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Foreword

Once upon a time, a very thick document of a dissertation from a faraway land came
to me for evaluation. Visual robot control was the thesis theme and Peter Corke was
its author. Here, I am reminded of an excerpt of my comments, which reads, this is a
masterful document, a quality of thesis one would like all of one’s students to strive for,
knowing very few could attain - very well considered and executed.

The connection between robotics and vision has been, for over two decades, the
central thread of Peter Corke’s productive investigations and successful developments
and implementations. This rare experience is bearing fruit in this second edition of his
book on Robotics, Vision, and Control. In its melding of theory and application, this
second edition has considerably benefited from the author’s unique mix of academic
and real-world application influences through his many years of work in robotic min-
ing, flying, underwater, and field robotics.

There have been numerous textbooks in robotics and vision, but few have reached
the level of integration, analysis, dissection, and practical illustrations evidenced in
this book. The discussion is thorough, the narrative is remarkably informative and
accessible, and the overall impression is of a significant contribution for researchers
and future investigators in our field. Most every element that could be considered as
relevant to the task seems to have been analyzed and incorporated, and the effective
use of Toolbox software echoes this thoroughness.

The reader is taken on a realistic walkthrough the fundamentals of mobile robots,
navigation, localization, manipulator-arm kinematics, dynamics, and joint-level con-
trol, as well as camera modeling, image processing, feature extraction, and multi-view
geometry. These areas are finally brought together through extensive discussion of
visual servo system. In the process, the author provides insights into how complex
problems can be decomposed and solved using powerful numerical tools and effec-
tive software.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their sig-
nificance and quality. Through a wide and timely dissemination of critical research
developments in robotics, our objective with this series is to promote more exchanges
and collaborations among the researchers in the community and contribute to further
advancements in this rapidly growing field.

Peter Corke brings a great addition to our STAR series with an authoritative book,
reaching across fields, thoughtfully conceived and brilliantly accomplished.

Oussama Khatib
Stanford, California
October 2016



“Computers in the future may weigh no
morethan 1.5 tons.” Popular Mechanics,
forecasting the relentless march of sci-
ence, 1949

Preface

Tell me and I will forget.

Show me and I will remember.
Involve me and I will understand.
Chinese proverb

Simple things should be simple,
complex things should be possible.
Alan Kay

These are exciting times for robotics. Since the first edition of this book was published
we have seen much progress: the rise of the self-driving car, the Mars science labora-
tory rover making profound discoveries on Mars, the Philae comet landing attempt,
and the DARPA Robotics Challenge. We have witnessed the drone revolution - flying
machines that were once the domain of the aerospace giants can now be bought for just
tens of dollars. All this has been powered by the continuous and relentless improve-
ment in computer power and tremendous advances in low-cost inertial sensors and
cameras - driven largely by consumer demand for better mobile phones and gaming
experiences. It’s getting easier for individuals to create robots — 3D printing is now
very affordable, the Robot Operating System (ROS) is both capable and widely used,
and powerful hobby technologies such as the Arduino, Raspberry Pi, Dynamixel servo
motors and Lego’s EV3 brick are available at low cost. This in turn has contributed to
the rapid growth of the global maker community - ordinary people creating at home
what would once have been done by a major corporation. We have also witnessed an
explosion of commercial interest in robotics and computer vision - many startups
and alot of acquisitions by big players in the field. Robotics even featured on the front
cover of the Economist magazine in 2014!

So how does a robot work? Robots are data-driven machines. They acquire data,
process it and take action based on it. The data comes from sensors measuring the ve-
locity of a wheel, the angle of a robot arm’s joint or the intensities of millions of pixels
that comprise an image of the world that the robot is observing. For many robotic ap-
plications the amount of data that needs to be processed, in real-time, is massive. For
a vision sensor it can be of the order of tens to hundreds of megabytes per second.

Progress in robots and machine vision has been, and continues to be, driven by
more effective ways to process data. This is achieved through new and more efficient
algorithms, and the dramatic increase in computational power that follows Moore’s
law.“ When I started in robotics and vision in the mid 1980s, see Fig. 0.1, the IBM PC
had been recently released - it had a 4.77 MHz 16-bit microprocessor and 16 kbytes
(expandable to 256 k) of memory. Over the intervening 30 years computing power has
perhaps doubled 20 times which is an increase by a factor of one million.

Over the fairly recent history of robotics and machine vision a very large body of
algorithms has been developed to efficiently solve large-scale problems in perception,
planning, control and localization - a significant, tangible, and collective achievement
of the research community. However its sheer size and complexity presents a very real
barrier to somebody new entering the field. Given so many algorithms from which to
choose, a real and important question is:

What is the right algorithm for this particular problem?

One strategy would be to try a few different algorithms and see which works best
for the problem at hand, but this is not trivial and leads to the next question:

How can I evaluate algorithm X on my own data without spending days coding and
debugging it from the original research papers?
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VME rack
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Two developments come to our aid. The first is the availability of general purpose
mathematical software which it makes it easy to prototype algorithms. There are
commercial packages such as MATLAB®, Mathematica®, Maple® and MathCad®”, as
well as open source projects include SciLab, Octave, and PyLab. All these tools deal
naturally and effortlessly with vectors and matrices, can create complex and beauti-
ful graphics, and can be used interactively or as a programming environment. The
second is the open-source movement. Many algorithms developed by researchers are
available in open-source form. They might be coded in one of the general purpose
mathematical languages just mentioned, or written in a mainstream language like C,
C++, Java or Python.

For more than twenty years I have been part of the open-source community and
maintained two open-source MATLAB Toolboxes: one for robotics and one for machine
vision”. They date back to my own Ph.D. work and have evolved since then, growing
features and tracking changes to the MATLAB language. The Robotics Toolbox has
also been translated into a number of different languages such as Python, SciLab and
LabView. More recently some of its functionality is finding its way into the MATLAB
Robotics System Toolbox™ published by The MathWorks.

These Toolboxes have some important virtues. Firstly, they have been around for
along time and used by many people for many different problems so the code can be
accorded some level of trust. New algorithms, or even the same algorithms coded in
new languages or executing in new environments, can be compared against imple-
mentations in the Toolbox.

» allow the user to work with real problems,
not just trivial examples

Secondly, they allow the user to work with real problems, not just trivial examples.
For real robots, those with more than two links, or real images with millions of pixels
the computation required is beyond unaided human ability. Thirdly, they allow us to
gain insight which can otherwise get lost in the complexity. We can rapidly and easily
experiment, play what if games, and depict the results graphically using the power-
ful 2D and 3D graphical display tools of MATLAB. Fourthly, the Toolbox code makes
many common algorithms tangible and accessible. You can read the code, you can
apply it to your own problems, and you can extend it or rewrite it. It gives you a “leg
up” as you begin your journey into robotics.

» a narrative that covers robotics and computer vision
- both separately and together

Fig.0.1.

Once upon a time a lot of equip-
ment was needed to do vision-
based robot control. The author
with a large rack full of real-time
image processing and robot
control equipment (1992)

Respectively the trademarks of The Math-
Works Inc., Wolfram Research, MapleSoft
and PTC.

The term machine vision is uncommon
today, but itimplied the use of real-time
computer vision techniques in an indus-
trial setting for some monitoring or con-
trol purpose. For robotics the real-time
aspect is critical but today the interest-
ing challenges are in nonindustrial ap-
plications such as outdoor robotics. The
term robotic vision is gaining currency
and is perhaps a modern take on ma-
chine vision.
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The genesis of the book lies in the tutorials and reference material that originally
shipped with the Toolboxes from the early 1990s, and a conference paper describing
the Robotics Toolbox that was published in 1995. After a false start in 2004, the first
edition of this book was written in 2009-2010. The book takes a conversational ap-
proach, weaving text, mathematics and examples into a narrative that covers robotics
and computer vision - both separately and together. I wanted to show how complex
problems can be decomposed and solved using just a few simple lines of code. More
formally this is an inductive learning approach, going from specific and concrete ex-
amples to the more general.

» show how complex problems can be decomposed
and solved

The topics covered in this book are based on my own interests but also guided by
real problems that I observed over many years as a practitioner of both robotics and
computer vision. I want to give the reader a flavor of what robotics and vision is about
and what it can do - consider it a grand tasting menu. I hope that by the end of this
book you will share my enthusiasm for these topics.

» consider it a grand tasting menu

I was particularly motivated to present a solid introduction to computer vision
for roboticists. The treatment of vision in robotics textbooks tends to concentrate
on simple binary vision techniques. In this book we will cover a broad range of top-
ics including color vision, advanced segmentation techniques, image warping, stereo
vision, motion estimation, bundle adjustment, visual odometry and image retrieval.
We also cover nonperspective imaging using fisheye lenses, catadioptric optics and
the emerging area of light-field cameras. These topics are growing in importance for
robotics but are not commonly covered. Vision is a powerful sensor, and roboticists
should have a solid grounding in modern fundamentals. The last part of the book
shows how vision can be used as the primary sensor for robot control.

This book is unlike other text books, and deliberately so. Firstly, there are already
a number of excellent text books that cover robotics and computer vision separately
and in depth, but few that cover both in an integrated fashion. Achieving such inte-
gration is a principal goal of the book.

» software is a first-class citizen in this book

Secondly, software is a first-class citizen in this book. Software is a tangible instan-
tiation of the algorithms described - it can be read and it can be pulled apart, modified
and put back together again. There are a number of classic books that use software in
an illustrative fashion and have influenced my approach, for example LaTeX: A docu-
ment preparation system (Lamport 1994), Numerical Recipes in C (Press et al. 2007),
The Little Lisper (Friedman et al. 1987) and Structure and Interpretation of Classical
Mechanics (Sussman et al. 2001). Over 1000 examples in this book illustrate how the
Toolbox software can be used and generally provide instant gratification in just a
couple of lines of MATLAB code.

» instant gratification in just a couple of lines
of MATLAB code

Thirdly, building the book around MATLAB and the Toolboxes means that we are
able to tackle more realistic and more complex problems than other books.

» this book provides a complementary approach
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The emphasis on software and examples does not mean that rigor and theory are
unimportant - they are very important, but this book provides a complementary ap-
proach. It is best read in conjunction with standard texts which do offer rigor and
theoretical nourishment. The end of each chapter has a section on further reading
and provides pointers to relevant textbooks and key papers. I try hard to use the least
amount of mathematical notation required, if you seek deep mathematical rigor this
may not be the book for you.

Writing this book provided the impetus to revise and extend the Toolboxes and
to include some great open-source software. I am grateful to the following for code
that has been either incorporated into the Toolboxes or which has been wrapped into
the Toolboxes. Robotics Toolbox contributions include: mobile robot localization
and mapping by Paul Newman; a quadrotor simulator by Paul Pounds; a Symbolic
Manipulator Toolbox by Jérn Malzahn; pose-graph SLAM code by Giorgio Grisetti
and 3D robot models from the ARTE Robotics Toolbox by Arturo Gil. Machine Vision
Toolbox contributions include: RANSAC code by Peter Kovesi; pose estimation by
Francesco Moreno-Noguer, Vincent Lepetit, and Pascal Fua; color space conversions
by Pascal Getreuer; numerical routines for geometric vision by various members of
the Visual Geometry Group at Oxford (from the web site of the Hartley and Zisserman
book; Hartley and Zisserman 2003); k-means, SIFT and MSER algorithms from the
wonderful VLFeat suite (vlfeat.org); graph-based image segmentation software by
Pedro Felzenszwalb; and the OpenSUREF feature detector by Dirk-Jan Kroon. The Camera
Calibration Toolbox by Jean-Yves Bouguet is used unmodified.

Along the way I became fascinated by the mathematicians, scientists and engineers
whose work, hundreds of years ago, underpins the science of robotic and computer
vision today. Some of their names have become adjectives like Coriolis, Gaussian,
Laplacian or Cartesian; nouns like Jacobian, or units like Newton and Coulomb. They
are interesting characters from a distant era when science was a hobby and their day
jobs were as doctors, alchemists, gamblers, astrologers, philosophers or mercenaries.
In order to know whose shoulders we are standing on I have included small vignettes
about the lives of some of these people - a smattering of history as a backstory.

In my own career I have had the good fortune to work with many wonderful peo-
ple who have inspired and guided me. Long ago at the University of Melbourne John
Anderson fired my interest in control and Graham Holmes tried with mixed suc-
cess to have me “think before I code”. Early on I spent a life-direction-changing ten
months working with Richard (Lou) Paul in the GRASP laboratory at the University
of Pennsylvania in the period 1988-1989. The genesis of the Toolboxes was my Ph.D.
research (1991-1994) and my advisors Malcolm Good (University of Melbourne) and
Paul Dunn (CSIRO) asked me good questions and guided my research. Laszlo Nemes
(CSIRO) provided great wisdom about life and the ways of organizations, and encour-
aged me to publish and to open-source my software. Much of my career was spent at
CSIRO where I had the privilege and opportunity to work on a diverse range of real
robotics projects and to work with a truly talented set of colleagues and friends. Part
way through writing the first edition I joined the Queensland University of Technology
which made time available to complete that work, and in 2015 sabbatical leave to com-
plete the second.

Many people have helped me in my endeavor and I thank them. I was generously
hosted for periods of productive writing at Oxford (both editions) by Paul Newman,
and at MIT (first edition) by Daniela Rus. Daniela, Paul and Cédric Pradalier made
constructive suggestions and comments on early drafts of that edition. For the second
edition I was helped by comments on draft chapters by: Tim Barfoot, Dmitry Bratanov,
Duncan Campbell, Donald Dansereau, Tom Drummond, Malcolm Good, Peter Kujala,
Obadiah Lam, J6rn Malzahn, Felipe Nascimento Martins, Ajay Pandey, Cédric Pradalier,
Dan Richards, Daniela Rus, Sareh Shirazi, Surya Singh, Ryan Smith, Ben Talbot, Dorian
Tsai and Ben Upcroft; and assisted with wisdom and content by: Frangois Chaumette,
Donald Dansereau, Kevin Lynch, Robert Mahony and Frank Park.
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I have tried my hardest to eliminate errors but inevitably some will remain. Please
email bug reports to me at rvc@petercorke.com as well as suggestions for improve-
ments and extensions.

Writing the second edition was financially supported by EPSRC Platform Grant EP/
M019918/1, QUT Science & Engineering Faculty sabbatical grant, QUT Vice Chancellor’s
Excellence Award, QUT Robotics and Autonomous Systems discipline and the ARC
Centre of Excellence for Robotic Vision (grant CE140100016).

Over both editions I have enjoyed wonderful support from MathWorks, through
their author program, and from Springer. My editor Thomas Ditzinger has been a great
supporter of this project and Armin Stasch, with enormous patience and dedication in
layout and typesetting, has transformed my untidy ideas into a thing of beauty.

Finally, my deepest thanks are to Phillipa who has supported me and “the book”
with grace and patience for a very long time and in many different places - without
her this book could never have been written.

Peter Corke
Brisbane,
Queensland
October 2016

Note on the Second Edition

It seems only yesterday that I turned in the manuscript for the first edition of this book,
but it was in fact December 2010, the end of 20 months of writing. So the oldest parts
of the book are over 6 years old - it’s time for an update!

The revision principle was to keep the good (narrative style, code as a first-class citi-
zen, soft plastic cover) and eliminate the bad (errors and missing topics). I started with
the collected errata for the first edition and pencilled markup from a battered copy of the
first edition that I've carried around for years. There were more errors than I would have
liked and I thank everybody who submitted errata and suggested improvements.

The first edition was written before I taught in the university classroom or created
the MOOCs, which is the inverse of the way books are normally developed. Preparing
for teaching gave me insights into better ways to present some topics, particularly
around pose representation, robot kinematics and dynamics so the presentation has
been adjusted accordingly.

New content includes matrix exponential notation; the basics of screw theory and
Lie algebra; inertial navigation; differential steer and omnidirectional mobile robots; a
deeper treatment of SLAM systems including scan matching and pose graphs; greater
use of MATLAB computer algebra; operational space control; deeper treatment of ma-
nipulator dynamics and control; visual SLAM and visual odometry; structured light;
bundle adjustment; and light-field cameras.

In the first edition I shied away from Lie algebra, matrix exponentials and twists
but I think it’s important to cover them. The topic is deeply mathematical and I've
tried to steer a middle ground between hardcore algebraic topology and the homog-
enous transformation only approach of most other texts, while also staying true to the
overall approach of this book.

All MATLAB generated figures have been regenerated to reflect recent improve-
ments to MATLAB graphics and all code examples have been updated as required and
tested, and are available as MATLAB Live Scripts.

The second edition of the book is matched by new major releases of my Toolboxes:
Robotics Toolbox (release 10) and the Machine Vision Toolbox (release 4). These newer
versions of the toolboxes have some minor incompatibilities with previous releases of the
toolboxes, and therefore also with the code examples in the first edition of the book.
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Nomenclature

The notation used in robotics and computer vision varies considerably across books and
research papers. The symbols used in this book, and their units where appropriate, are
listed below. Some symbols have multiple meanings and their context must be used to
disambiguate them.

Notation Description

*

x desired value of x

x* predicted value of x

x* measured, or observed, value of x
X estimated value of x

x mean of x or relative value

x(k) k™ element of a time series

v a vector

) a unit-vector parallel to v

) homogeneous representation of vector v
v[i] i element of vector v

vy a component of a vector

A a matrix

Ali,j] the element (i, j) of A

A the element (i, j) of A

flx a function of x

F.(x) the derivative df/0x

5 5 %
E,(x,y) the derivative 0°f/dx0y
unit quaternion, § € s
an m X n matrix of zeros

an m X n matrix of ones
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Nomenclature

Symbol

= QR

se(n)
so(n)
SE(n)

SO(n)

Description

viscous friction coefficient

magnetic field intensity (or magnetic flux density)
camera matrix, C € R¥*

manipulator centripetal and Coriolis term
configuration space of a robot with Njoints: € ¢ RY
illuminance (lux)

focal length

force

vector of image features

friction torque

manipulator gravity loading term

the set of all quaternions (H for Hamilton)

n X n identity matrix

inertia

inertia tensor, J € R¥

Jacobian matrix

Jacobian transforming velocities in frame B to frame A
constant

camera calibration matrix

amplifier gain (transconductance)

motor torque constant

luminance (nit)

mass

manipulator inertia matrix

a normal (Gaussian) distribution with mean x and standard deviation o
an image plane point, p € R

aworld point, P € R?

projective space of all 2-D points, a 3-tuple
projective space of all 3-D points, a 4-tuple
generalized coordinates, configuration g € €
generalized force Q € RY

an orthonormal rotation matrix, R € SO(2) or SO(3)
set of real numbers

set of all 2-D points

set of all 3-D points

Laplace transform operator

unit circle, set of angles [0, 2)

unit sphere embedded in R™"!

Lie algebra for SE(n), an R"™*"*) augmented skew-symmetric matrix
Lie algebra for SO(n), an R™" skew-symmetric matrix

special Euclidean group, the set of all poses in n dimensions,
represented by an R ") homogeneous transformation matrix

special orthogonal group, the set of all orientations in n dimensions,
represented by an R"" orthogonal matrix

twist in 3 dimensions, $ € R®
time

task space of robot: T C SE(3)

Unit
Nmsrad™

T

kg m*s™'

m, rad

N, Nm
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Uy Vo

>
S
N

N X
=

S > HH=2 S N
=
NS

R > >

3

D g € & 3

Description Unit
sample interval s
temperature K
optical transmission m!

homogeneous transformation, T € SE(2) or SE(3)

homogeneous transform representing frame {B} with respect to frame {A}.
If A is not given then assumed relative to world coordinate frame 0.
Note that 4T, = (°T,)™

camera image plane coordinates pixels
coordinates of the principal point pixels
normalized image plane coordinates, relative to the principal point m
velocity ms™
velocity vector ms
wrench, a vector of forces and moments (f,, f,, f,, m,, m,, m,) N, Nm

Cartesian coordinates
normalized image-plane coordinates
set of all integers

the set of all integers greater than zero

luminous flux (lumens) Im

robot steering angle rad
3-angle representation of rotation, I' e R? rad
body torque, I' € R? Nm
angle rad
roll pitch yaw angles rad
wavelength m

an eigenvalue
innovation

wz)eR(’ ms -,

spatial velocity, v= (v,, Vyp Vs W W :
rad s”

y

abstract representation of Cartesian pose (pronounced ksi)

abstract representation of relative pose, frame {B} with respect to
frame {A} or rigid-body motion from frame {A} to {B}

mathematic constant

a plane

pixel width and height m
standard deviation

robot joint type, o= R for revolute and o= P for prismatic

Lie algebra 3 = ] € se(3)

torque Nm
Coulomb friction torque Nm
rotational rate rads™
angular velocity vector rads™'
rotational speed of a motor or propellor rads™

Lie algebra = [-], € so(3)
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Nomenclature

Operator
I-
vV,

v XV,
A—l

A+

A

AT

A—T

O O &

AT()
% (0)
A(w)
Z:(d)
)
Ht
[z
[«

vx(')

V()
Ad(")
ad(+)

<o

12

X()
X
D)

¥

&

° O & |l

[a, b]
(a,b)
[a, b)
(a, b]

Description MATLAB
norm, or length, of vector: R" — R norm, .norm
dot, or inner, product, also vazz R"xR"— R dot
cross, or vector, product: R” X R" — R" cross
inverse of A: R"™" — R"™" inv
pseudo-inverse of A: R — R™" pinv
adjugate of A — det (A)A™", R™" — R"™"

transpose of A: R™" — R™" g
transpose of inverse A — (A") ! = (4™, R™" — R™"

transform a point (coordinate vector) by a relative pose: SE(n) x R” — R”" *
composition: Sg(n) X Sg(n) — Sg(n) *
composition with inverse: Sg(n) X Sg(n) — Sg(n) /
unary inverse: Sg(n) — Sg(n) .inv
maps incremental pose change to differential motion: SE(3) — R® tr2delta
maps differential motion to incremental pose change: R®— SE(3) delta2tr

pure rotation about axis i: R — SE(3) SE3.rotx|ylz

pure rotation by ||w || about w: R® — SE(3) SE3 .angvec

pure translation along axis i: R — SE(2), SE(3) SE2, SE3
pure translation by vector: R" — SE(n) SE2, SE3
translational component of pose: SE(1) — R" -
rotational component of pose: SE(1) — R"™" .R
skew-symmetric matrix: R — so(2), R — so(3) skew
unpack skew-symmetric matrix: so(2) — R, so(3) — R3 vex
augmented skew-symmetric matrix: R’ — se(2), R®— se(3) skewa
unpack augmented skew-symmetric matrix: se(2) — R’ s0(3) — R® vexa
adjoint representation: SE(3) — R&*6 .Ad
logarithm of adjoint representation: SE(3) — R®* .ad
quaternion (Hamiltonian) multiplication: H x H s H S

pure quaternion: R?— H Quaternion.pure
equivalence of representations

homogeneous coordinate equivalence

smallest angular difference between two angles on a circle: S' x S'+— R angdiff
forward kinematics: € — T fkine
inverse kinematics: 7 +— € ikine
manipulator inverse dynamics function: €, RY RN — RN rne
camera projection function: R® — R* .project
convolution iconv
correlation

colormetric equivalence

morphological dilation

morphological erosion

morphological opening

morphological closing

coordinate frame F

interval a to b inclusive

interval a to b exclusive, not including a or b
interval a to b, not including b

interval a to b, not including a
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MATLAB® Toolbox Conventions

A Cartesian coordinate, a point, is expressed as a column vector.

A set of points is expressed as a matrix with columns representing the coordinates
of individual points.

A rectangular region by two opposite corners [x,;; X2 Vinin Vmax)-

A robot configuration, a set of joint angles, is expressed as a row vector.

Time series data is expressed as a matrix with rows representing time steps.

A MATLAB matrix has subscripts (i, j) which represent row and column respec-
tively. Image coordinates are written (i, v) so an image represented by a matrix I
is indexed as I(v, u).

Matrices with three or more dimensions are frequently used:

- A color image has 3 dimensions: row, column, color plane.

- A greyscale image sequence has 3 dimensions: row, column, index.

- A color image sequence has 4 dimensions: row, column, color plane, index.

Common Abbreviations

2D 2-dimensional

3D 3-dimensional
DOF Degrees of freedom

n-tuple A group of n numbers, it can represent a point of a vector
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Fig.1.1.

Early programmable machines.
a Vaucanson’s duck (1739) was
an automaton that could flap its
wings, eat grain and defecate. It
was driven by a clockwork mech-
anism and executed a single
program; b The Jacquard loom
(1801) was a reprogrammable
machine and the program was
held on punched cards (photo-
graph by George P. Landow
from www.victorianweb.org)

Introduction

The term robot means different things to different people. Science fiction books and
movies have strongly influenced what many people expect a robot to be or what it can
do. Sadly the practice of robotics is far behind this popular conception. One thing is
certain though - robotics will be an important technology in this century. Products
such as vacuum cleaning robots have already been with us for over a decade and self-
driving cars are coming. These are the vanguard of a wave of smart machines that will
appear in our homes and workplaces in the near to medium future.

In the eighteenth century the people of Europe were fascinated by automata such as
Vaucanson’s duck shown in Fig. 1.1a. These machines, complex by the standards of the
day, demonstrated what then seemed life-like behavior. The duck used a cam mecha-
nism to sequence its movements and Vaucanson went on to explore mechanization of
silk weaving. Jacquard extended these ideas and developed a loom, shown in Fig. 1.1b,
that was essentially a programmable weaving machine. The pattern to be woven was
encoded as a series of holes on punched cards. This machine has many hallmarks of a
modern robot: it performed a physical task and was reprogrammable.

The term robot first appeared in a 1920 Czech science fiction play “Rossum’s Universal
Robots” by Karel Capek (pronounced Chapek). The term was coined by his brother
Josef, and in the Czech language means serf labor but colloquially means hardwork
or drudgery. The robots in the play were artificial people or androids and as in so
many robot stories that follow this one, the robots rebel and it ends badly for human-
ity. Isaac Asimov’s robot series, comprising many books and short stories written be-
tween 1950 and 1985, explored issues of human and robot interaction and morality.
The robots in these stories are equipped with “positronic brains” in which the “Three
laws of robotics” are encoded. These stories have influenced subsequent books and
movies which in turn have shaped the public perception of what robots are. The mid
twentieth century also saw the advent of the field of cybernetics — an uncommon term
today but then an exciting science at the frontiers of understanding life and creating
intelligent machines.

The first patent for what we would now consider a robot was filed in 1954 by
George C. Devol and issued in 1961. The device comprised a mechanical arm with
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a gripper that was mounted on a track and the sequence of motions was encod-
ed as magnetic patterns stored on a rotating drum. The first robotics company,
Unimation, was founded by Devol and Joseph Engelberger in 1956 and their first
industrial robot shown in Fig. 1.2 was installed in 1961. The original vision of Devol
and Engelberger for robotic automation has become a reality and many millions of
arm-type robots such as shown in Fig. 1.3 have been built and put to work at tasks
such as welding, painting, machine loading and unloading, electronic assembly,
packaging and palletizing. The use of robots has led to increased productivity and
improved product quality. Today many products we buy have been assembled or
handled by a robot.

N

Fig.1.2.

Universal automation. a A plan
view of the machine from Devol’s
patent; b the first Unimation
robot working at a General
Motors factory (photo courtesy
of George C. Devol)

Unimation Inc. (1956-1982). Devol sought financing to develop his unimation technology and at
a cocktail party in 1954 he met Joseph Engelberger who was then an engineer with Manning,
Maxwell and Moore. In 1956 they jointly established Unimation, the first robotics company, in
Danbury Connecticut. The company was acquired by Consolidated Diesel Corp. (Condec) and
became Unimate Inc. a division of Condec. Their first robot went to work in 1961 at a General
Motors die-casting plant in New Jersey. In 1968 they licensed technology to Kawasaki Heavy
Industries which produced the first Japanese industrial robot. Engelberger served as chief execu-
tive until it was acquired by Westinghouse in 1982. People and technologies from this company
have gone on to be very influential on the whole field of robotics.

George C. Devol, Jr. (1912-2011) was a prolific American inventor. He was born in Louisville,
Kentucky, and in 1932 founded United Cinephone Corp. which manufactured phonograph
arms and amplifiers, registration controls for printing presses and packaging machines. In
1954, he applied for US patent 2,988,237 for Programmed Article Transfer which introduced
the concept of Universal Automation or “Unimation”. Specifically it described a track-mounted
polar-coordinate arm mechanism with a gripper and a programmable controller - the precur-
sor of all modern robots.

In 2011 he was inducted into the National Inventors Hall of Fame. (Photo on the right: cour-
tesy of George C. Devol)

Joseph F.Engelberger (1925-2015) was an American engineer and entrepreneur who is often referred
to as the “Father of Robotics”. He received his B.S. and M.S. degrees in physics from Columbia
University, in 1946 and 1949, respectively. Engelberger has been a tireless promoter of robotics.
In 1966, he appeared on The Tonight Show Starring Johnny Carson with a Unimate robot which
poured a beer, putted a golf ball, and directed the band. He promoted robotics heavily in Japan,
which led to strong investment and development of robotic technology in that country.

Engelberger served as chief executive of Unimation until 1982, and in 1984 founded Transitions
Research Corporation which became HelpMate Robotics Inc., an early entrant in the hospital ser-
vice robot sector. He was elected to the National Academy of Engineering, received the Beckman
Award and the Japan Prize, and has written two books: Robotics in Practice (1980) and Robotics
in Service (1989). Each year the Robotics Industries Association presents an award in his honor
to “persons who have contributed outstandingly to the furtherance of the science and practice
of robotics.”
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In practice the categorization of robots
is not very consistently applied.

Fig.1.3.
Manufacturing robots, tech-
nological descendants of the

Unimate shown in Fig. 1.2.

a A modern six-axis robot de-
signed for high accuracy and
throughput (image courtesy
ABB robotics); b Baxter two-
armed robot with built in vision
capability and programmable
by demonstration, designed for
moderate throughput piece work

(image courtesy Rethink Robotics)
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These first generation robots are fixed in place and cannot move about the fac-
tory - they are not mobile. By contrast mobile robots as shown in Figs. 1.4 and
1.5 can move through the world using various forms of mobility. They can loco-
mote over the ground using wheels or legs, fly through the air using fixed wings or
multiple rotors, move through the water or sail over it. An alternative taxonomy
is based on the function that the robot performs. Manufacturing robots operate
in factories and are the technological descendents of the first generation robots.
Service robots supply services to people such as cleaning, personal care, medical
rehabilitation or fetching and carrying as shown in Fig. 1.5b. Field robots, such as
those shown in Fig. 1.4, work outdoors on tasks such as environmental monitor-
ing, agriculture, mining, construction and forestry. Humanoid robots such as shown
in Fig. 1.6 have the physical form of a human being - they are both mobile robots
and service robots.

Rossum’s Universal Robots (RUR). In the introductory scene Helena Glory is visiting Harry Domin
the director general of Rossum’s Universal Robots and his robotic secretary Sulla.

Domin Sulla, let Miss Glory have a look at you.
Helena (stands and offers her hand) Pleased to meet you. It must be very hard for you
out here, cut off from the rest of the world [the factory is on an island]

Sulla  Ido not know the rest of the world Miss Glory. Please sit down.
Helena (sits) Where are you from?
Sulla  From here, the factory

Helena Oh, you were born here.

Sulla  Yes I was made here.

Helena (startled) What?

Domin (laughing) Sulla isn’t a person, Miss Glory, she’s a robot.
Helena Oh, please forgive me ...

The full play can be found at http://ebooks.adelaide.edu.au/c/capek/karel/rur. (Image on the
left: Library of Congress item 96524672)
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A manufacturing robot is typically an arm-type manipulator on a fixed base such
as Fig. 1.3a that performs repetitive tasks within a local work cell. Parts are presented
to the robot in an orderly fashion which maximizes the advantage of the robot’s high
speed and precision. High-speed robots are hazardous and safety is achieved by ex-
cluding people from robotic work places, typically placing the robot inside a cage. In
contrast the Baxter robot shown in Fig. 1.3b is human safe, it operates at low speed
and stops moving if it encounters an obstruction.

Field and service robots face specific and significant challenges. The first chal-
lenge is that the robot must operate and move in a complex, cluttered and chang-
ing environment. A delivery robot in a hospital must operate despite crowds of
people and a time-varying configuration of parked carts and trolleys. A Mars rover
as shown in Fig. 1.5a must navigate rocks and small craters despite not having an
accurate local map in advance of its travel. Robotic, or self-driving cars, such as
shown in Fig. 1.5¢, must follow roads, avoid obstacles and obey traffic signals and
the rules of the road. The second challenge for these types of robots is that they
must operate safely in the presence of people. The hospital delivery robot operates
among people, the robotic car contains people and a robotic surgical device oper-
ates inside people.

Fig. 1.4. Non-land-based mobile
robots. a Small autonomous un-
derwater vehicle (Todd Walsh
© 2013 MBARI); b Global Hawk
unmanned aerial vehicle (UAV)
(photo courtesy of NASA)

Cybernetics, artificial intelligence and robotics. Cybernetics flour-
ished as a research field from the 1930s until the 1960s and was
fueled by a heady mix of new ideas and results from neurology,
control theory and information theory. Research in neurology
had shown that the brain was an electrical network of neurons.
Harold Black, Henrik Bode and Harry Nyquist at Bell Labs were
researching negative feedback and the stability of electrical net-
works, Claude Shannon’s information theory described digital
signals, and Alan Turing was exploring the fundamentals of
computation. Walter Pitts and Warren McCulloch proposed
an artificial neuron in 1943 and showed how it might perform
simple logical functions. In 1951 Marvin Minsky built SNARC
(from a B24 autopilot and comprising 3000 vacuum tubes)
which was perhaps the first neural-network-based learning
machine as his graduate project. William Grey Walter’s ro-
botic tortoises showed life-like behavior. Maybe an electronic
brain could be built!

An important early book was Norbert Wiener’s Cybernetics
or Control and Communication in the Animal and the Machine

(Wiener 1965). A characteristic of a cybernetic system is the use
of feedback which is common in engineering and biological sys-
tems. The ideas were later applied to evolutionary biology, psy-
chology and economics.

In 1956 a watershed conference was hosted by John McCarthy
at Dartmouth College and attended by Minsky, Shannon, Herbert
Simon, Allen Newell and others. This meeting defined the term
artificial intelligence (AI) as we know it today with an em-
phasis on digital computers and symbolic manipulation and
led to new research in robotics, vision, natural language, se-
mantics and reasoning. McCarthy and Minsky formed the AI
group at MIT, and McCarthy left in 1962 to form the Stanford
AI Laboratory. Minsky focused on artificially simple “blocks
world”. Simon, and his student Newell, were influential in AI
research at Carnegie-Mellon University from which the Robotics
Institute was spawned in 1979. These AI groups were to be very
influential in the development of robotics and computer vision
in the USA. Societies and publications focusing on cybernetics
are still active today.
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Fig.1.5. Mobile robots. a Mars
Science Lander, Curiosity, self
portrait taken at “John Klein”.
The mast contains many cam-
eras including two stereo cam-
era pairs from which the robot
can compute the 3-dimension-
al structure of its environment
(image courtesy of NASA/JPL-
Caltech/MSSS); b Savioke Relay
delivery robot (image courtesy
Savioke); ¢ self driving car (im-
age courtesy Dept. Informati-
on Engineering, Oxford Univ.);
d Cheetah legged robot (image
courtesy Boston Dynamics)

So what is a robot? There are many definitions and not all of them are particularly
helpful. A definition that will serve us well in this book is

a goal oriented machine that can sense, plan and act.

A robot senses its environment and uses that information, together with a goal, to
plan some action. The action might be to move the tool of an arm-robot to grasp an
object or it might be to drive a mobile robot to some place.

Sensing is critical to robots. Proprioceptive sensors measure the state of the robot
itself: the angle of the joints on a robot arm, the number of wheel revolutions on a mo-
bile robot or the current drawn by an electric motor. Exteroceptive sensors measure the
state of the world with respect to the robot. The sensor might be a simple bump sensor
on arobot vacuum cleaner to detect collision. It might be a GPS receiver that measures
distances to an orbiting satellite constellation, or a compass that measures the direc-
tion of the Earth’s magnetic field vector relative to the robot. It might also be an active
sensor that emits acoustic, optical or radio pulses in order to measure the distance to
points in the world based on the time taken for a reflection to return to the sensor.

A camera is a passive device that captures patterns of optical energy reflected from the
scene. Our own experience is that eyes are a very effective sensor for recognition, navi-
gation, obstacle avoidance and manipulation so vision has long been of interest to ro-
botics researchers. An important limitation of a single camera, or a single eye, is that the
3-dimensional structure of the scene is lost in the resulting 2-dimensional image. Despite
this, humans are particularly good at inferring the 3-dimensional nature of a scene using
a number of visual cues. Robots are currently not as well developed. Figure 1.7 shows
some very early work on reconstructing a 3-dimensional wireframe model from a single
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2-dimensional image and gives some idea of the difficulties involved. Another approach
is stereo vision where information from two cameras is combined to estimate the 3-di-
mensional structure of the scene - this is a technique used by humans and robots, for
example, the Mars rover shown in Fig. 1.5a has a stereo camera on its mast.

In this book we focus on the use of cameras as sensors for robots. Machine vision,
discussed in Part IV, is the use of computers to process images from one or more cam-
eras and to extract numerical features. For example determining the coordinate of a
round red object in the scene, or how far a robot has moved based on how the world
appears to have moved relative to the robot.

If the robot’s environment is unchanging it can make do with an accurate map and
have little need to sense the state of the world, apart from determining where it is. Imagine
driving a car with the front window covered over and just looking at the GPS navigation
system. If you had the road to yourself you could probably drive from A to B quite suc-
cessfully albeit slowly. However if there were other cars, pedestrians, traffic signals or
roadworks then you would be in some difficulty. To deal with this you need to look out-
wards - to sense the world and plan your actions accordingly. For humans this is easy,
done without conscious thought, but it is not yet easy to program a machine to do the
same - this is the challenge of robotic vision.

Telerobots are robot-like machines that are remotely controlled by a human operator.
Perhaps the earliest was a radio controlled boat demonstrated by Nikola Tesla in 1898
and which he called a teleautomaton. According to the definition above these are not
robots but they were an important precursor to robots and are still important today for
many tasks where people cannot work but which are too complex for a machine to per-

Fig.1.6.

Humanoid robots. a Honda’s
Asimo humanoid robot (image
courtesy Honda Motor Co. Japan);
b Hubo robot that won the
DARPA Robotics Challenge in
2015 (image courtesy KAIST,
Korea)

Fig.1.7. Early results in comput-
er vision for estimating the shape
and pose of objects, from the Ph.D.
work of L.G. Roberts at MIT Lin-
coln Lab in 1963 (Roberts 1963).
a Original picture; b gradient im-
age; ¢ connected feature points;
d reconstructed line drawing
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Fig.1.8.

The working end of a surgical
robot, multiple tools working
through a single small inci-
sion (image © 2015 Intuitive
Surgical, Inc)

The Manhattan Project in World War 2 (WW II) developed the first nuclear weapons and this re-
quired handling of radioactive material. Remotely controlled arms were developed by Ray Goertz
at Argonne National Laboratory to exploit the manual dexterity of human operators while keeping
them away from the hazards of the material they were handling. The operators viewed the work
space through thick lead-glass windows or via a television link and manipulated the master arm
(on the left). The slave arm (on the right) followed the motion, and forces felt by the slave arm
were reflected back to the master arm, allowing the operator to feel weight and interference force.
Telerobotics is still important today for many tasks where people cannot work but which are too
complex for a machine to perform by itself, for instance the underwater robots that surveyed the
wreck of the Titanic. (Photo on the left: Courtesy Argonne National Laboratory)

form by itself. For example the underwater robots that surveyed the wreck of the Titanic
were technically remotely operated vehicles (ROVs). A modern surgical robot as shown
in Fig. 1.8 is also teleoperated - the motion of the small tools are remotely controlled by
the surgeon and this makes it possible to use much smaller incisions than the old-fash-
ioned approach where the surgeon works inside the body with their hands.

The various Mars rovers autonomously navigate the surface of Mars but human op-
erators provide the high-level goals. That is, the operators tell the robot where to go and
the robot itself determines the details of the route. Local decision making on Mars is es-
sential given that the communications delay is several minutes. Some robots are hybrids
and the control task is shared or traded with a human operator. In traded control, the
control function is passed back and forth between the human operator and the computer.
For example an aircraft pilot can pass control to an autopilot and take control back. In
shared control, the control function is performed by the human operator and the computer
working together. For example an autonomous passenger car might have the computer
keeping the car safely in the lane while the human driver just controls speed.

1.1 Robots, Jobs and Ethics

A number of ethical issues arise from the advent of robotics. Perhaps the greatest con-
cern to the wider public is “robots taking jobs from people”. This is a complex issue
but we cannot shy away from the fact that many jobs now done by people will, in the
future, be performed by robots. Clearly there are dangerous jobs which people should
not do, for example handling hazardous substances or working in dangerous envi-
ronments. There are many low-skilled jobs where human labor is increasingly hard to
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source, for instance in jobs like fruit picking. In many developed countries people no
longer aspire to hard physical outdoor work in remote locations. What are the alter-
natives if people don’t want to do the work? In areas like manufacturing, particularly
car manufacturing, the adoption of robotic automation has been critical in raising
productivity which has allowed that industry to be economically viable in high-wage
countries like Europe, Japan and the USA. Without robots these industries could not
exist; they would not employ any people, not pay any taxes, and not consume prod-
ucts and services from other parts of the economy. Automated industry might employ
fewer people but it still makes an important contribution to society. Rather than taking
jobs we could argue that robotics and automation has helped to keep manufacturing
industries viable in high-labor cost countries. How do we balance the good of the so-
ciety with the good of the individual?

There are other issues besides jobs. Consider self-driving cars. We are surprisingly
accepting of manually driven cars even though they kill more than one million people
every year, yet many are uncomfortable with the idea of self-driving cars even though
they will dramatically reduce this loss of life. We worry about who to blame if a robotic
car makes a mistake while the carnage caused by human drivers continues. Similar
concerns are raised when talking about robotic healthcare and surgery - human sur-
geons are not perfect but robots are seemingly held to a much higher account. There
is a lot of talk about using robots to look after elderly people, but does this detract
from their quality of life by removing human contact, conversation and companion-
ship? Should we use robots to look after our children, and even teach them? What do
we think of armies of robots fighting and killing human beings?

Robotic cars, health care, elder care and child care might bring economic benefits
to our society but is it the right thing to do? Is it a direction that we want our society
to go? Once again how do we balance the good of the society with the good of the in-
dividual? These are deep ethical questions that cannot and should not be decided by
roboticists alone. But neither should roboticists ignore them. This is a discussion for
all of society and roboticists have a duty to be active participants in this debate.

1.2 About the Book

This book is about robotics and computer vision - separately, and together as robotic
vision. These are big topics and the combined coverage is necessarily broad. The in-
tent is not to be shallow but rather to give the reader a flavor of what robotics and vi-
sion is about and what it can do - consider it a grand tasting menu.

The goals of the book are:

= to provide a broad and solid base of understanding through theory and examples;

= to make abstract concepts tangible

= to tackle more complex problems than other more specialized textbooks by virtue
of the powerful numerical tools and software that underpins it;

= to provide instant gratification by solving complex problems with relatively little code;

= to complement the many excellent texts in robotics and computer vision;

= to encourage intuition through hands on numerical experimentation; and

= to limit the number of equations presented to those cases where (in my judgment)
they add value or clarity.

The approach used is to present background, theory and examples in an integrated
fashion. Code and examples are first-class citizens in this book and are not relegated
to the end of the chapter or an associated web site. The examples are woven into the
discussion like this

>> p = transl(Ts);
>> plot(t, p);
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where the MATLAB® code illuminates the topic being discussed and generally results
in a crisp numerical result or a graph in a figure that is then discussed. The examples
illustrate how to use the associated Toolboxes and that knowledge can then be ap-
plied to other problems. Most of the figures in this book have been generated by the
code examples provided and they are available from the book’s website as described
in Appendix A.

1.2.1 MATLAB Software and the Toolboxes

To do good work, one must first have good tools.
Chinese proverb

The computational foundation of this book is MATLAB®, a software package devel-
oped by The MathWorks Inc. MATLAB is an interactive mathematical software envi-
ronment that makes linear algebra, data analysis and high-quality graphics a breeze.
MATLAB is a popular package and one that is very likely to be familiar to engineering
students as well as researchers. It also supports a programming language which allows
the creation of complex algorithms.

A strength of MATLAB is its support for Toolboxes which are collections of func-
tions targeted at particular topics. Toolboxes are available from MathWorks, third
party companies and individuals. Some Toolboxes are products to be purchased while
others are open-source and generally free to use. This book is based on two open-source
Toolboxes written by the author: the Robotics Toolbox for MATLAB and the Machine
Vision Toolbox for MATLAB. These Toolboxes, with MATLAB, turn a personal com-
puter into a powerful and convenient environment for investigating complex prob-
lems in robotics, machine vision and vision-based control. The Toolboxes are free to
use and distributed under the GNU Lesser General Public License (GNU LGPL).

The Robotics Toolbox (RTB) provides a diverse range of functions for simulating
mobile and arm-type robots. The Toolbox supports a very general method of repre-
senting the structure of serial-link manipulators using MATLAB objects and provides
functions for forward and inverse kinematics and dynamics. The Toolbox includes
functions for manipulating and converting between datatypes such as vectors, homo-
geneous transformations, 3-angle representations, twists and unit-quaternions which
are necessary to represent 3-dimensional position and orientation. The Toolbox also
includes functionality for simulating mobile robots and includes models of wheeled
vehicles and quadrotors and controllers for these vehicles. It also provides standard
algorithms for robot path planning, localization, map making and SLAM.

The Machine Vision Toolbox (MVTB) provides a rich collection of functions for
camera modeling, image processing, image feature extraction, multi-view geometry
and vision-based control. The MVTB also contains functions for image acquisition and

The MATLAB software we use today has a long history. It starts
with the LINPACK and EISPACK projects run by the Argonne
National Laboratory in the 1970s to produce high quality, test-
ed and portable mathematical software. LINPACK is a collec-
tion of routines for linear algebra and EISPACK is a library of
numerical algorithms for computing eigenvalues and eigen-
vectors of matrices. These packages were written in Fortran
which was then the language of choice for large-scale numeri-
cal problems.

Cleve Moler, then at the University of New Mexico, contribut-
ed to both projects and wrote the first version of MATLAB in the
late 1970s. It allowed interactive use of LINPACK and EISPACK
for problem solving without having to write and compile Fortran
code. MATLAB quickly spread to other universities and found a

strong audience within the applied mathematics and engineer-
ing community. In 1984 Cleve Moler and Jack Little founded
The MathWorks Inc. which exploited the newly released IBM
PC - the first widely available desktop computer.

Cleve Moler received his bachelor’s degree from Caltech in
1961, and a Ph.D. from Stanford University. He was a professor
of mathematics and computer science at universities including
University of Michigan, Stanford University, and the University
of New Mexico. He has served as president of the Society for
Industrial and Applied Mathematics (STAM) and was elected to
the National Academy of Engineering in 1997.

See also http://www.mathworks.com/company/aboutus/
founders/clevemoler.html which includes a video of Cleve Moler
and also http://history.siam.org/pdfs2/Moler_final.pdf.
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display; filtering; blob, point and line feature extraction; mathematical morphology;
image warping; stereo vision; homography and fundamental matrix estimation; robust
estimation; bundle adjustment; visual Jacobians; geometric camera models; camera
calibration and color space operations. For modest image sizes on a modern computer
the processing rate can be sufficiently “real-time” to allow for closed-loop control.

If you’re starting out in robotics or vision then the Toolboxes are a significant initial
base of code on which to build your project. The Toolboxes are provided in source code
form. The bulk of the code is written in the MATLAB M-language but a few functions
are written in C* or Java for increased computational efficiency. In general the Toolbox
code is written in a straightforward manner to facilitate understanding, perhaps at the
expense of computational efficiency. Appendix A provides details of how to obtain the
Toolboxes and pointers to online resources including discussion groups.

This book provides examples of how to use many Toolbox functions in the context
of solving specific problems but it is not a reference manual. Comprehensive documen-
tation of all Toolbox functions is available through the MATLAB builtin help mecha-
nism or the PDF format manual that is distributed with each Toolbox.

1.2.2 Notation, Conventions and Organization

The mathematical notation used in the book is summarized in the Nomenclature sec-
tion on page xxv. Since the coverage of the book is broad there are just not enough
good symbols to go around, so it is unavoidable that some symbols have different
meanings in different parts of the book.

There is alot of MATLAB code in the book and this is indicated in blue fixed-width
font such as

>> a =2+ 2

a =

4

The MATLAB command prompt is >> and what follows is the command issued to
MATLAB by the user. Subsequent lines, without the prompt, are MATLAB’s response.
All functions, classes and methods mentioned in the text or in code segments are cross-
referenced and have their own indexes at the end of the book allowing you to find dif-
ferent ways that particular functions can be used.

Colored boxes are used to indicate different types of material. Orange informational
boxes highlight material that is particularly important while red and orange warning
boxes highlight points that are often traps for those starting out. Blue boxes provide
technical, historical or biographical information that augment the main text but they
are not critical to its understanding.

As an author there is a tension between completeness, clarity and conciseness. For
this reason a lot of detail has been pushed into notes” and blue boxes and on a first
reading these can be skipped. Some chapters have an Advanced Topics section at the
end that can also be skipped on a first reading. However if you are trying to understand
a particular algorithm and apply it to your own problem then understanding the details
and nuances can be important and the notes or advanced topics are for you.

Each chapter ends with a Wrapping Up section that summarizes the important les-
sons from the chapter, discusses some suggested further reading, and provides some
exercises. For clarity, references are cited sparingly in the text of each chapter. The
Further Reading subsection discusses prior work and references that provide more
rigor or more complete description of the algorithms. Resources provides links to rel-
evant online code and datasets. MATLAB Notes provides additional details about the
author’s toolboxes and those with similar functionality from MathWorks. Exercises
extend the concepts discussed within the chapter and are generally related to specific
code examples discussed in the chapter. The exercises vary in difficulty from straight-
forward extension of the code examples to more challenging problems.

These are implemented as MEX files,
which are written in Cin a very specif-
ic way that allows them to be invoked
from MATLAB just like a function written
in M-language.

They are placed as marginal notes near
the corresponding marker.
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1.23 Audience and Prerequisites

The book is intended primarily for third or fourth year engineering undergraduate
students, Masters students and first year Ph.D. students. For undergraduates the book
will serve as a companion text for a robotics or computer vision course or to support
amajor project in robotics or vision. Students should study Part I and the appendices
for foundational concepts, and then the relevant part of the book: mobile robotics,
arm robots, computer vision or vision-based control. The Toolboxes provide a solid
set of tools for problem solving, and the exercises at the end of each chapter provide
additional problems beyond the worked examples in the book.

For students commencing graduate study in robotics, and who have previously stud-
ied engineering or computer science, the book will help fill the gaps between what you
learned as an undergraduate and what will be required to underpin your deeper study
of robotics and computer vision. The book’s working code base can help bootstrap your
research, enabling you to get started quickly and working productively on your own
problems and ideas. Since the source code is available you can reshape it to suit your
need, and when the time comes (as it usually does) to code your algorithms in some
other language then the Toolboxes can be used to cross-check your implementation.

For those who are no longer students, the researcher or industry practitioner, the
book will serve as a useful companion for your own reference to a wide range of topics
in robotics and computer vision, as well as a handbook and guide for the Toolboxes.

The book assumes undergraduate-level knowledge of linear algebra (matrices, vec-
tors, eigenvalues), basic set theory, basic graph theory, probability, dynamics (forces,
torques, inertia) and control theory. Some of these topics will likely be more familiar to
engineering students than computer science students. Computer science students may
struggle with some concepts in Chap. 4 and 9 such as the Laplace transform, transfer
functions, linear control (proportional control, proportional-derivative control, propor-
tional-integral control) and block diagram notation. This material could be skimmed
over on a first reading and Albertos and Mareels (2010) may be a useful introduction to
some of these topics. The book also assumes the reader is familiar with using and pro-
gramming in MATLAB and also familiar with object-oriented programming techniques
(perhaps C++, Java or Python). Familiarity with Simulink®, the graphical block-diagram
modeling tool integrated with MATLAB will be helpful but not essential.

1.24 Learning with the Book

The best way to learn is by doing. Although the book shows the MATLAB commands
and the response there is something special about doing it for yourself. Consider the
book as an invitation to tinker. By running the commands yourself you can look at
the results in ways that you prefer, plot the results in a different way, or try the algo-
rithm on different data or with different parameters. The book is especially designed
to stay open which enables you to type in commands as you read. You can also look
at the online documentation for the Toolbox functions, discover additional features
and options, and experiment with those, or read the code to see how it really works
and perhaps modify it.

Most of the commands are quite short so typing them in to MATLAB is not too
onerous. However the book’s web site, see Appendix A, includes all the MATLAB com-
mands shown in the book (more than 1 600 lines) and these can be cut and pasted into
MATLAB or downloaded and used to create your own scripts.

In 2015 two open online courses (MOOCs) were released - based on the content
and approach of this book. Introduction to Robotics covers most of Parts I and III,
while Robotic Vision covers some of Parts IV and V. Each MOOC is six weeks long
and comprises 12 hours of video lecture material plus quizzes, assignments and an
optional project. They can be reached via http://petercorke.com/moocs.
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1.2.5 Teaching with the Book

The book can be used in support of courses in robotics, mechatronics and comput-
er vision. All courses should include the introduction to coordinate frames and their
composition which is discussed in Chap. 2. For a mobile robotics or image processing
course it is sufficient to teach only the 2-dimensional case. For robotic manipulators
or multi-view geometry the 2- and 3-dimensional cases should be taught.

Most figures (MATLAB-generated and line drawings) in this book are available as
PDF format files from the book’s web site and you are free to use them with attribution
in any course material that you prepare. All the code in this book can be downloaded
from the web site and used as the basis for demonstrations in lectures or tutorials.
See Appendix A for details.

The exercises at the end of each chapter can be used as the basis of assignments, or
as examples to be worked in class or in tutorials. Most of the questions are rather open
ended in order to encourage exploration and discovery of the effects of parameters
and the limits of performance of algorithms. This exploration should be supported by
discussion and debate about performance measures and what best means. True un-
derstanding of algorithms involves an appreciation of the effects of parameters, how
algorithms fail and under what circumstances.

The teaching approach could also be inverted, by diving headfirst into a particular
problem and then teaching the appropriate prerequisite material. Suitable problems
could be chosen from the Application sections of Chap. 7, 14 or 16, or from any of the
exercises. Particularly challenging exercises are so marked.

If you wanted to consider a flipped learning approach then the two MOOCs men-
tioned on page 11 could be used in conjunction with your class. Students would watch
the videos and undertake some formative assessment out of the classroom, and you
could use classroom time to work through problem sets.

For graduate level teaching the papers and textbooks mentioned in the Further
Reading could form the basis of a student’s reading list. They could also serve as can-
didate papers for a reading group or journal club.

1.2.6 Outline

I promised a book with instant gratification but before we can get started in robot-
ics there are some fundamental concepts that we absolutely need to understand,
and understand well. Part I introduces the concepts of pose and coordinate frames
- how we represent the position and orientation of a robot, a camera or the objects
that the robot needs to work with. We discuss how motion between two poses can
be decomposed into a sequence of elementary translations and rotations, and how
elementary motions can be composed into more complex motions. Chapter 2 dis-
cusses how pose can be represented in a computer, and Chap. 3 discusses the rela-
tionship between velocity and the derivative of pose, estimating motion from sen-
sors and generating a sequence of poses that smoothly follow some path in space
and time.

With these formalities out of the way we move on to the first main event - robots.
There are two important classes of robot: mobile robots and manipulator arms and
these are covered in Parts II and III respectively.”

Part II begins, in Chap. 4, with motion models for several types of wheeled vehi-
cles and a multi-rotor flying vehicle. Various control laws are discussed for wheeled
vehicles such as moving to a point, following a path and moving to a specific pose.
Chapter 5 is concerned with navigation, that is, how a robot finds a path between
points A and B in the world. Two important cases, with and without a map, are dis-
cussed. Most navigation techniques require knowledge of the robot’s position and
Chap. 6 discusses various approaches to this problem based on dead-reckoning, or

Although robot arms came first chronolog-
ically, mobile robotics is mostly a 2-dimen-
sional problem and easier to understand
than the 3-dimensional arm-robot case.
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landmark observation and a map. We also show how a robot can make a map, and
even determine its location while simultaneously mapping an unknown region.

Part IIT is concerned with arm-type robots, or more precisely serial-link manipu-
lators. Manipulator arms are used for tasks such as assembly, welding, material han-
dling and even surgery. Chapter 7 introduces the topic of kinematics which relates the
angles of the robot’s joints to the 3-dimensional pose of the robot’s tool. Techniques
to generate smooth paths for the tool are discussed and two examples show how an
arm-robot can draw a letter on a surface and how multiple arms (acting as legs) can
be used to create a model for a simple walking robot. Chapter 8 discusses the rela-
tionships between the rates of change of joint angles and tool pose. It introduces the
Jacobian matrix and concepts such as singularities, manipulability, null-space mo-
tion, and resolved-rate motion control. It also discusses under- and over-actuated ro-
bots and the general numerical solution to inverse kinematics. Chapter 9 introduces
the design of joint control systems, the dynamic equations of motion for a serial-link
manipulator, and the relationship between joint forces and joint motion. It discusses
important topics such as variation in inertia, the effect of payload, flexible transmis-
sions and independent joint versus nonlinear control strategies.

Computer vision is a large field concerned with processing images in order to
enhance them for human benefit, interpret the contents of the scene or create a
3D model corresponding to the scene. Part IV is concerned with machine vision,
a subset of computer vision, and defined here as the extraction of numerical fea-
tures from images to provide input for control of a robot. The discussion starts in
Chap. 10 with the fundamentals of light, illumination and color. Chapter 11 de-
scribes the geometric model of perspective image creation using lenses and dis-
cusses topics such as camera calibration and pose estimation. We introduce non-
perspective imaging using wide-angle lenses and mirror systems, camera arrays
and light-field cameras. Chapter 12 discusses image processing which is a domain
of 2-dimensional signal processing that transforms one image into another image.
The discussion starts with acquiring real-world images and then covers various
arithmetic and logical operations that can be performed on images. We then intro-
duce spatial operators such as convolution, segmentation, morphological filtering
and finally image shape and size changing. These operations underpin the discus-
sion in Chap. 13 which describe how numerical features are extracted from images.
The features describe homogeneous regions (blobs), lines or distinct points in the
scene and are the basis for vision-based robot control. Chapter 14 is concerned with
estimating the underlying three-dimensional geometry of a scene using classical
methods such as structured lighting and also combining features found in different
views of the same scene to provide information about the geometry and the spatial
relationship between the camera views which is encoded in fundamental, essential
and homography matrices. This leads to the topic of bundle adjustment and struc-
ture from motion and applications including perspective correction, mosaicing,
image retrieval and visual odometry.

Part V discusses how visual features extracted from the camera’s view can be used to
control arm-type and mobile robots - an approach known as vision-based control or
visual servoing. This part pulls together concepts introduced in the earlier parts of the
book. Chapter 15 introduces the classical approaches to visual servoing known as posi-
tion-based and image-based visual servoing and discusses their respective limitations.
Chapter 16 discusses more recent approaches that address these limitations and also
covers the use of nonperspective cameras, under-actuated robots and mobile robots.

This is a big book but any one of the parts can be read standalone, with more or
less frequent visits to the required earlier material. Chapter 2 is the only mandatory
material. Parts II, IIT or IV could be used respectively for an introduction to mobile
robots, arm robots or computer vision class. An alternative approach, following the
instant gratification theme, is to jump straight into any chapter and start exploring
- visiting the earlier material as required.
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Further Reading

The Handbook of Robotics (Siciliano and Khatib 2016) provides encyclopedic coverage
of the field of robotics today, covering theory, technology and the different types of
robot such as telerobots, service robots, field robots, flying robots, underwater robots
and so on. The classic work by Sheridan (2003) discusses the spectrum of autonomy
from remote control, through shared and traded control to full autonomy.

A comprehensive coverage of computer vision is the book by Szeliski (2011), and a
solid introduction to artificial intelligence is the text by Russell and Norvig (2009).

A number of recent books discuss the future impacts of robotics and artificial intel-
ligence on society, for example Ford (2015), Brynjolfsson and McAfee (2014), Bostrom
(2016) and Neilson (2011). The YouTube video Grey (2014) makes some powerful
points about the future of work and is always a great discussion starter.
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Chapter

Representing Position
and Orientation

Numbers are an important part of mathematics. We use numbers for counting: there are
2 apples. We use denominate numbers, a number plus a unit, to specify distance: the
object is 2m away. We also call this single number a scalar. We use a vector, a de-
* nominate number plus a direction, to specify a location: the object is 2 m due north.
We may also want to know the orientation of the object: the object is 2 m due north
and facing west. The combination of position and orientation we call pose.
A point in space is a familiar concept from mathematics and can be described
: by a coordinate vector, as shown in Fig. 2.1a. The vector represents the dis-
i placement of the point with respect to some reference coordinate frame - we
call this a bound vector since it cannot be freely moved. A coordinate frame, or
Cartesian coordinate system, is a set of orthogonal axes which intersect at a point
known as the origin. A vector can be described in terms of its components, a linear
combination of unit vectors which are parallel to the axes of the coordinate frame.
=N Note that points and vectors are different types of mathematical objects even though
_{r ‘\G‘ ) each can be described by a tuple of numbers. We can add vectors but adding points
: \ : makes no sense. The difference of two points is a vector, and we can add a vector to a
point to obtain another point.
Ty \\ ] A pointis an interesting mathematical abstraction, but a real object comprises
o infinitely many points. An object, unlike a point, also has an orientation. If we
attach a coordinate frame to an object, as shown in Fig. 2.1b, we can describe every
We assume that the objectis rigid, that  point within the object as a constant vector with respect to that frame.¥ Now we can
is, the points do not move with respect Jescribe the position and orientation — the pose - of that coordinate frame with re-
toeach other. spect to the reference coordinate frame. To distinguish the different frames we label
them and in this case the object coordinate frame is labeled {B} and its axes are labeled
xg and yp, adopting the frame’s label as their subscript.
To completely describe the pose of a rigid object in a 3-dimensional world we need
6 not 3 dimensions: 3 to describe its position and 3 to describe its orientation. These
dimensions behave quite differently. If we increase the value of one of the position
dimensions the object will move continuously in a straight line, but if we increase the
value of one of the orientation dimensions the object will rotate in some way and soon
get back to its original orientation - this dimension is curved. We clearly need to treat
the position and orientation dimensions quite differently.

Fig.2.1. a b y B
a The point P is described by a
coordinate vector with respect y y
to an absolute coordinate frame. A A
b The points are described with
respect to the object’s coordi- S axis P
nate frame {B} which in turn is

described by a relative pose &j. point
Axes are denoted by thick lines {B}
with an open arrow, vectors by \cooypli,watg
thin lines with a swept arrow vector B XB

head and a pose by a thick line oriain .
with a solid head 9 e > X > X
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The pose of the coordinate frame is denoted by the symbol £ - pronounced ksi.
Figure 2.2 shows two frames {A} and {B} and the relative pose A¢; which describes {B}
with respect to {A}. The leading superscript denotes the reference coordinate frame
and the subscript denotes the frame being described. We could also think of 4¢, as
describing some motion - imagine picking up {A} and applying a displacement and
a rotation so that it is transformed to {B}. If the initial superscript is missing we as-
sume that the change in pose is relative to the world coordinate frame which is gen-
erally denoted {O}.

The point P in Fig. 2.2 can be described with respect to either coordinate frame by
the vectors #p or Bp respectively. Formally they are related by

p="¢"p (2.1)

where the right-hand side expresses the motion from {A} to {B} and then to P. The op-
erator « transforms the vector, resulting in a new vector that describes the same point
but with respect to a different coordinate frame.

An important characteristic of relative poses is that they can be composed or com-
pounded. Consider the case shown in Fig. 2.3. If one frame can be described in terms
of another by a relative pose then they can be applied sequentially

Yo =1 @ %

YB

A}

In relative pose composition we can check that we have our reference frames correct by ensur-
ing that the subscript and superscript on each side of the & operator are matched. We can then
cancel out the intermediate subscripts and superscripts

X€Z = X€¥ @ ’(é-z

leaving just the end most subscript and superscript which are shown highlighted.

Euclid of Alexandria (ca. 325 sce-265 sce) was a Greek mathematician,
who was born and lived in Alexandria Egypt, and is considered
the “father of geometry”. His great work Elements comprising
13 books, captured and systematized much early knowledge about
geometry and numbers. It deduces the properties of planar and
solid geometric shapes from a set of 5 axioms and 5 postulates.

Elements is probably the most successful book in the histo-
ry of mathematics. It describes plane geometry and is the ba-
sis for most people’s first introduction to geometry and formal
proof, and is the basis of what we now call Euclidean geometry.
Euclidean distance is simply the distance between two points on
a plane. Euclid also wrote Optics which describes geometric vi-
sion and perspective.

Fig.2.2.

The point P can be described by
coordinate vectors relative to ei-
ther frame {A} or {B}. The pose
of {B} relative to {A} is 4¢,
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Fig.2.3.

The point P can be described by
coordinate vectors relative to
either frame {A}, {B} or {C}. The
frames are described by rela-
tive poses

which says, in words, that the pose of {C} relative to {A} can be obtained by compound-
ing the relative poses from {A} to {B} and {B} to {C}. We use the operator & to indicate
composition of relative poses.

For this case the point P can be described by

Ap: (AEB D Bgc) y CP

Later in this chapter we will convert these abstract notions of £, « and @ into stan-
dard mathematical objects and operators that we can implement in MATLAB®.

In the examples so far we have shown 2-dimensional coordinate frames. This is ap-
propriate for a large class of robotics problems, particularly for mobile robots which
operate in a planar world. For other problems we require 3-dimensional coordinate
frames to describe objects in our 3-dimensional world such as the pose of a flying or
underwater robot or the end of a tool carried by a robot arm.

yc
yA B
f P Cp Xc
A
D B gc {C}
1. 1B}
gB _XB
> XA

A}

Euclidean versus Cartesian geometry. Euclidean geometry is concerned with points and lines in
the Euclidean plane (2D) or Euclidean space (3D). It is entirely based on a set of axioms and
makes no use of arithmetic. Descartes added a coordinate system (2D or 3D) and was then
able to describe points, lines and other curves in terms of algebraic equations. The study
of such equations is called analytic geometry and is the basis of all modern geometry. The
Cartesian plane (or space) is the
Euclidean plane (or space) withall ~ Eyclidean y Cartesian

its axioms and postulates plus the B 3 B
extra facilities afforded by the ad-
ded coordinate system. The term A A
Euclidean geometry is often used
to mean that Euclid’s fifth postu-
late (parallel lines never intersect)
holds, which is the case for a pla-
nar surface but not for a curved C C
surface.

René Descartes (1596-1650) was a French philosopher, mathematician and part-time mercenary. He
is famous for the philosophical statement “Cogito, ergo sum” or “I am thinking, therefore I exist” or
“I think, therefore I am”. He was a sickly child and developed a life-long habit of lying in bed and
thinking until late morning. A possibly apocryphal story is that during one such morning he was
watching a fly walk across the ceiling and realized that he could describe its position in terms of
its distance from the two edges of the ceiling. This is the basis of the Cartesian coordinate system
and modern (analytic) geometry, which he described in his 1637 book La Géométrie. For the first
time mathematics and geometry were connected, and modern calculus was built on this foun-
dation by Newton and Leibniz. In Sweden at the invitation of Queen Christina he was obliged to
rise at 5 A.M., breaking his lifetime habit - he caught pneumonia and died. His remains were later
moved to Paris, and are now lost apart from his skull which is in the Musée de ’Homme. After his
death, the Roman Catholic Church placed his works on the Index of Prohibited Books.
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Figure 2.4 shows a more complex 3-dimensional example in a graphical form where
we have attached 3D coordinate frames to the various entities and indicated some
relative poses. The fixed camera observes the object from its fixed viewpoint and es-
timates the object’s pose F¢;, relative to itself. The other camera is not fixed, it is at-
tached to the robot at some constant relative pose and estimates the object’s pose ¢
relative to itself.

An alternative representation of the spatial relationships is a directed graph (see
Appendix I) which is shown in Fig. 2.5.> Each node in the graph represents a pose
and each edge represents a relative pose. An arrow from X to Y is denoted *¢; and de-
scribes the pose of Y relative to X. Recalling that we can compose relative poses using
the & operator we can write some spatial relationships

€F D FfB = €R D R‘fc @ CgB
& ® TG =&

and each equation represents a loop in the graph with each side of the equation starting
and ending at the same node. Each side of the first equation represents a path through
the network from {0} to {B}, a sequence of edges (arrows) written in order.

{F} fixed camera

Z
X[ JF B
i3
ZF {B} object
93
XB VB
zC
C
ZR fB ye
z $B YR
Y RSC X0
fR XR {C} camera on robot
{R} robot

X
{O} wortd coordinate frame

Itis quite possible that a pose graph can
beinconsistent, that is, two paths through
the graph give different results. In robot-
ics these poses are only ever derived from
noisy sensor data.

Fig.2.4.
Multiple 3-dimensional coordi-
nate frames and relative poses

Fig.2.5.
Spatial example of Fig. 2.4
expressed as a directed graph
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In mathematical terms poses constitute

agroup ~a set of objects that supports There are just a few algebraic rules:

an associative binary operator (composi-

tion) whose result belongs to the group, 0— 0—

aninverse operation and an identity ele- £ &80 ¢

ment.In this case the group is the special E6E=0, 6EDPE=0

Euclidean group in either 2 or 3 dimen-

sions which are commonly referred to as where 0 represents a zero relative pose. A pose has an inverse

SE(2) or SE(3) respectively.
X ¥
6%y = &x

which is represented graphically by an arrow from {Y} to {X}. Relative poses can
also be composed or compounded

e, =%,

It is important to note that the algebraic rules for poses are different to nor-
mal algebra and that composition is 7ot commutative

§8&LE=6LDG

with the exception being the case where &, & £, = 0. A relative pose can trans-
form a point expressed as a vector relative to one frame to a vector relative to
another

p="¢""p

A very useful property of poses is the ability to perform algebra. The second loop
equation says, in words, that the pose of the robot is the same as composing two rela-
tive poses: from the world frame to the fixed camera and from the fixed camera to the

Orderisimportant here,andweadd ©¢,  robot. We can subtract £, from both sides of the equation by adding the inverse of
to the left on each side of the equation. &g which we denote as © & and this gives

@fp @fp D FSR = 951-" @fR
F§R = @§F D §R

which is the pose of the robot relative to the fixed camera, shown as a dashed line
in Fig. 2.5.

We can write these expressions quickly by inspection. To find the pose of node X
with respect to node Y:

= find a path from Y to X and write down the relative poses on the edges in a left to
right order;

= if you traverse the edge in the direction of its arrow precede it with the & operator,
otherwise use ©.

So what is £? It can be any mathematical object that supports the algebra de-
scribed above and is suited to the problem at hand. It will depend on whether we
are considering a 2- or 3-dimensional problem. Some of the objects that we will
discuss in the rest of this chapter will be familiar to us, for example vectors, but
others will be more exotic mathematical objects such as homogeneous transfor-
mations, orthonormal rotation matrices, twists and quaternions. Fortunately all
these mathematical objects are well suited to the mathematical programming en-
vironment of MATLAB.
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To recap:

1. A pointis described by a bound coordinate vector that represents its displacement
from the origin of a reference coordinate system.

2. Points and vectors are different things even though they are each described by a
tuple of numbers. We can add vectors but not points. The difference between two
points is a vector.

3. A set of points that represent a rigid object can be described by a single coordinate
frame, and its constituent points are described by constant vectors relative to that
coordinate frame.

4. The position and orientation of an object’s coordinate frame is referred to as its
pose.

5. A relative pose describes the pose of one coordinate frame with respect to another
and is denoted by an algebraic variable £.

6. A coordinate vector describing a point can be represented with respect to a dif-
ferent coordinate frame by applying the relative pose to the vector using the « op-
erator.

7. We can perform algebraic manipulation of expressions written in terms of relative
poses and the operators ¢ and ©.

The remainder of this chapter discusses concrete representations of { for various
common cases that we will encounter in robotics and computer vision. We start by
considering the two-dimensional case which is comparatively straightforward and
then extend those concepts to three dimensions. In each case we consider rotation
first, and then add translation to create a description of pose.

2.1 Working in Two Dimensions (2D)

A 2-dimensional world, or plane, is familiar to us from high-school Euclidean geom-
etry. We use a right-handed” Cartesian coordinate system or coordinate frame with
orthogonal axes denoted x and y and typically drawn with the x-axis horizontal and
the y-axis vertical. The point of intersection is called the origin. Unit-vectors paral-
lel to the axes are denoted & and §. A point is represented by its x- and y-coordinates
(x, y) or as a bound vector

p=x&+ yy (2.2)
Figure 2.6 shows a red coordinate frame {B} that we wish to describe with respect

to the blue reference frame {A}. We can see clearly that the origin of {B} has been
displaced by the vector ¢ = (x, y) and then rotated counter-clockwise by an angle 6.

Y
P

The relative orientation of the x- and
y-axes obey the right-hand rule as shown
on page 31.

Fig.2.6.

Two 2D coordinate frames {A}
and {B} and a world point P.
{B} is rotated and translated
with respect to {A}
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Fig.2.7.

Rotated coordinate frames

in 2D. The point P can be con-
sidered with respect to the red
or blue coordinate frame

A concrete representation of pose is therefore the 3-vector 4¢; ~ (x, y, 0), and we use
the symbol ~ to denote that the two representations are equivalent. Unfortunately
this representation is not convenient for compounding since

<x1’y1’91> @ (xz’)’z’ 92)

is a complex trigonometric function of both poses. Instead we will look for a different
way to represent rotation and pose. We will consider the problem in two parts: rota-
tion and then translation.

2.1.1 Orientation in 2-Dimensions

2.1.1.1  Orthonormal Rotation Matrix

Consider an arbitrary point P which we can express with respect to each of the coor-
dinate frames shown in Fig. 2.6. We create a new frame {V} whose axes are parallel
to those of {A} but whose origin is the same as {B}, see Fig. 2.7. According to Eq. 2.2
we can express the point P with respect to {V} in terms of the unit-vectors that define
the axes of the frame

VP = ijjv + V}"gv
Vi (2.3)

= (ﬁjV QV) v ]

y

which we have written as the product of a row and a column vector.
The coordinate frame {B} is completely described by its two orthogonal axes which
we represent by two unit vectors

Ty = cosOzy + sinfyy,

Yp = —sinb&, + cosby,

which can be factorized into matrix form as

cosf —s1n9] (2.4)

(& 8p) = (& 1AJV)[siHH cosf
Using Eq. 2.2 we can represent the point P with respect to {B} as
By = Bxdy + Pygp

Bx ]
By

= (f&B 'QB)

cos 0
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and substituting Eq. 2.4 we write

NN
=@y 9v) Ging

cosf

—sin@]

B
B;] (2.5)

Now by equating the coefficients of the right-hand sides of Eq. 2.3 and Eq. 2.5 we write

x| —sin0) ®x
vy - cosf By
which describes how points are transformed from frame {B} to frame {V} when the

frame is rotated. This type of matrix is known as a rotation matrix since it transforms
a point from frame {V} to {B} and is denoted "R,

cosf
sinf

v B
[Vx =R, B"] (2.6)
Y Y
X __[cosf —sinf
Ry(0) = [sinG cosf

is a 2-dimensional rotation matrix with some special properties:

= it is orthonormal (also called orthogonal) since each of its columns is a unit
vector and the columns are orthogonal.”

= the columns are the unit vectors that define the axes of the rotated frame Y
with respect to X and are by definition both unit-length and orthogonal.

= itbelongs to the special orthogonal group of dimension 2 or R € SO(2) C R>*2,
This means that the product of any two matrices belongs to the group, as does
its inverse.

= its determinant is +1, which means that the length of a vector is unchanged
after transformation, that is, || 'p|| = ||*p||, V6.

= the inverse is the same as the transpose, that is, R~! = R7.

We can rearrange Eq. 2.6 as
)Cm = v )
B | B vo | B V.
Y Y Y
Note that inverting the matrix is the same as swapping the superscript and subscript,
which leads to the identity R(—0) = R(6)".

Itis interesting to observe that instead of representing an angle, which is a scalar, we
have used a2 x 2 matrix that comprises four elements, however these elements are not
independent. Each column has a unit magnitude which provides two constraints. The
columns are orthogonal which provides another constraint. Four elements and three
constraints are effectively one independent value. The rotation matrix is an example of
anonminimum representation and the disadvantages such as the increased memory it
requires are outweighed, as we shall see, by its advantages such as composability.

The Toolbox allows easy creation of these rotation matrices

\%
X

B
= R
V. \4
Y

>> R = rot2(0.2)

R =
0.9801
0.1987

-0.1987
0.9801

See Appendix B which provides a re-
fresher on vectors, matrices and linear
algebra.
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You will need to have the MATLAB Sym-
bolic Math Toolbox™ installed.

1ogmnis different to the builtin function
1 og which computes the logarithm of
each element of the matrix. A logarithm
can be computed using a power series,
with a matrix rather than scalar argu-
ment. For a matrix the logarithm is not
unique and 1 ogm computes the prin-
cipal logarithm of the matrix.

where the angle is specified in radians. We can observe some of the properties such as

>> det (R)
ans =
1

and the product of two rotation matrices is also a rotation matrix

>> det (R*R)
ans =
1

The Toolbox also supports symbolic mathematics for example

>> syms theta

>> R = rot2 (theta)

R:

[ cos(theta), -sin(theta)]

[ sin(theta), cos (theta) ]

>> simplify (R*R)

ans =

[ cos(2*theta), -sin(2*theta)]
[ sin(2*theta), cos (2*theta) ]
>> simplify (det (R))

ans =

1

2.1.1.2  Matrix Exponential

Consider a pure rotation of 0.3 radians expressed as a rotation matrix

>> R = rot2(0.3)

ans =
0.9553 -0.2955
0.2955 0.9553

We can compute the logarithm of this matrix using the MATLAB builtin function
logm
>> S = logm(R)
S =
0.0000 -0.3000
0.3000 0.0000

and the result is a simple matrix with two elements having a magnitude of 0.3, which
intriguingly is the original rotation angle. There is something deep and interesting
going on here — we are on the fringes of Lie group theory which we will encounter
throughout this chapter.

In 2 dimensions the skew-symmetric matrix is

], = (0 _(;d ) 2.7)

w

which has clear structure and only one unique element w € R. A simple example of Toolbox
support for skew-symmetric matrices is

>> skew (2)
ans =
0 =2
2 0

and the inverse operation is performed using the Toolbox function vex

>> vex (ans)
ans =
2
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This matrix has a zero diagonal and is an example of a 2 x 2 skew-symmetric ma-
trix. The matrix has only one unique element and we can unpack it using the Toolbox
function vex

>> vex (S)

ans =

0.3000
to recover the rotation angle.
The inverse of a logarithm is exponentiation and using the builtin MATLAB matrix

exponentia] function e prﬂ’ expmis different to the builtin function
exp which computes the exponential
of each element of the matrix.
expm(A)=/+A+A2/ 20+ A3/31 + -

>> expm(S)

ans =
0.9553 -0.2955
0.2955 0.9553

the result is, as expected, our original rotation matrix. In fact the command

>> R = rot2(0.3);

is equivalent to

>> R = expm( skew(0.3) );

Formally we can write
R=¢"€50(2)

where 0is the rotation angle, and the notation [-],: R — R*? indicates a mapping from
a scalar to a skew-symmetric matrix.

2.1.2 Pose in 2-Dimensions
2.1.2.1  Homogeneous Transformation Matrix
Now we need to account for the translation between the origins of the frames shown

in Fig. 2.6. Since the axes {V} and {A} are parallel, as shown in Figs. 2.6 and 2.7, this
is simply vectorial addition

A %
[Ax] :[Vx +[x (2.8)
y y)
cosf —sinf)| Bx x
= . + (2.9)
[sm@ cosf ][ By] y
6 _sind x| o
_[cos —sinf x|l p 210
[sin@ cost y] ly (2.10)
or more compactly as
Ax B By
5 :[ORB ﬂ 5y 2.11)
1 1x2 1

where t = (x, y) is the translation of the frame and the orientation is Rj. Note that
ARp = YRy since the axes of frames {A} and {V} are parallel. The coordinate vectors for
point P are now expressed in homogeneous form and we write
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Many Toolbox functions have variants
that return orthonormal rotation ma-
trices or homogeneous transformations,
for example, rot2 and trot2.

A vector p= (x, y) is written in homogeneous form as p € P?, p = (x,, x,, x;) where x =x, / x3,
y=x,/x; and x;= 0. The dimension has been increased by one and a point on a plane is now
represented by a 3-vector. To convert a point to homogeneous form we typically append an ele-
ment equal to one p = (x, y, 1). The tilde indicates the vector is homogeneous.

Homogeneous vectors have the important property that p is equivalent to A p for all A= 0
which we write as p ~ A p. That is p represents the same point in the plane irrespective of the
overall scaling factor. Homogeneous representation is important for computer vision that we
discuss in Part IV. Additional details are provided in Sect. C.2.

lez 1

= ATB Bﬁ

ax_|*Ry t|B«
b b

and 4Ty is referred to as a homogeneous transformation. The matrix has a very
specific structure and belongs to the special Euclidean group of dimension 2 or
T € SE(2) C R¥,

By comparison with Eq. 2.1 it is clear that AT} represents translation and orienta-
tion or relative pose. This is often referred to as a rigid-body motion.

cosf —sinf x
T =|sinf cosf y
0 0 1

A concrete representation of relative pose { is{ ~ T € SE(2) and T, & T, — T, T,
which is standard matrix multiplication

TiTz _ [ Rl tl][ RZ tz] _ [Rle tl + thz]
01><2 1 01><2 1 01><2 1

One of the algebraic rules from page 21 is £ ¢ 0 = £. For matrices we know
that TI = T, where I is the identify matrix, so for pose 0 — I the identity matrix.
Another rule was that £ © & = 0. We know for matrices that TT ~! = I which im-
plies that 6T +— T~!

T—IZ[R t]‘:[RT —RTt]
01x2 1 01><2 1

For a point described by p € P? then T+ p — Tp which is a standard matrix-
vector product.

To make this more tangible we will show some numerical examples using MATLAB
and the Toolbox. We create a homogeneous transformation which represents a trans-
lation of (1, 2) followed by a rotation of 30°

>> Tl = transl2(l, 2) * trot2(30, 'deg')

Tl =

0.8660 -0.5000 1.0000

0.5000 0.8660 2.0000
0 0 1.0000

The function trans12 creates a relative pose with a finite translation but zero rota-
tion, while t rot2 creates a relative pose with a finite rotation but zero translation.*
We can plot this, relative to the world coordinate frame, by

>> plotvol ([0 5 0 51);
>> trplot2(T1, 'frame', 'l', 'color', 'b')
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5
Y3
/X3
4 7,
3}
’ X {4
> X1
y P
2 a
X,
1 @
% 2 3
X

The options specify that the label for the frame is {1} and it is colored blue and this
is shown in Fig. 2.8. We create another relative pose which is a displacement of (2, 1)

and zero rotation

>> T2 = transl2(2, 1
T2 =

1 0 2
0 1 1
0 0 1

which we plot in red

)

>> trplot2 (T2, 'frame',

'2', 'color',

Now we can compose the two relative poses

>> T3 = T1*T2
T3 =
0.8660 -0.5000
0.5000 0.8660
0 0

and plot it, in green, as

>> trplot2 (T3, 'frame',

We see that the displacement of (2, 1) has been applied with respect to frame {1}. It is
important to note that our final displacement is not (3, 3) because the displacement
is with respect to the rotated coordinate frame. The noncommutativity of composi-

tion is clearly demonstrated by

>> T4 = T2*T1;

>> trplot2 (T4, 'frame',

2.2321
3.8660
1.0000

'3', 'color',

'4', 'color',

and we see that frame {4} is different to frame {3}.

Now we define a point (3, 2) relative to the world frame

> P = [3; 2 1;

which is a column vector and add it to the plot

>> plot point (P, 'label', 'P',

To determine the coordinate of the point with respect to {1} we use Eq. 2.1 and

write down

'solid',

trty;

gy ;

'c');

Fig.2.8.
Coordinate frames drawn using
the Toolbox function trplot2
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and then rearrange as
1 1 0
pP="5*Pp
-1
0 0
:( 51) P
Substituting numerical values
>> Pl = inv(T1) * [P; 1]
Pl =
1.7321

-1.0000
1.0000

where we first converted the Euclidean point coordinates to homogeneous form by ap-
pending a one. The result is also in homogeneous form and has a negative y-coordinate
in frame {1}. Using the Toolbox we could also have expressed this as
>> h2e( inv(T1l) * e2h(P) )
ans =
1.7321
-1.0000

where the result is in Euclidean coordinates. The helper function e 2h converts Euclidean
coordinates to homogeneous and h2e performs the inverse conversion.

2.1.2.2  Centers of Rotation

We will explore the noncommutativity property in more depth and illustrate with the
example of a pure rotation. First we create and plot a reference coordinate frame {0}
and a target frame {X}

>> plotvol ([-5 4 -1 51);
>> T0 = eye(3,3);

>> trplot2(T0, 'frame', '0'");
>> X = transl2 (2, 3);
>> trplot2 (X, 'frame', 'X'");

and create a rotation of 2 radians (approximately 115°)
>> R = trot2(2);
and plot the effect of the two possible orders of composition

>> trplot2 (R*X, 'framelabel', 'RX', 'color', '
>> trplot2 (X*R, 'framelabel', 'XR', 'color', '

r');
r');

The results are shown as red coordinate frames in Fig. 2.9. We see that the frame {RX}
has been rotated about the origin, while frame {XR} has been rotated about the ori-
gin of {X}.

What if we wished to rotate a coordinate frame about an arbitrary point? First of
all we will establish a new point C and display it

>> C = [12]';

>> plot point(C, 'label', ' C', 'solid', 'ko')

and then compute a transform to rotate about point C

>> RC = transl2(C) * R * transl2(-C)

RC =
-0.4161  -0.9093 3.2347
0.9093  -0.4161 1.9230
0 0 1.0000
and applying this

>> trplot2 (RC*X, 'framelabel', 'XC', 'color', 'r');
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we see that the frame has indeed been rotated about point C. Creating the required
transform was somewhat cumbersome and not immediately obvious. Reading from
right to left> we first apply an origin shift, a translation from C to the origin of the
reference frame, apply the rotation about that origin, and then apply the inverse
origin shift, a translation from the reference frame origin back to C. A more descrip-
tive way to achieve this is using twists.

2.1.2.3  Twistsin 2D

The corollary to what we showed in the last section is that, given any two frames we
can find a rotational center that will rotate the first frame into the second. For the case
of pure translational motion the rotational center will be at infinity. This is the key
concept behind what is called a twist.

We can create a rotational twist about the point specified by the coordinate vec-
tor C

>> tw = Twist ('R', C)

tw =

(2-1; 1)
and the resultis a Twist object that encodes a twist vector with two components: a
2-vector moment and a 1-vector rotation. The first argument 'R"' indicates a rota-
tional twist is to be computed. This particular twist is a unit twist since the magnitude
of the rotation, the last element of the twist, is equal to one.

To create an SE(2) transformation for a rotation about this unit twist by 2 radians
we use the T method

>> tw.T(2)

ans =
-0.4161 -0.9093 3.2347
0.9093 -0.4161 1.9230

0 0 1.0000

which is the same as that computed in the previous section, but more concisely speci-
fied in terms of the center of rotation. The center is also called the pole of the trans-
formation and is encoded in the twist

>> tw.pole'
ans =
1 2

Fig.2.9.

The frame {X} is rotated by
2 radians about {0} to give
frame {RX}, about {X} to
give {XR}, and about point C
to give frame {XC}

RC left multiplies X, therefore the first
transformapplied to X is t rans1 (-C),
then R, then transl (C).
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For a unit-translational twist the rotation
is zero and the moment is a unit vector.

In all these identities, the symbols from
left to right (across the equals sign) are a
cyclic rotation of the sequence xyz.

If we wish to perform translational motion in the direction (1, 1) the relevant unit
twist is<

>> tw = Twist ('T', [1 11)

tw =

( 0.70711 0.70711; 0 )
and for a displacement of V/2 in the direction defined by this twist the SE(2) trans-
formation is

>> tw.T (sqrt(2))

ans =
1 0 1
0 1 1
0 0 1

which we see has a null rotation and a translation of 1 in the x- and y-directions.
For an arbitrary planar transform such as
>> T = transl2(2, 3) * trot2(0.5)
T =
0.8776  -0.4794 2.0000
0.4794 0.8776 3.0000
0 0 1.0000

we can compute the twist vector

>> tw = Twist (T)

tw =

(12.7082 2.4372; 0.5 )
and we note that the last element, the rotation, is not equal to one but is the required ro-
tation angle of 0.5 radians. This is a nonunit twist. Therefore when we convert this to an
SE(2) transform we don’t need to provide a second argument since it is implicit in the twist

>>  tw.T

ans =

0.8776  -0.4794 2.0000

0.4794 0.8776 3.0000
0 0 1.0000

and we have regenerated our original homogeneous transformation.

2.2 Working in Three Dimensions (3D)

The 3-dimensional case is an extension of the 2-dimensional case discussed in the
previous section. We add an extra coordinate axis, typically denoted by z, that is or-
thogonal to both the x- and y-axes. The direction of the z-axis obeys the right-hand
rule and forms a right-handed coordinate frame. Unit vectors parallel to the axes are
denoted &, j and 2 such that*

A~

2==2xqg, E=9x2; g=2x& (2.12)
A point P is represented by its x-, y- and z-coordinates (x, y, z) or as a bound vector
p=xE+ yy+z2

Figure 2.10 shows a red coordinate frame {B} that we wish to describe with respect
to the blue reference frame {A}. We can see clearly that the origin of {B} has been

Right-hand rule. A right-handed coordinate frame is defined by the first three fingers of your right
hand which indicate the relative directions of the x-, y- and z-axes respectively.
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displaced by the vector ¢t = (x, y, z) and then rotated in some complex fashion. Just
as for the 2-dimensional case the way we represent orientation is very important.

Our approach is to again consider an arbitrary point P with respect to each of the
coordinate frames and to determine the relationship between “p and Zp. We will
again consider the problem in two parts: rotation and then translation. Rotation
is surprisingly complex for the 3-dimensional case and we devote all of the next
section to it.

2.2.1 Orientation in 3-Dimensions

Any two independent orthonormal coordinate frames

can be related by a sequence of rotations (not more than three)

about coordinate axes, where no two successive rotations may be about the same axis.
Euler’s rotation theorem (Kuipers 1999).

Figure 2.10 shows a pair of right-handed coordinate frames with very different orien-
tations, and we would like some way to describe the orientation of one with respect
to the other. We can imagine picking up frame {A} in our hand and rotating it until
it looked just like frame {B}. Euler’s rotation theorem states that any rotation can be
considered as a sequence of rotations about different coordinate axes.

We start by considering rotation about a single coordinate axis. Figure 2.11 shows a
right-handed coordinate frame, and that same frame after it has been rotated by vari-
ous angles about different coordinate axes.

The issue of rotation has some subtleties which are illustrated in Fig. 2.12. This
shows a sequence of two rotations applied in different orders. We see that the final
orientation depends on the order in which the rotations are applied. This is a deep
and confounding characteristic of the 3-dimensional world which has intrigued math-
ematicians for a long time. There are implication for the pose algebra we have used
in this chapter:

In 3-dimensions rotation is not commutative — the order in which rotations are
applied makes a difference to the result.

Mathematicians have developed many ways to represent rotation and we will discuss
several of them in the remainder of this section: orthonormal rotation matrices, Euler
and Cardan angles, rotation axis and angle, exponential coordinates, and unit quater-
nions. All can be represented as vectors or matrices, the natural datatypes of MATLAB
or as a Toolbox defined class. The Toolbox provides many function to convert between
these representations and these are shown in Tables 2.1 and 2.2 (pages 57, 58).

Fig.2.10.

Two 3D coordinate frames {A}
and {B}. {B} is rotated and trans-
lated with respect to {A}
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Rotation about a vector. Wrap your right hand around the vector with your thumb (your x-finger) in
the direction of the arrow. The curl of your fingers indicates the direction of increasing angle.

y
X
z
X
Y
X y
z z

a Original b 3 about x-axis C T about x-axis

Zz Y

V4
X V4
X
Fig.2.11.
Rotation of a 3D coordinate frame.
a The original coordinate frame, y
Y X

b-f frame a after various rota-

tions as indicated  d -7 about x-axis e 7 about y-axis f 7 about z-axis
Z
Y Y
™
! >
Y
[ X
X
! : z

ol
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Fig.2.12.

Example showing the noncom- 7
mutativity of rotation. In the top
row the coordinate frame is ro-
tated by 7 about the x-axis and
then 5 about the y-axis. In the
bottom row the order of rota-
tions has been reversed. The re-
sults are clearly different X X

N(lj
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2.2.1.1  Orthonormal Rotation Matrix

Just as for the 2-dimensional case we can represent the orientation of a coordinate frame
by its unit vectors expressed in terms of the reference coordinate frame. Each unit vec-
tor has three elements and they form the columns of a 3 x 3 orthonormal matrix Ry

Ax Bx
Ay 1= "Ryl By (2.13)
AZ BZ

which transforms the description of a vector defined with respect to frame {B} to
a vector with respect to {A}.

A 3-dimensional rotation matrix XRy has some special properties:

= it is orthonormal (also called orthogonal) since each of its columns is a unit
vector and the columns are orthogonal.”

= the columns are the unit vectors that define the axes of the rotated frame Y
with respect to X and are by definition both unit-length and orthogonal.

= itbelongs to the special orthogonal group of dimension 3 or R € SO(3) C R**3,
This means that the product of any two matrices within the group also belongs
to the group, as does its inverse.

= its determinant is 41, which means that the length of a vector is unchanged
after transformation, that is, || Yp|| = || *p||, V6.

= the inverse is the same as the transpose, that is, R~! = R”,

The orthonormal rotation matrices for rotation of ¢ about the x-, y- and z-axes are

1 0 0
R.(0)=|0 cosf —sinf
0 sinf cosf
cosf 0 sinf

R},(H): 0 1 0
—sinf 0 cos6

cosf —sinf 0
R,(0) =|sinf cosf 0O
0 0 1

The Toolbox provides functions to compute these elementary rotation matrices,
for example R, () is

>> R = rotx(pi/2)

R =
1.0000 0 0
0 0.0000 -1.0000
0 1.0000 0.0000

and its effect on a reference coordinate frame is shown graphically in Fig. 2.11b. The
functions roty and rotz compute R (0) and R,(0) respectively.

If we consider that the rotation matrix represents a pose then the corresponding
coordinate frame can be displayed graphically

>> trplot (R)

which is shown in Fig. 2.13a. We can visualize a rotation more powerfully using the
Toolbox function t ranimate which animates a rotation

>> tranimate (R)

See Appendix B which provides a re-
fresher on vectors, matrices and linear
algebra.
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Fig.2.13.

Coordinate frames displayed us-
ing trplot.a Reference frame
rotated by 5 about the x-axis,

b frame a rotated by 3 about
the y-axis

If the column vectors are ciicl-3
thene,*c,=c¢,*c;=c3-¢;=0and
lleill =1.

showing the world frame rotating into the specified coordinate frame. If you have a
pair of anaglyph stereo glasses* you can see this in more realistic 3D by

>> tranimate (R, '3d'")

To illustrate compounding of rotations we will rotate the frame of Fig. 2.13a again,
this time around its y-axis

>> R = rotx(pi/2) * roty(pi/2)
R =

0.0000 0 1.0000

1.0000 0.0000  -0.0000

-0.0000 1.0000 0.0000

>> trplot (R)

to give the frame shown in Fig. 2.13b. In this frame the x-axis now points in the direc-
tion of the world y-axis.
The noncommutativity of rotation can be shown by reversing the order of the ro-
tations above
>> roty (pi/2) *rotx (pi/2)
ans =
0.0000 1.0000 0.0000

0 0.0000 -1.0000
-1.0000 0.0000 0.0000

which has a very different value.

We recall that Euler’s rotation theorem states that any rotation can be represented
by not more than three rotations about coordinate axes. This means that in general an
arbitrary rotation between frames can be decomposed into a sequence of three rota-
tion angles and associated rotation axes — this is discussed in the next section.

The orthonormal rotation matrix has nine elements but they are not independent.
The columns have unit magnitude which provides three constraints. The columns are
orthogonal to each other which provides another three constraints. Nine elements
and six constraints is effectively three independent values.

Reading an orthonormal rotation matrix, the columns from left to right tell us the directions of the
new frame’s axes in terms of the current coordinate frame. For example if

R =
1.0000 0 0

0 0.0000 -1.0000

0 1.0000 0.0000

the new frame has its x-axis in the old x-direction (1, 0, 0), its y-axis in the old z-direction (0, 0, 1),
and the new z-axis in the old negative y-direction (0, —1, 0). In this case the x-axis was unchanged
since this is the axis around which the rotation occurred. The rows are the converse - the current
frame axes in terms of the new frame axes.
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2.2.1.2  Three-Angle Representations

Euler’s rotation theorem requires successive rotation about three axes such that no
two successive rotations are about the same axis. There are two classes of rotation se-
quence: Eulerian and Cardanian, named after Euler and Cardano respectively.

The Eulerian type involves repetition, but not successive, of rotations about one
particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is character-
ized by rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX.

It is common practice to refer to all 3-angle representations as Euler angles
but this is underspecified since there are twelve different types to choose
from.The particular angle sequence is often a convention within a particular
technological field.

The ZYZ sequence
R=R,(9)R,(O)R(¢) (2.14)

is commonly used in aeronautics and mechanical dynamics, and is used in the Toolbox.
The Euler angles are the 3-vector I'= (¢, 6, ).

For example, to compute the equivalent rotation matrix for I'= (0.1, 0.2, 0.3) we
write

>> R = rotz(0.1) * roty(0.2) * rotz(0.3);

or more conveniently

>> R = eul2r (0.1, 0.2, 0.3)

R =
0.9021 -0.3836 0.1977
0.3875 0.9216 0.0198
-0.1898 0.0587 0.9801

The inverse problem is finding the Euler angles that correspond to a given rota-
tion matrix

>> gamma = tr2eul (R)
gamma =
0.1000 0.2000 0.3000

However if 0 is negative

>> R = eul2r (0.1 , -0.2, 0.3)

R =
0.9021 -0.3836 -0.1977
0.3875 0.9216 -0.0198
0.1898 -0.0587 0.9801

the inverse function

>> tr2eul (R)
ans =
-3.0416 0.2000 -2.8416

returns a positive value for 6 and quite different values for ¢ and ). However the cor-
responding rotation matrix

Leonhard Euler (1707-1783) was a Swiss mathematician and physicist who dominated eighteenth
century mathematics. He was a student of Johann Bernoulli and applied new mathematical
techniques such as calculus to many problems in mechanics and optics. He also developed the
functional notation, y = f(x), that we use today. In robotics we use his rotation theorem and his
equations of motion in rotational dynamics.

He was prolific and his collected works fill 75 volumes. Almost half of this was produced dur-
ing the last seventeen years of his life when he was completely blind.
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Well known texts such as Siciliano
et al.(2008), Spong et al. (2006) and
Paul (1981) use the XYZ sequence. The
Toolbox supports both formats by means
of the "xyz "' and 'zyx" options.
The ZYX order is default for Release 10,
but for Release 9 the default was XYZ.

Named after Peter Tait a Scottish physi-
cistand quaternion supporter,and George
Bryan an early Welsh aerodynamicist.

>> eul2r (ans)

ans =
0.9021 -0.3836 -0.1977
0.3875 0.9216 -0.0198
0.1898 -0.0587 0.9801

is the same - the two different sets of Euler angles correspond to the one rotation ma-
trix. The mapping from a rotation matrix to Euler angles is not unique and the Toolbox
always returns a positive angle for 6.

For the case where =0

>> R = eul2r (0.1, 0, 0.3)

R =
0.9211 -0.3894 0
0.3894 0.9211 0

0 0 1.0000

the inverse function returns

>> tr2eul (R)
ans =

0 0 0.4000

which is clearly quite different but the result is the same rotation matrix. The expla-
nation is that if 6 = 0 then R, = I and Eq. 2.14 becomes

R=R(9)R(¢) = R (¢ + 1))

which is a function of the sum ¢ + 1. Therefore the inverse operation can do no more
than determine this sum, and by convention we choose ¢ = 0. The case § = 0 is a sin-
gularity and will be discussed in more detail in the next section.

Another widely used convention are the Cardan angles: roll, pitch and yaw.
Confusingly there are two different versions in common use. Text books seem to de-
fine the roll-pitch-yaw sequence as ZYX or XYZ depending on whether they have a
mobile robot or robot arm focus.* When describing the attitude of vehicles such as
ships, aircraft and cars the convention is that the x-axis points in the forward direc-
tion and the z-axis points either up or down. It is intuitive to apply the rotations in
the sequence: yaw (direction of travel), pitch (elevation of the front with respect to
horizontal) and then finally roll (rotation about the forward axis of the vehicle). This
leads to the ZYX angle sequence

R=R,(0,)R,(0,)R,(0,) (2.15)

Roll-pitch-yaw angles are also known as Tait-Bryan angles or nautical angles, and
for aeronautical applications they can be called bank, attitude and heading angles re-
spectively.

Gerolamo Cardano (1501-1576) was an Italian Renaissance mathematician, physician, astrologer,
and gambler. He was born in Pavia, Italy, the illegitimate child of a mathematically gifted law-
yer. He studied medicine at the University of Padua and later was the first to describe typhoid
fever. He partly supported himself through gambling and his book about games of chance Liber
de ludo aleae contains the first systematic treatment of probability as well as effective cheating
methods. His family life was problematic: his eldest son was executed for poisoning his wife,
and his daughter was a prostitute who died from syphilis (about which he wrote a treatise). He
computed and published the horoscope of Jesus, was accused of heresy, and spent time in prison
until he abjured and gave up his professorship.

He published the solutions to the cubic and quartic equations in his book Ars magna in 1545,
and also invented the combination lock, the gimbal consisting of three concentric rings allow-
ing a compass or gyroscope to rotate freely (see Fig. 2.15), and the Cardan shaft with universal
joints — the drive shaft used in motor vehicles today.
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When describing the attitude of a robot gripper, as shown in Fig. 2.16, the conven-
tion is that the z-axis points forward and the x-axis is either up or down. This leads
to the XYZ angle sequence

R=R,(0,)R,(0,)R.(0,) (2.16)

The Toolbox defaults to the ZYX sequence but can be overridden using the 'xyz'
option. For example

>> R = rpy2r (0.1, 0.2, 0.3)

R =
0.9363  -0.2751 0.2184
0.2896 0.9564 -0.0370

-0.1987 0.0978 0.9752
and the inverse is

>> gamma = tr2rpy (R)

gamma =
0.1000 0.2000 0.3000

The roll-pitch-yaw sequence allows all angles to have arbitrary sign and it has a singularity
when 6, = +7 which is fortunately outside the range of feasible attitudes for most vehicles.
The Toolbox includes an interactive graphical tool

>> tripleangle

that allows you to experiment with Euler angles or roll-pitch-yaw angles and see their ef-
fect on the orientation of a body as shown in Fig. 2.14.

2.2.1.3  Singularities and Gimbal Lock

A fundamental problem with all the three-angle representations just described is singu-
larity. This is also known as gimbal lock, a term made famous in the movie Apollo 13.
This occurs when the rotational axis of the middle term in the sequence becomes paral-
lel to the rotation axis of the first or third term.

A mechanical gyroscope used for spacecraft navigation is shown in Fig. 2.15. The
innermost assembly is the stable member which has three orthogonal gyroscopes that
hold it at a constant orientation with respect to the universe. It is mechanically con-
nected to the spacecraft via a gimbal mechanism which allows the spacecraft to move
around the stable platform without exerting any torque on it. The attitude of the space-
craft is determined directly by measuring the angles of the gimbal axes with respect to
the stable platform - giving a direct indication of roll-pitch-yaw angles which in this
design are a Cardanian YZX sequence.”

Fig.2.14.

The Toolbox application
tripleangle allows you to
experiment with Euler angles
and roll-pitch-yaw angles and
see how the attitude of a body
changes

“The LM Body coordinate system is right-
handed, with the +X axis pointing up
through the thrust axis, the +Y axis
pointing right when facing forward
which is along the +Z axis. The rotation-
al transformation matrix is constructed
by a 2-3-1 Euler sequence, that is: Pitch
about Y, then Roll about Z and, finally,
Yaw about X. Positive rotations are pitch
up, roll right, yaw left.” (Hoag 1963).
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Fig.2.15.

Schematic of Apollo Lunar
Module (LM) inertial measure-
ment unit (IMU). The vehicle’s
coordinate system has the x-axis
pointing up through the thrust
axis, the z-axis forward, and the
y-axis pointing right. Starting
at the stable platform {S} and
working outwards toward the
spacecraft’s body frame {B} the
rotation angle sequence is YZX.
The components labeled X, Y,
and Zj are the x-, y- and z-axis
gyroscopes and those labeled X,
Y, and Z, are the x-, y- and z-axis
accelerometers (redrawn after
Apollo Operations Handbook,
LMA790-3-LM)

Operationally this was a significant limit-
ing factor with this particular gyroscope
(Hoag 1963) and could have been allevi-
ated by adding a fourth gimbal, as was
used on other spacecraft. It was omit-
ted on the Lunar Module for reasons of
weight and space.

Rotations obey the cyclic rotation rules
Rx(3) Ry(8) Rx(3) = Rz(6)
Ry(3) Rz(6) Ry(3)" = Rx(6)
Rz(7) Rx(0) Rz(3)"= Ry(6)
and anti-cyclic rotation rules
Ry(3)" Rx(0) Ry(%) = Rz(0)
Rz(5) Ry(0) Rz(%) = Rx(0).

Torque motor LM + X-axis Torque motor
Duplex ball-bearing 4 Duplex ball-bearing
slipring (50-contact) ey LJ OGaxis slipring (40-contact)

Gyro error resolver (1x)
Duplex ball-bearing
slipring (40-contact)
Multispeed resolver

(1x and 16x)

LM
Outer + Z-axis
imbal
9 MG axis
0,
Middle Stable
gimbal member
1G axis
LM
Imu case + Y-axis
(cutaway)

Torque motor
Duplex ball-bearing
slipring (40-contact)

Duplex ball-bearing
slipring (50-contact)
Multispeed resolver (1x and 16x)

Duplex ball-bearing
slipring (40-contact)
Multispeed resolver (1x and 16x)

Consider the situation when the rotation angle of the middle gimbal (rotation about
the spacecraft’s z-axis) is 90° - the axes of the inner and outer gimbals are aligned and
they share the same rotation axis. Instead of the original three rotational axes, since
two are parallel, there are now only two effective rotational axes — we say that one de-
gree of freedom has been lost.

In mathematical, rather than mechanical, terms this problem can be seen using the
definition of the Lunar module’s coordinate system where the rotation of the space-
craft’s body-fixed frame {B} with respect to the stable platform frame {S} is

*Ry =R, (0,)R.(0,)R,(0,)

For the case when 6, = 7 we can apply the identity ™
R,(O)R,() = R,(3)R(0)

leading to
*Ry = R.(5)R.(0,)R.(0,) = R.(3)R,(0, +0,)

which is unable to represent any rotation about the y-axis. This is not a good thing
because spacecraft rotation about the y-axis would rotate the stable element and thus
ruin its precise alignment with the stars: hence the anxiety on Apollo 13.

The loss of a degree of freedom means that mathematically we cannot invert the
transformation, we can only establish a linear relationship between two of the angles.
In this case the best we can do is determine the sum of the pitch and yaw angles. We
observed a similar phenomena with the Euler angle singularity earlier.
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Apollo 13 mission clock: 02 08 12 47

= Flight: “Go, Guidance.”

= Guido: “He’s getting close to gimbal lock there.”

= Flight: “Roger. CapCom, recommend he bring up C3, C4, B3, B4, C1 and C2 thrusters, and ad-
vise he’s getting close to gimbal lock.”

= CapCom: “Roger.”

Apollo 13, mission control communications loop (1970) (Lovell and Kluger 1994, p 131; NASA
1970).

All three-angle representations of attitude, whether Eulerian or Cardanian, suf-
fer this problem of gimbal lock when two consecutive axes become aligned. For ZYZ-
Euler angles this occurs when 0 = km, k € Z and for roll-pitch-yaw angles when pitch
6, = +(2k + 1)5. The best that can be hoped for is that the singularity occurs for an
attitude which does not occur during normal operation of the vehicle - it requires ju-
dicious choice of angle sequence and coordinate system.

Singularities are an unfortunate consequence of using a minimal representation.
To eliminate this problem we need to adopt different representations of orientation.
Many in the Apollo LM team would have preferred a four gimbal system and the clue
to success, as we shall see shortly in Sect. 2.2.1.7, is to introduce a fourth parameter.

2.2.1.4  Two Vector Representation

For arm-type robots it is useful to consider a coordinate frame {E} attached to the end-effec-
tor as shown in Fig. 2.16. By convention the axis of the tool is associated with the z-axis and
is called the approach vector and denoted & = (a,, a,, a,). For some applications it is more
convenient to specify the approach vector than to specify Euler or roll-pitch-yaw angles.

However specifying the direction of the z-axis is insufficient to describe the coordi-
nate frame - we also need to specify the direction of the x- and y-axes. An orthogonal
vector that provides orientation, perhaps between the two fingers of the robot’s gripper
is called the orientation vector, 6 = (o,, 0y 0,). These two unit vectors are sufficient to
completely define the rotation matrix

nx OX ax
R=\n, o, a, (2.17)
0, a

since the remaining column, the normal vector, can be computed using Eq. 2.12 as
7. = 0 x a. Consider an example where the gripper’s approach and orientation vec-
tors are parallel to the world x- and y-directions respectively. Using the Toolbox this
is implemented by

>> a = [100]"';
> o = [0 1 0]"';
>> R = oa2r (o, a)
R =
0 0 1
0 1 0
-1 0 0

Any two nonparallel vectors are sufficient to define a coordinate frame. Even if the
two vectors @ and 6 are not orthogonal they still define a plane and the computed 72
is normal to that plane. In this case we need to compute a new value for 6’ = a x 7
which lies in the plane but is orthogonal to each of @ and 7.

For a camera we might use the optical axis, by convention the z-axis, and the left
side of the camera which is by convention the x-axis. For a mobile robot we might use
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Fig.2.16.

Robot end-effector coordinate
system defines the pose in terms
of an approach vector @ and an
orientation vector 6, from which
7 can be computed. 72, 6 and

@ vectors correspond to the x-,
y- and z-axes respectively of the
end-effector coordinate frame.
(courtesy of Kinova Robotics)

Thisis not unique. A rotation of —~theta
about the vector —v results in the same
orientation.

Both matrices are complex, but some
elements are real (zero imaginary part).

the gravitational acceleration vector (measured with accelerometers) which is by con-
vention the z-axis and the heading direction (measured with an electronic compass)
which is by convention the x-axis.

2.2.1.5 Rotation about an Arbitrary Vector

Two coordinate frames of arbitrary orientation are related by a single rotation about

some axis in space. For the example rotation used earlier
>> R = rpy2r(0.1 , 0.2, 0.3);

we can determine such an angle and vector by

>> [theta, v] = tr2angvec (R)
th =

0.3655
v =

0.1886 0.5834 0.7900

where theta is the angle of rotation and v is the vector “around which the rotation occurs.
This information is encoded in the eigenvalues and eigenvectors of R. Using the built-
in MATLAB function eig

>> [x,e] = eig(R)

x =
-0.6944 + 0.00001i -0.6944 + 0.00001 0.1886 + 0.00001
0.0792 + 0.56881 0.0792 - 0.56881 0.5834 + 0.00001
0.1073 - 0.42001 0.1073 + 0.42001 0.7900 + 0.00001

0.9339 + 0.35741 0.0000 + 0.00001 0.0000 + 0.00001
0.0000 + 0.00001 0.9339 - 0.35741 0.0000 + 0.00001
0.0000 + 0.00001 0.0000 + 0.00001 1.0000 + 0.00001

the eigenvalues are returned on the diagonal of the matrix e and the corresponding
eigenvectors are the corresponding columns of x.<
From the definition of eigenvalues and eigenvectors we recall that
Rv =)v
where v is the eigenvector corresponding to the eigenvalue \. For the case A =1
Rv=wv
which implies that the corresponding eigenvector v is unchanged by the rotation. There

is only one such vector and that is the one about which the rotation occurs. In the exam-
ple the third eigenvalue is equal to one, so the rotation axis is the third column of x.
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Olinde Rodrigues (1795-1850) was a French banker and mathematician who wrote extensively on poli-
tics, social reform and banking. He received his doctorate in mathematics in 1816 from the University
of Paris, for work on his first well known formula which is related to Legendre polynomials. His
eponymous rotation formula was published in 1840 and is perhaps the first time the representation
of a rotation as a scalar and a vector was articulated. His formula is sometimes, and inappropriate-
ly, referred to as the Euler-Rodrigues formula. He is buried in the Pere-Lachaise cemetery in Paris.

An orthonormal rotation matrix will always have one real eigenvalue at A =1 and
in general a complex pair A = cos f +isin § where 6 is the rotation angle. The angle
of rotation4 in this case is

>> theta = (1,1))

theta =

0.3655

angle (e

The inverse problem, converting from angle and vector to a rotation matrix, is
achieved using Rodrigues’ rotation formula

R=IL; +sind[p] +(1—cosf)[v] (2.18)

where [?], is a skew-symmetric matrix. We can use this formula to determine the ro-
tation of 5 about the x-axis

>> R = angvec2r(pi/2, [1 0 0])
R =

1.0000 0 0

0 0.0000 -1.0000

0 1.0000 0.0000

It is interesting to note that this representation of an arbitrary rotation is parameterized
by four numbers: three for the rotation axis, and one for the angle of rotation. This is far
fewer than the nine numbers required by a rotation matrix. However the direction can
be represented by a unit vector which has only two parameters” and the angle can be en-
coded in the length to give a 3-parameter representation such as 66, d sin (6/2), ¢ tan (6)
or the Rodrigues’ vector ¥ tan (6/2). While these forms are minimal and efficient in terms
of data storage they are analytically problematic and ill-defined when 6 = 0.

2.2.1.6  Matrix Exponentials

Consider an x-axis rotation expressed as a rotation matrix

>> R = rotx(0.3)
R =
1.0000 0 0
0 0.9553 -0.2955
0 0.2955 0.9553

As we did for the 2-dimensional case we can compute the logarithm of this matrix
using the MATLAB builtin function 1ogm”

>> S = logm(R)

S =
0 0 0
0 0.0000 -0.3000
0 0.3000 0.0000

and the result is a sparse matrix with two elements that have a magnitude of 0.3, which
is the original rotation angle. This matrix has a zero diagonal and is another example
of a skew-symmetric matrix, in this case 3 x 3.

Applying vex to the skew-symmetric matrix gives

>> vex (S)'

ans =
0.3000

It can also be shown that the trace of a
rotation matrix tr(R) = 1 + 2cos @ from
which we can compute the magnitude
of O but not its sign.

Imagine a unit-sphere. All possible unit
vectors from the center can be described
by the latitude and longitude of the
point at which they touch the surface of
the sphere.

1ogmisdifferent to the builtin function
1og which computes the logarithm of
each element of the matrix. A logarithm
can be computed using a power series,
with a matrix rather than scalar argument.
For a matrix the logarithm is not unique
and 1ogm computes the principal loga-
rithm of the matrix.
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trlog usesa more efficient closed-
form solution as well as being able to
return the angle and axis information
separately.

expmis different to the builtin function
exp which computes the exponential
of each element of the matrix:

expm(A) =/ +A+A2/ 2+ A3 /31 + -

and we find the original rotation angle is in the first element, corresponding to the
x-axis about which the rotation occurred. For the 3-dimensional case the Toolbox
function trlog is equivalent™

>> [th,w] = trlog(R)
th =
0.3000
w =
1.0000
0
0

The inverse of a logarithm is exponentiation and applying the builtin MATLAB
matrix exponential function expm<

>> expm(S)

ans =
1.0000 0 0
0 0.9553 -0.2955
0 0.2955 0.9553

we have regenerated our original rotation matrix. In fact the command

>> R = rotx(0.3);

is equivalent to

>> R = expm( skew([1 O 0]) * 0.3 );

where we have specified the rotation in terms of a rotation angle and a rotation axis
(as a unit-vector). This generalizes to rotation about any axis and formally we can
write

R = e“% € 50(3)

where 0 is the rotation angle, & is a unit-vector parallel to the rotation axis, and the
notation [-],: R*— R** indicates a mapping from a vector to a skew-symmetric
matrix. Since [w], 0 = [w], we can treat wf € R? as a rotational parameter called
exponential coordinates. For the 3-dimensional case, Rodrigues’ rotation formula
(Eq. 2.18) is a computationally efficient means of computing the matrix exponen-
tial for the special case where the argument is a skew-symmetric matrix, and this
is used by the Toolbox function t rexp which is equivalent to expm.

In 3-dimensions the skew-symmetric matrix has the form

0 —wy wy
[w]x =| @, 0 —wy (2.19)
—wy  wx 0

which has clear structure and only three unique elements w € R®. The matrix can be used to
implement the vector cross product v; X v, = [v,], v,. A simple example of Toolbox support for
skew-symmetric matrices is

>> skew ([1 2 31)

ans =
0 =3 2
3 0 =1
=2 1 0

and the inverse operation is performed using the Toolbox function vex

>> vex (ans) '
ans =
1 2 3

Both functions work for the 3D case, shown here, and the 2D case where the vector is a 1-vector.
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2.2.1.7  Unit Quaternions

Quaternions came from Hamilton after his really good work had been done;
and, though beautifully ingenious, have been an unmixed evil to those

who have touched them in any way, including Clark Maxwell.

Lord Kelvin, 1892

Quaternions were discovered by Sir William Hamilton over 150 years ago and, while
initially controversial, have great utility for robotics. The quaternion is an extension of
the complex number - a hypercomplex number - and is written as a scalar plus a vector

=s+v
1 o (2220)
=s+vi+v,j+ vk

where s € R, v € R? and the orthogonal complex numbers i, j and k are defined such that
==k =ik=-1 (2.21)
and we denote a quaternion as
q =75 <V, vy, V3>

In the Toolbox quaternions are implemented by the Quaternion class. Quaternions
support addition and subtraction, performed element-wise, multiplication by a scalar
and multiplication

G oqy = 515 =V V) <SSV, 51 H VXY, >

which is known as the quaternion or Hamilton product.”

One early objection to quaternions was that multiplication was not commutative
but as we have seen above this is exactly what we require for rotations. Despite the
initial controversy quaternions are elegant, powerful and computationally straight-
forward and they are widely used for robotics, computer vision, computer graphics
and aerospace navigation systems.

To represent rotations we use unit-quaternions denoted by §. These are quaterni-
ons of unit magnitude; that is, those for which ||q|| = s>+ vZ+ v?+ v?= 1. They can
be considered as a rotation of § about the unit vector © which are related to the qua-
ternion components by”

Sir William Rowan Hamilton (1805-1865) was an Irish mathematician, physicist, and astronomer.
He was a child prodigy with a gift for languages and by age thirteen knew classical and mod-
ern European languages as well as Persian, Arabic, Hindustani, Sanskrit, and Malay. Hamilton
taught himself mathematics at age 17, and discovered an error in Laplace’s Celestial Mechanics.
He spent his life at Trinity College, Dublin, and was appointed Professor of Astronomy and Royal
Astronomer of Ireland while still an undergraduate. In addition to quaternions he contributed to
the development of optics, dynamics, and algebra. He also wrote poetry and corresponded with
Wordsworth who advised him to devote his energy to mathematics.

According to legend the key quaternion equation, Eq. 2.21, occured to Hamilton in 1843 while
walking along the Royal Canal in Dublin with his wife, and this is commemorated by a plaque
on Broome bridge:

Here as he walked by on the 16" of October 1843 Sir William Rowan Hamilton in a flash of ge-
nius discovered the fundamental formula for quaternion multiplication ? =7> =k’ =ijk = —1
& cut it on a stone of this bridge.

His original carving is no longer visible, but the bridge is a pilgrimage site for mathemati-
cians and physicists.

If we write the quaternion as a 4-vector
(s, v4, vy, v,) then multiplication can be
expressed as a matrix-vector product

where
/

s —v, =V, —vs|[$

!

v, s —vy v, ||v

o of __ 1 3 2 1
qe°q = . /
v, Vi S v ||vy

e !
vs vy s v

As for the angle-vector representation
this is not unique. A rotation of 6 about
the vector —v results in the same orienta-
tion. This is referred to as a double map-
ping or double cover.
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Compounding two orthonormal rota-
tion matrices requires 27 multiplications
and 18 additions. The quaternion form
requires 16 multiplications and 12 ad-
ditions. This saving can be particularly
important for embedded systems.

For the case of unit quaternions our generalized pose is a rotation & ~ g € S® and
G4~ 404,

and
g g =5 <—v>

which is the quaternion conjugate. The zero rotation 0+— 1 <0, 0, 0> which is

the identity quaternion. A vector v € R? is rotated by

o o—1

Gevi>godeq

where v = 0 <v> is known as a pure quaternion.

q = cos4 < dsinl> (2.22)

and has similarities to the angle-axis representation of Sect. 2.2.1.5.

In the Toolbox these are implemented by the UnitQuaternion class and the
constructor converts a passed argument such as a rotation matrix to a unit quater-
nion, for example

>> g = UnitQuaternion( rpy2tr(0.1, 0.2, 0.3) )

q =

0.98335 < 0.034271, 0.10602, 0.14357 >

This class overloads a number of standard methods and functions. Quaternion mul-
tiplication*is invoked through the overloaded multiplication operator

>> g =49 * q;

and inversion, the conjugate of a unit quaternion, is
>> inv(q)
ans =
0.93394 < -0.0674, -0.20851, -0.28236 >
Multiplying a quaternion by its inverse yields the identity quaternion

>> g*inv (q)
ans =
1<0, 0, 0>
which represents a null rotation, or more succinctly

>> q/q
ans =
1<0,0,0>

The quaternion can be converted to an orthonormal rotation matrix by

>> g.R
ans =
0.7536 -0.4993 0.4275
0.5555 0.8315 -0.0081
-0.3514 0.2436 0.9040

and we can also plot the orientation represented by a quaternion
>> g.plot ()

which produces a result similar in style to that shown in Fig. 2.13. A vector is rotated
by a quaternion using the overloaded multiplication operator

>> g*[1 0 01"
ans =
0.7536
0.5555
-0.3514
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The Toolbox implementation is quite complete and the UnitQuaternion class has
many methods and properties which are described fully in the online documentation.

2.2.2 Pose in 3-Dimensions

We return now to representing relative pose in three dimensions - the position and
orientation change between the two coordinate frames as shown in Fig. 2.10. This is
often referred to as a rigid-body displacement or rigid-body motion.

We have discussed several different representations of orientation, and we need to com-
bine one of these with translation, to create a tangible representation of relative pose.

2.2.2.1 Homogeneous Transformation Matrix

The derivation for the homogeneous transformation matrix is similar to the 2D case
of Eq. 2.11 but extended to account for the z-dimension. ¢ € R?is a vector defining the
origin of frame {B} with respect to frame {A}, and R is the 3 x 3 orthonormal matrix
which describes the orientation of the axes of frame {B} with respect to frame {A}.

Ax Bx
A A B
y _[ R, t] y
Az 0,5 1)|8;
1 1

If points are represented by homogeneous coordinate vectors then

A
A~ _|"Rg t|5B.
P [les 1] P (223)

= ATB Bﬁ

and“Tyisa4 x 4homogeneous transformation matrix. This matrix has a very specific struc-
ture and belongs to the special Euclidean group of dimension 3 or T € SE(3) C R**4,

A concrete representation of relative pose is { ~ T € SE(3) and T; @ T, — T, T,
which is standard matrix multiplication.

R t | R t RR, t +Rt
TT, = 1 1][ 2 2]:[12 1 12]
e [01><3 1)(0; 1 0,3 1 (2.24)

One of the rules of pose algebra from page 21 is £ & 0 = £. For matrices we
know that TI = T, where I is the identify matrix, so for pose 0 — I the identity
matrix. Another rule of pose algebra was that £ © £ = 0. We know for matrices
that TT ! = I which implies that 6T +— T !

—il
y R t R' —R't
I~ = [ ] = 2.25

05 1 0,; 1 (2.23)

The 4 x 4 homogeneous transformation is very commonly used in robotics, com-
puter graphics and computer vision. It is supported by the Toolbox and will be used
throughout this book as a concrete representation of 3-dimensional pose.

The Toolbox has many functions to create homogeneous transformations. For ex-
ample we can demonstrate composition of transforms by
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Many Toolbox functions have variants that
return orthonormal rotation matrices or
homogeneous transformations, for exam-
ple, rotx and trotx, rpy2r and
rpy2tr etc. Some Toolbox functions
accept an orthonormal rotation matrix
or a homogeneous transformation and
ignore the translational component, for
example, tr2rpy.

This representation is not implemented
in the Toolbox.

Pure translation can be considered as ro-
tation about a point at infinity.

>> T = transl(l, 0, 0) * trotx(pi/2) * transl(0, 1, 0)

T =
1.0000 0 0 1.0000
0 0.0000 -1.0000 0.0000
0 1.0000 0.0000 1.0000
0 0 0 1.0000

The function trans1 creates a relative pose with a finite translation but no rotation,
while t rot x creates a relative pose corresponding to a rotation of 7 about the x-axis
with zero translation. We can think of this expression as representing a walk along
the x-axis for 1 unit, then a rotation by 90° about the x-axis and then a walk of 1 unit
along the new y-axis which was the previous z-axis. The result, as shown in the last
column of the resulting matrix is a translation of 1 unit along the original x-axis and
1 unit along the original z-axis. The orientation of the final pose shows the effect of the
rotation about the x-axis. We can plot the corresponding coordinate frame by
>> trplot (T)

The rotation matrix component of T is

>> t2r (T)
ans =
1.0000 0 0
0 0.0000 -1.0000
0 1.0000 0.0000

and the translation component is a column vector

>> transl (T)'
ans =
1.0000

0.0000 1.0000

2.2.2.2  Vector-Quaternion Pair

A compact and practical representation is the vector and unit quaternion pair. It rep-
resents pose using just 7 numbers, is easy to compound, and singularity free.

For the vector-quaternion case & ~ (£, §) where ¢ € R? is a vector defining the
frame’s origin with respect to the reference coordinate frame, and § € S is the
frame’s orientation with respect to the reference frame.

Composition is defined by

GG =+ a0t diod)
and negation is
et=(-g"tq")
and a point coordinate vector is transformed to a coordinate frame by

=" -p=q-P+t

2.2.23  Twists

In Sect. 2.1.2.3 we introduced twists for the 2D case. Any rigid-body motion in 3D space
is equivalent to a screw motion - motion about and along some line in space.* We rep-
resent a screw as a pair of 3-vectors s = (v, w) € RS,

The w component of the twist vector is the direction of the screw axis. The v com-
ponent is called the moment and encodes the position of the line of the twist axis in
space and also the pitch of the screw. The pitch is the ratio of the distance along the
screw axis to the rotation about the screw axis.
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Consider the example of a rotation of 0.3 radians about the x-axis. We first specify
a unit twist> with an axis that is parallel to the x-axis and passes through the origin A rotational unit twist has || || = 1.

>> tw = Twist ('R', [1 0 0], [0 0 0])

tw =

(-0-0-0; 100)
which we convert, for the required rotation angle, to an SE(3)-homogeneous trans-
formation

>>  tw.T(0.3)

ans =
1.0000 0 0 0
0 0.9553  -0.2955 0
0 0.2955 0.9553 0
0 0 0 1.0000
and has the same value we would obtain using trotx (0. 3).
For pure translation in the y-direction the unit twist” would be A translational unit twist has ||v|| = 1
. andw = 0.
>> tw = Twist ('T', [0 1 0]
tw =

(010; 000)

which we convert, for the required translation distance, to an SE(3)-homogeneous

transformation.
>> tw.T(2)
ans =
1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1

which is, as expected, an identity matrix rotational component (no rotation) and a
translational component of 2 in the y-direction.
To illustrate the underlying screw model we define a coordinate frame {X}

>> X = transl(3, 4, -4);

which we will rotate by a range of angles

>> angles = [0:0.3:15];
around a screw axis parallel to the z-axis, direction (0, 0, 1), through the point (2, 3, 2)
and with a pitch of 0.5

>> tw = Twist('R', [0 0 1], [2 3 2], 0.5);

The nextline packs alot of functionality. For values of § drawn successively from the vector
angles we use an anonymous function to evaluate the twist for each value of 6 and apply
it to the frame {X}. This sequence is animated and each frame in the sequence is retained

>> tranimate( @(theta) tw.T(theta) * X, angles,

'length', 0.5, 'retain', 'rgb', 'notext');
and the result is shown in Fig. 2.17. We can clearly see the screw motion in the successive
poses of the displaced reference frame as it is rotated about the screw axis.

The screw axis is the line

>> L = tw.line

L =

{3 -2 0; 0 0 1}

which is described in terms of its Pliicker coordinates which we can plot
>> L.plot('k:', 'LineWidth', 2)
Finally we can convert an arbitrary homogeneous transformation to a nonunit twist

>> T = transl(l, 2, 3) * eul2tr (0.3, 0.4, 0.5);
>> tw = Twist (T)

tw =

(1.1204 1.6446 3.1778; 0.041006 0.4087 0.78907 )
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Fig.2.17.

A coordinate frame {X} dis-
played for different values of 0
about a screw parallel to the
z-axis and passing through the
point (2, 3,2). The x-, y- and
z-axes are indicated by red,
green and blue lines respectively

The IEEE standard for double precision
floating point, the standard MATLAB
numeric format, has around 16 decimal
digits of precision.

which has a pitch of

>> tw.pitch
ans =
3.2256
and the rotation about the axis is
>> tw.theta
ans =
0.8896
and a point lying on the twist axis is
>> tw.pole'

ans =
0.0011 0.8473  -0.4389
2.3 Advanced Topics
2.3.1 Normalization

Floating-point arithmetic has finite precision* and consecutive operations will accu-
mulate error. A rotation matrix has by definition, a determinant of one

>> R = eye(3,3);

>> det(R) - 1

ans =
0

but if we repeatedly multiply by a valid rotation matrix the result

>> for 1=1:100
R =R * rpy2r (0.2, 0.3, 0.4);
end
>> det(R) - 1
ans =
4.4409e-15

indicates a small error - the determinant is no longer equal to one and the matrix is

no longer a proper orthonormal rotation matrix. To fix this we need to normalize the

matrix, a process which enforces the constraints on the columns ¢; of an orthonormal

matrix R = [¢;, ¢,, ¢;]. We need to assume that one column has the correct direction
c=c

then the first column is made orthogonal to the last two

’_ /
c=c,Xc;y



50

Chapter 2 - Representing Position and Orientation

However the last two columns may not have been orthogonal so
¢ =c xc
Finally the columns are all normalized to unit magnitude

"__

!
C .
_1/, 1= 1.3
o

In the Toolbox normalization is implemented by

>> R = trnorm(R);

and the determinant is now much closer to one”
>> det(R) - 1
ans =
-2.2204e-16
A similar issue arises for unit quaternions when the norm, or magnitude, of the unit
quaternion is no longer equal to one. However this is much easier to fix since normal-
izing the quaternion simply involves dividing all elements by the norm

o
~
Qo

o

which is implemented by the unit method
>> g = g.unit();

The UnitQuaternion class also supports a variant of multiplication
>> g =qgq .* g2;

which performs an explicit normalization after the multiplication.

Normalization does not need to be done after every multiplication since it is an
expensive operation. However for situations like the example above where one trans-
form is being repeatedly updated it is advisable.

2.3.2 Understanding the Exponential Mapping

In this chapter we have glimpsed some connection between rotation matrices, skew-
symmetric matrices and matrix exponentiation. The basis for this lies in the mathemat-
ics of Lie groups which are covered in text books on algebraic geometry and algebraic
topology. These require substantial knowledge of advanced mathematics and many
people starting out in robotics will find their content quite inaccessible. An introduc-
tion to the essentials of this topic is given in Appendix D. In this section we will use an
intuitive approach, based on undergraduate engineering mathematics, to shed some
light on these relationships.

Consider a point P, defined by a coordinate vector p, being rotated with an angular
velocity w which is a vector whose direction defines the axis of rotation and whose
magnitude ||w | specifies the rate of rotation about the axis which we assume passes
through the origin.” We wish to rotate the point by an angle 6 about this axis and the
velocity of the point is known from mechanics to be

P=wXp

and we replace the cross product with a skew-symmetric matrix giving a matrix-vec-
tor product

This error is now at the limit of double pre-
cision arithmetic which is 2.2204 x 1076
and given by the MATLAB function eps.

Angular velocity will be properly intro-
duced in the next chapter.
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p=[wlp (2.26)

We can find the solution to this first-order differential equation by analogy to the
simple scalar case

X =ax

whose solution is
x(t) = e x(0)

This implies that the solution to Eq. 2.26 is
p(t) = e+ p(0)

If ||w|| = 1 then after t seconds the vector will have rotated by f radians. We require
a rotation by 0 so we can set t = 0 to give

51,6
p(0) = 1" p(0)
which describes the vector p(0) being rotated to p(6). A matrix that rotates a vec-
tor is a rotation matrix, and this implies that our matrix exponential is a rotation
matrix

R(0, &) = % € 50(3)

Now consider the more general case of rotational and translational motion. We
can write

p=[wkp+wv

and rearranging into matrix form
_ [[wlx v

p|_ p
0 0 O0J|1
and introducing homogeneous coordinates this becomes

5 [[a(i)]x 'g] 5

where X is a 4 x 4 augmented skew-symmetric matrix. Again, by analogy with the
scalar case we can write the solution as

p(0) = ™ p(0)

A matrix that rotates and translates a point in homogeneous coordinates is a ho-
mogeneous transformation matrix, and this implies that our matrix exponential is a
homogeneous transformation matrix

[[cf(z)]x z]g
TO,w,v)=¢ € SE(3)

where [@], 0 defines the magnitude and axis of rotation and v 6 is the translation.
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The exponential of a scalar can be computed using a power series, and the matrix
case is analogous and relatively straightforward to compute. The MATLAB function
expm uses a polynomial approximation for the general matrix case. If A is skew-sym-
metric or augmented-skew-symmetric then an efficient closed-form solution for a
rotation matrix - the Rodrigues’ rotation formula (Eq. 2.18) - can be used and this is
implemented by the Toolbox function trexp.

233 More About Twists

In this chapter we introduced and applied twists and here we will more formally define
them. We also highlight the very close relationship between twists and homogeneous
transformation matrices via the exponential mapping.

The key concept comes from Chasle’s theorem: “any displacement of a body in space
can be accomplished by means of a rotation of the body about a unique line in space
accompanied by a translation of the body parallel to that line”. Such a line is called a
screw axis and is illustrated in Fig. 2.18. The mathematics of screw theory was devel-
oped by Sir Robert Ball in the late 19" century for the analysis of mechanisms. At the
core of screw theory are pairs of vectors: angular and linear velocity; forces and mo-
ments; and Pliicker coordinates (see Sect. C.1.2.2).

The general displacement of a rigid body in 3D can be represented by a twist vector

S = (v,w) € R®

where v € R? is referred to as the moment and encodes the position of the action line
in space and the pitch of the screw and w € R? is the direction of the screw axis.

For rotational motion where the screw axis is parallel to the vector a, passes
through a point Q defined by its coordinate vector g, and the screw pitch p is the
ratio of the distance along the screw axis to the rotation about the axis, the twist
elements are

S =(gxa+pa,a)

and the pitch can be recovered by
p=w"v
For the case of pure rotation the pitch of the screw is zero and the unit twist is

S =(gxa,a)

Fig.2.18.

Conceptual depiction of a screw.
A coordinate frame is attached
to a nut by a rigid rod and rotat-
ed around the screw thread. The
pose changes from the red frame
to the blue frame. The corollary
is that given any two frames we
can determine a screw axis to
rotate one into the other
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Michel Chasles (1793-1880) was a French mathematician born at Epernon. He studied at the
Ecole Polytechnique in Paris under Poisson and in 1814 was drafted to defend Paris in the War
of the Sixth Coalition. In 1837 he published a work on the origin and development of methods in
geometry, which gained him considerable fame and he was appointed as professor at the Ecole
Polytechnique in 1841, and at the Sorbonne in 1846.

He was an avid collector and purchased over 27 000 forged letters purporting to be from Newton,
Pascal and other historical figures - all written in French! One from Pascal claimed he had dis-
covered the laws of gravity before Newton, and in 1867 Chasles took this to the French Academy
of Science but scholars recognized the fraud. Eventually Chasles admitted he had been deceived
and revealed he had spent nearly 150000 francs on the letters. He is buried in Cimetiére du Pére
Lachaise in Paris.

For purely translational motion in the direction parallel to the vector a, the pitch
is infinite which leads to a zero rotational component and the unit twist is

S =(a,0)

A twist is related to the rigid-body displacement in SE(3) by the exponential map-
ping already discussed.

T(0, S) = el5¥ ¢ sE(3)

where the augmented skew-symmetric matrix

0 —w w |1
| w 0 —w |
[S]— v w, 0 | v € se(3)

0 0 00

belongs to the Lie algebra se(3) and is the generator of the rigid-body displacement.
The matrix exponential has an efficient closed-form

R(O,&) (Lof + (1= cosO)[&, + (0 — sin0)[W]} v
0 1

T,S)=

where R(6, @) is computed using Rodrigues’ rotation formula (Eq. 2.18). For a nonunit
rotational twist, that is ||w]|| = 1, then 6 = ||w]|.

For real numbers, if x=log X and y = log Y then
Z=XY =e"e) ="t

but for the matrix case this is only true if the matrices commute, and rotation
matrices do not, therefore

Z = XY =e*e¥ ="tV ifx,y € so(n) or se(n)

The bottom line is that there is no shortcut to compounding rotations, we
must compute z=log (e*e’) notz=x+y.

The Toolbox provides many ways to create twists and to convert them to rigid-body
displacements expressed as homogeneous transformations. Now that we understand
more about the exponential mapping we will revisit the example from page 48

>> tw = Twist ('R', [1 0 0], [0 0 0])

tw =

(-0 -0-0; 100)
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A unit twist describes a family of motions that have a single parameter, either
a rotation and translation about and along some screw axis, or a pure transla-
tion in some direction. We can visualize it as a mechanical screw in space, or
represent it as a 6-vector S = (v, w) where ||w|| = 1 for a rotational twist and
|lv]| = 1, w = 0 for a translational twist.

A particular rigid-body motion is described by a unit-twist s and a motion
parameter 6 which is a scalar specifying the amount of rotation or translation.
The motion is described by the twist S6 which is in general not a unit-twist. The
exponential of this in 4 x 4 matrix format is the 4 x 4 homogeneous transforma-
tion matrix describing that particular rigid-body motion in SE(3).

which is a unit twist that describes rotation about the x-axis in SE(3). The Twist has
a number of properties

>> tw.S'
ans =
0 0 0 1 0 0
>> tw.v'
ans =
0 0 0
>> tw.w'
ans =
1 0 0

as well as various methods. We can create the se(3) Lie algebra using the se method
of this class

>> tw.se
ans =

o O O o

o - O O
|

o O O o

0

which is the augmented skew-symmetric version of S. The method T performs the
exponentiation” of this to create an SE(3) homogeneous transformation for the speci-  The expm method is synonomous and

fied rotation about the unit twist both invoke the Toolbox function t rexp.
>> tw.T(0.3)
ans =
1.0000 0 0 0
0 0.9553 -0.2955 0
0 0.2955 0.9553 0
0 0 0 1.0000

The Toolbox functions t rexp and t r1og are respectively closed-form alternatives
to expm and 1ogm when the arguments are in so(3)/se(3) or SO(3)/SE(3).

The 1ine method returns a P1lucker object that represents the line of the screw
in Pliicker coordinates

>> tw.line

ans =

{0 0 0;1 0 0}

Finally, the overloaded multiplication operator for the Twist class will compound
two twists.

>> t2 = tw * tw

t2 =

(-0 -0 -0; 2 0 O

>> tr2angvec (t2.T)

Rotation: 2.000000 rad x [1.000000 0.000000 0.000000]

and the result in this case is a nonunit twist of two units, or 2 rad, about the x-axis.
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1845-1879, an English mathematician
and geometer.

23.4 Dual Quaternions

Quaternions were developed by William Hamilton in 1843 and we have already seen
their utility for representing orientation, but using them to represent pose proved
more difficult. One early approach was Hamilton’s bi-quaternion where the quaternion
coefficients were complex numbers. Somewhat later William Clifford developed the
dual number, defined as an ordered pair d = (x, y) which can be written as d = x + ye
where £2= 0 and for which specific addition and multiplication rules exist. Clifford
created a quaternion dual number with x, y € H which he also called a bi-quaternion
but is today called a dual quaternion

o 1 .92 o
e =1 +yctor

where 7 € H is a unit quaternion representing the rotational part of the pose and
f € H is a pure quaternion representing translation. This type of mathematical ob-
ject has been largely eclipsed by modern matrix and vector approaches, but there
seems to be a recent resurgence of interest in alternative approaches. The dual qua-
ternion is quite compact, requiring just 8 numbers; it is easy to compound using a
special multiplication table; and it is easy to renormalize to eliminate the effect of
imprecise arithmetic. However it has no real useful computational advantage over
matrix methods.

2.3.5 Configuration Space

We have so far considered the pose of objects in terms of the position and orientation
of a coordinate frame affixed to them. For an arm-type robot we might affix a coor-
dinate frame to its end-effector, while for a mobile robot we might affix a frame to its
body - its body-fixed frame. This is sufficient to describe the state of the robot in the
familiar 2D or 3D Euclidean space which is referred to as the task space or operational
space since it is where the robot performs tasks or operates.

An alternative way of thinking about this comes from classical mechanics and is
referred to as the configuration of a system. The configuration is the smallest set of
parameters, called generalized coordinates, that are required to fully describe the po-
sition of every particle in the system. This is not as daunting as it may appear since in
general a robot comprises one or more rigid elements, and in each of these the par-
ticles maintain a constant relative offset to each other.

If the system is a train moving along a track then all the particles comprising the
train move together and we need only a single generalized coordinate g, the distance
along the track from some datum, to describe their location. A robot arm with a
fixed base and two rigid links, connected by two rotational joints has a configuration
that is completely described by two generalized coordinates - the two joint angles
(91> 95)- The generalized coordinates can, as their name implies, represent displace-
ments or rotations.

Sir Robert Ball (1840-1913) was an Irish astronomer born in Dublin. He became Professor of
Applied Mathematics at the Royal College of Science in Dublin in 1867, and in 1874 became Royal
Astronomer of Ireland and Andrews Professor of Astronomy at the University of Dublin. In 1892
he was appointed Lowndean Professor of Astronomy and Geometry at Cambridge University and
became director of the Cambridge Observatory. He was a Fellow of the Royal Society and in 1900
became the first president of the Quaternion Society.

He is best known for his contributions to the science of kinematics described in his treatise
“The Theory of Screws” (1876), but he also published “A Treatise on Spherical Astronomy” (1908)
and a number of popular articles on astronomy. He is buried at the Parish of the Ascension Burial
Ground in Cambridge.
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The number of independent” generalized coordinates N is known as the number
of degrees of freedom of the system. Any configuration of the system is represented
by a point in its N-dimensional configuration space, or C-space, denoted by € and
g € C. We can also say that dim € = N. For the train example C C R which says that
the displacement is a bounded real number. For the 2-joint robot the generalized co-
ordinates are both angles so € C S! x S,

Any point in the configuration space can be mapped to a point in the task space
q € C+— 7€ T but the inverse is not necessarily true. This mapping depends on the
task space that we choose and this, as its name suggests, is task specific.

Consider again the train moving along its rail. We might be interested to describe the
train in terms of its position on a plane in which case the task space would be T C R?, or
in terms of its latitude and longitude, in which case the task space would be T C S! x S,
We might choose a 3-dimensional task space T C SE(3) to account for height changes
as the train moves up and down hills and its orientation changes as it moves around
curves. However in all these case the dimension of the task space exceeds the dimension
of the configuration space dim 7 > dim € and this means that the train cannot access
all points in the task space. While every point along the rail line can be mapped to the
task space, most points in the task space will not map to a point on the rail line. The
train is constrained by its fixed rails to move in a subset of the task space.

The simple 2-joint robot arm can access a subset of points in a plane so a useful
task space might be T C R% The dimension of the task space equals the dimension of
the configuration space dim 7 = dim € and this means that the mapping between task
and configuration spaces is bi-directional but it is not necessarily unique - for this type
of robot, in general, two different configurations map to a single point in task space.
Points in the task space beyond the physical reach of the robot are not mapped to the
configuration space. If we chose a task space with more dimensions such as SE(2) or
SE(3) then dim T > dim € and the robot would only be able to access points within a
subset of that space.

Now consider a snake-robot arm, such as shown in Fig. 8.9, with 20 joints and
€ CS'x -+ xS'and dim T < dim C. In this case an infinite number of configurations
ina 20 — 6 = 14-dimensional subspace of the 20-dimensional configuration space will
map to the same point in task space. This means that in addition to the task of position-
ing the robot’s end-effector we can simultaneously perform motion in the configura-
tion subspace to control the shape of the arm to avoid obstacles in the environment.
Such a robot is referred to as over-actuated or redundant and this topic is covered in
Sect. 8.4.2.

The body of a quadrotor, such as shown in Fig. 4.19d, is a single rigid-body whose
configuration is completely described by six generalized coordinates, its position and
orientation in 3D space € C R3x S!x S! x S! where the orientation is expressed in
some three-angle representation. For such a robot the most logical task space would
be SE(3) which is equivalent to the configuration space and dim 7 = dim €. However
the quadrotor has only four actuators which means it cannot directly access all the
points in its configuration space and hence its task space. Such a robot is referred to
as under-actuated and we will revisit this in Sect. 4.2.

2.4 Using the Toolbox

The Toolbox supports all the different representations discussed in this chapter as
well as conversions between many of them. The representations and possible con-
versions are shown in tabular form in Tables 2.1 and 2.2 for the 2D and 3D cases
respectively.

In this chapter we have mostly used native MATLAB matrices to represent rotations
and homogeneous transformations” and historically this has been what the Toolbox
supported - the Toolbox classic functions. From Toolbox release 10 there are classes that

Thatis, there are no holonomic constraints
on the system.

Quaternions and twists are implemented
as classes not native types, butin very old
versions of the Toolbox quaternions were
1 x 4 vectors.
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represent rotations and homogeneous transformations, named respectively SO2 and
SE2 for 2 dimensions and SO3 and SE3 for 3 dimensions. These provide real advan-
tages in terms of code readability and type safety and can be used in an almost identical
fashion to the native matrix types. They are also polymorphic meaning they support
many of the same operations which makes it very easy to switch between using say ro-
tation matrices and quaternions or lifting a solution from 2- to 3-dimensions. A quick
illustration of the new functionality is the example from page 27 which becomes

>> Tl = SE2(1, 2, 30, 'deg');

>> about T1

The size of the object in bytes, shown in T1 [SE2] : 1x1 (176 bytes)

parentheses, will vary between MATLAB.
versions and computer types. which results in an SE2 class object not a 3 x 3 matrix.* If we display it however it

does look like a 3 x 3 matrix™

Ifyou have the cprint £ package from >> T1
MATLAB File Exchange installed then the Tl =
rotation submatrix will be colored red. 0.8660 -0.5000 1
0.5000 0.8660 2
0 0 1

The matrix is encapsulated within the object and we can extract it readily if required

>> T1.T
ans =
0.8660 -0.5000 1.0000
0.5000 0.8660 2.0000
0 0 1.0000
>> about ans
ans [double] : 3x3 (72 bytes)

Returning to that earlier example we can quite simply transform the vector

>> inv(T1) * P
ans =
1.7321
-1.0000

and the class handles the details of converting the vector between Euclidean and ho-

mogeneous forms.

Table 2.1. Toolbox supported data This new functionality is also covered in Tables 2.1 and 2.2, and Table 2.3 is a map

types for representing 2D pose: between the classic and new functionality to assist you in using the Toolbox. From here
constructors and conversions on the book will use a mixture of classic functions and the newer classes.

- transl2 - Twist ('T") - SE2()
trot2 Twist ('R') S02() SE2()

502() SE2()

SE2()

S02.exp() SE3.exp()

.SE

.theta . LT .log - .SE2
.theta R .T .log .Twist .S02 -

Dark grey boxes are not possible conversions. Light grey boxes are possible conversions but the Toolbox has no direct conversion, you
need to convert via an intermediate type. Red text indicates classical Robotics Toolbox functions that work with native MATLAB® vectors
and matrices. Bold text indicates a Toolbox class. Class.type() indicates a static factory method that constructs a Class object from input of
that type. Functions shown starting with a dot are a method on the class corresponding to that row.
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Output type
Inputtype ¢ Euler RPY v R T Twist  Twist Unit- S03 SE3
vector Quaternion
t transl Twist ('T') SE3()
(3-vector)
Euler eul2r eul2tr UnitQuater- S03.eul() SE3.eul()
(3-vector) nion.eul()
RPY rpy2r rpy2tr UnitQuater-  SO03.rpy() SE3.rpy()
(3-vector) nion.rpy()
63 v (scalar angvec2r angvec2tr UnitQuater- S03.angvec () SE3.angvec()
+ 3-vector) nion.angvec ()
R tr2eul tr2rpy tr2angvec r2t trlog UnitQuater- S03 () SE3 ()
(3 3 matrix) nion()
T transl tr2eul tr2rpy tr2angvec t2r trlog Twist() UnitQuater- S03 () SE3 ()
(44 matrix) nion()
Twist vector trexp trexp Twist () S03.exp () SE3.exp ()
(3- or 6-vector)
Twist o .S .SE
Unit- .toeul .torpy .toangvec .R o .S03 .SE3
Quaternion
S03 .toeul .torpy .toangvec .R o .log .UnitQuater- .SE3
nion
SE3 .t .toeul .torpy .toangvec .R .T .log .Twist .UnitQuater- .S03
nion

Dark grey boxes are not possible conversions. Light grey boxes are possible conversions but the Toolbox has no direct conversion, you need to
convert via an intermediate type. Red text indicates classical Robotics Toolbox functions that work with native MATLAB® vectors and matrices.
Class.type() indicates a static factory method that constructs a Class object from input of that type. Functions shown starting with a dot are a
method on the class corresponding to that row.

2.5 Wrapping Up

In this chapter we learned how to represent points and poses in 2- and 3-dimensional
worlds. Points are represented by coordinate vectors relative to a coordinate frame.
A set of points that belong to a rigid object can be described by a coordinate frame,
and its constituent points are described by constant vectors in the object’s coordinate
frame. The position and orientation of any coordinate frame can be described relative
to another coordinate frame by its relative pose . We can think of a relative pose as a
motion - a rigid-body motion - and these motions can be applied sequentially (com-
posed or compounded). It is important to remember that composition is noncommu-
tative — the order in which relative poses are applied is important.

We have shown how relative poses can be expressed as a pose graph or manipulated
algebraically. We can also use a relative pose to transform a vector from one coordinate
frame to another. A simple graphical summary of key concepts is given in Fig. 2.19.

We have discussed a variety of mathematical objects to tangibly represent pose. We
have used orthonormal rotation matrices for the 2- and 3-dimensional case to repre-
sent orientation and shown how it can rotate a points’ coordinate vector from one co-
ordinate frame to another. Its extension, the homogeneous transformation matrix, can
be used to represent both orientation and translation and we have shown how it can
rotate and translate a point expressed in homogeneous coordinates from one frame

Table 2.2. Toolbox supported data
types for representing 3D pose:
constructors and conversions
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Orientation Pose

Classic New Classic New

rot2 S02 trot2 SE2
transl2 SE2

trplot2 .plot trplot2 .plot

rotx, roty, rotz

eul2r, rpy2r

SO3.Rx, SO3.Ry, SO3.Rz

SO3.eul, SO3.rpy

trotx, troty, trotz
T = transl(v)

eul2tr, rpy2tr

SE3.Rx, SE3.Ry, SE3.Rz
SE3 (v)

SE3.eul, SE3.rpy

angvec2r S03 .angvec angvec2tr SE3.angvec
oa2r S03.oa oaztr SE3.oa

v = transl(T) .t, .transl
tr2eul, tr2rpy .toeul, .torpy tr2eul, tr2rpy .toeul, .torpy
tr2angvec .toangvec tr2angvec .toangvec
trexp SO3 . exp trexp SE3.exp
trlog .log trlog .log
trplot .plot trplot .plot

Functions starting with dot are methods on the new objects. You can use them in functional form toeul (R) orin dotform R.toeul ()
or R.toeul.lt’s a personal preference. The trailing parentheses are not required if no arguments are passed, but it is a useful convention
and reminder that you that you are invoking a method not reading a property. The old function trans1 appears twice since it maps a
vector to a matrix as well as the inverse.

Table 2.3. Table of subsitutions
from classic Toolbox functions
that operate on and return a ma-
trix, to the corresponding new
classes and methods

to another. Rotation in 3-dimensions has subtlety and complexity and we have looked
at various parameterizations such as Euler angles, roll-pitch-yaw angles and unit qua-
ternions. Using Lie group theory we showed that rotation matrices, from the group
SO(2) or SO(3), are the result of exponentiating skew-symmetric generator matrices.
Similarly, homogeneous transformation matrices, from the group SE(2) or SE(3), are
the result of exponentiating augmented skew-symmetric generator matrices. We have
also introduced twists as a concise way of describing relative pose in terms of rotation
around a screw axis, a notion that comes to us from screw theory and these twists are
the unique elements of the generator matrices.

There are two important lessons from this chapter. The first is that there are
many mathematical objects that can be used to represent pose and these are sum-
marized in Table 2.4. There is no right or wrong - each has strengths and weak-
nesses and we typically choose the representation to suit the problem at hand.
Sometimes we wish for a vectorial representation, perhaps for interpolation, in
which case (x, y, 0) or (x, y, z, I') might be appropriate, but this representation can-
not be easily compounded. Sometime we may only need to describe 3D rotation
in which case I" or § is appropriate. Converting between representations is easy as
shown in Tables 2.1 and 2.2.

The second lesson is that coordinate frames are your friend. The essential first step
in many vision and robotics problems is to assign coordinate frames to all objects of
interest, indicate the relative poses as a directed graph, and write down equations for
the loops. Figure 2.20 shows you how to build a coordinate frame out of paper that
you can pick up and rotate - making these ideas more tangible. Don’t be shy, embrace
the coordinate frame.

We now have solid foundations for moving forward. The notation has been defined
and illustrated, and we have started our hands-on work with MATLAB. The next chap-
ter discusses motion and coordinate frames that change with time, and after that we
are ready to move on and discuss robots.
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maps a coordinate
vector from frame {B}

to frame
AU A&B B’U

[pronounced ksi |

—] :@BéA

pose of frame {B}
relative to fram

&g =Es s

relative motion from
frame {A} to frame {B}

2D Composition 3D

Position 2-vector + 3-vector

Orientation ~ Angle + 3 angles I':Euler, RPY, etc.
3 X 3 rotation matrix e 2 vectors: OA

(angle, vector)
UnitQuaternion g
3 X 3 rotation matrix

Pose (angle, 2-vector) ® (3 angles, 3-vector)
4 x 4 transformation matrix & (3-vector, UnitQuaternion)

4 x 4 transformation matrix

Fig.2.19.
Everything you need to know
about pose

Composition

+

**® 00

*0 0

Toolbox composition operators are shown in blue. Composition operators shown in red are @ difficult to implement, @ less difficult to

implement.

Further Reading

The treatment in this chapter is a hybrid mathematical and graphical approach that
covers the 2D and 3D cases by means of abstract representations and operators which
are later made tangible. The standard robotics textbooks such as Kelly (2013), Siciliano
et al. (2009), Spong et al. (2006), Craig (2005), and Paul (1981) all introduce homoge-
neous transformation matrices for the 3-dimensional case but differ in their approach.
These books also provide good discussion of the other representations such as angle-
vector and 3-angle representations. Spong et al. (2006, sect. 2.5.1) have a good discus-
sion of singularities. The book Lynch and Park (2017) covers the standard matrix ap-
proaches but also introduces twists and screws. Siegwart et al. (2011) explicitly cover
the 2D case in the context of mobile robotics.

Quaternions are discussed in Kelly (2013) and briefly in Siciliano et al. (2009). The
book by Kuipers (1999) is a very readable and comprehensive introduction to quater-
nions. Quaternion interpolation is widely used in computer graphics and animation
and the classic paper by Shoemake (1985) is very readable introduction to this topic.
The first publication about quaternions for robotics is probably Taylor (1979), and
followed up in subsequent work by Funda (1990).

You will encounter a wide variety of different notation for rotations and transfor-
mations in textbooks and research articles. This book uses AT to denote a transform
giving the pose of frame {B} with respect to frame {A}. A common alternative notation
is T4 or even 4T. To denote points this book uses “pj to denote a vector from the ori-
gin of frame {A} to the point B whereas others use p, or even “p4 to denote a vector

Table 2.4. Summary of the various
concrete representations of pose £
introduced in this chapter
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Fig.2.20.
Build your own coordinate frame.

a Get the PDF file from http://

www.petercorke.com/axes.pdf;
b cut it out, fold along the dot-
ted lines and add a staple. Voila!

from the origin of frame {A} to the point B but with respect to coordinate frame {C}.
Twists can be written as either (v, w) as in this book, or as (w, v).

Historical and general. Hamilton and his supporters, including Peter Tait, were vigor-
ous in defending Hamilton’s precedence in inventing quaternions, and for opposing the
concept of vectors which were then beginning to be understood and used. Rodrigues
developed his eponymous formula in 1840 although Gauss discovered it in 1819 but,
as usual, did not publish it. It was published in 1900. Quaternions had a tempestuous
beginning. The paper by Altmann (1989) is an interesting description on this tussle of
ideas, and quaternions have even been woven into fiction (Pynchon 2006).

Exercises

1.

Explore the many options associated with trplot.

2. Animate a rotating cube

a) Write a function to plot the edges of a cube centered at the origin.

b) Modify the function to accept an argument which is a homogeneous transfor-
mation which is applied to the cube vertices before plotting.

¢) Animate rotation about the x-axis.

d) Animate rotation about all axes.

Create a vector-quaternion class to describe pose and which supports composition,

inverse and point transformation.

Create a 2D rotation matrix. Visualize the rotation using t rplot2. Use it to trans-

form a vector. Invert it and multiply it by the original matrix; what is the result?

Reverse the order of multiplication; what is the result? What is the determinant of

the matrix and its inverse?

Create a 3D rotation matrix. Visualize the rotation using t rplot or tranimate.

Use it to transform a vector. Invert it and multiply it by the original matrix; what

is the result? Reverse the order of multiplication; what is the result? What is the

determinant of the matrix and its inverse?

Compute the matrix exponential using the power series. How many terms are re-

quired to match the result shown to standard MATLAB precision?

Generate the sequence of plots shown in Fig. 2.12.

. For the 3-dimensional rotation about the vector [2, 3, 4] by 0.5 rad compute

an SO(3) rotation matrix using: the matrix exponential functions expm and
trexp, Rodrigues’ rotation formula (code this yourself), and the Toolbox function
angvec2tr. Compute the equivalent unit quaternion.

. Create two different rotation matrices, in 2D or 3D, representing frames {A} and {B}.

Determine the rotation matrix 4R, and 2R,. Express these as a rotation axis and
angle, and compare the results. Express these as a twist.
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10.Create a 2D or 3D homogeneous transformation matrix. Visualize the rigid-body
displacement using t ranimate. Use it to transform a vector. Invert it and multi-
ply it by the original matrix, what is the result? Reverse the order of multiplication;
what happens?

11. Create two different rotation matrices, in 2D or 3D, representing frames {A} and {B}.
Determine the rotation matrix 4R, and 2R,. Express these as a rotation axis and
angle and compare the results. Express these as a twist.

12. Create three symbolic variables to represent roll, pitch and yaw angles, then use these
to compute a rotation matrix using rpy2r. You may want to use the simplify
function on the result. Use this to transform a unit vector in the z-direction. Looking
at the elements of the rotation matrix devise an algorithm to determine the roll,
pitch and yaw angles. Hint - find the pitch angle first.

13. Experiment with the t ripleangle application in the Toolbox. Explore roll, pitch
and yaw motions about the nominal attitude and at singularities.

14.If you have an iPhone or iPad download from the App Store the free “Euler Angles”
app by Ecole de Technologie Supérieure and experiment with it.

15. Using Eq. 2.24 show that TT~!=1.

16.1s the inverse of a homogeneous transformation matrix equal to its transpose?

17.1n Sect. 2.1.2.2 we rotated a frame about an arbitrary point. Derive the expression
for computing RC that was given.

18.Explore the effect of negative roll, pitch or yaw angles. Does transforming from
RPY angles to a rotation matrix then back to RPY angles give a different result to
the starting value as it does for Euler angles?

19.From page 53 show that e*e’ == e*” for the case of matrices. Hint - expand the first
few terms of the exponential series.

20.A camera has its z-axis parallel to the vector [0, 1, 0] in the world frame, and its
y-axis parallel to the vector [0, 0, —1]. What is the attitude of the camera with respect
to the world frame expressed as a rotation matrix and as a unit quaternion?
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Time and Motion

The only reason for time is
so that everything doesn’t happen at once
Albert Einstein

In the previous chapter we learned how to describe the pose of objects in
2- or 3-dimensional space. This chapter extends those concepts to poses
that change as a function of time. Section 3.1 introduces the derivative of
time-varying position, orientation and pose and relates that to concepts
from mechanics such as velocity and angular velocity. Discrete-time ap-
proximations to the derivatives are covered which are useful for computer
implementation of algorithms such as inertial navigation. Section 3.2 is a
brief introduction to the dynamics of objects moving under the influence
of forces and torques and discusses the important difference between in-
ertial and noninertial reference frames.
Section 3.3 discusses how to generate a temporal sequence of poses,
} a trajectory, that smoothly changes from an initial pose to a final pose.
For robots this could be the path of a robot gripper moving to grasp an
object or the flight path of a flying robot. Section 3.4 brings many of
these topics together for the important application of inertial naviga-
tion. We introduce three common types of inertial sensor and learn
how to how to use their measurements to update the estimate of pose for a moving
object such as a robot.

3.1 Time-Varying Pose

In this section we discuss how to describe the rate of change of pose which has both a
translational and rotational velocity component. The translational velocity is straight-
forward: it is the rate of change of the position of the origin of the coordinate frame.
Rotational velocity is a little more complex.

3.1.1 Derivative of Pose

There are many ways to represent the orientation of a coordinate frame but most con-
venient for present purposes is the exponential form

[Adz(t)

o(t)
ARy(t) =€ =

€ S0(3)

where the rotation is described by a rotational axis 4@ () defined with respect to

frame {A} and a rotational angle 6(¢), and where [-],, is a skew-symmetric matrix.
At an instant in time t we will assume that the axis has a fixed direction and the

frame is rotating around the axis. The derivative with respect to time is

[ALZJ(t)Lé‘(I)

ARy () = [Acb(t)]xée e R¥®

= [AL:; (t)L 0 “Ry (1)
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which we write succinctly as
Ry = [*w] ‘R, € R (3.1)
X

where 4w =4@0 is the angular velocity in frame {A}. This is a vector quantity
Aw=(w, w,, w,) that defines the instantaneous axis and rate of rotation. The direc-
tion of 4w is parallel to the axis about which the coordinate frame is rotating at a
particular instant of time, and the magnitude ||4wl|| is the rate of rotation about that
axis.” Note that the derivative of a rotation matrix is not a rotation matrix, it is a general
3 x 3 matrix.

Consider now that angular velocity is expressed in frame {B} and we know that
A= ARBB w
and using the identity [Av], = A[v] AT it follows that
AR, = ARB[BwL eR¥® (3.2)
The derivative of a unit quaternion, the quaternion equivalent of Eq. 3.1, is defined as

A

_ 14
dp =3

@0y =3 o0 € H (3.3)
where w is a pure quaternion formed from the angular velocity vector. These are im-
plemented by the Toolbox methods dot and dotb respectively. The derivative of a
unit-quaternion is not a unit-quaternion, it is a regular quaternion which can also be
considered as a 4-vector.

The derivative of pose can be determined by expressing pose as a homogeneous
transformation matrix

[
01><3 1

and taking the derivative with respect to time and substituting Eq. 3.1 gives

éN A :[ARB AiB] _ [AwLARB AiB
13 0 013 0

The rate of change can be described in terms of the current orientation ARy and two
velocities. The linear or translational velocity v = 4#; is the velocity of the origin of
{B} with respect to {A}. The angular velocity 4w, we have already introduced. We can
combine these two velocity vectors to create the spatial velocity vector

A _ (A, A 6
I/B—<’UB, wB>ER

which is the instantaneous velocity of frame {B} with respect to {A}.

Every point in the body has the same angular velocity. Knowing that, plus the trans-
lational velocity vector of any point is enough to fully describe the instantaneous mo-
tion of a rigid body. It is common to place {B} at the body’s center of mass.

3.1.2 Transforming Spatial Velocities

The velocity of a moving body can be expressed with respect to a world reference
frame {A} or the moving body frame {B} as shown in Fig. 3.1. The spatial velocities
are linearly related by

For a tumbling object the axis of rotation
changes with time.
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c
ZA c
A Vb
VB {C}
AVb woving body b Yo
Fig.3.1. .
Representing the spatial velocity
of a moving body b with respect > VA
to various coordinate frames. {A}
Note that v is a 6-dimensional
vector XA
A “Ry 05, Ay [As \B
V= 2= ]B< §B> v (3.4)
055 "Rg
where A, ~ (ARp, At) and 4J;(+) is a Jacobian or interaction matrix. For example, we
can define a body-fixed frame and a spatial velocity in that frame
>> TB = SE3(1, 2, 0) * SE3.Rz(pi/2);
>> vb = [0.2 0.3 000 0.5]"';
and the spatial velocity in the world frame is
>> va = TB.velxform * vb;
>> va'
ans =
0.2000 0.0000 0.3000 0 -0.5000 0.0000
For the case where frame {C} is also on the moving body the transformation becomes
c c; ] c
R, [“t] °R
Cy=| " ch B BV:Ad(CSB)BZ/
05,5 Ry
and involves the adjoint matrix of the relative pose which is discussed in Appendix D.
Continuing the example above we will define an additional frame {C} relative to frame {B}
>> TBC = SE3(0, 0.4, 0);
To determine velocity at the origin of this frame we first compute ¢,
>> TCB = inv (TBC) ;
and the velocity in frame {C} is
>> vc = TBC.Ad * vb;
>> ve'
ans =
0 0.3000 0 0 0 0.5000
which has zero velocity in the x-direction since the rotational and translational ve-
locity components cancel out.
Some texts introduce a velocity twist V which is different to the spatial velocity
Lynch and Park (2017) use the term ve- introduced above. < The velocity twist of a body-fixed frame {B} is 5V = (Bv, 8w)
locity twist while Murray et al. 1994 call which has a translational and rotational velocity component but 2v is the body-

this a spatial velocity. frame velocity of an imaginary point rigidly attached to the body and located at

the world frame origin.The body- and world-frame velocity twists are related by
The scalar product of a velocity twist and the ac.ljoint. matrix rather than Eq. 3.4.The velocity twist is the dual of the wrench
a wrench represents power. described in Sect.3.2.2.4
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3.1.3 Incremental Rotation

The physical meaning of R is not intuitively obvious - it is simply the way that the
elements of R change with time. To gain some insight we consider a first-order ap-
proximation to the derivative”

R ~ c R3><3

R{t+6) — R(r)
— (3.5)

t

Consider an object whose body frames {B} at two consecutive timesteps are related
by a small rotation 2R, expressed in the body frame

Ry(t+8) = Ry(t)°Ry
We substitute Eq. 3.2 into 3.5 and rearrange to obtain

BRy ~ 6'[B‘UL +1,, (3.6)

which says that an infinitesimally small rotation can be approximated by the sum of
a skew-symmetric matrix and an identity matrix.” For example

>> rotx (0.001)

ans =
1.0000 0 0
0 1.0000 -0.0010
0 0.0010 1.0000

Equation 3.6 directly relates rotation between timesteps to the angular velocity.
Rearranging it allows us to compute the approximate angular velocity vector

T
w LV, (Ry() Ryleesr) — Lo
from two consecutive rotation matrices where V, (-) is the inverse skew-symmetric ma-
trix operator such thatif § = [v], then v =V, (S). Alternatively, if the angular velocity
in the body frame is known we can approximately update the rotation matrix

Ry (t+&) ~ Rg(t) + 6, Ry (1)]w], (3.7)
which is cheap to compute, involves no trigonometric operations, and is key to inertial
navigation systems which we discuss in Sect. 3.4.

Adding any nonzero matrix to a rotation matrix results in a matrix that is not a
rotation matrix.¥ However if the increment is sufficiently small, that is the an-
gular velocity and/or sample time is small,”> the result will be close to ortho-
normal and we can straighten it up.The resulting matrix should be normalized,
as discussed in Sect.2.3.1, to make it a proper rotation matrix. This is a com-
mon approach when implementing inertial navigation systems on low-end
computing hardware.

We can also approximate the quaternion derivative by a first-order difference”

. Glkt1) — gl

R~ cH
q s,

which combined with Eq. 3.3 gives us the approximation

The only valid operator for the group
S0(n) is composition b, so the result of
subtraction cannot belong to the group.
The result is a 3 x 3 matrix of element-
wise differences. Groups are introduced
in Appendix D.

This is the first two terms of the Rod-
rigues’ rotation formula on, Eq.2.18,
when 0 = §,w.

The only valid operator for the group
SO(n) is composition &, so the result of
addition cannot be within the group.The
result is a general 3 x 3 matrix.

Which is why inertial navigation sys-
tems operate at a high sample rate and
Ois small.

Similar to the case for SO(n), addition
and subtraction are not operators for the
unit-quaternion group S* so the result
will be a quaternion g € H for which ad-
dition and substraction are permitted.
The Toolbox supports this with overload-
ed operators + and — and appropriate
object class conversions.
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This is useful in optimization procedures
that seek to minimize the error between
two poses: we can choose the cost func-
tion e = || A(&;, &) || which is equal to
zero when &; = &,.This is very approxi-
mate when the poses are significantly
different, but becomes ever more accu-
rateas & — &,

(k1) ~ g (k) +—-w o §{k) (3.8)

N |

which is even cheaper to compute than the rotation matrix approach. Adding a non-
zero vector to a unit-quaternion results in a nonunit quaternion but if the angular ve-
locity and/or sample time is small then the approximation is reasonable. Normalizing
the result to create a unit-quaternion is computationally cheaper than normalizing a
rotation matrix, as discussed in Sect. 2.3.1.

3.14 Incremental Rigid-Body Motion

Consider two poses £; and &, which differ infinitesimally and are related by
§=8§DE

where £, = 5S¢, @ &, In homogeneous transformation matrix form

where t, is an incremental displacement and R, is an incremental rotation matrix
which will be skew symmetric with only three unique elements V,(Rx — I;,;) plus an
identity matrix. The incremental rigid-body motion can therefore be described by
just six parameters

A(§,4) > A, R’
where A= (A, A) can be considered as a spatial displacement.* A body with con-
stant spatial velocity v for §, seconds undergoes a spatial displacement of A, = 1.
The inverse operator

A A )5 & € SEG)

is given by

The spatial displacement operator and its inverse are implemented by the Toolbox
functions tr2delta and delta2tr respectively. These functions assume that the
displacements are infinitesimal and become increasingly approximate with displace-
ment magnitude.

Sir Isaac Newton (1642-1727) was an English mathematician and alchemist. He was Lucasian pro-
fessor of mathematics at Cambridge, Master of the Royal Mint, and the thirteenth president of
the Royal Society. His achievements include the three laws of motion, the mathematics of gravi-
tational attraction, the motion of celestial objects and the theory of light and color (see page 287),
and building the first reflecting telescope.

Many of these results were published in 1687 in his great 3-volume work “The Philosophiae
Naturalis Principia Mathematica” (Mathematical principles of natural philosophy). In 1704 he pub-
lished “Opticks” which was a study of the nature of light and color and the phenomena of diffrac-
tion. The ST unit of force is named in his honor. He is buried in Westminster Abbey, London.
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3.2 Accelerating Bodies and Reference Frames

So far we have considered only the first derivative, the velocity of coordinate frames.
However all motion is ultimately caused by a force or a torque which leads to accel-
eration and the consideration of dynamics.

3.2.1 Dynamics of Moving Bodies

For translational motion Newton’s second law describes, in the inertial frame, the ac-
celeration of a particle with position x and mass m

m’e ="f (3.9)
due to the applied force f.
Rotational motion in SO(3) is described by Euler’s equations of motion which re-
lates the angular acceleration of the body in the body frame
LI+ o (P Pw) =P (3.10)
to the applied torque or moment 7 and a positive-definite rotational inertia matrix
By ¢ R3*3» Nonzero angular acceleration implies that angular velocity, the axis
and/or angle of rotation, evolves over time.4

Consider the motion of a tumbling object which we can easily simulate. We define
an inertia matrix4

>> J = [2 -1 0;-1 4 0;0 0 3];

and initial conditions for orientation and angular velocity

>> attitude = UnitQuaternion();
>> w = 0.2*%[1 2 2]"';

The simulation loop computes angular acceleration with Eq. 3.10, uses rectangu-
lar integration to obtain angular velocity and attitude, and then updates a graphical
coordinate frame

>> dt = 0.05;
>> h = attitude.plot();
>> for t=0:dt:10
wd = -inv(J) * (cross(w, J*w));
w = w + wd*dt; attitude = attitude .* UnitQuaternion.omega (wd*dt) ;
attitude.plot ('handle', h); pause(dt)
end

The rotational inertia of a body that moves in SE(3) is represented by the 3 x 3 symmetric
matrix

]xx ]xy ]xz
I=\y Ty Iy
]xz ]yz ]zz

The diagonal elements are the positive moments of inertia, and the off-diagonal elements are
products of inertia. Only six of these nine elements are unique: three moments and three prod-
ucts of inertia. The products of inertia are all zero if the object’s mass distribution is symmetrical
with respect to the coordinate frame.

Notice that inertia has an associated ref-
erence frame, it is a matrix and its ele-
ments depend on the choice of the co-
ordinate frame.

In the absence of torque a body gener-
ally rotates with a time-varying angular
velocity — this is quite different to the
linear velocity case. It is angular momen-
tum h =Jw in the inertial frame that
is constant.

The matrix must be positive definite, that
is symmetric and all its eigenvalues are
positive.
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3.2.2 Transforming Forces and Torques

The spatial velocity is a vector quantity that represents translational and rotational veloc-
ity. In a similar fashion we can combine translational force and rotational torque into a
6-vector thatis called a wrench W= (f,, fy, [ My m,, m,) € R®. Awrench BWis defined
with respect to the coordinate frame {B} and applied at the origin of that frame.

The wrench “Wis equivalent if it causes the same motion of the body when applied
to the origin of coordinate frame {C} and defined with respect to {C}. The wrenches
are related by

BRC [BtCL BRC T

B
03><3 RC

W — W= Ad("e) W (3.11)

which is similar to the spatial velocity transform of Eq. 3.4 but uses the transpose of
the adjoint of the inverse relative pose.

Continuing the MATLAB example from page 65 we define a wrench with respect to
frame {B} with forces of 3 and 4 Nm in the x- and y-directions respectively

>> WB = [340000]1"';

The equivalent wrench in frame {C} would be

>> WC = TBC.Ad' * WB;
>> WC'
ans =
3.0000 4.0000 0 0 0 1.2000

which is the same forces as applied at {B} plus a torque of 1.2 Nm about the z-axis to counter
the moment due to the application of the x-axis force along a different line of action.

3.23 Inertial Reference Frame

The term inertial reference frame is frequently used in robotics and it is crisply defined
as “a reference frame that is not accelerating or rotating”.

Consider a particle P at rest with respect to a stationary reference frame {0}. Frame {B}
is moving with constant velocity %vy relative to frame {0}. From the perspective of {B}
the particle would be moving at constant velocity, in fact v, = —%;. The particle is
not accelerating and obeys Newton’s first law “that in the absence of an applied force
a particle moves at a constant velocity”. Frame {B} is therefore also an inertial refer-
ence frame.

Now imagine that frame {B} is accelerating at a constant acceleration %ay with re-
spect to {0}. From the perspective of {B} the particle appear to be accelerating, in fact
Ba,= —Ca, and this violates Newton’s first law. An observer in frame {B} who was
aware of Newton’s theories might invoke some magical force to explain what they ob-
serve. We call such a force a fictitious, apparent, pseudo, inertial or d’Alembert force
- they only exist in an accelerating or noninertial reference frame. This accelerating

Gaspard-Gustave de Coriolis (1792-1843) was a French mathematician, mechanical engineer and
scientist. Born in Paris, in 1816 he became a tutor at the Ecole Polytechnique where he carried
out experiments on friction and hydraulics and later became a professor at the Ecole des Ponts
and Chaussées (School of Bridges and Roads). He extended ideas about kinetic energy and work
to rotating systems and in 1835 wrote the famous paper Sur les équations du mouvement rela-
tif des systemes de corps (On the equations of relative motion of a system of bodies) which dealt
with the transfer of energy in rotating systems such as waterwheels. In the late 19 century his
ideas were picked up by the meteorological community to incorporate effects due to the Earth’s
rotation. He is buried in Paris’s Montparnasse Cemetery.



70

Chapter 3 - Time and Motion

frame {B} is not an inertial reference frame. In Newtonian mechanics, gravity is consid-
ered a real body force mg- a free object will accelerate relative to the inertial frame.”

An everyday example of a noninertial reference frame is an accelerating car or
airplane. Inside an accelerating vehicle we observe fictitious forces pushing objects
around in a way that is not explained by Newton’s law in an inertial reference frame.
We also experience real forces acting on our body which, in this case, are provided by
the seat and the restraint.

For a rotating reference frame things are more complex still. Imagine that you and
afriend are standing on a large rotating turntable, and throwing a ball back and forth.
You will observe that the ball follows a curved path in space.” As a Newton-aware ob-
server in this noninertial reference frame you would have to resort to invoking some
magical force that explains why flying objects follow curved paths.

If the reference frame {B} is rotating with angular velocity w about its origin then
Newton’s second law Eq. 3.9 becomes

d
m B1>+w><(w><3p)+2w><Bv+d—w><Bp =0f
| — t
centripetal

[ —

Coriolis Euler

with three new acceleration terms. Centripetal acceleration always acts inward toward
the origin. If the point is moving then Coriolis acceleration will be normal to its ve-
locity. If rotational velocity is time varying then Euler acceleration will be normal to
the position vector. Frequently the centripetal term is moved to the right-hand side in
which case it becomes a fictitious outward centrifugal force. This complexity is symp-
tomatic of being in a noninertial reference frame, and another definition of an inertial
frame is one in which the “physical laws hold good in their simplest form™.>

In robotics the term inertial frame and world coordinate frame tend to be used
loosely and interchangeably to indicate a frame fixed to some point on the Earth.
This is to distinguish it from the body-frame attached to the robot or vehicle. The
surface of the Earth is an approximation of an inertial reference frame - the effect
of the Earth’s rotation is a finite acceleration less than 0.04 m s~2 due to centripetal
acceleration. From the perspective of an Earth-bound observer a moving body will
experience Coriolis acceleration. Both effects are small,” dependent on latitude, and
typically ignored.

3.3 Creating Time-Varying Pose

In robotics we often need to generate a time-varying pose that moves smoothly in
translation and rotation. A path is a spatial construct - a locus in space that leads from
an initial pose to a final pose. A trajectory is a path with specified timing. For example
there is a path from A to B, but there is a trajectory from A to Bin 10 sorat2 ms™ 1.
An important characteristic of a trajectory is that it is smooth - position and orienta-
tion vary smoothly with time. We start by discussing how to generate smooth trajectories
in one dimension. We then extend that to the multi-dimensional case and then to piece-

wise-linear trajectories that visit a number of intermediate points without stopping.

3.3.1 Smooth One-Dimensional Trajectories

We start our discussion with a scalar function of time. Important characteristics of
this function are that its initial and final value are specified and that it is smooth.
Smoothness in this context means that its first few temporal derivatives are continu-
ous. Typically velocity and acceleration are required to be continuous and sometimes
also the derivative of acceleration or jerk.

Albert Einstein’s equivalence principle
is that “we assume the complete physical
equivalence of a gravitational field and a
corresponding acceleration of the refer-
encesystem”—we are unable to distinguish
between gravity and being onarocket ac-
celerating at 1 g far from the gravitational
influence of any celestial object.

Of course if we look down onto the turn-
table from an inertial reference frame the
ball is moving in a straight line.

Einstein, “The foundation of the general
theory of relativity’!

Coriolis acceleration is significant for
weather systems and meteorological
prediction but below the sensitivity
of low-cost sensors.
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This is the reason for choice of quintic
polynomial. It has six coefficients that
enable it to meet the six boundary con-
ditions on initial and final position, ve-
locity and acceleration.

Fig.3.2. Quintic polynomial tra-
jectory. From top to bottom is
position, velocity and accelera-
tion versus time step. a With zero-
velocity boundary conditions,
b initial velocity of 0.5 and a fi-
nal velocity of 0. Note that veloc-
ity and acceleration are in units
of timestep not seconds

An obvious candidate for such a function is a polynomial function of time. Poly-
nomials are simple to compute and can easily provide the required smoothness and
boundary conditions. A quintic (fifth-order) polynomial is often used

s(t)= At> + Bt* + C* + Dt* + Et + F (3.12)

where time ¢ € [0, T]. The first- and second-derivatives are also smooth polynomials

$(t) = 5At* +4Bt> +3Ct> + 2D+ E (3.13)

§(f) = 20AF° +12Bt> + 6Ct + 2D (3.14)
The trajectory has defined boundary conditions for position, velocity and acceleration™
and frequently the velocity and acceleration boundary conditions are all zero.

Writing Eq. 3.12 to Eq. 3.14 for the boundary conditions t = 0 and ¢ = T gives six
equations which we can write in matrix form as

So 0 0 0 0 0 1)4
Sr ™ T 1" T* T 1||B
Sl |0 0 0 o0 1 ofcC
sp| | 5T 41 31* 2T 1 oD
% 0 0 0 2 0 Of|E
s.) |207° 121 6T 2 0 OJ\F

Since the matrix is square* we can solve for the coefficient vector (A, B, C, D, E, F) using
standard linear algebra methods such as the MATLAB \-operator. For a quintic poly-
nomial acceleration will be a smooth cubic polynomial, and jerk will be a parabola.

The Toolbox function tpoly generates a quintic polynomial trajectory as described
by Eq. 3.12. For example

>> tpoly (0, 1, 50);

generates a polynomial trajectory and plots it, along with the corresponding velocity
and acceleration, as shown in Fig. 3.2a. We can get these values into the workspace
by providing output arguments

>> [s,sd,sdd] = tpoly(0, 1, 50);

where s, sd and sdd are respectively the trajectory, velocity and acceleration - each
a 50 x 1 column vector. We observe that the initial and final velocity and acceleration

1 6
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are all zero - the default value. The initial and final velocities can be set to nonzero
values

>> tpoly(0, 1, 50, 0.5, 0);

in this case, an initial velocity of 0.5 and a final velocity of 0. The results shown in
Fig. 3.2b illustrate an important problem with polynomials. The nonzero initial ve-
locity causes the polynomial to overshoot the terminal value - it peaks at 5 on a tra-
jectory from 0 to 1.

Another problem with polynomials, a very practical one, can be seen in the middle
graph of Fig. 3.2a. The velocity peaks at k = 25 which means that for most of the time
the velocity is far less than the maximum. The mean velocity

>> mean (sd) / max (sd)
ans =
0.5231

is only 52% of the peak so we are not using the motor as fully as we could. A real robot
joint has a well defined maximum velocity and for minimum-time motion we want to
be operating at that maximum for as much of the time as possible. We would like the
velocity curve to be flatter on top.

A well known alternative is a hybrid trajectory which has a constant velocity seg-
ment with polynomial segments for acceleration and deceleration. Revisiting our first
example the hybrid trajectory is

>> 1spb (0, 1, 50);

where the arguments have the same meaning as for tpoly and the trajectory is shown
in Fig. 3.3a. The trajectory comprises a linear segment (constant velocity) with para-
bolic blends, hence the name 1spb. The term blend is commonly used to refer to a
trajectory segment that smoothly joins linear segments. As with tpoly we can also
return the trajectory and its velocity and acceleration

>> [s,sd,sdd] = 1lspb(0, 1, 50);

This type of trajectory is also referred to as trapezoidal due to the shape of the velocity
curve versus time, and is commonly used in industrial motor drives.”
The function 1spb has chosen the velocity of the linear segment to be

>> max (sd)
ans =
0.0306

but this can be overridden by specifying it as a fourth input argument

k (step)

Fig.3.3.Linear segment with par-
abolic blend (LSPB) trajectory:
a default velocity for linear seg-
ment; b specified linear segment
velocity values

The trapezoidal trajectory is smooth in
velocity, but not in acceleration.
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The system has one design degree of
freedom. There are six degrees of free-
dom (blend time, three parabolic coef-
ficients and two linear coefficients) and
five constraints (total time, initial and fi-
nal position and velocity).

Or an equivalent 3-angle representation.

Fig.3.4.

Multi-dimensional motion.
q, varies from 0 — 1 and

q, varies from 2 — —1

>> s = 1lspb (0, 1, 50, 0.025);

>> s = 1lspb (0, 1, 50, 0.035);
The trajectories for these different cases are overlaid in Fig. 3.3b. We see that as the
velocity of the linear segment increases its duration decreases and ultimately its du-
ration would be zero. In fact the velocity cannot be chosen arbitrarily¥, too high or
too low a value for the maximum velocity will result in an infeasible trajectory and
the function returns an error.

3.3.2 Multi-Dimensional Trajectories

Most useful robots have more than one axis of motion and it is quite straightforward
to extend the smooth scalar trajectory to the vector case. In terms of configuration
space (Sect. 2.3.5), these axes of motion correspond to the dimensions of the robot’s
configuration space - to its degrees of freedom. We represent the robot’s configura-
tion as a vector g € RN where N is the number of degrees of freedom. The configu-
ration of a 3-joint robot would be its joint angles ¢ = (g, g5, 45). The configuration
vector of wheeled mobile robot might be its position g = (x, y) or its position and head-
ing angle ¢ = (x, y, 0). For a 3-dimensional body that had an orientation in SO(3) we
would use a configuration vector g = (6,, HP, 9},) or for a pose in SE(3) we would use
q= (%20, OP, 9),)‘. In all these cases we would require smooth multi-dimensional
motion from an initial configuration vector to a final configuration vector.

In the Toolbox this is achieved using the function mt raj and to move from con-
figuration (0, 2) to (1, —1) in 50 steps we write

>> g = mtraj (@lspb, [0 2], [1 -1], 50);

which resultsin a 50 x 2 matrix g with one row per time step and one column per axis.
The first argument is a handle to a function that generates a scalar trajectory, @ Lspb
as in this case or @tpoly. The trajectory for the @1spb case

>> plot (q)

is shown in Fig. 3.4.
If we wished to create a trajectory for 3-dimensional pose we might consider con-
verting a pose T to a 6-vector by a command like

g = [Tl.t" Tl.torpyl

though as we shall see later interpolation of 3-angle representations has some limi-
tations.

——

\ ——q,
1.5

T 05 /M
0 "'M/ A
-05 \\

\\M_A
0 5 10 15 20 25 30 35 40 45 50
k (step)
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3.33 Multi-Segment Trajectories

In robotics applications there is often a need to move smoothly along a path through one or
more intermediate or via points without stopping. This might be to avoid obstacles in the
workplace, or to perform a task that involves following a piecewise continuous trajectory
such as welding a seam or applying a bead of sealant in a manufacturing application.

To formalize the problem consider that the trajectory is defined by M configurations
@ k € [1, M] and there are M — 1 motion segments. As in the previous section q; € RY
is a vector representation of configuration.

The robot starts from g, at rest and finishes at g, at rest, but moves through (or close
to) the intermediate configurations without stopping. The problem is over constrained
and in order to attain continuous velocity we surrender the ability to reach each inter-
mediate configuration. This is easiest to understand for the 1-dimensional case shown
in Fig. 3.5. The motion comprises linear motion segments with polynomial blends, like
1 spb, but here we choose quintic polynomials because they are able to match bound-
ary conditions on position, velocity and acceleration at their start and end points.

The first segment of the trajectory accelerates from the initial configuration g, and
zero velocity, and joins the line heading toward the second configuration g,. The blend
time is set to be a constant t, . and t,.. / 2 before reaching g, the trajectory executes
a polynomial blend, of duration t,_., onto the line from g, to g;, and the process re-
peats. The constant velocity g, can be specified for each segment. The average accel-
eration during the blend is

_ Qe —
t

g
acc

If the maximum acceleration capability of the axis is known then the minimum blend
time can be computed.”

On a particular motion segment each axis will have a different distance to travel and
traveling at its maximum speed there will be a minimum time before it can reach its
goal. The first step in planning a segment is to determine which axis will be the slow-
est to complete the segment, based on the distance that each axis needs to travel for
the segment and its maximum achievable velocity. From this the duration of the seg-
ment can be computed and then the required velocity of each axis. This ensures that
all axes reach the next target g, at the same time.

The Toolbox function mstraj generates a multi-segment multi-axis trajectory
based on a matrix of via points. For example 2-axis motion via the corners of a rotat-
ed square can be generated by

>> via = sS02(30, 'deg') * [-1 1; 1 1; 1 -1; -1 -11"';
>> g0 = mstraj(via(:,[2 3 4 11)', [2,1], [], via(:,1)', 0.2, 0);

The first argument is the matrix of via points, each row is the coordinates of a point. The
remaining arguments are respectively: a vector of maximum speeds per axis, a vector of

q2

q1 segment 1 2 | qg; segment 3

The real limit of the axis will be its peak,
rather than average, acceleration. The
peak acceleration for the blend can be
determined from Eq. 3.14 once the quin-
tic coefficients are known.

Fig.3.5.

Notation for multi-segment tra-
jectory showing four points and
three motion segments. Blue indi-
cates constant velocity motion, red
indicates regions of acceleration
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Fig.3.6. Multi-segment multi-axis
trajectories: a configuration of
robot (tool position) for acceler-
ation time of t,,.=0s (red) and
t,cc= 2 s (blue), the via points are
indicated by solid black markers;
b configuration versus time with
segment transitions (¢,..= 2 s) in-
dicated by dashed black lines. The
discrete-time points are indicated
by dots

Only one of the maximum axis speed or
time per segment can be specified, the oth-
eris set to MATLAB's empty matrix [ ].

Acceleration time if given is rounded up
internally to a multiple of the time step.

durations for each segment,™ the initial configuration, the sample time step, and the accel-
eration time.» The function mst raj returns a matrix with one row per time step and the
columns correspond to the axes. We can plot g, against g, to see the path of the robot

>> plot(g0(:,1), a0(:,2))

and is shown by the red path in Fig. 3.6a. If we increase the acceleration time

>> q2 = mstraj(via(:,[2 3 4 11)', [2,1], [1, via(:,1)', 0.2, 2);

the trajectory becomes more rounded (blue path) as the polynomial blending functions
do their work. The smoother trajectory also takes more time to complete.
>> [numrows (g0)

ans =
28 80

numrows (g2) ]

The configuration variables as a function of time are shown in Fig. 3.6b. This func-
tion also accepts optional initial and final velocity arguments and ¢, .. can be a vector
specifying different acceleration times for each of the N blends.

Keep in mind that this function simply interpolates pose represented as a vector.
In this example the vector was assumed to be Cartesian coordinates, but this function
could also be applied to Euler or roll-pitch-yaw angles but this is not an ideal way to
interpolate rotation. This leads us nicely to the next section where we discuss inter-
polation of orientation.

3.34 Interpolation of Orientation in 3D

In robotics we often need to interpolate orientation, for example, we require the end-
effector of a robot to smoothly change from orientation &, to &; in SO(3). We require
some function &(s) = o (&, §;, s) where s € [0, 1] which has the boundary conditions
(& &,0) =&y and 0 (&), €, 1) = & and where o (&, £, s) varies smoothly for inter-
mediate values of s. How we implement this depends very much on our concrete rep-
resentation of &.

If pose is represented by an orthonormal rotation matrix, £ ~ R € SO(3), we might
consider a simple linear interpolation o (R, R;, s) = (1 — s)R, + sR, but this would not,
in general, be a valid orthonormal matrix which has strict column norm and inter-
column orthogonality constraints.

A workable and commonly used approach is to consider a 3-angle representation such
as Euler or roll-pitch-yaw angles, £ ~ I € S! x S! x S! and use linear interpolation

o(Ly, I,s)=Q0—s)L+sI}
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and converting the interpolated angles back to a rotation matrix always results in a
valid form. For example we define two orientations

>> RO = SO3.Rz(-1) * SO3.Ry(-1);
>> Rl = SO3.Rz (1) * SO3.Ry(1l);

and find the equivalent roll-pitch-yaw angles

>> rpy0 = RO.torpy(); rpyl = Rl.torpy();
and create a trajectory between them over 50 time steps

>> rpy = mtraj (@tpoly, rpy0, rpyl, 50);
which is most easily visualized as an animation”

>> S03.rpy( rpy ).animate;

For large orientation changes we see that the axis around which the coordinate frame
rotates changes along the trajectory. The motion, while smooth, sometimes looks un-
coordinated. There will also be problems if either &, or &, is close to a singularity in
the particular 3-angle system being used. This particular trajectory passes very close to
the singularity, at around steps 24 and 25, and a symptom of this is the very rapid rate
of change of roll-pitch-yaw angles at this point. The frame is not rotating faster at this
point - you can verify that in the animation - the rotational parameters are changing
very quickly and this is consequence of the particular representation.

Interpolation of unit-quaternions is only a little more complex than for 3-angle
vectors and produces a change in orientation that is a rotation around a fixed axis in
space. Using the Toolbox we first find the two equivalent quaternions

>> g0 = RO.UnitQuaternion; gl = R1l.UnitQuaternion;

and then interpolate them

>> g = interp (g0, gl, 50);
>> about (q)
g [UnitQuaternion] : 1x50 (1.7 kB)

which results in a vector of 50 UnitQuaternion objects which we can animate by

>> g.animate

Quaternion interpolation is achieved using spherical linear interpolation (slerp) in
which the unit quaternions follow a great circle path on a 4-dimensional hypersphere.
The result in 3-dimensions is rotation about a fixed axis in space.

3.3.4.1 Direction of Rotation

When traveling on a circle we can move clockwise or counter-clockwise to reach the goal
- the result is the same but the distance traveled may be different. On a sphere or hyper-
sphere the principle is the same but now we are traveling on a great circle”. In this example
we animate a rotation about the z-axis, from an angle of —2 radians to +2 radians

>> g0 = UnitQuaternion.Rz (-2); gl = UnitQuaternion.Rz(2);

>> q = interp(g0, gl, 50);

>> g.animate ()
but this is taking the long way around the circle, moving 4 radians when we could travel
2w — 4 ~ 2.28 radians in the opposite direction. The 'shortest' option requests
the rotational interpolation to select the shortest path

>> g = interp (g0, gl, 50, 'shortest');

>> g.animate ()

and the animation clearly shows the difference.

rpyisa50 x 3 matrix and the result of
SO3.rpyisa1x50vector of SO3
objects, and their animate method
is then called.

A great circle on a sphere is the intersec-
tion of the sphere and a plane that passes
through the center. On Earth the equa-
tor and all lines of longitude are great
circles.Ships and aircraft prefer to follow
great circles because they represent the
shortest path between two points on the
surface of a sphere.
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This could also be written as
TO.interp(T1l, 50).

The . t property applied to a vector of
SE 3 objects returns a MATLAB comma-
separated list of translation vectors.The
. transl method returns the transla-
tions in a more useful matrix form.

3.3.5 Cartesian Motion in 3D

Another common requirement is a smooth path between two poses in SE(3) which
involves change in position as well as in orientation. In robotics this is often referred
to as Cartesian motion.

We represent the initial and final poses as homogeneous transformations

>> TO = SE3([0.4, 0.2, 0]) * SE3.rpy(0, 0, 3);
>> Tl = SE3([-0.4, -0.2, 0.3]) * SE3.rpy(-pi/4, pi/4, -pi/2);

The sE3 object has a method interp that interpolates between two poses for nor-
malized distance s € [0, 1] along the path, for example the midway pose between T0
and T1 is

>> interp(TO0, T1, 0.5)

ans =
0.0975 -0.7020 0.7055 0
0.7020 0.5510 0.4512 0
-0.7055 0.4512 0.5465 0.15
0 0 0

where the translational component is linearly interpolated and the rotation is spheri-
cally interpolated using the unit-quaternion interpolation method interp.
A trajectory between the two poses in 50 steps is created by

>> Ts = interp(TO, T1, 50);

where the arguments are the initial and final pose and the trajectory length. The re-
sulting trajectory Ts is a vector of SE3 objects

>> about (Ts)
Ts [SE3] : 1x50 (6.5 kB)

representing the pose at each time step. The homogeneous transformation for the
first point on the path is

>> Ts (1)
ans =
-0.9900 -0.1411 0 0.4
0.1411 -0.9900 0 0.2
0 0 1 0
0 0 0 1

and once again the easiest way to visualize this is by animation

>> Ts.animate

which shows the coordinate frame moving and rotating from pose T0 to pose T1.
The translational part of this trajectory is obtained by

>> P = Ts.transl;
which returns the Cartesian position for the trajectory in matrix form

>> about (P)
P [double] : 50x3 (1.2 kB)

which has one row per time step that is the corresponding position vector. This is
plotted

>> plot (P);
in Fig. 3.7 along with the orientation in roll-pitch-yaw format

>> rpy = Ts.torpy;
>> plot (rpy) ;
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We see that the position coordinates vary smoothly and linearly with time and that  Fig.3.8. Cartesian motion with

orientation varies smoothly with time. LSPB path distance profile. a Car-
However the motion has a velocity and acceleration discontinuity at the first and last tesian position versus time, broll-
. . . . . . pitch-yaw angles versus time

points. While the path is smooth in space the distance s along the path is not smooth

in time. Speed along the path jumps from zero to some finite value and then drops to

zero at the end - there is no initial acceleration or final deceleration. The scalar func-  The roll-pitch-yaw angles do not vary lin-

tions tpolyand 1spb discussed earlier can be used to generate s so that motion along ea”YW“h time becaUSFthey representa

the path is smooth. We can pass a vector of normalized distances along the path as C::;i':gzr:ar::::ﬁ::at'o" of the linearly

the second argument to interp )

>> Ts = TO.interp(T1l, 1lspb(0, 1, 50) );

The trajectory is unchanged but the coordinate frame now accelerates to a constant
speed along the path and then decelerates and this is reflected in smoother curves
for the trajectory shown in Fig. 3.8. The Toolbox provides a convenient shorthand
ctraj for the above

>> Ts = ctraj(TO, T1, 50);

where the arguments are the initial and final pose and the number of time steps.
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Fig.3.9. a SPIRE (Space Inertial
Reference Equipment) from 1953
was 1.5 m in diameter and weighed
1200 kg. b A modern inertial navi-
gation system the LORD Micro-
Strain 3DM-GX4-25 has triaxial
gyroscopes, accelerometers and
magnetometer, a pressure alti-
meter, is only 36 x24x 11 mm
and weighs 16 g (image courtesy
of LORD MicroStrain); ¢ 9 De-
grees of Freedom IMU Breakout
(LSM9DS1-SEN-13284 from Spark-
Fun Electronics), the chip itselfis
only 3.5 x 3 mm

As discussed in Sect. 3.2.3 the Earth's sur-
faceis not aninertial reference frame, but
for most robots with nonmilitary grade
sensors this is a valid assumption.

LORD MicroStrain® (&

Y

b

3.4 Application: Inertial Navigation

An inertial navigation system or INS is a “black box” that estimates its velocity, orien-
tation and position by measuring accelerations and angular velocities and integrating
them over time. Importantly it has no external inputs such as radio signals from satel-
lites. This makes it well suited to applications such as submarine, spacecraft and missile
guidance where it is not possible to communicate with radio navigation aids or which
must be immune to radio jamming. These particular applications drove development
of the technology during the cold war and space race of the 1950s and 1960s. Those
early systems were large, see Fig. 3.9a, extremely expensive and the technical details
were national secrets. Today INSs are considerably cheaper and smaller as shown in
Fig. 3.9b; the sensor chips shown in Fig. 3.9c can cost as little as a few dollars and they
are built into every smart phone.

An INS estimates its pose with respect to an inertial reference frame which is typi-
cally denoted {0} and fixed to some point on the Earth’s surface - the world coordinate
frame.¥ The frame typically has its z-axis upward or downward and the x- and y-axes
establish a local tangent plane. Two common conventions have the x-, y- and z-axes
respectively parallel to north-east-down (NED) or east-north-up (ENU) directions.
The coordinate frame {B} is attached to the moving vehicle or robot and is known as
the body- or body-fixed frame.

3.4.1 Gyroscopes

Any sensor that measures the rate of change of orientation is known, for historical
reasons, as a gyroscope.

3.4.1.1  How Gyroscopes Work

The term gyroscope conjures up an image of a childhood toy - a spinning disk in a
round frame that can balance on the end of a pencil. Gyroscopes are confounding de-
vices - you try to turn them one way but they resist and turn (precess) in a different
direction. This unruly behavior is described by a simplified version of Eq. 3.10

T=wxh (3.15)
where h is the angular momentum of the gyroscope, a vector parallel to the rotor’s
axis of spin and with magnitude ||h|| = Jo, where ] is the rotor’s inertia and w its ro-

tational speed. It is the cross product in Eq. 3.15 that makes the gyroscope move in a
contrary way.
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()]

If no torque is applied to the gyroscope its angular momentum remains constant in
the inertial reference frame which implies that the axis will maintain a constant direc-
tion in that frame. Two gyroscopes with orthogonal axes form a stable platform that will
maintain a constant orientation with respect to the inertial reference frame - fixed with
respect to the universe. This was the principle of many early spacecraft navigation systems
such as that shown in Fig. 2.15 - the vehicle was able to rotate about the stable platform
and the spacecraft’s orientation could be measured with respect to the platform.”

Alternatively we can fix the gyroscope to the vehicle in the strapdown configura-
tion as shown in Fig. 3.10. If the vehicle rotates with an angular velocity w the attached
gyroscope will resist and exert an orthogonal torque 7which can be measured.” If the
magnitude of h is high then this kind of sensor is very sensitive - a very small angular
velocity leads to an easily measurable torque.

Over the last few decades this rotating disk technology has been eclipsed by sensors
based on optical principles such as the ring-laser gyroscope (RLG) and the fiber-optic
gyroscope (FOG). These are high quality sensors but expensive and bulky. The low-cost
sensors used in mobile phones and drones are based on micro-electro-mechanical sys-
tems (MEMS) fabricated on silicon chips. Details of the designs vary but all contain a mass
vibrating at high frequency” in a plane, and rotation about an axis normal to the plane
causes an orthogonal displacement within the plane that is measured capacitively.

Gyroscopic angular velocity sensors measure rotation about a single axis. Typically
three gyroscopes are packaged together and arranged so that their sensitive axes are
orthogonal. The three outputs of such a triaxial gyroscope are the components of the
angular velocity vector Bw* measured in the body frame {B}, and we introduce the
# superscript to explicitly indicate a sensor measurement.

Interestingly, nature has invented gyroscopic sensors. All vertebrates have angu-
lar velocity sensors as part of their vestibular system. In each inner ear we have three
semi-circular canals - fluid filled organs that measure angular velocity. They are ar-
ranged orthogonally, just like a triaxial gyroscope, with two measurement axes in a
vertical plane and one diagonally across the head.

3.4.1.2  Estimating Orientation

If we assume that w is constant over a time interval §, the equivalent rotation at the
timestep k is

Ben (k) ~ e[w]xﬁ’ (3.16)

If the orientation of the sensor frame is initially {5 then the evolution of estimated
pose can be written in discrete-time form as

Eg (k1) — Eg k) @ PEplK) (3.17)

Fig.3.10.

Gyroscope in strapdown con-
figuration. Angular velocity w
induces a torque 7 which can be
sensed as forces at the bearings
shown in red

The challenge was to create a mechanism
thatallowed the vehicle to rotate around
the stable platform without exerting any
torque on the gyroscopes. This required
exquisitely engineered low-friction gim-
bals and bearing systems.

Typically by strain gauges attached to the
bearings of the rotor shaft.

Typically over 10 kHz.
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The . increment method of the
UnitQuaternion class does this in a sin-
gle call.

The technical term is an oblate spheroid, it
bulges out at the equator because of cen-
trifugal acceleration due to the Earth’s ro-
tation.The equatorial diameter is around
40 km greater than the polar diameter.

Much important development was undertaken by the MIT Instrumentation Laboratory un-
der the leadership of Charles Stark Draper. In 1953 the feasibility of inertial navigation for
aircraft was demonstrated in a series of flight tests with a system called SPIRE (Space Inertial
Reference Equipment) shown in Fig. 3.9a. It was 1.5 m in diameter and weighed 1200 kg.
SPIRE guided a B-29 bomber on a 12 hour trip from Massachusetts to Los Angeles without
the aid of a pilot and with Draper aboard. In 1954 the first self-contained submarine navi-
gation system (SINS) was introduced to service. The Instrumentation Lab also developed
the Apollo Guidance Computer, a one-cubic-foot computer that guided the Apollo Lunar
Module to the surface of the Moon in 1969.

Today high-performance inertial navigation systems based on fiber-optic gyroscopes are wide-
ly available and weigh around one 1 kg while low-cost systems based on MEMS technology can
weigh just a few grams and cost a few dollars.

where we use the hat notation to explicitly indicate an estimate of pose and k € Z is
the index of the time step. In concrete terms we can compute this update using SO(3)
rotation matrices or unit-quaternions as discussed in Sect. 3.1.3 and taking care to
normalize the rotation after each step.

We will demonstrate this integration using unit quaternions and simulated angular
velocity data for a tumbling body. The script

>> ex tumble

creates a matrix w whose columns represent consecutive body-frame angular velocity
measurements with corresponding times given by elements of the vector t. We choose
the initial pose to be the null rotation

>> attitude(l) = UnitQuaternion();

and then for each time step we update the orientation and keep the orientation his-
tory in a vector of quaternions

>> for k=1:numcols (w)-1

attitude (k+1) = attitude (k) .* UnitQuaternion.omega( w(:,k)*dt );
end

The omega method creates a unit-quaternion corresponding to a rotation angle and
axis given by the magnitude and direction of its argument. The . * operator performs
quaternion multiplication and normalizes the product, ensuring the result has a unit
norm.¥ We can animate the changing orientation of the body frame

>> attitude.animate ('time', t)
or view the roll-pitch-yaw angles as a function of time

>> mplot (t, attitude.torpy() )

3.4.2 Accelerometers

Accelerometers are sensors that measure acceleration. Even when not moving they
sense the acceleration due to gravity which defines the direction we know as down-
ward. Gravitational acceleration is a function of the material in the Earth beneath
us and our distance from the Earth’s center. The Earth is not a perfect sphere* and
points in the equatorial region are further from the center. Gravitational acceleration
can be approximated by

g ~ 9.780327(1 + 0.0053024sin’ & — 0.0000058sin’ 20| — 0.000003086h

where 0 is the angle of latitude and  is height above sea level. A map of gravity show-
ing the effect of latitude and topography is shown in Fig. 3.11.
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Charles Stark (Doc) Draper (1901-1987) was an American scientist and engineer, often referred to
as “the father of inertial navigation.” Born in Windsor, Missouri, he studied at the University
of Missouri then Stanford where he earned a B.A. in psychology in 1922, then at MIT an S.B. in
electro-chemical engineering and an S.M. and Sc.D. in physics in 1928 and 1938 respectively. He
started teaching while at MIT and became a full professor in aeronautical engineering in 1939.
He was the founder and director of the MIT Instrumentation Laboratory which made important
contributions to the theory and practice of inertial navigation to meet the needs of the cold war
and the space program.

Draper was named one of Time magazine’s Men of the Year in 1961 and inducted to the National
Inventors Hall of Fame in 1981. The Instrumentation lab was renamed Charles Stark Draper Laboratory
(CSDL) in his honor. (Photo courtesy of The Charles Stark Draper Laboratory Inc.)

3.4.2.1 How Accelerometers Work

An accelerometer is conceptually a very simple device comprising a mass, known as
the proof mass, supported by a spring as shown in Fig. 3.12. In the inertial reference
frame Newton’s second law for the proof mass is

mX,, = F, —mg (3.18)
and for a spring with natural length [, the relationship between force and extension d is
F =kd
The various displacements are related

x, — (I +d) =x,
and taking the double derivative then substituting Eq. 3.18 gives

i, —d = L(kd — mg)

The quantity we wish to measure is the acceleration of the accelerometer a = %,>
and the relative displacement of the proof mass

m
d:—
k(a+g)

Fig.3.11.

Variation in Earth’s gravitational
acceleration, continents and
mountain ranges are visible.
The hemispheres shown are cen-
terd on the prime (left) and anti
(right) meridian respectively
(from Hirt et al. 2013)

We assume that d = 0 in steady state.
Typically there would be a damping
element to increase friction and stop
the proof mass oscillating. This adds
a term —Bx,, to the right-hand side
of Eq.3.18.
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a=Xyp
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Xb 0
'
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Xm
. accelerometer

Fig.3.12.
The essential elements of an
accelerometer and notation inertial reference frame

is linearly related to that acceleration. In an accelerometer the displacement is mea-
sured and scaled by k / m so that the output of the sensor is

a=a+gm 52

If this accelerometer is stationary then a = 0 yet the measured acceleration would
be a*= 0+ g= g in the upward direction. This is because our model has included

the Newtonian gravity force mg, as discussed in Sect. 3.2.3. Accelerometer output is
sometimes referred to as specific, inertial or proper acceleration.

The fact that a stationary accelerometer indicates an upward acceleration of
1 g is unintuitive since the accelerometer is clearly stationary and not accel-
erating. Intuition would suggest, that if anything, the acceleration should be
in the downward direction where the device would accelerate if dropped.
However the reality is that an accelerometer at rest in a gravity field reports

A number of iPhone sensor apps incor- upward acceleration.<
rectly report acceleration in the down-
ward direction when the phone is sta-
tionary.

Accelerometers measure acceleration along a single axis. Typically three accelerom-
eters are packaged together and arranged so that their sensitive axes are orthogonal.
The three outputs of such a triaxial accelerometer are the components of the accelera-
tion vector a* measured in the body frame {B}.

Nature has also invented the accelerometer. All vertebrates have acceleration sen-
sors called ampullae as part of their vestibular system. We have two in each inner ear:
the saccule which measures vertical acceleration, and the utricle which measures front-
Inconsistency between motion sensedin  to-back acceleration, and they help us maintain balance.¥ The proof mass in the am-
ourearsand motion perceivedbyoureyes  pylae is a collection of calcium carbonate crystals called otoliths, literally ear stones,
isthe root cause of motion sickness on a gelatinous substrate which serves as the spring and damper. Hair cells embedded
in the substrate measure the displacement of the otoliths due to acceleration.

3.4.2.2  Estimating Pose and Body Acceleration

In frame {0} with its z-axis vertically upward, the gravitational acceleration vector is
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where gis the local gravitational acceleration from Fig. 3.11. In a body-fixed frame {B}
at an arbitrary orientation expressed in terms of ZYX roll-pitch-yaw angles”

' =2(0) 0 4(0) 0 #00)

the gravitational acceleration will be

—gsing,
Ba:(eof )-Oa: cosf, sinf (3.19)
B g P r ‘
gcosb, cost,
The measured acceleration vector from the sensor in frame {B} is
aX
B # _
a’ =la,
aZ
and equating this with Eq. 3.19 we can solve for the roll and pitch angles
. A —a
sinf), = —* (3.20)
~ ay ™
tan9, = a—, GP = :l:z (3.21)

z

and we use the hat notation to indicate that these are estimates of the angles.” Notice
that there is no solution for the yaw angle and in fact 6, does not even appear in Eq. 3.19.
The gravity vector is parallel to the vertical axis and rotating around that axis, yaw
rotation, will not change the measured value at all.”

We have made a very strong assumption that the measured acceleration Za* is only
due to gravity.On a robot the sensor will experience additional acceleration as the
vehicle moves and this will introduce an error in the estimated orientation.

Frequently we want to estimate the motion of the vehicle in the inertial frame, and
the total measured acceleration in {0} is due to gravity and motion

0. #_0 0
a =g+ a,

We observe acceleration in the body frame so the vehicle acceleration in the world
frame is
%G, ="Ry%a* —°g (3.22)

and we assume that °R, and g are both known.” Integrating that with respect to time

", (t) = [°a,(t)dt (3.23)
gives the velocity of the vehicle, and integrating again
"p,(t) = [°6,(0)dt (3.24)

gives its position. Note that we can assume vehicle acceleration is zero and estimate
attitude, or assume attitude and estimate vehicle acceleration. We cannot estimate
both since there are more unknowns than measurements.

We could use any 3-angle sequence.

These angles are sufficient to determine
whether a phone, tablet or camera is in
portrait or landscape orientation.

Another way to consider this is that we
are essentially measuring the direction
of the gravity vector with respect to the
frame {B} and a vector provides only
two unique pieces of directional infor-
mation, since one component of a unit
vector can be written in terms of the
other two.

The first assumption is a strong one and
problematic in practice. Any error in the
rotation matrix results in incorrect can-
cellation of the gravity component of a*
which leads to an error in the estimated
body acceleration.
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The direction of the Earth’s north rota-
tional pole, where the rotational axis
intersects the surface of the northern
hemisphere.

In the Northern hemisphere inclination
is positive, that is, the vector points into
the ground.

By comparison a modern MRI machine
has a magnetic field strength of 4-8T.

We could use any 3-angle sequence.

3.4.3 Magnetometers

The Earth is a massive but weak magnet. The poles of this geomagnet are the Earth’s
north and south magnetic poles which are constantly moving and located quite some
distance from the planet’s rotational axis.

At any point on the planet the magnetic flux lines can be considered a vector m
whose magnitude and direction can be accurately predicted and mapped as shown in
Fig. 3.13. We describe the vector’s direction in terms of two angles: declination and
inclination. A horizontal projection of the vector m points in the direction of mag-
netic north and the declination angle D is measured from true north* clockwise to that
projection. The inclination angle I of the vector is measured in a vertical plane down-
ward“ from horizontal to m. The length of the vector, the magnetic field intensity, is
measured by a magnetometer in units of Tesla (T) and for the Earth this varies from
25—65 pT™ as shown in Fig. 3.13a.

3.43.1 How Magnetometers Work

The key element of most modern magnetometers is a Hall-effect sensor, a semiconduc-
tor device which produces a voltage proportional to the magnetic field intensity in a
direction normal to the current flow. Typically three Hall-effect sensors are packaged
together and arranged so that their sensitive axes are orthogonal. The three outputs
of such a triaxial magnetometer are the components of the Earth’s magnetic field in-
tensity vector ’m* measured in the body frame {B}.

Yet again nature leads, and creatures from bacteria to turtles and birds are known
to sense magnetic fields. The effect is particularly well known in pigeons and there is
debate about whether or not humans have this sense. The actual biological sensing
mechanism has not yet been discovered.

3.43.2 Estimating Heading

Consider an inertial coordinate frame {0} with its z-axis vertically upward and its
x-axis pointing toward magnetic north. The magnetic field intensity vector therefore
lies in the xz-plane

cosl
m =Bl 0
sin]

where B is the magnetic field intensity and I the inclination angle which are both
known from Fig. 3.13. In a body-fixed frame {B} at an arbitrary orientation expressed
in terms of roll-pitch-yaw angles<

"6y :‘%(ey) ® ‘@}(ep) ® %.(0,)

Edwin Hall (1855-1938) was an American physicist born in Maine. His Ph.D. research in physics at
the Johns Hopkins University in 1880 discovered that a magnetic field exerts a force on a current
in a conductor. He passed current through thin gold leaf and in the presence of a magnetic field
normal to the leaf was able to measure a very small potential difference between the sides of the
leaf. This is now known as the Hall effect. While it was then known that a magnetic field exerted
a force on a current carrying conductor it was believed the force acted on the conductor not the
current itself - electrons were yet to be discovered. He was appointed as professor of physics at
Harvard in 1895 where he worked on thermoelectric effects.
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Many triaxial Hall-effect sensor chips also
include a triaxial accelerometer for just
this purpose.

Typically in vehicle navigation the x-axis
points forward and the yaw angle is also
called the heading angle.

These can be calibrated out but the pro-
cess requires that the sensor is rotated
by 360 degrees.

Increasingly these sensor packages also
include a barometric pressure sensor to
measure changes in altitude.

the magnetic field intensity will be
B = (e"gB)o em (3.25)

The measured magnetic field intensity vector from the sensor in frame {B} is

and equating this with Eq. 3.25 we can solve for the yaw angle

cost, (mz sinf, —m, cos@,)

m, + Bsinlsinf,

2 _ —1
Qy = tan

assuming that the roll and pitch angles have been determined, perhaps using measured
acceleration and Eq. 3.21.¢

We defined yaw angle as the orientation of the frame {B} x-axis™ with respect to
magnetic north. To obtain the heading angle with respect to true-north we subtract
the local declination angle

thy _ A
9),—9},—D

Magnetometers are great in theory but problematic in practice. Firstly, our modern
world is full of magnets and electromagnets. Buildings contain electrical wiring and robots
themselves are full of electric motors, batteries and electronics. These all add to, or over-
whelm, the local geomagnetic field. Secondly, many objects in our world contain ferromag-
netic materials such as the reinforcing steel in buildings or the steel bodies of cars or ships.
These distort the geomagnetic field leading to local changes in its direction. These effects
are referred to respectively as hard- and soft-iron distortion of the magnetic field.<

3.4.4 Sensor Fusion

An inertial navigation system uses the devices we have just discussed to determine the
pose of a vehicle - its position and its orientation. Early inertial navigation systems, such
as shown in Fig. 2.15, used mechanical gimbals to keep the accelerometers at a constant
attitude with respect to the stars using a gyro-stabilized platform. The acceleration mea-
sured on this platform is by definition referred to the inertial frame and simply needs
to be integrated to obtain the velocity of the platform, and integrated again to obtain
its position. In order to achieve accurate position estimates over periods of hours or
days the gimbals and gyroscopes had to be of extremely high quality so that the stable
platform did not drift, and the acceleration sensors needed to be extremely accurate.

The modern strapdown inertial measurement configuration uses no gimbals. The
angular velocity, acceleration and magnetic field sensors are rigidly attached to the
vehicle. The collection of inertial sensors is referred to as an inertial measurement
unit or IMU. A 6-DOF IMU comprises triaxial gyroscopes and accelerometers while
a 9-DOF IMU comprises triaxial gyroscopes, accelerometers and magnetometers. < A
system that only determines attitude is called an attitude and heading reference sys-
tem or AHRS.

The sensors we use, particularly the low-cost ones in phones and drones, are far
from perfect. Consider any sensor value - gyroscope, accelerometer or magnetometer
- the measured signal

W =sx+b+e
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is related” to the unknown true value x by a scale factor s, offset or bias b and random
noise €. s is usually specified by the manufacturer to some tolerance, perhaps +1%, and
for a particular sensor this can be determined by some calibration procedure. Bias b is
ideally equal to zero but will vary from device to device. Bias that varies over time is often
called sensor drift. Scale factor and bias are typically both a function of temperature.”

In practice bias is the biggest problem because it varies with time and temperature
and has a very deleterious effect on the estimated pose and position. Consider a posi-
tive bias on the output of a gyroscopic sensor - the output is higher than it should be.
At each time step in Eq. 3.17 the incremental rotation will be bigger than it should be,
which means that the orientation error will grow linearly with time.”

If we use Eq. 3.22 to estimate the vehicle’s acceleration then the error in attitude
means that the measured gravitation acceleration is incorrectly canceled out and will
be indistinguishable from actual vehicle acceleration. This offset in acceleration be-
comes a linear time error in velocity and a quadratic time error in position. Given that
the pose error is already linear in time we end up with a cubic time error in position,
and this is ignoring the effects of accelerometer bias. Sensor bias is problematic! A
rule of thumb is that gyroscopes with bias stability of 0.01 deg h~! will lead to posi-
tion error growing at a rate of 1 nmih™! (1.85 km h™!). Military grade systems have
very impressive stability, for missiles <0.00002 deg h~! which is in stark contrast to
consumer grade devices which are in the range 0.01—0.2 deg per second.

A simple approach to this problem is to estimate bias by leaving the IMU station-
ary for a few seconds and computing the average value of all the sensors.” This value
is then subtracted from future sensor readings. This is really only valid over a short
time period because the bias is not constant.

A more sophisticated approach is to estimate the bias online”, but to do this we need
to combine information from different sensors — an approach known as sensor fusion.
We rely on the fact that different sensors have complementary characteristics. Bias on
angular rate sensors causes the attitude estimate error to grow with time, but for ac-
celerometers it will only cause an attitude offset. However accelerometers respond to
motion of the vehicle while good gyroscopes do not. Magnetometers provide partial
information about roll, pitch and yaw, are immune to acceleration, but do respond to
stray magnetic fields and other distortions. There are many ways to achieve this kind
of fusion. A common approach is to use an estimation tool called an extended Kalman
filter described in Appendix H. Given a full nonlinear mathematical model that relates
the sensor signals and their biases to the vehicle pose and knowledge about the noise
(uncertainty) on the sensor signals, the filter gives an optimal estimate of the pose and
bias that best explain the sensor signals.

Here we will consider a simple but still very effective alternative called the explicit
complementary filter. The rotation update step is performed using Eq. 3.17 but com-
pared to Eq. 3.16 the incremental rotation is more complex

B £ull) = e[Bw#<k>75<k>+kP0'R<k>L5t

(3.26)

The key differences are that the estimated bias b is subtracted from the sensor mea-
surement and a term based on the orientation error o is added. The estimated bias
changes with time according to

A

(k1) — b(k) — ko (k) (3.27)
and also depends on the orientation error og. kp > 0 and k; > 0 are both well chosen
constants.

The orientation error is derived from N vector measurements ‘v

N
orlk+1) = 3 k%, x "l (k)
i=1

We assume a linear relationship but check
the fine printin a datasheet to understand
what a sensor really does.

Some sensors also exhibit cross-sensitiv-
ity. They may give a weak response to a
signal in an orthogonal direction or from
a different mode, quite commonly low-
cost gyroscopes respond to vibration and
acceleration as well as rotation.

The effect of an attitude error is danger-
ous on something like a quadrotor. For
example, if the estimated pitch angle is
too high then the vehicle control system
will pitch down by the same amount to
keep the craft”level;and this will cause
it to accelerate forward.

Alot of hobby drones do this just before
they take off.

Our brain has an online mechanism to
cancel out the bias in our vestibular gy-
roscopes. It uses the recent average ro-
tation as the bias, based on the reason-
able assumption that we do not undergo
prolonged rotation. If we do, then that
angular rate becomes the new normal
so that when we stop rotating we per-
ceive rotation in the opposite direction.
We call this dizziness.



3.4 - Application: Inertial Navigation

89

Fig.3.14.

a Effect of gyroscope bias on na-
ive INS (red) and explicit com-
plementary filter (blue); b esti-
mated gyroscope bias from the
explicit complementary filter

where %v; is the known value of a vector signal in the inertial frame (for example gravi-
tational acceleration) and

Owf (k) = & 5(k) « Po* (k)

is the value measured in the body-fixed frame and rotated into the inertial frame by
the estimated orientation °¢ ;. Any error in direction between these vectors will yield
anonzero cross-product which is the axis around which to rotate one vector into the
other. The filter uses this difference - the innovation - to improve the orientation
estimate by feeding it back into Eq. 3.26. This filter allows an unlimited number of
vectorial measurements %v; to be fused together; for example we could add magnetic
field or any other kind of direction data such as the altitude and azimuth of visual
landmarks, stars or planets.
The script

>> ex tumble

provides simulated “measured” gyroscope, accelerometer and magnetometer data
organized as columns of the matrices wm, gm and mm respectively and all include a
fixed bias. Corresponding times are given by elements of the vector t. Firstly we will
repeat the example from page 81 but now with sensor bias

>> attitude(l) = UnitQuaternion();

>> for k=1:numcols (wm)-1

attitude (k+1) = attitude(k) .* UnitQuaternion.omega( wm(:,k)*dt );
end

To see the effect of bias on the estimated attitude we will compare it to the true at-
titude t ruth that was also computed by the script. As a measure of error we plot the
angle between the corresponding unit quaternions in the sequence

>> plot (t, angle(attitude, truth), 'r' );

which is shown as the red line in Fig. 3.14a. We can clearly see growth in angular er-
ror over time. Now we implement the explicit complementary filter with just a few
extra lines of code

08 . , .
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g o6 //
S
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>> kI = 0.2; kP = 1;

>> b = zeros (3, numcols (w));

>> attitude ecf(l) = UnitQuaternion(); b = [0 0 0]';

>> for k=1:numcols (wm)-1
invg = inv( attitude ecf (k) );
sigmaR = cross(gm(:,k), invg*g0) + cross(mm(:,k), invg*m0);
wp = wm(:, k) - b(:,k) + kP*sigmaR;
attitude ecf (k+l) = attitude ecf (k) .* UnitQuaternion.omega( wp*dt );
b(:,k+tl) = b(:,k) - kI*sigmaR*dt;

end

and plot the angular difference between the estimated and the attitude as a blue line
>> plot(t, angle(attitude ecf, truth), 'b' );

Bringing together information from multiple sensors has checked the growth in
attitude error, despite all the sensors having a bias. The estimated gyroscope bias is
shown in Fig. 3.14b and we can see the bias estimates converging on their true value.

3.5 Wrapping Up

In this chapter we have considered pose that varies as a function of time from sev-
eral perspectives.

Firstly we took a calculus perspective and showed that the temporal derivative of an or-
thonormal rotation matrix or a quaternion is a function of the angular velocity of the body
- a concept from mechanics. The skew-symmetric matrix appears in the rotation matrix
case and we should no longer be surprised about this given its intimate connection to ro-
tation via Lie group theory. We then looked at finite time differences as an approximation
to the derivative and showed how these lead to computationally cheap methods to update
rotation matrices and quaternions given knowledge of angular velocity. We also discussed
the dynamics of moving bodies that translate and rotate under the influence of forces
and torques, inertial and noninertial reference frames and the notion of fictitious forces.

The second perspective was to create motion - a sequence of poses, a trajectory,
that a robot can follow. An important characteristic of a trajectory is that it is stnooth
- the position and orientation changes smoothly with time. We started by discussing
how to generate smooth trajectories in one dimension and then extended that to the
multi-dimensional case and then to piecewise-linear trajectories that visit a number
of intermediate points. Smoothly varying rotation was achieved by interpolating roll-
pitch-yaw angles and quaternions.

With all this under our belt we were then able to tackle an application, the impor-
tant problem of inertial navigation. Given imperfect measurements from sensors on
a moving body we are able to estimate the pose of that moving body.

Further Reading

The earliest work on manipulator Cartesian trajectory generation was by Paul (1972,
1979) and Taylor (1979). The multi-segment trajectory is discussed by Paul (1979,
1981) and the concept of segment transitions or blends is discussed by Lloyd and
Hayward (1991). These early papers, and others, are included in the compilation on
Robot Motion (Brady et al. 1982). Polynomial and LSPB trajectories are described in
detail by Spong et al. (2006) and multi-segment trajectories are covered at length in
Siciliano et al. (2009) and Craig (2005).

The book Digital Apollo (Mindell 2008) is a very readable story of the development of
the inertial navigation system for the Apollo Moon landings. The article by Corke et al.
(2007) describes the principles of inertial sensors and the functionally equivalent sensors
located in the inner ear of mammals that play a key role in maintaining balance.
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There is a lot of literature related to the theory and practice of inertial navigation
systems. The thesis of Achtelik (2014) describes a sophisticated extended Kalman fil-
ter for estimating the pose, velocity and sensor bias for a small flying robot. The ex-
plicit complementary filter used in this chapter is described by Hua et al. (2014). The
recently revised book Groves (2013) covers inertial and terrestrial radio and satel-
lite navigation and has a good coverage of Kalman filter state estimation techniques.
Titterton and Weston (2005) provides a clear and concise description of the principles
underlying inertial navigation with a focus on the sensors themselves but is perhaps
a little dated with respect to modern low-cost sensors. Data sheets on many low-cost
inertial and magnetic field sensing chips can be found at https://www.sparkfun.com
in the Sensors category.

Exercises

1. Express the incremental rotation 2R, as an exponential series and verify Eq. 3.7.

2. Derive the unit-quaternion update equation Eq. 3.8.

3. Make a simulation with a particle moving at constant velocity and a rotating reference
frame. Plot the position of the particle in the inertial and the rotating reference frame
and observe how the motion changes as a function of the inertial frame velocity.

4. Redo the quaternion-based angular velocity integration on page 81 using rotation
matrices.

5. Derive the expression for fictitious forces in a rotating reference frame from Sect. 3.2.3.

6. Atyour location determine the magnitude and direction of centripetal acceleration you
would experience. If you drove at 100 km h™! due east what is the magnitude and di-
rection of the Coriolis acceleration you would experience? What about at 100 km h™!
due north? The vertical component is called the E6tvs effect, how much lighter
does it make you?

7. Fora tpoly trajectory from 0 to 1in 50 steps explore the effects of different initial
and final velocities, both positive and negative. Under what circumstances does the
quintic polynomial overshoot and why?

8. For a 1spb trajectory from 0 to 1 in 50 steps explore the effects of specifying the
velocity for the constant velocity segment. What are the minimum and maximum
bounds possible?

9. For atrajectory from 0 to 1 and given a maximum possible velocity of 0.025 compare
how many time steps are required for each of the tpoly and 1spb trajectories?
10.Use animate to compare rotational interpolation using quaternions, Euler angles

and roll-pitch-yaw angles. Hint: use the quaternion interp method and mtraj.
11.Repeat the example of Fig. 3.7 for the case where:
a) the interpolation does not pass through a singularity. Hint - change the start or
goal pitch angle. What happens?
b) the final orientation is at a singularity. What happens?

12. Develop a method to quantitatively compare the performance of the different orien-
tation interpolation methods. Hint: plot the locus followed by £ on a unit sphere.

13.For the mstraj example (page 75)

a) Repeat with different initial and final velocity.
b) Investigate the effect of increasing the acceleration time. Plot total time as a func-
tion of acceleration time.

14.Modify mstraj so that acceleration limits are taken into account when determin-
ing the segment time.

15.There are a number of iOS and Android apps that display sensor data from gy-
ros, accelerometers and magnetometers. You could also use MATLAB, see http://
mathworks.com/hardware-support/iphone-sensor.html. Run one of these and
explore how the sensor signals change with orientation and movement. What
happens when you throw the phone into the air?
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16.Consider a gyroscope with a 20 mm diameter steel rotor that is 4 mm thick and ro-
tating at 10 000 rpm. What is the magnitude of 42 For an angular velocity of 5 deg s !,
what is the generated torque?

17.Using Eq. 3.15 can you explain how a toy gyroscope is able to balance on a single
point with its spin axis horizontal? What holds it up?

18. A triaxial accelerometer has fallen off the table, ignoring air resistance what value
does it return as it falls?

19.Implement the algorithm to determine roll and pitch angles from accelerometer
measurements.

a) Devise an algorithm to determine if you are in portrait or landscape orientation?
b) Create a trajectory for the accelerometer using tpoly to generate motion in ei-
ther the x- or y-direction. What effect does the acceleration along the path have
on the estimated angle?
c) Calculate the orientation using quaternions rather than roll-pitch-yaw angles.
20.You are in an aircraft flying at 30 000 feet over your current location. How much
lighter are you?

21.Determine the Euler angles as a function of the measured acceleration. If you have
the Symbolic Math Toolbox™ you might like to use that.

22.Determine the magnetic field strength, declination and inclination at your location.
Visit the website http://www.ngdc.noaa.gov/geomag-web.

23.Using the sensor reading app from above, orient the phone so that the magnetic
field vector has only a z-axis component, where is the magnetic field vector with
respect to your phone?

24. Using the sensor reading app from above log some inertial sensor data from a phone
while moving it around. Use that data to estimate the changing attitude or full pose
of the phone. Can you do this in real time?

25.Experiment with varying the parameters of the explicit complementary filter on
page 90. Change the bias or add Gaussian noise to the simulated sensor readings.
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Part

Fig.ll.1.

a Elsie the tortoise. Burden Insti-
tute Bristol (1948). Now in the
collection of the Smithsonian
Institution but not on display
(photo courtesy Reuben Hoggett
collection). b Shakey. SRI Inter-
national (1968). Now in the Com-
puter Museum in Mountain View
(photo courtesy SRI International)

Mobile Robots

In this part we discuss mobile robots, a class of robots that are able to move through
the environment. The figures show an assortment of mobile robots that can move over
the ground, over the water, through the air, or through the water. This highlights the
diversity of what is referred to as the robotic platform - the robot’s physical embodi-
ment and means of locomotion as shown in Figs. I1.2 through II.4.

However these mobile robots are very similar in terms of what they do and how
they do it. One of the most important functions of a mobile robot is to move to some
place. That place might be specified in terms of some feature in the environment, for
instance move to the light, or in terms of some geometric coordinate or map refer-
ence. In either case the robot will take some path to reach its destination and it faces
challenges such as obstacles that might block its way or having an incomplete map,
or no map at all.

One strategy is to have very simple sensing of the world and to react to what is
sensed. For example Elsie the robotic tortoise, shown in Fig. II.1a, was built in the
1940s and reacted to her environment to seek out a light source without having any
explicit plan or knowledge of the position of the light. An alternative to the reactive
approach was embodied in the 1960s robot Shakey, shown in Fig. II.1b, which was ca-
pable of 3D perception and created a map of its environment and then reasoned about
the map to plan a path to its destination.

These two approaches exemplify opposite ends of the spectrum for mobile robot
navigation. Reactive systems can be fast and simple since sensation is connected di-
rectly to action - there is no need for resources to hold and maintain a representation
of the world nor any capability to reason about that representation. In nature such
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strategies are used by simple organisms such as insects. Systems that make maps
and reason about them require more resources but are capable of performing more
complex tasks. In nature such strategies are used by more complex creatures such as
mammals.

The first commercial applications of mobile robots came in the 1980s when auto-
mated guided vehicles (AGVs) were developed for transporting material around fac-
tories and these have since become a mature technology. Those early free-ranging
mobile wheeled vehicles typically use fixed infrastructure for guidance, for example,
a painted line on the floor, a buried cable that emits a radio-frequency signal, or wall-
mounted bar codes. The last decade has seen significant achievements in mobile ro-
botics that can operate without navigational infrastructure. Figure II.2a shows a robot
vacuum cleaner which use reactive strategies to clean the floor, after the fashion of
Elsie. Figure I1.2b shows an early self-driving vehicle developed for the DARPA series
of grand challenges for autonomous cars (Buehler et al. 2007, 2010). We see a multitude
of sensors that provide the vehicle with awareness of its surroundings. Other examples
are shown in Figs. 1.4 to 1.6. Mobile robots are not just limited to operations on the
ground. Figure II.3 shows examples of unmanned aerial vehicles (UAVs), autonomous
underwater vehicles (AUVs), and robotic boats which are known as autonomous sur-
face vehicles (ASVs). Field robotic systems such as trucks in mines, container trans-
port vehicles in shipping ports, and self-driving tractors for broad-acre agriculture are
now commercially available for various applications are shown in Fig. II.4.

Fig.I1.2.

Some mobile ground robots:

a The Roomba robotic vacuum
cleaner, 2008 (photo courtesy
iRobot Corporation). b Boss,
Tartan racing team’s autono-
mous car that won the Darpa
Urban Grand Challenge, 2007
(Carnegie-Mellon University)

Fig.I1.3.

Some mobile air and water ro-
bots: a Yamaha RMAX heli-
copter with 3 m blade diam-
eter (photo by Sanjiv Singh).

b Fixed-wing robotic aircraft
(photo of ScanEagle courtesy
of Insitu). c DEPTHX: Deep
Phreatic Thermal Explorer, a
6-thruster under-water robot.
Stone Aerospace/CMU (2007)
(photo by David Wettergreen,
© Carnegie-Mellon University).
d Autonomous Surface Vehicle
(photo by Matthew Dunbabin)
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Fig.1l.4.

a Exploration: Mars Science
Laboratory (MSL) rover, known
as Curiosity, undergoing testing
(image courtesy NASA/Frankie
Martin). b Logistics: an auto-
mated straddle carrier that moves
containers; Port of Brisbane,
2006 (photo courtesy of Port of
Brisbane Pty Ltd). c Mining: au-
tonomous haul truck (Copyright
© 2015 Rio Tinto). d Agricul-
ture: broad-acre weeding robot
(image courtesy Owen Bawden)

The chapters in this part of the book cover the fundamentals of mobile robotics.
Chapter 4 discusses the motion and control of two exemplar robot platforms: wheeled
vehicles that operate on a planar surface, and flying robots that move in 3-dimensional
space - specifically quadrotor flying robots. Chapter 5 is concerned with navigation.
We will cover in some detail the reactive and plan-based approaches to guiding a ro-
bot through an environment that contains obstacles. Most navigation strategies re-
quire knowledge of the robot’s position and this is the topic of Chap. 6 which exam-
ines techniques such dead reckoning and the use of maps along with observations of
landmarks. We also show how a robot can make a map, and even determine its loca-
tion while simultaneously mapping an unknown region.




Chapter

Mobile Robot Vehicles

This chapter discusses how a robot platform moves, that is, how its pose changes
with time as a function of its control inputs. There are many different types
of robot platform as shown on pages 95-97 but in this chapter we will con-
sider only four important exemplars. Section 4.1 covers three different
types of wheeled vehicle that operate in a 2-dimensional world. They can
be propelled forwards or backwards and their heading direction controlled
by some steering mechanism. Section 4.2 describes a quadrotor, a flying
vehicle, which is an example of a robot that moves in 3-dimensional space.
Quadrotors are becoming increasing popular as a robot platform since they
are low cost and can be easily modeled and controlled.
"~ Section 4.3 revisits the concept of configuration space and dives more deeply
into important issues of under-actuation and nonholonomy.

4.1 Wheeled Mobile Robots

Wheeled locomotion is one of humanity’s great innovations. The wheel was invented
around 3000 BCE and the two-wheeled cart around 2000 BCe. Today four-wheeled
vehicles are ubiquitous and the total automobile population of the planet is over one
billion. The effectiveness of cars, and our familiarity with them, makes them a natural
choice for robot platforms that move across the ground.

We know from our everyday experience with cars that there are limitations on how
they move. It is not possible to drive sideways, but with some practice we can learn to
follow a path that results in the vehicle being to one side of its initial position - this
is parallel parking. Neither can a car rotate on the spot, but we can follow a path that
results in the vehicle being at the same position but rotated by 180° - a three-point
turn. The necessity to perform such maneuvers is the hall mark of a system that is
nonholonomic - an important concept which is discussed further in Sect. 4.3. Despite
these minor limitations the car is the simplest and most effective means of moving in
a planar world that we have yet found. The car’s motion model and the challenges it
raises for control will be discussed in Sect. 4.1.1.

In Sect. 4.1.2 we will introduce differentially-steered vehicles which are mechani-
cally simpler than cars and do not have steered wheels. This is a common configura-
tion for small mobile robots and also for larger machines like bulldozers. Section 4.1.3
introduces novel types of wheels that are capable of omnidirectional motion and then
models a vehicle based on these wheels.

4.1.1 Car-Like Mobile Robots

Cars with steerable wheels are a very effective class of vehicle and the archetype for
most ground robots such as those shown in Fig. I1.4a-c. In this section we will create
amodel for a car-like vehicle and develop controllers that can drive the car to a point,
along a line, follow an arbitrary trajectory, and finally, drive to a specific pose.
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A commonly used model for the low-speed behavior of a four-wheeled car-like ve-
hicle is the kinematic bicycle model” shown in Fig. 4.1. The bicycle has a rear wheel  Oftenincorrectly called the Ackermann
fixed to the body and the plane of the front wheel rotates about the vertical axis to steer ~ M0del.
the vehicle. We assume that the velocity of each wheel is in the plane of the wheel, and
that the wheel rolls without slipping sideways

By = (v,0)

The pose of the vehicle is represented by its body coordinate frame {B} shown in
Fig. 4.1, with its x-axis in the vehicle’s forward direction and its origin at the center of
the rear axle. The configuration of the vehicle is represented by the generalized coor-
dinates g = (x, y, ) € € where € C R* x S’

The dashed lines show the direction along which the wheels cannot move, the
lines of no motion, and these intersect at a point known as the Instantaneous Center
of Rotation (ICR). The reference point of the vehicle thus follows a circular path and
its angular velocity is

0= R_B (4.1)

and by simple geometry the turning radius is Ry = L / tan~y where L is the length of
the vehicle or wheel base. As we would expect the turning circle increases with vehicle
length. The steering angle ~ is typically limited mechanically and its maximum value
dictates the minimum value of Ry.

Vehicle coordinate system. The coordinate system that we will use, and a common one for vehicles
of all sorts is that the x-axis is forward (longitudinal motion), the y-axis is to the left side (lateral
motion) which implies that the z-axis is upward. For aerospace and underwater applications the
z-axis is often downward and the x-axis is forward.

R
\\Q ICR  ilnstantaneous center
N of rotation
N
\
N
I
\
N
N AN N
\
\ AN
\ \\
\
\ AN
\ N
\ ,
. steering wheel
angle

Fig.4.1.
Bicycle model of a car. The car
is shown in light grey, and the
bicycle approximation is dark
. The vehicle’s body frame

steered wheel 8rey Y

y ¢ e is shown in red, and the world

coordinate frame in blue. The
steering wheel angle is y and
the velocity of the back wheel,
in the x-direction, is v. The two
N wheel axes are extended as
N dashed lines and intersect at
the Instantaneous Center of
Rotation (ICR) and the distance
from the ICR to the back and
L front wheels is Rz and Ry respec-
wheel base tively

=

{0}
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Rudolph Ackermann (1764-1834) was a German inventor born at Schneeberg, in Saxony. For finan-
cial reasons he was unable to attend university and became a saddler like his father. For a time he
worked as a saddler and coach-builder and in 1795 established a print-shop and drawing-school
in London. He published a popular magazine “The Repository of Arts, Literature, Commerce,
Manufactures, Fashion and Politics” that included an eclectic mix of articles on water pumps, gas-
lighting, and lithographic presses, along with fashion plates and furniture designs. He manufactured
paper for landscape and miniature painters, patented a method for waterproofing cloth and pa-
per and built a factory in Chelsea to produce it. He is buried in Kensal Green Cemetery, London.

In 1818 Ackermann took out British patent 4212 on behalf of the German inventor George
Lankensperger for a steering mechanism which ensures that the steered wheels move on circles
with a common center. The same scheme was proposed and tested by Erasmus Darwin (grand-
father of Charles) in the 1760s. Subsequent refinement by the Frenchman Charles Jeantaud led
to the mechanism used in cars to this day which is known as Ackermann steering.

For a fixed steering wheel angle the car moves along a circular arc. For this reason

Arcs with smoothly varying radius.  curves on roads are circular arcs or clothoids* which makes life easier for the driver

Dubbins and Reeds-Shepp paths com-  gince constant or smoothly varying steering wheel angle allow the car to follow the road.
prises constant radius circular arcs and

straight line segments.

Note that Ry > Ry which means the front wheel must follow a longer path and therefore
rotate more quickly than the back wheel. When a four-wheeled vehicle goes around a
corner the two steered wheels follow circular paths of different radii and therefore the
angles of the steered wheels 7, and 7, should be very slightly different. This is achieved
by the commonly used Ackermann steering mechanism which results in lower wear and
tear on the tyres. The driven wheels must rotate at different speeds on corners which is
why a differential gearbox is required between the motor and the driven wheels.

The velocity of the robot in the world frame is (vcos 6, vsin §) and combined with
Eq. 4.1 we write the equations of motion as

X = vcosf
jy = vsind (4.2)
)
0 = —tan
I Y

g This model is referred to as a kinematic model since it describes the velocities of 'the vehicle
From Sharp 1896 but not the forces or torques that cause the velocity. The rate of change of heading 0is referred
to as turn rate, heading rate or yaw rate and can be measured by a gyroscope. It can also be
deduced from the angular velocity of the nondriven wheels on the left- and right-hand sides
of the vehicle which follow arcs of different radius, and therefore rotate at different speeds.
Equation 4.2 captures some other important characteristics of a car-like vehicle. When
v = 0 then § = 0; that is, it is not possible to change the vehicle’s orientation when it is
not moving. As we know from driving, we must be moving in order to turn. When the
steering angle = 7 the front wheel is orthogonal to the back wheel, the vehicle cannot
move forward and the model enters an undefined region.
In the world coordinate frame we can write an expression for velocity in the vehi-
cle’s y-direction

ycosf — xsinf =0 (4.3)

which is the called a nonholonomic constraint and will be discussed further in Sect. 4.3.1.
This equation cannot be integrated to form a relationship between x, y and 6.
The Simulink® system

The model also includes a maximum ve-
locity limit, a velocity rate limiter to mod-
el finite acceleration,and a limiter on the
steering angle to model the finite range

>> sl lanechange

shown in Fig. 4.2 uses the Toolbox Bicycle block which implements Eq. 4.2<. The
of the steered wheel. These can be ac.  VELOCity input is a constant, and.the steering w}.leel angleis a ﬁn.lte positive pl.llse fol-
cessed by double clicking the Bicycleblock ~ lowed by a negative pulse. Running the model simulates the motion of the vehicle and
in Simulink. adds a new variable out to the workspace
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XY
X 7 »
Y Fig.4.2.
y » »( 1 ) Simulinkmodel sl lanechange
Speed X that results in a lane changing
L > é? 0 > maneuver. The pulse genera-
tor drives the steering angle left
Steering Bicycle then right. The vehicle has a de-
angle gamma fault wheelbase L =1
15 12
1.0
~ -~ Vs
0.5 1.0
0.0
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Time 0.8
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0.2 /
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Time
0.5
0.2
38 0.0
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a Time b X
>> out Fig.4.3.Simple lane changing ma-
Simulink.SimulationOutput: neuver. a Vehicle response as a
t: [504x1 double] function of time, b motion in the
y: [504x4 double] xy-plane, the vehicle moves in the

. . . . . . positive x-direction
from which we can retrieve the simulation time and other variables

>> t = out.get('t'); g = out.get('y'");
Configuration is plotted against time

>> mplot (t, q)
in Fig. 4.3a and the result in the xy-plane

>> plot(g(:,1), g(:,2))

shown in Fig. 4.3b demonstrates a simple lane-changing trajectory.

4.1.1.1  Moving to a Point

Consider the problem of moving toward a goal point (x*, y*) in the plane. We will con-
trol the robot’s velocity to be proportional to its distance from the goal

7=kl

and to steer toward the goal which is at the vehicle-relative angle” in the world frame of ~ Thisangle canbe anywherein the inter-
val [-w, 1) and is computed using the

atan2 function.

1y -y
x"—x

0" =tan~
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The Toolbox function angdi £ £ com-
putes the difference between two angles
and returns a difference in the interval
[—m, ). This is also the shortest dis-
tance around the circle, as discussed in
Sect.3.3.4.1.Also available in the Toolbox
Simulink blockset roblocks.

using a proportional controller
¥ =Ky(0"©0), K >0
which turns the steering wheel toward the target. Note the use of the operator © since 6*
and 0 are angles € S! not real numbers*. A Simulink model
>> sl drivepoint
is shown in Fig. 4.4. We specify a goal coordinate
>> xg = [5 5];
and an initial pose
>> x0 = [8 5 pi/2];
and then simulate the motion

>> r = sim('sl drivepoint');

The variable r is an object that contains the simulation results from which we extract
the configuration as a function of time

>> g = r.find('y');
The vehicle’s path in the plane is

>> plot(g(:,1), q(:,2));

=T sqrt(u(1)*2+u(2)"2)

distance error => > |:|
XY

Goal distance to goal

position
distance control

velocity gain velocity
Kv

» Vv
speed command

> atan2(u(2), u(1))

heading angle to goal

y xy
- b " MY 0
heading error steerzlil:%l\évheel C-? current heading

Fig.4.4.s1 drivepoint, the
Simulink model that drives the ve-
hicle to a point. Red blocks have
parameters that you can adjust to
investigate the effect on perfor-
mance

heading gain Bicycle .
Kn |:| theta
L] current heading »
heading

To run the Simulink model called mode 1 we first load it

>> model
and a new window is popped up that displays the model in block-diagram form. The simulation
can be started by pressing the play button on the toolbar of the model’s window. The model can
also be run directly from the MATLAB command line

>> sim('model')
Many Toolbox models create additional figures to display robot animations or graphs as they run.

All models in this chapter have the simulation data export option set to create a MATLAB
SimulationOutput object. All the unconnected output signals are concatenated, in port
number order, to form a row vector and these are stacked to form a matrix y with one row per
timestep. The corresponding time values form a vector t. These variables are packaged in a
SimulationOutput object which is written to the workspace variable out or returned if the
simulation is invoked from MATLAB

>> r = sim('model')
Displaying r or out lists the variables that it contains and their value is obtained using the find
method, for example

>> t = r.find('t");
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\/

0 1 2 3 4 5 6 7 8 9 10

which is shown in Fig. 4.5 for a number of starting poses. In each case the vehicle has
moved forward and turned onto a path toward the goal point. The final part of each path
is a straight line and the final orientation therefore depends on the starting point.

4.1.1.2  FollowingaLine

Another useful task for a mobile robot is to follow a line on the plane” defined by
ax + by + ¢ = 0. This requires two controllers to adjust steering. One controller

oy = —Kyd, Ky >0

turns the robot toward the line to minimize the robot’s normal distance from the
line

d _ (a) b) C)'(x) }’, 1)
\a* + b

The second controller adjusts the heading angle, or orientation, of the vehicle to be
parallel to the line

using the proportional controller
oy, = Ky(070 0), K, >0

The combined control law
¥ =—Ked+ K, (070 0)

turns the steering wheel so as to drive the robot toward the line and move along it.
The Simulink model
>> sl driveline

is shown in Fig. 4.6. We specify the target line as a 3-vector (a, b, )

>> L = [1 -2 4];

Fig.4.5.

Simulation results for

sl drivepoint for different
initial poses. The goal is (5, 5)

2-dimensional lines in homogeneous
form are discussed in Sect.C.2.1.
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(u(1)"L(1)+u(2)*L(2)+L(3))/sart(L(1)"2+L(2)"2) d :V XV
speed

distance from line distar;(cg gain
speed control

X >
'
atan2(-L(1),L(2)) y Xy
- > Y U]
slope of line Steegﬂ%fghem 695' | 9 i
heading gain icycle
Kﬁ 9 theta
heading control
A
Fig.4.6. The Simulink model 10
sl driveline drives the ve-
hicle along aline. The line param- 9
eters (a, b, ¢) are set in the work- s =
space variable L. Red blocks have K\
parameters that you can adjust to 7
investigate the effect on perfor- I —
mance 6 —
7 / ’
> 5 V / g [\
4 -
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2 D)}
. 1
Fig.4.7.
Simulation results from different 00 ! L : : 5 0
initial poses for the line (1, —2,4) ! 4 )5( / !

and an initial pose
>> x0 = [8 5 pi/2];
and then simulate the motion
>> r = sim('sl driveline');

The vehicle’s path for a number of different starting poses is shown in Fig. 4.7.

4.1.1.3  Following a Trajectory

Instead of a straight line we might wish to follow a trajectory that is a timed sequence
of points on the xy-plane. This might come from a motion planner, such as discussed
in Sect. 3.3 or 5.2, or in real-time based on the robot’s sensors.

A simple and effective algorithm for trajectory following is pure pursuit in which
the goal point (x*(t), y*(t)) moves along the trajectory, in its simplest form at constant
speed. The vehicle always heads toward the goal - think carrot and donkey.

This problem is very similar to the control problem we tackled in Sect. 4.1.1.1, mov-
ing to a point, except this time the point is moving. The robot maintains a distance d*
behind the pursuit point and we formulate an error

el s+ -
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Xy
trajectory goal-robot v
Xy = sqrt(u(1)"2+u(2)"2) T > :I @l
= error
distance to goal speed control velocity XY
trajectory
generator
edit properties goal
of this block to look-ahead distance
change the path speed control
speed
command X N
Creates in workspace:
P - waypoint list ) y
dt - sample time @—> atan2(u(2), u(1)) steering wheel
vseg - X,y velocity angle to command
] I oal : ’ >y,
robotpath - pursuit trajectory heading angle to goal Y steering D o
tseg - total time [ ]
heading gain Bicycle ! >
current [ heading
heading I:I
Interpreted ‘Iﬂ.
—> MATLAB Fon &
theta
distance behind distance : steer angle
heading control

that we regulate to zero by controlling the robot’s velocity using a proportional-inte-
gral (PI) controller

v' =K, +Kifedt

The integral term is required to provide a nonzero velocity demand v* when the
following error is zero. The second controller steers the robot toward the target which
is at the relative angle

«
0*:tan71y* 24
x"—x

and a simple proportional controller
¥ =Ky (070 0), K, >0
turns the steering wheel so as to drive the robot toward the target.

The Simulink model

>> sl pursuit

shown in Fig. 4.8 includes a target that moves at constant velocity along a piecewise

linear path defined by a number of waypoints. It can be simulated
>> r = sim('sl pursuit')

and the results are shown in Fig. 4.9a. The robot starts at the origin but catches up to,
and follows, the moving goal. Figure 4.9b shows how the speed converges on a steady

state value when following at the desired distance. Note the slow down at the end of

each segment as the robot short cuts across the corner.

4.1.1.4  Moving to a Pose

The final control problem we discuss is driving to a specific pose (x*, y*, 8*). The con-
troller of Fig. 4.4 could drive the robot to a goal position but the final orientation de-
pended on the starting position.

Fig.4.8. The Simulink model
sl pursuit drives the vehicle
along a piecewise linear trajecto-
ry. Red blocks have parameters
that you can adjust to investigate
the effect on performance
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Fig.4.9. Simulation results from
pure pursuit. a Path of the robot
in the xy-plane. The red dashed
line is the path to be followed and
the blue line in the path followed
by the robot, which starts at the
origin. b The speed of the robot
versus time

Fig.4.10.

Polar coordinate notation for
the bicycle model vehicle mov-
ing toward a goal pose: p is the
distance to the goal, ( is the an-
gle of the goal vector with re-
spect to the world frame, and

« is the angle of the goal vector
with respect to the vehicle frame

We have effectively converted the Bicy-
cle kinematic model to a Unicycle model
which we discuss in Sect.4.1.2.

In order to control the final orientation we first rewrite Eq. 4.2 in matrix form

x cosf 0 "
w|=|sind 0 [ ]
0 0 1
where the inputs to the vehicle model are the speed v and the turning rate wwhich can
be achieved by applying the steering angle™
1 wL
v =tan —
v

We then transform the equations into polar coordinate form using the notation shown
in Fig. 4.10 and apply a change of variables

p = A2 +Ai
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which results in

—cosa 0
p .
i M e
p sina
— 0
P

and assumes the goal frame {G} is in front of the vehicle. The linear control law
v=k,p
w =k, + ks

drives the robot to a unique equilibrium” at (p, a, 3) = (0, 0, 0). The intuition behind
this controller is that the terms k p and k,« drive the robot along a line toward {G}
while the term k40 rotates the line so that 3 — 0. The closed-loop system

pi —kﬂcosa
al= k,sina — ko0 — k3
Ié) —k,sina

is stable so long as
k,>0,k; <0, k, —k,>0

The distance and bearing to the goal (p, &) could be measured by a camera or laser
range finder, and the angle 3 could be derived from « and vehicle orientation 6 as
measured by a compass.

For the case where the goal is behind the robot, that is a & (—7, 5], we reverse the
vehicle by negating v and + in the control law. The velocity v always has a constant
sign which depends on the initial value of «.

So far we have described a regulator that drives the vehicle to the pose (0, 0, 0). To
move the robot to an arbitrary pose (x* y*, 0*) we perform a change of coordinates

x,:x7x*,y/:y7y*,0/:9,ﬁ:ﬁ,+6*

This pose controller is implemented by the Simulink model

>> sl drivepose

shown in Fig. 4.11 and the transformation from Bicycle to Unicycle kinematics is clearly
shown, mapping angular velocity w to steering wheel angle . We specify a goal pose

The control law introduces a disconti-
nuity at p = 0 which satisfies Brockett's
theorem.

Fig.4.11. The Simulink model
sl drivepose drives the ve-
hicle to a pose. The initial and fi-
nal poses are set by the workspace
variable x0 and x £ respectively.
Red blocks have parameters that
you can adjust to investigate the
effect on performance
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Fig.4.12.

Simulation results from differ-
ent initial poses to the final pose
(5,5,7%). Note that in some cas-
es the robot has backed into the
final pose

The controlleris based on the bicycle mod-
el but the Simulink model Bicycle
has additional hard nonlinearities in-
cluding steering angle limits and veloc-
ity rate limiting. If those limits are violated
the pose controller may fail.

V7
\

>> xg = [5 5 pi/2];
and an initial pose
>> x0 = [9 5 0];
and then simulate the motion
>> r = sim('sl drivepose');
As before, the simulation results are stored in r and can be plotted

>> g = r.find('y');
>> plot(g(:,1), a(:,2));

to show the vehicle’s path in the plane. The vehicle’s path for a number of starting pos-
es is shown in Fig. 4.12. The vehicle moves forwards or backward and takes a smooth
path to the goal pose. <

4.1.2 Differentially-Steered Vehicle

Having steerable wheels as in a car-like vehicle is mechanically complex. Differential
steering does away with this and steers by independently controlling the speed of the
wheels on each side of the vehicle - if the speeds are not equal the vehicle will turn. Very
simple differential steer robots have two driven wheels and a front and back castor to
provide stability. Larger differential steer vehicles such as the one shown in Fig. 4.13
employ a pair of wheels on each side, with each pair sharing a drive motor via some
mechanical transmission. Very large differential steer vehicles such as bulldozers and
tanks sometimes employ caterpillar tracks instead of wheels. The vehicle’s velocity is
by definition v in the vehicle’s x-direction, and zero in the y-direction since the wheels
cannot slip sideways. In the vehicle frame {B} this is

By = (v,0)

The pose of the vehicle is represented by the body coordinate frame {B} shown in
Fig. 4.14, with its x-axis in the vehicle’s forward direction and its origin at the centroid
of the four wheels. The configuration of the vehicle is represented by the generalized
coordinates g = (x, y, 0) € C where € C R? x S.

The vehicle follows a curved path centered on the Instantaneous Center of Rotation
(ICR). The left-hand wheels move at a speed of v; along an arc with a radius of R,
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Fig.4.13.
Clearpath Husky robot with dif-

ferential drive steering (photo by
Tim Barfoot)

Fig.4.14.

Differential drive robot is shown
in light grey, and the unicycle
approximation is dark grey. The
vehicle’s body coordinate frame
is shown in red, and the world
coordinate frame in blue. The
vehicle follows a path around
the Instantaneous Center of
Rotation (ICR) and the distance
from the ICR to the left and
right wheels is R; and Ry respec-
tively. We can use the alterna-
tive body frame {B'} for trajec-
tory tracking control
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while the right-hand wheels move at a speed of vy along an arc with a radius of Rp.
The angular velocity of {B} is

Up g

R, Ry
and since Ry = R, + W we can write the turn rate

Up — Vg
w

0= (4.4)

in terms of the differential velocity and wheel separation W. The equations of motion
are therefore

X = vcosf
jy = vsind (4.5)
6="4

w

where v = Y2(vg + v;) and v, = vy — vy are the average and differential velocities re-
spectively. For a desired speed v and turn rate § we can solve for v and v;. This kine-
matic model is often called the unicycle model.

There are similarities and differences to the bicycle model of Eq. 4.2. The turn rate
for this vehicle is directly proportional to v, and is independent of speed - the vehicle
L can turn even when not moving forward. For the 4-wheel case shown in Fig. 4.14 the

Fig 171, axes of the wheels do not intersect the ICR, so when the vehicle is turning the wheel

From Sharp 1896 velocity vectors v; and vy are not tangential to the path - there is a component in

the lateral direction which violates the no-slip constraint. This causes skidding or

For indoor applications this can destroy  scuffing which is extreme when the vehicle is turning on the spot - hence differen-

carpet. tial steering is also called skid steering. Similar to the car-like vehicle we can write

an expression for velocity in the vehicle’s y-direction expressed in the world coor-
dinate frame

jycos — xsinf =0 (4.6)

which is the nonholonomic constraint. It is important to note that the ability to turn
on the spot does not make the vehicle holonomic and is fundamentally different to the
ability to move in an arbitrary direction which we will discuss next.

If we move the vehicle’s reference frame to {B'} and ignore orientation we can re-
write Eq. 4.5 in matrix form as

x| (cosf —asinf) v
7] |sinf acosf |\w

and if a = 0 this can be be inverted

v cosf sinf
[w] - [—%sin& %cosﬁ]
to give the required forward speed and turn rate to achieve an arbitrary velocity (x, y)
for the origin of frame {B'}.
The Toolbox Simulink block library roblocks contains a block called Unicycle
to implement this model and the coordinate frame shift a is one of its parameters. It

has the same outputs as the Bicycle model used in the last section. Equation 4.7 is
implemented in the block called Tracking Controller.

X

5 (4.7)
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413 Omnidirectional Vehicle

The vehicles we have discussed so far have a constraint on lateral motion, the non-
holonomic constraint, which necessitates complex maneuvers in order to achieve
some goal poses. Alternative wheel designs such as shown in Fig. 4.15 remove this
constraint and allow omnidirectional motion. Even more radical is the spherical wheel
shown in Fig. 4.16.

In this section we will discuss the mecanum or “Swedish” wheel” shown in Fig. 4.15b
and schematically in Fig. 4.17. It comprises a number of rollers set around the circum-
ference of the wheel with their axes at an angle of « relative to the axle of the wheel.
The dark roller is the one on the bottom of the wheel and currently in contact with the
ground. The rollers have a barrel shape so only one point on the roller is in contact
with the ground at any time.

As shown in Fig. 4.17 we establish a wheel coordinate frame {W} with its x-axis
pointing in the direction of wheel motion. Rotation of the wheel will cause forward
velocity of Rw®,, where R is the wheel radius and w is the wheel rotational rate.
However because the roller is free to roll in the direction indicated by the green line,
normal to the roller’s axis, there is potentially arbitrary velocity in that direction. A
desired velocity v can be resolved into two components, one parallel to the direction
of wheel motion &,, and one parallel to the rolling direction

v = v,&, +v,(cosai,, +sinag,)
—
driven

(4.8)

rolling

= (v, +v,cosa),, +v,sinag,

where v,, is the speed due to wheel rotation and v, is the rolling speed. Expressing
v =10,&, + v, in component form allows us to solve for the rolling speed v, = v, / sin &
and substituting this into the first term we can solve for the required wheel velocity
v, =V, — v, cota (4.9)
The required wheel rotation rate is then w=wv,,/ R. If « = 0 then v, is undefined
since the roller axes are parallel to the wheel axis and the wheel can provide no trac-

tion. If = 7 as in Fig. 4.15a, the wheel allows sideways rolling but not sideways driv-
ing since there is zero coupling from v,, to v,.

Fig.4.15.

Two types of omnidirectional
wheel, note the different roller
orientation. a Allows the wheel
to roll sideways (courtesy Vex
Robotics); b allows the wheel
to drive sideways (courtesy of
Nexus Robotics)

Mecanum was a Swedish company where
the wheel was invented by Bengt llon in
1973.1tis described in US patent 3876255.

[

i ]

Fig.4.16. The Rezero ballbot de-
veloped at ETH Zurich (photo by
Péter Fankhauser)
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Fig.4.17.

Schematic of a mecanum wheel
in plan view. The light roll-

ers are on top of the wheel, the
dark roller is in contact with the
ground. The green arrow indi-
cates the rolling direction

Fig.4.18.a Kuka youBot, which has
has four mecanum wheels (image
courtesy youBot Store); b schemat-
ic of a vehicle with four mecanum
wheels in the youBot configuration

A single mecanum wheel does not allow any control in the rolling direction but
for three or more mecanum wheels, suitably arranged, the motion in the rolling di-
rection of any one wheel will be driven by the other wheels. A vehicle with four me-
canum wheels is shown in Fig. 4.18. Its pose is represented by the body frame {B}
with its x-axis in the vehicle’s forward direction and its origin at the centroid of the
four wheels. The configuration of the vehicle is represented by the generalized co-
ordinates g = (x, y, #) € € where C C R? x S'. The rolling axes of the wheels are or-
thogonal which means that when the wheels are not rotating the vehicle cannot roll
in any direction or rotate.

The four wheel contact points indicated by grey dots have coordinate vectors ®p;.
For a desired body velocity v, and angular rate 2w the velocity at each wheel contact
point is

B B

v, =

B .~ _B
i Vp+ wzp X p;

and we then apply Eq. 4.8 and 4.9 to determine wheel rotational rates w;, while noting
that « has the opposite sign for wheels 2 and 4 in Eq. 4.8.
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4.2 Flying Robots

In order to fly, all one must do is simply miss the ground.
Douglas Adams

Flying robots or unmanned aerial vehicles (UAV) are becoming increasingly common and
span a huge range of size and shape as shown in shown in Fig. 4.19. Applications include
military operations, surveillance, meteorological observation, robotics research, commer-
cial photography and increasingly hobbyist and personal use. A growing class of flying
machines are known as micro air vehicles or MAVs which are smaller than 15 cm in all di-
mensions. Fixed wing UAV's are similar in principle to passenger aircraft with wings to pro-
vide lift, a propeller or jet to provide forward thrust and control surface for maneuvering.
Rotorcraft UAVs have a variety of configurations that include conventional helicopter de-
sign with a main and tail rotor, a coax with counter-rotating coaxial rotors and quadrotors.
Rotorcraft UAVs have the advantage of being able to take off vertically and to hover.

Flying robots differ from ground robots in some important ways. Firstly they
have 6 degrees of freedom and their configuration g € € where C C R x S'x S'x S
Secondly they are actuated by forces; that is their motion model is expressed in terms
of forces, torques and accelerations rather than velocities as was the case for the ground
vehicle models - we use a dynamic rather than a kinematic model. Underwater robots
have many similarities to flying robots and can be considered as vehicles that fly through
water and there are underwater equivalents to fixed wing aircraft and rotorcraft. The
principal differences underwater are an upward buoyancy force, drag forces that are
much more significant than in air, and added mass.

In this section we will create a model for a quadrotor flying vehicle such as shown
in Fig. 4.19d. Quadrotors are now widely available, both as commercial products and
as open-source projects. Compared to fixed wing aircraft they are highly maneuverable
and can be flown safely indoors which makes them well suited for laboratory or hob-
byist use. Compared to conventional helicopters, with a large main rotor and tail rotor,
the quadrotor is easier to fly, does not have the complex swash plate mechanism and is
easier to model and control.

Fig.4.19.

Flying robots. a Global Hawk
unmanned aerial vehicle (UAV)
(photo courtesy of NASA), b a
micro air vehicle (MAV) (photo
courtesy of AeroVironment, Inc.),
ca 1 gram co-axial helicopter
with 70 mm rotor diameter
(photo courtesy of Petter Muren
and Proxflyer AS), d a quadro-
tor which has four rotors and

a block of sensing and control
electronics in the middle (photo
courtesy of 3DRobotics)
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Fig. 4.20.

Quadrotor notation showing the
four rotors, their thrust vectors
and directions of rotation. The
body frame {B} is attached to the
vehicle and has its origin at the
vehicle’s center of mass. Rotors
1 and 3 (blue) rotate counter-
clockwise (viewed from above)
while rotors 2 and 4 (red) rotate
clockwise

Close to the ground, height <2d, the ve-
hicle experiences increased lift due to a
cushion of air beneath it — this is ground
effect.

T4

" GBI

3

A —
T2 2 d front
j

KA

The notation for the quadrotor model is shown in Fig. 4.20. The body coordinate
frame {B} has its z-axis downward following the aerospace convention. The quadrotor
has four rotors, labeled 1 to 4, mounted at the end of each cross arm. Hex- and octo-
rotors are also popular, with the extra rotors providing greater payload lift capability.
The approach described here can be generalized to N rotors, where N is even.

The rotors are driven by electric motors powered by electronic speed controllers.
Some low-cost quadrotors use small motors and reduction gearing to achieve suffi-
cient torque. The rotor speed is w; and the thrust is an upward vector

T, = bw?, i=1,2,3,4 (4.10)

in the vehicle’s negative z-direction, where b > 0 is the lift constant that depends on
the air density, the cube of the rotor blade radius, the number of blades, and the chord
length of the blade.*

The translational dynamics of the vehicle in world coordinates is given by Newton’s
second law

0 0
mo=|0 |- Ry|0|—Bv (4.11)
mg T

where v is the velocity of the vehicle’s center of mass in the world frame, g is gravita-
tional acceleration, m is the total mass of the vehicle, B is aerodynamic friction and
T = XT, is the total upward thrust. The first term is the force of gravity which acts
downward in the world frame, the second term is the total thrust in the vehicle frame
rotated into the world coordinate frame and the third term is aerodynamic drag.

Pairwise differences in rotor thrusts cause the vehicle to rotate. The torque about
the vehicle’s x-axis, the rolling torque, is generated by the moments

T, =dT, —dT,

The propeller blades on a rotor craft have fascinating dynamics. When flying into the wind the
blade tip coming forward experiences greater lift while the receding blade has less lift. This is
equivalent to a torque about an axis pointing into the wind and the rotor blades behave like a
gyroscope (see Sect. 3.4.1.1) so the net effect is that the rotor blade plane pitches up by an amount
proportional to the apparent or nett wind speed, countered by the blade’s bending stiffness and
the change in lift as a function of blade bending. The pitched blade plane causes a component of
the thrust vector to retard the vehicle’s forward motion and this velocity dependent force acts
like a friction force. This is known as blade flapping and is an important characteristic of blades
on all types of rotorcraft.
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where d is the distance from the rotor axis to the center of mass. We can write this in
terms of rotor speeds by substituting Eq. 4.10

Ty = db(?ﬂf - W§) (4.12)
and similarly for the y-axis, the pitching torque is

7, = db(=} — =} (4.13)

The torque applied to each propeller by the motor is opposed by aerodynamic drag

2
Q = kw;
where k depends on the same factors as b. This torque exerts a reaction torque on the
airframe which acts to rotate the airframe about the propeller shaft in the opposite
direction to its rotation. The total reaction torque about the z-axis is

T,=Q -G+ - (4.14)
:k<w12+w327w§fwf) .
where the different signs are due to the different rotation directions of the rotors. A
yaw torque can be created simply by appropriate coordinated control of all four ro-
tor speeds.
The total torque applied to the airframe according to Eq. 4.12 to 4.14is 7 = (7, 7,5 )°
and the rotational acceleration is given by Euler’s equation of motion from Eq. 3.10
Jw=—-wxJw+T (4.15)
where J is the 3 x 3 inertia matrix of the vehicle and w is the angular velocity vector.
The motion of the quadrotor is obtained by integrating the forward dynamics equa-
tions Eq. 4.11 and Eq. 4.15 where the forces and moments on the airframe
b b b -b|=| =
2 2
T)_|0 —db 0 dbwzzsz
T db 0 —db 0 |2 w?
k -k k —k 2

2
Wy Wy

(4.16)

are functions of the rotor speeds. The matrix A is constant, and full rank if b, k, d > 0
and can be inverted

™, T
2
N
BV (4.17)
T
w35 y
wi z

to solve for the rotor speeds” required to apply a specified thrust T and moment 7 to
the airframe.

To control the vehicle we will employ a nested control structure which we describe
for pitch and x-translational motion. The innermost loop uses a proportional and de-
rivative controller” to compute the required pitching torque on the airframe

k * # )% V#

75 =K, (0 = 05)+ K, a(0; —07) (4.18)
based on the error between desired and actual pitch angle.” The gains K, and K4
are determined by classical control design approaches based on an approximate dy-

The direction of rotation is as shown in
Fig.4.20. Control of motor velocity is dis-
cussed in Sect.9.1.6.

The rotational dynamics has a second-
order transfer function of ©,(s) / 7,(s) =
1/ (Js*+ Bs) where J is rotational in-
ertia and B is aerodynamic damping
which is generally quite small. To requ-
late a second-order system requires a
proportional-derivative controller.

The term Hp is commonly ignored.
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This model is hierarchical and organized
in terms of subsystems. Click the down
arrow on a subsystem (can be seen on-
screen but not in the figure) to reveal
the detail. Double-click on the subsys-
tem box to modify its parameters.

namic model and then tuned to achieve good performance. The actual vehicle pitch
angle 91;“ would be estimated by an inertial navigation system as discussed in Sect. 3.4
and ()If would be derived from gyroscopic sensors. The required rotor speeds are then
determined using Eq. 4.17.

Consider a coordinate frame {B'} attached to the vehicle and with the same origin
as {B} but with its x- and y-axes in the horizontal plane and parallel to the ground. The
thrust vector is parallel to the z-axis of frame {B} and pitching the nose down, rotat-
ing about the y-axis by 6, generates a force

0 TsinGP
B/
f=2%[0,)+|0|=] o

T Tcost),

which has a component
Be _ m: ~
J, = Tsinb, ~ T0,

that accelerates the vehicle in the x-direction, and we have assumed that Gp is small.

We can control the velocity in this direction with a proportional control law

X X

B:f* — mK; (B/v; _ Byt )
where K> 0is a gain. Combining these two equations we obtain the desired pitch angle

9; %%Kf(yv;— B/vi) (4.19)
required to achieve the desired forward velocity. Using Eq. 4.18 we compute the re-
quired pitching torque, and then using Eq. 4.17 the required rotor speeds. For a vehicle
in vertical equilibrium the total thrust equals the weight forcesom /T~ 1/g.

The actual vehicle velocity v, would be estimated by an inertial navigation system as
discussed in Sect. 3.4 or a GPS receiver. If the position of the vehicle in the xy-plane of the
world frame is p € R? then the desired velocity is given by the proportional control law

O0* — Kp(op* - op#) (4.20)

based on the error between the desired and actual position. The desired velocity in
the xy-plane of frame{B'} is

Yo =0"%y(0,)+ v, % €50(2)

which is a function of the yaw angle 6,
By, _ cosf, —sind), ! v,
B,vy sinf,  cosb, | (v,

Figure 4.21 shows a Simulink model of the complete control system for a quadro-
tor* which can be loaded and displayed by

>> sl quadrotor

Working our way left to right and starting at the top we have the desired position
of the quadrotor in world coordinates. The position error is rotated from the world
frame to the body frame and becomes the desired velocity. The velocity controller
implements Eq. 4.19 and its equivalent for the roll axis and outputs the desired pitch
and roll angles of the quadrotor. The attitude controller is a proportional-derivative
controller that determines the appropriate pitch and roll torques to achieve these
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angles based on feedback of current attitude and attitude rate.“ The yaw control block
determines the error in heading angle and implements a proportional-derivative con-
troller to compute the required yaw torque which is achieved by speeding up one pair
of rotors and slowing the other pair.

Altitude is controlled by a proportional-derivative controller

T=Ky(z" —2")+ Ky(¢" = 2*)+ T,

which determines the average rotor speed. T, = mg is the weight of the vehicle and this
is an example of feedforward control - used here to counter the effect of gravity which
otherwise is a constant disturbance to the altitude control loop. The alternatives to
feedforward control would be to have very high gain for the altitude loop which often
leads to actuator saturation and instability, or a proportional-integral (PI) control-
ler which might require a long time for the integral term to increase to a useful value
and then lead to overshoot. We will revisit gravity compensation in Chap. 9 applied
to arm-type robots.

The control mixer block combines the three torque demands and the vertical thrust
demand and implements Eq. 4.17 to determine the appropriate rotor speeds. Rotor
speed limits are applied here. These are input to the quadrotor block” which implements
the forward dynamics integrating Eq. 4.16 to give the position, velocity, orientation and
orientation rate. The output of this block is the state vector x = (°p, °T’, Bp, BI") € R,
As is common in aerospace applications we represent orientation I" and orientation
rate I' in terms of roll-pitch-yaw angles. Note that position and attitude are in the
world frame while the rates are expressed in the body frame.

The parameters of a specific quadrotor can be loaded

>> mdl_quadrotor

which creates a structure called quadrotor in the workspace, and its elements are
the various dynamic properties of the quadrotor. The simulation can be run using the
Simulink menu or from the MATLAB command line

>> sim('sl_quadrotor');

and it displays an animation in a separate window.” The vehicle lifts off and flies around
a circle while spinning slowly about its own z-axis. A snapshot is shown in Fig. 4.22.
The simulation writes the results from each timestep into a matrix in the workspace

>> about result

result [double] 2412x16 (308.7 kB)

16

16

Fig.4.21. The Simulink® model
sl quadrotor whichisa closed-
loop simulation of the quadrotor.
The vehicle takes off and flies in a cir-
cle at constant altitude. A Simulink
bus is used for the 12-element state
vector X output by the Quadrotor
block. To reduce the number of
lines in the diagram we have used
Goto and From blocks to trans-
mit and receive the state vector

Note that according to the coordinate
conventions shown in Fig. 4.20 x-direc-
tion motion requires a negative rotation
about the y-axis (pitch angle) and y-di-
rection motion requires a positive rota-
tion about the x-axis (roll angle) so the
gains have different signs for the roll and
pitch loops.

The Simullink library roblocks also
includes a block for an N-rotor vehicle.

Loading and displaying the model using
>> sl quadrotor automatically
loads the default quadrotor model. This
is done by the PreLoadFcn callback set
from model’s properties File+Model
Properties+Model Properties+Call-
backs+PreLoadFcn.
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Fig.4.22.

One frame from the quadrotor
simulation. The marker on the
ground plane is a projection of
the vehicle’s centroid

The total thrust must be increased so
that the vertical thrust component still
balances gravity.

10

z (heigh above ground)

2

which has one row per timestep, and each row contains the time followed by the state
vector (elements 2-13) and the commanded rotor speeds w; (elements 14-17). To
plot x and y versus time is

>> plot(result(:,1), result(:,2:3));

To recap on control of the quadrotor. A position error results in a required trans-
lational velocity. To achieve this requires appropriate pitch and roll angles so that a
component of the vehicle’s thrust acts in the horizontal plane and generates a force to
accelerate the vehicle. ¥ As it approaches its goal the airframe must be rotated in the
opposite direction so that a component of thrust decelerates the motion. To achieve
the pitch and roll angles requires differential propeller thrust to create a moment that
rotationally accelerates the airframe.

This indirection from translational motion to rotational motion is a consequence
of the vehicle being under-actuated - we have just four rotor speeds to adjust but the
vehicle’s configuration space is 6-dimensional. In the configuration space we cannot
move in the x- or y-direction, but we can move in the pitch- or roll-direction which
results in motion in the x- or y-direction. The cost of under actuation is once again a
maneuver. The pitch and roll angles are a means to achieve translation control and
cannot be independently set.

43 Advanced Topics

43.1 Nonholonomic and Under-Actuated Systems

We introduced the notion of configuration space in Sect. 2.3.5 and it is useful to re-
visit it now that we have discussed several different types of mobile robot platform.
Common vehicles - as diverse as cars, hovercrafts, ships and aircraft - are all able to
move forward effectively but are unable to instantaneously move sideways. This is a
very sensible tradeoff that simplifies design and caters to the motion we most com-
monly require of the vehicle. Sideways motion for occasional tasks such as parking a
car, docking a ship or landing an aircraft are possible, albeit with some complex ma-
neuvering but humans can learn this skill.

Consider a hovercraft which moves over a planar surface. To fully describe all its con-
stituent particles we need to specify three generalized coordinates: its position in the
xy-plane and its rotation angle. It has three degrees of freedom and its configuration
space is € C R? x S!. This hovercraft has two propellers whose axes are parallel but not
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collinear. The sum of their thrusts provide a forward force and the difference in thrusts
generates a yawing torque for steering. The number of actuators, two, is less than its
degrees of freedom dim € = 3 and we call this an under-actuated system. This imposes
significant limitations on the way in which it can move. At any point in time we can
control the forward (parallel to the thrust vectors) acceleration and the rotational ac-
celeration of the hovercraft but there is zero sideways (or lateral) acceleration since it
cannot generate any lateral thrust. Nevertheless with some clever maneuvering, like
with a car, the hovercraft can follow a path that will take it to a place to one side of where
it started. In the hovercraft’s 3-dimensional configuration space this means that atany
point there are certain directions in which acceleration is not possible. We can reach
points in those direction but not directly, only by following some circuitous path.

All flying and underwater vehicles have a configuration that is completely de-
scribed by six generalized coordinates - their position and orientation in 3D space.
€ C R3 x S! x S! x S! where the orientation is expressed in some three-angle repre-
sentation - since dim € = 6 the vehicles have six degrees of freedom. A quadrotor has
four actuators, four thrust-generating propellers, and this is fewer than its degrees
of freedom making it under-actuated. Controlling the four propellers causes motion
in the up/down, roll, pitch and yaw directions of the configuration space but not in
the forward/backward or left/right directions. To access those degrees of freedom it
is necessary to perform a maneuver: pitch down so that the thrust vector provides a
horizontal force component, accelerate forward, pitch up so that the thrust vector
provides a horizontal force component to decelerate, and then level out.

For a helicopter only four of the six degrees of freedom are practically useful: up/down,
forward/backward, left/right and yaw. Therefore a helicopter requires a minimum of
four actuators: the main rotor generates a thrust vector whose magnitude is controlled
by the collective pitch and whose direction is controlled by the lateral and longitudi-
nal cyclic pitch. The tail rotor provides a yawing moment. This leaves two degrees of
freedom unactuated, roll and pitch angles, but clever design ensures that gravity actu-
ates them and keeps them close to zero - without gravity a helicopter cannot work. A
fixed-wing aircraft moves forward very efficiently and also has four actuators: engine
thrust provides acceleration in the forward direction and the ailerons, elevator and
rudder exert respectively roll, pitch and yaw moments on the aircraft.” To access the
missing degrees of freedom such as up/down and left/right translation, the aircraft
must pitch or yaw while moving forward.

The advantage of under-actuation is having fewer actuators. In practice this means
real savings in terms of cost, complexity and weight. The consequence is that at any
point in its configuration space there are certain directions in which the vehicle can-
not move. Full actuation is possible but not common, for example the DEPTHX un-
derwater robot shown on page 96 has six degrees of freedom and six actuators. These
can exert an arbitrary force and torque on the vehicle, allowing it to accelerate in any
direction or about any axis.

A 4-wheeled car has many similarities to the hovercraft discussed above. It moves
over a planar surface and its configuration can be fully described by its generalized
coordinates: its position in the xy-plane and a rotation angle. It has three degrees of
freedom and its configuration space is € C R? x Sl. A car has two actuators, one to
move forwards or backwards and one to change the heading direction. A car, like a
hovercraft, is under-actuated.

We know from our experience with cars that we cannot move directly in certain
directions and sometimes needs to perform a maneuver to reach our goal. A differ-
ential- or skid-steered vehicle, such as a tank, is also under-actuated - it has only two
actuators, one for each track. While this type of vehicle can turn on the spot it cannot
move sideways. To do that it has to turn, proceed, stop then turn - this need to ma-
neuver is the clear signature of an under-actuated system.

We might often wish for an ability to drive our car sideways but the standard wheel
provides real benefit when cornering - lateral friction between the wheels and the

Some low-cost hobby aircraft have no
rudder and rely only on ailerons to bank
and turn the aircraft.Even cheaper hob-
by aircraft have no elevator and rely on
engine speed to control height.
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Table 4.1.

Summary of configuration space
characteristics for various robots.
A nonholonomic system is
under-actuated and/or has a
rolling constraint

The hovercraft, aerial and underwater
vehicles are controlled by forces so in
this case the constraints are on vehicle
acceleration in configuration space not
velocity.

For example fixing the end of the 10-joint
robot arm introduces six holonomic con-
straints (position and orientation) so the
armwould have only 4 degrees of freedom.

The constraint cannot be integrated to a
constraintin terms of configuration vari-
ables, so such systems are also known as
nonintegrable systems.

dim € Degrees of Numberof Actuation Rolling Holonomic
freedom actuators constraints

Train 1 1 1 full v
2-joint robot arm 2 2 2 full v
6-joint robot arm 6 6 6 full v
10-joint robotarm 10 10 10 over v
Hovercraft 3 3 2 under

Car 3 2 2 under v

Helicopter 6 6 4 under

Fixed wing aircraft 6 6 4 under

DEPTHX AUV 6 6 6 full v

road provides, for free, the centripetal force which would otherwise require an extra
actuator to provide. The hovercraft has many similarities to a car but we can push a
hovercraft sideways — we cannot do that with a car. This lateral friction is a distin-
guishing feature of the car.

The inability to slip sideways is a constraint, the rolling constraint, on the velocity
of the vehicle just as under-actuation is. A vehicle with one or more velocity constraints,
due to under-actuation or a rolling constraint, is referred to as a nonholonomic system.
A key characteristic of these systems is that they cannot move directly from one con-
figuration to another - they must perform a maneuver or sequence of motions. A car
has a velocity constraint due to its wheels and is also under-actuated.

A holonomic constraint restricts the possible configurations that the system can
achieve - it can be expressed as an equation written in terms of the configuration
variables. ¥ A nonholonomic constraint such as Eq. 4.3 and 4.6 is one that restricts the
velocity (or acceleration) of a system in configuration space - it can only be expressed
in terms of the derivatives of the configuration variables.* The nonholonomic con-
straint does not restrict the possible configurations the system can achieve but it does
preclude instantaneous velocity or acceleration in certain directions.

In control theoretic terms Brockett’s theorem (Brockett 1983) states that nonholo-
nomic systems are controllable but they cannot be stabilized to a desired state using
a differentiable, or even continuous, pure state-feedback controller. A time-varying
or nonlinear control strategy is required which means that the robot follows some
generally nonlinear path. One exception is an under-actuated system moving in 3-di-
mensional space within a force field, for example a gravity field - gravity acts like an
additional actuator and makes the system linearly controllable (but not holonomic),
as we showed for the quadrotor example in Sect. 4.2.

Mobility parameters for the various robots that we have discussed here, and earlier
in Sect. 2.3.5, are tabulated in Table 4.1. We will discuss under- and over-actuation in
the context of arm robots in Chap. 8.

4.4 Wrapping Up

In this chapter we have created and discussed models and controllers for a number of
common, but quite different, robot platforms. We first discussed wheeled robots. For
car-like vehicles we developed a kinematic model which we used to develop a number of
different controllers in order that the platform could perform useful tasks such as driv-
ing to a point, driving along a line, following a trajectory or driving to a pose. We then
discussed differentially steered vehicles on which many robots are based, and omnidi-
rectional robots based on novel wheel types. Then we we discussed a simple but common
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flying vehicle, the quadrotor, and developed a dynamic model and a hierarchical control
system that allowed the quadrotor to fly a circuit. This hierarchical or nested control ap-
proach is described in more detail in Sect. 9.1.7 in the context of robot arms.

We also extended our earlier discussion about configuration space to include the
velocity constraints due to under actuation and rolling constraints from wheels.

The next chapters in this Part will discuss how to plan paths for robots through
complex environments that contain obstacles and then how to determine the loca-
tion of a robot.

Further Reading

Comprehensive modeling of mobile ground robots is provided in the book by Siegwart
et al. (2011). In addition to the models covered here, it presents in-depth discussion of
avariety of wheel configurations with different combinations of driven wheels, steered
wheels and passive castors. The book by Kelly (2013) also covers vehicle modeling and
control. Both books also provide a good introduction to perception, localization and
navigation which we will discuss in the coming chapters.

The paper by Martins et al. (2008) discusses kinematics, dynamics and control of
differential steer robots. The Handbook of Robotics (Siciliano and Khatib 2016, part E)
covers modeling and control of various vehicle types including aerial and underwater.
The theory of helicopters with an emphasis on robotics is provided by Mettler (2003)
but the definitive reference for helicopter dynamics is the very large book by Prouty
(2002). The book by Antonelli (2014) provides comprehensive coverage of modeling
and control of underwater robots.

Some of the earliest papers on quadrotor modeling and control are by Pounds,
Mahony and colleagues (Hamel et al. 2002; Pounds et al. 2004, 2006). The thesis by
Pounds (2007) presents comprehensive aerodynamic modeling of a quadrotor with
a particular focus on blade flapping, a phenomenon well known in conventional he-
licopters but largely ignored for quadrotors. A tutorial introduction to the control of
multi-rotor flying robots is given by Mahony, Kumar, and Corke (2012). Quadrotors
are now commercially available from many vendors at quite low cost. There are also
a number of hardware kits and open-source software projects such as ArduCopter
and Mikrokopter.

Mobile ground robots are now a mature technology for transporting parts around
manufacturing plants. The research frontier is now for vehicles that operate autono-
mously in outdoor environments (Siciliano and Khatib 2016, part F). Research into
the automation of passenger cars has been ongoing since the 1980s and a number of
automative manufacturers are talking about commercial autonomous cars by 2020.

Historical and interesting. The Navlab project at Carnegie-Mellon University started
in 1984 and a series of autonomous vehicles, Navlabs, were built and a large body of
research has resulted. All vehicles made strong use of computer vision for navigation.
In 1995 the supervised autonomous Navlab 5 made a 3 000-mile journey, dubbed “No
Hands Across America” (Pomerleau and Jochem 1995, 1996). The vehicle steered itself
98% of the time largely by visual sensing of the white lines at the edge of the road.

In Europe, Ernst Dickmanns and his team at Universitidt der Bundeswehr Miinchen
demonstrated autonomous control of vehicles. In 1988 the VaMoRs system, a 5 tonne
Mercedes-Benz van, could drive itself at speeds over 90 km h~! (Dickmanns and Graefe
1988b; Dickmanns and Zapp 1987; Dickmanns 2007). The European Prometheus Project
ran from 1987-1995 and in 1994 the robot vehicles VaMP and VITA-2 drove more
than 1000 km on a Paris multi-lane highway in standard heavy traffic at speeds up
to 130 km h™!. They demonstrated autonomous driving in free lanes, convoy driv-
ing, automatic tracking of other vehicles, and lane changes with autonomous passing
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of other cars. In 1995 an autonomous S-Class Mercedes-Benz made a 1600 km trip
from Munich to Copenhagen and back. On the German Autobahn speeds exceeded
175 km h~! and the vehicle executed traffic maneuvers such as overtaking. The mean
time between human interventions was 9 km and it drove up to 158 km without any
human intervention. The UK part of the project demonstrated autonomous driving
of an XJ6 Jaguar with vision (Matthews et al. 1995) and radar-based sensing for lane
keeping and collision avoidance. More recently, in the USA a series of Grand Challenges
were run for autonomous cars. The 2005 desert and 2007 urban challenges are com-
prehensively described in compilations of papers from the various teams in Buehler
et al. (2007, 2010). More recent demonstrations of self-driving vehicles are a journey
along the fabled silk road described by Bertozzi et al. (2011) and a classic road trip
through Germany by Ziegler et al. (2014).

Ackermann’s magazine can be found online at http://smithandgosling.wordpress.
com/2009/12/02/ackermanns-repository-of-arts and the carriage steering mecha-
nism is published in the March and April issues of 1818. King-Hele (2002) provides a
comprehensive discussion about the prior work on steering geometry and Darwin’s
earlier invention.

Toolbox and MATLAB Notes

In addition to the Simulink Bicycle model used in this chapter the Toolbox also
provides a MATLAB class which implements these kinematic equations and which
we will use in Chap. 6. For example we can create a vehicle model with steer angle
and speed limits

>> veh = Bicycle('speedmax', 1, 'steermax',K 30*pi/180);

and evaluate Eq. 4.2 for a particular state and set of control inputs (v, 7)
>> veh.deriv([], [0 0 0], [0.3, 0.2])
ans =
0.3000 0 0.0608
The Unicycle class is used for a differentially-steered robot and has equivalent
methods.

The Robotics System Toolbox™ from The MathWorks has support for differentially-steered
mobile robots which can be created using the function ExampleHelperRobotSimulator.
It also includes a class robotics.PurePursuit thatimplements pure pursuit for a
differential steer robot. An example is given in the Toolbox RST folder.

Exercises

1. For a 4-wheel vehicle with L = 2 m and width between wheel centers of 1.5 m
a) What steering wheel angle is needed for a turn rate of 10 deg s ! at a forward
speed of 20 km h™1?
b) compute the difference in wheel steer angle for Ackermann steering around
curves of radius 10, 50 and 100 m.
c) If the vehicle is moving at 80 km h™! compute the difference in back wheel rota-
tion rates for curves of radius 10, 50 and 100 m.
2. Write an expression for turn rate in terms of the angular rotation rate of the two
back wheels. Investigate the effect of errors in wheel radius and vehicle width.
3. Consider a car and bus with L =4 and 12 m respectively. To follow a curve with
radius of 10, 20 and 50 m determine the respective steered wheel angles.
4. For a number of steered wheel angles in the range —45 to 45° and a velocity of
2 m s™! overlay plots of the vehicle’s trajectory in the xy-plane.
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5. Implement the © operator used in Sect. 4.1.1.1 and check against the code for
angdiff.

6. Moving to a point (page 103) plot x, y and 6 against time.

7. Pure pursuit example (page 106)

a) Investigate what happens if you vary the look-ahead distance, heading gain or
proportional gain in the speed controller.

b) Investigate what happens when the integral gain in the speed controller is zero.

c) With integral set to zero, add a constant to the output of the controller. What
should the value of the constant be?

d) Add a velocity feedforward term.

e) Modify the pure pursuit example so the robot follows a slalom course.

f) Modify the pure pursuit example to follow a target moving back and forth along
aline.

8. Moving to a pose (page 107)

a) Repeat the example with a different initial orientation.

b) Implement a parallel parking maneuver. Is the resulting path practical?

c) Experiment with different control parameters.

9. Use the MATLAB GUI interface to make a simple steering wheel and velocity con-
trol, and use this to create a very simple driving simulator. Alternatively interface
a gaming steering wheel and pedal to MATLAB.

10. Adapt the various controllers in Sect. 4.1.1 to the differentially steered robot.

11. Derive Eq. 4.4 from the preceding equation.

12. For constant forward velocity, plot v; and vy as a function of ICR position along
the y-axis. Under what conditions do v; and vy have a different sign?

13. Using Simulink implement a controller using Eq. 4.7 that moves the robot in its
y-direction. How does the robot’s orientation change as it moves?

14. Sketch the design for a robot with three mecanum wheels. Ensure that it cannot
roll freely and that it can drive in any direction. Write code to convert from desired
vehicle translational and rotational velocity to wheel rotation rates.

15. For the 4-wheel omnidirectional robot of Sect. 4.1.3 write an algorithm that will al-
low it to move in a circle of radius 0.5 m around a point with its nose always pointed
toward the center of the circle.

16. Quadrotor (page 115)

a) At equilibrium, compute the speed of all the propellers.

b) Experiment with different control gains. What happens if you reduce the damp-
ing gains to zero?

c) Remove the gravity feedforward and experiment with large altitude gain or a
PI controller.

d) When the vehicle has nonzero roll and pitch angles, the magnitude of the verti-
cal thrust is reduced and the vehicle will slowly descend. Add compensation to
the vertical thrust to correct this.

e) Simulate the quadrotor flying inverted, that is, its z-axis is pointing upwards.

f) Program a ballistic motion. Have the quadrotor take off at 45 deg to horizontal
then remove all thrust.

g) Program a smooth landing.

h) Program a barrel roll maneuver. Have the quadrotor fly horizontally in its
x-direction and then increase the roll angle from 0 to 2.

i) Program a flip maneuver. Have the quadrotor fly horizontally in its x-direction
and then increase the pitch angle from 0 to 2.

j) Add another four rotors.

k) Use the functionmstraj to create a trajectory through ten via points (X;, Y, Z;, )
and modify the controller of Fig. 4.21 for smooth pursuit of this trajectory.

1) Use the MATLAB GUI interface to make a simple joystick control, and use this
to create a very simple flying simulator. Alternatively interface a gaming joystick
to MATLAB.
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Fig.5.1.

Time lapse photograph of a
Roomba robot cleaning a room
(photo by Chris Bartlett)

the process of directing a vehicle so as to reach the intended destination
IEEE Standard 172-1983

Robot navigation is the problem of guiding a robot towards a goal.
The human approach to navigation is to make maps and erect sign-
posts, and at first glance it seems obvious that robots should operate
the same way. However many robotic tasks can be achieved without
any map at all, using an approach referred to as reactive navigation.
For example, navigating by heading towards a light, following a white
line on the ground, moving through a maze by following a wall, or
vacuuming a room by following a random path. The robot is reacting
directly to its environment: the intensity of the light, the relative po-
sition of the white line or contact with a wall. Grey Walter’s tortoise
Elsie from page 95 demonstrated “life-like” behaviors - she reacted
to her environment and could seek out a light source. Today tens of
millions of robotic vacuum cleaners are cleaning floors and most of
them do so without using any map of the rooms in which they work.
Instead they do the job by making random moves and sensing only
that they have made contact with an obstacle as shown in Fig. 5.1.

Human-style map-based navigation is used by more sophisticated
robots and is also known as motion planning. This approach supports
more complex tasks but is itself more complex. It imposes a number
of requirements, not the least of which is having a map of the envi-
ronment. It also requires that the robot’s position is always known.
In the next chapter we will discuss how robots can determine their
position and create maps. The remainder of this chapter discusses
the reactive and map-based approaches to robot navigation with a
focus on wheeled robots operating in a planar environment.
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Valentino Braitenberg (1926-2011) was an Italian-Austrian neuroscientist and cyberneticist, and
former director at the Max Planck Institute for Biological Cybernetics in Tiibingen, Germany.
His 1986 book “Vehicles: Experiments in Synthetic Psychology” (image on right is the cover of
this book, published by The MIT Press, ©MIT 1984) describes reactive goal-achieving vehicles,
and such systems are now commonly known as Braitenberg Vehicles.

A Braitenberg vehicle is an automaton which combines sensors, actuators and their direct in-
terconnection to produce goal-oriented behaviors. In the book these vehicles are described con-
ceptually as analog circuits, but more recently small robots based on a digital realization of the
same principles have been developed. Grey Walter’s tortoise predates the use of this term but
was nevertheless an example of such a vehicle.

5.1 Reactive Navigation

Surprisingly complex tasks can be performed by a robot even if it has no map and no
real idea about where it is. As already mentioned robotic vacuum cleaners use only
random motion and information from contact sensors to perform a complex task as
shown in Fig. 5.1. Insects such as ants and bees gather food and return it to their nest
based on input from their senses, they have far too few neurons to create any kind of
mental map of the world and plan paths through it. Even single-celled organisms such
as flagellate protozoa exhibit goal-seeking behaviors. In this case we need to tempo-
rarily modify our earlier definition of a robot to

a goal oriented machine that can sense, ptan and act.
Grey Walter’s robotic tortoise demonstrated that it could moves toward a light

source, a behavior known as phototaxis.” This was an important result in the then
emerging scientific field of cybernetics.

5.1.1 Braitenberg Vehicles

A very simple class of goal achieving robots are known as Braitenberg vehicles and
are characterized by direct connection between sensors and motors. They have no
explicit internal representation of the environment in which they operate and nor do
they make explicit plans.”

Consider the problem of a robot moving in two dimensions that is seeking the lo-
cal maxima of a scalar field - the field could be light intensity or the concentration of
some chemical.” The Simulink® model

>> sl braitenberg

shown in Fig. 5.2 achieves this using a steering signal derived directly from the sensors.”

William Grey Walter (1910-1977) was a neurophysiologist and pioneering cyberneticist born in
Kansas City, Missouri and studied at King’s College, Cambridge. Unable to obtain a research
fellowship at Cambridge, he worked on neurophysiological research in hospitals in London and
from 1939 at the Burden Neurological Institute in Bristol. He developed electro-encephalographic
brain topography which used multiple electrodes on the scalp and a triangulation algorithm to
determine the amplitude and location of brain activity.

Walter was influential in the then new field of cybernetics. He built robots to study how complex
reflex behavior could arise from neural interconnections. His tortoise Elsie (of the species Machina
Speculatrix) is shown, without its shell, on page 95. Built in 1948 Elsie was a three-wheeled robot capable
of phototaxis that could also find its way to a recharging station. A second generation tortoise (from
1951) is in the collection of the Smithsonian Institution. He published popular articles in “Scientific
American” (1950 and 1951) and a book “The Living Brain” (1953). He was badly injured in a car acci-
dent in 1970 from which he never fully recovered. (Image courtesy Reuben Hoggett collection)

VEHICLES

Experiments in Synthetic Psychelogy

Valentino Braitenberg

More generally a taxis is the response of
an organism to a stimulus gradient.

Thisis a fine philosophical point, the plan
could be considered to be implicitin the
details of the connections between the
motors and sensors.

This is similar to the problem of moving
to a point discussed in Sect.4.1.1.1.

This is similar to Braitenberg’s Vehicle 4a.
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Fig.5.2. Bicycle
The Simulink® model 1

sl braitenberg drives the
vehicle toward the maxima of
a provided scalar function. The
vehicle plus controller is an ex-
ample of a Braitenberg vehicle

We can make the measurements simul-
taneously using two spatially separated
sensors or from one sensor over time as
the robot moves.

Similar strategies are used by moths
whose two antennae are exquisitely
sensitive odor detectors that are used
to steer a male moth toward a phero-
mone emitting female.

4

Left sensor

Steeriﬂain
To ascend the gradient we need to estimate the gradient direction at the current
location and this requires at least two measurements of the field.* In this example we
use two sensors, bilateral sensing, with one on each side of the robot’s body. The sen-
sors are modeled by the green sensor blocks shown in Fig. 5.2 and are parameterized
by the position of the sensor with respect to the robot’s body, and the sensing function.

In this example the sensors are at £2 units in the vehicle’s lateral or y-direction.
The field to be sensed is a simple inverse square field defined by

1 function sensor = sensorfield(x, vy)
2 xc = 60; yc = 90;
3 sensor = 200./((x-xc).”2 + (y-yc).”2 + 200);

which returns the sensor value s(x, y) € [0, 1] which is a function of the sensor’s posi-
tion in the plane. This particular function has a peak value at the point (60, 90).
The vehicle speed is

V=2—s3—5
where s; and s; are the right and left sensor readings respectively. At the goal, where

sg= s, = 1 the velocity becomes zero.
Steering angle is based on the difference between the sensor readings

k(sg —s.)

so when the field is equal in the left- and right-hand sensors the robot moves straight ahead.
We start the simulation from the Simulink menu or the command line

vy =

>> sim('sl braitenberg');

and the path of the robot is shown in Fig. 5.3. The starting pose can be changed through
the parameters of the Bi cycle block. We see that the robot turns toward the goal and
slows down as it approaches, asymptotically achieving the goal position.

This particular sensor-action control law results in a specific robotic behavior. We
could add additional logic to the robot to detect that it had arrived near the goal and
then switch to a stopping behavior. An obstacle would block this robot since its only
behavior is to steer toward the goal, but an additional behavior could be added to han-
dle this case and drive around an obstacle. We could add another behavior to search
randomly for the source if none was visible. Grey Walter’s tortoise had four behaviors
and switching was based on light level and a touch sensor.

Multiple behaviors and the ability to switch between them leads to an approach
known as behavior-based robotics. The subsumption architecture was proposed as a

steer
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means to formalize the interaction between different behaviors. Complex, some might
say intelligent looking, behaviors can be manifested by such systems. However as more
behaviors are added the complexity of the system grows rapidly and interactions be-
tween behaviors become more complex to express and debug. Ultimately the penalty
of not using a map becomes too great.

5.1.2 Simple Automata

Another class of reactive robots are known as bugs - simple automata that perform goal
seeking in the presence of nondriveable areas or obstacles. There are a large number
of bug algorithms and they share the ability to sense when they are in proximity to an
obstacle. In this respect they are similar to the Braitenberg class vehicle, but the bug
includes a state machine and other logic in between the sensor and the motors. The
automata have memory which our earlier Braitenberg vehicle lacked.” In this section
we will investigate a specific bug algorithm known as bug2.

We start by loading an obstacle field to challenge the robot

>> load house

>> about house

house [double] : 397x596 (1.9 MB)
which defines a matrix variable house in the workspace. The elements are zero or
one representing free space or obstacle respectively and this is shown in Fig. 5.4. Tools
to generate such maps are discussed on page 131. This matrix is an example of an oc-
cupancy grid which will be discussed further in the next section. This command also
loads a list of named places within the house, as elements of a structure

>> place
place =
kitchen: [320 190]
garage: [500 150]
brl: [50 220]

At this point we state some assumptions. Firstly, the robot operates in a grid world
and occupies one grid cell. Secondly, the robot is capable of omnidirectional motion
and can move to any of its eight neighboring grid cells. Thirdly, it is able to deter-
mine its position on the plane which is a nontrivial problem that will be discussed
in detail in Chap. 6. Finally, the robot can only sense its goal and whether adjacent
cells are occupied.

Fig.5.3.

Path of the Braitenberg vehicle
moving toward the maximum of
a 2D scalar field whose magni-
tude is shown color coded

Braitenberg’s book describes a series of
increasingly complex vehicles, some of
whichincorporate memory.However the
term Braitenberg vehicle has become as-
sociated with the simplest vehicles he
described.
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Fig.5.4.

Obstacles are indicated by red
pixels. Named places are in-
dicated by hollow black stars.
Approximate scale is 4.5 cm per
cell. The start location is a solid
blue circle and the goal is a sol-
id blue star. The path taken by
the bug2 algorithm is marked by
a green line. The black dashed
line is the m-line, the direct path
from the start to the goal

It could be argued that the m-line rep-
resents an explicit plan. Thus bug algo-
rithms occupy a position somewhere
between Braitenberg vehicles and map-
based planning systems in the spectrum
of approaches to navigation.
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We create an instance of the bug?2 class
>> bug = Bug2 (house) ;

and pass in the occupancy grid. The bug2 algorithm does not use the map to plan a
path - the map is used by the simulator to provide sensory inputs to the robot. We
can display the robot’s environment by

>> bug.plot();
The simulation is run using the query method

>> bug.query(place.br3, place.kitchen, 'animate');

whose arguments are the start and goal positions of the robot within the house.

The method displays an animation of the robot moving toward the goal and the
path is shown as a series of green dots in Fig. 5.4.

The strategy of the bug2 algorithm is quite simple. It is given a straight line - the
m-line - towards its goal. If it encounters an obstacle it turns right and continues un-
til it encounters a point on the m-line that is closer to the goal than when it departed
from the m-line.*

If an output argument is specified

>> p = bug.query(place.br3, place.kitchen)

it returns the path as a matrix p

>> about p

p [double] 1299x2 (20.8 kB)

which has one row per point, and comprises 1299 points for this example. Invoking
the function with an empty matrix

>> p = bug.query([], place.kitchen);

will prompt for the corresponding point to be selected by clicking on the plot.
In this example the bug2 algorithm has reached the goal but it has taken a very
suboptimal route, traversing the inside of a wardrobe, behind doors and visiting two
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bathrooms. It would perhaps have been quicker in this case to turn left, rather than
right, at the first obstacle but that strategy might give a worse outcome somewhere
else. Many variants of the bug algorithm have been developed, but while they improve
the performance for one type of environment they can degrade performance in others.
Fundamentally the robot is limited by not using a map. It cannot see the big picture
and therefore takes paths that are locally, rather than globally, optimal.

5.2 Map-Based Planning

The key to achieving the best path between points A and B, as we know from everyday
life, is to use a map. Typically best means the shortest distance but it may also include
some penalty term or cost related to traversability which is how easy the terrain is to
drive over - it might be quicker to travel further but faster over better roads. A more
sophisticated planner might also consider the size of the robot, the kinematics and
dynamics of the vehicle and avoid paths that involve turns that are tighter than the
vehicle can execute. Recalling our earlier definition of a robot as a

goal oriented machine that can sense, plan and act,

this section concentrates on planning.

There are many ways to represent a map and the position of the vehicle within the
map. Graphs, as discussed in Appendix I, can be used to represent places and paths
between them. Graphs can be efficiently searched to find a path that minimizes some
measure or cost, most commonly the distance traveled. A simpler and very computer-
friendly representation is the occupancy grid which is widely used in robotics.

An occupancy grid treats the world as a grid of cells and each cell is marked as oc-
cupied or unoccupied. We use zero to indicate an unoccupied cell or free space where
the robot can drive. A value of one indicates an occupied or nondriveable cell. The
size of the cell depends on the application. The memory required to hold the occu-
pancy grid increases with the spatial area represented and inversely with the cell size.
However for modern computers this representation is very feasible. For example a cell
size 1 X 1 m requires” just 125 kbyte km 2.

In the remainder of this section we use code examples to illustrate several different
planners and all are based on the occupancy grid representation. To create unifor-
mity the planners are all implemented as classes derived from the Navigation su-
perclass which is briefly described on page 133. The bug2 class we used previously was
also an instance of this class so the remaining examples follow a familiar pattern.

Once again we state some assumptions. Firstly, the robot operates in a grid world
and occupies one grid cell. Secondly, the robot does not have any nonholonomic con-
straints and can move to any neighboring grid cell. Thirdly, it is able to determine
its position on the plane. Fourthly, the robot is able to use the map to compute the
path it will take.

In all examples we will use the house map introduced in the last section and find
paths from bedroom 3 to the kitchen. These parameters can be varied, and the occu-
pancy grid changed using the tools described above.

5.2.1 Distance Transform

Consider a matrix of zeros with just a single nonzero element representing the goal.
The distance transform of this matrix is another matrix, of the same size, but the value
of each element is its distance” from the original nonzero pixel. For robot path plan-
ning we use the default Euclidean distance. The distance transform is actually an im-
age processing technique and will be discussed further in Chap. 12.

Considering a single bit to represent
each cell. The occupancy grid could be
compressed or could be kept on a disk
with only the local region in memory.

The distance between two points
(x5, y1) and (x,, y,) where A, = x, — x,
and Ay =y, —y,; can be Euclidean
V A} +A} or CityBlock (also known as
Manhattan) distance |A,| +]A|.
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For the bug2 algorithm there was no
planning step so the query in that case
was the simulated robot querying its
proximity sensors.

By convention the plan is based on the
goal location and we query for a start lo-
cation, but we could base the plan on the
start position and then query for a goal.

Making amap. An occupancy grid is a matrix that corresponds to a region of 2-dimensional space.
Elements containing zeros are free space where the robot can move, and those with ones are ob-
stacles where the robot cannot move. We can use many approaches to create a map. For example
we could create a matrix filled with zeros (representing all free space)

>> map = zeros (100, 100);
and use MATLAB operations such as

>> map (40:50,20:80) = 1;
or the MATLAB builtin matrix editor to create obstacles but this is quite cumbersome. Instead we can
use the Toolbox map editor makemap to create more complex maps using an interactive editor

>> map = makemap (100)
that allows you to add rectangles, circles and polygons to an occupancy grid. In this example the
grid is 100 x 100. See online help for details.

The occupancy grid in Fig. 5.4 was derived from a scanned image but online buildings plans
and street maps could also be used.

Note that the occupancy grid is a matrix whose coordinates are conventionally expressed as
(row, column) and the row is the vertical dimension of a matrix. We use the Cartesian conven-
tion of a horizontal x-coordinate first, followed by the y-coordinate therefore the matrix is al-
ways indexed as y, x in the code.

To use the distance transform for robot navigation we create a DXform object,
which is derived from the Navigation class

>> dx = DXform(house);

and then create a plan to reach a specific goal

>> dx.plan(place.kitchen)

which can be visualized

>> dx.plot ()

as shown in Fig. 5.5. We see the obstacle regions in red overlaid on the distance map
whose grey level at any point indicates the distance from that point to the goal, in grid
cells, taking into account travel around obstacles.

The hard work has been done and to find the shortest path from any point to the goal
we simply consult or query the plan.* For example a path from the bedroom to the goal is

>> dx.query(place.br3, 'animate');

which displays an animation of the robot moving toward the goal. The path is indi-
cated by a series of green dots as shown in Fig. 5.5.<

The plan is the distance map. Wherever the robot starts, it moves to the neighbor-
ing cell that has the smallest distance to the goal. The process is repeated until the ro-
bot reaches a cell with a distance value of zero which is the goal.

If the path method is called with an output argument the path

>> p = dx.query(place.br3);

is returned as a matrix, one row per point, which we can visualize overlaid on the oc-
cupancy grid and distance map

>> dx.plot (p)

The path comprises
>> numrows (p)
ans =
336
points which is considerably shorter than the path found by bug2.
This navigation algorithm has exploited its global view of the world and has, through
exhaustive computation, found the shortest possible path. In contrast, bug2 without
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the global view has just bumped its way through the world. The penalty for achieving
the optimal path is computational cost. This particular implementation of the distance
transform is iterative. Each iteration has a cost of O(N?) and the number of iterations
is at least O(N), where N is the dimension of the map.

We can visualize the iterations of the distance transform by

>> dx.plan(place.kitchen, 'animate');

which shows the distance values propagating as a wavefront outward from the goal.
The wavefront moves outward, spills through doorways into adjacent rooms and out-
side the house.” Although the plan is expensive to create, once it has been created it
can be used to plan a path from any initial point to that goal.

We have converted a fairly complex planning problem into one that can now be
handled by a Braitenberg-class robot that makes local decisions based on the distance
to the goal. Effectively the robot is rolling downbhill on the distance function which we
can plot as a 3D surface

>> dx.plot3d(p)

shown in Fig. 5.6 with the robot’s path and room locations overlaid.

For large occupancy grids this approach to planning will become impractical. The
roadmap methods that we discuss later in this chapter provide an effective means to
find paths in large maps at greatly reduced computational cost.

The scale associated with this occupancy grid is 4.5 cm per cell and we have as-
sumed the robot occupies a single grid cell - this is a very small robot. The planner
could therefore find paths that a larger real robot would be unable to fit through.
A common solution to this problem is to inflate the occupancy grid - making the
obstacles bigger is equivalent to leaving the obstacles unchanged and making the
robot bigger. For example, if we inflate the obstacles by 5 cells

>> dx = DXform(house, 'inflate', 5);

>> dx.plan(place.kitchen);

>> p = dx.query(place.br3);
>> dx.plot (p)

the path shown in Fig. 5.7b now takes the wider corridors to reach its goal. To illustrate
how this works we can overlay this new path on the inflated occupancy grid

>> dx.plot (p, 'inflated');

Fig.5.5.

The distance transform path.
Obstacles are indicated by red
cells. The background grey in-
tensity represents the cell’s dis-
tance from the goal in units of
cell size as indicated by the scale
on the right-hand side

More efficient algorithms exist such as
fast marching methods and Dijkstra’s
method, but the iterative wavefront
method used here is easy to code and
to visualize.
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and this is shown in Fig. 5.7a. The inflation parameter of 5 has grown the obstacles by
This is morphological dilation whichis 5 grid cells in all directions, a bit like applying a very thick layer of paint.“ This is equiva-
discussed in Sect.12.6. lent to growing the robot by 5 grid cells in all directions - the robot grows from a single
grid cell to a disk with a diameter of 11 cells which is equivalent to around 50 cm.
Fig.5.6.
The distance transform as a
3D function, where height is dis-
tance from the goal. Navigation
is simply a downhill run. Note 1
the discontinuity in the distance .
transform where the split wave- I
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Fig.5.7. Distance transform path 05k
with obstacles inflated by 5 cells. 0
a Path shown with inflated obsta-
cles; b path computed for inflat-
ed obstacles overlaid on original
obstacle map, black regions are
where no distance was computed 400 600
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Navigation superclass. The examples in this chapter are all based p = nav.query (start, goal)
on classes derived from the Navigation class which is designed p = nav.query (start)

for 2D grid-based navigation. Each example consists of essen-
tially the following pattern. Firstly we create an instance of an
object derived from the Navigation class by calling the class

constructor.

again depending on whether or not the planner requires a goal.
The optional return value p is the path, a sequence of points from
start to goal, one row per point, and each row comprises the
x- and y-coordinate. If start or goal is given as [] the user is

nav = MyNavClass (map) prompted to interactively click the point. The ‘animate’ option

which is passed the occupancy grid. Then a plan is computed

nav.plan ()
nav.plan (goal)

and depending on the planner the goal may or may not be required.

causes an animation of the robot’s motion to be displayed.
The map and planning information can be visualized by

nav.plot ()

or have a path overlaid

A path from an initial position to the goal is computed by nav.plot (p)
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5.2.2 D*

A popular algorithm for robot path planning is D* which finds the best path” through
a graph, which it first computes, that corresponds to the input occupancy grid. D* has
anumber of features that are useful for real-world applications. Firstly, it generalizes
the occupancy grid to a cost map which represents the cost c € R, ¢ > 0 of traversing
each cell in the horizontal or vertical direction. The cost of traversing the cell diago-
nally is cv/2. For cells corresponding to obstacles ¢ = oo (Tnf in MATLAB).

Secondly, D* supports incremental replanning. This is important if, while we are mov-
ing, we discover that the world is different to our map. If we discover that a route has a
higher than expected cost or is completely blocked we can incrementally replan to find a
better path. The incremental replanning has a lower computational cost than complete-
ly replanning as would be required using the distance transform method just discussed.

D* finds the path which minimizes the total cost of travel. If we are interested in the
shortest time to reach the goal then cost is the time to drive across the cell and is in-
versely related to traversability. If we are interested in minimizing damage to the vehi-
cle or maximizing passenger comfort then cost might be related to the roughness of the
terrain within the cell. The costs assigned to cells will also depend on the characteristics
of the vehicle: a large 4-wheel drive vehicle may have a finite cost to cross a rough area
whereas for a small car that cost might be infinite.

To implement the D* planner using the Toolbox we use a similar pattern and first
create a D* navigation object

>> ds = Dstar (house);

The D* planner converts the passed occupancy grid map into a cost map which we
can retrieve

>> ¢ = ds.costmap () ;

where the elements of ¢ will be 1 or co representing free and occupied cells respectively.
A plan for moving to the goal is generated by

>> ds.plan(place.kitchen);

which creates a very dense directed graph (see Appendix I). Every cell is a graph vertex
and has a cost, a distance to the goal, and a link to the neighboring cell that is closest to
the goal. Each cell also has a state t € {NEW, OPEN, CLOSED}. Initially every cell is in the
NEW state, the cost of the goal cell is zero and its state is OPEN. We can consider the set of
all cells in the OPEN state as a wavefront propagating outward from the goal.” The cost of
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D* is an extension of the A* algorithm for
finding minimum cost paths through a
graph, see Appendix .

The distance transform also evolves as
a wavefront outward from the goal.
However D* represents the frontier effi-
ciently as a list of cells whereas the dis-
tance transform computes the frontier
ona per-cell basis at every iteration — the
frontier is implicitly where a cell with in-
finite cost (the initial value of all cells) is
adjacent to a cell with finite cost.

Fig.5.8.

The D* planner path. Obstacles
are indicated by red cells and all
driveable cells have a cost of 1.
The background grey intensity
represents the cell’s distance
from the goal in units of cell size
as indicated by the scale on the
right-hand side
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reaching cells that are neighbors of an OPEN cell is computed and these cells in turn are
set to OPEN and the original cell is removed from the open list and becomes CLOSED. In
D* is more efficient than the distance  MATLAB this initial planning phase is quite slow and takes over a minute and
transform but it executes more slowly
because it is implemented entirely in
MATLAB code whereas the distance
transform is a MEX-file written in C.

>> ds.niter
ans =
245184

iterations of the planning loop.
The path from an arbitrary starting point to the goal

>> ds.query (place.br3);

is shown in Fig. 5.8. The robot has again taken a short and efficient path around the
obstacles that is almost identical to that generated by the distance transform.

The real power of D* comes from being able to efficiently change the cost map dur-
ing the mission. This is actually quite a common requirement in robotics since real
sensors have a finite range and a robot discovers more of world as it proceeds. We
inform D* about changes using the modify cost method, for example to raise the
cost of entering the kitchen via the bottom doorway

>> ds.modify cost( [300,325; 115,125], 5 );

we have raised the cost to 5 for a small rectangular region across the doorway. This re-
gion is indicated by the yellow dashed rectangle in Fig. 5.9. The other driveable cells have
a default cost of 1. The plan is updated by invoking the planning algorithm again

>> ds.plan();

and this time the number of iterations is only

>> ds.niter
ans =
169580

The cost increases with the number of  which is 70% of that required to create the original plan.* The new path for the robot
cells modified and the effect those chang-

es have on the distance map.ltis possible

thatincremental replanning takes more  js shown in Fig. 5.9. The cost change is relatively small but we notice that the increased

time than planning from scratch. cost of driving within this region is indicated by a subtle brightening of those cells - in
a cost sense these cells are now further from the goal. Compared to Fig. 5.8 the robot
has taken a different route to the kitchen and avoided the bottom door. D* allows up-
dates to the map to be made at any time while the robot is moving. After replanning
the robot simply moves to the adjacent cell with the lowest cost which ensures conti-
nuity of motion even if the plan has changed.

>> ds.query(place.br3);
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Fig.5.9. 100
Path from D* planner with mod-
ified map. The higher-cost region 50
is indicated by the yellow dashed
rectangle and has changed the

= =
path compared to Fig. 5.7 100 150 200 250 300 350 400 450 500 550
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A graphis an abstract representation of a set of objects connected by links typically denoted G(V, E)
and depicted diagrammatically as shown to the right. The objects, V, are called vertices or nodes,
and the links, E, that connect some pairs of vertices are called edges or arcs. Edges can be directed
(arrows) or undirected as in this case. Edges can have an associated weight or cost associated with
moving from one of its vertices to the other. A sequence of edges from one vertex to another is a
path. Graphs can be used to represent transport or communications networks and even social rela-
tionships, and the branch of mathematics is graph theory. Minimum cost path between two nodes
in the graph can be computed using well known algorithms such as Dijstrka’s method or A*.
The navigation classes use a simple MATLAB graph class called PGraph, see Appendix I.

5.2.3 Introduction to Roadmap Methods

In robotic path planning the analysis of the map is referred to as the planning phase.
The query phase uses the result of the planning phase to find a path from A to B. The
two previous planning algorithms, distance transform and D*, require a significant
amount of computation for the planning phase, but the query phase is very cheap.
However the plan depends on the goal. If the goal changes the expensive planning
phase must be re-executed. Even though D* allows the path to be recomputed as the
costmap changes it does not support a changing goal.

The disparity in planning and query costs has led to the development of roadmap
methods where the query can include both the start and goal positions. The planning
phase provides analysis that supports changing starting points and changing goals.
A good analogy is making a journey by train. We first find a local path to the near-
est train station, travel through the train network, get off at the station closest to our
goal, and then take a local path to the goal. The train network is invariant and plan-
ning a path through the train network is straightforward. Planning paths to and from
the entry and exit stations respectively is also straightforward since they are, ideally,
short paths. The robot navigation problem then becomes one of building a network
of obstacle free paths through the environment which serve the function of the train
network. In the literature such a network is referred to as a roadmap. The roadmap
need only be computed once and can then be used like the train network to get us
from any start location to any goal location.

We will illustrate the principles by creating a roadmap from the occupancy grid’s
free space using some image processing techniques. The essential steps in creating
the roadmap are shown in Fig. 5.10. The first step is to find the free space in the map
which is simply the complement of the occupied space

>> free = 1 - house

and is a matrix with nonzero elements where the robot is free to move. The boundary
is also an obstacle so we mark the outermost cells as being not free

>> free(l,:) = 0; free(end,:) = 0;
>> free(:,1) = 0; free(:,end) = 0;

and this map is shown in Fig. 5.10a where free space is depicted as white.
The topological skeleton of the free space is computed by a morphological image
processing algorithm known as thinning” applied to the free space of Fig. 5.10a

>> skeleton = ithin(free);

and the result is shown in Fig. 5.10b. We see that the obstacles have grown and the
free space, the white cells, have become a thin network of connected white cells
which are equidistant from the boundaries of the original obstacles.

Figure 5.10c shows the free space network overlaid on the original map. We have
created a network of paths that span the space and which can be used for obstacle-
free travel around the map.” These paths are the edges of a generalized Voronoi

Also known as skeletonization. We will
cover this topicin Sect.12.6.3.

The junctions in the roadmap are in-
dicated by black dots. The junctions,
or triple points, are identified using the
morphological image processing func-
tiontriplepoint.
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The Voronoi tessellation of a set of planar points, known as sites, is a set of Voronoi cells as shown
to the left. Each cell corresponds to a site and consists of all points that are closer to its site than
to any other site. The edges of the cells are the points that are equidistant to the two nearest sites.
A generalized Voronoi diagram comprises cells defined by measuring distances to objects rather
than points. In MATLAB we can generate a Voronoi diagram by

>> sites = rand(10,2)

>> voronoi (sites(:,1), sites(:,2))

Georgy Voronoi (1868-1908) was a Russian mathematician, born in what is now Ukraine. He
studied at Saint Petersburg University and was a student of Andrey Markov. One of his stu-
dents Boris Delaunay defined the eponymous triangulation which has dual properties with the
Voronoi diagram.
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Fig.5.10. Steps in the creation of
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diagram. We could obtain a similar result by computing the distance transform
of the obstacles, Fig. 5.10a, and this is shown in Fig. 5.10d. The value of each pixel
is the distance to the nearest obstacle and the ridge lines correspond to the skel-
eton of Fig. 5.10b. Thinning or skeletonization, like the distance transform, is a
computationally expensive iterative algorithm but it illustrates well the principles
of finding paths through free space. In the next section we will examine a cheap-
er alternative.

5.2.4 Probabilistic Roadmap Method (PRM)

The high computational cost of the distance transform and skeletonization meth-
ods makes them infeasible for large maps and has led to the development of proba-
bilistic methods. These methods sparsely sample the world map and the most well
known of these methods is the probabilistic roadmap or PRM method.
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To use the Toolbox PRM planner for our problem we first create a PRM object
>> prm = PRM (house)

and then create the plan
>> prm.plan('npoints', 150)”

with 150 roadmap nodes. Note that we do not pass the goal as an argument since the
plan is independent of the goal. Creating the path is a two phase process: planning, and

Fig.5.11.

Probablistic roadmap (PRM)
planner and the random graphs
produced in the planning phase.
a Well connected network with
150 nodes; b poorly connected
network with 100 nodes

To replicate the following result be sure to
initialize the random number generator
firstusing randinit.See page 139.
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This is derived automatically from the size

of the occupancy grid.

Random numbers. The MATLAB
random number generator
(used for rand and randn)
generates a very long sequence
of numbers that are an excel-
lent approximation to a ran-
dom sequence. The generator
maintains an internal state
which is effectively the posi-
tion within the sequence. After
startup MATLAB always gen-
erates the following random
number sequence

>> rand
ans =
0.8147
>> rand
ans =
0.9058
>> rand
ans =
0.1270

Many algorithms discussed
in this book make use of ran-
dom numbers and this means
that the results can never be
repeated. Before all such ex-
amples in this book is an invis-
ible call to randinit which
resets the random number gen-
erator to a known state

>> randinit

>> rand

ans =
0.8147

>> rand

ans =
0.9058

and we see that the random se-
quence has been restarted.

query. The planning phase finds N random points, 150 in this case, that lie in free space.
Each point is connected to its nearest neighbors by a straight line path that does not cross
any obstacles, so as to create a network, or graph, with a minimal number of disjoint
components and no cycles. The advantage of PRM is that relatively few points need to
be tested to ascertain that the points and the paths between them are obstacle free. The
resulting network is stored within the PRM object and a summary can be displayed
>> prm
prm =
PRM navigation class:
occupancy grid: 397x596
graph size: 150
dist thresh: 178.8
2 dimensions
150 vertices
1223 edges
14 components
which indicates the number of edges and connected components in the graph. The
graph can be visualized

>> prm.plot ()

as shown in Fig. 5.11a. The dots represent the randomly selected points and the lines
are obstacle-free paths between the points. Only paths less than 178.8 cells long are
selected” which is the distance threshold parameter of the PRM class. Each edge of the
graph has an associated cost which is the distance between its two nodes. The color of
the node indicates which component it belongs to and each component is assigned a
unique color. In this case there are 14 components but the bulk of nodes belong to a
single large component.

The query phase finds a path from the start point to the goal. This is simply a mat-
ter of moving to the closest node in the roadmap (the start node), following a mini-
mum cost A* route through the roadmap, getting off at the node closest to the goal
and then traveling to the goal. For our standard problem this is

>> prm.query (place.br3, place.kitchen)
>> prm.plot ()

and the path followed is shown in Fig. 5.12. The path that has been found is quite ef-
ficient although there are two areas where the path doubles back on itself. Note that
we provide the start and the goal position to the query phase. An advantage of this
planner is that once the roadmap is created by the planning phase we can change
the goal and starting points very cheaply, only the query phase needs to be repeated.
The path taken is

>> p = prm.query(place.br3, place.kitchen);

>> about p

p [double] : 9x2 (144 bytes)

which is a list of the node coordinates that the robot passes through - via points. These
could be passed to a trajectory following controller as discussed in Sect. 4.1.1.3.
There are some important tradeoffs in achieving this computational efficiency.
Firstly, the underlying random sampling of the free space means that a different road-
map is created every time the planner is run, resulting in different paths and path
lengths. Secondly, the planner can fail by creating a network consisting of disjoint
components. The roadmap in Fig. 5.11b, with only 100 nodes has several large discon-
nected components and the nodes in the kitchen and bedrooms belong to different
components. If the start and goal nodes are not connected by the roadmap, that is, they
are close to different components the query method will report an error. The only
solution is to rerun the planner and/or increase the number of nodes. Thirdly, long
narrow gaps between obstacles such as corridors are unlikely to be exploited since the
probability of randomly choosing points that lie along such spaces is very low.
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5.2.5 Lattice Planner

The planners discussed so far have generated paths independent of the motion that
the vehicle can actually achieve, and we learned in Chap. 4 that wheeled vehicles have
significant motion constraints. One common approach is to use the output of the
planners we have discussed and move a point along the paths at constant velocity
and then follow that point, using techniques such as the trajectory following control-
ler described in Sect. 4.1.1.3.

An alternative is to design a path from the outset that we know the vehicle can fol-
low. The next two planners that we introduce take into account the motion model of
the vehicle, and relax the assumption we have so far made that the robot is capable of
omnidirectional motion.

Fig.5.12.

Probablistic roadmap (PRM)
planner a showing the path taken
by the robot via nodes of the
roadmap which are highlighted
in yellow; b closeup view of goal
region where the short path from
the final roadmap node to the
goal can be seen
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The pitch of the grid is dictated by the
turning radius of the vehicle.

Sometimes called Dubins curves.

A real robot would take a finite time to
adjust its steering angle and this would in-
troduce some error in the robot path.The
steering control system could compen-
sate for this by turning harder later in the
segment so as to bring the robot to the
end point with the correct orientation.

Fig.5.13.
Lattice plan after 1, 2 and
8 iterations

Fig.5.14.

Lattice plan after 2 iterations
shown in 3-dimensional configu-
ration space

We consider that the robot is moving between discrete points in its 3-dimensional
configuration space. The robot is initially at the origin and can drive forward to the
three points shown in black in Fig. 5.13a.< Each path is an arc™ which requires a con-
stant steering wheel setting and the arc radius is chosen so that at the end of each arc
the robot’s heading direction is some multiple of 5 radians.

At the end of each branch we can add the same set of three motions suitably ro-
tated and translated, and this is shown in Fig. 5.13b. The graph now contains 13 nodes
and represents 9 paths each 2 segments long. We can create this lattice by using the
Lattice planner class

>> lp = Lattice();

>> lp.plan('iterations', 2)

13 nodes created

>> lp.plot ()
which will generate a plot like Fig. 5.13b. Each node represents a configuration (x, y, ),
not just a position, and if we rotate the plot we can see in Fig. 5.14 that the paths lie in
the 3-dimensional configuration space.

While the paths appear smooth and continuous the curvature is in fact discontinu-
ous — at some nodes the steering wheel angle would have to change instantaneously
from hard left to hard right for example.<
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By increasing the number of iterations

>> lp.plan('iterations', 8)

780 nodes created

>> lp.plot ()
we can fill in more possible paths as shown in Fig. 5.13¢c and the paths now extend well
beyond the area shown.

Now that we have created the lattice we can compute a path between any two nodes
using the query method

>> lp.query( [1 2 pi/2], [2 -2 0] );
A* path cost 6

where the start and goal are specified as configurations (x, y, ) and the lowest cost
path found by an A* search is reported.” We can overlay this on the vertices

>> lp.plot

and is shown in Fig. 5.15a. This is a path that takes into account the fact that the ve-
hicle has an orientation and preferred directions of motion, as do most wheeled robot
platforms. We can also access the configuration-space coordinates of the nodes

>> p = lp.query( [1 2 pi/2], [2 -2 0] )

A* path cost 6

>> about p

p [double] : 7x3 (168 bytes)
where each row represents the configuration-space coordinates (x, y, #) of a node in
the lattice along the path from start to goal configuration.

Implicit in our search for the lowest cost path is the cost of traversing each edge of
the graph which by default gives equal cost to the three steering options: straight ahead,
turn left and turn right. We can increase the cost associated with turning

>> lp.plan('cost', [1 10 10])

>> lp.query(start, goal);

A* path cost 35

>> lp.plot ()
and now we now have the path shown in Fig. 5.15b which has only 3 turns compared
to 5 previously. However the path is longer - having 8 rather than 6 segments.

Consider a more realistic scenario with obstacles in the environment. Specifically we
want to find a path to move the robot 2 m in the lateral direction with its final heading
angle the same as its initial heading angle

>> load road

>> 1lp = Lattice(road, 'grid', 5, 'root', [50 50 0])
>> lp.plan();
3 3
2 2
1 1
~0 0
-1 -1
- -2
-3 -3

Every segment in the lattice has a de-
fault cost of 1 so the cost of 6 simply
reflects the total number of segments
in the path.A* search is introduced in
Appendix I.

Fig.5.15.

Paths over the lattice graph.
a With uniform cost; b with
increased penalty for turns
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Fig.5.16.

A simple parallel parking
scenario based on the lattice
planner with an occupancy grid
(cells are 10 cm square)

Fig.5.17.

A more sophisticated lattice
generated by the package sbpl
with 43 paths based on the kine-
matic model of a unicycle

where we have loaded an obstacle grid that represents a simple parallel-parking sce-
nario and planned a lattice with a grid spacing of 5 units and the root node at a cen-
tral obstacle-free configuration. In this case the planner continues to iterate until it
can add no more nodes to the free space. We query for a path from the road to the
parking spot

>> lp.query ([30 45 0], [50 20 01])

and the result is shown in Fig. 5.16.

Paths generated by the lattice planner are inherently driveable by the robot but
there are clearly problems driving along a diagonal with this simple lattice. The plan-
ner would generate a continual sequence of hard left and right turns which would
cause undue wear and tear on a real vehicle and give a very uncomfortable ride. More
sophisticated version of lattice planners are able to deal with this by using motion
primitives with hundreds of arcs, such as shown in Fig. 5.17, instead of the three shown
in these examples.
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5.2.6 Rapidly-Exploring Random Tree (RRT)

The final planner that we introduce is also able to take into account the motion model
of the vehicle. Unlike the lattice planner which plans over a regular grid, the RRT uses
probabilistic methods like the PRM planner.

The underlying insight is similar to that for the lattice planner and Fig. 5.18 shows
a family of paths that the bicycle model of Eq. 4.2 would follow in configuration
space. The paths are computed over a fixed time interval for discrete values of ve-
locity, forward or backward, and various steering angles. This demonstrates clearly
the subset of all possible configurations that a nonholonomic vehicle can reach from
a given initial configuration.

The main steps in creating an RRT are as follows, with the notation shown in the fig-
ure to the right. A graph of robot configurations is maintained and each node is a con-
figuration g € R? x S! which is represented by a 3-vector g ~ (x, y, 0). The first, or root,
node in the graph is the goal configuration of the robot. A random configuration g,,,4
is chosen, and the node with the closest configuration g,,.,, is found - this configuration
is near in terms of a cost function that includes distance and orientation.” A control  The distance measure must account for
is computed that moves the robot from g,,,,, toward g,,,4 over a fixed path simulation 2 difference n position and orientation
time. The configuration that it reaches is g, and this is added to the graph. and requires appropriate weighting of

: . . . these quantities. From a consideration

For any desired starting configuration we can find the closest configuration in the ¢ i< thisis not quite proper since we
graph, and working backward toward the starting configuration we could determine  are adding meters and radians.
the sequence of steering angles and velocities needed to move from the start to the
goal configuration. This has some similarities to the roadmap methods discussed
previously, but the limiting factor is the combinatoric explosion in the number of
possible poses.

We first of all create a model to describe the vehicle kinematics

>> car = Bicycle('steermax', 0.5);

and here we have specified a car-like vehicle with a maximum steering angle of 0.5 rad.
Following our familiar programming pattern we create an RRT object

>> rrt = RRT (car, 'npoints', 1000)

for an obstacle free environment which by default extends from -5 to +5 in the x- and
y-directions and create a plan

>> rrt.plan();
>> rrt.plot();

Fig.5.18.

A set of possible paths that the
bicycle model robot could follow
from an initial configuration of
(0,0,0). Forv=+1, a € [—1,1]
over a 2 s period. Red lines cor-
respond to v < 0
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Fig.5.19.

An RRT computed for the bi-
cycle model with a velocity of
+1ms~ ), steering angle limits of
=+0.5 rad, integration period of

1 s, and initial configuration of
(0,0, 0). Each node is indicated by
a green circle in the 3-dimension-
al space of vehicle poses (x, y, 0)

Uniformly randomly distributed between
the steering angle limits.

We have chosen the first node to be the
goal configuration, and we search from
here toward possible start configura-
tions. However we could also make
the first node the start configuration.
Alternatively we could choose the start
node to be neither the start or goal posi-
tion, the planner will find a path through
the RRT between configurations close to
the startand goal.

-6 g

The random tree is shown in Fig. 5.19 and we see that the paths have a good coverage
of the configuration space, not just in the x- and y-directions but also in orientation,
which is why the algorithm is known as rapidly exploring.

An important part of the RRT algorithm is computing the control input that moves
the robot from an existing configuration in the graph to g,,, 4. From Sect. 4.1 we under-
stand the difficulty of driving a nonholonomic vehicle to a specified configuration. Rather
than the complex nonlinear controller of Sect. 4.1.1.4 we will use something simpler that
fits with the randomized sampling strategy used in this class of planner. The controller
randomly chooses whether to drive forwards or backwards and randomly chooses a
steering angle within the limits <. It then simulates motion of the vehicle model for a fixed
period of time, and computes the closest distance to q,,, 4. This is repeated multiple times
and the control input with the best performance is chosen. The configuration on its path
that was closest to q,,,4 is chosen as g, and becomes a new node in the graph.

Handling obstacles with the RRT is quite straightforward. The configuration q,,,4 is
discarded if it lies within an obstacle, and the point g, will not be added to the graph
if the path from q,,, toward q,,, 4 intersects an obstacle. The result is a set of paths, a
roadmap, that is collision free and driveable by this nonholonomic vehicle.*

We will repeat the parallel parking example from the last section

>> rrt = RRT (car, road, 'root', [50 22 0], 'simtime', 4)

>> rrt.plan();

'npoints', 1000,

where we have specified the vehicle kinematic model, an occupancy grid, the number of
sample points, the location of the first node, and that each random motion is simulated
for 4 seconds. We can query the RRT plan for a path between two configurations

>> p = rrt.query([40 45 0], [50 22 0]);

and the result is a continuous path

>> about p

p [double] : 520x3 (12.5 kB)

which will take the vehicle from the street to the parking slot. We can overlay the path
on the occupancy grid and RRT

>> rrt.plot (p)
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and the result is shown in Fig. 5.20 with some vehicle configurations overlaid. We can
also animate the motion along the path

>> plot_vehicle(p, 'box', 'size', [20 30], 'fill', 'r', 'alpha', 0.1)

where we have specified the vehicle be displayed as a red translucent shape of width 20
and length 30 units.

This example illustrates some important points about the RRT. Firstly, as for the PRM
planner, there may be some distance (and orientation) between the start and goal con-
figuration and the nearest node. Minimizing this requires tuning RRT parameters such
as the number of nodes and path simulation time. Secondly, the path is feasible but not
quite optimal. In this case the vehicle has changed direction twice before driving into the
parking slot. This is due to the random choice of nodes - rerunning the planner and/or
increasing the number of nodes may help. Finally, we can see that the vehicle body col-
lides with the obstacle, and this is very apparent if you view the animation. This is actu-
ally not surprising since the collision check we did when adding a node only tested if the
node’s position lay in an obstacle - it should properly check if a finite-sized vehicle with
that configuration intersects an obstacle. Alternatively, as discussed on page 132 we could
inflate the obstacles by the radius of the smallest disk that contains the robot.

5.3 Wrapping Up

Robot navigation is the problem of guiding a robot towards a goal and we have covered
aspectrum of approaches. The simplest was the purely reactive Braitenberg-type vehicle.
Then we added limited memory to create state machine based automata such as bug2
which can deal with obstacles, however the paths that it finds are far from optimal.

A number of different map-based planning algorithms were then introduced. The
distance transform is a computationally intense approach that finds an optimal path to
the goal. D* also finds an optimal path, but supports a more nuanced travel cost - in-
dividual cells have a continuous traversability measure rather than being considered
as only free space or obstacle. D* also supports computationally cheap incremental re-

Fig.5.20.

A simple parallel parking ex-
ample based on the RRT plan-
ner with an occupancy grid
(cells are 10 cm square). RRT
nodes are shown in blue, the
initial configuration is a sol-

id circle and the goal is a solid
star. The path through the RRT
is shown in green, and a few
snapshots of the vehicle config-
uration are overlaid in pink
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planning for small changes in the map. PRM reduces the computational burden sig-
nificantly by probabilistic sampling but at the expense of somewhat less optimal paths.
In particular it may not discover narrow routes between areas of free space. The lattice
planner takes into account the motion constraints of a real vehicle to create paths which
are feasible to drive, and can readily account for the orientation of the vehicle as well
as its position. RRT is another random sampling method that also generates kinemati-
cally feasible paths. All the map-based approaches require a map and knowledge of the
robot’s location, and these are both topics that we will cover in the next chapter.

Further Reading

Comprehensive coverage of planning for robots is provided by two text books. Choset
et al. (2005) covers geometric and probabilistic approaches to planning as well as the
application to robots with dynamics and nonholonomic constraints. LaValle (2006)
covers motion planning, planning under uncertainty, sensor-based planning, rein-
forcement learning, nonlinear systems, trajectory planning, nonholonomic planning,
and is available online for free at http://planning.cs.uiuc.edu. In particular these books
provide a much more sophisticated approach to representing obstacles in configura-
tion space and cover potential-field planning methods which we have not discussed.
The powerful planning techniques discussed in these books can be applied beyond
robotics to very high order systems such as vehicles with trailers, robotic arms or
even the shape of molecules. LaValle (2011a) and LaValle (2011b) provide a concise
two-part tutorial introduction. More succinct coverage of planning is given by Kelly
(2013), Siegwart et al. (2011), the Robotics Handbook (Siciliano and Khatib 2016, § 7),
and also in Spong et al. (2006) and Siciliano et al. (2009).

The bugl and bug2 algorithms were described by Lumelsky and Stepanov (1986).
More recently eleven variations of Bug algorithm were implemented and compared for
anumber of different environments (Ng and Bréunl 2007). The distance transform is
well described by Borgefors (1986) and its early application to robotic navigation was
explored by Jarvis and Byrne (1988). Efficient approaches to implementing the distance
transform include the two-pass method of Hirata (1996), fast marching methods or
reframing it as a graph search problem which can be solved using Dijkstra’s method;
the last two approaches are compared by Alton and Mitchell (2006). The A* algorithm
(Nilsson 1971) is an efficient method to find the shortest path through a graph, and we
can always compute a graph that corresponds to an occupancy grid map. D* is an exten-
sion by Stentz (1994) which allows cheap replanning when the map changes and there
have been many further extensions including, but not limited to, Field D* (Ferguson
and Stentz 2006) and D* lite (Koenig and Likhachev 2002). D* is used in many real-
world robot systems and many implementations exist including open source.

The ideas behind PRM started to emerge in the mid 1990s and it was first described by
Kavraki et al. (1996). Geraerts and Overmars (2004) compare the efficacy of a number of
subsequent variations that have been proposed to the basic PRM algorithm. Approaches
to planning that incorporate the vehicle’s dynamics include state-space sampling
(Howard et al. 2008), and the RRT which is described in LaValle (1998, 2006) and related
resources at http://msl.cs.uiuc.edu. More recently RRT* has been proposed by Karaman
etal. (2011). Lattice planners are covered in Pivtoraiko, Knepper, and Kelly (2009).

Historical and interesting. The defining book in cybernetics was written by Wiener in
1948 and updated in 1965 (Wiener 1965). Grey Walter published a number of popular
articles (1950, 1951) and a book (1953) based on his theories and experiments with ro-
botic tortoises.

The definitive reference for Braitenberg vehicles is Braitenberg’s own book (1986)
which is a whimsical, almost poetic, set of thought experiments. Vehicles of increasing
complexity (fourteen vehicle families in all) are developed, some including nonlinearities,
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memory and logic to which he attributes anthropomorphic characteristics such as love,
fear, aggression and egotism. The second part of the book outlines the factual basis of these
machines in the neural structure of animals.

Early behavior-based robots included the Johns Hopkins Beast, built in the 1960s,
and Genghis (Brooks 1989) built in 1989. Behavior-based robotics are covered in the
book by Arkin (1999) and the Robotics Handbook (Siciliano and Khatib 2016, § 13).
Matari¢’s Robotics Primer (Matari¢ 2007) and associated comprehensive web-based
resources is also an excellent introduction to reactive control, behavior based control
and robot navigation. A rich collection of archival material about early cybernetic ma-
chines, including Grey-Walter’s tortoise and the Johns Hopkins Beast can be found at
the Cybernetic Zoo http://cyberneticzoo.com.

Resources

A very powerful set of motion planners exist in OMPL, the Open MotionPLanning
Library (http://ompl.kavrakilab.org) written in C++. It has a Python-based app that
provides a convenient means to explore planning problems. Steve LaValle’s web site
http://msl.cs.illinois.edu/~lavalle/code.html has many code resources (C++ and Python)
related to motion planning. Lattice planners are included in the sbpl package from the
Search-Based Planning Lab (http://sbpl.net) which has MATLAB tools for generating
motion primitives and C++ code for planning over the lattice graphs.

MATLAB Notes

The Robotics System Toolbox™ from The MathWorks Inc. includes functions Binary-
OccupancyGrid and PRM to create occupancy grids and plan paths using proba-
bilistic roadmaps. Other functions support reading and writing ROS navigation and
map messages. The Image Processing Toolbox™ function bwdist is an efficient
implementation of the distance transform.

Exercises

1. Braitenberg vehicles (page 127)

a) Experiment with different starting configurations and control gains.

b) Modify the signs on the steering signal to make the vehicle light-phobic.

c) Modify the sensorfield function so that the peak moves with time.

d) The vehicle approaches the maxima asymptotically. Add a stopping rule so that
the vehicle stops when the when either sensor detects a value greater than 0.95.

e) Create a scalar field with two peaks. Can you create a starting pose where the
robot gets confused?

2. Occupancy grids. Create some different occupancy grids and test them on the dif-

ferent planners discussed.

a) Create an occupancy grid that contains a maze and test it with various planners.
See http://rosettacode.org/wiki/Maze_generation.

b) Create an occupancy grid from a downloaded floor plan.

c) Create an occupancy grid from a city street map, perhaps apply color segmen-
tation (Chap. 13) to segment roads from other features. Can you convert this to
a cost map for D* where different roads or intersections have different costs?

d) Experiment with obstacle inflation.

e) At1 m cell size how much memory is required to represent the surface of the Earth?
How much memory is required to represent just the land area of Earth? What cell
size is needed in order for a map of your country to fit in 1 Gbyte of memory?
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3. Bug algorithms (page 128)

a) Using the function makemap create a new map to challenge bug2. Try different
starting points.

b) Create an obstacle map that contains a maze. Can bug2 solve the maze?

c) Experiment with different start and goal locations.

d) Create a bug trap. Make a hollow box, and start the bug inside a box with the
goal outside. What happens?

e) Modify bug2 to change the direction it turns when it hits an obstacle.

f) Implement other bugalgorithms such as bugI and tangent bug. Do they perform
better or worse?

. Distance transform (page 132)

a) Create an obstacle map that contains a maze and solve it using distance trans-
form.

. D* planner (page 134)

a) Add alow cost region to the living room. Can you make the robot prefer to take
this route to the kitchen?

b) Block additional doorways to challenge the robot.

¢) Implement D* as a mex-file to speed it up.

. PRM planner (page 138)

a) Run the PRM planner 100 times and gather statistics on the resulting path
length.

b) Vary the value of the distance threshold parameter and observe the effect.

c) Use the output of the PRM planner as input to a pure pursuit planner as discussed
in Chap. 4.

d) Implement a nongrid based version of PRM. The robot is represented by an ar-
bitrary polygon as are the obstacles. You will need functions to determine if a
polygon intersects or is contained by another polygon (see the Toolbox Polygon
class). Test the algorithm on the piano movers problem.

. Lattice planner (page 140)

a) How many iterations are required to completely fill the region of interest shown
in Fig. 5.13¢?

b) How does the number of nodes and the spatial extent of the lattice increase with
the number of iterations?

¢) Given a car with a wheelbase of 4.5 m and maximum steering angles of £30 deg
what is the smallest possible grid size?

d) Redo Fig. 5.15b to achieve a path that uses only right hand turns.

e) Compute curvature as a function of path length for a path through the lattice
such as the one shown in Fig. 5.15a.

f) Design a controller in Simulink that will take a unicycle or bicycle model with
a finite steering angle rate (there is a block parameter to specify this) that will
drive the vehicle along the three paths shown in Fig. 5.13a.

. RRT planner (page 144)

a) Find a path to implement a 3-point turn.

b) Experiment with RRT parameters such as the number of points, the vehicle steer-
ing angle limits, and the path integration time.

¢) Additional information in the node of each graph holds the control input that
was computed to reach the node. Plot the steering angle and velocity sequence
required to move from start to goal pose.

d) Add alocal planner to move from initial pose to the closest vertex, and from the
final vertex to the goal pose.

e) Determine a path through the graph that minimizes the number of reversals of
direction.

f) The collision test currently only checks that the center point of the robot does not
lie in an occupied cell. Modify the collision test so that the robot is represented
by a rectangular robot body and check that the entire body is obtacle free.



Chapter

Localization

in order to get somewhere we need to know where we are

@ . By nour discussion of map-based navigation we assumed that the robot had a means of
. & knowing its position. In this chapter we discuss some of the common techniques used
to estimate the location of a robot in the world - a process known as localization.
Today GPS makes outdoor localization so easy that we often take this capability for
granted. Unfortunately GPS is a far from perfect sensor since it relies on very weak radio
signals received from distant orbiting satellites. This means that GPS cannot work where
there is no line of sight radio reception, for instance indoors, underwater, underground,
in urban canyons or in deep mining pits. GPS signals are also extremely weak and can
be easily jammed and this is not acceptable for some applications.
GPS has only been in use since 1995 yet humankind has been navigating the plan-
et and localizing for many thousands of years. In this chapter we will introduce the
classical navigation principles such as dead reckoning and the use of landmarks on
which modern robotic navigation is founded.
Dead reckoning is the estimation of location based on estimated speed, direction
and time of travel with respect to a previous estimate. Figure 6.1 shows how a ship’s
position is updated on a chart. Given the average compass heading over the previ-
ous hour and a distance traveled the position at 3 .M. can be found using elementary
geometry from the position at 2 p.M. However the measurements on which the up-
date is based are subject to both systematic and random error. Modern instruments
are quite precise but 500 years ago clocks, compasses and speed measurement were
primitive. The recursive nature of the process, each estimate is based on the previous

' 3Spm
Fig.6.1 \l\f“\/x P
ig.6.1.
Location estimation bygdead 6\'\, 7.. 5‘0

reckoning. The ship’s position vg’
at 3 p.M. is based on its position
. b Pty
at 2 p.M., the estimated distance <Sp¥W
traveled since, and the average /

compass heading

Measuring speed at sea. A ship’s log is an instrument that provides an estimate of the distance
traveled. The oldest method of determining the speed of a ship at sea was the Dutchman’s log - a
floating object was thrown into the water at the ship’s bow and the time for it to pass the stern was
measured using an hourglass. Later came the chip log, a flat quarter-circle of wood with a lead
weight on the circular side causing it to float upright and resist towing. It was tossed overboard
and a line with knots at 50 foot intervals was payed out. A special hourglass, called a log glass,
ran for 30 s, and each knot on the line over that interval corresponds to approximately 1 nmih~!
or 1 knot. A nautical mile (nmi) is now defined as 1.852 km. (Image modified from Text-Book of
Seamanship, Commodore S. B. Luce 1891)
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one, means that errors will accumulate over time and for sea voyages of many-years
this approach was quite inadequate.

The Phoenicians were navigating at sea more than 4 000 years ago and they did not
even have a compass - that was developed 2 000 years later in China. The Phoenicians
navigated with crude dead reckoning but wherever possible they used additional infor-
mation to correct their position estimate — sightings of islands and headlands, primi-
tive maps and observations of the Sun and the Pole Star.

A landmark is a visible feature in the environment whose location is known with
respect to some coordinate frame. Figure 6.2 shows schematically a map and a num-
ber of lighthouse landmarks. We first of all use a compass to align the north axis of
our map with the direction of the north pole. The direction of a single landmark con-
strains our position to lie along a line on the map. Sighting a second landmark places
our position on another constraint line, and our position must be at their intersec-
tion - a process known as resectioning.” For example lighthouse A constrains us to
lie along the blue line. Lighthouse C constrains us to lie along the red line and the in-
tersection is our true position p.

However this process is critically reliant on correctly associating the observed
landmark with the feature on the map. If we mistake one lighthouse for another, for
example we see B but think it is C on the map, then the red dashed line leads to a

Celestial navigation. The position of celestial bodies in the sky is a predictable function of the time
and the observer’s latitude and longitude. This information can be tabulated and is known as
ephemeris (meaning daily) and such data has been published annually in Britain since 1767 as the
“The Nautical Almanac” by HM Nautical Almanac Office. The elevation of a celestial body with
respect to the horizon can be measured using a sextant, a handheld optical instrument.

Time and longitude are coupled, the star field one hour later is the same as the star field 15° to
the east. However the northern Pole Star, Polaris or the North Star, is very close to the celestial
pole and its elevation angle is independent of longitude and time, allowing latitude to be deter-
mined very conveniently from a single sextant measurememt.

Solving the longitude problem was the greatest scientific challenge to European governments
in the eighteenth century since it was a significant impediment to global navigation and mari-
time supremacy. The British Longitude Act of 1714 created a prize of £20 000 which spurred the
development of nautical chronometers, clocks that could maintain high accuracy onboard ships.
More than fifty years later a suitable chronometer was developed by John Harrison, a copy of
which was used by Captain James Cook on his second voyage of 1772-1775. After a three year
journey the error in estimated longitude was just 13 km. With accurate knowledge of time, the
elevation angle of stars could be used to estimate latitude and longitude. This technological ad-
vance enabled global exploration and trade. (Image courtesy archive.org)

Fig.6.2.

Location estimation using a
map. Lines of sight from two
light-houses, A and C, and their
corresponding locations on the
map provide an estimate p of
our location. However if we mis-
take lighthouse B for C then we
obtain an incorrect estimate q

Resectioning is the estimation of posi-
tion by measuring the bearing angles to
known landmarks. Triangulation is the
estimation of position by measuring the
bearing angles to the unknown point
from each of the landmarks.
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Radio-based localization. One of the earliest systems was LORAN,
based on the British World War IT GEE system. LORAN trans-
mitters around the world emit synchronized radio pulses and a
receiver measures the difference in arrival time between pulses
from a pair of radio transmitters. Knowing the identity of two
transmitters and the time difference (TD) constrains the receiver
to lie along a hyperbolic curve shown on navigation charts as TD
lines. Using a second pair of transmitters (which may include
one of the first pair) gives another hyperbolic constraint curve,
and the receiver must lie at the intersection of the two curves.
The Global Positioning System (GPS) was proposed in 1973
but did not become fully operational until 1995. It comprises
around 30 active satellites orbiting the Earth in six planes at a
distance of 20200 km. A GPS receiver works by measuring the
time of travel of radio signals from four or more satellites whose
orbital position is encoded in the GPS signal. With four known
points in space and four measured time delays it is possible to
compute the (x, y, z) position of the receiver and the time. If the
GPS signals are received after reflecting off some surface the dis-

tance traveled is longer and this will introduce an error in the
position estimate. This effect is known as multi-pathing and is
a common problem in large-scale industrial facilities.

Variations in the propagation speed of radio waves through the
atmosphere is the main cause of error in the position estimate.
However these errors vary slowly with time and are approximately
constant over large areas. This allows the error to be measured at
a reference station and transmitted as an augmentation to com-
patible nearby receivers which can offset the error - this is known
as Differential GPS (DGPS). This information can be transmitted
via the internet, via coastal radio networks to ships, or by satel-
lite networks such as WAAS, EGNOS or OmniSTAR to aircraft
or other users. RTK GPS achieves much higher precision in time
measurement by using phase information from the carrier signal.
The original GPS system deliberately added error, euphemistically
termed selective availability, to reduce its utility to military op-
ponents but this feature was disabled in May 2000. Other satellite
navigation systems include the Russian GLONASS, the European
Galileo, and the Chinese Beidou.

Magellan’s 1519 expedition started with
237 menand 5 ships but most,including
Magellan, were lost along the way.Only
18 men and 1 ship returned.

For robot pose (x,y, 6) the PDFis a4-dimen-
sional surface.

significant error in estimated position — we would believe we were at q instead of p.
This belief would lead us to overestimate our distance from the coastline. If we de-
cided to sail toward the coast we would run aground on rocks and be surprised since
they were not where we expected them to be. This is unfortunately a very common
error and countless ships have foundered because of this fundamental data associa-
tion error. This is why lighthouses flash! In the eighteenth century technological ad-
vances enabled lighthouses to emit unique flashing patterns so that the identity of
the particular lighthouse could be reliably determined and associated with a point
on a navigation chart.

Of course for the earliest mariners there were no maps, or lighthouses or even
compasses. They had to create maps as they navigated by incrementally adding new
nonmanmade features to their maps just beyond the boundaries of what was already
known. It is perhaps not surprising that so many early explorers came to grief* and
that maps were tightly kept state secrets.

Robots operating today in environments without GPS face exactly the same prob-
lems as ancient navigators and, perhaps surprisingly, borrow heavily from navigational
strategies that are centuries old. A robot’s estimate of distance traveled will be imper-
fect and it may have no map, or perhaps an imperfect or incomplete map. Additional
information from observed features in the world is critical to minimizing a robot’s
localization error but the possibility of data association error remains.

We can define the localization problem more formally where « is the true, but un-
known, position of the robot and & is our best estimate of that position. We also wish
to know the uncertainty of the estimate which we can consider in statistical terms as
the standard deviation associated with the position estimate &.

It is useful to describe the robot’s estimated position in terms of a probability den-
sity function (PDF) over all possible positions of the robot.“ Some example PDFs are
shown in Fig. 6.3 where the magnitude of the function at any point is the relative like-
lihood of the vehicle being at that position. Commonly a Gaussian function is used
which can be described succinctly in terms of its mean and standard deviation. The
robot is most likely to be at the location of the peak (the mean) and increasingly less
likely to be at positions further away from the peak. Figure 6.3a shows a peak with
a small standard deviation which indicates that the vehicle’s position is very well
known. There is an almost zero probability that the vehicle is at the point indicated
by the vertical black line. In contrast the peak in Fig. 6.3b has a large standard devia-
tion which means that we are less certain about the location of the vehicle. There is
a reasonable probability that the vehicle is at the point indicated by the vertical line.
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Using a PDF also allows for multiple hypotheses about the robot’s position. For ex-
ample the PDF of Fig. 6.3c describes a robot that is quite certain that it is at one of
four places. This is more useful than it seems at face value. Consider an indoor ro-
bot that has observed a vending machine and there are four such machines marked
on the map. In the absence of any other information the robot must be equally like-
ly to be in the vicinity of any of the four vending machines. We will revisit this ap-
proach in Sect. 6.7.

Determining the PDF based on knowledge of how the vehicle moves and its obser-
vations of the world is a problem in estimation which we can define as:

the process of inferring the value of some quantity of interest, x, by processing data
that is in some way dependent on x.

For example a ship’s navigator or a surveyor estimates location by measuring the
bearing angles to known landmarks or celestial objects, and a GPS receiver estimates
latitude and longitude by observing the time delay from moving satellites whose lo-
cations are known.

For our robot localization problem the true and estimated state are vector quan-
tities so uncertainty will be represented as a covariance matrix, see Appendix G. The
diagonal elements represent uncertainty of the corresponding states, and the off-
diagonal elements represent correlations between states.

The value of a PDF is not the probability of being at that location. Consider a
small region of the xy-plane, the volume under that region of the PDF is the
probability of being in that region.

~100

Fig.6.3. Notions of vehicle posi-
tion and uncertainty in the xy-
plane, where the vertical axis is
the relative likelihood of the vehi-
cle being at that position, some-
times referred to as belief or bel(x).
Contour lines are displayed on the
lower plane. a The vehicle has low
position uncertainty, o = 1; b the
vehicle has much higher position
uncertainty, o = 20; c the vehicle
has multiple hypotheses for its po-
sition, each o =1
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Measuring the difference inangular veloc-
ity of a left- and right-hand side wheel.

6.1 Dead Reckoning

Dead reckoning is the estimation of a robot’s pose based on its estimated speed, di-
rection and time of travel with respect to a previous estimate.

An odometer is a sensor that measures distance traveled and sometimes also change
in heading direction. For wheeled vehicles this can be determined by measuring the
angular rotation of the wheels. The direction of travel can be measured using an elec-
tronic compass, or the change in heading can be measured using a gyroscope or dif-
ferential odometry.< These sensors are imperfect due to systematic errors such an
incorrect wheel radius or gyroscope bias, and random errors such as slip between
wheels and the ground. Robots without wheels, such as aerial and underwater robots,
can use visual odometry — a computer vision approach based on observations of the
world moving past the robot which is discussed in Sect. 14.7.4.

6.1.1 Modeling the Vehicle

The first step in estimating the robot’s pose is to write a function, f(-), that describes
how the vehicle’s configuration changes from one time step to the next. A vehicle model
such as Eq. 4.2 or 4.4 describes the evolution of the robot’s configuration as a function of
its control inputs, however for real robots we rarely have access to these control inputs.
Most robotic platforms have proprietary motion control systems that accept motion
commands from the user (speed and direction) and report odometry information.

Instead of using Eq. 4.2 or 4.4 directly we will write a discrete-time model for the
evolution of configuration based on odometry where 6 (k) = (8, &) is the distance trav-
eled and change in heading over the preceding interval, and k is the time step. The
initial pose is represented in SE(2) as

cosf(k) —sinf(k) x(k)
E(k) ~|sinB(k) cosO(k)  y(k)
0 0 1

We make a simplifying assumption that motion over the time interval is small so
the order of applying the displacements is not significant. We choose to move forward
in the vehicle x-direction by ¢4 and then rotate by ¢, giving the new configuration

cosf(k) —sinf(k) x(k)}(1 0 §,)(cosdy —sindy O
E(k+1) ~ |sinf(k) cosB(k) y({k)|[[0 1 0] sind, cosdy O
0 0 1 )0 0 1 0 0 1
cos(0(k) + &y) —sin(O(k) + &) x(k) + 6, cosO (k)
~ sin(9<k> + 60) cos(0(k) + &) y(k) + Oysinf (k)
0 0 1

which we can represent concisely as a 3-vector = (x, y, 6)

x(k) + 6,4 cosO (k)
y{k) + 6, sin (k)
Ok) + 6,

x{k+1) = (6.1)

which gives the new configuration in terms of the previous configuration and the odometry.

In practice odometry is not perfect and we model the error by imagining a random
number generator that corrupts the output of a perfect odometer. The measured output
of the real odometer is the perfect, but unknown, odometry (6, &) plus the output of the
random number generator (v, v,). Such random errors are often referred to as noise, or
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more specifically as sensor noise. The random numbers are not known and cannot be
measured, but we assume that we know the distribution from which they are drawn.
The robot’s configuration at the next time step, including the odometry error, is

x (k)
y{k)

(64 +v4)cos(k)
(6d aF Vd)SiIIe(k)
9(}() ar 59 = V@

_|_
z(k+1) = f(m(k), 6(k), v(k)) = + (6.2)

where k is the time step, 6(k) = (§; &) € R**! is the odometry measurement and

vk = (v, v,)T € R?*! is the random measurement noise over the preceding interval.”
In the absence of any information to the contrary we model the odometry noise as

v = (v, vy)T~ N(0, V), a zero-mean multivariate Gaussian process” with variance
V= O'; 0 ]

2
0 oy

This constant matrix, the covariance matrix, is diagonal which means that the errors
in distance and heading are independent.” Choosing a value for V is not always easy
but we can conduct experiments or make some reasonable engineering assumptions.
In the examples which follow, we choose 0;= 2 cm and oy= 0.5° per sample interval
which leads to a covariance matrix of

>> V = diag([0.02, 0.5*pi/180]."72);

All objects of the Toolbox Vehicle superclass provide a method f () that imple-
ments the appropriate odometry update equation. For the case of a vehicle with bicy-
cle kinematics that has the motion model of Eq. 4.2 and the odometric update Eq. 6.2,
we create a Bicycle object

>> veh= Bicycle('covar', V)

veh =
Bicycle object
L=1
Superclass: Vehicle
max speed=1l, max steer input=0.5, dT=0.1, nhist=0
V=(0.0004, 7.61544e-05)
configuration: x=0, y=0, theta=0

which shows the default parameters such as the vehicle’s length, speed, steering limit
and the sample interval which defaults to 0.1 s. The object provides a method to sim-
ulate motion over one time step

>> odo = veh.step(l, 0.3)

odo =

0.1108 0.0469

where we have specified a speed of 1 m s~ ! and a steering angle of 0.3 rad. The function
updates the robot’s true configuration and returns a noise corrupted odometer read-
ing.” With a sample interval of 0.1 s the robot reports that is moving approximately
0.1 m each interval and changing its heading by approximately 0.03 rad. The robot’s
true (but ‘unknown’) configuration can be seen by

>> veh.x'

ans =

0.1000 0 0.0309

Given the reported odometry we can estimate the configuration of the robot after
one time step using Eq. 6.2 which is implemented by
>> veh.f([0 0 0], odo)

ans =

0.1106 0.0052 0.0469

where the discrepancy with the exact value is due to the use of a noisy odometry mea-
surement.

The odometry noise is inside the model
of our process (vehicle motion) and is re-
ferred to as process noise.

Anormaldistribution of angles on a circle
isactually not possiblesince § € S' ¢ IR,
thatis angles wrap around 2t.However if
the covariance for angular states is small
this problem is minimal. A normal-like
distribution of angles on a circle is the
von Mises distribution.

In reality this is unlikely to be the case
since odometry distance errors tend to be
worse when change of heading is high.

We simulate the odometry noise using
MATLAB generated random numbers
that have zero-mean and a covariance
given by the diagonal of vV.The random
noise means that repeated calls to this
function will return different values.
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The number of history records is indicat-
ed by nhist=in the displayed value
of the object.The hi st property is an
array of structures that hold the vehicle
state at each time step.

The Kalman filter, Fig. 6.6, has two steps:
prediction based on the model and up-
date based on sensor data. In this dead-
reckoning case we use only the prediction
equation.

For the scenarios that we want to investigate we require the simulated robot to drive
for a long time period within a defined spatial region. The RandomPath class is a
driver that steers the robot to randomly selected waypoints within a specified region.
We create an instance of the driver object and connect it to the robot

>> veh.add driver ( RandomPath (10) )

where the argument to the RandomPath constructor specifies a working region that
spans £10 m in the x- and y-directions. We can display an animation of the robot
with its driver by

>> veh.run ()

which repeatedly calls the step method and maintains a history of the true state
of the vehicle over the course of the simulation within the Bicycle object.* The
RandomPath and Bicycle classes have many parameters and methods which are
described in the online documentation.

6.1.2 Estimating Pose

The problem we face, just like the ship’s navigator, is how to estimate our new pose given
the previous pose and noisy odometry. We want the best estimate of where we are and
how certain we are about that. The mathematical tool that we will use is the Kalman fil-
ter which is described more completely in Appendix H. This filter provides the optimal
estimate of the system state, vehicle configuration in this case, assuming that the noise
is zero-mean and Gaussian. The filter is a recursive algorithm that updates, at each time
step, the optimal estimate of the unknown true configuration and the uncertainty asso-
ciated with that estimate based on the previous estimate and noisy measurement data.
The Kalman filter is formulated for linear systems but our model of the vehicle’s mo-
tion Eq. 6.2 is nonlinear - the tool of choice is the extended Kalman filter (EKF).
For this problem the state vector is the vehicle’s configuration

@ = (%, 5,,6,)"
and the prediction equations
2T (k+1) = F(2(K), B(k)) (6.3)
P (k+1) = FEB()F + E,VF' (6.4)

describe how the state and covariance evolve with time. The term £ (k+1) indicates an
estimate of « at time k + 1 based on information up to, and including, time k. @ (k) is the

Reverend Thomas Bayes (1702-1761)
was a nonconformist Presbyterian
minister. He studied logic and the-
ology at the University of Edinburgh
and lived and worked in Tunbridge-
Wells in Kent. There, through his as-
sociation with the 2" Earl Stanhope
he became interested in mathematics
and was elected to the Royal Society
in 1742. After his death his friend
Richard Price edited and published
his work in 1763 as An Essay towards
solving a Problem in the Doctrine of
Chances which contains a statement of a special case of Bayes’ theo-
rem. Bayes is buried in Bunhill Fields Cemetery in London.

Bayes’ theorem shows the relation between a conditional proba-
bility and its inverse: the probability of a hypothesis given observed
evidence and the probability of that evidence given the hypothesis.
Consider the hypothesis that the robot is at location X and it makes
a sensor observation S of a known landmark. The posterior prob-
ability that the robot is at X given the observation S is

P(S|X)P(X)
P(S)

where P(X) is the prior probability that the robot is at X (not ac-
counting for any sensory information), P(§| X) is the likelihood of
the sensor observation S given that the robotis at X, and P(S) is the
prior probability of the observation S. The Kalman filter, and the
Monte-Carlo estimator we discuss later in this chapter, are essen-
tially two different approaches to solving this inverse problem.

P(X[S) =
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Rudolf Kalman (1930-2016) was a mathematical system theorist born in Budapest. He obtained his
bachelors and masters degrees in electrical engineering from MIT, and Ph.D. in 1957 from Columbia
University. He worked as a Research Mathematician at the Research Institute for Advanced Study, in
Baltimore, from 1958-1964 where he developed his ideas on estimation. These were met with some
skepticism among his peers and he chose a mechanical (rather than electrical) engineering journal
for his paper A new approach to linear filtering and prediction problems because “When you fear step-
ping on hallowed ground with entrenched interests, it is best to go sideways”. He has received many
awards including the IEEE Medal of Honor, the Kyoto Prize and the Charles Stark Draper Prize.

Stanley F. Schmidt (1926-2015) was a research scientist who worked at NASA Ames Research Center
and was an early advocate of the Kalman filter. He developed the first implementation as well as
the nonlinear version now known as the extended Kalman filter. This led to its incorporation in
the Apollo navigation computer for trajectory estimation. (Extract from Kdlmdn’s famous paper
(1960) on the right reprinted with permission of ASME)

input to the process, which in this case is the measured odometry, so @ (k) = §(k). P € R3*?
isa covariance matrix representing uncertainty in the estimated vehicle configuration. V is
our estimate of the covariance of the odometry noise which in reality we do not know.

F,and F, are Jacobian matrices - the vector version of a derivative. They are obtained
by differentiating Eq. 6.2 and evaluating the result at v = 0 giving”

1 0 —6;sind,
F = of =|0 1 §,cos0, (6.5)
9zl |0 0 1
cosf, 0
E = ﬂ =|sinf, 0 (6.6)
ovl,_ 0 1

which are functions of the current state and odometry.” Jacobians are reviewed in
Appendix E. All objects of the Vehicle superclass provide methods Fx and Fv to
compute these Jacobians, for example

>> veh.Fx( [0,0,0], [0.5, 0.1] )
ans =
1.0000 0 -0.0499
0 1.0000 0.4975
0 0 1.0000

where the first argument is the state at which the Jacobian is computed and the sec-
ond is the odometry.

To simulate the vehicle and the EKF using the Toolbox we define the initial covariance
to be quite small since, we assume, we have a good idea of where we are to begin with

>> PO = diag([0.005, 0.005, 0.001].°2);

and we pass this to the constructor for an EKF object
>> ekf = EKF(veh, V, PO);

Running the filter for 1000 time steps

>> ekf.run(1000);

drives the robot as before, along a random path. At each time step the filter updates
the state estimate using various methods provided by the Vehicle superclass.

We can plot the true path taken by the vehicle, stored within the Vehicle super-
class object, by

>> veh.plot xy()

and the filter’s estimate of the path stored within the EKF object,

A New Approach to Linear Filtering
and icti 3

KALMAN
o)

Since the noise value cannot actually be
measured we use the mean value which
is zero.

The time step notation (k) is dropped to
reduce clutter.
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The elements of P have different units:
m? and rad?.The uncertainty is therefore
a mixture of spatial and angular uncer-
tainty with an implicit weighting. If the
range of the position variablesx, y > w
then positional uncertainty dominates.

Fig.6.4.

Deadreckoning using the EKF.
The true path of the robot, blue,
and the path estimated from
odometry in red. 95% confidence
ellipses are indicated in green.
The robot starts at the origin

>> hold on

>> ekf.plot xy('r'")
These are shown in Fig. 6.4 and we see some divergence between the true and esti-
mated robot path.

The covariance at the 700" time step is

>> P700 = ekf.history(700).P
P700 =
1.8929 -0.5575 -0.1851
-0.5575 3.4184 0.3400
-0.1851 0.3400 0.0533

The matrix is symmetric and the diagonal elements are the estimated variance asso-
ciated with the states, that is 07, o and o7 respectively. The standard deviation o, of
the PDF associated with the vehicle’s x-coordinate is

>> sqrt (P700(1,1))

ans =

1.3758
There is a 95% chance that the robot’s x-coordinate is within the 20 bound or £2.75 m
in this case. We can compute uncertainty for y and 6 similarly.

The off-diagonal terms are correlation coefficients and indicate that the un-
certainties between the corresponding variables are related. For example the value
P, ;= P; = -0.5575 indicates that the uncertainties in x and ¢ are related - error
in heading angle causes error in x-position and vice versa. Conversely new infor-
mation about € can be used to correct 0 as well as x. The uncertainty in position is
described by the top-left 2 x 2 covariance submatrix of P. This can be interpreted
as an ellipse defining a confidence bound on position. We can overlay such ellipses
on the plot by

>> ekf.plot ellipse('g")

as shown in Fig. 6.4. These correspond to the default 95% confidence bound and
are plotted by default every 20 time steps. The vehicle started at the origin and as
it progresses we see that the ellipses become larger as the estimated uncertainty in-
creases. The ellipses only show x- and y-position but uncertainty in 6 also grows.

The total uncertainty,* position and heading, is given by v/det (P) and is plotted
as a function of time

>> ekf.plot P();
as shown in Fig. 6.5 and we observe that it never decreases. This is because the sec-

ond term in Eq. 6.4 is positive definite which means that P, the position uncertainty,
can never decrease.

-5
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Error ellipses. We consider the PDF of the robot’s position (ignor-
ing orientation) such as shown in Fig. 6.3 to be a 2-dimensional
Gaussian probability density function

P(:I:) = %“Zexp{_l(m - ll'x)T ny71 (:13 - /l’x)}
(2m)det(P,,) 2

where = = (x, )" is the position of the robot, y, = (%, 9)” is the esti-
mated mean positionand P, € R?*2 s the position covariance ma-
trix, the top left of the covariance matrix P computed by the Kalman
filter. A horizontal cross-section is a contour of constant probability
which is an ellipse defined by the points  such that

(:I: - FLx)Tnyil(x - /—Lx) =S

Such error ellipses are often used to represent positional uncer-
tainty as shown in Fig. 6.4. A large ellipse corresponds to a wider
PDF peak and less certainty about position. To obtain a particu-
lar confidence contour (eg. 99%) we choose s as the inverse of the
x? cumulative distribution function for 2 degrees of freedom, in
MATLAB that is chi2inv (C, 2)where C € [0, 1] is the confi-
dence value. Such confidence values can be passed to several EXF
methods when specifying error ellipses.

A handy scalar measure of total position uncertainty is the
area of the ellipse 77,7, where the radii ;= v/\; and ); are the
eigenvalues of P, . Since det (P, ) = IL), the ellipse area - the
scalar uncertainty - is proportional to v det (P,,) . See also Ap-
pendices C.1.4 and G.

T
12HT) //
0.5
1 //
/7
2’\ 0.8 /
3 /
%; 0.6 Fig. 6.5.
= / Overall uncertainty is given by
04 / ,/ v/ det (P) which shows mono-
/ _~ tonically increasing uncertainty
y // (blue). The effect of changing
02 —~ /’ the magnitude of V is to change
///_/ 1 | ‘ the rate of uncertainty growth.
0 07700 200 300 400 500 600 700 800 900 1000 Curves are shown for V.= aV
Time step where a=1/2,1,2

Note that we have used the odometry covariance matrix vV twice.The first usage,
in the Vehicle constructor, is the covariance V of the Gaussian noise source
that is added to the true odometry to simulate odometry error in Eq.6.2.1n a
real application this noise is generated by some physical process hidden inside
the robot and we would not know its parameters.The second usage, in the EKF
constructor, is V which is our best estimate of the odometry covariance and is
used in the filter’s state covariance update equation Eq.6.4.

The relative values of Vand V control the rate of uncertainty growth as shown
in Fig.6.5.1f V > V then P will be larger than it should be and the filter is pessi-
mistic — it overestimates uncertainty and is less certain than it should be.If V < V
then P will be smaller than it should be and the filter will be overconfident of its
estimate — the actual uncertainty is greater than the estimated uncertainty. In
practice some experimentation is required to determine the appropriate value
for the estimated covariance.

6.2 Localizing with a Map

We have seen how uncertainty in position grows without bound using dead-reckon-
ing alone. The solution, as the Phoenicians worked out 4 000 years ago, is to bring in

additional information from observations of known featur

es in the world. In the ex-

amples that follow we will use a map that contains N fixed but randomly located land-

marks whose positions are known.
The Toolbox supports a Landmar kMap object

>> map = LandmarkMap (20, 10)
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It also indicates that covariance is inde-
pendent of range but in reality covari-
ance may increase with range since the
strength of the return signal, laser or ra-
dar, drops rapidly (1/r*) with distance
(r) to the target.

Asubclass of Sensor.

The landmark is chosen randomly from
the set of visible landmarks, those that
are within the field of view and the min-
imum and maximum range limits. If no
landmark is visible i is assigned a val-
ueof 0.

that in this case contains N = 20 landmarks uniformly randomly spread over a region
spanning £10 m in the x- and y-directions and this can be displayed by

>> map.plot ()

The robot is equipped with a sensor that provides observations of the landmarks
with respect to the robot as described by

z= h(:z:,p,-) (6.7)

where & = (x,, y,, 0,)7 is the vehicle state, and p,= (x;, y;)T is the known location of
the ih landmark in the world frame.

To make this tangible we will consider a common type of sensor that measures the
range and bearing angle to a landmark in the environment, for instance a radar or a
scanning-laser rangefinder such as shown in Fig. 6.22a. The sensor is mounted on-
board the robot so the observation of the i landmark is

z=h(z,p)= \/(J’i—)’v)z-i-(x,-—xv)z w,
h( ’pl) tan_l(}’i*)’v)/(xi*xv)fev +[W6] (6.8)

where z = (r, 3)Tand r is the range, 3 the bearing angle, and w = (w,, wﬁ)Tis azero-
mean Gaussian random variable that models errors in the sensor

2
0
Yt Now), w=|"T T

The constant diagonal covariance matrix indicates that range and bearing errors are
independent.*

For this example we set the sensor uncertainty to be o,= 0.1 m and o= 1° giving
a sensor covariance matrix ‘

>> W = diag([0.1, 1*pi/180].%2);
We model this type of sensor with a RangeBearingSensor object™

>> sensor = RangeBearingSensor (veh, map, 'covar',6 W)

which is connected to the vehicle and the map, and the sensor covariance matrix W is
specified along with the maximum range and the bearing angle limits. The reading
method provides the range and bearing to a randomly selected visible*landmark along
with its identity, for example

>> [z,1] = sensor.reading/()
7z =

9.0905

1.0334

17

The identity is an integer i € [1, 20] since the map was created with 20 landmarks.
We have avoided the data association problem by assuming that we know the
identity of the sensed landmark. The position of landmark 17 can be looked up
in the map
>> landmark (17)

-4.4615

-9.0766
Using Eq. 6.8 the robot can estimate the range and bearing angle to the landmark
based on its own estimated position and the known position of the landmark from
the map. Any difference between the observation z* and the estimated observation
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indicates an error in the robot’s pose estimate & - it isn’t where it thought it was.
However this difference

v =z"kt1) — h(a‘:+(k+1),pi) (6.9)

has real value and is key to the operation of the Kalman filter. It is called the inno-

vation since it represents new information. The Kalman filter uses the innovation to

correct the state estimate and update the uncertainty estimate in an optimal way.
The predicted state computed earlier using Eq. 6.3 and Eq. 6.4 is updated by

2 (k+1) = & (k+1) + Kv (6.10)
P(k+1) = P™(k-t1) — KH, P (k+1) (6.11)

which are the Kalman filter update equations. These take the predicted values for the
next time step denoted with the * and compute the optimal estimate by applying land-
mark measurements from time step k + 1. The innovation is added to the estimated
state after multiplying by the Kalman gain matrix K which is defined as

K =P (kt)H'S™! (6.12)
T iyl
S=H.P"(k+1)H, + H,WH,, (6.13)

where W is the estimated covariance of the sensor noise and H, and H,, are Jacobians
obtained by differentiating Eq. 6.8 yielding

_xi_xv Yi— )y 0

= r r (6.14)
w=0 Yi— Vv Xi — %, -1
T2 1'2

o Oh
ox

which is a function of landmark position, vehicle pose and landmark range; and

_oh :[1 0] (6.15)
" dwl,, 01

The RangeBearingSensor object above includes methods h to implement Eq. 6.8
and Hx and Hw to compute these Jacobians respectively.

The Kalman gain matrix K in Eq. 6.10 distributes the innovation from the landmark
observation, a 2-vector, to update every element of the state vector - the position and
orientation of the vehicle. Note that the second term in Eq. 6.11 is subtracted from the
estimated covariance and this provides a means for covariance to decrease which was

H

predict state one step ahead
project covariance one step aheao

prediction phase

new tnformation — innovation

how to distribute the Lunovation
to states - Kalman gain

state wpdated with innovation

wpdated covariance

update phase

Fig.6.6.

Summary of extended Kalman
filter algorithm showing the pre-
diction and update phases
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Fig.6.7.a EKF localization show-
ing the true path of the robot (blue)
and the path estimated from odom-
etry and landmarks (red). Black
stars are landmarks. 95% confi-
dence ellipses are indicated in
green. The robot starts at the ori-
gin. b Closeup of the robot’s true
and estimated path

10

not possible for the dead-reckoning case of Eq. 6.4. The EKF comprises two phases:
prediction and update, and these are summarized in Fig. 6.6.

We now have all the piece to build an estimator that uses odometry and observa-
tions of map features. The Toolbox implementation is

>> map = LandmarkMap (20) ;

>> veh = Bicycle('covar', V);

>> veh.add driver ( RandomPath (map.dim) );

>> sensor = RangeBearingSensor (veh, map, 'covar', W, 'angle',6 4
[-pi/2 pi/2], 'range', 4, 'animate');

>> ekf = EKF(veh, V, PO, sensor, W, map);

The LandmarkMap constructor has a default map dimension of +10 m which is ac-
cessed by its dim property.
Running the simulation for 1000 time steps

>> ekf.run(1000) ;

shows an animation of the robot moving and observations being made to the land-
marks. We plot the saved results

>> map.plot ()

>> veh.plot xy();

>> ekf.plot xy('r');

>> ekf.plot ellipse('k")
which are shown in Fig. 6.7a. The error ellipses are now much smaller and many can
hardly be seen.

Figure 6.7b shows a zoomed view of the robot’s actual and estimated path - the robot
is moving from top to bottom. We can see the error ellipses growing as the robot moves
and then shrinking, just after a jag in the estimated path. This corresponds to the obser-
vation of a landmark. New information, beyond odometry, has been used to correct the
state in the Kalman filter update phase.

Figure 6.8a shows that the overall uncertainty is no longer growing monotonically.
When the robot sees alandmark it is able to dramatically reduce its estimated covariance.
Figure 6.8b shows the error associated with each component of pose and the pink back-
ground is the estimated 95% confidence bound (derived from the covariance matrix) and
we see that the error is mostly within this envelope. Below this is plotted the landmark
observations and we see that the confidence bounds are tight (indicating low uncertainty)
while landmarks are being observed but that they start to grow once observations stop.
However as soon as an observation is made the uncertainty rapidly decreases.

This EKF framework allows data from many and varied sensors to update the state which
is why the estimation problem is also referred to as sensor fusion. For example heading an-
gle from a compass, yaw rate from a gyroscope, target bearing angle from a camera, position
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from GPS could all be used to update the state. For each sensor we need only to provide the
observation function h(-), the Jacobians H, and H,,and some estimate of the sensor covari- _ )
ance W. The function h(-) can be nonlinear and even noninvertible - the EKF will do the rest. ' '9- 6-8- @ Covariance magnitude
as a function of time. Overall un-
. . . . certainty is given by /det (P) and
As discussed earlier for 7, we also use W twice.The first usage, in the constructor for shows that uncertainty does not
the RangeBearingSensor object,is the covariance W of the Gaussian noise that continually increase with time.
is added to the computed range and bearing to simulate sensor error as in Eq.6.8. b Top: pose estimation error with
In a real application this noise is generated by some physical process hidden in- 95% confidence bound shown in
. . P pink; bottom: observed landmarks
side the sensor and we would not know its parameters.The second usage, W is our - -
; X L=t the bar indicates which landmark
best estimate of the sensor covariance which is used by the Kalman filter Eq.6.12. is seen at each time step, 0 means
no observation
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Data association. So far we have assumed that the observed landmark
reveals its identity to us, but in reality this is rarely the case. Instead
we compare our observation to the predicted position of all currently
known landmarks and make a decision as to which landmark it is
most likely to be, or whether it is a new landmark. This decision
needs to take into account the uncertainty associated with the vehi-
cle’s pose, the sensor measurement and the landmarks in the map.
This is the data association problem. Errors in this step are potential-
ly catastrophic - incorrect innovation is coupled via the Kalman filter
to the state of the vehicle and all the other landmarks which increases
the chance of an incorrect data association on the next cycle. In
practice, filters only use a landmark when there is a very high confi-
dence in its estimated identity — a process that involves Mahalanobis
distance and x? confidence tests. If the situation is ambiguous it
is best not to use the landmark - it can do more harm than good.

Simple landmarks. For educational purposes it might be appropriate
to use artificial landmarks that can be cheaply sensed by a camera.
These need to be not only visually distinctive in the environment
but also encode an identity. 2-dimensional bar codes such as QR
codes or ARTags are well suited for this purpose. The Toolbox sup-
ports a variant called AprilTags, shown to the right, and

>> tags = apriltags(im);

returns a vector of Apri1Tag objects whose elements correspond
to tags found in the image im. The centroid of the tag (centre
property) can be used to determine relative bearing (see page 161),
and the length of the edges (from the corners property) is a

An alternative
is to use a multi-
hypothesis esti-
mator, such as the
particle filter that
we will discuss in
Sect. 6.7, which can
model the pos-
sibility of observ-
ing landmark A
or landmark B,
and future observations will reinforce one hypothesis and weaken
the others. The extended Kalman filter uses a Gaussian probability
model, with just one peak, which limits it to holding only one hypoth-
esis about the robot’s pose. (Picture: the wreck of the Tararua, 1881)

Alandmark might be some easily identifiable
pattern such as this April tag (36h11) which
can be detected in animage.|ts position and
size in the image encodes the bearing angle
and range.The pattern itself encodes a num-
ber between 0 and 586 which could be used
to uniquely identify the landmark in a map.

function of distance. The tag object also includes an homography
(see Sect. 14.2.4) (H property) which encodes information about
the orientation of the plane of the April tag. More details about
April tags can be found at http://april.eecs.umich.edu.



6.3 - Creating a Map

165

A close and realistic approximation would
be a high-end RTK GPS+INS system op-
erating in an environment with no build-
ings or hills to obscure satellites.

6.3 Creating a Map

So far we have taken the existence of the map for granted, an understandable mindset given
that maps today are common and available for free via the internet. Nevertheless somebody,
or something, has to create the maps we will use. Our next example considers the problem
of arobot moving in an environment with landmarks and creating a map of their locations.

As before we have a range and bearing sensor mounted on the robot which mea-
sures, imperfectly, the position of landmarks with respect to the robot. There are a total
of N landmarks in the environment and as for the previous example we assume that the
sensor can determine the identity of each observed landmark. However for this case we
assume that the robot knows its own location perfectly - it has ideal localization. This is
unrealistic but this scenario is an important stepping stone to the next section.

Since the vehicle pose is known perfectly we do not need to estimate it, but we do
need to estimate the coordinates of the landmarks. For this problem the state vector
comprises the estimated coordinates of the M landmarks that have been observed so far

" T 2Mx1
= (xl’)’l»xza)’z""xM’)’M) €eR

The corresponding estimated covariance P will be a 2M x 2M matrix. The state vec-
tor has a variable length since we do not know in advance how many landmarks exist
in the environment. Initially M = 0 and is incremented every time a previously un-
seen landmark is observed.

The prediction equation is straightforward in this case since the landmarks are as-
sumed to be stationary

& (k1) = (k) (6.16)

Pt (k1) = P@&) (6.17)

We introduce the function g(-) which is the inverse of h(-) and gives the coordinates of
the observed landmark based on the known vehicle pose and the sensor observation
(@2)= | +rcos(6, + 5)
T,z) = .

g ¥, +rsin(6, + )

Since & has a variable length we need to extend the state vector and the covariance
matrix whenever we encounter a landmark we have not previously seen. The state vec-
tor is extended by the function y(-)

z() = y(z(k), 2(K), 2, (k) (6.18)

_ x (k)
g(=, k), 2()

which appends the sensor-based estimate of the new landmark’s coordinates to those
already in the map. The order of feature coordinates within & therefore depends on
the order in which they are observed.

The covariance matrix also needs to be extended when a new landmark is observed
and this is achieved by

(6.19)

where Y, is the insertion Jacobian

— 8y _ In><n 0n><2
YZ - g B [ Gx 02><nf3 G (6.20)

z
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that relates the rate of change of the extended state vector to the new observation. # is
the dimension of P prior to it being extended and

_dg (000

i [o 0 o] (6.21)
_0Jg _ cos(0, + 3) —rsin(6, + 3)

G = 0z [sin(@v + ﬁ) rcos(@v + ﬁ) (6.22)

G, is zero since g(+) is independent of the map in . An additional Jacobian for
h(-)is

B oh B xi:xv }'i_r)'v (6 23)
Pi api 7}’1‘;}’., xir_zxv

H

which describes how the landmark observation changes with respect to landmark posi-
tion for a particular robot pose, and is implemented by the method Hp.

For the mapping case the Jacobian H, used in Eq. 6.11 describes how the landmark
observation changes with respect to the full state vector. However the observation de-
pends only on the position of that landmark so this Jacobian is mostly zeros

)

£ = :(0-~-Hpi~--0)ER2X2M

(6.24)

w=0

where H), is at the location in the vector corresponding to the state p;. This structure
represents the fact that observing a particular landmark provides information to es-
timate the position of that landmark, but no others.

The Toolbox implementation is

>> map = LandmarkMap (20) ;

>> veh = Bicycle(); % error free vehicle
>> veh.add driver ( RandomPath (map.dim) );
>> W = diag([0.1, 1*pi/180]."72);

>> RangeBearingSensor (veh, map,
>> [1, []1, sensor, W, [1);

sensor = 'covar', W);

ekf = EKF (veh,

the empty matrices passed to EKF indicate respectively that there is no estimated
odometry covariance for the vehicle (the estimate is perfect), no initial vehicle state
covariance, and the map is unknown. We run the simulation for 1000 time steps

>> ekf.run(1000) ;

Fig.6.9. EKF mapping results.a The
estimated landmarks are indicat-
ed by black dots with 95% confi-
dence ellipses (green), the true lo-
cation (black sx-marker) and the
robot’s path (blue). The landmark
estimates have not fully converged
on their true values and the es-
timated covariance ellipses can
only be seen by zooming; b the
nonzero elements of the final co-
variance matrix

10 o
ot =
8 2 / *:’8' -4
oo \ <7\
v/ ) =
4
N/ )/ :
2 62
©
- N/ :
~ 0 / ]\%/ Bl | ‘7g
v
-2 / 25 g
= | _8_
—4 .
& // 30
-6 1 -9
N ZE 35
,8 ~
R 1-10
10 s * 40 L
=10 -5 0 5 10 15 5 10 15 20 25
a x b State



6.4 - Localization and Mapping

167

Fig.6.10. Map of the New Holland
coast (now eastern Australia) by
Captain James Cook in 1770. The
path of the ship and the map of the
coast were determined at the same
time. Numbers indicate depth in
fathoms (1.83 m) (National Library
of Australia, MAP NK 5557 A)

and see an animation of the robot moving and the covariance ellipses associated with
the map features evolving over time. The estimated landmark positions

>> map.plot ()

>> ekf.plot map('g');

>> veh.plot xy('b'");

are shown in Fig. 6.9a as 95% confidence ellipses along with the true landmark positions
and the path taken by the robot. The covariance matrix has a block diagonal structure
which is shown graphically in Fig. 6.9b. The off-diagonal elements are zero, which implies
that the landmark estimates are uncorrelated or independent. This is to be expected since
observing one landmark provides no new information about any other landmark.

Internally the EKF object maintains a table to relate the landmark’s identity, re-
turned by the RangeBearingSensor, to the position of that landmark’s coordi-
nates in the state vector. For example the landmark with identity 6

>> ekf.landmarks (:,6)

ans =

19
71

was seen a total of 71 times during the simulation and comprises elements 19 and 20 of &

>> ekf.x est(19:20)"
ans =
-6.4803 9.6233

which is its estimated location. Its estimated covariance is a submatrix within P

>> ekf.P_est(19:20,19:20)

ans =
1.0e-03 *
0.2913 0.1814
0.1814 0.3960
6.4 Localization and Mapping

Finally we tackle the problem of determining our position and creating a map at the
same time. This is an old problem in marine navigation and cartography - incremen-
tally extending maps while also using the map for navigation. Figure 6.10 shows what
can be done without GPS from a moving ship with poor odometry and infrequent ce-
lestial position “fixes”. In robotics this problem is known as simultaneous localization
and mapping (SLAM) or concurrent mapping and localization (CML). This is often
considered to be a “chicken and egg” problem - we need a map to localize and
we need to localize to make the map. However based on what we have learned
in the previous sections this problem is now quite straightforward to solve.

The state vector comprises the vehicle configuration and the coordinates of
the M landmarks that have been observed so far

A T 2M+3x1
= (xv’yv’ev’xl’yl’xZ’yZ""xM’)/M) eR

The estimated covariance is a (2M + 3) x (2M -+ 3) matrix and has the structure

D PVV Pvm
| AT N
Pvm Pmm

where P, is the covariance of the vehicle pose, P, the covariance of the map land-
mark positions, and P, is the correlation between vehicle and landmark states.

The predicted vehicle state and covariance are given by Eq. 6.3 and Eq. 6.4
and the sensor-based update is given by Eq. 6.10 to 6.15. When a new feature
is observed the state vector is updated using the insertion Jacobian Y, given by
Eq. 6.20 but in this case G, is nonzero
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G :8_g: 1 0 —rsin(6, +3) (6.25)
* ox |0 1 rcos(6,+0)

since the estimate of the new landmark depends on the state vector which now con-
tains the vehicle’s pose.

For the SLAM case the Jacobian H, used in Eq. 6.11 describes how the landmark
observation changes with respect to the state vector. The observation will depend on
the position of the vehicle and on the position of the observed landmark and is

H = Z_Z o0 H, 0) c R2(2M+3) (6.26)

w=0

where H), is at the location corresponding to the landmark p,. This is similar to Eq. 6.24
but with an extra nonzero block H, given by Eq. 6.14.

The Kalman gain matrix K distributes innovation from the landmark observation,
a 2-vector, to update every element of the state vector - the pose of the vehicle and the
position of every landmark in the map.

The Toolbox implementation is by now quite familiar

>> PO = diag([.01, .01, 0.005].72);

>> map = LandmarkMap (20) ;

>> veh = Bicycle('covar', V);

>> veh.add driver ( RandomPath (map.dim) );

>> sensor = RangeBearingSensor (veh, map, 'covar', W);
>> ekf = EKF(veh, V, PO, sensor, W, []);

and the empty matrix passed to EKF indicates that the map is unknown. PO is the ini-
tial 3 x 3 covariance for the vehicle state.
We run the simulation for 1000 time steps

>> ekf.run(1000) ;

and as usual an animation is shown of the vehicle moving. We also see the covariance
ellipses associated with the map features evolving over time. We can plot the results

>> map.plot ()

>> ekf.plot map('g"');

>> ekf.plot xy('r');

>> veh.plot xy('b');
which are shown in Fig. 6.11.

Figure 6.12a shows that uncertainty is decreasing over time. The final covariance
matrix is shown graphically in Fig. 6.12b and we see a complex structure. Unlike the
mapping case af Fig. 6.9 P,,,, is not block diagonal, and the finite off-diagonal terms
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Fig.6.11.

Simultaneous localization and
mapping showing the true (blue)
and estimated (red) robot path
superimposed on the true map
(black %x-marker). The estimat-
ed map features are indicated by
black dots with 95% confidence
ellipses (green)
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Fig.6.12. Simultaneous localiza-
tion and mapping. a Covariance
versus time; b the final covariance
matrix

Such as the particle filter that we will dis-
cuss in Sect.6.7.

represent correlation between the landmarks in the map. The landmark uncertain-
ties never increase, the position prediction model is that they do not move, but they
also never drop below the initial uncertainty of the vehicle which was set in P,. The
block P,,, is the correlation between errors in the vehicle pose and the landmark loca-
tions. A landmark’s location estimate is a function of the vehicle’s location and errors
in the vehicle location appear as errors in the landmark location - and vice versa.

The correlations are used by the Kalman filter to connect the observation of any
landmark to an improvement in the estimate of every other landmark in the map as
well as the vehicle pose. Conceptually it is as if all the states were connected by springs
and the movement of any one affects all the others.

The extended Kalman filter introduced here has a number of drawbacks. Firstly the
size of the matrices involved increase with the number of landmarks and can lead to
memory and computational bottlenecks as well as numerical problems. The underlying
assumption of the Kalman filter is that all errors are Gaussian and this is far from true for
sensors like laser rangefinders which we will discuss later in this chapter. We also need
good estimates of covariance of the noise sources which in practice is challenging.

6.5 Rao-Blackwellized SLAM

We will briefly and informally introduce the underlying principle of Rao-Blackwellized
SLAM of which FastSLAM is a popular and well known instance. The approach is motivated
by the fact that the size of the covariance matrix for EKF SLAM is quadratic in the number
of landmarks, and for large-scale environments becomes computationally intractable.

If we compare the covariance matrices shown in Fig. 6.9b and 6.12b we notice a stark
difference. In both cases we were creating a map of unknown landmarks but Fig. 6.9b is
mostly zero with a finite block diagonal structure whereas Fig. 6.12b has no zero values
at all. The difference is that for Fig. 6.9b we assumed the robot trajectory was known
exactly and that makes the landmark estimates independent - observing one landmark
provides information about only that landmark. The landmarks are uncorrelated, hence
all the zeros in the covariance matrix. If the robot trajectory is not known, the case for
Fig. 6.12b, then the landmark estimates are correlated - error in one landmark posi-
tion is related to errors in robot pose and other landmark positions. The Kalman filter
uses the correlation information so that a measurement of any one landmark provides
information to improve the estimate of all the other landmarks and the robot’s pose.

In practice we don’t know the true pose of the robot but imagine a multi-hypothesis
estimator where every hypothesis represents a robot trajectory that we assume is cor-
rect. This means that the covariance matrix will be block diagonal like Fig. 6.9b - rather
than a filter with a 2N x 2N covariance matrix we can have N simple filters which are



170

Chapter 6 - Localization

each independently estimating the position of a single landmark and have a 2 x 2 cova-
riance matrix. Independent estimation leads to a considerable saving in both memory
and computation. Importantly though, we are only able to do this because we assumed
that the robot’s estimated trajectory is correct.

Each hypothesis also holds an estimate of the robot’s trajectory to date. Those hypoth-
eses that best explain the landmark measurements are retained and propagated while
those that don’t are removed and recycled. If there are M hypotheses the overall compu-
tational burden falls from O(N?) for the EKF SLAM case to O(M log N) and in practice
works well for M in the order of tens to hundreds but can work for a value aslowas M = 1.

6.6 Pose Graph SLAM

An alternative approach to the SLAM problem is to separate it into two components: a
front end and a back end, connected by a pose graph as shown in Fig. 6.13. The robot’s
path is considered to be a sequence of distinct poses and the task is to estimate those
poses. Constraints between the unknown poses are based on measurements from a
variety of sensors including odometry, laser scanners and cameras. The problem is
formulated as a directed graph as shown in Fig. 6.14. A node corresponds to a robot
pose or a landmark position. An edge between two nodes represents a spatial con-
straint between the nodes derived from some sensor data.

As the robot progresses it compounds an increasing number of uncertain relative
poses so that the cumulative error in the pose of the nodes will increase - the prob-
lem with dead reckoning we discussed earlier. This is shown in exaggerated fashion in
Fig. 6.14 where the robot is traveling around a square. By the time the robot reaches
node 4 the error is significant. However when it makes a measurement of node 1 a con-
straint is added - the dashed edge - indicating that the nodes are closer than the esti-
mated relative pose based on the chain of relative poses from odometry: '¢% & %% & 3¢,
The back-end algorithm will then pull all the nodes closer to their correct pose.

The front end adds new nodes as the robot travels” as well as edges that define con-
straints between poses. For example, when moving from one place to another wheel
odometry gives an estimate of distance and change in orientation which is a constraint.
In addition the robot’s exteroceptive sensors may observe the relative position of a land-
mark and this also adds a constraint. Every measurement adds a constraint — an edge
in the graph. There is no limit to the number of edges entering or leaving a node.

The back end adjusts the poses of the nodes” so that the constraints are satisfied as
well as possible, that is, that the sensor observations are best explained.

Figure 6.15 shows the notation associated with two poses in the graph. Coordinate
frames {i} and {j} are associated with robot poses i and j respectively and we seek to
estimate °%; and °%; in the world coordinate frame. The robot makes a measurement of
the relative pose i{j” which will, in general, be different to the relative pose ’Ej inferred
from the poses °%¢; and °€j. This difference, or innovation, is caused by error in the sen-
sor measurement ’ff and/or the node poses °%¢; and °§j and we use it to adjust the poses
of the nodes. However there is insufficient information to determine where the error
lies so naively adjusting °%¢; and % to better explain the measurement might increase

laser
scanner
camera

sensors

212
pose graph

Typically a new place is declared every
meter or so of travel, or after a sharp turn.

Also the positions of landmarks as we
discuss later in this section.

Fig.6.13.

Pose-graph SLAM system. The
front end creates nodes as the
robot travels, and creates edges
based on sensor data. The back
end adjusts the node positions
to minimize total error
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We have used our pose notation here but
in the literature measurements are typi-
cally denoted by =, error by e and pose
or position by az.

In practice this matrix is diagonal reflect-
ing confidence in the x-,y- and 6-direc-
tions.The "bigger” (in a matrix sense) 2
is, the more the edge matters in the op-
timization procedure. Different sensors
have different accuracy and this must be
taken into account. Information from a
high-quality sensor should be given more
weight than information from a low-qual-
ity sensor.

Fig.6.14.
Pose-graph SLAM example.
Places are shown as circular

nodes and have an associated

pose. Landmarks are shown as
star-shaped nodes and have an
associated position. Edges repre-
sent a measurement of a relative
pose or position with respect to
the node at the tail of the arrow

Fig.6.15.

Pose graph notation. The light
grey robot is the estimated pose
of {j} based on the sensor mea-
surement ¢¥. The yellow ellipse
indicates uncertainty associated
with that measurement

the error in another part of the graph - we need to minimize the error consistently
over the whole graph.

The first step is to express the error associated with the graph edge in terms of
the sensor measurement and our best estimates of the node poses with respect to the
world frame<

£ =6'¢f 0% e e SEQ) (6.27)
which is ideally zero.

We can formulate this as a minimization problem and attempt to find the poses of
all the nodes « = {¢}, &, -+ £y} that minimizes the error across all the edges

x" =argmin)_ F(x) (6.28)

xT
k
where « is the state of the pose graph and contains the pose of every node, and F;(x)
is a nonnegative scalar cost associated with the edge k connecting node i to node j.

We convert the edge pose error in Eq. 6.27 to a vector representation £_~ (x, y, 0)
which is a function fi(z) € R? of the state. The scalar cost can be obtained from a
quadratic expression

F(x) = f (@) fi(x) (6.29)
where €, is a positive-definite information matrix used as a weighting term.< Although
Eq. 6.29 is written as a function of all poses z, it in fact depends only on the pose of its two
vertices {;and §;and the measurement ’f}’. Solving Eq. 6.28 is a complex optimization prob-
lem which does not have a closed-form solution, but this kind of nonlinear least squares

problem can be solved numerically if we have a good initial estimate of x. Specifically
this is a sparse nonlinear least squares problem which is discussed in Sect. F.2.4.

0

G

e -,

-

what the robot semses
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The edge error fi(x) can be linearized about the current state x, of the pose graph

FA) ~ fo, + 1A

where f; = fi(z,) and

Ji = 3.fk(i'3) c RSN
ox

is a Jacobian matrix which depends only on the pose of its two vertices ; and §; so it
is mostly zeros

J

Ik :(OAIBJO), whereAi :MER3X3,B.
o€, ]

_ 8.fk(iv) c R
€.

and more details are provided in Appendix E.

There are many ways to compute the Jacobians but here will demonstrate use of
the MATLAB Symbolic Math Toolbox™

>> syms xi yi ti xj yJj tj xm ym tm assume real

>> xi e = inv( SE2 (xm, ym, tm) ) * inv( SE2(xi, yi, ti) ) * SE2(x3j, yj, tj);

>> fk = simplify(xiie.xyt);
and the Jacobian which describes how the function f; varies with respect to &; is

>> jacobian( fk, [xi yi ti] );
>> Al = simplify(ans)

Ai =

[ -cos(tittm), -sin(ti+tm), yj*cos(ti+tm)-yi*cos (ti+tm)+xi*sin(ti+tm)-xj*sin(ti+tm)]
[ sin(ti+tm), -cos(ti+tm), xi*cos(tit+tm)-xj*cos(ti+tm)+yi*sin(ti+tm)-yj*sin(ti+tm)]
[ 0, 0, -1]

and we follow a similar procedure for B.
It is quite straightforward to solve this type of pose-graph problem with the Toolbox.

We load a simple pose graph, similar to Fig. 6.14, from a data file> The file format is one used by the popular
posegraph optimization package g%o which
>> pg = PoseGraph('pgl.g2o') you can find at http://openslam.org.

loaded g20 format file: 4 nodes, 4 edges in 0.00 sec

which returns a Toolbox PoseGraph object that describes the pose graph. We can
visualize this by” The nodes have an orientation which is in

the z-direction, rotate the graph to see this.
>> pg.plot ()
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0 — Pose graph optimization show-
ing the result over consecutive
- iterations, the final configura-
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Fig.6.17. Pose graph with 1941
nodes and 3995 edges from the
MIT Killian Court dataset. a Ini-
tial configuration; b final configu-
ration after optimization

There are a lot of nodes and this takes
afew seconds.

The optimization reduces the error in the network while animating the changing
pose of the nodes

>> pg.optimize ('animate')

solving....done in 0.075 sec. Total cost 316.88
solving....done in 0.0033 sec. Total cost 47.2186
solving....done in 0.0023 sec. Total cost 3.14139%e-11

The displayed text indicates that the total cost is decreasing while the graphics show
the nodes moving into a configuration that minimizes the overall error in the network.
The pose graph configurations are overlaid and shown in Fig. 6.16.

Now let’s look a much larger example based on real robot data

>> pg = PoseGraph('killian-small.toro');
loaded TORO/LAGO format file: 1941 nodes, 3995 edges in 0.68 sec

which we can plot?
>> pg.plot ()

and this is shown in Fig. 6.17a. Note the mass of edges in the center of the graph, and
if you zoom in you can see these in detail. We optimize the pose graph by

>> pg.optimize ()
solving....done in 0.91 sec. Total cost 1.78135e+06

solving....done in 1.1 sec. Total cost 5.44567

and the final configuration is shown in Fig. 6.17b. The original pose graph had severe
pose errors from accumulated odometry error which meant that two trips along the
corridor were initially very poorly aligned.

The pose graph can also include landmarks as shown in Fig. 6.18. Landmarks have
a position P, € R? not a pose, and therefore differ from the nodes discussed so far.
To accomodate this we redefine the state vector to be & = {&;, &, -+ &y| Py, Py -+ Py}
which includes N robot poses and M landmark positions. The robot at pose i observes
landmark j at range and bearing 2* = (+*, 3¥) which is converted to Cartesian form in
frame {i}

il:’j# = (r# cos 3%, r* sinﬁ#) eR?
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what the robot senses——

The estimated position of the landmark in frame {i} is
R 0 . 5
‘P = (%) B e R
and the error vector is
i ipt 2
fi(®)=¢e="P,—'P/ €R
We follow a similar approach as earlier but the Jacobian matrix is now

J, = afk(ﬂ?) c R2XGN+2M)
oz

which again is mostly zero but the two nonzero blocks now have different widths

A= 0fi () c szs’ B. — O fi(x) c R¥?
o0& T op,

and the solution can be achieved as before, see Sect. F.2.3 for more details.

Pose graph optimization results in a graph that has optimal relative poses and
positions between the nodes but the absolute poses and positions are not neces-
sarily correct. To remedy this we can fix or anchor one or more nodes (poses or
landmarks) and not update them during the optimization, and this is discussed
in Sect. F.2.4.

In practice the front and back ends can operate asynchronously. The graph is
continually extended by the front end while the back end runs periodically to opti-

Monte Carlo methods are a class of computational algorithms that rely on repeated random sam-
pling to compute their results. An early example of this idea is Buffon’s needle problem posed in
the eighteenth century by Georges-Louis Leclerc (1707-1788), Comte de Buffon: Suppose we have
a floor made of parallel strips of wood of equal width t, and a needle of length  is dropped onto the
floor. What is the probability that the needle will lie across a line between the strips? If n needles
are dropped and h cross the lines, the probability can be shown to be ki /n =21 / «t and in 1901 an
Italian mathematician Mario Lazzarini performed the experiment, tossing a needle 3408 times, and
obtained the estimate 7 & 355 / 113 (3.14159292).

Monte Carlo methods are often used when simulating systems with a large number of coupled de-
grees of freedom with significant uncertainty in inputs. Monte Carlo methods tend to be used when it
is infeasible or impossible to compute an exact result with a deterministic algorithm. Their reliance
on repeated computation and random or pseudo-random numbers make them well suited to cal-
culation by a computer. The method was developed at Los Alamos as part of the Manhattan project
during WW II by the mathematicians John von Neumann, Stanislaw Ulam and Nicholas Metropolis.
The name Monte Carlo alludes to games of chance and was the code name for the secret project.

Fig.6.18.

Notation for a pose graph with a
landmark indicated by the star-
shaped symbol. The measured
position of landmark j with re-
spect to robot pose i is in. The
yellow ellipse indicates uncer-
tainty associated with that mea-
surement
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mize the pose graph. Since the graph is only ever extended in a local region it is pos-
sible to optimize just a local subset of the pose graph and less frequently optimize
the entire graph. If nodes are found to be equivalent after optimization they can be
merged. The parallel tracking and mapping system (PTAM) is a vision-based SLAM
system that has two parallel computational threads. One is the map builder which
performs the front- and back-end tasks, adding landmarks to the pose graph based
on estimated camera (vehicle) pose and performing graph optimization. The other
thread is the localizer which matches observed landmarks to the estimated map to
estimate the camera pose.

6.7 Sequential Monte-Carlo Localization

The estimation examples so far have assumed that the error in sensors such as odom-
etry and landmark range and bearing have a Gaussian probability density function. In
practice we might find that a sensor has a one sided distribution (like a Poisson dis-
tribution) or a multi-modal distribution with several peaks. The functions we used in
the Kalman filter such as Eq. 6.2 and Eq. 6.7 are strongly nonlinear which means that
sensor noise with a Gaussian distribution will not result in a Gaussian error distribu-
tion on the value of the function - this is discussed further in Appendix H. The prob-
ability density function associated with a robot’s configuration may have multiple
peaks to reflect several hypotheses that equally well explain the data from the sensors
as shown for example in Fig. 6.3c.

The Monte-Carlo estimator that we discuss in this section makes no assumptions
about the distribution of errors. It can also handle multiple hypotheses for the state
of the system. The basic idea is disarmingly simple. We maintain many different val-
ues of the vehicle’s configuration or state vector. When a new measurement is avail-
able we score how well each particular value of the state explains what the sensor
just observed. We keep the best fitting states and randomly sample from the predic-
tion distribution to form a new generation of states. Collectively these many possi-
ble states and their scores form a discrete approximation of the probability density
function of the state we are trying to estimate. There is never any assumption about
Gaussian distributions nor any need to linearize the system. While computationally
expensive it is quite feasible to use this technique with today’s standard computers.
If we plot these state vectors as points in the state space we have a cloud of particles
hence this type of estimator is often referred to as a particle filter.

We will apply Monte-Carlo estimation to the problem of localization using odom-
etry and a map. Estimating only three states & = (x, y, #) is computationally tractable
to solve with straightforward MATLAB code. The estimator is initialized by creating
N particles x;, i € [1, N] distributed randomly over the configuration space of the ve-
hicle. All particles have the same initial weight or likelihood w;= 1/ N. The steps in
the main iteration of the algorithm are:

1. Apply the state update to each particle
@' (k+1) = f (200, wlk) + q(k)
where (k) is the input to the system or the measured odometry (k) = 6 (k). We also
add a random vector g(k) which represents uncertainty in the model or the odom-

etry. Often g is drawn from a Gaussian random variable with covariance Q but any
physically meaningful distribution can be used. The state update is often simplified to

;" (k+1) = f(;(k), ulk) + gk

where g(k) represents uncertainty in the pose of the vehicle.
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2. We make an observation z* of landmark j which has, according to the map, coor-

dinate p;. For each particle we compute the innovation
v; = h(a:;r,pj> -2

which is the error between the predicted and actual landmark observation. A like-
lihood function provides a scalar measure of how well the particular particle ex-
plains this observation. In this example we choose a likelihood function

Tl
—v; L Vi+W0

w,=e
where w is referred to as the importance or weight of the particle, L is a covariance-like
matrix, and w,, > 0 ensures that there is a finite probability of a particle being retained
despite sensor error. We use a quadratic exponential function only for convenience,
the function does not need to be smooth or invertible but only to adequately describe
the likelihood of an observation.”

. Select the particles that best explain the observation, a process known as resam-

pling” or importance sampling. A common scheme is to randomly select particles
according to their weight. Given N particles x; with corresponding weights w; we
first normalize the weights w} = w;/ X w; and construct a cumulative histogram
G= E{leg. We then draw a uniform random number r € [0, 1] and find

argminr <c;
i

where particle 7 is selected for the next generation. The process is repeated N times.

Particles with a large weight will correspond to a larger fraction of the vertical
span of the cumulative histogram and therefore be more likely to be chosen. The
result will have the same number of particles, some will have been copied” multi-
ple times, others not at all. Resampling is a critical component of the particle filter
without which the filter would quickly produce a degenerate set of particles where
a few have high weights and the bulk have almost zero weight.

These steps are summarized in Fig. 6.19. The Toolbox implementation is broadly

similar to the previous examples. We create a map

>> map = LandmarkMap (20) ;

and a robot with noisy odometry and an initial condition

>> W = diag([0.1, 1*pi/180]1.72);
>> veh = Bicycle('covar', V);
>> veh.add driver ( RandomPath (10) );

predict state of this particle
one step ahead based on inputs
and model

add a random valwe to
represent wncertainty

prediction phase

wew Linformation — tnmovation -
from observing landmark |

welght ts a function of how
likely the measurement was

normalize the weights o to 1

resample, weighted selection of
particles to go to the next rownad

update phase

In this bootstrap type filter the weight is
computed at each step, with no depen-
dence on previous values.

There are many resampling strategies
for particle filters, both the resampling
algorithm and the resampling frequency.
Here we use the simplest strategy known
variously as multinomial resampling,
simple random resampling or select with
replacement, at every time step. This is
sometimes referred to as bootstrap par-
ticle filtering or condensation.

Step 1 of the next iteration will spread out
these copies through the addition of g(x).

Fig.6.19.

The particle filter estimator
showing the prediction and up-
date phases
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Here we take statistics over all particles.
Other strategies are to estimate the ker-
nel density at every particle — the sum
of the weights of all neighbors within a
fixed radius — and take the particle with
the largest value.

Fig. 6.20. Particle filter results
showing the evolution of the par-
ticle cloud (green dots) over time.
The vehicle is shown as a blue tri-
angle. The red diamond is a way-
point, or temporary goal. When
the simulation is running this is
actually a 3D plot with orientation
plotted in the z-direction, rotate
the plot to see this dimension

and then a sensor with noisy readings

>> V = diag([0.005, 0.5*pi/180]."2);

>> sensor = RangeBearingSensor (veh, map, 'covar', W);

For the particle filter we need to define two covariance matrices. The first is the covariance
of the random noise added to the particle states at each iteration to represent uncertainty
in configuration. We choose the covariance values to be comparable with those of W

>> Q = diag([0.1, 0.1, 1*pi/180])."2;

and the covariance of the likelihood function applied to innovation

>> L = diag([0.1 0.1]);

Finally we constructa ParticleFilter estimator

>> pf = ParticleFilter (veh, sensor, Q, L, 1000);

which is configured with 1000 particles. The particles are initially uniformly distrib-
uted over the 3-dimensional configuration space.
We run the simulation for 1000 time steps

>> pf.run(1000) ;

and watch the animation, two snapshots of which are shown in Fig. 6.20. We see the
particles move about as their states are updated by odometry and random pertur-
bation. The initially randomly distributed particles begin to aggregate around those
regions of the configuration space that best explain the sensor observations that are
made. In Darwinian fashion these particles become more highly weighted and survive
the resampling step while the lower weight particles are extinguished.

The particles approximate the probability density function of the robot’s config-
uration. The most likely configuration is the expected value or mean of all the par-
ticles. A measure of uncertainty of the estimate is the spread of the particle cloud or
its standard deviation. The ParticleFilter object keeps the history of the mean
and standard deviation of the particle state at each time step, taking into account the
particle weighting”. As usual we plot the results of the simulation

>> map.plot ()
>> veh.plot xy('b'");

and overlay the mean of the particle cloud

>> pf.plot xy('r");
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which is shown in Fig. 6.21. The initial part of the estimated path has quite high stan-
dard deviation since the particles have not converged on the true configuration. We
can plot the standard deviation against time

>> plot (pf.std(1:100,:))

and this is shown in Fig. 6.21b. We can see the sudden drop between timesteps 10-20 as
the particles that are distant from the true solution are eliminated. As mentioned at the
outset the particles are a sampled approximation to the PDF and we can display this as

>> pf.plot pdf()

The problem we have just solved is known in robotics as the kidnapped robot problem
where a robot is placed in the world with no idea of its initial location. To represent
this large uncertainty we uniformly distribute the particles over the 3-dimensional
configuration space and their sparsity can cause the particle filter to take a long time
to converge unless a very large number of particles is used. It is debatable whether
this is a realistic problem. Typically we have some approximate initial pose of the ro-
bot and the particles would be initialized to that part of the configuration space. For
example, if we know the robot is in a corridor then the particles would be placed in
those areas of the map that are corridors, or if we know the robot is pointing north
then set all particles to have that orientation.

Setting the parameters of the particle filter requires a little experience and the best
way to learn is to experiment. For the kidnapped robot problem we set Q and the num-
ber of particles high so that the particles explore the configuration space but once the
filter has converged lower values could be used. There are many variations on the par-
ticle filter in the shape of the likelihood function and the resampling strategy.

6.8 Application: Scanning Laser Rangefinder

As we have seen, robot localization is informed by measurements of range and bearing
to landmarks. Sensors that measure range can be based on many principles such as laser
rangefinding (Fig. 6.22a, 6.22b), ultrasonic ranging (Fig. 6.22¢), computer vision or radar.

A laser rangefinder emits short pulses of infra-red laser light and measures how
long it takes for the reflected pulse to return. Operating range can be up to 50 m with
an accuracy of the order of centimeters.

A scanninglaser rangefinder, as shown in Fig. 6.22a, contains a rotating laser range-
finder and typically emits a pulse every quarter, half or one degree over an angular
range of 180 or 270 degrees and returns a planar cross-section of the world in polar
coordinate form {(r;, #,), i € 1 --- N}. Some scanning laser rangefinders also measure

50 60 70 80 90 100
X

Fig.6.21. Particle filter results.
a True (blue) and estimated (red)
robot path; b standard deviation
of the particles versus time
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Fig.6.22.

Robot rangefinders. a A scan-
ning laser rangefinder with a
maximum range of 30 m, an an-
gular range of 270 deg in 0.25 deg
intervals at 40 scans per second
(courtesy of Hokuyo Automatic
Co. Ltd.); b a low-cost time-of-
flight rangefinder with maximum
range of 20 cm at 10 measure-
ments per second (VL6180 cour-
tesy of SparkFun Electronics);

c alow-cost ultrasonic range-
finder with maximum range of
6.5 m at 20 measurements per
second (LV-MaxSonar-EZ1
courtesy of SparkFun Electronics)

Note that the points close to the laser,at
coordinate (0,0) in this sensor reference
frame are much more tightly clustered
and this is a characteristic of laser scan-
ners where the points are equally spaced
in angle not over an area.

a

the return signal strength, remission, which is a function of the infra-red reflectivity
of the surface. The rangefinder is typically configured to scan in a plane parallel to,
and slightly above, the ground.

Laser rangefinders have advantages and disadvantages compared to cameras and com-
puter vision which we discuss in Parts IV and V of this book. On the positive side laser
scanners provide metric data, that is, the actual range to points in the world in units of
meters, and they can work in the dark. However laser rangefinders work less well than
cameras outdoors since the returning laser pulse is overwhelmed by infra-red light from
the sun. Other disadvantages include providing only a linear cross section of the world,
rather than an area as a camera does; inability to discern fine texture or color; having mov-
ing parts; as well as being bulky, power hungry and expensive compared to cameras.

Laser Odometry

A common application of scanning laser rangefinders is laser odometry, estimating
the change in robot pose using laser scan data rather than wheel encoder data. We will
illustrate this with laser scan data from a real robot

>> pg = PoseGraph('killian.g2o0', 'laser');

loaded g2o0 format file: 3873 nodes, 4987 edges in 1.78 sec

3873 laser scans: 180 beams, fov -90 to 90 deg, max range 50

and each scan is associated with a vertex of this already optimized pose graph. The
range and bearing data for the scan at node 2 580 is

>> [r, thetal = pg.scan(2580);

>> about r theta

r [double] 1x180 (1.4 kB)
theta [double] 1x180 (1.4 kB)

represented by two vectors each of 180 elements. We can plot these in polar form
>> polar (theta, r)
or convert them to Cartesian coordinates and plot them

>> [x,Y]
>> plot(x, vy,

= pol2cart (theta, r);
L} L}
-

The method scanxy is a simpler way to perform these operations. We load scans
from two closely spaced nodes

>> p2580 = pg.scanxy(2580);

>> p2581 = pg.scanxy(2581);

>> about p2580

p2580 [double] 2x180 (2.9 kB)

which creates two matrices whose columns are Cartesian point coordinates and these
are overlaid in Fig. 6.23a.4

To determine the change in pose of the robot between the two scans we need to align
these two sets of points and this can be achieved with iterated closest-point-matching
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or ICP. This is implemented by the Toolbox function i cp“ and we pass in the second
and first set of points, each organized as a 2 X N matrix

>> T = icp( p2581, p2580, 'verbose' , 'TO', transl2(0.5, 0), 'distthresh', 3)
[1]: n=132/180, d= 0.466, t = ( 0.499 -0.006), th = ( -0.0) deg
[2]: n=130/180, d= 0.429, t = ( 0.500 -0.009), th = ( 0.0) deg
[6]: n=130/180, d= 0.425, t = ( 0.503 -0.011), th = ( 0.0) deg
T =

1.0000 -0.0002 0.5032

0.0002 1.0000 -0.0113

0 0 1.0000

and the algorithm converges after a few iterations with an estimate of T ~ 2589, .,
€ SE(2).” This transform maps points from the second scan so that they are as close as
possible to the points in the first scan. Figure 6.23b shows the first set of points trans-
formed and overlaid on the second set and we see good alignment. The translational
part of this transform is an estimate of the robot’s motion between scans - around
0.50 m in the x-direction. The nodes of the graph also hold time stamp information
and these two scans were captured

>> pg.time (2581) -pg.time (2580)

ans =

1.7600

seconds apart which indicates that the robot is moving quite slowly - a bit under 0.3 m s~*.

At each iteration ICP assigns each point in the second set to the closest point in the
first set and then computes a transform that minimizes the sum of distances between
all corresponding points. Some points may not actually be corresponding but as long
as enough are, the algorithm will converge. The ' verbose ' option causes data about
each iteration to be displayed and d is the total distance between corresponding points
which is decreasing but does not reach zero. This is due to many factors. The beams
from the laser at the two different poses will not strike the walls at the same location
so ICP’s assumption about point correspondence is not actually valid.”

In practice there are additional challenges. Some laser pulses will not return to the sensor
if they fall on a surface with low reflectivity or on an oblique polished surface that specu-
larly reflects the pulse away from the sensor - in these cases the sensor typically reports its
maximum value. People moving through the environment change the shape of the world
and temporarily cause a shorter range to be reported. In very large spaces all the walls
may be beyond the maximum range of the sensor. Outdoors the beams can be reflected
from rain drops, absorbed by fog or smoke and the return pulse can be overwhelmed by
ambient sunlight. Finally the laser rangefinder, like all sensors, has measurement noise.

5 6 7 8 9 10

Fig.6.23. Laser scan matching.
a Laser scans from location 2 580
(blue) and 2581 (red); b location
2580 points (blue) and transformed
points from location 2581 (red)

The ICP algorithm is described more fully
for the SE(3) case in Sect. 14.5.2.

We demonstrate the principle using ICP
but in practice more robust algorithms
are used.Here we provide an initial esti-
mate of the translation between frames,
based on odometry, so as to avoid get-
ting stuck in a local minimum. ICP works
poorly in plain corridors where the points
lie along lines — this example was delib-
erately chosen because it has wall seg-
ments in orthogonal directions.

To remove invalid correspondences
we pass the 'distthresh' op-
tion to icp () .This causes any corre-
spondences that involve a distance
more than three times the median dis-
tance between all corresponding points
to be dropped. In the 1 cp () output
the notation 132 /180 means that
132 out of 180 possible correspondences
met this test, 48 were rejected.
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Fig.6.24.

a Laser scans rendered into
an occupancy grid, the area en-
closed in the green square is dis-
payed in b. White cells are free
space, black cells are occupied
and grey cells are unknown.
Grid cell size is 10 cm

Fig.6.25.
3D point cloud created by in-
tegrating multiple scans from

a vehicle-mounted scanning
laser rangefinder, where the
scans are in a vertical plane nor-
mal to the vehicle’s forward axis.
This is sometimes called a “2.5D”
representation since only the
front surfaces of objects are de-
scribed - note the range shad-
ows on the walls behind cars.
Note also that the density of laser
points is not constant across the
map, for example the point den-
sity on the road surface is much
greater than it is high on the walls
of buildings (image courtesy Alex
Stewart; Stewart 2014)

Laser-Based Map Building

If the robot pose is sufficiently well known, through some localization process, then
we can transform all the laser scans to a global coordinate frame and build a map.
Various map representations are possible but here we will outline how to build an oc-
cupancy grid as discussed in Chap. 5.

For a robot at a given pose, each beam in the scan is a ray and tells us several things.
From the range measurement we can determine the coordinates of a cell that contains
an obstacle but we can tell nothing about cells further along the ray. It is also implicit
that all the cells between the sensor and the obtacle must be obstacle free. A maximum
distance value, 50 m in this case, is the sensor’s way of indicating that there was no re-
turning laser pulse so we ignore all such measurements. We create the occupancy grid
as a matrix and use the Bresenham algorithm to find all the cells along the ray based
on the robot’s pose and the laser range and bearing measurement, then a simple voting
scheme to determine whether cells are free or occupied

>> pg.scanmap ()
>> pg.plot occgrid()

and the result is shown in Fig. 6.24. More sophisticated approaches treat the beam as a
wedge of finite angular width and employ a probabilistic model of sensor return versus
range. The principle can be extended to creating 3-dimensional point clouds from a
scanning laser rangefinder on a moving vehicle as shown in Fig. 6.25.
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Laser-Based Localization

We have mentioned landmarks a number of times in this chapter but avoided concrete ex-
amples of what they are. They could be distinctive visual features as discussed in Sect. 13.3
or artificial markers as discussed on page 164. If we consider a laser scan such as shown in
Fig. 6.23a or 6.24b we see a fairly distinctive arrangement of points - a geometric signature
- which we can use as a landmark. In many cases the signature will be ambiguous and of
little value, for example along corridor where all the points are collinear, but some signa-
tures will be highly unique and can serve as a useful landmark. Naively we could match
the current laser scan against all others and if the fit is good (the ICP error is low) we could
add another constraint to the pose graph. However this strategy would be expensive with
alarge number of scans so typically only scans in the vicinity of the robot’s estimated po-
sition are checked, and this once again raises the data association problem.

6.9 Wrapping Up

In this chapter we learned about two very different ways of estimating a robot’s posi-
tion: by dead reckoning, and by observing landmarks whose true position is known
from a map. Dead reckoning is based on the integration of odometry information, the
distance traveled and the change in heading angle. Over time errors accumulate lead-
ing to increased uncertainty about the pose of the robot.

We modeled the error in odometry by adding noise to the sensor outputs. The noise
values are drawn from some distribution that describes the errors of that particular
sensor. For our simulations we used zero-mean Gaussian noise with a specified cova-
riance, but only because we had no other information about the specific sensor. The
most realistic noise model available should be used. We then introduced the Kalman
filter which provides an optimal estimate, in the least-squares sense, of the true config-
uration of the robot based on noisy measurements. The Kalman filter is however only
optimal for the case of zero-mean Gaussian noise and a linear model. The model that
describes how the robot’s configuration evolves with time can be nonlinear in which
case we approximate it with a linear model which included some partial derivatives
expressed as Jacobian matrices - an approach known as extended Kalman filtering.

The Kalman filter also estimates uncertainty associated with the pose estimate and
we see that the magnitude can never decrease and typically grows without bound. Only
additional sources of information can reduce this growth and we looked at how obser-
vations of landmarks, with known locations, relative to the robot can be used. Once
again we use the Kalman filter but in this case we use both the prediction and the up-
date phases of the filter. We see that in this case the uncertainty can be decreased by a
landmark observation, and that over the longer term the uncertainty does not grow.
We then applied the Kalman filter to the problem of estimating the positions of the
landmarks given that we knew the precise position of the vehicle. In this case, the state
vector of the filter was the coordinates of the landmarks themselves.

Next we brought all this together and estimated the vehicle’s position, the position
of the landmarks and their uncertainties — simultaneous localization and mapping.
The state vector in this case contained the configuration of the robot and the coordi-
nates of the landmarks.

An important problem when using landmarks is data association, being able to de-
termine which landmark has been known or observed by the sensor so that its position
can belooked up in a map or in a table of known or estimated landmark positions. If the
wrong landmark is looked up then an error will be introduced in the robot’s position.

The Kalman filter scales poorly with an increasing number of landmarks and we in-
troduced two alternative approaches: Rao-Blackwellized SLAM and pose-graph SLAM.
The latter involves solving a large but sparse nonlinear least squares problem, turning
the problem from one of (Kalman) filtering to one of optimization.
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We finished our discussion of localization methods with Monte-Carlo estimation
and introduced the particle filter. This technique is computationally intensive but
makes no assumptions about the distribution of errors from the sensor or the lin-
earity of the vehicle model, and supports multiple hypotheses. Particles filters can be
considered as providing an approximate solution to the true system model, whereas
a Kalman filter provides an exact solution to an approximate system model.

Finally we introduced laser rangefinders and showed how they can be applied to
robot navigation, odometry and creating detailed floor plan maps.

Further Reading

Localization and SLAM. The tutorials by Bailey and Durrant-Whyte (2006) and Durrant-
Whyte and Bailey (2006) are a good introduction to this topic, while the textbook
Probabilistic Robotics (Thrun et al. 2005) is a readable and comprehensive coverage
of all the material touched on in this chapter.

The book by Siegwart et al. (2011) also has a good treatment of robot localization.
FastSLAM (Montemerlo et al. 2003; Montemerlo and Thrun 2007) is a state-of-the-art
algorithm for Rao-Blackwellized SLAM.

Particle filters are described by Thrun et al. (2005), Stachniss and Burgard (2014) and
the tutorial introduction by Rekleitis (2004). There are many variations such as fixed
or adaptive number of particles and when and how to resample - and Li et al. (2015)
provide a comprehensive review of resampling strategies. Determining the most likely
pose was demonstrated by taking the weighted mean of the particles but many more
approaches have been used. The kernel density approach takes the particle with the
highest weight of neighboring particles within a fixed-size surrounding hypersphere.

Pose graph optimization, also known as GraphSLAM, has a long history starting with
Lu and Milios (1997). There has been significant recent interest with many publications
and open-source tools including g?o (Kiimmerle et al. 2011), v/SAM (Dellaert and Kaess
2006),iSAM (Kaess et al. 2007) and factor graphs. Agarwal et al. (2014) provides a gentle
introduction to pose-graph SLAM and discusses the connection to land-based geodetic
survey which is centuries old. Parallel Tracking and Mapping (PTAM) was described in
Klein and Murray (2007), the code is available on github and there is also a blog.

There are many online resources related to SLAM. A collection of open-source
SLAM implementations such as gmapping and iSam is available from OpenSLAM
at http://www.openslam.org. An implementation of smoothing and mapping us-
ing factor graphs is available at https://bitbucket.org/gtborg/gtsam and has C++
and MATLAB bindings. MATLAB implementations include a 6DOF SLAM system at
http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html and the now dated
CAS Robot Navigation Toolbox for planar SLAM at http://www.cas.kth.se/toolbox.
Tim Bailey’s website http://www-personal.acfr.usyd.edu.au/tbailey has MATLAB
implementations of various SLAM and scan matching algorithms.

Many of the SLAM summer schools have websites that host excellent online re-
sources such as lecture notes and practicals. Great teaching resources available online
include Giorgio Grisetti’s site http://www.dis.uniroma?.it/~grisetti and Paul Newman’s
C4B Mobile Robots and Estimation Resources ebook at https://www.free-ebooks.net/
ebook/C4B-Mobile-Robotics.

Scan matching and map making. Many versions and variants of the ICP algorithm
exist and it is discussed further in Chap. 14. Improved convergence and accuracy can
be obtained using the normal distribution transform (NDT), originally proposed for
2D by Biber and Strafler (2003), extended to 3D by Magnusson et al. (2007) and im-
plementations are available at pointclouds.org. A comparison of ICP and NDT for a
field robotic application is described by Magnusson et al. (2009). A fast and popular
approach to laser scan matching is that of Censi (2008).
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When attempting to match a local geometric signature in a large point cloud (2D or
3D) to determine loop closure we often wish to limit our search to a local spatial region.
An efficient way to achieve this is to organize the data using a kd-tree which is provided
in MATLAB’s Statistics and Machine Learning Toolbox™ and various contributions on
File Exchange. FLANN (Muja and Lowe 2009) is a fast approximation which is available
on github and has a MATLAB binding, and is also included in the VLFeat package.

For creating a map from robotic laser scan data in Sect. 6.8 we used a naive approach
- a more sophisticated technique is the beam model or likelihood field as described
in Thrun et al. (2005).

Kalman filtering. There are many published and online resources for Kalman filtering.
Kélmén’s original paper, Kdlman (1960), over 50 years old, is quite readable. The book
by Zarchan and Musoff (2005) is a very clear and readable introduction to Kalman
filtering. I have always found the classic book, recently republished, Jazwinski (2007)
to be very readable. Bar-Shalom et al. (2001) provide comprehensive coverage of es-
timation theory and also the use of GPS. Groves (2013) also covers Kalman filtering.
Welch and Bishop’s online resources at http://www.cs.unc.edu/~welch/kalman have
pointers to papers, courses, software and links to other relevant web sites.

A significant limitation of the EKF is its first-order linearization, particularly for
processes with strong nonlinearity. Alternatives include the iterated EKF described
by Jazwinski (2007) or the Unscented Kalman Filter (UKF) (Julier and Uhlmann 2004)
which uses discrete sample points (sigma points) to approximate the PDF. Some of
these topics are covered in the Handbook (Siciliano and Khatib 2016, §5 and §35). The
information filter is an equivalent filter that maintains an inverse covariance matrix
which has some useful properties, and is discussed in Thrun et al. (2005) as the sparse
extended information filter.

Data association. SLAM techniques are critically dependent on accurate data association
between observations and mapped landmarks, and a review of data association tech-
niques is given by Neira and Tardds (2001). FastSLAM (Montemerlo and Thrun 2007) is
capable of estimating data association as well as landmark position. The April tag which
can be used as an artificial landmark is described in Olson (2011) and is supported by
the Toolbox function apriltags. Mobile robots can uniquely identify places based
on their visual appearance using tools such as OpenFABMAP (Glover et al. 2012).

Data association for Kalman filtering is covered in the Robotics Handbook (Siciliano
and Khatib 2016). Data association in the tracking context is covered in considerable
detail in, the now very old, book by Bar-Shalom and Fortmann (1988).

Sensors. The book by Kelly (2013) has a good coverage of sensors particularly laser
range finders. For flying and underwater vehicles, odometry cannot be determined from
wheel motion and an alternative, also suitable for wheeled vehicles, is visual odometry
(VO). This is introduced in the tutorials by Fraundorfer and Scaramuzza (2012) and
Scaramuzza and Fraundorfer (2011) and will be covered in Chap. 14. The Robotics
Handbook (Siciliano and Khatib 2016) has good coverage of a wide range of robotic
sensors. The principles of GPS and other radio-based localization systems are covered
in some detail in the book by Groves (2013), and a number of links to GPS technical data
are provided from this book’s web site. The SLAM problem can be formulated in terms
of bearing-only or range-only measurements. A camera is effectively a bearing-only
sensor, giving the direction to a feature in the world. A VSLAM system is one that per-
forms SLAM using bearing-only visual information, just a camera, and an introduction
to the topic is given by Neira et al. (2008) and the associated special issue. Interestingly
the robotic VSLAM problem is the same as the bundle adjustment problem known to
the computer vision community and which will be discussed in Chap. 14.

The book by Borenstein et al. (1996) although dated has an excellent discussion of
robotic sensors in general and odometry in particular. It is out of print but can be found
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Fig.6.26.

Toolbox class relationship for
localization and mapping. Each
class is shown as a rectangle,
method calls are shown as ar-
rows from caller to callee, prop-
erties are boxed, and dashed
lines represent object references
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online. The book by Everett (1995) covers odometry, range and bearing sensors, as well
as radio, ultrasonic and optical localization systems. Unfortunately the discussion of
range and bearing sensors is now quite dated since this technology has evolved rapidly
over the last decade.

General interest. Bray (2014) gives a very readable account of the history of techniques to
determine our location on the planet. If you ever wondered how to navigate by the stars or use
a sextant Blewitt (2011) is a slim book that provides an easy to understand introduction.

The book Longitude (Sobel 1996) is a very readable account of the longitude prob-
lem and John Harrison’s quest to build a marine chronometer.

Toolbox and MATLAB Notes

This chapter has introduced a number of Toolbox classes to solve mapping and local-
ization problems. The principle was to decompose the problem into clear functional
subsystems and implement these as a set of cooperating classes, and this allows quite
complex problems to be expressed in very few lines of code.

The relationships between the objects and their methods and properties are shown
in Fig. 6.26. As always more documentation is available through the online help sys-
tem or comments in the code. Vehicle is a superclass and concrete subclasses in-
clude Unicycle and Bicycle.

The MATLAB Computer Vision System Toolbox™ includes a fast version of ICP called
pcregrigid. The Robotics System Toolbox™ contains a generic particle filter class
ParticleFilter anda particle filter based localizer classMonteCarloLocalization.

Exercises

1. What is the value of the Longitude Prize in today’s currency?

2. Implement a driver object (page 157) that drives the robot around inside a circle
with specified center and radius.

3. Derive an equation for heading change in terms of the rotational rate of the left and
right wheels for the car-like and differential-steer vehicle models.
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4.

Dead-reckoning (page 156)

a) Experiment with different values of Py, V and V.

b) Figure 6.4 compares the actual and estimated position. Plot the actual and esti-
mated heading angle.

c) Compare the variance associated with heading to the variance associated with
position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

d) Derive the Jacobians in Eq. 6.5 and 6.6 for the case of a differential steer robot.

. Using a map (page 163)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and
bearing angle limits) and investigate the effect on performance

b) Vary W and W and investigate what happens to estimation error and final co-
variance.

c) Modify the RangeBearingSensor to create a bearing-only sensor, that is, as
a sensor that returns angle but not range. The implementation includes all the
Jacobians. Investigate performance.

d) Modify the sensor model to return occasional errors (specify the error rate) such
as incorrect range or beacon identity. What happens?

e) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

f) Figure 6.7 compares the actual and estimated position. Plot the actual and esti-
mated heading angle.

g) Compare the variance associated with heading to the variance associated with
position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

. Making a map (page 166)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and
bearing angle limits) and investigate the effect on performance.

b) Use the bearing-only sensor from above and investigate performance relative to
using a range and bearing sensor.

c) Modify the EKF to perform data association instead of using identity returned
by the sensor.

. Simultaneous localization and mapping (page 168)

a) Vary the characteristics of the sensor (covariance, sample rate, range limits and
bearing angle limits) and investigate the effect on performance.

b) Use the bearing-only sensor from above and investigate performance relative to
using a range and bearing sensor.

¢) Modify the EKF to perform data association instead of using the landmark iden-
tity returned by the sensor.

d) Figure 6.11 compares the actual and estimated position. Plot the actual and es-
timated heading angle.

e) Compare the variance associated with heading to the variance associated with
position. How do these change with increasing levels of range and bearing angle
variance in the sensor?

. Modify the pose-graph optimizer and test using the simple graph pgl.g2o0

a) anchor one node at a particular pose.

b) add one or more landmarks. You will need to derive the relevant Jacobians
first and add the landmark positions, constraints and information matrix to
the data file.

. Create a simulator for Buffon’s needle problem, and estimate = for 10, 100, 1 000

and 10 000 needle throws. How does convergence change with needle length?

10. Particle filter (page 176)

a) Run the filter numerous times. Does it always converge?
b) Vary the parameters Q, L, w, and N and understand their effect on convergence
speed and final standard deviation.
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c) Investigate variations to the kidnapped robot problem. Place the initial particles
around the initial pose. Place the particles uniformly over the xy-plane but set
their orientation to its actual value.

d) Use a different type of likelihood function, perhaps inverse distance, and com-
pare performance.

11. Experiment with April tags. Print some tags and extract them from images using
the apriltags function. Check out Sect. 12.1 on how to acquire images using
MATLAB.

12. Implement a laser odometer and test it over the entire path saved in killian.
g2o. Compare your odometer with the relative pose changes in the file.

13.In order to measure distance using laser rangefinding what timing accuracy is re-
quired to achieve 1cm depth resolution?

14. Reformulate the localization, mapping and SLAM problems using a bearing-only
landmark sensor.

15. Implement a localization or SLAM system using an external simulator such as
V-REP or Gazebo. Obtain range measurements from the simulated robot, do laser
odometry and landmark recognition, and send motion commands to the robot. You
can communicate with these simulators from MATLAB using the ROS protocol if
you have the Robotics System Toolbox. Alternatively you can communicate with
V-REP using the Toolbox VREP class, see the documentation.
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Part

Arm-Type Robots

Arm-type robots or robot manipulators are a very common and fa-
miliar type of robot. We are used to seeing pictures or video of them
at work in factories doing jobs such as assembly, welding and han-
dling tasks, or even in operating rooms doing surgery. The first robot
manipulators started work nearly 60 years ago and have been enor-
mously successful in practice - many millions of robot manipulators
are working in the world today. Many products we buy have been as-
sembled, packed or handled by a robot.

Unlike the mobile robots we discussed in the previous part, robot
manipulators do not move through the world. They have a static base
and therefore operate within a limited workspace. Many different types

: of robot manipulator have been created and Fig. III.1 shows some of
the diversity. The most common is the 6DOF arm-type of robot comprising a series
of rigid-links and actuated joints. The SCARA (Selective Compliance Assembly Robot
Arm) is rigid in the vertical direction and compliant in the horizontal plane which is
an advantage for planar tasks such as electronic circuit board assembly. A gantry ro-
bot has one or two degrees of freedom of motion along overhead rails which gives it

Fig.llL.1.

a A 6DOF serial-link manipu-
lator. General purpose indus-
trial manipulator (source: ABB).
b SCARA robot which has 4DOF,
typically used for electronic as-
sembly (photo of Adept Cobra
s600 SCARA robot courtesy

of Adept Technology, Inc.).

¢ A gantry robot; the arm moves
along an overhead rail (image
courtesy of Giidel AG Switzer-
land | Mario Rothenbiihler |
www.gudel.com). d A parallel-
link manipulator, the end-effec-
tor is driven by 6 parallel links
(source: ABB) C
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a very large working volume. A parallel-link manipulator has its links connected in
parallel to the tool which brings a number of advantages such as having all the mo-
tors on the base and providing a very stiff structure. The focus of this part is serial-
link arm-type robot manipulators.

These nonmobile robots allow some significant simplifications to problems such
as perception and safety. The work environment for a factory robot can be made very
orderly so the robot can be fast and precise and assume the location of objects that it
is working with. The safety problem is simplified since the robot has a limited work-
ing volume - it is straightforward to just exclude people from the robot’s work space
using safety barriers or even cages.

A robot manipulates objects using its end-effector or tool as shown in Fig. II11.2. End-
effectors range in complexity from simple 2-finger or parallel-jaw grippers to complex
human-like hands with multiple actuated finger joints and an opposable thumb.

The chapters in this part cover the fundamentals of serial-link manipulators.
Chapter 7 is concerned with the kinematics of serial-link manipulators. This is the
geometric relationship between the angles of the robot’s joints and the pose of its end-
effector. We discuss the creation of smooth paths that the robot can follow and pres-
ent an example of a robot drawing a letter on a plane and a 4-legged walking robot.
Chapter 8 introduces the relationship between the rate of change of joint coordinates
and the end-effector velocity which is described by the manipulator Jacobian matrix.
It also covers alternative methods of generating paths in Cartesian space and intro-
duces the relationship between forces on the end-effector and torques at the joints.
Chapter 9 discusses independent joint control and some performance limiting factors
such as gravity load and varying inertia. This leads to a discussion of the full nonlinear
dynamics of serial-link manipulators - effects such as inertia, gyroscopic forces, fric-
tion and gravity - and more sophisticated model-based control approaches.

Fig.lll.2.

Robot end-effectors. a A vacuum
gripper holds a sheet of glass.

b A human-like robotic hand
(© Shadow Robot Company 2008)
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Robot Arm Kinematics

Take to kinematics. It will repay you.
It is more fecund than geometry; it adds a fourth dimension to space.
Chebyshev to Sylvester 1873

Kinematics™ is the branch of mechanics that studies the motion of a body, or a
system of bodies, without considering its mass or the forces acting on it.
A robot arm, more formally a serial-link manipulator, comprises a chain of
rigid links and joints. Each joint has one degree of freedom, either translational
(a sliding or prismatic joint) or rotational (a revolute joint). Motion of the joint
changes the relative pose of the links that it connects. One end of the chain, the
base, is generally fixed and the other end is free to move in space and holds the
tool or end-effector that does the useful work.
Figure 7.1 shows two modern arm-type robots that have six and seven joints
respectively. Clearly the pose of the end-effector will be a complex function of
the state of each joint and Sect. 7.1 describes how to compute the pose of the
end-effector. Section 7.2 discusses the inverse problem, how to compute the
position of each joint given the end-effector pose. Section 7.3 describes methods for

From the Greek word for motion. generating smooth paths for the end-effector. The remainder of the chapter covers
advanced topics and two complex applications: writing on a plane surface and a four-
legged walking robot whose legs are simple robotic arms.

71 Forward Kinematics

Forward kinematics is the mapping from joint coordinates, or robot configuration,
to end-effector pose. We start in Sect. 7.1.1 with conceptually simple robot arms that
move in 2-dimensions in order to illustrate the principles, and in Sect. 7.1.2 extend
this to more useful robot arms that move in 3-dimensions.

Fig.7.1.

a Mico 6-joint robot with 3-fin-
gered hand (courtesy of Kinova
Robotics). b Baxter 2-armed ro-
botic coworker, each arm has Wi

7 joints (courtesy of Rethink
Robotics)
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7.1.1 2-Dimensional (Planar) Robotic Arms '9 Some simple planar ro

Consider the simple robot arm shown in Fig. 7.2a which has a single rotational joint. We
can describe the pose of its end-effector - frame {E} - by a sequence of relative poses:
a rotation about the joint axis and then a translation by a, along the rotated x-axis4

$elg) = %(’h) S ‘Z(al)

The Toolbox allows us to express this, for the case a, = 1, by
>> import ETS2.*
>> al = 1;

>> E = Rz ('gl') * Tx(al)

which is a sequence of ETS2 class objects. The argument to Rz is a string which in-
dicates that its parameter is a joint variable whereas the argument to Tx is a constant
numeric robot dimension.

The forward kinematics for a particular value of g, = 30 deg

>> E.fkine( 30, 'deg')
ans =
0.8660 -0.5000 0.866
0.5000 0.8660 0.5
0 0 1

is an SE(2) homogeneous transformation matrix representing the pose of the end-
effector - coordinate frame {E}.

An easy and intuitive way to understand how this simple robot behaves is inter-
actively

>> E.teach

which generates a graphical representation of the robot arm as shown in Fig. 7.3. The
rotational joint is indicated by a grey vertical cylinder and the link by a red horizontal
pipe. You can adjust the joint angle g, using the slider and the arm pose and the dis-
played end-effector position and orientation will be updated. Clearly this is not a very
useful robot arm since its end-effector can only reach points that lie on a circle.

Consider now a robot arm with two joints as shown in Fig. 7.2b. The pose of the
end-effector is

$elg) = f%(‘h) @ gx(“l) ©® f%(‘]z) ©® yx(az) (7.1)
N N

| S—|

joint 1 link 1 joint 2 link 2

We can represent this using the Toolbox as

>> al = 1; a2 = 1;

>> E = Rz('ql') * Tx(al) * Rz('q2') * Tx(a2)

When computing the forward kinematics the joint angles are now specified by a vector

>> E.fkine( [30, 40], 'deg')
ans =
0.3420  -0.9397 1.208
0.9397 0.3420 1.44

0 0 1

botic arms. a Planar arm with one
rotational joint; b planar arm with
two rotational joints; ¢ planar arm
with two joints: one rotational
and one prismatic. The base {0}
and end-effector {E} coordinate
frames are shown. The joint vari-
ables, angle or prismatic exten-
sion, are generalized coordinates
and denoted by g;

We use the symbols %,.7, ,,7},t0 denote
relative poses in SE(2) that are respec-
tively pure rotation and pure translation
in the x- and y-directions.
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Fig.7.3.

Toolbox depiction of 1-joint
planar robot using the teach
method. The blue panel contains
the joint angle slider and displays
the position and orientation
(yaw angle) of the end-effector
(in degrees)

Teach

X: 0.866
y:  0.500
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and the result is the end-effector pose when g, = 30 and g, = 40 deg. We could display
the robot interactively as in the previous example, or noninteractively by

>> E.plot( [30, 40], 'deg')

The joint structure of a robot is often referred to by a shorthand comprising the
letters R (for revolute) or P (for prismatic) to indicate the number and types of its
joints. For this robot

>> E.structure

ans =

RR
indicates a revolute-revolute sequence of joints. The notation underneath the terms
in Eq. 7.1 describes them in the context of a physical robot manipulator which com-
prises a series of joints and links.

You may have noticed a few characteristics of this simple planar robot arm. Firstly,
most end-effector positions can be reached with two different joint angle vectors.
Secondly, the robot can position the end-effector at any point within its reach but we
cannot specify an arbitrary orientation. This robot has 2 degrees of freedom and its
configuration space is C = S! x S’ This is sufficient to achieve positions in the task
space T C R? since dim € = dim J. However if our task space includes orientation
T C SE(2) then it is under-actuated since dim € < dim T and the robot can access only
a subset of the task space.

So far we have only considered revolute joints but we could use a prismatic joint
instead as shown in Fig. 7.2c. The end-effector pose is

&)= g&(%) ©® yx(al) D gx(‘b)

joint 1 link 1 joint 2

Prismaticjoints. Robot joints are commonly revolute (rotational) but can also be prismatic (linear,
sliding, telescopic, etc.). The SCARA robot of Fig. II.1b has a prismatic third joint while the gantry
robot of Fig. IIl.1c has three prismatic joints for motion in the x-, y- and z-directions.

The Stanford arm shown here has a prismatic third joint. It was developed at the Stanford AI Lab
in 1972 by robotics pioneer Victor Scheinman who went on to design the PUMA robot arms. This
type of arm supported a lot of important early research work in robotics and one can be seen in the
Smithsonian Museum of American History, Washington DC. (Photo courtesy Oussama Khatib)
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and the Toolbox representation follows a familiar pattern

>> al = 1;
>> E = Rz ('ql') * Tx(al) * Tz ('g2'")

and the arm structure is now
>> E.structure
ans =
RP
which is commonly called a polar-coordinate robot arm.
We can easily add a third joint

&)= % (q)® T(a) 0% (4,) © F(a,) © % (g5) © F(as)
Nl [ (I

| ISR R S — —
joint 1 link 1 joint 2 link 2 joint 3 link 3
and use the now familiar Toolbox functionality to represent and work with this arm.

This robot has 3 degrees of freedom and is able to access all points in the task space
T C SE(2), that is, achieve any pose in the plane (limited by reach).

71.2 3-Dimensional Robotic Arms

Truly useful robots have a task space T C SE(3) enabling arbitrary position and orientation
of the end-effector. This requires a robot with a configuration space dim € > dim T which
can be achieved by a robot with six or more joints. In this section we will use the Puma 560
as an exemplar of the class of all-revolute six-axis robot manipulators with € C (S!)®.

We can extend the technique from the previous section for a robot like the Puma 560
whose dimensions are shown in Fig. 7.4. Starting with the world frame {0} we move up,
rotate about the waist axis (g, ), rotate about the shoulder axis (g,), move to the left, move
up and so on. As we go, we write down the transform expression“

& =7(L)® %(‘h) & %y(‘b) ® y)/(Lz) ® Z(Ls) %, (%)
@2@4) @ yy (Ls) @ Z(Ls) © %(‘14) © % (‘15) © %(%)

wrist

The marked term represents the kinematics of the robot’s wrist and should be fa-
miliar to us as a ZYZ Euler angle sequence from Sect. 2.2.1.2 - it provides an arbitrary
orientation but is subject to a singularity when the middle angle g; = 0.

We can represent this using the 3-dimensional version of the Toolbox class we
used previously

>> import ETS3.*

>> L1 = 0; L2 = -0.2337; 13 = 0.4318; L4 = 0.0203; L5 = 0.0837; L6 = 0.4318;

>> E3 = Tz(L1) * Rz('ql') * Ry('g2') * Ty(L2) * Tz(L3) * Ry('qg3') 4

* Tx(L4) * Ty(L5) * Tz(L6) * Rz('gd') * Ry('gd') * Rz('g6');
We can use the interactive teach facility or compute the forward kinematics

>> E3.fkine ([0 0 0 0 0 0])

ans =
1 0 0 0.0203
0 1 0 -0.15
0 0 1 0.8636
0 0 0 1

While this notation is intuitive it does becomes cumbersome as the number of
robot joints increases. A number of approaches have been developed to more con-
cisely describe a serial-link robotic arm: Denavit-Hartenberg notation and product
of exponentials.

{o} Yo

X0

Fig.7.4. Puma robot in the zero-
joint-angle configuration show-
ing dimensions and joint axes
(indicated by blue triple arrows)
(after Corke 2007)

We use the symbols %, 7, i € {x,y, 2}
to denote relative poses in SE(3) that are
respectively pure rotation about, or pure
translation along, the j-axis.
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Table 7.1.

Denavit-Hartenberg parameters:
their physical meaning, symbol
and formal definition

Fig.7.5.
Definition of standard Denavit
and Hartenberg link parameters.
The colors red and blue denote all
things associated with links j — 1
and j respectively. The numbers
in circles represent the order
in which the elementary trans-
forms are applied. x; is parallel
to zj_; X z; and if those two axes
are parallel then d; can be arbi-
trarily chosen

Jointangle 6, the angle between the X, ; and x; axes revolute joint variable
about the z; ; axis

Link offset  d; the distance from the origin of frame j -1 prismatic joint variable
to the x; axis along the z;_; axis

Linklength  g; the distance between the z;; and z; axes along constant
the x; axis; for intersecting axes is parallel to 2;_; X 2;

Link twist Q; the angle from the z;_; axis to the z; axis constant
about the x; axis

Joint type g; o= R for a revolute joint, o= P for a prismatic joint constant

7.1.2.1  Denavit-Hartenberg Parameters

One systematic way of describing the geometry of a serial chain of links and joints is
Denavit-Hartenberg notation.

For a manipulator with N joints numbered from 1 to N, there are N + 1 links,
numbered from 0 to N. Joint j connects link j — 1 to link j and moves them rela-
tive to each other. It follows that link ¢ connects joint ¢ to joint £ 4 1. Link 0 is
the base of the robot, typically fixed and link N, the last link of the robot, carries
the end-effector or tool.

In Denavit-Hartenberg, notation a link defines the spatial relationship between
two neighboring joint axes as shown in Fig. 7.5. A link is specified by four param-
eters. The relationship between two link coordinate frames would ordinarily entail
six parameters, three each for translation and rotation. For Denavit-Hartenberg
notation there are only four parameters but there are also two constraints: axis
x; intersects z;_, and axis «; is perpendicular to z;_,. One consequence of these
constraints is that sometimes the link coordinate frames are not actually located
on the physical links of the robot. Another consequence is that the robot must be
placed into a particular configuration - the zero-angle configuration - which is
discussed further in Sect. 7.4.1. The Denavit-Hartenberg parameters are summa-
rized in Table 7.1.

The coordinate frame {j} is attached to the far (distal) end of link j. The z-axis of
frame {j} is aligned with the axis of joint j + 1.
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The transformation from link coordinate frame {j — 1} to frame {j} is defined in
terms of elementary rotations and translations as

j-1 _
&(05d;05,05) = Z,(0;) @ Z(d;) © % (a;) © & (o) (7.2)
which can be expanded in homogeneous matrix form as
cosf; —sinb;coscr; sinf;sine;  a;cost;
A sinf;  costcoscy; —cost;sina; «;sind, (73)
/ 0 sinq; cosa; d;
0 0 0 1

The parameters o; and a; are always constant. For a revolute joint, 6; is the joint
variable and d; is constant, while for a prismatic joint, d; is variable, 9] is constant
and a;= 0. In many of the formulations that follow, we use generalized joint co-
ordinates g;

|

For an N-axis robot, the generalized joint coordinates g € € where € C RV s called
the joint space or configuration space.” For the common case of an all-revolute robot
C C (SYHN the joint coordinates are referred to as joint angles. The joint coordinates
are also referred to as the pose of the manipulator which is different to the pose of the
end-effector which is a Cartesian pose £ € SE(3). The term configuration is shorthand
for kinematic configuration which will be discussed in Sect. 7.2.2.1.

Within the Toolbox a robot revolute joint and link can be created by

R: Hj —q;

ifo;, =
P: dj—gq;

J

This is the same concept as was intro-
duced for mobile robots in Sect.2.3.5.

>> L Revolute ('a', 1)
L =
Revolute (std) : theta=qg, d=0, a=1, alpha=0, offset=0

which is a revolute-joint object of type Revolute which is a subclass of the generic
Link object. The displayed value of the object shows the kinematic parameters (most
of which have defaulted to zero), the joint type and that standard Denavit-Hartenberg
convention is used (the tag std).”

A slightly different notation, modifed
Denavit-Hartenberg notation is discussed
in Sect.7.4.3.

Jacques Denavit and Richard Hartenberg introduced many of the key concepts of kinematics for serial-link manipulators in a 1955 paper
(Denavit and Hartenberg 1955) and their later classic text Kinematic Synthesis of Linkages (Hartenberg and Denavit 1964).

Jacques Denavit (1930-2012) was born
in Paris where he studied for his Bach-
elor degree before pursuing his mas-
ters and doctoral degrees in mechan-
ical engineering at Northwestern
University, Illinois. In 1958 he joined
the Department of Mechanical En-
gineering and Astronautical Science
at Northwestern where the collabo-
ration with Hartenberg was formed.
In addition to his interest in dynam-
ics and kinematics Denavit was also

interested in plasma physics and kinetics. After the publication of
the book he moved to Lawrence Livermore National Lab, Liver-
more, California, where he undertook research on computer anal-
ysis of plasma physics problems. He retired in 1982.

Richard Hartenberg (1907-1997) was
born in Chicago and studied for his
degrees at the University of Wiscon-
sin, Madison. He served in the mer-
chant marine and studied aeronau-
tics for two years at the University
of Gottingen with space-flight pio-
neer Theodore von Kdrmdn. He was
Professor of mechanical engineering
at Northwestern University where
he taught for 56 years. His research
in kinematics led to a revival of in-
terest in this field in the 1960s, and his efforts helped put kine-
matics on a scientific basis for use in computer applications in
the analysis and design of complex mechanisms. He also wrote
extensively on the history of mechanical engineering.
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A Link objecthas many parameters and methods which are described in the online
documentation, but the most common ones are illustrated by the following examples.
The link transform Eq. 7.3 for ¢ = 0.5 rad is an SE3 object

>> L.A(0.5)

ans =
0.8776 -0.4794 0 0.8776
0.4794 0.8776 -0 0.4794
0 0 1 0
0 0 0 1

representing the homogeneous transformation due to this robot link with the particu-
lar value of 0. Various link parameters can be read or altered, for example

>> L.type
ans =
R

indicates that the link is revolute and

>> L.a
ans =
1.0000

returns the kinematic parameter a. Finally a link can contain an offset

>> L.offset = 0.5;

>> L.A(0)
ans =
0.8776 -0.4794 0 0.8776
0.4794 0.8776 -0 0.4794
0 0 1 0
0 0 0 1

which is added to the joint variable before computing the link transform and will be
discussed in more detail in Sect. 7.4.1.

The forward kinematics is a function of the joint coordinates and is simply the
composition of the relative pose due to each link

%y = K(g:0,d,a,0,0) =4 @ &Ny (7.4)

In this notation link 0 is the base of the robot and commonly for the firstlink d;, = 0
but we could set d;, > 0 to represent the height of the first joint above the world coor-
dinate frame. The final link, link N, carries the tool - the parameters dy, ay and ay
provide a limited means to describe the tool-tip pose with respect to the {N} frame. By
convention the robot’s tool points in the z-direction as shown in Fig. 2.16.

We have used W to denote the world More generally we add two extra transforms to the chain
frame in this case since 0 designates
link 0, the base link. W, 4 0 1 N-1 N
= "D D& D T
—— ——
& &r

The base transform £ puts the base of the robot arm at an arbitrary pose within
the world coordinate frame. In a manufacturing system the base is usually fixed to
the environment but it could be mounted on a mobile ground, aerial or underwater
robot, a truck, or even a space shuttle.

The frame {N} is often defined as the center of the spherical wrist mechanism, and
the tool transform £ describes the pose of the tool tip with respect to that. In prac-
tice £, might consist of several components. Firstly, a transform to a tool-mounting
flange on the physical end of the robot. Secondly, a transform from the flange to the
end of the tool that is bolted to it, where the tool might be a gripper, screwdriver or
welding torch.
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In the Toolbox we connect Link class objects in series using the SerialLink class

>> robot = SeriallLink( [ Revolute('a', 1)

Revolute('a', 1) ],

'name', 'my robot')
robot =
my robot:: 2 axis, RR, stdDH
e e fom - fom - fom - fom - +
|3 1 theta | d | a | alpha | offset |
e e fom - fom - fom - fom - +
[ 1] gllo0 |1 |0 |0
[ 2] g2 |0 |1 |0 |0
e e fom - fom - Fom - fom - +

We have just recreated the 2-robot robot we looked at earlier, but now it is embed-
ded in SE(3). The forward kinematics are

>> robot.fkine ([30 40], 'deg')
ans =
0.3420 -0.9397 0 1.208
0.9397 0.3420 0 1.44
0 0 1 0
0 0 0 1

The Toolbox contains a large number of robot arm models defined in this way and
they can be listed by

>> models

ABB, IRB140, 6DOF, standard DH (mdl irbl40)
Aldebaran, NAO, humanoid, 4DOF, standard DH (mdl nao)
Baxter, Rethink Robotics, 7DOF, standard DH (mdl baxter)

where the name of the Toolbox script to load the model is given in parentheses at the end
of each line, for example

>> mdl irbl40

The models function also supports searching by keywords and robot arm type. You can
adjust the parameters of any model using the editing method, for example

>> robot.edit

Determining the Denavit-Hartenberg parameters for a particular robot is described
in more detail in Sect. 7.4.2.

7.1.2.2  Product of Exponentials

In Chap. 2 we introduced twists. A twist is defined by a screw axis direction and pitch,
and a point that the screw axis passes through. In matrix form the twist § € R®

T/ _ e[S]t‘)T

rotates the coordinate frame described by the pose T about the screw axis by an an-
gle 0.” This is exactly the case of the single-joint robot of Fig. 7.2a, where the screw
axis is the joint axis and T'is the pose of the end-effector when g, = 0. We can therefore
write the forward kinematics as

T, ==CBJ%1}(O)

where T(0) is the end-effector pose in the zero-angle joint configuration: g, = 0.
For the 2-joint robot of Fig. 7.2b we would write

T, = S e[SZ]quE(O)
—_—

For a prismatic twist, the motion is a dis-
placement of @ along the screw axis. Here
we are working in the plane so T € SE(2)
and S € R3.
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where S, and S, are the screws defined by the joint axes and Tg(0) is the end-effector
pose in the zero-angle joint configuration: g, = g, = 0. The indicated term is similar
to the single-joint robot above, and the first twist rotates that joint and link about S;.
In MATLAB we define the link lengths and compute T;(0)

>> al = 1; a2 = 1;
>> TEQO = SE2(al+a2, 0, 0);

define the two twists, in SE(2), for this example

>> S1 = Twist( 'R', [0 0] );
>> S2 = Twist( 'R', [al 0] );

and apply them to T;(0)
>> TE = S1.T(30, 'deg') * S2.T(40, 'deg') * TEO

TE =
0.3420 -0.9397 1.208
0.9397 0.3420 1.44
0 0 1

For a general robot that moves in 3-dimensions we can write the forward kinemat-
ics in product of exponential (PoE) form as

§E ~ OTE _ e[sl]‘h e[sN]qN OTE(O)

where °T;(0) is the end-effector pose when the joint coordinates are all zero and S;is
The tool and base transform are effec-  the twist for joint j expressed in the world frame. ¥ This can also be written as
ﬁvdyindudedinon{OLbutanepodt [ ] { ]
base transform could be added if the 0 __ O ES ES v jax
screw axes are defined with respect to e ~ Tp = Tp(0)e e

the robot’s base rather than the world . . L ) o
coordinate frame, or use the adjoint ~ and £S; is the twist for joint j expressed in the end-effector frame which is related to

matrix to transform the screw axes from  the twists above by ES]- = Ad(Efo)Sj.
base to world coordinates. A serial-link manipulator can be succinctly described by a table listing the 6 screw

parameters for each joint as well as the zero-joint-coordinate end-effector pose.

7.1.2.3  6-Axis Industrial Robot

Truly useful robots have a task space T C SE(3) enabling arbitrary position and at-
titude of the end-effector - the task space has six spatial degrees of freedom: three
translational and three rotational. This requires a robot with a configuration space
€ C R® which can be achieved by a robot with six joints. In this section we will use the
Puma 560 as an example of the class of all-revolute six-axis robot manipulators. We
define an instance of a Puma 560 robot using the script

>> mdl puma560

which creates a SerialLink object, p560, in the workspace. Displaying the vari-
able shows the table of its Denavit-Hartenberg parameters

>> p560
Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE

- viscous friction; params of 8/95;
B Fomm - Fomm - Fomm Fomm +
[ 3 theta | d | a | alpha | offset
B Fomm - Fomm - Fomm Fomm +
[ qll 0| 0| 1.571] 0]
| 2] g2 | 0| 0.4318] 0| 0|
| 3 g3 | 0.15] 0.0203] -1.571] 0]
| 4 g4 | 0.4318] 0| 1.571] 0]
| 5] g5 | 0| 0| -1.571] 0]
|6l q6 | 0l 0l 0l 0l
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The Puma 560 robot (Programmable Universal Manipulator for Assembly) released in 1978 was
the first modern industrial robot and became enormously popular. It featured an anthropomor-
phic design, electric motors and a spherical wrist - the archetype of all that followed. It can be
seen in the Smithsonian Museum of American History, Washington DC.

The Puma 560 catalyzed robotics research in the 1980s and it was a very common laboratory
robot. Today it is obsolete and rare but in homage to its important role in robotics research we
use it here. For our purposes the advantages of this robot are that it has been well studied and its
parameters are very well known - it has been described as the “white rat” of robotics research.

Most modern 6-axis industrial robots are very similar in structure and can be accomodated
simply by changing the Denavit-Hartenberg parameters. The Toolbox has kinematic models for
a number of common industrial robots from manufacturers such as Rethink, Kinova, Motoman,
Fanuc and ABB. (Puma photo courtesy Oussama Khatib)

-UNIMATE

Fig.7.6.

The Puma robot in 4 different
poses. a Zero angle; b ready
pose; ¢ stretch; d nominal
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Well away from singularities, which will
be discussed in Sect.7.3.4.

By the Denavit-Hartenberg parameters
of the model in the md1l puma560
script.

Alternatively we could change the kine-
matic parameter d. The tool transform
approach is more general since the fi-
nal link kinematic parameters only allow
setting of dg, as and avg which provide
z-axis translation, x-axis translation and
x-axis rotation respectively.

Anthropomorphic means having human-like characteristics. The Puma 560 robot was designed to
have approximately the dimensions and reach of a human worker. It also had a spherical joint
at the wrist just as humans have.

Roboticists also tend to use anthropomorphic terms when describing robots. We use words
like waist, shoulder, elbow and wrist when describing serial link manipulators. For the Puma
these terms correspond respectively to joint 1, 2, 3 and 4-6.

Note that a; and d; are in SI units which means that the translational part of the for-
ward kinematics will also have SI units.
The scriptmdl puma560 also creates a number of joint coordinate vectors in the

workspace which represent the robot in some canonic configurations:

gz  (0,0,0,0,0,0) zero angle

gr (0,7, —3,0,0,0) ready, the arm is straight and vertical

s  (0,0,—%,0,0,0) stretch, the arm is straight and horizontal

an  (0,%, —7,0,%,0) nominal, the arm is in a dextrous working pose*

and these are shown graphically in Fig. 7.6. These plots are generated using theplot
method, for example

>> p560.plot (gz)

which shows a skeleton of the robot with pipes that connect the link coordinate frames
as defined by the Denavit-Hartenberg parameters. The p1 ot method has many options
for showing the joint axes, wrist coordinate frame, shadows and so on. More realistic-
looking plots such as shown in Fig. 7.7 can be created by the plot3d method for a
limited set of Toolbox robot models.

Forward kinematics can be computed as before

>> TE = pb60.fkine (gz)

TE =
1.0000 0 0 0.4521
0 1.0000 0 -0.1500
0 0 1.0000 0.4318
0 0 0 1.0000

where the joint coordinates are given as a row vector. This returns the homogeneous
transformation corresponding to the end-effector pose. The origin of this frame, the
link-6 coordinate frame {6}, is defined* as the point of intersection of the axes of the
last 3 joints — physically this point is inside the robot’s wrist mechanism. We can de-
fine a tool transform, from the T, frame to the actual tool tip by

>> p560.tool = SE3(0, 0, 0.2);

in this case a 200 mm extension in the T z-direction. The pose of the tool tip, often
referred to as the tool center point or TCP, is now

>> p560.fkine (gz)

ans =
1.0000 0 0 0.4521
0 1.0000 0 -0.1500
0 0 1.0000 0.6318
0 0 0 1.0000

The kinematic definition we have used considers that the base of the robot is the in-
tersection point of the waist and shoulder axes which is a point inside the structure
of the robot. The Puma 560 robot includes a “30-inch” tall pedestal. We can shift the
origin of the robot from the point inside the robot to the base of the pedestal using a
base transform

>> p560.base = SE3(0, 0, 30*0.0254);
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08l T e8]

where for consistency we have converted the pedestal height to SI units. Now, with  Fig.7.7.These two different robot

both base and tool transform, the forward kinematics are configurations result in the same
end-effector pose. They are called
>> p560.fkine (gz) the left- and right-handed configu-
ans = rations, respectively. These graph-
1.0000 0 0 0.4521 ics, produced using the plot3d
0 1.0000 0 -0.1500 method, are available for a limited

0 0 1.0000 1.3938 subset of robot models

0 0 0 1.0000

and we can see that the z-coordinate of the tool is now greater than before.
We can also do more interesting things, for example

>> p560.base = SE3(0,0,3) * SE3.Rx(pi);
>> p560.fkine (gz)
ans =
1.0000 0 0 0.4521
0 -1.0000 -0.0000 0.1500
0 0.0000 -1.0000 2.3682
0 0 0 1.0000

which positions the robot’s origin 3 m above the world origin with its coordinate frame
rotated by 180° about the x-axis. This robot is now hanging from the ceiling!
The Toolbox supports joint angle time series, or trajectories, such as

>> g
q =

0 0
.0365 -0.0365
L2273 -0.2273
.5779 -0.5779
.9929 -0.9929
.3435 -1.3435
.5343 -1.5343
.5708 -1.5708

O O O O O o o o
P PP O OoOOoOOo

O O O O O o o o
O O O O O o o o
O O O O O o o o

where each row represents the joint coordinates at a different timestep and the col-

umns represent the joints.” In this case the method fkine Generated by the j t raj function,which
is discussed in Sect.7.3.1.
>> T = p560.fkine(q);

returns an array of SE3 objects

>> about T
T [SE3] : 1x8 (1.0 kB)

one per timestep. The homogeneous transform corresponding to the joint coordinates
in the fourth row of g is
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Flange rotation
(joint 6)

Wrist
bend
(joint 5)

Wrist
rotation
(joint 4)

>> T (4)
ans =
1.0000 0 0 0.382
0 -1 0 0.15
0 0 -1.0000 2.132
0 0 0 1

Creating trajectories will be covered in Sect. 7.3.

7.2 Inverse Kinematics

We have shown how to determine the pose of the end-effector given the joint coordi-
nates and optional tool and base transforms. A problem of real practical interest is the
inverse problem: given the desired pose of the end-effector {; what are the required
joint coordinates? For example, if we know the Cartesian pose of an object, what joint
coordinates does the robot need in order to reach it? This is the inverse kinematics
problem which is written in functional form as

g=%X"¢) (7.5)
and in general this function is not unique, that is, several joint coordinate vectors g
will result in the same end-effector pose.

Two approaches can be used to determine the inverse kinematics. Firstly, a closed-
form or analytic solution can be determined using geometric or algebraic approaches.
However this becomes increasingly challenging as the number or robot joints increas-
es and for some serial-link manipulators no closed-form solution exists. Secondly, an
iterative numerical solution can be used. In Sect. 7.2.1 we again use the simple 2-di-
mensional case to illustrate the principles and then in Sect. 7.2.2 extend these to robot
arms that move in 3-dimensions.

7.2.1 2-Dimensional (Planar) Robotic Arms

We will illustrate inverse kinematics for the 2-joint robot of Fig. 7.2b in two ways: al-
gebraic closed-form and numerical.

7.2.1.1  Closed-Form Solution

We start by computing the forward kinematics algebraically as a function of joint
angles. We can do this easily, and in a familiar way

>> import ETS2.*

>> al = 1; a2 = 1;

>> E = Rz('gl') * Tx(al) * Rz('q2")
but now using the MATLAB Symbolic Math Toolbox™ we define some real-valued
symbolic variables to represent the joint angles

* Tx(az2)

>> syms gl g2 real

Spherical wrists are a key component of almost all modern arm-type robots. They have three axes
of rotation that are orthogonal and intersect at a common point. This is a gimbal-like mechanism,
and as discussed in Sect. 2.2.1.3 and will have a singularity.

The robot end-effector pose, position and an orientation, is defined at the center of the wrist.
Since the wrist axes intersect at a common point they cause zero translation, therefore the position
of the end-effector is a function only of the first three joints. This is a critical simplification that
makes it possible to find closed-form inverse kinematic solutions for 6-axis industrial robots. An
arbitrary end-effector orientation is achieved independently by means of the three wrist joints.
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and then compute the forward kinematics
>> TE = E.fkine( [gl, g2] )
TE =
[ cos(gl + g2), -sin(gl + g2), cos(gl + g2) + cos(
[ sin(gl + g2), «cos(gl + g2), sin(gl + g2) + sin(
[ 0, 0,

which is an algebraic representation of the robot’s forward kinematics - the end-
effector pose as a function of the joint variables.

We can define two more symbolic variables to represent the desired end-effector
position (x, y)

>> syms x y real

and equate them with the results of the forward kinematics” With the MATLAB Symbolic Math Tool-
box™ the == operator denotes equal-

>> el = x == TE.t(l) ity, as opposed to = which denotes as-
el = signment.
x == cos (gl + g2) + cos(ql)
>> e2 = y == TE.t(2)
e2 =
y == sin(gl + g2) + sin(gl)

which gives two scalar equations that we can solve simultaneously
>> [sl,s2] = solve( [el e2], [gl g2] )

where the arguments are respectively the set of equations and the set of unknowns to solve
for. The outputs are the solutions for g, and g, respectively. We observed in Sect. 7.1.1 that
two different sets of joint angles give the same end-effector position, and this means that
the inverse kinematics does not have a unique solution. Here MATLAB has returned

>> length (s2)

ans =

2
indicating two solutions. One solution for g, is

>> s2(1)

ans =

—2*atan ((=(x"2 + y"2)*(x"2 + y"2 - 4))"(1/2)/(x"2 + y"2))
and would be used in conjunction with the corresponding element of the solution
vector for g, whichis s1 (1).

As mentioned earlier the complexity of algebraic solution increases dramatically
with the number of joints and more sophisticated symbolic solution approaches need
tobe used. The SerialLink classhasamethod ikine symthatgenerates symbolic
inverse kinematics solutions for a limited class of robot manipulators.

7.2.1.2  Numerical Solution

We can think of the inverse kinematics problem as one of adjusting the joint coordi-
nates until the forward kinematics matches the desired pose. More formally this is an
optimization problem - to minimize the error between the forward kinematic solu-
tion and the desired pose £*

q = argmin"ﬂ{(q) of¢
q

For our simple 2-link example the error function comprises only the error in the
end-effector position, not its orientation

E(q) = H [K(q)]t — <x* y*)T
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Themethod i kine6s checksthe Dena-
vit-Hartenberg parameters to determine
if the robot meets these criteria.

We can solve this using the builtin MATLAB multi-variable minimization function
fminsearch

>> pstar = [0.6; 0.7];

>> q = fminsearch( @(g) norm( E.fkine(q).t - pstar ), [0 0] )

q =

-0.2295 2.1833

where the first argument is the error function, expressed here as a MATLAB anony-
mous function, that incorporates the desired end-effector position; and the second
argument is the initial guess at the joint coordinates. The computed joint angles in-
deed give the desired end-effector position

>> E.fkine(q) .print
t = (0.6, 0.7), theta = 111.9 deg

As already discussed there are two solutions for g but the solution that is found
using this approach depends on the initial choice of q.

7.2.2 3-Dimensional Robotic Arms

7.2.2.1  Closed-Form Solution

Closed-form solutions have been developed for most common types of 6-axis industrial
robots and many are included in the Toolbox. A necessary condition for a closed-form
solution of a 6-axis robot is a spherical wrist mechanism. We will illustrate closed-form
inverse kinematics using the Denavit-Hartenberg model for the Puma robot

>> mdl puma560

At the nominal joint coordinates shown in Fig. 7.6d
>> gn

qn =
0 0.7854 3.1416 0 0.7854 0

the end-effector pose is

>> T = p560.fkine (gn)

T =
-0.0000 0.0000 1.0000 0.5963
-0.0000 1.0000 -0.0000 -0.1501
-1.0000 -0.0000 -0.0000 -0.0144
0 0 0 1.0000

Since the Puma 560 is a 6-axis robot arm with a spherical wrist we use the method
ikine6s to compute the inverse kinematics using a closed-form solution. The re-
quired joint coordinates to achieve the pose T are

>> gi = p560.1ikine6s (T)

ai =

2.6486 -3.9270 0.0940 2.5326 0.9743 0.3734

Surprisingly, these are quite different to the joint coordinates we started with. However
if we investigate a little further

>> p560.fkine (gi)

ans =
-0.0000 0.0000 1.0000 0.5963
0.0000 1.0000 -0.0000 -0.1500
-1.0000 0.0000 -0.0000 -0.0144
0 0 0 1.0000

we see that these two different sets of joint coordinates result in the same end-effector
pose and these are shown in Fig. 7.7. The shoulder of the Puma robot is horizontally
offset from the waist, so in one solution the arm is to the left of the waist, in the other
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it is to the right. These are referred to as the left- and right-handed kinematic config-

urations respectively. In general there are eight sets of joint coordinates that give the

same end-effector pose — as mentioned earlier the inverse solution is not unique.
We can force the right-handed solution

>> gi = p560.ikine6s (T, 'ru')
ai =
-0.0000 0.7854 3.1416 0.0000 0.7854  -0.0000
which gives the original set of joint angles by specifying a right handed configuration
with the elbow up.

In addition to the left- and right-handed solutions, there are solutions with the el-
bow either up or down,” and with the wrist flipped or not flipped. For the Puma 560
robot the wrist joint, 6,, has a large rotational range and can adopt one of two angles
that differ by w radians.

Some different various kinematic configurations are shown in Fig. 7.8. The kinemat-
ic configuration returned by ikine6s is controlled by one or more of the options:

left or right handed "1, '’
elbow up or down 'u', 'd’
wrist flipped or not flipped "f£','n’

Due to mechanical limits on joint angles and possible collisions between links not
all eight solutions are physically achievable. It is also possible that no solution can be
achieved. For example

>> p560.ikine6s( SE3(3, 0, 0) )

Warning: point not reachable

ans =

NaN NaN NaN NaN NaN NaN
has failed because the arm is simply not long enough to reach this pose.

A pose may also be unachievable due to singularity where the alignment of axes re-
duces the effective degrees of freedom (the gimbal lock problem again). The Puma 560
has a wrist singularity when g5 is equal to zero and the axes of joints 4 and 6 become

Fig.7.8. Different configurations
of the Puma 560 robot. a Right-
up-noflip; b right-down-noflip;
c right-down-flip

More precisely the elbow is above or be-
low the shoulder.
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When solving for a trajectory as on p. 204
the inverse kinematic solution for one
point s used to initialize the solution for
the next point on the path.

aligned. In this case the best that ikine6s can do is to constrain g, + g, but their
individual values are arbitrary. For example consider the configuration

>> q = [0 pi/4 pi 0.1 0 0.2];

for which g, + g = 0.3. The inverse kinematic solution is
>> p560.ikine6s (p560.fkine(qg), 'ru')
ans =
-0.0000 0.7854 3.1416  -3.0409 0.0000  -2.9423
which has quite different values for g, and g, but their sum

>> g (4)+q(6)
ans =
0.3000

remains the same.

7.2.2.2  Numerical Solution

For the case of robots which do not have six joints and a spherical wrist we need to
use an iterative numerical solution. Continuing with the example of the previous sec-
tion we use the method ikine to compute the general inverse kinematic solution

>> T = p560.fkine (gn)

ans =
-0.0000 0.0000 1.0000 0.5963
-0.0000 1.0000 -0.0000 -0.1501
-1.0000 -0.0000 -0.0000 -0.0144
0 0 0 1.0000
>> gi = p560.ikine(T)
ai =

0.0000 -0.8335 0.0940 -0.0000 -0.8312 0.0000

which is different to the original value
>> gn
qn =
0 0.7854 3.1416 0 0.7854 0
but does result in the correct tool pose
>> p560.fkine (gi)

ans =
-0.0000 0.0000 1.0000 0.5963
-0.0000 1.0000 -0.0000 -0.1501
-1.0000 -0.0000 -0.0000 -0.0144
0 0 0 1.0000
Plotting the pose

>> p560.plot (gi)

shows clearly that i kine has found the elbow-down configuration.

A limitation of this general numeric approach is that it does not provide explicit
control over the arm’s kinematic configuration as did the analytic approach - the only
control is implicit via the initial value of joint coordinates (which defaults to zero). If
we specify the initial joint coordinates

>> gi = p560.ikine(T, 'g0', [0 0 3 0 0 0])

i =

’ 0.0000 0.7854 3.1416 0.0000 0.7854  -0.0000
we have forced the solution to converge on the elbow-up configuration.<

Aswould be expected the general numerical approach of i kine is considerably slow-
er than the analytic approach of 1 kine 6s. However it has the great advantage of being
able to work with manipulators at singularities and manipulators with less than six or
more than six joints. Details of the principle behind i kine is provided in Sect. 8.6.
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7.2.2.3  Under-Actuated Manipulator

An under-actuated manipulator is one that has fewer than six joints, and is therefore
limited in the end-effector poses that it can attain. SCARA robots such as shown on
page 191 are a common example. They typically have an x-y-z-6 task space, T C R? x S!
and a configuration space € C (S')* x R.

We will load a model of SCARA robot

>> mdl_cobra600

>> c600

c600 =

Cobra600 [Adept]:: 4 axis, RRPR, stdDH

e et fom - Fom - Fom - Fom - +
|3 1 theta | d | a | alpha | offset |
e et fom - Fom - Fom - Fom - +
| 1] qll 0.387] 0.325] 0]l 0]l
| 2] g2 0l 0.275] 3.142| 0]
| 31 0]l q3| 0] 0] o
| 4] q4 | 0]l 0] 0]l 0]l
e et fom - Fom - Fom - Fom - +

and then define a desired end-effector pose
>> T = SE3(0.4, -0.3, 0.2) * SE3.rpy(30, 40, 160, 'deg')

where the end-effector approach vector is pointing downward but is not vertically
aligned. This pose is over-constrained for the 4-joint SCARA robot - the tool physically
cannot meet the orientation requirement for an approach vector that is not vertically
aligned. Therefore we require the ikine method to not consider rotation about the
x- and y-axes when computing the end-effector pose error. We achieve this by speci-
fying a mask vector as the fourth argument

>> g = ¢c600.ikine(T, 'mask', [1 1 1 0 0 1]

! -0.1110 -1.1760 0.1870 -0.8916
The elements of the mask vector correspond respectively to the three translations and
three orientations: ¢, b lp Ty, in the end-effector coordinate frame. In this exam-
ple we specified that rotation about the x- and y-axes are to be ignored (the zero ele-
ments). The resulting joint angles correspond to an achievable end-effector pose

>> Ta = c600.fkine(q);

>> Ta.print('xyz")

t = (0.4, -0.3, 0.2), RPY/xyz = (22.7, 0, 180) deg
which has the desired translation and yaw angle, but the roll and pitch angles are in-
correct, as we allowed them to be. They are what the robot mechanism actually per-
mits. We can also compare the desired and achievable poses graphically

>> trplot (T, 'color', 'b'")

>> hold on

>> trplot(Ta, 'color', 'r'")

7.2.24  Redundant Manipulator

A redundant manipulator is a robot with more than six joints. As mentioned previ-
ously, six joints is theoretically sufficient to achieve any desired pose in a Cartesian
taskspace T C SE(3). However practical issues such as joint limits and singularities
mean that not all poses within the robot’s reachable space can be achieved. Adding
additional joints is one way to overcome this problem but results in an infinite num-
ber of joint-coordinate solutions. To find a single solution we need to introduce con-
straints - a common one is the minimum-norm constraint which returns a solution
where the joint-coordinate vector elements have the smallest magnitude.
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We will illustrate this with the Baxter robot shown in Fig. 7.1b. This is a two armed
robot, and each arm has 7 joints. We load the Toolbox model

>> mdl baxter

which defines two SerialLink objects in the workspace, one for each arm. We will work

with the left arm

>> left

left =

Baxter LEFT [Rethink Robotics]:: 7 axis, RRRRRRR, stdDH

R Fom— - Fom - tom— Fom +
j theta d a alpha offset

R Fom— - Fom - tom— Fom +

| 1] qll 0.27] 0.069] -1.571] 0l

| 2| g2 | 0] 0] 1.571] 1.571]

| 3 a3 0.364] 0.069] -1.571| 0]

| 4| a4 | 0] 0] 1.571] 0]

| 5] ab | 0.374] 0.01] -1.571| 0]

| 6| g6 | 0] 0] 1.571] 0]

| 71 a7l 0.28] 0] 0] 0]

R Fom— - Fom - tom— tom— +

base: t = (0.064614,0.25858,0.119), RPY/xyz = (0, 0, 45) deg

which we can see has a base offset that reflects where the arm is attached to Baxter’s
torso. We want the robot to move to this pose

>> TE = SE3(0.8, 0.2, -0.2) * SE3.Ry(pi);

which has its approach vector downward. The required joint angles are obtained us-
ing the numerical inverse kinematic solution and

>> g = left.ikine(TE)

q =

0.0895 -0.0464  -0.4259 0.6980  -0.4248 1.0179 0.2998

is the joint-angle vector with the smallest norm that results in the desired end-effector
pose. We can verify this by computing the forward kinematics or plotting

>> left.fkine(q) .print ('xyz"')

t = (0.8, 0.2, -0.2), RPY/xyz = (180, 180, 180) deg

>> left.plot (q)

7.3 Trajectories

One of the most common requirements in robotics is to move the end-effector smoothly
from pose A to pose B. Building on what we learned in Sect. 3.3 we will discuss two ap-
proaches to generating such trajectories: straight lines in configuration space and straight
lines in task space. These are known respectively as joint-space and Cartesian motion.

7.3.1 Joint-Space Motion

In this robot configuration, similar to Consider the end-effector moving between two Cartesian poses™
Fig.7.6d, we specify the pose toinclude a

rotation so that the end-effector z-axis >> T1 = SE3(0.4, 0.2, 0) * SE3.Rx(pi);

is not pointing straight up in the world >> T2 = SE3(0.4, -0.2, 0) * SE3.Rx(pi/2);

z-direction. For the Puma 560 robot this . . . . ) . ) )
would be physicallyimpossibletoachieve ~ Which describe points in the xy-plane with different end-effector orientations. The

in the elbow-up configuration. joint coordinate vectors associated with these poses are

>> gl = p560.ikine6s(T1);
>> g2 p560.1ikine6s (T2) ;

and we require the motion to occur over a time period of 2 seconds in 50 ms time steps
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>> t

= [0:0.05:2]";

A joint-space trajectory is formed by smoothly interpolating between the joint configu-
rations g1 and g2. The scalar interpolation functions tpoly or 1spb from Sect. 3.3.1
can be used in conjunction with the multi-axis driver function mtraj

>> g

or

>> g

= mtraj (€tpoly,

al,

mtraj (@lspb, gl,

az,

az,

t)s

t)s

which each resultina 50 x 6 matrix g with one row per time step and one column per

joint. From here on we will use the equivalent jtraj convenience function

>> g = jtraj(ql, 92, t);”

Formtrajand jtraj the final argument can be a time vector, as here, or an integer
specifying the number of time steps.

We can obtain the joint velocity and acceleration vectors, as a function of time,
through optional output arguments

>>

[a,qd,qdd] =

jtraj (gl,

az,

t);

An even more concise way to achieve the above steps is provided by the j t raj meth-
od of the SerialLink class

>> g = pb560.jtraj(Tl, T2, t)
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This is equivalent to mt raj with
tpoly interpolation but optimized
for the multi-axis case and also allowing
initial and final velocity to be set using

additional arguments.

Fig.7.9. Joint-space motion. a Joint
coordinates versus time; b Carte-
sian position versus time; ¢ Carte-
sian position locus in the xy-plane
d roll-pitch-yaw angles versus time
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The trajectory is best viewed as an animation
>> p560.plot (q)

but we can also plot the joint angle, for instance g,, versus time
>> plot(t, g(:,2))

or all the angles versus time
>> gplot(t, qg);

as shown in Fig. 7.9a. The joint coordinate trajectory is smooth but we do not know
how the robot’s end-effector will move in Cartesian space. However we can easily de-
termine this by applying forward kinematics to the joint coordinate trajectory

>> T = p560.fkine(q);
which results in an array of SE3 objects. The translational part of this trajectory is

>> p = T.transl;
which is in matrix form

Fig.7.10. Cartesian motion. a Joint >> about (p)
coordinates versus time; b Carte- p [double] : 41x3 (984 bytes)

sian position versus time; ¢ Carte- . . fs
sian position locus in the xy-plane; and has one column per time step, and each column is the end-effector position vector.

d roll-pitch-yaw angles versus time ~ This is plotted against time in Fig. 7.9b. The path of the end-effector in the xy-plane
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>> plot(p(l,:), p(2,:))

is shown in Fig. 7.9c and it is clear that the path is not a straight line. This is to be ex-
pected since we only specified the Cartesian coordinates of the end-points. As the robot
rotates about its waist joint during the motion the end-effector will naturally follow a
circular arc. In practice this could lead to collisions between the robot and nearby ob-
jects even if they do not lie on the path between poses A and B. The orientation of the
end-effector, in XYZ roll-pitch-yaw angle form, can also be plotted against time

>> plot(t, T.torpy('xyz'))
as shown in Fig. 7.9d. Note that the yaw angle” varies from 0 to 7 radians as we speci-

fied. However while the roll and pitch angles have met their boundary conditions they
have varied along the path.

7.3.2 Cartesian Motion

For many applications we require straight-line motion in Cartesian space which is
known as Cartesian motion. This is implemented using the Toolbox function ctraj
which was introduced in Sect. 3.3.5. Its usage is very similar to jtraj

>> Ts = ctraj(Tl, T2, length(t));

where the arguments are the initial and final pose and the number of time steps and
it returns the trajectory as an array of SE3 objects.
As for the previous joint-space example we will extract and plot the translation

>> plot(t, Ts.transl);
and orientation components
>> plot(t, Ts.torpy('xyz'));

of this motion which is shown in Fig. 7.10 along with the path of the end-effector in
the xy-plane. Compared to Fig. 7.9 we note some important differences. Firstly the
end-effector follows a straight line in the xy-plane as shown in Fig. 7.10c. Secondly
the roll and pitch angles shown in Fig. 7.10d are constant at zero along the path.

The corresponding joint-space trajectory is obtained by applying the inverse kine-
matics

>> gc = p560.ikinebs (Ts);

and is shown in Fig. 7.10a. While broadly similar to Fig. 7.9a the minor differences are
what result in the straight line Cartesian motion.

733 Kinematics in Simulink

We can also implement this example in Simulink®

>> sl jspace

and the block diagram model is shown in Fig. 7.11. The parameters of the jtraj
block are the initial and final values for the joint coordinates and the time duration
of the motion segment. The smoothly varying joint angles are wired to a plot block
which will animate a robot in a separate window, and to an fkine block to compute
the forward kinematics. Both the plot and fkine blocks have a parameter which is
a SerialLink object, in this case p560. The Cartesian position of the end-effector
pose is extracted using the T2xyz block which is analogous to the Toolbox function
transl.The XY Graph block plots y against x.

Rotation about x-axis for a robot end-
effector from Sect.2.2.1.2.
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Fig.7.11.
Simulink model s1_jspace
for joint-space motion

qe has increased rapidly, while g, has
decreased rapidly and wrapped around
from —m to . This counter-rotational
motion of the two joints means that the
gripper does not rotate but the two mo-
tors are working hard.

> q
69 Puma 560
plot
jtraj X > E::j
—» g T—»T Yy
o Puma & P3| XY
fkine

734 Motion through a Singularity

We have already briefly touched on the topic of singularities (page 209) and we will
revisit it again in the next chapter. In the next example we deliberately choose a tra-
jectory that moves through a robot wrist singularity. We change the Cartesian end-
points of the previous example to

>> T1 = SE3(0.5, 0.3, 0.44) * SE3.Ry(pi/2);
>> T2 = SE3(0.5, -0.3, 0.44) * SE3.Ry(pi/2);

which results in motion in the y-direction with the end-effector z-axis pointing in the
world x-direction. The Cartesian path is

>> Ts = ctraj(Tl, T2, length(t)):;
which we convert to joint coordinates
>> gc = p560.ikine6s (Ts)

and is shown in Fig. 7.12a. At time f ~ 0.7 s we observe that the rate of change of the
wrist joint angles q, and g, has become very high.< The cause is that g5 has become
almost zero which means that the g, and g, rotational axes are almost aligned - an-
other gimbal lock situation or singularity.

The joint axis alignment means that the robot has lost one degree of freedom and is
now effectively a 5-axis robot. Kinematically we can only solve for the sum g, + g4 and
there are an infinite number of solutions for g, and g, that would have the same sum.
From Fig. 7.12b we observe that the generalized inverse kinematics method ikine
handles the singularity with far less unnecessary joint motion. This is a consequence
of the minimum-norm solution which has returned the smallest magnitude g, and g,
which have the correct sum. The joint-space motion between the two poses, Fig. 7.12c,
is immune to this problem since it is does not involve inverse kinematics. However
it will not maintain the orientation of the tool in the x-direction for the whole path
- only at the two end points.

The dexterity of a manipulator, its ability to move easily in any direction, is referred
to as its manipulability. It is a scalar measure, high is good, and can be computed for
each point along the trajectory

>> m = p560.maniplty(qgc) ;

and is plotted in Fig. 7.12d. This shows that manipulability was almost zero around
the time of the rapid wrist joint motion. Manipulability and the generalized inverse
kinematics function are based on the manipulator’s Jacobian matrix which is the topic
of the next chapter.
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7.35 Configuration Change

Earlier (page 208) we discussed the kinematic configuration of the manipulator arm
and how it can work in a left- or right-handed manner and with the elbow up or down.
Consider the problem of a robot that is working for a while left-handed at one work
station, then working right-handed at another. Movement from one configuration to
another ultimately results in no change in the end-effector pose since both configura-
tion have the same forward kinematic solution - therefore we cannot create a trajec-
tory in Cartesian space. Instead we must use joint-space motion.

For example to move the robot arm from the right- to left-handed configuration
we first define some end-effector pose

>> T = SE3(0.4, 0.2, 0) * SE3.Rx(pi);

and then determine the joint coordinates for the right- and left-handed elbow-up
configurations

>> gqr = p560.ikine6s (T, 'ru');
>> gl = p560.ikine6s (T, 'lu');

and then create a joint-space trajectory between these two joint coordinate vectors
>> q = jtraj(qr, ql, t);

Although the initial and final end-effector pose is the same, the robot makes some quite sig-
nificant joint space motion as shown in Fig. 7.13 - in the real world you need to be careful
the robot doesn’t hit something. Once again, the best way to visualize this is in animation

>> p560.plot (q)

1
1 1.2 1.4 1.6 1.8 2
Time (s)

Fig.7.12.Cartesian motion through
a wrist singularity. a Joint coordi-
nates computed by inverse kine-
matics (1kine6s); b joint coor-
dinates computed by numerical
inverse kinematics (i kine);cjoint
coordinates for joint-space mo-
tion; d manipulability
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Fig.7.13.
Joint space motions for configu-
ration change from right-handed

to left-handed

It is actually implemented within the
Link object.

Fig.7.14. Puma 560 robot coor-
dinate frames. Standard Denavit-
Hartenberglink coordinate frames
for Puma in the zeroangle pose
(Corke 1996b)
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7.4 Advanced Topics

7.4.1 Joint Angle Offsets

The pose of the robot with zero joint angles is an arbitrary decision of the robot
designer and might even be a mechanically unachievable pose. For the Puma robot
the zero-angle pose is a nonobvious L-shape with the upper arm horizontal and the
lower arm vertically upward as shown in Fig. 7.6a. This is a consequence of con-
straints imposed by the Denavit-Hartenberg formalism.

The joint coordinate offset provides a mechanism to set an arbitrary configu-
ration for the zero joint coordinate case. The offset vector, g, is added to the user
specified joint angles before any kinematic or dynamic function is invoked,* for
example

& =X(a+q) (7.6)
Similarly it is subtracted after an operation such as inverse kinematics
q=%X"(&)~a (7.7)

The offset is set by assigning the of fset property of the Link object, or giving the
"offset' option to the SerialLink constructor.

7.4.2 Determining Denavit-Hartenberg Parameters

The classical method of determining Denavit-Hartenberg parameters is to system-
atically assign a coordinate frame to each link. The link frames for the Puma robot
using the standard Denavit-Hartenberg formalism are shown in Fig. 7.14. However
there are strong constraints on placing each frame since joint rotation must be
about the z-axis and the link displacement must be in the x-direction. This in turn
imposes constraints on the placement of the coordinate frames for the base and the
end-effector, and ultimately dictates the zero-angle pose just discussed. Determining
the Denavit-Hartenberg parameters and link coordinate frames for a completely
new mechanism is therefore more difficult than it should be - even for an experi-
enced roboticist.

An alternative approach, supported by the Toolbox, is to simply describe the ma-
nipulator as a series of elementary translations and rotations from the base to the
tip of the end-effector as we discussed in Sect. 7.1.2. Some of the elementary opera-
tions are constants such as translations that represent link lengths or offsets, and
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some are functions of the generalized joint coordinates g;. Unlike the conventional
approach we impose no constraints on the axes about which these rotations or trans-
lations can occur.

For the Puma robot shown in Fig. 7.4 we first define a convenient coordinate frame
at the base and then write down the sequence of translations and rotations, from “toe
to tip”, in a string”

>> s = "Tz(Ll) Rz (ql)

Tz (L6)

Tz (L3)
Rz (g6) "'

Ry (g2) Tx (L4)

Rz (g4)

Ty (L2)
Ry (g5)

Ry (q3) Ty (L5)

Note that we have described the second joint as Ry (g2), a rotation about the y-axis,
which is not permissible using the Denavit-Hartenberg formalism.
This string is input to a symbolic algebra function”

>> dh = DHFactor (s);

which returns a DHFactor object” that holds the kinematic structure of the robot
that has been factorized into Denavit-Hartenberg parameters. We can display this in
a human-readable form

>> dh

dh =

DH(ql, L1, O,

DH (g4, L6, O,

-90) .DH(g2+90, O,
-90) .DH (g5, 0, 0, 90)

-L3, 0).DH(g3-90, L2+L5, L4, 90).
.DH(g6, 0, 0, 0)

which shows the Denavit-Hartenberg parameters for each joint in the order 6, d, a
and . Joint angle offsets (the constants added to or subtracted from joint angle vari-
ables such as g2 and g3) are generated automatically, as are base and tool transfor-
mations. The object can generate a string that is a complete Toolbox command to cre-
ate the robot named “puma”

>> cmd = dh.command ('puma')
cmd =

Seriallink ([0, L1, O,
pi/2, 0; 0, Le, O,

-pi/2, 0; 0, 0, -L3, 0, 0; 0, L2+L5, L4,
-pi/2, 0; 0, 0, O, pi/2, 0; O, O, O, 0, 0; 1,

'name', 'puma',
'base', eye(4,4), 'tool', eye(4,4),
'offset', [0 pi/2 -pi/2 0 0 0 1)

which can be executed

>> robot = eval (cmd)

to create a workspace variable called robot thatisa SerialLink object.”

7.4.3 Modified Denavit-Hartenberg Parameters

The Denavit-Hartenberg notation introduced in this chapter is commonly used and
described in many robotics textbooks. Craig (1986) first introduced the modified
Denavit-Hartenberg parameters where the link coordinate frames shown in Fig. 7.15
are attached to the near (proximal), rather than the far (distal) end of each link. This
modified notation is in some ways clearer and tidier and is also now commonly used.
However its introduction has increased the scope for confusion, particularly for those
who are new to robot kinematics. The root of the problem is that the algorithms for
kinematics, Jacobians and dynamics depend on the kinematic conventions used.
According to Craig’s convention the link transform matrix is

(o aindp b)) = Zl i) © Zan) © Z(d) © %(6;)

6, (7.8)

denoted in that book as j*}A. This has the same terms as Eq. 7.2 but in a different order

- remember rotations are not commutative - and this is the nub of the problem. g; is

Alllengths must start with L and negative
signs cannot be used in the string, but
the values themselves can be negative.
You can generate this string from an ETS3
sequence (page 196) usingits string
method.

Written in Java, the MATLAB® Symbolic
Math Toolbox™ is not required.

Actually a Java object.

The length parameters L1 to L6 must
be defined in the workspace first.
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Fig.7.15.
Definition of modified Denavit
and Hartenberg link parameters.
The colors red and blue denote
all things associated with links
j— 1and j respectively. The
numbers in circles represent the
order in which the elementary
transforms are applied

always the length of link j, but it is the displacement between the origins of frame {j}
and frame {j 4 1} in one convention, and frame {j — 1} and frame {j} in the other.

If you intend to build a Toolbox robot model from a table of kinematic parame-
ters provided in a research paper it is really important to know which convention
the author of the table used.Too often this important fact is not mentioned. An
important clue lies in the column headings. If they all have the same subscript,
i.e. Gj, dj, a; and Q; then this is standard Denavit-Hartenberg notation. If half the
subscripts are different,i.e. 0, d; a;_; and a;_; then you are dealing with modi-
fied Denavit-Hartenberg notation. In short, you must know which kinematic
convention your Denavit-Hartenberg parameters conform to.

You can also help the field when publishing by stating clearly which kine-
matic convention is used for your parameters.

The Toolbox can handle either form, it only needs to be specified, and this is achieved
using variant classes when creating a link object

>> L1 = RevoluteMDH('d', 1)

L1 =

Revolute (mod) : theta=q, d=1, a=0, alpha=0, offset=0

Everything else from here on, creating the robot object, kinematic and dynamic
functions works as previously described.

The two forms can be interchanged by considering the link transform as a string
of elementary rotations and translations as in Eq. 7.2 or Eq. 7.8. Consider the trans-
formation chain for standard Denavit-Hartenberg notation

%,6) @ Z,(d) © Z(a) © () © %,(6,) © F(dy) © T (a,) © R ()

DH, DH2

which we can regroup as

Z,(0)® T (dy) © T () % (04) © %,(0,) © T (dy) © T (ay) D H () -

base MDH, MDH,

where the terms marked as MDH; have the form of Eq. 7.8 taking into account that trans-
lation along, and rotation about the same axis is commutative, that is, Z,(0) © .7(d)
=9(d) & Z0) forie {x,y, z}.
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7.5 Applications

7.5.1 Writing on a Surface [examples/drawing.m]

Our goal is to create a trajectory that will allow a robot to draw a letter. The Toolbox
comes with a preprocessed version of the Hershey font”

>> load hershey

as a cell array of character descriptors. For an upper-case ‘B’

>> B = hershey{'B'}
B =
stroke: [2x23 double]
width: 0.8400
top: 0.8400
bottom: 0

the structure describes the dimensions of the character, vertically from 0 to 0.84 and
horizontally from 0 to 0.84”. The path to be drawn is

>> B.stroke

ans =
Columns 1 through 11

0.1600 0.1600 NaN 0.1600 0.5200 0.6400

0.8400 0 NaN 0.8400 0.8400 0.8000

where the rows are the x- and y-coordinates respectively, and a column of NaNs indi-
cates the end of a segment - the pen is lifted and placed down again at the beginning
of the next segment. We perform some processing

>> path = [ 0.25*B.stroke; zeros(l,numcols(B.stroke))];

>> k = find(isnan(path(1l,:)));

>> path(:,k) = path(:,k-1); path(3,k) = 0.2;
to scale the path by 0.25 so that the character is around 20 cm tall, append a row of
zeros (add z-coordinates to this 2-dimensional path), find the columns that contain
NaNs and replace them with the preceding column but with the z-coordinate set to
0.2 in order to lift the pen off the surface.

Next we convert this to a continuous trajectory

>> traj = mstraj(path(:,2:end)', [0.5 0.5 0.5], [], path(:,1)', 4
0.02, 0.2);

where the second argument is the maximum speed in the x-, y- and z-directions, the
fourth argument is the initial coordinate followed by the sample interval and the ac-
celeration time. The number of steps in the interpolated path is

>> about (traj)
traj [double] : 487x3 (11.7 kB)

and will take

>> numrows (traj) * 0.02
ans =
9.7400

seconds to execute at the 20 ms sample interval. The trajectory can be plotted
>> plot3(traj(:,1), traj(:,2), traj(:,3)

as shown in Fig. 7.16.

We now have a sequence of 3-dimensional points but the robot end-effector has a
pose, not just a position, so we need to attach a coordinate frame to every point. We
assume that the robot is writing on a horizontal surface so these frames must have
their approach vector pointing downward, that is, a = [0, 0, —1], with the gripper ar-

Developed by Dr. Allen V. Hershey at
the Naval Weapons Laboratory in 1967,
data from http://paulbourke.net/data-
formats/hershey.

This is a variable-width font, and all
characters fit within a unit-height rect-
angle
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Fig.7.16.
The end-effector path drawing
the letter ‘B’

We have not considered the force that
the robot-held pen exerts on the paper,
we cover force control in Chap.9.1n a
real implementation of this example it
would be prudent to use a spring to push
the pen against the paper with sufficient
force to allow it to write.

0.2

bitrarily oriented in the y-direction with o = [0, 1, 0]. The character is also placed at
(0.6, 0, 0) in the workspace, and all this is achieved by

>> Tp = SE3(0.6, 0, 0) * SE3(traj) * SE3.oca( [0 1 0], [0 O -11);
Now we can apply inverse kinematics

>> g = p560.1ikine6s (Tp);
to determine the joint coordinates and then animate it

>> p560.plot(q)

The Puma is drawing the letter ‘B’, and lifting its pen in between strokes! The ap-
proach is quite general and we could easily change the size of the letter, write whole
words and sentences, write on an arbitrary plane or use a robot with quite different
kinematics. <

7.5.2 A Simple Walking Robot [examples/walking.m]

Four legs good, two legs bad!

Snowball the pig, Animal Farm by George Orwell

Our goal is to create a four-legged walking robot. We start by creating a 3-axis robot

arm that we use as a leg, plan a trajectory for the leg that is suitable for walking, and
then instantiate four instances of the leg to create the walking robot.

Kinematics

Kinematically a robot leg is much like a robot arm. For this application a three joint
serial-link manipulator is sufficient since the foot has point contact with the ground
and orientation is not important. Determining the Denavit-Hartenberg parameters,
even for a simple robot like this, is an involved procedure and the zero-angle offsets
need to be determined in a separate step. Therefore we will use the procedure intro-
duced in Sect. 7.4.2.

As always we start by defining our coordinate frame. This is shown in Fig. 7.17
along with the robot leg in its zero-angle pose. We have chosen the aerospace coor-
dinate convention which has the x-axis forward and the z-axis downward, constrain-
ing the y-axis to point to the right-hand side. The first joint will be hip motion, for-
ward and backward, which is rotation about the z-axis or R,(q1). The second joint
is hip motion up and down, which is rotation about the x-axis, R,(q,). These form a
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i Fig.7.17.
! The coordinate frame and axis

rotations for the simple leg. The
leg is shown in its zero angle pose

spherical hip joint since the axes of rotation intersect. The knee is translated by L,
in the y-direction or T (L,). The third joint is knee motion, toward and away from
the body, which is R,(g;). The foot is translated by L, in the z-direction or T,(L,).
The transform sequence of this robot, from hip to toe, is therefore R,(q1)R,(q,)T,

(LR (q3)T,(Ly).
Using the technique of Sect. 7.4.2 we write this sequence as the string

>> s = 'Rz (gl) Rx(g2) Ty(Ll) Rx(g3) Tz(L2)';

The string can be automatically manipulated into Denavit-Hartenberg factors

>> dh = DHFactor (s)

DH(g1+90, 0, 0, 90).DH(g2, 0, L1,

.Rz (+90) .Rx (-90) .Rz (-90)
The last three terms in this factorized sequence is a tool transform

>> dh.tool

ans =

trotz (pi/2) *trotx (-pi/2) *trotz (-pi/2)
that changes the orientation of the frame at the foot. However for this problem the
foot is simply a point that contacts the ground so we are not concerned about its ori-
entation. The method dh . command generates a string that is the Toolbox command
to create a SerialLink object

0) .DH(q3-90, 0, -L2, 0)

>> dh.command('leg"')

ans =
SeriallLink([O, O, O, pi/2, O; O, O, L1, 0, O; O, O, -L2, 0, 0; ], 4
'name', 'leg', 'base', eye(4,4), 4
'tool', trotz(pi/2)*trotx(-pi/2)*trotz (-pi/2),
'offset', [pi/2 0 -pi/2 1)
which is input to the MATLAB eval command
>> L1 = 0.1; L2 = 0.1;
>> leg = eval( dh.command('leg') )
>> leg
leg =
leg:: 3 axis, RRR, stdDH, slowRNE
R e i e it e i e i +
|3 1 theta | d | a | alpha | offset |
R e i e it e i e i +
| 1] qll 0] 0] 1.5708]| 1.5708]|
| 2] g2 | 0] 0.1] 0] 0]
| 3] g3 0] -0.1] 0] -1.5708]|
R e i e it e i e i +
tool t = (0, 0, 0), RPY/zyx = (0, -90, 0) deg

after first setting the length of each leg segment to 100 mm in the MATLAB work-
space.
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Fig.7.18.
Robot leg in its zero angle pose.
Note that the z-axis points
downward

-0.2 4
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We perform a quick sanity check of our robot. For zero joint angles the foot is at

>> transl( leg.fkine([0,0,0]) )
ans =
0 0.1000 0.1000

as we designed it. We can visualize the zero-angle pose

>> leg.plot ([0,0,0], 'nobase', 'noshadow', 'notiles')
>> set(gca, 'Zdir', 'reverse'); view(137,48);

which is shown in Fig. 7.18. Now we should test that the other joints result in the ex-
pected motion. Increasing g,
>> transl( leg.fkine([0.2,0,0]) )
ans =
-0.0199 0.0980 0.1000
results in motion in the xy-plane, and increasing g,
>> transl( leg.fkine([0,0.2,0]) )
ans =
-0.0000 0.0781 0.1179
results in motion in the yz-plane, as does increasing g

>> transl( leg.fkine([0,0,0.2]) )
ans =
-0.0000 0.0801 0.0980

We have now created and verified a simple robot leg.

Motion of One Leg

The next step is to define the path that the end-effector of the leg, its foot, will follow.
The first consideration is that the end-effector of all feet move backwards at the same
speed in the ground plane - propelling the robot’s body forward without its feet slip-
ping. Each leg has a limited range of movement so it cannot move backward for very
long. At some point we must reset the leg - lift the foot, move it forward and place it
on the ground again. The second consideration comes from static stability - the robot
must have at least three feet on the ground at all times so each leg must take its turn
to reset. This requires that any leg is in contact with the ground for % of the cycle and
is resetting for % of the cycle. A consequence of this is that the leg has to move much
faster during reset since it has a longer path and less time to do it in.
The required trajectory is defined by the via points

>> xf = 50; xb = -xf; vy = 50; zu = 20; zd = 50;
>> path = [xf y zd; xb y zd; xb y zu; xf y zu; xf y zd] * le-3;

where x £ and xb are the forward and backward limits of leg motion in the x-direction (in
units of mm), y is the distance of the foot from the body in the y-direction, and zu and zd
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are respectively the height of the foot motion in the z-direction for foot up and foot down.
In this case the foot moves from 50 mm forward of the hip to 50 mm behind. When the foot
is down, itis 50 mm below the hip and it is raised to 20 mm below the hip during reset. The
points in path define a complete cycle: the start of the stance phase, the end of stance, top
of the leg lift, top of the leg return and the start of stance. This is shown in Fig. 7.19a.

Next we sample the multi-segment path at 100 Hz

>> p = mstraj(path, [], [0,

3, 0.25,

0.5, 0.25]", path(1,:),

0.01,

0) 7

In this case we have specified a vector of desired segment times rather than maxi-
mum joint velocities.” The final three arguments are the initial leg configuration, the
sample interval and the acceleration time. This trajectory has a total time of 4 s and

therefore comprises 400 points.

We apply inverse kinematics to determine the joint angle trajectories required for
the foot to follow the computed Cartesian trajectory. This robot is under-actuated so
we use the generalized inverse kinematics i kine and set the mask so as to solve only

for end-effector translation

>> qgcycle = leg.ikine( SE3(p),

'mask’',

We can view the motion of the leg in animation

>> leg.plot (gcycle, 'loop')

[1 1100 0]

)i

to verify that it does what we expect: slow motion along the ground, then a rapid lift,
forward motion and foot placement. The ' 1oop ' option displays the trajectory in an
endless loop and you need to type control-C to stop it.

Motion of Four Legs

Our robot has width and length

> W =0.1; L = 0.2;

We create multiple instances of the leg by cloning the 1eg object we created earlier, and
providing different base transforms so as to attach the legs to different points on the body

>> legs(l) = Seriallink(leg,

>> legs(2) = Seriallink(leg,

>> legs(3) = Seriallink(leg,
*SE3.Rz (pi));

>> legs(4) = Seriallink(leg,
*SE3.Rz (pi));

'name"',
'name"',
'name"',

'name"',

'legl');
'leg2',
'leg3"',

'legd',

'base’',
'base’',

'base’',

SE3(-L,
SE3 (-L,
SE3 (0,

0, 0))
-W, 0)

-W, 0)

7

|

o

2
Time (s)

Fig.7.19. a Trajectory taken by a
single foot. Recall from Fig. 7.17
that the z-axis is downward. The
red segments are the leg reset.
b The x-direction motion of each
leg (offset vertically) to show the
gait. The leg reset is the period of
high x-direction velocity

This way we can ensure that the reset
takes exactly one quarter of the cycle.
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Fig.7.20.
The walking robot

05 _025—0.2 X

The result is a vector of SerialLink objects. Note that legs 3 and 4, on the left-
hand side of the body have been rotated about the z-axis so that they point away from
the body.

As mentioned earlier each leg must take its turn to reset. Since the trajectory is a
cycle, we achieve this by having each leg run the trajectory with a phase shift equal to
one quarter of the total cycle time. Since the total cycle has 400 points, each leg’s tra-
jectory is offset by 100, and we use modulo arithmetic to index into the cyclic gait for
each leg. The result is the gait pattern shown in Fig. 7.19b.

The core of the walking program is

clf; k = 1;

while 1
legs(1l) .plot ( gait(gcycle, k, O, false) );
if == 1, hold on; end

legs (2) .plot ( gait(gcycle, k, 100, false) );
legs (3) .plot ( gait(gcycle, k, 200, true) );
legs (4) .plot ( gait(gcycle, k, 300, true) );
drawnow
k = k+1;

end

where the function

gait (g, k, ph, flip)

returns the k+ph™ element of g with modulo arithmetic that considers q as a cycle.
The argument f1ip reverses the sign of the joint 1 motion for the legs on the left-hand
side of the robot. A snapshot from the simulation is shown in Fig. 7.20. The entire im-
plementation, with some additional refinement, is in the file examples/walking.m
and detailed explanation is provided by the comments.

7.6 Wrapping Up

In this chapter we have learned how to determine the forward and inverse kinemat-
ics of a serial-link manipulator arm. Forward kinematics involves compounding the
relative poses due to each joint and link, giving the pose of the robot’s end-effector
relative to its base. Commonly the joint and link structure is expressed in terms of
Denavit-Hartenberg parameters for each link. Inverse kinematics is the problem of
determining the joint coordinates given the end-effector pose. For simple robots, or
those with six joints and a spherical wrist we can compute the inverse kinematics us-
ing an analytic solution. This inverse is not unique and the robot may have several
joint configurations that result in the same end-effector pose.
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For robots which do not have six joints and a spherical wrist we can use an iterative
numerical approach to solving the inverse kinematics. We showed how this could
be applied to an under-actuated 4-joint SCARA robot and a redundant 7-link robot.
We also touched briefly on the topic of singularities which are due to the alignment
of joint axes.

We also learned about creating paths to move the end-effector smoothly between
poses. Joint-space paths are simple to compute but in general do not result in straight
line paths in Cartesian space which may be problematic for some applications. Straight
line paths in Cartesian space can be generated but singularities in the workspace may
lead to very high joint rates.

Further Reading

Serial-link manipulator kinematics are covered in all the standard robotics text-
books such as the Robotics Handbook (Siciliano and Khatib 2016), Siciliano et al.
(2009), Spong et al. (2006) and Paul (1981). Craig’s text (2005) is also an excellent
introduction to robot kinematics and uses the modified Denavit-Hartenberg no-
tation, and the examples in the third edition are based on an older version of the
Robotics Toolbox. Lynch and Park (2017) and Murray et al. (1994) cover the prod-
uct of exponential approach. An emerging alternative to Denavit-Hartenberg nota-
tion is URDF (unified robot description format) which is described at http://wiki.
ros.org/urdf.

Siciliano et al. (2009) provide a very clear description of the process of assigning
Denavit-Hartenberg parameters to an arbitrary robot. The alternative approach de-
scribed here based on symbolic factorization was described in detail by Corke (2007).
The definitive values for the parameters of the Puma 560 robot are described in the
paper by Corke and Armstrong-Hélouvry (1995).

Robotic walking is a huge field in its own right and the example given here is very
simplistic. Machines have been demonstrated with complex gaits such as running
and galloping that rely on dynamic rather than static balance. A good introduc-
tion to legged robots is given in the Robotics Handbook (Siciliano and Khatib 2016,
§ 17). Robotic hands, grasping and manipulation is another large topic which we
have not covered - there is a good introduction in the Robotics Handbook (Siciliano
and Khatib 2016, §37, 38).

Parallel-link manipulators were mentioned only briefly on page 192 and have ad-
vantages such as increased actuation force and stiffness (since the actuators form a
truss-like structure). For this class of mechanism the inverse kinematics is usually
closed-form and it is the forward kinematics that requires numerical solution. Useful
starting points for this class of robots are the handbook (Siciliano and Khatib 2016,
§18), a brief section in Siciliano et al. (2009) and Merlet (2006).

Closed-form inverse kinematic solutions can be derived symbolically by writing
down a number of kinematic relationships and solving for the joint angles, as de-
scribed in Paul (1981). Software packages to automatically generate the forward and
inverse kinematics for a given robot have been developed and these include Robotica
(Nethery and Spong 1994) which is now obsolete, and SYMORO (Khalil and Creusot
1997) which is now available as open-source.

Historical. The original work by Denavit and Hartenberg was their 1955 paper
(Denavit and Hartenberg 1955) and their textbook (Hartenberg and Denavit 1964).
The book has an introduction to the field of kinematics and its history but is cur-
rently out of print, although a version can be found online. The first full descrip-
tion of the kinematics of a six-link arm with a spherical wrist was by Paul and
Zhang (1986).
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MATLAB and Toolbox Notes

The workhorse of the Toolbox is the SerialLink class which has considerable func-
tionality and very many methods — we will use it extensively for the remainder of Part III.
The classes ETS2 and ETS3 used in the early parts of this chapter were designed to
illustrate principles as concisely as possible and have limited functionality, but the names
of their methods are the same as their equivalents in the SerialLink class.

The plot method draws a stick figure robot and needs only Denavit-Hartenberg
parameters. However the joints depicted are associated with the link frames and don’t
necessarily correspond to physical joints on the robot, but that is a limitation of the
Denavit-Hartenberg parameters. A small number of robots have more realistic 3-di-
mensional models defined by STL files and these can be displayed using the plot3d.
The models shipped with the Toolbox were created by Arturo Gil and are also shipped
with his ARTE Toolbox.

The numerical inverse kinematics method ikine can handle over- and under-
actuated robot arms, but does not handle joint coordinate limits which can be set in
the SerialLink object. The alternative inverse kinematic method ikcon respects
joint limits but requires the MATLAB Optimization Toolbox™.

The MATLAB Robotics System Toolbox™ provides a RigidBodyTree class to
represent a serial-link manipulator, and this also supports branched mechanisms such
as a humanoid robot. It also provides a general InverseKinematics class to solve
inverse kinematic problems and can handle joint limits.

Exercises

1. Forward kinematics for planar robot from Sect. 7.1.1.

a) For the 2-joint robot use the teach method to determine the two sets of joint
angles that will position the end-effector at (0.5, 0.5).

b) Experiment with the three different models in Fig. 7.2 using the fkine and
teach methods.

c) Vary the models: adjust the link lengths, create links with a translation in the
y-direction, or create links with a translation in the x- and y-direction.

2. Experiment with the teach method for the Puma 560 robot.

3. Inverse kinematics for the 2-link robot on page 206.

a) Compute forward and inverse kinematics with a, and a, as symbolic rather than
numeric values.

b) What happens to the solution when a point is out of reach?

¢) Most end-effector positions can be reached by two different sets of joint angles.
What points can be reached by only one set?

4. Compare the solutions generated by ikine6s and ikine for the Puma 560
robot at different poses. Is there any difference in accuracy? How much slower
isikine?

5. For the Puma 560 at configuration gn demonstrate a configuration change from
elbow up to elbow down.

6. For a Puma 560 robot investigate the errors in end-effector pose due to manufac-
turing errors.

a) Make link 2 longer by 0.5 mm. For 100 random joint configurations what is the
mean and maximum error in the components of end-effector pose?

b) Introduce an error of 0.1 degrees in the joint 2 angle and repeat the analysis
above.

7. Investigate the redundant robot models mdl hyper2d and mdl hyper3d.
Manually control them using the teach method, compute forward kinematics
and numerical inverse kinematics.
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8. If you have the MATLAB Optimization Toolbox™ experiment with the ikcon

method which solves inverse kinematics for the case where the joint coordinates
have limits (modeling mechanical end stops). Joint limits are set with the glim
property of the Link class.

. Drawing a ‘B’ (page 220)

a) Change the size of the letter.

b) Write a word or sentence.

c) Write on a vertical plane.

d) Write on an inclined plane.

e) Change the robot from a Puma 560 to the Fanuc 10L.

f) Write on a sphere. Hint: Write on a tangent plane, then project points onto the
sphere’s surface.

g) This writing task does not require 6DOF since the rotation of the pen about its
axis is not important. Remove the final link from the Puma 560 robot model and
repeat the exercise.

10. Walking robot (page 221)

a) Shorten the reset trajectory by reducing the leg lift during reset.

b) Increase the stride of the legs.

c) Figure out how to steer the robot by changing the stride length on one side of
the body.

d) Change the gait so the robot moves sideways like a crab.

e) Add another pair of legs. Change the gait to reset two legs or three legs at a
time.

f) Currently in the simulation the legs move but the body does not move forward.
Modify the simulation so the body moves.

g) A robothand comprises a number of fingers, each of which is a small serial-link
manipulator. Create a model of a hand with 2, 3 or 5 fingers and animate the
finger motion.

11. Create a simulation with two robot arms next to each other, whose end-effectors

are holding a basketball at diametrically opposite points in the horizontal plane.
Write code to move the robots so as to rotate the ball about the vertical axis.

12. Create STL files to represent your own robot and integrate them into the Toolbox.

Check out the code in SerialLink.plot3d.
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Manipulator Velocity

A robot’s end-effector moves in Cartesian space with a translational and rotational
velocity - a spatial velocity. However that velocity is a consequence of the velocities
of the individual robot joints. In this chapter we introduce the relationship between
the velocity of the joints and the spatial velocity of the end-effector.
The 3-dimensional end-effector pose & € SE(3) has a rate of change which
is represented by a 6-vector known as a spatial velocity that was introduced
in Sect. 3.1. The joint rate of change and the end-effector velocity are related
by the manipulator Jacobian matrix which is a function of manipulator con-
figuration.
Section 8.1 uses a simple planar robot to introduce the manipulator Jacobian
and then extends this concept to more general robots. Section 8.2 discusses the
numerical properties of the Jacobian matrix which are shown to provide insight
into the dexterity of the manipulator - the directions in which it can move eas-
ily and those in which it cannot. In Sect. 8.3 we use the inverse Jacobian to gener-
ate Cartesian paths without requiring inverse kinematics, and this can be applied to
over- and under-actuated robots which are discussed in Sect. 8.4. Section 8.5 demon-
strates how the Jacobian transpose is used to transform forces from the end-effector
to the joints and between coordinate frames. Finally, in Sect. 8.6 the numeric inverse
kinematic solution, used in the previous chapter, is introduced and its dependence
on the Jacobian matrix is fully described.

8.1 Manipulator Jacobian

In the last chapter we discussed the relationship between joint coordinates and
end-effector pose - the manipulator kinematics. Now we investigate the relation-
ship between the rate of change of these quantities — between joint velocity and
velocity of the end-effector. This is called the velocity or differential kinematics of
the manipulator.

8.1.1 Jacobian in the World Coordinate Frame

We illustrate the basics with our now familiar 2-dimensional example, see Fig. 8.1, this time
defined using Denavit-Hartenberg notation

>> mdl planar2 sym

>> p2

two link:: 2 axis, RR, stdDH

oo — Fomm - Fom— - Fom— - Fom— - +

3 | theta | d | a | alpha | offset

oo — Fomm - Fom— - Fom— - Fom— - +
1] gl 0] all 0| 0]

[ 2] a2 | 0] a2| 0] 0]
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and define two real-valued symbolic variables to represent the joint angles

>> syms gl g2 real

and then compute the forward kinematics using these

>> TE = p2.fkine(

[al a2] );

The position of the end-effector p = (x, y) € R? is”

>> p =TE.t; p = p(l:2)

p =
az*cos (gl + g2) +
a2*sin(gl + g2) +

and we compute the derivative of p with respect to the joints variables g. Since p and

al*cos (ql)
al*sin(gl)

q are both vectors the derivative

dp _
dq = J(q)

will be a matrix - a Jacobian matrix

>> J = jacobian (p,
Jd =

[ - a2*sin(gl + g2
[ az*cos (gl + g2

which is typically denoted by the symbol J and in this case is 2 x 2.
To determine the relationship between joint velocity and end-effector velocity we

rearrange Eq. 8.1 as

dp = J(q)dg

[al g2])

) - al*sin(gl),
) + al*cos(gql),

and divide through by df to obtain

dp _ , dg
i =J(q) %
p=J(q)q

The Jacobian matrix maps velocity from the joint coordinate or configuration space
to the end-effector’s Cartesian coordinate space and is itself a function of the joint

coordinates.

-a2*sin (gl + g2)]
a2*cos (gl + g2)]1

(8.1)

More generally we write the forward kinematics in functional form, Eq. 7.4, as

% = K(g)

Fig.8.1.

Two-link robot showing the
end-effector position p = (x, y)
and the Cartesian velocity vector
v=dp/dt

The Toolbox considers robot pose in
3-dimensions using SE(3).This robot op-
eratesin aplane, a subset of SE(3),s0 we
selectp = (x, ).

AJacobian is the matrix equiv-
alent of the derivative - the
derivative of a vector-valued
function of a vector with re-
spect to a vector. If y = f(x)
and « € R" and y € R™ then
the Jacobian is the m x n ma-
trix

Mo,

0x; Ox

of |7 . m
]=8—= : .o
e

Bxl Ox.

n

The Jacobian is named af-
ter Carl Jacobi, and more de-
tails are given in Appendix E.
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Tis the task space of the robot, typically
7C SE(3),and € C RVis the configura-
tion or joint space of the robot where N is
the number of robot joints.

Fig.8.2.

Puma robot in its nominal pose
an. The end-effector z-axis points
in the world x-direction, and the
x-axis points downward

and taking the derivative we write

% =J(q)q (8.2)

where ‘v = (v,, Vi Vpp Wy Wy W) € RS is the spatial velocity, as discussed in Sect. 3.1.1,
of the end-effector in the world frame and comprises translational and rotational ve-
locity components. The matrix %J(q) € R®*Y is the manipulator Jacobian or the geo-
metric Jacobian. This relationship is sometimes referred to as the instantaneous for-
ward kinematics.

For a realistic 3-dimensional robot this Jacobian matrix can be numerically com-
puted by the jacob0 method of the SerialLink object, based on its Denavit-
Hartenberg parameters. For the Puma robot in the pose shown in Fig. 8.2 the
Jacobian is

>> J = p560.jacob0l (qn)

J =
0.1501 0.0144 0.3197 0 0 0
0.5963 0.0000 0.0000 0 0 0
0 0.5963 0.2910 0 0 0
0 -0.0000 -0.0000 0.7071 -0.0000 -0.0000
0 -1.0000 -1.0000 -0.0000 -1.0000 -0.0000
1.0000 0.0000 0.0000 -0.7071 0.0000 -1.0000

and is a matrix with dimensions dim T x dim € - in this case 6 x 6. Each row cor-
responds to a Cartesian degree of freedom. Each column corresponds to a joint —
it is the end-effector spatial velocity created by unit velocity of the corresponding
joint. In this configuration, motion of joint 1, the first column, causes motion
in the world x- and y-directions and rotation about the z-axis. Motion of joints 2
and 3 cause motion in the world x- and z-directions and negative rotation about
the y-axis.

Physical insight comes from Fig. 8.2 which shows the joint axes in space. Alternatively
you could use the teach method

>> p560.teach (gn)

and jog the various joint angles and observe the change in end-effector pose.

0.5 ]

-0.5
Puma 560
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Carl Gustav Jacob Jacobi (1804-1851) was a Prussian mathematician. He obtained a Doctor of Phi-
losophy degree from Berlin University in 1825. In 1827 he was appointed professor of mathe-
matics at Konigsberg University and held this position until 1842 when he suffered a breakdown
from overwork.

Jacobi wrote a classic treatise on elliptic functions in 1829 and also described the derivative
of m functions of n variables which bears his name. He was elected a foreign member of the
Royal Swedish Academy of Sciences in 1836. He is buried in Cementary I of the Trinity Church
(Dreifaltigkeitskirche) in Berlin.

The 3 x 3 block of zeros in the top right indicates that motion of the wrist joints
have no effect on the end-effector translational motion - this is a consequence of the
spherical wrist and the default zero-length tool.

8.1.2 Jacobian in the End-Effector Coordinate Frame

The Jacobian computed by the method jacob0 maps joint velocity to the end-

effector spatial velocity expressed in the world coordinate frame. To obtain the

spatial velocity in the end-effector coordinate frame we introduce the velocity trans-

formation Eq. 3.4 from the world frame to the end-effector frame which is a function

of the end-effector pose

ERO 03><3
E

v="n(") T@a = “J@)a="T(a)q

3x3

which results in a new Jacobian for end-effector velocity.”
In the Toolbox this Jacobian is computed by the method jacobe and for the Puma
robot at the pose used above is

>> p560.jacobe (gn)

ans =

-0.0000 -0.5963 -0.2910 0 0 0

0.5963 0.0000 0.0000 0 0 0

0.1500 0.0144 0.3197 0 0 0
-1.0000 0 0 0.7071 0 0
-0.0000 -1.0000 -1.0000 -0.0000 -1.0000 0
-0.0000 0.0000 0.0000 0.7071 0.0000 1.0000

8.1.3 Analytical Jacobian

In Eq. 8.2 the spatial velocity was expressed in terms of translational and angular ve-
locity vectors, however angular velocity is not a very intuitive concept. For some appli-
cations it can be more intuitive to consider the rotational velocity in terms of rates of
change of roll-pitch-yaw angles or Euler angles. Analytical Jacobians are those where
the rotational velocity is expressed in a representation other than angular velocity,
commonly in terms of triple-angle rates.

Consider the case of XYZ roll-pitch-yaw angles I"= (6,, 0, 0,) for which the rota-
tion matrix is

R= RX(G}')Ry<9P)Rz(0f)

cf,c0, —c0,s0, st,
= |cb,s6, + cb,s0,560, —s0,56,s6, + c0,c6, —c,s0,

s6,s0, — cb,c0.s6, 050,56, +cb,s0,  cO,ch,

For historical reasons the Toolbox imple-
mentation computes the end-effector
Jacobian directly and applies a velocity
transform for the world frame Jacobian.
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where we use the shorthand cf and s to mean cos 0 and sin 6 respectively. With some
effort we can write the derivative R and recalling Eq. 3.1

R=[w| R

we can solve for w in terms of roll-pitch-yaw angles and their rates to obtain

Wy sgpér + 9y
wy|= fceps(?y@, +c0y(9p
W, c0,c0,0, + 50,6,

which can be factored as

0, 0 1|6
w= —cé?ps@y 69), 0 9:1,
cepcé’}, sﬁy 0 ‘9y

and written concisely as
w= AT

This matrix A is itself a Jacobian that maps XYZ roll-pitch-yaw angle rates to an-
gular velocity. It can be computed by the Toolbox function

>> rpy2jac(0.1, 0.2, 0.3)

ans =
0.1987 0 1.0000
-0.2896 0.9553 0
0.9363 0.2955 0

where the arguments are the roll, pitch and yaw angles. The analytical Jacobian is

_ I3><3 03><3
J.(@) = [OM A_l(r)]l(q)

provided that A is not singular. A is singular when cos ¢ = 0 or pitch angle ¢ = +7
and is referred to as a representational singularity. A similar approach can be taken
for Euler angles using the corresponding function eul2jac.

The analytical Jacobian can be computed by passing an extra argument to the
Jacobian function jacob0, for example

>> p560.jacobl(gn, 'eul');

to specify the Euler angle analytical form.
Another useful analytical Jacobian expresses angular rates as the rate of change of
exponential coordinates s = 96 € so(3)

w = A(s)$
where
Als) =1 — 1 —‘;ose[ﬁ]X " 0 —;m@[ﬁ]i

Implemented by the Toolbox functions R . . .. .
triogandtrorotvecorthesss and ®and 6 can be determined from the end-effector rotation matrix via the matrix

method torotvec. logarithm.<
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8.2 Jacobian Condition and Manipulability

We have discussed how the Jacobian matrix maps joint rates to end-effector Cartesian
velocity but the inverse problem has strong practical use - what joint velocities are
needed to achieve a required end-effector Cartesian velocity? We can invert Eq. 8.2
and write

qa=Jq 'v (8.3)

provided that J is square and nonsingular. The Jacobian is a dim 7 x dim € matrix so in
order to achieve a square Jacobian matrix a robot operating in the task space T C SE(3),
which has 6 spatial degrees-of-freedom, requires a robot with 6 joints.

8.2.1 Jacobian Singularities

A robot configuration g at which det(J(g)) = 0 is described as singular or degenerate.
Singularities occur when the robot is at maximum reach or when one or more axes become
aligned resulting in the loss of degrees of freedom - the gimbal lock problem again.

For example at the Puma’s ready pose the Jacobian

>> J = p560.Jacobl (gr)

J =
0.1500 -0.8636 -0.4318 0 0 0
0.0203 0.0000 0.0000 0 0 0
0 0.0203 0.0203 0 0 0
0 0 0 0 0 0
0 -1.0000 -1.0000 0 -1.0000 0
1.0000 0.0000 0.0000 1.0000 0.0000 1.0000

is singular

>> det (J)

ans =

0

Digging a little deeper we see that the Jacobian rank is only

>> rank (J)

ans =

5

compared to a maximum of six for a 6 x 6 matrix. The rank deficiency of one means
that one column is equal to a linear combination of other columns. Looking at the
Jacobian it is clear that columns 4 and 6 are identical meaning that two of the wrist
joints (joints 4 and 6) are aligned. This leads to the loss of one degree of freedom since
motion of these joints results in the same Cartesian velocity, leaving motion in one
Cartesian direction unaccounted for.” The function jsingu performs this analysis
automatically, for example

>> jsingu (J)

1 linearly dependent joints:

g6 depends on: g4

indicating velocity of g, can be expressed completely in terms of the velocity of g,.

However if the robot is close to, but not actually at, a singularity we encounter
problems where some Cartesian end-effector velocities require very high joint rates”
- at the singularity those rates will go to infinity. We can illustrate this by choosing a
configuration slightly away from gr which we just showed was singular. We set g5 to
a small but nonzero value of 5 deg

>> gns = gr; gns(5) =5 * pi/180

aqns =

0 1.5708 -1.5708 0 0.0873 0

For the Puma 560 robot arm joints 4and 6
are the only ones that can become aligned
and lead to singularity.The offset distanc-
es,d.and a; between links prevents oth-
er axes becoming aligned.

We observed this effect in Fig.7.12.
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and the Jacobian is now
>> J=p560.jacobl (gqns) ;

To achieve relatively slow end-effector motion of 0.1 m s™! in the z-direction requires

>> gd = inv(J)*[0 0 0.1 0 0 0]' ;

>> gd'

ans = -0.0000 -4.9261 9.8522 0.0000  -4.9261 0
very high-speed motion of the shoulder and elbow - the elbow would have to move at
9.85 rad s~ ! or nearly 600 deg s~ !. The reason is that although the robot is no longer
at a singularity, the determinant of the Jacobian is still very small

>> det (J)

ans =

-1.5509e-05

Alternatively we can say that its condition number is very high

>> cond (J)

ans =

235.2498

and the Jacobian is poorly conditioned.

However for some motions, such as rotation in this case, the poor condition of the
Jacobian is not problematic. If we wished to rotate the tool about the y-axis then

>> gd = inv(J)*[0 0 0 0 0.2 0]"';

>> gd'

ans = 0.0000  -0.0000 0 0.0000  -0.2000 0
the required joint rates are very modest.

This particular joint configuration is therefore good for certain motions but poor
for others.

8.2.2 Manipulability

Consider the set of generalized joint velocities with a unit norm
LT .
q4q=1

which lie on the surface of a hypersphere in the N-dimensional joint velocity space.
Substituting Eq. 8.3 we can write

A (J@i@") v =1 (8.4)

which is the equation of points on the surface of an ellipsoid within the dim T-dimen-
sional end-effector velocity space. If this ellipsoid is close to spherical, that s, its radii are
of the same order of magnitude then all is well - the end-effector can achieve arbitrary
Cartesian velocity. However if one or more radii are very small this indicates that the end-
effector cannot achieve velocity in the directions corresponding to those small radii.

We will load the numerical, rather than symbolic model, for the planar robot arm
of Fig. 8.1

>> mdl planar?2

which allows us to plot the velocity ellipse for an arbitrary pose
>> p2.vellipse ([30 40], 'deg')

We can also interactively explore how its shape changes with configuration by
>> p2.teach('callback', @(r,qg) r.vellipse(qg), 'view',6 'top')

which is shown in Fig. 8.3.
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For a robot with a task space T C SE(3) Eq. 8.4 describes a 6-dimensional ellipsoid
which is impossible to visualize. However we can extract that part of the Jacobian re-
lating to translational velocity” in the world frame

>> J =
>> J =

p560.Jacobl (gns) ;
J(1:3, :);

and plot the corresponding velocity ellipsoid
>> plot ellipse(J*J")
which is shown in Fig. 8.4a. The Toolbox provides a shorthand for this

>> p560.vellipse(gns, 'trans');

We see that the end-effector can achieve higher velocity in the y- and z-directions than
in the x-direction. Ellipses and ellipsoids are discussed in more detail in Sect. C.1.4.
The rotational velocity ellipsoid for the near singular case

>> p560.vellipse(gns, 'rot')

is shown in Fig. 8.4b and is an elliptical plate with almost zero thickness.” This indicates
an inability to rotate about the direction corresponding to the small radius, which in
this case is rotation about the x-axis. This is the degree of freedom that was lost - both
joints 4 and 6 provide rotation about the world z-axis, joint 5 provides provides rota-
tion about the world y-axis, but none allow rotation about the world x-axis.

The shape of the ellipsoid describes how well-conditioned the manipulator is for
making certain motions. Manipulability is a succinct scalar measure that describes how
spherical the ellipsoid is, for instance the ratio of the smallest to the largest radius.”
The Toolbox method maniplty computes Yoshikawa’s manipulability measure

which is proportional to the volume of the ellipsoid. For example

>> m = p560.maniplty (qr)
m =
0

indicates a singularity. If the method is called with no output arguments it displays
the volume of the translational and rotational velocity ellipsoids

>> p560.maniplty (gr)

Manipulability: translation 0.00017794, rotation 0

Fig.8.3.
Two-link robot with overlaid ve-
locity ellipse

Since we can only plot three dimensions.

This is much easier to see if you change
the viewpoint interactively.

The radii are the square roots of the ei-
genvalues of the J(q)J(q)" as discussed
in Sect.C.1.4.
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Fig.8.4. End-effector velocity el-
lipsoids. a Translational veloci-
ty ellipsoid for the nominal pose
(m s™1); b rotational velocity el-
lipsoid for a near singular pose
(rad s71), the ellipsoid is an ellip-
tical plate

The manipulability measure combines
translational and rotational velocity infor-
mation which have different units. The
options 'trans' and 'rot' can
be used to compute manipulability on
just the translational or rotational velocity
respectively.

In this model we assume that the robot
is perfect, that is, the actual joint angles
are equal to the desired joint angles q".
The issue of tracking error is discussed
in Sect.9.1.7.

which indicates very poor manipulability for translation and zero for rotation. At the
nominal pose the manipulability is higher™

>> p560.maniplty (gn)

Manipulability: translation 0.111181, rotation 2.44949

In practice we find that the seemingly large workspace of a robot is greatly reduced
by joint limits, self collision, singularities and regions of reduced manipulability. The
manipulability measure discussed here is based only on the kinematics of the mecha-
nism. The fact that it is easier to move a small wrist joint than the larger waist joint
suggests that mass and inertia should be taken into account and such manipulability
measures are discussed in Sect. 9.2.7.

8.3 Resolved-Rate Motion Control

Resolved-rate motion control is a simple and elegant algorithm to generate straight
line motion by exploiting Eq. 8.3

q=1J@q) 'v

to map or resolve desired Cartesian velocity to joint velocity without explicitly requir-
ing inverse kinematics as we used earlier. For now we will assume that the Jacobian is
square (6 x 6) and nonsingular but we will relax these constraints later.

The motion control scheme is typically implemented in discrete-time form as

q'(k) = J(g(k) v (8.5)

q(k+1) < q(k) + 6,47(k)

where 0, is the sample interval. The first equation computes the required joint veloc-
ity as a function of the current joint configuration and the desired end-effector veloc-
ity v*. The second performs forward rectangular integration to give the desired joint
angles for the next time step, g*(k+1).

An example of the algorithm is implemented by the Simulink® model

>> sl _rrmc

shown in Fig. 8.5. The Cartesian velocity is a constant 0.05 m s™! in the y-direction.

The Jacobian block has as its input the current manipulator joint angles and out-
puts a6 x 6 Jacobian matrix. This is inverted and multiplied by the desired velocity to
form the desired joint rates. The robot is modeled by a discrete-time integrator — an
ideal velocity controller.
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> Interpreted invJ
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inv v* |Multiply| qq* KTs »lq
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servo

desired Cartesian velocity » R

initial joint angles
convertto @

row vector
Running the simulation Fig.8.5. The Simulink® model
sl rrmc for resolved-rate mo-
>> r = sim('sl_rrmc'); tion control for constant end-ef-
. . . . .. fector velocity
we see an animation of the manipulator end-effector moving at constant velocity in
Cartesian space. Simulation results are returned in the simulation object r from which
we extract time and joint coordinates
>> t = r.find('tout');
>> g = r.find('yout');
We apply forward kinematics to determine the end-effector position
>> T = p560.fkine(q);
>> xyz = transl(T);
which we then plot” as a function of time Thefunctionmp 1ot isaToolbox utility
that plots columns of a matrix in sepa-
>> mplot (t, xyz(:,1:3)) rate subgraphs.

which is shown in Fig. 8.6a. The Cartesian motion is 0.05 m s! in the y-direction as de-
manded but we observe some small and unwanted motion in the x- and z-directions.
The motion of the first three joints

>> mplot(t, g(:,1:3))

is shown in Fig. 8.6b and are not linear with time - reflecting the changing kinematic
configuration of the arm.

The approach just described, based purely on integration, suffers from an accu-
mulation of error which we observed as the unwanted x- and z-direction motion in
Fig. 8.6a. We can eliminate this by changing the algorithm to a closed-loop form based
on the difference between the desired and actual pose

') — K, J(g(6) ™ A(X (g (®), €K) (8.6)

where K, is a proportional gain, A(-) € RS is a spatial displacement” and the desired ~ See Sect.3.1.4 for definition.
pose £ (k) is a function of time.
A Simulink example to demonstrate this for a circular path is

>> sl rrmc2

shown in Fig. 8.7 and the tool of a Puma 560 robot traces out a circle of radius
50 mm. The x-, y- and z-coordinates as a function of time are computed and con-
verted to a homogeneous transformation by the blocks in the grey area. The differ-
ence between the desired pose and the current pose from forward kinematics us-
ing the A(-) operator is computed by the tr2delta block. The result is a spatial
displacement, a translation and a rotation described by a 6-vector which is used as
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Fig.8.7. The Simulink® model  the desired spatial velocity to drive the end-effector toward the desired pose. The
s1_rrmc? for closed-loop re-  yacobjan matrix is computed from the current manipulator joint angles and is in-
solved-rate motion control with . . . . .
: : verted so as to transform the desired spatial velocity to joint angle rates. These are
circular end-effector motion . . . . . .
scaled by a proportional gain, to become the desired joint-space velocity that will
correct any Cartesian error.
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8.3.1 Jacobian Singularity

For the case of a square Jacobian where det(J(g)) = 0 we cannot solve Eq. 8.3 direct-
ly. One strategy to deal with singularity is to replace the inverse with the damped
inverse

qg=J@+) v

where ) is a small constant added to the diagonal which places a floor under the de-
terminant. This will introduces some error in ¢, which integrated over time could lead
to a significant discrepancy in tool position but the closed-loop resolved-rate motion
scheme of Eq. 8.6 would minimize this.

An alternative is to use the pseudo-inverse of the Jacobian J© which has the property

J'I=1

just as the inverse does. It is defined as
rr=(m)

and is readily computed using the MATLAB® builtin function pinv.” The solution
q=J@" v

provides a least-squares solution for which [|Jg — v/|| is smallest.”

Yet another approach is to delete from the Jacobian all those columns that are lin-
early dependent on other columns. This is effectively locking the joints correspond-
ing to the deleted columns and we now have an under-actuated system which we treat
as per the next section.

8.4 Under- and Over-Actuated Manipulators

So far we have assumed that the Jacobian is square. For the nonsquare cases it is help-
ful to consider the velocity relationship

v =J(q@)q

in the diagrammatic form shown in Fig. 8.8. The Jacobian is a 6 x N matrix, the joint
velocity is an N-vector, and v is a 6-vector.

The case of N < 6 is referred to as an under-actuated robot, and N > 6 is over-ac-
tuated or redundant. The under-actuated case cannot be solved because the system
of equations is under-constrained but the system can be squared up by deleting some
rows of v and J - accepting that some Cartesian degrees of freedom are not controllable
given the low number of joints. For the over-actuated case the system of equations is
under-constrained and the best we can do is find a least-squares solution as described
in the previous section. Alternatively we can square up the Jacobian to make it invert-
ible by deleting some columns - effectively locking the corresponding joints.

096%6%%%
SRR
KK
vi=| J vl— SRR o
=| J(q) = J(g) = J(@)zs: q
K SRR
[ X SRR
003! % &S S0
1% ] RIS
B o R
590%%%%
wncontrollable d.of. Lockeol
N <6 N=6 N>6 Joints
under-actuated fully-actuated over-actuated

This is the left generalized- or pseudoin-
verse, see Sect.F.1.1 for more details.

A matrix expression like v=Jg is a sys-
tem of scalar equations which we can
solve for g. At singularity some of the
equations are the same, leading to more
unknowns than equations,and therefore
an infinite number of solutions. The
pseudo-inverse computes a solution
that satisfies the equation and has the
minumum norm.

Fig.8.8.

Schematic of Jacobian, v and
g for different cases of N. The
hatched areas represent matrix
regions that could be deleted in
order to create a square sub-
system capable of solution
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8.4.1 Jacobian for Under-Actuated Robot

An under-actuated robot has N < 6, and a Jacobian that is taller than it is wide. For
example a 2-joint manipulator at a nominal pose

>> mdl planar?2
>> qgn = [1 1];
has the Jacobian

>> J = p2.jacob0 (gn)

J =
-1.7508 -0.9093
0.1242 -0.4161
0 0
0 0
0 0
1.0000 1.0000

We cannot solve the inverse problem Eq. 8.3 using the pseudo-inverse since it will at-
tempt to satisfy motion constraints that the manipulator cannot meet. For example the
desired motion of 0.1 m s~ ! in the x-direction gives the required joint velocity

>> gd = pinv(J) * [0.1 0 0 O O 01"
qd =
-0.0698

0.0431

which results in end-effector velocity

>> xd = J*qd;
>> xd'
ans =

0.0829 -0.0266 0 0 0 -0.0266

This has the desired motion in the x-direction but undesired motion in y-axis trans-
lation and z-axis rotation. The end-effector rotation cannot be independently con-
trolled (since it is a function of g, and g,) yet this solution has taken it into account
in the least-squares solution.

We have to confront the reality that we have only two degrees of freedom which we
will use to control just v, and v,. We rewrite Eq. 8.2 in partitioned form as

EEES[E =

and taking the top partition, the first two rows, we write

)03

where ]Xy is a 2 X 2 matrix. We invert this

6']1 _ —1 Vx
[‘72] ]xy[vy]

which we can solve if det(]xy) = 0.

>> Jxy = J(1l:2,:);
>> gd = inv (JIxy)*
qd =

-0.0495

-0.0148

[0.1 0]"
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which results in end-effector velocity

>> xd = J*qd;

>> xd!

ans =

0.1000 0.0000 0 0 0 -0.0642

We have achieved the desired x-direction motion with no unwanted motion apart from
the z-axis rotation which is unavoidable - we have used the two degrees of freedom to
control x- and y-translation, not z-rotation.

8.4.2 Jacobian for Over-Actuated Robot

An over-actuated or redundant robot has N > 6, and a Jacobian that is wider than it
is tall. In this case we rewrite Eq. 8.3 to use the left pseudo-inverse

i=J@"v (8.7)

which, of the infinite number of solutions possible, will yield the one for which ||¢g|| is
smallest - the minimum-norm solution.

We will demonstrate this for the left arm of the Baxter robot from Sect. 7.2.2.4 at
a nominal pose

>> mdl baxter

>> TE = SE3(0.8, 0.2, -0.2) * SE3.Ry(pi);

>> g = left.ikine (TE)
and its Jacobian

>> J = jacob0(left, qg);

>> about J

J [double] : 6x7 (336 bytes)
1

is a 6 x 7 matrix. Now consider that we want the end-effector to move at 0.2 m s~ ! in

the x-, y- and z-directions. Using Eq. 8.7 we compute the required joint rates
>> xd = [0.2 0.2 0.2 00 0]"';
>> gd = pinv(J) * xd;
>> gd'
ans =
0.0895  -0.0464 -0.4259 0.6980  -0.4248 1.0179 0.2998
We see that all joints have nonzero velocity and contribute to the desired end-effector
motion.”
This Jacobian has seven columns and a rank of six
>> rank (J)
ans =
6
and therefore a null space” whose basis has just one vector
>> N = null (J)
N =
-0.2244
-0.1306
0.6018
0.0371
-0.7243
0.0653
0.2005

In the case of a Jacobian matrix any joint velocity that is a linear combination of its
null-space vectors will result in 7o end-effector motion. For this robot there is only one
vector and we can show that this null-space joint motion causes no end-effector motion

>> norm( J * N(:,1)
ans =
2.6004e-16

If the robot end-effector follows a repeti-
tive path using RRMC the joint angles
may drift over time and not follow a re-
petitive path, potentially moving toward
joint limits. We can use null-space con-
trol to provide additional constraints to
prevent this.

See Appendix B.
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Fig.8.9.

20-DOF snake-robot arm:

2.5 m reach, 90 mm diameter
and payload capacity of 25 kg
(image courtesy of OC Robotics)

This is remarkably useful because it allows Eq. 8.7 to be written as

= J@'v + NNTq. (8.8)

—_— . :
end-effector motion  null-space motion

where the matrix NN € RN*N projects the desired joint motion into the null space so
that it will not affect the end-effector Cartesian motion, allowing the two motions to
be superimposed.

Null-space motion can be used for highly-redundant robots to avoid collisions be-
tween the links and obstacles (including other links), or to keep joint coordinates away
from their mechanical limit stops. Consider that in addition to the desired Cartesian
velocity xd we wish to simultaneously increase joint 5 in order to move the arm away
from some obstacle. We set a desired joint velocity

>> gd null = [0 0 00 100]";

and project it into the null space
>> gp = N * pinv(N) * gd null;
>> gp'
0.1625 0.0946  -0.4359  -0.0269 0.5246  -0.0473  -0.1452
A scaling has been introduced but this joint velocity, or a scaled-up version of, this
will increase the joint 5 angle without changing the end-effector pose. Other joints
move as well - they provide the required compensating motion in order that the end-
effector pose is not disturbed as shown by
>> norm( J * gp)
ans =
1.9541e-16
A highly redundant snake robot like that shown in Fig. 8.9 would have a null space
with 14 dimensions (20-6). This can be used to control the shape of the arm which is
critical when moving within confined spaces.
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8.5 Force Relationships

In Sect. 3.2.2 we introduced wrenches W = (f,, f,, f,, m,, m,, m,) € R®which are a vec-
tor of forces and moments.

8.5.1 Transforming Wrenches to Joint Space

The manipulator Jacobian transforms joint velocity to an end-effector spatial velocity ac-
cording to Eq. 8.2 and the Jacobian transpose transforms a wrench applied at the end-ef-
fector to torques and forces experienced at the joints”

Q="Jq" "W (8.9)

where W is a wrench in the world coordinate frame and Q) is the generalized joint force
vector. The elements of @ are joint torque or force for revolute or prismatic joints re-
spectively.

The mapping for velocity, from end-effector to joints, involves the inverse Jacobian which
can potentially be singular. The mapping of forces and torques, from end-effector to joints,
is different - it involves the transpose of the Jacobian which can never be singular. We ex-
ploit this property in the next section to solve the inverse-kinematic problem numerically.

If the wrench is defined in the end-effector coordinate frame then we use instead

Q="J" W (8.10)

For the Puma 560 robot in its nominal pose, see Fig. 8.2, a force of 20 N in the world
y-direction results in joint torques of
>> tau = p560.jacob0(gn)' * [0 20 0 0 0 0]';
>> tau'
ans =
11.9261 0.0000 0.0000 0 0 0
The force pushes the arm sideways and only the waist joint will rotate in response -
experiencing a torque of 11.93 N m due to a lever arm effect. A force of 20 N applied
in the world x-direction results in joint torques of
>> tau = p560.jacobl0(gn)' * [20 0 O O O 0]"';
>> tau'
ans =
3.0010 0.2871 6.3937 0 0 0
which is pulling the end-effector away from the base which results in torques being
applied to the first three joints.

8.5.2 Force Ellipsoids

In Sect. 8.2.2 we introduced the velocity ellipse and ellipsoid which describe the direc-
tions in which the end-effector is best able to move. We can perform a similar analysis
for the forces and torques at the end-effector - the end-effector wrench. We start with
a set of generalized joint forces with a unit norm

Q'Q=1
and substituting Eq. 8.9 we can write

W (1(@I@" )W =1

Derived through the principle of virtual
work, see for instance Spong et al.(2006,
sect.4.10).
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Fig.8.10.

Schematic of the numerical in-
verse kinematic approach, show-
ing the current {; and the de-
sired £; manipulator pose

which is the equation of points on the surface of a 6-dimensional ellipsoid in the end-
effector wrench space. For the planar robot arm of Fig. 8.1 we can plot this ellipse

>> p2.fellipse([30 40], 'deg')

or we can interactively explore how its shape changes with configuration by

>> p2.teach(gn, 'callback', @(r,q) r.fellipse(q), 'view',6 'top')

If this ellipsoid is close to spherical, that is, its radii are of the same order of mag-
nitude then the end-effector can achieve an arbitrary wrench. However if one or more
radii are very small this indicates that the end-effector cannot exert a force along, or
a moment about, the axes corresponding to those small radii.

The force and velocity ellipsoids provide complementary information about how well
suited the configuration of the arm is to a particular task. We know from personal experi-
ence that to throw an object quickly we have our arm outstretched and orthogonal to the
throwing direction, whereas to lift something heavy we hold our arms close in to our body.

8.6 Inverse Kinematics: a General Numerical Approach

In Sect. 7.2.2.1 we solved the inverse kinematic problem using an explicit solution that
required the robot to have 6 joints and a spherical wrist. For the case of robots which
do not meet this specification, for example those with more or less than 6 joints, we
need to consider a numerical solution. Here we will develop an approach based on the
forward kinematics and the Jacobian transpose which we can compute for any ma-
nipulator configuration since these functions have no singularities.

8.6.1 Numerical Inverse Kinematics

The principle is shown in Fig. 8.10 where the robot in its current configuration is drawn
solidly and the desired configuration is faint. From the overlaid pose graph the error
between actual {; and desired pose & is £, which can be described by a spatial dis-
placement as discussed in Sect. 3.1.4

A = A&, ) = (t,90) € R®
where the current pose is computed using forward kinematics {; = K(q).
Imagine a special spring between the end-effector of the two poses which is pulling

(and twisting) the robot’s end-effector toward the desired pose with a wrench propor-
tional to the spatial displacement

desived pose

current pose
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Ew -~ A (8.11)

which is resolved to generalized joint forces

Q=" 'W

using the Jacobian transpose Eq. 8.10. We assume that this virtual robot has no joint
motors only viscous dampers so the joint velocity will be proportional to the applied
forces

q4=Q/B

where B is the joint damping coefficient (assuming all dampers are the same). Putting
all this together we can write

. 1 T *
a= )@ AX(@) &)
which gives the joint velocities that will drive the forward kinematic solution toward
the desired end-effector pose. This can be solved iteratively by

8,40 = aJ(alR)" A(K(a(), &) (8.12)
qlk1) — qik) + 6,0

until the norm of the update [0, (k|| is sufficiently small and where > 0 is a well-cho-
sen constant. Since the solution is based on the Jacobian transpose rather than inverse
the algorithm works when the Jacobian is nonsquare or singular. In practice however
this algorithm is slow to converge and very sensitive to the choice of «.

More practically we can formulate this as a least-squares problem in the world co-
ordinate frame and minimize the scalar cost

E=A"MA

where M = diag(m) € R%*¢ and m is the mask vector introduced in Sect. 7.2.2.3. The
update becomes

o) - (1aw) MI(at®)) T(ate) M A(%(qw), &)

which is much faster to converge but can behave poorly near singularities. We remedy
this by introducing a damping constant A

T -1 T 5
68) = (7(@(0) MI(q0) + M.y ) J(q00) M A% (q(6), &)

which ensures that the term being inverted can never be singular.

An effective way to choose A is to test whether or not an iteration reduces the er-
ror, that is if | O;(k)[| < [|6,(k-1)]|. If the error is reduced we can decrease A in order to
speed convergence. If the error has increased we revert to our previous estimate of g(k)
and increase \. This adaptive damping factor scheme is the basis of the well-known
Levenberg-Marquardt optimization algorithm.

This algorithm is implemented by the i kine method and works well in prac-
tice. As with all optimization algorithms it requires a reasonable initial estimate of
q and this can be explicitly given using the option 'g0'. A brute-force search for
an initial value can be requested by the option 'search'. The simple Jacobian-
transpose approach of Eq. 8.12 can be invoked using the option 'transpose’
along with the value of a.
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8.7 Advanced Topics

8.7.1 Computing the Manipulator Jacobian Using Twists

In Sect. 7.1.2.2 we computed the forward kinematics as a product of exponentials based
on the screws representing the joint axes in a zero-joint angle configuration. It is easy
to differentiate the product of exponentials with respect to motion about each screw
axis which leads to the Jacobian matrix

OIV _ (Sl Ad(e[sl]ql )Sz Ad(e[sllql ...e[sN 4y I)SN)

for velocity in the world coordinate frame. The Jacobian is very elegantly expressed
and can be easily built up column by column. Velocity in the end-effector coordinate
frame is related to joint velocity by the Jacobian matrix

E]V _ Ad(EEO) 0]\7

where Ad (-) is the adjoint matrix introduced in Sect. 3.1.2.
However, compared to the Jacobian of Sect.8.1, these Jacobians give the ve-
locity of the end-effector as a velocity twist, not a spatial velocity as defined

on page 65.

To obtain the Jacobian that gives spatial velocity as described in Sect. 8.1 we must ap-
ply a velocity transformation

0y — [sts _[OtEL] 0yv

03><3 13><3

8.8 Wrapping Up

Jacobians are an important concept in robotics, relating changes in one space to chang-
esin another. We previously encountered Jacobians for estimation in Chap. 6 and will
use them later for computer vision and control.

In this chapter we have learned about the manipulator Jacobian which describes
the relationship between the rate of change of joint coordinates and the spatial veloc-
ity of the end-effector expressed in either the world frame or the end-effector frame.
We showed how the inverse Jacobian can be used to resolve desired Cartesian veloc-
ity into joint velocity as an alternative means of generating Cartesian paths for un-
der- and over-actuated robots. For over-actuated robots we showed how null-space
motions can be used to move the robot’s joints without affecting the end-effector
pose. The numerical properties of the Jacobian tell us about manipulability, that is
how well the manipulator is able to move, or exert force, in different directions. At
a singularity, indicated by linear dependence between columns of the Jacobian, the
robot is unable to move in certain directions. We visualized this by means of the
velocity and force ellipsoids.

We also created Jacobians to map angular velocity to roll-pitch-yaw or Euler angle
rates, and these were used to form the analytic Jacobian matrix. The Jacobian trans-
pose is used to map wrenches applied at the end-effector to joint torques, and also to
map wrenches between coordinate frames. It is also the basis of numerical inverse ki-
nematics for arbitrary robots and singular poses.
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Further Reading

The manipulator Jacobian is covered by almost all standard robotics texts such as the
robotics handbook (Siciliano and Khatib 2016), Lynch and Park (2017), Siciliano et al.
(2008), Spong et al. (2006), Craig (2005), and Paul (1981). An excellent discussion of
manipulability and velocity ellipsoids is provided by Siciliano et al. (2009), and the most
common manipulability measure is that proposed by Yoshikawa (1984). Computing
the manipulator Jacobian based on Denavit-Hartenberg parameters, as used in this
Toolbox, was first described by Paul and Shimano (1978).

The resolved-rate motion control scheme was proposed by Whitney (1969). Exten-
sions such as pseudo-inverse Jacobian-based control are reviewed by Klein and Huang
(1983) and damped least-squares methods are reviewed by Deo and Walker (1995).

MATLAB and Toolbox Notes

The MATLAB Robotics System Toolbox™ describes a serial-link manipulator using
an instance of the RigidBodyTree class. Jacobians can be computed using the class
method GeometricJacobian.

Exercises

1. For the simple 2-link example (page 230) compute the determinant symbolically
and determine when it is equal to zero. What does this mean physically?

2. For the Puma 560 robot can you devise a configuration in which three joint axes
are parallel?

3. Derive the analytical Jacobian for Euler angles.

4. Velocity and force ellipsoids for the two link manipulator (page 236, 245). Perhaps
using the interactive teach method with the 'callback' option:

a) What configuration gives the best manipulability?

b) What configuration is best for throwing a ball in the positive x-direction?

c) What configuration is best for carrying a heavy weight if gravity applies a force
in the negative y-direction?

d) Plot the velocity ellipse (x- and y-velocity) for the two-link manipulator at a grid
of end-effector positions in its workspace. Each ellipsoid should be centered on
the end-effector position.

5. Velocity and force ellipsoids for the Puma manipulator (page 237)

a) For the Puma 560 manipulator find a configuration where manipulability is
greater than at gn.

b) Use the teach method with the 'callback' option to interactively animate
the ellipsoids. You may need to use the 'workspace' option to teach to
prevent the ellipsoid being truncated.

6. Resolved-rate motion control (page 237)

a) Experiment with different Cartesian translational and rotational velocity de-
mands, and combinations.

b) Extend the Simulink system of Fig. 8.6 to also record the determinant of the
Jacobian matrix to the workspace.

c) In Fig. 8.6 the robot’s motion is simulated for 5 s. Extend the simulation time to
10 s and explain what happens.

d) Set the initial pose and direction of motion to mimic that of Sect. 7.3.4. What
happens when the robot reaches the singularity?

e) Replace the Jacobian inverse block in Fig. 8.5 with the MATLAB function pinv.

f) Replace the Jacobian inverse block in Fig. 8.5 with a damped least squares func-
tion, and investigate the effect of different values of the damping factor.
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g) Replace the Jacobian inverse block in Fig. 8.5 with a block based on the MATLAB
function 1scov.

7. Themodelmdl p8 describes an 8-joint robot (PPRRRRRR) comprising an xy-base
(PP) carrying a Puma arm (RRRRRR).

a) Compute a Cartesian end-effector path and use numerical inverse kinematics
to solve for the joint coordinates. Analyze how the motion is split between the
base and the robot arm.

b) With the end-effector at a constant pose explore null-space control. Set a veloc-
ity for the mobile base and see how the arm configuration accomodates that.

¢) Develop a null-space controller that keeps the last six joints in the middle of
their working range by using the first two joints to position the base of the Puma.
Modify this so as to maximize the manipulability of the P8 robot.

d) Consider now that the Puma robot is mounted on a nonholonomic robot, cre-
ate a controller that generates appropriate steering and velocity inputs to the
mobile robot (challenging).

e) Foranarbitrary pose and end-point spatial velocity we will move six joints and lock
two joints. Write an algorithm to determine which two joints should be locked.

8. The model md1l hyper3d(20) is a 20-joint robot that moves in 3-dimensional
space.

a) Explore the capabilities of this robot.

b) Compute a Cartesian end-effector trajectory that traces a circle on the ground,
and use numerical inverse kinematics to solve for the joint coordinates.

¢) Add a null-space control strategy that keeps all joint angles close to zero while
it is moving.

d) Define an end-effector pose on the ground that the robot must reach after passing
through two holes in vertical planes. Can you determine the joint configuration
that allows this?

9. Write code to compute the Jacobian of a robot represented by a SerialLink ob-
ject using twists as described in Sect. 8.7.1.

10. Consider the Puma 560 robot moving in the xz-plane. Divide the plane into 2-cm
grid cells and for each cell determine if it is reachable, and if it is then determine
the manipulability for the first three joints of the robot arm and place that value
in the corresponding grid cell. Display a heat map of the robot’s manipulability in
the plane.
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m.

Dynamics and Control

In this chapter we consider the dynamics and control of a serial-link manipulator arm.
b The motion of the end-effector is the composition of the motion of each link, and the

- G

\ links are ultimately moved by forces and torques exerted by the joints. Section 9.1 de-

\ scribes the key elements of a robot joint control system that enables a single joint

\4 to follow a desired trajectory; and the challenges involved such as friction, gravity
load and varying inertia.

Each link in the serial-link manipulator is supported by a reaction force

d and torque from the preceding link, and is subject to its own weight as well

as the reaction forces and torques from the links that it supports. Section 9.2

—

B introduces the rigid-body equations of motion, a set of coupled dynamic

@ equations, that describe the joint torques necessary to achieve a particular

f-f manipulator state. These equations can be factored into terms describing inertia, grav-

f ity load and gyroscopic coupling which provide insight into how the motion of one

joint exerts a disturbance force on other joints, and how inertia and gravity load varies

with configuration and payload. Section 9.3 introduces the forward dynamics which

describe how the manipulator moves, that is, how its configuration evolves with time

in response to forces and torques applied by the joints and by external forces such

. as gravity. Section 9.4 introduces control systems that compute the required joint

K forces based on the desired trajectory as well as the rigid-body dynamic forces.

This enables improved control of the end-effector trajectory, despite changing ro-

bot configuration, as well as compliant motion. Section 9.5 covers an important

application of what we have learned about joint control - series-elastic ac-
tuators for human-safe robots.

9.1 Independent Joint Control

A robot drive train comprises an actuator or motor, and a transmission to connect it to
the link. A common approach to robot joint control is to consider each joint or axis as an
independent control system that attempts to accurately follow its joint angle trajectory.
However as we shall see, this is complicated by various disturbance torques due to gravity,
velocity and acceleration coupling, and friction that act on the joint. A very common control
structure is the nested control loop. The outer loop is responsible for maintaining position
and determines the velocity of the joint that will minimize position error. The inner loop is
responsible for maintaining the velocity of the joint as demanded by the outer loop.

9.1.1 Actuators

The vast majority of robots today are driven by rotary electric motors (Fig. 9.1). Large
industrial robots typically use brushless servo motors while small laboratory or hobby
robots use brushed DC motors or stepper motors. Manipulators for very large payloads
as used in mining, forestry or construction are typically hydraulically driven using elec-
trically operated hydraulic valves - electro-hydraulic actuation.
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Electric motors can be either current or voltage controlled.” Here we assume cur-
rent control where a motor driver or amplifier provides current

i, = K,u
that is linearly related to the applied control voltage u and where K|, is the transcon-

ductance of the amplifier with units of AV~ The torque generated by the motor is
proportional to current

where K, is the motor torque constant with units of N m A~L. The torque accelerates
the rotational inertia J,,, due to the rotating part of the motor itself, which has a rota-
tional velocity of w. Frictional effects are modeled by B,,,.

9.1.2 Friction

Any rotating machinery, motor or gearbox, will be affected by friction - a force or
torque that opposes motion. The net torque from the motor is

T =T, =Ty
where 7;is the friction torque which is function of velocity
Tf :B(UJFTC (9.1)

where the slope B > 0 is the viscous friction coefficient and the offset is Coulomb fric-
tion. The latter is frequently modeled by the nonlinear function

e w>0
= 0 w=20 (9-2)
Tc w<0

In general the friction coefficients depend on the direction of rotation and this
asymmetry is more pronounced for Coulomb than for viscous friction.

The total friction torque as a function of rotational velocity is shown in Fig. 9.2.
Atvery low speeds, highlighted in grey, an effect known as stiction becomes evident.
The applied torque must exceed the stiction torque before rotation can occur - a
process known as breaking stiction. Once the machine is moving the stiction force
rapidly decreases and viscous friction dominates.

There are several sources of friction experienced by the motor. The first compo-
nent is due to the motor itself: its bearings and, for a brushed motor, the brushes
rubbing on the commutator. The friction parameters are often provided in the
motor manufacturer’s data sheet. Other sources of friction are the gearbox and
the bearings that support the link.

Fig.9.1.

Key components of a robot-joint
actuator. A demand voltage u con-
trols the current i, flowing into the
motor which generates a torque 7,
that accelerates the rotational
inertia J,, and is opposed by fric-
tion B, wy,. The encoder mea-
sures rotational speed and angle

Current control is implemented by an
electronic constant current source, or a
variable voltage source with feedback
of actual motor current. A variable volt-
age source is most commonly imple-
mented by a pulse-width modulated
(PWM) switching circuit. Voltage control
requires that the electrical dynamics of
the motor due to its resistance and in-
ductance, as well as back EMF, must be
taken into account when designing the
control system.
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Fig.9.2.

Typical friction versus speed
characteristic. The dashed lines
depict a simple piecewise-linear
friction model characterized by
slope (viscous friction) and in-
tercept (Coulomb friction). The
low-speed regime is shaded and
shown in exaggerated fashion

This requires the MATLAB Symbolic Math
Toolbox™.

br

Low-speed regime

viscous
friction

stiction T;_ 1

Coulomb T+ L5
friction

Charles-Augustin de Coulomb (1736-1806) was a French physicist. He was born in Angouléme to a
wealthy family and studied mathematics at the Collége des Quatre-Nations under Pierre Charles
Monnier, and later at the military school in Méziéres. He spent eight years in Martinique involved
in the construction of Fort Bourbon and there he contracted tropical fever.

Later he worked at the shipyards in Rochefort which he used as laboratories for his experi-
ments in static and dynamic friction of sliding surfaces. His paper Théorie des machines simples
won the Grand Prix from the Académie des Sciences in 1781. His later research was on electro-
magnetism and electrostatics and he is best known for the formula on electrostatic forces, named
in his honor, as is the SI unit of charge. After the revolution he was involved in determining the
new system of weights and measures.

9.1.3 Effect of the Link Mass

A motor in a robot arm does not exist in isolation, it is connected to a link as shown
schematically in Fig. 9.3. The link has two obvious significant effects on the motor - it
adds extra inertia and it adds a torque due to the weight of the arm and both vary with
the configuration of the joint.

With reference to the simple 2-joint robot shown in Fig. 9.4 consider the first joint
which is directly attached to the first link which is colored red. If we assume the mass
of the red link is concentrated at its center of mass (CoM) the extra inertia of the link
will be m, r2. The motor will also experience the inertia of the blue link and this will
depend on the value of g, - the inertia of the arm when it is straight is greater than
the inertia when it is folded.

We also see that gravity acting on the center of mass of the red link will create a
torque on the joint 1 motor which will be proportional to cos g,. Gravity acting on the
center of mass of the blue link also creates a torque on the joint 1 motor, and this is
more pronounced since it is acting at a greater distance from the motor - the lever
arm effect is greater.

These effects are clear from even a cursory examination of Fig. 9.4 but the reality is
even more complex. Jumping ahead to material we will cover in the next section, we
can use the Toolbox* to determine the torque acting on each of the joints as a func-
tion of the position, velocity and acceleration of the joints

>> mdl twolink sym

>> syms gl g2 gld g2d gldd g2dd real

>> tau = twolink.rne([gql g2], [gld g2d], [gldd g2dd]):;
and the result is a symbolic 2-vector, one per joint, with surprisingly many terms
which we can summarize as:
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mwotor wotor encoder wotor wotor
driver lnertia friction

mg

n= Mu(‘]z)% + M12(‘12)q2 +G (‘12)%‘?2 + Cz(‘iz)qg + g(%>‘12)

disturbance

M, =m, (alz +2a,c, + clz) +m, (alz +(a, +6,) + (2aa, + 2alc2)cosq2)

M, = my(a, +c,)(a, + ¢, + a,cosq,) (9.3)
C, = —2aym,(a, + c,)sing,
C, = —aym,(a, + ¢, )sing,

g = (aym; + aym, + cym;) cosq, + (aym, + c;m, ) cos(q, + q,)

We have already discussed the first and last terms in a qualitative way - the inertia
is dependent on g, and the gravity torque g is dependent on g, and g,. What is perhaps
most surprising is that the torque applied to joint 1 depends on the velocity and the ac-
celeration of g, and this will covered in more detail in Sect. 9.2.

In summary, the effect of joint motion in a series of mechanical links is nontrivial. The
motion of any joint is affected by the motion of all the other joints and for a robot with
many joints this becomes quite complex.

9.1.4 Gearbox

Electric motors are compact and efficient and can rotate at very high speed, but produce
very low torque. Therefore it is common to use a reduction gearbox to tradeoff speed for
increased torque. For a prismatic joint the gearbox might convert rotary motion to linear.
The disadvantage of a gearbox is increased cost, weight, friction, backlash, mechanical
noise and, for harmonic gears, torque ripple. Very high-performance robots, such as those
used in high-speed electronic assembly, use expensive high-torque motors with a direct
drive or a very low gear ratio achieved using cables or thin metal bands rather than gears.

Fig.9.3.

Robot joint actuator with at-
tached links. The center of mass
of each link is indicated by %

Fig.9.4. Notation for rigid-body
dynamics of two-link arm show-
ing link frames and relevant di-
mensions. The center of mass
(CoM) of each link is indicated
by %. The CoM is a distance of
r; from the axis of joint i, and ;
from the origin of frame {i} as
defined in Fig. 7.5 - therefore
r=a;+¢;
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Load
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wotor
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wmotor wotor
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Fig.9.5.Schematic of complete ro-
bot joint including gearbox. The
effective inertia of the links is shown
as J;and the disturbance torque due
to the link motion is 74

For example if you turned the motor
shaft by hand you would feel the inertia
of the load through the gearbox but it
would be reduced by G2.

Table 9.1. Relationship between
load and motor referenced quan-
tities for reduction gear ratio G

h=cm
'B=G""8
=6
r=6"r
v ="w/G
'v="5/G

gearbox

Load
inertia

encoder wmotor motor

inertia friction

Figure 9.5 shows the complete drive train of a typical robot joint. For a G:1
reduction drive the torque at the link is G times the torque at the motor. For ro-
tary joints the quantities measured at the link, reference frame I, are related to
the motor referenced quantities, reference frame m, as shown in Table 9.1. The
inertia of the load is reduced by a factor of G>* and the disturbance torque by a
factor of G.

There are two components of inertia seen by the motor. The first is due to the
rotating part of the motor itself, its rotor. It is denoted J,, and is a constant intrinsic
characteristic of the motor and the value is provided in the motor manufacturer’s
data sheet. The second component is the variable load inertia J; which is the iner-
tia of the driven link and all the other links that are attached to it. For joint j this is
element Mj; of the configuration dependent inertia matrix of Eq. 9.3.

9.1.5 Modeling the Robot Joint

The complete motor drive comprises the motor to generate torque, the gearbox to
amplify the torque and reduce the effects of the load, and an encoder to provide feed-
back of position and velocity. A schematic of such a device is shown in Fig. 9.6.

Collecting the various equations above we can write the torque balance on the mo-
tor shaft as

K, K,u—B'w—7h(w)— % = J'w (9.4)

where B/, Té and J' are the effective total viscous friction, Coulomb friction and inertia
due to the motor, gearbox, bearings and the load

B 7
B/:BerG—i, = To +%) ]/:]m+i

- 9.5)

In order to analyze the dynamics of Eq. 9.4 we must first linearize it, and this can
be done simply by setting all additive constants to zero

J'w+ Bw=K,K,u
and then applying the Laplace transformation
sJ'Qs) + B'Q(s) = K,,K,U(s)

where (s) and U(s) are the Laplace transform of the time domain signals w(f) and
u(t) respectively. This can be rearranged as a linear transfer function
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Fig.9.6.

Schematic of an integrated motor-
encoder-gearbox assembly
(courtesy of maxon precision

reduction gearhead

output shaft motors, inc.)
As) KK,
Uis) Js+B
relating motor speed to control input, and has a single pole” at s = —B'/J'. The mechanical pole.

We will use data for joint 2 - the shoulder - of the Puma 560 robot since its pa-
rameters are well known and are listed in Table 9.2. In the absence of other informa-
tion we will take B’ = B,,. The link inertia M,, experienced by the joint 2 motor as a
function of configuration is shown in Fig. 9.16c and we see that it varies significantly
- from 3.66 to 5.21 kg m%. Using the mean value of the extreme inertia values, which
is 4.43 kg m?, the effective inertia is

1
]/:]m +?Mzz

443
(107.815)*

=200x10® 4380 x10 ° =580 x 10 ° kg m*

=200x10"° +

and we see that the inertia of the link referred to the motor side of the gearbox is com-
parable to the inertia of the motor itself.

The Toolbox can automatically generate” a dynamic model suitable for use with  This requires the Control Systems Tool-
the MATLAB control design tools box™.

>> tf = p560.jointdynamics (qgn) ;

is a vector of continuous-time linear-time-invariant (LTI) models, one per joint, com-
puted for the particular pose gn. For the shoulder joint we are considering here that
transfer function is

>> tf (2)
ans =

0.0005797 s + 0.000817
Continuous-time transfer function.

which is similar to that above except that it does not account for K,,, and K, since these
are not parameters of the Link object. Once we have a model of this form we can plot
the step response and use a range of standard control system design tools.
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Table 9.2. .
Motor and drive parameters for EETEET =i 212 e iy
Puma 560 shoulder joint with  y15¢6r torque constant K, 0.228 NmA'
respect to the motor side of the
gearbox (Corke 1996b)  Motor inertia I 200 x10°° kg m?
Drive viscous friction B, 817 x107° Nmsrad™
Drive Coulomb friction 7% 0.126 Nm
rg -0.709 Nm
Gear ratio G 107.815
Maximum torque Trnax 0.900 N'm
Maximum speed o 165 rads™
tau_d
tau_m Y 1
:* - N J.s+B motor @
control Km torque motor e
e limit
motor ' -
W error
velocity controller feedback path

D,

tau_ff

:l 1/Km
feedforward path |
Kif
Fig.9.7. Velocity control loop,
Simulink model v1oop "
9.1.6 Velocity Control Loop

The motor velocity is typically computed
by taking the difference in motor posi-
tion at each sample time, and the posi-
tion is measured by a shaft encoder.This
can be problematic at very low speeds
where the encoder tick rate is lower than
the sample rate.In this case a better strat-
egy is to measure the time between en-
coder ticks.

A very common approach to controlling the position output of a motor is the nested
control loop. The outer loop is responsible for maintaining position and determines
the velocity of the joint that will minimize position error. The inner loop - the veloc-
ity loop - is responsible for maintaining the velocity of the joint as demanded by the
outer loop. Motor speed control is important for all types of robots, not just arms.
For example it is used to control the speed of the wheels for car-like vehicles and the
rotors of a quadrotor as discussed in Chap. 4.

The Simulink® model is shown in Fig. 9.7. The input to the motor driver is based
on the error between the demanded and actual velocity.“ A delay of 1 ms is included
to model the computational time of the velocity loop control algorithm and a satura-
tor models the finite maximum torque that the motor that can deliver.

We first consider the case of proportional control where K;= 0 and

W =K,(q —q) (96)

To test this velocity controller we create a test harness
>> vloop_ test

with a trapezoidal velocity demand which is shown in Fig. 9.8. Running the simulator
>> sim('vloop test');

and with a little experimentation we find that a gain of K, = 0.6 gives satisfactory per-
formance as shown in Fig. 9.9. There is some minor overshoot at the discontinuity
but less gain leads to increased velocity error and more gain leads to oscillation - as
always control engineering is all about tradeoffs.
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We also observe a very slight steady-state error - the actual velocity is less than
the demand at all times. From a classical control system perspective the velocity loop
contains no integrator block and is classified as a Type 0 system - a characteristic of
Type 0 systems is they exhibit a finite error for a constant input. More intuitively we
can argue that in order to move at constant speed the motor must generate a finite
torque to overcome friction, and since motor torque is proportional to velocity error
there must be a finite velocity error.

Now we will investigate the effect of inertia variation on the closed-loop response.
Using Eq. 9.5 and the data from Fig. 9.16¢ we find that the minimum and maximum
jointinertia at the motor are 515 x 10~° and 648 x 1076 kg m? respectively. Figure 9.10
shows the velocity tracking error using the control gains chosen above for various val-
ues of link inertia. We can see that the tracking error decays more slowly for larger
inertia, and is showing signs of instability for the case of zero link inertia. For a case
where the inertia variation is more extreme the gain should be chosen to achieve sat-
isfactory closed-loop performance at both extremes.

Fig.9.9.Velocity loop with a trape-
zoidal demand. a Response; b clo-
seup of response
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Motor limits. Electric motors are limited in both torque and speed. The maximum torque is de-
fined by the maximum current the drive electronics can provide. A motor also has a maximum
rated current beyond which the motor can be damaged by overheating or demagnetization of its
permanent magnets which irreversibly reduces its torque constant. As speed increases so does
friction and the maximum speed is Wy, = Tpnax/ B-

The product of motor torque and speed is the mechanical output power and also has an upper
bound. Motors can tolerate some overloading, peak power and peak torque, for short periods of
time but the sustained rating is significantly lower than the peak.

Figure 9.15a shows that the gravity torque on this joint varies from approximate-
ly —40 to 40 N m. We now add a disturbance torque equal to just half that maximum
amount, 20 N m applied on the load side of the gearbox. We do this by setting a non-
zero value in the tau_d block and rerunning the simulation. The results shown in
Fig. 9.11 indicate that the control performance has been badly degraded - the tracking
error has increased to more than 2 rad s~ !. This has the same root cause as the very
small error we saw in Fig. 9.9 - a Type 0 system exhibits a finite error for a constant
input or a constant disturbance.

There are three common approaches to counter this error. The first, and simplest,
is to increase the gain. This will reduce the tracking error but push the system toward
instability and increase the overshoot.

The second approach, commonly used in industrial motor drives, is to add inte-
gral action - adding an integrator changes the system to Type 1 which has zero error
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for a constant input or constant disturbance. We change Eq. 9.6 to a proportional-
integral controller

U= [K + &](q* ~q), K;>0
S

In the Simulink model of Fig. 9.7 this is achieved by setting Ki to a nonzero value.
With some experimentation we find the gains K, = 1 and K; = 10 work well and the per-
formance is shown in Fig. 9.12. The integrator state evolves over time to cancel out the
disturbance term and we can see the error decaying to zero. In practice the disturbance
varies over time and the integrator’s ability to track it depends on the value of the inte-
gral gain K;. In reality other disturbances affect the joint, for instance Coulomb friction
and torques due to velocity and acceleration coupling. The controller needs to be well
tuned so that these have minimal effect on the tracking performance.

As always in engineering there are some tradeoffs. The integral term can lead to in-
creased overshoot so increasing K; usually requires some compensating reduction of K. If
the joint actuator is pushed to its performance limit, for instance the torque limit is reached,
then the tracking error will grow with time since the motor acceleration will be lower than
required. The integral of this increasing error will grow leading to a condition known as
integral windup. When the joint finally reaches its destination the large accumulated inte-
gral keeps driving the motor forward until the integral decays - leading to large overshoot.
Various strategies are employed to combat this, such as limiting the maximum value of the
integrator, or only allowing integral action when the motor is close to its setpoint.

These two approaches are collectively referred to as disturbance rejection and are con-
cerned with reducing the effect of an unknown disturbance. However if we think about the
problem in its robotics context the gravity disturbance is not unknown. In Sect. 9.1.3 we
showed how to compute the torque due to gravity that acts on each joint. If we know this
torque, and the motor torque constant, we can add it to the output of the PI controller.”

The third approach is therefore to predict the disturbance and cancel it out - a strategy
known as torque feedforward control. This is shown by the red wiring in Fig. 9.7 and can
be demonstrated by setting the tau £ f block of Fig. 9.8 to the same, or approximately
the same, value as the disturbance.

50 T
40+ actual ‘ / \\
—_ demand
T, 30 7 N
T 20 // \\
3 10 /
0
-1
00 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)
2
S s
g \
© 1
2
2
c 05
0 0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

Back EMF. A spinning motor acts like a generator and produces a voltage V;, called the back EMF
which opposes the current flowing into the motor. Back EMF is proportional to motor speed
Vi, = K,,w where K, is the motor torque constant whose units can also be interpreted as V srad 1.
When this voltage equals the maximum possible voltage from the drive electronics then no more
current can flow into the motor and torque falls to zero. This provides a practical upper bound
on motor speed, and torque at high speeds.

Even if the gravity load is known impre-
cisely this trick will reduce the magni-
tude of the disturbance.

Fig.9.12.
Velocity loop response to a trap-
ezoidal demand with a gravity
disturbance of 20 N m and pro-
portional-integral control
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Another common approach is to use a
proportional-integral-derivative (PID)
controller for position but it can be shown
that the D gain of this controller is related
to the P gain of the inner velocity loop.

Fig.9.13. Position control loop,
Simulink model ploop test.
a Test harness for following an
LSPB angle trajectory. b The po-
sition loop ploop which is a pro-
portional controller around the
inner velocity loop of Fig. 9.7

9.1.7 Position Control Loop

The outer loop is responsible for maintaining position and we use a proportional
controller based on the error between actual and demanded position to compute
the desired speed of the motor

g = Kp(q*(t) . q) (9.7)
A Simulink model is shown in Fig. 9.13 and the position demand g*(¢) comes from
an LSPB trajectory generator that moves from 0 to 0.5 rad in 1 s with a sample rate of
1000 Hz. Joint position is obtained by integrating joint velocity, obtained from the
motor velocity loop via the gearbox. The error between the motor and desired posi-
tion provides the velocity demand for the inner loop.
We load this control loop model

>> ploop_test

and its performance is tuned by adjusting the three gains: K, K,, K;in order to achieve
good tracking performance along the trajectory. For K, = 40 the tracking and error
responses are shown in Fig. 9.14a. We see that the final error is zero but there is some
tracking error along the path where the motor position lags behind the demand. The
error between the demand and actual curves is due to the cumulative velocity error

of the inner loop which has units of angle.

a —»(2)
a
e ¥ e theta
> w
theta err
b o
Ispb ploop
- gravity torque
tau_d
.
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motor joint
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w W
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p w error f—pp—]  Gearbox
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> tau —p—]
Kif » éguf Integral F—p—]
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The position loop, like the velocity loop is based on classical negative feedback.
Having zero position error while tracking a ramp would mean zero demanded ve-
locity to the inner loop which is actually contradictory. More formally, we know
that a Type 1 system“ exhibits a constant error to a ramp input. If we care about
reducing this tracking error there are two common remedies. We can add an inte-
grator to the position loop - making it a proportional-integral controller but this
gives us yet another parameter to tune. A simple and effective alternative is veloc-
ity feedforward control - we add the desired velocity to the output of the propor-
tional control loop, which is the input to the velocity loop. The LSPB trajectory
function computes velocity as a function of time as well as position. The time re-
sponse with velocity feedforward is shown in Fig. 9.14b and we see that tracking
error is greatly reduced.

9.1.8 Independent Joint Control Summary

A common structure for robot joint control is the nested control loop. The inner
loop uses a proportional or proportional-integral control law to generate a torque
so that the actual velocity closely follows the velocity demand. The outer loop uses
a proportional control law to generate the velocity demand so that the actual posi-
tion closely follows the position demand. Disturbance torques due to gravity and
other dynamic coupling effects impact the performance of the velocity loop as do
variation in the parameters of the plant being controlled, and this in turn leads to
errors in position tracking. Gearing reduces the magnitude of disturbance torques
by 1/ G and the variation in inertia and friction by 1 / G* but at the expense of cost,
weight, increased friction and mechanical noise.

The velocity loop performance can be improved by adding an integral control
term, or by feedforward of the disturbance torque which is largely predictable. The
position loop performance can also be improved by feedforward of the desired joint
velocity. In practice control systems use both feedforward and feedback control.
Feedforward is used to inject signals that we can compute, in this case the joint
velocity, and in the earlier case the gravity torque. Feedback control compensates
for all remaining sources of error including variation in inertia due to manipulator
configuration and payload, changes in friction with time and temperature, and all
the disturbance torques due to velocity and acceleration coupling. In general the
use of feedforward allows the feedback gain to be reduced since a large part of the
demand signal now comes from the feedforward.

Fig.9.14. Position loop following
an LSPB trajectory. a Proportional
control only b proportional con-
trol plus velocity demand feedfor-
ward

Since the model contains an integrator
after the velocity loop.
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The recursive form of the inverse dynam-
ics does not explicitly calculate the ma-
trices M, C and G of Eq.9.8. However we
can use the recursive Newton-Euler al-
gorithm to calculate these matrices and
the Toolbox functions inertia and
coriolisuseWalkerandOrin's (1982)
‘Method 1-While the recursive forms are
computationally efficient for the inverse
dynamics, to compute the coefficients of
the individual dynamic terms (M, C and
G)in Eq.9.8is quite costly — O(N3) foran
N-axis manipulator.

Not all robot arm models in the Toolbox
have dynamic parameters, see the “dy-
namics” tag in the output of the mod-
els() command, or use models('dyn’) to
list models with dynamic parameters.
The Puma 560 robot is used for the ex-
amples in this chapter since its dynamic
parameters are reliably known.

9.2 Rigid-Body Equations of Motion

Consider the motor which actuates the j" revolute joint of a serial-link manipula-
tor. From Fig. 7.5 we recall that joint j connects link j — 1 to link j. The motor exerts
a torque that causes the outward link, j, to rotationally accelerate but it also exerts a
reaction torque on the inward link j — 1. Gravity acting on the outward links j to N
exert a weight force, and rotating links also exert gyroscopic forces on each other.
The inertia that the motor experiences is a function of the configuration of the out-
ward links.

The situation at the individual link is quite complex but for the series of links the
result can be written elegantly and concisely as a set of coupled differential equations
in matrix form

Q = M(q)j +C(q, 9)q + F(@) +6(g) + J(@)' W (9:8)
where g, ¢ and ¢ are respectively the vector of generalized joint coordinates, veloci-
ties and accelerations, M is the joint-space inertia matrix, C is the Coriolis and cen-
tripetal coupling matrix, F is the friction force, G is the gravity loading, and @ is the
vector of generalized actuator forces associated with the generalized coordinates g.
The last term gives the joint forces due to a wrench W applied at the end-effector
and J is the manipulator Jacobian. This equation describes the manipulator rigid-
body dynamics and is known as the inverse dynamics - given the pose, velocity and
acceleration it computes the required joint forces or torques.

These equations can be derived using any classical dynamics method such as
Newton’s second law and Euler’s equation of motion, as discussed in Sect. 3.2.1,
or a Lagrangian energy-based approach. A very efficient way for computing Eq. 9.8
is the recursive Newton-Euler algorithm which starts at the base and working out-
ward adds the velocity and acceleration of each joint in order to determine the ve-
locity and acceleration of each link. Then working from the tool back to the base, it
computes the forces and moments acting on each link and thus the joint torques. ™
The recursive Newton-Euler algorithm has O(N) complexity and can be written in
functional form as

Q=D Yq,4,4) (9.9)
In the Toolbox it is implemented by the rne method of the SerialLink object.
Consider the Puma 560 robot

>> mdl puma560

at the nominal pose, and with zero joint velocity and acceleration. To achieve this state,
the required generalized joint forces, or joint torques in this case, are

>> Q = pb560.rne(gn, 9z, gz)
Q =
-0.0000 31.6399 6.0351

0.0000 0.0283 0

Since the robot is not moving (we specified ¢ = ¢ = 0) these torques must be those
required to hold the robot up against gravity. We can confirm this by computing the
torques required in the absence of gravity

>> Q = pb560.rne(gn, 9z, 9z, [0 0 0])

ans =
0 0 0 0 0 0

'gravity',

by overriding the object’s default gravity vector.
Like most Toolbox methods rne can operate on a trajectory

>> g = jtraj(qz, gr, 10)

>> Q = p560.rne(q, 0*g, 0*q)
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which has returned

>> about (Q)
Q [double] : 10x6 (480 bytes)

a10 x 6 matrix with each row representing the generalized force required for the cor-
responding row of g. The joint torques corresponding to the fifth time step are

>> Q(5,1)

ans =
0.0000  29.8883 0.2489 0 0 0
Consider now a case where the robot is moving. It is instantaneously at the nominal
pose but joint 1 is moving at 1 rad s ! and the acceleration of all joints is zero. Then
in the absence of gravity, the required joint torques

>> p560.rne(gn, [1 0 0 0 0 O], gz, 'gravity', [0 O O]
30.5332 0.6280 -0.3607 -0.0003 -0.0000 0

are nonzero. The torque on joint 1 is that needed to overcome friction which always op-
poses the motion. More interesting is that torques need to be exerted on joints 2, 3 and 4.
This is to oppose the gyroscopic effects (centripetal and Coriolis forces) - referred to as
velocity coupling torques since the rotational velocity of one joint has induced a torque
on several other joints.

The elements of the matrices M, C, F and G are complex functions of the link’s kine-
matic parameters (0, d;, a;, «;) and inertial parameters. Each link has ten independent
inertial parameters: the link mass m;; the center of mass (COM) r; with respect to the
link coordinate frame; and six second moments which represent the inertia of the link
about the COM but with respect to axes aligned with the link frame {j}, see Fig. 7.5. We
can view the dynamic parameters of a robot’s link by

>> p560.1inks (1) .dyn
Revolute (std): theta=q, d=0, a=0, alpha=1.5708, offset=0

m =0

r 0 0 0

I =10 0 0 |
(e 0.35 0 |
(e 0 0 |

Jm = 0.0002

Bm = 0.00148

Tc = 0.395 (+) -0.435 (=)

G = -62.61

glim = -2.792527 to 2.792527

which in order are: the kinematic parameters, link mass, COM position, link iner-
tia matrix, motor inertia, motor friction, Coulomb friction, reduction gear ratio and
joint angle limits.

The remainder of this section examines the various matrix components of Eq. 9.8.

9.2.1 Gravity Term
Q = M(q)i + C(q,9)q + F(¢) + G(q) + J(@)' W

We start our detailed discussion with the gravity term because it is generally the
dominant term in Eq. 9.8 and is present even when the robot is stationary or mov-
ing slowly. Some robots use counterbalance weights” or even springs to reduce the
gravity torque that needs to be provided by the motors - this allows the motors to be
smaller and thus lower in cost.

In the previous section we used the rne method to compute the gravity load by
setting the joint velocity and acceleration to zero. A more convenient approach is to
use the gravload method

Counterbalancing will however increase
the inertia associated with a joint since
it adds additional mass at the end of a
lever arm, and increase the overall mass
of the robot.
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The 'gravity"' option for the
SerialLink constructor can
change this.

>> gravload = pb60.gravload(gn)
gravload =
-0.0000 31.6399 6.0351 0.0000 0.0283 0

The Seriallink object contains a default gravitational acceleration vector which
is initialized to the nominal value for Earth<

>> p560.gravity’

ans =

0 0 9.8100
We could change gravity to the lunar value
>> p560.gravity = p560.gravity/6;
resulting in reduced joint torques

>> p560.gravload (gn)
ans =
0.0000 5.2733 1.0059 0.0000 0.0047 0

or we could turn our lunar robot upside down

>> p560.base = SE3.Rx(pi);
>> p560.gravload(gn)
ans =
0.0000 -5.2733 -1.0059 -0.0000 -0.0047 0

and see that the torques have changed sign. Before proceeding we bring our robot
back to Earth and right-side up

>> mdl puma560

The torque exerted on a joint due to gravity acting on the robot depends very strongly
on the robot’s pose. Intuitively the torque on the shoulder joint is much greater when
the arm is stretched out horizontally
>> Q = pb60.gravload(gs)
0 =
-0.0000 46.0069 8.7722 0.0000 0.0283 0
than when the arm is pointing straight up
>> Q = pb60.gravload(gr)
Q =
0 -0.7752 0.2489 0 0 0
The gravity torque on the elbow is also very high in the first pose since it has to sup-
port the lower arm and the wrist. We can investigate how the gravity load on joints 2
and 3 varies with joint configuration by
1 [02,03] = meshgrid(-pi:0.1:pi, -pi:0.1l:pi);
2 for i=1:numcols (Q2),
3 for j=1l:numcols (Q3);
4 g = p560.gravlocad ([0 Q2(i,3) Q3(i,3) 0 0 0]1);
5 g2(i,3) = g(2);
6
7
8
9

g3(i,3) g(3);
end
end
surfl(Q2, Q3, g2); surfl(Q2, 03, g3);

Joseph-Louis Lagrange (1736-1813) was an Italian-born (Giuseppe Lodovico Lagrangia) French math-
ematician and astronomer. He made significant contributions to the fields of analysis, number theo-
ry, classical and celestial mechanics. In 1766 he succeeded Euler as the director of mathematics at the
Prussian Academy of Sciences in Berlin, where he stayed for over twenty years, producing a large body
of work and winning several prizes of the French Academy of Sciences. His treatise on analytical me-
chanics “Mécanique Analytique” first published in 1788, offered the most comprehensive treatment of
classical mechanics since Newton and formed a basis for the development of mathematical physics in
the nineteenth century. In 1787 he became a member of the French Academy, was the first professor
of analysis at the Ecole Polytechnique, helped drive the decimalization of France, was a member of the
Legion of Honour and a Count of the Empire in 1808. He is buried in the Panthéon in Paris.
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g2 (Nm)
g3 (Nm)

44 -4

and the results are shown in Fig. 9.15. The gravity torque on joint 2 varies be-
tween £40 N m and for joint 3 varies between £10 N m. This type of analysis is
very important in robot design to determine the required torque capacity for the
motors.

9.2.2 Inertia Matrix
Q = M(q)d +C(q,9)q + F(q) + G(q) + J(@)" W

The joint-space inertia is a positive definite, and therefore symmetric, matrix>

>> M = p560.inertia(gn)

M =
3.6594 -0.4044 0.1006 -0.0025 0.0000 -0.0000
-0.4044 4.4137 0.3509 0.0000 0.0024 0.0000
0.1006 0.3509 0.9378 0.0000 0.0015 0.0000
-0.0025 0.0000 0.0000 0.1925 0.0000 0.0000
0.0000 0.0024 0.0015 0.0000 0.1713 0.0000
-0.0000 0.0000 0.0000 0.0000 0.0000 0.1941

which is a function of the manipulator configuration. The diagonal elements M;; de-
scribe the inertia experienced by joint j, that is, Q;= M;;§;. Note that the first two diag-
onal elements, corresponding to the robot’s waist and shoulder joints, are large since
motion of these joints involves rotation of the heavy upper- and lower-arm links. The
off-diagonal terms M;;= M;;, i = j are the products of inertia and represent coupling
of acceleration from joint j to the generalized force on joint i.

We can investigate some of the elements of the inertia matrix and how they vary
with robot configuration using the simple (but slow”) commands
1 [02,03] = meshgrid(-pi:0.1l:pi, -pi:0.1l:pi);
2 for i=1:numcols (Q2)
3 for j=1l:numcols (Q3)
4 M = p560.inertia ([0 Q2(i,3j) Q@3(i,3) O 0 0]);
5 M11(i,3) = M(1,1);
6 M12(i,3) = M(1,2);
7 end
8 end
9  surfl(Q2, 03, M11); surfl(02, 03, M12);

The results are shown in Fig. 9.16 and we see significant variation in the value of M},
which changes by a factor of
>> max (M11(:)) / min(M11(:))

ans =
2.1558

Fig.9.15. Gravity load variation
with manipulator pose. a Shoulder
gravity load, g,(q,, q5); b elbow
gravity load g(q, 5)

The diagonal elements of this inertia
matrix includes the motor armature in-
ertias, multiplied by G2,

Displaying the value of the robot object
>> p560 displays a tag s1owRNE
or fastRNE.The former indicates all
calculations are done in MATLAB code.
Build the MEX version, provided in the
mex folder, to enable the fastRNE
mode which is around 100 times faster.
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0
qs (rad)

Fig.9.16.Variation of inertiama-  This is important for robot design since, for a fixed maximum motor torque, inertia
trix elements as a function of ma-  gets the upper bound on acceleration which in turn effects path following accuracy.
nipulator pose. a Joint 1 inertia as . . .

. . The off-diagonal term M, represents coupling between the angular acceleration
a function of joint 2 and 3 angles fioi dth . hat is. if joi ) h b
M,,(4, 45); b product of inertia  ©f joint 2 and the torque on joint 1. That is, if joint 2 accelerates then a torque will be
M,5(q5 45); Cjoint 2 inertia as a  €xerted on joint 1 and vice versa.

function of joint 3 angle M,,(g5)

9.2.3 Coriolis Matrix

Q = M(g9)j + C(g,9)g + F(q) +G(g)+ J(@)' W

The Coriolis matrix Cis a function of joint coordinates and joint velocity. The cen-
tripetal torques are proportional to g7, while the Coriolis torques are proportional to
§;g;- For example, at the nominal pose with the elbow joint moving at 1 rad s

>> qgd = [00100 0];
the Coriolis matrix is

>> C = pb60.coriolis(gn, qgd)

Cc =
0.8992 -0.2380 -0.2380 0.0005 -0.0375 0.0000
-0.0000 0.9106 0.9106 0 -0.0036 0
0.0000 0.0000 -0.0000 0 -0.0799 0
-0.0559 0.0000 0.0000 -0.0000 0.0000 -0.0000
-0.0000 0.0799 0.0799 -0.0000 0 0

0.0000 0 0 0.0000 0 0
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The off-diagonal terms C;; represent coupling of joint j velocity to the generalized force
acting on joint i. C, ; = 0.9106 represents significant coupling from joint 3 velocity to
torque on joint 2 - rotation of the elbow exerting a torque on the shoulder. Since the
elements of this matrix represents a coupling from velocity to joint force they have the
same dimensions as viscous friction or damping, however the sign can be positive or
negative. The joint torques due to the motion of just this one joint are
>> Cxgd'
ans =
-0.2380
0.9106
-0.0000
0.0000
0.0799
0

9.2.4 Friction

Q = M(g9)j +C(q,4)g + F(@) +G(g)+ J(q)' W

For most electric drive robots friction is the next most dominant joint force after
gravity.”

The Toolbox models friction within the Link object. The friction values are lumped
and motor referenced, that is, they apply to the motor side of the gearbox. Viscous
friction is a scalar that applies for positive and negative velocity.” Coulomb friction
is a 2-vector comprising (Qf, Q¢ ). The dynamic parameters of the Puma robot’s first
link are shown on page 264 as link parameters B and Tc. The online documentation
for the Link class describes how to set these parameters.

9.2.5 Effect of Payload

Any real robot has a specified maximum payload which is dictated by two dynamic
effects. The first is that a mass at the end of the robot will increase the inertia experi-
enced by the joint motors and which reduces acceleration and dynamic performance.
The second is that mass generates a weight force which all the joints need to support.
In the worst case the increased gravity torque component might exceed the rating of
one or more motors. However even if the rating is not exceeded there is less torque
available for acceleration which again reduces dynamic performance.

As an example we will add a 2.5 kg point mass to the Puma 560 which is its rated maxi-
mum payload. The center of mass of the payload cannot be at the center of the wrist coordi-
nate frame, that is inside the wrist, so we will offset it 100 mm in the z-direction of the wrist
frame. We achieve this by modifying the inertial parameters of the robot’s last link”>

>> p560.payload (2.5, [0 0 0.1]);
The inertia at the nominal pose is now
>> M loaded = p560.inertia(qgn);
and the ratio with respect to the unloaded case, computed earlier, is

>> M loaded ./ M

ans =
1.3363 0.9872 2.1490 49.3960 80.1821 1.0000
0.9872 1.2667 2.9191 5.9299 74.0092 1.0000
2.1490 2.9191 1.6601 -2.1092 66.4071 1.0000
49.3960 5.9299 -2.1092 1.0647 18.0253 1.0000
83.4369 74.0092 66.4071 18.0253 1.1454 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

For the Puma robot joint friction varied
from 10 to 47% of the maximum mo-
tor torque for the first three joints (Corke
1996b).

In practice some mechanisms have a ve-
locity dependent friction characteristic.

This assumes that the last link itself has
no mass which is a reasonable approxi-
mation.
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We see that the diagonal elements have increased significantly, for instance the elbow joint
inertia has increased by 66% which reduces the maximum acceleration by nearly 40%.
Reduced acceleration impairs the robot’s ability to accurately follow a high speed path. The
inertia of joint 6 is unaffected since this added mass lies on the axis of this joint’s rotation.
The off-diagonal terms have increased significantly, particularly in rows and columns four
and five. This indicates that motion of joints 4 and 5, the wrist joints, which are swinging
the offset mass give rise to large reaction forces that are felt by all the other robot joints.

The gravity load has also increased by some significant factors

>> p560.gravload(qn) ./ gravload

ans =

83737 1.5222 2.5416  18-7826 86.8056 Nait

at the elbow and wrist. Note that the values for joints 1, 4 and 6 are invalid since they
are each the quotient of numbers that are almost zero. We set the payload of the ro-
bot back to zero before proceeding

>> p560.payload(0)

9.2.6 Base Force

A moving robot exerts a wrench on its base - its weight as well as reaction forces and
torques as the arm moves around. This wrench is returned as an optional output ar-
gument of the rne method, for example

>> [Q,Wb] = p560.rne(qn, gz, gz);

The wrench

>> Wb'

ans =

0 -0.0000 230.0445 -48.4024 -31.6399 -0.0000

needs to be applied to the base to keep it in equilibrium. The vertical force of 230 N is
the total weight of the robot which has a mass of

>> sum([p560.links.m])

ans =

23.4500

There is also a moment about the x- and y-axes since the center of mass of the robot
in this configuration is not over the origin of the base coordinate frame.

The base forces are important in situations where the robot does not have a rigid
base such as on a satellite in space, on a boat, an underwater vehicle or even on a ve-
hicle with soft suspension.

9.2.7 Dynamic Manipulability

In Sect. 8.2.2 we discussed a kinematic measure of manipulability, that is, how well con-
figured the robot is to achieve velocity in any Cartesian direction. The force ellipsoid of
Sect. 8.5.2 describes how well the manipulator is able to accelerate in different Cartesian
directions but is based on the kinematic, not dynamic, parameters of the robot arm.
Following a similar approach, we consider the set of generalized joint forces with unit norm

Q'Q=1

From Eq. 9.8 and ignoring gravity and assuming ¢ = 0 we write
Q=Mg

Differentiating Eq. 8.2 and still assuming g = 0 we write

v = J(q@)4
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Combining these we write
I)T(]M_lM_T]T)ill) =1

or more compactly
v'M;'v =1

which is the equation of a hyperellipsoid in Cartesian acceleration space. For exam-
ple, at the nominal pose

>> J = p560.jacob0 (gn) ;

>> M = p560.inertia(gn);

>> Mx = (J * inv(M) * inv(M)' * J");
If we consider just the translational acceleration, that is the top left 3 x 3 submatrix
of M,

>> Mx = Mx(1:3, 1:3);
this is a 3-dimensional ellipsoid
>> plot ellipse( Mx )

which is plotted in Fig. 9.17. The major axis of this ellipsoid is the direction in which
the manipulator has maximum acceleration at this configuration. The radii of the el-
lipse are the square roots of the eigenvalues
>> sgrt (eig(Mx))
ans =
0.4412

0.1039
0.1677

and the direction of maximum acceleration is given by the first eigenvector. The ratio
of the minimum to maximum radius

>> min (ans) /max (ans)

ans =

0.2355

is a measure of the nonuniformity of end-effector acceleration.” It would be unity for
isotropic acceleration capability. In this case acceleration capability is good in the x-
and z-directions, but poor in the y-direction.

0.4

The 6-dimensional ellipsoid has dimen-
sions with different units: m s=2 and
rad s—2.This makes comparison of all
6 radii problematic.

Fig.9.17.
Spatial acceleration ellipsoid for
Puma 560 robot in nominal pose
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Fig.9.18.
Simulink model s1 ztorque
for the Puma 560 manipulator
with zero joint torques. This
model removes Coulomb fric-
tion in order to simplify the nu-
merical integration

The scalar dynamic manipulability measure proposed by Asada is similar but con-
siders the ratios of the eigenvalues of

#7TM % =1

and returns a uniformity measure m € [0, 1] where 1 indicates uniformity of accelera-
tion in all directions. For this example
>> p560.maniplty(gn, 'asada')

ans =
0.2094

9.3 Forward Dynamics

To determine the motion of the manipulator in response to the forces and torques ap-
plied to its joints we require the forward dynamics or integral dynamics. Rearranging
the equations of motion Eq. 9.8 we obtain the joint acceleration

i=M"'(9)(Q~Cla,d)d ~ F(a)~ 6(@) ~ J(@)' W) (9.10)
and M is always invertible. This function is computed by the accel method of the
SerialLlink class

gdd = p560.accel(q, qd, Q)

given the joint coordinates, joint velocity and applied joint torques. This functionality
is also encapsulated in the Simulink block Robot and an example of its use is

>> sl _ztorque

which is shown in Fig. 9.18. The torque applied to the robot is zero and the initial joint
angles is set as a parameter of the Robot block, in this case to the zero-angle pose.
The simulation is run

>> r = sim('sl ztorque');
and the joint angles as a function of time are returned in the object r

>> t = r.find('tout');
>> g = r.find('yout');

We can show the robot’s motion in animation
>> p560.plot (q)

and see it collapsing under gravity since there are no torques to counter gravity and
hold in upright. The shoulder falls and swings back and forth as does the elbow, while
the waist joint rotates because of Coriolis coupling. The motion will slowly decay as
the energy is dissipated by viscous friction.

Puma 560 collapsing under gravity

NF/Puma 560 q ° > q

Puma 560
C‘?
E Q * plot

Zero C'? qdd

torque
Robot q
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Alternatively we can plot the joint angles as a function of time

>> plot(t, g(:,1:3))

and this is shown in Fig. 9.19. The method £dyn can be used as a nongraphical alter-
native to Simulink and is described in the online documentation.
This example is rather unrealistic and in reality the joint torques would be com-
puted by some control law as a function of the actual and desired robot joint angles.
This is the topic of the next section.

Coulomb friction is a strong nonlinearity and can cause difficulty when using
numerical integration routines to solve the forward dynamics. This is usually
manifested by very long integration times. Fixed-step solvers tend to be more
tolerant,and these can be selected through the Simulink Simulation+Model
Configuration Parameters+Solver menuitem.

The default Puma 560 model, defined using mdl puma560, has nonzero
viscous and Coulomb friction parameters for each joint. Sometimes it is useful
to zero the friction parameters for a robot and this can be achieved by

>> p560 nf = p560.nofriction();

which returns a copy of the robot object that is similar in all respects except
that the Coulomb friction is zero. Alternatively we can set Coulomb and viscous
friction coefficients to zero

>> p560_nf = p560.nofriction('all’);

9.4

Rigid-Body Dynamics Compensation

In Sect. 9.1 we discussed some of the challenges for independent joint control and in-
troduced the concept of feedforward to compensate for the gravity disturbance torque.
Inertia variation and other dynamic coupling forces were not explicitly dealt with and
were left for the feedback controller to handle. However inertia and coupling torques
can be computed according to Eq. 9.8 given knowledge of joint angles, joint velocities
and accelerations, and the inertial parameters of the links. We can incorporate these
torques into the control law using one of two model-based approaches: feedforward
control, and computed torque control. The structural differences are contrasted in
Fig. 9.20 and Fig. 9.21.

Fig.9.19.

Joint angle trajectory for
Puma 560 robot with zero
Coulomb friction collapsing
under gravity from initial joint
configuration gz
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9.4.1 Feedforward Control

The torque feedforward controller shown in Fig. 9.20 is given by

@ = (o )i elai)ir +F{a ) ola) [~ ) o o)

feedforward

feedback

_ Dfl(q*,q*,(’]'*)-i-{KV(q* —q#)+KP(q* _q#)}

(9.11)

where K, and K, are the position and velocity gain (or damping) matrices respectively,
and D !(-) is the inverse dynamics function. The gain matrices are typically diagonal.
The feedforward term provides the joint forces required for the desired manipulator
state (%, ¢*, §*) and the feedback term compensates for any errors due to uncertainty
in the inertial parameters, unmodeled forces or external disturbances.

q

+—CD

q q
69 Puma 560

(|
Puma 560
> J_L\_ :@—b Q qod
A
Tfb qdd
v
Robot
jtraj Kd feedback torque
trajectory
(demand) I(\‘IF/Puma 560
qd Q J_I_\_ » 3)
tau_ff
i i au_
RNE
feedforward torque

ﬁg. 9.20. The Simulink model
sl fforward for Puma 560 with
torque feedforward control. The
blocks with the staircase icons are
zero-order holds

plot

Fig.9.21. Robotics Toolbox ex-
ample s1 ctorque, computed
torque control

v

NF/Puma 560 q

Q qd

q NF/Puma 560
f [ qd Q
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We can also consider that the feedforward term linearizes the nonlinear dynamics
about the operating point (g*,g*,g"). If the linearization is ideal then the dynamics of
the error e = g* — g* can be obtained by combining Eq. 9.8 and 9.11

M(q")é +K,é+Kye=0 (9.12)

For well chosen K, and K, the error will decay to zero but the joint errors are cou-
pled” and their dynamics are dependent on the manipulator configuration.

To test this controller using Simulink we first create a SerialLink object

>> mdl puma560

and then load the torque feedforward controller model

>> sl fforward

The feedforward torque is computed using the RNE block and added to the feedback
torque computed from position and velocity error. The desired joint angles and
velocity are generated using a j traj block. Since the robot configuration changes
relatively slowly the feedforward torque can be evaluated at a greater interval, Ty, than
the error feedback loops, Ty, In this example we use a zero-order hold block sampling
at the relatively low sample rate of 20 Hz.

We run the simulation by pushing the Simulink play button or

>> r = sim('sl fforward');

9.4.2 Computed Torque Control

The computed torque controller is shown in Fig. 9.21. It belongs to a class of control-
lers known as inverse dynamic control. The principle is that the nonlinear system is
cascaded with its inverse so that the overall system has a constant unity gain. In prac-
tice the inverse is not perfect so a feedback loop is required to deal with errors.

The computed torque control is given by

Q=M@{d +K,(¢" — )+ K, (¢ —¢')} + Ca",a)d" + F(@) +6(a")
=07(q" (6 + K, (0~ 4" )+ Ky ') (9.13)

where K, and K, are the position and velocity gain (or damping) matrices respectively,
and D~!(-) is the inverse dynamics function.

In this case the inverse dynamics must be evaluated at each servo interval, although
the coefficient matrices M, C, and G could be evaluated at a lower rate since the robot
configuration changes relatively slowly. Assuming ideal modeling and parameteriza-
tion the error dynamics of the system are obtained by combining Eq. 9.8 and 9.13

é+Ke+Ke=0 (9.14)

where e = g* — g*. Unlike Eq. 9.12 the joint errors are uncoupled and their dynamics
are therefore independent of manipulator configuration. In the case of model error
there will be some coupling between axes, and the right-hand side of Eq. 9.14 will be
a nonzero forcing function.

Using Simulink we first create a SerialLink object and then load the computed
torque controller

>> mdl_puma560
>> sl ctorque

Due to the nondiagonal matrix M.
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The desired joint angles and velocity are generated using a jtraj block whose pa-
rameters are the initial and final joint angles. We run the simulation by pushing the
Simulink play button or

>> r = sim('sl ctorque');

9.4.3 Operational Space Control

The control strategies so far have been posed in terms of the robot’s joint coordinates
- its configuration space. Equation 9.8 describes the relationship between joint posi-
tion, velocity, acceleration and applied forces or torques. However we can also express
the dynamics of the end-effector in the Cartesian operational space where we consider
the end-effector as a rigid body with inertia that actuator and disturbance forces and
torques act on. We can reformulate Eq. 9.8 in operational space as

A@)i + p(x, @)a + plx) = W (9.15)

where x € R® is the manipulator Cartesian pose and A is the end-effector inertia
which is subject to a gyroscopic and Coriolis force 1 and gravity load p and an ap-
plied control wrench W. These operational space terms are related to those we have
already discussed by

A) = J(@) " J(@J(@) !
p(x, %) = J(q) " C(q,q) — AM@)J(q)q
p(x) = J(q) " g(q)

Imagine the task of wiping a table when the table’s height is unknown and its sur-
face is only approximately horizontal. The robot’s z-axis is vertical so to achieve the
task we need to move the end-effector along a path in the xy-plane to achieve cover-
age and hold the wiper at a constant orientation about the z-axis. Simultaneously we
maintain a constant force in the z-direction to hold the wiper against the table and
a constant torque about the x- and y-axes in order to conform to the orientation of
the table top. The first group of axes are position controlled, and the second group
are force controlled. Each Cartesian degree of freedom can be either position or force
controlled. The operational space control allows independent control of position and
forces along and about the axes of the operational space coordinate frame.

A Simulink model of the controller and a simplified version of this scenario can

be loaded by
>> sl opspace

and is shown in Fig. 9.22. It comprises a position-control loop and a force-control
loop whose results are summed together and used to drive the operational space ro-
bot model - details can be found by opening that block in the Simulink diagram. In
this simulation the operational space coordinate frame is parallel to the end-effector
coordinate frame. Motion is position controlled in the x- and y-directions and about
the x-, y- and z-axes of this frame - the robot moves from its initial pose to a nearby

The robot model and the compliance  pose using 5 out of the 6 Cartesian DOF.<

specification are set by the model’s Motion is force controlled in the z-direction with a setpoint of -5 N. To achieve this

InitFcn callback function. The set- .

. . the controller moves the end-effector downward in order to decrease the force. It moves

points are the red user adjustable boxes | . L i

in the top-level diagram. in free space until it touches the surface at z = —0.2 which is modeled as a stiffness of
100 N m~!. Results in Fig. 9.23 show the x- and y-position moving toward the goal and
the z-position decreasing and the simulated sensed force decreasing after contact. The
controller is able to simultaneously satisfy position and force constraints.
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9.5 Applications

9.5.1 Series-Elastic Actuator (SEA)
For high-speed robots the elasticity of the links and the joints becomes a significant dy-
namic effect which will affect path following accuracy. Joint elasticity is typically caused
by elements of the transmission such as: longitudinal elasticity of a toothed belt or cable
drive, a harmonic gearbox which is inherently elastic, or torsional elasticity of a motor
shaft. In dynamic terms, as shown schematically in Fig. 9.24, the problem arises because
the force is applied to one side of an elastic element and we wish to control the position of
the other side - the actuator and sensor are not colocated. More complex still, and harder
to analyze, is the case where the elasticity of the links must be taken into account.
However there are advantages in having some flexibility between the motor and the
load. Imagine a robot performing a task that involves the gripper picking an object off a
table whose height is uncertain.” A simple strategy to achieve this is to move down until
the gripper touches the table, close the gripper and then lift up. However at the instant of
contact a large and discontinuous force will be exerted on the robot which has the potential
to damage the object or the robot. This is particularly problematic for robots with large

position

position

ﬁg. 9.22. Simulink model of an
operational-space control system
for a Puma 560 robot as described
by (Khatib 1987)

Fig.9.23.

Operational space controller re-
sults. The end-effector moves to
a desired x- and y-position while
also moving in the negative z-di-
rection until it contacts the work
piece and is able to exert the
specified force of -5 N

Or the robot is not very accurate.
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7
Fig.9.24.
Schematic of a series-elastic
actuator. The two masses repre-
sent the motor and the load, and u
they are connected by an elastic
element or spring
state-feedback controller motor mass spring
spring
. : O ’ . _u /j ’ .1 1 force
x2* X* S state '\" s 5 motor position '\" @
A error . A A Fs
Step LQR gain force 1/m1 x1d x1 Ks
limit
i U i g
u
X -
' spring force
state vector (x1, x1d, x2, x2d) I‘
|

Fig.9.25. Simulink model s1 sea
of a series-elastic actuator colliding
with an obstacle

Inareal robot this s a rotary system with
a torsional spring.

load position

X

states

A 4

o=

Product X2

double
detect
obstacle

inertia that are moving quickly - the kinetic energy must be instantaneously dissipated.
An elastic element - a spring - between the motor and the joint would help here. At the
moment of contact the spring would start to compress and the kinetic energy is trans-
ferred to potential energy in the spring - the robot control system has time to react and
stop or reverse the motors. We have changed the problem from a damaging hard impact
to a soft impact. In addition to shock absorption, the deformation of the spring provides
ameans of determining the force that the robot is exerting. This capability is particularly
useful for robots that interact closely with people since it makes the robot less dangerous
in case of collision, and a spring is simple technology that cannot fail. For robots that must
exert a force as part of their task, this is a simpler approach than the operational space
controller introduced in Sect. 9.4.3. However position control is now more challenging
because there is an elastic element between the motor and the load.

Consider the 1-dimensional case shown in Fig. 9.24 where the motor is represented by
amass m, to which a controllable force u is applied. *It is connected via a linear elastic
element or spring to the load mass m,. If we apply a positive force to m, it will move to
the right and compress the spring, and this will exert a positive force on m, which will
also move to the right. Controlling the position of m, is not trivial since this system has
no friction and is marginally stable. It can be stabilized by feedback of position and ve-
locity of the motor and of the load - all of which are potentially measurable.

In robotics such a system, built into a robot joint, is known as a series-elastic actua-
tor or SEA. The Baxter robot of Fig. 7.1b includes SEAs in some of its joints.

A Simulink model of an SEA system can be loaded by

>> sl sea

and is shown in Fig. 9.25. A state-feedback LQR controller has been designed using
MATLAB and requires input of motor and load position and velocity which form a vec-
tor x in the Simulink model. Fig. 9.26 shows a simulation of the model moving the load
m, to a position x5 = 1. In the first case there is no obstacle and it achieves the goal with
minimal overshoot, but note the complex force profile applied to m;. In the second case
the load mass is stopped at x, = 0.8 and the elastic force changes to accomodate this.
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Fig.9.26. Response of the series-
elastic actuator to a unit-step de-
mandatt=1s, showingload posi-

. . . . tion (m), motor force (N) and sprin;
In this Chapter we discussed approaches to robot manipulator control. We started with force( (131). a Moving E o lz* _ 1P;vit1§

the simplest case of independent joint control, and explored the effect of disturbance  no collision; b moving to x; =1
torques and variation in inertia, and showed how feedforward of disturbances such as  with an obstacle at x, = 0.8 which
gravity could provide significant improvement in performance. We then learned how  is reached at £~2.3

to model the forces and torques acting on the individual links of a serial-link manipu-

lator. The equations of motion or inverse dynamics compute the joint forces required

to achieve particular joint velocity and acceleration. The equations have terms corre-

sponding to inertia, gravity, velocity coupling, friction and externally applied forces.

Welooked at the significance of these terms and how they vary with manipulator con-

figuration and payload. The equations of motion provide insight into important issues

such as how the velocity or acceleration of one joint exerts a disturbance force on other

joints which is important for control design. We then discussed the forward dynam-

ics which describe how the configuration evolves with time in response to forces and

torques applied at the joints by the actuators and by external forces such as gravity.

We extended the feedforward notion to full model-based control using torque feed-

forward, computed torque and operational-space controllers. Finally we discussed

series-elastic actuators where a compliant element between the robot motor and the

link enables force control and people-safe operation.

9.6 Wrapping Up

Further Reading

The engineering design of motor control systems is covered in mechatronics textbooks
such as Bolton (2015). The dynamics of serial-link manipulators is well covered by all
the standard robotics textbooks such as Paul (1981), Spong et al. (2006), Siciliano et al.
(2009) and the Robotics Handbook (Siciliano and Khatib 2016). The efficient recursive
Newton-Euler method we use today is the culmination of much research in the early
1980s and described in Hollerbach (1982). The equations of motion can be derived via a
number of techniques, including Lagrangian (energy based), Newton-Euler, d’Alembert
(Fuet al. 1987; Lee et al. 1983) or Kane’s method (Kane and Levinson 1983). However the
computational cost of Lagrangian methods (Uicker 1965; Kahn 1969) is enormous, O(N'*4),
which made it infeasible for real-time use on computers of that era and many simplifi-
cations and approximation had to be made. Orin et al. (1979) proposed an alternative
approach based on the Newton-Euler (NE) equations of rigid-body motion applied to
each link. Armstrong (1979) then showed how recursion could be applied resulting in
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O(N) complexity. Luh et al. (1980) provided a recursive formulation of the Newton-
Euler equations with linear and angular velocities referred to link coordinate frames
which resulted in a thousand-fold improvement in execution time making it practical
to implement in real-time. Hollerbach (1980) showed how recursion could be applied
to the Lagrangian form, and reduced the computation to within a factor of 3 of the re-
cursive NE form, and Silver (1982) showed the equivalence of the recursive Lagrangian
and Newton-Euler forms, and that the difference in efficiency was due to the represen-
tation of angular velocity.

The forward dynamics, Sect. 9.3, is computationally more expensive. An O(N*) meth-
od was proposed by Walker and Orin (1982) and is used in the Toolbox. Featherstone’s
(1987) articulated-body method has O(N) complexity but for N < 9 is more expensive
than Walker’s method.

Critical to any consideration of robot dynamics is knowledge of the inertial param-
eters, ten per link, as well as the motor’s parameters. Corke and Armstrong-Hélouvry
(1994, 1995) published a meta-study of Puma parameters and provide a consensus
estimate of inertial and motor parameters for the Puma 560 robot. Some of this data
was obtained by painstaking disassembly of the robot and determining the mass and
dimensions of the components. Inertia of components can be estimated from mass
and dimensions by assuming mass distribution, or it can be measured using a bifilar
pendulum as discussed in Armstrong et al. (1986).

Alternatively the parameters can be estimated by measuring the joint torques or
the base reaction force and moment as the robot moves. A number of early works in
this area include Mayeda et al. (1990), Izaguirre and Paul (1985), Khalil and Dombre
(2002) and a more recent summary is Siciliano and Khatib (2016, § 6). Key to success-
ful identification is that the robot moves in a way that is sufficiently exciting (Gautier
and Khalil 1992; Armstrong 1989). Friction is an important dynamic characteristic
and is well described in Armstrong’s (1988) thesis. The survey by Armstrong-Hélouvry
etal. (1994) is a very readable and thorough treatment of friction modeling and
control. Motor parameters can be obtained directly from the manufacturer’s data
sheet or determined experimentally, without having to remove the motor from the
robot, as described by Corke (1996a). The parameters used in the Toolbox Puma
model are the best estimates from Corke and Armstrong-Hélouvry (1995) and
Corke (1996a).

The discussion on control has been quite brief and has strongly emphasized the ad-
vantages of feedforward control. Robot joint control techniques are well covered by
Spong et al. (2006), Craig (2005) and Siciliano et al. (2009) and summarized in Siciliano
and Khatib (2016, § 8). Siciliano et al. have a good discussion of actuators and sensors
as does the, now quite old, book by Klafter et al. (1989). The control of flexible joint
robots is discussed in Spong et al. (2006). Adaptive control can be used to accomodate
the time-varying inertial parameters and there is a large literature on this topic but
some good early references include the book by Craig (1987) and key papers include
Craig et al. (1987), Spong (1989), Middleton and Goodwin (1988) and Ortega and Spong
(1989). The operational-space control structure was proposed in Khatib (1987). There
has been considerable recent interest in series-elastic as well as variable stiffness ac-
tuators (VSA) whose position and stiffness can be independently controlled much like
our own muscles — a good collection of articles on this technology can be found in the
special issue by Vanderborght et al. (2008).

Dynamic manipulability is discussed in Spong et al. (2006) and Siciliano et al. (2009).
The Asada measure used in the Toolbox is described in Asada (1983).

Historical and general. Newton’s second law is described in his master work Principia
Nautralis (mathematical principles of natural philosophy), written in Latin but an
English translation is available on line at http://www.archive.org/details/newton-
spmathemaOOnewtrich. His writing on other subjects, including transcripts of his
notebooks, can be found online at http://www.newtonproject.sussex.ac.uk.
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Exercises

1.

O 0 N

Independent joint control (page 258ff)

a) Investigate different values of Kv and Ki as well as demand signal shape and
amplitude.

b) Perform a root-locus analysis of v100p to determine the maximum permissible
gain for the proportional case. Repeat this for the PI case.

c) Consider that the motor is controlled by a voltage source instead of a current
source, and that the motor’s impedance is 1 mH and 1.6 2. Modify v1oop ac-
cordingly. Extend the model to include the effect of back EMF.

d) Increase the required speed of motion so that the motor torque becomes sat-
urated. With integral action you will observe a phenomena known as integral
windup - examine what happens to the state of the integrator during the motion.
Various strategies are employed to combat this, such as limiting the maximum
value of the integrator, or only allowing integral action when the motor is close
to its setpoint. Experiment with some of these.

e) Create a Simulink model of the Puma robot with each joint controlled by v1oop
and ploop. Parameters for the different motors in the Puma are described in
Corke and Armstrong-Hélouvry (1995).

. The motor torque constant has units of N m A~! and is equal to the back EMF con-

stant which has units of V s rad . Show that these units are equivalent.

. Simple two-link robot arm of Fig. 9.4

a) Plot the gravity load as a function of both joint angles. Assume m; = 0.45 kg,
m,=0.35kg, ;=8 cmand r,= 8 cm.

b) Plot the inertia for joint 1 as a function of g,. To compute link inertia assume
that we can model the link as a point mass located at the center of mass.

. Run the code on page 265 to compute gravity loading on joints 2 and 3 as a func-

tion of configuration. Add a payload and repeat.

. Run the code on page 266 to show how the inertia of joints 1 and 2 vary with pay-

load?

. Generate the curve of Fig. 9.16c. Add a payload and compare the results.

. By what factor does this inertia vary over the joint angle range?

. Why is the manipulator inertia matrix symmetric?

. The robot exerts a wrench on the base as it moves (page 269). Consider that the robot

is sitting on a frictionless horizontal table (say on a large air puck). Create a simulation
model that includes the robot arm dynamics and the sliding dynamics on the table.
Show that moving the arm causes the robot to translate and spin. Can you devise an
arm motion that moves the robot base from one position to another and stops?

10. Overlay the dynamic manipulability ellipsoid on the display of the robot. Compare

this with the force ellipsoid from Sect. 8.5.2.

11.Model-based control (page 273ff)

a) Compute and display the joint tracking error for the torque feedforward and
computed torque cases. Experiment with different motions, control parameters
and sample rate T,

b) Reduce the rate at which the feedforward torque is computed and observe its
effect on tracking error.

c) In practice the dynamic model of the robot is not exactly known, we can only
invert our best estimate of the rigid-body dynamics. In simulation we can model
this by using the perturb method, see the online documentation, which returns
a robot object with inertial parameters varied by plus and minus the specified
percentage. Modify the Simulink models so that the RNE block is using a robot
model with parameters perturbed by 10%. This means that the inverse dynamics
are computed for a slightly different dynamic model to the robot under control
and shows the effect of model error on control performance. Investigate the ef-
fects on error for both the torque feedforward and computed torque cases.
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d) Expand the operational-space control example to include a sensor that mea-
sures all the forces and torques exerted by the robot.on an inclined table surface.
Move the robot end-effector along a circular path in the xy-plane while exerting
a constant downward force - the end-effector should move up and down as it
traces out the circle. Show how the controller allows the robot tool to conform
to a surface with unknown height and surface orientation.

12.Series-elastic actuator (page 276)

a) Experiment with different values of stiffness for the elastic element and control
parameters. Try to reduce the settling time.

b) Modify the simulation so that the robot arm moves to touch an object at un-
known distance and applies a force of 5 N to it.

¢) Plot the frequency response function X,(s)/X,(s) for different values of K, m;
and m,.

d) Simulate the effect of a collision between the load and an obstacle by adding a
step to the spring force.
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Fig.IV.1.a Robber fly, Holocephala

fusca; b jumping spider, Phidippus
putnami (a and b courtesy Tho-
mas Shahan, thomasshanan.com).
¢ Scallop (courtesy Sénke Johnsen),
each of the small blue spheres is an
eye. d Human eye

Computer Vision

Vision is the process of discovering from images
what is present in the world and where it is.
David Marr

Almost all animal species use eyes - in fact evolution has invented the eye many times
over. Figure IV.1 shows a variety of eyes from nature: the compound eye of a fly, the main
and secondary eyes of a spider, the reflector-based eyes of a scallop, and the lens-based
eye of a human. Vertebrates have two eyes, but spiders and scallops have many eyes.

Even very simple animals, bees for example, with brains comprising just 10° neu-
rons (compared to our 10'!) are able to perform complex and life critical tasks such
as finding food and returning it to the hive using vision (Srinivasan and Venkatesh
1997). This is despite the very high biological cost of owning an eye: the complex eye
itself, muscles to move it, eyelids and tear ducts to protect it, and a large visual cortex
(relative to body size) to process its data.

Our own experience is that eyes are very effective sensors for recognition, naviga-
tion, obstacle avoidance and manipulation. Cameras mimic the function of an eye and
we wish to use cameras to create vision-based competencies for robots - to use digital
images to recognize objects and navigate within the world. Figure IV.2 shows a robot
with a number of different types of cameras.

Technological development has made it feasible for robots to use cameras as eyes.
For much of the history of computer vision, dating back to the 1960s, electronic cameras
were cumbersome and expensive and computer power was inadequate. Today CMOS
cameras for cell phones cost just a few dollars each, and our mobile and personal com-
puters come standard with massive parallel computing power. New algorithms, cheap
sensors and plentiful computing power make vision a practical sensor today.

In Chap. 1 we defined a robot as

a goal oriented machine that can sense, plan and act

and this part of the book is concerned with sensing using vision, or visual percep-
tion. Whether a robot works in a factory or a field it needs to sense its world in order
to plan its actions.

In this part of the book we will discuss the process of vision from start to finish: from
the light falling on a scene, being reflected, gathered by a lens, turned into a digital im-
age and processed by various algorithms to extract the information required to support
the robot competencies listed above. These steps are depicted graphically in Fig. IV.3.

Development of the eye. It is believed that all animal eyes share a common ancestor in a proto-eye
that evolved 540 million years ago. However major evolutionary advances seem to have occurred
in just the last few million years. The very earliest eyes, called eyespots, were simple patches
of photoreceptor protein in single-celled animals. Multi-celled animals evolved multi-cellular
eyespots which could sense the brightness of light but not its direction. Gradually the eyespot
evolved into a shallow cup shape which gave a limited ability to discriminate directional bright-
ness according to which cells were illuminated. The pit deepened, the opening became smaller,
and the number of photoreceptor cells increased, forming a pin-hole camera that was capable
of distinguishing shapes. Next came an overgrowth of transparent cells to protect the eyespot
which led to a filled eye chamber and eventually the eye as we know it today. The lensed eye has
evolved independently seven different times across species. Nature has evolved ten quite distinct
eye designs including those shown above.
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In Chap. 10 we start by discussing light, and in particular color because it is such an
important characteristic of the world that we perceive. Although we learn about color at
kindergarten it is a complex topic that is often not well understood. Next, in Chap. 11,
we discuss how an image of the world is formed on a sensor and converted to a digital
image that can be processed by a computer. Fundamental image processing algorithms
are covered in Chap. 12 and provide the foundation for the feature extraction algorithms
discussed in Chap. 13. Feature extraction is a problem in data reduction, in extracting
the essence of the scene from the massive amount of pixel data. For example, how do we
determine the coordinate of the round red object in the scene, which can be described
with perhaps just 4 bytes, given the millions of bytes that comprise an image. To solve
this we must address many important subproblems such as “what is red?”, “how do we
distinguish red pixels from nonred pixels?”, “how do we describe the shape of the red
pixels?”, “what if there are more than one red object?” and so on.

As we progress through these chapters we will encounter the limitations of using
just a single camera to view the world. Once again biology shows the way — multiple
eyes are common and have great utility. This leads us to consider using multiple views
of the world, from a single moving camera or multiple cameras observing the scene
from different viewpoints. This is discussed in Chap. 14 and is particularly important
for understanding the 3-dimensional structure of the world. All of this sets the scene
for describing how vision can be used for closed-loop control of arm-type and mobile
robots which is the subject of the next and final part of the book.

Fig.IV.2.

A cluster of cameras on an out-
door mobile robot: forward
looking stereo pair, side look-
ing wide angle camera, over-
head panoramic camera mirror
(CSIRO mobile robot)

Fig.IV.3.
Steps involved in image
processing
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Light and Color

I cannot pretend to feel impartial about colours.
I rejoice with the brilliant ones

and am genuinely sorry for the poor browns.
Winston Churchill

In ancient times it was believed that the eye radiated a cone of visual flux which mixed
with visible objects in the world to create a sensation in the observer - like the sense
of touch, but at a distance - this is the extromission theory. Today we consider that
o light from an illuminant falls on the scene, some of which is reflected into the eye of
' —7°  the observer to create a perception about that scene. The light that reaches the eye,
. or the camera, is a function of the illumination impinging on the scene and the
; material property known as reflectivity.

This chapter is about light itself and our perception of light in terms of
brightness and color. Section 10.1 describes light in terms of electro-mag-
netic radiation and mixtures of light as continuous spectra. Section 10.2
“= provides a brief introduction to colorimetry, the science of color perception,

human trichromatic color perception and how colors can be represented in
various color spaces. Section 10.3 covers a number of advanced topics such as col-
or constancy, gamma correction and white balancing. Section 10.4 has two worked
application examples concerned with distinguishing different colored objects in an
image and the removal of shadows in an image.

-

10.1 Spectral Representation of Light

Around 1670, Sir Isaac Newton discovered that white light was a mixture of different
colors. We now know that each of these colors is a single frequency or wavelength of
electro-magnetic radiation. We perceive the wavelengths between 400 and 700 nm as
different colors as shown in Fig. 10.1.

In general the light that we observe is a mixture of many wavelengths and can be
represented as a function E(\) that describes intensity as a function of wavelength .
Monochromatic light, such as emitted by a laser comprises a single wavelength in
which case E is an impulse.

The most common source of light is incandescence which is the emission of light

Fig- 101 ¢ m a hot body such as the Sun or the filament of a traditional light bulb. In physics

The spectrum of visible colors

as a function of wavelength in
nanometers. The visible range
depends on viewing conditions
and the individual but is general-
ly accepted as being 400-700 nm.
Wavelengths greater than 700 nm : ‘
are termed infra-red and those 400 450 500 550 600 650 700 750

below 400 nm are ultra-violet Wavelength (nm)

Spectrum of light. During the plague years of spectrum into white light. Importantly he
1665-1666 Isaac Newton developed his the-  showed that the color of the light did not
ory of light and color. He demonstrated that ~ change when it was reflected from different
a prism could decompose white light into a  objects, from which he concluded that color
spectrum of colors, and that a lens and a sec-  is an intrinsic property of light not the object.
ond prism could recompose the multi-colored ~ (Newton’s sketch to the left)




288  Chapter 10 - Light and Color
3.5 T 1 =
3000 K N
——4000K 0.9 I
3 ———5000K [ | \
—— 6000 K 0.8 | |
© 25 / I \
> /// ’\OJ // | v ///\\
= £
| 1
€2 5 %6 )
P 8 0.5 : !
E E ' \ /
1
g 13 5 04 | \
— T z
21 — 03 \
e I /
— | 02 ; \\
0.5 / / \ Tungsten lamp (2600 K)
— T 0.1 Sun (5778 K) .
/ \ — — Human eye response
0 L— 0 / N l: . T
300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
a Wavelength (nm) Wavelength (nm)

this is modeled as a blackbody radiator or Planckian source. The emitted power as a
function of wavelength \ is given by Planck’s radiation formula

2hc?
A\° (ehc/k,\T _ 1)

where T'is the absolute temperature (K) of the source, h is Planck’s constant, k is
Boltzmann’s constant, and c the speed of light. This is the power emitted per stera-
dian“ per unit area per unit wavelength.

We can plot the emission spectra for a blackbody at different temperatures. First
we define a range of wavelengths

E\\) = Wsr'm?m™! (10.1)

>> lambda [300:10:1000]*1e-9;

in this case from 300 to 1000 nm, and then compute the blackbody spectra

>> for T=3000:1000:6000

>> plot( lambda, blackbody (lambda,

>> end
as shown in Fig. 10.2a. We can see that as temperature increases the maximum amount
of power increases and the wavelength at which the peak occurs decreases. The total
amount of power radiated (per unit area) is the area under the blackbody curve and
is given by the Stefan-Boltzman law

T)); hold all

27k

4 —2
15¢%h3 rwm

P(\) =

and the wavelength corresponding to the peak of
the blackbody curve is given by Wien’s displace-
ment law

2.8978 x107°
—_— I
T

A

max ~

The wavelength of the peak decreases as tem-
perature increases and in familiar terms this is
what we observe when we heat an object. It starts
to glow faintly red at around 800 K and moves
through orange and yellow toward white as tem-
perature increases.™

Fig. 10.2. Blackbody spectra.
a Blackbody emission spectra for
temperatures from 3 000-6 000 K.
b Blackbody emissions for the
Sun (5778 K), a tungsten lamp
(2600 K) and the response of the
human eye - all normalized to
unity for readability

€=2998x108ms™’
h =6.626x107Js
k =1381x10"3JK!

Solid angle is measured in steradians, a
full sphere is 4 sr.

Incipient red heat 770 - 820K
dark red heat 920 - 1020K
bright red heat 1120 - 1220K
yellowish red heat 1320 — 1420K
incipient white heat 1520 — 1620 K
white heat 1720 - 1820K

Infra-red radiation was discov-
ered in 1800 by William Herschel
(1738-1822) the German-born
British astronomer. He was Court
Astronomer to George III; built
a series of large telescopes; with
his sister Caroline performed the
first sky survey discovering dou-
ble stars, nebulae and the planet
Uranus; and studied the spectra
of stars. Using a prism and ther-
mometers to measure the amount

of heat in the various colors of sunlight he observed that temperature
increased from blue to red, and increased even more beyond red where
there was no visible light. (Image from Herschel 1800)
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A Sir Humphry Davy demonstrated the first electrical in-  tricity in 1881. In the USA Thomas Edison did not start
candescent lamp using a platinum filament in 1802. Sir  research into incandescent lamps until 1878 but he pat-
Joseph Swan demonstrated his first light bulbs in 1850  ented along-lasting carbonized bamboo filament the next
using carbonized paper filaments. However it was not  year and was able to mass produce them. The Swan and
1 until advances in vacuum pumps in 1865 that suchlamps ~ Edison companies merged in 1883.
i could achieve a useful lifetime. Swan patented a carbon- The light bulb subsequently became the dominant
. ized cotton filament in 1878 and a carbonized cellulose  source of light on the planet but is now being phased
filament in 1881. His lamps came into use after 1880 and  out due to its poor energy efficiency. (Photo by Douglas
the Savoy Theatre in London was completely lit by elec-  Brackett, Inv., Edisonian.com)
The filament of a tungsten lamp has a temperature of 2 600 K and glows white hot.
The Sun has a surface temperature of 5778 K. The spectra of these sources
>> lamp = blackbody(lambda, 2600);
>> sun = blackbody (lambda, 5778);
>> plot (lambda, [lamp/max (lamp) sun/max (sun)])
are compared in Fig. 10.2b. The tungsten lamp curve is much lower in magnitude,
but has been scaled up (by 56) for readability. The peak of the Sun’s emission is
around 500 nm and it emits a significant amount of power in the visible part of
the spectrum. The peak for the tungsten lamp is at a much longer wavelength
and perversely most of its power falls in the infra-red band which we perceive
as heat not light.
10.1.1 Absorption
The Sun’s spectrum at ground level on the Earth has been measured and tabulated
Fig.10.3.a Modified solar spectrum
at ground level (blue). The dips in >> sun _ground = loadspectrum(lambda, 'solar');
the solar spectrum correspond to >> plot(lambda, sun_ground)
various water absorption bands. . R . .
€0, absorbs radiation in the infra- and is shown in Fig. 10.3a. It differs markedly from that of a blackbody since some
red region, and ozone O, absorbs ~ Wavelengths have been absorbed more than others by the atmosphere. Our eye’s peak
strongly in the ultra-violet region. ~ sensitivity has evolved to be closely aligned to the peak of the spectrum of atmospheri-
The Sun’s blackbody spectrum is cally filtered sunlight.
shown in dashed blue and the re- Transmittance T is the inverse of absorptance, and is the fraction of light passed as
sponse of the human eye is shown . . . . >
) - a function of wavelength and distance traveled. It is described by Beer’s law
in red. b Transmission through 5 m
of water. The longer wavelengths, ad
reds, have been strongly attenuated T=10" (10.2)
16 — ; ; 1 1
-
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where A is the absorption coefficient in units of m~! which is a function of wavelength,
and d is the optical path length. The absorption spectrum A()\) for water is loaded
from tabulated data

>> [A, lambda] = loadspectrum([400:10:700]*1e-9, 'water');

and the transmission through 5 m of water is

>> d = 5;

>> T = 10.7 (-A*d) ;

>> plot (lambda, T);
which is plotted in Fig. 10.3b. We see that the red light is strongly attenuated which
makes the object appear more blue. Differential absorption of wavelengths is a signifi-
cant concern when imaging underwater and we revisit this topic in Sect. 10.3.4.

10.1.2 Reflectance

Surfaces reflect incoming light. The reflection might be specular (as from a mirror-
like surface, see page 337), or Lambertian (diffuse reflection from a matte surface, see
page 309). The fraction of light that is reflected R € [0, 1] is the reflectivity, reflectance
or albedo of the surface and is a function of wavelength. White paper for example has a
reflectance of around 70%. The reflectance spectra of many materials have been mea-

sured and tabulated.” Consider for example the reflectivity of a red house brick From http://speclib.jpl.nasa.gov/
weathered red brick (0412UUUBRK).
>> [R, lambda] = loadspectrum([100:10:10000]*1e-9, 'redbrick');
>> plot (lambda, R);

which is plotted in Fig. 10.4 and shows that it reflects red light more than blue.

10.1.3 Luminance

The light reflected from a surface, its luminance, has a spectrum given by
L(\) = EQ)R(\) Wm ™2 (10.3)

where E is the incident illumination and R is the reflectance. The illuminance of the  Fig.10.4. Reflectance of a weath-

Sun in the visible region is ered red house brick (data from
ASTER, Baldridge et al. 2009).

>> lambda = [400:700]*1e-9; aFull range measured from 300 nm

>> E = loadspectrum(lambda, 'solar'); visible to 10000 nm (infra-red);
b closeup of visible region
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at ground level. The reflectivity of the brick is

>> R =

loadspectrum (lambda,

'redbrick");

and the light reflected from the brick is

> L =E .* R;
>> plot (lambda,

L);

which is shown in Fig. 10.5. It is this spectrum that is interpreted by our eyes as the

color red.

10.2 Color

Color is the general name for all sensations arising from the activity of the
retina of the eye and its attached nervous mechanisms, this activity being,
in nearly every case in the normal individual, a specific response to radiant

energy of certain wavelengths and intensities.
T. L. Troland, Report of Optical Society of America
Committee on Colorimetry 1920-1921

We have described the spectra of light in terms of power as a function of wavelength, but
our own perception of light is in terms of subjective quantities such as brightness and color.
Light that s visible to humans lies in the range of wavelengths from 400 nm (violet) to 700 nm
(red) with the colors blue, green, yellow and orange in between, as shown in Fig. 10.1.

The brightness we associate with a particular wavelengths is given by the lumi-
nosity function with units of lumens per watt. For our daylight (photopic) vision the

This is the photopic response for a light-
adapted eye using the cone photorecep-
tor cells.The dark adapted, or scotopic re-
sponse, using the eye’s monochromatic
rod photoreceptor cells is different, and
peaks at around 510 nm.

>> human =
>> plot (lambda,

Radiometric and photometric quantities. Two quite different sets of
units are used when discussing light: radiometric and photometric.
Radiometric units are used in Sect. 10.1 and are based on quantities
like power which are expressed in familiar SI units such as Watts.

Photometric units are analogs of radiometric units but take
into account the visual sensation in the observer. Luminous pow-
er or luminous flux is the perceived power of a light source and
is measured in lumens (abbreviated to Im) rather than Watts.

luminosity as a function of wavelength has been experimentally determined, tabulated
and forms the basis of the 1931 CIE standard that represents the average human ob-
server.“ The photopic luminosity function is provided by the Toolbox

luminos (lambda) ;
human)

A1 W monochromatic light source at 555 nm, the peak response,
by definition emits a luminous flux of 683 Im. By contrast a 1 W
light source at 800 nm emits a luminous flux of 0 Im - it causes
no visual sensation at all.

A 1 W incandescent lightbulb however produces a perceived
visual sensation of less than 15 Im or a luminous efficiency of
15 1m W~ L. Fluorescent lamps achieve efficiencies up to 100 Im W1
and white LEDs up to 150 Im WL
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and is shown in Fig. 10.7a. Consider two light sources emitting the same power (in
watts) but one has a wavelength of 550 nm (green) and the other has a wavelength of
450 nm (blue). The perceived brightness of these two lights is quite different, in fact
the blue light appears only

>> luminos (450e-9) / luminos (550e-9)

ans =
0.0382
or 3.8% as bright as the green one. The silicon sensors used in digital cameras have
strong sensitivity in the red and infra-red part of the spectrum.”

10.2.1 The Human Eye

Our eyes contain two types of light-sensitive cells as shown in Fig. 10.6. Rod cells are
much more sensitive than cone cells but respond to intensity only and are used at
night. In normal daylight conditions our cone photoreceptors are active and these are
color sensitive. Humans are trichromats and have three types of cones that respond
to different parts of the spectrum. They are referred to as long (L), medium (M) and
short (S) according to the wavelength of their peak response, or more commonly as
red, green and blue. The spectral response of rods and cones has been extensively
studied and the response of human cone cells can be loaded

>> cones = loadspectrum(lambda,
cones)

'cones');
>> plot (lambda,

The LED on an infra-red remote control
can be seen as a bright light in most digi-
tal cameras — try this with your mobile
phone camera and TV remote. Some se-
curity cameras provide infra-red scene
illumination for covert night time mon-
itoring. Note that some cameras are fit-
ted with infra-red filters to prevent the
sensor becoming saturated by ambi-
ent infra-red radiation.

Fig. 10.6.

A colored scanning electron
micrograph of rod cells (white)
and cone cells (yellow) in the
human eye. The cells diameters
are in the range 0.5-4 um. The
cells contain different types of
light-sensitive opsin proteins.
Surprisingly the rods and cones
are not on the surface of the ret-
ina, they are behind that surface
which is a network of nerves and
blood vessels

Opsins are the photoreceptor molecules used in the visual systems of all animals. They belong to
the class of G protein-coupled receptors (GPCRs) and comprise seven helices that pass through the
cell’s membrane. They change shape in response to particular molecules outside the cell and initi-
ate a cascade of chemical signaling events inside the cell that results in a change in cell function.
Opsins contain a chromophore, a light-sensitive molecule called retinal derived from vitamin A,
that stretches across the opsin. When retinal absorbs a photon its changes its shape which deforms
the opsin and activates the cell’s signalling pathway. The basis of all vision is a fortuitous genetic
mutation 700 million years ago that made a chemical sensing receptor light sensitive. There are
many opsin variants across the animal kingdom - our rod cells contain rhodopsin and our cone
cells contain photopsins. The American biochemist George Wald (1906-1997) received the 1967
Nobel Prize in Medicine for his discovery of retinal and characterizing the spectral absorbance of
photopsins. (Image by Dpyran from Wikipedia, the chromophore is indicated by the arrow)
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The trichromatic theory of color ure on left shows how beams of red, green and blue light mix.
vision suggests that our eyes have Helmholtz (1821-1894) was a prolific German physician and physi-
three discrete types of receptors cist. He invented the opthalmascope for examing the retina in
that when stimulated produce the 1851, and in 1856 he published the “Handbuch der physiologischen
sensations of red, green and blue, Optik” (Handbook of Physiological Optics) which contained theo-
and that all color sensations are ries and experimental data relating to depth perception, color vi-
“psychological mixes” of these sion, and motion perception. Maxwell (1831-1879) was a Scottish
fundamental colors. It was first scientist best known for his electro-magnetic equations, but who
proposed by the English scien- also extensively studied color perception, color-blindness, and
tist Thomas Young (1773-1829) color theory. His 1860 paper “On the Theory of Colour Vision”
in 1802 but made little impact. It was later championed by won a Rumford medal, and in 1861 he demonstrated color pho-
Hermann von Helmholtz and James Clerk Maxwell. The fig- tography in a Royal Institution lecture.
The opponent color theory holds that colors are perceived with re-  strongadvocate in Karl Ewald Hering (1834-1918), a German physi-
spect to two axes: red-green and blue-yellow. One clue comes from  ologist who also studied binocular perception and eye movements.
color after-images - staring at a red square and then a white surface ~ He advocated opponent color theory over trichromatic theory and
gives rise to a green after-image. Another clue comes from language  had acrimonious debates with Helmholtz on the topic.
- we combine color words to describe mixtures, for example redish- In fact both theories hold. Our eyes have three types of col-
blue, but we never describe a reddish-green or a blueish-yellow. The  or sensing cells but the early processing in the retinal ganglion
theory was first mooted by the German writer Johann Wolfgangvon  layer appears to convert these signals into an opponent color
Goethe (1749-1832) in his 1810 “Theory of Colours” butlaterhada  representation.
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Fig.10.7. a Luminosity curve for
the standard human observer.
The peak response is 683 Im W1
at 555 nm (green). b Spectral re-
sponse of human cones (normal-
ized)

The different spectral characteristics
are due to the different photopsins in
the cone cell.

More correctly the output is proportional
to the total number of photons captured
by the photosite since the last time it was
read. See page 364.

where cones has three columns corresponding to the L, M and S cone responses and
each row corresponds to the wavelength in 1ambda. The spectral response of the cones
L(A), M(\) and S(\) are shown in Fig. 10.7b.»

The retina of the human eye has a central or foveal region which is only 0.6 mm in
diameter, has a 5 degree field of view and contains most of the 6 million cone cells:
65% sense red, 33% sense green and only 2% sense blue. We unconsciously scan our
high-resolution fovea over the world to build a large-scale mental image of our sur-
rounds. In addition there are 120 million rod cells, which are also motion sensitive,
distributed over the retina.

The sensor in a digital camera is analogous to the retina, but instead of rod and cone
cells there is a regular array of light-sensitive photosites (or pixels) on a silicon chip.
Each photosite is of the order 1-10 pm square and outputs a signal proportional to the
intensity of the light falling over its area. For a color camera the photosites are covered
by color filters which pass either red, green or blue light to the photosites. The spectral
response of the filters is the functional equivalent of the cones’ response M(\) shown
in Fig. 10.7b. A very common arrangement of color filters is the Bayer pattern shown
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in Fig. 10.8. It uses a regular 2 x 2 photosite pattern comprising two green filters, one
red and one blue.”

10.2.2 Measuring Color

The path taken by the light entering the eye shown in Fig. 10.9a. The spectrum of the
luminance L(A) is a function of the light source and the reflectance of the object as
given by Eq. 10.3. The response from each of the three cones is

p= [ LOOM,(\)dX
v = [ LM\
8= L LM, (\)dA

(10.4)

where M, (), Mg()\) and M () are the spectral response of the red, green and blue
cones respectively as shown in Fig. 10.7b. The response is a 3-vector (p, v, 3) which
is known as a tristimulus.

For the case of the red brick the integrals correspond to the areas of the solid color
regions in Fig. 10.9b. We can compute the tristimulus by approximating the integrals
of Eq. 10.4 as a summation with d\ =1 nm
(L*ones (1, 3))

>> sum ( .* cones * le-9)

ans =

16.3571 10.0665 2.8225

The dominant response is from the L cone, which is unsurprising since we know that
the brick is red.

An arbitrary continuous spectrum is an infinite-dimensional vector and cannot
be uniquely represented by just 3 parameters but it is clearly sufficient for our spe-
cies and allowed us to thrive in a variety of natural environments. A consequence
of this choice of representation is that many different spectra will produce the same

Lightmeters, illuminance and luminance. A photographiclightme-
ter measures luminous flux which has units of Im m 2 or lux (Ix).
The luminous intensity I of a point light source is the luminous
flux per unit solid angle measured in Im sr~! or candelas (cd). The
illuminance E falling normally onto a surface is

E= % Ix
where d is the distance between source and the surface. Out-
door illuminance on a bright sunny day is approximately
10000 Ix. Office lighting levels are typically around 1000 Ix
and moonlight is 0.1 Ix.

The luminance or brightness of a surface is

L, = E;cos0 nt

which has units of cd m~2 or nit (nt), and where E; is the incident
illuminance at an angle 6 to the surface normal.

visual stimulus and these are
referred to as metamers. More
important is the corollary - an
arbitrary visual stimulus can be
generated by a mixture of just
three monochromatic stimuli.
These are the three primary
colors we learned about as chil-
dren.™ There is no unique set
of primaries - any three will do
so long as none of them can be
matched by a combination of
the others. The CIE has defined
a set of monochromatic prima-
ries and their wavelengths are
given in Table 10.1.

Fig.10.8.

Bayer filtering. The grey blocks
represent the array of light-
sensitive silicon photosites
over which is an array of red,
green and blue filters. Invented
by Bryce E. Bayer of Eastman
Kodak, U.S. Patent 3,971,065.

Each pixel therefore cannot provide in-
dependent measurements of red, green
and blue but it can be estimated. For ex-
ample, the amount of red at a blue sen-
sitive pixel is obtained by interpolation
from its red filtered neighbors. More ex-
pensive “3 CCD" cameras can make in-
dependent measurements at each pixel
since the light is split by a set of prisms,
filtered and presented to one CCD array
for each primary color. Digital camera
raw image files contain the actual out-
puts of the Bayer-filtered photosites.
33 or 4 x 4 arrays of filters allow
many interesting camera designs.Using
more than 3 different color filters leads
to a multispectral camera with better
color resolution, a range of neutral den-
sity (grey) filters leads to high dynamic
range camera, or these various filters can
be mixed to give a camera with better
dynamic range and color resolution.

Primary colors are not a fundamental
property of light — they are a fundamen-
tal property of the observer. There are
three primary colors only because we,
as trichromats, have three types of cones.
Birds would have four primary colors and
dogs would have two.

Table 10.1.The CIE 1976 primaries
(Commission Internationale de
L’Eclairage 1987) are spectral col-
ors corresponding to the emission
lines in a mercury vapor lamp

red green blue

A(hm) 700.0 546.1 4358



10.2 - Color 295
Color blindness, or color deficiency, is the inability to perceive dif- ~ The English scientist John Dalton
ferences between some of the colors that others can distinguish. ~ (1766-1844) confused scarlet
Protanopia, deuteranopia, tritanopia refer to the absence of the L, ~ with green and pink with blue.
M and S cones respectively. More common conditions are prot- ~ He hypothesized that the vitre-
anomaly, deuteranomaly and tritanomaly where the cone pig-  ous humor in his eyes was tinted
ments are mutated and the peak response frequency changed.  blue and instructed that his eyes
It is most commonly a genetic condition since the red and green  be examined after his death. This
photopsins are coded in the X chromosome. The most common  revealed that the humors were
form (occurring in 6% of males including the author) is deuter-  perfectly clear but DNA recently
anomaly where the M-cone’s response is shifted toward the red  extracted from his preserved eye
end of the spectrum resulting in reduced sensitivity to greensand ~ showed that he was a deuteran-
poor discrimination of hues in the red, orange, yellow and green  ope. Color blindness was once
region of the spectrum. referred to as Daltonism.
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£ e
£
response £ 05
.4miwuwt M (l) =
350 400 450 500 550 600 650 700 750
g 03 T
S 02
£
illuminance luminance € 0.1
E(1) L(%) = B
Fig.10.9. 350 400 450 500 550 600 650 700 750
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b Within the eye three filters are 201
applied and the total output of % 0.05
these filters, the areas shown in Y0 350 400 450 500 550 600 650 700 750
solid color, are the tristimulus value 5 b Wavelength (nm)

The units are chosen such that equal
quantities of the primaries appear to
be white.

10.2.3  Reproducing Colors

A computer or television display is able to produce a variable amount of each of three
primaries at every pixel. The primaries for a cathode ray tube (CRT) are created by
exciting phosphors on the back of the screen with a controlled electron beam. For a
liquid crystal display (LCD) the colors are obtained by color filtering and attenuating
white light emitted by the backlight, and an OLED display comprises a stack of red,
green and blue LEDs at each pixel. The important problem is to determine how much
of each primary is required to match a given tristimulus.

We start by considering a monochromatic stimulus of wavelength A\ which is de-
fined as

(L, ifA= A
LV = { 0 otherwise

The response of the cones to this stimulus is given by Eq. 10.4 but because L(-) is
an impulse we can drop the integral to obtain the tristimulus

P = L)\Mr()‘S)
v = LM,(Xs) (10.5)
8 = LMy (Xs)

Consider next three monochromatic primary light sources denoted R, G and B with
wavelengths A, \; and ), and intensities R, G and B respectively. The tristimulus
from these light sources is
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The notion of primary colors is very old, but their number (anything from two to six) and their
color was the subject of much debate. Much of the confusion was due to there being additive
primaries (red, green and blue) that are used when mixing lights, and subtractive primaries
(cyan, magenta, yellow) used when mixing paints or inks. Whether or not black and white were
primary colors was also debated.

p = RM,(\,) + GM,(A) + BM, (),)
7 = RMy(\,) + GM, (Ng) + BM (X,) (10.6)

B3 = RMy () + GMy (Ag) + BM,, (Ay)

For the perceived color of these three light sources combined to match that of the
monochromatic stimulus the two tristimuli must be equal. We equate Eq. 10.5 and
Eq. 10.6 and write compactly in matrix form as

Mr()\s) Mr()‘r> Mr(>‘g> Mr()‘b> R
LMy (As)| = | Mg(\) Mg(N) M (N)|G
M) | My (n) My(n) My (3) B

and then solve for the required amounts of primary colors
R
G|=Ly|My(\) M,(Ng) M(N)| | M) (10.7)
B

This tristimulus has a spectrum comprising three impulses (one per primary), yet
has the same visual appearance as the original continuous spectrum - this is the basis
of trichromatic matching. The 3 x 3 matrix is constant, but depends upon the spectral
response of the cones to the chosen primaries (A, Ay, Ap).

The right-hand side of Eq. 10.7 is simply a function of A; which we can write in an
even more compact form

7(As
(1; = gg)\sg (10.8)
B (x)
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Fig. 10.10.

The 1931 color matching func-
tions for the standard observer,
based on the CIE 1976 standard
primaries
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Color matching experiments are performed using a light source
comprising three adjustable lamps that correspond to the prima-
ry colors and whose intensity can be individually adjusted. The
lights are mixed and diffused and compared to some test color.
In color matching notation the primaries, the lamps, are denoted
by R, G and B, and their intensities are R, G and B respectively.
The three lamp intensities are adjusted by a human subject until
they appear to match the test color. This is denoted

C = RR + GG + BB

which is read as the visual stimulus C (the test color) is matched
by, or looks the same as, a mixture of the three primaries with

brightness R, G and B. The notation RR can be considered as the
lamp R at intensity R.

Experiments show that color matching obeys the algebraic
rules of additivity and linearity which is known as Grassmann’s
laws. For example two light stimuli C; and C,

C,=RR+GG+ BB
C,=RR+G,G+ BB

when mixed will match

C,+C, = (R + R)R+(G, +G,)G+ (B, + B,)B

where 7(\), g(A), b(\) are known as color matching functions. These functions have
been empirically determined from human test subjects and tabulated for the standard
CIE primaries listed in Table 10.1. They can be loaded using the function cmfrgb

>> lambda =

[400:700]*1e-9;

>> cmf = cmfrgb(lambda) ;

>> plot (lambda,

cmf) ;

and are shown graphically in Fig. 10.10. Each curve indicates how much of the
corresponding primary is required to match the monochromatic light of wave-

length A.

For example to create the sensation of light at 500 nm (green) we would need

>> green = cmfrgb (500e-9)

green =
-0.0714

0.0854

0.0478

Surprisingly this requires a significant negative amount of the red primary and this is
problematic since a light source cannot have a negative luminance.

We reconcile this by adding some white light (R = G = B = w, see Sect. 10.2.8) so
that the tristimulus values are all positive. For instance

>> white = -min(green) * [1 1 1]
white =
0.0714 0.0714 0.0714

>> feasible green =

feasible green =

0 0.1567

green + white

0.1191

If we looked at this color side-by-side with the desired 500 nm green we would say that
the generated color had the correct hue but was not as saturated.

Saturation refers to the purity of the color. Spectral colors are fully saturated but
become less saturated (more pastel) as increasing amounts of white is added. In this
case we have mixed in a stimulus of light (7%) grey.

This leads to a very important point about color reproduction - it is not possible to
reproduce every possible color using just three primaries. This makes intuitive sense
since a color is properly represented as an infinite-dimensional spectral function and
a 3-vector can only approximate it. To understand this more fully we need to consid-

er chromaticity spaces.

The Toolbox function cmfrgb can also compute the CIE tristimulus for an arbi-
trary spectrum. The luminance spectrum of the redbrick illuminated by sunlight at
ground level was computed on page 291 and its tristimulus is

>> RGB brick = cmfrgb(lambda, L)

RGB brick =
0.0155

0.0066

0.0031

These are the respective amounts of the three CIE primaries that are perceived - by
the average human - as having the same color as the original brick under those light-

ing conditions.
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10.2.4  Chromaticity Space

The tristimulus values describe color as well as brightness. Relative tristimulus values
are obtained by normalizing the tristimulus values

. R B G . B
R+G+B’g R+G+B R+G+B

(10.9)

which results in chromaticity coordinates r, gand b that are invariant to overall bright-
ness. By definition 7 + g + b =1 so one coordinate is redundant and typically only r
and g are considered. Since the effect of intensity has been eliminated the 2-dimen-
sional quantity (r, g) represents color.

We can plot the locus of spectral colors, the colors of the rainbow, on the chroma-
ticity diagram using a variant of the color matching functions

>> [r,g] = lambda2rg( [400:700]*1e-9 );

>> plot(r, g)

>> rg_addticks
which results in the horseshoe-shaped curve shown in Fig. 10.11. The Toolbox func-
tion lambda2rg computes the color matching function Fig. 10.10 for the specified
wavelength and then converts the tristimulus value to chromaticity coordinates us-
ing Eq. 10.9.

The CIE primaries listed in Table 10.1 can be plotted as well

>> primaries = lambda2rg( cie primaries() );
>> plot (primaries(:,1), primaries(:,2), 'o'")

and are shown as circles in Fig. 10.11.
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Fig.10.11.

The spectral locus on the r-g chro-
maticity plane. Monochromatic
stimuli lie on the locus and the
wavelengths (in nm) are marked.
The straight line joining the ex-
tremities is the purple boundary
and is the locus of saturated pur-
ples. All possible colors lie on, or
within, this locus. The CIE stan-
dard primary colors are marked
and the dashed line indicates the
gamut of colors that can be rep-
resented by these primaries

Colorimetric standards. Colorimetry is a complex topic and stan-
dards are very important. Two organizations, CIE and ITU, play
a leading role in this area.

The Commission Internationale de ’Eclairage (CIE) or Inter-
national Commission on Illumination was founded in 1913 and is
an independent nonprofit organization that is devoted to world-
wide cooperation and the exchange of information on all matters
relating to the science and art of light and lighting, color and vi-
sion, and image technology. The CIE’s eighth session was held
at Cambridge, UK, in 1931 and established international agree-
ment on colorimetric specifications and formalized the XYZ color
space. The CIE is recognized by ISO as an international standard-

ization body. See http://www.cie.co.at for more information and
CIE datasets.

The International Telecommunication Union (ITU) is an agency
of the United Nations and was established to standardize and reg-
ulate international radio and telecommunications. It was founded
as the International Telegraph Union in Paris on 17 May 1865. The
International Radio Consultative Committee or CCIR (Comité
Consultatif International des Radiocommunications) became,
in 1992, the Radiocommunication Bureau of ITU or ITU-R. It
publishes standards and recommendations relevant to colorim-
etry in its BT series (broadcasting service television). See http://
www.itu.int for more detail.
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We could increase the gamut by choos-
ing different primaries, perhaps using a
different green primary would make the
gamut larger, but there is the practical
constraint of finding a light source (LED
or phosphor) that can efficiently produce
that color.

Luminance here has different meaning to
thatdefinedin Sect.10.1.3and canbe con-
sidered synonymous to brightness here.

The units are chosen such that equal
quantities of the primaries are required to
match the equal-energy white stimulus.

Fig.10.12.

Chromaticity diagram showing
the color gamut for nonstan-
dard primaries at 600, 555 and
450 nm. 500 nm green (star),
equal-energy white (circle), a
feasible green (square) and a
displayable green (triangle).
The locus of different saturated
greens in shown as a green line

Grassmann’s center of gravity law states that a mixture of two colors lies along a line
between those two colors on the chromaticity plane. A mixture of N colors lies within
a region bounded by those colors. Considered with respect to Fig. 10.11 this has sig-
nificant implications. Firstly, since all color stimuli are combinations of spectral stim-
uli all real color stimuli must lie on or inside the spectral locus. Secondly, any colors
we create from mixing the primaries can only lie within the triangle bounded by the
primaries - the color gamut. It is clear from Fig. 10.11 that the CIE primaries define
only a small subset of all possible colors — within the dashed triangle. Very many real
colors cannot be created using these primaries, in particular the colors of the rainbow
which lie on the spectral locus from 460-545 nm. In fact no matter where the prima-
ries are located, not all possible colors can be produced. In geometric terms there are
no three points within the gamut that form a triangle that includes the entire gamut.
Thirdly, we observe that much of the locus requires a negative amount of the red pri-
mary and cannot be represented.

We revisit the problem from page 297 concerned with displaying 500 nm green and
Figure 10.12 shows the chromaticity of the spectral green color

>> green_cc = lambdaZrg(500e-9)

green cc =

-1.1558
>> plot2(green cc,

1.3823

s')

as a star-shaped marker. White is by definition R = G = B = 1 and its chromaticity

>> white cc = tristim2cc([1 1 1])
white cc =
0.3333 0.3333

>> plot2(white cc, 'o')

is plotted as a hollow circle. According to Grassmann’s law the mixture of our de-
sired green and white must lie along the indicated green line. The chromaticity
of the feasible green computed earlier is indicated by a square, but is outside the
displayable gamut of the nonstandard primaries used in this example. The least
saturated displayable green lies at the intersection of the green line and the gamut
boundary and is indicated by the triangular marker.

Earlier we said that there are no three points within the gamut that form a
triangle that includes the entire gamut. The CIE therefore proposed, in 1931, a
system of imaginary nonphysical primaries known as X, Y and Z that totally en-
close the spectral locus of Fig. 10.11. X and Z have zero luminance - the lumi-
nance is contributed entirely by Y”. All real colors can thus be matched by posi-
tive amounts of these three primaries.* The corresponding tristimulus values
are denoted (X, Y, Z).

-0.5
-1.5 -1 -0.5 0 0.5 1 15
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The XYZ color matching functions defined by the CIE

>> cmf = cmfxyz (lambda) ;
>> plot (lambda, cmf);

are shown graphically in Fig. 10.13a. This shows the amount of each CIE XYZ prima-
ry that is required to match a spectral color and we note that these curves are never
negative. The corresponding chromaticity coordinates are

X Y zZ

Y Ly = 2= (10.10)
X+Y+2Z X+Y+2Z X+Y+2Z

and once again x 4+ y + z =1 so only two parameters are required - by convention
y is plotted against x in a chromaticity diagram. The spectral locus can be plotted in
a similar way as before

>> [x,y] = lambdaZ2xy (lambda) ;
>> plot(x, y);

A more sophisticated plot, showing the colors within the spectral locus, can be created
>> showcolorspace ('xy"')

and is shown” in Fig. 10.13b. These coordinates are a standard way to represent color
for graphics, printing and other purposes. For example the chromaticity coordinates
of peak green (550 nm) is

>> lambda2xy (550e-9)

ans =

0.3016 0.6923

and the chromaticity coordinates of a standard tungsten illuminant at 2 600 K is

>> lamp = blackbody (lambda, 2600);
>> lambda2xy (lambda, lamp)
ans =

0.4677 0.4127

10.2.5 Color Names

Chromaticity coordinates provide a quantitative way to describe and compare colors,
however humans refer to colors by name. Many computer operating systems contain
a database or file” that maps human understood names of colors to their correspond-

02 03 04 05

06 07 038
X

Fig.10.13. a The color matching
functions for the standard observ-
er, based on the imaginary prima-
ries X, Y (intensity) and Z are tab-
ulated by the CIE. b Colors on the
xy-chromaticity plane

The colors depicted in figures such as
Fig.10.1 and 10.13b can only approxi-
mate the true color due to the gamut
limitation of the technology you use to
view the book: the inks used to print
the page or your computer’s display.
No display technology hasa gamut large
enough to present an accurate represen-
tation of the chromaticity at every point.

The file is named /etc/rgb. txt
on most Unix-based systems.
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ing (R, G, B) tristimulus values. The Toolbox provides a
copy of a such a file and an interface function color-
name. For example, we can query a color name that in-

Colors are important to hu-
man beings and there are over
4000 color-related words in

the English language. The an- cludes a particular substring

cient Greeks only had words >> colorname (' ?burnt ')

for black, white, red and yel- ans =

lowish-green. All languages 'burntsienna’ 'burntumber'

have words for black and white,

and red is the next most like- The RGB tristimulus value of burnt Sienna is

ly color word to appear in a >> colorname ('burntsienna')
language followed by yellow, ans =
green, blue and so on. We also associate colors with emotions, 0.5412 0.2118 0.0588
for example red is angry and blue is sad but this varies across with the values normalized to the interval [0, 1]. We could

cultures. In Asia orange is generally a positive color where-
as in the west it is the color of road hazards and bulldozers.

also request xy-chromaticity coordinates

Chemistry and technology has made a huge number of colors >> bs = colorname ('burntsienna’, 'xy')
available to us in the last 700 years yet with this choice comes bs =

confusion about color naming - people may not necessarily 0.5568 0.3783

agree on the linguistic tag to assign to a particular color. (Word With reference to Fig. 10.13, we see that this point is in

cloud by tagxedo.com using data from Steinvall 2002)

L"isanonlinear function of relative lumi-
nance and approximates the nonlinear
response of the human eye. Value is given
by V=% (minR, G, B+ maxR, G, B).

the red-brown part of the colorspace and not too far from
the color of chocolate
>> colorname ('chocolate', 'xy')
ans =
0.5318 0.3988
We can also solve the inverse problem. Given a tristimulus value

>> colorname ([0.2 0.3 0.4])
ans =
darkslateblue

we obtain the name of the closest, in Euclidean terms, color.

10.2.6  Other Color and Chromaticity Spaces

A color space is a 3-dimensional space that contains all possible tristimulus values - all col-
ors and all levels of brightness. If we think of this in terms of coordinate frames as discussed
in Sect. 2.2 then there are an infinite number of choices of Cartesian frame with which to
define colors. We have already discussed two different Cartesian color spaces: RGB and
XYZ. However we could also use polar, spherical or hybrid coordinate systems.

The 2-dimensional chromaticity spaces r-g or x-y do not account for brightness — we
normalized it out in Eq. 10.9 and Eq. 10.10. Brightness, frequently referred to as lumi-
nance in this context, is denoted by Y and the definition from ITU Recommendation 709

Y’ = 0.2126R + 0.7152G + 0.0722B (10.11)

is a weighted sum of the RGB-tristimulus values and reflects the eye’s high sensitivity
to green and low sensitivity to blue. Chromaticity plus luminance leads to 3-dimen-
sional color spaces such as rgY or xyY.

Humans seem to more naturally consider chromaticity in terms of two character-
istics: hue and saturation. Hue is the dominant color, the closest spectral color, and
saturation refers to the purity, or absence of mixed white. Stimuli on the spectral lo-
cus are completely saturated while those closer to its centroid are less saturated. The
concepts of hue and saturation are illustrated in geometric terms in Fig. 10.14.

The color spaces that we have discussed lack easy interpretation in terms of hue
and saturation so alternative color spaces have been proposed. The two most com-
monly known are HSV and CIE L*C*h. In color-space notation H is hue, S is satura-
tion which is also known as C or chroma. The intensity dimension is named either V
for value or L for lightness but they are computed quite differently. <
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The function colorspace can be used to convert between different color spac-
es. For example the hue, saturation and intensity for each of pure red, green and blue

RGB tristimulus value” is This function assumes that RGB values
>> colorspace ('RGB->HSV', [1, 0, 0]) are gamma enmdeq (y=0.45), see
ans = Sect.10.3.6. The particular numerical

0 1 1 values chosen here are invariant under
>> colorspace ('RGB->HSV', [0, 1, 0]) gamma encoding. The builtin MATLAB
ans = function rgb2hsv does not assume

120 1 1 gamma encoded values and represents
>> colorspace ('RGB->HSV', [0, 0, 1]) hue in different units.
ans =

240 1 1

In each case the saturation is 1, the colors are pure, and the intensity is 1. As shown in
Fig. 10.14 hue is represented as an angle in the range [0, 360)° with red at 0° increas-
ing through the spectral colors associated with decreasing wavelength (orange, yellow,
green, blue, violet). If we reduce the amount of the green primary

>> colorspace ('RGB->HSV', [0, 0.5, 0])

ans =
120.0000 1.0000 0.5000

we see that intensity drops but hue and saturation are unchanged.” For a medium  Forverydark colors numerical problems

grey lead to imprecise hue and saturation co-
ordinates.
>> colorspace ('RGB->HSV', [0.4, 0.4, 0.4])
ans =
240.0000 0 0.4000

the saturation is zero, it is only a mixture of white, and the hue has no meaning since
there is no color. If we add the green to the grey

>> colorspace ('RGB->HSV', [0, 0.5, 0] + [0.4, 0.4, 0.4])

ans =

120.0000 0.5556 0.9000

we have the green hue and a medium saturation value.

The colorspace function can also be applied to a color image

>> flowers = iread('flowers4.png', 'double');

>> about flowers

flowers [double] : 426x640x3 (6.5 MB)
which is shown in Fig. 10.15a and comprises several different colored flowers and
background greenery. The image flowers has 3 dimensions and the third is the color
plane that selects the red, green or blue pixels.
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Fig. 10.15. Flower scene. a Orig- To convert the image to hue, saturation and value is simply
inal color image; b hue image;
c saturation image. Note that the
white flowers have low saturation
(they appear dark); d intensity or
monochrome image; e a* image ~ and the result is another 3-dimensional matrix but this time the color planes represent

(green to red); fb* image (blueto  hue, saturation and value. We can display these planes

>> hsv = colorspace ('RGB->HSV', flowers);
>> about hsv
hsv [double] : 426x640x3 (6.5 MB)

yellow) >> idisp( hsv(:,:,1) )
>> idisp( hsv(:,:,2) )
>> idisp( hsv(:,:,3) )

as images which are shown in Fig. 10.15b, c and d respectively. In the hue image dark
represents red and bright white represents violet. The red flowers appear as both a
very small hue angle (dark) and a very large angle close to 360°. The yellow flowers and
the green background can be seen as distinct hue values. The saturation image shows
that the red and yellow flowers are highly saturated, while the green leaves and stems
are less saturated. The white flowers have very low saturation, since by definition the
color white contains a lot of white.

A limitation of many color spaces is that the perceived color difference between two
points is not directly related to their Euclidean distance. In some parts of the chroma-
ticity space two distant points might appear quite similar, whereas in another region
two close points might appear quite different. This has led to the development of per-
ceptually uniform color spaces such as the CIE L*u*v* (CIELUV) and L*a*b* spaces.

The colorspace function can convert between thirteen different color spaces
including L*a*b*, L*u*v*, YUV and YC;Cy. To convert this image to L*a*b* color
space follows the same pattern

>> Lab = colorspace ('RGB->Lab', flowers);
>> about Lab

Lab [double] : 426x640x3 (6.5 MB)
Relative to a white lluminant,which this ~ which again results in an image with 3 dimensions. The chromaticity* is encoded in
function assumes as CIEDgs withY = 1. the a* and b* planes.
a*b* are not invariant to overall lumi-
nance. >> idisp( Lab(:,:,2) )

>> idisp( Lab(:,:,3) )

and these are shown in Fig. 10.15e and f respectively. L*a*b* is an opponent color space
where a* spans colors from green (black) to red (white) while b* spans blue (black) to
yellow (white), with white at the origin where a* =b* = 0.
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10.2.7  Transforming between Different Primaries

The CIE standards were defined in 1931 which was well before the introduction of
color television in the 1950s. The CIE primaries in Table 10.1 are based on the emis-
sion lines of a mercury lamp which are highly repeatable and suitable for laboratory
use. Early television receivers used CRT monitors where the primary colors were gen-
erated by phosphors that emit light when bombarded by electrons. The phosphors
used, and their colors has varied over the years in pursuit of brighter displays. An
international agreement, ITU recommendation 709, defines the primaries for high
definition television (HDTV) and these are listed in Table 10.2.

This raises the problem of converting tristimulus values from one sets of pri-
maries to another. Consider for example that we wish to display an image, where
the tristimulus values are with respect to CIE primaries, on a screen that uses ITU
Rec. 709 primaries. Using the notation we introduced earlier we define two sets of
primaries: P;, P,, P, with tristimulus values (S;, S,, S;), and Pj, P}, P} with tristimu-
lus values (S, S5, S5). We can always express one set of primaries as a linear com-
bination” of the other

!

P, a4y 4z Pl/

Pl=|a, ay ay|P (10.12)
!/

Py a3 Gy; ds3)| Py

and since the two tristimuli match then

P/ P,
(S S5 SHP|=(S S, S5)|P, (10.13)
P; P,

Substituting Eq. 10.12, equating tristimulus values and then transposing we
obtain

/ T

S ay Ay Ay (S S

S |=la, ay, a;||S,|=C|S, (10.14)
Sé A dy azp) |S; S

which is simply a linear transformation of tristimulus values.

Consider the concrete problem of transforming from CIE primaries to XYZ
tristimulus values. We know from Table 10.2 the CIE primaries in terms of XYZ
primaries

>> C = [ 0.7347, 0.2653, 0; 0.2738, 0.7174, 0.0088; 0.1666,

0.0089, 0.8245]"

C =

0.7347 0.2738 0.1666

0.2653 0.7174 0.0089
0 0.0088 0.8245

which is exactly the first three columns of Table 10.2. The transform is therefore

N =X
|
o
WX

Recall from page 299 that luminance is contributed entirely by the Y primary.
It is common to apply the constraint that unity R, G, B values result in unity lumi-
nance Y and a white with a specified chromaticity. We will choose Dy; white whose

The coefficients can be negative so the
new primaries do not have to lie within
the gamut of the old primaries.
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Table 10.2.

xyz-chromaticity of standard
primaries and whites. The CIE
primaries of Table 10.1 and the
more recent ITU recommen-
dation 709 primaries defined
for HDTV. Dg; is the white of a
blackbody radiator at 6500 K,
and E is equal-energy white

Reie Gee Bee R709 Gyog B39 Des E
X 0.7347 0.2738 0.1666 0.640 0.300 0.150 03127 0.3333
y 0.2653 0.7174 0.0089 0.330 0.600 0.060 0.3290 03333
z 0.0000 0.0088 0.8245 0.030 0.100 0.790 0.3582 0.3333

chromaticity is given in Table 10.2 and which we will denote (x,, y,, z,). We can
now write

L [® Je 0 0)1
—|y«|=C|0 J; 01
Iwlz, 0 0 Jpl1

where the left-hand side has Y = 1 and we have introduced a diagonal matrix J which
scales the luminance of the primaries. We can solve for the elements of J

]R Xw 1
Jo|=Cyw|—
]B z,, Yw

Substituting real values we obtain
>> J = inv(C) * [0.3127 0.3290 0.3582]' * (1/0.3290)
J =
0.5609
1.1703
1.3080
>> C * diag(J)
ans =
0.4121 0.3204 0.2179
0.1488 0.8395 0.0116
0 0.0103 1.0785

The middle row of this matrix leads to the luminance relationship
Y = 0.1488R + 0.8395G + 0.0116B

which is similar to Eq. 10.11. The small variation is due to the different primaries used
- CIE in this case versus Rec. 709 for Eq. 10.11.
The RGB tristimulus value of the redbrick was computed earlier and we can deter-
mine its XYZ tristimulus
>> XYZ brick = C * diag(J) * RGB brick';
ans =
0.0092

0.0079
0.0034

which we convert to chromaticity coordinates by Eq. 10.10
>> tristim2cc (XYZ brick')
xybrick =
0.4483 0.3859
Referring to Fig. 10.13b we see that this xy-chromaticity lies in the red region and is
named

>> colorname (ans, 'xy')
ans =
sandybrown

which is plausible for a “weathered red brick”.



306

Chapter 10 - Light and Color

10.2.8 What Is White?

In the previous section we touched on the subject of white. White is both the absence of col-
or and also the sum of all colors. One definition of white is standard daylight which is taken
as the mid-day Sun in Western/Northern Europe which has been tabulated by the CIE as
illuminant Dg;. It can be closely approximated by a blackbody radiator at 6 500 K

>> d65 = blackbody (lambda, 6500);

>> lambda2xy (lambda, dé65)

ans =

0.3136 0.3243

which we see is close to the Dg; chromaticity given in Table 10.2.

Another definition is based on white light being an equal mixture of all spectral col-
ors. This is represented by a uniform spectrum

>> ee = ones(size (lambda)) ;

which is also known as the equal-energy stimulus and has chromaticity

>> lambda2xy (lambda, ee)
ans =
0.3334 0.3340

which is close to the defined value of (%, 13).

103 Advanced Topics

Color is a large and complex subject, and in this section we will briefly introduce a few
important remaining topics. Color temperature is a common way to describe the spec-
trum of an illuminant, and the effect of illumination color on the apparent color of an
object is the color constancy problem which is very real for a robot using color cues in
an environment with natural lighting. White balancing is one way to overcome this.
Another source of color change, in media such as water, is the absorption of certain
wavelengths. Most cameras actually implement a nonlinear relationship, called gamma
correction, between actual scene luminance and the output tristimulus values. Finally
we look at a more realistic model of surface reflection which has both specular and dif-
fuse components, each with different spectral characteristics.

10.3.1 Color Temperature

Photographers often refer to the color temperature of a light source - the temperature of a
black body whose spectrum according to Eq. 10.1 is most similar to that of the light source.
The color temperature of a number of common lighting conditions are listed in Table 10.3. We
describe low-color-temperature illumination as warm - it appears reddy orange to us. High-
color-temperature is more harsh - it appears as brilliant white perhaps with a tinge of blue.

Light source Color temperature (K)
Candle light 1900

Dawn/dusk sky 2000

40 W tungsten lamp 2600

100 W tungsten lamp 2850

Tungsten halogen lamp 3200

Direct sunlight 5800

Overcast sky 6000- 7000
Standard daylight (sun + blue sky) 6500

Hazy sky 8000

Clear blue sky 10000 - 30000

Table 10.3.
Color temperatures of some
common light sources
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Scene luminance is the product of illuminance and reflectance but reflectance is key to scene understand-
ing since it can be used as a proxy for the type of material. Illuminance can vary in intensity and color
across the scene and this complicates image understanding. Unfortunately separating luminance into
illuminance and reflectance is an ill-posed problem yet humans are able to do this very well as the illu-
sion to the right illustrates — the squares labeled A and B have the same grey level.

The American inventor and founder of Polaroid Corporation Edward Land (1909-1991) proposed the ret-
inex theory (retinex = retina + cortex) to explain how the human visual system factorizes reflectance from
luminance. (Checker shadow illusion courtesy of Edward H. Adelson, http://persci.mit.edu/gallery)

10.3.2 Color Constancy

Studies show that human perception of what is white is adaptive and has a remarkable

ability to tune out the effect of scene illumination so that white objects always appear to
Weadaptour perception of colorsothat  be white. ¥ For example at night under a yellowish tungsten lamp the pages of a book still
the integral, or average, over the entire  3hear white to us, but a photograph of that scene viewed later under different lighting
sceneis grey.This works well overacolor ¢ gitjons will look yellow. All of this poses real problems for a robot that is using color to
temperature range 5000-6 500 K. L. . L.

understand the scene because the observed chromaticity varies with lighting. Outdoors a

robot has to contend with an illumination spectrum that depends on the time of day and

cloud cover as well as colored reflections from buildings and trees. This affects the lumi-

nance and apparent color of the object. To illustrate this problem we revisit the red brick

>> lambda = [400:10:700]*1e-9;
>> R = loadspectrum(lambda, 'redbrick');

under two different illumination conditions, the Sun at ground level

>> sun = loadspectrum(lambda, 'solar');

and a tungsten lamp

>> lamp = blackbody (lambda, 2600);

and compute the xy-chromaticity for each case

>> xy sun = lambda2xy(lambda, sun .* R)
Xy sun =

0.4760 0.3784
>> xy lamp = lambda2xy(lambda, lamp .* R)
Xy lamp =

0.5724 0.3877

and we can see that the chromaticity, or apparent color, has changed significantly.
These values are plotted on the chromaticity diagram in Fig. 10.16.
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10.3.3  White Balancing

Photographers need to be aware of the illumination color temperature. An incandes-
cent lamp appears more yellow than daylight so a photographer would place a blue
filter on the camera to attenuate the red part of the spectrum to compensate. We can
achieve a similar function by choosing the matrix J

!/
R Je 0 0)R
G|=|0 J; 0JG
B 0 0 Jy)\B

to adjust the gains of the color channels.” For example, boosting J; would compensate
for the lack of blue under tungsten illumination. This is the process of white balancing
- ensuring the appropriate chromaticity of objects that we know are white (or grey).
Some cameras allow the user to set the color temperature of the illumination through
amenu, typically with options for tungsten, fluorescent, daylight and flash which select
different preset values of J. In manual white balancing the camera is pointed at a grey or
white object and a button is pressed. The camera adjusts its channel gains J so that equal
tristimulus values are produced R’ = G’ = B’ which as we recall results in the desired
white chromaticity. For colors other than white these corrections introduces some color
error but this nevertheless has a satisfactory appearance to the eye. Automatic white bal-
ancing is commonly used and involves heuristics to estimate the color temperature of the
light source but it can be fooled by scenes with a predominance of a particular color.
The most practical solution is to use the tristimulus values of three objects with known
chromaticity in the scene. This allows the matrix Cin Eq. 10.14 to be estimated directly,
mapping the tristimulus values from the sensor to XYZ coordinates which are an abso-
lute lighting-independent representation of surface reflectance. From this the chroma-
ticity of the illumination can also be estimated. This approach is used for the panoramic
camera on the Mars Rover where the calibration target shown in Fig. 10.17 can be imaged
periodically to update the white balance under changing Martian illumination.

10.3.4  Color Change Due to Absorption

A final and extreme example of problems with color occurs underwater. For example
consider a robot trying to find a docking station identified by colored targets. As dis-
cussed earlier in Sect. 10.1.1 water acts as a filter that absorbs more red light than blue
light. For an object underwater this filtering affects both the illumination falling on

Typically J;= 1 and J; and J; are ad-
justed.

Fig.10.17.

The calibration target used for the
Mars Rover’s PanCam. Regions
of known reflectance and chro-
maticity (red, yellow, green, blue
and shades of grey) are used to
set the white balance of the cam-
era. The central stalk has a very
low reflectance and also serves
as a sundial. In the best tradi-
tions of sundials it bears a mot-
to (photo courtesy NASA/JPL/
Cornell/Jim Bell)
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Fig.10.18.

Spectrum of the red brick lumi-
nance when viewed underwater.
The spectrum without the water
absorption is shown in red

the object and the reflected light, the luminance, on its way to the camera. Consider
again the red brick

>> [R,lambda] = loadspectrum([400:5:700]*1e-9, 'redbrick');

which is now 1 m underwater and with a camera a further 1 m from the brick. The il-
lumination on the water’s surface is that of sunlight at ground level

>> sun = loadspectrum(lambda, 'solar');
The absorption spectrum of water is
>> A = loadspectrum(lambda, 'water');
and the total optical path length through the water is
>> d = 2;
The transmission T is given by Beer’s law Eq. 10.2.
>> T = 10 .~ (-d*A);
and the resulting luminance of the brick is
>> L = sun .* R .* T;
which is shown in Fig. 10.18. We see that the longer wavelengths, the reds, have been

strongly attenuated. The apparent color of the brick is

>> xy water = lambda2xy(lambda, L)
Xy _water =
0.3738 0.3814

which is also plotted in the chromaticity diagram of Fig. 10.16. The brick appears much
more blue than it did before. In reality underwater imaging is more complex than this

due to the scattering of light by tiny suspended particles which reflect ambient light
into the camera that has not been reflected from the target.
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Lambertian reflection. A non-mirror-like or matte surface is a diffuse
reflector and the amount of light reflected at a particular angle from the 2

surface normal is proportional to the cosine of the reflection angle 0,. s ™
This is known as Lambertian reflection after the Swiss mathematician X 6, )Y
and physicist Johann Heinrich Lambert (1728-1777). A consequence i Iy, :\
is that the object has the same apparent brightness at all viewing an- \ !
gles. A powerful example of this is the moon which appears as a disc \ /
of uniform brightness despite it being a sphere with its surface curved Ny o
away from us. See also specular reflection on page 337. (Moon image
courtesy of NASA) //
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10.3.5 Dichromatic Reflectance

The simple reflectance model introduced in Sect. 10.1.3 is suitable for objects
with matte surfaces (e.g. paper, unfinished wood) but if the surface is somewhat
shiny the light reflected from the object will have two components - the dichro-
matic reflection model - as shown in Fig. 10.19a. One component is the illuminant
specularly reflected from the surface without spectral change - the interface or
Fresnel reflection. The other is light that interacts with the surface: penetrating,
scattering, undergoing selective spectral absorbance and being re-emitted in all
directions as modeled by Lambertian reflection. The relative amounts of these
two components depends on the material and the geometry of the light source,
observer and surface normal.

A good example of this can be seen in Fig. 10.19b. Both tomatoes appear red
which is due to the scattering lightpath where the light has interacted with the sur-
face of the fruit. However each fruit has an area of specular reflection that appears
to be white, the color of the light source, not the surface of the fruit.

The real world is more complex still due to inter-reflections. For example green
light reflected from the leaves will fall on the red fruit and be scattered. Some of
that light will be reflected off the green leaves again, and so on - nearby objects
influence each other’s color in complex ways. To achieve photorealistic results in
computer graphics all these effects need to be modeled based on detailed knowl-
edge of surface reflection properties and the geometry of all surfaces. In robotics
we rarely have this information so we need to develop algorithms that are robust
to these effects.

10.3.6 Gamma

CRT monitors were once ubiquitous and the luminance produced at the face of the
display was nonlinearly related to the control voltage V according to

L=V" (10.15)
where v~ 2.2. To correct for this early video cameras applied the inverse nonlinearity

V = L'/7to their output signal which resulted in a system that was linear from end to
end.” Both transformations are commonly referred to as gamma correction though

Fig. 10.19. Dichromatic reflection.
a Some incoming light undergoes
specular reflection from the sur-
face, while some penetrates the
surface is scattered, filtered and re-
emitted in all directions according
to the Lambertian reflection model.
b Specular surface reflection can
be seen clearly in the nonred high-
light areas on the two tomatoes,
these are reflections of the ceil-
ing lights (courtesy of Distributed
Robot Garden project, MIT)

Some cameras have an option to choose
gamma as either 1or 0.45 (= 1/2.2).
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Fig.10.20.
The linear intensity wedge

Gamma encoding and decoding are of-
ten referred to as gamma compression
and gamma decompression respectively,
since the encoding operation compress-
es the range of the signal, while decod-
ing decompresses it.

Macintosh computers are an exception
and prior to MacOS 10.6 used v=1.8
which made colors appear brighter and
more vivid.

The JPEG file header (JFIF file format) has
atagColor Space whichissetto
either sRGBorUncalibratedif
the gamma or color model is not known.
See page 363.

1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

more properly the camera-end operation is gamma encoding and the display-end op-
eration is gamma decoding.*

LCD displays have a stronger nonlinearity than CRTs but correction tables are ap-
plied within the display to make it follow the standard ~ = 2.2 behavior of the obso-
lete CRT.»

To show the effect of display gamma we create a simple test pattern

>> wedge [0:0.1:1];
>> idisp (wedge)

that is shown in Fig. 10.20 and is like a photographer’s greyscale step wedge. If we dis-
play this on our computer screen it will appear differently to the one printed in the
book. We will most likely observe a large change in brightness between the second
and third block - the effect of the gamma decoding nonlinearity Eq. 10.15 in the dis-
play of your computer.

If we apply gamma encoding

>> idisp( wedge .~ (1/2.2) )

we observe that the intensity changes appear to be more linear and closer to the one
printed in the book.

The chromaticity coordinates of Eq. 10.9 and Eq. 10.10 are computed as ratios
of tristimulus values which are linearly related to luminance in the scene.The
nonlinearity applied to the camera output must be corrected,gamma decoded,
before any colometric operations. The Toolbox function i gamm performs this
operation. Gamma decoding can also be performed when an image is loaded
using the 'gamma ' option to the function i read.

Today most digital cameras encode images in sSRGB format (IEC 61966-2-1 stan-
dard) which uses the ITU Rec. 709 primaries and a gamma encoding function of

L < 0.0031308
1.0551%* —0.055, L > 0.0031308

, {12.92L,

which comprise a linear function for small values and a power law for larger values.
The overall gamma is approximately 2.2.

The important property of colorspaces such as HSV or xyY is that the chromatic-
ity coordinates are invariant to changes in intensity. Many digital video cameras
provide output in YUV or YC;C, format which has a luminance component Yand
two other components which are often mistaken for chromaticity coordinates
— they are not.They are in fact color difference signals such that U, Czx B’ — Y’
and V, Czox R’ — Y where R’, B’ are gamma encoded tristimulus values,and Y" is
gamma encoded intensity. The gamma nonlinearity means that UV or CzC, will
not be a constant as overall lighting level changes.

The tristimulus values from the camera must be first converted to linear tri-
stimulus values, by applying the appropriate gamma decoding, and then com-
puting chromaticity. There is no shortcut.
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10.4 Application: Color Image

10.4.1 Comparing Color Spaces [examples/colorspaces]

In this section we bring together many of the concepts and tools introduced in this chap-
ter. We will compare the chromaticity coordinates of the colored squares (squares 1-18)
of the Color Checker chart shown in Fig. 10.21 using the xy- and L*a*b*-color spaces.
We compute chromaticity from first principles using the spectral reflectance informa-
tion for each square which is provided with the Toolbox

>> lambda = [400:5:700]*1e-9;
>> macbeth = loadspectrum(lambda, 'macbeth');

which has 24 columns, one per square of the test chart. We load the relative power spec-
trum of the D¢, standard white illuminant

>> d65 = loadspectrum(lambda, 'D65') * 3e9;

and scale it to a brightness comparable to sunlight as shown in Fig. 10.3a. Then for each
nongrey square

1 >> for i=1:18

2 L = macbeth(:,1i) .* d65;

3 tristim = max(cmfrgb (lambda, L), 0);

4 RGB = igamm(tristim, 0.45);

5

6 XYZ (i,:) = colorspace ('XYZ<-RGB', RGB);
7 Lab(i,:) = colorspace ('Lab<-RGB', RGB);
8

end

we compute the luminance spectrum (line 2), use the CIE color matching functions to
determine the eye’s tristimulus response and impose the gamut limits (line 3) and then
apply a gamma encoding (line 4) since the colorspace function expects gamma en-
coded RGB data. This is converted to the XYZ color space (line 6), and the L*a*b* color
space (line 7). Next we convert XYZ to xy by dividing X and Y each by X + Y + Z, and
extract the a*b* columns

>> xy = XYZ(:,1:2) ./ (sum(XYZ,2)*[1 11);
>> ab = Lab(:,2:3);

giving two matrices, each 18 x 2, with one row per colored square. Finally we plot
these points on their respective color planes

>> showcolorspace (xy', 'xy');
>> showcolorspace (ab', 'Lab');

and the results are displayed in Fig. 10.22. We see, for example, that square 15 is
closer to 9 and further from 7 in the a*b* plane. The L*a*b* color space was designed
so that the Euclidean distance between points is proportional to the color difference
perceived by humans. If we are using algorithms to distinguish objects by color then
L*a*b* would be preferred over RGB or XYZ.

Mucbeth ColorChecker® Color Rendition Chart

Fig.10.21.

The Gretag Macbeth Color
Checker is an array of 24 printed
color squares (numbered left to
right, top to bottom), which in-
cludes different greys and colors
as well as spectral simulations
of skin, sky, foliage etc. Spectral
data for the squares is provided
with the toolbox
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Fig. 10.22.

Color Checker chromaticities.

a xy-space; b xy-space zoomed;
c a*b*-space; d a*b*-space zoomed
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10.4.2  Shadow Removal [examples/shadow]

For a robot vision system that operates outdoors shadows are a significant problem as we
can see in Fig. 10.23a. Shadows cause surfaces of the same type to appear quite different and
this is problematic for a robot trying to use vision to understand the scene and plan where
to drive. Even more problematic is that this effect is not constant, it varies with the time
of day and cloud condition. The image in Fig. 10.23b has had the effects of shadowing re-
moved, and we can now see very clearly the different types of terrain - grass and gravel.

The key to removing shadows comes from the observation that the bright parts of
the scene are illuminated directly by the sun while the darker shadowed regions are il-
luminated by the sky. Both the sun and the sky can be modeled as blackbody radiators
with color temperatures as listed in Table 10.3. Shadows therefore have two defining
characteristics: they are dark and they have a slight blue tint.

We model the camera using Eq. 10.4 but model the spectral response of the camera’s color
sensors as Dirac functions M,(\) = (A — A,) which allows us to eliminate the integrals

R= E<)‘R)R<)‘R>MR(/\R)
G= E()‘G)R(AG)MG ()‘G>
B= E()‘B)R<)‘B)MB(/\B)

For each pixel we compute chromaticity coordinates r = R / Gand b = B / G which
are invariant to change in illumination magnitude.

50
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A5(6+ACZRT_1)R()‘R)MR </\R)
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To simplify further we apply the Wien approximation, eliminating the —1 term,
which is a reasonable approximation for color temperatures in the range under con-
sideration, and now we can write

"I R(A\g) My (Ag) ehel1/Ag—1/7)/kr Mg (Az) R(%z)

r A
ehc/kARTR()\(;)MG (As) Mg(Ag) R(Xq)

which is a function of color temperature T and various constants: physical constants c,
h and k; sensor response wavelength A, and magnitude M, (\,), and material proper-
ties R(\,). Taking the logarithm we obtain the very simple form

c
logr = ¢, —?2 (10.16)
and repeating the process for blue chromaticity we can write
)
logh = ¢ T (10.17)

Every color pixel (R, G, B) € R?® can be mapped to a point (logr, logb) € R? and
as the color temperature changes the points will all move along lines with a slope of
¢} /c,. Therefore a projection onto the orthogonal direction, a line with slope c, /c},
results in a 1-dimensional quantity

s = —c,logr + ¢, logh

that is invariant to the color temperature of the illuminant. We can compute this for
every pixel in an image

>> im = iread('parks.jpg', 'gamma', 'sRGB');

>> gs = invariant(im, 0.7, 'noexp');

>> idisp (gs)
and the result is shown in Fig. 10.23b. The pixels have a greyscale value that is a com-
plex function of material reflectance and camera sensor properties. The arguments to
the function are the color image, the slope of the line in radians and a flag to return
the logarithm s rather than its exponent.

Fig. 10.23. Shadows create con-
founding effects in images. a View
of a park with strong shadows;
b the shadow invariant image in
which the variation lighting has
been almost entirely removed
(Corke et al. 2013)

[ TR



10.5 - Wrapping Up

315

To achieve this result we have made some approximations and a number of rather
strong assumptions: the camera has a linear response from scene luminance to RGB
tristimulus values, the color channels of the camera have nonoverlapping spectral re-
sponse, and the scene is illuminated by blackbody light sources. The first assumption
means that we need to use a camera with 7= 1 or apply gamma decoding to the im-
age before we proceed. The second is far from true, especially for the red and green
channels of a color camera, yet the method works well in practice. The biggest effect
is that the points move along a line with a slope different to c} / c, but we can estimate
the slope empirically by looking at a set of shadowed and nonshadowed pixels corre-
sponding to the same material in the scene

>> theta = esttheta (im)

which will prompt you to select a region and returns an angle which can be passed
to invariant. The final assumption means that the technique will not work for
nonincandescent light sources, or where the scene is partly illuminated by reflec-
tions from colored surfaces. More details are provided in the MATLAB function
source code.

10.5 Wrapping Up

We have learned that the light we see is electro-magnetic radiation with a mixture
of wavelengths, a continuous spectrum, which is modified by reflectance and ab-
sorption. The spectrum elicits a response from the eye which we interpret as color
- for humans the response is a tristimulus, a 3-vector that represents the outputs of
the three different types of cones in our eye. A digital color camera is functionally
equivalent. The tristimulus can be considered as a 1-dimensional brightness coor-
dinate and a 2-dimensional chromaticity coordinate which allows colors to be plot-
ted on a plane. The spectral colors form a locus on this plane and all real colors lie
within this locus. Any three primary colors form a triangle on this plane which is
the gamut of those primaries. Any color within the triangle can be matched by an
appropriate mixture of those primaries. No set of primaries can define a gamut that
contains all colors. An alternative set of imaginary primaries, the CIE XYZ system,
does contain all real colors and is the standard way to describe colors. Tristimulus
values can be transformed using linear transformations to account for different sets
of primaries. Nonlinear transformations can be used to describe tristimulus values
in terms of human-centric qualities such as hue and saturation. We also discussed
the definition of white, color temperature, color constancy, the problem of white
balancing, the nonlinear response of display devices and how this effects the com-
mon representation of images and video.

We learned that the colors and brightness we perceive is a function of the light source
and the surface properties of the object. While humans are quite able to “factor out”
illumination change this remains a significant challenge for robotic vision systems. We
finished up by showing how to remove shadows in an outdoor color image.

Infra-red cameras. Consumer cameras are functionally equivalent
to the human eye and are sensitive to the visible spectrum. Cam-
eras are also available that are sensitive to infra-red and a num-
ber of infra-red bands are defined by CIE: IR-A (700—1400 nm),
IR-B (1400—3 000 nm), and IR-C (3000 nm—1000 um). In com-
mon usage IR-A and IR-B are known as near infra-red (NIR)
and short-wavelength infra-red (SWIR) respectively, and the
IR-C subbands are medium-wavelength (MWIR, 3000—8 000 nm)
and long-wavelength (LWIR, 8000—15000 nm). LWIR cameras
are also called thermal or thermographic cameras.

Ultraviolet cameras typically work in the near ultra-violet region
(NUV, 200—380 nm) and are used in industrial applications
such as detecting corona discharge from high-voltage electrical
systems.

Hyperspectral cameras have more more than three classes of pho-
toreceptor, they sample the incoming spectrum at many points
typically from infra-red to ultra-violet and with tens or even hun-
dreds of spectral bands. Hyperspectral cameras are used for ap-
plications including aerial survey classification of land-use and
identification of the mineral composition of rocks.
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Further Reading

At face value color is a simple concept that we learn in kindergarten but as we delve in we
find it is a fascinating and complex topic with a massive literature. In this chapter we have
only begun to scrape the surface of photometry and colorimetry. Photometry is the part
of the science of radiometry concerned with measurement of visible light. It is challeng-
ing for engineers and computer scientists since it makes use of uncommon units such as
lumen, steradian, nit, candela and lux. One source of complexity is that words like inten-
sity and brightness are synonyms in everyday speech but have very specific meanings in
photometry. Colorimetry is the science of color perception and is also a large and complex
area since human perception of color depends on the individual observer, ambient illumi-
nation and even the field of view. Colorimetry is however critically important in the design
of cameras, computer displays, video equipment and printers. Comprehensive online infor-
mation about computer vision is available through CVonline at http://homepages.inf.ed.ac.
uk/rbf/CVonline, and the material in this chapter is covered by the section Immage Physics.

The computer vision textbooks by Gonzalez and Woods (2008) and Forsyth and Ponce
(2011) each have a discussion on color and color spaces. The latter also has a discussion
on the effects of shading and inter-reflections. The book by Gevers et al. (2012) is solid in-
troduction to color vision theory and covers the dichromatic reflectance model in detail.
It also covers computer vision algorithms that deal with the challenges of color constancy.
The Retinex theory is described in Land and McCann (1971) and MATLAB implementa-
tions can be found at http://www.cs.sfu.ca/~colour/code. Other resources related to color
constancy can be found at http://colorconstancy.com.

Readable and comprehensive books on color science include Koenderink (2010), Hunt
(1987) and from a television or engineering perspective Benson (1986). A more conver-
sational approach is given by Hunter and Harold (1987), which also covers other aspects
of appearance such as gloss and luster. The CIE standard (Commission Internationale
de PEclairage 1987) is definitive but hard reading. The work of the CIE is ongoing and its
standards are periodically updated at www.cie.co.at. The color matching functions were
first tabulated in 1931 and revised in 1964.

Charles Poynton has for a long time maintained excellent online tutorials about color
spaces and gamma at http://www.poynton.com. His book (Poynton 2012) is an excel-
lent and readable introduction to these topics while also discussing digital video systems
in great depth.

General interest. Crone (1999) covers the history of theories of human vision and color.
How the human visual system works, from the eye to perception, is described in two very
readable books Stone (2012) and Gregory (1997). Land and Nilsson (2002) describes the
design principles behind animal eyes and how characteristics such as acuity, field of view
and low light capability are optimized for different species.

Data Sources

The Toolbox contains a number of data files describing various spectra which are sum-
marized in Table 10.4. Each file has as its first column the wavelength in meters. The files
have different wavelength ranges and intervals but the helper function 1 cadspectrum
interpolates the data to the user specified range and sample interval.

Several internet sites contain spectral data in tabular format and this is linked from
the book’s web site. This includes reflectivity data for over 2 000 materials provided by
NASA’s online ASTER spectral library 2.0 (Baldridge et al. 2009) at http://speclibjpl.nasa.
gov and the Spectral Database from the University of Eastern Finland Color Research
Laboratory at http://ueffi/en/spectral. Data on cone responses and CIE color matching
functions is available from the Colour & Vision Research Laboratory at University College
London at http://cvrl.org. CIE data is also available online at http://cie.co.at.
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Table 10.4.

Various spectra provided with
the Toolbox. Relative luminosity
values lie in the interval [0, 1],
and relative spectral power distri-
bution (SPD) are normalized to a
value of 1.0 at 550 nm. These files
can be loaded using the Toolbox
loadspectrum function

Filename Units Description

cones Rel.luminosity Spectral response of human cones

bb2 Rel.luminosity Spectral response of Sony ICX 204AK sensor
used in Point Grey BumbleBee2 camera

photopic Rel. luminosity CIE 1924 photopic response

scotopic Rel. luminosity CIE 1951 scoptic response

redbrick Reflectivity Reflectivity spectrum of a weathered red brick

macbeth Reflectivity Reflectivity of the Gretag-Macbeth Color Checker
array (24 squares), see Fig. 10.21

solar Wm=?m' Solar spectrum at ground level

water Tm’ Light absorption spectrum of water

D65 Rel.SPD CIE standard Dg; illuminant

Exercises

1. You are a blackbody radiator! Plot your own blackbody emission spectrum. What
is your peak emission frequency? What part of the EM spectrum is this? What sort
of sensor would you use to detect this?

2. Consider a sensor that measures the amount of radiated power P, and P, at wave-
lengths A, and )\, respectively. Write an equation to give the temperature T of the
blackbody in terms of these quantities.

3. Using the Stefan-Boltzman law compute the power emitted per square meter of the
Sun’s surface. Compute the total power output of the Sun.

4. Use numerical integration to compute the power emitted in the visible band
400—700 nm per square meter of the Sun’s surface.

5. Why is the peak luminosity defined as 683 lm W12

6. Given typical outdoor illuminance as per page 294 determine the luminous inten-
sity of the Sun.

7. Sunlight at ground level. Of the incoming radiant power determine, in percentage
terms, the fraction of infra-red, visible and ultra-violet light.

8. Use numerical integration to compute the power emitted in the visible band
400—700 nm per square meter for a tungsten lamp at 2 600 K. What fraction is this
of the total power emitted?

9. Plot and compare the human photopic and scotopic spectral response.

a) Compare the response curves of human cones and the RGB channels of a color
camera. Use cones.dat andbb2.dat.

10.Can you create a metamer for the red brick?

11.Prove Grassmann’s center of gravity law mentioned on page 297.

12.0n the xy-chromaticity plane plot the locus of a blackbody radiator with tempera-
tures in the range 1 000-10 000 K.

13.Plot the XYZ primaries on the rg-plane.

14.For Fig. 10.12 determine the chromaticity of the feasible green.

15.Determine the tristimulus values for the red brick using the Rec. 709 primaries.

16.Take a picture of a white object using incandescent illumination. Determine the
average RGB tristimulus value and compute the xy-chromaticity. How far off white
is it? Determine the color balance matrix J to correct the chromaticity. What is the
chromaticity of the illumination?

17.What is the name of the color of the red brick when viewed underwater (page 308).

18.Image a target like Fig. 10.17 that has three colored patches of known chromaticity.
From their observed chromaticity determine the transform from observed tristim-
ulus values to Rec. 709 primaries. What is the chromaticity of the illumination?
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19. Consider an underwater application where a target d meters below the surface is
observed through m meters of water, and the water surface is illuminated by sun-
light. From the observed chromaticity can you determine the true chromaticity of
the target? How sensitive is this estimate to incorrect estimates of m and d? If you
knew the true chromaticity of the target could you determine its distance?

20.Is it possible that two different colors look the same under a particular lighting
condition? Create an example of colors and lighting that would cause this?

21. Use one of your own pictures and the approach of Sect. 10.4.1. Can you distinguish
different objects in the picture?

22. Show analytically or numerically that scaling a tristimulus value has no effect on the
chromaticity. What happens if the chromaticity is computed on gamma encoded
tristimulus values?

23.Create an interactive tool with sliders for R, G and B that vary the color of a dis-
played patch. Now modify this for sliders X, Yand Zor x, y and Y.

24.Take a color image and determine how it would appear through 1, 5 and 10 m of
water.

25.Determine the names of the colors in the Gretag-Macbeth color checker chart.

26.Plot the color-matching function components shown in Fig. 10.10 as a 3D curve.
Rotate it to see the locus as shown in Fig. 10.11.
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Image Formation

Everything we see is a perspective,
not the truth.
Marcus Aurelius

In this chapter we discuss how images are formed and captured, the first step
in robot and human perception of the world. From images we can deduce the
size, shape and position of objects in the world as well as other characteristics
such as color and texture which ultimately lead to recognition.

It haslong been known that a simple pin-hole is able to create a perfect invert-
ed image on the wall of a darkened room. Some marine mollusks, for example
the Nautilus, have pin-hole camera eyes. All vertebrates have a lens that forms
an inverted image on the retina where the light-sensitive cells rod and cone cells,
shown previously in Fig. 10.6, are arranged. A digital camera is similar in prin-
ciple - a glass or plastic lens forms an image on the surface of a semiconductor chip
with an array of light-sensitive devices to convert light to a digital image.

The process of image formation, in an eye or in a camera, involves a projection
of the 3-dimensional world onto a 2-dimensional surface. The depth information
is lost and we can no longer tell from the image whether it is of a large object in
the distance or a smaller closer object. This transformation from 3 to 2 dimensions
is known as perspective projection and is discussed in Sect. 11.1. Section 11.2 in-
troduces the topic of camera calibration, the estimation of the parameters of the
perspective transformation. Sections 11.3 to 11.5 introduce alternative types of
cameras capable of wide-angle, panoramic or light-field imaging. Section 11.6 in-
troduces some advanced concepts such as projecting lines and conics, and non-
perspective cameras.

1.1 Perspective Camera

11.1.1 Perspective Projection

A small hole in the wall of a darkened room will cast a dim inverted image of the out-
side world on the opposite wall - a so-called pin-hole camera. The pin-hole camera
produces a very dim image since its radiant power is the scene luminance in units
of W m~2 multiplied by the area of the pin hole. Figure 11.1a shows that only a small
fraction of the light leaving the object finds its way to the image. A pin-hole camera
has no focus adjustments - all objects are in focus irrespective of distance.

In the 5 century BcE, the philosopher Mozi in ancient China
mentioned the effect of an inverted image forming through
a pinhole. A camera obscura is a darkened room where a dim
inverted image of the world is cast on the wall by light enter-
ing through a small hole. They were popular tourist attrac-
tions in Victorian times, particularly in Britain, and many are
still operating today. (Image on the right from the Drawing
with Optical Instruments collection at http://vision.mpiwg-
berlin.mpg.de/elib)
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Real camera lenses comprise multiple lens
elements but still have focal points on each
side of the compound lens assembly.

The inverse of focal length is known as
diopter. For thin lenses placed close to-
gether their combined diopter is close to
the sum of their individual diopters.

Lens aperture. The f-number of
alens, typically marked on the
rim, is a dimensionless quan-
tity F = f/ d where d is the di-
ameter of the lens (often de-
noted ¢ on the lens rim). The
f-number is inversely related
to the light gathering abili-
ty of the lens. To reduce the

The key to brighter images is to use an objective lens, as shown in Fig. 11.1b, which
collects light from the object over alarger area and directs it to the image. A convex lens
can form an image just like a pinhole and the fundamental geometry of image formation
for a thin lens* is shown in Fig. 11.2. The positive z-axis is the camera’s optical axis.

The z-coordinate of the object and its image, with respect to the lens center, are
related by the thin lens equation

1,11 (11.1)

z, z f

where z, is the distance to the object, z; the distance to the image, and f is the focal length
of the lens.* For z, > fan inverted image is formed on the image plane at z; < —f.

In a camera the image plane is fixed at the surface of the sensor chip so the focus ring
of the camera moves the lens along the optical axis so that it is a distance z; from the image
plane - for an object at infinity z; = f. The downside of using a lens is the need to focus. Our
own eye has a single convex lens made from transparent crystallin proteins, and focus is
achieved by muscles which change its shape - a process known as accomodation. A high-
quality camera lens is a compound lens comprising multiple glass or plastic lenses.

In computer vision it is common to use the central perspective imaging model shown
in Fig. 11.3. The rays converge on the origin of the camera frame {C} and a noninverted
image is projected onto the image plane located at z = f. The z-axis intersects the im-
age plane at the principal point which is the origin of the 2D image coordinate frame.
Using similar triangles we can show that a point at the world coordinates P = (X, Y, Z)
is projected to the image point p = (x, y) by

o

x=f§y=f§ (11.2)

which is a projective transformation, or more specifically a perspective projection. This

mapping from the 3-dimensional world to a 2-dimen-
sional image has consequences that we can see in Fig. 11.4
- parallel lines converge and circles become ellipses.

More formally we can say that the transformation,
from the world to the image plane has the following char-
acteristics:

1. It performs a mapping from 3-dimensional space to
the 2-dimensional image plane: P:R? > R2.

amount of light falling on the image plane the effective di-
ameter is reduced by a mechanical aperture, or iris, which in-
creases the f-number. Illuminance on the image plane is inversely
proportional to F? since it depends on light gathering area. To
reduce illuminance by a factor of 2, the f-number must be in-
creased by a factor of v/2 or “one stop”. The fnumber gradua-
tions increase by v/2 at each stop. An f-number is conventionally

. Straight lines in the world are projected to straight

lines on the image plane.

. Parallel lines in the world are projected to lines that

intersect at a vanishing point as shown in Fig. 11.4a.
In drawing, this effect is known as foreshortening. The
exception are fronto-parallel lines - lines lying in a
plane parallel to the image plane — which always re-

written in the form f/1.4 for F=1.4.

Focus and depth of field. Ideally a group of light rays from a point
in the scene meet at a point in the image. With imperfect focus
the rays instead form a finite sized spot called the circle of confu-
sion which is the point spread function of the optical system. By
convention, if the size of the circle is around that of a pixel then
the image is acceptably focused.

A pin-hole camera has no focus control and always creates a
focused image of objects irrespective of their distance. A lens does

main parallel.

not have this property - the focus ring changes the distance be-
tween the lens and the image plane and must be adjusted so that
the object of interest is acceptably focused. Photographers refer
to depth of field which is the range of object distances for which
acceptably focused images are formed. Depth of field is high for
small aperture settings where the lens is more like a pin-hole, but
this means less light and noisier images or longer exposure time
and motion blur. This is the photographer’s dilemma!
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4. Conics“ in the world are projected to conics on the image plane. For example, a  Fig.11.4. The effect of perspective
circle is projected as a circle or an ellipse as shown in Fig. 11.4b. transformation. a Parallel lines con-

5. The size (area) of a shape is not preserved and depends on distance. verge, b circles become ellipses

6. The mapping is not one-to-one and no unique inverse exists. That is, given (x, y)
we cannot uniquely determine (X, Y, Z). All that can be said is that the world point  Conic sections, or conics, are a family of
lies somewhere along the red projecting ray shown in Fig. 11.3. This is an impor- C‘I”"es O?La'“e‘j byt:e '”_terlse;“of‘ ‘;fa
tant topic that we will return to in Chap. 14. plane with a cone. They include ircles,

.. . . . ellipses, parabolas and hyperbolas.

7. The transformation is not conformal - it does not preserve shape since internal
angles are not preserved. Translation, rotation and scaling are examples of confor-
mal transformations.

11.1.2 Modeling a Perspective Camera

We can write the image-plane point coordinates in homogeneous form p = (%, j, Z) where
X=fX,y=fY,z=12

or in compact matrix form as

f

0 (11.3)

0

0
p= 0
1

o' o
N =X

where the nonhomogeneous image-plane coordinates are

These are often referred to as the retinal image-plane coordinates. For the case
where f=1 the coordinates are referred to as the normalized, retinal or canonical
image-plane coordinates.

If we write the world coordinate in homogeneous form as well cP=(X,Y,Z, 1)
then the perspective projection can be written in linear form as



11.1 - Perspective Camera

323

Fig.11.5.
Camera coordinate frames

(11.4)
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where Cis a3 x 4 matrix known as the camera matrix. Note that we have written P
to highlight the fact that this is the coordinate of the point with respect to the camera
frame {C}. The tilde indicates homogeneous quantities and Sect. C.2 provides a re-
fresher on homogeneous coordinates. The camera matrix can be factored

f o
p=|0
0

0 01
f olfo
0 1o

S = O
—= o o
oS O o

where the second matrix is the projection matrix.
The Toolbox allows us to create a model of a central-perspective camera. For ex-
ample

>> cam = CentralCamera ('focal', 0.015);

returns an instance of a CentralCamera object with a 15 mm lens. By default the
camera is at the origin of the world frame with its optical axis pointing in the world
z-direction as shown in Fig. 11.3. We define a world point

>> P = [0.3, 0.4, 3.0]1"';

in units of meters and the corresponding image-plane coordinates are

>> cam.project (P)
ans =

0.0015

0.0020

The point on the image plane s at (1.5, 2.0) mm with respect to the principal point. This is
a very small displacement but it is commensurate with the size of a typical image sensor.

In general the camera will have an arbitrary pose £, with respect to the world coordi-
nate frame as shown in Fig. 11.5. The position of the point with respect to the camera is

P =(e&)-P (11.6)

{0}
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or using homogeneous coordinates
Cp _ 10
P=T,"P

We can easily demonstrate this by moving our camera 0.5 m to the left

>> cam.project (P, 'pose', SE3(-0.5, 0, 0) )
ans =

0.0040

0.0020

where the third argument is the pose of the camera { ; as a homogeneous transforma-
tion. We see that the x-coordinate has increased from 1.5 mm to 4.0 mm, that is, the
image point has moved to the right.

11.1.3  Discrete Image Plane

In a digital camera the image plane is a W x H grid of light-sensitive elements called
photosites that correspond directly to the picture elements (or pixels) of the image as
shown in Fig. 11.6. The pixel coordinates are a 2-vector (u, v) of nonnegative integers
and by convention the origin is at the top-left hand corner of the image plane. In

/

N
~ SU‘@\
o0 N ¢ = —canmera
o 9 {C\} origin
Yye

Image sensor. The light-sensitive cells in a camera chip, the pho-
tosites (see page 364), are commonly square with a side length
in the range 1-10 pm. Professional cameras have large photosites
for increased light sensitivity whereas cellphone cameras have
small sensors and therefore small less-sensitive photosites. The
ratio of the number of horizontal to vertical pixels is the aspect
ratio and is commonly 4:3 or 16:9 (see page 366). The dimen-
sion of the sensor is measured diagonally across the array and is i
commonly expressed in inches, e.g. ¥, % or % inch. However the active sensing area of the chip
has a diagonal that is typically around %5 of the given dimension.

Fig.11.6.
Central projection model showing
image plane and discrete pixels
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The matrix K is often written with a fi-
nite value at K, , to represent skew. This
accounts for the fact that the u- and
v-axes are not orthogonal, which with
precise semiconductor fabrication pro-
cesses is quite unlikely.

The terms f/p,, and f/p, are the focal
length expressed in units of pixels.

MATLAB® the top-left pixel is (1, 1). The pixels are uniform in size and centered on
a regular grid so the pixel coordinate is related to the image-plane coordinate by

X )
Uu=—=+uy,v=="—+v,
Pw Pn

where p,, and p, are the width and height of each pixel respectively, and (i, v,) is the
principal point - the pixel coordinate of the point where the optical axis intersects
the image plane with respect to the new origin. We can write Eq. 11.4 in terms of pixel
coordinates by prepending a camera parameter matrix K

1/p, 0 wu)(f 0 0 0

p=| 0 1/p, w|l0 f 0 0|°P (11.7)
0 0 1Jlo 0 10
| ——
K

where p = (i, 7, W) is the homogeneous coordinate of the world point P in pixel co-
ordinates.* The nonhomogeneous image-plane pixel coordinates are

(11.8)

For example if the pixels are 10 pm square and the pixel array is 1280 x 1024 pix-
els with its principal point at image-plane coordinate (640, 512) then

>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6,
'resolution', [1280 1024], 'centre', [640 512], 'name', 'mycamera')
cam =

name: mycamera [central-perspective]

focal length: 0.015

pixel size: (1le-05, 1e-05)

principal pt: (640, 512)

number pixels: 1280 x 1024

pose: t = (0,0,0), RPY/yxz = (0,0,0) deg

which displays the parameters of the camera model including the camera pose T. The
corresponding nonhomogeneous image-plane coordinates of the previously defined
world point are
>> cam.project (P)
ans =
790
712

11.1.4 Camera Matrix

Combining Eq. 11.6 and Eq. 11.7 we can write the camera projection in general form as

f/pw 0yl 0 0 O L
p=| 0 flm wlo 1 0 o) P
0 0 1Jo o0 10
S — (11.9)
intrinsic extrinsic
= Kp,"T;'P
=CP

where all the terms are rolled up into the camera matrix C*. This is a 3 x 4 homoge-
neous transformation which performs scaling, translation and perspective projection.
It is often also referred to as the projection matrix or the camera calibration matrix.
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We have already mentioned the fundamental ambiguity with perspective pro-
jection, that we cannot distinguish between a large distant object and a smaller
closer object.We can rewrite Eq.11.9 as

p=(CH Y)(HP)=C'P’

where H is an arbitrary nonsingular 3 x 3 matrix. This implies that an infinite
number of camera C’ and world point coordinate P’ combinations will result
in the same image-plane projection p.

This illustrates the essential difficulty in determining 3-dimensional world
coordinates from 2-dimensional projected coordinates. It can only be solved if
we have information about the camera or the 3-dimensional object.

The projection can also be written in functional form as
p="2P(P,K,&) (11.10)

where P is the point coordinate vector in the world frame. K is the camera parameter
matrix and comprises the intrinsic parameters which are the innate characteristics
of the camera and sensor such as f, p,,, p;,, U, and v,. & is the pose of the camera and
comprises a minimum of six parameters — the extrinsic parameters — that describe
camera translation and orientation in SE(3).

There are 5 intrinsic and 6 extrinsic parameters — a total of 11 independent pa-
rameters to describe a camera. The camera matrix has 12 elements so one degree of
freedom, the overall scale factor, is unconstrained and can be arbitrarily chosen. In
practice the camera parameters are not known and must be estimated using a camera
calibration procedure which we will discuss in Sect. 11.2.

The camera intrinsic parameter matrix X for this camera is

>> cam.K
ans =
1.0e+03 *
1.5000 0 0.6400
0 1.5000 0.5120
0 0 0.0010

The camera matrix is implicitly created when the Toolbox camera object is con-
structed and for this example is

>> cam.C
ans =
1.0e+03 *
1.5000 0 0.6400 0
0 1.5000 0.5120 0
0 0 0.0010 0

The field of view of a lens is an open rectangular pyramid, a frustum, that subtends angles 0,
and 0, in the horizontal and vertical planes respectively. A normal lens is one with a field of
view around 50°, while a wide angle lens has a field of view >60°. Beyond 110° it is difficult
to create a lens that maintains perspective projection, so nonperspective fisheye lenses are
required.

For very wide-angle lenses it is more common to describe the field of view as a solid angle
which is measured in units of steradians (or sr). This is the area of the field of view projected
onto the surface of a unit sphere. A hemispherical field of view is 2 sr and a full spherical
view is 47 sr. If we approximate the camera’s field of view by a cone with apex angle 0 the cor-
responding solid angle is 2 (1 — cos 6/ 2) sr. A camera with a field of view greater than a full
hemisphere is termed omnidirectional or panoramic.
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Yes, R has two different meanings here.
MATLAB does not provide an RQ-de-
composition but it can be determined by
transforming the inputs to,and results of,
the builtin MATLAB QR-decomposition
function gr.There are many subtleties
in doing this though: negative scale fac-
tors in the K matrix or detR = —1, see
Hartley and Zisserman (2003), or the im-
plementation of invC for details.

The camera matrix C C R*** has some important structure and properties:

= It can be partitioned C = (M| ¢,) into a nonsingular matrix M C R*** and a
vector, where ¢, = —Mc and c is the world origin in the camera frame. We
can recover thisbyc= —M ¢,

= The null space of Cis ¢.

= A pixel at coordinate p corresponds to a ray in space parallel to the vector M~!5.

= The matrix M = KR is the product of the camera intrinsics and the camera in-
verse orientation. We can perform an RQ-decomposition of M = RQ where R is
an upper-triangular matrix (which is K) and an orthogonal matrix Q (which is R).

= The bottom row of C defines the principal plane, which is parallel to the im-
age plane and contains the camera origin.

= If the rows of M are vectors m,; then
- m{isavector normal to the principal plane and parallel to the optical axis

and Mm is the principal point in homogeneous form.
- if the camera has zero skew, that is K, , = 0, then
(m; x m;) - (M, x ms3) =0
- and, if the camera has square pixels, that is p, = p, then
Jrm x ]| = [y x ]| =/

The field of view of a camera is a function of its focal length f. A wide-angle lens has
a small focal length, a telephoto lens has a large focal length, and a zoom lens has an
adjustable focal length. The field of view can be determined from the geometry of
Fig. 11.6. In the horizontal direction the half-angle of view is

L W/2p,
f

where W is the number of pixels in the horizontal direction. We can then write

0
& — tan
2

Wow g _ gtan—1 Hon (11.11)

2f 2f

We note that the field of view is also a function of the dimensions of the camera chip which
is Wp,, X Hp;,. The field of view is computed by the fov method of the camera object
>> cam.fov () * 180/pi

ans =
46.2127 37.6930

0, =2tan”

in degrees in the horizontal and vertical directions respectively.

11.1.5  Projecting Points

The CentralCamera class is a subclass of the Camera class and inherits the ability
to project multiple points or lines. Using the Toolbox we create a 3 x 3 grid of points
in the xy-plane with overall side length 0.2 m and centered at (0, 0, 1)

>> P = mkgrid(3, 0.2, 'pose', SE3(0, 0, 1.0));
which returns a 3 x 9 matrix with one column per grid point where each column com-
prises the coordinates in X, Y, Z order. The first four columns are

>> P(:,1:4)
ans =
-0.1000 -0.1000 -0.1000 0
-0.1000 0 0.1000 -0.1000
1.0000 1.0000 1.0000 1.0000
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By default mkgrid generates a grid in the xy-plane that is centered at the origin. The =~ Fig.11.7. Two views of a planar
optional last argument is a homogeneous transformation that is applied to the default ~ 8rid of points. a Frontal view,
points and allows the plane to be arbitrarily positioned and oriented. b oblique view
The image-plane coordinates of the vertices are
>> cam.project (P)
ans =
490 490 490 640 640 640 790 790 790
362 512 662 362 512 662 362 512 662

which can also be plotted

>> cam.plot (P)

giving the virtual camera view shown in Fig. 11.7a. The camera pose
>> Tcam = SE3(-1,0,0.5)*SE3.Ry(0.9);

results in an oblique view of the plane

>> cam.plot (P, 'pose', Tcam)

shown in Fig. 11.7b. We can clearly see the effect of perspective projection which has
distorted the shape of the square - the top and bottom edges, which are parallel lines,
have been projected to lines that converge at a vanishing point.

The vanishing point for a line can be determined from the projection of its ideal
line. The top and bottom lines of the grid are parallel to the world x-axis or the vec-
tor (1, 0, 0). The corresponding ideal line has homogeneous coordinates (1, 0, 0, 0)
and exists at infinity due to the final zero element. The vanishing point is the projec-
tion of this vector

>> cam.project ([1 0 0 0]', 'pose', Tcam)

ans =

1.0e+03 *
1.8303
0.5120

which is (1803, 512) and just to the right of the visible image plane.
The plot method can optionally return the image-plane coordinates

>> p = cam.plot (P, 'pose', Tcam)

just like the project method. For the oblique viewing case the image-plane coor-
dinates
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Fig.11.8.Line segment represen- >> p(:,1:4)
tation of a cube. a Frontal view, ans =
b oblique view 887.7638 887.7638 887.7638 955.2451

364.3330 512.0000 659.6670 374.9050

have a fractional component which means that the point is not projected to the cen-
This is not strictly true for CMOS sensors  ter of the pixel. However a pixel responds to light equally* over its surface area so the
where transistors reduce the light-sen- djscrete pixel coordinate can be obtained by rounding.
sitive area by the fill factor — the frac- A 3-dimensional object, a cube, can be defined and projected in a similar fashion. The

tion of each photosite’s area that is light . . .
slensitive. phgos sl vertices of a cube with side length 0.2 m and centered at (0, 0, 1) can be defined by

>> cube

mkcube (0.2, 'pose', SE3(0, 0, 1) );

which returns a 3 x 8 matrix with one column per vertex. The image-plane points can
be plotted as before by

>> cam.plot (cube) ;
Alternatively we can create an edge representation of the cube by

>> [X,Y,Z] = mkcube(0.2, 'pose', SE3(0, 0, 1), 'edge');
and display it

>> cam.mesh (X, Y, Z)

as shown in Fig. 11.8 along with an oblique view generated by

>> Tcam SE3(-1,0,0.5)*SE3.Ry(0.8);
>> cam.mesh (X, Y, Z, 'pose', Tcam);

The elements of the mesh (i, j) have  The edges are in the same 3-dimensional mesh format*as generated by MATLAB built-
coordinates (X; ; ¥, Z; ). in functions such as sphere,ellipsoidand cylinder.
Successive calls to plot will redraw the points or line segments and provides a

simple method of animation. The short piece of code

i

1 theta = [0:500]/100*2*pi;

2 [X,Y,2] = mkcube (0.2, [], 'edges');

3 for th=theta

4 T cube = SE3(0, 0, 1.5)*SE3.rpy(th*[1.1 1.2 1.3])
5 cam.mesh( X, Y, Z, 'objpose', T cube ); drawnow
6 end

shows a cube tumbling in space. The cube is defined with its center at the origin and
its vertices are transformed at each time step.
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11.1.6 Lens Distortion

No lenses are perfect and the low-cost lenses used in many webcams are far from per-
fect. Lens imperfections result in a variety of distortions including chromatic aberra-
tion (color fringing), spherical aberration or astigmatism (variation in focus across
the scene), and geometric distortions where points on the image plane are displaced
from where they should be according to Eq. 11.3.

Geometric distortion is generally the most problematic effect that we encounter for
robotic applications, and comprises two components: radial and tangential. Radial
distortion causes image points to be translated along radial lines from the principal
point. The radial error is well approximated by a polynomial

6r=kr’ + Ik’ + kg’ 4 (11.12)
where r is the distance of the image point from the principal point. Barrel distortion
occurs when magnification decreases with distance from the principal point which
causes straight lines near the edge of the image to curve outward. Pincushion distor-
tion occurs when magnification increases with distance from the principal point and
causes straight lines near the edge of the image to curve inward. Tangential distor-
tion, or decentering distortion, occurs at right angles to the radii but is generally less
significant than radial distortion. Examples of a distorted and undistorted image are
shown in Fig. 11.9.

The coordinate of the point (u, v) after distortion is given by

' =u+68, v =v+6, (11.13)
where the displacement is
[5 ] u(klr2 + It + kyr® + ) 2puv + p, (r2 + 2u2> ( |
Y= 11.14
o, v(klr2 4kt 4 kyr® + ) 2 (rz + 2v2) +2p,uv

radial tangential

This displacement vector can be plotted for different values of (u, v) as shown in
Fig. 11.13b. The vectors indicate the displacement required to correct the distortion at
different points in the image, in fact (—6,, —¢,), and shows dominant radial distortion.

In practice three coefficients are sufficient to describe the radial distortion and the
distortion model is parameterized by (ky, k,, k5, p;, p,) which are considered as addi-

300
u (pixels)

400 500 600
Fig.11.9. Lens distortion. a Dis-
torted image, the curvature of the
top row of the squares is quite
pronounced, b undistorted image.
This is calibration image #19 from
Bouguet’s Camera Calibration Tool-
box (Bouguet 2010)
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It has taken humankind a long time to understand
light, color and human vision. The Ancient greeks
had two schools of thought. The emission theory,
supported by Euclid and Ptolemy, held that sight
worked by the eye emitting rays of light that
interacted with the world somewhat like the
sense of touch. The intromission theory, sup-
ported by Aristotle and his followers, had physi-
cal forms entering the eye from the object.

Euclid of Alexandria (325-265) arguably got the
geometry of image formation correct, but his rays
emananted from the eye, not the object. Claudius
Ptolemy (100-170) wrote Optics and discussed reflec-
tion, refraction, and color but today there remains only
a poor Arabic translation of his work.

The Arab philosopher Hasan Ibn al-Haytham (aka
Alhazen, 965-1040) wrote a seven-volume treatise Kitab
al-Manazir (Book of Optics) around 1020. He combined
the mathematical rays of Euclid, the medical knowledge

of Galen, and the intromission theories of Aristotle.
He wrote that “from each point of every colored
body, illuminated by any light, issue light and
color along every straight line that can be drawn
from that point”. He understood refraction but
believed the eye’s lens, not the retina, received
the image - like many early thinkers he strug-
gled with the idea of an inverted image on the
retina. A Latin translation of his work was a great
influence on later European scholars.
It was not until 1604 that geometric optics and hu-
man vision came together when the German astrono-
mer and mathematician Johannes Kepler (1571-1630)
published Astronomiae Pars Optica (The Optical Part
of Astronomy). He was the first to recognize that images
are projected inverted and reversed by the eye’s lens onto
the retina - the image being corrected later “in the hol-
lows of the brain”. (Image from Astronomiae Pars Optica,
Johannes Kepler, 1604)

tional intrinsic parameters. Distortion can be modeled by the CentralCamera class
using the 'distortion' option, for example
>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6,

'resolution', [1280 1024], 'centre', [512 512],
'distortion', [kl k2 k3 pl p2] )

11.2 Camera Calibration

The camera projection model Eq. 11.9 has a number of parameters that in practice
are unknown. In general the principal point is not at the center of the photosite ar-
According to ANSI Standard PH3.13-1958  ray. The focal length of a lens is only accurate to 4% of what it purports to be, and
“Focal Length Marking of Lenses® is only correct if the lens is focused at infinity. It is also common experience that the
intrinsic parameters change if a lens is detached and reattached, or adjusted for focus
Changing focus shifts the lensalongthe  or aperture. The only intrinsic parameters that it may be possible to obtain are the
optical axis. In some designs, changing  photosite dimensions p,, and p,, from the sensor manufacturer’s data sheet. The ex-
focus rotates the lens so iftis not per- 4 5 parameters, the camera’s pose, raises the question of where exactly is the cen-
fectly symmetric this will move the dis- R
tortions with respect to the image plane. ter point of the camera.
Changing the aperture alters the parts of Camera calibration is the process of determining the camera’s intrinsic parameters
thelens thatlightrays passthroughand  and the extrinsic parameters with respect to the world coordinate system. Calibration
hence the distortion that they incur. techniques rely on sets of world points whose relative coordinates are known and whose
corresponding image-plane coordinates are also known. State-of-the-art techniques
such as Bouguet’s Calibration Toolbox for MATLAB (Bouguet 2010) simply require a
number of images of a planar chessboard target such as shown in Fig. 11.12. From this,
as discussed in Sect. 11.2.4, the intrinsic parameters (including distortion parameters)
can be estimated as well as the relative pose of the chessboard in each image. Classical
calibration techniques require a single view of a 3-dimensional calibration target but
are unable to estimate the distortion model. These methods are however easy to un-
derstand and they start our discussion in the next section.

11.2.1 Homogeneous Transformation Approach

The homogeneous transform method allows direct estimation of the camera matrix C
in Eq. 11.9. The elements of this matrix are functions of the intrinsic and extrinsic
parameters. Setting p = (u, v, 1), expanding equation Eq. 11.9 and substituting into
Eq. 11.8 we can write
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Ci X +C,Y +C3Z+Cy — CuX — CouY — CyuZ — Cu =0

(11.15)
CyX +Cp)Y +Cpi3Z +Cyy — CvX —C5pvY —C3vZ — C3,v =0

where (u, v) are the pixel coordinates corresponding to the world point (X, Y, Z) and
C;; are elements of the unknown camera matrix.

Calibration requires a 3-dimensional target such as shown in Fig. 11.10. The po-
sition of the center of each marker (X;, Y}, Z;), i € [1, N] with respect to the target
frame {T} must be known, but {T} itself is not known. An image is captured and
the corresponding image-plane coordinates (u;, v;) are determined. Assuming that
C;,= 1 we stack the two equations of Eq. 11.15 for each of the N markers to form
the matrix equation

XYy zZz 10 0 00 —uX —wYyy, -—-uZ c u,
0 0 00X Y Z 1 —vX -vY, -vZ C“ v
: 12 Sl (11.16)
Xy Yy Zy 1 0 0 0 0 —uyXy —uyYy —uyZy C. Uy
0 0 0 0 Xy Yy Zy 1 —vyXy —vyYy —vnZy )V ® vy

which can be solved for the camera matrix elements C,, --- Cs;. Equation 11.16 has 11 un-
knowns and for solution requires that N > 6. Often more than 6 points will be used lead-

ing to an over-determined set of equations which is solved using least squares.

If the points are coplanar then the left-hand matrix of Eq. 11.16 becomes rank de-
ficient. This is why the calibration target must be 3-dimensional, typically an array of
dots or squares on two or three planes as shown in Fig. 11.10.

We will illustrate this with an example. The calibration target is a cube, the markers
are its vertices and its coordinate frame {T} is parallel to the cube faces with its origin
at the center of the cube. The coordinates of the markers with respect to {T} are

>> P = mkcube (0.2);

Now the calibration target is at some “unknown pose” £, with respect to the camera

which we choose to be

>> T unknown = SE3(0.1, 0.2, 1.5)

* SE3.rpy (0.1,

0.2, 0.3);

Next we create a perspective camera whose parameters we will attempt to estimate

>> cam = CentralCamera('focal',
'pixel', 10e-6,

0.015,
'resolution', [1280 10247,

'noise', 0.05);

We have also specified that zero-mean Gaussian noise with ¢ = 0.05 is added to the

(u, v) coordinates to model camera noise and errors in the
computer vision algorithms. The image-plane coordinates
of the calibration target at its “unknown” pose are

>> p = cam.project (P, 'objpose', T unknown);

Now using just the object model P and the observed im-
age features p we estimate the camera matrix

>> C = camcald (P, p)
maxm residual 0.066733 pixels.

C =
853.0895 -236.9378 634.2785 740.0438
222.6439 986.6900 295.7327 712.0152
-0.1304 0.0610 0.6495 1.0000

The maximum residual in this case is less than 0.1 pixel,
that is, the worst error between the projection of a world
point using the camera matrix C and the actual image-
plane location is very small.

Where is the camera’s center? A compound lens has many cardi-
nal points including focal points, nodal points, principal points
and planes, entry and exit pupils. The entrance pupil is a point
on the optical axis of a compound lens system that is its center
of perspective or its no-parallax point. We could consider it to
be the virtual pinhole. Rotating the camera and lens about this
point will not change the relative geometry of targets at differ-
ent distances in the perspective image.

Rotating about the entrance pupil is important in panoram-
ic photography to avoid parallax errors in the final, stitched
panorama. A number of web pages are devoted to discussion
of techniques for determining the position of this point. Some
sites even tabulate the position of the entrance pupil for popu-
lar lenses. Much of this online literature refers to this point in-
correctly as the nodal point even though the techniques given
do identify the entrance pupil.

Depending on the lens design, the entrance pupil may be
behind, within or in front of the lens system.
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Fig.11.10.

A 3D calibration target show-
ing its coordinate frame {T}. The
centroids of the circles are taken
as the calibration points. Note
that the calibration circles are
situated on three planes (photo
courtesy of Fabien Spindler)

Linear techniques such as this cannot estimate lens distortion parameters. The dis-
tortion will introduce errors into the camera matrix elements but for many situations
this might be acceptably low. Distortion parameters are often estimated using a non-
linear optimization over all parameters, typically 16 or more, with the linear solution
used as the initial parameter estimate.

11.2.2 Decomposing the Camera Calibration Matrix

The elements of the camera matrix are functions of the intrinsic and extrinsic parame-
ters. However given a camera matrix most of the parameter values can be recovered.
The null space of C is the world origin in the camera frame. Using data from the
example above this is
>> null(C)"
ans =
0.0809 -0.1709 -0.8138 0.5495
which is expressed in homogeneous coordinates that we can convert to Cartesian form
>> h2e (ans) '
ans =
0.1472 -0.3110 -1.4809
which is close to the true value
>> T unknown.inv.t'
ans =
0.1464 -0.3105 -1.4772
To recover orientation as well as the intrinsic parameters we can decompose the pre-
viously estimated camera matrix

>> est = invcamcal (C)
est =
name: invcamcal [central-perspective]
focal length: 1504
pixel size: (1, 0.9985)
principal pt: (646.8, 504.4)
pose: t = (0.147, -0.311, -1.48), RPY/zyx

= (-1.87, -12.4, -16.4) deg

which returns a CentralCamera object with its parameters set to values that result
in the same camera matrix. We note immediately that the focal length is very large
compared to the true focal length of our lens which was 0.015 m, and that the pixel
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sizes are very large. From Eq. 11.9 we see that focal length and pixel dimensions al-
ways appear together as factors f/p,, and f/ p,.” The function invcamcal has set
p,, = 1 but the ratios of the estimated parameters
>> est.f/est.rho (1)
ans =
1.5044e+03
are very close to the ratio for the true parameters of the camera
>> cam.f/cam.rho (2)
ans =
1.500e+03
The small error in the estimated parameter values is due to the noisy image-plane co-
ordinate values that we used in the calibration process.

The pose of the estimated camera is with respect to the calibration target {T}
and is therefore 7€ .. The true pose of the target with respect to the camera is ¢ ;.
If our estimation is accurate then ¢ @ ¢ will be 0. We earlier set the variable
T unknown equal to °¢; and for our example we find that

>> trprint (T_unknown*est.T)

t = (4.13e-05, -4.4e-05, -0.00386),

RPY/zyx = (0.296, 0.253, -0.00557) deg
which is the relative pose between the true and estimated camera pose. The camera pose
is estimated to better than 5 mm in position and a fraction of a degree in orientation.

We can plot the calibration markers as small red spheres

>> hold on; plot_ sphere (P,
>> trplot (eye(4,4),

0.03,
'frame', 'T',

trt)

'color', 'b', 'length', 0.3)

as well as {T} which we have set at the world origin. The estimated pose of
the camera can be superimposed

0.2
>> est.plot camera ()
and the result is shown in Fig. 11.11.™ The problem of determining the 0
pose of a camera with respect to a calibration object is an important A
problem in photogrammetry known as the camera location determina-
tion problem. -02.
04

11.23 Pose Estimation

The pose estimation problem is to determine the pose £, of a target’s coordi-  nj0-6-
nate frame {T} with respect to the camera. The geometry of the target is known,
that is, we know the position of a number of points (X;, Y;, Z;), i € [1, N] on the
target with respect to {T}. The camera’s intrinsic parameters are also known.
An image is captured and the corresponding image-plane coordinates (u;, v;)
are determined using computer vision algorithms.

Estimating the pose using (u;, v;), (X;, Y}, Z;) and camera intrinsic param-
eters is known as the Perspective-n-Point problem or PnP for short. It is a
simpler problem than camera calibration and decomposition because there
are fewer parameters to estimate. To illustrate pose estimation we will create
a calibrated camera with known parameters

>> cam = CentralCamera('focal',
'resolution', [1280 10247,

0.015,
'centre',

'pixel', 10e-6,
[640 5121);

The object whose pose we wish to determine is a cube with side lengths of
0.2 m and the coordinates of the markers with respect to {T} are

>> P = mkcube (0.2);

These quantities have units of pixels
since p has units of m pixel . Itis quite
common in the literature to consider
p = 1and the focal length is given in
pixels. If the pixels are not square then
different focal lengths £, and £, must be
used for the horizontal and vertical direc-
tions respectively.

The option ' frustum' shows the
camera as a rectangular pyramid, such
as shown in Fig. 11.13a, rather than a
camera icon.
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\
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Fig. 11.11.Calibration target points
and estimated camera pose with re-
spect to the target frame {T} which
is assumed to be at the origin
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Fig.11.12. Example frames from
Bouguet’s Calibration Toolbox
showing the calibration target
in many different orientations.
These are images 2, 5, 9, 18 from
the Calibration Toolbox example

which we can consider a simple geometric model of the object. The object is at some
arbitrary but unknown pose “¢; pose with respect to the camera

>> T unknown = SE3(0.1, 0.2, 1.5) * SE3.rpy(0.1, 0.2, 0.3);
>> T _unknown.print
t = (0.1, 0.2, 1.5), RPY/zyx = (5.73, 11.5, 17.2) deg

The image-plane coordinates of the object’s points at its unknown pose are
>> p = cam.project (P, 'objpose', T unknown);

Now using just the object model P, the observed image features p and the calibrated
camera cam we estimate the relative pose “¢; of the object

>> T est = cam.estpose (P, p).print
t = (0.1, 0.2, 1.5), RPY/zyx = (5.73, 11.5, 17.2) deg

which is the same (to four decimal places) as the unknown pose T unknown of the
object.

In reality the image features coordinates will be imperfectly estimated by the vision
system and we would model this by adding zero-mean Gaussian noise to the image
feature coordinates as we did in the camera calibration example.

11.2.4 Camera Calibration Toolbox

A popular and practical tool for calibrating cameras using a planar chessboard target
is the Camera Calibration Toolbox. A number of images, typically twenty, are taken
of the target at different distances and orientations as shown in Fig. 11.12.
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The calibration tool is launched by

>> calib gui

and a graphical user interface (GUI) is displayed.“ The first step is to load the images

using the button. The second step is the button which

prompts you to pick the corners of the calibration target in each of the images. This
is a little tedious but needs to be done carefully. The final step, the button,

uses the calibration target information to estimate the camera parameter values

Focal Length: fc = [ 657.39071 657.74678 ]
+ [ 0.37195 0.39793 ]
Principal point: cc = [ 303.22367 242.74729 14
+ [ 0.75632 0.69189 ]
Skew: alpha ¢ = [ 0.00000 ] £ [ 0.00000 ]
=> angle of pixel axes = 90.00000 + 0.00000 degrees
Distortion: ke = [ -0.25541 0.12617 -0.00015 0.00006
0.00000 1 £ [ 0.00290 0.01154 0.00016 0.00015 0.00000 ]
Pixel error: err = [ 0.13355 0.13727

For each parameter the uncertainty (3¢ bounds) is estimated and displayed.

The camera pose relative to the target is estimated for each calibration image
and can be displayed using the button. This target-centric view is
shown in Fig. 11.13a indicates the estimated relative pose of the camera for each
input image.

The distortion vector kc contains the parameters in the order (ky, k,, py, Py k3) -
note that k; is out of sequence. The distortion map can be displayed by

>> visualize_distortions

and is shown in Fig. 11.13b. This indicates the displacement from true to distorted im-
age-plane coordinates which in this case is predominately in the radial direction. This
is consistent with k; and k, being orders of magnitude greater than p, and p, which
is typical for most lenses. The button can be used to undistort a set of
images and a distorted and undistorted image are compared in Fig. 11.9b. The details
of this transformation using image warping will be discussed in Sect. 12.7.4.

1.3 Wide Field-of-View Imaging

We have discussed perspective imaging in quite some detail since it is the model of our
own eyes and almost all cameras that we encounter. However perspective imaging con-
strains us to a fundamentally limited field of view. The thin lens equation (11.1) is singular
for points with Z = fwhich limits the field of view to at most one hemisphere - real lenses

1
400

300 500

Fig. 11.13. Calibration results
from the example in Bouguet’s
Calibration Toolbox. a The esti-
mated camera pose relative to the
target for each calibration image,
b the distortion map with vectors
showing how points in the image
will move due to distortion

The GUI is optional, and the Toolbox
functions can be called from inside your
own programs. The function calib
gui normal shows the mapping
from GUI button names to Calibration
Toolbox function names. Note that most
of the functions are actually scripts and
program state variables are kept in the
workspace.
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Fig.11.14.

Images formation by reflection
from a curved surface (Cloud
Gate, Chicago, Anish Kapoor,
2006). Note that straight lines

have become curves

Specular reflection occurs with a mirror-like surface. Incoming rays are reflect-
ed such that the angle of incidence equals the angle of reflection or 6,= 6;.
Speculum is Latin for mirror and speculum metal (% copper, % tin) is an al-
loy that can be highly polished. It was used by Newton and Herschel for the
curved mirrors in their reflecting telescopes. See also Lambertian reflection
on page 309. (The 48 inch speculum mirror from Herschel’s 40 foot telescope,
completed in 1789, is now in the British Science Museum, photo by Mike Peel
(mikepeel.net) licensed under CC-BY-SA)

achieve far less. As the focal length decreases radial distortion is increasingly difficult to
eliminate and eventually a limit is reached beyond which lenses cannot practically be built.
The only way forward is to drop the constraint of perspective imaging. In Sect. 11.3.1 we
describe the geometry of image formation with wide-angle lens systems.

An alternative to refractive optics is to use a reflective surface to form the image such as
shown in Fig. 11.14. Newtonian telescopes are based on reflection from concave mirrors rather
than refraction by lenses. Mirrors are free of color fringing and are easier to scale to larger
sizes than alens. Nature has also evolved reflective optics - the spookfish and some scallops
(see page 285) have eyes based on reflectors formed from guanine crystals. In Sect. 11.3.2
we describe the geometry of image formation with a combination of lenses and mirrors.

The cost of cameras is decreasing so an alternative approach is to combine the output of
multiple cameras into a single image, and this is briefly described in Sect. 11.5.1.

11.3.1 Fisheye Lens Camera

A fisheye lens image in shown in Fig. 11.17, and we create a model using the notation
shown in Fig. 11.15 where the camera is positioned at the origin O and its optical axis
is the z-axis. The world point P is represented in spherical coordinates (R, 6, ¢), where
0 is the angle outward from the optical axis and ¢ is the angle of rotation around the
optical axis. We can write

R=+/X>+Y>+2% 0= cosflg, o= tanflz
Z X
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Mapping Equation
Equiangular r=ké
Stereographic r=ktan(6/2)
Equisolid r=ksin(6/2)
Polynomial r=k,0+ k0% + -

On the image plane of the camera we represent the projection p in polar coordi-
nates (1, ¢) with respect to the principal point, where r = r(f). The Cartesian image-
plane coordinates are

u=r(0)cosp, v =r(0)sing

and the exact nature of the function r(#) depends on the type of fisheye lens. Some
common projection models are listed in Table 11.1 and all have a scaling parame-
ter k.

Using the Toolbox we can create a fisheye camera

>> cam = FishEyeCamera ('name', 'fisheye',
'projection', 'equiangular',
'pixel', 10e-6,
'resolution', [1280 1024]

which returns an instance of a FishEyeCamera object which is a subclass of the
Toolbox’s Camera object and polymorphic with the CentralCamera class dis-
cussed earlier. If k is not specified, as in this example, then it is computed such that
a hemispheric field of view is projected into the maximal circle on the image plane.
As is the case for perspective camera