
iblobs  432–434
IBVS  549

–, .plot_camera  569
–, .plot_error  569
–, .plot_vel  569
–, .step  549

IBVS_polar  569
IBVS_sph  571
icanny  385, 440, 442
icensus  531
iclose  397
icolor  370, 373
iconv  377, 378, 382–384, 387
icorner  445, 446, 448, 460, 461, 520
icp  180
idecimate  403
idisp  311, 314, 346, 347, 361, 362, 367, 368, 372–374, 

376, 378, 382, 383, 390, 392–394, 398, 401, 410,
415, 418, 419, 421, 424–426, 434, 442, 445, 446,
448–451, 453, 460, 463, 473, 478, 484, 487, 490,
491, 509, 515, 517

idouble  362, 370, 373, 405
iendpoint  399
igamma  372, 373
igraphcut  457
ihist  369, 372, 373, 416, 487
iint  370
ImageSource  365
imeshgrid  404–406, 493
imoments  431, 432
imono  362, 370
imorph  394, 395, 397, 398
imser  419
InitFcn  275, 573, 577
inormhist  372
interp  77, 78
interp2  405
invariant  314, 315
invcamcal  333, 334
InverseKinematics  227
iopen  397, 421
ipaste  368, 512, 513
ipixswitch  374, 487, 492, 494
ipyramid  403
irank  397, 531
iread  314, 345, 360–363, 373, 378, 390, 396, 401, 402, 406,

415, 417, 419, 426, 433, 437, 438, 442, 445, 448, 449,
451, 460, 478, 480, 483, 494, 509, 510, 512, 514, 518, 520

irectify  496
ireplicate  403
iroi  388, 401, 410
irotate  405, 440
isamesize  374

iscale  403
iscalemax  449
iscalespace  449, 451
isift  456
isimilarity  390, 392, 410
ismooth  378, 403
isobel  384
isosurface  357
istereo  484, 485, 487, 490, 496, 531
istretch  372
isurf  460, 462, 478, 496, 512, 514, 518
ithin  136, 399
ithresh  416
itriplepoint  399
iwindow  397

J

jacobian  172, 230, 620
Jacobian  237, 551
jsingu  234
jtraj  204, 212, 214, 216, 263, 274, 275

K

kcircle  368, 379, 397, 398, 421
kdgauss  384
kdog  385
kgauss  378, 384
klog  387
kmeans  423

L

lambda2rg  298, 299
lambda2xy  300, 306, 307, 309
LandmarkMap  160, 163
Lattice  141, 641
LineFeature  441, 442

–, .plot  442
–, .seglength  442

lines  442
Link  198, 200, 217, 256, 268

–, .A  199
–, .a  199
–, .offset  199
–, .RP  199

loadspectrum  289–291, 307, 309, 312, 317
log  25, 42
logm  25, 42, 54
lscov  248
lspb  72, 73, 78, 212
luminos  291, 292

M

makemap  131, 148
matlabFunction  620
max  372, 376, 492, 645
mdl_puma560  201, 207, 263, 265, 274
mdl_quadrotor  118
mdl_twolink  253
meshgrid  265, 266, 345, 347, 357
min  372, 376, 492
mkcube  329, 332, 334, 339, 341, 343
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mkgrid  474, 504, 539, 548
model  103
models  200
MonteCarloLocalization  185
Movie  365, 366, 375

–, .framerate  365
–, .grab  365, 375, 376
–, .nframes  365
–, .size  365
–, .skiptoframe  365
–, .skiptotime  365

mplot  238
mpq  428, 429
mpq_point  603
mpq_poly  435, 566
mstraj  220, 224
mtraj  73, 76, 212
mxn  393

N

Navigation  130
ncc  388, 389, 462
niblack  418
npq  434
npq_poly  435
null  468, 622
numcols  81, 89, 90, 139, 220, 265, 266, 384, 497, 558, 603
numrows  131, 220, 384

O

oa2r  40
ocr  455
otsu  417

P

ParticleFilter  177, 185
pathtool  583
PBVS  539
pcregrigid  183
peak  369, 645–647
peak2  390, 647
PGraph  499, 641

–, .add_edge  641, 642
–, .add_node  641
–, .closest  642
–, .cost  642
–, .edges  642
–, .neighbours  642
–, .plot  642

pinv  240, 241, 243, 549
ploop  261, 280
ploop_test  261
plot  179
plot_box  428, 432, 437
plot_circle  390
plot_frame  334
plot_homline  351, 606
plot_point  28, 390, 478
plot_poly  509
plot_sphere  334, 466, 475
plot2  299, 551
plotbox  437

Plucker  54, 351, 607
–, .L  607
–, .side  597
–, .w  351

pnmfi lt  409
PointFeature  445, 446, 448, 449, 460, 461, 520

–, .descriptor  461
–, .plot  446, 448, 460

pol2cart  179
Polygon  149
PoseGraph  172, 173, 179, 641

–, .optimize  173
–, .plot  172, 173
–, .plotoccgrid  181
–, .scan  179
–, .scanmap  181
–, .scanxy  179
–, .time  180

PRM  138, 148, 641
–, .path  139
–, .plan  138
–, .visualize  139

Q

q.animate  76
qplot  213
qr  327
Quaternion  44

R

rand  139
randinit  138, 139
randn  139, 631
RandomPath  157, 166, 176
RangeBearingSensor  161, 162, 164, 166–168, 177, 186

–, .h  162
–, .H_w  162
–, .H_x  162
–, .reading  161

ransac  471, 472, 476, 496, 512
ransac_driver  531
Ray3D  481, 482

–, .intersect  482
RegionFeature  431–434

–, .boundary  435
–, .boundmatch  436
–, .moments  431
–, .plot_boundary  434
–, .plot_box  432, 434
–, .plot_centroid  432
–, .plot_ellipse  432
–, .shape  431
–, .theta  431
–, .uc  431

Revolute  198
RevoluteMDH  219
rgb2hsv  302
RigidBodyTree  227, 248
RNE  274, 280
roblocks  103, 111
Robot  271
rotx  34, 35, 42, 43, 66
roty  34–36
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rotz  34, 36
rpy2r  41, 62
rpy2tr  45, 332, 504
RRT  144, 641

–, .path  145
–, .plan  144
–, .visualize  144

running  103

S

sad  388, 389
ScalePointFeature  449, 452
se2  405
SE2  57, 172, 201

–, .Rx  211
se2  405
SE3  57, 203, 204, 208, 210, 211, 214–216, 221, 224, 233

–, .Rx  216
–, .Ry  215
–, .Rz  224
–, .torotvec  233

Sensor  161, 166
–, .H_xf  166

sensorfi eld  127, 148
seq  362
SerialLink  200, 206, 212, 224, 227, 249, 265

–, .accel  271
–, .base  203, 204, 265
–, .coriolis  263
–, .edit  200
–, .fdyn  272
–, .fellipse  245
–, .fkine  200, 203, 204, 207, 209, 213, 230, 238
–, .gravity  265
–, .gravload  264, 265, 269
–, .ikcon  227
–, .ikine  208, 210, 215, 216, 224, 227, 246
–, .ikine6s  207–211, 214–216, 221, 227
–, .ikinesym  206
–, .inertia  263, 266, 268, 270
–, .jacob0  231–236, 244, 270
–, .jacobn  232
–, .jtraj  212
–, .links  269
–, .maniplty  215, 236, 271
–, .motordynamics  256
–, .nofriction  272
–, .plot  203, 209, 213, 216, 221, 227, 271
–, .plot3d  227
–, .rne  263, 264, 269
–, .teach  227, 235, 245, 248
–, .tool  203
–, .vellipse  235

shortest  76
showcolorspace  300, 312
SiftPointFeature  456
sigma  631
simplify  25, 62, 172
skew  613
sl_arm_ibvs  572, 573
sl_bicycle  101
sl_braitenberg  126, 127
sl_ctorque  273–275
sl_driveline  104, 105

sl_drivepoint  103, 104
sl_drivepose  108, 109
sl_drivepose_vs  575, 576
sl_fforward  273, 274
sl_ibvs  550, 551, 575
sl_jspace  214, 215
sl_lanechange  101, 102
sl_mobile_vs  574
sl_omni_vs  574
sl_opspace  275
sl_partitioned  566, 567
sl_pursuit  106
sl_quadcopter  118
sl_quadcopter_vs  577
sl_quadrotor  117, 118
sl_quadrotor_vs  576, 577
sl_rrmc  237, 238
sl_rrmc2  238, 239
sl_sea  277
sl_ztorque  271
SO2  57, 74
SO3  57, 76, 504
sol  469
sphere  329, 356
SphericalCamera  343, 355, 571, 576

–, .grab  364
–, .mesh  343
–, .size  364

spy  629
sqrt  159, 270, 372, 384, 406, 430, 502
sqrtm  601
ssd  388, 389
stdisp  483, 484, 496, 497
stereo  484
SurfPointFeature  452, 460, 462, 478, 496, 512, 514, 518

–, .match  463, 464, 478, 479, 496, 512
–, .plot_scale  453, 460
–, .scale  453
–, .support  515

T

T1.torpy  73
t2r  47
t2rt  481
T2xyz  214
tags  164
tau-d  259
tau_ff  260
testpattern  367, 440
Tgrid  474, 477
tic  410
toc  410
torpy  77
tpoly  71, 72, 78, 91, 92, 212
tr2angvec  41
tr2delta  67
tr2eul  36, 37
tr2rotvec  233
tr2rpy  38, 511
Tracking Controller  111
traj  220
tranimate  34, 35, 61, 62
transl  8, 47, 203, 204, 208, 210, 213, 215, 223, 224, 238, 324, 329, 

332, 465, 470, 474, 504, 539, 542, 548, 549, 554, 569, 571, 573
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transl2  27, 28
trexp  43, 52, 54, 61
trinterp  78
tripleangle  38, 62
triplepoint  136
tristim2cc  299, 305, 373
trlog  43, 54, 233
trnorm  539, 549
trot2  27
trotx  47, 48, 204, 222, 265, 329, 474, 542, 573
troty  215, 329, 465, 474
trotz  222, 329, 539, 549, 554, 569, 571
trplot  27, 35, 47, 61
trplot2  28, 61
Ts

–, .t  214
–, .torpy  214

Twist  30, 54, 201
–, .expm  54
–, .line  54
–, .S  54
–, .T  30, 54, 201

U

uint8  302, 360–362
Unicycle  111, 123, 185
UnitQuaternion  45, 46, 50, 68, 76, 81

–, .animate  81
–, .dot  64

–, .dotb  64
–, .omega  81
–, .plot  68
–, .torpy  81

upq  429
upq_poly  435

V

Vehicle  156, 158, 160, 185
–, .Fv  158
–, .Fx  158
–, .step  157

vex  25, 26, 42, 43, 613
VideoCamera  363, 365, 366

–, .grab  364
–, .size  364

VisualServo  541, 549
vl_imdisttf  399
vloop  257, 280
vloop_test  258
VREP_class  187

X, Y, Z

xv  620
zcross  387
zncc  389
zsad  389
zssd  389

General Index

Symbols

\-operator  71, 558, 621, 623
3D reconstruction  350, 459, 492, 527

A

A* search  134, 139, 142, 643
aberration

–, chromatic  330
–, spherical  330

absorption  289, 309
–, coeffi cient  290
–, color change  308
–, light, differential  290
–, shock  277
–, spectrum  290, 309

–, water  289, 309
acceleration  81, 82, 87, 120, 251, 275

–, angular  68
–, centripetal  70
–, Coriolis  70, 91
–, discontinuity  78
–, Euler  70
–, gravitational  70, 83
–, inertial  83
–, proper  83
–, sensor  83, 87
–, specifi c  83

accelerometer  39, 41, 81–83, 87
–, triaxial  83, 87

accomodation  321
ACF (see aggregate channel feature)
Ackermann steering  101
actuation  120

–, electric  256
–, electro-hydraulic  251

actuator  120, 251
–, joint  252
–, saturation  118
–, series-elastic (SEA)  276, 277

addition
–, Minkowski  395
–, vector  587

adjoint
–, logarithm of  615
–, matrix  65, 69, 201, 247, 597, 615

adjugate  352, 589, 607
adjustment, bundle  184, 497–503, 521–523, 527
affi ne

–, camera  353, 503
–, reconstruction  503
–, space  608
–, transformation  608

AGAST detector  462
aggregate channel feature (ACF) descriptor  462
AHRS (see attitude and heading reference system)
aircraft  119, 121
Airy pattern  378
albedo  290
algebra  611
algebraic group  612

General Index
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algorithm
–, box fi lter aggregation  526
–, Bresenham  181
–, bug  128–130
–, clustering  455
–, D*  134
–, dense stereo matching  526
–, FastSLAM (see also Rao-Blackwellized SLAM)  183
–, graphcuts  438
–, hybrid visual-servo  536
–, ICP (iterated closest point)  183, 506, 526
–, k-means  420
–, Levenberg-Marquardt  246, 624, 625
–, MSER (maximally stable extremal region)  419, 438, 454, 462
–, NCC matching (similarity measure)  388, 389, 410, 526, 531
–, Newton-Euler  263
–, Niblack  418
–, pose estimation  537
–, RANSAC (random sampling and consensus)  471, 472, 476, 

478, 504
–, rapidly exploring  145
–, resolved-rate motion control  237
–, RRT (rapidly-exploring random tree)  145
–, SGM (semi-global matching)  526
–, skeletonization  136, 137
–, stereo matching  486
–, subpixel refi nement  526
–, SURF (speeded up robust feature)  453, 462, 463, 472, 478, 

479, 496, 514–516, 524, 556
–, thinning  136, 137
–, velocity loop control  257
–, winner takes all  526

aliasing
–, anti-  402, 407
–, spatial  402, 486, 488

ambiguity ratio  486, 530
ampullae  83
anaglyph  495

–, image  495
–, stereo glasses  35

analysis
–, blob  455
–, connected component  424, 425, 438
–, image

–, segmentation  455
–, sequence  527

–, root-locus  280
analytical Jacobian  233
anamorphic lens  366
angle

–, Cardan  32, 38
–, declination  85
–, elevation  152
–, Euler  36, 37, 38, 40, 59, 75, 196, 232, 233, 247, 499, 571

–, singularity  39
–, heading  87
–, inclination  85
–, joint  5, 13, 198
–, nautical  38
–, representation  36
–, roll-pitch-yaw  37, 38, 78, 212–214, 232

–, rate  76
–, singularity  38

–, rotation  25, 26, 31, 35, 37, 39, 43
–, solid  288, 294, 326

–, steering  101, 102, 141, 145
–, Tait-Bryan  38
–, trajectory

–, joint  272
–, LSPB (linear segment with parabolic blend)  72, 261, 

262
–, XYZ sequence  38

angle-axis representation  41, 45, 499
angular

–, acceleration  68
–, momentum  68, 79, 80
–, rate  88
–, uncertainty  159
–, velocity  50, 52, 64, 68, 70, 79, 80, 155, 233, 636

anthropomorphic  147, 202, 203
anti-aliasing  368, 402, 405, 407
anti-symmetric matrix  589
aperture  349, 364

–, lens  321, 331
Apollo

–, 13  38, 40
–, Lunar Module  39, 81

approach vector  40, 41, 210, 211
April tag  164
architecture, subsumption  127
ArduCopter (software project)  122
artifi cial intelligence  4
Asimo humanoid robot  6
aspect ratio  324, 366, 430–433
astigmatism  330
Asus Xtion  508
ASV (see autonomous surface vehicle)
attitude and heading reference system (AHRS)  87
autocorrelation matrix  444
automata  128
automated guided vehicle  96
autonomous surface vehicle (ASV)  96
autonomous underwater vehicle (AUV)  96, 120, 121
axis

–, instantaneous  64
–, of motion  73
–, optical  40, 321, 325, 496, 509, 510, 541, 554, 566, 568, 570
–, principal  430
–, rotation  32, 39, 41, 43, 48, 50, 63, 68

–, Earth  85
–, screw  47, 52

B

back
–, EMF (electromotive force)  252, 260
–, end  170
–, projection  497

–, error  497, 498
bag of words  515
balancing, white  306, 308
ballbot  112
barrel distortion  330
base

–, force  269
–, transform  199

Baxter robot  211, 277
Bayer

–, fi ltering  294
–, pattern  293
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Beer’s law  289
behavior-based robot  127
Beidou (satellite navigation system)  153
bi-quaternion (see dual quaternion)
bias  88
bicycle model  100, 107, 144, 145, 575
bifi lar pendulum  279
bimodal distribution  416
binarization  415
binary

–, classifi cation  415
–, image  371
–, robust invariant scaleable keypoint (BRISK)  462
–, segmentation  421

blackbody  305
–, radiator  288, 313

black level  389
blade fl apping  115
blend  72

–, parabolic  72
blob analysis  454
body

–, acceleration estimation  83
–, moving  68

body-fi xed frame  39, 55, 70, 79, 115
Boltzmann constant  288
boundary  387, 419

–, curvature  436
–, detection  398
–, effect  380
–, gamut  299
–, pixel  434

bounding box  427
Braitenberg vehicle  126
breaking, stiction  252
Bresenham algorithm  181
BRISK (see binary robust invariant scaleable keypoint)
Buffon’s needle problem  174
bug algorithm  128
bundle adjustment  184, 355, 498–503, 521–523, 527

C

C-space  56
calibration

–, Bouguet’s  331
–, camera  10, 319, 326, 331

–, matrix  325, 333, 510
–, nonlinear method  335

–, sensor  88
–, target  308

camera  170
–, affi ne  353, 503
–, array  13, 349

–, omnidirectional  326, 349
–, panoramic  349

–, baseline  483, 493
–, calibration  10, 319, 326, 331

–, homogeneous transform method  331
–, matrix  325, 333, 510
–, nonlinear method  335

–, canonic  569
–, catadioptric  340–343, 345, 355, 565, 570

–, equiangular  341
–, toolbox  341

–, CCD  293, 294
–, cellphone  324
–, center  332, 350, 481
–, central-perspective  323
–, CMOS  285
–, decomposition  334
–, digital  293, 311
–, DSLR (digital single-lens refl ex)  364
–, dynamic range  294, 365
–, Euclidean  352
–, fi nite projective  352
–, fi sheye lens  337, 339, 346
–, frame  320, 321, 323
–, global shutter  364
–, high dynamic range  294
–, hyperspectral  315
–, image

–, motion  542
–, plane  321, 324

–, infra-red  315, 508
–, lens  321
–, light-fi eld  348, 350
–, location determination problem  334
–, LWIR (long-wavelength infra-red)  315
–, matrix  323, 325–327, 331–333, 352, 469, 503, 527
–, model  10
–, modeling  319–344
–, motion  454, 479, 481, 510, 521, 542, 547, 548, 552, 569
–, multispectral  294
–, nonperspective  352, 353
–, orientation  327, 481
–, panoramic  286, 308, 326, 348, 349
–, parameter

–, extrinsic  331, 333, 353, 503
–, intrinsic  326, 331, 477, 480, 503

–, perspective  319, 338, 340, 343, 344, 348, 350, 503, 565, 
573

–, pin-hole  319, 320, 349
–, plenoptic  348
–, pose  175, 326, 479, 521, 524, 538, 539, 541
–, refl ector-based  337, 340
–, resectioning  354
–, retreat  554, 565
–, RGBD  509
–, rolling shutter  364
–, sensor  292, 313, 314
–, SLR (single-lens refl ex)  366
–, spherical  342, 343, 570–572, 576, 578
–, stereo  6, 483, 492, 496, 521
–, thermographic  315
–, time-of-fl ight  526
–, ultraviolet  315
–, unifi ed model  344
–, velocity  542–544, 547, 551, 552, 556–559, 567
–, verged  471
–, video  311
–, wide-angle  286, 354, 546, 565

Canny edge operator  384
canonical image coordinate  322
car  119–121
Cardan angle sequence  36
Cartesian

–, coordinate system  22
–, geometry  19
–, motion  77, 211, 214, 238, 554
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–, plane  19
–, point  179
–, trajectory  91, 214, 224

catadioptric camera  340–343, 345, 354, 355, 565, 570
cathode ray tube (CRT)  295
caustic  341, 348
CCD sensor  364
celestial navigation  152
CenSurE descriptor (see center surround extremas)
census

–, metric  391, 462
–, transform  391, 489

center
–, of mass  64, 68, 115, 253, 264
–, surround extremas (CenSurE) descriptor  462

central
–, imaging  340, 346, 348
–, moments  429, 603
–, perspective model  321

centripetal
–, acceleration  70
–, force  264

chamfer matching  401
character recognition  418, 436
characteristic scale  449
charge well  364, 365
Chasles theorem  52
child region  432
chi-squared (χ 2) distribution  160, 633
Cholesky decomposition  590
chroma keying  373
chromatic aberration  330
chromaticity  305, 312

–, coordinate  298, 300
–, D65  306
–, diagram  298, 300
–, plane  299
–, space  297, 298

CIE (see Commission Internationale de l’Eclairage)
circle  76, 606

–, feature  544, 557
–, of confusion  321

circularity  434, 435, 454
city block distance  130
classifi cation  415

–, binary  415
–, color  419
–, grey-level  415, 416
–, pixel  418, 421, 423

cleaning up  491
closed-form solution  205
clothoid  101
clustering

–, algorithm  455
–, k-means  421, 423, 514, 515
–, of data  455

CML (see concurrent mapping and localization)
CMOS sensor  329, 364
coarse-to-fi ne strategy  404
coeffi cient

–, Coulomb  272
–, ellipse  557
–, fi lter  376
–, Fourier  436
–, viscous friction  252, 272

colatitude  342, 570
collineation  608
color  291

–, blindness  295
–, change  308, 363
–, classifi cation  419
–, constancy  287, 307
–, fi lter  293, 295
–, gamut  299
–, image  312, 361, 424, 460
–, intensity  375, 382
–, matching

–, experiment  297
–, function  297, 298, 300, 312, 316

–, measuring  294
–, name  300
–, opponent  293
–, plane  362, 373, 377, 448
–, primary  294, 296
–, reproduction  295, 297
–, saturation  297, 301, 302
–, segmentation  419
–, space  301, 312

–, HSV  301
–, L*a*b*  303, 312
–, L*C*h  301
–, L*u*v*  303, 303
–, opponent  303
–, perceptually uniform  303
–, XYZ  300, 301, 312
–, YCBCR  303
–, YUV  303

–, spectral  298
–, temperature  306, 314

Color Checker  313
colorimetry  298
column space  591
Commission Internationale de l’Eclairage (CIE)  298

–, color space
–, L*C*h  301
–, L*u*v*  303

–, standard primary colors  294, 298
–, XYZ primary  300

compass  41, 85, 108, 151, 153, 155, 164, 575
compensation, gravity  118
compound

–, eye  285
–, lens  321

compression
–, format  361, 363, 365
–, gamma  311
–, image  361, 363, 445

computed torque control   274
concurrent mapping and localization (CML)  167
condition number (see matrix condition number)
cone  351, 607

–, cell  292, 293
–, projection  351

confi dence test  164
confi guration

–, change  216, 217
–, kinematic  198, 208, 209, 215, 216, 238
–, of a system  55
–, space  55, 56, 114, 119, 121, 145, 198, 201, 210, 211
–, zero-angle  197
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conic  322, 344, 352, 606
–, projection  351

conjugate point  464, 467, 468, 470, 471, 475, 479, 483
connected component

–, analysis  424, 425, 438
–, graph  139, 642
–, image  424, 426

connectivity  454
–, analysis  424

consistency, left-right check  487
constant

–, Boltzmann  288
–, Planck  288

constraint
–, epipolar  468, 484, 521, 522

–, geometric  468
–, nonholonomic  101, 111
–, rolling  121
–, smoothness  526

control
–, feedback  262
–, feedforward  118, 260, 262, 272, 273
–, fl exible transmission  13
–, force  275
–, independent joint  251
–, integral

–, action  259
–, windup  280

–, joint  251, 262
–, loop, nested  251
–, mobile robot  102–109
–, model-based  192
–, operational space  275, 276
–, proportional  103, 104, 106, 257

–, derivative  116–118
–, integral  118, 260, 261

–, resolved-rate motion  237, 248
–, shared  7
–, space  275, 276
–, torque  272

–, computed  274
–, feedforward  273

–, traded  7
–, velocity  102, 257, 261
–, vision-based (visual servo)  9, 11, 535

convolution  377, 383
–, kernel  377, 382, 387, 393
–, properties  377

coordinate
–, frame  17, 18, 22

–, 2-dimensional  19
–, 3-dimensional  19
–, end-effector  194
–, global  181
–, moving  68
–, right-handed  31
–, velocity  68

–, generalized  55, 100, 109, 113, 119, 120, 194, 263
–, homogeneous  604
–, image  322

–, plane  543
–, joint  198, 218, 229, 263
–, normalized  322, 543
–, Plücker  52, 54, 350, 596
–, point  22, 26, 47, 51

–, random  641
–, system  19
–, vector  17–19, 587, 595, 604

Coriolis
–, acceleration  70, 91
–, force  263, 264, 267, 275

corner
–, detector

–, classical  443
–, Harris  445, 449, 452, 456
–, interest operator  443
–, Noble  445
–, Plessey  445
–, scale-invariant  448
–, scale-space  449
–, Shi-Tomasi  445

–, feature (see also point feature)  446, 448, 461, 521
–, Harris  445, 448, 449, 452, 460–462, 520

–, point  443, 446, 448, 461
–, strength  445, 448

cornerness  445, 446
correlation  376, 377

–, covariance  154, 632, 638
correspondence  461, 505, 506, 508, 521, 557, 559

–, candidate  463, 472
–, closest-point  507
–, feature  460
–, point  180, 471, 484, 522
–, problem  459, 508, 556, 557

cost map  134
Coulomb friction  252, 253, 255
covariance

–, correlation  154, 632, 638
–, ellipse  160, 166, 633
–, matrix  154, 156, 158, 160, 161, 163, 165, 167, 169, 170, 176, 

632
–, extending  165

crack code  434
cropping  401
CRT (see cathode ray tube)
curvature  141, 444, 448

–, boundary  436
–, principal  444

cybernetics  1, 4, 126, 147

D

D*  134
D65

–, chromaticity  306
–, white  304, 305, 306, 312

d’Alembert force  69
damped inverse  240
data

–, association  164, 460, 471, 472
–, error  153, 164

–, laser scan  179
–, type  57, 58

dead reckoning  97, 151, 155
decimation, image  402
declination

–, angle  85
–, image  402
–, magnetic  85

decoding, gamma  311
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decomposition  478
–, camera  334
–, Cholesky  590
–, image  403
–, matrix  525
–, plane  478
–, RQ  327
–, spectral  591
–, value  506

Deep Phreatic Thermal Explorer (DEPTHX, AUV)  120, 121
defi nition

–, eigenvalue, eigenvector  41
–, frame  70
–, Mahalanobis distance  633
–, robot  5, 126, 130
–, white  306

degree of freedom (DOF)  39, 56, 73, 114, 120, 121, 191, 193, 195, 
208, 210, 231, 234, 236, 240–242, 542, 562, 565, 577

Denavit-Hartenberg
–, notation  196, 197, 217, 218, 221, 229

–, modifi ed  218
–, parameter  197, 200, 227

depth of fi eld  321
DEPTHX (see Deep Phreatic Thermal Explorer)
derivative

–, of Gaussian  384
–, kernel  444

–, orientation  64, 68, 118
–, pose  63, 64
–, quaternion  64
–, time  63

descriptor  462
–, ACF (aggregate channel feature)  462
–, BRISK (binary robust invariant scaleable keypoint)  462
–, CenSurE (center surround extremas)  462
–, FREAK (fast retina keypoint)  462
–, Harris  461
–, HOG (histogram of oriented gradients)  462
–, MSER (maximally stable extremal region)  419, 438, 454, 462
–, ORB (oriented FAST and rotated BRIEF)  462
–, shape  433
–, SIFT (scale-invariant feature transform)  462
–, SURF (speeded up robust feature)  453, 462, 463, 472, 478, 

479, 496, 514–516, 524, 556
–, VLAD (vector of locally aggregated descriptors)  456

detector  462
–, AGAST  462
–, corner (see also corner detector)  443, 445, 448, 449, 452, 

456
–, edge  384, 392, 407
–, FAST  454, 462
–, Harris  445, 447–449, 452, 456, 460, 461, 462, 520, 524, 527, 

556
–, Noble  445
–, Shi-Tomasi  462
–, SIFT (scale-invariant feature transform)  456, 462, 524
–, SURF (speeded up robust feature)  452, 453, 456, 460, 462, 

524, 252, 527
–, zero crossing  387

determinant  49, 235, 240, 445, 591
–, of the Hessian  445

dichromatic refl ection  310
difference of Gaussian  385
differential, kinematics  229
differentiation  384

digital single-lens refl ex (DSLR) camera  366
Dijkstra method  132
dimension  17

–, curved  17
–, intensity  301
–, singleton  362

diopter (see also focal length)  321
Dirac function  313
direction  611–613
direct linear transform  354
disparity  483, 487

–, image  484, 487
–, space image (DSI)  485, 489

displacement
–, rigid body  52, 53
–, spatial  67, 245

distance  164
–, Euclidean  18, 130, 303, 312, 399, 400, 421, 423, 433, 

461–463, 642
–, Hamming  391
–, Mahalanobis  164, 593, 633
–, Manhattan  130, 587
–, threshold  139, 464
–, transform  130, 134, 135, 137, 399, 400

distortion
–, barrel  330
–, correction  330
–, decentering  330
–, geometric  330
–, hard iron  87
–, keystone  509
–, lens  330, 353, 405, 472, 496, 502
–, map  336
–, modeling  331
–, perspective  391, 460, 509
–, pincushion  330
–, radial  330, 337
–, rolling shutter  364
–, soft iron  87
–, shape  353, 509, 510
–, tangential  330
–, vector  406

distribution
–, bimodal  416
–, chi-squared  633
–, von Mises  156

DOF (see degree of freedom)
DoG kernel  384, 385
DoH  445
double cover  499
down hill  623
drag, aerodynamic  115
DSI (see disparity space image)
DSLR camera (see digital single-lens refl ex camera)
dual

–, number  55
–, quaternion  55

Dubbins path  101
dynamic range  365
dynamics  251

–, error  274
–, forward  116, 118, 251, 271, 272
–, inverse  263, 273, 274
–, quadrotor  115, 116
–, rigid-body  263, 272



675

E

Earth
–, diameter  81
–, gravity  82
–, shape  81
–, surface  70, 79, 512

east-north-up (ENU)  79
eccentricity  344, 600
edge

–, detection  377
–, detector  392

–, Canny  384, 407
–, preserving fi lter  392

effect
–, Eötvös  91
–, jello  364
–, picket fence  486

effective inertia  256
effi ciency, quantum  364
EGNOS (satellite network)  153
eigenvalue  41, 160, 236, 270, 271, 430, 444, 503, 590
eigenvector  41, 430, 503, 590
EISPACK project  9
EKF (see extendet Kalman fi lter and Kalman fi lter)
EKF SLAM (see Kalman fi lter, extended, SLAM)
elasticity, joint  276
ellipse  159, 321, 352, 537, 556, 557, 599, 606, 633

–, canonical  598, 599
–, coeffi cient  557
–, confi dence  167, 168
–, covariance  160, 166, 633
–, drawing  601
–, equation  633
–, equivalent  429–431
–, error  160, 163
–, inertia of  603
–, parameter  557, 558
–, rotated  633
–, size  632
–, velocity  235, 244

ellipsoid  351, 599, 600, 607
–, equation  633
–, force  244, 245
–, hyper-  270
–, shape  236
–, surface  235, 245, 632
–, velocity  244

–, rotational  236
–, volume  236, 601
–, wrench  245

Elsie (robot)  95, 125
encoder  255, 256
encoding, gamma  306, 311, 312, 372
end-effector  193

–, coordinate frame  232
–, force  244
–, inertia  275
–, torque  244
–, velocity  229, 230

end-point
–, closed-loop  537
–, open-loop  537

ENU (see east-north-up)
Eötvös, effect  91

ephemeris  152
epipolar

–, constraint  468, 484, 521, 522
–, line  464–468, 470, 471, 473, 479, 483, 525
–, plane  464, 465

epipolar-aligned image  496
epipole  466, 467
equal-energy white  306
equation

–, differential  51
–, ellipse  602, 604
–, ellipsoid  548
–, Eulers rotation  68
–, line  595, 605
–, motion  101, 111, 271

–, Euler  116, 263
–, rigid-body  251, 263

–, optical fl ow  544, 570
–, Planck radiation  288
–, plane  504, 556
–, solving system  621
–, sparse nonlinear  501
–, thin lens  321, 336

equiangular mirror  340
equivalence principle  70
equivalent ellipsoid  503
error  49, 50, 169, 170

–, back projection  497, 498
–, cumulative  170
–, edge  172
–, ellipse  159, 166, 168
–, ICP (iterated closest point)  182
–, position  251
–, reprojection  502

–, squared  501
–, vector  628

essential matrix  468, 470, 477, 480
estimation  154

–, camera
–, motion  454
–, pose  524

–, Monte-Carlo  157, 175, 183
–, pose  83, 334, 536–538, 541, 556, 575
–, RANSAC (random sampling and consensus)  471, 472, 476, 

478, 504
–, stereo  443
–, SaM (structure and motion)  498, 578

ethics  7
Euclidean

–, camera  352
–, coordinate  29, 467, 468, 604
–, distance  18, 130, 303, 312, 399, 400, 421, 423, 433, 461–463, 

642
–, geometry  18, 19, 22, 595
–, group  21, 27, 46
–, homography  477, 510, 511
–, length  587
–, line  595
–, plane  19, 605
–, point  29, 595, 605, 606
–, reprojection error  501
–, space  19, 55, 595, 605, 608
–, transformation  608, 609

Euler
–, acceleration  70
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–, angle  36, 37, 38, 40, 59, 75, 196, 232, 233, 247, 499, 571
–, singularity  39

–, force  70
–, motion equation  68, 116, 263
–, rotation theorem  32, 33, 35–37, 613

EV (see exposure value)
EXIF fi le format  363, 510
explicit complementary fi lter  88, 89
exponential

–, coordinate  43, 233, 481, 626
–,  rate  233

–, mapping  50, 52
–, matrix  25, 26, 43, 51
–, product of  196, 200, 201

exposure  388, 461
–, control  342
–, interval  364
–, time  321, 363, 364
–, value (EV)  364, 365

extended Kalman fi lter (EKF, see also Kalman fi lter)  88, 90, 157, 
169, 619, 638

exteroceptive sensor  5, 170
extromission theory  287
extrinsic parameter  503
eye  285, 287

–, compound  285
–, cone cell  292, 293
–, dynamic range  365
–, evolution  285
–, fovea  293
–, human  292
–, lens-based  285
–, refl ector-based  285
–, retina  293
–, rod cell  365
–, secondary  285
–, sensitivity  301
–, tristimulus  312

eye-in-hand  537

F

f-number (inverse aperture diameter)  321, 364
FAST detector  454, 462
fast retina keypoint (FREAK) descriptor  462
FastSLAM (see also SLAM and Rao-Blackwellized SLAM)  169
feature

–, blob  431
–, circle  554, 557
–, classifi cation  415
–, corner  446, 448, 461, 521
–, correspondence  460
–, depth  551
–, description (see also descriptor)  445, 452, 453, 461
–, detection (see also detector)  399, 449
–, extraction  9, 286, 413
–, Harris corner  445, 452
–, image  332, 335, 413, 556
–, line  413, 438, 446, 556
–, map  163, 168
–, moment  428
–, point (see also point feature)  443, 449, 461
–, region  413, 415
–, scale  451

–, scale-space  449, 452
–, sensitivity matrix  542
–, shape  435
–, vector  432, 434
–, vector-valued  415

feedback control  118, 260–262
feedforward control  118, 260, 262, 272, 273
fi bre-optic gyroscope (FOG)  80
fi ctitious force  69, 83
fi eld

–, magnetic, intensity  86, 87
–, of view  326, 327, 336
–, robot  3, 96

fi le  172
–, EXIF  363, 510
–, image  360, 363

–, raw  294
–, JFIF  311
–, JPEG  363
–, MEX  584
–, video  365

fi ll factor  329, 364
fi lter

–, Bayer  293, 294
–, coeffi cient  376
–, complementary explicit  88, 89
–, edge preserving  392
–, Kalman  90, 91, 157, 162–164, 169, 175, 182, 184, 636

–, extended (EKF)  88, 90, 157, 169, 619, 638
–, unscented (UKF)  184

–, Kalman-Bucy  637
–, low-pass  384

–, anti-aliasing  407
–, spatial  403

–, median  407
–, particle  169, 175–178
–, spatial  376

fi sheye lens
–, camera  337, 339, 346
–, projection model  338

fl ow
–, current  85
–, fi eld  544
–, optical  521, 544, 552, 553, 565, 570, 572

fl ux
–, line, magnetic  85
–, luminous  291, 294
–, magnetic  85, 383
–, visual  287

focal
–, length  321, 331, 334, 364, 486
–, point  320, 340, 341, 344, 348, 514

focus  319, 321, 330, 331
FOG (see fi bre-optic gyroscope)
font, Hershey  220
force  52, 68, 244, 251

–, apparent  69
–, control  275
–, Coriolis  263, 264, 267, 275
–, d’Alembert  69
–, ellipsoid  244, 245
–, fi ctitious  69, 83
–, gyroscopic  275
–, inertial  69



677

–, pseudo  69
–, translational  69

foreshortening  321, 509
form, homogeneous  29
formula

–, Planck  288
–, Rodrigues rotation  37, 42, 43, 52, 53, 61, 66, 613

forward
–, dynamics  116, 271
–, kinematics  193, 194, 201, 204, 230

–, instantaneous  231
fovea  293
frame

–, body-fi xed  55, 70, 79
–, coordinate  17, 18, 22
–, key  503
–, reference  69

–, inertial  68, 69, 79, 83
–, noninertial  70

–, right-handed coordinate  31
–, world coordinate  18, 79

FREAK (see fast retina keypoint descriptor)
Freeman chain code  434, 455
Fresnel refl ection  310
friction  251–253, 262, 263, 268

–, aerodynamic  115
–, Coulomb  252, 253, 255, 268, 272
–, stiction  252
–, viscous  246, 252, 253, 255, 268, 271, 272

front end  170
fronto-parallel  321, 433, 510, 539, 541, 545, 549
frustum  326, 334
function

–, Cauchy-Lorentz  504
–, Dirac  313
–, Gaussian  631
–, Huber loss  625
–, observation  164
–, plenoptic  349
–, probability density (PDF)  153, 160, 161, 175, 631

–, Gaussian  175
–, scalar  617
–, signed distance  400
–, Tukey biweight  625

fundamental matrix  466, 470, 525
fusion, sensor  87, 88, 163

G

gait pattern  225
Galileo  (satellite navigation system)  153
gamma

–, compression  311
–, correction  310
–, decoding  311, 362, 372, 373
–, decompression  311
–, encoding  311, 372, 407
–, sRGB  311, 372

gantry robot  191
Gaussian

–, distribution  635, 636
–, function  378, 383, 631, 633

–, width  378, 380
–, kernel  386, 403, 444, 449, 451

–, multivariate  632
–, noise  157, 160, 164, 332, 335, 504, 507, 636, 637
–, probability  160, 164, 633
–, properties  380
–, random variable  631, 636, 638
–, smoothing  427

gearbox  254–256
generalized

–, coordinate  55, 100, 109, 113, 119, 120, 194, 263
–, joint  198, 218, 263

–, forces  263
–, joint  244, 246, 263, 264, 266, 268, 269

–, matrix inverse  592
–, Voronoi diagram  136, 399

generator matrix  612, 614
Genghis (robot)  147
geomagnet  85
geometric

–, distortion  330
–, invariant  609
–, Jacobian  231
–, transformation  608, 609

geometry
–, algebraic  50
–, analytic  19
–, Cartesian  19
–, Euclidean  18, 19, 22, 595

Gestalt principle  426
gimbal  205

–, lock  38, 208, 215, 234
–, low-friction  80

Global Hawk unmanned aerial vehicle (UAV)  4, 114
Global Positioning System (GPS)  5, 6, 117, 151, 153, 165

–, differential  153
–, multi-pathing  153
–, RTK  153
–, selective availability  153

global shutter camera  364
GLONASS (satellite navigation system)  153
goal seeking  128
Google Maps™  367
G protein-coupled receptor (GPCR)  292
GPS (see Global Positioning System)
gradient  382, 383, 462

–, calculation  377
–, descent  623, 624
–, edge  382, 384, 385
–, image  384, 443, 444, 459, 559
–, intensity  417, 438
–, squared  460

graph  136, 139, 426, 499, 641
–, A* search  134, 139, 142, 643
–, embedded  641

Grassmann’s laws  297, 299
gravity  70, 84, 115, 251, 253

–, compensation  118
–, disturbance  260
–, load  251, 260, 263–265, 271
–, term  264
–, torque  254, 264
–, vector  84, 263

great circle  76
grey value  360, 361, 368–372
ground effect  115
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group  504
–, algebraic  612
–, Euclidean  21
–, Lie  611
–, orthogonal  24, 34, 590

gyroscope  38, 79, 87, 101, 155
–, fi bre-optic (FOG)  80
–, ring-laser (RLG)  80
–, strapdown  80
–, triaxial  80

H

Hall effect  85
–, sensor  85

Hamming distance  391
hard-iron distortion  87
Harris

–, corner feature  445, 448, 449, 452, 460–462, 520
–, detector  445, 447–449, 452, 456, 460, 461, 462, 520, 524, 527, 

556
heading  85

–, angle  87
–, rate (see yaw rate)

helicopter  121
Hershey font  220
Hessian  617, 618, 624

–, approximate  618, 624
–, determinant  445
–, matrix  445, 502, 618

histogram  361, 373, 416, 448, 462
–, cumulative  176
–, equalization  372
–, image  369, 371
–, normalization  372, 407
–, of oriented gradients (HOG)  462

hit and miss transform  398
HOG (see histogram of oriented gradients)
holonomic constraint  56
homogeneous

–, equation  622
–, form  27, 466
–, transformation  27, 46, 53, 54, 77, 199, 203, 324, 325, 328, 

477, 481, 504, 605
–, normalization  50, 539, 549
–, SE(2)  27
–, SE(3)  46

homography  10, 164, 474–478, 496, 510, 512, 513
–, Euclidean  477, 510, 511
–, matrix  13, 474
–, planar  474
–, plane-induced  474
–, projective  477, 510
–, RANSAC (random sampling and consensus) estimation  478

homothety  608
Hough transform  440, 454, 556
hovercraft  119–121
HSV color space  301
Huber loss function  625
hue  297, 301, 302
humanoid robot  3, 6
hybrid

–, trajectory  72
–, visual servo  565

hyperbola  606
hyperboloid  351, 607
hypersurface, quadric  607
hysteresis threshold  385

I

IBVS (see image-based visual servo)
ICP (see iterated closest point)
ICR (see instantaneous center of rotation)
ideal

–, line  328, 605
–, point  605, 606

identity quaternion  45
illuminance  294, 307
illumination, infra-red  508
image  367

–, anaglyph  495
–, binary  371
–, compression  361, 363, 445
–, coordinate, canonical  322
–, decimation  402
–, disparity  484, 485, 487, 489
–, epipolar-aligned  496
–, feature  413, 556

–, extraction  369, 413
–, fi le format  360
–, gradient  444
–, histogram  369
–, Jacobian  542, 544, 551, 568, 570
–, matching  514
–, metadata  363, 486, 510
–, moment  428, 506
–, monochromatic  361
–, noise  364, 407
–, obtaining  359
–, perspective  341, 372
–, plane  321, 605

–, discrete  324
–, processing  12, 130, 136, 359, 579
–, pyramid  403
–, rectifi cation  496
–, region  424
–, resizing  402
–, retrieval  13, 454
–, segmentation  415
–, similarity  387, 443

–, census  391
–, nonparameteric  391
–, rank transform  392

–, sphere  342
–, stabilization  514
–, stitching  512
–, subsampling  402
–, warping  336, 345, 404–406, 496, 510, 513

image-based visual servo (IBVS)  537, 538, 541
–, polar coordinate  568
–, spherical camera  570

imaging
–, catadioptric  340
–, central  340, 346, 348

–, perspective  321
–, light fi eld  350, 355
–, low-light  350
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–, noncentral  341
–, nonperspective  13

–, model  336
–, panoramic  319
–, perspective  321, 336, 337
–, underwater  309
–, unifi ed  344, 345
–, wide-angle  343, 354

impulse noise  392
IMU (see inertial measurement unit)
incandescence  287
inclination

–, angle  85
–, magnetic  85, 86

incremental replanning  134
inertia  253–255

–, effective  256
–, end-effector  275
–, load  255
–, matrix  116, 266, 503
–, motor  255

inertial
–, force  69
–, measurement unit (IMU)  39, 87, 577
–, navigation system (INS)  79, 87, 117
–, reference frame  68, 69, 79, 83
–, sensor  87

Inf  484
infl ation, obstacle  132
infra-red

–, camera  315, 508
–, illumination  508
–, near (NIR)  315
–, radiation  287–289, 292
–, short-wavelength (SWIR)  315

innovation  89, 162, 170, 637
INS (see inertial navigation system)
instantaneous center of rotation (ICR)  100, 109
integral

–, dynamics  271
–, windup  260

intelligence, artifi cial  14, 524
Intel RealSense R200  509
intensity  302

–, change  392
–, color  375, 382
–, dimension  301
–, edge  381, 387
–, gamma encoded  311
–, gradient  392
–, illuminance  307
–, light  125, 293
–, linear wedge  311
–, luminous  294
–, magnetic fi eld  85, 87
–, ramp  367
–, sinusoid  367
–, surface  396

inter-refl ection  310
interaction matrix  542
interest point  443
International Telecommunication Union (ITU)  298
interpolation  441

–, linear  75

–, orientation  75
–, quaternion  60, 76
–, rotational  76
–, scalar  212
–, unit-quaternion  76, 77

intrinsic parameter  468, 503
invariance  433, 453

–, geometric  609
–, property  454
–, rotational  444, 462
–, time  377

inverse
–, aperture diameter ( f-number)  321, 364
–, dynamic control  274
–, dynamics  263, 273, 274
–, left-generalized  621
–, pseudo  240, 242, 548, 549, 592, 621

iris  321
ISO camera setting  364
iterated closest point (ICP)  179, 182, 183, 505, 506, 521, 526
ITU (see International Telecommunication Union)

J

Jacobian, Jacobian matrix  215, 218, 229, 230, 247, 617, 619
–, analytical  232, 233
–, condition  234
–, damped inverse  240
–, ellipse feature  558
–, end-effector coordinate frame  232
–, feature  568
–, geometric  231
–, image  542, 544, 549

–, feature  568, 570
–, insertion  165, 167
–, line feature  556, 557
–, manipulability  234, 235
–, manipulator  229, 231, 247, 263
–, matrix  158, 172, 192, 215, 229, 230
–, numerical approximation  619
–, over-actuated robot  242
–, point feature  548, 559, 568
–, singularity  234, 240
–, transpose  229, 245, 246
–, under-actuated robot  241
–, visual  10, 545

jello effect  364
jerk  70
JFIF fi le format  311
Johns Hopkins Beast (robot)  147
joint

–, actuator  252
–, angle  5, 13, 198
–, control, independent  251
–, elasticity  276
–, position  275
–, prismatic  193, 195
–, revolute  193
–, sliding  193
–, space  198, 244

–, trajectory  212
–, velocity  229, 230

Joseph form  637
JPEG fi le format  363
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K

k-means  514, 515
–, algorithm  420
–, clustering  421, 423, 514, 515

Kalman fi lter  90, 91, 157, 162–164, 169, 175, 182, 184, 636
–, extended (EKF)  88, 90, 157, 169, 619, 638

–, SLAM (EKF SLAM)  169
–, gain  637
–, unscented (UKF)  184

kd-tree  464, 506
kernel  376

–, circular  423
–, convolution  377, 382, 387, 393
–, density approach  183
–, Gaussian  386, 403, 444, 449, 451
–, Laplacian  386, 449
–, Laplacian of Gaussian (LoG)  385, 386, 452
–, Mexican hat  387
–, smoothing  378, 448
–, Sobel  382–384, 407

key frame  503
keypoint  443
keystone  509

–, distortion  509
kidnapped robot  178
Kinect sensor  508
kinematic

–, confi guration  198, 208, 209, 215, 216, 238
–, model  101, 107, 111, 114, 143, 145, 202

kinematics  193
–, differential  229
–, forward  193, 194, 201, 204, 230

–, instantaneous  231
–, symbolic  206, 230

–, inverse
–, closed form  205
–, numerical  206, 209, 245

–, velocity  229
Klein quadric  607

L

L*a*b* color space  303, 312
L*u*v* color space  303
Lambertian refl ection  309, 337
landmark  152, 164, 169, 182, 462, 499

–, identity  164
–, navigation  151
–, observation  161
–, point  497, 500

Laplacian of Gaussian (LoG)  385, 449, 451
–, kernel  385, 386, 452
–, response  449

laser
–, odometry  179
–, rangefi nder  178, 179, 181

–, noise  180
–, scanner  170

lateral motion  100
lattice planner  140
latus rectum  344
law

–, Beer  289, 309
–, Grassmann’s  297, 299

–, lens  321, 336
–, Newton

–, fi rst  69
–, second  68, 70, 82, 115, 263, 279

–, of robotics  1
–, power  311
–, Stefan-Boltzman  288, 317
–, Wien displacement  288

LCD (see liquid crystal display)
least squares problem  240, 241, 246, 332, 472, 553, 621

–, nonlinear  171, 501, 618, 624, 625
–, rotation matrix  622

left-right consistency check  487
length focal  321, 364
lens  320

–, anamorphic  366
–, aperture  321, 331
–, compound  321
–, distortion  330, 353, 405, 472, 496, 502
–, entrance pupil  332
–, equation  321
–, f-number  321, 364
–, fi sheye  337
–, focal length  321
–, iris  321
–, law  321, 336
–, shape  570
–, simple  321
–, telecentric  353
–, thin  321

lens-based eye  285
lenslet array  351
Levenberg-Marquardt

–, algorithm  246, 624, 625
–, optimization  246, 627

lever arm effect  253
Lie

–, algebra  53, 54, 611–614
–, group  25, 50, 611, 611–614

light
–, absorption  290, 308
–, fi eld camera  348, 350
–, intensity  125, 293
–, monochromatic  287
–, solar spectrum  289
–, structured  507
–, visible  287

line  606
–, 2D  595
–, 3D  596
–, epipolar  464–468, 470, 471, 473, 479, 483, 525
–, equation  595, 605
–, Euclidean  595
–, feature  413, 438, 446, 556
–, fronto-parallel  321
–, ideal  328, 605
–, of no motion  100
–, Plücker  351, 596–598
–, projection  329, 351, 607

linear segment with parabolic blend (LSPB) trajectory  72, 261, 
262

linearization  617
–, general  617

link  252
–, effect  253
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–, elasticity  276
–, mass  253, 264

LINPACK project  9
liquid crystal display (LCD)  295
load  277

–, gravity  251, 260, 263–265, 271
–, inertia  255

localization  9, 151, 167, 181, 520
–, algorithm  520
–, CML (concurrent mapping and localization)  167
–, error  153
–, laser-based  182
–, Monte-Carlo  175
–, problem  153, 154
–, SLAM (simultaneous localization and mapping)  167, 

169–171, 175
locus, spectral  298–301
LoG kernel (see Laplacian of Gaussian kernel)
longitude problem  152
longitudinal motion  100
long-wavelength infra-red (LWIR)  315
LORAN (radio-based localization system)  153
LORD MicroStrain  79
LSPB (see linear segment with parabolic blend)
lumen  291
luminance  297, 299, 301, 306, 310, 349
luminance  290, 294
luminosity  291
luminous

–, fl ux  291, 294
–, intensity  294

LWIR (see long-wavelength infra-red)

M

machine vision  6
Machine Vision Toolbox (MVTB)  9
magnetic

–, declination  85
–, fi eld  86, 87
–, fl ux  85, 383
–, inclination  85, 86
–, north  85, 87
–, pole  85, 86

magnetometer  85, 87
Mahalanobis distance  164, 593, 633
Manhattan distance  130, 587
manifold  611–613
manipulability  215, 234–237, 548

–, dynamic  269, 271
manipulator (see also robot)  191

–, Jacobian  231, 244, 263
–, kinematics  229
–, over-actuated  56, 240, 242
–, serial-link, dynamics  251
–, under-actuated  56, 210, 240, 241

manoeuvre  120, 121
manufacturing robot  3
map  164, 169, 367

–, building, laser-based  181
–, distortiom  336
–, feature  163, 168
–, obstacle  131
–, road  367
–, using  160

mapping  167
–, CML (concurrent mapping and localization)  167
–, exponential  50, 52
–, point  56
–, PTAM (parallel tracking and mapping)  175
–, SLAM (simultaneous localization and mapping)  167, 

169–171, 175
Markov random fi eld (MRF) algorithm  526
Marr-Hildreth operator  387
Mars rover  4, 6, 7, 527, 528
mass  68, 277

–, center of  64, 68, 115, 253, 264
–, distribution  68
–, link  253, 264
–, payload  268
–, proof  82

matching
–, function, color  297, 298, 300, 312, 316
–, image  514
–, stereo  485, 486, 491, 497
–, trichromatic  296

mathematical morphology  136, 393
–, closing  396, 423
–, dilation  394
–, erosion  394
–, hit and miss  398

–, end point  399
–, skeleton  399
–, triple point  399

–, opening  395, 421
MATLAB®

–, code  10
–, command prompt  10
–, matrix  xxix
–, MEX-fi le  584
–, object  9
–, software  9
–, Toolbox  354, 355

–, conventions  xxix
matrix  325, 588

–, adjoint  65, 69, 201, 247, 597, 615
–, adjugate  589, 607
–, angular velocity  66
–, anti-symmetric  589
–, camera  323, 325–327, 331–333, 352, 469, 503, 527
–, condition number  235, 548, 550, 593
–, covariance  154, 156, 158, 160, 161, 163, 165, 167, 169, 170, 

176, 632
–, diagonal  161
–, extending  165
–, odometry  160
–, sensor  161

–, decomposition  525
–, defi nite

–, negative  618
–, positive  618, 626

–, diagonalization  591
–, essential  468–470, 477, 480, 498, 522
–, estimation  10, 471
–, exponential  25, 26, 43, 51
–, exponentiation  50
–, feature sensitivity  542
–, generator  612, 614
–, Hessian  445, 502, 618
–, homography  13, 474
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–, identity  66
–, indefi nite  618
–, inertia  116, 266, 503
–, interaction  542
–, inverse

–, damped  240
–, pseudo  240–242, 548, 549

–, Jacobian  172, 229, 230
–, logarithm  25
–, MATLAB®  xxix
–, normalization  49
–, orthogonal  24
–, orthonormal  34, 49
–, projection  323
–, rank  234, 332, 467, 468, 546, 592
–, rotation  24, 35, 42, 50, 66

–, determinant  49
–, normalization  67
–, product  25

–, singular value decomposition  506, 592, 622
–, skew-symmetric  25, 42, 43, 37, 43, 50, 51, 63, 66, 589, 

613
–, augmented  614

–, sparse  628
–, transformation, homogeneous  52, 64

MAV (see micro air vehicle)
maximally stable extremal region (MSER) algorithm, descriptor  

419, 438, 454, 462
maximum

–, torque  259
–, velocity  72

measurement
–, odometry  156
–, random  156
–, strapdown inertial  87
–, unit, inertial (IMU)  40, 87, 577

mecanum wheel  112
median fi lter  392
MEMS (see micro-electro-mechanical system)
metamer  294
method

–, Newton’s  624
–, Newton-Raphson  623
–, roadmap  136

MEX-fi le  584
Mexican hat kernel  387
micro-electro-mechanical system (MEMS)  80
micro air vehicle (MAV)  114
microlens array  350
Mikrokopter (software project)  122
minimization, nonlinear  623
minimum-norm solution  210, 215, 242
Minkowski

–, addition  395
–, subtraction  395

mirror  340
–, concave  337
–, conical  341
–, equiangular  340, 341
–, shape  340, 570
–, spherical  341

missing parts problem  486
mixed pixel problem  391, 489
mobile robot  3, 95, 99, 573
mobility  121

model
–, 3D  13
–, bicycle  100, 107, 144, 145, 575
–, camera  10
–, geometric  13
–, imaging  321

–, central perspective  321, 344
–, unifi ed  344, 345, 347, 565

–, kinematic  101, 107, 111, 114, 143, 145, 202
–, motion  99, 109, 112, 114, 115, 140, 144, 155, 271, 635, 636
–, nonlinear  88
–, process  635
–, quadrotor  115
–, refl ection, dichromatic  310
–, screw  48
–, unicycle  107, 111
–, vehicle  107

model-based control  272
moment  52, 602

–, feature  428
–, image  428, 506

–, central  429, 431, 434, 506
–, invariant  433, 434, 455
–, line  596
–, matrix  506, 622
–, normalized  434
–, second  444

–, of inertia  68, 264, 429, 603
–, principal  430
–, torque  68, 115, 116, 244, 269
–, vector  30, 47, 52, 351, 596

momentum, angular  68, 79
monochromatic

–, image  361
–, light  287

Monte-Carlo
–, estimation  157, 175, 183
–, localization  175

MOOC (see open online course)
Moore-Penrose pseudo inverse  592
Moravec interest operator  443
morphology (see mathematical morphology)
mosaicing  512
motion  63, 84

–, axis of  73
–, camera  479, 481, 510, 521, 542, 547, 548, 552, 569
–, Cartesian  77, 211, 214, 238, 554
–, complex  12
–, control, resolved-rate  234, 238, 239
–, discontinuity  78
–, end-effector  238
–, equation  68, 101, 111, 116, 251, 263, 271
–, inertial frame  84
–, joint-space  211, 216
–, lateral  112
–, longitudinal  100
–, model  99, 109, 112, 114, 115, 140, 144, 155, 271, 635, 636
–, multi-dimensional  73
–, null-space  13
–, omnidirectional  99, 112, 128, 140
–, perceptibility  548
–, planner  105
–, resolved-rate  13
–, rigid-body  27, 46, 47, 54, 611, 612

–, incremental  67
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–, rotational  51, 52, 68
–, screw  47, 48
–, segment  74
–, sickness  83
–, singularity  215
–, straight-line  214, 560
–, translational  30, 31, 51, 53, 68

motor  255, 256, 277
–, DC  251
–, high-torque  254
–, inertia  255
–, limit  259
–, servo  251
–, stepper  251
–, torque  252

MRF (see Markov random fi eld)
MSER (see maximally stable extremal region)
multi-camera array  348
multi-pathing  153
multi-segment trajectory  74
MVTB (see Machine Vision Toolbox)

N

NaN  484, 492
nautical

–, angle  38
–, chronometer  152
–, mile  151

navigation  97, 122, 125, 419, 455
–, aerospace  44
–, algorithm  131
–, Beidou (satellite navigation system)  153
–, chart  153
–, dead reckoning  151
–, Galileo (satellite navigation system)  153
–, GLONASS (satellite navigation system)  153
–, GPS (Global Positioning System)  5, 6, 117, 151, 153, 165
–, inertial  63, 66, 79, 87, 117
–, landmark  151
–, map-based  125
–, marine  167
–, planetary rover  525
–, principles  151
–, radio  79
–, reactive  125, 126
–, satellite  5, 6, 117, 151, 153, 165
–, spacecraft  38, 80
–, system  79, 87, 117

Navlab project  122
NCC similarity measure  388, 389, 410, 526, 531
near infra-red (NIR)  315
NED (see north-east-down)
nested control loop  251
Newton’s

–, fi rst law  69
–, method  624
–, second law  68, 70, 82, 115, 263, 279

Newton-Euler method  263, 278, 279
Newton-Raphson method  623
Newtonian telescope  337
Niblack threshold  418, 454
NIR (see near infra-red)
Noble detector  445
node, graph  20, 139, 141, 144, 170, 480, 641

noise  88, 156, 180, 359, 383
–, Gaussian  157, 160, 164, 332, 335, 504, 507, 636, 637
–, image  364, 407, 472

–, impulse  392, 407
–, reduction  383, 396, 444
–, salt and pepper  392

–, odometry  156, 158, 635
–, pixel  383, 397

–, dark current  364
–, nonuniformity  364
–, shot  364

–, random  88, 156, 177
–, scanning laser rangefi nder  180
–, sensitivity  386, 572
–, sensor  162, 175

noncentral imaging  341
nonholonomy, nonholonomic  99

–, constraint  101, 111
–, system  121

nonhomogeneous equation  619
nonlocal maxima suppression  384, 386, 393, 441, 445, 446, 

648
nonparametric transform  489
normalization

–, histogram  369, 372, 407
–, homogeneous transformation  50, 539, 549
–, rotation matrix  49

normalized
–, image coordinate  322, 406, 468, 477, 543, 557, 569
–, moment  434

normal matrix  590
north

–, magnetic  85, 87
–, true  85

north-east-down (NED)  79
null space of matrix  242, 467, 546, 592, 622
number

–, denominate  17
–, dual  55
–, random  139, 174, 635

O

objective lens  321
observation  161
obstacle

–, infl ation  130
–, map  131

occlusion  423
occupancy grid  128, 130, 131, 181
OCR (see optical character recognition)
odometer  155
odometry  155, 156, 170

–, differential  155
–, laser  179
–, noise  156, 158, 635
–, visual (VO)  13, 520–522
–, wheel  155

omnidirectional
–, camera  326, 349
–, motion  99, 112, 128, 140
–, vehicle  112
–, wheel  112

OmniSTAR satellite network  153
open online course (MOOC)  11, 12
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operational space  55
–, control  275, 276

operator  71
–, associative binary  21
–, asterisc  81
–, backslash  71, 558, 621, 623
–, binary arithmetic  372
–, Canny edge  384, 385
–, differential  384
–, edge  385
–, Gaussian  385, 452
–, group  612
–, Harris  462
–, interest  443, 456
–, inverse  67
–, Laplacian  384, 386
–, Marr-Hildreth  387
–, monadic  362, 372, 415
–, multiplication  54
–, Sobel edge  458
–, spatial  359, 393

–, displacement  67
–, linear  376
–, nonlinear  376

opponent color
–, space  303
–, theory  293

opsin  292, 293
optical

–, axis  40, 321, 325, 496, 509, 541, 554, 566, 568, 570
–, character recognition (OCR)  436
–, fl ow  521, 544, 552, 553, 565, 570, 572

–, derotation  553
optimization  173, 175, 182, 401, 526

–, algorithm  246
–, bundle adjustment  498
–, graph  175
–, Levenberg-Marquardt  246, 627
–, nonlinear  333, 354
–, pose graph  172–174, 183
–, problem  171, 206

ORB (see oriented FAST and rotated BRIEF)
orientation  17

–, 2-dimensional  23
–, 3-dimensional  32
–, camera  327, 481
–, derivative  64, 68, 118
–, end-effector  196
–, error  88
–, estimation  80, 84, 89
–, feature  462
–, interpolation  75
–, region  431
–, relative  506
–, vector  40
–, vehicle  101, 108, 575

oriented FAST and rotated BRIEF (ORB) feature descriptor  462
origin  17
orthogonal matrix  34, 589, 592
orthographic projection  353
orthonormal matrix (see orthogonal matrix)
orthophoto  514
Otsu threshold  417, 454
over-actuated robot  56, 240, 242
over-actuation  121, 240

P

panoramic camera  326
parabolic blend  72
paraboloid  351, 607
parallel

–, projection  353
–, tracking and mapping (PTAM) system  175

parallel-link robot  191
parameter

–, camera  325, 326, 331, 333, 353, 477, 480, 503
–, Denavit-Hartenberg  197, 200, 227
–, ellipse  557, 588
–, extrinsic  326, 503
–, intrinsic  326, 503

particle fi lter  169, 175
path  70, 131, 134, 367, 399
payload  13, 251, 262

–, effect  268
–, lift capability  115
–, mass  268

PBVS (see position-based visual servoing)
PDF (see probability density function)
peak  153

–, fi nding  369, 416
–, point  390, 489, 645
–, refi nement  489
–, response  291–293, 295
–, velocity  72

pencil of lines  471
pendulum, bifi lar  279
perceptibility, motion  548
perception  5, 285
perceptually uniform color space  303
perimeter  434
perspective

–, camera  319, 338, 340, 343, 344, 348, 350, 503, 565, 573
–, correction  13, 509
–, distortion  391, 460, 509
–, foreshortening  509
–, image  341, 372

–, synthetic  347
–, imaging  321, 336, 337
–, projection  319–322, 325, 328, 347, 353, 459, 466, 469, 542, 543
–, tracking  443
–, transformation  319

perspective-n-point (PnP) problem  334
photogrammetry  354, 524
photometric unit  291
photopic response  291
photopsin  292
photoreceptor  292
photosensor array  350
photosite  293, 324, 364, 365
phototaxis  126
picket fence effector  486
pin-hole camera  285, 320, 321
pincushion distortion  330
pitch

–, angle  37
–, screw  47, 52

pixel
–, array  350
–, boundary  434
–, classifi cation  418, 421, 423
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–, noise  364, 383, 397, 472
–, value, distribution  369

planar
–, homography  474
–, robot  205
–, surface  97, 119
–, transformation  31, 609

Planck
–, constant  288
–, radiation formula  288

Planckian source  288
plane  598, 607

–, Cartesian  19
–, chromaticity  299
–, color  362, 373, 377, 448
–, decomposition  478
–, epipolar  464, 465
–, equation  504, 556
–, Euclidean  19, 605
–, image  321, 324, 605
–, principal  327

planning
–, algorithm  135
–, map-based  130
–, robot path  130, 134, 367, 399
–, trajectory  147, 555

plenoptic
–, camera  348
–, function  349

Plessey corner detector  445
Plücker

–, coordinate  52, 54, 350, 596
–, line  351, 596–598

PnP (see perspective-n-point)
point  17, 413

–, 3D  31, 319
–, Cartesian  179
–, cloud  181, 184, 503, 504, 506

–, 3-dimensional  181
–, conjugate  464, 467, 468, 470, 475, 479
–, coordinate  26

–, homogeneous  51
–, vector  22, 47

–, corner  443, 446, 448, 461
–, corresponding, correspondence  180, 471, 473, 474, 476, 

478, 484, 487, 496, 507, 522
–, detection  459
–, edge  434, 439
–, epipolar  473
–, equation

–, ellipsoid surface  235, 245
–, line  605

–, Euclidean  29, 595, 605, 606
–, feature  443, 449, 461

–, BRISK (binary robust invariant scaleable keypoint)  454
–, extraction  10
–, FAST  454, 462
–, Harris  454, 520
–, MSER (maximally stable extremal region)  419, 438, 

454, 462
–, scale-space  449, 452
–, SIFT (scale-invariant feature transform)  452, 454, 462
–, SURF (speeded up robust feature)  452, 454, 460, 462, 

463, 472, 478, 479, 496, 514
–, focal  320, 340, 341, 344, 348, 514

–, homogeneous form  29
–, ideal  605, 606
–, image-plane  503
–, instantaneous center of rotation (ICR)  100, 109
–, interest  443, 444, 460
–, iterative closest (ICP)  505
–, landmark  497, 500
–, line equation  605
–, mapping  56
–, moving to  102
–, peak  390, 489, 645
–, perimeter  435
–, principal  325, 330, 331, 338, 340, 345, 347, 406, 480, 514, 

543, 544, 549, 568
–, salient  443
–, set, matching  505
–, spread function  321
–, task space  56
–, tool center (TCP)  203
–, transformation  24
–, triple  399
–, vanishing  321
–, vector  xxix, 17, 22
–, velocity, angular  64
–, world  319, 322, 323, 325, 326, 331, 332, 459

Poisson distribution  364
polar-coordinate robot arm  196
pole

–, magnetic  85, 86
–, rotational  30

polynomial
–, ellipse  600
–, function of time  71
–, matrix approximation  52
–, trajectory  71

pose  17, 55, 60, 170
–, 2D  57
–, 3D  58
–, camera  175, 326, 479, 521, 538, 539, 541
–, change  63
–, derivative  63, 64
–, end-effector  193, 229
–, error  170, 245
–, estimation  83, 334, 536–538, 541, 556, 575
–, graph  170, 171

–, optimization  172–174, 183
–, SLAM (simultaneous localization and mapping)  167, 

169–171, 175
–, robot (see also manipulator)  179, 181
–, singular  234
–, trajectory  77

position  17
position-based visual servoing (PBVS)  537, 538
positive defi nite  590
posterior probability  157
posterization  372
power

–, distribution, spectral (SPD)  317
–, law  311
–, series  52

primary
–, CIE (Commission Internationale de l’Eclairage)  294, 297, 

300, 305
–, color  294, 296
–, standard  305
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PrimeSense camera  508
principal

–, axis  430
–, curvature  444
–, moment  430
–, plane  327
–, point  325, 330, 331, 338, 340, 345, 347, 406, 480, 514, 543, 

544, 549, 568
prior probability  157
probabilistic roadmap (PRM)  137
probability  11, 37, 154, 157, 174

–, conditional  157
–, density function (PDF)  153, 160, 161, 175, 631, 632
–, Gaussian  160, 164, 633
–, posterior  157
–, prior  157

process noise  156, 636
Procrustes transform  609
product

–, of exponential  200, 201
–, of inertia  68, 429, 603

projection
–, back  497, 498
–, line  329, 351, 607
–, matrix  323
–, model  338
–, orthographic  353
–, parallel  353
–, perspective  319, 321, 322, 328, 347, 353, 459, 466, 469, 542, 543

–, weak 353
–, point  320–324, 325, 327
–, quadric  352, 607
–, stereographic  345

projective
–, homography  477, 510
–, reconstruction  503
–, transformation  321, 608

projector, speckle  509
Prometheus Project  122
proof mass  82
proprioception  546
proprioceptive sensor  5
pseudo

–, force  69
–, inverse  240, 242, 548, 549, 592, 621

–, Moore-Penrose  592
–, random numbers  174

PTAM (see parallel tracking and mapping)
Puma 560 robot  196, 202, 256, 276
pure

–, pursuit  105
–, quaternion  45, 55, 64

purple boundary  298
pyramidal decomposition  403

Q

quadratic surface  351, 607
quadric  350, 351, 606, 607

–, hypersurface  607
–, Klein  607
–, projection  607

quadrotor  56, 97, 99, 114, 120, 565, 576
–, control system  117

–, dynamics  115, 116
–, model  115

quantum effi ciency  364
quaternion  44

–, computational effi ciency  45
–, conjugate  45
–, convert to rotation matrix  45
–, derivative  64
–, double cover  44, 481
–, dual  55
–, identity  45
–, interpolation  60, 76
–, pure  45, 55, 64
–, unit  44, 45, 47, 50, 55, 58, 64, 76, 499

quintic polynomial  71
quiver plot  384

R

radial distortion  330
radiation

–, absorption  289
–, electro-magnetic  287
–, infra-red  287–289, 292
–, Planck formula  288

radiometric unit  291
radio navigation  79, 153
radius, turning  141
random

–, coordinate  641
–, dot pattern  508
–, measurement  156
–, noise  88, 156, 177
–, number  139, 174, 635
–, sampling  139, 145

–, and consensus (RANSAC)  471, 472, 476, 478, 504
–, variable  631

–, Gaussian  631, 636, 638
rangefi nder

–, remission  179
–, scanning laser  178, 179–181

rank
–, fi lter  392
–, matrix  234, 332, 467, 468, 546, 592
–, transform  391, 392, 462, 489

RANSAC (see random sampling and consensus)
Rao-Blackwellized SLAM (see also FastSLAM)  169
rapidly-exploring random tree (RRT)  144, 145
rate

–, angular  88
–, exponential coordinate  233
–, roll-pitch-yaw angle  76, 118, 233
–, rotation matrix  64

ratio  268
–, ambiguity  486
–, aspect  413, 430, 431, 433
–, gear  254, 264

raw image fi le  294
raxel  350, 481
recognition, character  418, 436
reconstruction  491

–, affi ne  503
–, projective  503

rectifi cation  496
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recursive Newton-Euler  263
redundant robot  56, 210, 226, 240
Reeds-Shepp path  101
reference

–, frame  69
–, inertial  68, 69, 79, 83
–, noninertial  70

–, system, attitude and heading (AHRS)  87
refl ectance, refl ectivity  179, 180, 290, 307, 308, 608

–, dichromatic  310, 316
–, surface  290, 308, 310, 337

refl ection
–, diffuse  309
–, Fresnel  310
–, geometric  609
–, Lambertian  309, 337, 559
–, model  310
–, spectrum  290
–, specular  180, 309, 337, 423, 424

refl ector-based
–, camera  337, 340
–, eye  285

region
–, area  428
–, aspect ratio  430
–, bounding box  427
–, centroid  429
–, child  435
–, equivalent ellipse  429
–, feature  413, 415
–, image  424
–, inertia matrix  429
–, maximally stable extremal (MSER)  419, 438, 454, 462
–, of interest  401
–, orientation  431

remission  179
renormalization  55
replanning, incremental  134
representational singularity  233
reprojection error  500
resampling  176
resectioning  152
resizing  402
resolved-rate motion control  234, 237
response

–, human eye  288, 289
–, Laplacian of Gaussian  449
–, peak  291–293, 295
–, photopic  291
–, position loop  262
–, scotopic  291
–, spectral  292–294, 296, 313, 315
–, tristimulus  312
–, velocity loop  258–260

retinal
–, molecule  292
–, ganglion layer  293
–, image plane coordinates  322

retinex theory  307, 316
RGBD camera  509
rhodopsin  292
right-hand rule  31
rigid-body

–, displacement  46, 52, 53

–, dynamics  263, 272
–, motion  27, 46, 47, 54, 67, 611, 612

ring-laser gyroscope (RLG)  80
roadmap  136
robot (see also manipulator)  191

–, arm  121
–, model  200
–, planar  194, 245
–, polar-coordinate  196
–, PUMA  195
–, serial-link  196
–, SCARA (Selective Compliance Assembly Robot Arm)  

191, 195, 210
–, Stanford  195

–, Asimo humanoid  6
–, base transform  203, 218
–, Baxter  211, 277
–, behavior-based  127
–, defi nition of  5, 126, 130
–, DEPTHX (Deep Phreatic Thermal Explorer, AUV)  120, 

121
–, Elsie  96
–, end-effector  192
–, fi eld  3, 96
–, gantry  191
–, high-speed  276
–, humanoid  3, 6
–, joint

–, modelling  255
–, structure  195

–, kidnapped  178
–, law  1
–, manipulability  215, 236
–, manufacturing  3
–, maximum payload  268
–, mobile  3, 95, 99, 573
–, over-actuated  56, 242
–, path planning  131, 134, 367, 399
–, parallel-link  191
–, planar  205
–, pose  179, 181
–, Puma 560  196, 202, 256, 276
–, redundant  56, 210, 226, 240
–, Shakey  95
–, service  3
–, singularity  208, 215
–, tele-  6
–, tool transform  203, 204, 218, 222
–, tortoise  95
–, trajectory  169
–, under-actuated  56, 210, 240, 241
–, walking  221
–, wrist  196, 215

Rodrigues
–, rotation formula  37, 42, 52, 53, 61, 66, 613
–, vector  42

roll angle  37
roll-pitch-yaw angle  37, 38, 40, 232, 233

–, rate  76, 118, 233
–, singularity  38
–, XYZ  37, 38, 214, 232
–, YXZ  481
–, ZYX  37

rolling, constraint  121
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root, fi nding  622
Rossum’s Universal Robots (RUR)  3
rotation, rotational  47, 50, 54, 608

–, angle  25, 26, 31, 35, 37, 39, 43
–, axis  32, 39, 41, 43, 48, 50, 63, 68
–, direction  76
–, formula  37, 42, 52, 53, 61, 66, 613
–, incremental  66
–, inertia  68
–, interpolation  76
–, invariance  444, 462
–, matrix  24, 35, 36, 40, 42, 45, 50, 66, 232, 405, 511, 576

–, determinant  49
–, estimating  622
–, least squares problem  622
–, normalization  67
–, product  25
–, reading  35

–, motion  51, 52, 68
–, pole  30
–, rate  64
–, theorem, Euler’s  32, 33, 35–37, 613
–, torque  69
–, twist  30
–, vector  30
–, velocity  63, 65, 69

row space  591
RQ decomposition  327
RRT (see rapidly-exploring random tree)
RTK GPS (see Global Positioning System (GPS), RTK)
rule, right-hand  31
RUR (see Rossum’s Universal Robots)

S

saccule  83
SAD similarity measure  389, 392
salient point  443
salt and pepper noise  392
SaM (see structure and motion)
sampling

–, artifact  402
–, importance  176
–, probabilistic  147
–, random  139, 145
–, Shannon-Nyquist theorem  402
–, spatial  402

satellite
–, navigation

–, system  5, 6, 117, 151, 153, 165
–, network  153

–, view  367
saturation

–, actuator  118
–, color  297, 301, 302
–, function  375

scalar  17, 54
–, fi eld  618
–, function  617, 618
–, interpolation  212
–, multiplication  587

scale  384
–, characteristic  449
–, factor  88
–, feature  451

–, space  384, 403, 462
–, spatial  384

scale-invariant feature transform (SIFT)
–, descriptor  462
–, detector  456, 462, 524

scaling  608
scanning laser rangefi nder  178, 179, 181

–, noise  180
SCARA (see Selective Compliance Assembly Robot Arm)
scene luminance  364
Schur complement  628
scotopic response  291
screw  47, 52

–, axis  47, 52
–, model  48
–, motion  47, 48
–, pitch  47, 52
–, theory  52

SE(2)  27, 34
se(3)  53, 54, 614
SE(3)  46, 48, 53, 54, 73, 77, 479, 614, 615, 626
SEA (see series-elastic actuator)
segmentation  13, 396

–, binary  421
–, color  419
–, graph-based  426
–, image  415
–, shape  528

selective availability  153
Selective Compliance Assembly Robot Arm (SCARA)  191, 195, 

210
semi-global matching (SGM)  526
sensor  170

–, acceleration  83, 87
–, bias  88
–, calibration  88
–, camera  292, 313, 314
–, CCD  364
–, CMOS  364
–, drift  88
–, error  170
–, fusion  88, 163
–, Hall effect  85
–, inertial  87
–, Kinect  508
–, noise  162, 175
–, range and bearing  161

serial-link manipulator  193
series-elastic actuator (SEA)  276, 277
servo-mechanism  537
servoing

–, visual  537, 572
–, advanced  565
–, image-based  536, 538, 541
–, photometric  559
–, position-based  536, 538

SfM (see structure from motion)
SGM (see semi-global matching)
shadow  314

–, removal  313
Shakey (robot)  95
shape  322, 413, 423, 433

–, change  13, 235, 245, 359, 401
–, descriptor  433
–, distortion  353, 509, 510
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–, Earth  81
–, ellipse  556
–, ellipsoid  236
–, feature  435
–, fi lter  394
–, fi tting  456
–, from moment  433
–, from perimeter  434
–, lens  570
–, mirror  340, 570
–, object  319, 393, 435
–, perimeter  454
–, segmentation  528
–, structuring element  394

shared control  7
shear, transformation  608
Shi-Tomasi detector  462
shift invariance  377
short-wavelength infra-red (SWIR)  315
SIFT (see scale-invariant feature transform)
signed distance function  400
similarity transform, transformation  591, 609
similar matrix  591
Simulink  11, 272

–, block  101
–, library  111

–, diagram  536
–, kinematics  214

simultaneous localization and mapping (SLAM)  167
–, back end  170, 174, 175
–, EKF (extended Kalman fi lter)  169
–, Fast  169
–, front end  170, 174
–, pose graph  167, 169–171, 175
–, Rao-Blackwellized  169
–, system, vision-based  175

single-lens refl ex (SLR) camera  366
singleton dimension  362
singular

–, pose  234
–, value  592

–, decomposition  592
–, vector  592

singularity  37, 38, 208, 215
–, angle

–, Euler  39
–, roll-pitch-yaw  38

–, Jacobian  234, 240
–, motion  215
–, representational  233
–, three angle representation  38
–, wrist  208, 215

singular value decomposition (SVD)  592, 621, 622
skeleton  137, 203

–, topological  136
skeletonization  136, 137
skew-symmetric matrix  25, 26, 27, 42, 43, 50, 51, 63, 66, 90, 351, 

589, 606, 607, 613
–, augmented  614

skid steering  111
SLAM (see simultaneous localization and mapping)
SLR camera (see single-lens refl ex camera)
smoothing  377, 384
smoothness constraint  526
SO(2)  24, 611, 612

so(3)  54, 233, 613
SO(3)  34, 68, 73, 75, 81, 612, 613
Sobel kernel  382
soft-iron distortion  87
solar spectrum  289
solid angle  294, 326
solution

–, closed-form  205
–, minimum-norm  242
–, numerical  206

solving system  621
SOS (see standard output sensitivity)
source, Planckian  288
space

–, affi ne  608
–, chromaticity  297, 298
–, color (see also color space)  301, 312
–, confi guration  55, 56, 114, 119, 121, 145, 198, 201, 210, 211
–, control  275, 276
–, Euclidean  19, 55, 595, 605, 608
–, inertial reference equipment (SPIRE)  79
–, joint  198, 212, 244
–, operational  55

–, control  275, 276
–, resectioning  354
–, scale  384, 403, 462
–, task  55, 56, 210, 211
–, vector  587

sparse
–, matrix  628
–, stereo  479, 483, 492, 524, 552

spatial
–, aliasing  402, 486, 488
–, displacement  67, 245
–, fi lter  376
–, operator  67, 359, 376, 393
–, sampling rate  402
–, scale  384
–, velocity  64, 65, 69, 231, 232, 239, 542, 546, 573

–, vector  64
SPD (see spectral power distribution)
special

–, Euclidean group  21, 27, 46
–, orthogonal group  24, 34, 590

speckle projector  509
spectral

–, color  298
–, decomposition  591
–, locus  298–300
–, power distribution (SPD)  317
–, response  292–294, 296, 313, 315

spectrum
–, absorption  289, 290, 309
–, D65 standard white  312
–, illumination  307
–, infra-red  292
–, luminance  290, 294, 297, 312
–, refl ection  290
–, solar  289
–, visible  289

specular refl ection  180, 309, 337, 423, 424
speculum, metal  337
speeded up robust feature (SURF)

–, descriptor  453, 462, 463, 472, 478, 479, 496, 514–516, 524, 556
–, detector  452, 453, 456, 460, 462, 524, 252, 527
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spherical
–, aberration  330
–, camera  342, 343, 570–572, 576, 578

–, image-based visual servo (IBVS)  570
–, linear interpolation  76
–, mirror  341
–, wrist  199, 205, 207

SPIRE (see space inertial reference equipment)
spring  82, 277

–, torsional  277
SSD similarity measure  389, 443, 514
stabilization, image  514
standard output sensitivity (SOS)  364
Stanford, robot arm  195
STAR (see center surround extremas (CenSurE) descriptor)
steering

–, Ackermann  101, 123
–, angle  101, 102, 141, 145
–, mechanism  99
–, skid  111

Stefan-Boltzman law  288, 317
steradian  326
stereo

–, baseline  524
–, camera  6, 483, 492, 496, 521
–, estimation  443
–, failure mode  485
–, glasses  35
–, matching  485, 486, 491, 497
–, movie  495
–, pair  483, 493, 495, 496
–, perception  495
–, sparse  479, 483, 492, 524, 552
–, system  492, 507
–, technique  552
–, triangulation  522
–, vision  479, 488, 491, 503, 507, 509, 524

stereographic projection  345
stereopsis  483
stiction  252
stop word  516
straight-line motion  214
strapdown

–, confi guration  80
–, gyroscope  80
–, inertial measurement  87

structure
–, and motion (SaM) estimation  498, 578
–, from motion (SfM)  498, 527
–, tensor  444, 445, 448, 461

structured light  507
structuring element  393
subpixel interpolation  648
subsampling, image  402
subsumption architecture  127
subtraction, Minkowski  395
Sun spectrum  289
support region  451, 453, 462
suppression, nonlocal maxima  384, 386, 441, 445, 446
SURF (see speeded up robust feature)
surface  494

–, 2D  319
–, 3D  132
–, Earth  70, 79, 512

–, ellipsoid  235, 245, 632
–, geometry  310
–, hypersphere  235
–, intensity  396
–, luminance  290
–, matte  310
–, meshing  528
–, planar  97, 119
–, polished  180
–, quadratic  351, 607
–, refl ectance  290, 308, 310
–, refl ective  337
–, sphere  342, 344, 570
–, textureless  509
–, water  309
–, writing on  220

SVD (see singular value decomposition)
Swedish wheel  112
SWIR (see short-wavelength infra-red)
symmetric matrix  266, 444, 589
system

–, attitude and heading reference (AHRS)  87
–, confi guration  55
–, coordinate  19
–, homogeneous  622
–, inertial navigation (INS)    79, 87, 117
–, nonholonomic  121
–, nonhomogeneous  621
–, nonintegrable  121
–, nonlinear  638
–, under-actuated  120
–, vestibular  80, 83, 546

T

tag, April  164
Tait-Bryan angle  38
tangential distortion  330
tangent space  612
task space  55, 56, 210, 211
taxis  126
Taylor series  444, 617
TCP (see tool center point)
telerobot  6
telecentric lens  353
temperature

–, color  306, 314
–, drift  88

template matching  484
tensor  587

–, structure  444, 445, 448, 461
–, trifocal  525

texture mapping  346, 494
theorem

–, Chasles  52
–, Euler’s rotation  32

theory
–, Lie group  25
–, opponent color  293
–, retinex  307, 316
–, screw  52
–, trichromatic  293

thin lens  321
thinning (also skeletonization)  136, 137
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threshold  376, 415, 418
–, corner strength  448
–, distance  139, 464
–, local  418
–, Otsu’s method  417
–, Niblack algorithm  418

thresholding  371, 407, 415
–, hysteresis  385

thrust  115
tie point  512
time  63

–, derivative  63
–, exposure  321, 363, 364
–, invariance  377
–, of fl ight  508, 526
–, series  xxix
–, varying pose  63, 70

tone matching  513
tool

–, center point (TCP)  203
–, transform  199, 203, 204, 218, 222

toolbox
–, functions  57–59
–, obtaining  583

top hat kernel  379
topological skeleton  136
topology, algebraic  50
torque  251, 253, 254, 275

–, control  272
–, computed  272, 274
–, feedforward  260, 272, 273

–, disturbance  251
–, end-effector  244
–, gravity  254, 264
–, maximum  259
–, moment  68, 115, 116, 244, 269
–, motor  252
–, rotational  69

trace of matrix  591
traded control  7
trajectory  70, 74, 76–78, 90, 139, 169, 209, 211, 223, 225, 251, 

263
–, Cartesian  91, 214, 224
–, continuous  74, 220
–, end-effector  251
–, following  105, 140
–, hybrid  72
–, joint-space  212–214, 216
–, lane-changing  102
–, leg  221
–, multi-axis  73
–, multi-segment  74
–, planning  147, 555
–, polynomial  71
–, pose  77
–, robot  169

transconductance  252
transform

–, base  199
–, census  391, 489
–, distance  130, 134, 135, 137, 399, 400
–, nonparametric  391, 489
–, planar  31
–, Procrustes  609

–, rank  391, 392, 462, 489
–, SE(2)  31
–, tool  199, 203, 204, 218, 222

transformation
–, affi ne  608
–, conformal  322
–, Euclidean  608, 609
–, geometric  608, 609
–, homogeneous  27, 46, 53, 54, 77, 199, 203, 324, 325, 328, 477, 

481, 504, 605
–, matrix  52, 64
–, perspective  319
–, planar  609
–, point  24
–, projective  321, 608
–, SE(2)  27
–, SE(3)  46
–, similarity  608, 609
–, wrench  244

translation  46, 53, 54, 608
transmission  251, 276, 309

–, fl exible  13
–, mechanical  109

transpose, Jacobian  246
trapezoidal trajectory  72
traversability  130, 134
triangulation  152, 459, 497, 521
triaxial

–, accelerometer  83, 87
–, gyroscope  80
–, magnetometer  85

trichromatic
–, matching  296
–, theory  293

trifocal tensor  525
triple point  136
tristimulus  294–299, 301, 302, 304–306, 308, 311, 362

–, eye  312
–, response  312
–, value  304, 315

true north  85
Tukey biweight function  625
turning radius  100, 141
twist  30, 48, 52, 53, 200, 247, 614

–, axis  47
–, Jacobian computing  247
–, nonunit  31, 48
–, rotational  30
–, transforming  614
–, unit  30, 48, 52, 54
–, vector  30, 31, 47
–, velocity  65, 247

U

UAV (see unmanned aerial vehicle)
UKF (see unscented Kalman Filter)
ultra-violet radiation  287, 289
uncertainty  160, 161, 163
under-actuated  56, 99, 120, 121, 195, 229

–, robot, manipulator  56, 210, 240, 241
–, system  120

unicycle, model  111
unifi ed imaging model  344, 565
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Unimation Inc.  2
unit

–, inertial measurement (IMU)  40, 87, 577
–, photometric  291
–, quaternion  44, 45, 47, 55, 58, 499

–, derivative  64
–, interpolation  76
–, normalization  50

–, radiometric  291
–, twist  30, 48, 52, 54

unmanned aerial vehicle (UAV)  114
unscented Kalman Filter (UKF)  184
utricle  83

V

VaMoRs system (autonomous van)  122
vanishing point  321, 328
variable, Gaussian random  636
Vaucanson’s duck  1
vector  17, 587

–, addition  587
–, approach  40
–, bound  17
–, coordinate  17–19, 587, 595, 604
–, distortion  406
–, error  628
–, feature  432, 434
–, fi eld  619
–, gravity  84, 263
–, moment  30, 47, 52, 351, 596
–, normal  40
–, of locally aggregated descriptors (VLAD)  456
–, orientation  40
–, point  xxix, 17, 22
–, Rodrigues  42
–, rotation  30
–, scalar function of  618
–, singular  592
–, space  587
–, twist  30, 31, 47
–, vector function of  618
–, velocity  64, 230

vectorizing  493
vehicle

–, aerial  121
–, autonomous  7, 96

–, surface (ASV)  96
–, underwater (AUV)  96

–, Braitenberg  126
–, car-like  99, 100
–, confi guration  100
–, coordinate system  100
–, differentially-steered  99, 109
–, frame  100
–, micro air (MAV)  114
–, mobile robot  3, 95, 99, 573
–, model  107
–, omnidirectional  112
–, orientation  101, 108, 575
–, path  103, 105, 109
–, underwater  121
–, unmanned aerial (UAV)  96, 114
–, velocity  101
–, wheeled  97, 99

velocity  251, 275
–, angular  50, 52, 64, 68, 70, 79, 80, 155, 233, 636

–, time-varying  68
–, vector  66

–, camera  542–544, 547, 551, 552, 556–559, 567
–, control  102, 257, 261

–, feedforward  262
–, loop  257, 261

–, coupling torque  264
–, discontinuity  78
–, ellipse, ellipsoid  235, 236, 244
–, end-effector  229, 230
–, joint  229, 230
–, kinematics  229
–, linear  52, 68
–, maximum  72
–, peak  72
–, rotational  63, 65, 69
–, spatial  64, 65, 69, 231, 232, 239, 542, 546, 573
–, translational  63, 65, 69
–, twist  65, 247
–, vector  64, 230
–, vehicle  101

vestibular system  80, 83, 546
via point  74
view

–, fi eld of  327, 336, 338, 339, 347, 348, 487, 546, 559, 572
–, fronto-parallel  510, 511, 541
–, road map  367
–, satellite  367

vignetting  364
viscous friction coeffi cient  252
vision  6

–, animal  285
–, human  331
–, robotic  6
–, stereo  479, 488, 491, 503, 507, 509, 524

visual
–, fl ux  287
–, odometry (VO)  13, 520–522
–, servo control  535
–, servoing (see servoing, visual)
–, simultaneous localization and mapping (VSLAM)  184, 498
–, vocabulary  515
–, word  515

VLAD (see vector of locally aggregated descriptors)
VO (see visual odometry)
von Mises distribution  156
Voronoi

–, cell  137
–, diagram  136, 137, 399
–, roadmap  137
–, tessellation  137

VSLAM (see visual simultaneous localization and mapping)

W

WAAS (see wide area augmentation system)
walking robot  221
warping  336, 345, 404–406, 502, 510, 513
waypoint  157
white

–, balance, balancing  308
–, D65  304, 305, 306, 312
–, defi nition  306
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–, equal-energy  305
–, point  302

Wide Area Augmentation System (WAAS)  153
Wien’s
–, approximation  314
–, displacement law  288
window, convolution  376
world coordinate frame  18, 79
wrench  65, 69, 244, 245, 263, 269

–, ellipsoid  245
–, end-effector  244, 245
–, transformation  244

wrist  208
–, coordinate frame  203
–, robot  196, 215
–, singularity  208, 215
–, spherical  199, 205, 207

X

Xbox  508
XY/Z-partitioned IBVS (image-based visual servo)  565
XYZ

–, CIE (Commission Internationale de l’Eclairage) primary  300

General Index

–, color
–, matching function  300
–, space  301, 312

–, roll-pitch-yaw angle  38, 214, 232
–, tristimulus value  304

Y

yaw angle  37
yaw rate  101, 163
YCBCR color space  303, 311
Yoshikawa’s manipulability measure  236
YUV color space  303, 311
YXZ roll-pitch-yaw angle  481

Z

zero-angle confi guration  197
zero crossing detector  387
ZNCC similarity measure  389, 390, 461, 484, 485, 489, 514
zoom lens  327
ZSSD similarity measure  389, 530
ZYX roll-pitch-yaw angle  37
ZYZ Euler angles  36
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